sched/wait: Fix signal handling in bit wait helpers
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
ab51fbab 67#include <linux/fault-inject.h>
b488893a 68
4732efbe 69#include <asm/futex.h>
1da177e4 70
1696a8be 71#include "locking/rtmutex_common.h"
c87e2837 72
99b60ce6 73/*
d7e8af1a
DB
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
99b60ce6
TG
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
99b60ce6
TG
85 *
86 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
99b60ce6 90 *
b0c29f79
DB
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 116 *
b0c29f79
DB
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
99b60ce6
TG
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
b0c29f79 125 *
d7e8af1a 126 * waiters++; (a)
b0c29f79
DB
127 * mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `-------> mb(); (B)
99b60ce6 137 * if (uval == val)
b0c29f79 138 * queue();
99b60ce6 139 * unlock(hash_bucket(futex));
b0c29f79
DB
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
d7e8af1a
DB
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 144 *
d7e8af1a
DB
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
ac742d37
RV
258/*
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
262 */
263static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266} __futex_data __read_mostly __aligned(2*sizeof(long));
267#define futex_queues (__futex_data.queues)
268#define futex_hashsize (__futex_data.hashsize)
a52b89eb 269
1da177e4 270
ab51fbab
DB
271/*
272 * Fault injections for futexes.
273 */
274#ifdef CONFIG_FAIL_FUTEX
275
276static struct {
277 struct fault_attr attr;
278
621a5f7a 279 bool ignore_private;
ab51fbab
DB
280} fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 282 .ignore_private = false,
ab51fbab
DB
283};
284
285static int __init setup_fail_futex(char *str)
286{
287 return setup_fault_attr(&fail_futex.attr, str);
288}
289__setup("fail_futex=", setup_fail_futex);
290
5d285a7f 291static bool should_fail_futex(bool fshared)
ab51fbab
DB
292{
293 if (fail_futex.ignore_private && !fshared)
294 return false;
295
296 return should_fail(&fail_futex.attr, 1);
297}
298
299#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301static int __init fail_futex_debugfs(void)
302{
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
305
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
310
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
315 }
316
317 return 0;
318}
319
320late_initcall(fail_futex_debugfs);
321
322#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324#else
325static inline bool should_fail_futex(bool fshared)
326{
327 return false;
328}
329#endif /* CONFIG_FAIL_FUTEX */
330
b0c29f79
DB
331static inline void futex_get_mm(union futex_key *key)
332{
333 atomic_inc(&key->private.mm->mm_count);
334 /*
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as full barrier (B), see the ordering comment above.
338 */
4e857c58 339 smp_mb__after_atomic();
b0c29f79
DB
340}
341
11d4616b
LT
342/*
343 * Reflects a new waiter being added to the waitqueue.
344 */
345static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
346{
347#ifdef CONFIG_SMP
11d4616b 348 atomic_inc(&hb->waiters);
b0c29f79 349 /*
11d4616b 350 * Full barrier (A), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
11d4616b
LT
353#endif
354}
355
356/*
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
359 */
360static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361{
362#ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364#endif
365}
b0c29f79 366
11d4616b
LT
367static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368{
369#ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
b0c29f79 371#else
11d4616b 372 return 1;
b0c29f79
DB
373#endif
374}
375
1da177e4
LT
376/*
377 * We hash on the keys returned from get_futex_key (see below).
378 */
379static struct futex_hash_bucket *hash_futex(union futex_key *key)
380{
381 u32 hash = jhash2((u32*)&key->both.word,
382 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 key->both.offset);
a52b89eb 384 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
385}
386
387/*
388 * Return 1 if two futex_keys are equal, 0 otherwise.
389 */
390static inline int match_futex(union futex_key *key1, union futex_key *key2)
391{
2bc87203
DH
392 return (key1 && key2
393 && key1->both.word == key2->both.word
1da177e4
LT
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
396}
397
38d47c1b
PZ
398/*
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
401 *
402 */
403static void get_futex_key_refs(union futex_key *key)
404{
405 if (!key->both.ptr)
406 return;
407
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
b0c29f79 410 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
411 break;
412 case FUT_OFF_MMSHARED:
b0c29f79 413 futex_get_mm(key); /* implies MB (B) */
38d47c1b 414 break;
76835b0e 415 default:
993b2ff2
DB
416 /*
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
420 */
76835b0e 421 smp_mb(); /* explicit MB (B) */
38d47c1b
PZ
422 }
423}
424
425/*
426 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
38d47c1b
PZ
430 */
431static void drop_futex_key_refs(union futex_key *key)
432{
90621c40
DH
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
38d47c1b 436 return;
90621c40 437 }
38d47c1b
PZ
438
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 iput(key->shared.inode);
442 break;
443 case FUT_OFF_MMSHARED:
444 mmdrop(key->private.mm);
445 break;
446 }
447}
448
34f01cc1 449/**
d96ee56c
DH
450 * get_futex_key() - Get parameters which are the keys for a futex
451 * @uaddr: virtual address of the futex
452 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453 * @key: address where result is stored.
9ea71503
SB
454 * @rw: mapping needs to be read/write (values: VERIFY_READ,
455 * VERIFY_WRITE)
34f01cc1 456 *
6c23cbbd
RD
457 * Return: a negative error code or 0
458 *
34f01cc1 459 * The key words are stored in *key on success.
1da177e4 460 *
6131ffaa 461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
462 * offset_within_page). For private mappings, it's (uaddr, current->mm).
463 * We can usually work out the index without swapping in the page.
464 *
b2d0994b 465 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 466 */
64d1304a 467static int
9ea71503 468get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 469{
e2970f2f 470 unsigned long address = (unsigned long)uaddr;
1da177e4 471 struct mm_struct *mm = current->mm;
a5b338f2 472 struct page *page, *page_head;
9ea71503 473 int err, ro = 0;
1da177e4
LT
474
475 /*
476 * The futex address must be "naturally" aligned.
477 */
e2970f2f 478 key->both.offset = address % PAGE_SIZE;
34f01cc1 479 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 480 return -EINVAL;
e2970f2f 481 address -= key->both.offset;
1da177e4 482
5cdec2d8
LT
483 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484 return -EFAULT;
485
ab51fbab
DB
486 if (unlikely(should_fail_futex(fshared)))
487 return -EFAULT;
488
34f01cc1
ED
489 /*
490 * PROCESS_PRIVATE futexes are fast.
491 * As the mm cannot disappear under us and the 'key' only needs
492 * virtual address, we dont even have to find the underlying vma.
493 * Note : We do have to check 'uaddr' is a valid user address,
494 * but access_ok() should be faster than find_vma()
495 */
496 if (!fshared) {
34f01cc1
ED
497 key->private.mm = mm;
498 key->private.address = address;
b0c29f79 499 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
500 return 0;
501 }
1da177e4 502
38d47c1b 503again:
ab51fbab
DB
504 /* Ignore any VERIFY_READ mapping (futex common case) */
505 if (unlikely(should_fail_futex(fshared)))
506 return -EFAULT;
507
7485d0d3 508 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
509 /*
510 * If write access is not required (eg. FUTEX_WAIT), try
511 * and get read-only access.
512 */
513 if (err == -EFAULT && rw == VERIFY_READ) {
514 err = get_user_pages_fast(address, 1, 0, &page);
515 ro = 1;
516 }
38d47c1b
PZ
517 if (err < 0)
518 return err;
9ea71503
SB
519 else
520 err = 0;
38d47c1b 521
a5b338f2
AA
522#ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 page_head = page;
524 if (unlikely(PageTail(page))) {
38d47c1b 525 put_page(page);
a5b338f2
AA
526 /* serialize against __split_huge_page_splitting() */
527 local_irq_disable();
f12d5bfc 528 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
529 page_head = compound_head(page);
530 /*
531 * page_head is valid pointer but we must pin
532 * it before taking the PG_lock and/or
533 * PG_compound_lock. The moment we re-enable
534 * irqs __split_huge_page_splitting() can
535 * return and the head page can be freed from
536 * under us. We can't take the PG_lock and/or
537 * PG_compound_lock on a page that could be
538 * freed from under us.
539 */
540 if (page != page_head) {
541 get_page(page_head);
542 put_page(page);
543 }
544 local_irq_enable();
545 } else {
546 local_irq_enable();
547 goto again;
548 }
549 }
550#else
551 page_head = compound_head(page);
552 if (page != page_head) {
553 get_page(page_head);
554 put_page(page);
555 }
556#endif
557
558 lock_page(page_head);
e6780f72
HD
559
560 /*
561 * If page_head->mapping is NULL, then it cannot be a PageAnon
562 * page; but it might be the ZERO_PAGE or in the gate area or
563 * in a special mapping (all cases which we are happy to fail);
564 * or it may have been a good file page when get_user_pages_fast
565 * found it, but truncated or holepunched or subjected to
566 * invalidate_complete_page2 before we got the page lock (also
567 * cases which we are happy to fail). And we hold a reference,
568 * so refcount care in invalidate_complete_page's remove_mapping
569 * prevents drop_caches from setting mapping to NULL beneath us.
570 *
571 * The case we do have to guard against is when memory pressure made
572 * shmem_writepage move it from filecache to swapcache beneath us:
573 * an unlikely race, but we do need to retry for page_head->mapping.
574 */
a5b338f2 575 if (!page_head->mapping) {
e6780f72 576 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
577 unlock_page(page_head);
578 put_page(page_head);
e6780f72
HD
579 if (shmem_swizzled)
580 goto again;
581 return -EFAULT;
38d47c1b 582 }
1da177e4
LT
583
584 /*
585 * Private mappings are handled in a simple way.
586 *
587 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
588 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 589 * the object not the particular process.
1da177e4 590 */
a5b338f2 591 if (PageAnon(page_head)) {
9ea71503
SB
592 /*
593 * A RO anonymous page will never change and thus doesn't make
594 * sense for futex operations.
595 */
ab51fbab 596 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
597 err = -EFAULT;
598 goto out;
599 }
600
38d47c1b 601 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 602 key->private.mm = mm;
e2970f2f 603 key->private.address = address;
38d47c1b
PZ
604 } else {
605 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 606 key->shared.inode = page_head->mapping->host;
13d60f4b 607 key->shared.pgoff = basepage_index(page);
1da177e4
LT
608 }
609
b0c29f79 610 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 611
9ea71503 612out:
a5b338f2
AA
613 unlock_page(page_head);
614 put_page(page_head);
9ea71503 615 return err;
1da177e4
LT
616}
617
ae791a2d 618static inline void put_futex_key(union futex_key *key)
1da177e4 619{
38d47c1b 620 drop_futex_key_refs(key);
1da177e4
LT
621}
622
d96ee56c
DH
623/**
624 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
625 * @uaddr: pointer to faulting user space address
626 *
627 * Slow path to fixup the fault we just took in the atomic write
628 * access to @uaddr.
629 *
fb62db2b 630 * We have no generic implementation of a non-destructive write to the
d0725992
TG
631 * user address. We know that we faulted in the atomic pagefault
632 * disabled section so we can as well avoid the #PF overhead by
633 * calling get_user_pages() right away.
634 */
635static int fault_in_user_writeable(u32 __user *uaddr)
636{
722d0172
AK
637 struct mm_struct *mm = current->mm;
638 int ret;
639
640 down_read(&mm->mmap_sem);
2efaca92
BH
641 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
642 FAULT_FLAG_WRITE);
722d0172
AK
643 up_read(&mm->mmap_sem);
644
d0725992
TG
645 return ret < 0 ? ret : 0;
646}
647
4b1c486b
DH
648/**
649 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
650 * @hb: the hash bucket the futex_q's reside in
651 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
652 *
653 * Must be called with the hb lock held.
654 */
655static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
656 union futex_key *key)
657{
658 struct futex_q *this;
659
660 plist_for_each_entry(this, &hb->chain, list) {
661 if (match_futex(&this->key, key))
662 return this;
663 }
664 return NULL;
665}
666
37a9d912
ML
667static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
668 u32 uval, u32 newval)
36cf3b5c 669{
37a9d912 670 int ret;
36cf3b5c
TG
671
672 pagefault_disable();
37a9d912 673 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
674 pagefault_enable();
675
37a9d912 676 return ret;
36cf3b5c
TG
677}
678
679static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
680{
681 int ret;
682
a866374a 683 pagefault_disable();
e2970f2f 684 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 685 pagefault_enable();
1da177e4
LT
686
687 return ret ? -EFAULT : 0;
688}
689
c87e2837
IM
690
691/*
692 * PI code:
693 */
694static int refill_pi_state_cache(void)
695{
696 struct futex_pi_state *pi_state;
697
698 if (likely(current->pi_state_cache))
699 return 0;
700
4668edc3 701 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
702
703 if (!pi_state)
704 return -ENOMEM;
705
c87e2837
IM
706 INIT_LIST_HEAD(&pi_state->list);
707 /* pi_mutex gets initialized later */
708 pi_state->owner = NULL;
709 atomic_set(&pi_state->refcount, 1);
38d47c1b 710 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
711
712 current->pi_state_cache = pi_state;
713
714 return 0;
715}
716
717static struct futex_pi_state * alloc_pi_state(void)
718{
719 struct futex_pi_state *pi_state = current->pi_state_cache;
720
721 WARN_ON(!pi_state);
722 current->pi_state_cache = NULL;
723
724 return pi_state;
725}
726
30a6b803
BS
727/*
728 * Must be called with the hb lock held.
729 */
c87e2837
IM
730static void free_pi_state(struct futex_pi_state *pi_state)
731{
30a6b803
BS
732 if (!pi_state)
733 return;
734
c87e2837
IM
735 if (!atomic_dec_and_test(&pi_state->refcount))
736 return;
737
738 /*
739 * If pi_state->owner is NULL, the owner is most probably dying
740 * and has cleaned up the pi_state already
741 */
742 if (pi_state->owner) {
1d615482 743 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 744 list_del_init(&pi_state->list);
1d615482 745 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
746
747 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
748 }
749
750 if (current->pi_state_cache)
751 kfree(pi_state);
752 else {
753 /*
754 * pi_state->list is already empty.
755 * clear pi_state->owner.
756 * refcount is at 0 - put it back to 1.
757 */
758 pi_state->owner = NULL;
759 atomic_set(&pi_state->refcount, 1);
760 current->pi_state_cache = pi_state;
761 }
762}
763
764/*
765 * Look up the task based on what TID userspace gave us.
766 * We dont trust it.
767 */
768static struct task_struct * futex_find_get_task(pid_t pid)
769{
770 struct task_struct *p;
771
d359b549 772 rcu_read_lock();
228ebcbe 773 p = find_task_by_vpid(pid);
7a0ea09a
MH
774 if (p)
775 get_task_struct(p);
a06381fe 776
d359b549 777 rcu_read_unlock();
c87e2837
IM
778
779 return p;
780}
781
782/*
783 * This task is holding PI mutexes at exit time => bad.
784 * Kernel cleans up PI-state, but userspace is likely hosed.
785 * (Robust-futex cleanup is separate and might save the day for userspace.)
786 */
787void exit_pi_state_list(struct task_struct *curr)
788{
c87e2837
IM
789 struct list_head *next, *head = &curr->pi_state_list;
790 struct futex_pi_state *pi_state;
627371d7 791 struct futex_hash_bucket *hb;
38d47c1b 792 union futex_key key = FUTEX_KEY_INIT;
c87e2837 793
a0c1e907
TG
794 if (!futex_cmpxchg_enabled)
795 return;
c87e2837
IM
796 /*
797 * We are a ZOMBIE and nobody can enqueue itself on
798 * pi_state_list anymore, but we have to be careful
627371d7 799 * versus waiters unqueueing themselves:
c87e2837 800 */
1d615482 801 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
802 while (!list_empty(head)) {
803
804 next = head->next;
805 pi_state = list_entry(next, struct futex_pi_state, list);
806 key = pi_state->key;
627371d7 807 hb = hash_futex(&key);
1d615482 808 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 809
c87e2837
IM
810 spin_lock(&hb->lock);
811
1d615482 812 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
813 /*
814 * We dropped the pi-lock, so re-check whether this
815 * task still owns the PI-state:
816 */
c87e2837
IM
817 if (head->next != next) {
818 spin_unlock(&hb->lock);
819 continue;
820 }
821
c87e2837 822 WARN_ON(pi_state->owner != curr);
627371d7
IM
823 WARN_ON(list_empty(&pi_state->list));
824 list_del_init(&pi_state->list);
c87e2837 825 pi_state->owner = NULL;
1d615482 826 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
827
828 rt_mutex_unlock(&pi_state->pi_mutex);
829
830 spin_unlock(&hb->lock);
831
1d615482 832 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 833 }
1d615482 834 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
835}
836
54a21788
TG
837/*
838 * We need to check the following states:
839 *
840 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
841 *
842 * [1] NULL | --- | --- | 0 | 0/1 | Valid
843 * [2] NULL | --- | --- | >0 | 0/1 | Valid
844 *
845 * [3] Found | NULL | -- | Any | 0/1 | Invalid
846 *
847 * [4] Found | Found | NULL | 0 | 1 | Valid
848 * [5] Found | Found | NULL | >0 | 1 | Invalid
849 *
850 * [6] Found | Found | task | 0 | 1 | Valid
851 *
852 * [7] Found | Found | NULL | Any | 0 | Invalid
853 *
854 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
855 * [9] Found | Found | task | 0 | 0 | Invalid
856 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
857 *
858 * [1] Indicates that the kernel can acquire the futex atomically. We
859 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
860 *
861 * [2] Valid, if TID does not belong to a kernel thread. If no matching
862 * thread is found then it indicates that the owner TID has died.
863 *
864 * [3] Invalid. The waiter is queued on a non PI futex
865 *
866 * [4] Valid state after exit_robust_list(), which sets the user space
867 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
868 *
869 * [5] The user space value got manipulated between exit_robust_list()
870 * and exit_pi_state_list()
871 *
872 * [6] Valid state after exit_pi_state_list() which sets the new owner in
873 * the pi_state but cannot access the user space value.
874 *
875 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
876 *
877 * [8] Owner and user space value match
878 *
879 * [9] There is no transient state which sets the user space TID to 0
880 * except exit_robust_list(), but this is indicated by the
881 * FUTEX_OWNER_DIED bit. See [4]
882 *
883 * [10] There is no transient state which leaves owner and user space
884 * TID out of sync.
885 */
e60cbc5c
TG
886
887/*
888 * Validate that the existing waiter has a pi_state and sanity check
889 * the pi_state against the user space value. If correct, attach to
890 * it.
891 */
892static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
893 struct futex_pi_state **ps)
c87e2837 894{
778e9a9c 895 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 896
e60cbc5c
TG
897 /*
898 * Userspace might have messed up non-PI and PI futexes [3]
899 */
900 if (unlikely(!pi_state))
901 return -EINVAL;
06a9ec29 902
e60cbc5c 903 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 904
e60cbc5c
TG
905 /*
906 * Handle the owner died case:
907 */
908 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 909 /*
e60cbc5c
TG
910 * exit_pi_state_list sets owner to NULL and wakes the
911 * topmost waiter. The task which acquires the
912 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 913 */
e60cbc5c 914 if (!pi_state->owner) {
59647b6a 915 /*
e60cbc5c
TG
916 * No pi state owner, but the user space TID
917 * is not 0. Inconsistent state. [5]
59647b6a 918 */
e60cbc5c
TG
919 if (pid)
920 return -EINVAL;
bd1dbcc6 921 /*
e60cbc5c 922 * Take a ref on the state and return success. [4]
866293ee 923 */
e60cbc5c 924 goto out_state;
c87e2837 925 }
bd1dbcc6
TG
926
927 /*
e60cbc5c
TG
928 * If TID is 0, then either the dying owner has not
929 * yet executed exit_pi_state_list() or some waiter
930 * acquired the rtmutex in the pi state, but did not
931 * yet fixup the TID in user space.
932 *
933 * Take a ref on the state and return success. [6]
934 */
935 if (!pid)
936 goto out_state;
937 } else {
938 /*
939 * If the owner died bit is not set, then the pi_state
940 * must have an owner. [7]
bd1dbcc6 941 */
e60cbc5c 942 if (!pi_state->owner)
bd1dbcc6 943 return -EINVAL;
c87e2837
IM
944 }
945
e60cbc5c
TG
946 /*
947 * Bail out if user space manipulated the futex value. If pi
948 * state exists then the owner TID must be the same as the
949 * user space TID. [9/10]
950 */
951 if (pid != task_pid_vnr(pi_state->owner))
952 return -EINVAL;
953out_state:
954 atomic_inc(&pi_state->refcount);
955 *ps = pi_state;
956 return 0;
957}
958
04e1b2e5
TG
959/*
960 * Lookup the task for the TID provided from user space and attach to
961 * it after doing proper sanity checks.
962 */
963static int attach_to_pi_owner(u32 uval, union futex_key *key,
964 struct futex_pi_state **ps)
e60cbc5c 965{
e60cbc5c 966 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
967 struct futex_pi_state *pi_state;
968 struct task_struct *p;
e60cbc5c 969
c87e2837 970 /*
e3f2ddea 971 * We are the first waiter - try to look up the real owner and attach
54a21788 972 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 973 */
778e9a9c 974 if (!pid)
e3f2ddea 975 return -ESRCH;
c87e2837 976 p = futex_find_get_task(pid);
7a0ea09a
MH
977 if (!p)
978 return -ESRCH;
778e9a9c 979
a2129464 980 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
981 put_task_struct(p);
982 return -EPERM;
983 }
984
778e9a9c
AK
985 /*
986 * We need to look at the task state flags to figure out,
987 * whether the task is exiting. To protect against the do_exit
988 * change of the task flags, we do this protected by
989 * p->pi_lock:
990 */
1d615482 991 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
992 if (unlikely(p->flags & PF_EXITING)) {
993 /*
994 * The task is on the way out. When PF_EXITPIDONE is
995 * set, we know that the task has finished the
996 * cleanup:
997 */
998 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
999
1d615482 1000 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1001 put_task_struct(p);
1002 return ret;
1003 }
c87e2837 1004
54a21788
TG
1005 /*
1006 * No existing pi state. First waiter. [2]
1007 */
c87e2837
IM
1008 pi_state = alloc_pi_state();
1009
1010 /*
04e1b2e5 1011 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1012 * the owner of it:
1013 */
1014 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1015
1016 /* Store the key for possible exit cleanups: */
d0aa7a70 1017 pi_state->key = *key;
c87e2837 1018
627371d7 1019 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1020 list_add(&pi_state->list, &p->pi_state_list);
1021 pi_state->owner = p;
1d615482 1022 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1023
1024 put_task_struct(p);
1025
d0aa7a70 1026 *ps = pi_state;
c87e2837
IM
1027
1028 return 0;
1029}
1030
04e1b2e5
TG
1031static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1032 union futex_key *key, struct futex_pi_state **ps)
1033{
1034 struct futex_q *match = futex_top_waiter(hb, key);
1035
1036 /*
1037 * If there is a waiter on that futex, validate it and
1038 * attach to the pi_state when the validation succeeds.
1039 */
1040 if (match)
1041 return attach_to_pi_state(uval, match->pi_state, ps);
1042
1043 /*
1044 * We are the first waiter - try to look up the owner based on
1045 * @uval and attach to it.
1046 */
1047 return attach_to_pi_owner(uval, key, ps);
1048}
1049
af54d6a1
TG
1050static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1051{
1052 u32 uninitialized_var(curval);
1053
ab51fbab
DB
1054 if (unlikely(should_fail_futex(true)))
1055 return -EFAULT;
1056
af54d6a1
TG
1057 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1058 return -EFAULT;
1059
1060 /*If user space value changed, let the caller retry */
1061 return curval != uval ? -EAGAIN : 0;
1062}
1063
1a52084d 1064/**
d96ee56c 1065 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1066 * @uaddr: the pi futex user address
1067 * @hb: the pi futex hash bucket
1068 * @key: the futex key associated with uaddr and hb
1069 * @ps: the pi_state pointer where we store the result of the
1070 * lookup
1071 * @task: the task to perform the atomic lock work for. This will
1072 * be "current" except in the case of requeue pi.
1073 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1074 *
6c23cbbd
RD
1075 * Return:
1076 * 0 - ready to wait;
1077 * 1 - acquired the lock;
1a52084d
DH
1078 * <0 - error
1079 *
1080 * The hb->lock and futex_key refs shall be held by the caller.
1081 */
1082static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1083 union futex_key *key,
1084 struct futex_pi_state **ps,
bab5bc9e 1085 struct task_struct *task, int set_waiters)
1a52084d 1086{
af54d6a1
TG
1087 u32 uval, newval, vpid = task_pid_vnr(task);
1088 struct futex_q *match;
1089 int ret;
1a52084d
DH
1090
1091 /*
af54d6a1
TG
1092 * Read the user space value first so we can validate a few
1093 * things before proceeding further.
1a52084d 1094 */
af54d6a1 1095 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1096 return -EFAULT;
1097
ab51fbab
DB
1098 if (unlikely(should_fail_futex(true)))
1099 return -EFAULT;
1100
1a52084d
DH
1101 /*
1102 * Detect deadlocks.
1103 */
af54d6a1 1104 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1105 return -EDEADLK;
1106
ab51fbab
DB
1107 if ((unlikely(should_fail_futex(true))))
1108 return -EDEADLK;
1109
1a52084d 1110 /*
af54d6a1
TG
1111 * Lookup existing state first. If it exists, try to attach to
1112 * its pi_state.
1a52084d 1113 */
af54d6a1
TG
1114 match = futex_top_waiter(hb, key);
1115 if (match)
1116 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1117
1118 /*
af54d6a1
TG
1119 * No waiter and user TID is 0. We are here because the
1120 * waiters or the owner died bit is set or called from
1121 * requeue_cmp_pi or for whatever reason something took the
1122 * syscall.
1a52084d 1123 */
af54d6a1 1124 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1125 /*
af54d6a1
TG
1126 * We take over the futex. No other waiters and the user space
1127 * TID is 0. We preserve the owner died bit.
59fa6245 1128 */
af54d6a1
TG
1129 newval = uval & FUTEX_OWNER_DIED;
1130 newval |= vpid;
1a52084d 1131
af54d6a1
TG
1132 /* The futex requeue_pi code can enforce the waiters bit */
1133 if (set_waiters)
1134 newval |= FUTEX_WAITERS;
1135
1136 ret = lock_pi_update_atomic(uaddr, uval, newval);
1137 /* If the take over worked, return 1 */
1138 return ret < 0 ? ret : 1;
1139 }
1a52084d
DH
1140
1141 /*
af54d6a1
TG
1142 * First waiter. Set the waiters bit before attaching ourself to
1143 * the owner. If owner tries to unlock, it will be forced into
1144 * the kernel and blocked on hb->lock.
1a52084d 1145 */
af54d6a1
TG
1146 newval = uval | FUTEX_WAITERS;
1147 ret = lock_pi_update_atomic(uaddr, uval, newval);
1148 if (ret)
1149 return ret;
1a52084d 1150 /*
af54d6a1
TG
1151 * If the update of the user space value succeeded, we try to
1152 * attach to the owner. If that fails, no harm done, we only
1153 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1154 */
af54d6a1 1155 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1156}
1157
2e12978a
LJ
1158/**
1159 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1160 * @q: The futex_q to unqueue
1161 *
1162 * The q->lock_ptr must not be NULL and must be held by the caller.
1163 */
1164static void __unqueue_futex(struct futex_q *q)
1165{
1166 struct futex_hash_bucket *hb;
1167
29096202
SR
1168 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1169 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1170 return;
1171
1172 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1173 plist_del(&q->list, &hb->chain);
11d4616b 1174 hb_waiters_dec(hb);
2e12978a
LJ
1175}
1176
1da177e4
LT
1177/*
1178 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1179 * Afterwards, the futex_q must not be accessed. Callers
1180 * must ensure to later call wake_up_q() for the actual
1181 * wakeups to occur.
1da177e4 1182 */
1d0dcb3a 1183static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1184{
f1a11e05
TG
1185 struct task_struct *p = q->task;
1186
aa10990e
DH
1187 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1188 return;
1189
1da177e4 1190 /*
1d0dcb3a
DB
1191 * Queue the task for later wakeup for after we've released
1192 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1193 */
1d0dcb3a 1194 wake_q_add(wake_q, p);
2e12978a 1195 __unqueue_futex(q);
1da177e4 1196 /*
f1a11e05
TG
1197 * The waiting task can free the futex_q as soon as
1198 * q->lock_ptr = NULL is written, without taking any locks. A
1199 * memory barrier is required here to prevent the following
1200 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1201 */
ccdea2f8 1202 smp_wmb();
1da177e4
LT
1203 q->lock_ptr = NULL;
1204}
1205
802ab58d
SAS
1206static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1207 struct futex_hash_bucket *hb)
c87e2837
IM
1208{
1209 struct task_struct *new_owner;
1210 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1211 u32 uninitialized_var(curval), newval;
802ab58d
SAS
1212 WAKE_Q(wake_q);
1213 bool deboost;
13fbca4c 1214 int ret = 0;
c87e2837
IM
1215
1216 if (!pi_state)
1217 return -EINVAL;
1218
51246bfd
TG
1219 /*
1220 * If current does not own the pi_state then the futex is
1221 * inconsistent and user space fiddled with the futex value.
1222 */
1223 if (pi_state->owner != current)
1224 return -EINVAL;
1225
d209d74d 1226 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1227 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1228
1229 /*
f123c98e
SR
1230 * It is possible that the next waiter (the one that brought
1231 * this owner to the kernel) timed out and is no longer
1232 * waiting on the lock.
c87e2837
IM
1233 */
1234 if (!new_owner)
1235 new_owner = this->task;
1236
1237 /*
13fbca4c
TG
1238 * We pass it to the next owner. The WAITERS bit is always
1239 * kept enabled while there is PI state around. We cleanup the
1240 * owner died bit, because we are the owner.
c87e2837 1241 */
13fbca4c 1242 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1243
ab51fbab
DB
1244 if (unlikely(should_fail_futex(true)))
1245 ret = -EFAULT;
1246
13fbca4c
TG
1247 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1248 ret = -EFAULT;
1249 else if (curval != uval)
1250 ret = -EINVAL;
1251 if (ret) {
1252 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1253 return ret;
e3f2ddea 1254 }
c87e2837 1255
1d615482 1256 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1257 WARN_ON(list_empty(&pi_state->list));
1258 list_del_init(&pi_state->list);
1d615482 1259 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1260
1d615482 1261 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1262 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1263 list_add(&pi_state->list, &new_owner->pi_state_list);
1264 pi_state->owner = new_owner;
1d615482 1265 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1266
d209d74d 1267 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
802ab58d
SAS
1268
1269 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1270
1271 /*
1272 * First unlock HB so the waiter does not spin on it once he got woken
1273 * up. Second wake up the waiter before the priority is adjusted. If we
1274 * deboost first (and lose our higher priority), then the task might get
1275 * scheduled away before the wake up can take place.
1276 */
1277 spin_unlock(&hb->lock);
1278 wake_up_q(&wake_q);
1279 if (deboost)
1280 rt_mutex_adjust_prio(current);
c87e2837
IM
1281
1282 return 0;
1283}
1284
8b8f319f
IM
1285/*
1286 * Express the locking dependencies for lockdep:
1287 */
1288static inline void
1289double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1290{
1291 if (hb1 <= hb2) {
1292 spin_lock(&hb1->lock);
1293 if (hb1 < hb2)
1294 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1295 } else { /* hb1 > hb2 */
1296 spin_lock(&hb2->lock);
1297 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1298 }
1299}
1300
5eb3dc62
DH
1301static inline void
1302double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1303{
f061d351 1304 spin_unlock(&hb1->lock);
88f502fe
IM
1305 if (hb1 != hb2)
1306 spin_unlock(&hb2->lock);
5eb3dc62
DH
1307}
1308
1da177e4 1309/*
b2d0994b 1310 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1311 */
b41277dc
DH
1312static int
1313futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1314{
e2970f2f 1315 struct futex_hash_bucket *hb;
1da177e4 1316 struct futex_q *this, *next;
38d47c1b 1317 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1318 int ret;
1d0dcb3a 1319 WAKE_Q(wake_q);
1da177e4 1320
cd689985
TG
1321 if (!bitset)
1322 return -EINVAL;
1323
9ea71503 1324 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1325 if (unlikely(ret != 0))
1326 goto out;
1327
e2970f2f 1328 hb = hash_futex(&key);
b0c29f79
DB
1329
1330 /* Make sure we really have tasks to wakeup */
1331 if (!hb_waiters_pending(hb))
1332 goto out_put_key;
1333
e2970f2f 1334 spin_lock(&hb->lock);
1da177e4 1335
0d00c7b2 1336 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1337 if (match_futex (&this->key, &key)) {
52400ba9 1338 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1339 ret = -EINVAL;
1340 break;
1341 }
cd689985
TG
1342
1343 /* Check if one of the bits is set in both bitsets */
1344 if (!(this->bitset & bitset))
1345 continue;
1346
1d0dcb3a 1347 mark_wake_futex(&wake_q, this);
1da177e4
LT
1348 if (++ret >= nr_wake)
1349 break;
1350 }
1351 }
1352
e2970f2f 1353 spin_unlock(&hb->lock);
1d0dcb3a 1354 wake_up_q(&wake_q);
b0c29f79 1355out_put_key:
ae791a2d 1356 put_futex_key(&key);
42d35d48 1357out:
1da177e4
LT
1358 return ret;
1359}
1360
4732efbe
JJ
1361/*
1362 * Wake up all waiters hashed on the physical page that is mapped
1363 * to this virtual address:
1364 */
e2970f2f 1365static int
b41277dc 1366futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1367 int nr_wake, int nr_wake2, int op)
4732efbe 1368{
38d47c1b 1369 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1370 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1371 struct futex_q *this, *next;
e4dc5b7a 1372 int ret, op_ret;
1d0dcb3a 1373 WAKE_Q(wake_q);
4732efbe 1374
e4dc5b7a 1375retry:
9ea71503 1376 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1377 if (unlikely(ret != 0))
1378 goto out;
9ea71503 1379 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1380 if (unlikely(ret != 0))
42d35d48 1381 goto out_put_key1;
4732efbe 1382
e2970f2f
IM
1383 hb1 = hash_futex(&key1);
1384 hb2 = hash_futex(&key2);
4732efbe 1385
e4dc5b7a 1386retry_private:
eaaea803 1387 double_lock_hb(hb1, hb2);
e2970f2f 1388 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1389 if (unlikely(op_ret < 0)) {
4732efbe 1390
5eb3dc62 1391 double_unlock_hb(hb1, hb2);
4732efbe 1392
7ee1dd3f 1393#ifndef CONFIG_MMU
e2970f2f
IM
1394 /*
1395 * we don't get EFAULT from MMU faults if we don't have an MMU,
1396 * but we might get them from range checking
1397 */
7ee1dd3f 1398 ret = op_ret;
42d35d48 1399 goto out_put_keys;
7ee1dd3f
DH
1400#endif
1401
796f8d9b
DG
1402 if (unlikely(op_ret != -EFAULT)) {
1403 ret = op_ret;
42d35d48 1404 goto out_put_keys;
796f8d9b
DG
1405 }
1406
d0725992 1407 ret = fault_in_user_writeable(uaddr2);
4732efbe 1408 if (ret)
de87fcc1 1409 goto out_put_keys;
4732efbe 1410
b41277dc 1411 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1412 goto retry_private;
1413
ae791a2d
TG
1414 put_futex_key(&key2);
1415 put_futex_key(&key1);
e4dc5b7a 1416 goto retry;
4732efbe
JJ
1417 }
1418
0d00c7b2 1419 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1420 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1421 if (this->pi_state || this->rt_waiter) {
1422 ret = -EINVAL;
1423 goto out_unlock;
1424 }
1d0dcb3a 1425 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1426 if (++ret >= nr_wake)
1427 break;
1428 }
1429 }
1430
1431 if (op_ret > 0) {
4732efbe 1432 op_ret = 0;
0d00c7b2 1433 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1434 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1435 if (this->pi_state || this->rt_waiter) {
1436 ret = -EINVAL;
1437 goto out_unlock;
1438 }
1d0dcb3a 1439 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1440 if (++op_ret >= nr_wake2)
1441 break;
1442 }
1443 }
1444 ret += op_ret;
1445 }
1446
aa10990e 1447out_unlock:
5eb3dc62 1448 double_unlock_hb(hb1, hb2);
1d0dcb3a 1449 wake_up_q(&wake_q);
42d35d48 1450out_put_keys:
ae791a2d 1451 put_futex_key(&key2);
42d35d48 1452out_put_key1:
ae791a2d 1453 put_futex_key(&key1);
42d35d48 1454out:
4732efbe
JJ
1455 return ret;
1456}
1457
9121e478
DH
1458/**
1459 * requeue_futex() - Requeue a futex_q from one hb to another
1460 * @q: the futex_q to requeue
1461 * @hb1: the source hash_bucket
1462 * @hb2: the target hash_bucket
1463 * @key2: the new key for the requeued futex_q
1464 */
1465static inline
1466void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1467 struct futex_hash_bucket *hb2, union futex_key *key2)
1468{
1469
1470 /*
1471 * If key1 and key2 hash to the same bucket, no need to
1472 * requeue.
1473 */
1474 if (likely(&hb1->chain != &hb2->chain)) {
1475 plist_del(&q->list, &hb1->chain);
11d4616b 1476 hb_waiters_dec(hb1);
9121e478 1477 plist_add(&q->list, &hb2->chain);
11d4616b 1478 hb_waiters_inc(hb2);
9121e478 1479 q->lock_ptr = &hb2->lock;
9121e478
DH
1480 }
1481 get_futex_key_refs(key2);
1482 q->key = *key2;
1483}
1484
52400ba9
DH
1485/**
1486 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1487 * @q: the futex_q
1488 * @key: the key of the requeue target futex
1489 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1490 *
1491 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1492 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1493 * to the requeue target futex so the waiter can detect the wakeup on the right
1494 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1495 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1496 * to protect access to the pi_state to fixup the owner later. Must be called
1497 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1498 */
1499static inline
beda2c7e
DH
1500void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1501 struct futex_hash_bucket *hb)
52400ba9 1502{
52400ba9
DH
1503 get_futex_key_refs(key);
1504 q->key = *key;
1505
2e12978a 1506 __unqueue_futex(q);
52400ba9
DH
1507
1508 WARN_ON(!q->rt_waiter);
1509 q->rt_waiter = NULL;
1510
beda2c7e 1511 q->lock_ptr = &hb->lock;
beda2c7e 1512
f1a11e05 1513 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1514}
1515
1516/**
1517 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1518 * @pifutex: the user address of the to futex
1519 * @hb1: the from futex hash bucket, must be locked by the caller
1520 * @hb2: the to futex hash bucket, must be locked by the caller
1521 * @key1: the from futex key
1522 * @key2: the to futex key
1523 * @ps: address to store the pi_state pointer
1524 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1525 *
1526 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1527 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1528 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1529 * hb1 and hb2 must be held by the caller.
52400ba9 1530 *
6c23cbbd
RD
1531 * Return:
1532 * 0 - failed to acquire the lock atomically;
866293ee 1533 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1534 * <0 - error
1535 */
1536static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1537 struct futex_hash_bucket *hb1,
1538 struct futex_hash_bucket *hb2,
1539 union futex_key *key1, union futex_key *key2,
bab5bc9e 1540 struct futex_pi_state **ps, int set_waiters)
52400ba9 1541{
bab5bc9e 1542 struct futex_q *top_waiter = NULL;
52400ba9 1543 u32 curval;
866293ee 1544 int ret, vpid;
52400ba9
DH
1545
1546 if (get_futex_value_locked(&curval, pifutex))
1547 return -EFAULT;
1548
ab51fbab
DB
1549 if (unlikely(should_fail_futex(true)))
1550 return -EFAULT;
1551
bab5bc9e
DH
1552 /*
1553 * Find the top_waiter and determine if there are additional waiters.
1554 * If the caller intends to requeue more than 1 waiter to pifutex,
1555 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1556 * as we have means to handle the possible fault. If not, don't set
1557 * the bit unecessarily as it will force the subsequent unlock to enter
1558 * the kernel.
1559 */
52400ba9
DH
1560 top_waiter = futex_top_waiter(hb1, key1);
1561
1562 /* There are no waiters, nothing for us to do. */
1563 if (!top_waiter)
1564 return 0;
1565
84bc4af5
DH
1566 /* Ensure we requeue to the expected futex. */
1567 if (!match_futex(top_waiter->requeue_pi_key, key2))
1568 return -EINVAL;
1569
52400ba9 1570 /*
bab5bc9e
DH
1571 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1572 * the contended case or if set_waiters is 1. The pi_state is returned
1573 * in ps in contended cases.
52400ba9 1574 */
866293ee 1575 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1576 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1577 set_waiters);
866293ee 1578 if (ret == 1) {
beda2c7e 1579 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1580 return vpid;
1581 }
52400ba9
DH
1582 return ret;
1583}
1584
1585/**
1586 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1587 * @uaddr1: source futex user address
b41277dc 1588 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1589 * @uaddr2: target futex user address
1590 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1591 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1592 * @cmpval: @uaddr1 expected value (or %NULL)
1593 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1594 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1595 *
1596 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1597 * uaddr2 atomically on behalf of the top waiter.
1598 *
6c23cbbd
RD
1599 * Return:
1600 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1601 * <0 - on error
1da177e4 1602 */
b41277dc
DH
1603static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1604 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1605 u32 *cmpval, int requeue_pi)
1da177e4 1606{
38d47c1b 1607 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1608 int drop_count = 0, task_count = 0, ret;
1609 struct futex_pi_state *pi_state = NULL;
e2970f2f 1610 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1611 struct futex_q *this, *next;
1d0dcb3a 1612 WAKE_Q(wake_q);
52400ba9
DH
1613
1614 if (requeue_pi) {
e9c243a5
TG
1615 /*
1616 * Requeue PI only works on two distinct uaddrs. This
1617 * check is only valid for private futexes. See below.
1618 */
1619 if (uaddr1 == uaddr2)
1620 return -EINVAL;
1621
52400ba9
DH
1622 /*
1623 * requeue_pi requires a pi_state, try to allocate it now
1624 * without any locks in case it fails.
1625 */
1626 if (refill_pi_state_cache())
1627 return -ENOMEM;
1628 /*
1629 * requeue_pi must wake as many tasks as it can, up to nr_wake
1630 * + nr_requeue, since it acquires the rt_mutex prior to
1631 * returning to userspace, so as to not leave the rt_mutex with
1632 * waiters and no owner. However, second and third wake-ups
1633 * cannot be predicted as they involve race conditions with the
1634 * first wake and a fault while looking up the pi_state. Both
1635 * pthread_cond_signal() and pthread_cond_broadcast() should
1636 * use nr_wake=1.
1637 */
1638 if (nr_wake != 1)
1639 return -EINVAL;
1640 }
1da177e4 1641
42d35d48 1642retry:
9ea71503 1643 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1644 if (unlikely(ret != 0))
1645 goto out;
9ea71503
SB
1646 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1647 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1648 if (unlikely(ret != 0))
42d35d48 1649 goto out_put_key1;
1da177e4 1650
e9c243a5
TG
1651 /*
1652 * The check above which compares uaddrs is not sufficient for
1653 * shared futexes. We need to compare the keys:
1654 */
1655 if (requeue_pi && match_futex(&key1, &key2)) {
1656 ret = -EINVAL;
1657 goto out_put_keys;
1658 }
1659
e2970f2f
IM
1660 hb1 = hash_futex(&key1);
1661 hb2 = hash_futex(&key2);
1da177e4 1662
e4dc5b7a 1663retry_private:
69cd9eba 1664 hb_waiters_inc(hb2);
8b8f319f 1665 double_lock_hb(hb1, hb2);
1da177e4 1666
e2970f2f
IM
1667 if (likely(cmpval != NULL)) {
1668 u32 curval;
1da177e4 1669
e2970f2f 1670 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1671
1672 if (unlikely(ret)) {
5eb3dc62 1673 double_unlock_hb(hb1, hb2);
69cd9eba 1674 hb_waiters_dec(hb2);
1da177e4 1675
e2970f2f 1676 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1677 if (ret)
1678 goto out_put_keys;
1da177e4 1679
b41277dc 1680 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1681 goto retry_private;
1da177e4 1682
ae791a2d
TG
1683 put_futex_key(&key2);
1684 put_futex_key(&key1);
e4dc5b7a 1685 goto retry;
1da177e4 1686 }
e2970f2f 1687 if (curval != *cmpval) {
1da177e4
LT
1688 ret = -EAGAIN;
1689 goto out_unlock;
1690 }
1691 }
1692
52400ba9 1693 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1694 /*
1695 * Attempt to acquire uaddr2 and wake the top waiter. If we
1696 * intend to requeue waiters, force setting the FUTEX_WAITERS
1697 * bit. We force this here where we are able to easily handle
1698 * faults rather in the requeue loop below.
1699 */
52400ba9 1700 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1701 &key2, &pi_state, nr_requeue);
52400ba9
DH
1702
1703 /*
1704 * At this point the top_waiter has either taken uaddr2 or is
1705 * waiting on it. If the former, then the pi_state will not
1706 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1707 * reference to it. If the lock was taken, ret contains the
1708 * vpid of the top waiter task.
52400ba9 1709 */
866293ee 1710 if (ret > 0) {
52400ba9 1711 WARN_ON(pi_state);
89061d3d 1712 drop_count++;
52400ba9 1713 task_count++;
866293ee
TG
1714 /*
1715 * If we acquired the lock, then the user
1716 * space value of uaddr2 should be vpid. It
1717 * cannot be changed by the top waiter as it
1718 * is blocked on hb2 lock if it tries to do
1719 * so. If something fiddled with it behind our
1720 * back the pi state lookup might unearth
1721 * it. So we rather use the known value than
1722 * rereading and handing potential crap to
1723 * lookup_pi_state.
1724 */
54a21788 1725 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1726 }
1727
1728 switch (ret) {
1729 case 0:
1730 break;
1731 case -EFAULT:
30a6b803
BS
1732 free_pi_state(pi_state);
1733 pi_state = NULL;
52400ba9 1734 double_unlock_hb(hb1, hb2);
69cd9eba 1735 hb_waiters_dec(hb2);
ae791a2d
TG
1736 put_futex_key(&key2);
1737 put_futex_key(&key1);
d0725992 1738 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1739 if (!ret)
1740 goto retry;
1741 goto out;
1742 case -EAGAIN:
af54d6a1
TG
1743 /*
1744 * Two reasons for this:
1745 * - Owner is exiting and we just wait for the
1746 * exit to complete.
1747 * - The user space value changed.
1748 */
30a6b803
BS
1749 free_pi_state(pi_state);
1750 pi_state = NULL;
52400ba9 1751 double_unlock_hb(hb1, hb2);
69cd9eba 1752 hb_waiters_dec(hb2);
ae791a2d
TG
1753 put_futex_key(&key2);
1754 put_futex_key(&key1);
52400ba9
DH
1755 cond_resched();
1756 goto retry;
1757 default:
1758 goto out_unlock;
1759 }
1760 }
1761
0d00c7b2 1762 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1763 if (task_count - nr_wake >= nr_requeue)
1764 break;
1765
1766 if (!match_futex(&this->key, &key1))
1da177e4 1767 continue;
52400ba9 1768
392741e0
DH
1769 /*
1770 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1771 * be paired with each other and no other futex ops.
aa10990e
DH
1772 *
1773 * We should never be requeueing a futex_q with a pi_state,
1774 * which is awaiting a futex_unlock_pi().
392741e0
DH
1775 */
1776 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1777 (!requeue_pi && this->rt_waiter) ||
1778 this->pi_state) {
392741e0
DH
1779 ret = -EINVAL;
1780 break;
1781 }
52400ba9
DH
1782
1783 /*
1784 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1785 * lock, we already woke the top_waiter. If not, it will be
1786 * woken by futex_unlock_pi().
1787 */
1788 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 1789 mark_wake_futex(&wake_q, this);
52400ba9
DH
1790 continue;
1791 }
1da177e4 1792
84bc4af5
DH
1793 /* Ensure we requeue to the expected futex for requeue_pi. */
1794 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1795 ret = -EINVAL;
1796 break;
1797 }
1798
52400ba9
DH
1799 /*
1800 * Requeue nr_requeue waiters and possibly one more in the case
1801 * of requeue_pi if we couldn't acquire the lock atomically.
1802 */
1803 if (requeue_pi) {
1804 /* Prepare the waiter to take the rt_mutex. */
1805 atomic_inc(&pi_state->refcount);
1806 this->pi_state = pi_state;
1807 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1808 this->rt_waiter,
c051b21f 1809 this->task);
52400ba9
DH
1810 if (ret == 1) {
1811 /* We got the lock. */
beda2c7e 1812 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1813 drop_count++;
52400ba9
DH
1814 continue;
1815 } else if (ret) {
1816 /* -EDEADLK */
1817 this->pi_state = NULL;
1818 free_pi_state(pi_state);
1819 goto out_unlock;
1820 }
1da177e4 1821 }
52400ba9
DH
1822 requeue_futex(this, hb1, hb2, &key2);
1823 drop_count++;
1da177e4
LT
1824 }
1825
1826out_unlock:
30a6b803 1827 free_pi_state(pi_state);
5eb3dc62 1828 double_unlock_hb(hb1, hb2);
1d0dcb3a 1829 wake_up_q(&wake_q);
69cd9eba 1830 hb_waiters_dec(hb2);
1da177e4 1831
cd84a42f
DH
1832 /*
1833 * drop_futex_key_refs() must be called outside the spinlocks. During
1834 * the requeue we moved futex_q's from the hash bucket at key1 to the
1835 * one at key2 and updated their key pointer. We no longer need to
1836 * hold the references to key1.
1837 */
1da177e4 1838 while (--drop_count >= 0)
9adef58b 1839 drop_futex_key_refs(&key1);
1da177e4 1840
42d35d48 1841out_put_keys:
ae791a2d 1842 put_futex_key(&key2);
42d35d48 1843out_put_key1:
ae791a2d 1844 put_futex_key(&key1);
42d35d48 1845out:
52400ba9 1846 return ret ? ret : task_count;
1da177e4
LT
1847}
1848
1849/* The key must be already stored in q->key. */
82af7aca 1850static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1851 __acquires(&hb->lock)
1da177e4 1852{
e2970f2f 1853 struct futex_hash_bucket *hb;
1da177e4 1854
e2970f2f 1855 hb = hash_futex(&q->key);
11d4616b
LT
1856
1857 /*
1858 * Increment the counter before taking the lock so that
1859 * a potential waker won't miss a to-be-slept task that is
1860 * waiting for the spinlock. This is safe as all queue_lock()
1861 * users end up calling queue_me(). Similarly, for housekeeping,
1862 * decrement the counter at queue_unlock() when some error has
1863 * occurred and we don't end up adding the task to the list.
1864 */
1865 hb_waiters_inc(hb);
1866
e2970f2f 1867 q->lock_ptr = &hb->lock;
1da177e4 1868
b0c29f79 1869 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1870 return hb;
1da177e4
LT
1871}
1872
d40d65c8 1873static inline void
0d00c7b2 1874queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1875 __releases(&hb->lock)
d40d65c8
DH
1876{
1877 spin_unlock(&hb->lock);
11d4616b 1878 hb_waiters_dec(hb);
d40d65c8
DH
1879}
1880
1881/**
1882 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1883 * @q: The futex_q to enqueue
1884 * @hb: The destination hash bucket
1885 *
1886 * The hb->lock must be held by the caller, and is released here. A call to
1887 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1888 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1889 * or nothing if the unqueue is done as part of the wake process and the unqueue
1890 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1891 * an example).
1892 */
82af7aca 1893static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1894 __releases(&hb->lock)
1da177e4 1895{
ec92d082
PP
1896 int prio;
1897
1898 /*
1899 * The priority used to register this element is
1900 * - either the real thread-priority for the real-time threads
1901 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1902 * - or MAX_RT_PRIO for non-RT threads.
1903 * Thus, all RT-threads are woken first in priority order, and
1904 * the others are woken last, in FIFO order.
1905 */
1906 prio = min(current->normal_prio, MAX_RT_PRIO);
1907
1908 plist_node_init(&q->list, prio);
ec92d082 1909 plist_add(&q->list, &hb->chain);
c87e2837 1910 q->task = current;
e2970f2f 1911 spin_unlock(&hb->lock);
1da177e4
LT
1912}
1913
d40d65c8
DH
1914/**
1915 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1916 * @q: The futex_q to unqueue
1917 *
1918 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1919 * be paired with exactly one earlier call to queue_me().
1920 *
6c23cbbd
RD
1921 * Return:
1922 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1923 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1924 */
1da177e4
LT
1925static int unqueue_me(struct futex_q *q)
1926{
1da177e4 1927 spinlock_t *lock_ptr;
e2970f2f 1928 int ret = 0;
1da177e4
LT
1929
1930 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1931retry:
1da177e4 1932 lock_ptr = q->lock_ptr;
e91467ec 1933 barrier();
c80544dc 1934 if (lock_ptr != NULL) {
1da177e4
LT
1935 spin_lock(lock_ptr);
1936 /*
1937 * q->lock_ptr can change between reading it and
1938 * spin_lock(), causing us to take the wrong lock. This
1939 * corrects the race condition.
1940 *
1941 * Reasoning goes like this: if we have the wrong lock,
1942 * q->lock_ptr must have changed (maybe several times)
1943 * between reading it and the spin_lock(). It can
1944 * change again after the spin_lock() but only if it was
1945 * already changed before the spin_lock(). It cannot,
1946 * however, change back to the original value. Therefore
1947 * we can detect whether we acquired the correct lock.
1948 */
1949 if (unlikely(lock_ptr != q->lock_ptr)) {
1950 spin_unlock(lock_ptr);
1951 goto retry;
1952 }
2e12978a 1953 __unqueue_futex(q);
c87e2837
IM
1954
1955 BUG_ON(q->pi_state);
1956
1da177e4
LT
1957 spin_unlock(lock_ptr);
1958 ret = 1;
1959 }
1960
9adef58b 1961 drop_futex_key_refs(&q->key);
1da177e4
LT
1962 return ret;
1963}
1964
c87e2837
IM
1965/*
1966 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1967 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1968 * and dropped here.
c87e2837 1969 */
d0aa7a70 1970static void unqueue_me_pi(struct futex_q *q)
15e408cd 1971 __releases(q->lock_ptr)
c87e2837 1972{
2e12978a 1973 __unqueue_futex(q);
c87e2837
IM
1974
1975 BUG_ON(!q->pi_state);
1976 free_pi_state(q->pi_state);
1977 q->pi_state = NULL;
1978
d0aa7a70 1979 spin_unlock(q->lock_ptr);
c87e2837
IM
1980}
1981
d0aa7a70 1982/*
cdf71a10 1983 * Fixup the pi_state owner with the new owner.
d0aa7a70 1984 *
778e9a9c
AK
1985 * Must be called with hash bucket lock held and mm->sem held for non
1986 * private futexes.
d0aa7a70 1987 */
778e9a9c 1988static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1989 struct task_struct *newowner)
d0aa7a70 1990{
cdf71a10 1991 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1992 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1993 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1994 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1995 int ret;
d0aa7a70
PP
1996
1997 /* Owner died? */
1b7558e4
TG
1998 if (!pi_state->owner)
1999 newtid |= FUTEX_OWNER_DIED;
2000
2001 /*
2002 * We are here either because we stole the rtmutex from the
8161239a
LJ
2003 * previous highest priority waiter or we are the highest priority
2004 * waiter but failed to get the rtmutex the first time.
2005 * We have to replace the newowner TID in the user space variable.
2006 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2007 *
b2d0994b
DH
2008 * Note: We write the user space value _before_ changing the pi_state
2009 * because we can fault here. Imagine swapped out pages or a fork
2010 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
2011 *
2012 * Modifying pi_state _before_ the user space value would
2013 * leave the pi_state in an inconsistent state when we fault
2014 * here, because we need to drop the hash bucket lock to
2015 * handle the fault. This might be observed in the PID check
2016 * in lookup_pi_state.
2017 */
2018retry:
2019 if (get_futex_value_locked(&uval, uaddr))
2020 goto handle_fault;
2021
2022 while (1) {
2023 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2024
37a9d912 2025 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2026 goto handle_fault;
2027 if (curval == uval)
2028 break;
2029 uval = curval;
2030 }
2031
2032 /*
2033 * We fixed up user space. Now we need to fix the pi_state
2034 * itself.
2035 */
d0aa7a70 2036 if (pi_state->owner != NULL) {
1d615482 2037 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
2038 WARN_ON(list_empty(&pi_state->list));
2039 list_del_init(&pi_state->list);
1d615482 2040 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 2041 }
d0aa7a70 2042
cdf71a10 2043 pi_state->owner = newowner;
d0aa7a70 2044
1d615482 2045 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 2046 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2047 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 2048 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 2049 return 0;
d0aa7a70 2050
d0aa7a70 2051 /*
1b7558e4 2052 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
2053 * lock here. That gives the other task (either the highest priority
2054 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
2055 * chance to try the fixup of the pi_state. So once we are
2056 * back from handling the fault we need to check the pi_state
2057 * after reacquiring the hash bucket lock and before trying to
2058 * do another fixup. When the fixup has been done already we
2059 * simply return.
d0aa7a70 2060 */
1b7558e4
TG
2061handle_fault:
2062 spin_unlock(q->lock_ptr);
778e9a9c 2063
d0725992 2064 ret = fault_in_user_writeable(uaddr);
778e9a9c 2065
1b7558e4 2066 spin_lock(q->lock_ptr);
778e9a9c 2067
1b7558e4
TG
2068 /*
2069 * Check if someone else fixed it for us:
2070 */
2071 if (pi_state->owner != oldowner)
2072 return 0;
2073
2074 if (ret)
2075 return ret;
2076
2077 goto retry;
d0aa7a70
PP
2078}
2079
72c1bbf3 2080static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2081
dd973998
DH
2082/**
2083 * fixup_owner() - Post lock pi_state and corner case management
2084 * @uaddr: user address of the futex
dd973998
DH
2085 * @q: futex_q (contains pi_state and access to the rt_mutex)
2086 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2087 *
2088 * After attempting to lock an rt_mutex, this function is called to cleanup
2089 * the pi_state owner as well as handle race conditions that may allow us to
2090 * acquire the lock. Must be called with the hb lock held.
2091 *
6c23cbbd
RD
2092 * Return:
2093 * 1 - success, lock taken;
2094 * 0 - success, lock not taken;
dd973998
DH
2095 * <0 - on error (-EFAULT)
2096 */
ae791a2d 2097static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
2098{
2099 struct task_struct *owner;
2100 int ret = 0;
2101
2102 if (locked) {
2103 /*
2104 * Got the lock. We might not be the anticipated owner if we
2105 * did a lock-steal - fix up the PI-state in that case:
2106 */
2107 if (q->pi_state->owner != current)
ae791a2d 2108 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2109 goto out;
2110 }
2111
2112 /*
2113 * Catch the rare case, where the lock was released when we were on the
2114 * way back before we locked the hash bucket.
2115 */
2116 if (q->pi_state->owner == current) {
2117 /*
2118 * Try to get the rt_mutex now. This might fail as some other
2119 * task acquired the rt_mutex after we removed ourself from the
2120 * rt_mutex waiters list.
2121 */
2122 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2123 locked = 1;
2124 goto out;
2125 }
2126
2127 /*
2128 * pi_state is incorrect, some other task did a lock steal and
2129 * we returned due to timeout or signal without taking the
8161239a 2130 * rt_mutex. Too late.
dd973998 2131 */
8161239a 2132 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2133 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2134 if (!owner)
2135 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2136 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2137 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2138 goto out;
2139 }
2140
2141 /*
2142 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2143 * the owner of the rt_mutex.
dd973998
DH
2144 */
2145 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2146 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2147 "pi-state %p\n", ret,
2148 q->pi_state->pi_mutex.owner,
2149 q->pi_state->owner);
2150
2151out:
2152 return ret ? ret : locked;
2153}
2154
ca5f9524
DH
2155/**
2156 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2157 * @hb: the futex hash bucket, must be locked by the caller
2158 * @q: the futex_q to queue up on
2159 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2160 */
2161static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2162 struct hrtimer_sleeper *timeout)
ca5f9524 2163{
9beba3c5
DH
2164 /*
2165 * The task state is guaranteed to be set before another task can
b92b8b35 2166 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2167 * queue_me() calls spin_unlock() upon completion, both serializing
2168 * access to the hash list and forcing another memory barrier.
2169 */
f1a11e05 2170 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2171 queue_me(q, hb);
ca5f9524
DH
2172
2173 /* Arm the timer */
2e4b0d3f 2174 if (timeout)
ca5f9524 2175 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2176
2177 /*
0729e196
DH
2178 * If we have been removed from the hash list, then another task
2179 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2180 */
2181 if (likely(!plist_node_empty(&q->list))) {
2182 /*
2183 * If the timer has already expired, current will already be
2184 * flagged for rescheduling. Only call schedule if there
2185 * is no timeout, or if it has yet to expire.
2186 */
2187 if (!timeout || timeout->task)
88c8004f 2188 freezable_schedule();
ca5f9524
DH
2189 }
2190 __set_current_state(TASK_RUNNING);
2191}
2192
f801073f
DH
2193/**
2194 * futex_wait_setup() - Prepare to wait on a futex
2195 * @uaddr: the futex userspace address
2196 * @val: the expected value
b41277dc 2197 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2198 * @q: the associated futex_q
2199 * @hb: storage for hash_bucket pointer to be returned to caller
2200 *
2201 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2202 * compare it with the expected value. Handle atomic faults internally.
2203 * Return with the hb lock held and a q.key reference on success, and unlocked
2204 * with no q.key reference on failure.
2205 *
6c23cbbd
RD
2206 * Return:
2207 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2208 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2209 */
b41277dc 2210static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2211 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2212{
e2970f2f
IM
2213 u32 uval;
2214 int ret;
1da177e4 2215
1da177e4 2216 /*
b2d0994b 2217 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2218 * Order is important:
2219 *
2220 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2221 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2222 *
2223 * The basic logical guarantee of a futex is that it blocks ONLY
2224 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2225 * any cond. If we locked the hash-bucket after testing *uaddr, that
2226 * would open a race condition where we could block indefinitely with
1da177e4
LT
2227 * cond(var) false, which would violate the guarantee.
2228 *
8fe8f545
ML
2229 * On the other hand, we insert q and release the hash-bucket only
2230 * after testing *uaddr. This guarantees that futex_wait() will NOT
2231 * absorb a wakeup if *uaddr does not match the desired values
2232 * while the syscall executes.
1da177e4 2233 */
f801073f 2234retry:
9ea71503 2235 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2236 if (unlikely(ret != 0))
a5a2a0c7 2237 return ret;
f801073f
DH
2238
2239retry_private:
2240 *hb = queue_lock(q);
2241
e2970f2f 2242 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2243
f801073f 2244 if (ret) {
0d00c7b2 2245 queue_unlock(*hb);
1da177e4 2246
e2970f2f 2247 ret = get_user(uval, uaddr);
e4dc5b7a 2248 if (ret)
f801073f 2249 goto out;
1da177e4 2250
b41277dc 2251 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2252 goto retry_private;
2253
ae791a2d 2254 put_futex_key(&q->key);
e4dc5b7a 2255 goto retry;
1da177e4 2256 }
ca5f9524 2257
f801073f 2258 if (uval != val) {
0d00c7b2 2259 queue_unlock(*hb);
f801073f 2260 ret = -EWOULDBLOCK;
2fff78c7 2261 }
1da177e4 2262
f801073f
DH
2263out:
2264 if (ret)
ae791a2d 2265 put_futex_key(&q->key);
f801073f
DH
2266 return ret;
2267}
2268
b41277dc
DH
2269static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2270 ktime_t *abs_time, u32 bitset)
f801073f
DH
2271{
2272 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2273 struct restart_block *restart;
2274 struct futex_hash_bucket *hb;
5bdb05f9 2275 struct futex_q q = futex_q_init;
f801073f
DH
2276 int ret;
2277
2278 if (!bitset)
2279 return -EINVAL;
f801073f
DH
2280 q.bitset = bitset;
2281
2282 if (abs_time) {
2283 to = &timeout;
2284
b41277dc
DH
2285 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2286 CLOCK_REALTIME : CLOCK_MONOTONIC,
2287 HRTIMER_MODE_ABS);
f801073f
DH
2288 hrtimer_init_sleeper(to, current);
2289 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2290 current->timer_slack_ns);
2291 }
2292
d58e6576 2293retry:
7ada876a
DH
2294 /*
2295 * Prepare to wait on uaddr. On success, holds hb lock and increments
2296 * q.key refs.
2297 */
b41277dc 2298 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2299 if (ret)
2300 goto out;
2301
ca5f9524 2302 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2303 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2304
2305 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2306 ret = 0;
7ada876a 2307 /* unqueue_me() drops q.key ref */
1da177e4 2308 if (!unqueue_me(&q))
7ada876a 2309 goto out;
2fff78c7 2310 ret = -ETIMEDOUT;
ca5f9524 2311 if (to && !to->task)
7ada876a 2312 goto out;
72c1bbf3 2313
e2970f2f 2314 /*
d58e6576
TG
2315 * We expect signal_pending(current), but we might be the
2316 * victim of a spurious wakeup as well.
e2970f2f 2317 */
7ada876a 2318 if (!signal_pending(current))
d58e6576 2319 goto retry;
d58e6576 2320
2fff78c7 2321 ret = -ERESTARTSYS;
c19384b5 2322 if (!abs_time)
7ada876a 2323 goto out;
1da177e4 2324
f56141e3 2325 restart = &current->restart_block;
2fff78c7 2326 restart->fn = futex_wait_restart;
a3c74c52 2327 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2328 restart->futex.val = val;
2329 restart->futex.time = abs_time->tv64;
2330 restart->futex.bitset = bitset;
0cd9c649 2331 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2332
2fff78c7
PZ
2333 ret = -ERESTART_RESTARTBLOCK;
2334
42d35d48 2335out:
ca5f9524
DH
2336 if (to) {
2337 hrtimer_cancel(&to->timer);
2338 destroy_hrtimer_on_stack(&to->timer);
2339 }
c87e2837
IM
2340 return ret;
2341}
2342
72c1bbf3
NP
2343
2344static long futex_wait_restart(struct restart_block *restart)
2345{
a3c74c52 2346 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2347 ktime_t t, *tp = NULL;
72c1bbf3 2348
a72188d8
DH
2349 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2350 t.tv64 = restart->futex.time;
2351 tp = &t;
2352 }
72c1bbf3 2353 restart->fn = do_no_restart_syscall;
b41277dc
DH
2354
2355 return (long)futex_wait(uaddr, restart->futex.flags,
2356 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2357}
2358
2359
c87e2837
IM
2360/*
2361 * Userspace tried a 0 -> TID atomic transition of the futex value
2362 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2363 * if there are waiters then it will block as a consequence of relying
2364 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2365 * a 0 value of the futex too.).
2366 *
2367 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2368 */
996636dd 2369static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2370 ktime_t *time, int trylock)
c87e2837 2371{
c5780e97 2372 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2373 struct futex_hash_bucket *hb;
5bdb05f9 2374 struct futex_q q = futex_q_init;
dd973998 2375 int res, ret;
c87e2837
IM
2376
2377 if (refill_pi_state_cache())
2378 return -ENOMEM;
2379
c19384b5 2380 if (time) {
c5780e97 2381 to = &timeout;
237fc6e7
TG
2382 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2383 HRTIMER_MODE_ABS);
c5780e97 2384 hrtimer_init_sleeper(to, current);
cc584b21 2385 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2386 }
2387
42d35d48 2388retry:
9ea71503 2389 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2390 if (unlikely(ret != 0))
42d35d48 2391 goto out;
c87e2837 2392
e4dc5b7a 2393retry_private:
82af7aca 2394 hb = queue_lock(&q);
c87e2837 2395
bab5bc9e 2396 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2397 if (unlikely(ret)) {
767f509c
DB
2398 /*
2399 * Atomic work succeeded and we got the lock,
2400 * or failed. Either way, we do _not_ block.
2401 */
778e9a9c 2402 switch (ret) {
1a52084d
DH
2403 case 1:
2404 /* We got the lock. */
2405 ret = 0;
2406 goto out_unlock_put_key;
2407 case -EFAULT:
2408 goto uaddr_faulted;
778e9a9c
AK
2409 case -EAGAIN:
2410 /*
af54d6a1
TG
2411 * Two reasons for this:
2412 * - Task is exiting and we just wait for the
2413 * exit to complete.
2414 * - The user space value changed.
778e9a9c 2415 */
0d00c7b2 2416 queue_unlock(hb);
ae791a2d 2417 put_futex_key(&q.key);
778e9a9c
AK
2418 cond_resched();
2419 goto retry;
778e9a9c 2420 default:
42d35d48 2421 goto out_unlock_put_key;
c87e2837 2422 }
c87e2837
IM
2423 }
2424
2425 /*
2426 * Only actually queue now that the atomic ops are done:
2427 */
82af7aca 2428 queue_me(&q, hb);
c87e2837 2429
c87e2837
IM
2430 WARN_ON(!q.pi_state);
2431 /*
2432 * Block on the PI mutex:
2433 */
c051b21f
TG
2434 if (!trylock) {
2435 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2436 } else {
c87e2837
IM
2437 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2438 /* Fixup the trylock return value: */
2439 ret = ret ? 0 : -EWOULDBLOCK;
2440 }
2441
a99e4e41 2442 spin_lock(q.lock_ptr);
dd973998
DH
2443 /*
2444 * Fixup the pi_state owner and possibly acquire the lock if we
2445 * haven't already.
2446 */
ae791a2d 2447 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2448 /*
2449 * If fixup_owner() returned an error, proprogate that. If it acquired
2450 * the lock, clear our -ETIMEDOUT or -EINTR.
2451 */
2452 if (res)
2453 ret = (res < 0) ? res : 0;
c87e2837 2454
e8f6386c 2455 /*
dd973998
DH
2456 * If fixup_owner() faulted and was unable to handle the fault, unlock
2457 * it and return the fault to userspace.
e8f6386c
DH
2458 */
2459 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2460 rt_mutex_unlock(&q.pi_state->pi_mutex);
2461
778e9a9c
AK
2462 /* Unqueue and drop the lock */
2463 unqueue_me_pi(&q);
c87e2837 2464
5ecb01cf 2465 goto out_put_key;
c87e2837 2466
42d35d48 2467out_unlock_put_key:
0d00c7b2 2468 queue_unlock(hb);
c87e2837 2469
42d35d48 2470out_put_key:
ae791a2d 2471 put_futex_key(&q.key);
42d35d48 2472out:
237fc6e7
TG
2473 if (to)
2474 destroy_hrtimer_on_stack(&to->timer);
dd973998 2475 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2476
42d35d48 2477uaddr_faulted:
0d00c7b2 2478 queue_unlock(hb);
778e9a9c 2479
d0725992 2480 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2481 if (ret)
2482 goto out_put_key;
c87e2837 2483
b41277dc 2484 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2485 goto retry_private;
2486
ae791a2d 2487 put_futex_key(&q.key);
e4dc5b7a 2488 goto retry;
c87e2837
IM
2489}
2490
c87e2837
IM
2491/*
2492 * Userspace attempted a TID -> 0 atomic transition, and failed.
2493 * This is the in-kernel slowpath: we look up the PI state (if any),
2494 * and do the rt-mutex unlock.
2495 */
b41277dc 2496static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2497{
ccf9e6a8 2498 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2499 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2500 struct futex_hash_bucket *hb;
2501 struct futex_q *match;
e4dc5b7a 2502 int ret;
c87e2837
IM
2503
2504retry:
2505 if (get_user(uval, uaddr))
2506 return -EFAULT;
2507 /*
2508 * We release only a lock we actually own:
2509 */
c0c9ed15 2510 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2511 return -EPERM;
c87e2837 2512
9ea71503 2513 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2514 if (ret)
2515 return ret;
c87e2837
IM
2516
2517 hb = hash_futex(&key);
2518 spin_lock(&hb->lock);
2519
c87e2837 2520 /*
ccf9e6a8
TG
2521 * Check waiters first. We do not trust user space values at
2522 * all and we at least want to know if user space fiddled
2523 * with the futex value instead of blindly unlocking.
c87e2837 2524 */
ccf9e6a8
TG
2525 match = futex_top_waiter(hb, &key);
2526 if (match) {
802ab58d
SAS
2527 ret = wake_futex_pi(uaddr, uval, match, hb);
2528 /*
2529 * In case of success wake_futex_pi dropped the hash
2530 * bucket lock.
2531 */
2532 if (!ret)
2533 goto out_putkey;
c87e2837 2534 /*
ccf9e6a8
TG
2535 * The atomic access to the futex value generated a
2536 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2537 */
2538 if (ret == -EFAULT)
2539 goto pi_faulted;
802ab58d
SAS
2540 /*
2541 * wake_futex_pi has detected invalid state. Tell user
2542 * space.
2543 */
c87e2837
IM
2544 goto out_unlock;
2545 }
ccf9e6a8 2546
c87e2837 2547 /*
ccf9e6a8
TG
2548 * We have no kernel internal state, i.e. no waiters in the
2549 * kernel. Waiters which are about to queue themselves are stuck
2550 * on hb->lock. So we can safely ignore them. We do neither
2551 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2552 * owner.
c87e2837 2553 */
ccf9e6a8 2554 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2555 goto pi_faulted;
c87e2837 2556
ccf9e6a8
TG
2557 /*
2558 * If uval has changed, let user space handle it.
2559 */
2560 ret = (curval == uval) ? 0 : -EAGAIN;
2561
c87e2837
IM
2562out_unlock:
2563 spin_unlock(&hb->lock);
802ab58d 2564out_putkey:
ae791a2d 2565 put_futex_key(&key);
c87e2837
IM
2566 return ret;
2567
2568pi_faulted:
778e9a9c 2569 spin_unlock(&hb->lock);
ae791a2d 2570 put_futex_key(&key);
c87e2837 2571
d0725992 2572 ret = fault_in_user_writeable(uaddr);
b5686363 2573 if (!ret)
c87e2837
IM
2574 goto retry;
2575
1da177e4
LT
2576 return ret;
2577}
2578
52400ba9
DH
2579/**
2580 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2581 * @hb: the hash_bucket futex_q was original enqueued on
2582 * @q: the futex_q woken while waiting to be requeued
2583 * @key2: the futex_key of the requeue target futex
2584 * @timeout: the timeout associated with the wait (NULL if none)
2585 *
2586 * Detect if the task was woken on the initial futex as opposed to the requeue
2587 * target futex. If so, determine if it was a timeout or a signal that caused
2588 * the wakeup and return the appropriate error code to the caller. Must be
2589 * called with the hb lock held.
2590 *
6c23cbbd
RD
2591 * Return:
2592 * 0 = no early wakeup detected;
2593 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2594 */
2595static inline
2596int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2597 struct futex_q *q, union futex_key *key2,
2598 struct hrtimer_sleeper *timeout)
2599{
2600 int ret = 0;
2601
2602 /*
2603 * With the hb lock held, we avoid races while we process the wakeup.
2604 * We only need to hold hb (and not hb2) to ensure atomicity as the
2605 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2606 * It can't be requeued from uaddr2 to something else since we don't
2607 * support a PI aware source futex for requeue.
2608 */
2609 if (!match_futex(&q->key, key2)) {
2610 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2611 /*
2612 * We were woken prior to requeue by a timeout or a signal.
2613 * Unqueue the futex_q and determine which it was.
2614 */
2e12978a 2615 plist_del(&q->list, &hb->chain);
11d4616b 2616 hb_waiters_dec(hb);
52400ba9 2617
d58e6576 2618 /* Handle spurious wakeups gracefully */
11df6ddd 2619 ret = -EWOULDBLOCK;
52400ba9
DH
2620 if (timeout && !timeout->task)
2621 ret = -ETIMEDOUT;
d58e6576 2622 else if (signal_pending(current))
1c840c14 2623 ret = -ERESTARTNOINTR;
52400ba9
DH
2624 }
2625 return ret;
2626}
2627
2628/**
2629 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2630 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2631 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 2632 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
2633 * @val: the expected value of uaddr
2634 * @abs_time: absolute timeout
56ec1607 2635 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2636 * @uaddr2: the pi futex we will take prior to returning to user-space
2637 *
2638 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2639 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2640 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2641 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2642 * without one, the pi logic would not know which task to boost/deboost, if
2643 * there was a need to.
52400ba9
DH
2644 *
2645 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2646 * via the following--
52400ba9 2647 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2648 * 2) wakeup on uaddr2 after a requeue
2649 * 3) signal
2650 * 4) timeout
52400ba9 2651 *
cc6db4e6 2652 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2653 *
2654 * If 2, we may then block on trying to take the rt_mutex and return via:
2655 * 5) successful lock
2656 * 6) signal
2657 * 7) timeout
2658 * 8) other lock acquisition failure
2659 *
cc6db4e6 2660 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2661 *
2662 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2663 *
6c23cbbd
RD
2664 * Return:
2665 * 0 - On success;
52400ba9
DH
2666 * <0 - On error
2667 */
b41277dc 2668static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2669 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2670 u32 __user *uaddr2)
52400ba9
DH
2671{
2672 struct hrtimer_sleeper timeout, *to = NULL;
2673 struct rt_mutex_waiter rt_waiter;
2674 struct rt_mutex *pi_mutex = NULL;
52400ba9 2675 struct futex_hash_bucket *hb;
5bdb05f9
DH
2676 union futex_key key2 = FUTEX_KEY_INIT;
2677 struct futex_q q = futex_q_init;
52400ba9 2678 int res, ret;
52400ba9 2679
6f7b0a2a
DH
2680 if (uaddr == uaddr2)
2681 return -EINVAL;
2682
52400ba9
DH
2683 if (!bitset)
2684 return -EINVAL;
2685
2686 if (abs_time) {
2687 to = &timeout;
b41277dc
DH
2688 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2689 CLOCK_REALTIME : CLOCK_MONOTONIC,
2690 HRTIMER_MODE_ABS);
52400ba9
DH
2691 hrtimer_init_sleeper(to, current);
2692 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2693 current->timer_slack_ns);
2694 }
2695
2696 /*
2697 * The waiter is allocated on our stack, manipulated by the requeue
2698 * code while we sleep on uaddr.
2699 */
2700 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2701 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2702 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2703 rt_waiter.task = NULL;
2704
9ea71503 2705 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2706 if (unlikely(ret != 0))
2707 goto out;
2708
84bc4af5
DH
2709 q.bitset = bitset;
2710 q.rt_waiter = &rt_waiter;
2711 q.requeue_pi_key = &key2;
2712
7ada876a
DH
2713 /*
2714 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2715 * count.
2716 */
b41277dc 2717 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2718 if (ret)
2719 goto out_key2;
52400ba9 2720
e9c243a5
TG
2721 /*
2722 * The check above which compares uaddrs is not sufficient for
2723 * shared futexes. We need to compare the keys:
2724 */
2725 if (match_futex(&q.key, &key2)) {
13c42c2f 2726 queue_unlock(hb);
e9c243a5
TG
2727 ret = -EINVAL;
2728 goto out_put_keys;
2729 }
2730
52400ba9 2731 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2732 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2733
2734 spin_lock(&hb->lock);
2735 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2736 spin_unlock(&hb->lock);
2737 if (ret)
2738 goto out_put_keys;
2739
2740 /*
2741 * In order for us to be here, we know our q.key == key2, and since
2742 * we took the hb->lock above, we also know that futex_requeue() has
2743 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2744 * race with the atomic proxy lock acquisition by the requeue code. The
2745 * futex_requeue dropped our key1 reference and incremented our key2
2746 * reference count.
52400ba9
DH
2747 */
2748
2749 /* Check if the requeue code acquired the second futex for us. */
2750 if (!q.rt_waiter) {
2751 /*
2752 * Got the lock. We might not be the anticipated owner if we
2753 * did a lock-steal - fix up the PI-state in that case.
2754 */
2755 if (q.pi_state && (q.pi_state->owner != current)) {
2756 spin_lock(q.lock_ptr);
ae791a2d 2757 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2758 spin_unlock(q.lock_ptr);
2759 }
2760 } else {
2761 /*
2762 * We have been woken up by futex_unlock_pi(), a timeout, or a
2763 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2764 * the pi_state.
2765 */
f27071cb 2766 WARN_ON(!q.pi_state);
52400ba9 2767 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2768 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2769 debug_rt_mutex_free_waiter(&rt_waiter);
2770
2771 spin_lock(q.lock_ptr);
2772 /*
2773 * Fixup the pi_state owner and possibly acquire the lock if we
2774 * haven't already.
2775 */
ae791a2d 2776 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2777 /*
2778 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2779 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2780 */
2781 if (res)
2782 ret = (res < 0) ? res : 0;
2783
2784 /* Unqueue and drop the lock. */
2785 unqueue_me_pi(&q);
2786 }
2787
2788 /*
2789 * If fixup_pi_state_owner() faulted and was unable to handle the
2790 * fault, unlock the rt_mutex and return the fault to userspace.
2791 */
2792 if (ret == -EFAULT) {
b6070a8d 2793 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2794 rt_mutex_unlock(pi_mutex);
2795 } else if (ret == -EINTR) {
52400ba9 2796 /*
cc6db4e6
DH
2797 * We've already been requeued, but cannot restart by calling
2798 * futex_lock_pi() directly. We could restart this syscall, but
2799 * it would detect that the user space "val" changed and return
2800 * -EWOULDBLOCK. Save the overhead of the restart and return
2801 * -EWOULDBLOCK directly.
52400ba9 2802 */
2070887f 2803 ret = -EWOULDBLOCK;
52400ba9
DH
2804 }
2805
2806out_put_keys:
ae791a2d 2807 put_futex_key(&q.key);
c8b15a70 2808out_key2:
ae791a2d 2809 put_futex_key(&key2);
52400ba9
DH
2810
2811out:
2812 if (to) {
2813 hrtimer_cancel(&to->timer);
2814 destroy_hrtimer_on_stack(&to->timer);
2815 }
2816 return ret;
2817}
2818
0771dfef
IM
2819/*
2820 * Support for robust futexes: the kernel cleans up held futexes at
2821 * thread exit time.
2822 *
2823 * Implementation: user-space maintains a per-thread list of locks it
2824 * is holding. Upon do_exit(), the kernel carefully walks this list,
2825 * and marks all locks that are owned by this thread with the
c87e2837 2826 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2827 * always manipulated with the lock held, so the list is private and
2828 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2829 * field, to allow the kernel to clean up if the thread dies after
2830 * acquiring the lock, but just before it could have added itself to
2831 * the list. There can only be one such pending lock.
2832 */
2833
2834/**
d96ee56c
DH
2835 * sys_set_robust_list() - Set the robust-futex list head of a task
2836 * @head: pointer to the list-head
2837 * @len: length of the list-head, as userspace expects
0771dfef 2838 */
836f92ad
HC
2839SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2840 size_t, len)
0771dfef 2841{
a0c1e907
TG
2842 if (!futex_cmpxchg_enabled)
2843 return -ENOSYS;
0771dfef
IM
2844 /*
2845 * The kernel knows only one size for now:
2846 */
2847 if (unlikely(len != sizeof(*head)))
2848 return -EINVAL;
2849
2850 current->robust_list = head;
2851
2852 return 0;
2853}
2854
2855/**
d96ee56c
DH
2856 * sys_get_robust_list() - Get the robust-futex list head of a task
2857 * @pid: pid of the process [zero for current task]
2858 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2859 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2860 */
836f92ad
HC
2861SYSCALL_DEFINE3(get_robust_list, int, pid,
2862 struct robust_list_head __user * __user *, head_ptr,
2863 size_t __user *, len_ptr)
0771dfef 2864{
ba46df98 2865 struct robust_list_head __user *head;
0771dfef 2866 unsigned long ret;
bdbb776f 2867 struct task_struct *p;
0771dfef 2868
a0c1e907
TG
2869 if (!futex_cmpxchg_enabled)
2870 return -ENOSYS;
2871
bdbb776f
KC
2872 rcu_read_lock();
2873
2874 ret = -ESRCH;
0771dfef 2875 if (!pid)
bdbb776f 2876 p = current;
0771dfef 2877 else {
228ebcbe 2878 p = find_task_by_vpid(pid);
0771dfef
IM
2879 if (!p)
2880 goto err_unlock;
0771dfef
IM
2881 }
2882
bdbb776f
KC
2883 ret = -EPERM;
2884 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2885 goto err_unlock;
2886
2887 head = p->robust_list;
2888 rcu_read_unlock();
2889
0771dfef
IM
2890 if (put_user(sizeof(*head), len_ptr))
2891 return -EFAULT;
2892 return put_user(head, head_ptr);
2893
2894err_unlock:
aaa2a97e 2895 rcu_read_unlock();
0771dfef
IM
2896
2897 return ret;
2898}
2899
2900/*
2901 * Process a futex-list entry, check whether it's owned by the
2902 * dying task, and do notification if so:
2903 */
e3f2ddea 2904int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2905{
7cfdaf38 2906 u32 uval, uninitialized_var(nval), mval;
0771dfef 2907
8f17d3a5
IM
2908retry:
2909 if (get_user(uval, uaddr))
0771dfef
IM
2910 return -1;
2911
b488893a 2912 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2913 /*
2914 * Ok, this dying thread is truly holding a futex
2915 * of interest. Set the OWNER_DIED bit atomically
2916 * via cmpxchg, and if the value had FUTEX_WAITERS
2917 * set, wake up a waiter (if any). (We have to do a
2918 * futex_wake() even if OWNER_DIED is already set -
2919 * to handle the rare but possible case of recursive
2920 * thread-death.) The rest of the cleanup is done in
2921 * userspace.
2922 */
e3f2ddea 2923 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2924 /*
2925 * We are not holding a lock here, but we want to have
2926 * the pagefault_disable/enable() protection because
2927 * we want to handle the fault gracefully. If the
2928 * access fails we try to fault in the futex with R/W
2929 * verification via get_user_pages. get_user() above
2930 * does not guarantee R/W access. If that fails we
2931 * give up and leave the futex locked.
2932 */
2933 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2934 if (fault_in_user_writeable(uaddr))
2935 return -1;
2936 goto retry;
2937 }
c87e2837 2938 if (nval != uval)
8f17d3a5 2939 goto retry;
0771dfef 2940
e3f2ddea
IM
2941 /*
2942 * Wake robust non-PI futexes here. The wakeup of
2943 * PI futexes happens in exit_pi_state():
2944 */
36cf3b5c 2945 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2946 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2947 }
2948 return 0;
2949}
2950
e3f2ddea
IM
2951/*
2952 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2953 */
2954static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2955 struct robust_list __user * __user *head,
1dcc41bb 2956 unsigned int *pi)
e3f2ddea
IM
2957{
2958 unsigned long uentry;
2959
ba46df98 2960 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2961 return -EFAULT;
2962
ba46df98 2963 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2964 *pi = uentry & 1;
2965
2966 return 0;
2967}
2968
0771dfef
IM
2969/*
2970 * Walk curr->robust_list (very carefully, it's a userspace list!)
2971 * and mark any locks found there dead, and notify any waiters.
2972 *
2973 * We silently return on any sign of list-walking problem.
2974 */
2975void exit_robust_list(struct task_struct *curr)
2976{
2977 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2978 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2979 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2980 unsigned int uninitialized_var(next_pi);
0771dfef 2981 unsigned long futex_offset;
9f96cb1e 2982 int rc;
0771dfef 2983
a0c1e907
TG
2984 if (!futex_cmpxchg_enabled)
2985 return;
2986
0771dfef
IM
2987 /*
2988 * Fetch the list head (which was registered earlier, via
2989 * sys_set_robust_list()):
2990 */
e3f2ddea 2991 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2992 return;
2993 /*
2994 * Fetch the relative futex offset:
2995 */
2996 if (get_user(futex_offset, &head->futex_offset))
2997 return;
2998 /*
2999 * Fetch any possibly pending lock-add first, and handle it
3000 * if it exists:
3001 */
e3f2ddea 3002 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3003 return;
e3f2ddea 3004
9f96cb1e 3005 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3006 while (entry != &head->list) {
9f96cb1e
MS
3007 /*
3008 * Fetch the next entry in the list before calling
3009 * handle_futex_death:
3010 */
3011 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3012 /*
3013 * A pending lock might already be on the list, so
c87e2837 3014 * don't process it twice:
0771dfef
IM
3015 */
3016 if (entry != pending)
ba46df98 3017 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3018 curr, pi))
0771dfef 3019 return;
9f96cb1e 3020 if (rc)
0771dfef 3021 return;
9f96cb1e
MS
3022 entry = next_entry;
3023 pi = next_pi;
0771dfef
IM
3024 /*
3025 * Avoid excessively long or circular lists:
3026 */
3027 if (!--limit)
3028 break;
3029
3030 cond_resched();
3031 }
9f96cb1e
MS
3032
3033 if (pending)
3034 handle_futex_death((void __user *)pending + futex_offset,
3035 curr, pip);
0771dfef
IM
3036}
3037
c19384b5 3038long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3039 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3040{
81b40539 3041 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3042 unsigned int flags = 0;
34f01cc1
ED
3043
3044 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3045 flags |= FLAGS_SHARED;
1da177e4 3046
b41277dc
DH
3047 if (op & FUTEX_CLOCK_REALTIME) {
3048 flags |= FLAGS_CLOCKRT;
3049 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3050 return -ENOSYS;
3051 }
1da177e4 3052
59263b51
TG
3053 switch (cmd) {
3054 case FUTEX_LOCK_PI:
3055 case FUTEX_UNLOCK_PI:
3056 case FUTEX_TRYLOCK_PI:
3057 case FUTEX_WAIT_REQUEUE_PI:
3058 case FUTEX_CMP_REQUEUE_PI:
3059 if (!futex_cmpxchg_enabled)
3060 return -ENOSYS;
3061 }
3062
34f01cc1 3063 switch (cmd) {
1da177e4 3064 case FUTEX_WAIT:
cd689985
TG
3065 val3 = FUTEX_BITSET_MATCH_ANY;
3066 case FUTEX_WAIT_BITSET:
81b40539 3067 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3068 case FUTEX_WAKE:
cd689985
TG
3069 val3 = FUTEX_BITSET_MATCH_ANY;
3070 case FUTEX_WAKE_BITSET:
81b40539 3071 return futex_wake(uaddr, flags, val, val3);
1da177e4 3072 case FUTEX_REQUEUE:
81b40539 3073 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3074 case FUTEX_CMP_REQUEUE:
81b40539 3075 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3076 case FUTEX_WAKE_OP:
81b40539 3077 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3078 case FUTEX_LOCK_PI:
996636dd 3079 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3080 case FUTEX_UNLOCK_PI:
81b40539 3081 return futex_unlock_pi(uaddr, flags);
c87e2837 3082 case FUTEX_TRYLOCK_PI:
996636dd 3083 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3084 case FUTEX_WAIT_REQUEUE_PI:
3085 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3086 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3087 uaddr2);
52400ba9 3088 case FUTEX_CMP_REQUEUE_PI:
81b40539 3089 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3090 }
81b40539 3091 return -ENOSYS;
1da177e4
LT
3092}
3093
3094
17da2bd9
HC
3095SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3096 struct timespec __user *, utime, u32 __user *, uaddr2,
3097 u32, val3)
1da177e4 3098{
c19384b5
PP
3099 struct timespec ts;
3100 ktime_t t, *tp = NULL;
e2970f2f 3101 u32 val2 = 0;
34f01cc1 3102 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3103
cd689985 3104 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3105 cmd == FUTEX_WAIT_BITSET ||
3106 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3107 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3108 return -EFAULT;
c19384b5 3109 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3110 return -EFAULT;
c19384b5 3111 if (!timespec_valid(&ts))
9741ef96 3112 return -EINVAL;
c19384b5
PP
3113
3114 t = timespec_to_ktime(ts);
34f01cc1 3115 if (cmd == FUTEX_WAIT)
5a7780e7 3116 t = ktime_add_safe(ktime_get(), t);
c19384b5 3117 tp = &t;
1da177e4
LT
3118 }
3119 /*
52400ba9 3120 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3121 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3122 */
f54f0986 3123 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3124 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3125 val2 = (u32) (unsigned long) utime;
1da177e4 3126
c19384b5 3127 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3128}
3129
03b8c7b6 3130static void __init futex_detect_cmpxchg(void)
1da177e4 3131{
03b8c7b6 3132#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3133 u32 curval;
03b8c7b6
HC
3134
3135 /*
3136 * This will fail and we want it. Some arch implementations do
3137 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3138 * functionality. We want to know that before we call in any
3139 * of the complex code paths. Also we want to prevent
3140 * registration of robust lists in that case. NULL is
3141 * guaranteed to fault and we get -EFAULT on functional
3142 * implementation, the non-functional ones will return
3143 * -ENOSYS.
3144 */
3145 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3146 futex_cmpxchg_enabled = 1;
3147#endif
3148}
3149
3150static int __init futex_init(void)
3151{
63b1a816 3152 unsigned int futex_shift;
a52b89eb
DB
3153 unsigned long i;
3154
3155#if CONFIG_BASE_SMALL
3156 futex_hashsize = 16;
3157#else
3158 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3159#endif
3160
3161 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3162 futex_hashsize, 0,
3163 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3164 &futex_shift, NULL,
3165 futex_hashsize, futex_hashsize);
3166 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3167
3168 futex_detect_cmpxchg();
a0c1e907 3169
a52b89eb 3170 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3171 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3172 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3173 spin_lock_init(&futex_queues[i].lock);
3174 }
3175
1da177e4
LT
3176 return 0;
3177}
f6d107fb 3178__initcall(futex_init);