ALSA: pcm: Fix missing check of the new non-cached buffer type
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4
LT
35#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
7ed20e1a 45#include <linux/signal.h>
9984de1a 46#include <linux/export.h>
fd5eea42 47#include <linux/magic.h>
b488893a
PE
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
bdbb776f 50#include <linux/ptrace.h>
8bd75c77 51#include <linux/sched/rt.h>
84f001e1 52#include <linux/sched/wake_q.h>
6e84f315 53#include <linux/sched/mm.h>
13d60f4b 54#include <linux/hugetlb.h>
88c8004f 55#include <linux/freezer.h>
57c8a661 56#include <linux/memblock.h>
ab51fbab 57#include <linux/fault-inject.h>
49262de2 58#include <linux/refcount.h>
b488893a 59
4732efbe 60#include <asm/futex.h>
1da177e4 61
1696a8be 62#include "locking/rtmutex_common.h"
c87e2837 63
99b60ce6 64/*
d7e8af1a
DB
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
99b60ce6
TG
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
99b60ce6
TG
76 *
77 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
99b60ce6 81 *
b0c29f79
DB
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 107 *
b0c29f79
DB
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
99b60ce6
TG
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
b0c29f79 116 *
d7e8af1a 117 * waiters++; (a)
8ad7b378
DB
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
99b60ce6 128 * if (uval == val)
b0c29f79 129 * queue();
99b60ce6 130 * unlock(hash_bucket(futex));
b0c29f79
DB
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
d7e8af1a
DB
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 135 *
d7e8af1a
DB
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
d7e8af1a
DB
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
163 */
164
04e7712f
AB
165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166#define futex_cmpxchg_enabled 1
167#else
168static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 169#endif
a0c1e907 170
b41277dc
DH
171/*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
784bdf3b
TG
175#ifdef CONFIG_MMU
176# define FLAGS_SHARED 0x01
177#else
178/*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182# define FLAGS_SHARED 0x00
183#endif
b41277dc
DH
184#define FLAGS_CLOCKRT 0x02
185#define FLAGS_HAS_TIMEOUT 0x04
186
c87e2837
IM
187/*
188 * Priority Inheritance state:
189 */
190struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
49262de2 203 refcount_t refcount;
c87e2837
IM
204
205 union futex_key key;
3859a271 206} __randomize_layout;
c87e2837 207
d8d88fbb
DH
208/**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 210 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
ac6424b9 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 224 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
229 */
230struct futex_q {
ec92d082 231 struct plist_node list;
1da177e4 232
d8d88fbb 233 struct task_struct *task;
1da177e4 234 spinlock_t *lock_ptr;
1da177e4 235 union futex_key key;
c87e2837 236 struct futex_pi_state *pi_state;
52400ba9 237 struct rt_mutex_waiter *rt_waiter;
84bc4af5 238 union futex_key *requeue_pi_key;
cd689985 239 u32 bitset;
3859a271 240} __randomize_layout;
1da177e4 241
5bdb05f9
DH
242static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246};
247
1da177e4 248/*
b2d0994b
DH
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
1da177e4
LT
252 */
253struct futex_hash_bucket {
11d4616b 254 atomic_t waiters;
ec92d082
PP
255 spinlock_t lock;
256 struct plist_head chain;
a52b89eb 257} ____cacheline_aligned_in_smp;
1da177e4 258
ac742d37
RV
259/*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267} __futex_data __read_mostly __aligned(2*sizeof(long));
268#define futex_queues (__futex_data.queues)
269#define futex_hashsize (__futex_data.hashsize)
a52b89eb 270
1da177e4 271
ab51fbab
DB
272/*
273 * Fault injections for futexes.
274 */
275#ifdef CONFIG_FAIL_FUTEX
276
277static struct {
278 struct fault_attr attr;
279
621a5f7a 280 bool ignore_private;
ab51fbab
DB
281} fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 283 .ignore_private = false,
ab51fbab
DB
284};
285
286static int __init setup_fail_futex(char *str)
287{
288 return setup_fault_attr(&fail_futex.attr, str);
289}
290__setup("fail_futex=", setup_fail_futex);
291
5d285a7f 292static bool should_fail_futex(bool fshared)
ab51fbab
DB
293{
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298}
299
300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302static int __init fail_futex_debugfs(void)
303{
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
0365aeba
GKH
312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
ab51fbab
DB
314 return 0;
315}
316
317late_initcall(fail_futex_debugfs);
318
319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321#else
322static inline bool should_fail_futex(bool fshared)
323{
324 return false;
325}
326#endif /* CONFIG_FAIL_FUTEX */
327
b0c29f79
DB
328static inline void futex_get_mm(union futex_key *key)
329{
f1f10076 330 mmgrab(key->private.mm);
b0c29f79
DB
331 /*
332 * Ensure futex_get_mm() implies a full barrier such that
333 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 334 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 335 */
4e857c58 336 smp_mb__after_atomic();
b0c29f79
DB
337}
338
11d4616b
LT
339/*
340 * Reflects a new waiter being added to the waitqueue.
341 */
342static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
343{
344#ifdef CONFIG_SMP
11d4616b 345 atomic_inc(&hb->waiters);
b0c29f79 346 /*
11d4616b 347 * Full barrier (A), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
11d4616b
LT
350#endif
351}
352
353/*
354 * Reflects a waiter being removed from the waitqueue by wakeup
355 * paths.
356 */
357static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
358{
359#ifdef CONFIG_SMP
360 atomic_dec(&hb->waiters);
361#endif
362}
b0c29f79 363
11d4616b
LT
364static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
365{
366#ifdef CONFIG_SMP
367 return atomic_read(&hb->waiters);
b0c29f79 368#else
11d4616b 369 return 1;
b0c29f79
DB
370#endif
371}
372
e8b61b3f
TG
373/**
374 * hash_futex - Return the hash bucket in the global hash
375 * @key: Pointer to the futex key for which the hash is calculated
376 *
377 * We hash on the keys returned from get_futex_key (see below) and return the
378 * corresponding hash bucket in the global hash.
1da177e4
LT
379 */
380static struct futex_hash_bucket *hash_futex(union futex_key *key)
381{
382 u32 hash = jhash2((u32*)&key->both.word,
383 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
384 key->both.offset);
a52b89eb 385 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
386}
387
e8b61b3f
TG
388
389/**
390 * match_futex - Check whether two futex keys are equal
391 * @key1: Pointer to key1
392 * @key2: Pointer to key2
393 *
1da177e4
LT
394 * Return 1 if two futex_keys are equal, 0 otherwise.
395 */
396static inline int match_futex(union futex_key *key1, union futex_key *key2)
397{
2bc87203
DH
398 return (key1 && key2
399 && key1->both.word == key2->both.word
1da177e4
LT
400 && key1->both.ptr == key2->both.ptr
401 && key1->both.offset == key2->both.offset);
402}
403
38d47c1b
PZ
404/*
405 * Take a reference to the resource addressed by a key.
406 * Can be called while holding spinlocks.
407 *
408 */
409static void get_futex_key_refs(union futex_key *key)
410{
411 if (!key->both.ptr)
412 return;
413
784bdf3b
TG
414 /*
415 * On MMU less systems futexes are always "private" as there is no per
416 * process address space. We need the smp wmb nevertheless - yes,
417 * arch/blackfin has MMU less SMP ...
418 */
419 if (!IS_ENABLED(CONFIG_MMU)) {
420 smp_mb(); /* explicit smp_mb(); (B) */
421 return;
422 }
423
38d47c1b
PZ
424 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
425 case FUT_OFF_INODE:
8ad7b378 426 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
427 break;
428 case FUT_OFF_MMSHARED:
8ad7b378 429 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 430 break;
76835b0e 431 default:
993b2ff2
DB
432 /*
433 * Private futexes do not hold reference on an inode or
434 * mm, therefore the only purpose of calling get_futex_key_refs
435 * is because we need the barrier for the lockless waiter check.
436 */
8ad7b378 437 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
438 }
439}
440
441/*
442 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
443 * The hash bucket spinlock must not be held. This is
444 * a no-op for private futexes, see comment in the get
445 * counterpart.
38d47c1b
PZ
446 */
447static void drop_futex_key_refs(union futex_key *key)
448{
90621c40
DH
449 if (!key->both.ptr) {
450 /* If we're here then we tried to put a key we failed to get */
451 WARN_ON_ONCE(1);
38d47c1b 452 return;
90621c40 453 }
38d47c1b 454
784bdf3b
TG
455 if (!IS_ENABLED(CONFIG_MMU))
456 return;
457
38d47c1b
PZ
458 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
459 case FUT_OFF_INODE:
460 iput(key->shared.inode);
461 break;
462 case FUT_OFF_MMSHARED:
463 mmdrop(key->private.mm);
464 break;
465 }
466}
467
96d4f267
LT
468enum futex_access {
469 FUTEX_READ,
470 FUTEX_WRITE
471};
472
5ca584d9
WL
473/**
474 * futex_setup_timer - set up the sleeping hrtimer.
475 * @time: ptr to the given timeout value
476 * @timeout: the hrtimer_sleeper structure to be set up
477 * @flags: futex flags
478 * @range_ns: optional range in ns
479 *
480 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
481 * value given
482 */
483static inline struct hrtimer_sleeper *
484futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
485 int flags, u64 range_ns)
486{
487 if (!time)
488 return NULL;
489
dbc1625f
SAS
490 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
491 CLOCK_REALTIME : CLOCK_MONOTONIC,
492 HRTIMER_MODE_ABS);
5ca584d9
WL
493 /*
494 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
495 * effectively the same as calling hrtimer_set_expires().
496 */
497 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
498
499 return timeout;
500}
501
34f01cc1 502/**
d96ee56c
DH
503 * get_futex_key() - Get parameters which are the keys for a futex
504 * @uaddr: virtual address of the futex
505 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
506 * @key: address where result is stored.
96d4f267
LT
507 * @rw: mapping needs to be read/write (values: FUTEX_READ,
508 * FUTEX_WRITE)
34f01cc1 509 *
6c23cbbd
RD
510 * Return: a negative error code or 0
511 *
7b4ff1ad 512 * The key words are stored in @key on success.
1da177e4 513 *
6131ffaa 514 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
515 * offset_within_page). For private mappings, it's (uaddr, current->mm).
516 * We can usually work out the index without swapping in the page.
517 *
b2d0994b 518 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 519 */
64d1304a 520static int
96d4f267 521get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 522{
e2970f2f 523 unsigned long address = (unsigned long)uaddr;
1da177e4 524 struct mm_struct *mm = current->mm;
077fa7ae 525 struct page *page, *tail;
14d27abd 526 struct address_space *mapping;
9ea71503 527 int err, ro = 0;
1da177e4
LT
528
529 /*
530 * The futex address must be "naturally" aligned.
531 */
e2970f2f 532 key->both.offset = address % PAGE_SIZE;
34f01cc1 533 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 534 return -EINVAL;
e2970f2f 535 address -= key->both.offset;
1da177e4 536
96d4f267 537 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
538 return -EFAULT;
539
ab51fbab
DB
540 if (unlikely(should_fail_futex(fshared)))
541 return -EFAULT;
542
34f01cc1
ED
543 /*
544 * PROCESS_PRIVATE futexes are fast.
545 * As the mm cannot disappear under us and the 'key' only needs
546 * virtual address, we dont even have to find the underlying vma.
547 * Note : We do have to check 'uaddr' is a valid user address,
548 * but access_ok() should be faster than find_vma()
549 */
550 if (!fshared) {
34f01cc1
ED
551 key->private.mm = mm;
552 key->private.address = address;
8ad7b378 553 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
554 return 0;
555 }
1da177e4 556
38d47c1b 557again:
ab51fbab
DB
558 /* Ignore any VERIFY_READ mapping (futex common case) */
559 if (unlikely(should_fail_futex(fshared)))
560 return -EFAULT;
561
73b0140b 562 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
563 /*
564 * If write access is not required (eg. FUTEX_WAIT), try
565 * and get read-only access.
566 */
96d4f267 567 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
568 err = get_user_pages_fast(address, 1, 0, &page);
569 ro = 1;
570 }
38d47c1b
PZ
571 if (err < 0)
572 return err;
9ea71503
SB
573 else
574 err = 0;
38d47c1b 575
65d8fc77
MG
576 /*
577 * The treatment of mapping from this point on is critical. The page
578 * lock protects many things but in this context the page lock
579 * stabilizes mapping, prevents inode freeing in the shared
580 * file-backed region case and guards against movement to swap cache.
581 *
582 * Strictly speaking the page lock is not needed in all cases being
583 * considered here and page lock forces unnecessarily serialization
584 * From this point on, mapping will be re-verified if necessary and
585 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
586 *
587 * Mapping checks require the head page for any compound page so the
588 * head page and mapping is looked up now. For anonymous pages, it
589 * does not matter if the page splits in the future as the key is
590 * based on the address. For filesystem-backed pages, the tail is
591 * required as the index of the page determines the key. For
592 * base pages, there is no tail page and tail == page.
65d8fc77 593 */
077fa7ae 594 tail = page;
65d8fc77
MG
595 page = compound_head(page);
596 mapping = READ_ONCE(page->mapping);
597
e6780f72 598 /*
14d27abd 599 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
600 * page; but it might be the ZERO_PAGE or in the gate area or
601 * in a special mapping (all cases which we are happy to fail);
602 * or it may have been a good file page when get_user_pages_fast
603 * found it, but truncated or holepunched or subjected to
604 * invalidate_complete_page2 before we got the page lock (also
605 * cases which we are happy to fail). And we hold a reference,
606 * so refcount care in invalidate_complete_page's remove_mapping
607 * prevents drop_caches from setting mapping to NULL beneath us.
608 *
609 * The case we do have to guard against is when memory pressure made
610 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 611 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 612 */
65d8fc77
MG
613 if (unlikely(!mapping)) {
614 int shmem_swizzled;
615
616 /*
617 * Page lock is required to identify which special case above
618 * applies. If this is really a shmem page then the page lock
619 * will prevent unexpected transitions.
620 */
621 lock_page(page);
622 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
623 unlock_page(page);
624 put_page(page);
65d8fc77 625
e6780f72
HD
626 if (shmem_swizzled)
627 goto again;
65d8fc77 628
e6780f72 629 return -EFAULT;
38d47c1b 630 }
1da177e4
LT
631
632 /*
633 * Private mappings are handled in a simple way.
634 *
65d8fc77
MG
635 * If the futex key is stored on an anonymous page, then the associated
636 * object is the mm which is implicitly pinned by the calling process.
637 *
1da177e4
LT
638 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
639 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 640 * the object not the particular process.
1da177e4 641 */
14d27abd 642 if (PageAnon(page)) {
9ea71503
SB
643 /*
644 * A RO anonymous page will never change and thus doesn't make
645 * sense for futex operations.
646 */
ab51fbab 647 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
648 err = -EFAULT;
649 goto out;
650 }
651
38d47c1b 652 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 653 key->private.mm = mm;
e2970f2f 654 key->private.address = address;
65d8fc77
MG
655
656 get_futex_key_refs(key); /* implies smp_mb(); (B) */
657
38d47c1b 658 } else {
65d8fc77
MG
659 struct inode *inode;
660
661 /*
662 * The associated futex object in this case is the inode and
663 * the page->mapping must be traversed. Ordinarily this should
664 * be stabilised under page lock but it's not strictly
665 * necessary in this case as we just want to pin the inode, not
666 * update the radix tree or anything like that.
667 *
668 * The RCU read lock is taken as the inode is finally freed
669 * under RCU. If the mapping still matches expectations then the
670 * mapping->host can be safely accessed as being a valid inode.
671 */
672 rcu_read_lock();
673
674 if (READ_ONCE(page->mapping) != mapping) {
675 rcu_read_unlock();
676 put_page(page);
677
678 goto again;
679 }
680
681 inode = READ_ONCE(mapping->host);
682 if (!inode) {
683 rcu_read_unlock();
684 put_page(page);
685
686 goto again;
687 }
688
689 /*
690 * Take a reference unless it is about to be freed. Previously
691 * this reference was taken by ihold under the page lock
692 * pinning the inode in place so i_lock was unnecessary. The
693 * only way for this check to fail is if the inode was
48fb6f4d
MG
694 * truncated in parallel which is almost certainly an
695 * application bug. In such a case, just retry.
65d8fc77
MG
696 *
697 * We are not calling into get_futex_key_refs() in file-backed
698 * cases, therefore a successful atomic_inc return below will
699 * guarantee that get_futex_key() will still imply smp_mb(); (B).
700 */
48fb6f4d 701 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
702 rcu_read_unlock();
703 put_page(page);
704
705 goto again;
706 }
707
708 /* Should be impossible but lets be paranoid for now */
709 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
710 err = -EFAULT;
711 rcu_read_unlock();
712 iput(inode);
713
714 goto out;
715 }
716
38d47c1b 717 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 718 key->shared.inode = inode;
077fa7ae 719 key->shared.pgoff = basepage_index(tail);
65d8fc77 720 rcu_read_unlock();
1da177e4
LT
721 }
722
9ea71503 723out:
14d27abd 724 put_page(page);
9ea71503 725 return err;
1da177e4
LT
726}
727
ae791a2d 728static inline void put_futex_key(union futex_key *key)
1da177e4 729{
38d47c1b 730 drop_futex_key_refs(key);
1da177e4
LT
731}
732
d96ee56c
DH
733/**
734 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
735 * @uaddr: pointer to faulting user space address
736 *
737 * Slow path to fixup the fault we just took in the atomic write
738 * access to @uaddr.
739 *
fb62db2b 740 * We have no generic implementation of a non-destructive write to the
d0725992
TG
741 * user address. We know that we faulted in the atomic pagefault
742 * disabled section so we can as well avoid the #PF overhead by
743 * calling get_user_pages() right away.
744 */
745static int fault_in_user_writeable(u32 __user *uaddr)
746{
722d0172
AK
747 struct mm_struct *mm = current->mm;
748 int ret;
749
750 down_read(&mm->mmap_sem);
2efaca92 751 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 752 FAULT_FLAG_WRITE, NULL);
722d0172
AK
753 up_read(&mm->mmap_sem);
754
d0725992
TG
755 return ret < 0 ? ret : 0;
756}
757
4b1c486b
DH
758/**
759 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
760 * @hb: the hash bucket the futex_q's reside in
761 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
762 *
763 * Must be called with the hb lock held.
764 */
765static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
766 union futex_key *key)
767{
768 struct futex_q *this;
769
770 plist_for_each_entry(this, &hb->chain, list) {
771 if (match_futex(&this->key, key))
772 return this;
773 }
774 return NULL;
775}
776
37a9d912
ML
777static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
778 u32 uval, u32 newval)
36cf3b5c 779{
37a9d912 780 int ret;
36cf3b5c
TG
781
782 pagefault_disable();
37a9d912 783 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
784 pagefault_enable();
785
37a9d912 786 return ret;
36cf3b5c
TG
787}
788
789static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
790{
791 int ret;
792
a866374a 793 pagefault_disable();
bd28b145 794 ret = __get_user(*dest, from);
a866374a 795 pagefault_enable();
1da177e4
LT
796
797 return ret ? -EFAULT : 0;
798}
799
c87e2837
IM
800
801/*
802 * PI code:
803 */
804static int refill_pi_state_cache(void)
805{
806 struct futex_pi_state *pi_state;
807
808 if (likely(current->pi_state_cache))
809 return 0;
810
4668edc3 811 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
812
813 if (!pi_state)
814 return -ENOMEM;
815
c87e2837
IM
816 INIT_LIST_HEAD(&pi_state->list);
817 /* pi_mutex gets initialized later */
818 pi_state->owner = NULL;
49262de2 819 refcount_set(&pi_state->refcount, 1);
38d47c1b 820 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
821
822 current->pi_state_cache = pi_state;
823
824 return 0;
825}
826
bf92cf3a 827static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
828{
829 struct futex_pi_state *pi_state = current->pi_state_cache;
830
831 WARN_ON(!pi_state);
832 current->pi_state_cache = NULL;
833
834 return pi_state;
835}
836
bf92cf3a
PZ
837static void get_pi_state(struct futex_pi_state *pi_state)
838{
49262de2 839 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
840}
841
30a6b803 842/*
29e9ee5d
TG
843 * Drops a reference to the pi_state object and frees or caches it
844 * when the last reference is gone.
30a6b803 845 */
29e9ee5d 846static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 847{
30a6b803
BS
848 if (!pi_state)
849 return;
850
49262de2 851 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
852 return;
853
854 /*
855 * If pi_state->owner is NULL, the owner is most probably dying
856 * and has cleaned up the pi_state already
857 */
858 if (pi_state->owner) {
c74aef2d 859 struct task_struct *owner;
c87e2837 860
c74aef2d
PZ
861 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
862 owner = pi_state->owner;
863 if (owner) {
864 raw_spin_lock(&owner->pi_lock);
865 list_del_init(&pi_state->list);
866 raw_spin_unlock(&owner->pi_lock);
867 }
868 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
869 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
870 }
871
c74aef2d 872 if (current->pi_state_cache) {
c87e2837 873 kfree(pi_state);
c74aef2d 874 } else {
c87e2837
IM
875 /*
876 * pi_state->list is already empty.
877 * clear pi_state->owner.
878 * refcount is at 0 - put it back to 1.
879 */
880 pi_state->owner = NULL;
49262de2 881 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
882 current->pi_state_cache = pi_state;
883 }
884}
885
bc2eecd7
NP
886#ifdef CONFIG_FUTEX_PI
887
c87e2837
IM
888/*
889 * This task is holding PI mutexes at exit time => bad.
890 * Kernel cleans up PI-state, but userspace is likely hosed.
891 * (Robust-futex cleanup is separate and might save the day for userspace.)
892 */
893void exit_pi_state_list(struct task_struct *curr)
894{
c87e2837
IM
895 struct list_head *next, *head = &curr->pi_state_list;
896 struct futex_pi_state *pi_state;
627371d7 897 struct futex_hash_bucket *hb;
38d47c1b 898 union futex_key key = FUTEX_KEY_INIT;
c87e2837 899
a0c1e907
TG
900 if (!futex_cmpxchg_enabled)
901 return;
c87e2837
IM
902 /*
903 * We are a ZOMBIE and nobody can enqueue itself on
904 * pi_state_list anymore, but we have to be careful
627371d7 905 * versus waiters unqueueing themselves:
c87e2837 906 */
1d615482 907 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 908 while (!list_empty(head)) {
c87e2837
IM
909 next = head->next;
910 pi_state = list_entry(next, struct futex_pi_state, list);
911 key = pi_state->key;
627371d7 912 hb = hash_futex(&key);
153fbd12
PZ
913
914 /*
915 * We can race against put_pi_state() removing itself from the
916 * list (a waiter going away). put_pi_state() will first
917 * decrement the reference count and then modify the list, so
918 * its possible to see the list entry but fail this reference
919 * acquire.
920 *
921 * In that case; drop the locks to let put_pi_state() make
922 * progress and retry the loop.
923 */
49262de2 924 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
925 raw_spin_unlock_irq(&curr->pi_lock);
926 cpu_relax();
927 raw_spin_lock_irq(&curr->pi_lock);
928 continue;
929 }
1d615482 930 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 931
c87e2837 932 spin_lock(&hb->lock);
c74aef2d
PZ
933 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
934 raw_spin_lock(&curr->pi_lock);
627371d7
IM
935 /*
936 * We dropped the pi-lock, so re-check whether this
937 * task still owns the PI-state:
938 */
c87e2837 939 if (head->next != next) {
153fbd12 940 /* retain curr->pi_lock for the loop invariant */
c74aef2d 941 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 942 spin_unlock(&hb->lock);
153fbd12 943 put_pi_state(pi_state);
c87e2837
IM
944 continue;
945 }
946
c87e2837 947 WARN_ON(pi_state->owner != curr);
627371d7
IM
948 WARN_ON(list_empty(&pi_state->list));
949 list_del_init(&pi_state->list);
c87e2837 950 pi_state->owner = NULL;
c87e2837 951
153fbd12 952 raw_spin_unlock(&curr->pi_lock);
c74aef2d 953 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
954 spin_unlock(&hb->lock);
955
16ffa12d
PZ
956 rt_mutex_futex_unlock(&pi_state->pi_mutex);
957 put_pi_state(pi_state);
958
1d615482 959 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 960 }
1d615482 961 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
962}
963
bc2eecd7
NP
964#endif
965
54a21788
TG
966/*
967 * We need to check the following states:
968 *
969 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
970 *
971 * [1] NULL | --- | --- | 0 | 0/1 | Valid
972 * [2] NULL | --- | --- | >0 | 0/1 | Valid
973 *
974 * [3] Found | NULL | -- | Any | 0/1 | Invalid
975 *
976 * [4] Found | Found | NULL | 0 | 1 | Valid
977 * [5] Found | Found | NULL | >0 | 1 | Invalid
978 *
979 * [6] Found | Found | task | 0 | 1 | Valid
980 *
981 * [7] Found | Found | NULL | Any | 0 | Invalid
982 *
983 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
984 * [9] Found | Found | task | 0 | 0 | Invalid
985 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
986 *
987 * [1] Indicates that the kernel can acquire the futex atomically. We
988 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
989 *
990 * [2] Valid, if TID does not belong to a kernel thread. If no matching
991 * thread is found then it indicates that the owner TID has died.
992 *
993 * [3] Invalid. The waiter is queued on a non PI futex
994 *
995 * [4] Valid state after exit_robust_list(), which sets the user space
996 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
997 *
998 * [5] The user space value got manipulated between exit_robust_list()
999 * and exit_pi_state_list()
1000 *
1001 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1002 * the pi_state but cannot access the user space value.
1003 *
1004 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1005 *
1006 * [8] Owner and user space value match
1007 *
1008 * [9] There is no transient state which sets the user space TID to 0
1009 * except exit_robust_list(), but this is indicated by the
1010 * FUTEX_OWNER_DIED bit. See [4]
1011 *
1012 * [10] There is no transient state which leaves owner and user space
1013 * TID out of sync.
734009e9
PZ
1014 *
1015 *
1016 * Serialization and lifetime rules:
1017 *
1018 * hb->lock:
1019 *
1020 * hb -> futex_q, relation
1021 * futex_q -> pi_state, relation
1022 *
1023 * (cannot be raw because hb can contain arbitrary amount
1024 * of futex_q's)
1025 *
1026 * pi_mutex->wait_lock:
1027 *
1028 * {uval, pi_state}
1029 *
1030 * (and pi_mutex 'obviously')
1031 *
1032 * p->pi_lock:
1033 *
1034 * p->pi_state_list -> pi_state->list, relation
1035 *
1036 * pi_state->refcount:
1037 *
1038 * pi_state lifetime
1039 *
1040 *
1041 * Lock order:
1042 *
1043 * hb->lock
1044 * pi_mutex->wait_lock
1045 * p->pi_lock
1046 *
54a21788 1047 */
e60cbc5c
TG
1048
1049/*
1050 * Validate that the existing waiter has a pi_state and sanity check
1051 * the pi_state against the user space value. If correct, attach to
1052 * it.
1053 */
734009e9
PZ
1054static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1055 struct futex_pi_state *pi_state,
e60cbc5c 1056 struct futex_pi_state **ps)
c87e2837 1057{
778e9a9c 1058 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1059 u32 uval2;
1060 int ret;
c87e2837 1061
e60cbc5c
TG
1062 /*
1063 * Userspace might have messed up non-PI and PI futexes [3]
1064 */
1065 if (unlikely(!pi_state))
1066 return -EINVAL;
06a9ec29 1067
734009e9
PZ
1068 /*
1069 * We get here with hb->lock held, and having found a
1070 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1071 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1072 * which in turn means that futex_lock_pi() still has a reference on
1073 * our pi_state.
16ffa12d
PZ
1074 *
1075 * The waiter holding a reference on @pi_state also protects against
1076 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1077 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1078 * free pi_state before we can take a reference ourselves.
734009e9 1079 */
49262de2 1080 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1081
734009e9
PZ
1082 /*
1083 * Now that we have a pi_state, we can acquire wait_lock
1084 * and do the state validation.
1085 */
1086 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1087
1088 /*
1089 * Since {uval, pi_state} is serialized by wait_lock, and our current
1090 * uval was read without holding it, it can have changed. Verify it
1091 * still is what we expect it to be, otherwise retry the entire
1092 * operation.
1093 */
1094 if (get_futex_value_locked(&uval2, uaddr))
1095 goto out_efault;
1096
1097 if (uval != uval2)
1098 goto out_eagain;
1099
e60cbc5c
TG
1100 /*
1101 * Handle the owner died case:
1102 */
1103 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1104 /*
e60cbc5c
TG
1105 * exit_pi_state_list sets owner to NULL and wakes the
1106 * topmost waiter. The task which acquires the
1107 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1108 */
e60cbc5c 1109 if (!pi_state->owner) {
59647b6a 1110 /*
e60cbc5c
TG
1111 * No pi state owner, but the user space TID
1112 * is not 0. Inconsistent state. [5]
59647b6a 1113 */
e60cbc5c 1114 if (pid)
734009e9 1115 goto out_einval;
bd1dbcc6 1116 /*
e60cbc5c 1117 * Take a ref on the state and return success. [4]
866293ee 1118 */
734009e9 1119 goto out_attach;
c87e2837 1120 }
bd1dbcc6
TG
1121
1122 /*
e60cbc5c
TG
1123 * If TID is 0, then either the dying owner has not
1124 * yet executed exit_pi_state_list() or some waiter
1125 * acquired the rtmutex in the pi state, but did not
1126 * yet fixup the TID in user space.
1127 *
1128 * Take a ref on the state and return success. [6]
1129 */
1130 if (!pid)
734009e9 1131 goto out_attach;
e60cbc5c
TG
1132 } else {
1133 /*
1134 * If the owner died bit is not set, then the pi_state
1135 * must have an owner. [7]
bd1dbcc6 1136 */
e60cbc5c 1137 if (!pi_state->owner)
734009e9 1138 goto out_einval;
c87e2837
IM
1139 }
1140
e60cbc5c
TG
1141 /*
1142 * Bail out if user space manipulated the futex value. If pi
1143 * state exists then the owner TID must be the same as the
1144 * user space TID. [9/10]
1145 */
1146 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1147 goto out_einval;
1148
1149out_attach:
bf92cf3a 1150 get_pi_state(pi_state);
734009e9 1151 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1152 *ps = pi_state;
1153 return 0;
734009e9
PZ
1154
1155out_einval:
1156 ret = -EINVAL;
1157 goto out_error;
1158
1159out_eagain:
1160 ret = -EAGAIN;
1161 goto out_error;
1162
1163out_efault:
1164 ret = -EFAULT;
1165 goto out_error;
1166
1167out_error:
1168 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1169 return ret;
e60cbc5c
TG
1170}
1171
da791a66
TG
1172static int handle_exit_race(u32 __user *uaddr, u32 uval,
1173 struct task_struct *tsk)
1174{
1175 u32 uval2;
1176
1177 /*
1178 * If PF_EXITPIDONE is not yet set, then try again.
1179 */
1180 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1181 return -EAGAIN;
1182
1183 /*
1184 * Reread the user space value to handle the following situation:
1185 *
1186 * CPU0 CPU1
1187 *
1188 * sys_exit() sys_futex()
1189 * do_exit() futex_lock_pi()
1190 * futex_lock_pi_atomic()
1191 * exit_signals(tsk) No waiters:
1192 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1193 * mm_release(tsk) Set waiter bit
1194 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1195 * Set owner died attach_to_pi_owner() {
1196 * *uaddr = 0xC0000000; tsk = get_task(PID);
1197 * } if (!tsk->flags & PF_EXITING) {
1198 * ... attach();
1199 * tsk->flags |= PF_EXITPIDONE; } else {
1200 * if (!(tsk->flags & PF_EXITPIDONE))
1201 * return -EAGAIN;
1202 * return -ESRCH; <--- FAIL
1203 * }
1204 *
1205 * Returning ESRCH unconditionally is wrong here because the
1206 * user space value has been changed by the exiting task.
1207 *
1208 * The same logic applies to the case where the exiting task is
1209 * already gone.
1210 */
1211 if (get_futex_value_locked(&uval2, uaddr))
1212 return -EFAULT;
1213
1214 /* If the user space value has changed, try again. */
1215 if (uval2 != uval)
1216 return -EAGAIN;
1217
1218 /*
1219 * The exiting task did not have a robust list, the robust list was
1220 * corrupted or the user space value in *uaddr is simply bogus.
1221 * Give up and tell user space.
1222 */
1223 return -ESRCH;
1224}
1225
04e1b2e5
TG
1226/*
1227 * Lookup the task for the TID provided from user space and attach to
1228 * it after doing proper sanity checks.
1229 */
da791a66 1230static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1231 struct futex_pi_state **ps)
e60cbc5c 1232{
e60cbc5c 1233 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1234 struct futex_pi_state *pi_state;
1235 struct task_struct *p;
e60cbc5c 1236
c87e2837 1237 /*
e3f2ddea 1238 * We are the first waiter - try to look up the real owner and attach
54a21788 1239 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1240 *
1241 * The !pid check is paranoid. None of the call sites should end up
1242 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1243 */
778e9a9c 1244 if (!pid)
da791a66 1245 return -EAGAIN;
2ee08260 1246 p = find_get_task_by_vpid(pid);
7a0ea09a 1247 if (!p)
da791a66 1248 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1249
a2129464 1250 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1251 put_task_struct(p);
1252 return -EPERM;
1253 }
1254
778e9a9c
AK
1255 /*
1256 * We need to look at the task state flags to figure out,
1257 * whether the task is exiting. To protect against the do_exit
1258 * change of the task flags, we do this protected by
1259 * p->pi_lock:
1260 */
1d615482 1261 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1262 if (unlikely(p->flags & PF_EXITING)) {
1263 /*
1264 * The task is on the way out. When PF_EXITPIDONE is
1265 * set, we know that the task has finished the
1266 * cleanup:
1267 */
da791a66 1268 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1269
1d615482 1270 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1271 put_task_struct(p);
1272 return ret;
1273 }
c87e2837 1274
54a21788
TG
1275 /*
1276 * No existing pi state. First waiter. [2]
734009e9
PZ
1277 *
1278 * This creates pi_state, we have hb->lock held, this means nothing can
1279 * observe this state, wait_lock is irrelevant.
54a21788 1280 */
c87e2837
IM
1281 pi_state = alloc_pi_state();
1282
1283 /*
04e1b2e5 1284 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1285 * the owner of it:
1286 */
1287 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1288
1289 /* Store the key for possible exit cleanups: */
d0aa7a70 1290 pi_state->key = *key;
c87e2837 1291
627371d7 1292 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1293 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1294 /*
1295 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1296 * because there is no concurrency as the object is not published yet.
1297 */
c87e2837 1298 pi_state->owner = p;
1d615482 1299 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1300
1301 put_task_struct(p);
1302
d0aa7a70 1303 *ps = pi_state;
c87e2837
IM
1304
1305 return 0;
1306}
1307
734009e9
PZ
1308static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1309 struct futex_hash_bucket *hb,
04e1b2e5
TG
1310 union futex_key *key, struct futex_pi_state **ps)
1311{
499f5aca 1312 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1313
1314 /*
1315 * If there is a waiter on that futex, validate it and
1316 * attach to the pi_state when the validation succeeds.
1317 */
499f5aca 1318 if (top_waiter)
734009e9 1319 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1320
1321 /*
1322 * We are the first waiter - try to look up the owner based on
1323 * @uval and attach to it.
1324 */
da791a66 1325 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1326}
1327
af54d6a1
TG
1328static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1329{
6b4f4bc9 1330 int err;
af54d6a1
TG
1331 u32 uninitialized_var(curval);
1332
ab51fbab
DB
1333 if (unlikely(should_fail_futex(true)))
1334 return -EFAULT;
1335
6b4f4bc9
WD
1336 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1337 if (unlikely(err))
1338 return err;
af54d6a1 1339
734009e9 1340 /* If user space value changed, let the caller retry */
af54d6a1
TG
1341 return curval != uval ? -EAGAIN : 0;
1342}
1343
1a52084d 1344/**
d96ee56c 1345 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1346 * @uaddr: the pi futex user address
1347 * @hb: the pi futex hash bucket
1348 * @key: the futex key associated with uaddr and hb
1349 * @ps: the pi_state pointer where we store the result of the
1350 * lookup
1351 * @task: the task to perform the atomic lock work for. This will
1352 * be "current" except in the case of requeue pi.
1353 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1354 *
6c23cbbd 1355 * Return:
7b4ff1ad
MCC
1356 * - 0 - ready to wait;
1357 * - 1 - acquired the lock;
1358 * - <0 - error
1a52084d
DH
1359 *
1360 * The hb->lock and futex_key refs shall be held by the caller.
1361 */
1362static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363 union futex_key *key,
1364 struct futex_pi_state **ps,
bab5bc9e 1365 struct task_struct *task, int set_waiters)
1a52084d 1366{
af54d6a1 1367 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1368 struct futex_q *top_waiter;
af54d6a1 1369 int ret;
1a52084d
DH
1370
1371 /*
af54d6a1
TG
1372 * Read the user space value first so we can validate a few
1373 * things before proceeding further.
1a52084d 1374 */
af54d6a1 1375 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1376 return -EFAULT;
1377
ab51fbab
DB
1378 if (unlikely(should_fail_futex(true)))
1379 return -EFAULT;
1380
1a52084d
DH
1381 /*
1382 * Detect deadlocks.
1383 */
af54d6a1 1384 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1385 return -EDEADLK;
1386
ab51fbab
DB
1387 if ((unlikely(should_fail_futex(true))))
1388 return -EDEADLK;
1389
1a52084d 1390 /*
af54d6a1
TG
1391 * Lookup existing state first. If it exists, try to attach to
1392 * its pi_state.
1a52084d 1393 */
499f5aca
PZ
1394 top_waiter = futex_top_waiter(hb, key);
1395 if (top_waiter)
734009e9 1396 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1397
1398 /*
af54d6a1
TG
1399 * No waiter and user TID is 0. We are here because the
1400 * waiters or the owner died bit is set or called from
1401 * requeue_cmp_pi or for whatever reason something took the
1402 * syscall.
1a52084d 1403 */
af54d6a1 1404 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1405 /*
af54d6a1
TG
1406 * We take over the futex. No other waiters and the user space
1407 * TID is 0. We preserve the owner died bit.
59fa6245 1408 */
af54d6a1
TG
1409 newval = uval & FUTEX_OWNER_DIED;
1410 newval |= vpid;
1a52084d 1411
af54d6a1
TG
1412 /* The futex requeue_pi code can enforce the waiters bit */
1413 if (set_waiters)
1414 newval |= FUTEX_WAITERS;
1415
1416 ret = lock_pi_update_atomic(uaddr, uval, newval);
1417 /* If the take over worked, return 1 */
1418 return ret < 0 ? ret : 1;
1419 }
1a52084d
DH
1420
1421 /*
af54d6a1
TG
1422 * First waiter. Set the waiters bit before attaching ourself to
1423 * the owner. If owner tries to unlock, it will be forced into
1424 * the kernel and blocked on hb->lock.
1a52084d 1425 */
af54d6a1
TG
1426 newval = uval | FUTEX_WAITERS;
1427 ret = lock_pi_update_atomic(uaddr, uval, newval);
1428 if (ret)
1429 return ret;
1a52084d 1430 /*
af54d6a1
TG
1431 * If the update of the user space value succeeded, we try to
1432 * attach to the owner. If that fails, no harm done, we only
1433 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1434 */
da791a66 1435 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1436}
1437
2e12978a
LJ
1438/**
1439 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1440 * @q: The futex_q to unqueue
1441 *
1442 * The q->lock_ptr must not be NULL and must be held by the caller.
1443 */
1444static void __unqueue_futex(struct futex_q *q)
1445{
1446 struct futex_hash_bucket *hb;
1447
4de1a293 1448 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1449 return;
4de1a293 1450 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1451
1452 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1453 plist_del(&q->list, &hb->chain);
11d4616b 1454 hb_waiters_dec(hb);
2e12978a
LJ
1455}
1456
1da177e4
LT
1457/*
1458 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1459 * Afterwards, the futex_q must not be accessed. Callers
1460 * must ensure to later call wake_up_q() for the actual
1461 * wakeups to occur.
1da177e4 1462 */
1d0dcb3a 1463static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1464{
f1a11e05
TG
1465 struct task_struct *p = q->task;
1466
aa10990e
DH
1467 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1468 return;
1469
b061c38b 1470 get_task_struct(p);
2e12978a 1471 __unqueue_futex(q);
1da177e4 1472 /*
38fcd06e
DHV
1473 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1474 * is written, without taking any locks. This is possible in the event
1475 * of a spurious wakeup, for example. A memory barrier is required here
1476 * to prevent the following store to lock_ptr from getting ahead of the
1477 * plist_del in __unqueue_futex().
1da177e4 1478 */
1b367ece 1479 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1480
1481 /*
1482 * Queue the task for later wakeup for after we've released
1483 * the hb->lock. wake_q_add() grabs reference to p.
1484 */
07879c6a 1485 wake_q_add_safe(wake_q, p);
1da177e4
LT
1486}
1487
16ffa12d
PZ
1488/*
1489 * Caller must hold a reference on @pi_state.
1490 */
1491static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1492{
7cfdaf38 1493 u32 uninitialized_var(curval), newval;
16ffa12d 1494 struct task_struct *new_owner;
aa2bfe55 1495 bool postunlock = false;
194a6b5b 1496 DEFINE_WAKE_Q(wake_q);
13fbca4c 1497 int ret = 0;
c87e2837 1498
c87e2837 1499 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1500 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1501 /*
bebe5b51 1502 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1503 *
1504 * When this happens, give up our locks and try again, giving
1505 * the futex_lock_pi() instance time to complete, either by
1506 * waiting on the rtmutex or removing itself from the futex
1507 * queue.
1508 */
1509 ret = -EAGAIN;
1510 goto out_unlock;
73d786bd 1511 }
c87e2837
IM
1512
1513 /*
16ffa12d
PZ
1514 * We pass it to the next owner. The WAITERS bit is always kept
1515 * enabled while there is PI state around. We cleanup the owner
1516 * died bit, because we are the owner.
c87e2837 1517 */
13fbca4c 1518 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1519
ab51fbab
DB
1520 if (unlikely(should_fail_futex(true)))
1521 ret = -EFAULT;
1522
6b4f4bc9
WD
1523 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1524 if (!ret && (curval != uval)) {
89e9e66b
SAS
1525 /*
1526 * If a unconditional UNLOCK_PI operation (user space did not
1527 * try the TID->0 transition) raced with a waiter setting the
1528 * FUTEX_WAITERS flag between get_user() and locking the hash
1529 * bucket lock, retry the operation.
1530 */
1531 if ((FUTEX_TID_MASK & curval) == uval)
1532 ret = -EAGAIN;
1533 else
1534 ret = -EINVAL;
1535 }
734009e9 1536
16ffa12d
PZ
1537 if (ret)
1538 goto out_unlock;
c87e2837 1539
94ffac5d
PZ
1540 /*
1541 * This is a point of no return; once we modify the uval there is no
1542 * going back and subsequent operations must not fail.
1543 */
1544
b4abf910 1545 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1546 WARN_ON(list_empty(&pi_state->list));
1547 list_del_init(&pi_state->list);
b4abf910 1548 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1549
b4abf910 1550 raw_spin_lock(&new_owner->pi_lock);
627371d7 1551 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1552 list_add(&pi_state->list, &new_owner->pi_state_list);
1553 pi_state->owner = new_owner;
b4abf910 1554 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1555
aa2bfe55 1556 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1557
16ffa12d 1558out_unlock:
5293c2ef 1559 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1560
aa2bfe55
PZ
1561 if (postunlock)
1562 rt_mutex_postunlock(&wake_q);
c87e2837 1563
16ffa12d 1564 return ret;
c87e2837
IM
1565}
1566
8b8f319f
IM
1567/*
1568 * Express the locking dependencies for lockdep:
1569 */
1570static inline void
1571double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1572{
1573 if (hb1 <= hb2) {
1574 spin_lock(&hb1->lock);
1575 if (hb1 < hb2)
1576 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1577 } else { /* hb1 > hb2 */
1578 spin_lock(&hb2->lock);
1579 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1580 }
1581}
1582
5eb3dc62
DH
1583static inline void
1584double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1585{
f061d351 1586 spin_unlock(&hb1->lock);
88f502fe
IM
1587 if (hb1 != hb2)
1588 spin_unlock(&hb2->lock);
5eb3dc62
DH
1589}
1590
1da177e4 1591/*
b2d0994b 1592 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1593 */
b41277dc
DH
1594static int
1595futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1596{
e2970f2f 1597 struct futex_hash_bucket *hb;
1da177e4 1598 struct futex_q *this, *next;
38d47c1b 1599 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1600 int ret;
194a6b5b 1601 DEFINE_WAKE_Q(wake_q);
1da177e4 1602
cd689985
TG
1603 if (!bitset)
1604 return -EINVAL;
1605
96d4f267 1606 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1607 if (unlikely(ret != 0))
1608 goto out;
1609
e2970f2f 1610 hb = hash_futex(&key);
b0c29f79
DB
1611
1612 /* Make sure we really have tasks to wakeup */
1613 if (!hb_waiters_pending(hb))
1614 goto out_put_key;
1615
e2970f2f 1616 spin_lock(&hb->lock);
1da177e4 1617
0d00c7b2 1618 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1619 if (match_futex (&this->key, &key)) {
52400ba9 1620 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1621 ret = -EINVAL;
1622 break;
1623 }
cd689985
TG
1624
1625 /* Check if one of the bits is set in both bitsets */
1626 if (!(this->bitset & bitset))
1627 continue;
1628
1d0dcb3a 1629 mark_wake_futex(&wake_q, this);
1da177e4
LT
1630 if (++ret >= nr_wake)
1631 break;
1632 }
1633 }
1634
e2970f2f 1635 spin_unlock(&hb->lock);
1d0dcb3a 1636 wake_up_q(&wake_q);
b0c29f79 1637out_put_key:
ae791a2d 1638 put_futex_key(&key);
42d35d48 1639out:
1da177e4
LT
1640 return ret;
1641}
1642
30d6e0a4
JS
1643static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1644{
1645 unsigned int op = (encoded_op & 0x70000000) >> 28;
1646 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1647 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1648 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1649 int oldval, ret;
1650
1651 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1652 if (oparg < 0 || oparg > 31) {
1653 char comm[sizeof(current->comm)];
1654 /*
1655 * kill this print and return -EINVAL when userspace
1656 * is sane again
1657 */
1658 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1659 get_task_comm(comm, current), oparg);
1660 oparg &= 31;
1661 }
30d6e0a4
JS
1662 oparg = 1 << oparg;
1663 }
1664
96d4f267 1665 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1666 return -EFAULT;
1667
1668 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669 if (ret)
1670 return ret;
1671
1672 switch (cmp) {
1673 case FUTEX_OP_CMP_EQ:
1674 return oldval == cmparg;
1675 case FUTEX_OP_CMP_NE:
1676 return oldval != cmparg;
1677 case FUTEX_OP_CMP_LT:
1678 return oldval < cmparg;
1679 case FUTEX_OP_CMP_GE:
1680 return oldval >= cmparg;
1681 case FUTEX_OP_CMP_LE:
1682 return oldval <= cmparg;
1683 case FUTEX_OP_CMP_GT:
1684 return oldval > cmparg;
1685 default:
1686 return -ENOSYS;
1687 }
1688}
1689
4732efbe
JJ
1690/*
1691 * Wake up all waiters hashed on the physical page that is mapped
1692 * to this virtual address:
1693 */
e2970f2f 1694static int
b41277dc 1695futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1696 int nr_wake, int nr_wake2, int op)
4732efbe 1697{
38d47c1b 1698 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1699 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1700 struct futex_q *this, *next;
e4dc5b7a 1701 int ret, op_ret;
194a6b5b 1702 DEFINE_WAKE_Q(wake_q);
4732efbe 1703
e4dc5b7a 1704retry:
96d4f267 1705 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1706 if (unlikely(ret != 0))
1707 goto out;
96d4f267 1708 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1709 if (unlikely(ret != 0))
42d35d48 1710 goto out_put_key1;
4732efbe 1711
e2970f2f
IM
1712 hb1 = hash_futex(&key1);
1713 hb2 = hash_futex(&key2);
4732efbe 1714
e4dc5b7a 1715retry_private:
eaaea803 1716 double_lock_hb(hb1, hb2);
e2970f2f 1717 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1718 if (unlikely(op_ret < 0)) {
5eb3dc62 1719 double_unlock_hb(hb1, hb2);
4732efbe 1720
6b4f4bc9
WD
1721 if (!IS_ENABLED(CONFIG_MMU) ||
1722 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1723 /*
1724 * we don't get EFAULT from MMU faults if we don't have
1725 * an MMU, but we might get them from range checking
1726 */
796f8d9b 1727 ret = op_ret;
42d35d48 1728 goto out_put_keys;
796f8d9b
DG
1729 }
1730
6b4f4bc9
WD
1731 if (op_ret == -EFAULT) {
1732 ret = fault_in_user_writeable(uaddr2);
1733 if (ret)
1734 goto out_put_keys;
1735 }
4732efbe 1736
6b4f4bc9
WD
1737 if (!(flags & FLAGS_SHARED)) {
1738 cond_resched();
e4dc5b7a 1739 goto retry_private;
6b4f4bc9 1740 }
e4dc5b7a 1741
ae791a2d
TG
1742 put_futex_key(&key2);
1743 put_futex_key(&key1);
6b4f4bc9 1744 cond_resched();
e4dc5b7a 1745 goto retry;
4732efbe
JJ
1746 }
1747
0d00c7b2 1748 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1749 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1750 if (this->pi_state || this->rt_waiter) {
1751 ret = -EINVAL;
1752 goto out_unlock;
1753 }
1d0dcb3a 1754 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1755 if (++ret >= nr_wake)
1756 break;
1757 }
1758 }
1759
1760 if (op_ret > 0) {
4732efbe 1761 op_ret = 0;
0d00c7b2 1762 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1763 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1764 if (this->pi_state || this->rt_waiter) {
1765 ret = -EINVAL;
1766 goto out_unlock;
1767 }
1d0dcb3a 1768 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1769 if (++op_ret >= nr_wake2)
1770 break;
1771 }
1772 }
1773 ret += op_ret;
1774 }
1775
aa10990e 1776out_unlock:
5eb3dc62 1777 double_unlock_hb(hb1, hb2);
1d0dcb3a 1778 wake_up_q(&wake_q);
42d35d48 1779out_put_keys:
ae791a2d 1780 put_futex_key(&key2);
42d35d48 1781out_put_key1:
ae791a2d 1782 put_futex_key(&key1);
42d35d48 1783out:
4732efbe
JJ
1784 return ret;
1785}
1786
9121e478
DH
1787/**
1788 * requeue_futex() - Requeue a futex_q from one hb to another
1789 * @q: the futex_q to requeue
1790 * @hb1: the source hash_bucket
1791 * @hb2: the target hash_bucket
1792 * @key2: the new key for the requeued futex_q
1793 */
1794static inline
1795void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1796 struct futex_hash_bucket *hb2, union futex_key *key2)
1797{
1798
1799 /*
1800 * If key1 and key2 hash to the same bucket, no need to
1801 * requeue.
1802 */
1803 if (likely(&hb1->chain != &hb2->chain)) {
1804 plist_del(&q->list, &hb1->chain);
11d4616b 1805 hb_waiters_dec(hb1);
11d4616b 1806 hb_waiters_inc(hb2);
fe1bce9e 1807 plist_add(&q->list, &hb2->chain);
9121e478 1808 q->lock_ptr = &hb2->lock;
9121e478
DH
1809 }
1810 get_futex_key_refs(key2);
1811 q->key = *key2;
1812}
1813
52400ba9
DH
1814/**
1815 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1816 * @q: the futex_q
1817 * @key: the key of the requeue target futex
1818 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1819 *
1820 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1821 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1822 * to the requeue target futex so the waiter can detect the wakeup on the right
1823 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1824 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1825 * to protect access to the pi_state to fixup the owner later. Must be called
1826 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1827 */
1828static inline
beda2c7e
DH
1829void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1830 struct futex_hash_bucket *hb)
52400ba9 1831{
52400ba9
DH
1832 get_futex_key_refs(key);
1833 q->key = *key;
1834
2e12978a 1835 __unqueue_futex(q);
52400ba9
DH
1836
1837 WARN_ON(!q->rt_waiter);
1838 q->rt_waiter = NULL;
1839
beda2c7e 1840 q->lock_ptr = &hb->lock;
beda2c7e 1841
f1a11e05 1842 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1843}
1844
1845/**
1846 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1847 * @pifutex: the user address of the to futex
1848 * @hb1: the from futex hash bucket, must be locked by the caller
1849 * @hb2: the to futex hash bucket, must be locked by the caller
1850 * @key1: the from futex key
1851 * @key2: the to futex key
1852 * @ps: address to store the pi_state pointer
1853 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1854 *
1855 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1856 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1857 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1858 * hb1 and hb2 must be held by the caller.
52400ba9 1859 *
6c23cbbd 1860 * Return:
7b4ff1ad
MCC
1861 * - 0 - failed to acquire the lock atomically;
1862 * - >0 - acquired the lock, return value is vpid of the top_waiter
1863 * - <0 - error
52400ba9
DH
1864 */
1865static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1866 struct futex_hash_bucket *hb1,
1867 struct futex_hash_bucket *hb2,
1868 union futex_key *key1, union futex_key *key2,
bab5bc9e 1869 struct futex_pi_state **ps, int set_waiters)
52400ba9 1870{
bab5bc9e 1871 struct futex_q *top_waiter = NULL;
52400ba9 1872 u32 curval;
866293ee 1873 int ret, vpid;
52400ba9
DH
1874
1875 if (get_futex_value_locked(&curval, pifutex))
1876 return -EFAULT;
1877
ab51fbab
DB
1878 if (unlikely(should_fail_futex(true)))
1879 return -EFAULT;
1880
bab5bc9e
DH
1881 /*
1882 * Find the top_waiter and determine if there are additional waiters.
1883 * If the caller intends to requeue more than 1 waiter to pifutex,
1884 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1885 * as we have means to handle the possible fault. If not, don't set
1886 * the bit unecessarily as it will force the subsequent unlock to enter
1887 * the kernel.
1888 */
52400ba9
DH
1889 top_waiter = futex_top_waiter(hb1, key1);
1890
1891 /* There are no waiters, nothing for us to do. */
1892 if (!top_waiter)
1893 return 0;
1894
84bc4af5
DH
1895 /* Ensure we requeue to the expected futex. */
1896 if (!match_futex(top_waiter->requeue_pi_key, key2))
1897 return -EINVAL;
1898
52400ba9 1899 /*
bab5bc9e
DH
1900 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1901 * the contended case or if set_waiters is 1. The pi_state is returned
1902 * in ps in contended cases.
52400ba9 1903 */
866293ee 1904 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1905 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1906 set_waiters);
866293ee 1907 if (ret == 1) {
beda2c7e 1908 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1909 return vpid;
1910 }
52400ba9
DH
1911 return ret;
1912}
1913
1914/**
1915 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1916 * @uaddr1: source futex user address
b41277dc 1917 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1918 * @uaddr2: target futex user address
1919 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1920 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1921 * @cmpval: @uaddr1 expected value (or %NULL)
1922 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1923 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1924 *
1925 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1926 * uaddr2 atomically on behalf of the top waiter.
1927 *
6c23cbbd 1928 * Return:
7b4ff1ad
MCC
1929 * - >=0 - on success, the number of tasks requeued or woken;
1930 * - <0 - on error
1da177e4 1931 */
b41277dc
DH
1932static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1933 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1934 u32 *cmpval, int requeue_pi)
1da177e4 1935{
38d47c1b 1936 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1937 int drop_count = 0, task_count = 0, ret;
1938 struct futex_pi_state *pi_state = NULL;
e2970f2f 1939 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1940 struct futex_q *this, *next;
194a6b5b 1941 DEFINE_WAKE_Q(wake_q);
52400ba9 1942
fbe0e839
LJ
1943 if (nr_wake < 0 || nr_requeue < 0)
1944 return -EINVAL;
1945
bc2eecd7
NP
1946 /*
1947 * When PI not supported: return -ENOSYS if requeue_pi is true,
1948 * consequently the compiler knows requeue_pi is always false past
1949 * this point which will optimize away all the conditional code
1950 * further down.
1951 */
1952 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1953 return -ENOSYS;
1954
52400ba9 1955 if (requeue_pi) {
e9c243a5
TG
1956 /*
1957 * Requeue PI only works on two distinct uaddrs. This
1958 * check is only valid for private futexes. See below.
1959 */
1960 if (uaddr1 == uaddr2)
1961 return -EINVAL;
1962
52400ba9
DH
1963 /*
1964 * requeue_pi requires a pi_state, try to allocate it now
1965 * without any locks in case it fails.
1966 */
1967 if (refill_pi_state_cache())
1968 return -ENOMEM;
1969 /*
1970 * requeue_pi must wake as many tasks as it can, up to nr_wake
1971 * + nr_requeue, since it acquires the rt_mutex prior to
1972 * returning to userspace, so as to not leave the rt_mutex with
1973 * waiters and no owner. However, second and third wake-ups
1974 * cannot be predicted as they involve race conditions with the
1975 * first wake and a fault while looking up the pi_state. Both
1976 * pthread_cond_signal() and pthread_cond_broadcast() should
1977 * use nr_wake=1.
1978 */
1979 if (nr_wake != 1)
1980 return -EINVAL;
1981 }
1da177e4 1982
42d35d48 1983retry:
96d4f267 1984 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1985 if (unlikely(ret != 0))
1986 goto out;
9ea71503 1987 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1988 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1989 if (unlikely(ret != 0))
42d35d48 1990 goto out_put_key1;
1da177e4 1991
e9c243a5
TG
1992 /*
1993 * The check above which compares uaddrs is not sufficient for
1994 * shared futexes. We need to compare the keys:
1995 */
1996 if (requeue_pi && match_futex(&key1, &key2)) {
1997 ret = -EINVAL;
1998 goto out_put_keys;
1999 }
2000
e2970f2f
IM
2001 hb1 = hash_futex(&key1);
2002 hb2 = hash_futex(&key2);
1da177e4 2003
e4dc5b7a 2004retry_private:
69cd9eba 2005 hb_waiters_inc(hb2);
8b8f319f 2006 double_lock_hb(hb1, hb2);
1da177e4 2007
e2970f2f
IM
2008 if (likely(cmpval != NULL)) {
2009 u32 curval;
1da177e4 2010
e2970f2f 2011 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2012
2013 if (unlikely(ret)) {
5eb3dc62 2014 double_unlock_hb(hb1, hb2);
69cd9eba 2015 hb_waiters_dec(hb2);
1da177e4 2016
e2970f2f 2017 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2018 if (ret)
2019 goto out_put_keys;
1da177e4 2020
b41277dc 2021 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2022 goto retry_private;
1da177e4 2023
ae791a2d
TG
2024 put_futex_key(&key2);
2025 put_futex_key(&key1);
e4dc5b7a 2026 goto retry;
1da177e4 2027 }
e2970f2f 2028 if (curval != *cmpval) {
1da177e4
LT
2029 ret = -EAGAIN;
2030 goto out_unlock;
2031 }
2032 }
2033
52400ba9 2034 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2035 /*
2036 * Attempt to acquire uaddr2 and wake the top waiter. If we
2037 * intend to requeue waiters, force setting the FUTEX_WAITERS
2038 * bit. We force this here where we are able to easily handle
2039 * faults rather in the requeue loop below.
2040 */
52400ba9 2041 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2042 &key2, &pi_state, nr_requeue);
52400ba9
DH
2043
2044 /*
2045 * At this point the top_waiter has either taken uaddr2 or is
2046 * waiting on it. If the former, then the pi_state will not
2047 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2048 * reference to it. If the lock was taken, ret contains the
2049 * vpid of the top waiter task.
ecb38b78
TG
2050 * If the lock was not taken, we have pi_state and an initial
2051 * refcount on it. In case of an error we have nothing.
52400ba9 2052 */
866293ee 2053 if (ret > 0) {
52400ba9 2054 WARN_ON(pi_state);
89061d3d 2055 drop_count++;
52400ba9 2056 task_count++;
866293ee 2057 /*
ecb38b78
TG
2058 * If we acquired the lock, then the user space value
2059 * of uaddr2 should be vpid. It cannot be changed by
2060 * the top waiter as it is blocked on hb2 lock if it
2061 * tries to do so. If something fiddled with it behind
2062 * our back the pi state lookup might unearth it. So
2063 * we rather use the known value than rereading and
2064 * handing potential crap to lookup_pi_state.
2065 *
2066 * If that call succeeds then we have pi_state and an
2067 * initial refcount on it.
866293ee 2068 */
734009e9 2069 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2070 }
2071
2072 switch (ret) {
2073 case 0:
ecb38b78 2074 /* We hold a reference on the pi state. */
52400ba9 2075 break;
4959f2de
TG
2076
2077 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2078 case -EFAULT:
2079 double_unlock_hb(hb1, hb2);
69cd9eba 2080 hb_waiters_dec(hb2);
ae791a2d
TG
2081 put_futex_key(&key2);
2082 put_futex_key(&key1);
d0725992 2083 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2084 if (!ret)
2085 goto retry;
2086 goto out;
2087 case -EAGAIN:
af54d6a1
TG
2088 /*
2089 * Two reasons for this:
2090 * - Owner is exiting and we just wait for the
2091 * exit to complete.
2092 * - The user space value changed.
2093 */
52400ba9 2094 double_unlock_hb(hb1, hb2);
69cd9eba 2095 hb_waiters_dec(hb2);
ae791a2d
TG
2096 put_futex_key(&key2);
2097 put_futex_key(&key1);
52400ba9
DH
2098 cond_resched();
2099 goto retry;
2100 default:
2101 goto out_unlock;
2102 }
2103 }
2104
0d00c7b2 2105 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2106 if (task_count - nr_wake >= nr_requeue)
2107 break;
2108
2109 if (!match_futex(&this->key, &key1))
1da177e4 2110 continue;
52400ba9 2111
392741e0
DH
2112 /*
2113 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114 * be paired with each other and no other futex ops.
aa10990e
DH
2115 *
2116 * We should never be requeueing a futex_q with a pi_state,
2117 * which is awaiting a futex_unlock_pi().
392741e0
DH
2118 */
2119 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2120 (!requeue_pi && this->rt_waiter) ||
2121 this->pi_state) {
392741e0
DH
2122 ret = -EINVAL;
2123 break;
2124 }
52400ba9
DH
2125
2126 /*
2127 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2128 * lock, we already woke the top_waiter. If not, it will be
2129 * woken by futex_unlock_pi().
2130 */
2131 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2132 mark_wake_futex(&wake_q, this);
52400ba9
DH
2133 continue;
2134 }
1da177e4 2135
84bc4af5
DH
2136 /* Ensure we requeue to the expected futex for requeue_pi. */
2137 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138 ret = -EINVAL;
2139 break;
2140 }
2141
52400ba9
DH
2142 /*
2143 * Requeue nr_requeue waiters and possibly one more in the case
2144 * of requeue_pi if we couldn't acquire the lock atomically.
2145 */
2146 if (requeue_pi) {
ecb38b78
TG
2147 /*
2148 * Prepare the waiter to take the rt_mutex. Take a
2149 * refcount on the pi_state and store the pointer in
2150 * the futex_q object of the waiter.
2151 */
bf92cf3a 2152 get_pi_state(pi_state);
52400ba9
DH
2153 this->pi_state = pi_state;
2154 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155 this->rt_waiter,
c051b21f 2156 this->task);
52400ba9 2157 if (ret == 1) {
ecb38b78
TG
2158 /*
2159 * We got the lock. We do neither drop the
2160 * refcount on pi_state nor clear
2161 * this->pi_state because the waiter needs the
2162 * pi_state for cleaning up the user space
2163 * value. It will drop the refcount after
2164 * doing so.
2165 */
beda2c7e 2166 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2167 drop_count++;
52400ba9
DH
2168 continue;
2169 } else if (ret) {
ecb38b78
TG
2170 /*
2171 * rt_mutex_start_proxy_lock() detected a
2172 * potential deadlock when we tried to queue
2173 * that waiter. Drop the pi_state reference
2174 * which we took above and remove the pointer
2175 * to the state from the waiters futex_q
2176 * object.
2177 */
52400ba9 2178 this->pi_state = NULL;
29e9ee5d 2179 put_pi_state(pi_state);
885c2cb7
TG
2180 /*
2181 * We stop queueing more waiters and let user
2182 * space deal with the mess.
2183 */
2184 break;
52400ba9 2185 }
1da177e4 2186 }
52400ba9
DH
2187 requeue_futex(this, hb1, hb2, &key2);
2188 drop_count++;
1da177e4
LT
2189 }
2190
ecb38b78
TG
2191 /*
2192 * We took an extra initial reference to the pi_state either
2193 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194 * need to drop it here again.
2195 */
29e9ee5d 2196 put_pi_state(pi_state);
885c2cb7
TG
2197
2198out_unlock:
5eb3dc62 2199 double_unlock_hb(hb1, hb2);
1d0dcb3a 2200 wake_up_q(&wake_q);
69cd9eba 2201 hb_waiters_dec(hb2);
1da177e4 2202
cd84a42f
DH
2203 /*
2204 * drop_futex_key_refs() must be called outside the spinlocks. During
2205 * the requeue we moved futex_q's from the hash bucket at key1 to the
2206 * one at key2 and updated their key pointer. We no longer need to
2207 * hold the references to key1.
2208 */
1da177e4 2209 while (--drop_count >= 0)
9adef58b 2210 drop_futex_key_refs(&key1);
1da177e4 2211
42d35d48 2212out_put_keys:
ae791a2d 2213 put_futex_key(&key2);
42d35d48 2214out_put_key1:
ae791a2d 2215 put_futex_key(&key1);
42d35d48 2216out:
52400ba9 2217 return ret ? ret : task_count;
1da177e4
LT
2218}
2219
2220/* The key must be already stored in q->key. */
82af7aca 2221static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2222 __acquires(&hb->lock)
1da177e4 2223{
e2970f2f 2224 struct futex_hash_bucket *hb;
1da177e4 2225
e2970f2f 2226 hb = hash_futex(&q->key);
11d4616b
LT
2227
2228 /*
2229 * Increment the counter before taking the lock so that
2230 * a potential waker won't miss a to-be-slept task that is
2231 * waiting for the spinlock. This is safe as all queue_lock()
2232 * users end up calling queue_me(). Similarly, for housekeeping,
2233 * decrement the counter at queue_unlock() when some error has
2234 * occurred and we don't end up adding the task to the list.
2235 */
6f568ebe 2236 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2237
e2970f2f 2238 q->lock_ptr = &hb->lock;
1da177e4 2239
6f568ebe 2240 spin_lock(&hb->lock);
e2970f2f 2241 return hb;
1da177e4
LT
2242}
2243
d40d65c8 2244static inline void
0d00c7b2 2245queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2246 __releases(&hb->lock)
d40d65c8
DH
2247{
2248 spin_unlock(&hb->lock);
11d4616b 2249 hb_waiters_dec(hb);
d40d65c8
DH
2250}
2251
cfafcd11 2252static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2253{
ec92d082
PP
2254 int prio;
2255
2256 /*
2257 * The priority used to register this element is
2258 * - either the real thread-priority for the real-time threads
2259 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2260 * - or MAX_RT_PRIO for non-RT threads.
2261 * Thus, all RT-threads are woken first in priority order, and
2262 * the others are woken last, in FIFO order.
2263 */
2264 prio = min(current->normal_prio, MAX_RT_PRIO);
2265
2266 plist_node_init(&q->list, prio);
ec92d082 2267 plist_add(&q->list, &hb->chain);
c87e2837 2268 q->task = current;
cfafcd11
PZ
2269}
2270
2271/**
2272 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2273 * @q: The futex_q to enqueue
2274 * @hb: The destination hash bucket
2275 *
2276 * The hb->lock must be held by the caller, and is released here. A call to
2277 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2278 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2279 * or nothing if the unqueue is done as part of the wake process and the unqueue
2280 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2281 * an example).
2282 */
2283static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2284 __releases(&hb->lock)
2285{
2286 __queue_me(q, hb);
e2970f2f 2287 spin_unlock(&hb->lock);
1da177e4
LT
2288}
2289
d40d65c8
DH
2290/**
2291 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2292 * @q: The futex_q to unqueue
2293 *
2294 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2295 * be paired with exactly one earlier call to queue_me().
2296 *
6c23cbbd 2297 * Return:
7b4ff1ad
MCC
2298 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2299 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2300 */
1da177e4
LT
2301static int unqueue_me(struct futex_q *q)
2302{
1da177e4 2303 spinlock_t *lock_ptr;
e2970f2f 2304 int ret = 0;
1da177e4
LT
2305
2306 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2307retry:
29b75eb2
JZ
2308 /*
2309 * q->lock_ptr can change between this read and the following spin_lock.
2310 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2311 * optimizing lock_ptr out of the logic below.
2312 */
2313 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2314 if (lock_ptr != NULL) {
1da177e4
LT
2315 spin_lock(lock_ptr);
2316 /*
2317 * q->lock_ptr can change between reading it and
2318 * spin_lock(), causing us to take the wrong lock. This
2319 * corrects the race condition.
2320 *
2321 * Reasoning goes like this: if we have the wrong lock,
2322 * q->lock_ptr must have changed (maybe several times)
2323 * between reading it and the spin_lock(). It can
2324 * change again after the spin_lock() but only if it was
2325 * already changed before the spin_lock(). It cannot,
2326 * however, change back to the original value. Therefore
2327 * we can detect whether we acquired the correct lock.
2328 */
2329 if (unlikely(lock_ptr != q->lock_ptr)) {
2330 spin_unlock(lock_ptr);
2331 goto retry;
2332 }
2e12978a 2333 __unqueue_futex(q);
c87e2837
IM
2334
2335 BUG_ON(q->pi_state);
2336
1da177e4
LT
2337 spin_unlock(lock_ptr);
2338 ret = 1;
2339 }
2340
9adef58b 2341 drop_futex_key_refs(&q->key);
1da177e4
LT
2342 return ret;
2343}
2344
c87e2837
IM
2345/*
2346 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2347 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2348 * and dropped here.
c87e2837 2349 */
d0aa7a70 2350static void unqueue_me_pi(struct futex_q *q)
15e408cd 2351 __releases(q->lock_ptr)
c87e2837 2352{
2e12978a 2353 __unqueue_futex(q);
c87e2837
IM
2354
2355 BUG_ON(!q->pi_state);
29e9ee5d 2356 put_pi_state(q->pi_state);
c87e2837
IM
2357 q->pi_state = NULL;
2358
d0aa7a70 2359 spin_unlock(q->lock_ptr);
c87e2837
IM
2360}
2361
778e9a9c 2362static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2363 struct task_struct *argowner)
d0aa7a70 2364{
d0aa7a70 2365 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2366 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2367 struct task_struct *oldowner, *newowner;
2368 u32 newtid;
6b4f4bc9 2369 int ret, err = 0;
d0aa7a70 2370
c1e2f0ea
PZ
2371 lockdep_assert_held(q->lock_ptr);
2372
734009e9
PZ
2373 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2374
2375 oldowner = pi_state->owner;
1b7558e4
TG
2376
2377 /*
c1e2f0ea 2378 * We are here because either:
16ffa12d 2379 *
c1e2f0ea
PZ
2380 * - we stole the lock and pi_state->owner needs updating to reflect
2381 * that (@argowner == current),
2382 *
2383 * or:
2384 *
2385 * - someone stole our lock and we need to fix things to point to the
2386 * new owner (@argowner == NULL).
2387 *
2388 * Either way, we have to replace the TID in the user space variable.
8161239a 2389 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2390 *
b2d0994b
DH
2391 * Note: We write the user space value _before_ changing the pi_state
2392 * because we can fault here. Imagine swapped out pages or a fork
2393 * that marked all the anonymous memory readonly for cow.
1b7558e4 2394 *
734009e9
PZ
2395 * Modifying pi_state _before_ the user space value would leave the
2396 * pi_state in an inconsistent state when we fault here, because we
2397 * need to drop the locks to handle the fault. This might be observed
2398 * in the PID check in lookup_pi_state.
1b7558e4
TG
2399 */
2400retry:
c1e2f0ea
PZ
2401 if (!argowner) {
2402 if (oldowner != current) {
2403 /*
2404 * We raced against a concurrent self; things are
2405 * already fixed up. Nothing to do.
2406 */
2407 ret = 0;
2408 goto out_unlock;
2409 }
2410
2411 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2412 /* We got the lock after all, nothing to fix. */
2413 ret = 0;
2414 goto out_unlock;
2415 }
2416
2417 /*
2418 * Since we just failed the trylock; there must be an owner.
2419 */
2420 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2421 BUG_ON(!newowner);
2422 } else {
2423 WARN_ON_ONCE(argowner != current);
2424 if (oldowner == current) {
2425 /*
2426 * We raced against a concurrent self; things are
2427 * already fixed up. Nothing to do.
2428 */
2429 ret = 0;
2430 goto out_unlock;
2431 }
2432 newowner = argowner;
2433 }
2434
2435 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2436 /* Owner died? */
2437 if (!pi_state->owner)
2438 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2439
6b4f4bc9
WD
2440 err = get_futex_value_locked(&uval, uaddr);
2441 if (err)
2442 goto handle_err;
1b7558e4 2443
16ffa12d 2444 for (;;) {
1b7558e4
TG
2445 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2446
6b4f4bc9
WD
2447 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2448 if (err)
2449 goto handle_err;
2450
1b7558e4
TG
2451 if (curval == uval)
2452 break;
2453 uval = curval;
2454 }
2455
2456 /*
2457 * We fixed up user space. Now we need to fix the pi_state
2458 * itself.
2459 */
d0aa7a70 2460 if (pi_state->owner != NULL) {
734009e9 2461 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2462 WARN_ON(list_empty(&pi_state->list));
2463 list_del_init(&pi_state->list);
734009e9 2464 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2465 }
d0aa7a70 2466
cdf71a10 2467 pi_state->owner = newowner;
d0aa7a70 2468
734009e9 2469 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2470 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2471 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2472 raw_spin_unlock(&newowner->pi_lock);
2473 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474
1b7558e4 2475 return 0;
d0aa7a70 2476
d0aa7a70 2477 /*
6b4f4bc9
WD
2478 * In order to reschedule or handle a page fault, we need to drop the
2479 * locks here. In the case of a fault, this gives the other task
2480 * (either the highest priority waiter itself or the task which stole
2481 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2482 * are back from handling the fault we need to check the pi_state after
2483 * reacquiring the locks and before trying to do another fixup. When
2484 * the fixup has been done already we simply return.
734009e9
PZ
2485 *
2486 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2487 * drop hb->lock since the caller owns the hb -> futex_q relation.
2488 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2489 */
6b4f4bc9 2490handle_err:
734009e9 2491 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2492 spin_unlock(q->lock_ptr);
778e9a9c 2493
6b4f4bc9
WD
2494 switch (err) {
2495 case -EFAULT:
2496 ret = fault_in_user_writeable(uaddr);
2497 break;
2498
2499 case -EAGAIN:
2500 cond_resched();
2501 ret = 0;
2502 break;
2503
2504 default:
2505 WARN_ON_ONCE(1);
2506 ret = err;
2507 break;
2508 }
778e9a9c 2509
1b7558e4 2510 spin_lock(q->lock_ptr);
734009e9 2511 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2512
1b7558e4
TG
2513 /*
2514 * Check if someone else fixed it for us:
2515 */
734009e9
PZ
2516 if (pi_state->owner != oldowner) {
2517 ret = 0;
2518 goto out_unlock;
2519 }
1b7558e4
TG
2520
2521 if (ret)
734009e9 2522 goto out_unlock;
1b7558e4
TG
2523
2524 goto retry;
734009e9
PZ
2525
2526out_unlock:
2527 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2528 return ret;
d0aa7a70
PP
2529}
2530
72c1bbf3 2531static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2532
dd973998
DH
2533/**
2534 * fixup_owner() - Post lock pi_state and corner case management
2535 * @uaddr: user address of the futex
dd973998
DH
2536 * @q: futex_q (contains pi_state and access to the rt_mutex)
2537 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2538 *
2539 * After attempting to lock an rt_mutex, this function is called to cleanup
2540 * the pi_state owner as well as handle race conditions that may allow us to
2541 * acquire the lock. Must be called with the hb lock held.
2542 *
6c23cbbd 2543 * Return:
7b4ff1ad
MCC
2544 * - 1 - success, lock taken;
2545 * - 0 - success, lock not taken;
2546 * - <0 - on error (-EFAULT)
dd973998 2547 */
ae791a2d 2548static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2549{
dd973998
DH
2550 int ret = 0;
2551
2552 if (locked) {
2553 /*
2554 * Got the lock. We might not be the anticipated owner if we
2555 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2556 *
c1e2f0ea
PZ
2557 * Speculative pi_state->owner read (we don't hold wait_lock);
2558 * since we own the lock pi_state->owner == current is the
2559 * stable state, anything else needs more attention.
dd973998
DH
2560 */
2561 if (q->pi_state->owner != current)
ae791a2d 2562 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2563 goto out;
2564 }
2565
c1e2f0ea
PZ
2566 /*
2567 * If we didn't get the lock; check if anybody stole it from us. In
2568 * that case, we need to fix up the uval to point to them instead of
2569 * us, otherwise bad things happen. [10]
2570 *
2571 * Another speculative read; pi_state->owner == current is unstable
2572 * but needs our attention.
2573 */
2574 if (q->pi_state->owner == current) {
2575 ret = fixup_pi_state_owner(uaddr, q, NULL);
2576 goto out;
2577 }
2578
dd973998
DH
2579 /*
2580 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2581 * the owner of the rt_mutex.
dd973998 2582 */
73d786bd 2583 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2584 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2585 "pi-state %p\n", ret,
2586 q->pi_state->pi_mutex.owner,
2587 q->pi_state->owner);
73d786bd 2588 }
dd973998
DH
2589
2590out:
2591 return ret ? ret : locked;
2592}
2593
ca5f9524
DH
2594/**
2595 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2596 * @hb: the futex hash bucket, must be locked by the caller
2597 * @q: the futex_q to queue up on
2598 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2599 */
2600static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2601 struct hrtimer_sleeper *timeout)
ca5f9524 2602{
9beba3c5
DH
2603 /*
2604 * The task state is guaranteed to be set before another task can
b92b8b35 2605 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2606 * queue_me() calls spin_unlock() upon completion, both serializing
2607 * access to the hash list and forcing another memory barrier.
2608 */
f1a11e05 2609 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2610 queue_me(q, hb);
ca5f9524
DH
2611
2612 /* Arm the timer */
2e4b0d3f 2613 if (timeout)
9dd8813e 2614 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
ca5f9524
DH
2615
2616 /*
0729e196
DH
2617 * If we have been removed from the hash list, then another task
2618 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2619 */
2620 if (likely(!plist_node_empty(&q->list))) {
2621 /*
2622 * If the timer has already expired, current will already be
2623 * flagged for rescheduling. Only call schedule if there
2624 * is no timeout, or if it has yet to expire.
2625 */
2626 if (!timeout || timeout->task)
88c8004f 2627 freezable_schedule();
ca5f9524
DH
2628 }
2629 __set_current_state(TASK_RUNNING);
2630}
2631
f801073f
DH
2632/**
2633 * futex_wait_setup() - Prepare to wait on a futex
2634 * @uaddr: the futex userspace address
2635 * @val: the expected value
b41277dc 2636 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2637 * @q: the associated futex_q
2638 * @hb: storage for hash_bucket pointer to be returned to caller
2639 *
2640 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2641 * compare it with the expected value. Handle atomic faults internally.
2642 * Return with the hb lock held and a q.key reference on success, and unlocked
2643 * with no q.key reference on failure.
2644 *
6c23cbbd 2645 * Return:
7b4ff1ad
MCC
2646 * - 0 - uaddr contains val and hb has been locked;
2647 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2648 */
b41277dc 2649static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2650 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2651{
e2970f2f
IM
2652 u32 uval;
2653 int ret;
1da177e4 2654
1da177e4 2655 /*
b2d0994b 2656 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2657 * Order is important:
2658 *
2659 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2660 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2661 *
2662 * The basic logical guarantee of a futex is that it blocks ONLY
2663 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2664 * any cond. If we locked the hash-bucket after testing *uaddr, that
2665 * would open a race condition where we could block indefinitely with
1da177e4
LT
2666 * cond(var) false, which would violate the guarantee.
2667 *
8fe8f545
ML
2668 * On the other hand, we insert q and release the hash-bucket only
2669 * after testing *uaddr. This guarantees that futex_wait() will NOT
2670 * absorb a wakeup if *uaddr does not match the desired values
2671 * while the syscall executes.
1da177e4 2672 */
f801073f 2673retry:
96d4f267 2674 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2675 if (unlikely(ret != 0))
a5a2a0c7 2676 return ret;
f801073f
DH
2677
2678retry_private:
2679 *hb = queue_lock(q);
2680
e2970f2f 2681 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2682
f801073f 2683 if (ret) {
0d00c7b2 2684 queue_unlock(*hb);
1da177e4 2685
e2970f2f 2686 ret = get_user(uval, uaddr);
e4dc5b7a 2687 if (ret)
f801073f 2688 goto out;
1da177e4 2689
b41277dc 2690 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2691 goto retry_private;
2692
ae791a2d 2693 put_futex_key(&q->key);
e4dc5b7a 2694 goto retry;
1da177e4 2695 }
ca5f9524 2696
f801073f 2697 if (uval != val) {
0d00c7b2 2698 queue_unlock(*hb);
f801073f 2699 ret = -EWOULDBLOCK;
2fff78c7 2700 }
1da177e4 2701
f801073f
DH
2702out:
2703 if (ret)
ae791a2d 2704 put_futex_key(&q->key);
f801073f
DH
2705 return ret;
2706}
2707
b41277dc
DH
2708static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2709 ktime_t *abs_time, u32 bitset)
f801073f 2710{
5ca584d9 2711 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2712 struct restart_block *restart;
2713 struct futex_hash_bucket *hb;
5bdb05f9 2714 struct futex_q q = futex_q_init;
f801073f
DH
2715 int ret;
2716
2717 if (!bitset)
2718 return -EINVAL;
f801073f
DH
2719 q.bitset = bitset;
2720
5ca584d9
WL
2721 to = futex_setup_timer(abs_time, &timeout, flags,
2722 current->timer_slack_ns);
d58e6576 2723retry:
7ada876a
DH
2724 /*
2725 * Prepare to wait on uaddr. On success, holds hb lock and increments
2726 * q.key refs.
2727 */
b41277dc 2728 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2729 if (ret)
2730 goto out;
2731
ca5f9524 2732 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2733 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2734
2735 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2736 ret = 0;
7ada876a 2737 /* unqueue_me() drops q.key ref */
1da177e4 2738 if (!unqueue_me(&q))
7ada876a 2739 goto out;
2fff78c7 2740 ret = -ETIMEDOUT;
ca5f9524 2741 if (to && !to->task)
7ada876a 2742 goto out;
72c1bbf3 2743
e2970f2f 2744 /*
d58e6576
TG
2745 * We expect signal_pending(current), but we might be the
2746 * victim of a spurious wakeup as well.
e2970f2f 2747 */
7ada876a 2748 if (!signal_pending(current))
d58e6576 2749 goto retry;
d58e6576 2750
2fff78c7 2751 ret = -ERESTARTSYS;
c19384b5 2752 if (!abs_time)
7ada876a 2753 goto out;
1da177e4 2754
f56141e3 2755 restart = &current->restart_block;
2fff78c7 2756 restart->fn = futex_wait_restart;
a3c74c52 2757 restart->futex.uaddr = uaddr;
2fff78c7 2758 restart->futex.val = val;
2456e855 2759 restart->futex.time = *abs_time;
2fff78c7 2760 restart->futex.bitset = bitset;
0cd9c649 2761 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2762
2fff78c7
PZ
2763 ret = -ERESTART_RESTARTBLOCK;
2764
42d35d48 2765out:
ca5f9524
DH
2766 if (to) {
2767 hrtimer_cancel(&to->timer);
2768 destroy_hrtimer_on_stack(&to->timer);
2769 }
c87e2837
IM
2770 return ret;
2771}
2772
72c1bbf3
NP
2773
2774static long futex_wait_restart(struct restart_block *restart)
2775{
a3c74c52 2776 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2777 ktime_t t, *tp = NULL;
72c1bbf3 2778
a72188d8 2779 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2780 t = restart->futex.time;
a72188d8
DH
2781 tp = &t;
2782 }
72c1bbf3 2783 restart->fn = do_no_restart_syscall;
b41277dc
DH
2784
2785 return (long)futex_wait(uaddr, restart->futex.flags,
2786 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2787}
2788
2789
c87e2837
IM
2790/*
2791 * Userspace tried a 0 -> TID atomic transition of the futex value
2792 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2793 * if there are waiters then it will block as a consequence of relying
2794 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2795 * a 0 value of the futex too.).
2796 *
2797 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2798 */
996636dd 2799static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2800 ktime_t *time, int trylock)
c87e2837 2801{
5ca584d9 2802 struct hrtimer_sleeper timeout, *to;
16ffa12d 2803 struct futex_pi_state *pi_state = NULL;
cfafcd11 2804 struct rt_mutex_waiter rt_waiter;
c87e2837 2805 struct futex_hash_bucket *hb;
5bdb05f9 2806 struct futex_q q = futex_q_init;
dd973998 2807 int res, ret;
c87e2837 2808
bc2eecd7
NP
2809 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2810 return -ENOSYS;
2811
c87e2837
IM
2812 if (refill_pi_state_cache())
2813 return -ENOMEM;
2814
5ca584d9 2815 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2816
42d35d48 2817retry:
96d4f267 2818 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2819 if (unlikely(ret != 0))
42d35d48 2820 goto out;
c87e2837 2821
e4dc5b7a 2822retry_private:
82af7aca 2823 hb = queue_lock(&q);
c87e2837 2824
bab5bc9e 2825 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2826 if (unlikely(ret)) {
767f509c
DB
2827 /*
2828 * Atomic work succeeded and we got the lock,
2829 * or failed. Either way, we do _not_ block.
2830 */
778e9a9c 2831 switch (ret) {
1a52084d
DH
2832 case 1:
2833 /* We got the lock. */
2834 ret = 0;
2835 goto out_unlock_put_key;
2836 case -EFAULT:
2837 goto uaddr_faulted;
778e9a9c
AK
2838 case -EAGAIN:
2839 /*
af54d6a1
TG
2840 * Two reasons for this:
2841 * - Task is exiting and we just wait for the
2842 * exit to complete.
2843 * - The user space value changed.
778e9a9c 2844 */
0d00c7b2 2845 queue_unlock(hb);
ae791a2d 2846 put_futex_key(&q.key);
778e9a9c
AK
2847 cond_resched();
2848 goto retry;
778e9a9c 2849 default:
42d35d48 2850 goto out_unlock_put_key;
c87e2837 2851 }
c87e2837
IM
2852 }
2853
cfafcd11
PZ
2854 WARN_ON(!q.pi_state);
2855
c87e2837
IM
2856 /*
2857 * Only actually queue now that the atomic ops are done:
2858 */
cfafcd11 2859 __queue_me(&q, hb);
c87e2837 2860
cfafcd11 2861 if (trylock) {
5293c2ef 2862 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2863 /* Fixup the trylock return value: */
2864 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2865 goto no_block;
c87e2837
IM
2866 }
2867
56222b21
PZ
2868 rt_mutex_init_waiter(&rt_waiter);
2869
cfafcd11 2870 /*
56222b21
PZ
2871 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2872 * hold it while doing rt_mutex_start_proxy(), because then it will
2873 * include hb->lock in the blocking chain, even through we'll not in
2874 * fact hold it while blocking. This will lead it to report -EDEADLK
2875 * and BUG when futex_unlock_pi() interleaves with this.
2876 *
2877 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2878 * latter before calling __rt_mutex_start_proxy_lock(). This
2879 * interleaves with futex_unlock_pi() -- which does a similar lock
2880 * handoff -- such that the latter can observe the futex_q::pi_state
2881 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2882 */
56222b21
PZ
2883 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2884 spin_unlock(q.lock_ptr);
1a1fb985
TG
2885 /*
2886 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2887 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2888 * it sees the futex_q::pi_state.
2889 */
56222b21
PZ
2890 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2891 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2892
cfafcd11
PZ
2893 if (ret) {
2894 if (ret == 1)
2895 ret = 0;
1a1fb985 2896 goto cleanup;
cfafcd11
PZ
2897 }
2898
cfafcd11 2899 if (unlikely(to))
9dd8813e 2900 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
cfafcd11
PZ
2901
2902 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2903
1a1fb985 2904cleanup:
a99e4e41 2905 spin_lock(q.lock_ptr);
cfafcd11 2906 /*
1a1fb985 2907 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2908 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2909 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2910 * lists consistent.
56222b21
PZ
2911 *
2912 * In particular; it is important that futex_unlock_pi() can not
2913 * observe this inconsistency.
cfafcd11
PZ
2914 */
2915 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2916 ret = 0;
2917
2918no_block:
dd973998
DH
2919 /*
2920 * Fixup the pi_state owner and possibly acquire the lock if we
2921 * haven't already.
2922 */
ae791a2d 2923 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2924 /*
2925 * If fixup_owner() returned an error, proprogate that. If it acquired
2926 * the lock, clear our -ETIMEDOUT or -EINTR.
2927 */
2928 if (res)
2929 ret = (res < 0) ? res : 0;
c87e2837 2930
e8f6386c 2931 /*
dd973998
DH
2932 * If fixup_owner() faulted and was unable to handle the fault, unlock
2933 * it and return the fault to userspace.
e8f6386c 2934 */
16ffa12d
PZ
2935 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2936 pi_state = q.pi_state;
2937 get_pi_state(pi_state);
2938 }
e8f6386c 2939
778e9a9c
AK
2940 /* Unqueue and drop the lock */
2941 unqueue_me_pi(&q);
c87e2837 2942
16ffa12d
PZ
2943 if (pi_state) {
2944 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2945 put_pi_state(pi_state);
2946 }
2947
5ecb01cf 2948 goto out_put_key;
c87e2837 2949
42d35d48 2950out_unlock_put_key:
0d00c7b2 2951 queue_unlock(hb);
c87e2837 2952
42d35d48 2953out_put_key:
ae791a2d 2954 put_futex_key(&q.key);
42d35d48 2955out:
97181f9b
TG
2956 if (to) {
2957 hrtimer_cancel(&to->timer);
237fc6e7 2958 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2959 }
dd973998 2960 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2961
42d35d48 2962uaddr_faulted:
0d00c7b2 2963 queue_unlock(hb);
778e9a9c 2964
d0725992 2965 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2966 if (ret)
2967 goto out_put_key;
c87e2837 2968
b41277dc 2969 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2970 goto retry_private;
2971
ae791a2d 2972 put_futex_key(&q.key);
e4dc5b7a 2973 goto retry;
c87e2837
IM
2974}
2975
c87e2837
IM
2976/*
2977 * Userspace attempted a TID -> 0 atomic transition, and failed.
2978 * This is the in-kernel slowpath: we look up the PI state (if any),
2979 * and do the rt-mutex unlock.
2980 */
b41277dc 2981static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2982{
ccf9e6a8 2983 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2984 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2985 struct futex_hash_bucket *hb;
499f5aca 2986 struct futex_q *top_waiter;
e4dc5b7a 2987 int ret;
c87e2837 2988
bc2eecd7
NP
2989 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2990 return -ENOSYS;
2991
c87e2837
IM
2992retry:
2993 if (get_user(uval, uaddr))
2994 return -EFAULT;
2995 /*
2996 * We release only a lock we actually own:
2997 */
c0c9ed15 2998 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2999 return -EPERM;
c87e2837 3000
96d4f267 3001 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
3002 if (ret)
3003 return ret;
c87e2837
IM
3004
3005 hb = hash_futex(&key);
3006 spin_lock(&hb->lock);
3007
c87e2837 3008 /*
ccf9e6a8
TG
3009 * Check waiters first. We do not trust user space values at
3010 * all and we at least want to know if user space fiddled
3011 * with the futex value instead of blindly unlocking.
c87e2837 3012 */
499f5aca
PZ
3013 top_waiter = futex_top_waiter(hb, &key);
3014 if (top_waiter) {
16ffa12d
PZ
3015 struct futex_pi_state *pi_state = top_waiter->pi_state;
3016
3017 ret = -EINVAL;
3018 if (!pi_state)
3019 goto out_unlock;
3020
3021 /*
3022 * If current does not own the pi_state then the futex is
3023 * inconsistent and user space fiddled with the futex value.
3024 */
3025 if (pi_state->owner != current)
3026 goto out_unlock;
3027
bebe5b51 3028 get_pi_state(pi_state);
802ab58d 3029 /*
bebe5b51
PZ
3030 * By taking wait_lock while still holding hb->lock, we ensure
3031 * there is no point where we hold neither; and therefore
3032 * wake_futex_pi() must observe a state consistent with what we
3033 * observed.
1a1fb985
TG
3034 *
3035 * In particular; this forces __rt_mutex_start_proxy() to
3036 * complete such that we're guaranteed to observe the
3037 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3038 */
bebe5b51 3039 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3040 spin_unlock(&hb->lock);
3041
c74aef2d 3042 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3043 ret = wake_futex_pi(uaddr, uval, pi_state);
3044
3045 put_pi_state(pi_state);
3046
3047 /*
3048 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3049 */
3050 if (!ret)
3051 goto out_putkey;
c87e2837 3052 /*
ccf9e6a8
TG
3053 * The atomic access to the futex value generated a
3054 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3055 */
3056 if (ret == -EFAULT)
3057 goto pi_faulted;
89e9e66b
SAS
3058 /*
3059 * A unconditional UNLOCK_PI op raced against a waiter
3060 * setting the FUTEX_WAITERS bit. Try again.
3061 */
6b4f4bc9
WD
3062 if (ret == -EAGAIN)
3063 goto pi_retry;
802ab58d
SAS
3064 /*
3065 * wake_futex_pi has detected invalid state. Tell user
3066 * space.
3067 */
16ffa12d 3068 goto out_putkey;
c87e2837 3069 }
ccf9e6a8 3070
c87e2837 3071 /*
ccf9e6a8
TG
3072 * We have no kernel internal state, i.e. no waiters in the
3073 * kernel. Waiters which are about to queue themselves are stuck
3074 * on hb->lock. So we can safely ignore them. We do neither
3075 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3076 * owner.
c87e2837 3077 */
6b4f4bc9 3078 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3079 spin_unlock(&hb->lock);
6b4f4bc9
WD
3080 switch (ret) {
3081 case -EFAULT:
3082 goto pi_faulted;
3083
3084 case -EAGAIN:
3085 goto pi_retry;
3086
3087 default:
3088 WARN_ON_ONCE(1);
3089 goto out_putkey;
3090 }
16ffa12d 3091 }
c87e2837 3092
ccf9e6a8
TG
3093 /*
3094 * If uval has changed, let user space handle it.
3095 */
3096 ret = (curval == uval) ? 0 : -EAGAIN;
3097
c87e2837
IM
3098out_unlock:
3099 spin_unlock(&hb->lock);
802ab58d 3100out_putkey:
ae791a2d 3101 put_futex_key(&key);
c87e2837
IM
3102 return ret;
3103
6b4f4bc9
WD
3104pi_retry:
3105 put_futex_key(&key);
3106 cond_resched();
3107 goto retry;
3108
c87e2837 3109pi_faulted:
ae791a2d 3110 put_futex_key(&key);
c87e2837 3111
d0725992 3112 ret = fault_in_user_writeable(uaddr);
b5686363 3113 if (!ret)
c87e2837
IM
3114 goto retry;
3115
1da177e4
LT
3116 return ret;
3117}
3118
52400ba9
DH
3119/**
3120 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121 * @hb: the hash_bucket futex_q was original enqueued on
3122 * @q: the futex_q woken while waiting to be requeued
3123 * @key2: the futex_key of the requeue target futex
3124 * @timeout: the timeout associated with the wait (NULL if none)
3125 *
3126 * Detect if the task was woken on the initial futex as opposed to the requeue
3127 * target futex. If so, determine if it was a timeout or a signal that caused
3128 * the wakeup and return the appropriate error code to the caller. Must be
3129 * called with the hb lock held.
3130 *
6c23cbbd 3131 * Return:
7b4ff1ad
MCC
3132 * - 0 = no early wakeup detected;
3133 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3134 */
3135static inline
3136int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3137 struct futex_q *q, union futex_key *key2,
3138 struct hrtimer_sleeper *timeout)
3139{
3140 int ret = 0;
3141
3142 /*
3143 * With the hb lock held, we avoid races while we process the wakeup.
3144 * We only need to hold hb (and not hb2) to ensure atomicity as the
3145 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146 * It can't be requeued from uaddr2 to something else since we don't
3147 * support a PI aware source futex for requeue.
3148 */
3149 if (!match_futex(&q->key, key2)) {
3150 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151 /*
3152 * We were woken prior to requeue by a timeout or a signal.
3153 * Unqueue the futex_q and determine which it was.
3154 */
2e12978a 3155 plist_del(&q->list, &hb->chain);
11d4616b 3156 hb_waiters_dec(hb);
52400ba9 3157
d58e6576 3158 /* Handle spurious wakeups gracefully */
11df6ddd 3159 ret = -EWOULDBLOCK;
52400ba9
DH
3160 if (timeout && !timeout->task)
3161 ret = -ETIMEDOUT;
d58e6576 3162 else if (signal_pending(current))
1c840c14 3163 ret = -ERESTARTNOINTR;
52400ba9
DH
3164 }
3165 return ret;
3166}
3167
3168/**
3169 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3170 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3171 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3172 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3173 * @val: the expected value of uaddr
3174 * @abs_time: absolute timeout
56ec1607 3175 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3176 * @uaddr2: the pi futex we will take prior to returning to user-space
3177 *
3178 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3179 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3180 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3182 * without one, the pi logic would not know which task to boost/deboost, if
3183 * there was a need to.
52400ba9
DH
3184 *
3185 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3186 * via the following--
52400ba9 3187 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3188 * 2) wakeup on uaddr2 after a requeue
3189 * 3) signal
3190 * 4) timeout
52400ba9 3191 *
cc6db4e6 3192 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3193 *
3194 * If 2, we may then block on trying to take the rt_mutex and return via:
3195 * 5) successful lock
3196 * 6) signal
3197 * 7) timeout
3198 * 8) other lock acquisition failure
3199 *
cc6db4e6 3200 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3201 *
3202 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203 *
6c23cbbd 3204 * Return:
7b4ff1ad
MCC
3205 * - 0 - On success;
3206 * - <0 - On error
52400ba9 3207 */
b41277dc 3208static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3209 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3210 u32 __user *uaddr2)
52400ba9 3211{
5ca584d9 3212 struct hrtimer_sleeper timeout, *to;
16ffa12d 3213 struct futex_pi_state *pi_state = NULL;
52400ba9 3214 struct rt_mutex_waiter rt_waiter;
52400ba9 3215 struct futex_hash_bucket *hb;
5bdb05f9
DH
3216 union futex_key key2 = FUTEX_KEY_INIT;
3217 struct futex_q q = futex_q_init;
52400ba9 3218 int res, ret;
52400ba9 3219
bc2eecd7
NP
3220 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3221 return -ENOSYS;
3222
6f7b0a2a
DH
3223 if (uaddr == uaddr2)
3224 return -EINVAL;
3225
52400ba9
DH
3226 if (!bitset)
3227 return -EINVAL;
3228
5ca584d9
WL
3229 to = futex_setup_timer(abs_time, &timeout, flags,
3230 current->timer_slack_ns);
52400ba9
DH
3231
3232 /*
3233 * The waiter is allocated on our stack, manipulated by the requeue
3234 * code while we sleep on uaddr.
3235 */
50809358 3236 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3237
96d4f267 3238 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3239 if (unlikely(ret != 0))
3240 goto out;
3241
84bc4af5
DH
3242 q.bitset = bitset;
3243 q.rt_waiter = &rt_waiter;
3244 q.requeue_pi_key = &key2;
3245
7ada876a
DH
3246 /*
3247 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3248 * count.
3249 */
b41277dc 3250 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3251 if (ret)
3252 goto out_key2;
52400ba9 3253
e9c243a5
TG
3254 /*
3255 * The check above which compares uaddrs is not sufficient for
3256 * shared futexes. We need to compare the keys:
3257 */
3258 if (match_futex(&q.key, &key2)) {
13c42c2f 3259 queue_unlock(hb);
e9c243a5
TG
3260 ret = -EINVAL;
3261 goto out_put_keys;
3262 }
3263
52400ba9 3264 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3265 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3266
3267 spin_lock(&hb->lock);
3268 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3269 spin_unlock(&hb->lock);
3270 if (ret)
3271 goto out_put_keys;
3272
3273 /*
3274 * In order for us to be here, we know our q.key == key2, and since
3275 * we took the hb->lock above, we also know that futex_requeue() has
3276 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3277 * race with the atomic proxy lock acquisition by the requeue code. The
3278 * futex_requeue dropped our key1 reference and incremented our key2
3279 * reference count.
52400ba9
DH
3280 */
3281
3282 /* Check if the requeue code acquired the second futex for us. */
3283 if (!q.rt_waiter) {
3284 /*
3285 * Got the lock. We might not be the anticipated owner if we
3286 * did a lock-steal - fix up the PI-state in that case.
3287 */
3288 if (q.pi_state && (q.pi_state->owner != current)) {
3289 spin_lock(q.lock_ptr);
ae791a2d 3290 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3291 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3292 pi_state = q.pi_state;
3293 get_pi_state(pi_state);
3294 }
fb75a428
TG
3295 /*
3296 * Drop the reference to the pi state which
3297 * the requeue_pi() code acquired for us.
3298 */
29e9ee5d 3299 put_pi_state(q.pi_state);
52400ba9
DH
3300 spin_unlock(q.lock_ptr);
3301 }
3302 } else {
c236c8e9
PZ
3303 struct rt_mutex *pi_mutex;
3304
52400ba9
DH
3305 /*
3306 * We have been woken up by futex_unlock_pi(), a timeout, or a
3307 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3308 * the pi_state.
3309 */
f27071cb 3310 WARN_ON(!q.pi_state);
52400ba9 3311 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3312 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3313
3314 spin_lock(q.lock_ptr);
38d589f2
PZ
3315 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3316 ret = 0;
3317
3318 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3319 /*
3320 * Fixup the pi_state owner and possibly acquire the lock if we
3321 * haven't already.
3322 */
ae791a2d 3323 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3324 /*
3325 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3326 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3327 */
3328 if (res)
3329 ret = (res < 0) ? res : 0;
3330
c236c8e9
PZ
3331 /*
3332 * If fixup_pi_state_owner() faulted and was unable to handle
3333 * the fault, unlock the rt_mutex and return the fault to
3334 * userspace.
3335 */
16ffa12d
PZ
3336 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3337 pi_state = q.pi_state;
3338 get_pi_state(pi_state);
3339 }
c236c8e9 3340
52400ba9
DH
3341 /* Unqueue and drop the lock. */
3342 unqueue_me_pi(&q);
3343 }
3344
16ffa12d
PZ
3345 if (pi_state) {
3346 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3347 put_pi_state(pi_state);
3348 }
3349
c236c8e9 3350 if (ret == -EINTR) {
52400ba9 3351 /*
cc6db4e6
DH
3352 * We've already been requeued, but cannot restart by calling
3353 * futex_lock_pi() directly. We could restart this syscall, but
3354 * it would detect that the user space "val" changed and return
3355 * -EWOULDBLOCK. Save the overhead of the restart and return
3356 * -EWOULDBLOCK directly.
52400ba9 3357 */
2070887f 3358 ret = -EWOULDBLOCK;
52400ba9
DH
3359 }
3360
3361out_put_keys:
ae791a2d 3362 put_futex_key(&q.key);
c8b15a70 3363out_key2:
ae791a2d 3364 put_futex_key(&key2);
52400ba9
DH
3365
3366out:
3367 if (to) {
3368 hrtimer_cancel(&to->timer);
3369 destroy_hrtimer_on_stack(&to->timer);
3370 }
3371 return ret;
3372}
3373
0771dfef
IM
3374/*
3375 * Support for robust futexes: the kernel cleans up held futexes at
3376 * thread exit time.
3377 *
3378 * Implementation: user-space maintains a per-thread list of locks it
3379 * is holding. Upon do_exit(), the kernel carefully walks this list,
3380 * and marks all locks that are owned by this thread with the
c87e2837 3381 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3382 * always manipulated with the lock held, so the list is private and
3383 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3384 * field, to allow the kernel to clean up if the thread dies after
3385 * acquiring the lock, but just before it could have added itself to
3386 * the list. There can only be one such pending lock.
3387 */
3388
3389/**
d96ee56c
DH
3390 * sys_set_robust_list() - Set the robust-futex list head of a task
3391 * @head: pointer to the list-head
3392 * @len: length of the list-head, as userspace expects
0771dfef 3393 */
836f92ad
HC
3394SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3395 size_t, len)
0771dfef 3396{
a0c1e907
TG
3397 if (!futex_cmpxchg_enabled)
3398 return -ENOSYS;
0771dfef
IM
3399 /*
3400 * The kernel knows only one size for now:
3401 */
3402 if (unlikely(len != sizeof(*head)))
3403 return -EINVAL;
3404
3405 current->robust_list = head;
3406
3407 return 0;
3408}
3409
3410/**
d96ee56c
DH
3411 * sys_get_robust_list() - Get the robust-futex list head of a task
3412 * @pid: pid of the process [zero for current task]
3413 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3414 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3415 */
836f92ad
HC
3416SYSCALL_DEFINE3(get_robust_list, int, pid,
3417 struct robust_list_head __user * __user *, head_ptr,
3418 size_t __user *, len_ptr)
0771dfef 3419{
ba46df98 3420 struct robust_list_head __user *head;
0771dfef 3421 unsigned long ret;
bdbb776f 3422 struct task_struct *p;
0771dfef 3423
a0c1e907
TG
3424 if (!futex_cmpxchg_enabled)
3425 return -ENOSYS;
3426
bdbb776f
KC
3427 rcu_read_lock();
3428
3429 ret = -ESRCH;
0771dfef 3430 if (!pid)
bdbb776f 3431 p = current;
0771dfef 3432 else {
228ebcbe 3433 p = find_task_by_vpid(pid);
0771dfef
IM
3434 if (!p)
3435 goto err_unlock;
0771dfef
IM
3436 }
3437
bdbb776f 3438 ret = -EPERM;
caaee623 3439 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3440 goto err_unlock;
3441
3442 head = p->robust_list;
3443 rcu_read_unlock();
3444
0771dfef
IM
3445 if (put_user(sizeof(*head), len_ptr))
3446 return -EFAULT;
3447 return put_user(head, head_ptr);
3448
3449err_unlock:
aaa2a97e 3450 rcu_read_unlock();
0771dfef
IM
3451
3452 return ret;
3453}
3454
3455/*
3456 * Process a futex-list entry, check whether it's owned by the
3457 * dying task, and do notification if so:
3458 */
04e7712f 3459static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3460{
7cfdaf38 3461 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3462 int err;
0771dfef 3463
5a07168d
CJ
3464 /* Futex address must be 32bit aligned */
3465 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3466 return -1;
3467
8f17d3a5
IM
3468retry:
3469 if (get_user(uval, uaddr))
0771dfef
IM
3470 return -1;
3471
6b4f4bc9
WD
3472 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3473 return 0;
3474
3475 /*
3476 * Ok, this dying thread is truly holding a futex
3477 * of interest. Set the OWNER_DIED bit atomically
3478 * via cmpxchg, and if the value had FUTEX_WAITERS
3479 * set, wake up a waiter (if any). (We have to do a
3480 * futex_wake() even if OWNER_DIED is already set -
3481 * to handle the rare but possible case of recursive
3482 * thread-death.) The rest of the cleanup is done in
3483 * userspace.
3484 */
3485 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487 /*
3488 * We are not holding a lock here, but we want to have
3489 * the pagefault_disable/enable() protection because
3490 * we want to handle the fault gracefully. If the
3491 * access fails we try to fault in the futex with R/W
3492 * verification via get_user_pages. get_user() above
3493 * does not guarantee R/W access. If that fails we
3494 * give up and leave the futex locked.
3495 */
3496 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497 switch (err) {
3498 case -EFAULT:
6e0aa9f8
TG
3499 if (fault_in_user_writeable(uaddr))
3500 return -1;
3501 goto retry;
6b4f4bc9
WD
3502
3503 case -EAGAIN:
3504 cond_resched();
8f17d3a5 3505 goto retry;
0771dfef 3506
6b4f4bc9
WD
3507 default:
3508 WARN_ON_ONCE(1);
3509 return err;
3510 }
0771dfef 3511 }
6b4f4bc9
WD
3512
3513 if (nval != uval)
3514 goto retry;
3515
3516 /*
3517 * Wake robust non-PI futexes here. The wakeup of
3518 * PI futexes happens in exit_pi_state():
3519 */
3520 if (!pi && (uval & FUTEX_WAITERS))
3521 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
0771dfef
IM
3523 return 0;
3524}
3525
e3f2ddea
IM
3526/*
3527 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528 */
3529static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3530 struct robust_list __user * __user *head,
1dcc41bb 3531 unsigned int *pi)
e3f2ddea
IM
3532{
3533 unsigned long uentry;
3534
ba46df98 3535 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3536 return -EFAULT;
3537
ba46df98 3538 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3539 *pi = uentry & 1;
3540
3541 return 0;
3542}
3543
0771dfef
IM
3544/*
3545 * Walk curr->robust_list (very carefully, it's a userspace list!)
3546 * and mark any locks found there dead, and notify any waiters.
3547 *
3548 * We silently return on any sign of list-walking problem.
3549 */
3550void exit_robust_list(struct task_struct *curr)
3551{
3552 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3553 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3554 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555 unsigned int uninitialized_var(next_pi);
0771dfef 3556 unsigned long futex_offset;
9f96cb1e 3557 int rc;
0771dfef 3558
a0c1e907
TG
3559 if (!futex_cmpxchg_enabled)
3560 return;
3561
0771dfef
IM
3562 /*
3563 * Fetch the list head (which was registered earlier, via
3564 * sys_set_robust_list()):
3565 */
e3f2ddea 3566 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3567 return;
3568 /*
3569 * Fetch the relative futex offset:
3570 */
3571 if (get_user(futex_offset, &head->futex_offset))
3572 return;
3573 /*
3574 * Fetch any possibly pending lock-add first, and handle it
3575 * if it exists:
3576 */
e3f2ddea 3577 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3578 return;
e3f2ddea 3579
9f96cb1e 3580 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3581 while (entry != &head->list) {
9f96cb1e
MS
3582 /*
3583 * Fetch the next entry in the list before calling
3584 * handle_futex_death:
3585 */
3586 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3587 /*
3588 * A pending lock might already be on the list, so
c87e2837 3589 * don't process it twice:
0771dfef
IM
3590 */
3591 if (entry != pending)
ba46df98 3592 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3593 curr, pi))
0771dfef 3594 return;
9f96cb1e 3595 if (rc)
0771dfef 3596 return;
9f96cb1e
MS
3597 entry = next_entry;
3598 pi = next_pi;
0771dfef
IM
3599 /*
3600 * Avoid excessively long or circular lists:
3601 */
3602 if (!--limit)
3603 break;
3604
3605 cond_resched();
3606 }
9f96cb1e
MS
3607
3608 if (pending)
3609 handle_futex_death((void __user *)pending + futex_offset,
3610 curr, pip);
0771dfef
IM
3611}
3612
c19384b5 3613long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3614 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3615{
81b40539 3616 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3617 unsigned int flags = 0;
34f01cc1
ED
3618
3619 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3620 flags |= FLAGS_SHARED;
1da177e4 3621
b41277dc
DH
3622 if (op & FUTEX_CLOCK_REALTIME) {
3623 flags |= FLAGS_CLOCKRT;
337f1304
DH
3624 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3625 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3626 return -ENOSYS;
3627 }
1da177e4 3628
59263b51
TG
3629 switch (cmd) {
3630 case FUTEX_LOCK_PI:
3631 case FUTEX_UNLOCK_PI:
3632 case FUTEX_TRYLOCK_PI:
3633 case FUTEX_WAIT_REQUEUE_PI:
3634 case FUTEX_CMP_REQUEUE_PI:
3635 if (!futex_cmpxchg_enabled)
3636 return -ENOSYS;
3637 }
3638
34f01cc1 3639 switch (cmd) {
1da177e4 3640 case FUTEX_WAIT:
cd689985 3641 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3642 /* fall through */
cd689985 3643 case FUTEX_WAIT_BITSET:
81b40539 3644 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3645 case FUTEX_WAKE:
cd689985 3646 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3647 /* fall through */
cd689985 3648 case FUTEX_WAKE_BITSET:
81b40539 3649 return futex_wake(uaddr, flags, val, val3);
1da177e4 3650 case FUTEX_REQUEUE:
81b40539 3651 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3652 case FUTEX_CMP_REQUEUE:
81b40539 3653 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3654 case FUTEX_WAKE_OP:
81b40539 3655 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3656 case FUTEX_LOCK_PI:
996636dd 3657 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3658 case FUTEX_UNLOCK_PI:
81b40539 3659 return futex_unlock_pi(uaddr, flags);
c87e2837 3660 case FUTEX_TRYLOCK_PI:
996636dd 3661 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3662 case FUTEX_WAIT_REQUEUE_PI:
3663 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3664 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3665 uaddr2);
52400ba9 3666 case FUTEX_CMP_REQUEUE_PI:
81b40539 3667 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3668 }
81b40539 3669 return -ENOSYS;
1da177e4
LT
3670}
3671
3672
17da2bd9 3673SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3674 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3675 u32, val3)
1da177e4 3676{
bec2f7cb 3677 struct timespec64 ts;
c19384b5 3678 ktime_t t, *tp = NULL;
e2970f2f 3679 u32 val2 = 0;
34f01cc1 3680 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3681
cd689985 3682 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3683 cmd == FUTEX_WAIT_BITSET ||
3684 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3685 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3686 return -EFAULT;
bec2f7cb 3687 if (get_timespec64(&ts, utime))
1da177e4 3688 return -EFAULT;
bec2f7cb 3689 if (!timespec64_valid(&ts))
9741ef96 3690 return -EINVAL;
c19384b5 3691
bec2f7cb 3692 t = timespec64_to_ktime(ts);
34f01cc1 3693 if (cmd == FUTEX_WAIT)
5a7780e7 3694 t = ktime_add_safe(ktime_get(), t);
c19384b5 3695 tp = &t;
1da177e4
LT
3696 }
3697 /*
52400ba9 3698 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3699 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3700 */
f54f0986 3701 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3702 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3703 val2 = (u32) (unsigned long) utime;
1da177e4 3704
c19384b5 3705 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3706}
3707
04e7712f
AB
3708#ifdef CONFIG_COMPAT
3709/*
3710 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3711 */
3712static inline int
3713compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3714 compat_uptr_t __user *head, unsigned int *pi)
3715{
3716 if (get_user(*uentry, head))
3717 return -EFAULT;
3718
3719 *entry = compat_ptr((*uentry) & ~1);
3720 *pi = (unsigned int)(*uentry) & 1;
3721
3722 return 0;
3723}
3724
3725static void __user *futex_uaddr(struct robust_list __user *entry,
3726 compat_long_t futex_offset)
3727{
3728 compat_uptr_t base = ptr_to_compat(entry);
3729 void __user *uaddr = compat_ptr(base + futex_offset);
3730
3731 return uaddr;
3732}
3733
3734/*
3735 * Walk curr->robust_list (very carefully, it's a userspace list!)
3736 * and mark any locks found there dead, and notify any waiters.
3737 *
3738 * We silently return on any sign of list-walking problem.
3739 */
3740void compat_exit_robust_list(struct task_struct *curr)
3741{
3742 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3743 struct robust_list __user *entry, *next_entry, *pending;
3744 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3745 unsigned int uninitialized_var(next_pi);
3746 compat_uptr_t uentry, next_uentry, upending;
3747 compat_long_t futex_offset;
3748 int rc;
3749
3750 if (!futex_cmpxchg_enabled)
3751 return;
3752
3753 /*
3754 * Fetch the list head (which was registered earlier, via
3755 * sys_set_robust_list()):
3756 */
3757 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3758 return;
3759 /*
3760 * Fetch the relative futex offset:
3761 */
3762 if (get_user(futex_offset, &head->futex_offset))
3763 return;
3764 /*
3765 * Fetch any possibly pending lock-add first, and handle it
3766 * if it exists:
3767 */
3768 if (compat_fetch_robust_entry(&upending, &pending,
3769 &head->list_op_pending, &pip))
3770 return;
3771
3772 next_entry = NULL; /* avoid warning with gcc */
3773 while (entry != (struct robust_list __user *) &head->list) {
3774 /*
3775 * Fetch the next entry in the list before calling
3776 * handle_futex_death:
3777 */
3778 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3779 (compat_uptr_t __user *)&entry->next, &next_pi);
3780 /*
3781 * A pending lock might already be on the list, so
3782 * dont process it twice:
3783 */
3784 if (entry != pending) {
3785 void __user *uaddr = futex_uaddr(entry, futex_offset);
3786
3787 if (handle_futex_death(uaddr, curr, pi))
3788 return;
3789 }
3790 if (rc)
3791 return;
3792 uentry = next_uentry;
3793 entry = next_entry;
3794 pi = next_pi;
3795 /*
3796 * Avoid excessively long or circular lists:
3797 */
3798 if (!--limit)
3799 break;
3800
3801 cond_resched();
3802 }
3803 if (pending) {
3804 void __user *uaddr = futex_uaddr(pending, futex_offset);
3805
3806 handle_futex_death(uaddr, curr, pip);
3807 }
3808}
3809
3810COMPAT_SYSCALL_DEFINE2(set_robust_list,
3811 struct compat_robust_list_head __user *, head,
3812 compat_size_t, len)
3813{
3814 if (!futex_cmpxchg_enabled)
3815 return -ENOSYS;
3816
3817 if (unlikely(len != sizeof(*head)))
3818 return -EINVAL;
3819
3820 current->compat_robust_list = head;
3821
3822 return 0;
3823}
3824
3825COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3826 compat_uptr_t __user *, head_ptr,
3827 compat_size_t __user *, len_ptr)
3828{
3829 struct compat_robust_list_head __user *head;
3830 unsigned long ret;
3831 struct task_struct *p;
3832
3833 if (!futex_cmpxchg_enabled)
3834 return -ENOSYS;
3835
3836 rcu_read_lock();
3837
3838 ret = -ESRCH;
3839 if (!pid)
3840 p = current;
3841 else {
3842 p = find_task_by_vpid(pid);
3843 if (!p)
3844 goto err_unlock;
3845 }
3846
3847 ret = -EPERM;
3848 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3849 goto err_unlock;
3850
3851 head = p->compat_robust_list;
3852 rcu_read_unlock();
3853
3854 if (put_user(sizeof(*head), len_ptr))
3855 return -EFAULT;
3856 return put_user(ptr_to_compat(head), head_ptr);
3857
3858err_unlock:
3859 rcu_read_unlock();
3860
3861 return ret;
3862}
bec2f7cb 3863#endif /* CONFIG_COMPAT */
04e7712f 3864
bec2f7cb 3865#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3866SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3867 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3868 u32, val3)
3869{
bec2f7cb 3870 struct timespec64 ts;
04e7712f
AB
3871 ktime_t t, *tp = NULL;
3872 int val2 = 0;
3873 int cmd = op & FUTEX_CMD_MASK;
3874
3875 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3876 cmd == FUTEX_WAIT_BITSET ||
3877 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3878 if (get_old_timespec32(&ts, utime))
04e7712f 3879 return -EFAULT;
bec2f7cb 3880 if (!timespec64_valid(&ts))
04e7712f
AB
3881 return -EINVAL;
3882
bec2f7cb 3883 t = timespec64_to_ktime(ts);
04e7712f
AB
3884 if (cmd == FUTEX_WAIT)
3885 t = ktime_add_safe(ktime_get(), t);
3886 tp = &t;
3887 }
3888 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3889 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3890 val2 = (int) (unsigned long) utime;
3891
3892 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3893}
bec2f7cb 3894#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3895
03b8c7b6 3896static void __init futex_detect_cmpxchg(void)
1da177e4 3897{
03b8c7b6 3898#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3899 u32 curval;
03b8c7b6
HC
3900
3901 /*
3902 * This will fail and we want it. Some arch implementations do
3903 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3904 * functionality. We want to know that before we call in any
3905 * of the complex code paths. Also we want to prevent
3906 * registration of robust lists in that case. NULL is
3907 * guaranteed to fault and we get -EFAULT on functional
3908 * implementation, the non-functional ones will return
3909 * -ENOSYS.
3910 */
3911 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3912 futex_cmpxchg_enabled = 1;
3913#endif
3914}
3915
3916static int __init futex_init(void)
3917{
63b1a816 3918 unsigned int futex_shift;
a52b89eb
DB
3919 unsigned long i;
3920
3921#if CONFIG_BASE_SMALL
3922 futex_hashsize = 16;
3923#else
3924 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3925#endif
3926
3927 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3928 futex_hashsize, 0,
3929 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3930 &futex_shift, NULL,
3931 futex_hashsize, futex_hashsize);
3932 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3933
3934 futex_detect_cmpxchg();
a0c1e907 3935
a52b89eb 3936 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3937 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3938 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3939 spin_lock_init(&futex_queues[i].lock);
3940 }
3941
1da177e4
LT
3942 return 0;
3943}
25f71d1c 3944core_initcall(futex_init);