powerpc/mm/radix: Use the right page size for vmemmap mapping
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
04e7712f 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
57c8a661 69#include <linux/memblock.h>
ab51fbab 70#include <linux/fault-inject.h>
49262de2 71#include <linux/refcount.h>
b488893a 72
4732efbe 73#include <asm/futex.h>
1da177e4 74
1696a8be 75#include "locking/rtmutex_common.h"
c87e2837 76
99b60ce6 77/*
d7e8af1a
DB
78 * READ this before attempting to hack on futexes!
79 *
80 * Basic futex operation and ordering guarantees
81 * =============================================
99b60ce6
TG
82 *
83 * The waiter reads the futex value in user space and calls
84 * futex_wait(). This function computes the hash bucket and acquires
85 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
86 * again and verifies that the data has not changed. If it has not changed
87 * it enqueues itself into the hash bucket, releases the hash bucket lock
88 * and schedules.
99b60ce6
TG
89 *
90 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
91 * futex_wake(). This function computes the hash bucket and acquires the
92 * hash bucket lock. Then it looks for waiters on that futex in the hash
93 * bucket and wakes them.
99b60ce6 94 *
b0c29f79
DB
95 * In futex wake up scenarios where no tasks are blocked on a futex, taking
96 * the hb spinlock can be avoided and simply return. In order for this
97 * optimization to work, ordering guarantees must exist so that the waiter
98 * being added to the list is acknowledged when the list is concurrently being
99 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
100 *
101 * CPU 0 CPU 1
102 * val = *futex;
103 * sys_futex(WAIT, futex, val);
104 * futex_wait(futex, val);
105 * uval = *futex;
106 * *futex = newval;
107 * sys_futex(WAKE, futex);
108 * futex_wake(futex);
109 * if (queue_empty())
110 * return;
111 * if (uval == val)
112 * lock(hash_bucket(futex));
113 * queue();
114 * unlock(hash_bucket(futex));
115 * schedule();
116 *
117 * This would cause the waiter on CPU 0 to wait forever because it
118 * missed the transition of the user space value from val to newval
119 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 120 *
b0c29f79
DB
121 * The correct serialization ensures that a waiter either observes
122 * the changed user space value before blocking or is woken by a
123 * concurrent waker:
124 *
125 * CPU 0 CPU 1
99b60ce6
TG
126 * val = *futex;
127 * sys_futex(WAIT, futex, val);
128 * futex_wait(futex, val);
b0c29f79 129 *
d7e8af1a 130 * waiters++; (a)
8ad7b378
DB
131 * smp_mb(); (A) <-- paired with -.
132 * |
133 * lock(hash_bucket(futex)); |
134 * |
135 * uval = *futex; |
136 * | *futex = newval;
137 * | sys_futex(WAKE, futex);
138 * | futex_wake(futex);
139 * |
140 * `--------> smp_mb(); (B)
99b60ce6 141 * if (uval == val)
b0c29f79 142 * queue();
99b60ce6 143 * unlock(hash_bucket(futex));
b0c29f79
DB
144 * schedule(); if (waiters)
145 * lock(hash_bucket(futex));
d7e8af1a
DB
146 * else wake_waiters(futex);
147 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 148 *
d7e8af1a
DB
149 * Where (A) orders the waiters increment and the futex value read through
150 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
151 * to futex and the waiters read -- this is done by the barriers for both
152 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
153 *
154 * This yields the following case (where X:=waiters, Y:=futex):
155 *
156 * X = Y = 0
157 *
158 * w[X]=1 w[Y]=1
159 * MB MB
160 * r[Y]=y r[X]=x
161 *
162 * Which guarantees that x==0 && y==0 is impossible; which translates back into
163 * the guarantee that we cannot both miss the futex variable change and the
164 * enqueue.
d7e8af1a
DB
165 *
166 * Note that a new waiter is accounted for in (a) even when it is possible that
167 * the wait call can return error, in which case we backtrack from it in (b).
168 * Refer to the comment in queue_lock().
169 *
170 * Similarly, in order to account for waiters being requeued on another
171 * address we always increment the waiters for the destination bucket before
172 * acquiring the lock. It then decrements them again after releasing it -
173 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
174 * will do the additional required waiter count housekeeping. This is done for
175 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
176 */
177
04e7712f
AB
178#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
179#define futex_cmpxchg_enabled 1
180#else
181static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 182#endif
a0c1e907 183
b41277dc
DH
184/*
185 * Futex flags used to encode options to functions and preserve them across
186 * restarts.
187 */
784bdf3b
TG
188#ifdef CONFIG_MMU
189# define FLAGS_SHARED 0x01
190#else
191/*
192 * NOMMU does not have per process address space. Let the compiler optimize
193 * code away.
194 */
195# define FLAGS_SHARED 0x00
196#endif
b41277dc
DH
197#define FLAGS_CLOCKRT 0x02
198#define FLAGS_HAS_TIMEOUT 0x04
199
c87e2837
IM
200/*
201 * Priority Inheritance state:
202 */
203struct futex_pi_state {
204 /*
205 * list of 'owned' pi_state instances - these have to be
206 * cleaned up in do_exit() if the task exits prematurely:
207 */
208 struct list_head list;
209
210 /*
211 * The PI object:
212 */
213 struct rt_mutex pi_mutex;
214
215 struct task_struct *owner;
49262de2 216 refcount_t refcount;
c87e2837
IM
217
218 union futex_key key;
3859a271 219} __randomize_layout;
c87e2837 220
d8d88fbb
DH
221/**
222 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 223 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
224 * @task: the task waiting on the futex
225 * @lock_ptr: the hash bucket lock
226 * @key: the key the futex is hashed on
227 * @pi_state: optional priority inheritance state
228 * @rt_waiter: rt_waiter storage for use with requeue_pi
229 * @requeue_pi_key: the requeue_pi target futex key
230 * @bitset: bitset for the optional bitmasked wakeup
231 *
ac6424b9 232 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
233 * we can wake only the relevant ones (hashed queues may be shared).
234 *
235 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 236 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 237 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
238 * the second.
239 *
240 * PI futexes are typically woken before they are removed from the hash list via
241 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
242 */
243struct futex_q {
ec92d082 244 struct plist_node list;
1da177e4 245
d8d88fbb 246 struct task_struct *task;
1da177e4 247 spinlock_t *lock_ptr;
1da177e4 248 union futex_key key;
c87e2837 249 struct futex_pi_state *pi_state;
52400ba9 250 struct rt_mutex_waiter *rt_waiter;
84bc4af5 251 union futex_key *requeue_pi_key;
cd689985 252 u32 bitset;
3859a271 253} __randomize_layout;
1da177e4 254
5bdb05f9
DH
255static const struct futex_q futex_q_init = {
256 /* list gets initialized in queue_me()*/
257 .key = FUTEX_KEY_INIT,
258 .bitset = FUTEX_BITSET_MATCH_ANY
259};
260
1da177e4 261/*
b2d0994b
DH
262 * Hash buckets are shared by all the futex_keys that hash to the same
263 * location. Each key may have multiple futex_q structures, one for each task
264 * waiting on a futex.
1da177e4
LT
265 */
266struct futex_hash_bucket {
11d4616b 267 atomic_t waiters;
ec92d082
PP
268 spinlock_t lock;
269 struct plist_head chain;
a52b89eb 270} ____cacheline_aligned_in_smp;
1da177e4 271
ac742d37
RV
272/*
273 * The base of the bucket array and its size are always used together
274 * (after initialization only in hash_futex()), so ensure that they
275 * reside in the same cacheline.
276 */
277static struct {
278 struct futex_hash_bucket *queues;
279 unsigned long hashsize;
280} __futex_data __read_mostly __aligned(2*sizeof(long));
281#define futex_queues (__futex_data.queues)
282#define futex_hashsize (__futex_data.hashsize)
a52b89eb 283
1da177e4 284
ab51fbab
DB
285/*
286 * Fault injections for futexes.
287 */
288#ifdef CONFIG_FAIL_FUTEX
289
290static struct {
291 struct fault_attr attr;
292
621a5f7a 293 bool ignore_private;
ab51fbab
DB
294} fail_futex = {
295 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 296 .ignore_private = false,
ab51fbab
DB
297};
298
299static int __init setup_fail_futex(char *str)
300{
301 return setup_fault_attr(&fail_futex.attr, str);
302}
303__setup("fail_futex=", setup_fail_futex);
304
5d285a7f 305static bool should_fail_futex(bool fshared)
ab51fbab
DB
306{
307 if (fail_futex.ignore_private && !fshared)
308 return false;
309
310 return should_fail(&fail_futex.attr, 1);
311}
312
313#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
314
315static int __init fail_futex_debugfs(void)
316{
317 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
318 struct dentry *dir;
319
320 dir = fault_create_debugfs_attr("fail_futex", NULL,
321 &fail_futex.attr);
322 if (IS_ERR(dir))
323 return PTR_ERR(dir);
324
0365aeba
GKH
325 debugfs_create_bool("ignore-private", mode, dir,
326 &fail_futex.ignore_private);
ab51fbab
DB
327 return 0;
328}
329
330late_initcall(fail_futex_debugfs);
331
332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334#else
335static inline bool should_fail_futex(bool fshared)
336{
337 return false;
338}
339#endif /* CONFIG_FAIL_FUTEX */
340
b0c29f79
DB
341static inline void futex_get_mm(union futex_key *key)
342{
f1f10076 343 mmgrab(key->private.mm);
b0c29f79
DB
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 347 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 348 */
4e857c58 349 smp_mb__after_atomic();
b0c29f79
DB
350}
351
11d4616b
LT
352/*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
356{
357#ifdef CONFIG_SMP
11d4616b 358 atomic_inc(&hb->waiters);
b0c29f79 359 /*
11d4616b 360 * Full barrier (A), see the ordering comment above.
b0c29f79 361 */
4e857c58 362 smp_mb__after_atomic();
11d4616b
LT
363#endif
364}
365
366/*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371{
372#ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374#endif
375}
b0c29f79 376
11d4616b
LT
377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378{
379#ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
b0c29f79 381#else
11d4616b 382 return 1;
b0c29f79
DB
383#endif
384}
385
e8b61b3f
TG
386/**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
1da177e4
LT
392 */
393static struct futex_hash_bucket *hash_futex(union futex_key *key)
394{
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
a52b89eb 398 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
399}
400
e8b61b3f
TG
401
402/**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
1da177e4
LT
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409static inline int match_futex(union futex_key *key1, union futex_key *key2)
410{
2bc87203
DH
411 return (key1 && key2
412 && key1->both.word == key2->both.word
1da177e4
LT
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415}
416
38d47c1b
PZ
417/*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422static void get_futex_key_refs(union futex_key *key)
423{
424 if (!key->both.ptr)
425 return;
426
784bdf3b
TG
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
38d47c1b
PZ
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
8ad7b378 439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
440 break;
441 case FUT_OFF_MMSHARED:
8ad7b378 442 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 443 break;
76835b0e 444 default:
993b2ff2
DB
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
8ad7b378 450 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
451 }
452}
453
454/*
455 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
38d47c1b
PZ
459 */
460static void drop_futex_key_refs(union futex_key *key)
461{
90621c40
DH
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
38d47c1b 465 return;
90621c40 466 }
38d47c1b 467
784bdf3b
TG
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
38d47c1b
PZ
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479}
480
96d4f267
LT
481enum futex_access {
482 FUTEX_READ,
483 FUTEX_WRITE
484};
485
34f01cc1 486/**
d96ee56c
DH
487 * get_futex_key() - Get parameters which are the keys for a futex
488 * @uaddr: virtual address of the futex
489 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
490 * @key: address where result is stored.
96d4f267
LT
491 * @rw: mapping needs to be read/write (values: FUTEX_READ,
492 * FUTEX_WRITE)
34f01cc1 493 *
6c23cbbd
RD
494 * Return: a negative error code or 0
495 *
7b4ff1ad 496 * The key words are stored in @key on success.
1da177e4 497 *
6131ffaa 498 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
499 * offset_within_page). For private mappings, it's (uaddr, current->mm).
500 * We can usually work out the index without swapping in the page.
501 *
b2d0994b 502 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 503 */
64d1304a 504static int
96d4f267 505get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 506{
e2970f2f 507 unsigned long address = (unsigned long)uaddr;
1da177e4 508 struct mm_struct *mm = current->mm;
077fa7ae 509 struct page *page, *tail;
14d27abd 510 struct address_space *mapping;
9ea71503 511 int err, ro = 0;
1da177e4
LT
512
513 /*
514 * The futex address must be "naturally" aligned.
515 */
e2970f2f 516 key->both.offset = address % PAGE_SIZE;
34f01cc1 517 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 518 return -EINVAL;
e2970f2f 519 address -= key->both.offset;
1da177e4 520
96d4f267 521 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
522 return -EFAULT;
523
ab51fbab
DB
524 if (unlikely(should_fail_futex(fshared)))
525 return -EFAULT;
526
34f01cc1
ED
527 /*
528 * PROCESS_PRIVATE futexes are fast.
529 * As the mm cannot disappear under us and the 'key' only needs
530 * virtual address, we dont even have to find the underlying vma.
531 * Note : We do have to check 'uaddr' is a valid user address,
532 * but access_ok() should be faster than find_vma()
533 */
534 if (!fshared) {
34f01cc1
ED
535 key->private.mm = mm;
536 key->private.address = address;
8ad7b378 537 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
538 return 0;
539 }
1da177e4 540
38d47c1b 541again:
ab51fbab
DB
542 /* Ignore any VERIFY_READ mapping (futex common case) */
543 if (unlikely(should_fail_futex(fshared)))
544 return -EFAULT;
545
73b0140b 546 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
9ea71503
SB
547 /*
548 * If write access is not required (eg. FUTEX_WAIT), try
549 * and get read-only access.
550 */
96d4f267 551 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
552 err = get_user_pages_fast(address, 1, 0, &page);
553 ro = 1;
554 }
38d47c1b
PZ
555 if (err < 0)
556 return err;
9ea71503
SB
557 else
558 err = 0;
38d47c1b 559
65d8fc77
MG
560 /*
561 * The treatment of mapping from this point on is critical. The page
562 * lock protects many things but in this context the page lock
563 * stabilizes mapping, prevents inode freeing in the shared
564 * file-backed region case and guards against movement to swap cache.
565 *
566 * Strictly speaking the page lock is not needed in all cases being
567 * considered here and page lock forces unnecessarily serialization
568 * From this point on, mapping will be re-verified if necessary and
569 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
570 *
571 * Mapping checks require the head page for any compound page so the
572 * head page and mapping is looked up now. For anonymous pages, it
573 * does not matter if the page splits in the future as the key is
574 * based on the address. For filesystem-backed pages, the tail is
575 * required as the index of the page determines the key. For
576 * base pages, there is no tail page and tail == page.
65d8fc77 577 */
077fa7ae 578 tail = page;
65d8fc77
MG
579 page = compound_head(page);
580 mapping = READ_ONCE(page->mapping);
581
e6780f72 582 /*
14d27abd 583 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
584 * page; but it might be the ZERO_PAGE or in the gate area or
585 * in a special mapping (all cases which we are happy to fail);
586 * or it may have been a good file page when get_user_pages_fast
587 * found it, but truncated or holepunched or subjected to
588 * invalidate_complete_page2 before we got the page lock (also
589 * cases which we are happy to fail). And we hold a reference,
590 * so refcount care in invalidate_complete_page's remove_mapping
591 * prevents drop_caches from setting mapping to NULL beneath us.
592 *
593 * The case we do have to guard against is when memory pressure made
594 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 595 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 596 */
65d8fc77
MG
597 if (unlikely(!mapping)) {
598 int shmem_swizzled;
599
600 /*
601 * Page lock is required to identify which special case above
602 * applies. If this is really a shmem page then the page lock
603 * will prevent unexpected transitions.
604 */
605 lock_page(page);
606 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
607 unlock_page(page);
608 put_page(page);
65d8fc77 609
e6780f72
HD
610 if (shmem_swizzled)
611 goto again;
65d8fc77 612
e6780f72 613 return -EFAULT;
38d47c1b 614 }
1da177e4
LT
615
616 /*
617 * Private mappings are handled in a simple way.
618 *
65d8fc77
MG
619 * If the futex key is stored on an anonymous page, then the associated
620 * object is the mm which is implicitly pinned by the calling process.
621 *
1da177e4
LT
622 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
623 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 624 * the object not the particular process.
1da177e4 625 */
14d27abd 626 if (PageAnon(page)) {
9ea71503
SB
627 /*
628 * A RO anonymous page will never change and thus doesn't make
629 * sense for futex operations.
630 */
ab51fbab 631 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
632 err = -EFAULT;
633 goto out;
634 }
635
38d47c1b 636 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 637 key->private.mm = mm;
e2970f2f 638 key->private.address = address;
65d8fc77
MG
639
640 get_futex_key_refs(key); /* implies smp_mb(); (B) */
641
38d47c1b 642 } else {
65d8fc77
MG
643 struct inode *inode;
644
645 /*
646 * The associated futex object in this case is the inode and
647 * the page->mapping must be traversed. Ordinarily this should
648 * be stabilised under page lock but it's not strictly
649 * necessary in this case as we just want to pin the inode, not
650 * update the radix tree or anything like that.
651 *
652 * The RCU read lock is taken as the inode is finally freed
653 * under RCU. If the mapping still matches expectations then the
654 * mapping->host can be safely accessed as being a valid inode.
655 */
656 rcu_read_lock();
657
658 if (READ_ONCE(page->mapping) != mapping) {
659 rcu_read_unlock();
660 put_page(page);
661
662 goto again;
663 }
664
665 inode = READ_ONCE(mapping->host);
666 if (!inode) {
667 rcu_read_unlock();
668 put_page(page);
669
670 goto again;
671 }
672
673 /*
674 * Take a reference unless it is about to be freed. Previously
675 * this reference was taken by ihold under the page lock
676 * pinning the inode in place so i_lock was unnecessary. The
677 * only way for this check to fail is if the inode was
48fb6f4d
MG
678 * truncated in parallel which is almost certainly an
679 * application bug. In such a case, just retry.
65d8fc77
MG
680 *
681 * We are not calling into get_futex_key_refs() in file-backed
682 * cases, therefore a successful atomic_inc return below will
683 * guarantee that get_futex_key() will still imply smp_mb(); (B).
684 */
48fb6f4d 685 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
686 rcu_read_unlock();
687 put_page(page);
688
689 goto again;
690 }
691
692 /* Should be impossible but lets be paranoid for now */
693 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
694 err = -EFAULT;
695 rcu_read_unlock();
696 iput(inode);
697
698 goto out;
699 }
700
38d47c1b 701 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 702 key->shared.inode = inode;
077fa7ae 703 key->shared.pgoff = basepage_index(tail);
65d8fc77 704 rcu_read_unlock();
1da177e4
LT
705 }
706
9ea71503 707out:
14d27abd 708 put_page(page);
9ea71503 709 return err;
1da177e4
LT
710}
711
ae791a2d 712static inline void put_futex_key(union futex_key *key)
1da177e4 713{
38d47c1b 714 drop_futex_key_refs(key);
1da177e4
LT
715}
716
d96ee56c
DH
717/**
718 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
719 * @uaddr: pointer to faulting user space address
720 *
721 * Slow path to fixup the fault we just took in the atomic write
722 * access to @uaddr.
723 *
fb62db2b 724 * We have no generic implementation of a non-destructive write to the
d0725992
TG
725 * user address. We know that we faulted in the atomic pagefault
726 * disabled section so we can as well avoid the #PF overhead by
727 * calling get_user_pages() right away.
728 */
729static int fault_in_user_writeable(u32 __user *uaddr)
730{
722d0172
AK
731 struct mm_struct *mm = current->mm;
732 int ret;
733
734 down_read(&mm->mmap_sem);
2efaca92 735 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 736 FAULT_FLAG_WRITE, NULL);
722d0172
AK
737 up_read(&mm->mmap_sem);
738
d0725992
TG
739 return ret < 0 ? ret : 0;
740}
741
4b1c486b
DH
742/**
743 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
744 * @hb: the hash bucket the futex_q's reside in
745 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
746 *
747 * Must be called with the hb lock held.
748 */
749static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
750 union futex_key *key)
751{
752 struct futex_q *this;
753
754 plist_for_each_entry(this, &hb->chain, list) {
755 if (match_futex(&this->key, key))
756 return this;
757 }
758 return NULL;
759}
760
37a9d912
ML
761static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
762 u32 uval, u32 newval)
36cf3b5c 763{
37a9d912 764 int ret;
36cf3b5c
TG
765
766 pagefault_disable();
37a9d912 767 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
768 pagefault_enable();
769
37a9d912 770 return ret;
36cf3b5c
TG
771}
772
773static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
774{
775 int ret;
776
a866374a 777 pagefault_disable();
bd28b145 778 ret = __get_user(*dest, from);
a866374a 779 pagefault_enable();
1da177e4
LT
780
781 return ret ? -EFAULT : 0;
782}
783
c87e2837
IM
784
785/*
786 * PI code:
787 */
788static int refill_pi_state_cache(void)
789{
790 struct futex_pi_state *pi_state;
791
792 if (likely(current->pi_state_cache))
793 return 0;
794
4668edc3 795 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
796
797 if (!pi_state)
798 return -ENOMEM;
799
c87e2837
IM
800 INIT_LIST_HEAD(&pi_state->list);
801 /* pi_mutex gets initialized later */
802 pi_state->owner = NULL;
49262de2 803 refcount_set(&pi_state->refcount, 1);
38d47c1b 804 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
805
806 current->pi_state_cache = pi_state;
807
808 return 0;
809}
810
bf92cf3a 811static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
812{
813 struct futex_pi_state *pi_state = current->pi_state_cache;
814
815 WARN_ON(!pi_state);
816 current->pi_state_cache = NULL;
817
818 return pi_state;
819}
820
bf92cf3a
PZ
821static void get_pi_state(struct futex_pi_state *pi_state)
822{
49262de2 823 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
bf92cf3a
PZ
824}
825
30a6b803 826/*
29e9ee5d
TG
827 * Drops a reference to the pi_state object and frees or caches it
828 * when the last reference is gone.
30a6b803 829 */
29e9ee5d 830static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 831{
30a6b803
BS
832 if (!pi_state)
833 return;
834
49262de2 835 if (!refcount_dec_and_test(&pi_state->refcount))
c87e2837
IM
836 return;
837
838 /*
839 * If pi_state->owner is NULL, the owner is most probably dying
840 * and has cleaned up the pi_state already
841 */
842 if (pi_state->owner) {
c74aef2d 843 struct task_struct *owner;
c87e2837 844
c74aef2d
PZ
845 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
846 owner = pi_state->owner;
847 if (owner) {
848 raw_spin_lock(&owner->pi_lock);
849 list_del_init(&pi_state->list);
850 raw_spin_unlock(&owner->pi_lock);
851 }
852 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
853 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
854 }
855
c74aef2d 856 if (current->pi_state_cache) {
c87e2837 857 kfree(pi_state);
c74aef2d 858 } else {
c87e2837
IM
859 /*
860 * pi_state->list is already empty.
861 * clear pi_state->owner.
862 * refcount is at 0 - put it back to 1.
863 */
864 pi_state->owner = NULL;
49262de2 865 refcount_set(&pi_state->refcount, 1);
c87e2837
IM
866 current->pi_state_cache = pi_state;
867 }
868}
869
bc2eecd7
NP
870#ifdef CONFIG_FUTEX_PI
871
c87e2837
IM
872/*
873 * This task is holding PI mutexes at exit time => bad.
874 * Kernel cleans up PI-state, but userspace is likely hosed.
875 * (Robust-futex cleanup is separate and might save the day for userspace.)
876 */
877void exit_pi_state_list(struct task_struct *curr)
878{
c87e2837
IM
879 struct list_head *next, *head = &curr->pi_state_list;
880 struct futex_pi_state *pi_state;
627371d7 881 struct futex_hash_bucket *hb;
38d47c1b 882 union futex_key key = FUTEX_KEY_INIT;
c87e2837 883
a0c1e907
TG
884 if (!futex_cmpxchg_enabled)
885 return;
c87e2837
IM
886 /*
887 * We are a ZOMBIE and nobody can enqueue itself on
888 * pi_state_list anymore, but we have to be careful
627371d7 889 * versus waiters unqueueing themselves:
c87e2837 890 */
1d615482 891 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 892 while (!list_empty(head)) {
c87e2837
IM
893 next = head->next;
894 pi_state = list_entry(next, struct futex_pi_state, list);
895 key = pi_state->key;
627371d7 896 hb = hash_futex(&key);
153fbd12
PZ
897
898 /*
899 * We can race against put_pi_state() removing itself from the
900 * list (a waiter going away). put_pi_state() will first
901 * decrement the reference count and then modify the list, so
902 * its possible to see the list entry but fail this reference
903 * acquire.
904 *
905 * In that case; drop the locks to let put_pi_state() make
906 * progress and retry the loop.
907 */
49262de2 908 if (!refcount_inc_not_zero(&pi_state->refcount)) {
153fbd12
PZ
909 raw_spin_unlock_irq(&curr->pi_lock);
910 cpu_relax();
911 raw_spin_lock_irq(&curr->pi_lock);
912 continue;
913 }
1d615482 914 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 915
c87e2837 916 spin_lock(&hb->lock);
c74aef2d
PZ
917 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
918 raw_spin_lock(&curr->pi_lock);
627371d7
IM
919 /*
920 * We dropped the pi-lock, so re-check whether this
921 * task still owns the PI-state:
922 */
c87e2837 923 if (head->next != next) {
153fbd12 924 /* retain curr->pi_lock for the loop invariant */
c74aef2d 925 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 926 spin_unlock(&hb->lock);
153fbd12 927 put_pi_state(pi_state);
c87e2837
IM
928 continue;
929 }
930
c87e2837 931 WARN_ON(pi_state->owner != curr);
627371d7
IM
932 WARN_ON(list_empty(&pi_state->list));
933 list_del_init(&pi_state->list);
c87e2837 934 pi_state->owner = NULL;
c87e2837 935
153fbd12 936 raw_spin_unlock(&curr->pi_lock);
c74aef2d 937 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
938 spin_unlock(&hb->lock);
939
16ffa12d
PZ
940 rt_mutex_futex_unlock(&pi_state->pi_mutex);
941 put_pi_state(pi_state);
942
1d615482 943 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 944 }
1d615482 945 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
946}
947
bc2eecd7
NP
948#endif
949
54a21788
TG
950/*
951 * We need to check the following states:
952 *
953 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
954 *
955 * [1] NULL | --- | --- | 0 | 0/1 | Valid
956 * [2] NULL | --- | --- | >0 | 0/1 | Valid
957 *
958 * [3] Found | NULL | -- | Any | 0/1 | Invalid
959 *
960 * [4] Found | Found | NULL | 0 | 1 | Valid
961 * [5] Found | Found | NULL | >0 | 1 | Invalid
962 *
963 * [6] Found | Found | task | 0 | 1 | Valid
964 *
965 * [7] Found | Found | NULL | Any | 0 | Invalid
966 *
967 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
968 * [9] Found | Found | task | 0 | 0 | Invalid
969 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
970 *
971 * [1] Indicates that the kernel can acquire the futex atomically. We
972 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
973 *
974 * [2] Valid, if TID does not belong to a kernel thread. If no matching
975 * thread is found then it indicates that the owner TID has died.
976 *
977 * [3] Invalid. The waiter is queued on a non PI futex
978 *
979 * [4] Valid state after exit_robust_list(), which sets the user space
980 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
981 *
982 * [5] The user space value got manipulated between exit_robust_list()
983 * and exit_pi_state_list()
984 *
985 * [6] Valid state after exit_pi_state_list() which sets the new owner in
986 * the pi_state but cannot access the user space value.
987 *
988 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
989 *
990 * [8] Owner and user space value match
991 *
992 * [9] There is no transient state which sets the user space TID to 0
993 * except exit_robust_list(), but this is indicated by the
994 * FUTEX_OWNER_DIED bit. See [4]
995 *
996 * [10] There is no transient state which leaves owner and user space
997 * TID out of sync.
734009e9
PZ
998 *
999 *
1000 * Serialization and lifetime rules:
1001 *
1002 * hb->lock:
1003 *
1004 * hb -> futex_q, relation
1005 * futex_q -> pi_state, relation
1006 *
1007 * (cannot be raw because hb can contain arbitrary amount
1008 * of futex_q's)
1009 *
1010 * pi_mutex->wait_lock:
1011 *
1012 * {uval, pi_state}
1013 *
1014 * (and pi_mutex 'obviously')
1015 *
1016 * p->pi_lock:
1017 *
1018 * p->pi_state_list -> pi_state->list, relation
1019 *
1020 * pi_state->refcount:
1021 *
1022 * pi_state lifetime
1023 *
1024 *
1025 * Lock order:
1026 *
1027 * hb->lock
1028 * pi_mutex->wait_lock
1029 * p->pi_lock
1030 *
54a21788 1031 */
e60cbc5c
TG
1032
1033/*
1034 * Validate that the existing waiter has a pi_state and sanity check
1035 * the pi_state against the user space value. If correct, attach to
1036 * it.
1037 */
734009e9
PZ
1038static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1039 struct futex_pi_state *pi_state,
e60cbc5c 1040 struct futex_pi_state **ps)
c87e2837 1041{
778e9a9c 1042 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1043 u32 uval2;
1044 int ret;
c87e2837 1045
e60cbc5c
TG
1046 /*
1047 * Userspace might have messed up non-PI and PI futexes [3]
1048 */
1049 if (unlikely(!pi_state))
1050 return -EINVAL;
06a9ec29 1051
734009e9
PZ
1052 /*
1053 * We get here with hb->lock held, and having found a
1054 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1055 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1056 * which in turn means that futex_lock_pi() still has a reference on
1057 * our pi_state.
16ffa12d
PZ
1058 *
1059 * The waiter holding a reference on @pi_state also protects against
1060 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1061 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1062 * free pi_state before we can take a reference ourselves.
734009e9 1063 */
49262de2 1064 WARN_ON(!refcount_read(&pi_state->refcount));
59647b6a 1065
734009e9
PZ
1066 /*
1067 * Now that we have a pi_state, we can acquire wait_lock
1068 * and do the state validation.
1069 */
1070 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1071
1072 /*
1073 * Since {uval, pi_state} is serialized by wait_lock, and our current
1074 * uval was read without holding it, it can have changed. Verify it
1075 * still is what we expect it to be, otherwise retry the entire
1076 * operation.
1077 */
1078 if (get_futex_value_locked(&uval2, uaddr))
1079 goto out_efault;
1080
1081 if (uval != uval2)
1082 goto out_eagain;
1083
e60cbc5c
TG
1084 /*
1085 * Handle the owner died case:
1086 */
1087 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1088 /*
e60cbc5c
TG
1089 * exit_pi_state_list sets owner to NULL and wakes the
1090 * topmost waiter. The task which acquires the
1091 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1092 */
e60cbc5c 1093 if (!pi_state->owner) {
59647b6a 1094 /*
e60cbc5c
TG
1095 * No pi state owner, but the user space TID
1096 * is not 0. Inconsistent state. [5]
59647b6a 1097 */
e60cbc5c 1098 if (pid)
734009e9 1099 goto out_einval;
bd1dbcc6 1100 /*
e60cbc5c 1101 * Take a ref on the state and return success. [4]
866293ee 1102 */
734009e9 1103 goto out_attach;
c87e2837 1104 }
bd1dbcc6
TG
1105
1106 /*
e60cbc5c
TG
1107 * If TID is 0, then either the dying owner has not
1108 * yet executed exit_pi_state_list() or some waiter
1109 * acquired the rtmutex in the pi state, but did not
1110 * yet fixup the TID in user space.
1111 *
1112 * Take a ref on the state and return success. [6]
1113 */
1114 if (!pid)
734009e9 1115 goto out_attach;
e60cbc5c
TG
1116 } else {
1117 /*
1118 * If the owner died bit is not set, then the pi_state
1119 * must have an owner. [7]
bd1dbcc6 1120 */
e60cbc5c 1121 if (!pi_state->owner)
734009e9 1122 goto out_einval;
c87e2837
IM
1123 }
1124
e60cbc5c
TG
1125 /*
1126 * Bail out if user space manipulated the futex value. If pi
1127 * state exists then the owner TID must be the same as the
1128 * user space TID. [9/10]
1129 */
1130 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1131 goto out_einval;
1132
1133out_attach:
bf92cf3a 1134 get_pi_state(pi_state);
734009e9 1135 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1136 *ps = pi_state;
1137 return 0;
734009e9
PZ
1138
1139out_einval:
1140 ret = -EINVAL;
1141 goto out_error;
1142
1143out_eagain:
1144 ret = -EAGAIN;
1145 goto out_error;
1146
1147out_efault:
1148 ret = -EFAULT;
1149 goto out_error;
1150
1151out_error:
1152 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1153 return ret;
e60cbc5c
TG
1154}
1155
da791a66
TG
1156static int handle_exit_race(u32 __user *uaddr, u32 uval,
1157 struct task_struct *tsk)
1158{
1159 u32 uval2;
1160
1161 /*
1162 * If PF_EXITPIDONE is not yet set, then try again.
1163 */
1164 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1165 return -EAGAIN;
1166
1167 /*
1168 * Reread the user space value to handle the following situation:
1169 *
1170 * CPU0 CPU1
1171 *
1172 * sys_exit() sys_futex()
1173 * do_exit() futex_lock_pi()
1174 * futex_lock_pi_atomic()
1175 * exit_signals(tsk) No waiters:
1176 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1177 * mm_release(tsk) Set waiter bit
1178 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1179 * Set owner died attach_to_pi_owner() {
1180 * *uaddr = 0xC0000000; tsk = get_task(PID);
1181 * } if (!tsk->flags & PF_EXITING) {
1182 * ... attach();
1183 * tsk->flags |= PF_EXITPIDONE; } else {
1184 * if (!(tsk->flags & PF_EXITPIDONE))
1185 * return -EAGAIN;
1186 * return -ESRCH; <--- FAIL
1187 * }
1188 *
1189 * Returning ESRCH unconditionally is wrong here because the
1190 * user space value has been changed by the exiting task.
1191 *
1192 * The same logic applies to the case where the exiting task is
1193 * already gone.
1194 */
1195 if (get_futex_value_locked(&uval2, uaddr))
1196 return -EFAULT;
1197
1198 /* If the user space value has changed, try again. */
1199 if (uval2 != uval)
1200 return -EAGAIN;
1201
1202 /*
1203 * The exiting task did not have a robust list, the robust list was
1204 * corrupted or the user space value in *uaddr is simply bogus.
1205 * Give up and tell user space.
1206 */
1207 return -ESRCH;
1208}
1209
04e1b2e5
TG
1210/*
1211 * Lookup the task for the TID provided from user space and attach to
1212 * it after doing proper sanity checks.
1213 */
da791a66 1214static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1215 struct futex_pi_state **ps)
e60cbc5c 1216{
e60cbc5c 1217 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1218 struct futex_pi_state *pi_state;
1219 struct task_struct *p;
e60cbc5c 1220
c87e2837 1221 /*
e3f2ddea 1222 * We are the first waiter - try to look up the real owner and attach
54a21788 1223 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1224 *
1225 * The !pid check is paranoid. None of the call sites should end up
1226 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1227 */
778e9a9c 1228 if (!pid)
da791a66 1229 return -EAGAIN;
2ee08260 1230 p = find_get_task_by_vpid(pid);
7a0ea09a 1231 if (!p)
da791a66 1232 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1233
a2129464 1234 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1235 put_task_struct(p);
1236 return -EPERM;
1237 }
1238
778e9a9c
AK
1239 /*
1240 * We need to look at the task state flags to figure out,
1241 * whether the task is exiting. To protect against the do_exit
1242 * change of the task flags, we do this protected by
1243 * p->pi_lock:
1244 */
1d615482 1245 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1246 if (unlikely(p->flags & PF_EXITING)) {
1247 /*
1248 * The task is on the way out. When PF_EXITPIDONE is
1249 * set, we know that the task has finished the
1250 * cleanup:
1251 */
da791a66 1252 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1253
1d615482 1254 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1255 put_task_struct(p);
1256 return ret;
1257 }
c87e2837 1258
54a21788
TG
1259 /*
1260 * No existing pi state. First waiter. [2]
734009e9
PZ
1261 *
1262 * This creates pi_state, we have hb->lock held, this means nothing can
1263 * observe this state, wait_lock is irrelevant.
54a21788 1264 */
c87e2837
IM
1265 pi_state = alloc_pi_state();
1266
1267 /*
04e1b2e5 1268 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1269 * the owner of it:
1270 */
1271 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1272
1273 /* Store the key for possible exit cleanups: */
d0aa7a70 1274 pi_state->key = *key;
c87e2837 1275
627371d7 1276 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1277 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1278 /*
1279 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1280 * because there is no concurrency as the object is not published yet.
1281 */
c87e2837 1282 pi_state->owner = p;
1d615482 1283 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1284
1285 put_task_struct(p);
1286
d0aa7a70 1287 *ps = pi_state;
c87e2837
IM
1288
1289 return 0;
1290}
1291
734009e9
PZ
1292static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1293 struct futex_hash_bucket *hb,
04e1b2e5
TG
1294 union futex_key *key, struct futex_pi_state **ps)
1295{
499f5aca 1296 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1297
1298 /*
1299 * If there is a waiter on that futex, validate it and
1300 * attach to the pi_state when the validation succeeds.
1301 */
499f5aca 1302 if (top_waiter)
734009e9 1303 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1304
1305 /*
1306 * We are the first waiter - try to look up the owner based on
1307 * @uval and attach to it.
1308 */
da791a66 1309 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1310}
1311
af54d6a1
TG
1312static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1313{
6b4f4bc9 1314 int err;
af54d6a1
TG
1315 u32 uninitialized_var(curval);
1316
ab51fbab
DB
1317 if (unlikely(should_fail_futex(true)))
1318 return -EFAULT;
1319
6b4f4bc9
WD
1320 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1321 if (unlikely(err))
1322 return err;
af54d6a1 1323
734009e9 1324 /* If user space value changed, let the caller retry */
af54d6a1
TG
1325 return curval != uval ? -EAGAIN : 0;
1326}
1327
1a52084d 1328/**
d96ee56c 1329 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1330 * @uaddr: the pi futex user address
1331 * @hb: the pi futex hash bucket
1332 * @key: the futex key associated with uaddr and hb
1333 * @ps: the pi_state pointer where we store the result of the
1334 * lookup
1335 * @task: the task to perform the atomic lock work for. This will
1336 * be "current" except in the case of requeue pi.
1337 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1338 *
6c23cbbd 1339 * Return:
7b4ff1ad
MCC
1340 * - 0 - ready to wait;
1341 * - 1 - acquired the lock;
1342 * - <0 - error
1a52084d
DH
1343 *
1344 * The hb->lock and futex_key refs shall be held by the caller.
1345 */
1346static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1347 union futex_key *key,
1348 struct futex_pi_state **ps,
bab5bc9e 1349 struct task_struct *task, int set_waiters)
1a52084d 1350{
af54d6a1 1351 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1352 struct futex_q *top_waiter;
af54d6a1 1353 int ret;
1a52084d
DH
1354
1355 /*
af54d6a1
TG
1356 * Read the user space value first so we can validate a few
1357 * things before proceeding further.
1a52084d 1358 */
af54d6a1 1359 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1360 return -EFAULT;
1361
ab51fbab
DB
1362 if (unlikely(should_fail_futex(true)))
1363 return -EFAULT;
1364
1a52084d
DH
1365 /*
1366 * Detect deadlocks.
1367 */
af54d6a1 1368 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1369 return -EDEADLK;
1370
ab51fbab
DB
1371 if ((unlikely(should_fail_futex(true))))
1372 return -EDEADLK;
1373
1a52084d 1374 /*
af54d6a1
TG
1375 * Lookup existing state first. If it exists, try to attach to
1376 * its pi_state.
1a52084d 1377 */
499f5aca
PZ
1378 top_waiter = futex_top_waiter(hb, key);
1379 if (top_waiter)
734009e9 1380 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1381
1382 /*
af54d6a1
TG
1383 * No waiter and user TID is 0. We are here because the
1384 * waiters or the owner died bit is set or called from
1385 * requeue_cmp_pi or for whatever reason something took the
1386 * syscall.
1a52084d 1387 */
af54d6a1 1388 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1389 /*
af54d6a1
TG
1390 * We take over the futex. No other waiters and the user space
1391 * TID is 0. We preserve the owner died bit.
59fa6245 1392 */
af54d6a1
TG
1393 newval = uval & FUTEX_OWNER_DIED;
1394 newval |= vpid;
1a52084d 1395
af54d6a1
TG
1396 /* The futex requeue_pi code can enforce the waiters bit */
1397 if (set_waiters)
1398 newval |= FUTEX_WAITERS;
1399
1400 ret = lock_pi_update_atomic(uaddr, uval, newval);
1401 /* If the take over worked, return 1 */
1402 return ret < 0 ? ret : 1;
1403 }
1a52084d
DH
1404
1405 /*
af54d6a1
TG
1406 * First waiter. Set the waiters bit before attaching ourself to
1407 * the owner. If owner tries to unlock, it will be forced into
1408 * the kernel and blocked on hb->lock.
1a52084d 1409 */
af54d6a1
TG
1410 newval = uval | FUTEX_WAITERS;
1411 ret = lock_pi_update_atomic(uaddr, uval, newval);
1412 if (ret)
1413 return ret;
1a52084d 1414 /*
af54d6a1
TG
1415 * If the update of the user space value succeeded, we try to
1416 * attach to the owner. If that fails, no harm done, we only
1417 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1418 */
da791a66 1419 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1420}
1421
2e12978a
LJ
1422/**
1423 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1424 * @q: The futex_q to unqueue
1425 *
1426 * The q->lock_ptr must not be NULL and must be held by the caller.
1427 */
1428static void __unqueue_futex(struct futex_q *q)
1429{
1430 struct futex_hash_bucket *hb;
1431
4de1a293 1432 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1433 return;
4de1a293 1434 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1435
1436 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1437 plist_del(&q->list, &hb->chain);
11d4616b 1438 hb_waiters_dec(hb);
2e12978a
LJ
1439}
1440
1da177e4
LT
1441/*
1442 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1443 * Afterwards, the futex_q must not be accessed. Callers
1444 * must ensure to later call wake_up_q() for the actual
1445 * wakeups to occur.
1da177e4 1446 */
1d0dcb3a 1447static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1448{
f1a11e05
TG
1449 struct task_struct *p = q->task;
1450
aa10990e
DH
1451 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1452 return;
1453
b061c38b 1454 get_task_struct(p);
2e12978a 1455 __unqueue_futex(q);
1da177e4 1456 /*
38fcd06e
DHV
1457 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1458 * is written, without taking any locks. This is possible in the event
1459 * of a spurious wakeup, for example. A memory barrier is required here
1460 * to prevent the following store to lock_ptr from getting ahead of the
1461 * plist_del in __unqueue_futex().
1da177e4 1462 */
1b367ece 1463 smp_store_release(&q->lock_ptr, NULL);
b061c38b
PZ
1464
1465 /*
1466 * Queue the task for later wakeup for after we've released
1467 * the hb->lock. wake_q_add() grabs reference to p.
1468 */
07879c6a 1469 wake_q_add_safe(wake_q, p);
1da177e4
LT
1470}
1471
16ffa12d
PZ
1472/*
1473 * Caller must hold a reference on @pi_state.
1474 */
1475static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1476{
7cfdaf38 1477 u32 uninitialized_var(curval), newval;
16ffa12d 1478 struct task_struct *new_owner;
aa2bfe55 1479 bool postunlock = false;
194a6b5b 1480 DEFINE_WAKE_Q(wake_q);
13fbca4c 1481 int ret = 0;
c87e2837 1482
c87e2837 1483 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1484 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1485 /*
bebe5b51 1486 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1487 *
1488 * When this happens, give up our locks and try again, giving
1489 * the futex_lock_pi() instance time to complete, either by
1490 * waiting on the rtmutex or removing itself from the futex
1491 * queue.
1492 */
1493 ret = -EAGAIN;
1494 goto out_unlock;
73d786bd 1495 }
c87e2837
IM
1496
1497 /*
16ffa12d
PZ
1498 * We pass it to the next owner. The WAITERS bit is always kept
1499 * enabled while there is PI state around. We cleanup the owner
1500 * died bit, because we are the owner.
c87e2837 1501 */
13fbca4c 1502 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1503
ab51fbab
DB
1504 if (unlikely(should_fail_futex(true)))
1505 ret = -EFAULT;
1506
6b4f4bc9
WD
1507 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1508 if (!ret && (curval != uval)) {
89e9e66b
SAS
1509 /*
1510 * If a unconditional UNLOCK_PI operation (user space did not
1511 * try the TID->0 transition) raced with a waiter setting the
1512 * FUTEX_WAITERS flag between get_user() and locking the hash
1513 * bucket lock, retry the operation.
1514 */
1515 if ((FUTEX_TID_MASK & curval) == uval)
1516 ret = -EAGAIN;
1517 else
1518 ret = -EINVAL;
1519 }
734009e9 1520
16ffa12d
PZ
1521 if (ret)
1522 goto out_unlock;
c87e2837 1523
94ffac5d
PZ
1524 /*
1525 * This is a point of no return; once we modify the uval there is no
1526 * going back and subsequent operations must not fail.
1527 */
1528
b4abf910 1529 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1530 WARN_ON(list_empty(&pi_state->list));
1531 list_del_init(&pi_state->list);
b4abf910 1532 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1533
b4abf910 1534 raw_spin_lock(&new_owner->pi_lock);
627371d7 1535 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1536 list_add(&pi_state->list, &new_owner->pi_state_list);
1537 pi_state->owner = new_owner;
b4abf910 1538 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1539
aa2bfe55 1540 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1541
16ffa12d 1542out_unlock:
5293c2ef 1543 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1544
aa2bfe55
PZ
1545 if (postunlock)
1546 rt_mutex_postunlock(&wake_q);
c87e2837 1547
16ffa12d 1548 return ret;
c87e2837
IM
1549}
1550
8b8f319f
IM
1551/*
1552 * Express the locking dependencies for lockdep:
1553 */
1554static inline void
1555double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1556{
1557 if (hb1 <= hb2) {
1558 spin_lock(&hb1->lock);
1559 if (hb1 < hb2)
1560 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1561 } else { /* hb1 > hb2 */
1562 spin_lock(&hb2->lock);
1563 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1564 }
1565}
1566
5eb3dc62
DH
1567static inline void
1568double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569{
f061d351 1570 spin_unlock(&hb1->lock);
88f502fe
IM
1571 if (hb1 != hb2)
1572 spin_unlock(&hb2->lock);
5eb3dc62
DH
1573}
1574
1da177e4 1575/*
b2d0994b 1576 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1577 */
b41277dc
DH
1578static int
1579futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1580{
e2970f2f 1581 struct futex_hash_bucket *hb;
1da177e4 1582 struct futex_q *this, *next;
38d47c1b 1583 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1584 int ret;
194a6b5b 1585 DEFINE_WAKE_Q(wake_q);
1da177e4 1586
cd689985
TG
1587 if (!bitset)
1588 return -EINVAL;
1589
96d4f267 1590 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1591 if (unlikely(ret != 0))
1592 goto out;
1593
e2970f2f 1594 hb = hash_futex(&key);
b0c29f79
DB
1595
1596 /* Make sure we really have tasks to wakeup */
1597 if (!hb_waiters_pending(hb))
1598 goto out_put_key;
1599
e2970f2f 1600 spin_lock(&hb->lock);
1da177e4 1601
0d00c7b2 1602 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1603 if (match_futex (&this->key, &key)) {
52400ba9 1604 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1605 ret = -EINVAL;
1606 break;
1607 }
cd689985
TG
1608
1609 /* Check if one of the bits is set in both bitsets */
1610 if (!(this->bitset & bitset))
1611 continue;
1612
1d0dcb3a 1613 mark_wake_futex(&wake_q, this);
1da177e4
LT
1614 if (++ret >= nr_wake)
1615 break;
1616 }
1617 }
1618
e2970f2f 1619 spin_unlock(&hb->lock);
1d0dcb3a 1620 wake_up_q(&wake_q);
b0c29f79 1621out_put_key:
ae791a2d 1622 put_futex_key(&key);
42d35d48 1623out:
1da177e4
LT
1624 return ret;
1625}
1626
30d6e0a4
JS
1627static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1628{
1629 unsigned int op = (encoded_op & 0x70000000) >> 28;
1630 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1631 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1632 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1633 int oldval, ret;
1634
1635 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1636 if (oparg < 0 || oparg > 31) {
1637 char comm[sizeof(current->comm)];
1638 /*
1639 * kill this print and return -EINVAL when userspace
1640 * is sane again
1641 */
1642 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1643 get_task_comm(comm, current), oparg);
1644 oparg &= 31;
1645 }
30d6e0a4
JS
1646 oparg = 1 << oparg;
1647 }
1648
96d4f267 1649 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1650 return -EFAULT;
1651
1652 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1653 if (ret)
1654 return ret;
1655
1656 switch (cmp) {
1657 case FUTEX_OP_CMP_EQ:
1658 return oldval == cmparg;
1659 case FUTEX_OP_CMP_NE:
1660 return oldval != cmparg;
1661 case FUTEX_OP_CMP_LT:
1662 return oldval < cmparg;
1663 case FUTEX_OP_CMP_GE:
1664 return oldval >= cmparg;
1665 case FUTEX_OP_CMP_LE:
1666 return oldval <= cmparg;
1667 case FUTEX_OP_CMP_GT:
1668 return oldval > cmparg;
1669 default:
1670 return -ENOSYS;
1671 }
1672}
1673
4732efbe
JJ
1674/*
1675 * Wake up all waiters hashed on the physical page that is mapped
1676 * to this virtual address:
1677 */
e2970f2f 1678static int
b41277dc 1679futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1680 int nr_wake, int nr_wake2, int op)
4732efbe 1681{
38d47c1b 1682 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1683 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1684 struct futex_q *this, *next;
e4dc5b7a 1685 int ret, op_ret;
194a6b5b 1686 DEFINE_WAKE_Q(wake_q);
4732efbe 1687
e4dc5b7a 1688retry:
96d4f267 1689 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1690 if (unlikely(ret != 0))
1691 goto out;
96d4f267 1692 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1693 if (unlikely(ret != 0))
42d35d48 1694 goto out_put_key1;
4732efbe 1695
e2970f2f
IM
1696 hb1 = hash_futex(&key1);
1697 hb2 = hash_futex(&key2);
4732efbe 1698
e4dc5b7a 1699retry_private:
eaaea803 1700 double_lock_hb(hb1, hb2);
e2970f2f 1701 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1702 if (unlikely(op_ret < 0)) {
5eb3dc62 1703 double_unlock_hb(hb1, hb2);
4732efbe 1704
6b4f4bc9
WD
1705 if (!IS_ENABLED(CONFIG_MMU) ||
1706 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1707 /*
1708 * we don't get EFAULT from MMU faults if we don't have
1709 * an MMU, but we might get them from range checking
1710 */
796f8d9b 1711 ret = op_ret;
42d35d48 1712 goto out_put_keys;
796f8d9b
DG
1713 }
1714
6b4f4bc9
WD
1715 if (op_ret == -EFAULT) {
1716 ret = fault_in_user_writeable(uaddr2);
1717 if (ret)
1718 goto out_put_keys;
1719 }
4732efbe 1720
6b4f4bc9
WD
1721 if (!(flags & FLAGS_SHARED)) {
1722 cond_resched();
e4dc5b7a 1723 goto retry_private;
6b4f4bc9 1724 }
e4dc5b7a 1725
ae791a2d
TG
1726 put_futex_key(&key2);
1727 put_futex_key(&key1);
6b4f4bc9 1728 cond_resched();
e4dc5b7a 1729 goto retry;
4732efbe
JJ
1730 }
1731
0d00c7b2 1732 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1733 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1734 if (this->pi_state || this->rt_waiter) {
1735 ret = -EINVAL;
1736 goto out_unlock;
1737 }
1d0dcb3a 1738 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1739 if (++ret >= nr_wake)
1740 break;
1741 }
1742 }
1743
1744 if (op_ret > 0) {
4732efbe 1745 op_ret = 0;
0d00c7b2 1746 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1747 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1748 if (this->pi_state || this->rt_waiter) {
1749 ret = -EINVAL;
1750 goto out_unlock;
1751 }
1d0dcb3a 1752 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1753 if (++op_ret >= nr_wake2)
1754 break;
1755 }
1756 }
1757 ret += op_ret;
1758 }
1759
aa10990e 1760out_unlock:
5eb3dc62 1761 double_unlock_hb(hb1, hb2);
1d0dcb3a 1762 wake_up_q(&wake_q);
42d35d48 1763out_put_keys:
ae791a2d 1764 put_futex_key(&key2);
42d35d48 1765out_put_key1:
ae791a2d 1766 put_futex_key(&key1);
42d35d48 1767out:
4732efbe
JJ
1768 return ret;
1769}
1770
9121e478
DH
1771/**
1772 * requeue_futex() - Requeue a futex_q from one hb to another
1773 * @q: the futex_q to requeue
1774 * @hb1: the source hash_bucket
1775 * @hb2: the target hash_bucket
1776 * @key2: the new key for the requeued futex_q
1777 */
1778static inline
1779void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1780 struct futex_hash_bucket *hb2, union futex_key *key2)
1781{
1782
1783 /*
1784 * If key1 and key2 hash to the same bucket, no need to
1785 * requeue.
1786 */
1787 if (likely(&hb1->chain != &hb2->chain)) {
1788 plist_del(&q->list, &hb1->chain);
11d4616b 1789 hb_waiters_dec(hb1);
11d4616b 1790 hb_waiters_inc(hb2);
fe1bce9e 1791 plist_add(&q->list, &hb2->chain);
9121e478 1792 q->lock_ptr = &hb2->lock;
9121e478
DH
1793 }
1794 get_futex_key_refs(key2);
1795 q->key = *key2;
1796}
1797
52400ba9
DH
1798/**
1799 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1800 * @q: the futex_q
1801 * @key: the key of the requeue target futex
1802 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1803 *
1804 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1805 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1806 * to the requeue target futex so the waiter can detect the wakeup on the right
1807 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1808 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1809 * to protect access to the pi_state to fixup the owner later. Must be called
1810 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1811 */
1812static inline
beda2c7e
DH
1813void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1814 struct futex_hash_bucket *hb)
52400ba9 1815{
52400ba9
DH
1816 get_futex_key_refs(key);
1817 q->key = *key;
1818
2e12978a 1819 __unqueue_futex(q);
52400ba9
DH
1820
1821 WARN_ON(!q->rt_waiter);
1822 q->rt_waiter = NULL;
1823
beda2c7e 1824 q->lock_ptr = &hb->lock;
beda2c7e 1825
f1a11e05 1826 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1827}
1828
1829/**
1830 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1831 * @pifutex: the user address of the to futex
1832 * @hb1: the from futex hash bucket, must be locked by the caller
1833 * @hb2: the to futex hash bucket, must be locked by the caller
1834 * @key1: the from futex key
1835 * @key2: the to futex key
1836 * @ps: address to store the pi_state pointer
1837 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1838 *
1839 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1840 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1841 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1842 * hb1 and hb2 must be held by the caller.
52400ba9 1843 *
6c23cbbd 1844 * Return:
7b4ff1ad
MCC
1845 * - 0 - failed to acquire the lock atomically;
1846 * - >0 - acquired the lock, return value is vpid of the top_waiter
1847 * - <0 - error
52400ba9
DH
1848 */
1849static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1850 struct futex_hash_bucket *hb1,
1851 struct futex_hash_bucket *hb2,
1852 union futex_key *key1, union futex_key *key2,
bab5bc9e 1853 struct futex_pi_state **ps, int set_waiters)
52400ba9 1854{
bab5bc9e 1855 struct futex_q *top_waiter = NULL;
52400ba9 1856 u32 curval;
866293ee 1857 int ret, vpid;
52400ba9
DH
1858
1859 if (get_futex_value_locked(&curval, pifutex))
1860 return -EFAULT;
1861
ab51fbab
DB
1862 if (unlikely(should_fail_futex(true)))
1863 return -EFAULT;
1864
bab5bc9e
DH
1865 /*
1866 * Find the top_waiter and determine if there are additional waiters.
1867 * If the caller intends to requeue more than 1 waiter to pifutex,
1868 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1869 * as we have means to handle the possible fault. If not, don't set
1870 * the bit unecessarily as it will force the subsequent unlock to enter
1871 * the kernel.
1872 */
52400ba9
DH
1873 top_waiter = futex_top_waiter(hb1, key1);
1874
1875 /* There are no waiters, nothing for us to do. */
1876 if (!top_waiter)
1877 return 0;
1878
84bc4af5
DH
1879 /* Ensure we requeue to the expected futex. */
1880 if (!match_futex(top_waiter->requeue_pi_key, key2))
1881 return -EINVAL;
1882
52400ba9 1883 /*
bab5bc9e
DH
1884 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1885 * the contended case or if set_waiters is 1. The pi_state is returned
1886 * in ps in contended cases.
52400ba9 1887 */
866293ee 1888 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1889 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1890 set_waiters);
866293ee 1891 if (ret == 1) {
beda2c7e 1892 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1893 return vpid;
1894 }
52400ba9
DH
1895 return ret;
1896}
1897
1898/**
1899 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1900 * @uaddr1: source futex user address
b41277dc 1901 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1902 * @uaddr2: target futex user address
1903 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1904 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1905 * @cmpval: @uaddr1 expected value (or %NULL)
1906 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1907 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1908 *
1909 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1910 * uaddr2 atomically on behalf of the top waiter.
1911 *
6c23cbbd 1912 * Return:
7b4ff1ad
MCC
1913 * - >=0 - on success, the number of tasks requeued or woken;
1914 * - <0 - on error
1da177e4 1915 */
b41277dc
DH
1916static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1917 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1918 u32 *cmpval, int requeue_pi)
1da177e4 1919{
38d47c1b 1920 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1921 int drop_count = 0, task_count = 0, ret;
1922 struct futex_pi_state *pi_state = NULL;
e2970f2f 1923 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1924 struct futex_q *this, *next;
194a6b5b 1925 DEFINE_WAKE_Q(wake_q);
52400ba9 1926
fbe0e839
LJ
1927 if (nr_wake < 0 || nr_requeue < 0)
1928 return -EINVAL;
1929
bc2eecd7
NP
1930 /*
1931 * When PI not supported: return -ENOSYS if requeue_pi is true,
1932 * consequently the compiler knows requeue_pi is always false past
1933 * this point which will optimize away all the conditional code
1934 * further down.
1935 */
1936 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1937 return -ENOSYS;
1938
52400ba9 1939 if (requeue_pi) {
e9c243a5
TG
1940 /*
1941 * Requeue PI only works on two distinct uaddrs. This
1942 * check is only valid for private futexes. See below.
1943 */
1944 if (uaddr1 == uaddr2)
1945 return -EINVAL;
1946
52400ba9
DH
1947 /*
1948 * requeue_pi requires a pi_state, try to allocate it now
1949 * without any locks in case it fails.
1950 */
1951 if (refill_pi_state_cache())
1952 return -ENOMEM;
1953 /*
1954 * requeue_pi must wake as many tasks as it can, up to nr_wake
1955 * + nr_requeue, since it acquires the rt_mutex prior to
1956 * returning to userspace, so as to not leave the rt_mutex with
1957 * waiters and no owner. However, second and third wake-ups
1958 * cannot be predicted as they involve race conditions with the
1959 * first wake and a fault while looking up the pi_state. Both
1960 * pthread_cond_signal() and pthread_cond_broadcast() should
1961 * use nr_wake=1.
1962 */
1963 if (nr_wake != 1)
1964 return -EINVAL;
1965 }
1da177e4 1966
42d35d48 1967retry:
96d4f267 1968 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1969 if (unlikely(ret != 0))
1970 goto out;
9ea71503 1971 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1972 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1973 if (unlikely(ret != 0))
42d35d48 1974 goto out_put_key1;
1da177e4 1975
e9c243a5
TG
1976 /*
1977 * The check above which compares uaddrs is not sufficient for
1978 * shared futexes. We need to compare the keys:
1979 */
1980 if (requeue_pi && match_futex(&key1, &key2)) {
1981 ret = -EINVAL;
1982 goto out_put_keys;
1983 }
1984
e2970f2f
IM
1985 hb1 = hash_futex(&key1);
1986 hb2 = hash_futex(&key2);
1da177e4 1987
e4dc5b7a 1988retry_private:
69cd9eba 1989 hb_waiters_inc(hb2);
8b8f319f 1990 double_lock_hb(hb1, hb2);
1da177e4 1991
e2970f2f
IM
1992 if (likely(cmpval != NULL)) {
1993 u32 curval;
1da177e4 1994
e2970f2f 1995 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1996
1997 if (unlikely(ret)) {
5eb3dc62 1998 double_unlock_hb(hb1, hb2);
69cd9eba 1999 hb_waiters_dec(hb2);
1da177e4 2000
e2970f2f 2001 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2002 if (ret)
2003 goto out_put_keys;
1da177e4 2004
b41277dc 2005 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2006 goto retry_private;
1da177e4 2007
ae791a2d
TG
2008 put_futex_key(&key2);
2009 put_futex_key(&key1);
e4dc5b7a 2010 goto retry;
1da177e4 2011 }
e2970f2f 2012 if (curval != *cmpval) {
1da177e4
LT
2013 ret = -EAGAIN;
2014 goto out_unlock;
2015 }
2016 }
2017
52400ba9 2018 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2019 /*
2020 * Attempt to acquire uaddr2 and wake the top waiter. If we
2021 * intend to requeue waiters, force setting the FUTEX_WAITERS
2022 * bit. We force this here where we are able to easily handle
2023 * faults rather in the requeue loop below.
2024 */
52400ba9 2025 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2026 &key2, &pi_state, nr_requeue);
52400ba9
DH
2027
2028 /*
2029 * At this point the top_waiter has either taken uaddr2 or is
2030 * waiting on it. If the former, then the pi_state will not
2031 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2032 * reference to it. If the lock was taken, ret contains the
2033 * vpid of the top waiter task.
ecb38b78
TG
2034 * If the lock was not taken, we have pi_state and an initial
2035 * refcount on it. In case of an error we have nothing.
52400ba9 2036 */
866293ee 2037 if (ret > 0) {
52400ba9 2038 WARN_ON(pi_state);
89061d3d 2039 drop_count++;
52400ba9 2040 task_count++;
866293ee 2041 /*
ecb38b78
TG
2042 * If we acquired the lock, then the user space value
2043 * of uaddr2 should be vpid. It cannot be changed by
2044 * the top waiter as it is blocked on hb2 lock if it
2045 * tries to do so. If something fiddled with it behind
2046 * our back the pi state lookup might unearth it. So
2047 * we rather use the known value than rereading and
2048 * handing potential crap to lookup_pi_state.
2049 *
2050 * If that call succeeds then we have pi_state and an
2051 * initial refcount on it.
866293ee 2052 */
734009e9 2053 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2054 }
2055
2056 switch (ret) {
2057 case 0:
ecb38b78 2058 /* We hold a reference on the pi state. */
52400ba9 2059 break;
4959f2de
TG
2060
2061 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2062 case -EFAULT:
2063 double_unlock_hb(hb1, hb2);
69cd9eba 2064 hb_waiters_dec(hb2);
ae791a2d
TG
2065 put_futex_key(&key2);
2066 put_futex_key(&key1);
d0725992 2067 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2068 if (!ret)
2069 goto retry;
2070 goto out;
2071 case -EAGAIN:
af54d6a1
TG
2072 /*
2073 * Two reasons for this:
2074 * - Owner is exiting and we just wait for the
2075 * exit to complete.
2076 * - The user space value changed.
2077 */
52400ba9 2078 double_unlock_hb(hb1, hb2);
69cd9eba 2079 hb_waiters_dec(hb2);
ae791a2d
TG
2080 put_futex_key(&key2);
2081 put_futex_key(&key1);
52400ba9
DH
2082 cond_resched();
2083 goto retry;
2084 default:
2085 goto out_unlock;
2086 }
2087 }
2088
0d00c7b2 2089 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2090 if (task_count - nr_wake >= nr_requeue)
2091 break;
2092
2093 if (!match_futex(&this->key, &key1))
1da177e4 2094 continue;
52400ba9 2095
392741e0
DH
2096 /*
2097 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2098 * be paired with each other and no other futex ops.
aa10990e
DH
2099 *
2100 * We should never be requeueing a futex_q with a pi_state,
2101 * which is awaiting a futex_unlock_pi().
392741e0
DH
2102 */
2103 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2104 (!requeue_pi && this->rt_waiter) ||
2105 this->pi_state) {
392741e0
DH
2106 ret = -EINVAL;
2107 break;
2108 }
52400ba9
DH
2109
2110 /*
2111 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2112 * lock, we already woke the top_waiter. If not, it will be
2113 * woken by futex_unlock_pi().
2114 */
2115 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2116 mark_wake_futex(&wake_q, this);
52400ba9
DH
2117 continue;
2118 }
1da177e4 2119
84bc4af5
DH
2120 /* Ensure we requeue to the expected futex for requeue_pi. */
2121 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2122 ret = -EINVAL;
2123 break;
2124 }
2125
52400ba9
DH
2126 /*
2127 * Requeue nr_requeue waiters and possibly one more in the case
2128 * of requeue_pi if we couldn't acquire the lock atomically.
2129 */
2130 if (requeue_pi) {
ecb38b78
TG
2131 /*
2132 * Prepare the waiter to take the rt_mutex. Take a
2133 * refcount on the pi_state and store the pointer in
2134 * the futex_q object of the waiter.
2135 */
bf92cf3a 2136 get_pi_state(pi_state);
52400ba9
DH
2137 this->pi_state = pi_state;
2138 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2139 this->rt_waiter,
c051b21f 2140 this->task);
52400ba9 2141 if (ret == 1) {
ecb38b78
TG
2142 /*
2143 * We got the lock. We do neither drop the
2144 * refcount on pi_state nor clear
2145 * this->pi_state because the waiter needs the
2146 * pi_state for cleaning up the user space
2147 * value. It will drop the refcount after
2148 * doing so.
2149 */
beda2c7e 2150 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2151 drop_count++;
52400ba9
DH
2152 continue;
2153 } else if (ret) {
ecb38b78
TG
2154 /*
2155 * rt_mutex_start_proxy_lock() detected a
2156 * potential deadlock when we tried to queue
2157 * that waiter. Drop the pi_state reference
2158 * which we took above and remove the pointer
2159 * to the state from the waiters futex_q
2160 * object.
2161 */
52400ba9 2162 this->pi_state = NULL;
29e9ee5d 2163 put_pi_state(pi_state);
885c2cb7
TG
2164 /*
2165 * We stop queueing more waiters and let user
2166 * space deal with the mess.
2167 */
2168 break;
52400ba9 2169 }
1da177e4 2170 }
52400ba9
DH
2171 requeue_futex(this, hb1, hb2, &key2);
2172 drop_count++;
1da177e4
LT
2173 }
2174
ecb38b78
TG
2175 /*
2176 * We took an extra initial reference to the pi_state either
2177 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2178 * need to drop it here again.
2179 */
29e9ee5d 2180 put_pi_state(pi_state);
885c2cb7
TG
2181
2182out_unlock:
5eb3dc62 2183 double_unlock_hb(hb1, hb2);
1d0dcb3a 2184 wake_up_q(&wake_q);
69cd9eba 2185 hb_waiters_dec(hb2);
1da177e4 2186
cd84a42f
DH
2187 /*
2188 * drop_futex_key_refs() must be called outside the spinlocks. During
2189 * the requeue we moved futex_q's from the hash bucket at key1 to the
2190 * one at key2 and updated their key pointer. We no longer need to
2191 * hold the references to key1.
2192 */
1da177e4 2193 while (--drop_count >= 0)
9adef58b 2194 drop_futex_key_refs(&key1);
1da177e4 2195
42d35d48 2196out_put_keys:
ae791a2d 2197 put_futex_key(&key2);
42d35d48 2198out_put_key1:
ae791a2d 2199 put_futex_key(&key1);
42d35d48 2200out:
52400ba9 2201 return ret ? ret : task_count;
1da177e4
LT
2202}
2203
2204/* The key must be already stored in q->key. */
82af7aca 2205static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2206 __acquires(&hb->lock)
1da177e4 2207{
e2970f2f 2208 struct futex_hash_bucket *hb;
1da177e4 2209
e2970f2f 2210 hb = hash_futex(&q->key);
11d4616b
LT
2211
2212 /*
2213 * Increment the counter before taking the lock so that
2214 * a potential waker won't miss a to-be-slept task that is
2215 * waiting for the spinlock. This is safe as all queue_lock()
2216 * users end up calling queue_me(). Similarly, for housekeeping,
2217 * decrement the counter at queue_unlock() when some error has
2218 * occurred and we don't end up adding the task to the list.
2219 */
6f568ebe 2220 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
11d4616b 2221
e2970f2f 2222 q->lock_ptr = &hb->lock;
1da177e4 2223
6f568ebe 2224 spin_lock(&hb->lock);
e2970f2f 2225 return hb;
1da177e4
LT
2226}
2227
d40d65c8 2228static inline void
0d00c7b2 2229queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2230 __releases(&hb->lock)
d40d65c8
DH
2231{
2232 spin_unlock(&hb->lock);
11d4616b 2233 hb_waiters_dec(hb);
d40d65c8
DH
2234}
2235
cfafcd11 2236static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2237{
ec92d082
PP
2238 int prio;
2239
2240 /*
2241 * The priority used to register this element is
2242 * - either the real thread-priority for the real-time threads
2243 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2244 * - or MAX_RT_PRIO for non-RT threads.
2245 * Thus, all RT-threads are woken first in priority order, and
2246 * the others are woken last, in FIFO order.
2247 */
2248 prio = min(current->normal_prio, MAX_RT_PRIO);
2249
2250 plist_node_init(&q->list, prio);
ec92d082 2251 plist_add(&q->list, &hb->chain);
c87e2837 2252 q->task = current;
cfafcd11
PZ
2253}
2254
2255/**
2256 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2257 * @q: The futex_q to enqueue
2258 * @hb: The destination hash bucket
2259 *
2260 * The hb->lock must be held by the caller, and is released here. A call to
2261 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2262 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2263 * or nothing if the unqueue is done as part of the wake process and the unqueue
2264 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2265 * an example).
2266 */
2267static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2268 __releases(&hb->lock)
2269{
2270 __queue_me(q, hb);
e2970f2f 2271 spin_unlock(&hb->lock);
1da177e4
LT
2272}
2273
d40d65c8
DH
2274/**
2275 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2276 * @q: The futex_q to unqueue
2277 *
2278 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2279 * be paired with exactly one earlier call to queue_me().
2280 *
6c23cbbd 2281 * Return:
7b4ff1ad
MCC
2282 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2283 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2284 */
1da177e4
LT
2285static int unqueue_me(struct futex_q *q)
2286{
1da177e4 2287 spinlock_t *lock_ptr;
e2970f2f 2288 int ret = 0;
1da177e4
LT
2289
2290 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2291retry:
29b75eb2
JZ
2292 /*
2293 * q->lock_ptr can change between this read and the following spin_lock.
2294 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2295 * optimizing lock_ptr out of the logic below.
2296 */
2297 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2298 if (lock_ptr != NULL) {
1da177e4
LT
2299 spin_lock(lock_ptr);
2300 /*
2301 * q->lock_ptr can change between reading it and
2302 * spin_lock(), causing us to take the wrong lock. This
2303 * corrects the race condition.
2304 *
2305 * Reasoning goes like this: if we have the wrong lock,
2306 * q->lock_ptr must have changed (maybe several times)
2307 * between reading it and the spin_lock(). It can
2308 * change again after the spin_lock() but only if it was
2309 * already changed before the spin_lock(). It cannot,
2310 * however, change back to the original value. Therefore
2311 * we can detect whether we acquired the correct lock.
2312 */
2313 if (unlikely(lock_ptr != q->lock_ptr)) {
2314 spin_unlock(lock_ptr);
2315 goto retry;
2316 }
2e12978a 2317 __unqueue_futex(q);
c87e2837
IM
2318
2319 BUG_ON(q->pi_state);
2320
1da177e4
LT
2321 spin_unlock(lock_ptr);
2322 ret = 1;
2323 }
2324
9adef58b 2325 drop_futex_key_refs(&q->key);
1da177e4
LT
2326 return ret;
2327}
2328
c87e2837
IM
2329/*
2330 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2331 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2332 * and dropped here.
c87e2837 2333 */
d0aa7a70 2334static void unqueue_me_pi(struct futex_q *q)
15e408cd 2335 __releases(q->lock_ptr)
c87e2837 2336{
2e12978a 2337 __unqueue_futex(q);
c87e2837
IM
2338
2339 BUG_ON(!q->pi_state);
29e9ee5d 2340 put_pi_state(q->pi_state);
c87e2837
IM
2341 q->pi_state = NULL;
2342
d0aa7a70 2343 spin_unlock(q->lock_ptr);
c87e2837
IM
2344}
2345
778e9a9c 2346static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2347 struct task_struct *argowner)
d0aa7a70 2348{
d0aa7a70 2349 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2350 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2351 struct task_struct *oldowner, *newowner;
2352 u32 newtid;
6b4f4bc9 2353 int ret, err = 0;
d0aa7a70 2354
c1e2f0ea
PZ
2355 lockdep_assert_held(q->lock_ptr);
2356
734009e9
PZ
2357 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2358
2359 oldowner = pi_state->owner;
1b7558e4
TG
2360
2361 /*
c1e2f0ea 2362 * We are here because either:
16ffa12d 2363 *
c1e2f0ea
PZ
2364 * - we stole the lock and pi_state->owner needs updating to reflect
2365 * that (@argowner == current),
2366 *
2367 * or:
2368 *
2369 * - someone stole our lock and we need to fix things to point to the
2370 * new owner (@argowner == NULL).
2371 *
2372 * Either way, we have to replace the TID in the user space variable.
8161239a 2373 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2374 *
b2d0994b
DH
2375 * Note: We write the user space value _before_ changing the pi_state
2376 * because we can fault here. Imagine swapped out pages or a fork
2377 * that marked all the anonymous memory readonly for cow.
1b7558e4 2378 *
734009e9
PZ
2379 * Modifying pi_state _before_ the user space value would leave the
2380 * pi_state in an inconsistent state when we fault here, because we
2381 * need to drop the locks to handle the fault. This might be observed
2382 * in the PID check in lookup_pi_state.
1b7558e4
TG
2383 */
2384retry:
c1e2f0ea
PZ
2385 if (!argowner) {
2386 if (oldowner != current) {
2387 /*
2388 * We raced against a concurrent self; things are
2389 * already fixed up. Nothing to do.
2390 */
2391 ret = 0;
2392 goto out_unlock;
2393 }
2394
2395 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2396 /* We got the lock after all, nothing to fix. */
2397 ret = 0;
2398 goto out_unlock;
2399 }
2400
2401 /*
2402 * Since we just failed the trylock; there must be an owner.
2403 */
2404 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2405 BUG_ON(!newowner);
2406 } else {
2407 WARN_ON_ONCE(argowner != current);
2408 if (oldowner == current) {
2409 /*
2410 * We raced against a concurrent self; things are
2411 * already fixed up. Nothing to do.
2412 */
2413 ret = 0;
2414 goto out_unlock;
2415 }
2416 newowner = argowner;
2417 }
2418
2419 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2420 /* Owner died? */
2421 if (!pi_state->owner)
2422 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2423
6b4f4bc9
WD
2424 err = get_futex_value_locked(&uval, uaddr);
2425 if (err)
2426 goto handle_err;
1b7558e4 2427
16ffa12d 2428 for (;;) {
1b7558e4
TG
2429 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2430
6b4f4bc9
WD
2431 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2432 if (err)
2433 goto handle_err;
2434
1b7558e4
TG
2435 if (curval == uval)
2436 break;
2437 uval = curval;
2438 }
2439
2440 /*
2441 * We fixed up user space. Now we need to fix the pi_state
2442 * itself.
2443 */
d0aa7a70 2444 if (pi_state->owner != NULL) {
734009e9 2445 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2446 WARN_ON(list_empty(&pi_state->list));
2447 list_del_init(&pi_state->list);
734009e9 2448 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2449 }
d0aa7a70 2450
cdf71a10 2451 pi_state->owner = newowner;
d0aa7a70 2452
734009e9 2453 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2454 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2455 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2456 raw_spin_unlock(&newowner->pi_lock);
2457 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2458
1b7558e4 2459 return 0;
d0aa7a70 2460
d0aa7a70 2461 /*
6b4f4bc9
WD
2462 * In order to reschedule or handle a page fault, we need to drop the
2463 * locks here. In the case of a fault, this gives the other task
2464 * (either the highest priority waiter itself or the task which stole
2465 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2466 * are back from handling the fault we need to check the pi_state after
2467 * reacquiring the locks and before trying to do another fixup. When
2468 * the fixup has been done already we simply return.
734009e9
PZ
2469 *
2470 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2471 * drop hb->lock since the caller owns the hb -> futex_q relation.
2472 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2473 */
6b4f4bc9 2474handle_err:
734009e9 2475 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2476 spin_unlock(q->lock_ptr);
778e9a9c 2477
6b4f4bc9
WD
2478 switch (err) {
2479 case -EFAULT:
2480 ret = fault_in_user_writeable(uaddr);
2481 break;
2482
2483 case -EAGAIN:
2484 cond_resched();
2485 ret = 0;
2486 break;
2487
2488 default:
2489 WARN_ON_ONCE(1);
2490 ret = err;
2491 break;
2492 }
778e9a9c 2493
1b7558e4 2494 spin_lock(q->lock_ptr);
734009e9 2495 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2496
1b7558e4
TG
2497 /*
2498 * Check if someone else fixed it for us:
2499 */
734009e9
PZ
2500 if (pi_state->owner != oldowner) {
2501 ret = 0;
2502 goto out_unlock;
2503 }
1b7558e4
TG
2504
2505 if (ret)
734009e9 2506 goto out_unlock;
1b7558e4
TG
2507
2508 goto retry;
734009e9
PZ
2509
2510out_unlock:
2511 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2512 return ret;
d0aa7a70
PP
2513}
2514
72c1bbf3 2515static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2516
dd973998
DH
2517/**
2518 * fixup_owner() - Post lock pi_state and corner case management
2519 * @uaddr: user address of the futex
dd973998
DH
2520 * @q: futex_q (contains pi_state and access to the rt_mutex)
2521 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2522 *
2523 * After attempting to lock an rt_mutex, this function is called to cleanup
2524 * the pi_state owner as well as handle race conditions that may allow us to
2525 * acquire the lock. Must be called with the hb lock held.
2526 *
6c23cbbd 2527 * Return:
7b4ff1ad
MCC
2528 * - 1 - success, lock taken;
2529 * - 0 - success, lock not taken;
2530 * - <0 - on error (-EFAULT)
dd973998 2531 */
ae791a2d 2532static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2533{
dd973998
DH
2534 int ret = 0;
2535
2536 if (locked) {
2537 /*
2538 * Got the lock. We might not be the anticipated owner if we
2539 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2540 *
c1e2f0ea
PZ
2541 * Speculative pi_state->owner read (we don't hold wait_lock);
2542 * since we own the lock pi_state->owner == current is the
2543 * stable state, anything else needs more attention.
dd973998
DH
2544 */
2545 if (q->pi_state->owner != current)
ae791a2d 2546 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2547 goto out;
2548 }
2549
c1e2f0ea
PZ
2550 /*
2551 * If we didn't get the lock; check if anybody stole it from us. In
2552 * that case, we need to fix up the uval to point to them instead of
2553 * us, otherwise bad things happen. [10]
2554 *
2555 * Another speculative read; pi_state->owner == current is unstable
2556 * but needs our attention.
2557 */
2558 if (q->pi_state->owner == current) {
2559 ret = fixup_pi_state_owner(uaddr, q, NULL);
2560 goto out;
2561 }
2562
dd973998
DH
2563 /*
2564 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2565 * the owner of the rt_mutex.
dd973998 2566 */
73d786bd 2567 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2568 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2569 "pi-state %p\n", ret,
2570 q->pi_state->pi_mutex.owner,
2571 q->pi_state->owner);
73d786bd 2572 }
dd973998
DH
2573
2574out:
2575 return ret ? ret : locked;
2576}
2577
ca5f9524
DH
2578/**
2579 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2580 * @hb: the futex hash bucket, must be locked by the caller
2581 * @q: the futex_q to queue up on
2582 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2583 */
2584static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2585 struct hrtimer_sleeper *timeout)
ca5f9524 2586{
9beba3c5
DH
2587 /*
2588 * The task state is guaranteed to be set before another task can
b92b8b35 2589 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2590 * queue_me() calls spin_unlock() upon completion, both serializing
2591 * access to the hash list and forcing another memory barrier.
2592 */
f1a11e05 2593 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2594 queue_me(q, hb);
ca5f9524
DH
2595
2596 /* Arm the timer */
2e4b0d3f 2597 if (timeout)
ca5f9524 2598 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2599
2600 /*
0729e196
DH
2601 * If we have been removed from the hash list, then another task
2602 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2603 */
2604 if (likely(!plist_node_empty(&q->list))) {
2605 /*
2606 * If the timer has already expired, current will already be
2607 * flagged for rescheduling. Only call schedule if there
2608 * is no timeout, or if it has yet to expire.
2609 */
2610 if (!timeout || timeout->task)
88c8004f 2611 freezable_schedule();
ca5f9524
DH
2612 }
2613 __set_current_state(TASK_RUNNING);
2614}
2615
f801073f
DH
2616/**
2617 * futex_wait_setup() - Prepare to wait on a futex
2618 * @uaddr: the futex userspace address
2619 * @val: the expected value
b41277dc 2620 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2621 * @q: the associated futex_q
2622 * @hb: storage for hash_bucket pointer to be returned to caller
2623 *
2624 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2625 * compare it with the expected value. Handle atomic faults internally.
2626 * Return with the hb lock held and a q.key reference on success, and unlocked
2627 * with no q.key reference on failure.
2628 *
6c23cbbd 2629 * Return:
7b4ff1ad
MCC
2630 * - 0 - uaddr contains val and hb has been locked;
2631 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2632 */
b41277dc 2633static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2634 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2635{
e2970f2f
IM
2636 u32 uval;
2637 int ret;
1da177e4 2638
1da177e4 2639 /*
b2d0994b 2640 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2641 * Order is important:
2642 *
2643 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2644 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2645 *
2646 * The basic logical guarantee of a futex is that it blocks ONLY
2647 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2648 * any cond. If we locked the hash-bucket after testing *uaddr, that
2649 * would open a race condition where we could block indefinitely with
1da177e4
LT
2650 * cond(var) false, which would violate the guarantee.
2651 *
8fe8f545
ML
2652 * On the other hand, we insert q and release the hash-bucket only
2653 * after testing *uaddr. This guarantees that futex_wait() will NOT
2654 * absorb a wakeup if *uaddr does not match the desired values
2655 * while the syscall executes.
1da177e4 2656 */
f801073f 2657retry:
96d4f267 2658 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2659 if (unlikely(ret != 0))
a5a2a0c7 2660 return ret;
f801073f
DH
2661
2662retry_private:
2663 *hb = queue_lock(q);
2664
e2970f2f 2665 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2666
f801073f 2667 if (ret) {
0d00c7b2 2668 queue_unlock(*hb);
1da177e4 2669
e2970f2f 2670 ret = get_user(uval, uaddr);
e4dc5b7a 2671 if (ret)
f801073f 2672 goto out;
1da177e4 2673
b41277dc 2674 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2675 goto retry_private;
2676
ae791a2d 2677 put_futex_key(&q->key);
e4dc5b7a 2678 goto retry;
1da177e4 2679 }
ca5f9524 2680
f801073f 2681 if (uval != val) {
0d00c7b2 2682 queue_unlock(*hb);
f801073f 2683 ret = -EWOULDBLOCK;
2fff78c7 2684 }
1da177e4 2685
f801073f
DH
2686out:
2687 if (ret)
ae791a2d 2688 put_futex_key(&q->key);
f801073f
DH
2689 return ret;
2690}
2691
b41277dc
DH
2692static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2693 ktime_t *abs_time, u32 bitset)
f801073f
DH
2694{
2695 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2696 struct restart_block *restart;
2697 struct futex_hash_bucket *hb;
5bdb05f9 2698 struct futex_q q = futex_q_init;
f801073f
DH
2699 int ret;
2700
2701 if (!bitset)
2702 return -EINVAL;
f801073f
DH
2703 q.bitset = bitset;
2704
2705 if (abs_time) {
2706 to = &timeout;
2707
b41277dc
DH
2708 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2709 CLOCK_REALTIME : CLOCK_MONOTONIC,
2710 HRTIMER_MODE_ABS);
f801073f
DH
2711 hrtimer_init_sleeper(to, current);
2712 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2713 current->timer_slack_ns);
2714 }
2715
d58e6576 2716retry:
7ada876a
DH
2717 /*
2718 * Prepare to wait on uaddr. On success, holds hb lock and increments
2719 * q.key refs.
2720 */
b41277dc 2721 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2722 if (ret)
2723 goto out;
2724
ca5f9524 2725 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2726 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2727
2728 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2729 ret = 0;
7ada876a 2730 /* unqueue_me() drops q.key ref */
1da177e4 2731 if (!unqueue_me(&q))
7ada876a 2732 goto out;
2fff78c7 2733 ret = -ETIMEDOUT;
ca5f9524 2734 if (to && !to->task)
7ada876a 2735 goto out;
72c1bbf3 2736
e2970f2f 2737 /*
d58e6576
TG
2738 * We expect signal_pending(current), but we might be the
2739 * victim of a spurious wakeup as well.
e2970f2f 2740 */
7ada876a 2741 if (!signal_pending(current))
d58e6576 2742 goto retry;
d58e6576 2743
2fff78c7 2744 ret = -ERESTARTSYS;
c19384b5 2745 if (!abs_time)
7ada876a 2746 goto out;
1da177e4 2747
f56141e3 2748 restart = &current->restart_block;
2fff78c7 2749 restart->fn = futex_wait_restart;
a3c74c52 2750 restart->futex.uaddr = uaddr;
2fff78c7 2751 restart->futex.val = val;
2456e855 2752 restart->futex.time = *abs_time;
2fff78c7 2753 restart->futex.bitset = bitset;
0cd9c649 2754 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2755
2fff78c7
PZ
2756 ret = -ERESTART_RESTARTBLOCK;
2757
42d35d48 2758out:
ca5f9524
DH
2759 if (to) {
2760 hrtimer_cancel(&to->timer);
2761 destroy_hrtimer_on_stack(&to->timer);
2762 }
c87e2837
IM
2763 return ret;
2764}
2765
72c1bbf3
NP
2766
2767static long futex_wait_restart(struct restart_block *restart)
2768{
a3c74c52 2769 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2770 ktime_t t, *tp = NULL;
72c1bbf3 2771
a72188d8 2772 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2773 t = restart->futex.time;
a72188d8
DH
2774 tp = &t;
2775 }
72c1bbf3 2776 restart->fn = do_no_restart_syscall;
b41277dc
DH
2777
2778 return (long)futex_wait(uaddr, restart->futex.flags,
2779 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2780}
2781
2782
c87e2837
IM
2783/*
2784 * Userspace tried a 0 -> TID atomic transition of the futex value
2785 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2786 * if there are waiters then it will block as a consequence of relying
2787 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2788 * a 0 value of the futex too.).
2789 *
2790 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2791 */
996636dd 2792static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2793 ktime_t *time, int trylock)
c87e2837 2794{
c5780e97 2795 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2796 struct futex_pi_state *pi_state = NULL;
cfafcd11 2797 struct rt_mutex_waiter rt_waiter;
c87e2837 2798 struct futex_hash_bucket *hb;
5bdb05f9 2799 struct futex_q q = futex_q_init;
dd973998 2800 int res, ret;
c87e2837 2801
bc2eecd7
NP
2802 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2803 return -ENOSYS;
2804
c87e2837
IM
2805 if (refill_pi_state_cache())
2806 return -ENOMEM;
2807
c19384b5 2808 if (time) {
c5780e97 2809 to = &timeout;
237fc6e7
TG
2810 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2811 HRTIMER_MODE_ABS);
c5780e97 2812 hrtimer_init_sleeper(to, current);
cc584b21 2813 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2814 }
2815
42d35d48 2816retry:
96d4f267 2817 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2818 if (unlikely(ret != 0))
42d35d48 2819 goto out;
c87e2837 2820
e4dc5b7a 2821retry_private:
82af7aca 2822 hb = queue_lock(&q);
c87e2837 2823
bab5bc9e 2824 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2825 if (unlikely(ret)) {
767f509c
DB
2826 /*
2827 * Atomic work succeeded and we got the lock,
2828 * or failed. Either way, we do _not_ block.
2829 */
778e9a9c 2830 switch (ret) {
1a52084d
DH
2831 case 1:
2832 /* We got the lock. */
2833 ret = 0;
2834 goto out_unlock_put_key;
2835 case -EFAULT:
2836 goto uaddr_faulted;
778e9a9c
AK
2837 case -EAGAIN:
2838 /*
af54d6a1
TG
2839 * Two reasons for this:
2840 * - Task is exiting and we just wait for the
2841 * exit to complete.
2842 * - The user space value changed.
778e9a9c 2843 */
0d00c7b2 2844 queue_unlock(hb);
ae791a2d 2845 put_futex_key(&q.key);
778e9a9c
AK
2846 cond_resched();
2847 goto retry;
778e9a9c 2848 default:
42d35d48 2849 goto out_unlock_put_key;
c87e2837 2850 }
c87e2837
IM
2851 }
2852
cfafcd11
PZ
2853 WARN_ON(!q.pi_state);
2854
c87e2837
IM
2855 /*
2856 * Only actually queue now that the atomic ops are done:
2857 */
cfafcd11 2858 __queue_me(&q, hb);
c87e2837 2859
cfafcd11 2860 if (trylock) {
5293c2ef 2861 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2862 /* Fixup the trylock return value: */
2863 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2864 goto no_block;
c87e2837
IM
2865 }
2866
56222b21
PZ
2867 rt_mutex_init_waiter(&rt_waiter);
2868
cfafcd11 2869 /*
56222b21
PZ
2870 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2871 * hold it while doing rt_mutex_start_proxy(), because then it will
2872 * include hb->lock in the blocking chain, even through we'll not in
2873 * fact hold it while blocking. This will lead it to report -EDEADLK
2874 * and BUG when futex_unlock_pi() interleaves with this.
2875 *
2876 * Therefore acquire wait_lock while holding hb->lock, but drop the
1a1fb985
TG
2877 * latter before calling __rt_mutex_start_proxy_lock(). This
2878 * interleaves with futex_unlock_pi() -- which does a similar lock
2879 * handoff -- such that the latter can observe the futex_q::pi_state
2880 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2881 */
56222b21
PZ
2882 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2883 spin_unlock(q.lock_ptr);
1a1fb985
TG
2884 /*
2885 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2886 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2887 * it sees the futex_q::pi_state.
2888 */
56222b21
PZ
2889 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2890 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2891
cfafcd11
PZ
2892 if (ret) {
2893 if (ret == 1)
2894 ret = 0;
1a1fb985 2895 goto cleanup;
cfafcd11
PZ
2896 }
2897
cfafcd11
PZ
2898 if (unlikely(to))
2899 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2900
2901 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2902
1a1fb985 2903cleanup:
a99e4e41 2904 spin_lock(q.lock_ptr);
cfafcd11 2905 /*
1a1fb985 2906 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2907 * first acquire the hb->lock before removing the lock from the
1a1fb985
TG
2908 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2909 * lists consistent.
56222b21
PZ
2910 *
2911 * In particular; it is important that futex_unlock_pi() can not
2912 * observe this inconsistency.
cfafcd11
PZ
2913 */
2914 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2915 ret = 0;
2916
2917no_block:
dd973998
DH
2918 /*
2919 * Fixup the pi_state owner and possibly acquire the lock if we
2920 * haven't already.
2921 */
ae791a2d 2922 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2923 /*
2924 * If fixup_owner() returned an error, proprogate that. If it acquired
2925 * the lock, clear our -ETIMEDOUT or -EINTR.
2926 */
2927 if (res)
2928 ret = (res < 0) ? res : 0;
c87e2837 2929
e8f6386c 2930 /*
dd973998
DH
2931 * If fixup_owner() faulted and was unable to handle the fault, unlock
2932 * it and return the fault to userspace.
e8f6386c 2933 */
16ffa12d
PZ
2934 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2935 pi_state = q.pi_state;
2936 get_pi_state(pi_state);
2937 }
e8f6386c 2938
778e9a9c
AK
2939 /* Unqueue and drop the lock */
2940 unqueue_me_pi(&q);
c87e2837 2941
16ffa12d
PZ
2942 if (pi_state) {
2943 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2944 put_pi_state(pi_state);
2945 }
2946
5ecb01cf 2947 goto out_put_key;
c87e2837 2948
42d35d48 2949out_unlock_put_key:
0d00c7b2 2950 queue_unlock(hb);
c87e2837 2951
42d35d48 2952out_put_key:
ae791a2d 2953 put_futex_key(&q.key);
42d35d48 2954out:
97181f9b
TG
2955 if (to) {
2956 hrtimer_cancel(&to->timer);
237fc6e7 2957 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2958 }
dd973998 2959 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2960
42d35d48 2961uaddr_faulted:
0d00c7b2 2962 queue_unlock(hb);
778e9a9c 2963
d0725992 2964 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2965 if (ret)
2966 goto out_put_key;
c87e2837 2967
b41277dc 2968 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2969 goto retry_private;
2970
ae791a2d 2971 put_futex_key(&q.key);
e4dc5b7a 2972 goto retry;
c87e2837
IM
2973}
2974
c87e2837
IM
2975/*
2976 * Userspace attempted a TID -> 0 atomic transition, and failed.
2977 * This is the in-kernel slowpath: we look up the PI state (if any),
2978 * and do the rt-mutex unlock.
2979 */
b41277dc 2980static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2981{
ccf9e6a8 2982 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2983 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2984 struct futex_hash_bucket *hb;
499f5aca 2985 struct futex_q *top_waiter;
e4dc5b7a 2986 int ret;
c87e2837 2987
bc2eecd7
NP
2988 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2989 return -ENOSYS;
2990
c87e2837
IM
2991retry:
2992 if (get_user(uval, uaddr))
2993 return -EFAULT;
2994 /*
2995 * We release only a lock we actually own:
2996 */
c0c9ed15 2997 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2998 return -EPERM;
c87e2837 2999
96d4f267 3000 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
3001 if (ret)
3002 return ret;
c87e2837
IM
3003
3004 hb = hash_futex(&key);
3005 spin_lock(&hb->lock);
3006
c87e2837 3007 /*
ccf9e6a8
TG
3008 * Check waiters first. We do not trust user space values at
3009 * all and we at least want to know if user space fiddled
3010 * with the futex value instead of blindly unlocking.
c87e2837 3011 */
499f5aca
PZ
3012 top_waiter = futex_top_waiter(hb, &key);
3013 if (top_waiter) {
16ffa12d
PZ
3014 struct futex_pi_state *pi_state = top_waiter->pi_state;
3015
3016 ret = -EINVAL;
3017 if (!pi_state)
3018 goto out_unlock;
3019
3020 /*
3021 * If current does not own the pi_state then the futex is
3022 * inconsistent and user space fiddled with the futex value.
3023 */
3024 if (pi_state->owner != current)
3025 goto out_unlock;
3026
bebe5b51 3027 get_pi_state(pi_state);
802ab58d 3028 /*
bebe5b51
PZ
3029 * By taking wait_lock while still holding hb->lock, we ensure
3030 * there is no point where we hold neither; and therefore
3031 * wake_futex_pi() must observe a state consistent with what we
3032 * observed.
1a1fb985
TG
3033 *
3034 * In particular; this forces __rt_mutex_start_proxy() to
3035 * complete such that we're guaranteed to observe the
3036 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3037 */
bebe5b51 3038 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3039 spin_unlock(&hb->lock);
3040
c74aef2d 3041 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3042 ret = wake_futex_pi(uaddr, uval, pi_state);
3043
3044 put_pi_state(pi_state);
3045
3046 /*
3047 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3048 */
3049 if (!ret)
3050 goto out_putkey;
c87e2837 3051 /*
ccf9e6a8
TG
3052 * The atomic access to the futex value generated a
3053 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3054 */
3055 if (ret == -EFAULT)
3056 goto pi_faulted;
89e9e66b
SAS
3057 /*
3058 * A unconditional UNLOCK_PI op raced against a waiter
3059 * setting the FUTEX_WAITERS bit. Try again.
3060 */
6b4f4bc9
WD
3061 if (ret == -EAGAIN)
3062 goto pi_retry;
802ab58d
SAS
3063 /*
3064 * wake_futex_pi has detected invalid state. Tell user
3065 * space.
3066 */
16ffa12d 3067 goto out_putkey;
c87e2837 3068 }
ccf9e6a8 3069
c87e2837 3070 /*
ccf9e6a8
TG
3071 * We have no kernel internal state, i.e. no waiters in the
3072 * kernel. Waiters which are about to queue themselves are stuck
3073 * on hb->lock. So we can safely ignore them. We do neither
3074 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3075 * owner.
c87e2837 3076 */
6b4f4bc9 3077 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3078 spin_unlock(&hb->lock);
6b4f4bc9
WD
3079 switch (ret) {
3080 case -EFAULT:
3081 goto pi_faulted;
3082
3083 case -EAGAIN:
3084 goto pi_retry;
3085
3086 default:
3087 WARN_ON_ONCE(1);
3088 goto out_putkey;
3089 }
16ffa12d 3090 }
c87e2837 3091
ccf9e6a8
TG
3092 /*
3093 * If uval has changed, let user space handle it.
3094 */
3095 ret = (curval == uval) ? 0 : -EAGAIN;
3096
c87e2837
IM
3097out_unlock:
3098 spin_unlock(&hb->lock);
802ab58d 3099out_putkey:
ae791a2d 3100 put_futex_key(&key);
c87e2837
IM
3101 return ret;
3102
6b4f4bc9
WD
3103pi_retry:
3104 put_futex_key(&key);
3105 cond_resched();
3106 goto retry;
3107
c87e2837 3108pi_faulted:
ae791a2d 3109 put_futex_key(&key);
c87e2837 3110
d0725992 3111 ret = fault_in_user_writeable(uaddr);
b5686363 3112 if (!ret)
c87e2837
IM
3113 goto retry;
3114
1da177e4
LT
3115 return ret;
3116}
3117
52400ba9
DH
3118/**
3119 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3120 * @hb: the hash_bucket futex_q was original enqueued on
3121 * @q: the futex_q woken while waiting to be requeued
3122 * @key2: the futex_key of the requeue target futex
3123 * @timeout: the timeout associated with the wait (NULL if none)
3124 *
3125 * Detect if the task was woken on the initial futex as opposed to the requeue
3126 * target futex. If so, determine if it was a timeout or a signal that caused
3127 * the wakeup and return the appropriate error code to the caller. Must be
3128 * called with the hb lock held.
3129 *
6c23cbbd 3130 * Return:
7b4ff1ad
MCC
3131 * - 0 = no early wakeup detected;
3132 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3133 */
3134static inline
3135int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3136 struct futex_q *q, union futex_key *key2,
3137 struct hrtimer_sleeper *timeout)
3138{
3139 int ret = 0;
3140
3141 /*
3142 * With the hb lock held, we avoid races while we process the wakeup.
3143 * We only need to hold hb (and not hb2) to ensure atomicity as the
3144 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3145 * It can't be requeued from uaddr2 to something else since we don't
3146 * support a PI aware source futex for requeue.
3147 */
3148 if (!match_futex(&q->key, key2)) {
3149 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3150 /*
3151 * We were woken prior to requeue by a timeout or a signal.
3152 * Unqueue the futex_q and determine which it was.
3153 */
2e12978a 3154 plist_del(&q->list, &hb->chain);
11d4616b 3155 hb_waiters_dec(hb);
52400ba9 3156
d58e6576 3157 /* Handle spurious wakeups gracefully */
11df6ddd 3158 ret = -EWOULDBLOCK;
52400ba9
DH
3159 if (timeout && !timeout->task)
3160 ret = -ETIMEDOUT;
d58e6576 3161 else if (signal_pending(current))
1c840c14 3162 ret = -ERESTARTNOINTR;
52400ba9
DH
3163 }
3164 return ret;
3165}
3166
3167/**
3168 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3169 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3170 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3171 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3172 * @val: the expected value of uaddr
3173 * @abs_time: absolute timeout
56ec1607 3174 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3175 * @uaddr2: the pi futex we will take prior to returning to user-space
3176 *
3177 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3178 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3179 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3180 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3181 * without one, the pi logic would not know which task to boost/deboost, if
3182 * there was a need to.
52400ba9
DH
3183 *
3184 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3185 * via the following--
52400ba9 3186 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3187 * 2) wakeup on uaddr2 after a requeue
3188 * 3) signal
3189 * 4) timeout
52400ba9 3190 *
cc6db4e6 3191 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3192 *
3193 * If 2, we may then block on trying to take the rt_mutex and return via:
3194 * 5) successful lock
3195 * 6) signal
3196 * 7) timeout
3197 * 8) other lock acquisition failure
3198 *
cc6db4e6 3199 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3200 *
3201 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3202 *
6c23cbbd 3203 * Return:
7b4ff1ad
MCC
3204 * - 0 - On success;
3205 * - <0 - On error
52400ba9 3206 */
b41277dc 3207static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3208 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3209 u32 __user *uaddr2)
52400ba9
DH
3210{
3211 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3212 struct futex_pi_state *pi_state = NULL;
52400ba9 3213 struct rt_mutex_waiter rt_waiter;
52400ba9 3214 struct futex_hash_bucket *hb;
5bdb05f9
DH
3215 union futex_key key2 = FUTEX_KEY_INIT;
3216 struct futex_q q = futex_q_init;
52400ba9 3217 int res, ret;
52400ba9 3218
bc2eecd7
NP
3219 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3220 return -ENOSYS;
3221
6f7b0a2a
DH
3222 if (uaddr == uaddr2)
3223 return -EINVAL;
3224
52400ba9
DH
3225 if (!bitset)
3226 return -EINVAL;
3227
3228 if (abs_time) {
3229 to = &timeout;
b41277dc
DH
3230 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3231 CLOCK_REALTIME : CLOCK_MONOTONIC,
3232 HRTIMER_MODE_ABS);
52400ba9
DH
3233 hrtimer_init_sleeper(to, current);
3234 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3235 current->timer_slack_ns);
3236 }
3237
3238 /*
3239 * The waiter is allocated on our stack, manipulated by the requeue
3240 * code while we sleep on uaddr.
3241 */
50809358 3242 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3243
96d4f267 3244 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3245 if (unlikely(ret != 0))
3246 goto out;
3247
84bc4af5
DH
3248 q.bitset = bitset;
3249 q.rt_waiter = &rt_waiter;
3250 q.requeue_pi_key = &key2;
3251
7ada876a
DH
3252 /*
3253 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3254 * count.
3255 */
b41277dc 3256 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3257 if (ret)
3258 goto out_key2;
52400ba9 3259
e9c243a5
TG
3260 /*
3261 * The check above which compares uaddrs is not sufficient for
3262 * shared futexes. We need to compare the keys:
3263 */
3264 if (match_futex(&q.key, &key2)) {
13c42c2f 3265 queue_unlock(hb);
e9c243a5
TG
3266 ret = -EINVAL;
3267 goto out_put_keys;
3268 }
3269
52400ba9 3270 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3271 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3272
3273 spin_lock(&hb->lock);
3274 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3275 spin_unlock(&hb->lock);
3276 if (ret)
3277 goto out_put_keys;
3278
3279 /*
3280 * In order for us to be here, we know our q.key == key2, and since
3281 * we took the hb->lock above, we also know that futex_requeue() has
3282 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3283 * race with the atomic proxy lock acquisition by the requeue code. The
3284 * futex_requeue dropped our key1 reference and incremented our key2
3285 * reference count.
52400ba9
DH
3286 */
3287
3288 /* Check if the requeue code acquired the second futex for us. */
3289 if (!q.rt_waiter) {
3290 /*
3291 * Got the lock. We might not be the anticipated owner if we
3292 * did a lock-steal - fix up the PI-state in that case.
3293 */
3294 if (q.pi_state && (q.pi_state->owner != current)) {
3295 spin_lock(q.lock_ptr);
ae791a2d 3296 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3297 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3298 pi_state = q.pi_state;
3299 get_pi_state(pi_state);
3300 }
fb75a428
TG
3301 /*
3302 * Drop the reference to the pi state which
3303 * the requeue_pi() code acquired for us.
3304 */
29e9ee5d 3305 put_pi_state(q.pi_state);
52400ba9
DH
3306 spin_unlock(q.lock_ptr);
3307 }
3308 } else {
c236c8e9
PZ
3309 struct rt_mutex *pi_mutex;
3310
52400ba9
DH
3311 /*
3312 * We have been woken up by futex_unlock_pi(), a timeout, or a
3313 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3314 * the pi_state.
3315 */
f27071cb 3316 WARN_ON(!q.pi_state);
52400ba9 3317 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3318 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3319
3320 spin_lock(q.lock_ptr);
38d589f2
PZ
3321 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3322 ret = 0;
3323
3324 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3325 /*
3326 * Fixup the pi_state owner and possibly acquire the lock if we
3327 * haven't already.
3328 */
ae791a2d 3329 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3330 /*
3331 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3332 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3333 */
3334 if (res)
3335 ret = (res < 0) ? res : 0;
3336
c236c8e9
PZ
3337 /*
3338 * If fixup_pi_state_owner() faulted and was unable to handle
3339 * the fault, unlock the rt_mutex and return the fault to
3340 * userspace.
3341 */
16ffa12d
PZ
3342 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3343 pi_state = q.pi_state;
3344 get_pi_state(pi_state);
3345 }
c236c8e9 3346
52400ba9
DH
3347 /* Unqueue and drop the lock. */
3348 unqueue_me_pi(&q);
3349 }
3350
16ffa12d
PZ
3351 if (pi_state) {
3352 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3353 put_pi_state(pi_state);
3354 }
3355
c236c8e9 3356 if (ret == -EINTR) {
52400ba9 3357 /*
cc6db4e6
DH
3358 * We've already been requeued, but cannot restart by calling
3359 * futex_lock_pi() directly. We could restart this syscall, but
3360 * it would detect that the user space "val" changed and return
3361 * -EWOULDBLOCK. Save the overhead of the restart and return
3362 * -EWOULDBLOCK directly.
52400ba9 3363 */
2070887f 3364 ret = -EWOULDBLOCK;
52400ba9
DH
3365 }
3366
3367out_put_keys:
ae791a2d 3368 put_futex_key(&q.key);
c8b15a70 3369out_key2:
ae791a2d 3370 put_futex_key(&key2);
52400ba9
DH
3371
3372out:
3373 if (to) {
3374 hrtimer_cancel(&to->timer);
3375 destroy_hrtimer_on_stack(&to->timer);
3376 }
3377 return ret;
3378}
3379
0771dfef
IM
3380/*
3381 * Support for robust futexes: the kernel cleans up held futexes at
3382 * thread exit time.
3383 *
3384 * Implementation: user-space maintains a per-thread list of locks it
3385 * is holding. Upon do_exit(), the kernel carefully walks this list,
3386 * and marks all locks that are owned by this thread with the
c87e2837 3387 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3388 * always manipulated with the lock held, so the list is private and
3389 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3390 * field, to allow the kernel to clean up if the thread dies after
3391 * acquiring the lock, but just before it could have added itself to
3392 * the list. There can only be one such pending lock.
3393 */
3394
3395/**
d96ee56c
DH
3396 * sys_set_robust_list() - Set the robust-futex list head of a task
3397 * @head: pointer to the list-head
3398 * @len: length of the list-head, as userspace expects
0771dfef 3399 */
836f92ad
HC
3400SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3401 size_t, len)
0771dfef 3402{
a0c1e907
TG
3403 if (!futex_cmpxchg_enabled)
3404 return -ENOSYS;
0771dfef
IM
3405 /*
3406 * The kernel knows only one size for now:
3407 */
3408 if (unlikely(len != sizeof(*head)))
3409 return -EINVAL;
3410
3411 current->robust_list = head;
3412
3413 return 0;
3414}
3415
3416/**
d96ee56c
DH
3417 * sys_get_robust_list() - Get the robust-futex list head of a task
3418 * @pid: pid of the process [zero for current task]
3419 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3420 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3421 */
836f92ad
HC
3422SYSCALL_DEFINE3(get_robust_list, int, pid,
3423 struct robust_list_head __user * __user *, head_ptr,
3424 size_t __user *, len_ptr)
0771dfef 3425{
ba46df98 3426 struct robust_list_head __user *head;
0771dfef 3427 unsigned long ret;
bdbb776f 3428 struct task_struct *p;
0771dfef 3429
a0c1e907
TG
3430 if (!futex_cmpxchg_enabled)
3431 return -ENOSYS;
3432
bdbb776f
KC
3433 rcu_read_lock();
3434
3435 ret = -ESRCH;
0771dfef 3436 if (!pid)
bdbb776f 3437 p = current;
0771dfef 3438 else {
228ebcbe 3439 p = find_task_by_vpid(pid);
0771dfef
IM
3440 if (!p)
3441 goto err_unlock;
0771dfef
IM
3442 }
3443
bdbb776f 3444 ret = -EPERM;
caaee623 3445 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3446 goto err_unlock;
3447
3448 head = p->robust_list;
3449 rcu_read_unlock();
3450
0771dfef
IM
3451 if (put_user(sizeof(*head), len_ptr))
3452 return -EFAULT;
3453 return put_user(head, head_ptr);
3454
3455err_unlock:
aaa2a97e 3456 rcu_read_unlock();
0771dfef
IM
3457
3458 return ret;
3459}
3460
3461/*
3462 * Process a futex-list entry, check whether it's owned by the
3463 * dying task, and do notification if so:
3464 */
04e7712f 3465static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3466{
7cfdaf38 3467 u32 uval, uninitialized_var(nval), mval;
6b4f4bc9 3468 int err;
0771dfef 3469
5a07168d
CJ
3470 /* Futex address must be 32bit aligned */
3471 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3472 return -1;
3473
8f17d3a5
IM
3474retry:
3475 if (get_user(uval, uaddr))
0771dfef
IM
3476 return -1;
3477
6b4f4bc9
WD
3478 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3479 return 0;
3480
3481 /*
3482 * Ok, this dying thread is truly holding a futex
3483 * of interest. Set the OWNER_DIED bit atomically
3484 * via cmpxchg, and if the value had FUTEX_WAITERS
3485 * set, wake up a waiter (if any). (We have to do a
3486 * futex_wake() even if OWNER_DIED is already set -
3487 * to handle the rare but possible case of recursive
3488 * thread-death.) The rest of the cleanup is done in
3489 * userspace.
3490 */
3491 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3492
3493 /*
3494 * We are not holding a lock here, but we want to have
3495 * the pagefault_disable/enable() protection because
3496 * we want to handle the fault gracefully. If the
3497 * access fails we try to fault in the futex with R/W
3498 * verification via get_user_pages. get_user() above
3499 * does not guarantee R/W access. If that fails we
3500 * give up and leave the futex locked.
3501 */
3502 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3503 switch (err) {
3504 case -EFAULT:
6e0aa9f8
TG
3505 if (fault_in_user_writeable(uaddr))
3506 return -1;
3507 goto retry;
6b4f4bc9
WD
3508
3509 case -EAGAIN:
3510 cond_resched();
8f17d3a5 3511 goto retry;
0771dfef 3512
6b4f4bc9
WD
3513 default:
3514 WARN_ON_ONCE(1);
3515 return err;
3516 }
0771dfef 3517 }
6b4f4bc9
WD
3518
3519 if (nval != uval)
3520 goto retry;
3521
3522 /*
3523 * Wake robust non-PI futexes here. The wakeup of
3524 * PI futexes happens in exit_pi_state():
3525 */
3526 if (!pi && (uval & FUTEX_WAITERS))
3527 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3528
0771dfef
IM
3529 return 0;
3530}
3531
e3f2ddea
IM
3532/*
3533 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3534 */
3535static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3536 struct robust_list __user * __user *head,
1dcc41bb 3537 unsigned int *pi)
e3f2ddea
IM
3538{
3539 unsigned long uentry;
3540
ba46df98 3541 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3542 return -EFAULT;
3543
ba46df98 3544 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3545 *pi = uentry & 1;
3546
3547 return 0;
3548}
3549
0771dfef
IM
3550/*
3551 * Walk curr->robust_list (very carefully, it's a userspace list!)
3552 * and mark any locks found there dead, and notify any waiters.
3553 *
3554 * We silently return on any sign of list-walking problem.
3555 */
3556void exit_robust_list(struct task_struct *curr)
3557{
3558 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3559 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3560 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3561 unsigned int uninitialized_var(next_pi);
0771dfef 3562 unsigned long futex_offset;
9f96cb1e 3563 int rc;
0771dfef 3564
a0c1e907
TG
3565 if (!futex_cmpxchg_enabled)
3566 return;
3567
0771dfef
IM
3568 /*
3569 * Fetch the list head (which was registered earlier, via
3570 * sys_set_robust_list()):
3571 */
e3f2ddea 3572 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3573 return;
3574 /*
3575 * Fetch the relative futex offset:
3576 */
3577 if (get_user(futex_offset, &head->futex_offset))
3578 return;
3579 /*
3580 * Fetch any possibly pending lock-add first, and handle it
3581 * if it exists:
3582 */
e3f2ddea 3583 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3584 return;
e3f2ddea 3585
9f96cb1e 3586 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3587 while (entry != &head->list) {
9f96cb1e
MS
3588 /*
3589 * Fetch the next entry in the list before calling
3590 * handle_futex_death:
3591 */
3592 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3593 /*
3594 * A pending lock might already be on the list, so
c87e2837 3595 * don't process it twice:
0771dfef
IM
3596 */
3597 if (entry != pending)
ba46df98 3598 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3599 curr, pi))
0771dfef 3600 return;
9f96cb1e 3601 if (rc)
0771dfef 3602 return;
9f96cb1e
MS
3603 entry = next_entry;
3604 pi = next_pi;
0771dfef
IM
3605 /*
3606 * Avoid excessively long or circular lists:
3607 */
3608 if (!--limit)
3609 break;
3610
3611 cond_resched();
3612 }
9f96cb1e
MS
3613
3614 if (pending)
3615 handle_futex_death((void __user *)pending + futex_offset,
3616 curr, pip);
0771dfef
IM
3617}
3618
c19384b5 3619long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3620 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3621{
81b40539 3622 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3623 unsigned int flags = 0;
34f01cc1
ED
3624
3625 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3626 flags |= FLAGS_SHARED;
1da177e4 3627
b41277dc
DH
3628 if (op & FUTEX_CLOCK_REALTIME) {
3629 flags |= FLAGS_CLOCKRT;
337f1304
DH
3630 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3631 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3632 return -ENOSYS;
3633 }
1da177e4 3634
59263b51
TG
3635 switch (cmd) {
3636 case FUTEX_LOCK_PI:
3637 case FUTEX_UNLOCK_PI:
3638 case FUTEX_TRYLOCK_PI:
3639 case FUTEX_WAIT_REQUEUE_PI:
3640 case FUTEX_CMP_REQUEUE_PI:
3641 if (!futex_cmpxchg_enabled)
3642 return -ENOSYS;
3643 }
3644
34f01cc1 3645 switch (cmd) {
1da177e4 3646 case FUTEX_WAIT:
cd689985 3647 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3648 /* fall through */
cd689985 3649 case FUTEX_WAIT_BITSET:
81b40539 3650 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3651 case FUTEX_WAKE:
cd689985 3652 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3653 /* fall through */
cd689985 3654 case FUTEX_WAKE_BITSET:
81b40539 3655 return futex_wake(uaddr, flags, val, val3);
1da177e4 3656 case FUTEX_REQUEUE:
81b40539 3657 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3658 case FUTEX_CMP_REQUEUE:
81b40539 3659 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3660 case FUTEX_WAKE_OP:
81b40539 3661 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3662 case FUTEX_LOCK_PI:
996636dd 3663 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3664 case FUTEX_UNLOCK_PI:
81b40539 3665 return futex_unlock_pi(uaddr, flags);
c87e2837 3666 case FUTEX_TRYLOCK_PI:
996636dd 3667 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3668 case FUTEX_WAIT_REQUEUE_PI:
3669 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3670 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3671 uaddr2);
52400ba9 3672 case FUTEX_CMP_REQUEUE_PI:
81b40539 3673 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3674 }
81b40539 3675 return -ENOSYS;
1da177e4
LT
3676}
3677
3678
17da2bd9 3679SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3680 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3681 u32, val3)
1da177e4 3682{
bec2f7cb 3683 struct timespec64 ts;
c19384b5 3684 ktime_t t, *tp = NULL;
e2970f2f 3685 u32 val2 = 0;
34f01cc1 3686 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3687
cd689985 3688 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3689 cmd == FUTEX_WAIT_BITSET ||
3690 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3691 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3692 return -EFAULT;
bec2f7cb 3693 if (get_timespec64(&ts, utime))
1da177e4 3694 return -EFAULT;
bec2f7cb 3695 if (!timespec64_valid(&ts))
9741ef96 3696 return -EINVAL;
c19384b5 3697
bec2f7cb 3698 t = timespec64_to_ktime(ts);
34f01cc1 3699 if (cmd == FUTEX_WAIT)
5a7780e7 3700 t = ktime_add_safe(ktime_get(), t);
c19384b5 3701 tp = &t;
1da177e4
LT
3702 }
3703 /*
52400ba9 3704 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3705 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3706 */
f54f0986 3707 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3708 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3709 val2 = (u32) (unsigned long) utime;
1da177e4 3710
c19384b5 3711 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3712}
3713
04e7712f
AB
3714#ifdef CONFIG_COMPAT
3715/*
3716 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3717 */
3718static inline int
3719compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3720 compat_uptr_t __user *head, unsigned int *pi)
3721{
3722 if (get_user(*uentry, head))
3723 return -EFAULT;
3724
3725 *entry = compat_ptr((*uentry) & ~1);
3726 *pi = (unsigned int)(*uentry) & 1;
3727
3728 return 0;
3729}
3730
3731static void __user *futex_uaddr(struct robust_list __user *entry,
3732 compat_long_t futex_offset)
3733{
3734 compat_uptr_t base = ptr_to_compat(entry);
3735 void __user *uaddr = compat_ptr(base + futex_offset);
3736
3737 return uaddr;
3738}
3739
3740/*
3741 * Walk curr->robust_list (very carefully, it's a userspace list!)
3742 * and mark any locks found there dead, and notify any waiters.
3743 *
3744 * We silently return on any sign of list-walking problem.
3745 */
3746void compat_exit_robust_list(struct task_struct *curr)
3747{
3748 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3749 struct robust_list __user *entry, *next_entry, *pending;
3750 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3751 unsigned int uninitialized_var(next_pi);
3752 compat_uptr_t uentry, next_uentry, upending;
3753 compat_long_t futex_offset;
3754 int rc;
3755
3756 if (!futex_cmpxchg_enabled)
3757 return;
3758
3759 /*
3760 * Fetch the list head (which was registered earlier, via
3761 * sys_set_robust_list()):
3762 */
3763 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3764 return;
3765 /*
3766 * Fetch the relative futex offset:
3767 */
3768 if (get_user(futex_offset, &head->futex_offset))
3769 return;
3770 /*
3771 * Fetch any possibly pending lock-add first, and handle it
3772 * if it exists:
3773 */
3774 if (compat_fetch_robust_entry(&upending, &pending,
3775 &head->list_op_pending, &pip))
3776 return;
3777
3778 next_entry = NULL; /* avoid warning with gcc */
3779 while (entry != (struct robust_list __user *) &head->list) {
3780 /*
3781 * Fetch the next entry in the list before calling
3782 * handle_futex_death:
3783 */
3784 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3785 (compat_uptr_t __user *)&entry->next, &next_pi);
3786 /*
3787 * A pending lock might already be on the list, so
3788 * dont process it twice:
3789 */
3790 if (entry != pending) {
3791 void __user *uaddr = futex_uaddr(entry, futex_offset);
3792
3793 if (handle_futex_death(uaddr, curr, pi))
3794 return;
3795 }
3796 if (rc)
3797 return;
3798 uentry = next_uentry;
3799 entry = next_entry;
3800 pi = next_pi;
3801 /*
3802 * Avoid excessively long or circular lists:
3803 */
3804 if (!--limit)
3805 break;
3806
3807 cond_resched();
3808 }
3809 if (pending) {
3810 void __user *uaddr = futex_uaddr(pending, futex_offset);
3811
3812 handle_futex_death(uaddr, curr, pip);
3813 }
3814}
3815
3816COMPAT_SYSCALL_DEFINE2(set_robust_list,
3817 struct compat_robust_list_head __user *, head,
3818 compat_size_t, len)
3819{
3820 if (!futex_cmpxchg_enabled)
3821 return -ENOSYS;
3822
3823 if (unlikely(len != sizeof(*head)))
3824 return -EINVAL;
3825
3826 current->compat_robust_list = head;
3827
3828 return 0;
3829}
3830
3831COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3832 compat_uptr_t __user *, head_ptr,
3833 compat_size_t __user *, len_ptr)
3834{
3835 struct compat_robust_list_head __user *head;
3836 unsigned long ret;
3837 struct task_struct *p;
3838
3839 if (!futex_cmpxchg_enabled)
3840 return -ENOSYS;
3841
3842 rcu_read_lock();
3843
3844 ret = -ESRCH;
3845 if (!pid)
3846 p = current;
3847 else {
3848 p = find_task_by_vpid(pid);
3849 if (!p)
3850 goto err_unlock;
3851 }
3852
3853 ret = -EPERM;
3854 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3855 goto err_unlock;
3856
3857 head = p->compat_robust_list;
3858 rcu_read_unlock();
3859
3860 if (put_user(sizeof(*head), len_ptr))
3861 return -EFAULT;
3862 return put_user(ptr_to_compat(head), head_ptr);
3863
3864err_unlock:
3865 rcu_read_unlock();
3866
3867 return ret;
3868}
bec2f7cb 3869#endif /* CONFIG_COMPAT */
04e7712f 3870
bec2f7cb 3871#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724 3872SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
04e7712f
AB
3873 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3874 u32, val3)
3875{
bec2f7cb 3876 struct timespec64 ts;
04e7712f
AB
3877 ktime_t t, *tp = NULL;
3878 int val2 = 0;
3879 int cmd = op & FUTEX_CMD_MASK;
3880
3881 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3882 cmd == FUTEX_WAIT_BITSET ||
3883 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3884 if (get_old_timespec32(&ts, utime))
04e7712f 3885 return -EFAULT;
bec2f7cb 3886 if (!timespec64_valid(&ts))
04e7712f
AB
3887 return -EINVAL;
3888
bec2f7cb 3889 t = timespec64_to_ktime(ts);
04e7712f
AB
3890 if (cmd == FUTEX_WAIT)
3891 t = ktime_add_safe(ktime_get(), t);
3892 tp = &t;
3893 }
3894 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3895 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3896 val2 = (int) (unsigned long) utime;
3897
3898 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3899}
bec2f7cb 3900#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3901
03b8c7b6 3902static void __init futex_detect_cmpxchg(void)
1da177e4 3903{
03b8c7b6 3904#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3905 u32 curval;
03b8c7b6
HC
3906
3907 /*
3908 * This will fail and we want it. Some arch implementations do
3909 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3910 * functionality. We want to know that before we call in any
3911 * of the complex code paths. Also we want to prevent
3912 * registration of robust lists in that case. NULL is
3913 * guaranteed to fault and we get -EFAULT on functional
3914 * implementation, the non-functional ones will return
3915 * -ENOSYS.
3916 */
3917 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3918 futex_cmpxchg_enabled = 1;
3919#endif
3920}
3921
3922static int __init futex_init(void)
3923{
63b1a816 3924 unsigned int futex_shift;
a52b89eb
DB
3925 unsigned long i;
3926
3927#if CONFIG_BASE_SMALL
3928 futex_hashsize = 16;
3929#else
3930 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3931#endif
3932
3933 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3934 futex_hashsize, 0,
3935 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3936 &futex_shift, NULL,
3937 futex_hashsize, futex_hashsize);
3938 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3939
3940 futex_detect_cmpxchg();
a0c1e907 3941
a52b89eb 3942 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3943 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3944 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3945 spin_lock_init(&futex_queues[i].lock);
3946 }
3947
1da177e4
LT
3948 return 0;
3949}
25f71d1c 3950core_initcall(futex_init);