iommu/amd: Apply the same IVRS IOAPIC workaround to Acer Aspire A315-41
[linux-2.6-block.git] / kernel / exit.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/slab.h>
4eb5aaa3 10#include <linux/sched/autogroup.h>
6e84f315 11#include <linux/sched/mm.h>
03441a34 12#include <linux/sched/stat.h>
29930025 13#include <linux/sched/task.h>
68db0cf1 14#include <linux/sched/task_stack.h>
32ef5517 15#include <linux/sched/cputime.h>
1da177e4 16#include <linux/interrupt.h>
1da177e4 17#include <linux/module.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
da9cbc87 22#include <linux/iocontext.h>
1da177e4 23#include <linux/key.h>
1da177e4
LT
24#include <linux/cpu.h>
25#include <linux/acct.h>
8f0ab514 26#include <linux/tsacct_kern.h>
1da177e4 27#include <linux/file.h>
9f3acc31 28#include <linux/fdtable.h>
80d26af8 29#include <linux/freezer.h>
1da177e4 30#include <linux/binfmts.h>
ab516013 31#include <linux/nsproxy.h>
84d73786 32#include <linux/pid_namespace.h>
1da177e4
LT
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
49d769d5 37#include <linux/kthread.h>
1da177e4 38#include <linux/mempolicy.h>
c757249a 39#include <linux/taskstats_kern.h>
ca74e92b 40#include <linux/delayacct.h>
b4f48b63 41#include <linux/cgroup.h>
1da177e4 42#include <linux/syscalls.h>
7ed20e1a 43#include <linux/signal.h>
6a14c5c9 44#include <linux/posix-timers.h>
9f46080c 45#include <linux/cn_proc.h>
de5097c2 46#include <linux/mutex.h>
0771dfef 47#include <linux/futex.h>
b92ce558 48#include <linux/pipe_fs_i.h>
fa84cb93 49#include <linux/audit.h> /* for audit_free() */
83cc5ed3 50#include <linux/resource.h>
0d67a46d 51#include <linux/blkdev.h>
6eaeeaba 52#include <linux/task_io_accounting_ops.h>
30199f5a 53#include <linux/tracehook.h>
5ad4e53b 54#include <linux/fs_struct.h>
d84f4f99 55#include <linux/init_task.h>
cdd6c482 56#include <linux/perf_event.h>
ad8d75ff 57#include <trace/events/sched.h>
24f1e32c 58#include <linux/hw_breakpoint.h>
3d5992d2 59#include <linux/oom.h>
54848d73 60#include <linux/writeback.h>
40401530 61#include <linux/shm.h>
5c9a8750 62#include <linux/kcov.h>
53d3eaa3 63#include <linux/random.h>
8f95c90c 64#include <linux/rcuwait.h>
7e95a225 65#include <linux/compat.h>
1da177e4 66
7c0f6ba6 67#include <linux/uaccess.h>
1da177e4
LT
68#include <asm/unistd.h>
69#include <asm/pgtable.h>
70#include <asm/mmu_context.h>
71
d40e48e0 72static void __unhash_process(struct task_struct *p, bool group_dead)
1da177e4
LT
73{
74 nr_threads--;
50d75f8d 75 detach_pid(p, PIDTYPE_PID);
d40e48e0 76 if (group_dead) {
6883f81a 77 detach_pid(p, PIDTYPE_TGID);
1da177e4
LT
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
c97d9893 80
5e85d4ab 81 list_del_rcu(&p->tasks);
9cd80bbb 82 list_del_init(&p->sibling);
909ea964 83 __this_cpu_dec(process_counts);
1da177e4 84 }
47e65328 85 list_del_rcu(&p->thread_group);
0c740d0a 86 list_del_rcu(&p->thread_node);
1da177e4
LT
87}
88
6a14c5c9
ON
89/*
90 * This function expects the tasklist_lock write-locked.
91 */
92static void __exit_signal(struct task_struct *tsk)
93{
94 struct signal_struct *sig = tsk->signal;
d40e48e0 95 bool group_dead = thread_group_leader(tsk);
6a14c5c9 96 struct sighand_struct *sighand;
4ada856f 97 struct tty_struct *uninitialized_var(tty);
5613fda9 98 u64 utime, stime;
6a14c5c9 99
d11c563d 100 sighand = rcu_dereference_check(tsk->sighand,
db1466b3 101 lockdep_tasklist_lock_is_held());
6a14c5c9
ON
102 spin_lock(&sighand->siglock);
103
baa73d9e 104#ifdef CONFIG_POSIX_TIMERS
6a14c5c9 105 posix_cpu_timers_exit(tsk);
d40e48e0 106 if (group_dead) {
6a14c5c9 107 posix_cpu_timers_exit_group(tsk);
4a599942 108 } else {
e0a70217
ON
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
baa73d9e
NP
116 }
117#endif
e0a70217 118
baa73d9e
NP
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
6a14c5c9
ON
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
d344193a 127 if (sig->notify_count > 0 && !--sig->notify_count)
6a14c5c9 128 wake_up_process(sig->group_exit_task);
6db840fa 129
6a14c5c9
ON
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
6a14c5c9
ON
132 }
133
53d3eaa3
NP
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
90ed9cbe 137 /*
26e75b5c
ON
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
90ed9cbe
RR
142 */
143 task_cputime(tsk, &utime, &stime);
e78c3496 144 write_seqlock(&sig->stats_lock);
90ed9cbe
RR
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
b3ac022c 156 sig->nr_threads--;
d40e48e0 157 __unhash_process(tsk, group_dead);
e78c3496 158 write_sequnlock(&sig->stats_lock);
5876700c 159
da7978b0
ON
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
a7e5328a 165 tsk->sighand = NULL;
6a14c5c9 166 spin_unlock(&sighand->siglock);
6a14c5c9 167
a7e5328a 168 __cleanup_sighand(sighand);
a0be55de 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
d40e48e0 170 if (group_dead) {
6a14c5c9 171 flush_sigqueue(&sig->shared_pending);
4ada856f 172 tty_kref_put(tty);
6a14c5c9
ON
173 }
174}
175
8c7904a0
EB
176static void delayed_put_task_struct(struct rcu_head *rhp)
177{
0a16b607
MD
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
4e231c79 180 perf_event_delayed_put(tsk);
0a16b607
MD
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
8c7904a0
EB
183}
184
3fbd7ee2
EB
185void put_task_struct_rcu_user(struct task_struct *task)
186{
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
189}
f470021a 190
a0be55de 191void release_task(struct task_struct *p)
1da177e4 192{
36c8b586 193 struct task_struct *leader;
1da177e4 194 int zap_leader;
1f09f974 195repeat:
c69e8d9c 196 /* don't need to get the RCU readlock here - the process is dead and
d11c563d
PM
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 rcu_read_lock();
c69e8d9c 199 atomic_dec(&__task_cred(p)->user->processes);
d11c563d 200 rcu_read_unlock();
c69e8d9c 201
60347f67 202 proc_flush_task(p);
6b115bf5 203 cgroup_release(p);
0203026b 204
1da177e4 205 write_lock_irq(&tasklist_lock);
a288eecc 206 ptrace_release_task(p);
1da177e4 207 __exit_signal(p);
35f5cad8 208
1da177e4
LT
209 /*
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
213 */
214 zap_leader = 0;
215 leader = p->group_leader;
a0be55de
IA
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
1da177e4
LT
218 /*
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
dae33574 222 */
86773473 223 zap_leader = do_notify_parent(leader, leader->exit_signal);
dae33574
RM
224 if (zap_leader)
225 leader->exit_state = EXIT_DEAD;
1da177e4
LT
226 }
227
1da177e4 228 write_unlock_irq(&tasklist_lock);
1da177e4 229 release_thread(p);
3fbd7ee2 230 put_task_struct_rcu_user(p);
1da177e4
LT
231
232 p = leader;
233 if (unlikely(zap_leader))
234 goto repeat;
235}
236
8f95c90c
DB
237void rcuwait_wake_up(struct rcuwait *w)
238{
239 struct task_struct *task;
240
241 rcu_read_lock();
242
243 /*
244 * Order condition vs @task, such that everything prior to the load
245 * of @task is visible. This is the condition as to why the user called
246 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 * barrier (A) in rcuwait_wait_event().
248 *
249 * WAIT WAKE
250 * [S] tsk = current [S] cond = true
251 * MB (A) MB (B)
252 * [L] cond [L] tsk
253 */
6dc080ee 254 smp_mb(); /* (B) */
8f95c90c 255
8f95c90c
DB
256 task = rcu_dereference(w->task);
257 if (task)
258 wake_up_process(task);
259 rcu_read_unlock();
260}
261
1da177e4
LT
262/*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
a0be55de
IA
270static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
1da177e4
LT
272{
273 struct task_struct *p;
1da177e4 274
0475ac08 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
05e83df6
ON
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
1da177e4 279 continue;
05e83df6 280
0475ac08 281 if (task_pgrp(p->real_parent) != pgrp &&
05e83df6
ON
282 task_session(p->real_parent) == task_session(p))
283 return 0;
0475ac08 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
05e83df6
ON
285
286 return 1;
1da177e4
LT
287}
288
3e7cd6c4 289int is_current_pgrp_orphaned(void)
1da177e4
LT
290{
291 int retval;
292
293 read_lock(&tasklist_lock);
3e7cd6c4 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
1da177e4
LT
295 read_unlock(&tasklist_lock);
296
297 return retval;
298}
299
961c4675 300static bool has_stopped_jobs(struct pid *pgrp)
1da177e4 301{
1da177e4
LT
302 struct task_struct *p;
303
0475ac08 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
961c4675
ON
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
0475ac08 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
961c4675
ON
308
309 return false;
1da177e4
LT
310}
311
f49ee505
ON
312/*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317static void
318kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319{
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
a0be55de
IA
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
f49ee505
ON
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341}
342
f98bafa0 343#ifdef CONFIG_MEMCG
cf475ad2 344/*
733eda7a 345 * A task is exiting. If it owned this mm, find a new owner for the mm.
cf475ad2 346 */
cf475ad2
BS
347void mm_update_next_owner(struct mm_struct *mm)
348{
349 struct task_struct *c, *g, *p = current;
350
351retry:
733eda7a
KH
352 /*
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
355 */
356 if (mm->owner != p)
cf475ad2 357 return;
733eda7a
KH
358 /*
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
362 */
363 if (atomic_read(&mm->mm_users) <= 1) {
987717e5 364 WRITE_ONCE(mm->owner, NULL);
733eda7a
KH
365 return;
366 }
cf475ad2
BS
367
368 read_lock(&tasklist_lock);
369 /*
370 * Search in the children
371 */
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377 /*
378 * Search in the siblings
379 */
dea33cfd 380 list_for_each_entry(c, &p->real_parent->children, sibling) {
cf475ad2
BS
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385 /*
f87fb599 386 * Search through everything else, we should not get here often.
cf475ad2 387 */
39af1765
ON
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
f87fb599 397 }
cf475ad2 398 read_unlock(&tasklist_lock);
31a78f23
BS
399 /*
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
e5991371 402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
31a78f23 403 */
987717e5 404 WRITE_ONCE(mm->owner, NULL);
cf475ad2
BS
405 return;
406
407assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410 /*
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
413 */
414 task_lock(c);
e5991371
HD
415 /*
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
418 */
419 read_unlock(&tasklist_lock);
cf475ad2
BS
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
987717e5 425 WRITE_ONCE(mm->owner, c);
cf475ad2
BS
426 task_unlock(c);
427 put_task_struct(c);
428}
f98bafa0 429#endif /* CONFIG_MEMCG */
cf475ad2 430
1da177e4
LT
431/*
432 * Turn us into a lazy TLB process if we
433 * aren't already..
434 */
0039962a 435static void exit_mm(void)
1da177e4 436{
0039962a 437 struct mm_struct *mm = current->mm;
b564daf8 438 struct core_state *core_state;
1da177e4 439
0039962a 440 mm_release(current, mm);
1da177e4
LT
441 if (!mm)
442 return;
4fe7efdb 443 sync_mm_rss(mm);
1da177e4
LT
444 /*
445 * Serialize with any possible pending coredump.
999d9fc1 446 * We must hold mmap_sem around checking core_state
1da177e4 447 * and clearing tsk->mm. The core-inducing thread
999d9fc1 448 * will increment ->nr_threads for each thread in the
1da177e4
LT
449 * group with ->mm != NULL.
450 */
451 down_read(&mm->mmap_sem);
b564daf8
ON
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
a0be55de 455
1da177e4 456 up_read(&mm->mmap_sem);
1da177e4 457
0039962a 458 self.task = current;
b564daf8
ON
459 self.next = xchg(&core_state->dumper.next, &self);
460 /*
461 * Implies mb(), the result of xchg() must be visible
462 * to core_state->dumper.
463 */
464 if (atomic_dec_and_test(&core_state->nr_threads))
465 complete(&core_state->startup);
1da177e4 466
a94e2d40 467 for (;;) {
642fa448 468 set_current_state(TASK_UNINTERRUPTIBLE);
a94e2d40
ON
469 if (!self.task) /* see coredump_finish() */
470 break;
80d26af8 471 freezable_schedule();
a94e2d40 472 }
642fa448 473 __set_current_state(TASK_RUNNING);
1da177e4
LT
474 down_read(&mm->mmap_sem);
475 }
f1f10076 476 mmgrab(mm);
0039962a 477 BUG_ON(mm != current->active_mm);
1da177e4 478 /* more a memory barrier than a real lock */
0039962a
DB
479 task_lock(current);
480 current->mm = NULL;
1da177e4
LT
481 up_read(&mm->mmap_sem);
482 enter_lazy_tlb(mm, current);
0039962a 483 task_unlock(current);
cf475ad2 484 mm_update_next_owner(mm);
1da177e4 485 mmput(mm);
c32b3cbe 486 if (test_thread_flag(TIF_MEMDIE))
38531201 487 exit_oom_victim();
1da177e4
LT
488}
489
c9dc05bf
ON
490static struct task_struct *find_alive_thread(struct task_struct *p)
491{
492 struct task_struct *t;
493
494 for_each_thread(p, t) {
495 if (!(t->flags & PF_EXITING))
496 return t;
497 }
498 return NULL;
499}
500
8fb335e0
AV
501static struct task_struct *find_child_reaper(struct task_struct *father,
502 struct list_head *dead)
1109909c
ON
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505{
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *reaper = pid_ns->child_reaper;
8fb335e0 508 struct task_struct *p, *n;
1109909c
ON
509
510 if (likely(reaper != father))
511 return reaper;
512
c9dc05bf
ON
513 reaper = find_alive_thread(father);
514 if (reaper) {
1109909c
ON
515 pid_ns->child_reaper = reaper;
516 return reaper;
517 }
518
519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?: father->exit_code);
523 }
8fb335e0
AV
524
525 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 list_del_init(&p->ptrace_entry);
527 release_task(p);
528 }
529
1109909c
ON
530 zap_pid_ns_processes(pid_ns);
531 write_lock_irq(&tasklist_lock);
532
533 return father;
534}
535
1da177e4 536/*
ebec18a6
LP
537 * When we die, we re-parent all our children, and try to:
538 * 1. give them to another thread in our thread group, if such a member exists
539 * 2. give it to the first ancestor process which prctl'd itself as a
540 * child_subreaper for its children (like a service manager)
541 * 3. give it to the init process (PID 1) in our pid namespace
1da177e4 542 */
1109909c
ON
543static struct task_struct *find_new_reaper(struct task_struct *father,
544 struct task_struct *child_reaper)
1da177e4 545{
c9dc05bf 546 struct task_struct *thread, *reaper;
1da177e4 547
c9dc05bf
ON
548 thread = find_alive_thread(father);
549 if (thread)
950bbabb 550 return thread;
1da177e4 551
7d24e2df 552 if (father->signal->has_child_subreaper) {
c6c70f44 553 unsigned int ns_level = task_pid(father)->level;
ebec18a6 554 /*
175aed3f 555 * Find the first ->is_child_subreaper ancestor in our pid_ns.
c6c70f44
ON
556 * We can't check reaper != child_reaper to ensure we do not
557 * cross the namespaces, the exiting parent could be injected
558 * by setns() + fork().
559 * We check pid->level, this is slightly more efficient than
560 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
ebec18a6 561 */
c6c70f44
ON
562 for (reaper = father->real_parent;
563 task_pid(reaper)->level == ns_level;
ebec18a6 564 reaper = reaper->real_parent) {
175aed3f 565 if (reaper == &init_task)
ebec18a6
LP
566 break;
567 if (!reaper->signal->is_child_subreaper)
568 continue;
c9dc05bf
ON
569 thread = find_alive_thread(reaper);
570 if (thread)
571 return thread;
ebec18a6 572 }
1da177e4 573 }
762a24be 574
1109909c 575 return child_reaper;
950bbabb
ON
576}
577
5dfc80be
ON
578/*
579* Any that need to be release_task'd are put on the @dead list.
580 */
9cd80bbb 581static void reparent_leader(struct task_struct *father, struct task_struct *p,
5dfc80be
ON
582 struct list_head *dead)
583{
2831096e 584 if (unlikely(p->exit_state == EXIT_DEAD))
5dfc80be
ON
585 return;
586
abd50b39 587 /* We don't want people slaying init. */
5dfc80be
ON
588 p->exit_signal = SIGCHLD;
589
590 /* If it has exited notify the new parent about this child's death. */
d21142ec 591 if (!p->ptrace &&
5dfc80be 592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
86773473 593 if (do_notify_parent(p, p->exit_signal)) {
5dfc80be 594 p->exit_state = EXIT_DEAD;
dc2fd4b0 595 list_add(&p->ptrace_entry, dead);
5dfc80be
ON
596 }
597 }
598
599 kill_orphaned_pgrp(p, father);
600}
601
482a3767
ON
602/*
603 * This does two things:
604 *
605 * A. Make init inherit all the child processes
606 * B. Check to see if any process groups have become orphaned
607 * as a result of our exiting, and if they have any stopped
608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
609 */
610static void forget_original_parent(struct task_struct *father,
611 struct list_head *dead)
1da177e4 612{
482a3767 613 struct task_struct *p, *t, *reaper;
762a24be 614
7c8bd232 615 if (unlikely(!list_empty(&father->ptraced)))
482a3767 616 exit_ptrace(father, dead);
f470021a 617
7c8bd232 618 /* Can drop and reacquire tasklist_lock */
8fb335e0 619 reaper = find_child_reaper(father, dead);
ad9e206a 620 if (list_empty(&father->children))
482a3767 621 return;
1109909c
ON
622
623 reaper = find_new_reaper(father, reaper);
2831096e 624 list_for_each_entry(p, &father->children, sibling) {
57a05918 625 for_each_thread(p, t) {
9cd80bbb 626 t->real_parent = reaper;
57a05918
ON
627 BUG_ON((!t->ptrace) != (t->parent == father));
628 if (likely(!t->ptrace))
9cd80bbb 629 t->parent = t->real_parent;
9cd80bbb
ON
630 if (t->pdeath_signal)
631 group_send_sig_info(t->pdeath_signal,
01024980
EB
632 SEND_SIG_NOINFO, t,
633 PIDTYPE_TGID);
57a05918 634 }
2831096e
ON
635 /*
636 * If this is a threaded reparent there is no need to
637 * notify anyone anything has happened.
638 */
639 if (!same_thread_group(reaper, father))
482a3767 640 reparent_leader(father, p, dead);
1da177e4 641 }
2831096e 642 list_splice_tail_init(&father->children, &reaper->children);
1da177e4
LT
643}
644
645/*
646 * Send signals to all our closest relatives so that they know
647 * to properly mourn us..
648 */
821c7de7 649static void exit_notify(struct task_struct *tsk, int group_dead)
1da177e4 650{
53c8f9f1 651 bool autoreap;
482a3767
ON
652 struct task_struct *p, *n;
653 LIST_HEAD(dead);
1da177e4 654
762a24be 655 write_lock_irq(&tasklist_lock);
482a3767
ON
656 forget_original_parent(tsk, &dead);
657
821c7de7
ON
658 if (group_dead)
659 kill_orphaned_pgrp(tsk->group_leader, NULL);
1da177e4 660
b191d649 661 tsk->exit_state = EXIT_ZOMBIE;
45cdf5cc
ON
662 if (unlikely(tsk->ptrace)) {
663 int sig = thread_group_leader(tsk) &&
664 thread_group_empty(tsk) &&
665 !ptrace_reparented(tsk) ?
666 tsk->exit_signal : SIGCHLD;
667 autoreap = do_notify_parent(tsk, sig);
668 } else if (thread_group_leader(tsk)) {
669 autoreap = thread_group_empty(tsk) &&
670 do_notify_parent(tsk, tsk->exit_signal);
671 } else {
672 autoreap = true;
673 }
1da177e4 674
30b692d3
CB
675 if (autoreap) {
676 tsk->exit_state = EXIT_DEAD;
6c66e7db 677 list_add(&tsk->ptrace_entry, &dead);
30b692d3 678 }
1da177e4 679
9c339168
ON
680 /* mt-exec, de_thread() is waiting for group leader */
681 if (unlikely(tsk->signal->notify_count < 0))
6db840fa 682 wake_up_process(tsk->signal->group_exit_task);
1da177e4
LT
683 write_unlock_irq(&tasklist_lock);
684
482a3767
ON
685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 list_del_init(&p->ptrace_entry);
687 release_task(p);
688 }
1da177e4
LT
689}
690
e18eecb8
JD
691#ifdef CONFIG_DEBUG_STACK_USAGE
692static void check_stack_usage(void)
693{
694 static DEFINE_SPINLOCK(low_water_lock);
695 static int lowest_to_date = THREAD_SIZE;
e18eecb8
JD
696 unsigned long free;
697
7c9f8861 698 free = stack_not_used(current);
e18eecb8
JD
699
700 if (free >= lowest_to_date)
701 return;
702
703 spin_lock(&low_water_lock);
704 if (free < lowest_to_date) {
627393d4 705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
a0be55de 706 current->comm, task_pid_nr(current), free);
e18eecb8
JD
707 lowest_to_date = free;
708 }
709 spin_unlock(&low_water_lock);
710}
711#else
712static inline void check_stack_usage(void) {}
713#endif
714
9af6528e 715void __noreturn do_exit(long code)
1da177e4
LT
716{
717 struct task_struct *tsk = current;
718 int group_dead;
719
720 profile_task_exit(tsk);
5c9a8750 721 kcov_task_exit(tsk);
1da177e4 722
73c10101 723 WARN_ON(blk_needs_flush_plug(tsk));
22e2c507 724
1da177e4
LT
725 if (unlikely(in_interrupt()))
726 panic("Aiee, killing interrupt handler!");
727 if (unlikely(!tsk->pid))
728 panic("Attempted to kill the idle task!");
1da177e4 729
33dd94ae
NE
730 /*
731 * If do_exit is called because this processes oopsed, it's possible
732 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
733 * continuing. Amongst other possible reasons, this is to prevent
734 * mm_release()->clear_child_tid() from writing to a user-controlled
735 * kernel address.
736 */
737 set_fs(USER_DS);
738
a288eecc 739 ptrace_event(PTRACE_EVENT_EXIT, code);
1da177e4 740
e0e81739
DH
741 validate_creds_for_do_exit(tsk);
742
df164db5
AN
743 /*
744 * We're taking recursive faults here in do_exit. Safest is to just
745 * leave this task alone and wait for reboot.
746 */
747 if (unlikely(tsk->flags & PF_EXITING)) {
a0be55de 748 pr_alert("Fixing recursive fault but reboot is needed!\n");
778e9a9c
AK
749 /*
750 * We can do this unlocked here. The futex code uses
751 * this flag just to verify whether the pi state
752 * cleanup has been done or not. In the worst case it
753 * loops once more. We pretend that the cleanup was
754 * done as there is no way to return. Either the
755 * OWNER_DIED bit is set by now or we push the blocked
756 * task into the wait for ever nirwana as well.
757 */
758 tsk->flags |= PF_EXITPIDONE;
df164db5
AN
759 set_current_state(TASK_UNINTERRUPTIBLE);
760 schedule();
761 }
762
d12619b5 763 exit_signals(tsk); /* sets PF_EXITING */
778e9a9c 764 /*
be3e7844
PZ
765 * Ensure that all new tsk->pi_lock acquisitions must observe
766 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
778e9a9c 767 */
d2ee7198 768 smp_mb();
be3e7844
PZ
769 /*
770 * Ensure that we must observe the pi_state in exit_mm() ->
771 * mm_release() -> exit_pi_state_list().
772 */
8083f293
PM
773 raw_spin_lock_irq(&tsk->pi_lock);
774 raw_spin_unlock_irq(&tsk->pi_lock);
1da177e4 775
1dc0fffc 776 if (unlikely(in_atomic())) {
a0be55de
IA
777 pr_info("note: %s[%d] exited with preempt_count %d\n",
778 current->comm, task_pid_nr(current),
779 preempt_count());
1dc0fffc
PZ
780 preempt_count_set(PREEMPT_ENABLED);
781 }
1da177e4 782
48d212a2
LT
783 /* sync mm's RSS info before statistics gathering */
784 if (tsk->mm)
785 sync_mm_rss(tsk->mm);
51229b49 786 acct_update_integrals(tsk);
1da177e4 787 group_dead = atomic_dec_and_test(&tsk->signal->live);
c3068951 788 if (group_dead) {
baa73d9e 789#ifdef CONFIG_POSIX_TIMERS
778e9a9c 790 hrtimer_cancel(&tsk->signal->real_timer);
25f407f0 791 exit_itimers(tsk->signal);
baa73d9e 792#endif
1f10206c
JP
793 if (tsk->mm)
794 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
c3068951 795 }
f6ec29a4 796 acct_collect(code, group_dead);
522ed776
MT
797 if (group_dead)
798 tty_audit_exit();
a4ff8dba 799 audit_free(tsk);
115085ea 800
48d212a2 801 tsk->exit_code = code;
115085ea 802 taskstats_exit(tsk, group_dead);
c757249a 803
0039962a 804 exit_mm();
1da177e4 805
0e464814 806 if (group_dead)
f6ec29a4 807 acct_process();
0a16b607
MD
808 trace_sched_process_exit(tsk);
809
1da177e4 810 exit_sem(tsk);
b34a6b1d 811 exit_shm(tsk);
1ec7f1dd
AV
812 exit_files(tsk);
813 exit_fs(tsk);
c39df5fa
ON
814 if (group_dead)
815 disassociate_ctty(1);
8aac6270 816 exit_task_namespaces(tsk);
ed3e694d 817 exit_task_work(tsk);
e6464694 818 exit_thread(tsk);
73ab1cb2 819 exit_umh(tsk);
0b3fcf17
SE
820
821 /*
822 * Flush inherited counters to the parent - before the parent
823 * gets woken up by child-exit notifications.
824 *
825 * because of cgroup mode, must be called before cgroup_exit()
826 */
827 perf_event_exit_task(tsk);
828
8e5bfa8c 829 sched_autogroup_exit_task(tsk);
1ec41830 830 cgroup_exit(tsk);
1da177e4 831
24f1e32c
FW
832 /*
833 * FIXME: do that only when needed, using sched_exit tracepoint
834 */
7c8df286 835 flush_ptrace_hw_breakpoint(tsk);
33b2fb30 836
ccdd29ff 837 exit_tasks_rcu_start();
821c7de7 838 exit_notify(tsk, group_dead);
ef982393 839 proc_exit_connector(tsk);
c11600e4 840 mpol_put_task_policy(tsk);
42b2dd0a 841#ifdef CONFIG_FUTEX
c87e2837
IM
842 if (unlikely(current->pi_state_cache))
843 kfree(current->pi_state_cache);
42b2dd0a 844#endif
de5097c2 845 /*
9a11b49a 846 * Make sure we are holding no locks:
de5097c2 847 */
1b1d2fb4 848 debug_check_no_locks_held();
778e9a9c
AK
849 /*
850 * We can do this unlocked here. The futex code uses this flag
851 * just to verify whether the pi state cleanup has been done
852 * or not. In the worst case it loops once more.
853 */
854 tsk->flags |= PF_EXITPIDONE;
1da177e4 855
afc847b7 856 if (tsk->io_context)
b69f2292 857 exit_io_context(tsk);
afc847b7 858
b92ce558 859 if (tsk->splice_pipe)
4b8a8f1e 860 free_pipe_info(tsk->splice_pipe);
b92ce558 861
5640f768
ED
862 if (tsk->task_frag.page)
863 put_page(tsk->task_frag.page);
864
e0e81739
DH
865 validate_creds_for_do_exit(tsk);
866
4bcb8232 867 check_stack_usage();
7407251a 868 preempt_disable();
54848d73
WF
869 if (tsk->nr_dirtied)
870 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
f41d911f 871 exit_rcu();
ccdd29ff 872 exit_tasks_rcu_finish();
b5740f4b 873
b09be676 874 lockdep_free_task(tsk);
9af6528e 875 do_task_dead();
1da177e4 876}
012914da
RA
877EXPORT_SYMBOL_GPL(do_exit);
878
9402c95f 879void complete_and_exit(struct completion *comp, long code)
1da177e4
LT
880{
881 if (comp)
882 complete(comp);
55a101f8 883
1da177e4
LT
884 do_exit(code);
885}
1da177e4
LT
886EXPORT_SYMBOL(complete_and_exit);
887
754fe8d2 888SYSCALL_DEFINE1(exit, int, error_code)
1da177e4
LT
889{
890 do_exit((error_code&0xff)<<8);
891}
892
1da177e4
LT
893/*
894 * Take down every thread in the group. This is called by fatal signals
895 * as well as by sys_exit_group (below).
896 */
9402c95f 897void
1da177e4
LT
898do_group_exit(int exit_code)
899{
bfc4b089
ON
900 struct signal_struct *sig = current->signal;
901
1da177e4
LT
902 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
903
bfc4b089
ON
904 if (signal_group_exit(sig))
905 exit_code = sig->group_exit_code;
1da177e4 906 else if (!thread_group_empty(current)) {
1da177e4 907 struct sighand_struct *const sighand = current->sighand;
a0be55de 908
1da177e4 909 spin_lock_irq(&sighand->siglock);
ed5d2cac 910 if (signal_group_exit(sig))
1da177e4
LT
911 /* Another thread got here before we took the lock. */
912 exit_code = sig->group_exit_code;
913 else {
1da177e4 914 sig->group_exit_code = exit_code;
ed5d2cac 915 sig->flags = SIGNAL_GROUP_EXIT;
1da177e4
LT
916 zap_other_threads(current);
917 }
918 spin_unlock_irq(&sighand->siglock);
1da177e4
LT
919 }
920
921 do_exit(exit_code);
922 /* NOTREACHED */
923}
924
925/*
926 * this kills every thread in the thread group. Note that any externally
927 * wait4()-ing process will get the correct exit code - even if this
928 * thread is not the thread group leader.
929 */
754fe8d2 930SYSCALL_DEFINE1(exit_group, int, error_code)
1da177e4
LT
931{
932 do_group_exit((error_code & 0xff) << 8);
2ed7c03e
HC
933 /* NOTREACHED */
934 return 0;
1da177e4
LT
935}
936
67d7ddde
AV
937struct waitid_info {
938 pid_t pid;
939 uid_t uid;
940 int status;
941 int cause;
942};
943
9e8ae01d
ON
944struct wait_opts {
945 enum pid_type wo_type;
9e8ae01d 946 int wo_flags;
e1eb1ebc 947 struct pid *wo_pid;
9e8ae01d 948
67d7ddde 949 struct waitid_info *wo_info;
359566fa 950 int wo_stat;
ce72a16f 951 struct rusage *wo_rusage;
9e8ae01d 952
ac6424b9 953 wait_queue_entry_t child_wait;
9e8ae01d
ON
954 int notask_error;
955};
956
989264f4 957static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1da177e4 958{
5c01ba49
ON
959 return wo->wo_type == PIDTYPE_MAX ||
960 task_pid_type(p, wo->wo_type) == wo->wo_pid;
961}
1da177e4 962
bf959931
ON
963static int
964eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
5c01ba49
ON
965{
966 if (!eligible_pid(wo, p))
967 return 0;
bf959931
ON
968
969 /*
970 * Wait for all children (clone and not) if __WALL is set or
971 * if it is traced by us.
972 */
973 if (ptrace || (wo->wo_flags & __WALL))
974 return 1;
975
976 /*
977 * Otherwise, wait for clone children *only* if __WCLONE is set;
978 * otherwise, wait for non-clone children *only*.
979 *
980 * Note: a "clone" child here is one that reports to its parent
981 * using a signal other than SIGCHLD, or a non-leader thread which
982 * we can only see if it is traced by us.
983 */
984 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1da177e4 985 return 0;
1da177e4 986
14dd0b81 987 return 1;
1da177e4
LT
988}
989
1da177e4
LT
990/*
991 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
992 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
993 * the lock and this task is uninteresting. If we return nonzero, we have
994 * released the lock and the system call should return.
995 */
9e8ae01d 996static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1da177e4 997{
67d7ddde 998 int state, status;
6c5f3e7b 999 pid_t pid = task_pid_vnr(p);
43e13cc1 1000 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
67d7ddde 1001 struct waitid_info *infop;
1da177e4 1002
9e8ae01d 1003 if (!likely(wo->wo_flags & WEXITED))
98abed02
RM
1004 return 0;
1005
9e8ae01d 1006 if (unlikely(wo->wo_flags & WNOWAIT)) {
76d9871e 1007 status = p->exit_code;
1da177e4
LT
1008 get_task_struct(p);
1009 read_unlock(&tasklist_lock);
1029a2b5 1010 sched_annotate_sleep();
e61a2502
AV
1011 if (wo->wo_rusage)
1012 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1013 put_task_struct(p);
76d9871e 1014 goto out_info;
1da177e4 1015 }
1da177e4 1016 /*
abd50b39 1017 * Move the task's state to DEAD/TRACE, only one thread can do this.
1da177e4 1018 */
f6507f83
ON
1019 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020 EXIT_TRACE : EXIT_DEAD;
abd50b39 1021 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1da177e4 1022 return 0;
986094df
ON
1023 /*
1024 * We own this thread, nobody else can reap it.
1025 */
1026 read_unlock(&tasklist_lock);
1027 sched_annotate_sleep();
f6507f83 1028
befca967 1029 /*
f6507f83 1030 * Check thread_group_leader() to exclude the traced sub-threads.
befca967 1031 */
f6507f83 1032 if (state == EXIT_DEAD && thread_group_leader(p)) {
f953ccd0
ON
1033 struct signal_struct *sig = p->signal;
1034 struct signal_struct *psig = current->signal;
1f10206c 1035 unsigned long maxrss;
5613fda9 1036 u64 tgutime, tgstime;
3795e161 1037
1da177e4
LT
1038 /*
1039 * The resource counters for the group leader are in its
1040 * own task_struct. Those for dead threads in the group
1041 * are in its signal_struct, as are those for the child
1042 * processes it has previously reaped. All these
1043 * accumulate in the parent's signal_struct c* fields.
1044 *
1045 * We don't bother to take a lock here to protect these
f953ccd0
ON
1046 * p->signal fields because the whole thread group is dead
1047 * and nobody can change them.
1048 *
1049 * psig->stats_lock also protects us from our sub-theads
1050 * which can reap other children at the same time. Until
1051 * we change k_getrusage()-like users to rely on this lock
1052 * we have to take ->siglock as well.
0cf55e1e 1053 *
a0be55de
IA
1054 * We use thread_group_cputime_adjusted() to get times for
1055 * the thread group, which consolidates times for all threads
1056 * in the group including the group leader.
1da177e4 1057 */
e80d0a1a 1058 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
f953ccd0 1059 spin_lock_irq(&current->sighand->siglock);
e78c3496 1060 write_seqlock(&psig->stats_lock);
64861634
MS
1061 psig->cutime += tgutime + sig->cutime;
1062 psig->cstime += tgstime + sig->cstime;
6fac4829 1063 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
3795e161
JJ
1064 psig->cmin_flt +=
1065 p->min_flt + sig->min_flt + sig->cmin_flt;
1066 psig->cmaj_flt +=
1067 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068 psig->cnvcsw +=
1069 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070 psig->cnivcsw +=
1071 p->nivcsw + sig->nivcsw + sig->cnivcsw;
6eaeeaba
ED
1072 psig->cinblock +=
1073 task_io_get_inblock(p) +
1074 sig->inblock + sig->cinblock;
1075 psig->coublock +=
1076 task_io_get_oublock(p) +
1077 sig->oublock + sig->coublock;
1f10206c
JP
1078 maxrss = max(sig->maxrss, sig->cmaxrss);
1079 if (psig->cmaxrss < maxrss)
1080 psig->cmaxrss = maxrss;
5995477a
AR
1081 task_io_accounting_add(&psig->ioac, &p->ioac);
1082 task_io_accounting_add(&psig->ioac, &sig->ioac);
e78c3496 1083 write_sequnlock(&psig->stats_lock);
f953ccd0 1084 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1085 }
1086
ce72a16f
AV
1087 if (wo->wo_rusage)
1088 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1da177e4
LT
1089 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 ? p->signal->group_exit_code : p->exit_code;
359566fa 1091 wo->wo_stat = status;
2f4e6e2a 1092
b4360690 1093 if (state == EXIT_TRACE) {
1da177e4 1094 write_lock_irq(&tasklist_lock);
2f4e6e2a
ON
1095 /* We dropped tasklist, ptracer could die and untrace */
1096 ptrace_unlink(p);
b4360690
ON
1097
1098 /* If parent wants a zombie, don't release it now */
1099 state = EXIT_ZOMBIE;
1100 if (do_notify_parent(p, p->exit_signal))
1101 state = EXIT_DEAD;
abd50b39 1102 p->exit_state = state;
1da177e4
LT
1103 write_unlock_irq(&tasklist_lock);
1104 }
abd50b39 1105 if (state == EXIT_DEAD)
1da177e4 1106 release_task(p);
2f4e6e2a 1107
76d9871e
AV
1108out_info:
1109 infop = wo->wo_info;
1110 if (infop) {
1111 if ((status & 0x7f) == 0) {
1112 infop->cause = CLD_EXITED;
1113 infop->status = status >> 8;
1114 } else {
1115 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1116 infop->status = status & 0x7f;
1117 }
1118 infop->pid = pid;
1119 infop->uid = uid;
1120 }
1121
67d7ddde 1122 return pid;
1da177e4
LT
1123}
1124
90bc8d8b
ON
1125static int *task_stopped_code(struct task_struct *p, bool ptrace)
1126{
1127 if (ptrace) {
570ac933 1128 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
90bc8d8b
ON
1129 return &p->exit_code;
1130 } else {
1131 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1132 return &p->signal->group_exit_code;
1133 }
1134 return NULL;
1135}
1136
19e27463
TH
1137/**
1138 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139 * @wo: wait options
1140 * @ptrace: is the wait for ptrace
1141 * @p: task to wait for
1142 *
1143 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1144 *
1145 * CONTEXT:
1146 * read_lock(&tasklist_lock), which is released if return value is
1147 * non-zero. Also, grabs and releases @p->sighand->siglock.
1148 *
1149 * RETURNS:
1150 * 0 if wait condition didn't exist and search for other wait conditions
1151 * should continue. Non-zero return, -errno on failure and @p's pid on
1152 * success, implies that tasklist_lock is released and wait condition
1153 * search should terminate.
1da177e4 1154 */
9e8ae01d
ON
1155static int wait_task_stopped(struct wait_opts *wo,
1156 int ptrace, struct task_struct *p)
1da177e4 1157{
67d7ddde
AV
1158 struct waitid_info *infop;
1159 int exit_code, *p_code, why;
ee7c82da 1160 uid_t uid = 0; /* unneeded, required by compiler */
c8950783 1161 pid_t pid;
1da177e4 1162
47918025
ON
1163 /*
1164 * Traditionally we see ptrace'd stopped tasks regardless of options.
1165 */
9e8ae01d 1166 if (!ptrace && !(wo->wo_flags & WUNTRACED))
98abed02
RM
1167 return 0;
1168
19e27463
TH
1169 if (!task_stopped_code(p, ptrace))
1170 return 0;
1171
ee7c82da
ON
1172 exit_code = 0;
1173 spin_lock_irq(&p->sighand->siglock);
1174
90bc8d8b
ON
1175 p_code = task_stopped_code(p, ptrace);
1176 if (unlikely(!p_code))
ee7c82da
ON
1177 goto unlock_sig;
1178
90bc8d8b 1179 exit_code = *p_code;
ee7c82da
ON
1180 if (!exit_code)
1181 goto unlock_sig;
1182
9e8ae01d 1183 if (!unlikely(wo->wo_flags & WNOWAIT))
90bc8d8b 1184 *p_code = 0;
ee7c82da 1185
8ca937a6 1186 uid = from_kuid_munged(current_user_ns(), task_uid(p));
ee7c82da
ON
1187unlock_sig:
1188 spin_unlock_irq(&p->sighand->siglock);
1189 if (!exit_code)
1da177e4
LT
1190 return 0;
1191
1192 /*
1193 * Now we are pretty sure this task is interesting.
1194 * Make sure it doesn't get reaped out from under us while we
1195 * give up the lock and then examine it below. We don't want to
1196 * keep holding onto the tasklist_lock while we call getrusage and
1197 * possibly take page faults for user memory.
1198 */
1199 get_task_struct(p);
6c5f3e7b 1200 pid = task_pid_vnr(p);
f470021a 1201 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1da177e4 1202 read_unlock(&tasklist_lock);
1029a2b5 1203 sched_annotate_sleep();
e61a2502
AV
1204 if (wo->wo_rusage)
1205 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1206 put_task_struct(p);
1da177e4 1207
bb380ec3
AV
1208 if (likely(!(wo->wo_flags & WNOWAIT)))
1209 wo->wo_stat = (exit_code << 8) | 0x7f;
1da177e4 1210
9e8ae01d 1211 infop = wo->wo_info;
67d7ddde
AV
1212 if (infop) {
1213 infop->cause = why;
1214 infop->status = exit_code;
1215 infop->pid = pid;
1216 infop->uid = uid;
1217 }
67d7ddde 1218 return pid;
1da177e4
LT
1219}
1220
1221/*
1222 * Handle do_wait work for one task in a live, non-stopped state.
1223 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1224 * the lock and this task is uninteresting. If we return nonzero, we have
1225 * released the lock and the system call should return.
1226 */
9e8ae01d 1227static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1da177e4 1228{
bb380ec3 1229 struct waitid_info *infop;
1da177e4
LT
1230 pid_t pid;
1231 uid_t uid;
1232
9e8ae01d 1233 if (!unlikely(wo->wo_flags & WCONTINUED))
98abed02
RM
1234 return 0;
1235
1da177e4
LT
1236 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1237 return 0;
1238
1239 spin_lock_irq(&p->sighand->siglock);
1240 /* Re-check with the lock held. */
1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1242 spin_unlock_irq(&p->sighand->siglock);
1243 return 0;
1244 }
9e8ae01d 1245 if (!unlikely(wo->wo_flags & WNOWAIT))
1da177e4 1246 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
8ca937a6 1247 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1da177e4
LT
1248 spin_unlock_irq(&p->sighand->siglock);
1249
6c5f3e7b 1250 pid = task_pid_vnr(p);
1da177e4
LT
1251 get_task_struct(p);
1252 read_unlock(&tasklist_lock);
1029a2b5 1253 sched_annotate_sleep();
e61a2502
AV
1254 if (wo->wo_rusage)
1255 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
bb380ec3 1256 put_task_struct(p);
1da177e4 1257
bb380ec3
AV
1258 infop = wo->wo_info;
1259 if (!infop) {
359566fa 1260 wo->wo_stat = 0xffff;
1da177e4 1261 } else {
bb380ec3
AV
1262 infop->cause = CLD_CONTINUED;
1263 infop->pid = pid;
1264 infop->uid = uid;
1265 infop->status = SIGCONT;
1da177e4 1266 }
bb380ec3 1267 return pid;
1da177e4
LT
1268}
1269
98abed02
RM
1270/*
1271 * Consider @p for a wait by @parent.
1272 *
9e8ae01d 1273 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1274 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1275 * Returns zero if the search for a child should continue;
9e8ae01d 1276 * then ->notask_error is 0 if @p is an eligible child,
3a2f5a59 1277 * or still -ECHILD.
98abed02 1278 */
b6e763f0
ON
1279static int wait_consider_task(struct wait_opts *wo, int ptrace,
1280 struct task_struct *p)
98abed02 1281{
3245d6ac
ON
1282 /*
1283 * We can race with wait_task_zombie() from another thread.
1284 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1285 * can't confuse the checks below.
1286 */
6aa7de05 1287 int exit_state = READ_ONCE(p->exit_state);
b3ab0316
ON
1288 int ret;
1289
3245d6ac 1290 if (unlikely(exit_state == EXIT_DEAD))
b3ab0316
ON
1291 return 0;
1292
bf959931 1293 ret = eligible_child(wo, ptrace, p);
14dd0b81 1294 if (!ret)
98abed02
RM
1295 return ret;
1296
3245d6ac 1297 if (unlikely(exit_state == EXIT_TRACE)) {
50b8d257 1298 /*
abd50b39
ON
1299 * ptrace == 0 means we are the natural parent. In this case
1300 * we should clear notask_error, debugger will notify us.
50b8d257 1301 */
abd50b39 1302 if (likely(!ptrace))
50b8d257 1303 wo->notask_error = 0;
823b018e 1304 return 0;
50b8d257 1305 }
823b018e 1306
377d75da
ON
1307 if (likely(!ptrace) && unlikely(p->ptrace)) {
1308 /*
1309 * If it is traced by its real parent's group, just pretend
1310 * the caller is ptrace_do_wait() and reap this child if it
1311 * is zombie.
1312 *
1313 * This also hides group stop state from real parent; otherwise
1314 * a single stop can be reported twice as group and ptrace stop.
1315 * If a ptracer wants to distinguish these two events for its
1316 * own children it should create a separate process which takes
1317 * the role of real parent.
1318 */
1319 if (!ptrace_reparented(p))
1320 ptrace = 1;
1321 }
1322
45cb24a1 1323 /* slay zombie? */
3245d6ac 1324 if (exit_state == EXIT_ZOMBIE) {
9b84cca2 1325 /* we don't reap group leaders with subthreads */
7c733eb3
ON
1326 if (!delay_group_leader(p)) {
1327 /*
1328 * A zombie ptracee is only visible to its ptracer.
1329 * Notification and reaping will be cascaded to the
1330 * real parent when the ptracer detaches.
1331 */
1332 if (unlikely(ptrace) || likely(!p->ptrace))
1333 return wait_task_zombie(wo, p);
1334 }
98abed02 1335
f470021a 1336 /*
9b84cca2
TH
1337 * Allow access to stopped/continued state via zombie by
1338 * falling through. Clearing of notask_error is complex.
1339 *
1340 * When !@ptrace:
1341 *
1342 * If WEXITED is set, notask_error should naturally be
1343 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1344 * so, if there are live subthreads, there are events to
1345 * wait for. If all subthreads are dead, it's still safe
1346 * to clear - this function will be called again in finite
1347 * amount time once all the subthreads are released and
1348 * will then return without clearing.
1349 *
1350 * When @ptrace:
1351 *
1352 * Stopped state is per-task and thus can't change once the
1353 * target task dies. Only continued and exited can happen.
1354 * Clear notask_error if WCONTINUED | WEXITED.
1355 */
1356 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1357 wo->notask_error = 0;
1358 } else {
1359 /*
1360 * @p is alive and it's gonna stop, continue or exit, so
1361 * there always is something to wait for.
f470021a 1362 */
9e8ae01d 1363 wo->notask_error = 0;
f470021a
RM
1364 }
1365
98abed02 1366 /*
45cb24a1
TH
1367 * Wait for stopped. Depending on @ptrace, different stopped state
1368 * is used and the two don't interact with each other.
98abed02 1369 */
19e27463
TH
1370 ret = wait_task_stopped(wo, ptrace, p);
1371 if (ret)
1372 return ret;
98abed02
RM
1373
1374 /*
45cb24a1
TH
1375 * Wait for continued. There's only one continued state and the
1376 * ptracer can consume it which can confuse the real parent. Don't
1377 * use WCONTINUED from ptracer. You don't need or want it.
98abed02 1378 */
9e8ae01d 1379 return wait_task_continued(wo, p);
98abed02
RM
1380}
1381
1382/*
1383 * Do the work of do_wait() for one thread in the group, @tsk.
1384 *
9e8ae01d 1385 * -ECHILD should be in ->notask_error before the first call.
98abed02
RM
1386 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387 * Returns zero if the search for a child should continue; then
9e8ae01d 1388 * ->notask_error is 0 if there were any eligible children,
3a2f5a59 1389 * or still -ECHILD.
98abed02 1390 */
9e8ae01d 1391static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1392{
1393 struct task_struct *p;
1394
1395 list_for_each_entry(p, &tsk->children, sibling) {
9cd80bbb 1396 int ret = wait_consider_task(wo, 0, p);
a0be55de 1397
9cd80bbb
ON
1398 if (ret)
1399 return ret;
98abed02
RM
1400 }
1401
1402 return 0;
1403}
1404
9e8ae01d 1405static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
98abed02
RM
1406{
1407 struct task_struct *p;
1408
f470021a 1409 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
b6e763f0 1410 int ret = wait_consider_task(wo, 1, p);
a0be55de 1411
f470021a 1412 if (ret)
98abed02 1413 return ret;
98abed02
RM
1414 }
1415
1416 return 0;
1417}
1418
ac6424b9 1419static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
0b7570e7
ON
1420 int sync, void *key)
1421{
1422 struct wait_opts *wo = container_of(wait, struct wait_opts,
1423 child_wait);
1424 struct task_struct *p = key;
1425
5c01ba49 1426 if (!eligible_pid(wo, p))
0b7570e7
ON
1427 return 0;
1428
b4fe5182
ON
1429 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1430 return 0;
1431
0b7570e7
ON
1432 return default_wake_function(wait, mode, sync, key);
1433}
1434
a7f0765e
ON
1435void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1436{
0b7570e7
ON
1437 __wake_up_sync_key(&parent->signal->wait_chldexit,
1438 TASK_INTERRUPTIBLE, 1, p);
a7f0765e
ON
1439}
1440
9e8ae01d 1441static long do_wait(struct wait_opts *wo)
1da177e4 1442{
1da177e4 1443 struct task_struct *tsk;
98abed02 1444 int retval;
1da177e4 1445
9e8ae01d 1446 trace_sched_process_wait(wo->wo_pid);
0a16b607 1447
0b7570e7
ON
1448 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1449 wo->child_wait.private = current;
1450 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4 1451repeat:
98abed02 1452 /*
3da56d16 1453 * If there is nothing that can match our criteria, just get out.
9e8ae01d
ON
1454 * We will clear ->notask_error to zero if we see any child that
1455 * might later match our criteria, even if we are not able to reap
1456 * it yet.
98abed02 1457 */
64a16caf 1458 wo->notask_error = -ECHILD;
9e8ae01d
ON
1459 if ((wo->wo_type < PIDTYPE_MAX) &&
1460 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
64a16caf 1461 goto notask;
161550d7 1462
f95d39d1 1463 set_current_state(TASK_INTERRUPTIBLE);
1da177e4
LT
1464 read_lock(&tasklist_lock);
1465 tsk = current;
1466 do {
64a16caf
ON
1467 retval = do_wait_thread(wo, tsk);
1468 if (retval)
1469 goto end;
9e8ae01d 1470
64a16caf
ON
1471 retval = ptrace_do_wait(wo, tsk);
1472 if (retval)
98abed02 1473 goto end;
98abed02 1474
9e8ae01d 1475 if (wo->wo_flags & __WNOTHREAD)
1da177e4 1476 break;
a3f6dfb7 1477 } while_each_thread(current, tsk);
1da177e4 1478 read_unlock(&tasklist_lock);
f2cc3eb1 1479
64a16caf 1480notask:
9e8ae01d
ON
1481 retval = wo->notask_error;
1482 if (!retval && !(wo->wo_flags & WNOHANG)) {
1da177e4 1483 retval = -ERESTARTSYS;
98abed02
RM
1484 if (!signal_pending(current)) {
1485 schedule();
1486 goto repeat;
1487 }
1da177e4 1488 }
1da177e4 1489end:
f95d39d1 1490 __set_current_state(TASK_RUNNING);
0b7570e7 1491 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1da177e4
LT
1492 return retval;
1493}
1494
3695eae5
CB
1495static struct pid *pidfd_get_pid(unsigned int fd)
1496{
1497 struct fd f;
1498 struct pid *pid;
1499
1500 f = fdget(fd);
1501 if (!f.file)
1502 return ERR_PTR(-EBADF);
1503
1504 pid = pidfd_pid(f.file);
1505 if (!IS_ERR(pid))
1506 get_pid(pid);
1507
1508 fdput(f);
1509 return pid;
1510}
1511
67d7ddde 1512static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
ce72a16f 1513 int options, struct rusage *ru)
1da177e4 1514{
9e8ae01d 1515 struct wait_opts wo;
161550d7
EB
1516 struct pid *pid = NULL;
1517 enum pid_type type;
1da177e4
LT
1518 long ret;
1519
91c4e8ea
ON
1520 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1521 __WNOTHREAD|__WCLONE|__WALL))
1da177e4
LT
1522 return -EINVAL;
1523 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1524 return -EINVAL;
1525
1526 switch (which) {
1527 case P_ALL:
161550d7 1528 type = PIDTYPE_MAX;
1da177e4
LT
1529 break;
1530 case P_PID:
161550d7
EB
1531 type = PIDTYPE_PID;
1532 if (upid <= 0)
1da177e4 1533 return -EINVAL;
3695eae5
CB
1534
1535 pid = find_get_pid(upid);
1da177e4
LT
1536 break;
1537 case P_PGID:
161550d7 1538 type = PIDTYPE_PGID;
821cc7b0 1539 if (upid < 0)
1da177e4 1540 return -EINVAL;
3695eae5 1541
821cc7b0
EB
1542 if (upid)
1543 pid = find_get_pid(upid);
1544 else
1545 pid = get_task_pid(current, PIDTYPE_PGID);
3695eae5
CB
1546 break;
1547 case P_PIDFD:
1548 type = PIDTYPE_PID;
1549 if (upid < 0)
1da177e4 1550 return -EINVAL;
3695eae5
CB
1551
1552 pid = pidfd_get_pid(upid);
1553 if (IS_ERR(pid))
1554 return PTR_ERR(pid);
1da177e4
LT
1555 break;
1556 default:
1557 return -EINVAL;
1558 }
1559
9e8ae01d
ON
1560 wo.wo_type = type;
1561 wo.wo_pid = pid;
1562 wo.wo_flags = options;
1563 wo.wo_info = infop;
9e8ae01d
ON
1564 wo.wo_rusage = ru;
1565 ret = do_wait(&wo);
dfe16dfa 1566
161550d7 1567 put_pid(pid);
1da177e4
LT
1568 return ret;
1569}
1570
ce72a16f
AV
1571SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1572 infop, int, options, struct rusage __user *, ru)
1573{
1574 struct rusage r;
67d7ddde
AV
1575 struct waitid_info info = {.status = 0};
1576 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
634a8160 1577 int signo = 0;
6c85501f 1578
634a8160
AV
1579 if (err > 0) {
1580 signo = SIGCHLD;
1581 err = 0;
ce72a16f
AV
1582 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1583 return -EFAULT;
1584 }
67d7ddde
AV
1585 if (!infop)
1586 return err;
1587
594cc251 1588 if (!user_access_begin(infop, sizeof(*infop)))
1c9fec47 1589 return -EFAULT;
96ca579a 1590
634a8160 1591 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1592 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1593 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1594 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1595 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1596 unsafe_put_user(info.status, &infop->si_status, Efault);
1597 user_access_end();
ce72a16f 1598 return err;
4c48abe9
AV
1599Efault:
1600 user_access_end();
1601 return -EFAULT;
ce72a16f
AV
1602}
1603
92ebce5a
AV
1604long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1605 struct rusage *ru)
1da177e4 1606{
9e8ae01d 1607 struct wait_opts wo;
161550d7
EB
1608 struct pid *pid = NULL;
1609 enum pid_type type;
1da177e4
LT
1610 long ret;
1611
1612 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1613 __WNOTHREAD|__WCLONE|__WALL))
1614 return -EINVAL;
161550d7 1615
dd83c161 1616 /* -INT_MIN is not defined */
1617 if (upid == INT_MIN)
1618 return -ESRCH;
1619
161550d7
EB
1620 if (upid == -1)
1621 type = PIDTYPE_MAX;
1622 else if (upid < 0) {
1623 type = PIDTYPE_PGID;
1624 pid = find_get_pid(-upid);
1625 } else if (upid == 0) {
1626 type = PIDTYPE_PGID;
2ae448ef 1627 pid = get_task_pid(current, PIDTYPE_PGID);
161550d7
EB
1628 } else /* upid > 0 */ {
1629 type = PIDTYPE_PID;
1630 pid = find_get_pid(upid);
1631 }
1632
9e8ae01d
ON
1633 wo.wo_type = type;
1634 wo.wo_pid = pid;
1635 wo.wo_flags = options | WEXITED;
1636 wo.wo_info = NULL;
359566fa 1637 wo.wo_stat = 0;
9e8ae01d
ON
1638 wo.wo_rusage = ru;
1639 ret = do_wait(&wo);
161550d7 1640 put_pid(pid);
359566fa
AV
1641 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1642 ret = -EFAULT;
1da177e4 1643
1da177e4
LT
1644 return ret;
1645}
1646
ce72a16f
AV
1647SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1648 int, options, struct rusage __user *, ru)
1649{
1650 struct rusage r;
1651 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1652
1653 if (err > 0) {
1654 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655 return -EFAULT;
1656 }
1657 return err;
1658}
1659
1da177e4
LT
1660#ifdef __ARCH_WANT_SYS_WAITPID
1661
1662/*
1663 * sys_waitpid() remains for compatibility. waitpid() should be
1664 * implemented by calling sys_wait4() from libc.a.
1665 */
17da2bd9 1666SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1da177e4 1667{
d300b610 1668 return kernel_wait4(pid, stat_addr, options, NULL);
1da177e4
LT
1669}
1670
1671#endif
7e95a225
AV
1672
1673#ifdef CONFIG_COMPAT
1674COMPAT_SYSCALL_DEFINE4(wait4,
1675 compat_pid_t, pid,
1676 compat_uint_t __user *, stat_addr,
1677 int, options,
1678 struct compat_rusage __user *, ru)
1679{
ce72a16f
AV
1680 struct rusage r;
1681 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1682 if (err > 0) {
1683 if (ru && put_compat_rusage(&r, ru))
1684 return -EFAULT;
7e95a225 1685 }
ce72a16f 1686 return err;
7e95a225
AV
1687}
1688
1689COMPAT_SYSCALL_DEFINE5(waitid,
1690 int, which, compat_pid_t, pid,
1691 struct compat_siginfo __user *, infop, int, options,
1692 struct compat_rusage __user *, uru)
1693{
7e95a225 1694 struct rusage ru;
67d7ddde
AV
1695 struct waitid_info info = {.status = 0};
1696 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
634a8160
AV
1697 int signo = 0;
1698 if (err > 0) {
1699 signo = SIGCHLD;
1700 err = 0;
6c85501f
AV
1701 if (uru) {
1702 /* kernel_waitid() overwrites everything in ru */
1703 if (COMPAT_USE_64BIT_TIME)
1704 err = copy_to_user(uru, &ru, sizeof(ru));
1705 else
1706 err = put_compat_rusage(&ru, uru);
1707 if (err)
1708 return -EFAULT;
1709 }
7e95a225
AV
1710 }
1711
4c48abe9
AV
1712 if (!infop)
1713 return err;
1714
594cc251 1715 if (!user_access_begin(infop, sizeof(*infop)))
1c9fec47 1716 return -EFAULT;
96ca579a 1717
634a8160 1718 unsafe_put_user(signo, &infop->si_signo, Efault);
4c48abe9 1719 unsafe_put_user(0, &infop->si_errno, Efault);
cc731525 1720 unsafe_put_user(info.cause, &infop->si_code, Efault);
4c48abe9
AV
1721 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1722 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1723 unsafe_put_user(info.status, &infop->si_status, Efault);
1724 user_access_end();
67d7ddde 1725 return err;
4c48abe9
AV
1726Efault:
1727 user_access_end();
1728 return -EFAULT;
7e95a225
AV
1729}
1730#endif
7c2c11b2
SM
1731
1732__weak void abort(void)
1733{
1734 BUG();
1735
1736 /* if that doesn't kill us, halt */
1737 panic("Oops failed to kill thread");
1738}
dc8635b7 1739EXPORT_SYMBOL(abort);