mm: move MAP_SYNC to asm-generic/mman-common.h
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
0771dfef
IM
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
c87e2837
IM
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
34f01cc1
ED
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
52400ba9
DH
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
1da177e4
LT
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
1da177e4 33 */
04e7712f 34#include <linux/compat.h>
1da177e4
LT
35#include <linux/slab.h>
36#include <linux/poll.h>
37#include <linux/fs.h>
38#include <linux/file.h>
39#include <linux/jhash.h>
40#include <linux/init.h>
41#include <linux/futex.h>
42#include <linux/mount.h>
43#include <linux/pagemap.h>
44#include <linux/syscalls.h>
7ed20e1a 45#include <linux/signal.h>
9984de1a 46#include <linux/export.h>
fd5eea42 47#include <linux/magic.h>
b488893a
PE
48#include <linux/pid.h>
49#include <linux/nsproxy.h>
bdbb776f 50#include <linux/ptrace.h>
8bd75c77 51#include <linux/sched/rt.h>
84f001e1 52#include <linux/sched/wake_q.h>
6e84f315 53#include <linux/sched/mm.h>
13d60f4b 54#include <linux/hugetlb.h>
88c8004f 55#include <linux/freezer.h>
57c8a661 56#include <linux/memblock.h>
ab51fbab 57#include <linux/fault-inject.h>
49262de2 58#include <linux/refcount.h>
b488893a 59
4732efbe 60#include <asm/futex.h>
1da177e4 61
1696a8be 62#include "locking/rtmutex_common.h"
c87e2837 63
99b60ce6 64/*
d7e8af1a
DB
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
99b60ce6
TG
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
99b60ce6
TG
76 *
77 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
99b60ce6 81 *
b0c29f79
DB
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 107 *
b0c29f79
DB
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
99b60ce6
TG
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
b0c29f79 116 *
d7e8af1a 117 * waiters++; (a)
8ad7b378
DB
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
99b60ce6 128 * if (uval == val)
b0c29f79 129 * queue();
99b60ce6 130 * unlock(hash_bucket(futex));
b0c29f79
DB
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
d7e8af1a
DB
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 135 *
d7e8af1a
DB
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
d7e8af1a
DB
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
163 */
164
04e7712f
AB
165#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166#define futex_cmpxchg_enabled 1
167#else
168static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 169#endif
a0c1e907 170
b41277dc
DH
171/*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
784bdf3b
TG
175#ifdef CONFIG_MMU
176# define FLAGS_SHARED 0x01
177#else
178/*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182# define FLAGS_SHARED 0x00
183#endif
b41277dc
DH
184#define FLAGS_CLOCKRT 0x02
185#define FLAGS_HAS_TIMEOUT 0x04
186
c87e2837
IM
187/*
188 * Priority Inheritance state:
189 */
190struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
49262de2 203 refcount_t refcount;
c87e2837
IM
204
205 union futex_key key;
3859a271 206} __randomize_layout;
c87e2837 207
d8d88fbb
DH
208/**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 210 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
ac6424b9 219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 224 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
229 */
230struct futex_q {
ec92d082 231 struct plist_node list;
1da177e4 232
d8d88fbb 233 struct task_struct *task;
1da177e4 234 spinlock_t *lock_ptr;
1da177e4 235 union futex_key key;
c87e2837 236 struct futex_pi_state *pi_state;
52400ba9 237 struct rt_mutex_waiter *rt_waiter;
84bc4af5 238 union futex_key *requeue_pi_key;
cd689985 239 u32 bitset;
3859a271 240} __randomize_layout;
1da177e4 241
5bdb05f9
DH
242static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246};
247
1da177e4 248/*
b2d0994b
DH
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
1da177e4
LT
252 */
253struct futex_hash_bucket {
11d4616b 254 atomic_t waiters;
ec92d082
PP
255 spinlock_t lock;
256 struct plist_head chain;
a52b89eb 257} ____cacheline_aligned_in_smp;
1da177e4 258
ac742d37
RV
259/*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267} __futex_data __read_mostly __aligned(2*sizeof(long));
268#define futex_queues (__futex_data.queues)
269#define futex_hashsize (__futex_data.hashsize)
a52b89eb 270
1da177e4 271
ab51fbab
DB
272/*
273 * Fault injections for futexes.
274 */
275#ifdef CONFIG_FAIL_FUTEX
276
277static struct {
278 struct fault_attr attr;
279
621a5f7a 280 bool ignore_private;
ab51fbab
DB
281} fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 283 .ignore_private = false,
ab51fbab
DB
284};
285
286static int __init setup_fail_futex(char *str)
287{
288 return setup_fault_attr(&fail_futex.attr, str);
289}
290__setup("fail_futex=", setup_fail_futex);
291
5d285a7f 292static bool should_fail_futex(bool fshared)
ab51fbab
DB
293{
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298}
299
300#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302static int __init fail_futex_debugfs(void)
303{
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
0365aeba
GKH
312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
ab51fbab
DB
314 return 0;
315}
316
317late_initcall(fail_futex_debugfs);
318
319#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321#else
322static inline bool should_fail_futex(bool fshared)
323{
324 return false;
325}
326#endif /* CONFIG_FAIL_FUTEX */
327
b0c29f79
DB
328static inline void futex_get_mm(union futex_key *key)
329{
f1f10076 330 mmgrab(key->private.mm);
b0c29f79
DB
331 /*
332 * Ensure futex_get_mm() implies a full barrier such that
333 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 334 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 335 */
4e857c58 336 smp_mb__after_atomic();
b0c29f79
DB
337}
338
11d4616b
LT
339/*
340 * Reflects a new waiter being added to the waitqueue.
341 */
342static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
343{
344#ifdef CONFIG_SMP
11d4616b 345 atomic_inc(&hb->waiters);
b0c29f79 346 /*
11d4616b 347 * Full barrier (A), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
11d4616b
LT
350#endif
351}
352
353/*
354 * Reflects a waiter being removed from the waitqueue by wakeup
355 * paths.
356 */
357static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
358{
359#ifdef CONFIG_SMP
360 atomic_dec(&hb->waiters);
361#endif
362}
b0c29f79 363
11d4616b
LT
364static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
365{
366#ifdef CONFIG_SMP
367 return atomic_read(&hb->waiters);
b0c29f79 368#else
11d4616b 369 return 1;
b0c29f79
DB
370#endif
371}
372
e8b61b3f
TG
373/**
374 * hash_futex - Return the hash bucket in the global hash
375 * @key: Pointer to the futex key for which the hash is calculated
376 *
377 * We hash on the keys returned from get_futex_key (see below) and return the
378 * corresponding hash bucket in the global hash.
1da177e4
LT
379 */
380static struct futex_hash_bucket *hash_futex(union futex_key *key)
381{
382 u32 hash = jhash2((u32*)&key->both.word,
383 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
384 key->both.offset);
a52b89eb 385 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
386}
387
e8b61b3f
TG
388
389/**
390 * match_futex - Check whether two futex keys are equal
391 * @key1: Pointer to key1
392 * @key2: Pointer to key2
393 *
1da177e4
LT
394 * Return 1 if two futex_keys are equal, 0 otherwise.
395 */
396static inline int match_futex(union futex_key *key1, union futex_key *key2)
397{
2bc87203
DH
398 return (key1 && key2
399 && key1->both.word == key2->both.word
1da177e4
LT
400 && key1->both.ptr == key2->both.ptr
401 && key1->both.offset == key2->both.offset);
402}
403
38d47c1b
PZ
404/*
405 * Take a reference to the resource addressed by a key.
406 * Can be called while holding spinlocks.
407 *
408 */
409static void get_futex_key_refs(union futex_key *key)
410{
411 if (!key->both.ptr)
412 return;
413
784bdf3b
TG
414 /*
415 * On MMU less systems futexes are always "private" as there is no per
416 * process address space. We need the smp wmb nevertheless - yes,
417 * arch/blackfin has MMU less SMP ...
418 */
419 if (!IS_ENABLED(CONFIG_MMU)) {
420 smp_mb(); /* explicit smp_mb(); (B) */
421 return;
422 }
423
38d47c1b
PZ
424 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
425 case FUT_OFF_INODE:
8ad7b378 426 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
427 break;
428 case FUT_OFF_MMSHARED:
8ad7b378 429 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 430 break;
76835b0e 431 default:
993b2ff2
DB
432 /*
433 * Private futexes do not hold reference on an inode or
434 * mm, therefore the only purpose of calling get_futex_key_refs
435 * is because we need the barrier for the lockless waiter check.
436 */
8ad7b378 437 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
438 }
439}
440
441/*
442 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
443 * The hash bucket spinlock must not be held. This is
444 * a no-op for private futexes, see comment in the get
445 * counterpart.
38d47c1b
PZ
446 */
447static void drop_futex_key_refs(union futex_key *key)
448{
90621c40
DH
449 if (!key->both.ptr) {
450 /* If we're here then we tried to put a key we failed to get */
451 WARN_ON_ONCE(1);
38d47c1b 452 return;
90621c40 453 }
38d47c1b 454
784bdf3b
TG
455 if (!IS_ENABLED(CONFIG_MMU))
456 return;
457
38d47c1b
PZ
458 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
459 case FUT_OFF_INODE:
460 iput(key->shared.inode);
461 break;
462 case FUT_OFF_MMSHARED:
463 mmdrop(key->private.mm);
464 break;
465 }
466}
467
96d4f267
LT
468enum futex_access {
469 FUTEX_READ,
470 FUTEX_WRITE
471};
472
5ca584d9
WL
473/**
474 * futex_setup_timer - set up the sleeping hrtimer.
475 * @time: ptr to the given timeout value
476 * @timeout: the hrtimer_sleeper structure to be set up
477 * @flags: futex flags
478 * @range_ns: optional range in ns
479 *
480 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
481 * value given
482 */
483static inline struct hrtimer_sleeper *
484futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
485 int flags, u64 range_ns)
486{
487 if (!time)
488 return NULL;
489
490 hrtimer_init_on_stack(&timeout->timer, (flags & FLAGS_CLOCKRT) ?
491 CLOCK_REALTIME : CLOCK_MONOTONIC,
492 HRTIMER_MODE_ABS);
493 hrtimer_init_sleeper(timeout, current);
494
495 /*
496 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
497 * effectively the same as calling hrtimer_set_expires().
498 */
499 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
500
501 return timeout;
502}
503
34f01cc1 504/**
d96ee56c
DH
505 * get_futex_key() - Get parameters which are the keys for a futex
506 * @uaddr: virtual address of the futex
507 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
508 * @key: address where result is stored.
96d4f267
LT
509 * @rw: mapping needs to be read/write (values: FUTEX_READ,
510 * FUTEX_WRITE)
34f01cc1 511 *
6c23cbbd
RD
512 * Return: a negative error code or 0
513 *
7b4ff1ad 514 * The key words are stored in @key on success.
1da177e4 515 *
6131ffaa 516 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
517 * offset_within_page). For private mappings, it's (uaddr, current->mm).
518 * We can usually work out the index without swapping in the page.
519 *
b2d0994b 520 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 521 */
64d1304a 522static int
96d4f267 523get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 524{
e2970f2f 525 unsigned long address = (unsigned long)uaddr;
1da177e4 526 struct mm_struct *mm = current->mm;
077fa7ae 527 struct page *page, *tail;
14d27abd 528 struct address_space *mapping;
9ea71503 529 int err, ro = 0;
1da177e4
LT
530
531 /*
532 * The futex address must be "naturally" aligned.
533 */
e2970f2f 534 key->both.offset = address % PAGE_SIZE;
34f01cc1 535 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 536 return -EINVAL;
e2970f2f 537 address -= key->both.offset;
1da177e4 538
96d4f267 539 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
540 return -EFAULT;
541
ab51fbab
DB
542 if (unlikely(should_fail_futex(fshared)))
543 return -EFAULT;
544
34f01cc1
ED
545 /*
546 * PROCESS_PRIVATE futexes are fast.
547 * As the mm cannot disappear under us and the 'key' only needs
548 * virtual address, we dont even have to find the underlying vma.
549 * Note : We do have to check 'uaddr' is a valid user address,
550 * but access_ok() should be faster than find_vma()
551 */
552 if (!fshared) {
34f01cc1
ED
553 key->private.mm = mm;
554 key->private.address = address;
8ad7b378 555 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
556 return 0;
557 }
1da177e4 558
38d47c1b 559again:
ab51fbab
DB
560 /* Ignore any VERIFY_READ mapping (futex common case) */
561 if (unlikely(should_fail_futex(fshared)))
562 return -EFAULT;
563
73b0140b 564 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
565 /*
566 * If write access is not required (eg. FUTEX_WAIT), try
567 * and get read-only access.
568 */
96d4f267 569 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
570 err = get_user_pages_fast(address, 1, 0, &page);
571 ro = 1;
572 }
38d47c1b
PZ
573 if (err < 0)
574 return err;
9ea71503
SB
575 else
576 err = 0;
38d47c1b 577
65d8fc77
MG
578 /*
579 * The treatment of mapping from this point on is critical. The page
580 * lock protects many things but in this context the page lock
581 * stabilizes mapping, prevents inode freeing in the shared
582 * file-backed region case and guards against movement to swap cache.
583 *
584 * Strictly speaking the page lock is not needed in all cases being
585 * considered here and page lock forces unnecessarily serialization
586 * From this point on, mapping will be re-verified if necessary and
587 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
588 *
589 * Mapping checks require the head page for any compound page so the
590 * head page and mapping is looked up now. For anonymous pages, it
591 * does not matter if the page splits in the future as the key is
592 * based on the address. For filesystem-backed pages, the tail is
593 * required as the index of the page determines the key. For
594 * base pages, there is no tail page and tail == page.
65d8fc77 595 */
077fa7ae 596 tail = page;
65d8fc77
MG
597 page = compound_head(page);
598 mapping = READ_ONCE(page->mapping);
599
e6780f72 600 /*
14d27abd 601 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
602 * page; but it might be the ZERO_PAGE or in the gate area or
603 * in a special mapping (all cases which we are happy to fail);
604 * or it may have been a good file page when get_user_pages_fast
605 * found it, but truncated or holepunched or subjected to
606 * invalidate_complete_page2 before we got the page lock (also
607 * cases which we are happy to fail). And we hold a reference,
608 * so refcount care in invalidate_complete_page's remove_mapping
609 * prevents drop_caches from setting mapping to NULL beneath us.
610 *
611 * The case we do have to guard against is when memory pressure made
612 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 613 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 614 */
65d8fc77
MG
615 if (unlikely(!mapping)) {
616 int shmem_swizzled;
617
618 /*
619 * Page lock is required to identify which special case above
620 * applies. If this is really a shmem page then the page lock
621 * will prevent unexpected transitions.
622 */
623 lock_page(page);
624 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
625 unlock_page(page);
626 put_page(page);
65d8fc77 627
e6780f72
HD
628 if (shmem_swizzled)
629 goto again;
65d8fc77 630
e6780f72 631 return -EFAULT;
38d47c1b 632 }
1da177e4
LT
633
634 /*
635 * Private mappings are handled in a simple way.
636 *
65d8fc77
MG
637 * If the futex key is stored on an anonymous page, then the associated
638 * object is the mm which is implicitly pinned by the calling process.
639 *
1da177e4
LT
640 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
641 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 642 * the object not the particular process.
1da177e4 643 */
14d27abd 644 if (PageAnon(page)) {
9ea71503
SB
645 /*
646 * A RO anonymous page will never change and thus doesn't make
647 * sense for futex operations.
648 */
ab51fbab 649 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
650 err = -EFAULT;
651 goto out;
652 }
653
38d47c1b 654 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 655 key->private.mm = mm;
e2970f2f 656 key->private.address = address;
65d8fc77
MG
657
658 get_futex_key_refs(key); /* implies smp_mb(); (B) */
659
38d47c1b 660 } else {
65d8fc77
MG
661 struct inode *inode;
662
663 /*
664 * The associated futex object in this case is the inode and
665 * the page->mapping must be traversed. Ordinarily this should
666 * be stabilised under page lock but it's not strictly
667 * necessary in this case as we just want to pin the inode, not
668 * update the radix tree or anything like that.
669 *
670 * The RCU read lock is taken as the inode is finally freed
671 * under RCU. If the mapping still matches expectations then the
672 * mapping->host can be safely accessed as being a valid inode.
673 */
674 rcu_read_lock();
675
676 if (READ_ONCE(page->mapping) != mapping) {
677 rcu_read_unlock();
678 put_page(page);
679
680 goto again;
681 }
682
683 inode = READ_ONCE(mapping->host);
684 if (!inode) {
685 rcu_read_unlock();
686 put_page(page);
687
688 goto again;
689 }
690
691 /*
692 * Take a reference unless it is about to be freed. Previously
693 * this reference was taken by ihold under the page lock
694 * pinning the inode in place so i_lock was unnecessary. The
695 * only way for this check to fail is if the inode was
48fb6f4d
MG
696 * truncated in parallel which is almost certainly an
697 * application bug. In such a case, just retry.
65d8fc77
MG
698 *
699 * We are not calling into get_futex_key_refs() in file-backed
700 * cases, therefore a successful atomic_inc return below will
701 * guarantee that get_futex_key() will still imply smp_mb(); (B).
702 */
48fb6f4d 703 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
704 rcu_read_unlock();
705 put_page(page);
706
707 goto again;
708 }
709
710 /* Should be impossible but lets be paranoid for now */
711 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
712 err = -EFAULT;
713 rcu_read_unlock();
714 iput(inode);
715
716 goto out;
717 }
718
38d47c1b 719 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 720 key->shared.inode = inode;
077fa7ae 721 key->shared.pgoff = basepage_index(tail);
65d8fc77 722 rcu_read_unlock();
1da177e4
LT
723 }
724
9ea71503 725out:
14d27abd 726 put_page(page);
9ea71503 727 return err;
1da177e4
LT
728}
729
ae791a2d 730static inline void put_futex_key(union futex_key *key)
1da177e4 731{
38d47c1b 732 drop_futex_key_refs(key);
1da177e4
LT
733}
734
d96ee56c
DH
735/**
736 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
737 * @uaddr: pointer to faulting user space address
738 *
739 * Slow path to fixup the fault we just took in the atomic write
740 * access to @uaddr.
741 *
fb62db2b 742 * We have no generic implementation of a non-destructive write to the
d0725992
TG
743 * user address. We know that we faulted in the atomic pagefault
744 * disabled section so we can as well avoid the #PF overhead by
745 * calling get_user_pages() right away.
746 */
747static int fault_in_user_writeable(u32 __user *uaddr)
748{
722d0172
AK
749 struct mm_struct *mm = current->mm;
750 int ret;
751
752 down_read(&mm->mmap_sem);
2efaca92 753 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 754 FAULT_FLAG_WRITE, NULL);
722d0172
AK
755 up_read(&mm->mmap_sem);
756
d0725992
TG
757 return ret < 0 ? ret : 0;
758}
759
4b1c486b
DH
760/**
761 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
762 * @hb: the hash bucket the futex_q's reside in
763 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
764 *
765 * Must be called with the hb lock held.
766 */
767static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
768 union futex_key *key)
769{
770 struct futex_q *this;
771
772 plist_for_each_entry(this, &hb->chain, list) {
773 if (match_futex(&this->key, key))
774 return this;
775 }
776 return NULL;
777}
778
37a9d912
ML
779static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
780 u32 uval, u32 newval)
36cf3b5c 781{
37a9d912 782 int ret;
36cf3b5c
TG
783
784 pagefault_disable();
37a9d912 785 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
786 pagefault_enable();
787
37a9d912 788 return ret;
36cf3b5c
TG
789}
790
791static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
792{
793 int ret;
794
a866374a 795 pagefault_disable();
bd28b145 796 ret = __get_user(*dest, from);
a866374a 797 pagefault_enable();
1da177e4
LT
798
799 return ret ? -EFAULT : 0;
800}
801
c87e2837
IM
802
803/*
804 * PI code:
805 */
806static int refill_pi_state_cache(void)
807{
808 struct futex_pi_state *pi_state;
809
810 if (likely(current->pi_state_cache))
811 return 0;
812
4668edc3 813 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
814
815 if (!pi_state)
816 return -ENOMEM;
817
c87e2837
IM
818 INIT_LIST_HEAD(&pi_state->list);
819 /* pi_mutex gets initialized later */
820 pi_state->owner = NULL;
49262de2 821 refcount_set(&pi_state->refcount, 1);
38d47c1b 822 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
823
824 current->pi_state_cache = pi_state;
825
826 return 0;
827}
828
bf92cf3a 829static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
830{
831 struct futex_pi_state *pi_state = current->pi_state_cache;
832
833 WARN_ON(!pi_state);
834 current->pi_state_cache = NULL;
835
836 return pi_state;
837}
838
bf92cf3a
PZ
839static void get_pi_state(struct futex_pi_state *pi_state)
840{
49262de2 841 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
842}
843
30a6b803 844/*
29e9ee5d
TG
845 * Drops a reference to the pi_state object and frees or caches it
846 * when the last reference is gone.
30a6b803 847 */
29e9ee5d 848static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 849{
30a6b803
BS
850 if (!pi_state)
851 return;
852
49262de2 853 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
854 return;
855
856 /*
857 * If pi_state->owner is NULL, the owner is most probably dying
858 * and has cleaned up the pi_state already
859 */
860 if (pi_state->owner) {
c74aef2d 861 struct task_struct *owner;
c87e2837 862
c74aef2d
PZ
863 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
864 owner = pi_state->owner;
865 if (owner) {
866 raw_spin_lock(&owner->pi_lock);
867 list_del_init(&pi_state->list);
868 raw_spin_unlock(&owner->pi_lock);
869 }
870 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
871 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
872 }
873
c74aef2d 874 if (current->pi_state_cache) {
c87e2837 875 kfree(pi_state);
c74aef2d 876 } else {
c87e2837
IM
877 /*
878 * pi_state->list is already empty.
879 * clear pi_state->owner.
880 * refcount is at 0 - put it back to 1.
881 */
882 pi_state->owner = NULL;
49262de2 883 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
884 current->pi_state_cache = pi_state;
885 }
886}
887
bc2eecd7
NP
888#ifdef CONFIG_FUTEX_PI
889
c87e2837
IM
890/*
891 * This task is holding PI mutexes at exit time => bad.
892 * Kernel cleans up PI-state, but userspace is likely hosed.
893 * (Robust-futex cleanup is separate and might save the day for userspace.)
894 */
895void exit_pi_state_list(struct task_struct *curr)
896{
c87e2837
IM
897 struct list_head *next, *head = &curr->pi_state_list;
898 struct futex_pi_state *pi_state;
627371d7 899 struct futex_hash_bucket *hb;
38d47c1b 900 union futex_key key = FUTEX_KEY_INIT;
c87e2837 901
a0c1e907
TG
902 if (!futex_cmpxchg_enabled)
903 return;
c87e2837
IM
904 /*
905 * We are a ZOMBIE and nobody can enqueue itself on
906 * pi_state_list anymore, but we have to be careful
627371d7 907 * versus waiters unqueueing themselves:
c87e2837 908 */
1d615482 909 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 910 while (!list_empty(head)) {
c87e2837
IM
911 next = head->next;
912 pi_state = list_entry(next, struct futex_pi_state, list);
913 key = pi_state->key;
627371d7 914 hb = hash_futex(&key);
153fbd12
PZ
915
916 /*
917 * We can race against put_pi_state() removing itself from the
918 * list (a waiter going away). put_pi_state() will first
919 * decrement the reference count and then modify the list, so
920 * its possible to see the list entry but fail this reference
921 * acquire.
922 *
923 * In that case; drop the locks to let put_pi_state() make
924 * progress and retry the loop.
925 */
49262de2 926 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
927 raw_spin_unlock_irq(&curr->pi_lock);
928 cpu_relax();
929 raw_spin_lock_irq(&curr->pi_lock);
930 continue;
931 }
1d615482 932 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 933
c87e2837 934 spin_lock(&hb->lock);
c74aef2d
PZ
935 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
936 raw_spin_lock(&curr->pi_lock);
627371d7
IM
937 /*
938 * We dropped the pi-lock, so re-check whether this
939 * task still owns the PI-state:
940 */
c87e2837 941 if (head->next != next) {
153fbd12 942 /* retain curr->pi_lock for the loop invariant */
c74aef2d 943 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 944 spin_unlock(&hb->lock);
153fbd12 945 put_pi_state(pi_state);
c87e2837
IM
946 continue;
947 }
948
c87e2837 949 WARN_ON(pi_state->owner != curr);
627371d7
IM
950 WARN_ON(list_empty(&pi_state->list));
951 list_del_init(&pi_state->list);
c87e2837 952 pi_state->owner = NULL;
c87e2837 953
153fbd12 954 raw_spin_unlock(&curr->pi_lock);
c74aef2d 955 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
956 spin_unlock(&hb->lock);
957
16ffa12d
PZ
958 rt_mutex_futex_unlock(&pi_state->pi_mutex);
959 put_pi_state(pi_state);
960
1d615482 961 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 962 }
1d615482 963 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
964}
965
bc2eecd7
NP
966#endif
967
54a21788
TG
968/*
969 * We need to check the following states:
970 *
971 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
972 *
973 * [1] NULL | --- | --- | 0 | 0/1 | Valid
974 * [2] NULL | --- | --- | >0 | 0/1 | Valid
975 *
976 * [3] Found | NULL | -- | Any | 0/1 | Invalid
977 *
978 * [4] Found | Found | NULL | 0 | 1 | Valid
979 * [5] Found | Found | NULL | >0 | 1 | Invalid
980 *
981 * [6] Found | Found | task | 0 | 1 | Valid
982 *
983 * [7] Found | Found | NULL | Any | 0 | Invalid
984 *
985 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
986 * [9] Found | Found | task | 0 | 0 | Invalid
987 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
988 *
989 * [1] Indicates that the kernel can acquire the futex atomically. We
990 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
991 *
992 * [2] Valid, if TID does not belong to a kernel thread. If no matching
993 * thread is found then it indicates that the owner TID has died.
994 *
995 * [3] Invalid. The waiter is queued on a non PI futex
996 *
997 * [4] Valid state after exit_robust_list(), which sets the user space
998 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
999 *
1000 * [5] The user space value got manipulated between exit_robust_list()
1001 * and exit_pi_state_list()
1002 *
1003 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1004 * the pi_state but cannot access the user space value.
1005 *
1006 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1007 *
1008 * [8] Owner and user space value match
1009 *
1010 * [9] There is no transient state which sets the user space TID to 0
1011 * except exit_robust_list(), but this is indicated by the
1012 * FUTEX_OWNER_DIED bit. See [4]
1013 *
1014 * [10] There is no transient state which leaves owner and user space
1015 * TID out of sync.
734009e9
PZ
1016 *
1017 *
1018 * Serialization and lifetime rules:
1019 *
1020 * hb->lock:
1021 *
1022 * hb -> futex_q, relation
1023 * futex_q -> pi_state, relation
1024 *
1025 * (cannot be raw because hb can contain arbitrary amount
1026 * of futex_q's)
1027 *
1028 * pi_mutex->wait_lock:
1029 *
1030 * {uval, pi_state}
1031 *
1032 * (and pi_mutex 'obviously')
1033 *
1034 * p->pi_lock:
1035 *
1036 * p->pi_state_list -> pi_state->list, relation
1037 *
1038 * pi_state->refcount:
1039 *
1040 * pi_state lifetime
1041 *
1042 *
1043 * Lock order:
1044 *
1045 * hb->lock
1046 * pi_mutex->wait_lock
1047 * p->pi_lock
1048 *
54a21788 1049 */
e60cbc5c
TG
1050
1051/*
1052 * Validate that the existing waiter has a pi_state and sanity check
1053 * the pi_state against the user space value. If correct, attach to
1054 * it.
1055 */
734009e9
PZ
1056static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1057 struct futex_pi_state *pi_state,
e60cbc5c 1058 struct futex_pi_state **ps)
c87e2837 1059{
778e9a9c 1060 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1061 u32 uval2;
1062 int ret;
c87e2837 1063
e60cbc5c
TG
1064 /*
1065 * Userspace might have messed up non-PI and PI futexes [3]
1066 */
1067 if (unlikely(!pi_state))
1068 return -EINVAL;
06a9ec29 1069
734009e9
PZ
1070 /*
1071 * We get here with hb->lock held, and having found a
1072 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1073 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1074 * which in turn means that futex_lock_pi() still has a reference on
1075 * our pi_state.
16ffa12d
PZ
1076 *
1077 * The waiter holding a reference on @pi_state also protects against
1078 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1079 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1080 * free pi_state before we can take a reference ourselves.
734009e9 1081 */
49262de2 1082 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1083
734009e9
PZ
1084 /*
1085 * Now that we have a pi_state, we can acquire wait_lock
1086 * and do the state validation.
1087 */
1088 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1089
1090 /*
1091 * Since {uval, pi_state} is serialized by wait_lock, and our current
1092 * uval was read without holding it, it can have changed. Verify it
1093 * still is what we expect it to be, otherwise retry the entire
1094 * operation.
1095 */
1096 if (get_futex_value_locked(&uval2, uaddr))
1097 goto out_efault;
1098
1099 if (uval != uval2)
1100 goto out_eagain;
1101
e60cbc5c
TG
1102 /*
1103 * Handle the owner died case:
1104 */
1105 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1106 /*
e60cbc5c
TG
1107 * exit_pi_state_list sets owner to NULL and wakes the
1108 * topmost waiter. The task which acquires the
1109 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1110 */
e60cbc5c 1111 if (!pi_state->owner) {
59647b6a 1112 /*
e60cbc5c
TG
1113 * No pi state owner, but the user space TID
1114 * is not 0. Inconsistent state. [5]
59647b6a 1115 */
e60cbc5c 1116 if (pid)
734009e9 1117 goto out_einval;
bd1dbcc6 1118 /*
e60cbc5c 1119 * Take a ref on the state and return success. [4]
866293ee 1120 */
734009e9 1121 goto out_attach;
c87e2837 1122 }
bd1dbcc6
TG
1123
1124 /*
e60cbc5c
TG
1125 * If TID is 0, then either the dying owner has not
1126 * yet executed exit_pi_state_list() or some waiter
1127 * acquired the rtmutex in the pi state, but did not
1128 * yet fixup the TID in user space.
1129 *
1130 * Take a ref on the state and return success. [6]
1131 */
1132 if (!pid)
734009e9 1133 goto out_attach;
e60cbc5c
TG
1134 } else {
1135 /*
1136 * If the owner died bit is not set, then the pi_state
1137 * must have an owner. [7]
bd1dbcc6 1138 */
e60cbc5c 1139 if (!pi_state->owner)
734009e9 1140 goto out_einval;
c87e2837
IM
1141 }
1142
e60cbc5c
TG
1143 /*
1144 * Bail out if user space manipulated the futex value. If pi
1145 * state exists then the owner TID must be the same as the
1146 * user space TID. [9/10]
1147 */
1148 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1149 goto out_einval;
1150
1151out_attach:
bf92cf3a 1152 get_pi_state(pi_state);
734009e9 1153 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1154 *ps = pi_state;
1155 return 0;
734009e9
PZ
1156
1157out_einval:
1158 ret = -EINVAL;
1159 goto out_error;
1160
1161out_eagain:
1162 ret = -EAGAIN;
1163 goto out_error;
1164
1165out_efault:
1166 ret = -EFAULT;
1167 goto out_error;
1168
1169out_error:
1170 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1171 return ret;
e60cbc5c
TG
1172}
1173
da791a66
TG
1174static int handle_exit_race(u32 __user *uaddr, u32 uval,
1175 struct task_struct *tsk)
1176{
1177 u32 uval2;
1178
1179 /*
1180 * If PF_EXITPIDONE is not yet set, then try again.
1181 */
1182 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1183 return -EAGAIN;
1184
1185 /*
1186 * Reread the user space value to handle the following situation:
1187 *
1188 * CPU0 CPU1
1189 *
1190 * sys_exit() sys_futex()
1191 * do_exit() futex_lock_pi()
1192 * futex_lock_pi_atomic()
1193 * exit_signals(tsk) No waiters:
1194 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1195 * mm_release(tsk) Set waiter bit
1196 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1197 * Set owner died attach_to_pi_owner() {
1198 * *uaddr = 0xC0000000; tsk = get_task(PID);
1199 * } if (!tsk->flags & PF_EXITING) {
1200 * ... attach();
1201 * tsk->flags |= PF_EXITPIDONE; } else {
1202 * if (!(tsk->flags & PF_EXITPIDONE))
1203 * return -EAGAIN;
1204 * return -ESRCH; <--- FAIL
1205 * }
1206 *
1207 * Returning ESRCH unconditionally is wrong here because the
1208 * user space value has been changed by the exiting task.
1209 *
1210 * The same logic applies to the case where the exiting task is
1211 * already gone.
1212 */
1213 if (get_futex_value_locked(&uval2, uaddr))
1214 return -EFAULT;
1215
1216 /* If the user space value has changed, try again. */
1217 if (uval2 != uval)
1218 return -EAGAIN;
1219
1220 /*
1221 * The exiting task did not have a robust list, the robust list was
1222 * corrupted or the user space value in *uaddr is simply bogus.
1223 * Give up and tell user space.
1224 */
1225 return -ESRCH;
1226}
1227
04e1b2e5
TG
1228/*
1229 * Lookup the task for the TID provided from user space and attach to
1230 * it after doing proper sanity checks.
1231 */
da791a66 1232static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1233 struct futex_pi_state **ps)
e60cbc5c 1234{
e60cbc5c 1235 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1236 struct futex_pi_state *pi_state;
1237 struct task_struct *p;
e60cbc5c 1238
c87e2837 1239 /*
e3f2ddea 1240 * We are the first waiter - try to look up the real owner and attach
54a21788 1241 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1242 *
1243 * The !pid check is paranoid. None of the call sites should end up
1244 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1245 */
778e9a9c 1246 if (!pid)
da791a66 1247 return -EAGAIN;
2ee08260 1248 p = find_get_task_by_vpid(pid);
7a0ea09a 1249 if (!p)
da791a66 1250 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1251
a2129464 1252 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1253 put_task_struct(p);
1254 return -EPERM;
1255 }
1256
778e9a9c
AK
1257 /*
1258 * We need to look at the task state flags to figure out,
1259 * whether the task is exiting. To protect against the do_exit
1260 * change of the task flags, we do this protected by
1261 * p->pi_lock:
1262 */
1d615482 1263 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1264 if (unlikely(p->flags & PF_EXITING)) {
1265 /*
1266 * The task is on the way out. When PF_EXITPIDONE is
1267 * set, we know that the task has finished the
1268 * cleanup:
1269 */
da791a66 1270 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1271
1d615482 1272 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1273 put_task_struct(p);
1274 return ret;
1275 }
c87e2837 1276
54a21788
TG
1277 /*
1278 * No existing pi state. First waiter. [2]
734009e9
PZ
1279 *
1280 * This creates pi_state, we have hb->lock held, this means nothing can
1281 * observe this state, wait_lock is irrelevant.
54a21788 1282 */
c87e2837
IM
1283 pi_state = alloc_pi_state();
1284
1285 /*
04e1b2e5 1286 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1287 * the owner of it:
1288 */
1289 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1290
1291 /* Store the key for possible exit cleanups: */
d0aa7a70 1292 pi_state->key = *key;
c87e2837 1293
627371d7 1294 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1295 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1296 /*
1297 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1298 * because there is no concurrency as the object is not published yet.
1299 */
c87e2837 1300 pi_state->owner = p;
1d615482 1301 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1302
1303 put_task_struct(p);
1304
d0aa7a70 1305 *ps = pi_state;
c87e2837
IM
1306
1307 return 0;
1308}
1309
734009e9
PZ
1310static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1311 struct futex_hash_bucket *hb,
04e1b2e5
TG
1312 union futex_key *key, struct futex_pi_state **ps)
1313{
499f5aca 1314 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1315
1316 /*
1317 * If there is a waiter on that futex, validate it and
1318 * attach to the pi_state when the validation succeeds.
1319 */
499f5aca 1320 if (top_waiter)
734009e9 1321 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1322
1323 /*
1324 * We are the first waiter - try to look up the owner based on
1325 * @uval and attach to it.
1326 */
da791a66 1327 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1328}
1329
af54d6a1
TG
1330static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1331{
6b4f4bc9 1332 int err;
af54d6a1
TG
1333 u32 uninitialized_var(curval);
1334
ab51fbab
DB
1335 if (unlikely(should_fail_futex(true)))
1336 return -EFAULT;
1337
6b4f4bc9
WD
1338 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1339 if (unlikely(err))
1340 return err;
af54d6a1 1341
734009e9 1342 /* If user space value changed, let the caller retry */
af54d6a1
TG
1343 return curval != uval ? -EAGAIN : 0;
1344}
1345
1a52084d 1346/**
d96ee56c 1347 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1348 * @uaddr: the pi futex user address
1349 * @hb: the pi futex hash bucket
1350 * @key: the futex key associated with uaddr and hb
1351 * @ps: the pi_state pointer where we store the result of the
1352 * lookup
1353 * @task: the task to perform the atomic lock work for. This will
1354 * be "current" except in the case of requeue pi.
1355 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1356 *
6c23cbbd 1357 * Return:
7b4ff1ad
MCC
1358 * - 0 - ready to wait;
1359 * - 1 - acquired the lock;
1360 * - <0 - error
1a52084d
DH
1361 *
1362 * The hb->lock and futex_key refs shall be held by the caller.
1363 */
1364static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1365 union futex_key *key,
1366 struct futex_pi_state **ps,
bab5bc9e 1367 struct task_struct *task, int set_waiters)
1a52084d 1368{
af54d6a1 1369 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1370 struct futex_q *top_waiter;
af54d6a1 1371 int ret;
1a52084d
DH
1372
1373 /*
af54d6a1
TG
1374 * Read the user space value first so we can validate a few
1375 * things before proceeding further.
1a52084d 1376 */
af54d6a1 1377 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1378 return -EFAULT;
1379
ab51fbab
DB
1380 if (unlikely(should_fail_futex(true)))
1381 return -EFAULT;
1382
1a52084d
DH
1383 /*
1384 * Detect deadlocks.
1385 */
af54d6a1 1386 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1387 return -EDEADLK;
1388
ab51fbab
DB
1389 if ((unlikely(should_fail_futex(true))))
1390 return -EDEADLK;
1391
1a52084d 1392 /*
af54d6a1
TG
1393 * Lookup existing state first. If it exists, try to attach to
1394 * its pi_state.
1a52084d 1395 */
499f5aca
PZ
1396 top_waiter = futex_top_waiter(hb, key);
1397 if (top_waiter)
734009e9 1398 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1399
1400 /*
af54d6a1
TG
1401 * No waiter and user TID is 0. We are here because the
1402 * waiters or the owner died bit is set or called from
1403 * requeue_cmp_pi or for whatever reason something took the
1404 * syscall.
1a52084d 1405 */
af54d6a1 1406 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1407 /*
af54d6a1
TG
1408 * We take over the futex. No other waiters and the user space
1409 * TID is 0. We preserve the owner died bit.
59fa6245 1410 */
af54d6a1
TG
1411 newval = uval & FUTEX_OWNER_DIED;
1412 newval |= vpid;
1a52084d 1413
af54d6a1
TG
1414 /* The futex requeue_pi code can enforce the waiters bit */
1415 if (set_waiters)
1416 newval |= FUTEX_WAITERS;
1417
1418 ret = lock_pi_update_atomic(uaddr, uval, newval);
1419 /* If the take over worked, return 1 */
1420 return ret < 0 ? ret : 1;
1421 }
1a52084d
DH
1422
1423 /*
af54d6a1
TG
1424 * First waiter. Set the waiters bit before attaching ourself to
1425 * the owner. If owner tries to unlock, it will be forced into
1426 * the kernel and blocked on hb->lock.
1a52084d 1427 */
af54d6a1
TG
1428 newval = uval | FUTEX_WAITERS;
1429 ret = lock_pi_update_atomic(uaddr, uval, newval);
1430 if (ret)
1431 return ret;
1a52084d 1432 /*
af54d6a1
TG
1433 * If the update of the user space value succeeded, we try to
1434 * attach to the owner. If that fails, no harm done, we only
1435 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1436 */
da791a66 1437 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1438}
1439
2e12978a
LJ
1440/**
1441 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1442 * @q: The futex_q to unqueue
1443 *
1444 * The q->lock_ptr must not be NULL and must be held by the caller.
1445 */
1446static void __unqueue_futex(struct futex_q *q)
1447{
1448 struct futex_hash_bucket *hb;
1449
4de1a293 1450 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1451 return;
4de1a293 1452 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1453
1454 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1455 plist_del(&q->list, &hb->chain);
11d4616b 1456 hb_waiters_dec(hb);
2e12978a
LJ
1457}
1458
1da177e4
LT
1459/*
1460 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1461 * Afterwards, the futex_q must not be accessed. Callers
1462 * must ensure to later call wake_up_q() for the actual
1463 * wakeups to occur.
1da177e4 1464 */
1d0dcb3a 1465static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1466{
f1a11e05
TG
1467 struct task_struct *p = q->task;
1468
aa10990e
DH
1469 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1470 return;
1471
b061c38b 1472 get_task_struct(p);
2e12978a 1473 __unqueue_futex(q);
1da177e4 1474 /*
38fcd06e
DHV
1475 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1476 * is written, without taking any locks. This is possible in the event
1477 * of a spurious wakeup, for example. A memory barrier is required here
1478 * to prevent the following store to lock_ptr from getting ahead of the
1479 * plist_del in __unqueue_futex().
1da177e4 1480 */
1b367ece 1481 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1482
1483 /*
1484 * Queue the task for later wakeup for after we've released
1485 * the hb->lock. wake_q_add() grabs reference to p.
1486 */
07879c6a 1487 wake_q_add_safe(wake_q, p);
1da177e4
LT
1488}
1489
16ffa12d
PZ
1490/*
1491 * Caller must hold a reference on @pi_state.
1492 */
1493static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1494{
7cfdaf38 1495 u32 uninitialized_var(curval), newval;
16ffa12d 1496 struct task_struct *new_owner;
aa2bfe55 1497 bool postunlock = false;
194a6b5b 1498 DEFINE_WAKE_Q(wake_q);
13fbca4c 1499 int ret = 0;
c87e2837 1500
c87e2837 1501 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1502 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1503 /*
bebe5b51 1504 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1505 *
1506 * When this happens, give up our locks and try again, giving
1507 * the futex_lock_pi() instance time to complete, either by
1508 * waiting on the rtmutex or removing itself from the futex
1509 * queue.
1510 */
1511 ret = -EAGAIN;
1512 goto out_unlock;
73d786bd 1513 }
c87e2837
IM
1514
1515 /*
16ffa12d
PZ
1516 * We pass it to the next owner. The WAITERS bit is always kept
1517 * enabled while there is PI state around. We cleanup the owner
1518 * died bit, because we are the owner.
c87e2837 1519 */
13fbca4c 1520 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1521
ab51fbab
DB
1522 if (unlikely(should_fail_futex(true)))
1523 ret = -EFAULT;
1524
6b4f4bc9
WD
1525 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1526 if (!ret && (curval != uval)) {
89e9e66b
SAS
1527 /*
1528 * If a unconditional UNLOCK_PI operation (user space did not
1529 * try the TID->0 transition) raced with a waiter setting the
1530 * FUTEX_WAITERS flag between get_user() and locking the hash
1531 * bucket lock, retry the operation.
1532 */
1533 if ((FUTEX_TID_MASK & curval) == uval)
1534 ret = -EAGAIN;
1535 else
1536 ret = -EINVAL;
1537 }
734009e9 1538
16ffa12d
PZ
1539 if (ret)
1540 goto out_unlock;
c87e2837 1541
94ffac5d
PZ
1542 /*
1543 * This is a point of no return; once we modify the uval there is no
1544 * going back and subsequent operations must not fail.
1545 */
1546
b4abf910 1547 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1548 WARN_ON(list_empty(&pi_state->list));
1549 list_del_init(&pi_state->list);
b4abf910 1550 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1551
b4abf910 1552 raw_spin_lock(&new_owner->pi_lock);
627371d7 1553 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1554 list_add(&pi_state->list, &new_owner->pi_state_list);
1555 pi_state->owner = new_owner;
b4abf910 1556 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1557
aa2bfe55 1558 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1559
16ffa12d 1560out_unlock:
5293c2ef 1561 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1562
aa2bfe55
PZ
1563 if (postunlock)
1564 rt_mutex_postunlock(&wake_q);
c87e2837 1565
16ffa12d 1566 return ret;
c87e2837
IM
1567}
1568
8b8f319f
IM
1569/*
1570 * Express the locking dependencies for lockdep:
1571 */
1572static inline void
1573double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1574{
1575 if (hb1 <= hb2) {
1576 spin_lock(&hb1->lock);
1577 if (hb1 < hb2)
1578 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1579 } else { /* hb1 > hb2 */
1580 spin_lock(&hb2->lock);
1581 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1582 }
1583}
1584
5eb3dc62
DH
1585static inline void
1586double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1587{
f061d351 1588 spin_unlock(&hb1->lock);
88f502fe
IM
1589 if (hb1 != hb2)
1590 spin_unlock(&hb2->lock);
5eb3dc62
DH
1591}
1592
1da177e4 1593/*
b2d0994b 1594 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1595 */
b41277dc
DH
1596static int
1597futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1598{
e2970f2f 1599 struct futex_hash_bucket *hb;
1da177e4 1600 struct futex_q *this, *next;
38d47c1b 1601 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1602 int ret;
194a6b5b 1603 DEFINE_WAKE_Q(wake_q);
1da177e4 1604
cd689985
TG
1605 if (!bitset)
1606 return -EINVAL;
1607
96d4f267 1608 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1609 if (unlikely(ret != 0))
1610 goto out;
1611
e2970f2f 1612 hb = hash_futex(&key);
b0c29f79
DB
1613
1614 /* Make sure we really have tasks to wakeup */
1615 if (!hb_waiters_pending(hb))
1616 goto out_put_key;
1617
e2970f2f 1618 spin_lock(&hb->lock);
1da177e4 1619
0d00c7b2 1620 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1621 if (match_futex (&this->key, &key)) {
52400ba9 1622 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1623 ret = -EINVAL;
1624 break;
1625 }
cd689985
TG
1626
1627 /* Check if one of the bits is set in both bitsets */
1628 if (!(this->bitset & bitset))
1629 continue;
1630
1d0dcb3a 1631 mark_wake_futex(&wake_q, this);
1da177e4
LT
1632 if (++ret >= nr_wake)
1633 break;
1634 }
1635 }
1636
e2970f2f 1637 spin_unlock(&hb->lock);
1d0dcb3a 1638 wake_up_q(&wake_q);
b0c29f79 1639out_put_key:
ae791a2d 1640 put_futex_key(&key);
42d35d48 1641out:
1da177e4
LT
1642 return ret;
1643}
1644
30d6e0a4
JS
1645static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1646{
1647 unsigned int op = (encoded_op & 0x70000000) >> 28;
1648 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1649 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1650 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1651 int oldval, ret;
1652
1653 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1654 if (oparg < 0 || oparg > 31) {
1655 char comm[sizeof(current->comm)];
1656 /*
1657 * kill this print and return -EINVAL when userspace
1658 * is sane again
1659 */
1660 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1661 get_task_comm(comm, current), oparg);
1662 oparg &= 31;
1663 }
30d6e0a4
JS
1664 oparg = 1 << oparg;
1665 }
1666
96d4f267 1667 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1668 return -EFAULT;
1669
1670 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1671 if (ret)
1672 return ret;
1673
1674 switch (cmp) {
1675 case FUTEX_OP_CMP_EQ:
1676 return oldval == cmparg;
1677 case FUTEX_OP_CMP_NE:
1678 return oldval != cmparg;
1679 case FUTEX_OP_CMP_LT:
1680 return oldval < cmparg;
1681 case FUTEX_OP_CMP_GE:
1682 return oldval >= cmparg;
1683 case FUTEX_OP_CMP_LE:
1684 return oldval <= cmparg;
1685 case FUTEX_OP_CMP_GT:
1686 return oldval > cmparg;
1687 default:
1688 return -ENOSYS;
1689 }
1690}
1691
4732efbe
JJ
1692/*
1693 * Wake up all waiters hashed on the physical page that is mapped
1694 * to this virtual address:
1695 */
e2970f2f 1696static int
b41277dc 1697futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1698 int nr_wake, int nr_wake2, int op)
4732efbe 1699{
38d47c1b 1700 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1701 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1702 struct futex_q *this, *next;
e4dc5b7a 1703 int ret, op_ret;
194a6b5b 1704 DEFINE_WAKE_Q(wake_q);
4732efbe 1705
e4dc5b7a 1706retry:
96d4f267 1707 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1708 if (unlikely(ret != 0))
1709 goto out;
96d4f267 1710 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1711 if (unlikely(ret != 0))
42d35d48 1712 goto out_put_key1;
4732efbe 1713
e2970f2f
IM
1714 hb1 = hash_futex(&key1);
1715 hb2 = hash_futex(&key2);
4732efbe 1716
e4dc5b7a 1717retry_private:
eaaea803 1718 double_lock_hb(hb1, hb2);
e2970f2f 1719 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1720 if (unlikely(op_ret < 0)) {
5eb3dc62 1721 double_unlock_hb(hb1, hb2);
4732efbe 1722
6b4f4bc9
WD
1723 if (!IS_ENABLED(CONFIG_MMU) ||
1724 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1725 /*
1726 * we don't get EFAULT from MMU faults if we don't have
1727 * an MMU, but we might get them from range checking
1728 */
796f8d9b 1729 ret = op_ret;
42d35d48 1730 goto out_put_keys;
796f8d9b
DG
1731 }
1732
6b4f4bc9
WD
1733 if (op_ret == -EFAULT) {
1734 ret = fault_in_user_writeable(uaddr2);
1735 if (ret)
1736 goto out_put_keys;
1737 }
4732efbe 1738
6b4f4bc9
WD
1739 if (!(flags & FLAGS_SHARED)) {
1740 cond_resched();
e4dc5b7a 1741 goto retry_private;
6b4f4bc9 1742 }
e4dc5b7a 1743
ae791a2d
TG
1744 put_futex_key(&key2);
1745 put_futex_key(&key1);
6b4f4bc9 1746 cond_resched();
e4dc5b7a 1747 goto retry;
4732efbe
JJ
1748 }
1749
0d00c7b2 1750 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1751 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1752 if (this->pi_state || this->rt_waiter) {
1753 ret = -EINVAL;
1754 goto out_unlock;
1755 }
1d0dcb3a 1756 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1757 if (++ret >= nr_wake)
1758 break;
1759 }
1760 }
1761
1762 if (op_ret > 0) {
4732efbe 1763 op_ret = 0;
0d00c7b2 1764 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1765 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1766 if (this->pi_state || this->rt_waiter) {
1767 ret = -EINVAL;
1768 goto out_unlock;
1769 }
1d0dcb3a 1770 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1771 if (++op_ret >= nr_wake2)
1772 break;
1773 }
1774 }
1775 ret += op_ret;
1776 }
1777
aa10990e 1778out_unlock:
5eb3dc62 1779 double_unlock_hb(hb1, hb2);
1d0dcb3a 1780 wake_up_q(&wake_q);
42d35d48 1781out_put_keys:
ae791a2d 1782 put_futex_key(&key2);
42d35d48 1783out_put_key1:
ae791a2d 1784 put_futex_key(&key1);
42d35d48 1785out:
4732efbe
JJ
1786 return ret;
1787}
1788
9121e478
DH
1789/**
1790 * requeue_futex() - Requeue a futex_q from one hb to another
1791 * @q: the futex_q to requeue
1792 * @hb1: the source hash_bucket
1793 * @hb2: the target hash_bucket
1794 * @key2: the new key for the requeued futex_q
1795 */
1796static inline
1797void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1798 struct futex_hash_bucket *hb2, union futex_key *key2)
1799{
1800
1801 /*
1802 * If key1 and key2 hash to the same bucket, no need to
1803 * requeue.
1804 */
1805 if (likely(&hb1->chain != &hb2->chain)) {
1806 plist_del(&q->list, &hb1->chain);
11d4616b 1807 hb_waiters_dec(hb1);
11d4616b 1808 hb_waiters_inc(hb2);
fe1bce9e 1809 plist_add(&q->list, &hb2->chain);
9121e478 1810 q->lock_ptr = &hb2->lock;
9121e478
DH
1811 }
1812 get_futex_key_refs(key2);
1813 q->key = *key2;
1814}
1815
52400ba9
DH
1816/**
1817 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1818 * @q: the futex_q
1819 * @key: the key of the requeue target futex
1820 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1821 *
1822 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1823 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1824 * to the requeue target futex so the waiter can detect the wakeup on the right
1825 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1826 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1827 * to protect access to the pi_state to fixup the owner later. Must be called
1828 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1829 */
1830static inline
beda2c7e
DH
1831void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1832 struct futex_hash_bucket *hb)
52400ba9 1833{
52400ba9
DH
1834 get_futex_key_refs(key);
1835 q->key = *key;
1836
2e12978a 1837 __unqueue_futex(q);
52400ba9
DH
1838
1839 WARN_ON(!q->rt_waiter);
1840 q->rt_waiter = NULL;
1841
beda2c7e 1842 q->lock_ptr = &hb->lock;
beda2c7e 1843
f1a11e05 1844 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1845}
1846
1847/**
1848 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1849 * @pifutex: the user address of the to futex
1850 * @hb1: the from futex hash bucket, must be locked by the caller
1851 * @hb2: the to futex hash bucket, must be locked by the caller
1852 * @key1: the from futex key
1853 * @key2: the to futex key
1854 * @ps: address to store the pi_state pointer
1855 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1856 *
1857 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1858 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1859 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1860 * hb1 and hb2 must be held by the caller.
52400ba9 1861 *
6c23cbbd 1862 * Return:
7b4ff1ad
MCC
1863 * - 0 - failed to acquire the lock atomically;
1864 * - >0 - acquired the lock, return value is vpid of the top_waiter
1865 * - <0 - error
52400ba9
DH
1866 */
1867static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1868 struct futex_hash_bucket *hb1,
1869 struct futex_hash_bucket *hb2,
1870 union futex_key *key1, union futex_key *key2,
bab5bc9e 1871 struct futex_pi_state **ps, int set_waiters)
52400ba9 1872{
bab5bc9e 1873 struct futex_q *top_waiter = NULL;
52400ba9 1874 u32 curval;
866293ee 1875 int ret, vpid;
52400ba9
DH
1876
1877 if (get_futex_value_locked(&curval, pifutex))
1878 return -EFAULT;
1879
ab51fbab
DB
1880 if (unlikely(should_fail_futex(true)))
1881 return -EFAULT;
1882
bab5bc9e
DH
1883 /*
1884 * Find the top_waiter and determine if there are additional waiters.
1885 * If the caller intends to requeue more than 1 waiter to pifutex,
1886 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1887 * as we have means to handle the possible fault. If not, don't set
1888 * the bit unecessarily as it will force the subsequent unlock to enter
1889 * the kernel.
1890 */
52400ba9
DH
1891 top_waiter = futex_top_waiter(hb1, key1);
1892
1893 /* There are no waiters, nothing for us to do. */
1894 if (!top_waiter)
1895 return 0;
1896
84bc4af5
DH
1897 /* Ensure we requeue to the expected futex. */
1898 if (!match_futex(top_waiter->requeue_pi_key, key2))
1899 return -EINVAL;
1900
52400ba9 1901 /*
bab5bc9e
DH
1902 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1903 * the contended case or if set_waiters is 1. The pi_state is returned
1904 * in ps in contended cases.
52400ba9 1905 */
866293ee 1906 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1907 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1908 set_waiters);
866293ee 1909 if (ret == 1) {
beda2c7e 1910 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1911 return vpid;
1912 }
52400ba9
DH
1913 return ret;
1914}
1915
1916/**
1917 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1918 * @uaddr1: source futex user address
b41277dc 1919 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1920 * @uaddr2: target futex user address
1921 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1922 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1923 * @cmpval: @uaddr1 expected value (or %NULL)
1924 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1925 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1926 *
1927 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1928 * uaddr2 atomically on behalf of the top waiter.
1929 *
6c23cbbd 1930 * Return:
7b4ff1ad
MCC
1931 * - >=0 - on success, the number of tasks requeued or woken;
1932 * - <0 - on error
1da177e4 1933 */
b41277dc
DH
1934static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1935 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1936 u32 *cmpval, int requeue_pi)
1da177e4 1937{
38d47c1b 1938 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1939 int drop_count = 0, task_count = 0, ret;
1940 struct futex_pi_state *pi_state = NULL;
e2970f2f 1941 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1942 struct futex_q *this, *next;
194a6b5b 1943 DEFINE_WAKE_Q(wake_q);
52400ba9 1944
fbe0e839
LJ
1945 if (nr_wake < 0 || nr_requeue < 0)
1946 return -EINVAL;
1947
bc2eecd7
NP
1948 /*
1949 * When PI not supported: return -ENOSYS if requeue_pi is true,
1950 * consequently the compiler knows requeue_pi is always false past
1951 * this point which will optimize away all the conditional code
1952 * further down.
1953 */
1954 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1955 return -ENOSYS;
1956
52400ba9 1957 if (requeue_pi) {
e9c243a5
TG
1958 /*
1959 * Requeue PI only works on two distinct uaddrs. This
1960 * check is only valid for private futexes. See below.
1961 */
1962 if (uaddr1 == uaddr2)
1963 return -EINVAL;
1964
52400ba9
DH
1965 /*
1966 * requeue_pi requires a pi_state, try to allocate it now
1967 * without any locks in case it fails.
1968 */
1969 if (refill_pi_state_cache())
1970 return -ENOMEM;
1971 /*
1972 * requeue_pi must wake as many tasks as it can, up to nr_wake
1973 * + nr_requeue, since it acquires the rt_mutex prior to
1974 * returning to userspace, so as to not leave the rt_mutex with
1975 * waiters and no owner. However, second and third wake-ups
1976 * cannot be predicted as they involve race conditions with the
1977 * first wake and a fault while looking up the pi_state. Both
1978 * pthread_cond_signal() and pthread_cond_broadcast() should
1979 * use nr_wake=1.
1980 */
1981 if (nr_wake != 1)
1982 return -EINVAL;
1983 }
1da177e4 1984
42d35d48 1985retry:
96d4f267 1986 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1987 if (unlikely(ret != 0))
1988 goto out;
9ea71503 1989 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1990 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1991 if (unlikely(ret != 0))
42d35d48 1992 goto out_put_key1;
1da177e4 1993
e9c243a5
TG
1994 /*
1995 * The check above which compares uaddrs is not sufficient for
1996 * shared futexes. We need to compare the keys:
1997 */
1998 if (requeue_pi && match_futex(&key1, &key2)) {
1999 ret = -EINVAL;
2000 goto out_put_keys;
2001 }
2002
e2970f2f
IM
2003 hb1 = hash_futex(&key1);
2004 hb2 = hash_futex(&key2);
1da177e4 2005
e4dc5b7a 2006retry_private:
69cd9eba 2007 hb_waiters_inc(hb2);
8b8f319f 2008 double_lock_hb(hb1, hb2);
1da177e4 2009
e2970f2f
IM
2010 if (likely(cmpval != NULL)) {
2011 u32 curval;
1da177e4 2012
e2970f2f 2013 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2014
2015 if (unlikely(ret)) {
5eb3dc62 2016 double_unlock_hb(hb1, hb2);
69cd9eba 2017 hb_waiters_dec(hb2);
1da177e4 2018
e2970f2f 2019 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2020 if (ret)
2021 goto out_put_keys;
1da177e4 2022
b41277dc 2023 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2024 goto retry_private;
1da177e4 2025
ae791a2d
TG
2026 put_futex_key(&key2);
2027 put_futex_key(&key1);
e4dc5b7a 2028 goto retry;
1da177e4 2029 }
e2970f2f 2030 if (curval != *cmpval) {
1da177e4
LT
2031 ret = -EAGAIN;
2032 goto out_unlock;
2033 }
2034 }
2035
52400ba9 2036 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2037 /*
2038 * Attempt to acquire uaddr2 and wake the top waiter. If we
2039 * intend to requeue waiters, force setting the FUTEX_WAITERS
2040 * bit. We force this here where we are able to easily handle
2041 * faults rather in the requeue loop below.
2042 */
52400ba9 2043 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2044 &key2, &pi_state, nr_requeue);
52400ba9
DH
2045
2046 /*
2047 * At this point the top_waiter has either taken uaddr2 or is
2048 * waiting on it. If the former, then the pi_state will not
2049 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2050 * reference to it. If the lock was taken, ret contains the
2051 * vpid of the top waiter task.
ecb38b78
TG
2052 * If the lock was not taken, we have pi_state and an initial
2053 * refcount on it. In case of an error we have nothing.
52400ba9 2054 */
866293ee 2055 if (ret > 0) {
52400ba9 2056 WARN_ON(pi_state);
89061d3d 2057 drop_count++;
52400ba9 2058 task_count++;
866293ee 2059 /*
ecb38b78
TG
2060 * If we acquired the lock, then the user space value
2061 * of uaddr2 should be vpid. It cannot be changed by
2062 * the top waiter as it is blocked on hb2 lock if it
2063 * tries to do so. If something fiddled with it behind
2064 * our back the pi state lookup might unearth it. So
2065 * we rather use the known value than rereading and
2066 * handing potential crap to lookup_pi_state.
2067 *
2068 * If that call succeeds then we have pi_state and an
2069 * initial refcount on it.
866293ee 2070 */
734009e9 2071 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2072 }
2073
2074 switch (ret) {
2075 case 0:
ecb38b78 2076 /* We hold a reference on the pi state. */
52400ba9 2077 break;
4959f2de
TG
2078
2079 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2080 case -EFAULT:
2081 double_unlock_hb(hb1, hb2);
69cd9eba 2082 hb_waiters_dec(hb2);
ae791a2d
TG
2083 put_futex_key(&key2);
2084 put_futex_key(&key1);
d0725992 2085 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2086 if (!ret)
2087 goto retry;
2088 goto out;
2089 case -EAGAIN:
af54d6a1
TG
2090 /*
2091 * Two reasons for this:
2092 * - Owner is exiting and we just wait for the
2093 * exit to complete.
2094 * - The user space value changed.
2095 */
52400ba9 2096 double_unlock_hb(hb1, hb2);
69cd9eba 2097 hb_waiters_dec(hb2);
ae791a2d
TG
2098 put_futex_key(&key2);
2099 put_futex_key(&key1);
52400ba9
DH
2100 cond_resched();
2101 goto retry;
2102 default:
2103 goto out_unlock;
2104 }
2105 }
2106
0d00c7b2 2107 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2108 if (task_count - nr_wake >= nr_requeue)
2109 break;
2110
2111 if (!match_futex(&this->key, &key1))
1da177e4 2112 continue;
52400ba9 2113
392741e0
DH
2114 /*
2115 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2116 * be paired with each other and no other futex ops.
aa10990e
DH
2117 *
2118 * We should never be requeueing a futex_q with a pi_state,
2119 * which is awaiting a futex_unlock_pi().
392741e0
DH
2120 */
2121 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2122 (!requeue_pi && this->rt_waiter) ||
2123 this->pi_state) {
392741e0
DH
2124 ret = -EINVAL;
2125 break;
2126 }
52400ba9
DH
2127
2128 /*
2129 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2130 * lock, we already woke the top_waiter. If not, it will be
2131 * woken by futex_unlock_pi().
2132 */
2133 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2134 mark_wake_futex(&wake_q, this);
52400ba9
DH
2135 continue;
2136 }
1da177e4 2137
84bc4af5
DH
2138 /* Ensure we requeue to the expected futex for requeue_pi. */
2139 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2140 ret = -EINVAL;
2141 break;
2142 }
2143
52400ba9
DH
2144 /*
2145 * Requeue nr_requeue waiters and possibly one more in the case
2146 * of requeue_pi if we couldn't acquire the lock atomically.
2147 */
2148 if (requeue_pi) {
ecb38b78
TG
2149 /*
2150 * Prepare the waiter to take the rt_mutex. Take a
2151 * refcount on the pi_state and store the pointer in
2152 * the futex_q object of the waiter.
2153 */
bf92cf3a 2154 get_pi_state(pi_state);
52400ba9
DH
2155 this->pi_state = pi_state;
2156 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2157 this->rt_waiter,
c051b21f 2158 this->task);
52400ba9 2159 if (ret == 1) {
ecb38b78
TG
2160 /*
2161 * We got the lock. We do neither drop the
2162 * refcount on pi_state nor clear
2163 * this->pi_state because the waiter needs the
2164 * pi_state for cleaning up the user space
2165 * value. It will drop the refcount after
2166 * doing so.
2167 */
beda2c7e 2168 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2169 drop_count++;
52400ba9
DH
2170 continue;
2171 } else if (ret) {
ecb38b78
TG
2172 /*
2173 * rt_mutex_start_proxy_lock() detected a
2174 * potential deadlock when we tried to queue
2175 * that waiter. Drop the pi_state reference
2176 * which we took above and remove the pointer
2177 * to the state from the waiters futex_q
2178 * object.
2179 */
52400ba9 2180 this->pi_state = NULL;
29e9ee5d 2181 put_pi_state(pi_state);
885c2cb7
TG
2182 /*
2183 * We stop queueing more waiters and let user
2184 * space deal with the mess.
2185 */
2186 break;
52400ba9 2187 }
1da177e4 2188 }
52400ba9
DH
2189 requeue_futex(this, hb1, hb2, &key2);
2190 drop_count++;
1da177e4
LT
2191 }
2192
ecb38b78
TG
2193 /*
2194 * We took an extra initial reference to the pi_state either
2195 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2196 * need to drop it here again.
2197 */
29e9ee5d 2198 put_pi_state(pi_state);
885c2cb7
TG
2199
2200out_unlock:
5eb3dc62 2201 double_unlock_hb(hb1, hb2);
1d0dcb3a 2202 wake_up_q(&wake_q);
69cd9eba 2203 hb_waiters_dec(hb2);
1da177e4 2204
cd84a42f
DH
2205 /*
2206 * drop_futex_key_refs() must be called outside the spinlocks. During
2207 * the requeue we moved futex_q's from the hash bucket at key1 to the
2208 * one at key2 and updated their key pointer. We no longer need to
2209 * hold the references to key1.
2210 */
1da177e4 2211 while (--drop_count >= 0)
9adef58b 2212 drop_futex_key_refs(&key1);
1da177e4 2213
42d35d48 2214out_put_keys:
ae791a2d 2215 put_futex_key(&key2);
42d35d48 2216out_put_key1:
ae791a2d 2217 put_futex_key(&key1);
42d35d48 2218out:
52400ba9 2219 return ret ? ret : task_count;
1da177e4
LT
2220}
2221
2222/* The key must be already stored in q->key. */
82af7aca 2223static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2224 __acquires(&hb->lock)
1da177e4 2225{
e2970f2f 2226 struct futex_hash_bucket *hb;
1da177e4 2227
e2970f2f 2228 hb = hash_futex(&q->key);
11d4616b
LT
2229
2230 /*
2231 * Increment the counter before taking the lock so that
2232 * a potential waker won't miss a to-be-slept task that is
2233 * waiting for the spinlock. This is safe as all queue_lock()
2234 * users end up calling queue_me(). Similarly, for housekeeping,
2235 * decrement the counter at queue_unlock() when some error has
2236 * occurred and we don't end up adding the task to the list.
2237 */
6f568ebe 2238 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2239
e2970f2f 2240 q->lock_ptr = &hb->lock;
1da177e4 2241
6f568ebe 2242 spin_lock(&hb->lock);
e2970f2f 2243 return hb;
1da177e4
LT
2244}
2245
d40d65c8 2246static inline void
0d00c7b2 2247queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2248 __releases(&hb->lock)
d40d65c8
DH
2249{
2250 spin_unlock(&hb->lock);
11d4616b 2251 hb_waiters_dec(hb);
d40d65c8
DH
2252}
2253
cfafcd11 2254static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2255{
ec92d082
PP
2256 int prio;
2257
2258 /*
2259 * The priority used to register this element is
2260 * - either the real thread-priority for the real-time threads
2261 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2262 * - or MAX_RT_PRIO for non-RT threads.
2263 * Thus, all RT-threads are woken first in priority order, and
2264 * the others are woken last, in FIFO order.
2265 */
2266 prio = min(current->normal_prio, MAX_RT_PRIO);
2267
2268 plist_node_init(&q->list, prio);
ec92d082 2269 plist_add(&q->list, &hb->chain);
c87e2837 2270 q->task = current;
cfafcd11
PZ
2271}
2272
2273/**
2274 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2275 * @q: The futex_q to enqueue
2276 * @hb: The destination hash bucket
2277 *
2278 * The hb->lock must be held by the caller, and is released here. A call to
2279 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2280 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2281 * or nothing if the unqueue is done as part of the wake process and the unqueue
2282 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2283 * an example).
2284 */
2285static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2286 __releases(&hb->lock)
2287{
2288 __queue_me(q, hb);
e2970f2f 2289 spin_unlock(&hb->lock);
1da177e4
LT
2290}
2291
d40d65c8
DH
2292/**
2293 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2294 * @q: The futex_q to unqueue
2295 *
2296 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2297 * be paired with exactly one earlier call to queue_me().
2298 *
6c23cbbd 2299 * Return:
7b4ff1ad
MCC
2300 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2301 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2302 */
1da177e4
LT
2303static int unqueue_me(struct futex_q *q)
2304{
1da177e4 2305 spinlock_t *lock_ptr;
e2970f2f 2306 int ret = 0;
1da177e4
LT
2307
2308 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2309retry:
29b75eb2
JZ
2310 /*
2311 * q->lock_ptr can change between this read and the following spin_lock.
2312 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2313 * optimizing lock_ptr out of the logic below.
2314 */
2315 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2316 if (lock_ptr != NULL) {
1da177e4
LT
2317 spin_lock(lock_ptr);
2318 /*
2319 * q->lock_ptr can change between reading it and
2320 * spin_lock(), causing us to take the wrong lock. This
2321 * corrects the race condition.
2322 *
2323 * Reasoning goes like this: if we have the wrong lock,
2324 * q->lock_ptr must have changed (maybe several times)
2325 * between reading it and the spin_lock(). It can
2326 * change again after the spin_lock() but only if it was
2327 * already changed before the spin_lock(). It cannot,
2328 * however, change back to the original value. Therefore
2329 * we can detect whether we acquired the correct lock.
2330 */
2331 if (unlikely(lock_ptr != q->lock_ptr)) {
2332 spin_unlock(lock_ptr);
2333 goto retry;
2334 }
2e12978a 2335 __unqueue_futex(q);
c87e2837
IM
2336
2337 BUG_ON(q->pi_state);
2338
1da177e4
LT
2339 spin_unlock(lock_ptr);
2340 ret = 1;
2341 }
2342
9adef58b 2343 drop_futex_key_refs(&q->key);
1da177e4
LT
2344 return ret;
2345}
2346
c87e2837
IM
2347/*
2348 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2349 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2350 * and dropped here.
c87e2837 2351 */
d0aa7a70 2352static void unqueue_me_pi(struct futex_q *q)
15e408cd 2353 __releases(q->lock_ptr)
c87e2837 2354{
2e12978a 2355 __unqueue_futex(q);
c87e2837
IM
2356
2357 BUG_ON(!q->pi_state);
29e9ee5d 2358 put_pi_state(q->pi_state);
c87e2837
IM
2359 q->pi_state = NULL;
2360
d0aa7a70 2361 spin_unlock(q->lock_ptr);
c87e2837
IM
2362}
2363
778e9a9c 2364static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2365 struct task_struct *argowner)
d0aa7a70 2366{
d0aa7a70 2367 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2368 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2369 struct task_struct *oldowner, *newowner;
2370 u32 newtid;
6b4f4bc9 2371 int ret, err = 0;
d0aa7a70 2372
c1e2f0ea
PZ
2373 lockdep_assert_held(q->lock_ptr);
2374
734009e9
PZ
2375 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2376
2377 oldowner = pi_state->owner;
1b7558e4
TG
2378
2379 /*
c1e2f0ea 2380 * We are here because either:
16ffa12d 2381 *
c1e2f0ea
PZ
2382 * - we stole the lock and pi_state->owner needs updating to reflect
2383 * that (@argowner == current),
2384 *
2385 * or:
2386 *
2387 * - someone stole our lock and we need to fix things to point to the
2388 * new owner (@argowner == NULL).
2389 *
2390 * Either way, we have to replace the TID in the user space variable.
8161239a 2391 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2392 *
b2d0994b
DH
2393 * Note: We write the user space value _before_ changing the pi_state
2394 * because we can fault here. Imagine swapped out pages or a fork
2395 * that marked all the anonymous memory readonly for cow.
1b7558e4 2396 *
734009e9
PZ
2397 * Modifying pi_state _before_ the user space value would leave the
2398 * pi_state in an inconsistent state when we fault here, because we
2399 * need to drop the locks to handle the fault. This might be observed
2400 * in the PID check in lookup_pi_state.
1b7558e4
TG
2401 */
2402retry:
c1e2f0ea
PZ
2403 if (!argowner) {
2404 if (oldowner != current) {
2405 /*
2406 * We raced against a concurrent self; things are
2407 * already fixed up. Nothing to do.
2408 */
2409 ret = 0;
2410 goto out_unlock;
2411 }
2412
2413 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2414 /* We got the lock after all, nothing to fix. */
2415 ret = 0;
2416 goto out_unlock;
2417 }
2418
2419 /*
2420 * Since we just failed the trylock; there must be an owner.
2421 */
2422 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2423 BUG_ON(!newowner);
2424 } else {
2425 WARN_ON_ONCE(argowner != current);
2426 if (oldowner == current) {
2427 /*
2428 * We raced against a concurrent self; things are
2429 * already fixed up. Nothing to do.
2430 */
2431 ret = 0;
2432 goto out_unlock;
2433 }
2434 newowner = argowner;
2435 }
2436
2437 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2438 /* Owner died? */
2439 if (!pi_state->owner)
2440 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2441
6b4f4bc9
WD
2442 err = get_futex_value_locked(&uval, uaddr);
2443 if (err)
2444 goto handle_err;
1b7558e4 2445
16ffa12d 2446 for (;;) {
1b7558e4
TG
2447 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2448
6b4f4bc9
WD
2449 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2450 if (err)
2451 goto handle_err;
2452
1b7558e4
TG
2453 if (curval == uval)
2454 break;
2455 uval = curval;
2456 }
2457
2458 /*
2459 * We fixed up user space. Now we need to fix the pi_state
2460 * itself.
2461 */
d0aa7a70 2462 if (pi_state->owner != NULL) {
734009e9 2463 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2464 WARN_ON(list_empty(&pi_state->list));
2465 list_del_init(&pi_state->list);
734009e9 2466 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2467 }
d0aa7a70 2468
cdf71a10 2469 pi_state->owner = newowner;
d0aa7a70 2470
734009e9 2471 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2472 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2473 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2474 raw_spin_unlock(&newowner->pi_lock);
2475 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2476
1b7558e4 2477 return 0;
d0aa7a70 2478
d0aa7a70 2479 /*
6b4f4bc9
WD
2480 * In order to reschedule or handle a page fault, we need to drop the
2481 * locks here. In the case of a fault, this gives the other task
2482 * (either the highest priority waiter itself or the task which stole
2483 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2484 * are back from handling the fault we need to check the pi_state after
2485 * reacquiring the locks and before trying to do another fixup. When
2486 * the fixup has been done already we simply return.
734009e9
PZ
2487 *
2488 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2489 * drop hb->lock since the caller owns the hb -> futex_q relation.
2490 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2491 */
6b4f4bc9 2492handle_err:
734009e9 2493 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2494 spin_unlock(q->lock_ptr);
778e9a9c 2495
6b4f4bc9
WD
2496 switch (err) {
2497 case -EFAULT:
2498 ret = fault_in_user_writeable(uaddr);
2499 break;
2500
2501 case -EAGAIN:
2502 cond_resched();
2503 ret = 0;
2504 break;
2505
2506 default:
2507 WARN_ON_ONCE(1);
2508 ret = err;
2509 break;
2510 }
778e9a9c 2511
1b7558e4 2512 spin_lock(q->lock_ptr);
734009e9 2513 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2514
1b7558e4
TG
2515 /*
2516 * Check if someone else fixed it for us:
2517 */
734009e9
PZ
2518 if (pi_state->owner != oldowner) {
2519 ret = 0;
2520 goto out_unlock;
2521 }
1b7558e4
TG
2522
2523 if (ret)
734009e9 2524 goto out_unlock;
1b7558e4
TG
2525
2526 goto retry;
734009e9
PZ
2527
2528out_unlock:
2529 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2530 return ret;
d0aa7a70
PP
2531}
2532
72c1bbf3 2533static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2534
dd973998
DH
2535/**
2536 * fixup_owner() - Post lock pi_state and corner case management
2537 * @uaddr: user address of the futex
dd973998
DH
2538 * @q: futex_q (contains pi_state and access to the rt_mutex)
2539 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2540 *
2541 * After attempting to lock an rt_mutex, this function is called to cleanup
2542 * the pi_state owner as well as handle race conditions that may allow us to
2543 * acquire the lock. Must be called with the hb lock held.
2544 *
6c23cbbd 2545 * Return:
7b4ff1ad
MCC
2546 * - 1 - success, lock taken;
2547 * - 0 - success, lock not taken;
2548 * - <0 - on error (-EFAULT)
dd973998 2549 */
ae791a2d 2550static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2551{
dd973998
DH
2552 int ret = 0;
2553
2554 if (locked) {
2555 /*
2556 * Got the lock. We might not be the anticipated owner if we
2557 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2558 *
c1e2f0ea
PZ
2559 * Speculative pi_state->owner read (we don't hold wait_lock);
2560 * since we own the lock pi_state->owner == current is the
2561 * stable state, anything else needs more attention.
dd973998
DH
2562 */
2563 if (q->pi_state->owner != current)
ae791a2d 2564 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2565 goto out;
2566 }
2567
c1e2f0ea
PZ
2568 /*
2569 * If we didn't get the lock; check if anybody stole it from us. In
2570 * that case, we need to fix up the uval to point to them instead of
2571 * us, otherwise bad things happen. [10]
2572 *
2573 * Another speculative read; pi_state->owner == current is unstable
2574 * but needs our attention.
2575 */
2576 if (q->pi_state->owner == current) {
2577 ret = fixup_pi_state_owner(uaddr, q, NULL);
2578 goto out;
2579 }
2580
dd973998
DH
2581 /*
2582 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2583 * the owner of the rt_mutex.
dd973998 2584 */
73d786bd 2585 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2586 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2587 "pi-state %p\n", ret,
2588 q->pi_state->pi_mutex.owner,
2589 q->pi_state->owner);
73d786bd 2590 }
dd973998
DH
2591
2592out:
2593 return ret ? ret : locked;
2594}
2595
ca5f9524
DH
2596/**
2597 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2598 * @hb: the futex hash bucket, must be locked by the caller
2599 * @q: the futex_q to queue up on
2600 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2601 */
2602static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2603 struct hrtimer_sleeper *timeout)
ca5f9524 2604{
9beba3c5
DH
2605 /*
2606 * The task state is guaranteed to be set before another task can
b92b8b35 2607 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2608 * queue_me() calls spin_unlock() upon completion, both serializing
2609 * access to the hash list and forcing another memory barrier.
2610 */
f1a11e05 2611 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2612 queue_me(q, hb);
ca5f9524
DH
2613
2614 /* Arm the timer */
2e4b0d3f 2615 if (timeout)
ca5f9524 2616 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2617
2618 /*
0729e196
DH
2619 * If we have been removed from the hash list, then another task
2620 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2621 */
2622 if (likely(!plist_node_empty(&q->list))) {
2623 /*
2624 * If the timer has already expired, current will already be
2625 * flagged for rescheduling. Only call schedule if there
2626 * is no timeout, or if it has yet to expire.
2627 */
2628 if (!timeout || timeout->task)
88c8004f 2629 freezable_schedule();
ca5f9524
DH
2630 }
2631 __set_current_state(TASK_RUNNING);
2632}
2633
f801073f
DH
2634/**
2635 * futex_wait_setup() - Prepare to wait on a futex
2636 * @uaddr: the futex userspace address
2637 * @val: the expected value
b41277dc 2638 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2639 * @q: the associated futex_q
2640 * @hb: storage for hash_bucket pointer to be returned to caller
2641 *
2642 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2643 * compare it with the expected value. Handle atomic faults internally.
2644 * Return with the hb lock held and a q.key reference on success, and unlocked
2645 * with no q.key reference on failure.
2646 *
6c23cbbd 2647 * Return:
7b4ff1ad
MCC
2648 * - 0 - uaddr contains val and hb has been locked;
2649 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2650 */
b41277dc 2651static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2652 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2653{
e2970f2f
IM
2654 u32 uval;
2655 int ret;
1da177e4 2656
1da177e4 2657 /*
b2d0994b 2658 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2659 * Order is important:
2660 *
2661 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2662 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2663 *
2664 * The basic logical guarantee of a futex is that it blocks ONLY
2665 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2666 * any cond. If we locked the hash-bucket after testing *uaddr, that
2667 * would open a race condition where we could block indefinitely with
1da177e4
LT
2668 * cond(var) false, which would violate the guarantee.
2669 *
8fe8f545
ML
2670 * On the other hand, we insert q and release the hash-bucket only
2671 * after testing *uaddr. This guarantees that futex_wait() will NOT
2672 * absorb a wakeup if *uaddr does not match the desired values
2673 * while the syscall executes.
1da177e4 2674 */
f801073f 2675retry:
96d4f267 2676 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2677 if (unlikely(ret != 0))
a5a2a0c7 2678 return ret;
f801073f
DH
2679
2680retry_private:
2681 *hb = queue_lock(q);
2682
e2970f2f 2683 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2684
f801073f 2685 if (ret) {
0d00c7b2 2686 queue_unlock(*hb);
1da177e4 2687
e2970f2f 2688 ret = get_user(uval, uaddr);
e4dc5b7a 2689 if (ret)
f801073f 2690 goto out;
1da177e4 2691
b41277dc 2692 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2693 goto retry_private;
2694
ae791a2d 2695 put_futex_key(&q->key);
e4dc5b7a 2696 goto retry;
1da177e4 2697 }
ca5f9524 2698
f801073f 2699 if (uval != val) {
0d00c7b2 2700 queue_unlock(*hb);
f801073f 2701 ret = -EWOULDBLOCK;
2fff78c7 2702 }
1da177e4 2703
f801073f
DH
2704out:
2705 if (ret)
ae791a2d 2706 put_futex_key(&q->key);
f801073f
DH
2707 return ret;
2708}
2709
b41277dc
DH
2710static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2711 ktime_t *abs_time, u32 bitset)
f801073f 2712{
5ca584d9 2713 struct hrtimer_sleeper timeout, *to;
f801073f
DH
2714 struct restart_block *restart;
2715 struct futex_hash_bucket *hb;
5bdb05f9 2716 struct futex_q q = futex_q_init;
f801073f
DH
2717 int ret;
2718
2719 if (!bitset)
2720 return -EINVAL;
f801073f
DH
2721 q.bitset = bitset;
2722
5ca584d9
WL
2723 to = futex_setup_timer(abs_time, &timeout, flags,
2724 current->timer_slack_ns);
d58e6576 2725retry:
7ada876a
DH
2726 /*
2727 * Prepare to wait on uaddr. On success, holds hb lock and increments
2728 * q.key refs.
2729 */
b41277dc 2730 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2731 if (ret)
2732 goto out;
2733
ca5f9524 2734 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2735 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2736
2737 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2738 ret = 0;
7ada876a 2739 /* unqueue_me() drops q.key ref */
1da177e4 2740 if (!unqueue_me(&q))
7ada876a 2741 goto out;
2fff78c7 2742 ret = -ETIMEDOUT;
ca5f9524 2743 if (to && !to->task)
7ada876a 2744 goto out;
72c1bbf3 2745
e2970f2f 2746 /*
d58e6576
TG
2747 * We expect signal_pending(current), but we might be the
2748 * victim of a spurious wakeup as well.
e2970f2f 2749 */
7ada876a 2750 if (!signal_pending(current))
d58e6576 2751 goto retry;
d58e6576 2752
2fff78c7 2753 ret = -ERESTARTSYS;
c19384b5 2754 if (!abs_time)
7ada876a 2755 goto out;
1da177e4 2756
f56141e3 2757 restart = &current->restart_block;
2fff78c7 2758 restart->fn = futex_wait_restart;
a3c74c52 2759 restart->futex.uaddr = uaddr;
2fff78c7 2760 restart->futex.val = val;
2456e855 2761 restart->futex.time = *abs_time;
2fff78c7 2762 restart->futex.bitset = bitset;
0cd9c649 2763 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2764
2fff78c7
PZ
2765 ret = -ERESTART_RESTARTBLOCK;
2766
42d35d48 2767out:
ca5f9524
DH
2768 if (to) {
2769 hrtimer_cancel(&to->timer);
2770 destroy_hrtimer_on_stack(&to->timer);
2771 }
c87e2837
IM
2772 return ret;
2773}
2774
72c1bbf3
NP
2775
2776static long futex_wait_restart(struct restart_block *restart)
2777{
a3c74c52 2778 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2779 ktime_t t, *tp = NULL;
72c1bbf3 2780
a72188d8 2781 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2782 t = restart->futex.time;
a72188d8
DH
2783 tp = &t;
2784 }
72c1bbf3 2785 restart->fn = do_no_restart_syscall;
b41277dc
DH
2786
2787 return (long)futex_wait(uaddr, restart->futex.flags,
2788 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2789}
2790
2791
c87e2837
IM
2792/*
2793 * Userspace tried a 0 -> TID atomic transition of the futex value
2794 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2795 * if there are waiters then it will block as a consequence of relying
2796 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2797 * a 0 value of the futex too.).
2798 *
2799 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2800 */
996636dd 2801static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2802 ktime_t *time, int trylock)
c87e2837 2803{
5ca584d9 2804 struct hrtimer_sleeper timeout, *to;
16ffa12d 2805 struct futex_pi_state *pi_state = NULL;
cfafcd11 2806 struct rt_mutex_waiter rt_waiter;
c87e2837 2807 struct futex_hash_bucket *hb;
5bdb05f9 2808 struct futex_q q = futex_q_init;
dd973998 2809 int res, ret;
c87e2837 2810
bc2eecd7
NP
2811 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2812 return -ENOSYS;
2813
c87e2837
IM
2814 if (refill_pi_state_cache())
2815 return -ENOMEM;
2816
5ca584d9 2817 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
c5780e97 2818
42d35d48 2819retry:
96d4f267 2820 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2821 if (unlikely(ret != 0))
42d35d48 2822 goto out;
c87e2837 2823
e4dc5b7a 2824retry_private:
82af7aca 2825 hb = queue_lock(&q);
c87e2837 2826
bab5bc9e 2827 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2828 if (unlikely(ret)) {
767f509c
DB
2829 /*
2830 * Atomic work succeeded and we got the lock,
2831 * or failed. Either way, we do _not_ block.
2832 */
778e9a9c 2833 switch (ret) {
1a52084d
DH
2834 case 1:
2835 /* We got the lock. */
2836 ret = 0;
2837 goto out_unlock_put_key;
2838 case -EFAULT:
2839 goto uaddr_faulted;
778e9a9c
AK
2840 case -EAGAIN:
2841 /*
af54d6a1
TG
2842 * Two reasons for this:
2843 * - Task is exiting and we just wait for the
2844 * exit to complete.
2845 * - The user space value changed.
778e9a9c 2846 */
0d00c7b2 2847 queue_unlock(hb);
ae791a2d 2848 put_futex_key(&q.key);
778e9a9c
AK
2849 cond_resched();
2850 goto retry;
778e9a9c 2851 default:
42d35d48 2852 goto out_unlock_put_key;
c87e2837 2853 }
c87e2837
IM
2854 }
2855
cfafcd11
PZ
2856 WARN_ON(!q.pi_state);
2857
c87e2837
IM
2858 /*
2859 * Only actually queue now that the atomic ops are done:
2860 */
cfafcd11 2861 __queue_me(&q, hb);
c87e2837 2862
cfafcd11 2863 if (trylock) {
5293c2ef 2864 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2865 /* Fixup the trylock return value: */
2866 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2867 goto no_block;
c87e2837
IM
2868 }
2869
56222b21
PZ
2870 rt_mutex_init_waiter(&rt_waiter);
2871
cfafcd11 2872 /*
56222b21
PZ
2873 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2874 * hold it while doing rt_mutex_start_proxy(), because then it will
2875 * include hb->lock in the blocking chain, even through we'll not in
2876 * fact hold it while blocking. This will lead it to report -EDEADLK
2877 * and BUG when futex_unlock_pi() interleaves with this.
2878 *
2879 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2880 * latter before calling __rt_mutex_start_proxy_lock(). This
2881 * interleaves with futex_unlock_pi() -- which does a similar lock
2882 * handoff -- such that the latter can observe the futex_q::pi_state
2883 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2884 */
56222b21
PZ
2885 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2886 spin_unlock(q.lock_ptr);
1a1fb985
TG
2887 /*
2888 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2889 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2890 * it sees the futex_q::pi_state.
2891 */
56222b21
PZ
2892 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2893 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2894
cfafcd11
PZ
2895 if (ret) {
2896 if (ret == 1)
2897 ret = 0;
1a1fb985 2898 goto cleanup;
cfafcd11
PZ
2899 }
2900
cfafcd11
PZ
2901 if (unlikely(to))
2902 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2903
2904 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2905
1a1fb985 2906cleanup:
a99e4e41 2907 spin_lock(q.lock_ptr);
cfafcd11 2908 /*
1a1fb985 2909 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2910 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2911 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2912 * lists consistent.
56222b21
PZ
2913 *
2914 * In particular; it is important that futex_unlock_pi() can not
2915 * observe this inconsistency.
cfafcd11
PZ
2916 */
2917 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2918 ret = 0;
2919
2920no_block:
dd973998
DH
2921 /*
2922 * Fixup the pi_state owner and possibly acquire the lock if we
2923 * haven't already.
2924 */
ae791a2d 2925 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2926 /*
2927 * If fixup_owner() returned an error, proprogate that. If it acquired
2928 * the lock, clear our -ETIMEDOUT or -EINTR.
2929 */
2930 if (res)
2931 ret = (res < 0) ? res : 0;
c87e2837 2932
e8f6386c 2933 /*
dd973998
DH
2934 * If fixup_owner() faulted and was unable to handle the fault, unlock
2935 * it and return the fault to userspace.
e8f6386c 2936 */
16ffa12d
PZ
2937 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2938 pi_state = q.pi_state;
2939 get_pi_state(pi_state);
2940 }
e8f6386c 2941
778e9a9c
AK
2942 /* Unqueue and drop the lock */
2943 unqueue_me_pi(&q);
c87e2837 2944
16ffa12d
PZ
2945 if (pi_state) {
2946 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2947 put_pi_state(pi_state);
2948 }
2949
5ecb01cf 2950 goto out_put_key;
c87e2837 2951
42d35d48 2952out_unlock_put_key:
0d00c7b2 2953 queue_unlock(hb);
c87e2837 2954
42d35d48 2955out_put_key:
ae791a2d 2956 put_futex_key(&q.key);
42d35d48 2957out:
97181f9b
TG
2958 if (to) {
2959 hrtimer_cancel(&to->timer);
237fc6e7 2960 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2961 }
dd973998 2962 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2963
42d35d48 2964uaddr_faulted:
0d00c7b2 2965 queue_unlock(hb);
778e9a9c 2966
d0725992 2967 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2968 if (ret)
2969 goto out_put_key;
c87e2837 2970
b41277dc 2971 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2972 goto retry_private;
2973
ae791a2d 2974 put_futex_key(&q.key);
e4dc5b7a 2975 goto retry;
c87e2837
IM
2976}
2977
c87e2837
IM
2978/*
2979 * Userspace attempted a TID -> 0 atomic transition, and failed.
2980 * This is the in-kernel slowpath: we look up the PI state (if any),
2981 * and do the rt-mutex unlock.
2982 */
b41277dc 2983static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2984{
ccf9e6a8 2985 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2986 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2987 struct futex_hash_bucket *hb;
499f5aca 2988 struct futex_q *top_waiter;
e4dc5b7a 2989 int ret;
c87e2837 2990
bc2eecd7
NP
2991 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2992 return -ENOSYS;
2993
c87e2837
IM
2994retry:
2995 if (get_user(uval, uaddr))
2996 return -EFAULT;
2997 /*
2998 * We release only a lock we actually own:
2999 */
c0c9ed15 3000 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 3001 return -EPERM;
c87e2837 3002
96d4f267 3003 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
3004 if (ret)
3005 return ret;
c87e2837
IM
3006
3007 hb = hash_futex(&key);
3008 spin_lock(&hb->lock);
3009
c87e2837 3010 /*
ccf9e6a8
TG
3011 * Check waiters first. We do not trust user space values at
3012 * all and we at least want to know if user space fiddled
3013 * with the futex value instead of blindly unlocking.
c87e2837 3014 */
499f5aca
PZ
3015 top_waiter = futex_top_waiter(hb, &key);
3016 if (top_waiter) {
16ffa12d
PZ
3017 struct futex_pi_state *pi_state = top_waiter->pi_state;
3018
3019 ret = -EINVAL;
3020 if (!pi_state)
3021 goto out_unlock;
3022
3023 /*
3024 * If current does not own the pi_state then the futex is
3025 * inconsistent and user space fiddled with the futex value.
3026 */
3027 if (pi_state->owner != current)
3028 goto out_unlock;
3029
bebe5b51 3030 get_pi_state(pi_state);
802ab58d 3031 /*
bebe5b51
PZ
3032 * By taking wait_lock while still holding hb->lock, we ensure
3033 * there is no point where we hold neither; and therefore
3034 * wake_futex_pi() must observe a state consistent with what we
3035 * observed.
1a1fb985
TG
3036 *
3037 * In particular; this forces __rt_mutex_start_proxy() to
3038 * complete such that we're guaranteed to observe the
3039 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3040 */
bebe5b51 3041 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3042 spin_unlock(&hb->lock);
3043
c74aef2d 3044 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3045 ret = wake_futex_pi(uaddr, uval, pi_state);
3046
3047 put_pi_state(pi_state);
3048
3049 /*
3050 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3051 */
3052 if (!ret)
3053 goto out_putkey;
c87e2837 3054 /*
ccf9e6a8
TG
3055 * The atomic access to the futex value generated a
3056 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3057 */
3058 if (ret == -EFAULT)
3059 goto pi_faulted;
89e9e66b
SAS
3060 /*
3061 * A unconditional UNLOCK_PI op raced against a waiter
3062 * setting the FUTEX_WAITERS bit. Try again.
3063 */
6b4f4bc9
WD
3064 if (ret == -EAGAIN)
3065 goto pi_retry;
802ab58d
SAS
3066 /*
3067 * wake_futex_pi has detected invalid state. Tell user
3068 * space.
3069 */
16ffa12d 3070 goto out_putkey;
c87e2837 3071 }
ccf9e6a8 3072
c87e2837 3073 /*
ccf9e6a8
TG
3074 * We have no kernel internal state, i.e. no waiters in the
3075 * kernel. Waiters which are about to queue themselves are stuck
3076 * on hb->lock. So we can safely ignore them. We do neither
3077 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3078 * owner.
c87e2837 3079 */
6b4f4bc9 3080 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3081 spin_unlock(&hb->lock);
6b4f4bc9
WD
3082 switch (ret) {
3083 case -EFAULT:
3084 goto pi_faulted;
3085
3086 case -EAGAIN:
3087 goto pi_retry;
3088
3089 default:
3090 WARN_ON_ONCE(1);
3091 goto out_putkey;
3092 }
16ffa12d 3093 }
c87e2837 3094
ccf9e6a8
TG
3095 /*
3096 * If uval has changed, let user space handle it.
3097 */
3098 ret = (curval == uval) ? 0 : -EAGAIN;
3099
c87e2837
IM
3100out_unlock:
3101 spin_unlock(&hb->lock);
802ab58d 3102out_putkey:
ae791a2d 3103 put_futex_key(&key);
c87e2837
IM
3104 return ret;
3105
6b4f4bc9
WD
3106pi_retry:
3107 put_futex_key(&key);
3108 cond_resched();
3109 goto retry;
3110
c87e2837 3111pi_faulted:
ae791a2d 3112 put_futex_key(&key);
c87e2837 3113
d0725992 3114 ret = fault_in_user_writeable(uaddr);
b5686363 3115 if (!ret)
c87e2837
IM
3116 goto retry;
3117
1da177e4
LT
3118 return ret;
3119}
3120
52400ba9
DH
3121/**
3122 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3123 * @hb: the hash_bucket futex_q was original enqueued on
3124 * @q: the futex_q woken while waiting to be requeued
3125 * @key2: the futex_key of the requeue target futex
3126 * @timeout: the timeout associated with the wait (NULL if none)
3127 *
3128 * Detect if the task was woken on the initial futex as opposed to the requeue
3129 * target futex. If so, determine if it was a timeout or a signal that caused
3130 * the wakeup and return the appropriate error code to the caller. Must be
3131 * called with the hb lock held.
3132 *
6c23cbbd 3133 * Return:
7b4ff1ad
MCC
3134 * - 0 = no early wakeup detected;
3135 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3136 */
3137static inline
3138int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3139 struct futex_q *q, union futex_key *key2,
3140 struct hrtimer_sleeper *timeout)
3141{
3142 int ret = 0;
3143
3144 /*
3145 * With the hb lock held, we avoid races while we process the wakeup.
3146 * We only need to hold hb (and not hb2) to ensure atomicity as the
3147 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3148 * It can't be requeued from uaddr2 to something else since we don't
3149 * support a PI aware source futex for requeue.
3150 */
3151 if (!match_futex(&q->key, key2)) {
3152 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3153 /*
3154 * We were woken prior to requeue by a timeout or a signal.
3155 * Unqueue the futex_q and determine which it was.
3156 */
2e12978a 3157 plist_del(&q->list, &hb->chain);
11d4616b 3158 hb_waiters_dec(hb);
52400ba9 3159
d58e6576 3160 /* Handle spurious wakeups gracefully */
11df6ddd 3161 ret = -EWOULDBLOCK;
52400ba9
DH
3162 if (timeout && !timeout->task)
3163 ret = -ETIMEDOUT;
d58e6576 3164 else if (signal_pending(current))
1c840c14 3165 ret = -ERESTARTNOINTR;
52400ba9
DH
3166 }
3167 return ret;
3168}
3169
3170/**
3171 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3172 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3173 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3174 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3175 * @val: the expected value of uaddr
3176 * @abs_time: absolute timeout
56ec1607 3177 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3178 * @uaddr2: the pi futex we will take prior to returning to user-space
3179 *
3180 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3181 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3182 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3183 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3184 * without one, the pi logic would not know which task to boost/deboost, if
3185 * there was a need to.
52400ba9
DH
3186 *
3187 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3188 * via the following--
52400ba9 3189 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3190 * 2) wakeup on uaddr2 after a requeue
3191 * 3) signal
3192 * 4) timeout
52400ba9 3193 *
cc6db4e6 3194 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3195 *
3196 * If 2, we may then block on trying to take the rt_mutex and return via:
3197 * 5) successful lock
3198 * 6) signal
3199 * 7) timeout
3200 * 8) other lock acquisition failure
3201 *
cc6db4e6 3202 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3203 *
3204 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3205 *
6c23cbbd 3206 * Return:
7b4ff1ad
MCC
3207 * - 0 - On success;
3208 * - <0 - On error
52400ba9 3209 */
b41277dc 3210static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3211 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3212 u32 __user *uaddr2)
52400ba9 3213{
5ca584d9 3214 struct hrtimer_sleeper timeout, *to;
16ffa12d 3215 struct futex_pi_state *pi_state = NULL;
52400ba9 3216 struct rt_mutex_waiter rt_waiter;
52400ba9 3217 struct futex_hash_bucket *hb;
5bdb05f9
DH
3218 union futex_key key2 = FUTEX_KEY_INIT;
3219 struct futex_q q = futex_q_init;
52400ba9 3220 int res, ret;
52400ba9 3221
bc2eecd7
NP
3222 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3223 return -ENOSYS;
3224
6f7b0a2a
DH
3225 if (uaddr == uaddr2)
3226 return -EINVAL;
3227
52400ba9
DH
3228 if (!bitset)
3229 return -EINVAL;
3230
5ca584d9
WL
3231 to = futex_setup_timer(abs_time, &timeout, flags,
3232 current->timer_slack_ns);
52400ba9
DH
3233
3234 /*
3235 * The waiter is allocated on our stack, manipulated by the requeue
3236 * code while we sleep on uaddr.
3237 */
50809358 3238 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3239
96d4f267 3240 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3241 if (unlikely(ret != 0))
3242 goto out;
3243
84bc4af5
DH
3244 q.bitset = bitset;
3245 q.rt_waiter = &rt_waiter;
3246 q.requeue_pi_key = &key2;
3247
7ada876a
DH
3248 /*
3249 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3250 * count.
3251 */
b41277dc 3252 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3253 if (ret)
3254 goto out_key2;
52400ba9 3255
e9c243a5
TG
3256 /*
3257 * The check above which compares uaddrs is not sufficient for
3258 * shared futexes. We need to compare the keys:
3259 */
3260 if (match_futex(&q.key, &key2)) {
13c42c2f 3261 queue_unlock(hb);
e9c243a5
TG
3262 ret = -EINVAL;
3263 goto out_put_keys;
3264 }
3265
52400ba9 3266 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3267 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3268
3269 spin_lock(&hb->lock);
3270 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3271 spin_unlock(&hb->lock);
3272 if (ret)
3273 goto out_put_keys;
3274
3275 /*
3276 * In order for us to be here, we know our q.key == key2, and since
3277 * we took the hb->lock above, we also know that futex_requeue() has
3278 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3279 * race with the atomic proxy lock acquisition by the requeue code. The
3280 * futex_requeue dropped our key1 reference and incremented our key2
3281 * reference count.
52400ba9
DH
3282 */
3283
3284 /* Check if the requeue code acquired the second futex for us. */
3285 if (!q.rt_waiter) {
3286 /*
3287 * Got the lock. We might not be the anticipated owner if we
3288 * did a lock-steal - fix up the PI-state in that case.
3289 */
3290 if (q.pi_state && (q.pi_state->owner != current)) {
3291 spin_lock(q.lock_ptr);
ae791a2d 3292 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3293 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3294 pi_state = q.pi_state;
3295 get_pi_state(pi_state);
3296 }
fb75a428
TG
3297 /*
3298 * Drop the reference to the pi state which
3299 * the requeue_pi() code acquired for us.
3300 */
29e9ee5d 3301 put_pi_state(q.pi_state);
52400ba9
DH
3302 spin_unlock(q.lock_ptr);
3303 }
3304 } else {
c236c8e9
PZ
3305 struct rt_mutex *pi_mutex;
3306
52400ba9
DH
3307 /*
3308 * We have been woken up by futex_unlock_pi(), a timeout, or a
3309 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3310 * the pi_state.
3311 */
f27071cb 3312 WARN_ON(!q.pi_state);
52400ba9 3313 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3314 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3315
3316 spin_lock(q.lock_ptr);
38d589f2
PZ
3317 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3318 ret = 0;
3319
3320 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3321 /*
3322 * Fixup the pi_state owner and possibly acquire the lock if we
3323 * haven't already.
3324 */
ae791a2d 3325 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3326 /*
3327 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3328 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3329 */
3330 if (res)
3331 ret = (res < 0) ? res : 0;
3332
c236c8e9
PZ
3333 /*
3334 * If fixup_pi_state_owner() faulted and was unable to handle
3335 * the fault, unlock the rt_mutex and return the fault to
3336 * userspace.
3337 */
16ffa12d
PZ
3338 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3339 pi_state = q.pi_state;
3340 get_pi_state(pi_state);
3341 }
c236c8e9 3342
52400ba9
DH
3343 /* Unqueue and drop the lock. */
3344 unqueue_me_pi(&q);
3345 }
3346
16ffa12d
PZ
3347 if (pi_state) {
3348 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3349 put_pi_state(pi_state);
3350 }
3351
c236c8e9 3352 if (ret == -EINTR) {
52400ba9 3353 /*
cc6db4e6
DH
3354 * We've already been requeued, but cannot restart by calling
3355 * futex_lock_pi() directly. We could restart this syscall, but
3356 * it would detect that the user space "val" changed and return
3357 * -EWOULDBLOCK. Save the overhead of the restart and return
3358 * -EWOULDBLOCK directly.
52400ba9 3359 */
2070887f 3360 ret = -EWOULDBLOCK;
52400ba9
DH
3361 }
3362
3363out_put_keys:
ae791a2d 3364 put_futex_key(&q.key);
c8b15a70 3365out_key2:
ae791a2d 3366 put_futex_key(&key2);
52400ba9
DH
3367
3368out:
3369 if (to) {
3370 hrtimer_cancel(&to->timer);
3371 destroy_hrtimer_on_stack(&to->timer);
3372 }
3373 return ret;
3374}
3375
0771dfef
IM
3376/*
3377 * Support for robust futexes: the kernel cleans up held futexes at
3378 * thread exit time.
3379 *
3380 * Implementation: user-space maintains a per-thread list of locks it
3381 * is holding. Upon do_exit(), the kernel carefully walks this list,
3382 * and marks all locks that are owned by this thread with the
c87e2837 3383 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3384 * always manipulated with the lock held, so the list is private and
3385 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3386 * field, to allow the kernel to clean up if the thread dies after
3387 * acquiring the lock, but just before it could have added itself to
3388 * the list. There can only be one such pending lock.
3389 */
3390
3391/**
d96ee56c
DH
3392 * sys_set_robust_list() - Set the robust-futex list head of a task
3393 * @head: pointer to the list-head
3394 * @len: length of the list-head, as userspace expects
0771dfef 3395 */
836f92ad
HC
3396SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3397 size_t, len)
0771dfef 3398{
a0c1e907
TG
3399 if (!futex_cmpxchg_enabled)
3400 return -ENOSYS;
0771dfef
IM
3401 /*
3402 * The kernel knows only one size for now:
3403 */
3404 if (unlikely(len != sizeof(*head)))
3405 return -EINVAL;
3406
3407 current->robust_list = head;
3408
3409 return 0;
3410}
3411
3412/**
d96ee56c
DH
3413 * sys_get_robust_list() - Get the robust-futex list head of a task
3414 * @pid: pid of the process [zero for current task]
3415 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3416 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3417 */
836f92ad
HC
3418SYSCALL_DEFINE3(get_robust_list, int, pid,
3419 struct robust_list_head __user * __user *, head_ptr,
3420 size_t __user *, len_ptr)
0771dfef 3421{
ba46df98 3422 struct robust_list_head __user *head;
0771dfef 3423 unsigned long ret;
bdbb776f 3424 struct task_struct *p;
0771dfef 3425
a0c1e907
TG
3426 if (!futex_cmpxchg_enabled)
3427 return -ENOSYS;
3428
bdbb776f
KC
3429 rcu_read_lock();
3430
3431 ret = -ESRCH;
0771dfef 3432 if (!pid)
bdbb776f 3433 p = current;
0771dfef 3434 else {
228ebcbe 3435 p = find_task_by_vpid(pid);
0771dfef
IM
3436 if (!p)
3437 goto err_unlock;
0771dfef
IM
3438 }
3439
bdbb776f 3440 ret = -EPERM;
caaee623 3441 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3442 goto err_unlock;
3443
3444 head = p->robust_list;
3445 rcu_read_unlock();
3446
0771dfef
IM
3447 if (put_user(sizeof(*head), len_ptr))
3448 return -EFAULT;
3449 return put_user(head, head_ptr);
3450
3451err_unlock:
aaa2a97e 3452 rcu_read_unlock();
0771dfef
IM
3453
3454 return ret;
3455}
3456
3457/*
3458 * Process a futex-list entry, check whether it's owned by the
3459 * dying task, and do notification if so:
3460 */
04e7712f 3461static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3462{
7cfdaf38 3463 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3464 int err;
0771dfef 3465
5a07168d
CJ
3466 /* Futex address must be 32bit aligned */
3467 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3468 return -1;
3469
8f17d3a5
IM
3470retry:
3471 if (get_user(uval, uaddr))
0771dfef
IM
3472 return -1;
3473
6b4f4bc9
WD
3474 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3475 return 0;
3476
3477 /*
3478 * Ok, this dying thread is truly holding a futex
3479 * of interest. Set the OWNER_DIED bit atomically
3480 * via cmpxchg, and if the value had FUTEX_WAITERS
3481 * set, wake up a waiter (if any). (We have to do a
3482 * futex_wake() even if OWNER_DIED is already set -
3483 * to handle the rare but possible case of recursive
3484 * thread-death.) The rest of the cleanup is done in
3485 * userspace.
3486 */
3487 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3488
3489 /*
3490 * We are not holding a lock here, but we want to have
3491 * the pagefault_disable/enable() protection because
3492 * we want to handle the fault gracefully. If the
3493 * access fails we try to fault in the futex with R/W
3494 * verification via get_user_pages. get_user() above
3495 * does not guarantee R/W access. If that fails we
3496 * give up and leave the futex locked.
3497 */
3498 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3499 switch (err) {
3500 case -EFAULT:
6e0aa9f8
TG
3501 if (fault_in_user_writeable(uaddr))
3502 return -1;
3503 goto retry;
6b4f4bc9
WD
3504
3505 case -EAGAIN:
3506 cond_resched();
8f17d3a5 3507 goto retry;
0771dfef 3508
6b4f4bc9
WD
3509 default:
3510 WARN_ON_ONCE(1);
3511 return err;
3512 }
0771dfef 3513 }
6b4f4bc9
WD
3514
3515 if (nval != uval)
3516 goto retry;
3517
3518 /*
3519 * Wake robust non-PI futexes here. The wakeup of
3520 * PI futexes happens in exit_pi_state():
3521 */
3522 if (!pi && (uval & FUTEX_WAITERS))
3523 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3524
0771dfef
IM
3525 return 0;
3526}
3527
e3f2ddea
IM
3528/*
3529 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3530 */
3531static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3532 struct robust_list __user * __user *head,
1dcc41bb 3533 unsigned int *pi)
e3f2ddea
IM
3534{
3535 unsigned long uentry;
3536
ba46df98 3537 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3538 return -EFAULT;
3539
ba46df98 3540 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3541 *pi = uentry & 1;
3542
3543 return 0;
3544}
3545
0771dfef
IM
3546/*
3547 * Walk curr->robust_list (very carefully, it's a userspace list!)
3548 * and mark any locks found there dead, and notify any waiters.
3549 *
3550 * We silently return on any sign of list-walking problem.
3551 */
3552void exit_robust_list(struct task_struct *curr)
3553{
3554 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3555 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3556 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3557 unsigned int uninitialized_var(next_pi);
0771dfef 3558 unsigned long futex_offset;
9f96cb1e 3559 int rc;
0771dfef 3560
a0c1e907
TG
3561 if (!futex_cmpxchg_enabled)
3562 return;
3563
0771dfef
IM
3564 /*
3565 * Fetch the list head (which was registered earlier, via
3566 * sys_set_robust_list()):
3567 */
e3f2ddea 3568 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3569 return;
3570 /*
3571 * Fetch the relative futex offset:
3572 */
3573 if (get_user(futex_offset, &head->futex_offset))
3574 return;
3575 /*
3576 * Fetch any possibly pending lock-add first, and handle it
3577 * if it exists:
3578 */
e3f2ddea 3579 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3580 return;
e3f2ddea 3581
9f96cb1e 3582 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3583 while (entry != &head->list) {
9f96cb1e
MS
3584 /*
3585 * Fetch the next entry in the list before calling
3586 * handle_futex_death:
3587 */
3588 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3589 /*
3590 * A pending lock might already be on the list, so
c87e2837 3591 * don't process it twice:
0771dfef
IM
3592 */
3593 if (entry != pending)
ba46df98 3594 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3595 curr, pi))
0771dfef 3596 return;
9f96cb1e 3597 if (rc)
0771dfef 3598 return;
9f96cb1e
MS
3599 entry = next_entry;
3600 pi = next_pi;
0771dfef
IM
3601 /*
3602 * Avoid excessively long or circular lists:
3603 */
3604 if (!--limit)
3605 break;
3606
3607 cond_resched();
3608 }
9f96cb1e
MS
3609
3610 if (pending)
3611 handle_futex_death((void __user *)pending + futex_offset,
3612 curr, pip);
0771dfef
IM
3613}
3614
c19384b5 3615long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3616 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3617{
81b40539 3618 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3619 unsigned int flags = 0;
34f01cc1
ED
3620
3621 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3622 flags |= FLAGS_SHARED;
1da177e4 3623
b41277dc
DH
3624 if (op & FUTEX_CLOCK_REALTIME) {
3625 flags |= FLAGS_CLOCKRT;
337f1304
DH
3626 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3627 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3628 return -ENOSYS;
3629 }
1da177e4 3630
59263b51
TG
3631 switch (cmd) {
3632 case FUTEX_LOCK_PI:
3633 case FUTEX_UNLOCK_PI:
3634 case FUTEX_TRYLOCK_PI:
3635 case FUTEX_WAIT_REQUEUE_PI:
3636 case FUTEX_CMP_REQUEUE_PI:
3637 if (!futex_cmpxchg_enabled)
3638 return -ENOSYS;
3639 }
3640
34f01cc1 3641 switch (cmd) {
1da177e4 3642 case FUTEX_WAIT:
cd689985 3643 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3644 /* fall through */
cd689985 3645 case FUTEX_WAIT_BITSET:
81b40539 3646 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3647 case FUTEX_WAKE:
cd689985 3648 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3649 /* fall through */
cd689985 3650 case FUTEX_WAKE_BITSET:
81b40539 3651 return futex_wake(uaddr, flags, val, val3);
1da177e4 3652 case FUTEX_REQUEUE:
81b40539 3653 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3654 case FUTEX_CMP_REQUEUE:
81b40539 3655 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3656 case FUTEX_WAKE_OP:
81b40539 3657 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3658 case FUTEX_LOCK_PI:
996636dd 3659 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3660 case FUTEX_UNLOCK_PI:
81b40539 3661 return futex_unlock_pi(uaddr, flags);
c87e2837 3662 case FUTEX_TRYLOCK_PI:
996636dd 3663 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3664 case FUTEX_WAIT_REQUEUE_PI:
3665 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3666 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3667 uaddr2);
52400ba9 3668 case FUTEX_CMP_REQUEUE_PI:
81b40539 3669 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3670 }
81b40539 3671 return -ENOSYS;
1da177e4
LT
3672}
3673
3674
17da2bd9 3675SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3676 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3677 u32, val3)
1da177e4 3678{
bec2f7cb 3679 struct timespec64 ts;
c19384b5 3680 ktime_t t, *tp = NULL;
e2970f2f 3681 u32 val2 = 0;
34f01cc1 3682 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3683
cd689985 3684 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3685 cmd == FUTEX_WAIT_BITSET ||
3686 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3687 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3688 return -EFAULT;
bec2f7cb 3689 if (get_timespec64(&ts, utime))
1da177e4 3690 return -EFAULT;
bec2f7cb 3691 if (!timespec64_valid(&ts))
9741ef96 3692 return -EINVAL;
c19384b5 3693
bec2f7cb 3694 t = timespec64_to_ktime(ts);
34f01cc1 3695 if (cmd == FUTEX_WAIT)
5a7780e7 3696 t = ktime_add_safe(ktime_get(), t);
c19384b5 3697 tp = &t;
1da177e4
LT
3698 }
3699 /*
52400ba9 3700 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3701 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3702 */
f54f0986 3703 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3704 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3705 val2 = (u32) (unsigned long) utime;
1da177e4 3706
c19384b5 3707 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3708}
3709
04e7712f
AB
3710#ifdef CONFIG_COMPAT
3711/*
3712 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3713 */
3714static inline int
3715compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3716 compat_uptr_t __user *head, unsigned int *pi)
3717{
3718 if (get_user(*uentry, head))
3719 return -EFAULT;
3720
3721 *entry = compat_ptr((*uentry) & ~1);
3722 *pi = (unsigned int)(*uentry) & 1;
3723
3724 return 0;
3725}
3726
3727static void __user *futex_uaddr(struct robust_list __user *entry,
3728 compat_long_t futex_offset)
3729{
3730 compat_uptr_t base = ptr_to_compat(entry);
3731 void __user *uaddr = compat_ptr(base + futex_offset);
3732
3733 return uaddr;
3734}
3735
3736/*
3737 * Walk curr->robust_list (very carefully, it's a userspace list!)
3738 * and mark any locks found there dead, and notify any waiters.
3739 *
3740 * We silently return on any sign of list-walking problem.
3741 */
3742void compat_exit_robust_list(struct task_struct *curr)
3743{
3744 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3745 struct robust_list __user *entry, *next_entry, *pending;
3746 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3747 unsigned int uninitialized_var(next_pi);
3748 compat_uptr_t uentry, next_uentry, upending;
3749 compat_long_t futex_offset;
3750 int rc;
3751
3752 if (!futex_cmpxchg_enabled)
3753 return;
3754
3755 /*
3756 * Fetch the list head (which was registered earlier, via
3757 * sys_set_robust_list()):
3758 */
3759 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3760 return;
3761 /*
3762 * Fetch the relative futex offset:
3763 */
3764 if (get_user(futex_offset, &head->futex_offset))
3765 return;
3766 /*
3767 * Fetch any possibly pending lock-add first, and handle it
3768 * if it exists:
3769 */
3770 if (compat_fetch_robust_entry(&upending, &pending,
3771 &head->list_op_pending, &pip))
3772 return;
3773
3774 next_entry = NULL; /* avoid warning with gcc */
3775 while (entry != (struct robust_list __user *) &head->list) {
3776 /*
3777 * Fetch the next entry in the list before calling
3778 * handle_futex_death:
3779 */
3780 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3781 (compat_uptr_t __user *)&entry->next, &next_pi);
3782 /*
3783 * A pending lock might already be on the list, so
3784 * dont process it twice:
3785 */
3786 if (entry != pending) {
3787 void __user *uaddr = futex_uaddr(entry, futex_offset);
3788
3789 if (handle_futex_death(uaddr, curr, pi))
3790 return;
3791 }
3792 if (rc)
3793 return;
3794 uentry = next_uentry;
3795 entry = next_entry;
3796 pi = next_pi;
3797 /*
3798 * Avoid excessively long or circular lists:
3799 */
3800 if (!--limit)
3801 break;
3802
3803 cond_resched();
3804 }
3805 if (pending) {
3806 void __user *uaddr = futex_uaddr(pending, futex_offset);
3807
3808 handle_futex_death(uaddr, curr, pip);
3809 }
3810}
3811
3812COMPAT_SYSCALL_DEFINE2(set_robust_list,
3813 struct compat_robust_list_head __user *, head,
3814 compat_size_t, len)
3815{
3816 if (!futex_cmpxchg_enabled)
3817 return -ENOSYS;
3818
3819 if (unlikely(len != sizeof(*head)))
3820 return -EINVAL;
3821
3822 current->compat_robust_list = head;
3823
3824 return 0;
3825}
3826
3827COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3828 compat_uptr_t __user *, head_ptr,
3829 compat_size_t __user *, len_ptr)
3830{
3831 struct compat_robust_list_head __user *head;
3832 unsigned long ret;
3833 struct task_struct *p;
3834
3835 if (!futex_cmpxchg_enabled)
3836 return -ENOSYS;
3837
3838 rcu_read_lock();
3839
3840 ret = -ESRCH;
3841 if (!pid)
3842 p = current;
3843 else {
3844 p = find_task_by_vpid(pid);
3845 if (!p)
3846 goto err_unlock;
3847 }
3848
3849 ret = -EPERM;
3850 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3851 goto err_unlock;
3852
3853 head = p->compat_robust_list;
3854 rcu_read_unlock();
3855
3856 if (put_user(sizeof(*head), len_ptr))
3857 return -EFAULT;
3858 return put_user(ptr_to_compat(head), head_ptr);
3859
3860err_unlock:
3861 rcu_read_unlock();
3862
3863 return ret;
3864}
bec2f7cb 3865#endif /* CONFIG_COMPAT */
04e7712f 3866
bec2f7cb 3867#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3868SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3869 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3870 u32, val3)
3871{
bec2f7cb 3872 struct timespec64 ts;
04e7712f
AB
3873 ktime_t t, *tp = NULL;
3874 int val2 = 0;
3875 int cmd = op & FUTEX_CMD_MASK;
3876
3877 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3878 cmd == FUTEX_WAIT_BITSET ||
3879 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3880 if (get_old_timespec32(&ts, utime))
04e7712f 3881 return -EFAULT;
bec2f7cb 3882 if (!timespec64_valid(&ts))
04e7712f
AB
3883 return -EINVAL;
3884
bec2f7cb 3885 t = timespec64_to_ktime(ts);
04e7712f
AB
3886 if (cmd == FUTEX_WAIT)
3887 t = ktime_add_safe(ktime_get(), t);
3888 tp = &t;
3889 }
3890 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3891 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3892 val2 = (int) (unsigned long) utime;
3893
3894 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3895}
bec2f7cb 3896#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3897
03b8c7b6 3898static void __init futex_detect_cmpxchg(void)
1da177e4 3899{
03b8c7b6 3900#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3901 u32 curval;
03b8c7b6
HC
3902
3903 /*
3904 * This will fail and we want it. Some arch implementations do
3905 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3906 * functionality. We want to know that before we call in any
3907 * of the complex code paths. Also we want to prevent
3908 * registration of robust lists in that case. NULL is
3909 * guaranteed to fault and we get -EFAULT on functional
3910 * implementation, the non-functional ones will return
3911 * -ENOSYS.
3912 */
3913 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3914 futex_cmpxchg_enabled = 1;
3915#endif
3916}
3917
3918static int __init futex_init(void)
3919{
63b1a816 3920 unsigned int futex_shift;
a52b89eb
DB
3921 unsigned long i;
3922
3923#if CONFIG_BASE_SMALL
3924 futex_hashsize = 16;
3925#else
3926 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3927#endif
3928
3929 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3930 futex_hashsize, 0,
3931 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3932 &futex_shift, NULL,
3933 futex_hashsize, futex_hashsize);
3934 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3935
3936 futex_detect_cmpxchg();
a0c1e907 3937
a52b89eb 3938 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3939 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3940 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3941 spin_lock_init(&futex_queues[i].lock);
3942 }
3943
1da177e4
LT
3944 return 0;
3945}
25f71d1c 3946core_initcall(futex_init);