cpufreq: Don't skip frequency validation for has_target() drivers
[linux-2.6-block.git] / kernel / exit.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/slab.h>
4eb5aaa3 10#include <linux/sched/autogroup.h>
6e84f315 11#include <linux/sched/mm.h>
03441a34 12#include <linux/sched/stat.h>
29930025 13#include <linux/sched/task.h>
68db0cf1 14#include <linux/sched/task_stack.h>
32ef5517 15#include <linux/sched/cputime.h>
1da177e4 16#include <linux/interrupt.h>
1da177e4 17#include <linux/module.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
da9cbc87 22#include <linux/iocontext.h>
1da177e4 23#include <linux/key.h>
1da177e4
LT
24#include <linux/cpu.h>
25#include <linux/acct.h>
8f0ab514 26#include <linux/tsacct_kern.h>
1da177e4 27#include <linux/file.h>
9f3acc31 28#include <linux/fdtable.h>
80d26af8 29#include <linux/freezer.h>
1da177e4 30#include <linux/binfmts.h>
ab516013 31#include <linux/nsproxy.h>
84d73786 32#include <linux/pid_namespace.h>
1da177e4
LT
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
49d769d5 37#include <linux/kthread.h>
1da177e4 38#include <linux/mempolicy.h>
c757249a 39#include <linux/taskstats_kern.h>
ca74e92b 40#include <linux/delayacct.h>
b4f48b63 41#include <linux/cgroup.h>
1da177e4 42#include <linux/syscalls.h>
7ed20e1a 43#include <linux/signal.h>
6a14c5c9 44#include <linux/posix-timers.h>
9f46080c 45#include <linux/cn_proc.h>
de5097c2 46#include <linux/mutex.h>
0771dfef 47#include <linux/futex.h>
b92ce558 48#include <linux/pipe_fs_i.h>
fa84cb93 49#include <linux/audit.h> /* for audit_free() */
83cc5ed3 50#include <linux/resource.h>
0d67a46d 51#include <linux/blkdev.h>
6eaeeaba 52#include <linux/task_io_accounting_ops.h>
30199f5a 53#include <linux/tracehook.h>
5ad4e53b 54#include <linux/fs_struct.h>
d84f4f99 55#include <linux/init_task.h>
cdd6c482 56#include <linux/perf_event.h>
ad8d75ff 57#include <trace/events/sched.h>
24f1e32c 58#include <linux/hw_breakpoint.h>
3d5992d2 59#include <linux/oom.h>
54848d73 60#include <linux/writeback.h>
40401530 61#include <linux/shm.h>
5c9a8750 62#include <linux/kcov.h>
53d3eaa3 63#include <linux/random.h>
8f95c90c 64#include <linux/rcuwait.h>
7e95a225 65#include <linux/compat.h>
1da177e4 66
7c0f6ba6 67#include <linux/uaccess.h>
1da177e4
LT
68#include <asm/unistd.h>
69#include <asm/pgtable.h>
70#include <asm/mmu_context.h>
71
d40e48e0 72static void __unhash_process(struct task_struct *p, bool group_dead)
1da177e4
LT
73{
74 nr_threads--;
50d75f8d 75 detach_pid(p, PIDTYPE_PID);
d40e48e0 76 if (group_dead) {
6883f81a 77 detach_pid(p, PIDTYPE_TGID);
1da177e4
LT
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
c97d9893 80
5e85d4ab 81 list_del_rcu(&p->tasks);
9cd80bbb 82 list_del_init(&p->sibling);
909ea964 83 __this_cpu_dec(process_counts);
1da177e4 84 }
47e65328 85 list_del_rcu(&p->thread_group);
0c740d0a 86 list_del_rcu(&p->thread_node);
1da177e4
LT
87}
88
6a14c5c9
ON
89/*
90 * This function expects the tasklist_lock write-locked.
91 */
92static void __exit_signal(struct task_struct *tsk)
93{
94 struct signal_struct *sig = tsk->signal;
d40e48e0 95 bool group_dead = thread_group_leader(tsk);
6a14c5c9 96 struct sighand_struct *sighand;
4ada856f 97 struct tty_struct *uninitialized_var(tty);
5613fda9 98 u64 utime, stime;
6a14c5c9 99
d11c563d 100 sighand = rcu_dereference_check(tsk->sighand,
db1466b3 101 lockdep_tasklist_lock_is_held());
6a14c5c9
ON
102 spin_lock(&sighand->siglock);
103
baa73d9e 104#ifdef CONFIG_POSIX_TIMERS
6a14c5c9 105 posix_cpu_timers_exit(tsk);
d40e48e0 106 if (group_dead) {
6a14c5c9 107 posix_cpu_timers_exit_group(tsk);
4a599942 108 } else {
e0a70217
ON
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
baa73d9e
NP
116 }
117#endif
e0a70217 118
baa73d9e
NP
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
6a14c5c9
ON
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
d344193a 127 if (sig->notify_count > 0 && !--sig->notify_count)
6a14c5c9 128 wake_up_process(sig->group_exit_task);
6db840fa 129
6a14c5c9
ON
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
6a14c5c9
ON
132 }
133
53d3eaa3
NP
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
90ed9cbe 137 /*
26e75b5c
ON
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
90ed9cbe
RR
142 */
143 task_cputime(tsk, &utime, &stime);
e78c3496 144 write_seqlock(&sig->stats_lock);
90ed9cbe
RR
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
b3ac022c 156 sig->nr_threads--;
d40e48e0 157 __unhash_process(tsk, group_dead);
e78c3496 158 write_sequnlock(&sig->stats_lock);
5876700c 159
da7978b0
ON
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
a7e5328a 165 tsk->sighand = NULL;
6a14c5c9 166 spin_unlock(&sighand->siglock);
6a14c5c9 167
a7e5328a 168 __cleanup_sighand(sighand);
a0be55de 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
d40e48e0 170 if (group_dead) {
6a14c5c9 171 flush_sigqueue(&sig->shared_pending);
4ada856f 172 tty_kref_put(tty);
6a14c5c9
ON
173 }
174}
175
8c7904a0
EB
176static void delayed_put_task_struct(struct rcu_head *rhp)
177{
0a16b607
MD
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
4e231c79 180 perf_event_delayed_put(tsk);
0a16b607
MD
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
8c7904a0
EB
183}
184
f470021a 185
a0be55de 186void release_task(struct task_struct *p)
1da177e4 187{
36c8b586 188 struct task_struct *leader;
1da177e4 189 int zap_leader;
1f09f974 190repeat:
c69e8d9c 191 /* don't need to get the RCU readlock here - the process is dead and
d11c563d
PM
192 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 rcu_read_lock();
c69e8d9c 194 atomic_dec(&__task_cred(p)->user->processes);
d11c563d 195 rcu_read_unlock();
c69e8d9c 196
60347f67 197 proc_flush_task(p);
6b115bf5 198 cgroup_release(p);
0203026b 199
1da177e4 200 write_lock_irq(&tasklist_lock);
a288eecc 201 ptrace_release_task(p);
1da177e4 202 __exit_signal(p);
35f5cad8 203
1da177e4
LT
204 /*
205 * If we are the last non-leader member of the thread
206 * group, and the leader is zombie, then notify the
207 * group leader's parent process. (if it wants notification.)
208 */
209 zap_leader = 0;
210 leader = p->group_leader;
a0be55de
IA
211 if (leader != p && thread_group_empty(leader)
212 && leader->exit_state == EXIT_ZOMBIE) {
1da177e4
LT
213 /*
214 * If we were the last child thread and the leader has
215 * exited already, and the leader's parent ignores SIGCHLD,
216 * then we are the one who should release the leader.
dae33574 217 */
86773473 218 zap_leader = do_notify_parent(leader, leader->exit_signal);
dae33574
RM
219 if (zap_leader)
220 leader->exit_state = EXIT_DEAD;
1da177e4
LT
221 }
222
1da177e4 223 write_unlock_irq(&tasklist_lock);
1da177e4 224 release_thread(p);
8c7904a0 225 call_rcu(&p->rcu, delayed_put_task_struct);
1da177e4
LT
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230}
231
150593bf
ON
232/*
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
235 */
236struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237{
238 struct sighand_struct *sighand;
239 struct task_struct *task;
240
241 /*
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
246 */
247retry:
248 task = rcu_dereference(*ptask);
249 if (!task)
250 return NULL;
251
252 probe_kernel_address(&task->sighand, sighand);
253
254 /*
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
257 * pointer.
258 */
259 smp_rmb();
260 if (unlikely(task != READ_ONCE(*ptask)))
261 goto retry;
262
263 /*
264 * We've re-checked that "task == *ptask", now we have two different
265 * cases:
266 *
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
269 *
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
272 * sighand != NULL.
273 *
274 * In this case we actually return a random value, but this is
275 * correct.
276 *
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
280 *
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
283 * another gp pass.
284 *
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
288 */
289 if (!sighand)
290 return NULL;
291
292 return task;
293}
294
8f95c90c
DB
295void rcuwait_wake_up(struct rcuwait *w)
296{
297 struct task_struct *task;
298
299 rcu_read_lock();
300
301 /*
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
306 *
307 * WAIT WAKE
308 * [S] tsk = current [S] cond = true
309 * MB (A) MB (B)
310 * [L] cond [L] tsk
311 */
6dc080ee 312 smp_mb(); /* (B) */
8f95c90c
DB
313
314 /*
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 */
318 task = rcu_dereference(w->task);
319 if (task)
320 wake_up_process(task);
321 rcu_read_unlock();
322}
323
1da177e4
LT
324/*
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
329 *
330 * "I ask you, have you ever known what it is to be an orphan?"
331 */
a0be55de
IA
332static int will_become_orphaned_pgrp(struct pid *pgrp,
333 struct task_struct *ignored_task)
1da177e4
LT
334{
335 struct task_struct *p;
1da177e4 336
0475ac08 337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
05e83df6
ON
338 if ((p == ignored_task) ||
339 (p->exit_state && thread_group_empty(p)) ||
340 is_global_init(p->real_parent))
1da177e4 341 continue;
05e83df6 342
0475ac08 343 if (task_pgrp(p->real_parent) != pgrp &&
05e83df6
ON
344 task_session(p->real_parent) == task_session(p))
345 return 0;
0475ac08 346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
05e83df6
ON
347
348 return 1;
1da177e4
LT
349}
350
3e7cd6c4 351int is_current_pgrp_orphaned(void)
1da177e4
LT
352{
353 int retval;
354
355 read_lock(&tasklist_lock);
3e7cd6c4 356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
1da177e4
LT
357 read_unlock(&tasklist_lock);
358
359 return retval;
360}
361
961c4675 362static bool has_stopped_jobs(struct pid *pgrp)
1da177e4 363{
1da177e4
LT
364 struct task_struct *p;
365
0475ac08 366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
961c4675
ON
367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 return true;
0475ac08 369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
961c4675
ON
370
371 return false;
1da177e4
LT
372}
373
f49ee505
ON
374/*
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378 */
379static void
380kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381{
382 struct pid *pgrp = task_pgrp(tsk);
383 struct task_struct *ignored_task = tsk;
384
385 if (!parent)
a0be55de
IA
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
388 */
f49ee505
ON
389 parent = tsk->real_parent;
390 else
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
393 */
394 ignored_task = NULL;
395
396 if (task_pgrp(parent) != pgrp &&
397 task_session(parent) == task_session(tsk) &&
398 will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 has_stopped_jobs(pgrp)) {
400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 }
403}
404
f98bafa0 405#ifdef CONFIG_MEMCG
cf475ad2 406/*
733eda7a 407 * A task is exiting. If it owned this mm, find a new owner for the mm.
cf475ad2 408 */
cf475ad2
BS
409void mm_update_next_owner(struct mm_struct *mm)
410{
411 struct task_struct *c, *g, *p = current;
412
413retry:
733eda7a
KH
414 /*
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
417 */
418 if (mm->owner != p)
cf475ad2 419 return;
733eda7a
KH
420 /*
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
424 */
425 if (atomic_read(&mm->mm_users) <= 1) {
987717e5 426 WRITE_ONCE(mm->owner, NULL);
733eda7a
KH
427 return;
428 }
cf475ad2
BS
429
430 read_lock(&tasklist_lock);
431 /*
432 * Search in the children
433 */
434 list_for_each_entry(c, &p->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 }
438
439 /*
440 * Search in the siblings
441 */
dea33cfd 442 list_for_each_entry(c, &p->real_parent->children, sibling) {
cf475ad2
BS
443 if (c->mm == mm)
444 goto assign_new_owner;
445 }
446
447 /*
f87fb599 448 * Search through everything else, we should not get here often.
cf475ad2 449 */
39af1765
ON
450 for_each_process(g) {
451 if (g->flags & PF_KTHREAD)
452 continue;
453 for_each_thread(g, c) {
454 if (c->mm == mm)
455 goto assign_new_owner;
456 if (c->mm)
457 break;
458 }
f87fb599 459 }
cf475ad2 460 read_unlock(&tasklist_lock);
31a78f23
BS
461 /*
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
e5991371 464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
31a78f23 465 */
987717e5 466 WRITE_ONCE(mm->owner, NULL);
cf475ad2
BS
467 return;
468
469assign_new_owner:
470 BUG_ON(c == p);
471 get_task_struct(c);
472 /*
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
475 */
476 task_lock(c);
e5991371
HD
477 /*
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
480 */
481 read_unlock(&tasklist_lock);
cf475ad2
BS
482 if (c->mm != mm) {
483 task_unlock(c);
484 put_task_struct(c);
485 goto retry;
486 }
987717e5 487 WRITE_ONCE(mm->owner, c);
cf475ad2
BS
488 task_unlock(c);
489 put_task_struct(c);
490}
f98bafa0 491#endif /* CONFIG_MEMCG */
cf475ad2 492
1da177e4
LT
493/*
494 * Turn us into a lazy TLB process if we
495 * aren't already..
496 */
0039962a 497static void exit_mm(void)
1da177e4 498{
0039962a 499 struct mm_struct *mm = current->mm;
b564daf8 500 struct core_state *core_state;
1da177e4 501
0039962a 502 mm_release(current, mm);
1da177e4
LT
503 if (!mm)
504 return;
4fe7efdb 505 sync_mm_rss(mm);
1da177e4
LT
506 /*
507 * Serialize with any possible pending coredump.
999d9fc1 508 * We must hold mmap_sem around checking core_state
1da177e4 509 * and clearing tsk->mm. The core-inducing thread
999d9fc1 510 * will increment ->nr_threads for each thread in the
1da177e4
LT
511 * group with ->mm != NULL.
512 */
513 down_read(&mm->mmap_sem);
b564daf8
ON
514 core_state = mm->core_state;
515 if (core_state) {
516 struct core_thread self;
a0be55de 517
1da177e4 518 up_read(&mm->mmap_sem);
1da177e4 519
0039962a 520 self.task = current;
b564daf8
ON
521 self.next = xchg(&core_state->dumper.next, &self);
522 /*
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
525 */
526 if (atomic_dec_and_test(&core_state->nr_threads))
527 complete(&core_state->startup);
1da177e4 528
a94e2d40 529 for (;;) {
642fa448 530 set_current_state(TASK_UNINTERRUPTIBLE);
a94e2d40
ON
531 if (!self.task) /* see coredump_finish() */
532 break;
80d26af8 533 freezable_schedule();
a94e2d40 534 }
642fa448 535 __set_current_state(TASK_RUNNING);
1da177e4
LT
536 down_read(&mm->mmap_sem);
537 }
f1f10076 538 mmgrab(mm);
0039962a 539 BUG_ON(mm != current->active_mm);
1da177e4 540 /* more a memory barrier than a real lock */
0039962a
DB
541 task_lock(current);
542 current->mm = NULL;
1da177e4
LT
543 up_read(&mm->mmap_sem);
544 enter_lazy_tlb(mm, current);
0039962a 545 task_unlock(current);
cf475ad2 546 mm_update_next_owner(mm);
1da177e4 547 mmput(mm);
c32b3cbe 548 if (test_thread_flag(TIF_MEMDIE))
38531201 549 exit_oom_victim();
1da177e4
LT
550}
551
c9dc05bf
ON
552static struct task_struct *find_alive_thread(struct task_struct *p)
553{
554 struct task_struct *t;
555
556 for_each_thread(p, t) {
557 if (!(t->flags & PF_EXITING))
558 return t;
559 }
560 return NULL;
561}
562
8fb335e0
AV
563static struct task_struct *find_child_reaper(struct task_struct *father,
564 struct list_head *dead)
1109909c
ON
565 __releases(&tasklist_lock)
566 __acquires(&tasklist_lock)
567{
568 struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 struct task_struct *reaper = pid_ns->child_reaper;
8fb335e0 570 struct task_struct *p, *n;
1109909c
ON
571
572 if (likely(reaper != father))
573 return reaper;
574
c9dc05bf
ON
575 reaper = find_alive_thread(father);
576 if (reaper) {
1109909c
ON
577 pid_ns->child_reaper = reaper;
578 return reaper;
579 }
580
581 write_unlock_irq(&tasklist_lock);
582 if (unlikely(pid_ns == &init_pid_ns)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father->signal->group_exit_code ?: father->exit_code);
585 }
8fb335e0
AV
586
587 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 list_del_init(&p->ptrace_entry);
589 release_task(p);
590 }
591
1109909c
ON
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
594
595 return father;
596}
597
1da177e4 598/*
ebec18a6
LP
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
1da177e4 604 */
1109909c
ON
605static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
1da177e4 607{
c9dc05bf 608 struct task_struct *thread, *reaper;
1da177e4 609
c9dc05bf
ON
610 thread = find_alive_thread(father);
611 if (thread)
950bbabb 612 return thread;
1da177e4 613
7d24e2df 614 if (father->signal->has_child_subreaper) {
c6c70f44 615 unsigned int ns_level = task_pid(father)->level;
ebec18a6 616 /*
175aed3f 617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
c6c70f44
ON
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
ebec18a6 623 */
c6c70f44
ON
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
ebec18a6 626 reaper = reaper->real_parent) {
175aed3f 627 if (reaper == &init_task)
ebec18a6
LP
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
c9dc05bf
ON
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
ebec18a6 634 }
1da177e4 635 }
762a24be 636
1109909c 637 return child_reaper;
950bbabb
ON
638}
639
5dfc80be
ON
640/*
641* Any that need to be release_task'd are put on the @dead list.
642 */
9cd80bbb 643static void reparent_leader(struct task_struct *father, struct task_struct *p,
5dfc80be
ON
644 struct list_head *dead)
645{
2831096e 646 if (unlikely(p->exit_state == EXIT_DEAD))
5dfc80be
ON
647 return;
648
abd50b39 649 /* We don't want people slaying init. */
5dfc80be
ON
650 p->exit_signal = SIGCHLD;
651
652 /* If it has exited notify the new parent about this child's death. */
d21142ec 653 if (!p->ptrace &&
5dfc80be 654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
86773473 655 if (do_notify_parent(p, p->exit_signal)) {
5dfc80be 656 p->exit_state = EXIT_DEAD;
dc2fd4b0 657 list_add(&p->ptrace_entry, dead);
5dfc80be
ON
658 }
659 }
660
661 kill_orphaned_pgrp(p, father);
662}
663
482a3767
ON
664/*
665 * This does two things:
666 *
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 */
672static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
1da177e4 674{
482a3767 675 struct task_struct *p, *t, *reaper;
762a24be 676
7c8bd232 677 if (unlikely(!list_empty(&father->ptraced)))
482a3767 678 exit_ptrace(father, dead);
f470021a 679
7c8bd232 680 /* Can drop and reacquire tasklist_lock */
8fb335e0 681 reaper = find_child_reaper(father, dead);
ad9e206a 682 if (list_empty(&father->children))
482a3767 683 return;
1109909c
ON
684
685 reaper = find_new_reaper(father, reaper);
2831096e 686 list_for_each_entry(p, &father->children, sibling) {
57a05918 687 for_each_thread(p, t) {
9cd80bbb 688 t->real_parent = reaper;
57a05918
ON
689 BUG_ON((!t->ptrace) != (t->parent == father));
690 if (likely(!t->ptrace))
9cd80bbb 691 t->parent = t->real_parent;
9cd80bbb
ON
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
01024980
EB
694 SEND_SIG_NOINFO, t,
695 PIDTYPE_TGID);
57a05918 696 }
2831096e
ON
697 /*
698 * If this is a threaded reparent there is no need to
699 * notify anyone anything has happened.
700 */
701 if (!same_thread_group(reaper, father))
482a3767 702 reparent_leader(father, p, dead);
1da177e4 703 }
2831096e 704 list_splice_tail_init(&father->children, &reaper->children);
1da177e4
LT
705}
706
707/*
708 * Send signals to all our closest relatives so that they know
709 * to properly mourn us..
710 */
821c7de7 711static void exit_notify(struct task_struct *tsk, int group_dead)
1da177e4 712{
53c8f9f1 713 bool autoreap;
482a3767
ON
714 struct task_struct *p, *n;
715 LIST_HEAD(dead);
1da177e4 716
762a24be 717 write_lock_irq(&tasklist_lock);
482a3767
ON
718 forget_original_parent(tsk, &dead);
719
821c7de7
ON
720 if (group_dead)
721 kill_orphaned_pgrp(tsk->group_leader, NULL);
1da177e4 722
45cdf5cc
ON
723 if (unlikely(tsk->ptrace)) {
724 int sig = thread_group_leader(tsk) &&
725 thread_group_empty(tsk) &&
726 !ptrace_reparented(tsk) ?
727 tsk->exit_signal : SIGCHLD;
728 autoreap = do_notify_parent(tsk, sig);
729 } else if (thread_group_leader(tsk)) {
730 autoreap = thread_group_empty(tsk) &&
731 do_notify_parent(tsk, tsk->exit_signal);
732 } else {
733 autoreap = true;
734 }
1da177e4 735
53c8f9f1 736 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
6c66e7db
ON
737 if (tsk->exit_state == EXIT_DEAD)
738 list_add(&tsk->ptrace_entry, &dead);
1da177e4 739
9c339168
ON
740 /* mt-exec, de_thread() is waiting for group leader */
741 if (unlikely(tsk->signal->notify_count < 0))
6db840fa 742 wake_up_process(tsk->signal->group_exit_task);
1da177e4
LT
743 write_unlock_irq(&tasklist_lock);
744
482a3767
ON
745 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
746 list_del_init(&p->ptrace_entry);
747 release_task(p);
748 }
1da177e4
LT
749}
750
e18eecb8
JD
751#ifdef CONFIG_DEBUG_STACK_USAGE
752static void check_stack_usage(void)
753{
754 static DEFINE_SPINLOCK(low_water_lock);
755 static int lowest_to_date = THREAD_SIZE;
e18eecb8
JD
756 unsigned long free;
757
7c9f8861 758 free = stack_not_used(current);
e18eecb8
JD
759
760 if (free >= lowest_to_date)
761 return;
762
763 spin_lock(&low_water_lock);
764 if (free < lowest_to_date) {
627393d4 765 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
a0be55de 766 current->comm, task_pid_nr(current), free);
e18eecb8
JD
767 lowest_to_date = free;
768 }
769 spin_unlock(&low_water_lock);
770}
771#else
772static inline void check_stack_usage(void) {}
773#endif
774
9af6528e 775void __noreturn do_exit(long code)
1da177e4
LT
776{
777 struct task_struct *tsk = current;
778 int group_dead;
779
780 profile_task_exit(tsk);
5c9a8750 781 kcov_task_exit(tsk);
1da177e4 782
73c10101 783 WARN_ON(blk_needs_flush_plug(tsk));
22e2c507 784
1da177e4
LT
785 if (unlikely(in_interrupt()))
786 panic("Aiee, killing interrupt handler!");
787 if (unlikely(!tsk->pid))
788 panic("Attempted to kill the idle task!");
1da177e4 789
33dd94ae
NE
790 /*
791 * If do_exit is called because this processes oopsed, it's possible
792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 * continuing. Amongst other possible reasons, this is to prevent
794 * mm_release()->clear_child_tid() from writing to a user-controlled
795 * kernel address.
796 */
797 set_fs(USER_DS);
798
a288eecc 799 ptrace_event(PTRACE_EVENT_EXIT, code);
1da177e4 800
e0e81739
DH
801 validate_creds_for_do_exit(tsk);
802
df164db5
AN
803 /*
804 * We're taking recursive faults here in do_exit. Safest is to just
805 * leave this task alone and wait for reboot.
806 */
807 if (unlikely(tsk->flags & PF_EXITING)) {
a0be55de 808 pr_alert("Fixing recursive fault but reboot is needed!\n");
778e9a9c
AK
809 /*
810 * We can do this unlocked here. The futex code uses
811 * this flag just to verify whether the pi state
812 * cleanup has been done or not. In the worst case it
813 * loops once more. We pretend that the cleanup was
814 * done as there is no way to return. Either the
815 * OWNER_DIED bit is set by now or we push the blocked
816 * task into the wait for ever nirwana as well.
817 */
818 tsk->flags |= PF_EXITPIDONE;
df164db5
AN
819 set_current_state(TASK_UNINTERRUPTIBLE);
820 schedule();
821 }
822
d12619b5 823 exit_signals(tsk); /* sets PF_EXITING */
778e9a9c 824 /*
be3e7844
PZ
825 * Ensure that all new tsk->pi_lock acquisitions must observe
826 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
778e9a9c 827 */
d2ee7198 828 smp_mb();
be3e7844
PZ
829 /*
830 * Ensure that we must observe the pi_state in exit_mm() ->
831 * mm_release() -> exit_pi_state_list().
832 */
8083f293
PM
833 raw_spin_lock_irq(&tsk->pi_lock);
834 raw_spin_unlock_irq(&tsk->pi_lock);
1da177e4 835
1dc0fffc 836 if (unlikely(in_atomic())) {
a0be55de
IA
837 pr_info("note: %s[%d] exited with preempt_count %d\n",
838 current->comm, task_pid_nr(current),
839 preempt_count());
1dc0fffc
PZ
840 preempt_count_set(PREEMPT_ENABLED);
841 }
1da177e4 842
48d212a2
LT
843 /* sync mm's RSS info before statistics gathering */
844 if (tsk->mm)
845 sync_mm_rss(tsk->mm);
51229b49 846 acct_update_integrals(tsk);
1da177e4 847 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 848 if (group_dead) {
baa73d9e 849#ifdef CONFIG_POSIX_TIMERS
778e9a9c 850 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 851 exit_itimers(tsk->signal);
baa73d9e 852#endif
1f10206c
JP
853 if (tsk->mm)
854 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
c3068951 855 }
f6ec29a4 856 acct_collect(code, group_dead);
522ed776
MT
857 if (group_dead)
858 tty_audit_exit();
a4ff8dba 859 audit_free(tsk);
115085ea 860
48d212a2 861 tsk->exit_code = code;
115085ea 862 taskstats_exit(tsk, group_dead);
c757249a 863
0039962a 864 exit_mm();
1da177e4 865
0e464814 866 if (group_dead)
f6ec29a4 867 acct_process();
0a16b607
MD
868 trace_sched_process_exit(tsk);
869
1da177e4 870 exit_sem(tsk);
b34a6b1d 871 exit_shm(tsk);
1ec7f1dd
AV
872 exit_files(tsk);
873 exit_fs(tsk);
c39df5fa
ON
874 if (group_dead)
875 disassociate_ctty(1);
8aac6270 876 exit_task_namespaces(tsk);
ed3e694d 877 exit_task_work(tsk);
e6464694 878 exit_thread(tsk);
73ab1cb2 879 exit_umh(tsk);
0b3fcf17
SE
880
881 /*
882 * Flush inherited counters to the parent - before the parent
883 * gets woken up by child-exit notifications.
884 *
885 * because of cgroup mode, must be called before cgroup_exit()
886 */
887 perf_event_exit_task(tsk);
888
8e5bfa8c 889 sched_autogroup_exit_task(tsk);
1ec41830 890 cgroup_exit(tsk);
1da177e4 891
24f1e32c
FW
892 /*
893 * FIXME: do that only when needed, using sched_exit tracepoint
894 */
7c8df286 895 flush_ptrace_hw_breakpoint(tsk);
33b2fb30 896
ccdd29ff 897 exit_tasks_rcu_start();
821c7de7 898 exit_notify(tsk, group_dead);
ef982393 899 proc_exit_connector(tsk);
c11600e4 900 mpol_put_task_policy(tsk);
42b2dd0a 901#ifdef CONFIG_FUTEX
c87e2837
IM
902 if (unlikely(current->pi_state_cache))
903 kfree(current->pi_state_cache);
42b2dd0a 904#endif
de5097c2 905 /*
9a11b49a 906 * Make sure we are holding no locks:
de5097c2 907 */
1b1d2fb4 908 debug_check_no_locks_held();
778e9a9c
AK
909 /*
910 * We can do this unlocked here. The futex code uses this flag
911 * just to verify whether the pi state cleanup has been done
912 * or not. In the worst case it loops once more.
913 */
914 tsk->flags |= PF_EXITPIDONE;
1da177e4 915
afc847b7 916 if (tsk->io_context)
b69f2292 917 exit_io_context(tsk);
afc847b7 918
b92ce558 919 if (tsk->splice_pipe)
4b8a8f1e 920 free_pipe_info(tsk->splice_pipe);
b92ce558 921
5640f768
ED
922 if (tsk->task_frag.page)
923 put_page(tsk->task_frag.page);
924
e0e81739
DH
925 validate_creds_for_do_exit(tsk);
926
4bcb8232 927 check_stack_usage();
7407251a 928 preempt_disable();
54848d73
WF
929 if (tsk->nr_dirtied)
930 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
f41d911f 931 exit_rcu();
ccdd29ff 932 exit_tasks_rcu_finish();
b5740f4b 933
b09be676 934 lockdep_free_task(tsk);
9af6528e 935 do_task_dead();
1da177e4 936}
012914da
RA
937EXPORT_SYMBOL_GPL(do_exit);
938
9402c95f 939void complete_and_exit(struct completion *comp, long code)
1da177e4
LT
940{
941 if (comp)
942 complete(comp);
55a101f8 943
1da177e4
LT
944 do_exit(code);
945}
1da177e4
LT
946EXPORT_SYMBOL(complete_and_exit);
947
754fe8d2 948SYSCALL_DEFINE1(exit, int, error_code)
1da177e4
LT
949{
950 do_exit((error_code&0xff)<<8);
951}
952
1da177e4
LT
953/*
954 * Take down every thread in the group. This is called by fatal signals
955 * as well as by sys_exit_group (below).
956 */
9402c95f 957void
1da177e4
LT
958do_group_exit(int exit_code)
959{
bfc4b089
ON
960 struct signal_struct *sig = current->signal;
961
1da177e4
LT
962 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963
bfc4b089
ON
964 if (signal_group_exit(sig))
965 exit_code = sig->group_exit_code;
1da177e4 966 else if (!thread_group_empty(current)) {
1da177e4 967 struct sighand_struct *const sighand = current->sighand;
a0be55de 968
1da177e4 969 spin_lock_irq(&sighand->siglock);
ed5d2cac 970 if (signal_group_exit(sig))
1da177e4
LT
971 /* Another thread got here before we took the lock. */
972 exit_code = sig->group_exit_code;
973 else {
1da177e4 974 sig->group_exit_code = exit_code;
ed5d2cac 975 sig->flags = SIGNAL_GROUP_EXIT;
1da177e4
LT
976 zap_other_threads(current);
977 }
978 spin_unlock_irq(&sighand->siglock);
1da177e4
LT
979 }
980
981 do_exit(exit_code);
982 /* NOTREACHED */
983}
984
985/*
986 * this kills every thread in the thread group. Note that any externally
987 * wait4()-ing process will get the correct exit code - even if this
988 * thread is not the thread group leader.
989 */
754fe8d2 990SYSCALL_DEFINE1(exit_group, int, error_code)
1da177e4
LT
991{
992 do_group_exit((error_code & 0xff) << 8);
2ed7c03e
HC
993 /* NOTREACHED */
994 return 0;
1da177e4
LT
995}
996
67d7ddde
AV
997struct waitid_info {
998 pid_t pid;
999 uid_t uid;
1000 int status;
1001 int cause;
1002};
1003
9e8ae01d
ON
1004struct wait_opts {
1005 enum pid_type wo_type;
9e8ae01d 1006 int wo_flags;
e1eb1ebc 1007 struct pid *wo_pid;
9e8ae01d 1008
67d7ddde 1009 struct waitid_info *wo_info;
359566fa 1010 int wo_stat;
ce72a16f 1011 struct rusage *wo_rusage;
9e8ae01d 1012
ac6424b9 1013 wait_queue_entry_t child_wait;
9e8ae01d
ON
1014 int notask_error;
1015};
1016
989264f4 1017static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1da177e4 1018{
5c01ba49
ON
1019 return wo->wo_type == PIDTYPE_MAX ||
1020 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021}
1da177e4 1022
bf959931
ON
1023static int
1024eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
5c01ba49
ON
1025{
1026 if (!eligible_pid(wo, p))
1027 return 0;
bf959931
ON
1028
1029 /*
1030 * Wait for all children (clone and not) if __WALL is set or
1031 * if it is traced by us.
1032 */
1033 if (ptrace || (wo->wo_flags & __WALL))
1034 return 1;
1035
1036 /*
1037 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 * otherwise, wait for non-clone children *only*.
1039 *
1040 * Note: a "clone" child here is one that reports to its parent
1041 * using a signal other than SIGCHLD, or a non-leader thread which
1042 * we can only see if it is traced by us.
1043 */
1044 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1da177e4 1045 return 0;
1da177e4 1046
14dd0b81 1047 return 1;
1da177e4
LT
1048}
1049
1da177e4
LT
1050/*
1051 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1052 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1053 * the lock and this task is uninteresting. If we return nonzero, we have
1054 * released the lock and the system call should return.
1055 */
9e8ae01d 1056static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1da177e4 1057{
67d7ddde 1058 int state, status;
6c5f3e7b 1059 pid_t pid = task_pid_vnr(p);
43e13cc1 1060 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
67d7ddde 1061 struct waitid_info *infop;
1da177e4 1062
9e8ae01d 1063 if (!likely(wo->wo_flags & WEXITED))
98abed02
RM
1064 return 0;
1065
9e8ae01d 1066 if (unlikely(wo->wo_flags & WNOWAIT)) {
76d9871e 1067 status = p->exit_code;
1da177e4
LT
1068 get_task_struct(p);
1069 read_unlock(&tasklist_lock);
1029a2b5 1070 sched_annotate_sleep();
e61a2502
AV
1071 if (wo->wo_rusage)
1072 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1073 put_task_struct(p);
76d9871e 1074 goto out_info;
1da177e4 1075 }
1da177e4 1076 /*
abd50b39 1077 * Move the task's state to DEAD/TRACE, only one thread can do this.
1da177e4 1078 */
f6507f83
ON
1079 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080 EXIT_TRACE : EXIT_DEAD;
abd50b39 1081 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1da177e4 1082 return 0;
986094df
ON
1083 /*
1084 * We own this thread, nobody else can reap it.
1085 */
1086 read_unlock(&tasklist_lock);
1087 sched_annotate_sleep();
f6507f83 1088
befca967 1089 /*
f6507f83 1090 * Check thread_group_leader() to exclude the traced sub-threads.
befca967 1091 */
f6507f83 1092 if (state == EXIT_DEAD && thread_group_leader(p)) {
f953ccd0
ON
1093 struct signal_struct *sig = p->signal;
1094 struct signal_struct *psig = current->signal;
1f10206c 1095 unsigned long maxrss;
5613fda9 1096 u64 tgutime, tgstime;
3795e161 1097
1da177e4
LT
1098 /*
1099 * The resource counters for the group leader are in its
1100 * own task_struct. Those for dead threads in the group
1101 * are in its signal_struct, as are those for the child
1102 * processes it has previously reaped. All these
1103 * accumulate in the parent's signal_struct c* fields.
1104 *
1105 * We don't bother to take a lock here to protect these
f953ccd0
ON
1106 * p->signal fields because the whole thread group is dead
1107 * and nobody can change them.
1108 *
1109 * psig->stats_lock also protects us from our sub-theads
1110 * which can reap other children at the same time. Until
1111 * we change k_getrusage()-like users to rely on this lock
1112 * we have to take ->siglock as well.
0cf55e1e 1113 *
a0be55de
IA
1114 * We use thread_group_cputime_adjusted() to get times for
1115 * the thread group, which consolidates times for all threads
1116 * in the group including the group leader.
1da177e4 1117 */
e80d0a1a 1118 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
f953ccd0 1119 spin_lock_irq(&current->sighand->siglock);
e78c3496 1120 write_seqlock(&psig->stats_lock);
64861634
MS
1121 psig->cutime += tgutime + sig->cutime;
1122 psig->cstime += tgstime + sig->cstime;
6fac4829 1123 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
3795e161
JJ
1124 psig->cmin_flt +=
1125 p->min_flt + sig->min_flt + sig->cmin_flt;
1126 psig->cmaj_flt +=
1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 psig->cnvcsw +=
1129 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 psig->cnivcsw +=
1131 p->nivcsw + sig->nivcsw + sig->cnivcsw;
6eaeeaba
ED
1132 psig->cinblock +=
1133 task_io_get_inblock(p) +
1134 sig->inblock + sig->cinblock;
1135 psig->coublock +=
1136 task_io_get_oublock(p) +
1137 sig->oublock + sig->coublock;
1f10206c
JP
1138 maxrss = max(sig->maxrss, sig->cmaxrss);
1139 if (psig->cmaxrss < maxrss)
1140 psig->cmaxrss = maxrss;
5995477a
AR
1141 task_io_accounting_add(&psig->ioac, &p->ioac);
1142 task_io_accounting_add(&psig->ioac, &sig->ioac);
e78c3496 1143 write_sequnlock(&psig->stats_lock);
f953ccd0 1144 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1145 }
1146
ce72a16f
AV
1147 if (wo->wo_rusage)
1148 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4
LT
1149 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150 ? p->signal->group_exit_code : p->exit_code;
359566fa 1151 wo->wo_stat = status;
2f4e6e2a 1152
b4360690 1153 if (state == EXIT_TRACE) {
1da177e4 1154 write_lock_irq(&tasklist_lock);
2f4e6e2a
ON
1155 /* We dropped tasklist, ptracer could die and untrace */
1156 ptrace_unlink(p);
b4360690
ON
1157
1158 /* If parent wants a zombie, don't release it now */
1159 state = EXIT_ZOMBIE;
1160 if (do_notify_parent(p, p->exit_signal))
1161 state = EXIT_DEAD;
abd50b39 1162 p->exit_state = state;
1da177e4
LT
1163 write_unlock_irq(&tasklist_lock);
1164 }
abd50b39 1165 if (state == EXIT_DEAD)
1da177e4 1166 release_task(p);
2f4e6e2a 1167
76d9871e
AV
1168out_info:
1169 infop = wo->wo_info;
1170 if (infop) {
1171 if ((status & 0x7f) == 0) {
1172 infop->cause = CLD_EXITED;
1173 infop->status = status >> 8;
1174 } else {
1175 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176 infop->status = status & 0x7f;
1177 }
1178 infop->pid = pid;
1179 infop->uid = uid;
1180 }
1181
67d7ddde 1182 return pid;
1da177e4
LT
1183}
1184
90bc8d8b
ON
1185static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186{
1187 if (ptrace) {
570ac933 1188 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
90bc8d8b
ON
1189 return &p->exit_code;
1190 } else {
1191 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192 return &p->signal->group_exit_code;
1193 }
1194 return NULL;
1195}
1196
19e27463
TH
1197/**
1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199 * @wo: wait options
1200 * @ptrace: is the wait for ptrace
1201 * @p: task to wait for
1202 *
1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204 *
1205 * CONTEXT:
1206 * read_lock(&tasklist_lock), which is released if return value is
1207 * non-zero. Also, grabs and releases @p->sighand->siglock.
1208 *
1209 * RETURNS:
1210 * 0 if wait condition didn't exist and search for other wait conditions
1211 * should continue. Non-zero return, -errno on failure and @p's pid on
1212 * success, implies that tasklist_lock is released and wait condition
1213 * search should terminate.
1da177e4 1214 */
9e8ae01d
ON
1215static int wait_task_stopped(struct wait_opts *wo,
1216 int ptrace, struct task_struct *p)
1da177e4 1217{
67d7ddde
AV
1218 struct waitid_info *infop;
1219 int exit_code, *p_code, why;
ee7c82da 1220 uid_t uid = 0; /* unneeded, required by compiler */
c8950783 1221 pid_t pid;
1da177e4 1222
47918025
ON
1223 /*
1224 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 */
9e8ae01d 1226 if (!ptrace && !(wo->wo_flags & WUNTRACED))
98abed02
RM
1227 return 0;
1228
19e27463
TH
1229 if (!task_stopped_code(p, ptrace))
1230 return 0;
1231
ee7c82da
ON
1232 exit_code = 0;
1233 spin_lock_irq(&p->sighand->siglock);
1234
90bc8d8b
ON
1235 p_code = task_stopped_code(p, ptrace);
1236 if (unlikely(!p_code))
ee7c82da
ON
1237 goto unlock_sig;
1238
90bc8d8b 1239 exit_code = *p_code;
ee7c82da
ON
1240 if (!exit_code)
1241 goto unlock_sig;
1242
9e8ae01d 1243 if (!unlikely(wo->wo_flags & WNOWAIT))
90bc8d8b 1244 *p_code = 0;
ee7c82da 1245
8ca937a6 1246 uid = from_kuid_munged(current_user_ns(), task_uid(p));
ee7c82da
ON
1247unlock_sig:
1248 spin_unlock_irq(&p->sighand->siglock);
1249 if (!exit_code)
1da177e4
LT
1250 return 0;
1251
1252 /*
1253 * Now we are pretty sure this task is interesting.
1254 * Make sure it doesn't get reaped out from under us while we
1255 * give up the lock and then examine it below. We don't want to
1256 * keep holding onto the tasklist_lock while we call getrusage and
1257 * possibly take page faults for user memory.
1258 */
1259 get_task_struct(p);
6c5f3e7b 1260 pid = task_pid_vnr(p);
f470021a 1261 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1da177e4 1262 read_unlock(&tasklist_lock);
1029a2b5 1263 sched_annotate_sleep();
e61a2502
AV
1264 if (wo->wo_rusage)
1265 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1266 put_task_struct(p);
1da177e4 1267
bb380ec3
AV
1268 if (likely(!(wo->wo_flags & WNOWAIT)))
1269 wo->wo_stat = (exit_code << 8) | 0x7f;
1da177e4 1270
9e8ae01d 1271 infop = wo->wo_info;
67d7ddde
AV
1272 if (infop) {
1273 infop->cause = why;
1274 infop->status = exit_code;
1275 infop->pid = pid;
1276 infop->uid = uid;
1277 }
67d7ddde 1278 return pid;
1da177e4
LT
1279}
1280
1281/*
1282 * Handle do_wait work for one task in a live, non-stopped state.
1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1284 * the lock and this task is uninteresting. If we return nonzero, we have
1285 * released the lock and the system call should return.
1286 */
9e8ae01d 1287static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1da177e4 1288{
bb380ec3 1289 struct waitid_info *infop;
1da177e4
LT
1290 pid_t pid;
1291 uid_t uid;
1292
9e8ae01d 1293 if (!unlikely(wo->wo_flags & WCONTINUED))
98abed02
RM
1294 return 0;
1295
1da177e4
LT
1296 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297 return 0;
1298
1299 spin_lock_irq(&p->sighand->siglock);
1300 /* Re-check with the lock held. */
1301 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302 spin_unlock_irq(&p->sighand->siglock);
1303 return 0;
1304 }
9e8ae01d 1305 if (!unlikely(wo->wo_flags & WNOWAIT))
1da177e4 1306 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
8ca937a6 1307 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1da177e4
LT
1308 spin_unlock_irq(&p->sighand->siglock);
1309
6c5f3e7b 1310 pid = task_pid_vnr(p);
1da177e4
LT
1311 get_task_struct(p);
1312 read_unlock(&tasklist_lock);
1029a2b5 1313 sched_annotate_sleep();
e61a2502
AV
1314 if (wo->wo_rusage)
1315 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1316 put_task_struct(p);
1da177e4 1317
bb380ec3
AV
1318 infop = wo->wo_info;
1319 if (!infop) {
359566fa 1320 wo->wo_stat = 0xffff;
1da177e4 1321 } else {
bb380ec3
AV
1322 infop->cause = CLD_CONTINUED;
1323 infop->pid = pid;
1324 infop->uid = uid;
1325 infop->status = SIGCONT;
1da177e4 1326 }
bb380ec3 1327 return pid;
1da177e4
LT
1328}
1329
98abed02
RM
1330/*
1331 * Consider @p for a wait by @parent.
1332 *
9e8ae01d 1333 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1334 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335 * Returns zero if the search for a child should continue;
9e8ae01d 1336 * then ->notask_error is 0 if @p is an eligible child,
3a2f5a59 1337 * or still -ECHILD.
98abed02 1338 */
b6e763f0
ON
1339static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340 struct task_struct *p)
98abed02 1341{
3245d6ac
ON
1342 /*
1343 * We can race with wait_task_zombie() from another thread.
1344 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345 * can't confuse the checks below.
1346 */
6aa7de05 1347 int exit_state = READ_ONCE(p->exit_state);
b3ab0316
ON
1348 int ret;
1349
3245d6ac 1350 if (unlikely(exit_state == EXIT_DEAD))
b3ab0316
ON
1351 return 0;
1352
bf959931 1353 ret = eligible_child(wo, ptrace, p);
14dd0b81 1354 if (!ret)
98abed02
RM
1355 return ret;
1356
3245d6ac 1357 if (unlikely(exit_state == EXIT_TRACE)) {
50b8d257 1358 /*
abd50b39
ON
1359 * ptrace == 0 means we are the natural parent. In this case
1360 * we should clear notask_error, debugger will notify us.
50b8d257 1361 */
abd50b39 1362 if (likely(!ptrace))
50b8d257 1363 wo->notask_error = 0;
823b018e 1364 return 0;
50b8d257 1365 }
823b018e 1366
377d75da
ON
1367 if (likely(!ptrace) && unlikely(p->ptrace)) {
1368 /*
1369 * If it is traced by its real parent's group, just pretend
1370 * the caller is ptrace_do_wait() and reap this child if it
1371 * is zombie.
1372 *
1373 * This also hides group stop state from real parent; otherwise
1374 * a single stop can be reported twice as group and ptrace stop.
1375 * If a ptracer wants to distinguish these two events for its
1376 * own children it should create a separate process which takes
1377 * the role of real parent.
1378 */
1379 if (!ptrace_reparented(p))
1380 ptrace = 1;
1381 }
1382
45cb24a1 1383 /* slay zombie? */
3245d6ac 1384 if (exit_state == EXIT_ZOMBIE) {
9b84cca2 1385 /* we don't reap group leaders with subthreads */
7c733eb3
ON
1386 if (!delay_group_leader(p)) {
1387 /*
1388 * A zombie ptracee is only visible to its ptracer.
1389 * Notification and reaping will be cascaded to the
1390 * real parent when the ptracer detaches.
1391 */
1392 if (unlikely(ptrace) || likely(!p->ptrace))
1393 return wait_task_zombie(wo, p);
1394 }
98abed02 1395
f470021a 1396 /*
9b84cca2
TH
1397 * Allow access to stopped/continued state via zombie by
1398 * falling through. Clearing of notask_error is complex.
1399 *
1400 * When !@ptrace:
1401 *
1402 * If WEXITED is set, notask_error should naturally be
1403 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1404 * so, if there are live subthreads, there are events to
1405 * wait for. If all subthreads are dead, it's still safe
1406 * to clear - this function will be called again in finite
1407 * amount time once all the subthreads are released and
1408 * will then return without clearing.
1409 *
1410 * When @ptrace:
1411 *
1412 * Stopped state is per-task and thus can't change once the
1413 * target task dies. Only continued and exited can happen.
1414 * Clear notask_error if WCONTINUED | WEXITED.
1415 */
1416 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417 wo->notask_error = 0;
1418 } else {
1419 /*
1420 * @p is alive and it's gonna stop, continue or exit, so
1421 * there always is something to wait for.
f470021a 1422 */
9e8ae01d 1423 wo->notask_error = 0;
f470021a
RM
1424 }
1425
98abed02 1426 /*
45cb24a1
TH
1427 * Wait for stopped. Depending on @ptrace, different stopped state
1428 * is used and the two don't interact with each other.
98abed02 1429 */
19e27463
TH
1430 ret = wait_task_stopped(wo, ptrace, p);
1431 if (ret)
1432 return ret;
98abed02
RM
1433
1434 /*
45cb24a1
TH
1435 * Wait for continued. There's only one continued state and the
1436 * ptracer can consume it which can confuse the real parent. Don't
1437 * use WCONTINUED from ptracer. You don't need or want it.
98abed02 1438 */
9e8ae01d 1439 return wait_task_continued(wo, p);
98abed02
RM
1440}
1441
1442/*
1443 * Do the work of do_wait() for one thread in the group, @tsk.
1444 *
9e8ae01d 1445 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1446 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447 * Returns zero if the search for a child should continue; then
9e8ae01d 1448 * ->notask_error is 0 if there were any eligible children,
3a2f5a59 1449 * or still -ECHILD.
98abed02 1450 */
9e8ae01d 1451static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1452{
1453 struct task_struct *p;
1454
1455 list_for_each_entry(p, &tsk->children, sibling) {
9cd80bbb 1456 int ret = wait_consider_task(wo, 0, p);
a0be55de 1457
9cd80bbb
ON
1458 if (ret)
1459 return ret;
98abed02
RM
1460 }
1461
1462 return 0;
1463}
1464
9e8ae01d 1465static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1466{
1467 struct task_struct *p;
1468
f470021a 1469 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
b6e763f0 1470 int ret = wait_consider_task(wo, 1, p);
a0be55de 1471
f470021a 1472 if (ret)
98abed02 1473 return ret;
98abed02
RM
1474 }
1475
1476 return 0;
1477}
1478
ac6424b9 1479static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
0b7570e7
ON
1480 int sync, void *key)
1481{
1482 struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 child_wait);
1484 struct task_struct *p = key;
1485
5c01ba49 1486 if (!eligible_pid(wo, p))
0b7570e7
ON
1487 return 0;
1488
b4fe5182
ON
1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 return 0;
1491
0b7570e7
ON
1492 return default_wake_function(wait, mode, sync, key);
1493}
1494
a7f0765e
ON
1495void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496{
0b7570e7
ON
1497 __wake_up_sync_key(&parent->signal->wait_chldexit,
1498 TASK_INTERRUPTIBLE, 1, p);
a7f0765e
ON
1499}
1500
9e8ae01d 1501static long do_wait(struct wait_opts *wo)
1da177e4 1502{
1da177e4 1503 struct task_struct *tsk;
98abed02 1504 int retval;
1da177e4 1505
9e8ae01d 1506 trace_sched_process_wait(wo->wo_pid);
0a16b607 1507
0b7570e7
ON
1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 wo->child_wait.private = current;
1510 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4 1511repeat:
98abed02 1512 /*
3da56d16 1513 * If there is nothing that can match our criteria, just get out.
9e8ae01d
ON
1514 * We will clear ->notask_error to zero if we see any child that
1515 * might later match our criteria, even if we are not able to reap
1516 * it yet.
98abed02 1517 */
64a16caf 1518 wo->notask_error = -ECHILD;
9e8ae01d
ON
1519 if ((wo->wo_type < PIDTYPE_MAX) &&
1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
64a16caf 1521 goto notask;
161550d7 1522
f95d39d1 1523 set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
1524 read_lock(&tasklist_lock);
1525 tsk = current;
1526 do {
64a16caf
ON
1527 retval = do_wait_thread(wo, tsk);
1528 if (retval)
1529 goto end;
9e8ae01d 1530
64a16caf
ON
1531 retval = ptrace_do_wait(wo, tsk);
1532 if (retval)
98abed02 1533 goto end;
98abed02 1534
9e8ae01d 1535 if (wo->wo_flags & __WNOTHREAD)
1da177e4 1536 break;
a3f6dfb7 1537 } while_each_thread(current, tsk);
1da177e4 1538 read_unlock(&tasklist_lock);
f2cc3eb1 1539
64a16caf 1540notask:
9e8ae01d
ON
1541 retval = wo->notask_error;
1542 if (!retval && !(wo->wo_flags & WNOHANG)) {
1da177e4 1543 retval = -ERESTARTSYS;
98abed02
RM
1544 if (!signal_pending(current)) {
1545 schedule();
1546 goto repeat;
1547 }
1da177e4 1548 }
1da177e4 1549end:
f95d39d1 1550 __set_current_state(TASK_RUNNING);
0b7570e7 1551 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4
LT
1552 return retval;
1553}
1554
67d7ddde 1555static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
ce72a16f 1556 int options, struct rusage *ru)
1da177e4 1557{
9e8ae01d 1558 struct wait_opts wo;
161550d7
EB
1559 struct pid *pid = NULL;
1560 enum pid_type type;
1da177e4
LT
1561 long ret;
1562
91c4e8ea
ON
1563 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1564 __WNOTHREAD|__WCLONE|__WALL))
1da177e4
LT
1565 return -EINVAL;
1566 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567 return -EINVAL;
1568
1569 switch (which) {
1570 case P_ALL:
161550d7 1571 type = PIDTYPE_MAX;
1da177e4
LT
1572 break;
1573 case P_PID:
161550d7
EB
1574 type = PIDTYPE_PID;
1575 if (upid <= 0)
1da177e4
LT
1576 return -EINVAL;
1577 break;
1578 case P_PGID:
161550d7
EB
1579 type = PIDTYPE_PGID;
1580 if (upid <= 0)
1da177e4 1581 return -EINVAL;
1da177e4
LT
1582 break;
1583 default:
1584 return -EINVAL;
1585 }
1586
161550d7
EB
1587 if (type < PIDTYPE_MAX)
1588 pid = find_get_pid(upid);
9e8ae01d
ON
1589
1590 wo.wo_type = type;
1591 wo.wo_pid = pid;
1592 wo.wo_flags = options;
1593 wo.wo_info = infop;
9e8ae01d
ON
1594 wo.wo_rusage = ru;
1595 ret = do_wait(&wo);
dfe16dfa 1596
161550d7 1597 put_pid(pid);
1da177e4
LT
1598 return ret;
1599}
1600
ce72a16f
AV
1601SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1602 infop, int, options, struct rusage __user *, ru)
1603{
1604 struct rusage r;
67d7ddde
AV
1605 struct waitid_info info = {.status = 0};
1606 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
634a8160 1607 int signo = 0;
6c85501f 1608
634a8160
AV
1609 if (err > 0) {
1610 signo = SIGCHLD;
1611 err = 0;
ce72a16f
AV
1612 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1613 return -EFAULT;
1614 }
67d7ddde
AV
1615 if (!infop)
1616 return err;
1617
594cc251 1618 if (!user_access_begin(infop, sizeof(*infop)))
1c9fec47 1619 return -EFAULT;
96ca579a 1620
634a8160 1621 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1622 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1623 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1624 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1625 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1626 unsafe_put_user(info.status, &infop->si_status, Efault);
1627 user_access_end();
ce72a16f 1628 return err;
4c48abe9
AV
1629Efault:
1630 user_access_end();
1631 return -EFAULT;
ce72a16f
AV
1632}
1633
92ebce5a
AV
1634long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1635 struct rusage *ru)
1da177e4 1636{
9e8ae01d 1637 struct wait_opts wo;
161550d7
EB
1638 struct pid *pid = NULL;
1639 enum pid_type type;
1da177e4
LT
1640 long ret;
1641
1642 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1643 __WNOTHREAD|__WCLONE|__WALL))
1644 return -EINVAL;
161550d7 1645
dd83c161 1646 /* -INT_MIN is not defined */
1647 if (upid == INT_MIN)
1648 return -ESRCH;
1649
161550d7
EB
1650 if (upid == -1)
1651 type = PIDTYPE_MAX;
1652 else if (upid < 0) {
1653 type = PIDTYPE_PGID;
1654 pid = find_get_pid(-upid);
1655 } else if (upid == 0) {
1656 type = PIDTYPE_PGID;
2ae448ef 1657 pid = get_task_pid(current, PIDTYPE_PGID);
161550d7
EB
1658 } else /* upid > 0 */ {
1659 type = PIDTYPE_PID;
1660 pid = find_get_pid(upid);
1661 }
1662
9e8ae01d
ON
1663 wo.wo_type = type;
1664 wo.wo_pid = pid;
1665 wo.wo_flags = options | WEXITED;
1666 wo.wo_info = NULL;
359566fa 1667 wo.wo_stat = 0;
9e8ae01d
ON
1668 wo.wo_rusage = ru;
1669 ret = do_wait(&wo);
161550d7 1670 put_pid(pid);
359566fa
AV
1671 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1672 ret = -EFAULT;
1da177e4 1673
1da177e4
LT
1674 return ret;
1675}
1676
ce72a16f
AV
1677SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1678 int, options, struct rusage __user *, ru)
1679{
1680 struct rusage r;
1681 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1682
1683 if (err > 0) {
1684 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1685 return -EFAULT;
1686 }
1687 return err;
1688}
1689
1da177e4
LT
1690#ifdef __ARCH_WANT_SYS_WAITPID
1691
1692/*
1693 * sys_waitpid() remains for compatibility. waitpid() should be
1694 * implemented by calling sys_wait4() from libc.a.
1695 */
17da2bd9 1696SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1da177e4 1697{
d300b610 1698 return kernel_wait4(pid, stat_addr, options, NULL);
1da177e4
LT
1699}
1700
1701#endif
7e95a225
AV
1702
1703#ifdef CONFIG_COMPAT
1704COMPAT_SYSCALL_DEFINE4(wait4,
1705 compat_pid_t, pid,
1706 compat_uint_t __user *, stat_addr,
1707 int, options,
1708 struct compat_rusage __user *, ru)
1709{
ce72a16f
AV
1710 struct rusage r;
1711 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1712 if (err > 0) {
1713 if (ru && put_compat_rusage(&r, ru))
1714 return -EFAULT;
7e95a225 1715 }
ce72a16f 1716 return err;
7e95a225
AV
1717}
1718
1719COMPAT_SYSCALL_DEFINE5(waitid,
1720 int, which, compat_pid_t, pid,
1721 struct compat_siginfo __user *, infop, int, options,
1722 struct compat_rusage __user *, uru)
1723{
7e95a225 1724 struct rusage ru;
67d7ddde
AV
1725 struct waitid_info info = {.status = 0};
1726 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
634a8160
AV
1727 int signo = 0;
1728 if (err > 0) {
1729 signo = SIGCHLD;
1730 err = 0;
6c85501f
AV
1731 if (uru) {
1732 /* kernel_waitid() overwrites everything in ru */
1733 if (COMPAT_USE_64BIT_TIME)
1734 err = copy_to_user(uru, &ru, sizeof(ru));
1735 else
1736 err = put_compat_rusage(&ru, uru);
1737 if (err)
1738 return -EFAULT;
1739 }
7e95a225
AV
1740 }
1741
4c48abe9
AV
1742 if (!infop)
1743 return err;
1744
594cc251 1745 if (!user_access_begin(infop, sizeof(*infop)))
1c9fec47 1746 return -EFAULT;
96ca579a 1747
634a8160 1748 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1749 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1750 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1751 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1752 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1753 unsafe_put_user(info.status, &infop->si_status, Efault);
1754 user_access_end();
67d7ddde 1755 return err;
4c48abe9
AV
1756Efault:
1757 user_access_end();
1758 return -EFAULT;
7e95a225
AV
1759}
1760#endif
7c2c11b2
SM
1761
1762__weak void abort(void)
1763{
1764 BUG();
1765
1766 /* if that doesn't kill us, halt */
1767 panic("Oops failed to kill thread");
1768}
dc8635b7 1769EXPORT_SYMBOL(abort);