mm: move MAP_SYNC to asm-generic/mman-common.h
[linux-2.6-block.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
133ff0ea 43#include <linux/hmm.h>
1da177e4 44#include <linux/fs.h>
615d6e87
DB
45#include <linux/mm.h>
46#include <linux/vmacache.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
0a425405 78#include <linux/random.h>
522ed776 79#include <linux/tty.h>
fd0928df 80#include <linux/blkdev.h>
5ad4e53b 81#include <linux/fs_struct.h>
7c9f8861 82#include <linux/magic.h>
cdd6c482 83#include <linux/perf_event.h>
42c4ab41 84#include <linux/posix-timers.h>
8e7cac79 85#include <linux/user-return-notifier.h>
3d5992d2 86#include <linux/oom.h>
ba76149f 87#include <linux/khugepaged.h>
d80e731e 88#include <linux/signalfd.h>
0326f5a9 89#include <linux/uprobes.h>
a27bb332 90#include <linux/aio.h>
52f5684c 91#include <linux/compiler.h>
16db3d3f 92#include <linux/sysctl.h>
5c9a8750 93#include <linux/kcov.h>
d83a7cb3 94#include <linux/livepatch.h>
48ac3c18 95#include <linux/thread_info.h>
afaef01c 96#include <linux/stackleak.h>
1da177e4
LT
97
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
ac1b398d
HS
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
1da177e4
LT
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 124int nr_threads; /* The idle threads do not count.. */
1da177e4 125
8856ae4d 126static int max_threads; /* tunable limit on nr_threads */
1da177e4
LT
127
128DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129
c59923a1 130__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
131
132#ifdef CONFIG_PROVE_RCU
133int lockdep_tasklist_lock_is_held(void)
134{
135 return lockdep_is_held(&tasklist_lock);
136}
137EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
139
140int nr_processes(void)
141{
142 int cpu;
143 int total = 0;
144
1d510750 145 for_each_possible_cpu(cpu)
1da177e4
LT
146 total += per_cpu(process_counts, cpu);
147
148 return total;
149}
150
f19b9f74
AM
151void __weak arch_release_task_struct(struct task_struct *tsk)
152{
153}
154
f5e10287 155#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 156static struct kmem_cache *task_struct_cachep;
41101809
TG
157
158static inline struct task_struct *alloc_task_struct_node(int node)
159{
160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161}
162
41101809
TG
163static inline void free_task_struct(struct task_struct *tsk)
164{
41101809
TG
165 kmem_cache_free(task_struct_cachep, tsk);
166}
1da177e4
LT
167#endif
168
b235beea 169#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 170
0d15d74a
TG
171/*
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
174 */
ba14a194 175# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
176
177#ifdef CONFIG_VMAP_STACK
178/*
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
181 */
182#define NR_CACHED_STACKS 2
183static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
184
185static int free_vm_stack_cache(unsigned int cpu)
186{
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
189
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
192
193 if (!vm_stack)
194 continue;
195
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
198 }
199
200 return 0;
201}
ac496bf4
AL
202#endif
203
ba14a194 204static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 205{
ba14a194 206#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
207 void *stack;
208 int i;
209
ac496bf4 210 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
211 struct vm_struct *s;
212
213 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
214
215 if (!s)
216 continue;
ac496bf4 217
ca182551
KK
218 /* Clear stale pointers from reused stack. */
219 memset(s->addr, 0, THREAD_SIZE);
e01e8063 220
ac496bf4 221 tsk->stack_vm_area = s;
ba4a4574 222 tsk->stack = s->addr;
ac496bf4
AL
223 return s->addr;
224 }
ac496bf4 225
9b6f7e16
RG
226 /*
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
230 */
48ac3c18 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 232 VMALLOC_START, VMALLOC_END,
9b6f7e16 233 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
ba14a194
AL
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
5eed6f1d 242 if (stack) {
ba14a194 243 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
244 tsk->stack = stack;
245 }
ba14a194
AL
246 return stack;
247#else
4949148a
VD
248 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 THREAD_SIZE_ORDER);
b6a84016 250
1bf4580e
AA
251 if (likely(page)) {
252 tsk->stack = page_address(page);
253 return tsk->stack;
254 }
255 return NULL;
ba14a194 256#endif
b69c49b7
FT
257}
258
ba14a194 259static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 260{
ac496bf4 261#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
262 struct vm_struct *vm = task_stack_vm_area(tsk);
263
264 if (vm) {
ac496bf4
AL
265 int i;
266
9b6f7e16
RG
267 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 mod_memcg_page_state(vm->pages[i],
269 MEMCG_KERNEL_STACK_KB,
270 -(int)(PAGE_SIZE / 1024));
271
272 memcg_kmem_uncharge(vm->pages[i], 0);
273 }
274
ac496bf4 275 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
276 if (this_cpu_cmpxchg(cached_stacks[i],
277 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
278 continue;
279
ac496bf4
AL
280 return;
281 }
ac496bf4 282
0f110a9b 283 vfree_atomic(tsk->stack);
ac496bf4
AL
284 return;
285 }
286#endif
287
288 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 289}
0d15d74a 290# else
b235beea 291static struct kmem_cache *thread_stack_cache;
0d15d74a 292
9521d399 293static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
294 int node)
295{
5eed6f1d
RR
296 unsigned long *stack;
297 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 tsk->stack = stack;
299 return stack;
0d15d74a
TG
300}
301
ba14a194 302static void free_thread_stack(struct task_struct *tsk)
0d15d74a 303{
ba14a194 304 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
305}
306
b235beea 307void thread_stack_cache_init(void)
0d15d74a 308{
f9d29946
DW
309 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 THREAD_SIZE, THREAD_SIZE, 0, 0,
311 THREAD_SIZE, NULL);
b235beea 312 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
313}
314# endif
b69c49b7
FT
315#endif
316
1da177e4 317/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 318static struct kmem_cache *signal_cachep;
1da177e4
LT
319
320/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 321struct kmem_cache *sighand_cachep;
1da177e4
LT
322
323/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 324struct kmem_cache *files_cachep;
1da177e4
LT
325
326/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 327struct kmem_cache *fs_cachep;
1da177e4
LT
328
329/* SLAB cache for vm_area_struct structures */
3928d4f5 330static struct kmem_cache *vm_area_cachep;
1da177e4
LT
331
332/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 333static struct kmem_cache *mm_cachep;
1da177e4 334
490fc053 335struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 336{
a670468f 337 struct vm_area_struct *vma;
490fc053 338
a670468f 339 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
340 if (vma)
341 vma_init(vma, mm);
490fc053 342 return vma;
3928d4f5
LT
343}
344
345struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346{
95faf699
LT
347 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348
349 if (new) {
350 *new = *orig;
351 INIT_LIST_HEAD(&new->anon_vma_chain);
352 }
353 return new;
3928d4f5
LT
354}
355
356void vm_area_free(struct vm_area_struct *vma)
357{
358 kmem_cache_free(vm_area_cachep, vma);
359}
360
ba14a194 361static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 362{
ba14a194
AL
363 void *stack = task_stack_page(tsk);
364 struct vm_struct *vm = task_stack_vm_area(tsk);
365
366 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367
368 if (vm) {
369 int i;
370
371 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372
373 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 mod_zone_page_state(page_zone(vm->pages[i]),
375 NR_KERNEL_STACK_KB,
376 PAGE_SIZE / 1024 * account);
377 }
ba14a194
AL
378 } else {
379 /*
380 * All stack pages are in the same zone and belong to the
381 * same memcg.
382 */
383 struct page *first_page = virt_to_page(stack);
384
385 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 THREAD_SIZE / 1024 * account);
387
ed52be7b
JW
388 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
ba14a194 390 }
c6a7f572
KM
391}
392
9b6f7e16
RG
393static int memcg_charge_kernel_stack(struct task_struct *tsk)
394{
395#ifdef CONFIG_VMAP_STACK
396 struct vm_struct *vm = task_stack_vm_area(tsk);
397 int ret;
398
399 if (vm) {
400 int i;
401
402 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 /*
404 * If memcg_kmem_charge() fails, page->mem_cgroup
405 * pointer is NULL, and both memcg_kmem_uncharge()
406 * and mod_memcg_page_state() in free_thread_stack()
407 * will ignore this page. So it's safe.
408 */
409 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 if (ret)
411 return ret;
412
413 mod_memcg_page_state(vm->pages[i],
414 MEMCG_KERNEL_STACK_KB,
415 PAGE_SIZE / 1024);
416 }
417 }
418#endif
419 return 0;
420}
421
68f24b08 422static void release_task_stack(struct task_struct *tsk)
1da177e4 423{
405c0759
AL
424 if (WARN_ON(tsk->state != TASK_DEAD))
425 return; /* Better to leak the stack than to free prematurely */
426
ba14a194 427 account_kernel_stack(tsk, -1);
ba14a194 428 free_thread_stack(tsk);
68f24b08
AL
429 tsk->stack = NULL;
430#ifdef CONFIG_VMAP_STACK
431 tsk->stack_vm_area = NULL;
432#endif
433}
434
435#ifdef CONFIG_THREAD_INFO_IN_TASK
436void put_task_stack(struct task_struct *tsk)
437{
f0b89d39 438 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
439 release_task_stack(tsk);
440}
441#endif
442
443void free_task(struct task_struct *tsk)
444{
445#ifndef CONFIG_THREAD_INFO_IN_TASK
446 /*
447 * The task is finally done with both the stack and thread_info,
448 * so free both.
449 */
450 release_task_stack(tsk);
451#else
452 /*
453 * If the task had a separate stack allocation, it should be gone
454 * by now.
455 */
f0b89d39 456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 457#endif
23f78d4a 458 rt_mutex_debug_task_free(tsk);
fb52607a 459 ftrace_graph_exit_task(tsk);
e2cfabdf 460 put_seccomp_filter(tsk);
f19b9f74 461 arch_release_task_struct(tsk);
1da5c46f
ON
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
1da177e4
LT
464 free_task_struct(tsk);
465}
466EXPORT_SYMBOL(free_task);
467
d70f2a14
AM
468#ifdef CONFIG_MMU
469static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
471{
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
474 int retval;
475 unsigned long charge;
476 LIST_HEAD(uf);
477
478 uprobe_start_dup_mmap();
479 if (down_write_killable(&oldmm->mmap_sem)) {
480 retval = -EINTR;
481 goto fail_uprobe_end;
482 }
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
485 /*
486 * Not linked in yet - no deadlock potential:
487 */
488 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
497
498 rb_link = &mm->mm_rb.rb_node;
499 rb_parent = NULL;
500 pprev = &mm->mmap;
501 retval = ksm_fork(mm, oldmm);
502 if (retval)
503 goto out;
504 retval = khugepaged_fork(mm, oldmm);
505 if (retval)
506 goto out;
507
508 prev = NULL;
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 struct file *file;
511
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 continue;
515 }
516 charge = 0;
655c79bb
TH
517 /*
518 * Don't duplicate many vmas if we've been oom-killed (for
519 * example)
520 */
521 if (fatal_signal_pending(current)) {
522 retval = -EINTR;
523 goto out;
524 }
d70f2a14
AM
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
527
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 goto fail_nomem;
530 charge = len;
531 }
3928d4f5 532 tmp = vm_area_dup(mpnt);
d70f2a14
AM
533 if (!tmp)
534 goto fail_nomem;
d70f2a14
AM
535 retval = vma_dup_policy(mpnt, tmp);
536 if (retval)
537 goto fail_nomem_policy;
538 tmp->vm_mm = mm;
539 retval = dup_userfaultfd(tmp, &uf);
540 if (retval)
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
543 /* VM_WIPEONFORK gets a clean slate in the child. */
544 tmp->anon_vma = NULL;
545 if (anon_vma_prepare(tmp))
546 goto fail_nomem_anon_vma_fork;
547 } else if (anon_vma_fork(tmp, mpnt))
548 goto fail_nomem_anon_vma_fork;
549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 tmp->vm_next = tmp->vm_prev = NULL;
551 file = tmp->vm_file;
552 if (file) {
553 struct inode *inode = file_inode(file);
554 struct address_space *mapping = file->f_mapping;
555
556 get_file(file);
557 if (tmp->vm_flags & VM_DENYWRITE)
558 atomic_dec(&inode->i_writecount);
559 i_mmap_lock_write(mapping);
560 if (tmp->vm_flags & VM_SHARED)
561 atomic_inc(&mapping->i_mmap_writable);
562 flush_dcache_mmap_lock(mapping);
563 /* insert tmp into the share list, just after mpnt */
564 vma_interval_tree_insert_after(tmp, mpnt,
565 &mapping->i_mmap);
566 flush_dcache_mmap_unlock(mapping);
567 i_mmap_unlock_write(mapping);
568 }
569
570 /*
571 * Clear hugetlb-related page reserves for children. This only
572 * affects MAP_PRIVATE mappings. Faults generated by the child
573 * are not guaranteed to succeed, even if read-only
574 */
575 if (is_vm_hugetlb_page(tmp))
576 reset_vma_resv_huge_pages(tmp);
577
578 /*
579 * Link in the new vma and copy the page table entries.
580 */
581 *pprev = tmp;
582 pprev = &tmp->vm_next;
583 tmp->vm_prev = prev;
584 prev = tmp;
585
586 __vma_link_rb(mm, tmp, rb_link, rb_parent);
587 rb_link = &tmp->vm_rb.rb_right;
588 rb_parent = &tmp->vm_rb;
589
590 mm->map_count++;
591 if (!(tmp->vm_flags & VM_WIPEONFORK))
592 retval = copy_page_range(mm, oldmm, mpnt);
593
594 if (tmp->vm_ops && tmp->vm_ops->open)
595 tmp->vm_ops->open(tmp);
596
597 if (retval)
598 goto out;
599 }
600 /* a new mm has just been created */
1ed0cc5a 601 retval = arch_dup_mmap(oldmm, mm);
d70f2a14
AM
602out:
603 up_write(&mm->mmap_sem);
604 flush_tlb_mm(oldmm);
605 up_write(&oldmm->mmap_sem);
606 dup_userfaultfd_complete(&uf);
607fail_uprobe_end:
608 uprobe_end_dup_mmap();
609 return retval;
610fail_nomem_anon_vma_fork:
611 mpol_put(vma_policy(tmp));
612fail_nomem_policy:
3928d4f5 613 vm_area_free(tmp);
d70f2a14
AM
614fail_nomem:
615 retval = -ENOMEM;
616 vm_unacct_memory(charge);
617 goto out;
618}
619
620static inline int mm_alloc_pgd(struct mm_struct *mm)
621{
622 mm->pgd = pgd_alloc(mm);
623 if (unlikely(!mm->pgd))
624 return -ENOMEM;
625 return 0;
626}
627
628static inline void mm_free_pgd(struct mm_struct *mm)
629{
630 pgd_free(mm, mm->pgd);
631}
632#else
633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634{
635 down_write(&oldmm->mmap_sem);
636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 up_write(&oldmm->mmap_sem);
638 return 0;
639}
640#define mm_alloc_pgd(mm) (0)
641#define mm_free_pgd(mm)
642#endif /* CONFIG_MMU */
643
644static void check_mm(struct mm_struct *mm)
645{
646 int i;
647
648 for (i = 0; i < NR_MM_COUNTERS; i++) {
649 long x = atomic_long_read(&mm->rss_stat.count[i]);
650
651 if (unlikely(x))
652 printk(KERN_ALERT "BUG: Bad rss-counter state "
653 "mm:%p idx:%d val:%ld\n", mm, i, x);
654 }
655
656 if (mm_pgtables_bytes(mm))
657 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 mm_pgtables_bytes(mm));
659
660#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662#endif
663}
664
665#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
667
668/*
669 * Called when the last reference to the mm
670 * is dropped: either by a lazy thread or by
671 * mmput. Free the page directory and the mm.
672 */
d34bc48f 673void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
674{
675 BUG_ON(mm == &init_mm);
3eda69c9
MR
676 WARN_ON_ONCE(mm == current->mm);
677 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
678 mm_free_pgd(mm);
679 destroy_context(mm);
d70f2a14
AM
680 mmu_notifier_mm_destroy(mm);
681 check_mm(mm);
682 put_user_ns(mm->user_ns);
683 free_mm(mm);
684}
d34bc48f 685EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
686
687static void mmdrop_async_fn(struct work_struct *work)
688{
689 struct mm_struct *mm;
690
691 mm = container_of(work, struct mm_struct, async_put_work);
692 __mmdrop(mm);
693}
694
695static void mmdrop_async(struct mm_struct *mm)
696{
697 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
698 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
699 schedule_work(&mm->async_put_work);
700 }
701}
702
ea6d290c
ON
703static inline void free_signal_struct(struct signal_struct *sig)
704{
97101eb4 705 taskstats_tgid_free(sig);
1c5354de 706 sched_autogroup_exit(sig);
7283094e
MH
707 /*
708 * __mmdrop is not safe to call from softirq context on x86 due to
709 * pgd_dtor so postpone it to the async context
710 */
26db62f1 711 if (sig->oom_mm)
7283094e 712 mmdrop_async(sig->oom_mm);
ea6d290c
ON
713 kmem_cache_free(signal_cachep, sig);
714}
715
716static inline void put_signal_struct(struct signal_struct *sig)
717{
60d4de3f 718 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
719 free_signal_struct(sig);
720}
721
158d9ebd 722void __put_task_struct(struct task_struct *tsk)
1da177e4 723{
270f722d 724 WARN_ON(!tsk->exit_state);
ec1d2819 725 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
726 WARN_ON(tsk == current);
727
2e91fa7f 728 cgroup_free(tsk);
156654f4 729 task_numa_free(tsk);
1a2a4d06 730 security_task_free(tsk);
e0e81739 731 exit_creds(tsk);
35df17c5 732 delayacct_tsk_free(tsk);
ea6d290c 733 put_signal_struct(tsk->signal);
1da177e4
LT
734
735 if (!profile_handoff_task(tsk))
736 free_task(tsk);
737}
77c100c8 738EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 739
6c0a9fa6 740void __init __weak arch_task_cache_init(void) { }
61c4628b 741
ff691f6e
HS
742/*
743 * set_max_threads
744 */
16db3d3f 745static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 746{
ac1b398d 747 u64 threads;
ca79b0c2 748 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
749
750 /*
ac1b398d
HS
751 * The number of threads shall be limited such that the thread
752 * structures may only consume a small part of the available memory.
ff691f6e 753 */
3d6357de 754 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
755 threads = MAX_THREADS;
756 else
3d6357de 757 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
758 (u64) THREAD_SIZE * 8UL);
759
16db3d3f
HS
760 if (threads > max_threads_suggested)
761 threads = max_threads_suggested;
762
ac1b398d 763 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
764}
765
5aaeb5c0
IM
766#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
767/* Initialized by the architecture: */
768int arch_task_struct_size __read_mostly;
769#endif
0c8c0f03 770
5905429a
KC
771static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
772{
773 /* Fetch thread_struct whitelist for the architecture. */
774 arch_thread_struct_whitelist(offset, size);
775
776 /*
777 * Handle zero-sized whitelist or empty thread_struct, otherwise
778 * adjust offset to position of thread_struct in task_struct.
779 */
780 if (unlikely(*size == 0))
781 *offset = 0;
782 else
783 *offset += offsetof(struct task_struct, thread);
784}
785
ff691f6e 786void __init fork_init(void)
1da177e4 787{
25f9c081 788 int i;
f5e10287 789#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 790#ifndef ARCH_MIN_TASKALIGN
e274795e 791#define ARCH_MIN_TASKALIGN 0
1da177e4 792#endif
95cb64c1 793 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 794 unsigned long useroffset, usersize;
e274795e 795
1da177e4 796 /* create a slab on which task_structs can be allocated */
5905429a
KC
797 task_struct_whitelist(&useroffset, &usersize);
798 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 799 arch_task_struct_size, align,
5905429a
KC
800 SLAB_PANIC|SLAB_ACCOUNT,
801 useroffset, usersize, NULL);
1da177e4
LT
802#endif
803
61c4628b
SS
804 /* do the arch specific task caches init */
805 arch_task_cache_init();
806
16db3d3f 807 set_max_threads(MAX_THREADS);
1da177e4
LT
808
809 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
810 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
811 init_task.signal->rlim[RLIMIT_SIGPENDING] =
812 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 813
25f9c081
EB
814 for (i = 0; i < UCOUNT_COUNTS; i++) {
815 init_user_ns.ucount_max[i] = max_threads/2;
816 }
19659c59
HR
817
818#ifdef CONFIG_VMAP_STACK
819 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
820 NULL, free_vm_stack_cache);
821#endif
b09be676
BP
822
823 lockdep_init_task(&init_task);
aad42dd4 824 uprobes_init();
1da177e4
LT
825}
826
52f5684c 827int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
828 struct task_struct *src)
829{
830 *dst = *src;
831 return 0;
832}
833
d4311ff1
AT
834void set_task_stack_end_magic(struct task_struct *tsk)
835{
836 unsigned long *stackend;
837
838 stackend = end_of_stack(tsk);
839 *stackend = STACK_END_MAGIC; /* for overflow detection */
840}
841
725fc629 842static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
843{
844 struct task_struct *tsk;
b235beea 845 unsigned long *stack;
0f4991e8 846 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 847 int err;
1da177e4 848
725fc629
AK
849 if (node == NUMA_NO_NODE)
850 node = tsk_fork_get_node(orig);
504f52b5 851 tsk = alloc_task_struct_node(node);
1da177e4
LT
852 if (!tsk)
853 return NULL;
854
b235beea
LT
855 stack = alloc_thread_stack_node(tsk, node);
856 if (!stack)
f19b9f74 857 goto free_tsk;
1da177e4 858
9b6f7e16
RG
859 if (memcg_charge_kernel_stack(tsk))
860 goto free_stack;
861
ba14a194
AL
862 stack_vm_area = task_stack_vm_area(tsk);
863
fb0a685c 864 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
865
866 /*
867 * arch_dup_task_struct() clobbers the stack-related fields. Make
868 * sure they're properly initialized before using any stack-related
869 * functions again.
870 */
871 tsk->stack = stack;
872#ifdef CONFIG_VMAP_STACK
873 tsk->stack_vm_area = stack_vm_area;
874#endif
68f24b08 875#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 876 refcount_set(&tsk->stack_refcount, 1);
68f24b08 877#endif
ba14a194 878
164c33c6 879 if (err)
b235beea 880 goto free_stack;
164c33c6 881
dbd95212
KC
882#ifdef CONFIG_SECCOMP
883 /*
884 * We must handle setting up seccomp filters once we're under
885 * the sighand lock in case orig has changed between now and
886 * then. Until then, filter must be NULL to avoid messing up
887 * the usage counts on the error path calling free_task.
888 */
889 tsk->seccomp.filter = NULL;
890#endif
87bec58a
AM
891
892 setup_thread_stack(tsk, orig);
8e7cac79 893 clear_user_return_notifier(tsk);
f26f9aff 894 clear_tsk_need_resched(tsk);
d4311ff1 895 set_task_stack_end_magic(tsk);
1da177e4 896
050e9baa 897#ifdef CONFIG_STACKPROTECTOR
7cd815bc 898 tsk->stack_canary = get_random_canary();
0a425405 899#endif
3bd37062
SAS
900 if (orig->cpus_ptr == &orig->cpus_mask)
901 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 902
fb0a685c
DRO
903 /*
904 * One for us, one for whoever does the "release_task()" (usually
905 * parent)
906 */
ec1d2819 907 refcount_set(&tsk->usage, 2);
6c5c9341 908#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 909 tsk->btrace_seq = 0;
6c5c9341 910#endif
a0aa7f68 911 tsk->splice_pipe = NULL;
5640f768 912 tsk->task_frag.page = NULL;
093e5840 913 tsk->wake_q.next = NULL;
c6a7f572 914
ba14a194 915 account_kernel_stack(tsk, 1);
c6a7f572 916
5c9a8750
DV
917 kcov_task_init(tsk);
918
e41d5818
DV
919#ifdef CONFIG_FAULT_INJECTION
920 tsk->fail_nth = 0;
921#endif
922
2c323017
JB
923#ifdef CONFIG_BLK_CGROUP
924 tsk->throttle_queue = NULL;
925 tsk->use_memdelay = 0;
926#endif
927
d46eb14b
SB
928#ifdef CONFIG_MEMCG
929 tsk->active_memcg = NULL;
930#endif
1da177e4 931 return tsk;
61c4628b 932
b235beea 933free_stack:
ba14a194 934 free_thread_stack(tsk);
f19b9f74 935free_tsk:
61c4628b
SS
936 free_task_struct(tsk);
937 return NULL;
1da177e4
LT
938}
939
23ff4440 940__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 941
4cb0e11b
HK
942static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
943
944static int __init coredump_filter_setup(char *s)
945{
946 default_dump_filter =
947 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
948 MMF_DUMP_FILTER_MASK;
949 return 1;
950}
951
952__setup("coredump_filter=", coredump_filter_setup);
953
1da177e4
LT
954#include <linux/init_task.h>
955
858f0993
AD
956static void mm_init_aio(struct mm_struct *mm)
957{
958#ifdef CONFIG_AIO
959 spin_lock_init(&mm->ioctx_lock);
db446a08 960 mm->ioctx_table = NULL;
858f0993
AD
961#endif
962}
963
c3f3ce04
AA
964static __always_inline void mm_clear_owner(struct mm_struct *mm,
965 struct task_struct *p)
966{
967#ifdef CONFIG_MEMCG
968 if (mm->owner == p)
969 WRITE_ONCE(mm->owner, NULL);
970#endif
971}
972
33144e84
VD
973static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
974{
975#ifdef CONFIG_MEMCG
976 mm->owner = p;
977#endif
978}
979
355627f5
EB
980static void mm_init_uprobes_state(struct mm_struct *mm)
981{
982#ifdef CONFIG_UPROBES
983 mm->uprobes_state.xol_area = NULL;
984#endif
985}
986
bfedb589
EB
987static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
988 struct user_namespace *user_ns)
1da177e4 989{
41f727fd
VD
990 mm->mmap = NULL;
991 mm->mm_rb = RB_ROOT;
992 mm->vmacache_seqnum = 0;
1da177e4
LT
993 atomic_set(&mm->mm_users, 1);
994 atomic_set(&mm->mm_count, 1);
995 init_rwsem(&mm->mmap_sem);
996 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 997 mm->core_state = NULL;
af5b0f6a 998 mm_pgtables_bytes_init(mm);
41f727fd
VD
999 mm->map_count = 0;
1000 mm->locked_vm = 0;
70f8a3ca 1001 atomic64_set(&mm->pinned_vm, 0);
d559db08 1002 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1003 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1004 spin_lock_init(&mm->arg_lock);
41f727fd 1005 mm_init_cpumask(mm);
858f0993 1006 mm_init_aio(mm);
cf475ad2 1007 mm_init_owner(mm, p);
2b7e8665 1008 RCU_INIT_POINTER(mm->exe_file, NULL);
41f727fd 1009 mmu_notifier_mm_init(mm);
133ff0ea 1010 hmm_mm_init(mm);
16af97dc 1011 init_tlb_flush_pending(mm);
41f727fd
VD
1012#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1013 mm->pmd_huge_pte = NULL;
1014#endif
355627f5 1015 mm_init_uprobes_state(mm);
1da177e4 1016
a0715cc2
AT
1017 if (current->mm) {
1018 mm->flags = current->mm->flags & MMF_INIT_MASK;
1019 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1020 } else {
1021 mm->flags = default_dump_filter;
1da177e4 1022 mm->def_flags = 0;
a0715cc2
AT
1023 }
1024
41f727fd
VD
1025 if (mm_alloc_pgd(mm))
1026 goto fail_nopgd;
1027
1028 if (init_new_context(p, mm))
1029 goto fail_nocontext;
78fb7466 1030
bfedb589 1031 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1032 return mm;
1033
1034fail_nocontext:
1035 mm_free_pgd(mm);
1036fail_nopgd:
1da177e4
LT
1037 free_mm(mm);
1038 return NULL;
1039}
1040
1041/*
1042 * Allocate and initialize an mm_struct.
1043 */
fb0a685c 1044struct mm_struct *mm_alloc(void)
1da177e4 1045{
fb0a685c 1046 struct mm_struct *mm;
1da177e4
LT
1047
1048 mm = allocate_mm();
de03c72c
KM
1049 if (!mm)
1050 return NULL;
1051
1052 memset(mm, 0, sizeof(*mm));
bfedb589 1053 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1054}
1055
ec8d7c14
MH
1056static inline void __mmput(struct mm_struct *mm)
1057{
1058 VM_BUG_ON(atomic_read(&mm->mm_users));
1059
1060 uprobe_clear_state(mm);
1061 exit_aio(mm);
1062 ksm_exit(mm);
1063 khugepaged_exit(mm); /* must run before exit_mmap */
1064 exit_mmap(mm);
6fcb52a5 1065 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1066 set_mm_exe_file(mm, NULL);
1067 if (!list_empty(&mm->mmlist)) {
1068 spin_lock(&mmlist_lock);
1069 list_del(&mm->mmlist);
1070 spin_unlock(&mmlist_lock);
1071 }
1072 if (mm->binfmt)
1073 module_put(mm->binfmt->module);
1074 mmdrop(mm);
1075}
1076
1da177e4
LT
1077/*
1078 * Decrement the use count and release all resources for an mm.
1079 */
1080void mmput(struct mm_struct *mm)
1081{
0ae26f1b
AM
1082 might_sleep();
1083
ec8d7c14
MH
1084 if (atomic_dec_and_test(&mm->mm_users))
1085 __mmput(mm);
1086}
1087EXPORT_SYMBOL_GPL(mmput);
1088
a1b2289c
SY
1089#ifdef CONFIG_MMU
1090static void mmput_async_fn(struct work_struct *work)
1091{
1092 struct mm_struct *mm = container_of(work, struct mm_struct,
1093 async_put_work);
1094
1095 __mmput(mm);
1096}
1097
1098void mmput_async(struct mm_struct *mm)
1099{
1100 if (atomic_dec_and_test(&mm->mm_users)) {
1101 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1102 schedule_work(&mm->async_put_work);
1103 }
1104}
1105#endif
1106
90f31d0e
KK
1107/**
1108 * set_mm_exe_file - change a reference to the mm's executable file
1109 *
1110 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1111 *
6e399cd1
DB
1112 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1113 * invocations: in mmput() nobody alive left, in execve task is single
1114 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1115 * mm->exe_file, but does so without using set_mm_exe_file() in order
1116 * to do avoid the need for any locks.
90f31d0e 1117 */
38646013
JS
1118void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1119{
6e399cd1
DB
1120 struct file *old_exe_file;
1121
1122 /*
1123 * It is safe to dereference the exe_file without RCU as
1124 * this function is only called if nobody else can access
1125 * this mm -- see comment above for justification.
1126 */
1127 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1128
38646013
JS
1129 if (new_exe_file)
1130 get_file(new_exe_file);
90f31d0e
KK
1131 rcu_assign_pointer(mm->exe_file, new_exe_file);
1132 if (old_exe_file)
1133 fput(old_exe_file);
38646013
JS
1134}
1135
90f31d0e
KK
1136/**
1137 * get_mm_exe_file - acquire a reference to the mm's executable file
1138 *
1139 * Returns %NULL if mm has no associated executable file.
1140 * User must release file via fput().
1141 */
38646013
JS
1142struct file *get_mm_exe_file(struct mm_struct *mm)
1143{
1144 struct file *exe_file;
1145
90f31d0e
KK
1146 rcu_read_lock();
1147 exe_file = rcu_dereference(mm->exe_file);
1148 if (exe_file && !get_file_rcu(exe_file))
1149 exe_file = NULL;
1150 rcu_read_unlock();
38646013
JS
1151 return exe_file;
1152}
11163348 1153EXPORT_SYMBOL(get_mm_exe_file);
38646013 1154
cd81a917
MG
1155/**
1156 * get_task_exe_file - acquire a reference to the task's executable file
1157 *
1158 * Returns %NULL if task's mm (if any) has no associated executable file or
1159 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1160 * User must release file via fput().
1161 */
1162struct file *get_task_exe_file(struct task_struct *task)
1163{
1164 struct file *exe_file = NULL;
1165 struct mm_struct *mm;
1166
1167 task_lock(task);
1168 mm = task->mm;
1169 if (mm) {
1170 if (!(task->flags & PF_KTHREAD))
1171 exe_file = get_mm_exe_file(mm);
1172 }
1173 task_unlock(task);
1174 return exe_file;
1175}
1176EXPORT_SYMBOL(get_task_exe_file);
38646013 1177
1da177e4
LT
1178/**
1179 * get_task_mm - acquire a reference to the task's mm
1180 *
246bb0b1 1181 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1182 * this kernel workthread has transiently adopted a user mm with use_mm,
1183 * to do its AIO) is not set and if so returns a reference to it, after
1184 * bumping up the use count. User must release the mm via mmput()
1185 * after use. Typically used by /proc and ptrace.
1186 */
1187struct mm_struct *get_task_mm(struct task_struct *task)
1188{
1189 struct mm_struct *mm;
1190
1191 task_lock(task);
1192 mm = task->mm;
1193 if (mm) {
246bb0b1 1194 if (task->flags & PF_KTHREAD)
1da177e4
LT
1195 mm = NULL;
1196 else
3fce371b 1197 mmget(mm);
1da177e4
LT
1198 }
1199 task_unlock(task);
1200 return mm;
1201}
1202EXPORT_SYMBOL_GPL(get_task_mm);
1203
8cdb878d
CY
1204struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1205{
1206 struct mm_struct *mm;
1207 int err;
1208
1209 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1210 if (err)
1211 return ERR_PTR(err);
1212
1213 mm = get_task_mm(task);
1214 if (mm && mm != current->mm &&
1215 !ptrace_may_access(task, mode)) {
1216 mmput(mm);
1217 mm = ERR_PTR(-EACCES);
1218 }
1219 mutex_unlock(&task->signal->cred_guard_mutex);
1220
1221 return mm;
1222}
1223
57b59c4a 1224static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1225{
d68b46fe 1226 struct completion *vfork;
c415c3b4 1227
d68b46fe
ON
1228 task_lock(tsk);
1229 vfork = tsk->vfork_done;
1230 if (likely(vfork)) {
1231 tsk->vfork_done = NULL;
1232 complete(vfork);
1233 }
1234 task_unlock(tsk);
1235}
1236
1237static int wait_for_vfork_done(struct task_struct *child,
1238 struct completion *vfork)
1239{
1240 int killed;
1241
1242 freezer_do_not_count();
76f969e8 1243 cgroup_enter_frozen();
d68b46fe 1244 killed = wait_for_completion_killable(vfork);
76f969e8 1245 cgroup_leave_frozen(false);
d68b46fe
ON
1246 freezer_count();
1247
1248 if (killed) {
1249 task_lock(child);
1250 child->vfork_done = NULL;
1251 task_unlock(child);
1252 }
1253
1254 put_task_struct(child);
1255 return killed;
c415c3b4
ON
1256}
1257
1da177e4
LT
1258/* Please note the differences between mmput and mm_release.
1259 * mmput is called whenever we stop holding onto a mm_struct,
1260 * error success whatever.
1261 *
1262 * mm_release is called after a mm_struct has been removed
1263 * from the current process.
1264 *
1265 * This difference is important for error handling, when we
1266 * only half set up a mm_struct for a new process and need to restore
1267 * the old one. Because we mmput the new mm_struct before
1268 * restoring the old one. . .
1269 * Eric Biederman 10 January 1998
1270 */
1271void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1272{
8141c7f3
LT
1273 /* Get rid of any futexes when releasing the mm */
1274#ifdef CONFIG_FUTEX
fc6b177d 1275 if (unlikely(tsk->robust_list)) {
8141c7f3 1276 exit_robust_list(tsk);
fc6b177d
PZ
1277 tsk->robust_list = NULL;
1278 }
8141c7f3 1279#ifdef CONFIG_COMPAT
fc6b177d 1280 if (unlikely(tsk->compat_robust_list)) {
8141c7f3 1281 compat_exit_robust_list(tsk);
fc6b177d
PZ
1282 tsk->compat_robust_list = NULL;
1283 }
8141c7f3 1284#endif
322a2c10
TG
1285 if (unlikely(!list_empty(&tsk->pi_state_list)))
1286 exit_pi_state_list(tsk);
8141c7f3
LT
1287#endif
1288
0326f5a9
SD
1289 uprobe_free_utask(tsk);
1290
1da177e4
LT
1291 /* Get rid of any cached register state */
1292 deactivate_mm(tsk, mm);
1293
fec1d011 1294 /*
735f2770
MH
1295 * Signal userspace if we're not exiting with a core dump
1296 * because we want to leave the value intact for debugging
1297 * purposes.
fec1d011 1298 */
9c8a8228 1299 if (tsk->clear_child_tid) {
735f2770 1300 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1301 atomic_read(&mm->mm_users) > 1) {
1302 /*
1303 * We don't check the error code - if userspace has
1304 * not set up a proper pointer then tough luck.
1305 */
1306 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1307 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1308 1, NULL, NULL, 0, 0);
9c8a8228 1309 }
1da177e4 1310 tsk->clear_child_tid = NULL;
1da177e4 1311 }
f7505d64
KK
1312
1313 /*
1314 * All done, finally we can wake up parent and return this mm to him.
1315 * Also kthread_stop() uses this completion for synchronization.
1316 */
1317 if (tsk->vfork_done)
1318 complete_vfork_done(tsk);
1da177e4
LT
1319}
1320
13585fa0
NA
1321/**
1322 * dup_mm() - duplicates an existing mm structure
1323 * @tsk: the task_struct with which the new mm will be associated.
1324 * @oldmm: the mm to duplicate.
1325 *
1326 * Allocates a new mm structure and duplicates the provided @oldmm structure
1327 * content into it.
1328 *
1329 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1330 */
13585fa0
NA
1331static struct mm_struct *dup_mm(struct task_struct *tsk,
1332 struct mm_struct *oldmm)
a0a7ec30 1333{
13585fa0 1334 struct mm_struct *mm;
a0a7ec30
JD
1335 int err;
1336
a0a7ec30
JD
1337 mm = allocate_mm();
1338 if (!mm)
1339 goto fail_nomem;
1340
1341 memcpy(mm, oldmm, sizeof(*mm));
1342
bfedb589 1343 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1344 goto fail_nomem;
1345
a0a7ec30
JD
1346 err = dup_mmap(mm, oldmm);
1347 if (err)
1348 goto free_pt;
1349
1350 mm->hiwater_rss = get_mm_rss(mm);
1351 mm->hiwater_vm = mm->total_vm;
1352
801460d0
HS
1353 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1354 goto free_pt;
1355
a0a7ec30
JD
1356 return mm;
1357
1358free_pt:
801460d0
HS
1359 /* don't put binfmt in mmput, we haven't got module yet */
1360 mm->binfmt = NULL;
c3f3ce04 1361 mm_init_owner(mm, NULL);
a0a7ec30
JD
1362 mmput(mm);
1363
1364fail_nomem:
1365 return NULL;
a0a7ec30
JD
1366}
1367
fb0a685c 1368static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1369{
fb0a685c 1370 struct mm_struct *mm, *oldmm;
1da177e4
LT
1371 int retval;
1372
1373 tsk->min_flt = tsk->maj_flt = 0;
1374 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1375#ifdef CONFIG_DETECT_HUNG_TASK
1376 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1377 tsk->last_switch_time = 0;
17406b82 1378#endif
1da177e4
LT
1379
1380 tsk->mm = NULL;
1381 tsk->active_mm = NULL;
1382
1383 /*
1384 * Are we cloning a kernel thread?
1385 *
1386 * We need to steal a active VM for that..
1387 */
1388 oldmm = current->mm;
1389 if (!oldmm)
1390 return 0;
1391
615d6e87
DB
1392 /* initialize the new vmacache entries */
1393 vmacache_flush(tsk);
1394
1da177e4 1395 if (clone_flags & CLONE_VM) {
3fce371b 1396 mmget(oldmm);
1da177e4 1397 mm = oldmm;
1da177e4
LT
1398 goto good_mm;
1399 }
1400
1401 retval = -ENOMEM;
13585fa0 1402 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1403 if (!mm)
1404 goto fail_nomem;
1405
1da177e4
LT
1406good_mm:
1407 tsk->mm = mm;
1408 tsk->active_mm = mm;
1409 return 0;
1410
1da177e4
LT
1411fail_nomem:
1412 return retval;
1da177e4
LT
1413}
1414
a39bc516 1415static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1416{
498052bb 1417 struct fs_struct *fs = current->fs;
1da177e4 1418 if (clone_flags & CLONE_FS) {
498052bb 1419 /* tsk->fs is already what we want */
2a4419b5 1420 spin_lock(&fs->lock);
498052bb 1421 if (fs->in_exec) {
2a4419b5 1422 spin_unlock(&fs->lock);
498052bb
AV
1423 return -EAGAIN;
1424 }
1425 fs->users++;
2a4419b5 1426 spin_unlock(&fs->lock);
1da177e4
LT
1427 return 0;
1428 }
498052bb 1429 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1430 if (!tsk->fs)
1431 return -ENOMEM;
1432 return 0;
1433}
1434
fb0a685c 1435static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1436{
1437 struct files_struct *oldf, *newf;
1438 int error = 0;
1439
1440 /*
1441 * A background process may not have any files ...
1442 */
1443 oldf = current->files;
1444 if (!oldf)
1445 goto out;
1446
1447 if (clone_flags & CLONE_FILES) {
1448 atomic_inc(&oldf->count);
1449 goto out;
1450 }
1451
a016f338
JD
1452 newf = dup_fd(oldf, &error);
1453 if (!newf)
1454 goto out;
1455
1456 tsk->files = newf;
1457 error = 0;
1458out:
1459 return error;
1460}
1461
fadad878 1462static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1463{
1464#ifdef CONFIG_BLOCK
1465 struct io_context *ioc = current->io_context;
6e736be7 1466 struct io_context *new_ioc;
fd0928df
JA
1467
1468 if (!ioc)
1469 return 0;
fadad878
JA
1470 /*
1471 * Share io context with parent, if CLONE_IO is set
1472 */
1473 if (clone_flags & CLONE_IO) {
3d48749d
TH
1474 ioc_task_link(ioc);
1475 tsk->io_context = ioc;
fadad878 1476 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1477 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1478 if (unlikely(!new_ioc))
fd0928df
JA
1479 return -ENOMEM;
1480
6e736be7 1481 new_ioc->ioprio = ioc->ioprio;
11a3122f 1482 put_io_context(new_ioc);
fd0928df
JA
1483 }
1484#endif
1485 return 0;
1486}
1487
a39bc516 1488static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1489{
1490 struct sighand_struct *sig;
1491
60348802 1492 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1493 refcount_inc(&current->sighand->count);
1da177e4
LT
1494 return 0;
1495 }
1496 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
e56d0903 1497 rcu_assign_pointer(tsk->sighand, sig);
1da177e4
LT
1498 if (!sig)
1499 return -ENOMEM;
9d7fb042 1500
d036bda7 1501 refcount_set(&sig->count, 1);
06e62a46 1502 spin_lock_irq(&current->sighand->siglock);
1da177e4 1503 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1504 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1505 return 0;
1506}
1507
a7e5328a 1508void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1509{
d036bda7 1510 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1511 signalfd_cleanup(sighand);
392809b2 1512 /*
5f0d5a3a 1513 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1514 * without an RCU grace period, see __lock_task_sighand().
1515 */
c81addc9 1516 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1517 }
c81addc9
ON
1518}
1519
b18b6a9c 1520#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1521/*
1522 * Initialize POSIX timer handling for a thread group.
1523 */
1524static void posix_cpu_timers_init_group(struct signal_struct *sig)
1525{
78d7d407
JS
1526 unsigned long cpu_limit;
1527
316c1608 1528 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
78d7d407 1529 if (cpu_limit != RLIM_INFINITY) {
ebd7e7fc 1530 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
d5c373eb 1531 sig->cputimer.running = true;
6279a751
ON
1532 }
1533
f06febc9
FM
1534 /* The timer lists. */
1535 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1536 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1537 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1538}
b18b6a9c
NP
1539#else
1540static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1541#endif
f06febc9 1542
a39bc516 1543static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1544{
1545 struct signal_struct *sig;
1da177e4 1546
4ab6c083 1547 if (clone_flags & CLONE_THREAD)
490dea45 1548 return 0;
490dea45 1549
a56704ef 1550 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1551 tsk->signal = sig;
1552 if (!sig)
1553 return -ENOMEM;
1554
b3ac022c 1555 sig->nr_threads = 1;
1da177e4 1556 atomic_set(&sig->live, 1);
60d4de3f 1557 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1558
1559 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1560 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1561 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1562
1da177e4 1563 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1564 sig->curr_target = tsk;
1da177e4 1565 init_sigpending(&sig->shared_pending);
c3ad2c3b 1566 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1567 seqlock_init(&sig->stats_lock);
9d7fb042 1568 prev_cputime_init(&sig->prev_cputime);
1da177e4 1569
baa73d9e 1570#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1571 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1572 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1573 sig->real_timer.function = it_real_fn;
baa73d9e 1574#endif
1da177e4 1575
1da177e4
LT
1576 task_lock(current->group_leader);
1577 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1578 task_unlock(current->group_leader);
1579
6279a751
ON
1580 posix_cpu_timers_init_group(sig);
1581
522ed776 1582 tty_audit_fork(sig);
5091faa4 1583 sched_autogroup_fork(sig);
522ed776 1584
a63d83f4 1585 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1586 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1587
9b1bf12d
KM
1588 mutex_init(&sig->cred_guard_mutex);
1589
1da177e4
LT
1590 return 0;
1591}
1592
dbd95212
KC
1593static void copy_seccomp(struct task_struct *p)
1594{
1595#ifdef CONFIG_SECCOMP
1596 /*
1597 * Must be called with sighand->lock held, which is common to
1598 * all threads in the group. Holding cred_guard_mutex is not
1599 * needed because this new task is not yet running and cannot
1600 * be racing exec.
1601 */
69f6a34b 1602 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1603
1604 /* Ref-count the new filter user, and assign it. */
1605 get_seccomp_filter(current);
1606 p->seccomp = current->seccomp;
1607
1608 /*
1609 * Explicitly enable no_new_privs here in case it got set
1610 * between the task_struct being duplicated and holding the
1611 * sighand lock. The seccomp state and nnp must be in sync.
1612 */
1613 if (task_no_new_privs(current))
1614 task_set_no_new_privs(p);
1615
1616 /*
1617 * If the parent gained a seccomp mode after copying thread
1618 * flags and between before we held the sighand lock, we have
1619 * to manually enable the seccomp thread flag here.
1620 */
1621 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1622 set_tsk_thread_flag(p, TIF_SECCOMP);
1623#endif
1624}
1625
17da2bd9 1626SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1627{
1628 current->clear_child_tid = tidptr;
1629
b488893a 1630 return task_pid_vnr(current);
1da177e4
LT
1631}
1632
a39bc516 1633static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1634{
1d615482 1635 raw_spin_lock_init(&p->pi_lock);
e29e175b 1636#ifdef CONFIG_RT_MUTEXES
a23ba907 1637 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1638 p->pi_top_task = NULL;
23f78d4a 1639 p->pi_blocked_on = NULL;
23f78d4a
IM
1640#endif
1641}
1642
b18b6a9c 1643#ifdef CONFIG_POSIX_TIMERS
f06febc9
FM
1644/*
1645 * Initialize POSIX timer handling for a single task.
1646 */
1647static void posix_cpu_timers_init(struct task_struct *tsk)
1648{
64861634
MS
1649 tsk->cputime_expires.prof_exp = 0;
1650 tsk->cputime_expires.virt_exp = 0;
f06febc9
FM
1651 tsk->cputime_expires.sched_exp = 0;
1652 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1653 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1654 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1655}
b18b6a9c
NP
1656#else
1657static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1658#endif
f06febc9 1659
2c470475
EB
1660static inline void init_task_pid_links(struct task_struct *task)
1661{
1662 enum pid_type type;
1663
1664 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1665 INIT_HLIST_NODE(&task->pid_links[type]);
1666 }
1667}
1668
81907739
ON
1669static inline void
1670init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671{
2c470475
EB
1672 if (type == PIDTYPE_PID)
1673 task->thread_pid = pid;
1674 else
1675 task->signal->pids[type] = pid;
81907739
ON
1676}
1677
6bfbaa51
IM
1678static inline void rcu_copy_process(struct task_struct *p)
1679{
1680#ifdef CONFIG_PREEMPT_RCU
1681 p->rcu_read_lock_nesting = 0;
1682 p->rcu_read_unlock_special.s = 0;
1683 p->rcu_blocked_node = NULL;
1684 INIT_LIST_HEAD(&p->rcu_node_entry);
1685#endif /* #ifdef CONFIG_PREEMPT_RCU */
1686#ifdef CONFIG_TASKS_RCU
1687 p->rcu_tasks_holdout = false;
1688 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1689 p->rcu_tasks_idle_cpu = -1;
1690#endif /* #ifdef CONFIG_TASKS_RCU */
1691}
1692
b3e58382
CB
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695 struct pid *pid = file->private_data;
1696
1697 file->private_data = NULL;
1698 put_pid(pid);
1699 return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1704{
1705 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1706 struct pid *pid = f->private_data;
1707
1708 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1709 seq_putc(m, '\n');
1710}
1711#endif
1712
b53b0b9d
JFG
1713/*
1714 * Poll support for process exit notification.
1715 */
1716static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1717{
1718 struct task_struct *task;
1719 struct pid *pid = file->private_data;
1720 int poll_flags = 0;
1721
1722 poll_wait(file, &pid->wait_pidfd, pts);
1723
1724 rcu_read_lock();
1725 task = pid_task(pid, PIDTYPE_PID);
1726 /*
1727 * Inform pollers only when the whole thread group exits.
1728 * If the thread group leader exits before all other threads in the
1729 * group, then poll(2) should block, similar to the wait(2) family.
1730 */
1731 if (!task || (task->exit_state && thread_group_empty(task)))
1732 poll_flags = POLLIN | POLLRDNORM;
1733 rcu_read_unlock();
1734
1735 return poll_flags;
1736}
1737
b3e58382
CB
1738const struct file_operations pidfd_fops = {
1739 .release = pidfd_release,
b53b0b9d 1740 .poll = pidfd_poll,
b3e58382
CB
1741#ifdef CONFIG_PROC_FS
1742 .show_fdinfo = pidfd_show_fdinfo,
1743#endif
1744};
1745
c3f3ce04
AA
1746static void __delayed_free_task(struct rcu_head *rhp)
1747{
1748 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1749
1750 free_task(tsk);
1751}
1752
1753static __always_inline void delayed_free_task(struct task_struct *tsk)
1754{
1755 if (IS_ENABLED(CONFIG_MEMCG))
1756 call_rcu(&tsk->rcu, __delayed_free_task);
1757 else
1758 free_task(tsk);
1759}
1760
1da177e4
LT
1761/*
1762 * This creates a new process as a copy of the old one,
1763 * but does not actually start it yet.
1764 *
1765 * It copies the registers, and all the appropriate
1766 * parts of the process environment (as per the clone
1767 * flags). The actual kick-off is left to the caller.
1768 */
0766f788 1769static __latent_entropy struct task_struct *copy_process(
09a05394 1770 struct pid *pid,
3033f14a 1771 int trace,
7f192e3c
CB
1772 int node,
1773 struct kernel_clone_args *args)
1da177e4 1774{
b3e58382 1775 int pidfd = -1, retval;
a24efe62 1776 struct task_struct *p;
c3ad2c3b 1777 struct multiprocess_signals delayed;
6fd2fe49 1778 struct file *pidfile = NULL;
7f192e3c 1779 u64 clone_flags = args->flags;
1da177e4 1780
667b6094
MPS
1781 /*
1782 * Don't allow sharing the root directory with processes in a different
1783 * namespace
1784 */
1da177e4
LT
1785 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1786 return ERR_PTR(-EINVAL);
1787
e66eded8
EB
1788 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1789 return ERR_PTR(-EINVAL);
1790
1da177e4
LT
1791 /*
1792 * Thread groups must share signals as well, and detached threads
1793 * can only be started up within the thread group.
1794 */
1795 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1796 return ERR_PTR(-EINVAL);
1797
1798 /*
1799 * Shared signal handlers imply shared VM. By way of the above,
1800 * thread groups also imply shared VM. Blocking this case allows
1801 * for various simplifications in other code.
1802 */
1803 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1804 return ERR_PTR(-EINVAL);
1805
123be07b
SB
1806 /*
1807 * Siblings of global init remain as zombies on exit since they are
1808 * not reaped by their parent (swapper). To solve this and to avoid
1809 * multi-rooted process trees, prevent global and container-inits
1810 * from creating siblings.
1811 */
1812 if ((clone_flags & CLONE_PARENT) &&
1813 current->signal->flags & SIGNAL_UNKILLABLE)
1814 return ERR_PTR(-EINVAL);
1815
8382fcac 1816 /*
40a0d32d 1817 * If the new process will be in a different pid or user namespace
faf00da5 1818 * do not allow it to share a thread group with the forking task.
8382fcac 1819 */
faf00da5 1820 if (clone_flags & CLONE_THREAD) {
40a0d32d
ON
1821 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1822 (task_active_pid_ns(current) !=
1823 current->nsproxy->pid_ns_for_children))
1824 return ERR_PTR(-EINVAL);
1825 }
8382fcac 1826
b3e58382 1827 if (clone_flags & CLONE_PIDFD) {
b3e58382 1828 /*
b3e58382
CB
1829 * - CLONE_DETACHED is blocked so that we can potentially
1830 * reuse it later for CLONE_PIDFD.
1831 * - CLONE_THREAD is blocked until someone really needs it.
1832 */
7f192e3c 1833 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1834 return ERR_PTR(-EINVAL);
b3e58382
CB
1835 }
1836
c3ad2c3b
EB
1837 /*
1838 * Force any signals received before this point to be delivered
1839 * before the fork happens. Collect up signals sent to multiple
1840 * processes that happen during the fork and delay them so that
1841 * they appear to happen after the fork.
1842 */
1843 sigemptyset(&delayed.signal);
1844 INIT_HLIST_NODE(&delayed.node);
1845
1846 spin_lock_irq(&current->sighand->siglock);
1847 if (!(clone_flags & CLONE_THREAD))
1848 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1849 recalc_sigpending();
1850 spin_unlock_irq(&current->sighand->siglock);
1851 retval = -ERESTARTNOINTR;
1852 if (signal_pending(current))
1853 goto fork_out;
1854
1da177e4 1855 retval = -ENOMEM;
725fc629 1856 p = dup_task_struct(current, node);
1da177e4
LT
1857 if (!p)
1858 goto fork_out;
1859
4d6501dc
VN
1860 /*
1861 * This _must_ happen before we call free_task(), i.e. before we jump
1862 * to any of the bad_fork_* labels. This is to avoid freeing
1863 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1864 * kernel threads (PF_KTHREAD).
1865 */
7f192e3c 1866 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1867 /*
1868 * Clear TID on mm_release()?
1869 */
7f192e3c 1870 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1871
f7e8b616
SR
1872 ftrace_graph_init_task(p);
1873
bea493a0
PZ
1874 rt_mutex_init_task(p);
1875
d12c1a37 1876#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1877 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1878 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1879#endif
1da177e4 1880 retval = -EAGAIN;
3b11a1de 1881 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1882 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1883 if (p->real_cred->user != INIT_USER &&
1884 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1885 goto bad_fork_free;
1886 }
72fa5997 1887 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1888
f1752eec
DH
1889 retval = copy_creds(p, clone_flags);
1890 if (retval < 0)
1891 goto bad_fork_free;
1da177e4
LT
1892
1893 /*
1894 * If multiple threads are within copy_process(), then this check
1895 * triggers too late. This doesn't hurt, the check is only there
1896 * to stop root fork bombs.
1897 */
04ec93fe 1898 retval = -EAGAIN;
1da177e4
LT
1899 if (nr_threads >= max_threads)
1900 goto bad_fork_cleanup_count;
1901
ca74e92b 1902 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1903 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1904 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1905 INIT_LIST_HEAD(&p->children);
1906 INIT_LIST_HEAD(&p->sibling);
f41d911f 1907 rcu_copy_process(p);
1da177e4
LT
1908 p->vfork_done = NULL;
1909 spin_lock_init(&p->alloc_lock);
1da177e4 1910
1da177e4
LT
1911 init_sigpending(&p->pending);
1912
64861634 1913 p->utime = p->stime = p->gtime = 0;
40565b5a 1914#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1915 p->utimescaled = p->stimescaled = 0;
40565b5a 1916#endif
9d7fb042
PZ
1917 prev_cputime_init(&p->prev_cputime);
1918
6a61671b 1919#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1920 seqcount_init(&p->vtime.seqcount);
1921 p->vtime.starttime = 0;
1922 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1923#endif
1924
a3a2e76c
KH
1925#if defined(SPLIT_RSS_COUNTING)
1926 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1927#endif
172ba844 1928
6976675d
AV
1929 p->default_timer_slack_ns = current->timer_slack_ns;
1930
eb414681
JW
1931#ifdef CONFIG_PSI
1932 p->psi_flags = 0;
1933#endif
1934
5995477a 1935 task_io_accounting_init(&p->ioac);
1da177e4
LT
1936 acct_clear_integrals(p);
1937
f06febc9 1938 posix_cpu_timers_init(p);
1da177e4 1939
1da177e4 1940 p->io_context = NULL;
c0b0ae8a 1941 audit_set_context(p, NULL);
b4f48b63 1942 cgroup_fork(p);
1da177e4 1943#ifdef CONFIG_NUMA
846a16bf 1944 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
1945 if (IS_ERR(p->mempolicy)) {
1946 retval = PTR_ERR(p->mempolicy);
1947 p->mempolicy = NULL;
e8604cb4 1948 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 1949 }
1da177e4 1950#endif
778d3b0f
MH
1951#ifdef CONFIG_CPUSETS
1952 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1953 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 1954 seqcount_init(&p->mems_allowed_seq);
778d3b0f 1955#endif
de30a2b3
IM
1956#ifdef CONFIG_TRACE_IRQFLAGS
1957 p->irq_events = 0;
1958 p->hardirqs_enabled = 0;
1959 p->hardirq_enable_ip = 0;
1960 p->hardirq_enable_event = 0;
1961 p->hardirq_disable_ip = _THIS_IP_;
1962 p->hardirq_disable_event = 0;
1963 p->softirqs_enabled = 1;
1964 p->softirq_enable_ip = _THIS_IP_;
1965 p->softirq_enable_event = 0;
1966 p->softirq_disable_ip = 0;
1967 p->softirq_disable_event = 0;
1968 p->hardirq_context = 0;
1969 p->softirq_context = 0;
1970#endif
8bcbde54
DH
1971
1972 p->pagefault_disabled = 0;
1973
fbb9ce95 1974#ifdef CONFIG_LOCKDEP
b09be676 1975 lockdep_init_task(p);
fbb9ce95 1976#endif
1da177e4 1977
408894ee
IM
1978#ifdef CONFIG_DEBUG_MUTEXES
1979 p->blocked_on = NULL; /* not blocked yet */
1980#endif
cafe5635
KO
1981#ifdef CONFIG_BCACHE
1982 p->sequential_io = 0;
1983 p->sequential_io_avg = 0;
1984#endif
0f481406 1985
3c90e6e9 1986 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
1987 retval = sched_fork(clone_flags, p);
1988 if (retval)
1989 goto bad_fork_cleanup_policy;
6ab423e0 1990
cdd6c482 1991 retval = perf_event_init_task(p);
6ab423e0
PZ
1992 if (retval)
1993 goto bad_fork_cleanup_policy;
fb0a685c
DRO
1994 retval = audit_alloc(p);
1995 if (retval)
6c72e350 1996 goto bad_fork_cleanup_perf;
1da177e4 1997 /* copy all the process information */
ab602f79 1998 shm_init_task(p);
e4e55b47 1999 retval = security_task_alloc(p, clone_flags);
fb0a685c 2000 if (retval)
1da177e4 2001 goto bad_fork_cleanup_audit;
e4e55b47
TH
2002 retval = copy_semundo(clone_flags, p);
2003 if (retval)
2004 goto bad_fork_cleanup_security;
fb0a685c
DRO
2005 retval = copy_files(clone_flags, p);
2006 if (retval)
1da177e4 2007 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2008 retval = copy_fs(clone_flags, p);
2009 if (retval)
1da177e4 2010 goto bad_fork_cleanup_files;
fb0a685c
DRO
2011 retval = copy_sighand(clone_flags, p);
2012 if (retval)
1da177e4 2013 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2014 retval = copy_signal(clone_flags, p);
2015 if (retval)
1da177e4 2016 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2017 retval = copy_mm(clone_flags, p);
2018 if (retval)
1da177e4 2019 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2020 retval = copy_namespaces(clone_flags, p);
2021 if (retval)
d84f4f99 2022 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2023 retval = copy_io(clone_flags, p);
2024 if (retval)
fd0928df 2025 goto bad_fork_cleanup_namespaces;
7f192e3c
CB
2026 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2027 args->tls);
1da177e4 2028 if (retval)
fd0928df 2029 goto bad_fork_cleanup_io;
1da177e4 2030
afaef01c
AP
2031 stackleak_task_init(p);
2032
425fb2b4 2033 if (pid != &init_struct_pid) {
c2b1df2e 2034 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
35f71bc0
MH
2035 if (IS_ERR(pid)) {
2036 retval = PTR_ERR(pid);
0740aa5f 2037 goto bad_fork_cleanup_thread;
35f71bc0 2038 }
425fb2b4
PE
2039 }
2040
b3e58382
CB
2041 /*
2042 * This has to happen after we've potentially unshared the file
2043 * descriptor table (so that the pidfd doesn't leak into the child
2044 * if the fd table isn't shared).
2045 */
2046 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2047 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2048 if (retval < 0)
2049 goto bad_fork_free_pid;
2050
2051 pidfd = retval;
6fd2fe49
AV
2052
2053 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2054 O_RDWR | O_CLOEXEC);
2055 if (IS_ERR(pidfile)) {
2056 put_unused_fd(pidfd);
28dd29c0 2057 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2058 goto bad_fork_free_pid;
2059 }
2060 get_pid(pid); /* held by pidfile now */
2061
7f192e3c 2062 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2063 if (retval)
2064 goto bad_fork_put_pidfd;
2065 }
2066
73c10101
JA
2067#ifdef CONFIG_BLOCK
2068 p->plug = NULL;
2069#endif
42b2dd0a 2070#ifdef CONFIG_FUTEX
8f17d3a5
IM
2071 p->robust_list = NULL;
2072#ifdef CONFIG_COMPAT
2073 p->compat_robust_list = NULL;
2074#endif
c87e2837
IM
2075 INIT_LIST_HEAD(&p->pi_state_list);
2076 p->pi_state_cache = NULL;
42b2dd0a 2077#endif
f9a3879a
GM
2078 /*
2079 * sigaltstack should be cleared when sharing the same VM
2080 */
2081 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2082 sas_ss_reset(p);
f9a3879a 2083
1da177e4 2084 /*
6580807d
ON
2085 * Syscall tracing and stepping should be turned off in the
2086 * child regardless of CLONE_PTRACE.
1da177e4 2087 */
6580807d 2088 user_disable_single_step(p);
1da177e4 2089 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2090#ifdef TIF_SYSCALL_EMU
2091 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2092#endif
e02c9b0d 2093 clear_tsk_latency_tracing(p);
1da177e4 2094
1da177e4 2095 /* ok, now we should be set up.. */
18c830df
ON
2096 p->pid = pid_nr(pid);
2097 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2098 p->exit_signal = -1;
18c830df
ON
2099 p->group_leader = current->group_leader;
2100 p->tgid = current->tgid;
2101 } else {
2102 if (clone_flags & CLONE_PARENT)
2103 p->exit_signal = current->group_leader->exit_signal;
2104 else
7f192e3c 2105 p->exit_signal = args->exit_signal;
18c830df
ON
2106 p->group_leader = p;
2107 p->tgid = p->pid;
2108 }
5f8aadd8 2109
9d823e8f
WF
2110 p->nr_dirtied = 0;
2111 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2112 p->dirty_paused_when = 0;
9d823e8f 2113
bb8cbbfe 2114 p->pdeath_signal = 0;
47e65328 2115 INIT_LIST_HEAD(&p->thread_group);
158e1645 2116 p->task_works = NULL;
1da177e4 2117
780de9dd 2118 cgroup_threadgroup_change_begin(current);
7e47682e
AS
2119 /*
2120 * Ensure that the cgroup subsystem policies allow the new process to be
2121 * forked. It should be noted the the new process's css_set can be changed
2122 * between here and cgroup_post_fork() if an organisation operation is in
2123 * progress.
2124 */
b53202e6 2125 retval = cgroup_can_fork(p);
7e47682e 2126 if (retval)
c3b7112d 2127 goto bad_fork_cgroup_threadgroup_change_end;
7e47682e 2128
7b558513
DH
2129 /*
2130 * From this point on we must avoid any synchronous user-space
2131 * communication until we take the tasklist-lock. In particular, we do
2132 * not want user-space to be able to predict the process start-time by
2133 * stalling fork(2) after we recorded the start_time but before it is
2134 * visible to the system.
2135 */
2136
2137 p->start_time = ktime_get_ns();
9285ec4c 2138 p->real_start_time = ktime_get_boottime_ns();
7b558513 2139
18c830df
ON
2140 /*
2141 * Make it visible to the rest of the system, but dont wake it up yet.
2142 * Need tasklist lock for parent etc handling!
2143 */
1da177e4
LT
2144 write_lock_irq(&tasklist_lock);
2145
1da177e4 2146 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2147 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2148 p->real_parent = current->real_parent;
2d5516cb
ON
2149 p->parent_exec_id = current->parent_exec_id;
2150 } else {
1da177e4 2151 p->real_parent = current;
2d5516cb
ON
2152 p->parent_exec_id = current->self_exec_id;
2153 }
1da177e4 2154
d83a7cb3
JP
2155 klp_copy_process(p);
2156
3f17da69 2157 spin_lock(&current->sighand->siglock);
4a2c7a78 2158
dbd95212
KC
2159 /*
2160 * Copy seccomp details explicitly here, in case they were changed
2161 * before holding sighand lock.
2162 */
2163 copy_seccomp(p);
2164
d7822b1e
MD
2165 rseq_fork(p, clone_flags);
2166
4ca1d3ee 2167 /* Don't start children in a dying pid namespace */
e8cfbc24 2168 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2169 retval = -ENOMEM;
2170 goto bad_fork_cancel_cgroup;
2171 }
4a2c7a78 2172
7673bf55
EB
2173 /* Let kill terminate clone/fork in the middle */
2174 if (fatal_signal_pending(current)) {
2175 retval = -EINTR;
2176 goto bad_fork_cancel_cgroup;
2177 }
2178
6fd2fe49
AV
2179 /* past the last point of failure */
2180 if (pidfile)
2181 fd_install(pidfd, pidfile);
4a2c7a78 2182
2c470475 2183 init_task_pid_links(p);
73b9ebfe 2184 if (likely(p->pid)) {
4b9d33e6 2185 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2186
81907739 2187 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2188 if (thread_group_leader(p)) {
6883f81a 2189 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2190 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2191 init_task_pid(p, PIDTYPE_SID, task_session(current));
2192
1c4042c2 2193 if (is_child_reaper(pid)) {
17cf22c3 2194 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2195 p->signal->flags |= SIGNAL_UNKILLABLE;
2196 }
c3ad2c3b 2197 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2198 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2199 /*
2200 * Inherit has_child_subreaper flag under the same
2201 * tasklist_lock with adding child to the process tree
2202 * for propagate_has_child_subreaper optimization.
2203 */
2204 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2205 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2206 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2207 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2208 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2209 attach_pid(p, PIDTYPE_PGID);
2210 attach_pid(p, PIDTYPE_SID);
909ea964 2211 __this_cpu_inc(process_counts);
80628ca0
ON
2212 } else {
2213 current->signal->nr_threads++;
2214 atomic_inc(&current->signal->live);
60d4de3f 2215 refcount_inc(&current->signal->sigcnt);
924de3b8 2216 task_join_group_stop(p);
80628ca0
ON
2217 list_add_tail_rcu(&p->thread_group,
2218 &p->group_leader->thread_group);
0c740d0a
ON
2219 list_add_tail_rcu(&p->thread_node,
2220 &p->signal->thread_head);
73b9ebfe 2221 }
81907739 2222 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2223 nr_threads++;
1da177e4 2224 }
1da177e4 2225 total_forks++;
c3ad2c3b 2226 hlist_del_init(&delayed.node);
3f17da69 2227 spin_unlock(&current->sighand->siglock);
4af4206b 2228 syscall_tracepoint_update(p);
1da177e4 2229 write_unlock_irq(&tasklist_lock);
4af4206b 2230
c13cf856 2231 proc_fork_connector(p);
b53202e6 2232 cgroup_post_fork(p);
780de9dd 2233 cgroup_threadgroup_change_end(current);
cdd6c482 2234 perf_event_fork(p);
43d2b113
KH
2235
2236 trace_task_newtask(p, clone_flags);
3ab67966 2237 uprobe_copy_process(p, clone_flags);
43d2b113 2238
1da177e4
LT
2239 return p;
2240
7e47682e 2241bad_fork_cancel_cgroup:
3fd37226
KT
2242 spin_unlock(&current->sighand->siglock);
2243 write_unlock_irq(&tasklist_lock);
b53202e6 2244 cgroup_cancel_fork(p);
c3b7112d
CB
2245bad_fork_cgroup_threadgroup_change_end:
2246 cgroup_threadgroup_change_end(current);
b3e58382 2247bad_fork_put_pidfd:
6fd2fe49
AV
2248 if (clone_flags & CLONE_PIDFD) {
2249 fput(pidfile);
2250 put_unused_fd(pidfd);
2251 }
425fb2b4
PE
2252bad_fork_free_pid:
2253 if (pid != &init_struct_pid)
2254 free_pid(pid);
0740aa5f
JS
2255bad_fork_cleanup_thread:
2256 exit_thread(p);
fd0928df 2257bad_fork_cleanup_io:
b69f2292
LR
2258 if (p->io_context)
2259 exit_io_context(p);
ab516013 2260bad_fork_cleanup_namespaces:
444f378b 2261 exit_task_namespaces(p);
1da177e4 2262bad_fork_cleanup_mm:
c3f3ce04
AA
2263 if (p->mm) {
2264 mm_clear_owner(p->mm, p);
1da177e4 2265 mmput(p->mm);
c3f3ce04 2266 }
1da177e4 2267bad_fork_cleanup_signal:
4ab6c083 2268 if (!(clone_flags & CLONE_THREAD))
1c5354de 2269 free_signal_struct(p->signal);
1da177e4 2270bad_fork_cleanup_sighand:
a7e5328a 2271 __cleanup_sighand(p->sighand);
1da177e4
LT
2272bad_fork_cleanup_fs:
2273 exit_fs(p); /* blocking */
2274bad_fork_cleanup_files:
2275 exit_files(p); /* blocking */
2276bad_fork_cleanup_semundo:
2277 exit_sem(p);
e4e55b47
TH
2278bad_fork_cleanup_security:
2279 security_task_free(p);
1da177e4
LT
2280bad_fork_cleanup_audit:
2281 audit_free(p);
6c72e350 2282bad_fork_cleanup_perf:
cdd6c482 2283 perf_event_free_task(p);
6c72e350 2284bad_fork_cleanup_policy:
b09be676 2285 lockdep_free_task(p);
1da177e4 2286#ifdef CONFIG_NUMA
f0be3d32 2287 mpol_put(p->mempolicy);
e8604cb4 2288bad_fork_cleanup_threadgroup_lock:
1da177e4 2289#endif
35df17c5 2290 delayacct_tsk_free(p);
1da177e4 2291bad_fork_cleanup_count:
d84f4f99 2292 atomic_dec(&p->cred->user->processes);
e0e81739 2293 exit_creds(p);
1da177e4 2294bad_fork_free:
405c0759 2295 p->state = TASK_DEAD;
68f24b08 2296 put_task_stack(p);
c3f3ce04 2297 delayed_free_task(p);
fe7d37d1 2298fork_out:
c3ad2c3b
EB
2299 spin_lock_irq(&current->sighand->siglock);
2300 hlist_del_init(&delayed.node);
2301 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2302 return ERR_PTR(retval);
1da177e4
LT
2303}
2304
2c470475 2305static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2306{
2307 enum pid_type type;
2308
2309 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2310 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2311 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2312 }
2313}
2314
0db0628d 2315struct task_struct *fork_idle(int cpu)
1da177e4 2316{
36c8b586 2317 struct task_struct *task;
7f192e3c
CB
2318 struct kernel_clone_args args = {
2319 .flags = CLONE_VM,
2320 };
2321
2322 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2323 if (!IS_ERR(task)) {
2c470475 2324 init_idle_pids(task);
753ca4f3 2325 init_idle(task, cpu);
f106eee1 2326 }
73b9ebfe 2327
1da177e4
LT
2328 return task;
2329}
2330
13585fa0
NA
2331struct mm_struct *copy_init_mm(void)
2332{
2333 return dup_mm(NULL, &init_mm);
2334}
2335
1da177e4
LT
2336/*
2337 * Ok, this is the main fork-routine.
2338 *
2339 * It copies the process, and if successful kick-starts
2340 * it and waits for it to finish using the VM if required.
2341 */
7f192e3c 2342long _do_fork(struct kernel_clone_args *args)
1da177e4 2343{
7f192e3c 2344 u64 clone_flags = args->flags;
9f5325aa
MPS
2345 struct completion vfork;
2346 struct pid *pid;
1da177e4
LT
2347 struct task_struct *p;
2348 int trace = 0;
92476d7f 2349 long nr;
1da177e4 2350
09a05394 2351 /*
4b9d33e6
TH
2352 * Determine whether and which event to report to ptracer. When
2353 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 * requested, no event is reported; otherwise, report if the event
2355 * for the type of forking is enabled.
09a05394 2356 */
e80d6661 2357 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2358 if (clone_flags & CLONE_VFORK)
2359 trace = PTRACE_EVENT_VFORK;
7f192e3c 2360 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2361 trace = PTRACE_EVENT_CLONE;
2362 else
2363 trace = PTRACE_EVENT_FORK;
2364
2365 if (likely(!ptrace_event_enabled(current, trace)))
2366 trace = 0;
2367 }
1da177e4 2368
7f192e3c 2369 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2370 add_latent_entropy();
9f5325aa
MPS
2371
2372 if (IS_ERR(p))
2373 return PTR_ERR(p);
2374
1da177e4
LT
2375 /*
2376 * Do this prior waking up the new thread - the thread pointer
2377 * might get invalid after that point, if the thread exits quickly.
2378 */
9f5325aa 2379 trace_sched_process_fork(current, p);
0a16b607 2380
9f5325aa
MPS
2381 pid = get_task_pid(p, PIDTYPE_PID);
2382 nr = pid_vnr(pid);
30e49c26 2383
9f5325aa 2384 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2385 put_user(nr, args->parent_tid);
a6f5e063 2386
9f5325aa
MPS
2387 if (clone_flags & CLONE_VFORK) {
2388 p->vfork_done = &vfork;
2389 init_completion(&vfork);
2390 get_task_struct(p);
2391 }
1da177e4 2392
9f5325aa 2393 wake_up_new_task(p);
09a05394 2394
9f5325aa
MPS
2395 /* forking complete and child started to run, tell ptracer */
2396 if (unlikely(trace))
2397 ptrace_event_pid(trace, pid);
4e52365f 2398
9f5325aa
MPS
2399 if (clone_flags & CLONE_VFORK) {
2400 if (!wait_for_vfork_done(p, &vfork))
2401 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2402 }
9f5325aa
MPS
2403
2404 put_pid(pid);
92476d7f 2405 return nr;
1da177e4
LT
2406}
2407
3033f14a
JT
2408#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2409/* For compatibility with architectures that call do_fork directly rather than
2410 * using the syscall entry points below. */
2411long do_fork(unsigned long clone_flags,
2412 unsigned long stack_start,
2413 unsigned long stack_size,
2414 int __user *parent_tidptr,
2415 int __user *child_tidptr)
2416{
7f192e3c
CB
2417 struct kernel_clone_args args = {
2418 .flags = (clone_flags & ~CSIGNAL),
2419 .child_tid = child_tidptr,
2420 .parent_tid = parent_tidptr,
2421 .exit_signal = (clone_flags & CSIGNAL),
2422 .stack = stack_start,
2423 .stack_size = stack_size,
2424 };
2425
2426 return _do_fork(&args);
3033f14a
JT
2427}
2428#endif
2429
2aa3a7f8
AV
2430/*
2431 * Create a kernel thread.
2432 */
2433pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2434{
7f192e3c
CB
2435 struct kernel_clone_args args = {
2436 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2437 .exit_signal = (flags & CSIGNAL),
2438 .stack = (unsigned long)fn,
2439 .stack_size = (unsigned long)arg,
2440 };
2441
2442 return _do_fork(&args);
2aa3a7f8 2443}
2aa3a7f8 2444
d2125043
AV
2445#ifdef __ARCH_WANT_SYS_FORK
2446SYSCALL_DEFINE0(fork)
2447{
2448#ifdef CONFIG_MMU
7f192e3c
CB
2449 struct kernel_clone_args args = {
2450 .exit_signal = SIGCHLD,
2451 };
2452
2453 return _do_fork(&args);
d2125043
AV
2454#else
2455 /* can not support in nommu mode */
5d59e182 2456 return -EINVAL;
d2125043
AV
2457#endif
2458}
2459#endif
2460
2461#ifdef __ARCH_WANT_SYS_VFORK
2462SYSCALL_DEFINE0(vfork)
2463{
7f192e3c
CB
2464 struct kernel_clone_args args = {
2465 .flags = CLONE_VFORK | CLONE_VM,
2466 .exit_signal = SIGCHLD,
2467 };
2468
2469 return _do_fork(&args);
d2125043
AV
2470}
2471#endif
2472
2473#ifdef __ARCH_WANT_SYS_CLONE
2474#ifdef CONFIG_CLONE_BACKWARDS
2475SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2476 int __user *, parent_tidptr,
3033f14a 2477 unsigned long, tls,
d2125043
AV
2478 int __user *, child_tidptr)
2479#elif defined(CONFIG_CLONE_BACKWARDS2)
2480SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2481 int __user *, parent_tidptr,
2482 int __user *, child_tidptr,
3033f14a 2483 unsigned long, tls)
dfa9771a
MS
2484#elif defined(CONFIG_CLONE_BACKWARDS3)
2485SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2486 int, stack_size,
2487 int __user *, parent_tidptr,
2488 int __user *, child_tidptr,
3033f14a 2489 unsigned long, tls)
d2125043
AV
2490#else
2491SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2492 int __user *, parent_tidptr,
2493 int __user *, child_tidptr,
3033f14a 2494 unsigned long, tls)
d2125043
AV
2495#endif
2496{
7f192e3c
CB
2497 struct kernel_clone_args args = {
2498 .flags = (clone_flags & ~CSIGNAL),
2499 .pidfd = parent_tidptr,
2500 .child_tid = child_tidptr,
2501 .parent_tid = parent_tidptr,
2502 .exit_signal = (clone_flags & CSIGNAL),
2503 .stack = newsp,
2504 .tls = tls,
2505 };
2506
2507 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2508 if ((clone_flags & CLONE_PIDFD) && (clone_flags & CLONE_PARENT_SETTID))
2509 return -EINVAL;
2510
2511 return _do_fork(&args);
2512}
d68dbb0c 2513#endif
7f192e3c 2514
d68dbb0c 2515#ifdef __ARCH_WANT_SYS_CLONE3
7f192e3c
CB
2516noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2517 struct clone_args __user *uargs,
2518 size_t size)
2519{
2520 struct clone_args args;
2521
2522 if (unlikely(size > PAGE_SIZE))
2523 return -E2BIG;
2524
2525 if (unlikely(size < sizeof(struct clone_args)))
2526 return -EINVAL;
2527
2528 if (unlikely(!access_ok(uargs, size)))
2529 return -EFAULT;
2530
2531 if (size > sizeof(struct clone_args)) {
2532 unsigned char __user *addr;
2533 unsigned char __user *end;
2534 unsigned char val;
2535
2536 addr = (void __user *)uargs + sizeof(struct clone_args);
2537 end = (void __user *)uargs + size;
2538
2539 for (; addr < end; addr++) {
2540 if (get_user(val, addr))
2541 return -EFAULT;
2542 if (val)
2543 return -E2BIG;
2544 }
2545
2546 size = sizeof(struct clone_args);
2547 }
2548
2549 if (copy_from_user(&args, uargs, size))
2550 return -EFAULT;
2551
2552 *kargs = (struct kernel_clone_args){
2553 .flags = args.flags,
2554 .pidfd = u64_to_user_ptr(args.pidfd),
2555 .child_tid = u64_to_user_ptr(args.child_tid),
2556 .parent_tid = u64_to_user_ptr(args.parent_tid),
2557 .exit_signal = args.exit_signal,
2558 .stack = args.stack,
2559 .stack_size = args.stack_size,
2560 .tls = args.tls,
2561 };
2562
2563 return 0;
2564}
2565
2566static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2567{
2568 /*
2569 * All lower bits of the flag word are taken.
2570 * Verify that no other unknown flags are passed along.
2571 */
2572 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2573 return false;
2574
2575 /*
2576 * - make the CLONE_DETACHED bit reuseable for clone3
2577 * - make the CSIGNAL bits reuseable for clone3
2578 */
2579 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2580 return false;
2581
2582 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2583 kargs->exit_signal)
2584 return false;
2585
2586 return true;
2587}
2588
2589SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2590{
2591 int err;
2592
2593 struct kernel_clone_args kargs;
2594
2595 err = copy_clone_args_from_user(&kargs, uargs, size);
2596 if (err)
2597 return err;
2598
2599 if (!clone3_args_valid(&kargs))
2600 return -EINVAL;
2601
2602 return _do_fork(&kargs);
d2125043
AV
2603}
2604#endif
2605
0f1b92cb
ON
2606void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2607{
2608 struct task_struct *leader, *parent, *child;
2609 int res;
2610
2611 read_lock(&tasklist_lock);
2612 leader = top = top->group_leader;
2613down:
2614 for_each_thread(leader, parent) {
2615 list_for_each_entry(child, &parent->children, sibling) {
2616 res = visitor(child, data);
2617 if (res) {
2618 if (res < 0)
2619 goto out;
2620 leader = child;
2621 goto down;
2622 }
2623up:
2624 ;
2625 }
2626 }
2627
2628 if (leader != top) {
2629 child = leader;
2630 parent = child->real_parent;
2631 leader = parent->group_leader;
2632 goto up;
2633 }
2634out:
2635 read_unlock(&tasklist_lock);
2636}
2637
5fd63b30
RT
2638#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2639#define ARCH_MIN_MMSTRUCT_ALIGN 0
2640#endif
2641
51cc5068 2642static void sighand_ctor(void *data)
aa1757f9
ON
2643{
2644 struct sighand_struct *sighand = data;
2645
a35afb83 2646 spin_lock_init(&sighand->siglock);
b8fceee1 2647 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2648}
2649
1da177e4
LT
2650void __init proc_caches_init(void)
2651{
c1a2f7f0
RR
2652 unsigned int mm_size;
2653
1da177e4
LT
2654 sighand_cachep = kmem_cache_create("sighand_cache",
2655 sizeof(struct sighand_struct), 0,
5f0d5a3a 2656 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2657 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2658 signal_cachep = kmem_cache_create("signal_cache",
2659 sizeof(struct signal_struct), 0,
75f296d9 2660 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2661 NULL);
20c2df83 2662 files_cachep = kmem_cache_create("files_cache",
1da177e4 2663 sizeof(struct files_struct), 0,
75f296d9 2664 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2665 NULL);
20c2df83 2666 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2667 sizeof(struct fs_struct), 0,
75f296d9 2668 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2669 NULL);
c1a2f7f0 2670
6345d24d 2671 /*
c1a2f7f0
RR
2672 * The mm_cpumask is located at the end of mm_struct, and is
2673 * dynamically sized based on the maximum CPU number this system
2674 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2675 */
c1a2f7f0
RR
2676 mm_size = sizeof(struct mm_struct) + cpumask_size();
2677
07dcd7fe 2678 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2679 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2681 offsetof(struct mm_struct, saved_auxv),
2682 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2683 NULL);
2684 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2685 mmap_init();
66577193 2686 nsproxy_cache_init();
1da177e4 2687}
cf2e340f 2688
cf2e340f 2689/*
9bfb23fc 2690 * Check constraints on flags passed to the unshare system call.
cf2e340f 2691 */
9bfb23fc 2692static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2693{
9bfb23fc
ON
2694 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2695 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2696 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
a79a908f 2697 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
9bfb23fc 2698 return -EINVAL;
cf2e340f 2699 /*
12c641ab
EB
2700 * Not implemented, but pretend it works if there is nothing
2701 * to unshare. Note that unsharing the address space or the
2702 * signal handlers also need to unshare the signal queues (aka
2703 * CLONE_THREAD).
cf2e340f 2704 */
9bfb23fc 2705 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2706 if (!thread_group_empty(current))
2707 return -EINVAL;
2708 }
2709 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2710 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2711 return -EINVAL;
2712 }
2713 if (unshare_flags & CLONE_VM) {
2714 if (!current_is_single_threaded())
9bfb23fc
ON
2715 return -EINVAL;
2716 }
cf2e340f
JD
2717
2718 return 0;
2719}
2720
2721/*
99d1419d 2722 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2723 */
2724static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2725{
2726 struct fs_struct *fs = current->fs;
2727
498052bb
AV
2728 if (!(unshare_flags & CLONE_FS) || !fs)
2729 return 0;
2730
2731 /* don't need lock here; in the worst case we'll do useless copy */
2732 if (fs->users == 1)
2733 return 0;
2734
2735 *new_fsp = copy_fs_struct(fs);
2736 if (!*new_fsp)
2737 return -ENOMEM;
cf2e340f
JD
2738
2739 return 0;
2740}
2741
cf2e340f 2742/*
a016f338 2743 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2744 */
2745static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2746{
2747 struct files_struct *fd = current->files;
a016f338 2748 int error = 0;
cf2e340f
JD
2749
2750 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2751 (fd && atomic_read(&fd->count) > 1)) {
2752 *new_fdp = dup_fd(fd, &error);
2753 if (!*new_fdp)
2754 return error;
2755 }
cf2e340f
JD
2756
2757 return 0;
2758}
2759
cf2e340f
JD
2760/*
2761 * unshare allows a process to 'unshare' part of the process
2762 * context which was originally shared using clone. copy_*
2763 * functions used by do_fork() cannot be used here directly
2764 * because they modify an inactive task_struct that is being
2765 * constructed. Here we are modifying the current, active,
2766 * task_struct.
2767 */
9b32105e 2768int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2769{
cf2e340f 2770 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2771 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2772 struct cred *new_cred = NULL;
cf7b708c 2773 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2774 int do_sysvsem = 0;
9bfb23fc 2775 int err;
cf2e340f 2776
b2e0d987 2777 /*
faf00da5
EB
2778 * If unsharing a user namespace must also unshare the thread group
2779 * and unshare the filesystem root and working directories.
b2e0d987
EB
2780 */
2781 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2782 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2783 /*
2784 * If unsharing vm, must also unshare signal handlers.
2785 */
2786 if (unshare_flags & CLONE_VM)
2787 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2788 /*
2789 * If unsharing a signal handlers, must also unshare the signal queues.
2790 */
2791 if (unshare_flags & CLONE_SIGHAND)
2792 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2793 /*
2794 * If unsharing namespace, must also unshare filesystem information.
2795 */
2796 if (unshare_flags & CLONE_NEWNS)
2797 unshare_flags |= CLONE_FS;
50804fe3
EB
2798
2799 err = check_unshare_flags(unshare_flags);
2800 if (err)
2801 goto bad_unshare_out;
6013f67f
MS
2802 /*
2803 * CLONE_NEWIPC must also detach from the undolist: after switching
2804 * to a new ipc namespace, the semaphore arrays from the old
2805 * namespace are unreachable.
2806 */
2807 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2808 do_sysvsem = 1;
fb0a685c
DRO
2809 err = unshare_fs(unshare_flags, &new_fs);
2810 if (err)
9bfb23fc 2811 goto bad_unshare_out;
fb0a685c
DRO
2812 err = unshare_fd(unshare_flags, &new_fd);
2813 if (err)
9bfb23fc 2814 goto bad_unshare_cleanup_fs;
b2e0d987 2815 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2816 if (err)
9edff4ab 2817 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2818 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2819 new_cred, new_fs);
2820 if (err)
2821 goto bad_unshare_cleanup_cred;
c0b2fc31 2822
b2e0d987 2823 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2824 if (do_sysvsem) {
2825 /*
2826 * CLONE_SYSVSEM is equivalent to sys_exit().
2827 */
2828 exit_sem(current);
2829 }
ab602f79
JM
2830 if (unshare_flags & CLONE_NEWIPC) {
2831 /* Orphan segments in old ns (see sem above). */
2832 exit_shm(current);
2833 shm_init_task(current);
2834 }
ab516013 2835
6f977e6b 2836 if (new_nsproxy)
cf7b708c 2837 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2838
cf7b708c
PE
2839 task_lock(current);
2840
cf2e340f
JD
2841 if (new_fs) {
2842 fs = current->fs;
2a4419b5 2843 spin_lock(&fs->lock);
cf2e340f 2844 current->fs = new_fs;
498052bb
AV
2845 if (--fs->users)
2846 new_fs = NULL;
2847 else
2848 new_fs = fs;
2a4419b5 2849 spin_unlock(&fs->lock);
cf2e340f
JD
2850 }
2851
cf2e340f
JD
2852 if (new_fd) {
2853 fd = current->files;
2854 current->files = new_fd;
2855 new_fd = fd;
2856 }
2857
2858 task_unlock(current);
b2e0d987
EB
2859
2860 if (new_cred) {
2861 /* Install the new user namespace */
2862 commit_creds(new_cred);
2863 new_cred = NULL;
2864 }
cf2e340f
JD
2865 }
2866
e4222673
HB
2867 perf_event_namespaces(current);
2868
b2e0d987
EB
2869bad_unshare_cleanup_cred:
2870 if (new_cred)
2871 put_cred(new_cred);
cf2e340f
JD
2872bad_unshare_cleanup_fd:
2873 if (new_fd)
2874 put_files_struct(new_fd);
2875
cf2e340f
JD
2876bad_unshare_cleanup_fs:
2877 if (new_fs)
498052bb 2878 free_fs_struct(new_fs);
cf2e340f 2879
cf2e340f
JD
2880bad_unshare_out:
2881 return err;
2882}
3b125388 2883
9b32105e
DB
2884SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2885{
2886 return ksys_unshare(unshare_flags);
2887}
2888
3b125388
AV
2889/*
2890 * Helper to unshare the files of the current task.
2891 * We don't want to expose copy_files internals to
2892 * the exec layer of the kernel.
2893 */
2894
2895int unshare_files(struct files_struct **displaced)
2896{
2897 struct task_struct *task = current;
50704516 2898 struct files_struct *copy = NULL;
3b125388
AV
2899 int error;
2900
2901 error = unshare_fd(CLONE_FILES, &copy);
2902 if (error || !copy) {
2903 *displaced = NULL;
2904 return error;
2905 }
2906 *displaced = task->files;
2907 task_lock(task);
2908 task->files = copy;
2909 task_unlock(task);
2910 return 0;
2911}
16db3d3f
HS
2912
2913int sysctl_max_threads(struct ctl_table *table, int write,
2914 void __user *buffer, size_t *lenp, loff_t *ppos)
2915{
2916 struct ctl_table t;
2917 int ret;
2918 int threads = max_threads;
2919 int min = MIN_THREADS;
2920 int max = MAX_THREADS;
2921
2922 t = *table;
2923 t.data = &threads;
2924 t.extra1 = &min;
2925 t.extra2 = &max;
2926
2927 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2928 if (ret || !write)
2929 return ret;
2930
2931 set_max_threads(threads);
2932
2933 return 0;
2934}