perf: Don't call release_callchain_buffers() if allocation fails
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
0b3fcf17
SE
121enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125};
126
e5d1367f
SE
127/*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
b2029520 131struct jump_label_key_deferred perf_sched_events __read_mostly;
e5d1367f
SE
132static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
cdd6c482
IM
134static atomic_t nr_mmap_events __read_mostly;
135static atomic_t nr_comm_events __read_mostly;
136static atomic_t nr_task_events __read_mostly;
9ee318a7 137
108b02cf
PZ
138static LIST_HEAD(pmus);
139static DEFINE_MUTEX(pmus_lock);
140static struct srcu_struct pmus_srcu;
141
0764771d 142/*
cdd6c482 143 * perf event paranoia level:
0fbdea19
IM
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 146 * 1 - disallow cpu events for unpriv
0fbdea19 147 * 2 - disallow kernel profiling for unpriv
0764771d 148 */
cdd6c482 149int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 150
20443384
FW
151/* Minimum for 512 kiB + 1 user control page */
152int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
153
154/*
cdd6c482 155 * max perf event sample rate
df58ab24 156 */
163ec435
PZ
157#define DEFAULT_MAX_SAMPLE_RATE 100000
158int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165{
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174}
1ccd1549 175
cdd6c482 176static atomic64_t perf_event_id;
a96bbc16 177
0b3fcf17
SE
178static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185static void update_context_time(struct perf_event_context *ctx);
186static u64 perf_event_time(struct perf_event *event);
0b3fcf17 187
10c6db11
PZ
188static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
cdd6c482 191void __weak perf_event_print_debug(void) { }
0793a61d 192
84c79910 193extern __weak const char *perf_pmu_name(void)
0793a61d 194{
84c79910 195 return "pmu";
0793a61d
TG
196}
197
0b3fcf17
SE
198static inline u64 perf_clock(void)
199{
200 return local_clock();
201}
202
e5d1367f
SE
203static inline struct perf_cpu_context *
204__get_cpu_context(struct perf_event_context *ctx)
205{
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207}
208
facc4307
PZ
209static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211{
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215}
216
217static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223}
224
e5d1367f
SE
225#ifdef CONFIG_CGROUP_PERF
226
3f7cce3c
SE
227/*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
e5d1367f
SE
232static inline struct perf_cgroup *
233perf_cgroup_from_task(struct task_struct *task)
234{
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237}
238
239static inline bool
240perf_cgroup_match(struct perf_event *event)
241{
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246}
247
248static inline void perf_get_cgroup(struct perf_event *event)
249{
250 css_get(&event->cgrp->css);
251}
252
253static inline void perf_put_cgroup(struct perf_event *event)
254{
255 css_put(&event->cgrp->css);
256}
257
258static inline void perf_detach_cgroup(struct perf_event *event)
259{
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262}
263
264static inline int is_cgroup_event(struct perf_event *event)
265{
266 return event->cgrp != NULL;
267}
268
269static inline u64 perf_cgroup_event_time(struct perf_event *event)
270{
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275}
276
277static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278{
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288}
289
290static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291{
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295}
296
297static inline void update_cgrp_time_from_event(struct perf_event *event)
298{
3f7cce3c
SE
299 struct perf_cgroup *cgrp;
300
e5d1367f 301 /*
3f7cce3c
SE
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
e5d1367f 304 */
3f7cce3c 305 if (!is_cgroup_event(event))
e5d1367f
SE
306 return;
307
3f7cce3c
SE
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
e5d1367f
SE
314}
315
316static inline void
3f7cce3c
SE
317perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
e5d1367f
SE
319{
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
3f7cce3c
SE
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
3f7cce3c 333 info->timestamp = ctx->timestamp;
e5d1367f
SE
334}
335
336#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339/*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345void perf_cgroup_switch(struct task_struct *task, int mode)
346{
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
e5d1367f
SE
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
e566b76e 388 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
facc4307
PZ
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 398 }
e5d1367f
SE
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404}
405
a8d757ef
SE
406static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
e5d1367f 408{
a8d757ef
SE
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
431}
432
a8d757ef
SE
433static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
e5d1367f 435{
a8d757ef
SE
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
454}
455
456static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459{
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
e5d1367f
SE
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
f75e18cb
LZ
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
e5d1367f
SE
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
e5d1367f 489 }
3db272c0 490out:
e5d1367f
SE
491 fput_light(file, fput_needed);
492 return ret;
493}
494
495static inline void
496perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497{
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501}
502
503static inline void
504perf_cgroup_defer_enabled(struct perf_event *event)
505{
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514}
515
516static inline void
517perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519{
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535}
536#else /* !CONFIG_CGROUP_PERF */
537
538static inline bool
539perf_cgroup_match(struct perf_event *event)
540{
541 return true;
542}
543
544static inline void perf_detach_cgroup(struct perf_event *event)
545{}
546
547static inline int is_cgroup_event(struct perf_event *event)
548{
549 return 0;
550}
551
552static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553{
554 return 0;
555}
556
557static inline void update_cgrp_time_from_event(struct perf_event *event)
558{
559}
560
561static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562{
563}
564
a8d757ef
SE
565static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
e5d1367f
SE
567{
568}
569
a8d757ef
SE
570static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
e5d1367f
SE
572{
573}
574
575static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578{
579 return -EINVAL;
580}
581
582static inline void
3f7cce3c
SE
583perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
e5d1367f
SE
585{
586}
587
588void
589perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590{
591}
592
593static inline void
594perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595{
596}
597
598static inline u64 perf_cgroup_event_time(struct perf_event *event)
599{
600 return 0;
601}
602
603static inline void
604perf_cgroup_defer_enabled(struct perf_event *event)
605{
606}
607
608static inline void
609perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611{
612}
613#endif
614
33696fc0 615void perf_pmu_disable(struct pmu *pmu)
9e35ad38 616{
33696fc0
PZ
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
9e35ad38 620}
9e35ad38 621
33696fc0 622void perf_pmu_enable(struct pmu *pmu)
9e35ad38 623{
33696fc0
PZ
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
9e35ad38 627}
9e35ad38 628
e9d2b064
PZ
629static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631/*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
108b02cf 636static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 637{
108b02cf 638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 639 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 640
e9d2b064 641 WARN_ON(!irqs_disabled());
b5ab4cd5 642
e9d2b064
PZ
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
9e35ad38 645}
9e35ad38 646
cdd6c482 647static void get_ctx(struct perf_event_context *ctx)
a63eaf34 648{
e5289d4a 649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
650}
651
cdd6c482 652static void put_ctx(struct perf_event_context *ctx)
a63eaf34 653{
564c2b21
PM
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
c93f7669
PM
657 if (ctx->task)
658 put_task_struct(ctx->task);
cb796ff3 659 kfree_rcu(ctx, rcu_head);
564c2b21 660 }
a63eaf34
PM
661}
662
cdd6c482 663static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
664{
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669}
670
6844c09d
ACM
671static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672{
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680}
681
682static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683{
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691}
692
7f453c24 693/*
cdd6c482 694 * If we inherit events we want to return the parent event id
7f453c24
PZ
695 * to userspace.
696 */
cdd6c482 697static u64 primary_event_id(struct perf_event *event)
7f453c24 698{
cdd6c482 699 u64 id = event->id;
7f453c24 700
cdd6c482
IM
701 if (event->parent)
702 id = event->parent->id;
7f453c24
PZ
703
704 return id;
705}
706
25346b93 707/*
cdd6c482 708 * Get the perf_event_context for a task and lock it.
25346b93
PM
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
cdd6c482 712static struct perf_event_context *
8dc85d54 713perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 714{
cdd6c482 715 struct perf_event_context *ctx;
25346b93
PM
716
717 rcu_read_lock();
9ed6060d 718retry:
8dc85d54 719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
cdd6c482 724 * perf_event_task_sched_out, though the
25346b93
PM
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
e625cce1 731 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
734 goto retry;
735 }
b49a9e7e
PZ
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
739 ctx = NULL;
740 }
25346b93
PM
741 }
742 rcu_read_unlock();
743 return ctx;
744}
745
746/*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
8dc85d54
PZ
751static struct perf_event_context *
752perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 753{
cdd6c482 754 struct perf_event_context *ctx;
25346b93
PM
755 unsigned long flags;
756
8dc85d54 757 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
758 if (ctx) {
759 ++ctx->pin_count;
e625cce1 760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
761 }
762 return ctx;
763}
764
cdd6c482 765static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
766{
767 unsigned long flags;
768
e625cce1 769 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 770 --ctx->pin_count;
e625cce1 771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
772}
773
f67218c3
PZ
774/*
775 * Update the record of the current time in a context.
776 */
777static void update_context_time(struct perf_event_context *ctx)
778{
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783}
784
4158755d
SE
785static u64 perf_event_time(struct perf_event *event)
786{
787 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
4158755d
SE
792 return ctx ? ctx->time : 0;
793}
794
f67218c3
PZ
795/*
796 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 797 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
798 */
799static void update_event_times(struct perf_event *event)
800{
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
e5d1367f
SE
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
4158755d 818 run_end = perf_event_time(event);
e5d1367f
SE
819 else if (ctx->is_active)
820 run_end = ctx->time;
acd1d7c1
PZ
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
4158755d 829 run_end = perf_event_time(event);
f67218c3
PZ
830
831 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 832
f67218c3
PZ
833}
834
96c21a46
PZ
835/*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838static void update_group_times(struct perf_event *leader)
839{
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845}
846
889ff015
FW
847static struct list_head *
848ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849{
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854}
855
fccc714b 856/*
cdd6c482 857 * Add a event from the lists for its context.
fccc714b
PZ
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
04289bb9 860static void
cdd6c482 861list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 862{
8a49542c
PZ
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
865
866 /*
8a49542c
PZ
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
04289bb9 870 */
8a49542c 871 if (event->group_leader == event) {
889ff015
FW
872 struct list_head *list;
873
d6f962b5
FW
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
889ff015
FW
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
5c148194 879 }
592903cd 880
08309379 881 if (is_cgroup_event(event))
e5d1367f 882 ctx->nr_cgroups++;
e5d1367f 883
cdd6c482 884 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 885 if (!ctx->nr_events)
108b02cf 886 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
bfbd3381 889 ctx->nr_stat++;
04289bb9
IM
890}
891
c320c7b7
ACM
892/*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896static void perf_event__read_size(struct perf_event *event)
897{
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918}
919
920static void perf_event__header_size(struct perf_event *event)
921{
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
6844c09d
ACM
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941}
942
943static void perf_event__id_header_size(struct perf_event *event)
944{
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
c320c7b7
ACM
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
c320c7b7
ACM
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
6844c09d 964 event->id_header_size = size;
c320c7b7
ACM
965}
966
8a49542c
PZ
967static void perf_group_attach(struct perf_event *event)
968{
c320c7b7 969 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 970
74c3337c
PZ
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
8a49542c
PZ
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
c320c7b7
ACM
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
8a49542c
PZ
993}
994
a63eaf34 995/*
cdd6c482 996 * Remove a event from the lists for its context.
fccc714b 997 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 998 */
04289bb9 999static void
cdd6c482 1000list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1001{
68cacd29 1002 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1007 return;
8a49542c
PZ
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
68cacd29 1011 if (is_cgroup_event(event)) {
e5d1367f 1012 ctx->nr_cgroups--;
68cacd29
SE
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
e5d1367f 1022
cdd6c482
IM
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
bfbd3381 1025 ctx->nr_stat--;
8bc20959 1026
cdd6c482 1027 list_del_rcu(&event->event_entry);
04289bb9 1028
8a49542c
PZ
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
5c148194 1031
96c21a46 1032 update_group_times(event);
b2e74a26
SE
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1043}
1044
8a49542c 1045static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1046{
1047 struct perf_event *sibling, *tmp;
8a49542c
PZ
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
c320c7b7 1064 goto out;
8a49542c
PZ
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
2e2af50b 1069
04289bb9 1070 /*
cdd6c482
IM
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
8a49542c 1073 * to whatever list we are on.
04289bb9 1074 */
cdd6c482 1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
04289bb9 1078 sibling->group_leader = sibling;
d6f962b5
FW
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
04289bb9 1082 }
c320c7b7
ACM
1083
1084out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
04289bb9
IM
1089}
1090
fa66f07a
SE
1091static inline int
1092event_filter_match(struct perf_event *event)
1093{
e5d1367f
SE
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
fa66f07a
SE
1096}
1097
9ffcfa6f
SE
1098static void
1099event_sched_out(struct perf_event *event,
3b6f9e5c 1100 struct perf_cpu_context *cpuctx,
cdd6c482 1101 struct perf_event_context *ctx)
3b6f9e5c 1102{
4158755d 1103 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
e5d1367f 1113 delta = tstamp - event->tstamp_stopped;
fa66f07a 1114 event->tstamp_running += delta;
4158755d 1115 event->tstamp_stopped = tstamp;
fa66f07a
SE
1116 }
1117
cdd6c482 1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1119 return;
3b6f9e5c 1120
cdd6c482
IM
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
970892a9 1125 }
4158755d 1126 event->tstamp_stopped = tstamp;
a4eaf7f1 1127 event->pmu->del(event, 0);
cdd6c482 1128 event->oncpu = -1;
3b6f9e5c 1129
cdd6c482 1130 if (!is_software_event(event))
3b6f9e5c
PM
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
0f5a2601
PZ
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
cdd6c482 1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1136 cpuctx->exclusive = 0;
1137}
1138
d859e29f 1139static void
cdd6c482 1140group_sched_out(struct perf_event *group_event,
d859e29f 1141 struct perf_cpu_context *cpuctx,
cdd6c482 1142 struct perf_event_context *ctx)
d859e29f 1143{
cdd6c482 1144 struct perf_event *event;
fa66f07a 1145 int state = group_event->state;
d859e29f 1146
cdd6c482 1147 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
cdd6c482
IM
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
d859e29f 1154
fa66f07a 1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1156 cpuctx->exclusive = 0;
1157}
1158
0793a61d 1159/*
cdd6c482 1160 * Cross CPU call to remove a performance event
0793a61d 1161 *
cdd6c482 1162 * We disable the event on the hardware level first. After that we
0793a61d
TG
1163 * remove it from the context list.
1164 */
fe4b04fa 1165static int __perf_remove_from_context(void *info)
0793a61d 1166{
cdd6c482
IM
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
108b02cf 1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1170
e625cce1 1171 raw_spin_lock(&ctx->lock);
cdd6c482 1172 event_sched_out(event, cpuctx, ctx);
cdd6c482 1173 list_del_event(event, ctx);
64ce3126
PZ
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
e625cce1 1178 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1179
1180 return 0;
0793a61d
TG
1181}
1182
1183
1184/*
cdd6c482 1185 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1186 *
cdd6c482 1187 * CPU events are removed with a smp call. For task events we only
0793a61d 1188 * call when the task is on a CPU.
c93f7669 1189 *
cdd6c482
IM
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1194 * When called from perf_event_exit_task, it's OK because the
c93f7669 1195 * context has been detached from its task.
0793a61d 1196 */
fe4b04fa 1197static void perf_remove_from_context(struct perf_event *event)
0793a61d 1198{
cdd6c482 1199 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1200 struct task_struct *task = ctx->task;
1201
fe4b04fa
PZ
1202 lockdep_assert_held(&ctx->mutex);
1203
0793a61d
TG
1204 if (!task) {
1205 /*
cdd6c482 1206 * Per cpu events are removed via an smp call and
af901ca1 1207 * the removal is always successful.
0793a61d 1208 */
fe4b04fa 1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1210 return;
1211 }
1212
1213retry:
fe4b04fa
PZ
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
0793a61d 1216
e625cce1 1217 raw_spin_lock_irq(&ctx->lock);
0793a61d 1218 /*
fe4b04fa
PZ
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
0793a61d 1221 */
fe4b04fa 1222 if (ctx->is_active) {
e625cce1 1223 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1224 goto retry;
1225 }
1226
1227 /*
fe4b04fa
PZ
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1230 */
fe4b04fa 1231 list_del_event(event, ctx);
e625cce1 1232 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1233}
1234
d859e29f 1235/*
cdd6c482 1236 * Cross CPU call to disable a performance event
d859e29f 1237 */
fe4b04fa 1238static int __perf_event_disable(void *info)
d859e29f 1239{
cdd6c482 1240 struct perf_event *event = info;
cdd6c482 1241 struct perf_event_context *ctx = event->ctx;
108b02cf 1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1243
1244 /*
cdd6c482
IM
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
fe4b04fa
PZ
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
d859e29f 1250 */
665c2142 1251 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1252 return -EINVAL;
d859e29f 1253
e625cce1 1254 raw_spin_lock(&ctx->lock);
d859e29f
PM
1255
1256 /*
cdd6c482 1257 * If the event is on, turn it off.
d859e29f
PM
1258 * If it is in error state, leave it in error state.
1259 */
cdd6c482 1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1261 update_context_time(ctx);
e5d1367f 1262 update_cgrp_time_from_event(event);
cdd6c482
IM
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
d859e29f 1266 else
cdd6c482
IM
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1269 }
1270
e625cce1 1271 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1272
1273 return 0;
d859e29f
PM
1274}
1275
1276/*
cdd6c482 1277 * Disable a event.
c93f7669 1278 *
cdd6c482
IM
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
c93f7669 1281 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1286 * is the current context on this CPU and preemption is disabled,
cdd6c482 1287 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1288 */
44234adc 1289void perf_event_disable(struct perf_event *event)
d859e29f 1290{
cdd6c482 1291 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
cdd6c482 1296 * Disable the event on the cpu that it's on
d859e29f 1297 */
fe4b04fa 1298 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1299 return;
1300 }
1301
9ed6060d 1302retry:
fe4b04fa
PZ
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
d859e29f 1305
e625cce1 1306 raw_spin_lock_irq(&ctx->lock);
d859e29f 1307 /*
cdd6c482 1308 * If the event is still active, we need to retry the cross-call.
d859e29f 1309 */
cdd6c482 1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1311 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
d859e29f
PM
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
cdd6c482
IM
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1327 }
e625cce1 1328 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1329}
dcfce4a0 1330EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1331
e5d1367f
SE
1332static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335{
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365}
1366
4fe757dd
PZ
1367#define MAX_INTERRUPTS (~0ULL)
1368
1369static void perf_log_throttle(struct perf_event *event, int enable);
1370
235c7fc7 1371static int
9ffcfa6f 1372event_sched_in(struct perf_event *event,
235c7fc7 1373 struct perf_cpu_context *cpuctx,
6e37738a 1374 struct perf_event_context *ctx)
235c7fc7 1375{
4158755d
SE
1376 u64 tstamp = perf_event_time(event);
1377
cdd6c482 1378 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1379 return 0;
1380
cdd6c482 1381 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1382 event->oncpu = smp_processor_id();
4fe757dd
PZ
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
235c7fc7
IM
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
a4eaf7f1 1399 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
235c7fc7
IM
1402 return -EAGAIN;
1403 }
1404
4158755d 1405 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1406
e5d1367f 1407 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1408
cdd6c482 1409 if (!is_software_event(event))
3b6f9e5c 1410 cpuctx->active_oncpu++;
235c7fc7 1411 ctx->nr_active++;
0f5a2601
PZ
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
235c7fc7 1414
cdd6c482 1415 if (event->attr.exclusive)
3b6f9e5c
PM
1416 cpuctx->exclusive = 1;
1417
235c7fc7
IM
1418 return 0;
1419}
1420
6751b71e 1421static int
cdd6c482 1422group_sched_in(struct perf_event *group_event,
6751b71e 1423 struct perf_cpu_context *cpuctx,
6e37738a 1424 struct perf_event_context *ctx)
6751b71e 1425{
6bde9b6c 1426 struct perf_event *event, *partial_group = NULL;
51b0fe39 1427 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1428 u64 now = ctx->time;
1429 bool simulate = false;
6751b71e 1430
cdd6c482 1431 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1432 return 0;
1433
ad5133b7 1434 pmu->start_txn(pmu);
6bde9b6c 1435
9ffcfa6f 1436 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1437 pmu->cancel_txn(pmu);
6751b71e 1438 return -EAGAIN;
90151c35 1439 }
6751b71e
PM
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
cdd6c482 1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1445 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1446 partial_group = event;
6751b71e
PM
1447 goto group_error;
1448 }
1449 }
1450
9ffcfa6f 1451 if (!pmu->commit_txn(pmu))
6e85158c 1452 return 0;
9ffcfa6f 1453
6751b71e
PM
1454group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
d7842da4
SE
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
6751b71e 1468 */
cdd6c482
IM
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
d7842da4
SE
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
6751b71e 1479 }
9ffcfa6f 1480 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1481
ad5133b7 1482 pmu->cancel_txn(pmu);
90151c35 1483
6751b71e
PM
1484 return -EAGAIN;
1485}
1486
3b6f9e5c 1487/*
cdd6c482 1488 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1489 */
cdd6c482 1490static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493{
1494 /*
cdd6c482 1495 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1496 */
d6f962b5 1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
cdd6c482 1501 * events can go on.
3b6f9e5c
PM
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
cdd6c482 1507 * events on the CPU, it can't go on.
3b6f9e5c 1508 */
cdd6c482 1509 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516}
1517
cdd6c482
IM
1518static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
53cfbf59 1520{
4158755d
SE
1521 u64 tstamp = perf_event_time(event);
1522
cdd6c482 1523 list_add_event(event, ctx);
8a49542c 1524 perf_group_attach(event);
4158755d
SE
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
53cfbf59
PM
1528}
1529
2c29ef0f
PZ
1530static void task_ctx_sched_out(struct perf_event_context *ctx);
1531static void
1532ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
fe4b04fa 1536
dce5855b
PZ
1537static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540{
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547}
1548
0793a61d 1549/*
cdd6c482 1550 * Cross CPU call to install and enable a performance event
682076ae
PZ
1551 *
1552 * Must be called with ctx->mutex held
0793a61d 1553 */
fe4b04fa 1554static int __perf_install_in_context(void *info)
0793a61d 1555{
cdd6c482
IM
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
108b02cf 1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
b58f6b0d 1562 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1563 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1564
1565 /*
2c29ef0f 1566 * If there was an active task_ctx schedule it out.
0793a61d 1567 */
b58f6b0d 1568 if (task_ctx)
2c29ef0f 1569 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1584 task = task_ctx->task;
1585 }
b58f6b0d 1586
2c29ef0f 1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1588
4af4998b 1589 update_context_time(ctx);
e5d1367f
SE
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
0793a61d 1596
cdd6c482 1597 add_event_to_ctx(event, ctx);
0793a61d 1598
d859e29f 1599 /*
2c29ef0f 1600 * Schedule everything back in
d859e29f 1601 */
dce5855b 1602 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1606
1607 return 0;
0793a61d
TG
1608}
1609
1610/*
cdd6c482 1611 * Attach a performance event to a context
0793a61d 1612 *
cdd6c482
IM
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
0793a61d 1615 *
cdd6c482 1616 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620static void
cdd6c482
IM
1621perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
0793a61d
TG
1623 int cpu)
1624{
1625 struct task_struct *task = ctx->task;
1626
fe4b04fa
PZ
1627 lockdep_assert_held(&ctx->mutex);
1628
c3f00c70
PZ
1629 event->ctx = ctx;
1630
0793a61d
TG
1631 if (!task) {
1632 /*
cdd6c482 1633 * Per cpu events are installed via an smp call and
af901ca1 1634 * the install is always successful.
0793a61d 1635 */
fe4b04fa 1636 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1637 return;
1638 }
1639
0793a61d 1640retry:
fe4b04fa
PZ
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
0793a61d 1643
e625cce1 1644 raw_spin_lock_irq(&ctx->lock);
0793a61d 1645 /*
fe4b04fa
PZ
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
0793a61d 1648 */
fe4b04fa 1649 if (ctx->is_active) {
e625cce1 1650 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1651 goto retry;
1652 }
1653
1654 /*
fe4b04fa
PZ
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1657 */
fe4b04fa 1658 add_event_to_ctx(event, ctx);
e625cce1 1659 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1660}
1661
fa289bec 1662/*
cdd6c482 1663 * Put a event into inactive state and update time fields.
fa289bec
PM
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1d9b482e 1670static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1671{
cdd6c482 1672 struct perf_event *sub;
4158755d 1673 u64 tstamp = perf_event_time(event);
fa289bec 1674
cdd6c482 1675 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1680 }
fa289bec
PM
1681}
1682
d859e29f 1683/*
cdd6c482 1684 * Cross CPU call to enable a performance event
d859e29f 1685 */
fe4b04fa 1686static int __perf_event_enable(void *info)
04289bb9 1687{
cdd6c482 1688 struct perf_event *event = info;
cdd6c482
IM
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
108b02cf 1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1692 int err;
04289bb9 1693
fe4b04fa
PZ
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
3cbed429 1696
e625cce1 1697 raw_spin_lock(&ctx->lock);
4af4998b 1698 update_context_time(ctx);
d859e29f 1699
cdd6c482 1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1701 goto unlock;
e5d1367f
SE
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
3f7cce3c 1706 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1707
1d9b482e 1708 __perf_event_mark_enabled(event);
04289bb9 1709
e5d1367f
SE
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
f4c4176f 1713 goto unlock;
e5d1367f 1714 }
f4c4176f 1715
04289bb9 1716 /*
cdd6c482 1717 * If the event is in a group and isn't the group leader,
d859e29f 1718 * then don't put it on unless the group is on.
04289bb9 1719 */
cdd6c482 1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1721 goto unlock;
3b6f9e5c 1722
cdd6c482 1723 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1724 err = -EEXIST;
e758a33d 1725 } else {
cdd6c482 1726 if (event == leader)
6e37738a 1727 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1728 else
6e37738a 1729 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1730 }
d859e29f
PM
1731
1732 if (err) {
1733 /*
cdd6c482 1734 * If this event can't go on and it's part of a
d859e29f
PM
1735 * group, then the whole group has to come off.
1736 */
cdd6c482 1737 if (leader != event)
d859e29f 1738 group_sched_out(leader, cpuctx, ctx);
0d48696f 1739 if (leader->attr.pinned) {
53cfbf59 1740 update_group_times(leader);
cdd6c482 1741 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1742 }
d859e29f
PM
1743 }
1744
9ed6060d 1745unlock:
e625cce1 1746 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1747
1748 return 0;
d859e29f
PM
1749}
1750
1751/*
cdd6c482 1752 * Enable a event.
c93f7669 1753 *
cdd6c482
IM
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
c93f7669 1756 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
d859e29f 1759 */
44234adc 1760void perf_event_enable(struct perf_event *event)
d859e29f 1761{
cdd6c482 1762 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
cdd6c482 1767 * Enable the event on the cpu that it's on
d859e29f 1768 */
fe4b04fa 1769 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1770 return;
1771 }
1772
e625cce1 1773 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1775 goto out;
1776
1777 /*
cdd6c482
IM
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
d859e29f
PM
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
cdd6c482
IM
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1786
9ed6060d 1787retry:
fe4b04fa 1788 if (!ctx->is_active) {
1d9b482e 1789 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1790 goto out;
1791 }
1792
e625cce1 1793 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
d859e29f 1797
e625cce1 1798 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1799
1800 /*
cdd6c482 1801 * If the context is active and the event is still off,
d859e29f
PM
1802 * we need to retry the cross-call.
1803 */
fe4b04fa
PZ
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
d859e29f 1810 goto retry;
fe4b04fa 1811 }
fa289bec 1812
9ed6060d 1813out:
e625cce1 1814 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1815}
dcfce4a0 1816EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1817
26ca5c11 1818int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1819{
2023b359 1820 /*
cdd6c482 1821 * not supported on inherited events
2023b359 1822 */
2e939d1d 1823 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1824 return -EINVAL;
1825
cdd6c482
IM
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
2023b359
PZ
1828
1829 return 0;
79f14641 1830}
26ca5c11 1831EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1832
5b0311e1
FW
1833static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
235c7fc7 1836{
cdd6c482 1837 struct perf_event *event;
db24d33e 1838 int is_active = ctx->is_active;
235c7fc7 1839
db24d33e 1840 ctx->is_active &= ~event_type;
cdd6c482 1841 if (likely(!ctx->nr_events))
facc4307
PZ
1842 return;
1843
4af4998b 1844 update_context_time(ctx);
e5d1367f 1845 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1846 if (!ctx->nr_active)
facc4307 1847 return;
5b0311e1 1848
075e0b00 1849 perf_pmu_disable(ctx->pmu);
db24d33e 1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
9ed6060d 1853 }
889ff015 1854
db24d33e 1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1857 group_sched_out(event, cpuctx, ctx);
9ed6060d 1858 }
1b9a644f 1859 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1860}
1861
564c2b21
PM
1862/*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
cdd6c482
IM
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
564c2b21 1869 * in them directly with an fd; we can only enable/disable all
cdd6c482 1870 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
cdd6c482
IM
1873static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
564c2b21
PM
1875{
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1877 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1878 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1879}
1880
cdd6c482
IM
1881static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
bfbd3381
PZ
1883{
1884 u64 value;
1885
cdd6c482 1886 if (!event->attr.inherit_stat)
bfbd3381
PZ
1887 return;
1888
1889 /*
cdd6c482 1890 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1893 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1894 * don't need to use it.
1895 */
cdd6c482
IM
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1898 event->pmu->read(event);
1899 /* fall-through */
bfbd3381 1900
cdd6c482
IM
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
bfbd3381
PZ
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
cdd6c482 1910 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1911 * values when we flip the contexts.
1912 */
e7850595
PZ
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
bfbd3381 1916
cdd6c482
IM
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1919
bfbd3381 1920 /*
19d2e755 1921 * Since we swizzled the values, update the user visible data too.
bfbd3381 1922 */
cdd6c482
IM
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
bfbd3381
PZ
1925}
1926
1927#define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
cdd6c482
IM
1930static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
bfbd3381 1932{
cdd6c482 1933 struct perf_event *event, *next_event;
bfbd3381
PZ
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
02ffdbc8
PZ
1938 update_context_time(ctx);
1939
cdd6c482
IM
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
bfbd3381 1942
cdd6c482
IM
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
bfbd3381 1945
cdd6c482
IM
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1948
cdd6c482 1949 __perf_event_sync_stat(event, next_event);
bfbd3381 1950
cdd6c482
IM
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1953 }
1954}
1955
fe4b04fa
PZ
1956static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
0793a61d 1958{
8dc85d54 1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
108b02cf 1962 struct perf_cpu_context *cpuctx;
c93f7669 1963 int do_switch = 1;
0793a61d 1964
108b02cf
PZ
1965 if (likely(!ctx))
1966 return;
10989fb2 1967
108b02cf
PZ
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
0793a61d
TG
1970 return;
1971
c93f7669
PM
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1974 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
e625cce1
TG
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 1988 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
1989 /*
1990 * XXX do we need a memory barrier of sorts
cdd6c482 1991 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 1992 */
8dc85d54
PZ
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
bfbd3381 1998
cdd6c482 1999 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2000 }
e625cce1
TG
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
564c2b21 2003 }
c93f7669 2004 rcu_read_unlock();
564c2b21 2005
c93f7669 2006 if (do_switch) {
facc4307 2007 raw_spin_lock(&ctx->lock);
5b0311e1 2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2009 cpuctx->task_ctx = NULL;
facc4307 2010 raw_spin_unlock(&ctx->lock);
c93f7669 2011 }
0793a61d
TG
2012}
2013
8dc85d54
PZ
2014#define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017/*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
82cd6def
PZ
2028void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
8dc85d54
PZ
2030{
2031 int ctxn;
2032
8dc85d54
PZ
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2042 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2043}
2044
04dc2dbb 2045static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2046{
108b02cf 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2048
a63eaf34
PM
2049 if (!cpuctx->task_ctx)
2050 return;
012b84da
IM
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
04dc2dbb 2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2056 cpuctx->task_ctx = NULL;
2057}
2058
5b0311e1
FW
2059/*
2060 * Called with IRQs disabled
2061 */
2062static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064{
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2066}
2067
235c7fc7 2068static void
5b0311e1 2069ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2070 struct perf_cpu_context *cpuctx)
0793a61d 2071{
cdd6c482 2072 struct perf_event *event;
0793a61d 2073
889ff015
FW
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2076 continue;
5632ab12 2077 if (!event_filter_match(event))
3b6f9e5c
PM
2078 continue;
2079
e5d1367f
SE
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
8c9ed8e1 2084 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2085 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
cdd6c482
IM
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2094 }
3b6f9e5c 2095 }
5b0311e1
FW
2096}
2097
2098static void
2099ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2100 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2101{
2102 struct perf_event *event;
2103 int can_add_hw = 1;
3b6f9e5c 2104
889ff015
FW
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2108 continue;
04289bb9
IM
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2111 * of events:
04289bb9 2112 */
5632ab12 2113 if (!event_filter_match(event))
0793a61d
TG
2114 continue;
2115
e5d1367f
SE
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
9ed6060d 2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2121 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2122 can_add_hw = 0;
9ed6060d 2123 }
0793a61d 2124 }
5b0311e1
FW
2125}
2126
2127static void
2128ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2130 enum event_type_t event_type,
2131 struct task_struct *task)
5b0311e1 2132{
e5d1367f 2133 u64 now;
db24d33e 2134 int is_active = ctx->is_active;
e5d1367f 2135
db24d33e 2136 ctx->is_active |= event_type;
5b0311e1 2137 if (likely(!ctx->nr_events))
facc4307 2138 return;
5b0311e1 2139
e5d1367f
SE
2140 now = perf_clock();
2141 ctx->timestamp = now;
3f7cce3c 2142 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
db24d33e 2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2148 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2149
2150 /* Then walk through the lower prio flexible groups */
db24d33e 2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2152 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2153}
2154
329c0e01 2155static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2156 enum event_type_t event_type,
2157 struct task_struct *task)
329c0e01
FW
2158{
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
e5d1367f 2161 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2162}
2163
e5d1367f
SE
2164static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
235c7fc7 2166{
108b02cf 2167 struct perf_cpu_context *cpuctx;
235c7fc7 2168
108b02cf 2169 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
facc4307 2173 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2174 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
1d5f003f
GN
2182 if (ctx->nr_events)
2183 cpuctx->task_ctx = ctx;
9b33fa6b 2184
86b47c25
GN
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
facc4307
PZ
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
b5ab4cd5
PZ
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
108b02cf 2194 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2195}
2196
8dc85d54
PZ
2197/*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
a8d757ef
SE
2208void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
8dc85d54
PZ
2210{
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
e5d1367f 2219 perf_event_context_sched_in(ctx, task);
8dc85d54 2220 }
e5d1367f
SE
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2227 perf_cgroup_sched_in(prev, task);
235c7fc7
IM
2228}
2229
abd50713
PZ
2230static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231{
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
fe4b04fa 2257#define REDUCE_FLS(a, b) \
abd50713
PZ
2258do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266} while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
f6ab91ad
PZ
2297 if (!divisor)
2298 return dividend;
2299
abd50713
PZ
2300 return div64_u64(dividend, divisor);
2301}
2302
2303static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
bd2b5b12 2304{
cdd6c482 2305 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2306 s64 period, sample_period;
bd2b5b12
PZ
2307 s64 delta;
2308
abd50713 2309 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2310
2311 delta = (s64)(period - hwc->sample_period);
2312 delta = (delta + 7) / 8; /* low pass filter */
2313
2314 sample_period = hwc->sample_period + delta;
2315
2316 if (!sample_period)
2317 sample_period = 1;
2318
bd2b5b12 2319 hwc->sample_period = sample_period;
abd50713 2320
e7850595 2321 if (local64_read(&hwc->period_left) > 8*sample_period) {
a4eaf7f1 2322 event->pmu->stop(event, PERF_EF_UPDATE);
e7850595 2323 local64_set(&hwc->period_left, 0);
a4eaf7f1 2324 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2325 }
bd2b5b12
PZ
2326}
2327
b5ab4cd5 2328static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
60db5e09 2329{
cdd6c482
IM
2330 struct perf_event *event;
2331 struct hw_perf_event *hwc;
abd50713
PZ
2332 u64 interrupts, now;
2333 s64 delta;
60db5e09 2334
0f5a2601
PZ
2335 if (!ctx->nr_freq)
2336 return;
2337
03541f8b 2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2339 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2340 continue;
2341
5632ab12 2342 if (!event_filter_match(event))
5d27c23d
PZ
2343 continue;
2344
cdd6c482 2345 hwc = &event->hw;
6a24ed6c
PZ
2346
2347 interrupts = hwc->interrupts;
2348 hwc->interrupts = 0;
a78ac325 2349
bd2b5b12 2350 /*
cdd6c482 2351 * unthrottle events on the tick
bd2b5b12 2352 */
a78ac325 2353 if (interrupts == MAX_INTERRUPTS) {
cdd6c482 2354 perf_log_throttle(event, 1);
a4eaf7f1 2355 event->pmu->start(event, 0);
a78ac325
PZ
2356 }
2357
cdd6c482 2358 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2359 continue;
2360
abd50713 2361 event->pmu->read(event);
e7850595 2362 now = local64_read(&event->count);
abd50713
PZ
2363 delta = now - hwc->freq_count_stamp;
2364 hwc->freq_count_stamp = now;
60db5e09 2365
abd50713 2366 if (delta > 0)
b5ab4cd5 2367 perf_adjust_period(event, period, delta);
60db5e09 2368 }
60db5e09
PZ
2369}
2370
235c7fc7 2371/*
cdd6c482 2372 * Round-robin a context's events:
235c7fc7 2373 */
cdd6c482 2374static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2375{
dddd3379
TG
2376 /*
2377 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 * disabled by the inheritance code.
2379 */
2380 if (!ctx->rotate_disable)
2381 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2382}
2383
b5ab4cd5 2384/*
e9d2b064
PZ
2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386 * because they're strictly cpu affine and rotate_start is called with IRQs
2387 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2388 */
e9d2b064 2389static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2390{
e9d2b064 2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
8dc85d54 2392 struct perf_event_context *ctx = NULL;
0f5a2601 2393 int rotate = 0, remove = 1, freq = 0;
7fc23a53 2394
b5ab4cd5 2395 if (cpuctx->ctx.nr_events) {
e9d2b064 2396 remove = 0;
b5ab4cd5
PZ
2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2398 rotate = 1;
0f5a2601
PZ
2399 if (cpuctx->ctx.nr_freq)
2400 freq = 1;
b5ab4cd5 2401 }
235c7fc7 2402
8dc85d54 2403 ctx = cpuctx->task_ctx;
b5ab4cd5 2404 if (ctx && ctx->nr_events) {
e9d2b064 2405 remove = 0;
b5ab4cd5
PZ
2406 if (ctx->nr_events != ctx->nr_active)
2407 rotate = 1;
0f5a2601
PZ
2408 if (ctx->nr_freq)
2409 freq = 1;
b5ab4cd5 2410 }
9717e6cd 2411
0f5a2601
PZ
2412 if (!rotate && !freq)
2413 goto done;
2414
facc4307 2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2416 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2417
0f5a2601
PZ
2418 if (freq) {
2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2420 if (ctx)
2421 perf_ctx_adjust_freq(ctx, interval);
2422 }
d4944a06 2423
0f5a2601
PZ
2424 if (rotate) {
2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2426 if (ctx)
2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2428
0f5a2601
PZ
2429 rotate_ctx(&cpuctx->ctx);
2430 if (ctx)
2431 rotate_ctx(ctx);
235c7fc7 2432
0f5a2601
PZ
2433 perf_event_sched_in(cpuctx, ctx, current);
2434 }
235c7fc7 2435
0f5a2601
PZ
2436 perf_pmu_enable(cpuctx->ctx.pmu);
2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5
PZ
2438
2439done:
e9d2b064
PZ
2440 if (remove)
2441 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2442}
2443
2444void perf_event_task_tick(void)
2445{
2446 struct list_head *head = &__get_cpu_var(rotation_list);
2447 struct perf_cpu_context *cpuctx, *tmp;
b5ab4cd5 2448
e9d2b064
PZ
2449 WARN_ON(!irqs_disabled());
2450
2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 if (cpuctx->jiffies_interval == 1 ||
2453 !(jiffies % cpuctx->jiffies_interval))
2454 perf_rotate_context(cpuctx);
2455 }
0793a61d
TG
2456}
2457
889ff015
FW
2458static int event_enable_on_exec(struct perf_event *event,
2459 struct perf_event_context *ctx)
2460{
2461 if (!event->attr.enable_on_exec)
2462 return 0;
2463
2464 event->attr.enable_on_exec = 0;
2465 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2466 return 0;
2467
1d9b482e 2468 __perf_event_mark_enabled(event);
889ff015
FW
2469
2470 return 1;
2471}
2472
57e7986e 2473/*
cdd6c482 2474 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2475 * This expects task == current.
2476 */
8dc85d54 2477static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2478{
cdd6c482 2479 struct perf_event *event;
57e7986e
PM
2480 unsigned long flags;
2481 int enabled = 0;
889ff015 2482 int ret;
57e7986e
PM
2483
2484 local_irq_save(flags);
cdd6c482 2485 if (!ctx || !ctx->nr_events)
57e7986e
PM
2486 goto out;
2487
e566b76e
SE
2488 /*
2489 * We must ctxsw out cgroup events to avoid conflict
2490 * when invoking perf_task_event_sched_in() later on
2491 * in this function. Otherwise we end up trying to
2492 * ctxswin cgroup events which are already scheduled
2493 * in.
2494 */
a8d757ef 2495 perf_cgroup_sched_out(current, NULL);
57e7986e 2496
e625cce1 2497 raw_spin_lock(&ctx->lock);
04dc2dbb 2498 task_ctx_sched_out(ctx);
57e7986e 2499
b79387ef 2500 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2501 ret = event_enable_on_exec(event, ctx);
2502 if (ret)
2503 enabled = 1;
57e7986e
PM
2504 }
2505
2506 /*
cdd6c482 2507 * Unclone this context if we enabled any event.
57e7986e 2508 */
71a851b4
PZ
2509 if (enabled)
2510 unclone_ctx(ctx);
57e7986e 2511
e625cce1 2512 raw_spin_unlock(&ctx->lock);
57e7986e 2513
e566b76e
SE
2514 /*
2515 * Also calls ctxswin for cgroup events, if any:
2516 */
e5d1367f 2517 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2518out:
57e7986e
PM
2519 local_irq_restore(flags);
2520}
2521
0793a61d 2522/*
cdd6c482 2523 * Cross CPU call to read the hardware event
0793a61d 2524 */
cdd6c482 2525static void __perf_event_read(void *info)
0793a61d 2526{
cdd6c482
IM
2527 struct perf_event *event = info;
2528 struct perf_event_context *ctx = event->ctx;
108b02cf 2529 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2530
e1ac3614
PM
2531 /*
2532 * If this is a task context, we need to check whether it is
2533 * the current task context of this cpu. If not it has been
2534 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2535 * event->count would have been updated to a recent sample
2536 * when the event was scheduled out.
e1ac3614
PM
2537 */
2538 if (ctx->task && cpuctx->task_ctx != ctx)
2539 return;
2540
e625cce1 2541 raw_spin_lock(&ctx->lock);
e5d1367f 2542 if (ctx->is_active) {
542e72fc 2543 update_context_time(ctx);
e5d1367f
SE
2544 update_cgrp_time_from_event(event);
2545 }
cdd6c482 2546 update_event_times(event);
542e72fc
PZ
2547 if (event->state == PERF_EVENT_STATE_ACTIVE)
2548 event->pmu->read(event);
e625cce1 2549 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2550}
2551
b5e58793
PZ
2552static inline u64 perf_event_count(struct perf_event *event)
2553{
e7850595 2554 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2555}
2556
cdd6c482 2557static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2558{
2559 /*
cdd6c482
IM
2560 * If event is enabled and currently active on a CPU, update the
2561 * value in the event structure:
0793a61d 2562 */
cdd6c482
IM
2563 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2564 smp_call_function_single(event->oncpu,
2565 __perf_event_read, event, 1);
2566 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2567 struct perf_event_context *ctx = event->ctx;
2568 unsigned long flags;
2569
e625cce1 2570 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2571 /*
2572 * may read while context is not active
2573 * (e.g., thread is blocked), in that case
2574 * we cannot update context time
2575 */
e5d1367f 2576 if (ctx->is_active) {
c530ccd9 2577 update_context_time(ctx);
e5d1367f
SE
2578 update_cgrp_time_from_event(event);
2579 }
cdd6c482 2580 update_event_times(event);
e625cce1 2581 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2582 }
2583
b5e58793 2584 return perf_event_count(event);
0793a61d
TG
2585}
2586
a63eaf34 2587/*
cdd6c482 2588 * Initialize the perf_event context in a task_struct:
a63eaf34 2589 */
eb184479 2590static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2591{
e625cce1 2592 raw_spin_lock_init(&ctx->lock);
a63eaf34 2593 mutex_init(&ctx->mutex);
889ff015
FW
2594 INIT_LIST_HEAD(&ctx->pinned_groups);
2595 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2596 INIT_LIST_HEAD(&ctx->event_list);
2597 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2598}
2599
2600static struct perf_event_context *
2601alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2602{
2603 struct perf_event_context *ctx;
2604
2605 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2606 if (!ctx)
2607 return NULL;
2608
2609 __perf_event_init_context(ctx);
2610 if (task) {
2611 ctx->task = task;
2612 get_task_struct(task);
0793a61d 2613 }
eb184479
PZ
2614 ctx->pmu = pmu;
2615
2616 return ctx;
a63eaf34
PM
2617}
2618
2ebd4ffb
MH
2619static struct task_struct *
2620find_lively_task_by_vpid(pid_t vpid)
2621{
2622 struct task_struct *task;
2623 int err;
0793a61d
TG
2624
2625 rcu_read_lock();
2ebd4ffb 2626 if (!vpid)
0793a61d
TG
2627 task = current;
2628 else
2ebd4ffb 2629 task = find_task_by_vpid(vpid);
0793a61d
TG
2630 if (task)
2631 get_task_struct(task);
2632 rcu_read_unlock();
2633
2634 if (!task)
2635 return ERR_PTR(-ESRCH);
2636
0793a61d 2637 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2638 err = -EACCES;
2639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2640 goto errout;
2641
2ebd4ffb
MH
2642 return task;
2643errout:
2644 put_task_struct(task);
2645 return ERR_PTR(err);
2646
2647}
2648
fe4b04fa
PZ
2649/*
2650 * Returns a matching context with refcount and pincount.
2651 */
108b02cf 2652static struct perf_event_context *
38a81da2 2653find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2654{
cdd6c482 2655 struct perf_event_context *ctx;
22a4f650 2656 struct perf_cpu_context *cpuctx;
25346b93 2657 unsigned long flags;
8dc85d54 2658 int ctxn, err;
0793a61d 2659
22a4ec72 2660 if (!task) {
cdd6c482 2661 /* Must be root to operate on a CPU event: */
0764771d 2662 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2663 return ERR_PTR(-EACCES);
2664
0793a61d 2665 /*
cdd6c482 2666 * We could be clever and allow to attach a event to an
0793a61d
TG
2667 * offline CPU and activate it when the CPU comes up, but
2668 * that's for later.
2669 */
f6325e30 2670 if (!cpu_online(cpu))
0793a61d
TG
2671 return ERR_PTR(-ENODEV);
2672
108b02cf 2673 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2674 ctx = &cpuctx->ctx;
c93f7669 2675 get_ctx(ctx);
fe4b04fa 2676 ++ctx->pin_count;
0793a61d 2677
0793a61d
TG
2678 return ctx;
2679 }
2680
8dc85d54
PZ
2681 err = -EINVAL;
2682 ctxn = pmu->task_ctx_nr;
2683 if (ctxn < 0)
2684 goto errout;
2685
9ed6060d 2686retry:
8dc85d54 2687 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2688 if (ctx) {
71a851b4 2689 unclone_ctx(ctx);
fe4b04fa 2690 ++ctx->pin_count;
e625cce1 2691 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2692 } else {
eb184479 2693 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2694 err = -ENOMEM;
2695 if (!ctx)
2696 goto errout;
eb184479 2697
dbe08d82
ON
2698 err = 0;
2699 mutex_lock(&task->perf_event_mutex);
2700 /*
2701 * If it has already passed perf_event_exit_task().
2702 * we must see PF_EXITING, it takes this mutex too.
2703 */
2704 if (task->flags & PF_EXITING)
2705 err = -ESRCH;
2706 else if (task->perf_event_ctxp[ctxn])
2707 err = -EAGAIN;
fe4b04fa 2708 else {
9137fb28 2709 get_ctx(ctx);
fe4b04fa 2710 ++ctx->pin_count;
dbe08d82 2711 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2712 }
dbe08d82
ON
2713 mutex_unlock(&task->perf_event_mutex);
2714
2715 if (unlikely(err)) {
9137fb28 2716 put_ctx(ctx);
dbe08d82
ON
2717
2718 if (err == -EAGAIN)
2719 goto retry;
2720 goto errout;
a63eaf34
PM
2721 }
2722 }
2723
0793a61d 2724 return ctx;
c93f7669 2725
9ed6060d 2726errout:
c93f7669 2727 return ERR_PTR(err);
0793a61d
TG
2728}
2729
6fb2915d
LZ
2730static void perf_event_free_filter(struct perf_event *event);
2731
cdd6c482 2732static void free_event_rcu(struct rcu_head *head)
592903cd 2733{
cdd6c482 2734 struct perf_event *event;
592903cd 2735
cdd6c482
IM
2736 event = container_of(head, struct perf_event, rcu_head);
2737 if (event->ns)
2738 put_pid_ns(event->ns);
6fb2915d 2739 perf_event_free_filter(event);
cdd6c482 2740 kfree(event);
592903cd
PZ
2741}
2742
76369139 2743static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2744
cdd6c482 2745static void free_event(struct perf_event *event)
f1600952 2746{
e360adbe 2747 irq_work_sync(&event->pending);
925d519a 2748
cdd6c482 2749 if (!event->parent) {
82cd6def 2750 if (event->attach_state & PERF_ATTACH_TASK)
b2029520 2751 jump_label_dec_deferred(&perf_sched_events);
3af9e859 2752 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2753 atomic_dec(&nr_mmap_events);
2754 if (event->attr.comm)
2755 atomic_dec(&nr_comm_events);
2756 if (event->attr.task)
2757 atomic_dec(&nr_task_events);
927c7a9e
FW
2758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2759 put_callchain_buffers();
08309379
PZ
2760 if (is_cgroup_event(event)) {
2761 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
b2029520 2762 jump_label_dec_deferred(&perf_sched_events);
08309379 2763 }
f344011c 2764 }
9ee318a7 2765
76369139
FW
2766 if (event->rb) {
2767 ring_buffer_put(event->rb);
2768 event->rb = NULL;
a4be7c27
PZ
2769 }
2770
e5d1367f
SE
2771 if (is_cgroup_event(event))
2772 perf_detach_cgroup(event);
2773
cdd6c482
IM
2774 if (event->destroy)
2775 event->destroy(event);
e077df4f 2776
0c67b408
PZ
2777 if (event->ctx)
2778 put_ctx(event->ctx);
2779
cdd6c482 2780 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2781}
2782
a66a3052 2783int perf_event_release_kernel(struct perf_event *event)
0793a61d 2784{
cdd6c482 2785 struct perf_event_context *ctx = event->ctx;
0793a61d 2786
ad3a37de 2787 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2788 /*
2789 * There are two ways this annotation is useful:
2790 *
2791 * 1) there is a lock recursion from perf_event_exit_task
2792 * see the comment there.
2793 *
2794 * 2) there is a lock-inversion with mmap_sem through
2795 * perf_event_read_group(), which takes faults while
2796 * holding ctx->mutex, however this is called after
2797 * the last filedesc died, so there is no possibility
2798 * to trigger the AB-BA case.
2799 */
2800 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2801 raw_spin_lock_irq(&ctx->lock);
8a49542c 2802 perf_group_detach(event);
050735b0 2803 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2804 perf_remove_from_context(event);
d859e29f 2805 mutex_unlock(&ctx->mutex);
0793a61d 2806
cdd6c482 2807 free_event(event);
0793a61d
TG
2808
2809 return 0;
2810}
a66a3052 2811EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2812
a66a3052
PZ
2813/*
2814 * Called when the last reference to the file is gone.
2815 */
2816static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2817{
a66a3052 2818 struct perf_event *event = file->private_data;
8882135b 2819 struct task_struct *owner;
fb0459d7 2820
a66a3052 2821 file->private_data = NULL;
fb0459d7 2822
8882135b
PZ
2823 rcu_read_lock();
2824 owner = ACCESS_ONCE(event->owner);
2825 /*
2826 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2827 * !owner it means the list deletion is complete and we can indeed
2828 * free this event, otherwise we need to serialize on
2829 * owner->perf_event_mutex.
2830 */
2831 smp_read_barrier_depends();
2832 if (owner) {
2833 /*
2834 * Since delayed_put_task_struct() also drops the last
2835 * task reference we can safely take a new reference
2836 * while holding the rcu_read_lock().
2837 */
2838 get_task_struct(owner);
2839 }
2840 rcu_read_unlock();
2841
2842 if (owner) {
2843 mutex_lock(&owner->perf_event_mutex);
2844 /*
2845 * We have to re-check the event->owner field, if it is cleared
2846 * we raced with perf_event_exit_task(), acquiring the mutex
2847 * ensured they're done, and we can proceed with freeing the
2848 * event.
2849 */
2850 if (event->owner)
2851 list_del_init(&event->owner_entry);
2852 mutex_unlock(&owner->perf_event_mutex);
2853 put_task_struct(owner);
2854 }
2855
a66a3052 2856 return perf_event_release_kernel(event);
fb0459d7 2857}
fb0459d7 2858
59ed446f 2859u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2860{
cdd6c482 2861 struct perf_event *child;
e53c0994
PZ
2862 u64 total = 0;
2863
59ed446f
PZ
2864 *enabled = 0;
2865 *running = 0;
2866
6f10581a 2867 mutex_lock(&event->child_mutex);
cdd6c482 2868 total += perf_event_read(event);
59ed446f
PZ
2869 *enabled += event->total_time_enabled +
2870 atomic64_read(&event->child_total_time_enabled);
2871 *running += event->total_time_running +
2872 atomic64_read(&event->child_total_time_running);
2873
2874 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2875 total += perf_event_read(child);
59ed446f
PZ
2876 *enabled += child->total_time_enabled;
2877 *running += child->total_time_running;
2878 }
6f10581a 2879 mutex_unlock(&event->child_mutex);
e53c0994
PZ
2880
2881 return total;
2882}
fb0459d7 2883EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 2884
cdd6c482 2885static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
2886 u64 read_format, char __user *buf)
2887{
cdd6c482 2888 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
2889 int n = 0, size = 0, ret = -EFAULT;
2890 struct perf_event_context *ctx = leader->ctx;
abf4868b 2891 u64 values[5];
59ed446f 2892 u64 count, enabled, running;
abf4868b 2893
6f10581a 2894 mutex_lock(&ctx->mutex);
59ed446f 2895 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
2896
2897 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
2898 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2899 values[n++] = enabled;
2900 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2901 values[n++] = running;
abf4868b
PZ
2902 values[n++] = count;
2903 if (read_format & PERF_FORMAT_ID)
2904 values[n++] = primary_event_id(leader);
3dab77fb
PZ
2905
2906 size = n * sizeof(u64);
2907
2908 if (copy_to_user(buf, values, size))
6f10581a 2909 goto unlock;
3dab77fb 2910
6f10581a 2911 ret = size;
3dab77fb 2912
65abc865 2913 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 2914 n = 0;
3dab77fb 2915
59ed446f 2916 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
2917 if (read_format & PERF_FORMAT_ID)
2918 values[n++] = primary_event_id(sub);
2919
2920 size = n * sizeof(u64);
2921
184d3da8 2922 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
2923 ret = -EFAULT;
2924 goto unlock;
2925 }
abf4868b
PZ
2926
2927 ret += size;
3dab77fb 2928 }
6f10581a
PZ
2929unlock:
2930 mutex_unlock(&ctx->mutex);
3dab77fb 2931
abf4868b 2932 return ret;
3dab77fb
PZ
2933}
2934
cdd6c482 2935static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
2936 u64 read_format, char __user *buf)
2937{
59ed446f 2938 u64 enabled, running;
3dab77fb
PZ
2939 u64 values[4];
2940 int n = 0;
2941
59ed446f
PZ
2942 values[n++] = perf_event_read_value(event, &enabled, &running);
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2944 values[n++] = enabled;
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2946 values[n++] = running;
3dab77fb 2947 if (read_format & PERF_FORMAT_ID)
cdd6c482 2948 values[n++] = primary_event_id(event);
3dab77fb
PZ
2949
2950 if (copy_to_user(buf, values, n * sizeof(u64)))
2951 return -EFAULT;
2952
2953 return n * sizeof(u64);
2954}
2955
0793a61d 2956/*
cdd6c482 2957 * Read the performance event - simple non blocking version for now
0793a61d
TG
2958 */
2959static ssize_t
cdd6c482 2960perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 2961{
cdd6c482 2962 u64 read_format = event->attr.read_format;
3dab77fb 2963 int ret;
0793a61d 2964
3b6f9e5c 2965 /*
cdd6c482 2966 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
2967 * error state (i.e. because it was pinned but it couldn't be
2968 * scheduled on to the CPU at some point).
2969 */
cdd6c482 2970 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
2971 return 0;
2972
c320c7b7 2973 if (count < event->read_size)
3dab77fb
PZ
2974 return -ENOSPC;
2975
cdd6c482 2976 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 2977 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 2978 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 2979 else
cdd6c482 2980 ret = perf_event_read_one(event, read_format, buf);
0793a61d 2981
3dab77fb 2982 return ret;
0793a61d
TG
2983}
2984
0793a61d
TG
2985static ssize_t
2986perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2987{
cdd6c482 2988 struct perf_event *event = file->private_data;
0793a61d 2989
cdd6c482 2990 return perf_read_hw(event, buf, count);
0793a61d
TG
2991}
2992
2993static unsigned int perf_poll(struct file *file, poll_table *wait)
2994{
cdd6c482 2995 struct perf_event *event = file->private_data;
76369139 2996 struct ring_buffer *rb;
c33a0bc4 2997 unsigned int events = POLL_HUP;
c7138f37 2998
10c6db11
PZ
2999 /*
3000 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3001 * grabs the rb reference but perf_event_set_output() overrides it.
3002 * Here is the timeline for two threads T1, T2:
3003 * t0: T1, rb = rcu_dereference(event->rb)
3004 * t1: T2, old_rb = event->rb
3005 * t2: T2, event->rb = new rb
3006 * t3: T2, ring_buffer_detach(old_rb)
3007 * t4: T1, ring_buffer_attach(rb1)
3008 * t5: T1, poll_wait(event->waitq)
3009 *
3010 * To avoid this problem, we grab mmap_mutex in perf_poll()
3011 * thereby ensuring that the assignment of the new ring buffer
3012 * and the detachment of the old buffer appear atomic to perf_poll()
3013 */
3014 mutex_lock(&event->mmap_mutex);
3015
c7138f37 3016 rcu_read_lock();
76369139 3017 rb = rcu_dereference(event->rb);
10c6db11
PZ
3018 if (rb) {
3019 ring_buffer_attach(event, rb);
76369139 3020 events = atomic_xchg(&rb->poll, 0);
10c6db11 3021 }
c7138f37 3022 rcu_read_unlock();
0793a61d 3023
10c6db11
PZ
3024 mutex_unlock(&event->mmap_mutex);
3025
cdd6c482 3026 poll_wait(file, &event->waitq, wait);
0793a61d 3027
0793a61d
TG
3028 return events;
3029}
3030
cdd6c482 3031static void perf_event_reset(struct perf_event *event)
6de6a7b9 3032{
cdd6c482 3033 (void)perf_event_read(event);
e7850595 3034 local64_set(&event->count, 0);
cdd6c482 3035 perf_event_update_userpage(event);
3df5edad
PZ
3036}
3037
c93f7669 3038/*
cdd6c482
IM
3039 * Holding the top-level event's child_mutex means that any
3040 * descendant process that has inherited this event will block
3041 * in sync_child_event if it goes to exit, thus satisfying the
3042 * task existence requirements of perf_event_enable/disable.
c93f7669 3043 */
cdd6c482
IM
3044static void perf_event_for_each_child(struct perf_event *event,
3045 void (*func)(struct perf_event *))
3df5edad 3046{
cdd6c482 3047 struct perf_event *child;
3df5edad 3048
cdd6c482
IM
3049 WARN_ON_ONCE(event->ctx->parent_ctx);
3050 mutex_lock(&event->child_mutex);
3051 func(event);
3052 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3053 func(child);
cdd6c482 3054 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3055}
3056
cdd6c482
IM
3057static void perf_event_for_each(struct perf_event *event,
3058 void (*func)(struct perf_event *))
3df5edad 3059{
cdd6c482
IM
3060 struct perf_event_context *ctx = event->ctx;
3061 struct perf_event *sibling;
3df5edad 3062
75f937f2
PZ
3063 WARN_ON_ONCE(ctx->parent_ctx);
3064 mutex_lock(&ctx->mutex);
cdd6c482 3065 event = event->group_leader;
75f937f2 3066
cdd6c482
IM
3067 perf_event_for_each_child(event, func);
3068 func(event);
3069 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3070 perf_event_for_each_child(event, func);
75f937f2 3071 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3072}
3073
cdd6c482 3074static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3075{
cdd6c482 3076 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3077 int ret = 0;
3078 u64 value;
3079
6c7e550f 3080 if (!is_sampling_event(event))
08247e31
PZ
3081 return -EINVAL;
3082
ad0cf347 3083 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3084 return -EFAULT;
3085
3086 if (!value)
3087 return -EINVAL;
3088
e625cce1 3089 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3090 if (event->attr.freq) {
3091 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3092 ret = -EINVAL;
3093 goto unlock;
3094 }
3095
cdd6c482 3096 event->attr.sample_freq = value;
08247e31 3097 } else {
cdd6c482
IM
3098 event->attr.sample_period = value;
3099 event->hw.sample_period = value;
08247e31
PZ
3100 }
3101unlock:
e625cce1 3102 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3103
3104 return ret;
3105}
3106
ac9721f3
PZ
3107static const struct file_operations perf_fops;
3108
3109static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3110{
3111 struct file *file;
3112
3113 file = fget_light(fd, fput_needed);
3114 if (!file)
3115 return ERR_PTR(-EBADF);
3116
3117 if (file->f_op != &perf_fops) {
3118 fput_light(file, *fput_needed);
3119 *fput_needed = 0;
3120 return ERR_PTR(-EBADF);
3121 }
3122
3123 return file->private_data;
3124}
3125
3126static int perf_event_set_output(struct perf_event *event,
3127 struct perf_event *output_event);
6fb2915d 3128static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3129
d859e29f
PM
3130static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3131{
cdd6c482
IM
3132 struct perf_event *event = file->private_data;
3133 void (*func)(struct perf_event *);
3df5edad 3134 u32 flags = arg;
d859e29f
PM
3135
3136 switch (cmd) {
cdd6c482
IM
3137 case PERF_EVENT_IOC_ENABLE:
3138 func = perf_event_enable;
d859e29f 3139 break;
cdd6c482
IM
3140 case PERF_EVENT_IOC_DISABLE:
3141 func = perf_event_disable;
79f14641 3142 break;
cdd6c482
IM
3143 case PERF_EVENT_IOC_RESET:
3144 func = perf_event_reset;
6de6a7b9 3145 break;
3df5edad 3146
cdd6c482
IM
3147 case PERF_EVENT_IOC_REFRESH:
3148 return perf_event_refresh(event, arg);
08247e31 3149
cdd6c482
IM
3150 case PERF_EVENT_IOC_PERIOD:
3151 return perf_event_period(event, (u64 __user *)arg);
08247e31 3152
cdd6c482 3153 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3154 {
3155 struct perf_event *output_event = NULL;
3156 int fput_needed = 0;
3157 int ret;
3158
3159 if (arg != -1) {
3160 output_event = perf_fget_light(arg, &fput_needed);
3161 if (IS_ERR(output_event))
3162 return PTR_ERR(output_event);
3163 }
3164
3165 ret = perf_event_set_output(event, output_event);
3166 if (output_event)
3167 fput_light(output_event->filp, fput_needed);
3168
3169 return ret;
3170 }
a4be7c27 3171
6fb2915d
LZ
3172 case PERF_EVENT_IOC_SET_FILTER:
3173 return perf_event_set_filter(event, (void __user *)arg);
3174
d859e29f 3175 default:
3df5edad 3176 return -ENOTTY;
d859e29f 3177 }
3df5edad
PZ
3178
3179 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3180 perf_event_for_each(event, func);
3df5edad 3181 else
cdd6c482 3182 perf_event_for_each_child(event, func);
3df5edad
PZ
3183
3184 return 0;
d859e29f
PM
3185}
3186
cdd6c482 3187int perf_event_task_enable(void)
771d7cde 3188{
cdd6c482 3189 struct perf_event *event;
771d7cde 3190
cdd6c482
IM
3191 mutex_lock(&current->perf_event_mutex);
3192 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3193 perf_event_for_each_child(event, perf_event_enable);
3194 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3195
3196 return 0;
3197}
3198
cdd6c482 3199int perf_event_task_disable(void)
771d7cde 3200{
cdd6c482 3201 struct perf_event *event;
771d7cde 3202
cdd6c482
IM
3203 mutex_lock(&current->perf_event_mutex);
3204 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3205 perf_event_for_each_child(event, perf_event_disable);
3206 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3207
3208 return 0;
3209}
3210
cdd6c482
IM
3211#ifndef PERF_EVENT_INDEX_OFFSET
3212# define PERF_EVENT_INDEX_OFFSET 0
f738eb1b
IM
3213#endif
3214
cdd6c482 3215static int perf_event_index(struct perf_event *event)
194002b2 3216{
a4eaf7f1
PZ
3217 if (event->hw.state & PERF_HES_STOPPED)
3218 return 0;
3219
cdd6c482 3220 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3221 return 0;
3222
cdd6c482 3223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
194002b2
PZ
3224}
3225
c4794295 3226static void calc_timer_values(struct perf_event *event,
7f310a5d
EM
3227 u64 *enabled,
3228 u64 *running)
c4794295
EM
3229{
3230 u64 now, ctx_time;
3231
3232 now = perf_clock();
3233 ctx_time = event->shadow_ctx_time + now;
3234 *enabled = ctx_time - event->tstamp_enabled;
3235 *running = ctx_time - event->tstamp_running;
3236}
3237
38ff667b
PZ
3238/*
3239 * Callers need to ensure there can be no nesting of this function, otherwise
3240 * the seqlock logic goes bad. We can not serialize this because the arch
3241 * code calls this from NMI context.
3242 */
cdd6c482 3243void perf_event_update_userpage(struct perf_event *event)
37d81828 3244{
cdd6c482 3245 struct perf_event_mmap_page *userpg;
76369139 3246 struct ring_buffer *rb;
0d641208 3247 u64 enabled, running;
38ff667b
PZ
3248
3249 rcu_read_lock();
0d641208
EM
3250 /*
3251 * compute total_time_enabled, total_time_running
3252 * based on snapshot values taken when the event
3253 * was last scheduled in.
3254 *
3255 * we cannot simply called update_context_time()
3256 * because of locking issue as we can be called in
3257 * NMI context
3258 */
3259 calc_timer_values(event, &enabled, &running);
76369139
FW
3260 rb = rcu_dereference(event->rb);
3261 if (!rb)
38ff667b
PZ
3262 goto unlock;
3263
76369139 3264 userpg = rb->user_page;
37d81828 3265
7b732a75
PZ
3266 /*
3267 * Disable preemption so as to not let the corresponding user-space
3268 * spin too long if we get preempted.
3269 */
3270 preempt_disable();
37d81828 3271 ++userpg->lock;
92f22a38 3272 barrier();
cdd6c482 3273 userpg->index = perf_event_index(event);
b5e58793 3274 userpg->offset = perf_event_count(event);
cdd6c482 3275 if (event->state == PERF_EVENT_STATE_ACTIVE)
e7850595 3276 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3277
0d641208 3278 userpg->time_enabled = enabled +
cdd6c482 3279 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3280
0d641208 3281 userpg->time_running = running +
cdd6c482 3282 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3283
92f22a38 3284 barrier();
37d81828 3285 ++userpg->lock;
7b732a75 3286 preempt_enable();
38ff667b 3287unlock:
7b732a75 3288 rcu_read_unlock();
37d81828
PM
3289}
3290
906010b2
PZ
3291static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3292{
3293 struct perf_event *event = vma->vm_file->private_data;
76369139 3294 struct ring_buffer *rb;
906010b2
PZ
3295 int ret = VM_FAULT_SIGBUS;
3296
3297 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3298 if (vmf->pgoff == 0)
3299 ret = 0;
3300 return ret;
3301 }
3302
3303 rcu_read_lock();
76369139
FW
3304 rb = rcu_dereference(event->rb);
3305 if (!rb)
906010b2
PZ
3306 goto unlock;
3307
3308 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3309 goto unlock;
3310
76369139 3311 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3312 if (!vmf->page)
3313 goto unlock;
3314
3315 get_page(vmf->page);
3316 vmf->page->mapping = vma->vm_file->f_mapping;
3317 vmf->page->index = vmf->pgoff;
3318
3319 ret = 0;
3320unlock:
3321 rcu_read_unlock();
3322
3323 return ret;
3324}
3325
10c6db11
PZ
3326static void ring_buffer_attach(struct perf_event *event,
3327 struct ring_buffer *rb)
3328{
3329 unsigned long flags;
3330
3331 if (!list_empty(&event->rb_entry))
3332 return;
3333
3334 spin_lock_irqsave(&rb->event_lock, flags);
3335 if (!list_empty(&event->rb_entry))
3336 goto unlock;
3337
3338 list_add(&event->rb_entry, &rb->event_list);
3339unlock:
3340 spin_unlock_irqrestore(&rb->event_lock, flags);
3341}
3342
3343static void ring_buffer_detach(struct perf_event *event,
3344 struct ring_buffer *rb)
3345{
3346 unsigned long flags;
3347
3348 if (list_empty(&event->rb_entry))
3349 return;
3350
3351 spin_lock_irqsave(&rb->event_lock, flags);
3352 list_del_init(&event->rb_entry);
3353 wake_up_all(&event->waitq);
3354 spin_unlock_irqrestore(&rb->event_lock, flags);
3355}
3356
3357static void ring_buffer_wakeup(struct perf_event *event)
3358{
3359 struct ring_buffer *rb;
3360
3361 rcu_read_lock();
3362 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3363 if (!rb)
3364 goto unlock;
3365
3366 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3367 wake_up_all(&event->waitq);
44b7f4b9
WD
3368
3369unlock:
10c6db11
PZ
3370 rcu_read_unlock();
3371}
3372
76369139 3373static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3374{
76369139 3375 struct ring_buffer *rb;
906010b2 3376
76369139
FW
3377 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3378 rb_free(rb);
7b732a75
PZ
3379}
3380
76369139 3381static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3382{
76369139 3383 struct ring_buffer *rb;
7b732a75 3384
ac9721f3 3385 rcu_read_lock();
76369139
FW
3386 rb = rcu_dereference(event->rb);
3387 if (rb) {
3388 if (!atomic_inc_not_zero(&rb->refcount))
3389 rb = NULL;
ac9721f3
PZ
3390 }
3391 rcu_read_unlock();
3392
76369139 3393 return rb;
ac9721f3
PZ
3394}
3395
76369139 3396static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3397{
10c6db11
PZ
3398 struct perf_event *event, *n;
3399 unsigned long flags;
3400
76369139 3401 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3402 return;
7b732a75 3403
10c6db11
PZ
3404 spin_lock_irqsave(&rb->event_lock, flags);
3405 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3406 list_del_init(&event->rb_entry);
3407 wake_up_all(&event->waitq);
3408 }
3409 spin_unlock_irqrestore(&rb->event_lock, flags);
3410
76369139 3411 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3412}
3413
3414static void perf_mmap_open(struct vm_area_struct *vma)
3415{
cdd6c482 3416 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3417
cdd6c482 3418 atomic_inc(&event->mmap_count);
7b732a75
PZ
3419}
3420
3421static void perf_mmap_close(struct vm_area_struct *vma)
3422{
cdd6c482 3423 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3424
cdd6c482 3425 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3426 unsigned long size = perf_data_size(event->rb);
ac9721f3 3427 struct user_struct *user = event->mmap_user;
76369139 3428 struct ring_buffer *rb = event->rb;
789f90fc 3429
906010b2 3430 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3431 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3432 rcu_assign_pointer(event->rb, NULL);
10c6db11 3433 ring_buffer_detach(event, rb);
cdd6c482 3434 mutex_unlock(&event->mmap_mutex);
ac9721f3 3435
76369139 3436 ring_buffer_put(rb);
ac9721f3 3437 free_uid(user);
7b732a75 3438 }
37d81828
PM
3439}
3440
f0f37e2f 3441static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3442 .open = perf_mmap_open,
3443 .close = perf_mmap_close,
3444 .fault = perf_mmap_fault,
3445 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3446};
3447
3448static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3449{
cdd6c482 3450 struct perf_event *event = file->private_data;
22a4f650 3451 unsigned long user_locked, user_lock_limit;
789f90fc 3452 struct user_struct *user = current_user();
22a4f650 3453 unsigned long locked, lock_limit;
76369139 3454 struct ring_buffer *rb;
7b732a75
PZ
3455 unsigned long vma_size;
3456 unsigned long nr_pages;
789f90fc 3457 long user_extra, extra;
d57e34fd 3458 int ret = 0, flags = 0;
37d81828 3459
c7920614
PZ
3460 /*
3461 * Don't allow mmap() of inherited per-task counters. This would
3462 * create a performance issue due to all children writing to the
76369139 3463 * same rb.
c7920614
PZ
3464 */
3465 if (event->cpu == -1 && event->attr.inherit)
3466 return -EINVAL;
3467
43a21ea8 3468 if (!(vma->vm_flags & VM_SHARED))
37d81828 3469 return -EINVAL;
7b732a75
PZ
3470
3471 vma_size = vma->vm_end - vma->vm_start;
3472 nr_pages = (vma_size / PAGE_SIZE) - 1;
3473
7730d865 3474 /*
76369139 3475 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3476 * can do bitmasks instead of modulo.
3477 */
3478 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3479 return -EINVAL;
3480
7b732a75 3481 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3482 return -EINVAL;
3483
7b732a75
PZ
3484 if (vma->vm_pgoff != 0)
3485 return -EINVAL;
37d81828 3486
cdd6c482
IM
3487 WARN_ON_ONCE(event->ctx->parent_ctx);
3488 mutex_lock(&event->mmap_mutex);
76369139
FW
3489 if (event->rb) {
3490 if (event->rb->nr_pages == nr_pages)
3491 atomic_inc(&event->rb->refcount);
ac9721f3 3492 else
ebb3c4c4
PZ
3493 ret = -EINVAL;
3494 goto unlock;
3495 }
3496
789f90fc 3497 user_extra = nr_pages + 1;
cdd6c482 3498 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3499
3500 /*
3501 * Increase the limit linearly with more CPUs:
3502 */
3503 user_lock_limit *= num_online_cpus();
3504
789f90fc 3505 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3506
789f90fc
PZ
3507 extra = 0;
3508 if (user_locked > user_lock_limit)
3509 extra = user_locked - user_lock_limit;
7b732a75 3510
78d7d407 3511 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3512 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3513 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3514
459ec28a
IM
3515 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3516 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3517 ret = -EPERM;
3518 goto unlock;
3519 }
7b732a75 3520
76369139 3521 WARN_ON(event->rb);
906010b2 3522
d57e34fd 3523 if (vma->vm_flags & VM_WRITE)
76369139 3524 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3525
4ec8363d
VW
3526 rb = rb_alloc(nr_pages,
3527 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3528 event->cpu, flags);
3529
76369139 3530 if (!rb) {
ac9721f3 3531 ret = -ENOMEM;
ebb3c4c4 3532 goto unlock;
ac9721f3 3533 }
76369139 3534 rcu_assign_pointer(event->rb, rb);
43a21ea8 3535
ac9721f3
PZ
3536 atomic_long_add(user_extra, &user->locked_vm);
3537 event->mmap_locked = extra;
3538 event->mmap_user = get_current_user();
bc3e53f6 3539 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3540
ebb3c4c4 3541unlock:
ac9721f3
PZ
3542 if (!ret)
3543 atomic_inc(&event->mmap_count);
cdd6c482 3544 mutex_unlock(&event->mmap_mutex);
37d81828 3545
37d81828
PM
3546 vma->vm_flags |= VM_RESERVED;
3547 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3548
3549 return ret;
37d81828
PM
3550}
3551
3c446b3d
PZ
3552static int perf_fasync(int fd, struct file *filp, int on)
3553{
3c446b3d 3554 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3555 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3556 int retval;
3557
3558 mutex_lock(&inode->i_mutex);
cdd6c482 3559 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3560 mutex_unlock(&inode->i_mutex);
3561
3562 if (retval < 0)
3563 return retval;
3564
3565 return 0;
3566}
3567
0793a61d 3568static const struct file_operations perf_fops = {
3326c1ce 3569 .llseek = no_llseek,
0793a61d
TG
3570 .release = perf_release,
3571 .read = perf_read,
3572 .poll = perf_poll,
d859e29f
PM
3573 .unlocked_ioctl = perf_ioctl,
3574 .compat_ioctl = perf_ioctl,
37d81828 3575 .mmap = perf_mmap,
3c446b3d 3576 .fasync = perf_fasync,
0793a61d
TG
3577};
3578
925d519a 3579/*
cdd6c482 3580 * Perf event wakeup
925d519a
PZ
3581 *
3582 * If there's data, ensure we set the poll() state and publish everything
3583 * to user-space before waking everybody up.
3584 */
3585
cdd6c482 3586void perf_event_wakeup(struct perf_event *event)
925d519a 3587{
10c6db11 3588 ring_buffer_wakeup(event);
4c9e2542 3589
cdd6c482
IM
3590 if (event->pending_kill) {
3591 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3592 event->pending_kill = 0;
4c9e2542 3593 }
925d519a
PZ
3594}
3595
e360adbe 3596static void perf_pending_event(struct irq_work *entry)
79f14641 3597{
cdd6c482
IM
3598 struct perf_event *event = container_of(entry,
3599 struct perf_event, pending);
79f14641 3600
cdd6c482
IM
3601 if (event->pending_disable) {
3602 event->pending_disable = 0;
3603 __perf_event_disable(event);
79f14641
PZ
3604 }
3605
cdd6c482
IM
3606 if (event->pending_wakeup) {
3607 event->pending_wakeup = 0;
3608 perf_event_wakeup(event);
79f14641
PZ
3609 }
3610}
3611
39447b38
ZY
3612/*
3613 * We assume there is only KVM supporting the callbacks.
3614 * Later on, we might change it to a list if there is
3615 * another virtualization implementation supporting the callbacks.
3616 */
3617struct perf_guest_info_callbacks *perf_guest_cbs;
3618
3619int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3620{
3621 perf_guest_cbs = cbs;
3622 return 0;
3623}
3624EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3625
3626int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3627{
3628 perf_guest_cbs = NULL;
3629 return 0;
3630}
3631EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3632
c980d109
ACM
3633static void __perf_event_header__init_id(struct perf_event_header *header,
3634 struct perf_sample_data *data,
3635 struct perf_event *event)
6844c09d
ACM
3636{
3637 u64 sample_type = event->attr.sample_type;
3638
3639 data->type = sample_type;
3640 header->size += event->id_header_size;
3641
3642 if (sample_type & PERF_SAMPLE_TID) {
3643 /* namespace issues */
3644 data->tid_entry.pid = perf_event_pid(event, current);
3645 data->tid_entry.tid = perf_event_tid(event, current);
3646 }
3647
3648 if (sample_type & PERF_SAMPLE_TIME)
3649 data->time = perf_clock();
3650
3651 if (sample_type & PERF_SAMPLE_ID)
3652 data->id = primary_event_id(event);
3653
3654 if (sample_type & PERF_SAMPLE_STREAM_ID)
3655 data->stream_id = event->id;
3656
3657 if (sample_type & PERF_SAMPLE_CPU) {
3658 data->cpu_entry.cpu = raw_smp_processor_id();
3659 data->cpu_entry.reserved = 0;
3660 }
3661}
3662
76369139
FW
3663void perf_event_header__init_id(struct perf_event_header *header,
3664 struct perf_sample_data *data,
3665 struct perf_event *event)
c980d109
ACM
3666{
3667 if (event->attr.sample_id_all)
3668 __perf_event_header__init_id(header, data, event);
3669}
3670
3671static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3672 struct perf_sample_data *data)
3673{
3674 u64 sample_type = data->type;
3675
3676 if (sample_type & PERF_SAMPLE_TID)
3677 perf_output_put(handle, data->tid_entry);
3678
3679 if (sample_type & PERF_SAMPLE_TIME)
3680 perf_output_put(handle, data->time);
3681
3682 if (sample_type & PERF_SAMPLE_ID)
3683 perf_output_put(handle, data->id);
3684
3685 if (sample_type & PERF_SAMPLE_STREAM_ID)
3686 perf_output_put(handle, data->stream_id);
3687
3688 if (sample_type & PERF_SAMPLE_CPU)
3689 perf_output_put(handle, data->cpu_entry);
3690}
3691
76369139
FW
3692void perf_event__output_id_sample(struct perf_event *event,
3693 struct perf_output_handle *handle,
3694 struct perf_sample_data *sample)
c980d109
ACM
3695{
3696 if (event->attr.sample_id_all)
3697 __perf_event__output_id_sample(handle, sample);
3698}
3699
3dab77fb 3700static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3701 struct perf_event *event,
3702 u64 enabled, u64 running)
3dab77fb 3703{
cdd6c482 3704 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3705 u64 values[4];
3706 int n = 0;
3707
b5e58793 3708 values[n++] = perf_event_count(event);
3dab77fb 3709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3710 values[n++] = enabled +
cdd6c482 3711 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3712 }
3713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3714 values[n++] = running +
cdd6c482 3715 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3716 }
3717 if (read_format & PERF_FORMAT_ID)
cdd6c482 3718 values[n++] = primary_event_id(event);
3dab77fb 3719
76369139 3720 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3721}
3722
3723/*
cdd6c482 3724 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3725 */
3726static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3727 struct perf_event *event,
3728 u64 enabled, u64 running)
3dab77fb 3729{
cdd6c482
IM
3730 struct perf_event *leader = event->group_leader, *sub;
3731 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3732 u64 values[5];
3733 int n = 0;
3734
3735 values[n++] = 1 + leader->nr_siblings;
3736
3737 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3738 values[n++] = enabled;
3dab77fb
PZ
3739
3740 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3741 values[n++] = running;
3dab77fb 3742
cdd6c482 3743 if (leader != event)
3dab77fb
PZ
3744 leader->pmu->read(leader);
3745
b5e58793 3746 values[n++] = perf_event_count(leader);
3dab77fb 3747 if (read_format & PERF_FORMAT_ID)
cdd6c482 3748 values[n++] = primary_event_id(leader);
3dab77fb 3749
76369139 3750 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3751
65abc865 3752 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3753 n = 0;
3754
cdd6c482 3755 if (sub != event)
3dab77fb
PZ
3756 sub->pmu->read(sub);
3757
b5e58793 3758 values[n++] = perf_event_count(sub);
3dab77fb 3759 if (read_format & PERF_FORMAT_ID)
cdd6c482 3760 values[n++] = primary_event_id(sub);
3dab77fb 3761
76369139 3762 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3763 }
3764}
3765
eed01528
SE
3766#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3767 PERF_FORMAT_TOTAL_TIME_RUNNING)
3768
3dab77fb 3769static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3770 struct perf_event *event)
3dab77fb 3771{
c4794295 3772 u64 enabled = 0, running = 0;
eed01528
SE
3773 u64 read_format = event->attr.read_format;
3774
3775 /*
3776 * compute total_time_enabled, total_time_running
3777 * based on snapshot values taken when the event
3778 * was last scheduled in.
3779 *
3780 * we cannot simply called update_context_time()
3781 * because of locking issue as we are called in
3782 * NMI context
3783 */
c4794295
EM
3784 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3785 calc_timer_values(event, &enabled, &running);
eed01528 3786
cdd6c482 3787 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3788 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3789 else
eed01528 3790 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3791}
3792
5622f295
MM
3793void perf_output_sample(struct perf_output_handle *handle,
3794 struct perf_event_header *header,
3795 struct perf_sample_data *data,
cdd6c482 3796 struct perf_event *event)
5622f295
MM
3797{
3798 u64 sample_type = data->type;
3799
3800 perf_output_put(handle, *header);
3801
3802 if (sample_type & PERF_SAMPLE_IP)
3803 perf_output_put(handle, data->ip);
3804
3805 if (sample_type & PERF_SAMPLE_TID)
3806 perf_output_put(handle, data->tid_entry);
3807
3808 if (sample_type & PERF_SAMPLE_TIME)
3809 perf_output_put(handle, data->time);
3810
3811 if (sample_type & PERF_SAMPLE_ADDR)
3812 perf_output_put(handle, data->addr);
3813
3814 if (sample_type & PERF_SAMPLE_ID)
3815 perf_output_put(handle, data->id);
3816
3817 if (sample_type & PERF_SAMPLE_STREAM_ID)
3818 perf_output_put(handle, data->stream_id);
3819
3820 if (sample_type & PERF_SAMPLE_CPU)
3821 perf_output_put(handle, data->cpu_entry);
3822
3823 if (sample_type & PERF_SAMPLE_PERIOD)
3824 perf_output_put(handle, data->period);
3825
3826 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3827 perf_output_read(handle, event);
5622f295
MM
3828
3829 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3830 if (data->callchain) {
3831 int size = 1;
3832
3833 if (data->callchain)
3834 size += data->callchain->nr;
3835
3836 size *= sizeof(u64);
3837
76369139 3838 __output_copy(handle, data->callchain, size);
5622f295
MM
3839 } else {
3840 u64 nr = 0;
3841 perf_output_put(handle, nr);
3842 }
3843 }
3844
3845 if (sample_type & PERF_SAMPLE_RAW) {
3846 if (data->raw) {
3847 perf_output_put(handle, data->raw->size);
76369139
FW
3848 __output_copy(handle, data->raw->data,
3849 data->raw->size);
5622f295
MM
3850 } else {
3851 struct {
3852 u32 size;
3853 u32 data;
3854 } raw = {
3855 .size = sizeof(u32),
3856 .data = 0,
3857 };
3858 perf_output_put(handle, raw);
3859 }
3860 }
a7ac67ea
PZ
3861
3862 if (!event->attr.watermark) {
3863 int wakeup_events = event->attr.wakeup_events;
3864
3865 if (wakeup_events) {
3866 struct ring_buffer *rb = handle->rb;
3867 int events = local_inc_return(&rb->events);
3868
3869 if (events >= wakeup_events) {
3870 local_sub(wakeup_events, &rb->events);
3871 local_inc(&rb->wakeup);
3872 }
3873 }
3874 }
5622f295
MM
3875}
3876
3877void perf_prepare_sample(struct perf_event_header *header,
3878 struct perf_sample_data *data,
cdd6c482 3879 struct perf_event *event,
5622f295 3880 struct pt_regs *regs)
7b732a75 3881{
cdd6c482 3882 u64 sample_type = event->attr.sample_type;
7b732a75 3883
cdd6c482 3884 header->type = PERF_RECORD_SAMPLE;
c320c7b7 3885 header->size = sizeof(*header) + event->header_size;
5622f295
MM
3886
3887 header->misc = 0;
3888 header->misc |= perf_misc_flags(regs);
6fab0192 3889
c980d109 3890 __perf_event_header__init_id(header, data, event);
6844c09d 3891
c320c7b7 3892 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
3893 data->ip = perf_instruction_pointer(regs);
3894
b23f3325 3895 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 3896 int size = 1;
394ee076 3897
5622f295
MM
3898 data->callchain = perf_callchain(regs);
3899
3900 if (data->callchain)
3901 size += data->callchain->nr;
3902
3903 header->size += size * sizeof(u64);
394ee076
PZ
3904 }
3905
3a43ce68 3906 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
3907 int size = sizeof(u32);
3908
3909 if (data->raw)
3910 size += data->raw->size;
3911 else
3912 size += sizeof(u32);
3913
3914 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 3915 header->size += size;
7f453c24 3916 }
5622f295 3917}
7f453c24 3918
a8b0ca17 3919static void perf_event_output(struct perf_event *event,
5622f295
MM
3920 struct perf_sample_data *data,
3921 struct pt_regs *regs)
3922{
3923 struct perf_output_handle handle;
3924 struct perf_event_header header;
689802b2 3925
927c7a9e
FW
3926 /* protect the callchain buffers */
3927 rcu_read_lock();
3928
cdd6c482 3929 perf_prepare_sample(&header, data, event, regs);
5c148194 3930
a7ac67ea 3931 if (perf_output_begin(&handle, event, header.size))
927c7a9e 3932 goto exit;
0322cd6e 3933
cdd6c482 3934 perf_output_sample(&handle, &header, data, event);
f413cdb8 3935
8a057d84 3936 perf_output_end(&handle);
927c7a9e
FW
3937
3938exit:
3939 rcu_read_unlock();
0322cd6e
PZ
3940}
3941
38b200d6 3942/*
cdd6c482 3943 * read event_id
38b200d6
PZ
3944 */
3945
3946struct perf_read_event {
3947 struct perf_event_header header;
3948
3949 u32 pid;
3950 u32 tid;
38b200d6
PZ
3951};
3952
3953static void
cdd6c482 3954perf_event_read_event(struct perf_event *event,
38b200d6
PZ
3955 struct task_struct *task)
3956{
3957 struct perf_output_handle handle;
c980d109 3958 struct perf_sample_data sample;
dfc65094 3959 struct perf_read_event read_event = {
38b200d6 3960 .header = {
cdd6c482 3961 .type = PERF_RECORD_READ,
38b200d6 3962 .misc = 0,
c320c7b7 3963 .size = sizeof(read_event) + event->read_size,
38b200d6 3964 },
cdd6c482
IM
3965 .pid = perf_event_pid(event, task),
3966 .tid = perf_event_tid(event, task),
38b200d6 3967 };
3dab77fb 3968 int ret;
38b200d6 3969
c980d109 3970 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 3971 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
3972 if (ret)
3973 return;
3974
dfc65094 3975 perf_output_put(&handle, read_event);
cdd6c482 3976 perf_output_read(&handle, event);
c980d109 3977 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 3978
38b200d6
PZ
3979 perf_output_end(&handle);
3980}
3981
60313ebe 3982/*
9f498cc5
PZ
3983 * task tracking -- fork/exit
3984 *
3af9e859 3985 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
3986 */
3987
9f498cc5 3988struct perf_task_event {
3a80b4a3 3989 struct task_struct *task;
cdd6c482 3990 struct perf_event_context *task_ctx;
60313ebe
PZ
3991
3992 struct {
3993 struct perf_event_header header;
3994
3995 u32 pid;
3996 u32 ppid;
9f498cc5
PZ
3997 u32 tid;
3998 u32 ptid;
393b2ad8 3999 u64 time;
cdd6c482 4000 } event_id;
60313ebe
PZ
4001};
4002
cdd6c482 4003static void perf_event_task_output(struct perf_event *event,
9f498cc5 4004 struct perf_task_event *task_event)
60313ebe
PZ
4005{
4006 struct perf_output_handle handle;
c980d109 4007 struct perf_sample_data sample;
9f498cc5 4008 struct task_struct *task = task_event->task;
c980d109 4009 int ret, size = task_event->event_id.header.size;
8bb39f9a 4010
c980d109 4011 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4012
c980d109 4013 ret = perf_output_begin(&handle, event,
a7ac67ea 4014 task_event->event_id.header.size);
ef60777c 4015 if (ret)
c980d109 4016 goto out;
60313ebe 4017
cdd6c482
IM
4018 task_event->event_id.pid = perf_event_pid(event, task);
4019 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4020
cdd6c482
IM
4021 task_event->event_id.tid = perf_event_tid(event, task);
4022 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4023
cdd6c482 4024 perf_output_put(&handle, task_event->event_id);
393b2ad8 4025
c980d109
ACM
4026 perf_event__output_id_sample(event, &handle, &sample);
4027
60313ebe 4028 perf_output_end(&handle);
c980d109
ACM
4029out:
4030 task_event->event_id.header.size = size;
60313ebe
PZ
4031}
4032
cdd6c482 4033static int perf_event_task_match(struct perf_event *event)
60313ebe 4034{
6f93d0a7 4035 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4036 return 0;
4037
5632ab12 4038 if (!event_filter_match(event))
5d27c23d
PZ
4039 return 0;
4040
3af9e859
EM
4041 if (event->attr.comm || event->attr.mmap ||
4042 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4043 return 1;
4044
4045 return 0;
4046}
4047
cdd6c482 4048static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4049 struct perf_task_event *task_event)
60313ebe 4050{
cdd6c482 4051 struct perf_event *event;
60313ebe 4052
cdd6c482
IM
4053 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4054 if (perf_event_task_match(event))
4055 perf_event_task_output(event, task_event);
60313ebe 4056 }
60313ebe
PZ
4057}
4058
cdd6c482 4059static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4060{
4061 struct perf_cpu_context *cpuctx;
8dc85d54 4062 struct perf_event_context *ctx;
108b02cf 4063 struct pmu *pmu;
8dc85d54 4064 int ctxn;
60313ebe 4065
d6ff86cf 4066 rcu_read_lock();
108b02cf 4067 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4068 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4069 if (cpuctx->active_pmu != pmu)
4070 goto next;
108b02cf 4071 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4072
4073 ctx = task_event->task_ctx;
4074 if (!ctx) {
4075 ctxn = pmu->task_ctx_nr;
4076 if (ctxn < 0)
41945f6c 4077 goto next;
8dc85d54
PZ
4078 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4079 }
4080 if (ctx)
4081 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4082next:
4083 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4084 }
60313ebe
PZ
4085 rcu_read_unlock();
4086}
4087
cdd6c482
IM
4088static void perf_event_task(struct task_struct *task,
4089 struct perf_event_context *task_ctx,
3a80b4a3 4090 int new)
60313ebe 4091{
9f498cc5 4092 struct perf_task_event task_event;
60313ebe 4093
cdd6c482
IM
4094 if (!atomic_read(&nr_comm_events) &&
4095 !atomic_read(&nr_mmap_events) &&
4096 !atomic_read(&nr_task_events))
60313ebe
PZ
4097 return;
4098
9f498cc5 4099 task_event = (struct perf_task_event){
3a80b4a3
PZ
4100 .task = task,
4101 .task_ctx = task_ctx,
cdd6c482 4102 .event_id = {
60313ebe 4103 .header = {
cdd6c482 4104 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4105 .misc = 0,
cdd6c482 4106 .size = sizeof(task_event.event_id),
60313ebe 4107 },
573402db
PZ
4108 /* .pid */
4109 /* .ppid */
9f498cc5
PZ
4110 /* .tid */
4111 /* .ptid */
6f93d0a7 4112 .time = perf_clock(),
60313ebe
PZ
4113 },
4114 };
4115
cdd6c482 4116 perf_event_task_event(&task_event);
9f498cc5
PZ
4117}
4118
cdd6c482 4119void perf_event_fork(struct task_struct *task)
9f498cc5 4120{
cdd6c482 4121 perf_event_task(task, NULL, 1);
60313ebe
PZ
4122}
4123
8d1b2d93
PZ
4124/*
4125 * comm tracking
4126 */
4127
4128struct perf_comm_event {
22a4f650
IM
4129 struct task_struct *task;
4130 char *comm;
8d1b2d93
PZ
4131 int comm_size;
4132
4133 struct {
4134 struct perf_event_header header;
4135
4136 u32 pid;
4137 u32 tid;
cdd6c482 4138 } event_id;
8d1b2d93
PZ
4139};
4140
cdd6c482 4141static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4142 struct perf_comm_event *comm_event)
4143{
4144 struct perf_output_handle handle;
c980d109 4145 struct perf_sample_data sample;
cdd6c482 4146 int size = comm_event->event_id.header.size;
c980d109
ACM
4147 int ret;
4148
4149 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4150 ret = perf_output_begin(&handle, event,
a7ac67ea 4151 comm_event->event_id.header.size);
8d1b2d93
PZ
4152
4153 if (ret)
c980d109 4154 goto out;
8d1b2d93 4155
cdd6c482
IM
4156 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4157 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4158
cdd6c482 4159 perf_output_put(&handle, comm_event->event_id);
76369139 4160 __output_copy(&handle, comm_event->comm,
8d1b2d93 4161 comm_event->comm_size);
c980d109
ACM
4162
4163 perf_event__output_id_sample(event, &handle, &sample);
4164
8d1b2d93 4165 perf_output_end(&handle);
c980d109
ACM
4166out:
4167 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4168}
4169
cdd6c482 4170static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4171{
6f93d0a7 4172 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4173 return 0;
4174
5632ab12 4175 if (!event_filter_match(event))
5d27c23d
PZ
4176 return 0;
4177
cdd6c482 4178 if (event->attr.comm)
8d1b2d93
PZ
4179 return 1;
4180
4181 return 0;
4182}
4183
cdd6c482 4184static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4185 struct perf_comm_event *comm_event)
4186{
cdd6c482 4187 struct perf_event *event;
8d1b2d93 4188
cdd6c482
IM
4189 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4190 if (perf_event_comm_match(event))
4191 perf_event_comm_output(event, comm_event);
8d1b2d93 4192 }
8d1b2d93
PZ
4193}
4194
cdd6c482 4195static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4196{
4197 struct perf_cpu_context *cpuctx;
cdd6c482 4198 struct perf_event_context *ctx;
413ee3b4 4199 char comm[TASK_COMM_LEN];
8d1b2d93 4200 unsigned int size;
108b02cf 4201 struct pmu *pmu;
8dc85d54 4202 int ctxn;
8d1b2d93 4203
413ee3b4 4204 memset(comm, 0, sizeof(comm));
96b02d78 4205 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4206 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4207
4208 comm_event->comm = comm;
4209 comm_event->comm_size = size;
4210
cdd6c482 4211 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4212 rcu_read_lock();
108b02cf 4213 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4214 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4215 if (cpuctx->active_pmu != pmu)
4216 goto next;
108b02cf 4217 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4218
4219 ctxn = pmu->task_ctx_nr;
4220 if (ctxn < 0)
41945f6c 4221 goto next;
8dc85d54
PZ
4222
4223 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4224 if (ctx)
4225 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4226next:
4227 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4228 }
665c2142 4229 rcu_read_unlock();
8d1b2d93
PZ
4230}
4231
cdd6c482 4232void perf_event_comm(struct task_struct *task)
8d1b2d93 4233{
9ee318a7 4234 struct perf_comm_event comm_event;
8dc85d54
PZ
4235 struct perf_event_context *ctx;
4236 int ctxn;
9ee318a7 4237
8dc85d54
PZ
4238 for_each_task_context_nr(ctxn) {
4239 ctx = task->perf_event_ctxp[ctxn];
4240 if (!ctx)
4241 continue;
9ee318a7 4242
8dc85d54
PZ
4243 perf_event_enable_on_exec(ctx);
4244 }
9ee318a7 4245
cdd6c482 4246 if (!atomic_read(&nr_comm_events))
9ee318a7 4247 return;
a63eaf34 4248
9ee318a7 4249 comm_event = (struct perf_comm_event){
8d1b2d93 4250 .task = task,
573402db
PZ
4251 /* .comm */
4252 /* .comm_size */
cdd6c482 4253 .event_id = {
573402db 4254 .header = {
cdd6c482 4255 .type = PERF_RECORD_COMM,
573402db
PZ
4256 .misc = 0,
4257 /* .size */
4258 },
4259 /* .pid */
4260 /* .tid */
8d1b2d93
PZ
4261 },
4262 };
4263
cdd6c482 4264 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4265}
4266
0a4a9391
PZ
4267/*
4268 * mmap tracking
4269 */
4270
4271struct perf_mmap_event {
089dd79d
PZ
4272 struct vm_area_struct *vma;
4273
4274 const char *file_name;
4275 int file_size;
0a4a9391
PZ
4276
4277 struct {
4278 struct perf_event_header header;
4279
4280 u32 pid;
4281 u32 tid;
4282 u64 start;
4283 u64 len;
4284 u64 pgoff;
cdd6c482 4285 } event_id;
0a4a9391
PZ
4286};
4287
cdd6c482 4288static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4289 struct perf_mmap_event *mmap_event)
4290{
4291 struct perf_output_handle handle;
c980d109 4292 struct perf_sample_data sample;
cdd6c482 4293 int size = mmap_event->event_id.header.size;
c980d109 4294 int ret;
0a4a9391 4295
c980d109
ACM
4296 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4297 ret = perf_output_begin(&handle, event,
a7ac67ea 4298 mmap_event->event_id.header.size);
0a4a9391 4299 if (ret)
c980d109 4300 goto out;
0a4a9391 4301
cdd6c482
IM
4302 mmap_event->event_id.pid = perf_event_pid(event, current);
4303 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4304
cdd6c482 4305 perf_output_put(&handle, mmap_event->event_id);
76369139 4306 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4307 mmap_event->file_size);
c980d109
ACM
4308
4309 perf_event__output_id_sample(event, &handle, &sample);
4310
78d613eb 4311 perf_output_end(&handle);
c980d109
ACM
4312out:
4313 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4314}
4315
cdd6c482 4316static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4317 struct perf_mmap_event *mmap_event,
4318 int executable)
0a4a9391 4319{
6f93d0a7 4320 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4321 return 0;
4322
5632ab12 4323 if (!event_filter_match(event))
5d27c23d
PZ
4324 return 0;
4325
3af9e859
EM
4326 if ((!executable && event->attr.mmap_data) ||
4327 (executable && event->attr.mmap))
0a4a9391
PZ
4328 return 1;
4329
4330 return 0;
4331}
4332
cdd6c482 4333static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4334 struct perf_mmap_event *mmap_event,
4335 int executable)
0a4a9391 4336{
cdd6c482 4337 struct perf_event *event;
0a4a9391 4338
cdd6c482 4339 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4340 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4341 perf_event_mmap_output(event, mmap_event);
0a4a9391 4342 }
0a4a9391
PZ
4343}
4344
cdd6c482 4345static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4346{
4347 struct perf_cpu_context *cpuctx;
cdd6c482 4348 struct perf_event_context *ctx;
089dd79d
PZ
4349 struct vm_area_struct *vma = mmap_event->vma;
4350 struct file *file = vma->vm_file;
0a4a9391
PZ
4351 unsigned int size;
4352 char tmp[16];
4353 char *buf = NULL;
089dd79d 4354 const char *name;
108b02cf 4355 struct pmu *pmu;
8dc85d54 4356 int ctxn;
0a4a9391 4357
413ee3b4
AB
4358 memset(tmp, 0, sizeof(tmp));
4359
0a4a9391 4360 if (file) {
413ee3b4 4361 /*
76369139 4362 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4363 * need to add enough zero bytes after the string to handle
4364 * the 64bit alignment we do later.
4365 */
4366 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4367 if (!buf) {
4368 name = strncpy(tmp, "//enomem", sizeof(tmp));
4369 goto got_name;
4370 }
d3d21c41 4371 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4372 if (IS_ERR(name)) {
4373 name = strncpy(tmp, "//toolong", sizeof(tmp));
4374 goto got_name;
4375 }
4376 } else {
413ee3b4
AB
4377 if (arch_vma_name(mmap_event->vma)) {
4378 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4379 sizeof(tmp));
089dd79d 4380 goto got_name;
413ee3b4 4381 }
089dd79d
PZ
4382
4383 if (!vma->vm_mm) {
4384 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4385 goto got_name;
3af9e859
EM
4386 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4387 vma->vm_end >= vma->vm_mm->brk) {
4388 name = strncpy(tmp, "[heap]", sizeof(tmp));
4389 goto got_name;
4390 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4391 vma->vm_end >= vma->vm_mm->start_stack) {
4392 name = strncpy(tmp, "[stack]", sizeof(tmp));
4393 goto got_name;
089dd79d
PZ
4394 }
4395
0a4a9391
PZ
4396 name = strncpy(tmp, "//anon", sizeof(tmp));
4397 goto got_name;
4398 }
4399
4400got_name:
888fcee0 4401 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4402
4403 mmap_event->file_name = name;
4404 mmap_event->file_size = size;
4405
cdd6c482 4406 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4407
f6d9dd23 4408 rcu_read_lock();
108b02cf 4409 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4410 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4411 if (cpuctx->active_pmu != pmu)
4412 goto next;
108b02cf
PZ
4413 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4414 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4415
4416 ctxn = pmu->task_ctx_nr;
4417 if (ctxn < 0)
41945f6c 4418 goto next;
8dc85d54
PZ
4419
4420 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4421 if (ctx) {
4422 perf_event_mmap_ctx(ctx, mmap_event,
4423 vma->vm_flags & VM_EXEC);
4424 }
41945f6c
PZ
4425next:
4426 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4427 }
665c2142
PZ
4428 rcu_read_unlock();
4429
0a4a9391
PZ
4430 kfree(buf);
4431}
4432
3af9e859 4433void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4434{
9ee318a7
PZ
4435 struct perf_mmap_event mmap_event;
4436
cdd6c482 4437 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4438 return;
4439
4440 mmap_event = (struct perf_mmap_event){
089dd79d 4441 .vma = vma,
573402db
PZ
4442 /* .file_name */
4443 /* .file_size */
cdd6c482 4444 .event_id = {
573402db 4445 .header = {
cdd6c482 4446 .type = PERF_RECORD_MMAP,
39447b38 4447 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4448 /* .size */
4449 },
4450 /* .pid */
4451 /* .tid */
089dd79d
PZ
4452 .start = vma->vm_start,
4453 .len = vma->vm_end - vma->vm_start,
3a0304e9 4454 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4455 },
4456 };
4457
cdd6c482 4458 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4459}
4460
a78ac325
PZ
4461/*
4462 * IRQ throttle logging
4463 */
4464
cdd6c482 4465static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4466{
4467 struct perf_output_handle handle;
c980d109 4468 struct perf_sample_data sample;
a78ac325
PZ
4469 int ret;
4470
4471 struct {
4472 struct perf_event_header header;
4473 u64 time;
cca3f454 4474 u64 id;
7f453c24 4475 u64 stream_id;
a78ac325
PZ
4476 } throttle_event = {
4477 .header = {
cdd6c482 4478 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4479 .misc = 0,
4480 .size = sizeof(throttle_event),
4481 },
def0a9b2 4482 .time = perf_clock(),
cdd6c482
IM
4483 .id = primary_event_id(event),
4484 .stream_id = event->id,
a78ac325
PZ
4485 };
4486
966ee4d6 4487 if (enable)
cdd6c482 4488 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4489
c980d109
ACM
4490 perf_event_header__init_id(&throttle_event.header, &sample, event);
4491
4492 ret = perf_output_begin(&handle, event,
a7ac67ea 4493 throttle_event.header.size);
a78ac325
PZ
4494 if (ret)
4495 return;
4496
4497 perf_output_put(&handle, throttle_event);
c980d109 4498 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4499 perf_output_end(&handle);
4500}
4501
f6c7d5fe 4502/*
cdd6c482 4503 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4504 */
4505
a8b0ca17 4506static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4507 int throttle, struct perf_sample_data *data,
4508 struct pt_regs *regs)
f6c7d5fe 4509{
cdd6c482
IM
4510 int events = atomic_read(&event->event_limit);
4511 struct hw_perf_event *hwc = &event->hw;
79f14641
PZ
4512 int ret = 0;
4513
96398826
PZ
4514 /*
4515 * Non-sampling counters might still use the PMI to fold short
4516 * hardware counters, ignore those.
4517 */
4518 if (unlikely(!is_sampling_event(event)))
4519 return 0;
4520
163ec435
PZ
4521 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4522 if (throttle) {
4523 hwc->interrupts = MAX_INTERRUPTS;
4524 perf_log_throttle(event, 0);
a78ac325
PZ
4525 ret = 1;
4526 }
163ec435
PZ
4527 } else
4528 hwc->interrupts++;
60db5e09 4529
cdd6c482 4530 if (event->attr.freq) {
def0a9b2 4531 u64 now = perf_clock();
abd50713 4532 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4533
abd50713 4534 hwc->freq_time_stamp = now;
bd2b5b12 4535
abd50713
PZ
4536 if (delta > 0 && delta < 2*TICK_NSEC)
4537 perf_adjust_period(event, delta, hwc->last_period);
bd2b5b12
PZ
4538 }
4539
2023b359
PZ
4540 /*
4541 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4542 * events
2023b359
PZ
4543 */
4544
cdd6c482
IM
4545 event->pending_kill = POLL_IN;
4546 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4547 ret = 1;
cdd6c482 4548 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4549 event->pending_disable = 1;
4550 irq_work_queue(&event->pending);
79f14641
PZ
4551 }
4552
453f19ee 4553 if (event->overflow_handler)
a8b0ca17 4554 event->overflow_handler(event, data, regs);
453f19ee 4555 else
a8b0ca17 4556 perf_event_output(event, data, regs);
453f19ee 4557
f506b3dc 4558 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4559 event->pending_wakeup = 1;
4560 irq_work_queue(&event->pending);
f506b3dc
PZ
4561 }
4562
79f14641 4563 return ret;
f6c7d5fe
PZ
4564}
4565
a8b0ca17 4566int perf_event_overflow(struct perf_event *event,
5622f295
MM
4567 struct perf_sample_data *data,
4568 struct pt_regs *regs)
850bc73f 4569{
a8b0ca17 4570 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4571}
4572
15dbf27c 4573/*
cdd6c482 4574 * Generic software event infrastructure
15dbf27c
PZ
4575 */
4576
b28ab83c
PZ
4577struct swevent_htable {
4578 struct swevent_hlist *swevent_hlist;
4579 struct mutex hlist_mutex;
4580 int hlist_refcount;
4581
4582 /* Recursion avoidance in each contexts */
4583 int recursion[PERF_NR_CONTEXTS];
4584};
4585
4586static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4587
7b4b6658 4588/*
cdd6c482
IM
4589 * We directly increment event->count and keep a second value in
4590 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4591 * is kept in the range [-sample_period, 0] so that we can use the
4592 * sign as trigger.
4593 */
4594
cdd6c482 4595static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4596{
cdd6c482 4597 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4598 u64 period = hwc->last_period;
4599 u64 nr, offset;
4600 s64 old, val;
4601
4602 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4603
4604again:
e7850595 4605 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4606 if (val < 0)
4607 return 0;
15dbf27c 4608
7b4b6658
PZ
4609 nr = div64_u64(period + val, period);
4610 offset = nr * period;
4611 val -= offset;
e7850595 4612 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4613 goto again;
15dbf27c 4614
7b4b6658 4615 return nr;
15dbf27c
PZ
4616}
4617
0cff784a 4618static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4619 struct perf_sample_data *data,
5622f295 4620 struct pt_regs *regs)
15dbf27c 4621{
cdd6c482 4622 struct hw_perf_event *hwc = &event->hw;
850bc73f 4623 int throttle = 0;
15dbf27c 4624
0cff784a
PZ
4625 if (!overflow)
4626 overflow = perf_swevent_set_period(event);
15dbf27c 4627
7b4b6658
PZ
4628 if (hwc->interrupts == MAX_INTERRUPTS)
4629 return;
15dbf27c 4630
7b4b6658 4631 for (; overflow; overflow--) {
a8b0ca17 4632 if (__perf_event_overflow(event, throttle,
5622f295 4633 data, regs)) {
7b4b6658
PZ
4634 /*
4635 * We inhibit the overflow from happening when
4636 * hwc->interrupts == MAX_INTERRUPTS.
4637 */
4638 break;
4639 }
cf450a73 4640 throttle = 1;
7b4b6658 4641 }
15dbf27c
PZ
4642}
4643
a4eaf7f1 4644static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4645 struct perf_sample_data *data,
5622f295 4646 struct pt_regs *regs)
7b4b6658 4647{
cdd6c482 4648 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4649
e7850595 4650 local64_add(nr, &event->count);
d6d020e9 4651
0cff784a
PZ
4652 if (!regs)
4653 return;
4654
6c7e550f 4655 if (!is_sampling_event(event))
7b4b6658 4656 return;
d6d020e9 4657
5d81e5cf
AV
4658 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4659 data->period = nr;
4660 return perf_swevent_overflow(event, 1, data, regs);
4661 } else
4662 data->period = event->hw.last_period;
4663
0cff784a 4664 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4665 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4666
e7850595 4667 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4668 return;
df1a132b 4669
a8b0ca17 4670 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4671}
4672
f5ffe02e
FW
4673static int perf_exclude_event(struct perf_event *event,
4674 struct pt_regs *regs)
4675{
a4eaf7f1 4676 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4677 return 1;
a4eaf7f1 4678
f5ffe02e
FW
4679 if (regs) {
4680 if (event->attr.exclude_user && user_mode(regs))
4681 return 1;
4682
4683 if (event->attr.exclude_kernel && !user_mode(regs))
4684 return 1;
4685 }
4686
4687 return 0;
4688}
4689
cdd6c482 4690static int perf_swevent_match(struct perf_event *event,
1c432d89 4691 enum perf_type_id type,
6fb2915d
LZ
4692 u32 event_id,
4693 struct perf_sample_data *data,
4694 struct pt_regs *regs)
15dbf27c 4695{
cdd6c482 4696 if (event->attr.type != type)
a21ca2ca 4697 return 0;
f5ffe02e 4698
cdd6c482 4699 if (event->attr.config != event_id)
15dbf27c
PZ
4700 return 0;
4701
f5ffe02e
FW
4702 if (perf_exclude_event(event, regs))
4703 return 0;
15dbf27c
PZ
4704
4705 return 1;
4706}
4707
76e1d904
FW
4708static inline u64 swevent_hash(u64 type, u32 event_id)
4709{
4710 u64 val = event_id | (type << 32);
4711
4712 return hash_64(val, SWEVENT_HLIST_BITS);
4713}
4714
49f135ed
FW
4715static inline struct hlist_head *
4716__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4717{
49f135ed
FW
4718 u64 hash = swevent_hash(type, event_id);
4719
4720 return &hlist->heads[hash];
4721}
76e1d904 4722
49f135ed
FW
4723/* For the read side: events when they trigger */
4724static inline struct hlist_head *
b28ab83c 4725find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4726{
4727 struct swevent_hlist *hlist;
76e1d904 4728
b28ab83c 4729 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4730 if (!hlist)
4731 return NULL;
4732
49f135ed
FW
4733 return __find_swevent_head(hlist, type, event_id);
4734}
4735
4736/* For the event head insertion and removal in the hlist */
4737static inline struct hlist_head *
b28ab83c 4738find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4739{
4740 struct swevent_hlist *hlist;
4741 u32 event_id = event->attr.config;
4742 u64 type = event->attr.type;
4743
4744 /*
4745 * Event scheduling is always serialized against hlist allocation
4746 * and release. Which makes the protected version suitable here.
4747 * The context lock guarantees that.
4748 */
b28ab83c 4749 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4750 lockdep_is_held(&event->ctx->lock));
4751 if (!hlist)
4752 return NULL;
4753
4754 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4755}
4756
4757static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4758 u64 nr,
76e1d904
FW
4759 struct perf_sample_data *data,
4760 struct pt_regs *regs)
15dbf27c 4761{
b28ab83c 4762 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4763 struct perf_event *event;
76e1d904
FW
4764 struct hlist_node *node;
4765 struct hlist_head *head;
15dbf27c 4766
76e1d904 4767 rcu_read_lock();
b28ab83c 4768 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4769 if (!head)
4770 goto end;
4771
4772 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4773 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4774 perf_swevent_event(event, nr, data, regs);
15dbf27c 4775 }
76e1d904
FW
4776end:
4777 rcu_read_unlock();
15dbf27c
PZ
4778}
4779
4ed7c92d 4780int perf_swevent_get_recursion_context(void)
96f6d444 4781{
b28ab83c 4782 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4783
b28ab83c 4784 return get_recursion_context(swhash->recursion);
96f6d444 4785}
645e8cc0 4786EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4787
fa9f90be 4788inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4789{
b28ab83c 4790 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4791
b28ab83c 4792 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4793}
15dbf27c 4794
a8b0ca17 4795void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4796{
a4234bfc 4797 struct perf_sample_data data;
4ed7c92d
PZ
4798 int rctx;
4799
1c024eca 4800 preempt_disable_notrace();
4ed7c92d
PZ
4801 rctx = perf_swevent_get_recursion_context();
4802 if (rctx < 0)
4803 return;
a4234bfc 4804
dc1d628a 4805 perf_sample_data_init(&data, addr);
92bf309a 4806
a8b0ca17 4807 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4808
4809 perf_swevent_put_recursion_context(rctx);
1c024eca 4810 preempt_enable_notrace();
b8e83514
PZ
4811}
4812
cdd6c482 4813static void perf_swevent_read(struct perf_event *event)
15dbf27c 4814{
15dbf27c
PZ
4815}
4816
a4eaf7f1 4817static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4818{
b28ab83c 4819 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4820 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4821 struct hlist_head *head;
4822
6c7e550f 4823 if (is_sampling_event(event)) {
7b4b6658 4824 hwc->last_period = hwc->sample_period;
cdd6c482 4825 perf_swevent_set_period(event);
7b4b6658 4826 }
76e1d904 4827
a4eaf7f1
PZ
4828 hwc->state = !(flags & PERF_EF_START);
4829
b28ab83c 4830 head = find_swevent_head(swhash, event);
76e1d904
FW
4831 if (WARN_ON_ONCE(!head))
4832 return -EINVAL;
4833
4834 hlist_add_head_rcu(&event->hlist_entry, head);
4835
15dbf27c
PZ
4836 return 0;
4837}
4838
a4eaf7f1 4839static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 4840{
76e1d904 4841 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
4842}
4843
a4eaf7f1 4844static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 4845{
a4eaf7f1 4846 event->hw.state = 0;
d6d020e9 4847}
aa9c4c0f 4848
a4eaf7f1 4849static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 4850{
a4eaf7f1 4851 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
4852}
4853
49f135ed
FW
4854/* Deref the hlist from the update side */
4855static inline struct swevent_hlist *
b28ab83c 4856swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 4857{
b28ab83c
PZ
4858 return rcu_dereference_protected(swhash->swevent_hlist,
4859 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
4860}
4861
b28ab83c 4862static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 4863{
b28ab83c 4864 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 4865
49f135ed 4866 if (!hlist)
76e1d904
FW
4867 return;
4868
b28ab83c 4869 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 4870 kfree_rcu(hlist, rcu_head);
76e1d904
FW
4871}
4872
4873static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4874{
b28ab83c 4875 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 4876
b28ab83c 4877 mutex_lock(&swhash->hlist_mutex);
76e1d904 4878
b28ab83c
PZ
4879 if (!--swhash->hlist_refcount)
4880 swevent_hlist_release(swhash);
76e1d904 4881
b28ab83c 4882 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4883}
4884
4885static void swevent_hlist_put(struct perf_event *event)
4886{
4887 int cpu;
4888
4889 if (event->cpu != -1) {
4890 swevent_hlist_put_cpu(event, event->cpu);
4891 return;
4892 }
4893
4894 for_each_possible_cpu(cpu)
4895 swevent_hlist_put_cpu(event, cpu);
4896}
4897
4898static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4899{
b28ab83c 4900 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
4901 int err = 0;
4902
b28ab83c 4903 mutex_lock(&swhash->hlist_mutex);
76e1d904 4904
b28ab83c 4905 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
4906 struct swevent_hlist *hlist;
4907
4908 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4909 if (!hlist) {
4910 err = -ENOMEM;
4911 goto exit;
4912 }
b28ab83c 4913 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 4914 }
b28ab83c 4915 swhash->hlist_refcount++;
9ed6060d 4916exit:
b28ab83c 4917 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4918
4919 return err;
4920}
4921
4922static int swevent_hlist_get(struct perf_event *event)
4923{
4924 int err;
4925 int cpu, failed_cpu;
4926
4927 if (event->cpu != -1)
4928 return swevent_hlist_get_cpu(event, event->cpu);
4929
4930 get_online_cpus();
4931 for_each_possible_cpu(cpu) {
4932 err = swevent_hlist_get_cpu(event, cpu);
4933 if (err) {
4934 failed_cpu = cpu;
4935 goto fail;
4936 }
4937 }
4938 put_online_cpus();
4939
4940 return 0;
9ed6060d 4941fail:
76e1d904
FW
4942 for_each_possible_cpu(cpu) {
4943 if (cpu == failed_cpu)
4944 break;
4945 swevent_hlist_put_cpu(event, cpu);
4946 }
4947
4948 put_online_cpus();
4949 return err;
4950}
4951
d430d3d7 4952struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 4953
b0a873eb
PZ
4954static void sw_perf_event_destroy(struct perf_event *event)
4955{
4956 u64 event_id = event->attr.config;
95476b64 4957
b0a873eb
PZ
4958 WARN_ON(event->parent);
4959
7e54a5a0 4960 jump_label_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
4961 swevent_hlist_put(event);
4962}
4963
4964static int perf_swevent_init(struct perf_event *event)
4965{
4966 int event_id = event->attr.config;
4967
4968 if (event->attr.type != PERF_TYPE_SOFTWARE)
4969 return -ENOENT;
4970
4971 switch (event_id) {
4972 case PERF_COUNT_SW_CPU_CLOCK:
4973 case PERF_COUNT_SW_TASK_CLOCK:
4974 return -ENOENT;
4975
4976 default:
4977 break;
4978 }
4979
ce677831 4980 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
4981 return -ENOENT;
4982
4983 if (!event->parent) {
4984 int err;
4985
4986 err = swevent_hlist_get(event);
4987 if (err)
4988 return err;
4989
7e54a5a0 4990 jump_label_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
4991 event->destroy = sw_perf_event_destroy;
4992 }
4993
4994 return 0;
4995}
4996
4997static struct pmu perf_swevent = {
89a1e187 4998 .task_ctx_nr = perf_sw_context,
95476b64 4999
b0a873eb 5000 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5001 .add = perf_swevent_add,
5002 .del = perf_swevent_del,
5003 .start = perf_swevent_start,
5004 .stop = perf_swevent_stop,
1c024eca 5005 .read = perf_swevent_read,
1c024eca
PZ
5006};
5007
b0a873eb
PZ
5008#ifdef CONFIG_EVENT_TRACING
5009
1c024eca
PZ
5010static int perf_tp_filter_match(struct perf_event *event,
5011 struct perf_sample_data *data)
5012{
5013 void *record = data->raw->data;
5014
5015 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5016 return 1;
5017 return 0;
5018}
5019
5020static int perf_tp_event_match(struct perf_event *event,
5021 struct perf_sample_data *data,
5022 struct pt_regs *regs)
5023{
a0f7d0f7
FW
5024 if (event->hw.state & PERF_HES_STOPPED)
5025 return 0;
580d607c
PZ
5026 /*
5027 * All tracepoints are from kernel-space.
5028 */
5029 if (event->attr.exclude_kernel)
1c024eca
PZ
5030 return 0;
5031
5032 if (!perf_tp_filter_match(event, data))
5033 return 0;
5034
5035 return 1;
5036}
5037
5038void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
ecc55f84 5039 struct pt_regs *regs, struct hlist_head *head, int rctx)
95476b64
FW
5040{
5041 struct perf_sample_data data;
1c024eca
PZ
5042 struct perf_event *event;
5043 struct hlist_node *node;
5044
95476b64
FW
5045 struct perf_raw_record raw = {
5046 .size = entry_size,
5047 .data = record,
5048 };
5049
5050 perf_sample_data_init(&data, addr);
5051 data.raw = &raw;
5052
1c024eca
PZ
5053 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5054 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5055 perf_swevent_event(event, count, &data, regs);
4f41c013 5056 }
ecc55f84
PZ
5057
5058 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5059}
5060EXPORT_SYMBOL_GPL(perf_tp_event);
5061
cdd6c482 5062static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5063{
1c024eca 5064 perf_trace_destroy(event);
e077df4f
PZ
5065}
5066
b0a873eb 5067static int perf_tp_event_init(struct perf_event *event)
e077df4f 5068{
76e1d904
FW
5069 int err;
5070
b0a873eb
PZ
5071 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5072 return -ENOENT;
5073
1c024eca
PZ
5074 err = perf_trace_init(event);
5075 if (err)
b0a873eb 5076 return err;
e077df4f 5077
cdd6c482 5078 event->destroy = tp_perf_event_destroy;
e077df4f 5079
b0a873eb
PZ
5080 return 0;
5081}
5082
5083static struct pmu perf_tracepoint = {
89a1e187
PZ
5084 .task_ctx_nr = perf_sw_context,
5085
b0a873eb 5086 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5087 .add = perf_trace_add,
5088 .del = perf_trace_del,
5089 .start = perf_swevent_start,
5090 .stop = perf_swevent_stop,
b0a873eb 5091 .read = perf_swevent_read,
b0a873eb
PZ
5092};
5093
5094static inline void perf_tp_register(void)
5095{
2e80a82a 5096 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5097}
6fb2915d
LZ
5098
5099static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5100{
5101 char *filter_str;
5102 int ret;
5103
5104 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5105 return -EINVAL;
5106
5107 filter_str = strndup_user(arg, PAGE_SIZE);
5108 if (IS_ERR(filter_str))
5109 return PTR_ERR(filter_str);
5110
5111 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5112
5113 kfree(filter_str);
5114 return ret;
5115}
5116
5117static void perf_event_free_filter(struct perf_event *event)
5118{
5119 ftrace_profile_free_filter(event);
5120}
5121
e077df4f 5122#else
6fb2915d 5123
b0a873eb 5124static inline void perf_tp_register(void)
e077df4f 5125{
e077df4f 5126}
6fb2915d
LZ
5127
5128static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5129{
5130 return -ENOENT;
5131}
5132
5133static void perf_event_free_filter(struct perf_event *event)
5134{
5135}
5136
07b139c8 5137#endif /* CONFIG_EVENT_TRACING */
e077df4f 5138
24f1e32c 5139#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5140void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5141{
f5ffe02e
FW
5142 struct perf_sample_data sample;
5143 struct pt_regs *regs = data;
5144
dc1d628a 5145 perf_sample_data_init(&sample, bp->attr.bp_addr);
f5ffe02e 5146
a4eaf7f1 5147 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5148 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5149}
5150#endif
5151
b0a873eb
PZ
5152/*
5153 * hrtimer based swevent callback
5154 */
f29ac756 5155
b0a873eb 5156static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5157{
b0a873eb
PZ
5158 enum hrtimer_restart ret = HRTIMER_RESTART;
5159 struct perf_sample_data data;
5160 struct pt_regs *regs;
5161 struct perf_event *event;
5162 u64 period;
f29ac756 5163
b0a873eb 5164 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5165
5166 if (event->state != PERF_EVENT_STATE_ACTIVE)
5167 return HRTIMER_NORESTART;
5168
b0a873eb 5169 event->pmu->read(event);
f344011c 5170
b0a873eb
PZ
5171 perf_sample_data_init(&data, 0);
5172 data.period = event->hw.last_period;
5173 regs = get_irq_regs();
5174
5175 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5176 if (!(event->attr.exclude_idle && is_idle_task(current)))
a8b0ca17 5177 if (perf_event_overflow(event, &data, regs))
b0a873eb
PZ
5178 ret = HRTIMER_NORESTART;
5179 }
24f1e32c 5180
b0a873eb
PZ
5181 period = max_t(u64, 10000, event->hw.sample_period);
5182 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5183
b0a873eb 5184 return ret;
f29ac756
PZ
5185}
5186
b0a873eb 5187static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5188{
b0a873eb 5189 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5190 s64 period;
5191
5192 if (!is_sampling_event(event))
5193 return;
f5ffe02e 5194
5d508e82
FBH
5195 period = local64_read(&hwc->period_left);
5196 if (period) {
5197 if (period < 0)
5198 period = 10000;
fa407f35 5199
5d508e82
FBH
5200 local64_set(&hwc->period_left, 0);
5201 } else {
5202 period = max_t(u64, 10000, hwc->sample_period);
5203 }
5204 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5205 ns_to_ktime(period), 0,
b5ab4cd5 5206 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5207}
b0a873eb
PZ
5208
5209static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5210{
b0a873eb
PZ
5211 struct hw_perf_event *hwc = &event->hw;
5212
6c7e550f 5213 if (is_sampling_event(event)) {
b0a873eb 5214 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5215 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5216
5217 hrtimer_cancel(&hwc->hrtimer);
5218 }
24f1e32c
FW
5219}
5220
ba3dd36c
PZ
5221static void perf_swevent_init_hrtimer(struct perf_event *event)
5222{
5223 struct hw_perf_event *hwc = &event->hw;
5224
5225 if (!is_sampling_event(event))
5226 return;
5227
5228 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5229 hwc->hrtimer.function = perf_swevent_hrtimer;
5230
5231 /*
5232 * Since hrtimers have a fixed rate, we can do a static freq->period
5233 * mapping and avoid the whole period adjust feedback stuff.
5234 */
5235 if (event->attr.freq) {
5236 long freq = event->attr.sample_freq;
5237
5238 event->attr.sample_period = NSEC_PER_SEC / freq;
5239 hwc->sample_period = event->attr.sample_period;
5240 local64_set(&hwc->period_left, hwc->sample_period);
5241 event->attr.freq = 0;
5242 }
5243}
5244
b0a873eb
PZ
5245/*
5246 * Software event: cpu wall time clock
5247 */
5248
5249static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5250{
b0a873eb
PZ
5251 s64 prev;
5252 u64 now;
5253
a4eaf7f1 5254 now = local_clock();
b0a873eb
PZ
5255 prev = local64_xchg(&event->hw.prev_count, now);
5256 local64_add(now - prev, &event->count);
24f1e32c 5257}
24f1e32c 5258
a4eaf7f1 5259static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5260{
a4eaf7f1 5261 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5262 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5263}
5264
a4eaf7f1 5265static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5266{
b0a873eb
PZ
5267 perf_swevent_cancel_hrtimer(event);
5268 cpu_clock_event_update(event);
5269}
f29ac756 5270
a4eaf7f1
PZ
5271static int cpu_clock_event_add(struct perf_event *event, int flags)
5272{
5273 if (flags & PERF_EF_START)
5274 cpu_clock_event_start(event, flags);
5275
5276 return 0;
5277}
5278
5279static void cpu_clock_event_del(struct perf_event *event, int flags)
5280{
5281 cpu_clock_event_stop(event, flags);
5282}
5283
b0a873eb
PZ
5284static void cpu_clock_event_read(struct perf_event *event)
5285{
5286 cpu_clock_event_update(event);
5287}
f344011c 5288
b0a873eb
PZ
5289static int cpu_clock_event_init(struct perf_event *event)
5290{
5291 if (event->attr.type != PERF_TYPE_SOFTWARE)
5292 return -ENOENT;
5293
5294 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5295 return -ENOENT;
5296
ba3dd36c
PZ
5297 perf_swevent_init_hrtimer(event);
5298
b0a873eb 5299 return 0;
f29ac756
PZ
5300}
5301
b0a873eb 5302static struct pmu perf_cpu_clock = {
89a1e187
PZ
5303 .task_ctx_nr = perf_sw_context,
5304
b0a873eb 5305 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5306 .add = cpu_clock_event_add,
5307 .del = cpu_clock_event_del,
5308 .start = cpu_clock_event_start,
5309 .stop = cpu_clock_event_stop,
b0a873eb
PZ
5310 .read = cpu_clock_event_read,
5311};
5312
5313/*
5314 * Software event: task time clock
5315 */
5316
5317static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5318{
b0a873eb
PZ
5319 u64 prev;
5320 s64 delta;
5c92d124 5321
b0a873eb
PZ
5322 prev = local64_xchg(&event->hw.prev_count, now);
5323 delta = now - prev;
5324 local64_add(delta, &event->count);
5325}
5c92d124 5326
a4eaf7f1 5327static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5328{
a4eaf7f1 5329 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5330 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5331}
5332
a4eaf7f1 5333static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5334{
5335 perf_swevent_cancel_hrtimer(event);
5336 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5337}
5338
5339static int task_clock_event_add(struct perf_event *event, int flags)
5340{
5341 if (flags & PERF_EF_START)
5342 task_clock_event_start(event, flags);
b0a873eb 5343
a4eaf7f1
PZ
5344 return 0;
5345}
5346
5347static void task_clock_event_del(struct perf_event *event, int flags)
5348{
5349 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5350}
5351
5352static void task_clock_event_read(struct perf_event *event)
5353{
768a06e2
PZ
5354 u64 now = perf_clock();
5355 u64 delta = now - event->ctx->timestamp;
5356 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5357
5358 task_clock_event_update(event, time);
5359}
5360
5361static int task_clock_event_init(struct perf_event *event)
6fb2915d 5362{
b0a873eb
PZ
5363 if (event->attr.type != PERF_TYPE_SOFTWARE)
5364 return -ENOENT;
5365
5366 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5367 return -ENOENT;
5368
ba3dd36c
PZ
5369 perf_swevent_init_hrtimer(event);
5370
b0a873eb 5371 return 0;
6fb2915d
LZ
5372}
5373
b0a873eb 5374static struct pmu perf_task_clock = {
89a1e187
PZ
5375 .task_ctx_nr = perf_sw_context,
5376
b0a873eb 5377 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5378 .add = task_clock_event_add,
5379 .del = task_clock_event_del,
5380 .start = task_clock_event_start,
5381 .stop = task_clock_event_stop,
b0a873eb
PZ
5382 .read = task_clock_event_read,
5383};
6fb2915d 5384
ad5133b7 5385static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5386{
e077df4f 5387}
6fb2915d 5388
ad5133b7 5389static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5390{
ad5133b7 5391 return 0;
6fb2915d
LZ
5392}
5393
ad5133b7 5394static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5395{
ad5133b7 5396 perf_pmu_disable(pmu);
6fb2915d
LZ
5397}
5398
ad5133b7
PZ
5399static int perf_pmu_commit_txn(struct pmu *pmu)
5400{
5401 perf_pmu_enable(pmu);
5402 return 0;
5403}
e077df4f 5404
ad5133b7 5405static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5406{
ad5133b7 5407 perf_pmu_enable(pmu);
24f1e32c
FW
5408}
5409
8dc85d54
PZ
5410/*
5411 * Ensures all contexts with the same task_ctx_nr have the same
5412 * pmu_cpu_context too.
5413 */
5414static void *find_pmu_context(int ctxn)
24f1e32c 5415{
8dc85d54 5416 struct pmu *pmu;
b326e956 5417
8dc85d54
PZ
5418 if (ctxn < 0)
5419 return NULL;
24f1e32c 5420
8dc85d54
PZ
5421 list_for_each_entry(pmu, &pmus, entry) {
5422 if (pmu->task_ctx_nr == ctxn)
5423 return pmu->pmu_cpu_context;
5424 }
24f1e32c 5425
8dc85d54 5426 return NULL;
24f1e32c
FW
5427}
5428
51676957 5429static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5430{
51676957
PZ
5431 int cpu;
5432
5433 for_each_possible_cpu(cpu) {
5434 struct perf_cpu_context *cpuctx;
5435
5436 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5437
5438 if (cpuctx->active_pmu == old_pmu)
5439 cpuctx->active_pmu = pmu;
5440 }
5441}
5442
5443static void free_pmu_context(struct pmu *pmu)
5444{
5445 struct pmu *i;
f5ffe02e 5446
8dc85d54 5447 mutex_lock(&pmus_lock);
0475f9ea 5448 /*
8dc85d54 5449 * Like a real lame refcount.
0475f9ea 5450 */
51676957
PZ
5451 list_for_each_entry(i, &pmus, entry) {
5452 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5453 update_pmu_context(i, pmu);
8dc85d54 5454 goto out;
51676957 5455 }
8dc85d54 5456 }
d6d020e9 5457
51676957 5458 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5459out:
5460 mutex_unlock(&pmus_lock);
24f1e32c 5461}
2e80a82a 5462static struct idr pmu_idr;
d6d020e9 5463
abe43400
PZ
5464static ssize_t
5465type_show(struct device *dev, struct device_attribute *attr, char *page)
5466{
5467 struct pmu *pmu = dev_get_drvdata(dev);
5468
5469 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5470}
5471
5472static struct device_attribute pmu_dev_attrs[] = {
5473 __ATTR_RO(type),
5474 __ATTR_NULL,
5475};
5476
5477static int pmu_bus_running;
5478static struct bus_type pmu_bus = {
5479 .name = "event_source",
5480 .dev_attrs = pmu_dev_attrs,
5481};
5482
5483static void pmu_dev_release(struct device *dev)
5484{
5485 kfree(dev);
5486}
5487
5488static int pmu_dev_alloc(struct pmu *pmu)
5489{
5490 int ret = -ENOMEM;
5491
5492 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5493 if (!pmu->dev)
5494 goto out;
5495
5496 device_initialize(pmu->dev);
5497 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5498 if (ret)
5499 goto free_dev;
5500
5501 dev_set_drvdata(pmu->dev, pmu);
5502 pmu->dev->bus = &pmu_bus;
5503 pmu->dev->release = pmu_dev_release;
5504 ret = device_add(pmu->dev);
5505 if (ret)
5506 goto free_dev;
5507
5508out:
5509 return ret;
5510
5511free_dev:
5512 put_device(pmu->dev);
5513 goto out;
5514}
5515
547e9fd7 5516static struct lock_class_key cpuctx_mutex;
facc4307 5517static struct lock_class_key cpuctx_lock;
547e9fd7 5518
2e80a82a 5519int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5520{
108b02cf 5521 int cpu, ret;
24f1e32c 5522
b0a873eb 5523 mutex_lock(&pmus_lock);
33696fc0
PZ
5524 ret = -ENOMEM;
5525 pmu->pmu_disable_count = alloc_percpu(int);
5526 if (!pmu->pmu_disable_count)
5527 goto unlock;
f29ac756 5528
2e80a82a
PZ
5529 pmu->type = -1;
5530 if (!name)
5531 goto skip_type;
5532 pmu->name = name;
5533
5534 if (type < 0) {
5535 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5536 if (!err)
5537 goto free_pdc;
5538
5539 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5540 if (err) {
5541 ret = err;
5542 goto free_pdc;
5543 }
5544 }
5545 pmu->type = type;
5546
abe43400
PZ
5547 if (pmu_bus_running) {
5548 ret = pmu_dev_alloc(pmu);
5549 if (ret)
5550 goto free_idr;
5551 }
5552
2e80a82a 5553skip_type:
8dc85d54
PZ
5554 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5555 if (pmu->pmu_cpu_context)
5556 goto got_cpu_context;
f29ac756 5557
108b02cf
PZ
5558 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5559 if (!pmu->pmu_cpu_context)
abe43400 5560 goto free_dev;
f344011c 5561
108b02cf
PZ
5562 for_each_possible_cpu(cpu) {
5563 struct perf_cpu_context *cpuctx;
5564
5565 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5566 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5567 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5568 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5569 cpuctx->ctx.type = cpu_context;
108b02cf 5570 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5571 cpuctx->jiffies_interval = 1;
5572 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5573 cpuctx->active_pmu = pmu;
108b02cf 5574 }
76e1d904 5575
8dc85d54 5576got_cpu_context:
ad5133b7
PZ
5577 if (!pmu->start_txn) {
5578 if (pmu->pmu_enable) {
5579 /*
5580 * If we have pmu_enable/pmu_disable calls, install
5581 * transaction stubs that use that to try and batch
5582 * hardware accesses.
5583 */
5584 pmu->start_txn = perf_pmu_start_txn;
5585 pmu->commit_txn = perf_pmu_commit_txn;
5586 pmu->cancel_txn = perf_pmu_cancel_txn;
5587 } else {
5588 pmu->start_txn = perf_pmu_nop_void;
5589 pmu->commit_txn = perf_pmu_nop_int;
5590 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5591 }
5c92d124 5592 }
15dbf27c 5593
ad5133b7
PZ
5594 if (!pmu->pmu_enable) {
5595 pmu->pmu_enable = perf_pmu_nop_void;
5596 pmu->pmu_disable = perf_pmu_nop_void;
5597 }
5598
b0a873eb 5599 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5600 ret = 0;
5601unlock:
b0a873eb
PZ
5602 mutex_unlock(&pmus_lock);
5603
33696fc0 5604 return ret;
108b02cf 5605
abe43400
PZ
5606free_dev:
5607 device_del(pmu->dev);
5608 put_device(pmu->dev);
5609
2e80a82a
PZ
5610free_idr:
5611 if (pmu->type >= PERF_TYPE_MAX)
5612 idr_remove(&pmu_idr, pmu->type);
5613
108b02cf
PZ
5614free_pdc:
5615 free_percpu(pmu->pmu_disable_count);
5616 goto unlock;
f29ac756
PZ
5617}
5618
b0a873eb 5619void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5620{
b0a873eb
PZ
5621 mutex_lock(&pmus_lock);
5622 list_del_rcu(&pmu->entry);
5623 mutex_unlock(&pmus_lock);
5c92d124 5624
0475f9ea 5625 /*
cde8e884
PZ
5626 * We dereference the pmu list under both SRCU and regular RCU, so
5627 * synchronize against both of those.
0475f9ea 5628 */
b0a873eb 5629 synchronize_srcu(&pmus_srcu);
cde8e884 5630 synchronize_rcu();
d6d020e9 5631
33696fc0 5632 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5633 if (pmu->type >= PERF_TYPE_MAX)
5634 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5635 device_del(pmu->dev);
5636 put_device(pmu->dev);
51676957 5637 free_pmu_context(pmu);
b0a873eb 5638}
d6d020e9 5639
b0a873eb
PZ
5640struct pmu *perf_init_event(struct perf_event *event)
5641{
5642 struct pmu *pmu = NULL;
5643 int idx;
940c5b29 5644 int ret;
b0a873eb
PZ
5645
5646 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5647
5648 rcu_read_lock();
5649 pmu = idr_find(&pmu_idr, event->attr.type);
5650 rcu_read_unlock();
940c5b29 5651 if (pmu) {
7e5b2a01 5652 event->pmu = pmu;
940c5b29
LM
5653 ret = pmu->event_init(event);
5654 if (ret)
5655 pmu = ERR_PTR(ret);
2e80a82a 5656 goto unlock;
940c5b29 5657 }
2e80a82a 5658
b0a873eb 5659 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5660 event->pmu = pmu;
940c5b29 5661 ret = pmu->event_init(event);
b0a873eb 5662 if (!ret)
e5f4d339 5663 goto unlock;
76e1d904 5664
b0a873eb
PZ
5665 if (ret != -ENOENT) {
5666 pmu = ERR_PTR(ret);
e5f4d339 5667 goto unlock;
f344011c 5668 }
5c92d124 5669 }
e5f4d339
PZ
5670 pmu = ERR_PTR(-ENOENT);
5671unlock:
b0a873eb 5672 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5673
4aeb0b42 5674 return pmu;
5c92d124
IM
5675}
5676
0793a61d 5677/*
cdd6c482 5678 * Allocate and initialize a event structure
0793a61d 5679 */
cdd6c482 5680static struct perf_event *
c3f00c70 5681perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5682 struct task_struct *task,
5683 struct perf_event *group_leader,
5684 struct perf_event *parent_event,
4dc0da86
AK
5685 perf_overflow_handler_t overflow_handler,
5686 void *context)
0793a61d 5687{
51b0fe39 5688 struct pmu *pmu;
cdd6c482
IM
5689 struct perf_event *event;
5690 struct hw_perf_event *hwc;
d5d2bc0d 5691 long err;
0793a61d 5692
66832eb4
ON
5693 if ((unsigned)cpu >= nr_cpu_ids) {
5694 if (!task || cpu != -1)
5695 return ERR_PTR(-EINVAL);
5696 }
5697
c3f00c70 5698 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5699 if (!event)
d5d2bc0d 5700 return ERR_PTR(-ENOMEM);
0793a61d 5701
04289bb9 5702 /*
cdd6c482 5703 * Single events are their own group leaders, with an
04289bb9
IM
5704 * empty sibling list:
5705 */
5706 if (!group_leader)
cdd6c482 5707 group_leader = event;
04289bb9 5708
cdd6c482
IM
5709 mutex_init(&event->child_mutex);
5710 INIT_LIST_HEAD(&event->child_list);
fccc714b 5711
cdd6c482
IM
5712 INIT_LIST_HEAD(&event->group_entry);
5713 INIT_LIST_HEAD(&event->event_entry);
5714 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5715 INIT_LIST_HEAD(&event->rb_entry);
5716
cdd6c482 5717 init_waitqueue_head(&event->waitq);
e360adbe 5718 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5719
cdd6c482 5720 mutex_init(&event->mmap_mutex);
7b732a75 5721
cdd6c482
IM
5722 event->cpu = cpu;
5723 event->attr = *attr;
5724 event->group_leader = group_leader;
5725 event->pmu = NULL;
cdd6c482 5726 event->oncpu = -1;
a96bbc16 5727
cdd6c482 5728 event->parent = parent_event;
b84fbc9f 5729
cdd6c482
IM
5730 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5731 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5732
cdd6c482 5733 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5734
d580ff86
PZ
5735 if (task) {
5736 event->attach_state = PERF_ATTACH_TASK;
5737#ifdef CONFIG_HAVE_HW_BREAKPOINT
5738 /*
5739 * hw_breakpoint is a bit difficult here..
5740 */
5741 if (attr->type == PERF_TYPE_BREAKPOINT)
5742 event->hw.bp_target = task;
5743#endif
5744 }
5745
4dc0da86 5746 if (!overflow_handler && parent_event) {
b326e956 5747 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5748 context = parent_event->overflow_handler_context;
5749 }
66832eb4 5750
b326e956 5751 event->overflow_handler = overflow_handler;
4dc0da86 5752 event->overflow_handler_context = context;
97eaf530 5753
0d48696f 5754 if (attr->disabled)
cdd6c482 5755 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5756
4aeb0b42 5757 pmu = NULL;
b8e83514 5758
cdd6c482 5759 hwc = &event->hw;
bd2b5b12 5760 hwc->sample_period = attr->sample_period;
0d48696f 5761 if (attr->freq && attr->sample_freq)
bd2b5b12 5762 hwc->sample_period = 1;
eced1dfc 5763 hwc->last_period = hwc->sample_period;
bd2b5b12 5764
e7850595 5765 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5766
2023b359 5767 /*
cdd6c482 5768 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 5769 */
3dab77fb 5770 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
5771 goto done;
5772
b0a873eb 5773 pmu = perf_init_event(event);
974802ea 5774
d5d2bc0d
PM
5775done:
5776 err = 0;
4aeb0b42 5777 if (!pmu)
d5d2bc0d 5778 err = -EINVAL;
4aeb0b42
RR
5779 else if (IS_ERR(pmu))
5780 err = PTR_ERR(pmu);
5c92d124 5781
d5d2bc0d 5782 if (err) {
cdd6c482
IM
5783 if (event->ns)
5784 put_pid_ns(event->ns);
5785 kfree(event);
d5d2bc0d 5786 return ERR_PTR(err);
621a01ea 5787 }
d5d2bc0d 5788
cdd6c482 5789 if (!event->parent) {
82cd6def 5790 if (event->attach_state & PERF_ATTACH_TASK)
b2029520 5791 jump_label_inc(&perf_sched_events.key);
3af9e859 5792 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
5793 atomic_inc(&nr_mmap_events);
5794 if (event->attr.comm)
5795 atomic_inc(&nr_comm_events);
5796 if (event->attr.task)
5797 atomic_inc(&nr_task_events);
927c7a9e
FW
5798 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5799 err = get_callchain_buffers();
5800 if (err) {
5801 free_event(event);
5802 return ERR_PTR(err);
5803 }
5804 }
f344011c 5805 }
9ee318a7 5806
cdd6c482 5807 return event;
0793a61d
TG
5808}
5809
cdd6c482
IM
5810static int perf_copy_attr(struct perf_event_attr __user *uattr,
5811 struct perf_event_attr *attr)
974802ea 5812{
974802ea 5813 u32 size;
cdf8073d 5814 int ret;
974802ea
PZ
5815
5816 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5817 return -EFAULT;
5818
5819 /*
5820 * zero the full structure, so that a short copy will be nice.
5821 */
5822 memset(attr, 0, sizeof(*attr));
5823
5824 ret = get_user(size, &uattr->size);
5825 if (ret)
5826 return ret;
5827
5828 if (size > PAGE_SIZE) /* silly large */
5829 goto err_size;
5830
5831 if (!size) /* abi compat */
5832 size = PERF_ATTR_SIZE_VER0;
5833
5834 if (size < PERF_ATTR_SIZE_VER0)
5835 goto err_size;
5836
5837 /*
5838 * If we're handed a bigger struct than we know of,
cdf8073d
IS
5839 * ensure all the unknown bits are 0 - i.e. new
5840 * user-space does not rely on any kernel feature
5841 * extensions we dont know about yet.
974802ea
PZ
5842 */
5843 if (size > sizeof(*attr)) {
cdf8073d
IS
5844 unsigned char __user *addr;
5845 unsigned char __user *end;
5846 unsigned char val;
974802ea 5847
cdf8073d
IS
5848 addr = (void __user *)uattr + sizeof(*attr);
5849 end = (void __user *)uattr + size;
974802ea 5850
cdf8073d 5851 for (; addr < end; addr++) {
974802ea
PZ
5852 ret = get_user(val, addr);
5853 if (ret)
5854 return ret;
5855 if (val)
5856 goto err_size;
5857 }
b3e62e35 5858 size = sizeof(*attr);
974802ea
PZ
5859 }
5860
5861 ret = copy_from_user(attr, uattr, size);
5862 if (ret)
5863 return -EFAULT;
5864
cd757645 5865 if (attr->__reserved_1)
974802ea
PZ
5866 return -EINVAL;
5867
5868 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5869 return -EINVAL;
5870
5871 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5872 return -EINVAL;
5873
5874out:
5875 return ret;
5876
5877err_size:
5878 put_user(sizeof(*attr), &uattr->size);
5879 ret = -E2BIG;
5880 goto out;
5881}
5882
ac9721f3
PZ
5883static int
5884perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 5885{
76369139 5886 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
5887 int ret = -EINVAL;
5888
ac9721f3 5889 if (!output_event)
a4be7c27
PZ
5890 goto set;
5891
ac9721f3
PZ
5892 /* don't allow circular references */
5893 if (event == output_event)
a4be7c27
PZ
5894 goto out;
5895
0f139300
PZ
5896 /*
5897 * Don't allow cross-cpu buffers
5898 */
5899 if (output_event->cpu != event->cpu)
5900 goto out;
5901
5902 /*
76369139 5903 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
5904 */
5905 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5906 goto out;
5907
a4be7c27 5908set:
cdd6c482 5909 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
5910 /* Can't redirect output if we've got an active mmap() */
5911 if (atomic_read(&event->mmap_count))
5912 goto unlock;
a4be7c27 5913
ac9721f3 5914 if (output_event) {
76369139
FW
5915 /* get the rb we want to redirect to */
5916 rb = ring_buffer_get(output_event);
5917 if (!rb)
ac9721f3 5918 goto unlock;
a4be7c27
PZ
5919 }
5920
76369139
FW
5921 old_rb = event->rb;
5922 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
5923 if (old_rb)
5924 ring_buffer_detach(event, old_rb);
a4be7c27 5925 ret = 0;
ac9721f3
PZ
5926unlock:
5927 mutex_unlock(&event->mmap_mutex);
5928
76369139
FW
5929 if (old_rb)
5930 ring_buffer_put(old_rb);
a4be7c27 5931out:
a4be7c27
PZ
5932 return ret;
5933}
5934
0793a61d 5935/**
cdd6c482 5936 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 5937 *
cdd6c482 5938 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 5939 * @pid: target pid
9f66a381 5940 * @cpu: target cpu
cdd6c482 5941 * @group_fd: group leader event fd
0793a61d 5942 */
cdd6c482
IM
5943SYSCALL_DEFINE5(perf_event_open,
5944 struct perf_event_attr __user *, attr_uptr,
2743a5b0 5945 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 5946{
b04243ef
PZ
5947 struct perf_event *group_leader = NULL, *output_event = NULL;
5948 struct perf_event *event, *sibling;
cdd6c482
IM
5949 struct perf_event_attr attr;
5950 struct perf_event_context *ctx;
5951 struct file *event_file = NULL;
04289bb9 5952 struct file *group_file = NULL;
38a81da2 5953 struct task_struct *task = NULL;
89a1e187 5954 struct pmu *pmu;
ea635c64 5955 int event_fd;
b04243ef 5956 int move_group = 0;
04289bb9 5957 int fput_needed = 0;
dc86cabe 5958 int err;
0793a61d 5959
2743a5b0 5960 /* for future expandability... */
e5d1367f 5961 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
5962 return -EINVAL;
5963
dc86cabe
IM
5964 err = perf_copy_attr(attr_uptr, &attr);
5965 if (err)
5966 return err;
eab656ae 5967
0764771d
PZ
5968 if (!attr.exclude_kernel) {
5969 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5970 return -EACCES;
5971 }
5972
df58ab24 5973 if (attr.freq) {
cdd6c482 5974 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
5975 return -EINVAL;
5976 }
5977
e5d1367f
SE
5978 /*
5979 * In cgroup mode, the pid argument is used to pass the fd
5980 * opened to the cgroup directory in cgroupfs. The cpu argument
5981 * designates the cpu on which to monitor threads from that
5982 * cgroup.
5983 */
5984 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
5985 return -EINVAL;
5986
ea635c64
AV
5987 event_fd = get_unused_fd_flags(O_RDWR);
5988 if (event_fd < 0)
5989 return event_fd;
5990
ac9721f3
PZ
5991 if (group_fd != -1) {
5992 group_leader = perf_fget_light(group_fd, &fput_needed);
5993 if (IS_ERR(group_leader)) {
5994 err = PTR_ERR(group_leader);
d14b12d7 5995 goto err_fd;
ac9721f3
PZ
5996 }
5997 group_file = group_leader->filp;
5998 if (flags & PERF_FLAG_FD_OUTPUT)
5999 output_event = group_leader;
6000 if (flags & PERF_FLAG_FD_NO_GROUP)
6001 group_leader = NULL;
6002 }
6003
e5d1367f 6004 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6005 task = find_lively_task_by_vpid(pid);
6006 if (IS_ERR(task)) {
6007 err = PTR_ERR(task);
6008 goto err_group_fd;
6009 }
6010 }
6011
4dc0da86
AK
6012 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6013 NULL, NULL);
d14b12d7
SE
6014 if (IS_ERR(event)) {
6015 err = PTR_ERR(event);
c6be5a5c 6016 goto err_task;
d14b12d7
SE
6017 }
6018
e5d1367f
SE
6019 if (flags & PERF_FLAG_PID_CGROUP) {
6020 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6021 if (err)
6022 goto err_alloc;
08309379
PZ
6023 /*
6024 * one more event:
6025 * - that has cgroup constraint on event->cpu
6026 * - that may need work on context switch
6027 */
6028 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
b2029520 6029 jump_label_inc(&perf_sched_events.key);
e5d1367f
SE
6030 }
6031
89a1e187
PZ
6032 /*
6033 * Special case software events and allow them to be part of
6034 * any hardware group.
6035 */
6036 pmu = event->pmu;
b04243ef
PZ
6037
6038 if (group_leader &&
6039 (is_software_event(event) != is_software_event(group_leader))) {
6040 if (is_software_event(event)) {
6041 /*
6042 * If event and group_leader are not both a software
6043 * event, and event is, then group leader is not.
6044 *
6045 * Allow the addition of software events to !software
6046 * groups, this is safe because software events never
6047 * fail to schedule.
6048 */
6049 pmu = group_leader->pmu;
6050 } else if (is_software_event(group_leader) &&
6051 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6052 /*
6053 * In case the group is a pure software group, and we
6054 * try to add a hardware event, move the whole group to
6055 * the hardware context.
6056 */
6057 move_group = 1;
6058 }
6059 }
89a1e187
PZ
6060
6061 /*
6062 * Get the target context (task or percpu):
6063 */
38a81da2 6064 ctx = find_get_context(pmu, task, cpu);
89a1e187
PZ
6065 if (IS_ERR(ctx)) {
6066 err = PTR_ERR(ctx);
c6be5a5c 6067 goto err_alloc;
89a1e187
PZ
6068 }
6069
fd1edb3a
PZ
6070 if (task) {
6071 put_task_struct(task);
6072 task = NULL;
6073 }
6074
ccff286d 6075 /*
cdd6c482 6076 * Look up the group leader (we will attach this event to it):
04289bb9 6077 */
ac9721f3 6078 if (group_leader) {
dc86cabe 6079 err = -EINVAL;
04289bb9 6080
04289bb9 6081 /*
ccff286d
IM
6082 * Do not allow a recursive hierarchy (this new sibling
6083 * becoming part of another group-sibling):
6084 */
6085 if (group_leader->group_leader != group_leader)
c3f00c70 6086 goto err_context;
ccff286d
IM
6087 /*
6088 * Do not allow to attach to a group in a different
6089 * task or CPU context:
04289bb9 6090 */
b04243ef
PZ
6091 if (move_group) {
6092 if (group_leader->ctx->type != ctx->type)
6093 goto err_context;
6094 } else {
6095 if (group_leader->ctx != ctx)
6096 goto err_context;
6097 }
6098
3b6f9e5c
PM
6099 /*
6100 * Only a group leader can be exclusive or pinned
6101 */
0d48696f 6102 if (attr.exclusive || attr.pinned)
c3f00c70 6103 goto err_context;
ac9721f3
PZ
6104 }
6105
6106 if (output_event) {
6107 err = perf_event_set_output(event, output_event);
6108 if (err)
c3f00c70 6109 goto err_context;
ac9721f3 6110 }
0793a61d 6111
ea635c64
AV
6112 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6113 if (IS_ERR(event_file)) {
6114 err = PTR_ERR(event_file);
c3f00c70 6115 goto err_context;
ea635c64 6116 }
9b51f66d 6117
b04243ef
PZ
6118 if (move_group) {
6119 struct perf_event_context *gctx = group_leader->ctx;
6120
6121 mutex_lock(&gctx->mutex);
fe4b04fa 6122 perf_remove_from_context(group_leader);
b04243ef
PZ
6123 list_for_each_entry(sibling, &group_leader->sibling_list,
6124 group_entry) {
fe4b04fa 6125 perf_remove_from_context(sibling);
b04243ef
PZ
6126 put_ctx(gctx);
6127 }
6128 mutex_unlock(&gctx->mutex);
6129 put_ctx(gctx);
ea635c64 6130 }
9b51f66d 6131
cdd6c482 6132 event->filp = event_file;
ad3a37de 6133 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6134 mutex_lock(&ctx->mutex);
b04243ef
PZ
6135
6136 if (move_group) {
6137 perf_install_in_context(ctx, group_leader, cpu);
6138 get_ctx(ctx);
6139 list_for_each_entry(sibling, &group_leader->sibling_list,
6140 group_entry) {
6141 perf_install_in_context(ctx, sibling, cpu);
6142 get_ctx(ctx);
6143 }
6144 }
6145
cdd6c482 6146 perf_install_in_context(ctx, event, cpu);
ad3a37de 6147 ++ctx->generation;
fe4b04fa 6148 perf_unpin_context(ctx);
d859e29f 6149 mutex_unlock(&ctx->mutex);
9b51f66d 6150
cdd6c482 6151 event->owner = current;
8882135b 6152
cdd6c482
IM
6153 mutex_lock(&current->perf_event_mutex);
6154 list_add_tail(&event->owner_entry, &current->perf_event_list);
6155 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6156
c320c7b7
ACM
6157 /*
6158 * Precalculate sample_data sizes
6159 */
6160 perf_event__header_size(event);
6844c09d 6161 perf_event__id_header_size(event);
c320c7b7 6162
8a49542c
PZ
6163 /*
6164 * Drop the reference on the group_event after placing the
6165 * new event on the sibling_list. This ensures destruction
6166 * of the group leader will find the pointer to itself in
6167 * perf_group_detach().
6168 */
ea635c64
AV
6169 fput_light(group_file, fput_needed);
6170 fd_install(event_fd, event_file);
6171 return event_fd;
0793a61d 6172
c3f00c70 6173err_context:
fe4b04fa 6174 perf_unpin_context(ctx);
ea635c64 6175 put_ctx(ctx);
c6be5a5c 6176err_alloc:
ea635c64 6177 free_event(event);
e7d0bc04
PZ
6178err_task:
6179 if (task)
6180 put_task_struct(task);
89a1e187 6181err_group_fd:
dc86cabe 6182 fput_light(group_file, fput_needed);
ea635c64
AV
6183err_fd:
6184 put_unused_fd(event_fd);
dc86cabe 6185 return err;
0793a61d
TG
6186}
6187
fb0459d7
AV
6188/**
6189 * perf_event_create_kernel_counter
6190 *
6191 * @attr: attributes of the counter to create
6192 * @cpu: cpu in which the counter is bound
38a81da2 6193 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6194 */
6195struct perf_event *
6196perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6197 struct task_struct *task,
4dc0da86
AK
6198 perf_overflow_handler_t overflow_handler,
6199 void *context)
fb0459d7 6200{
fb0459d7 6201 struct perf_event_context *ctx;
c3f00c70 6202 struct perf_event *event;
fb0459d7 6203 int err;
d859e29f 6204
fb0459d7
AV
6205 /*
6206 * Get the target context (task or percpu):
6207 */
d859e29f 6208
4dc0da86
AK
6209 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6210 overflow_handler, context);
c3f00c70
PZ
6211 if (IS_ERR(event)) {
6212 err = PTR_ERR(event);
6213 goto err;
6214 }
d859e29f 6215
38a81da2 6216 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6217 if (IS_ERR(ctx)) {
6218 err = PTR_ERR(ctx);
c3f00c70 6219 goto err_free;
d859e29f 6220 }
fb0459d7
AV
6221
6222 event->filp = NULL;
6223 WARN_ON_ONCE(ctx->parent_ctx);
6224 mutex_lock(&ctx->mutex);
6225 perf_install_in_context(ctx, event, cpu);
6226 ++ctx->generation;
fe4b04fa 6227 perf_unpin_context(ctx);
fb0459d7
AV
6228 mutex_unlock(&ctx->mutex);
6229
fb0459d7
AV
6230 return event;
6231
c3f00c70
PZ
6232err_free:
6233 free_event(event);
6234err:
c6567f64 6235 return ERR_PTR(err);
9b51f66d 6236}
fb0459d7 6237EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6238
cdd6c482 6239static void sync_child_event(struct perf_event *child_event,
38b200d6 6240 struct task_struct *child)
d859e29f 6241{
cdd6c482 6242 struct perf_event *parent_event = child_event->parent;
8bc20959 6243 u64 child_val;
d859e29f 6244
cdd6c482
IM
6245 if (child_event->attr.inherit_stat)
6246 perf_event_read_event(child_event, child);
38b200d6 6247
b5e58793 6248 child_val = perf_event_count(child_event);
d859e29f
PM
6249
6250 /*
6251 * Add back the child's count to the parent's count:
6252 */
a6e6dea6 6253 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6254 atomic64_add(child_event->total_time_enabled,
6255 &parent_event->child_total_time_enabled);
6256 atomic64_add(child_event->total_time_running,
6257 &parent_event->child_total_time_running);
d859e29f
PM
6258
6259 /*
cdd6c482 6260 * Remove this event from the parent's list
d859e29f 6261 */
cdd6c482
IM
6262 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6263 mutex_lock(&parent_event->child_mutex);
6264 list_del_init(&child_event->child_list);
6265 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6266
6267 /*
cdd6c482 6268 * Release the parent event, if this was the last
d859e29f
PM
6269 * reference to it.
6270 */
cdd6c482 6271 fput(parent_event->filp);
d859e29f
PM
6272}
6273
9b51f66d 6274static void
cdd6c482
IM
6275__perf_event_exit_task(struct perf_event *child_event,
6276 struct perf_event_context *child_ctx,
38b200d6 6277 struct task_struct *child)
9b51f66d 6278{
38b435b1
PZ
6279 if (child_event->parent) {
6280 raw_spin_lock_irq(&child_ctx->lock);
6281 perf_group_detach(child_event);
6282 raw_spin_unlock_irq(&child_ctx->lock);
6283 }
9b51f66d 6284
fe4b04fa 6285 perf_remove_from_context(child_event);
0cc0c027 6286
9b51f66d 6287 /*
38b435b1 6288 * It can happen that the parent exits first, and has events
9b51f66d 6289 * that are still around due to the child reference. These
38b435b1 6290 * events need to be zapped.
9b51f66d 6291 */
38b435b1 6292 if (child_event->parent) {
cdd6c482
IM
6293 sync_child_event(child_event, child);
6294 free_event(child_event);
4bcf349a 6295 }
9b51f66d
IM
6296}
6297
8dc85d54 6298static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6299{
cdd6c482
IM
6300 struct perf_event *child_event, *tmp;
6301 struct perf_event_context *child_ctx;
a63eaf34 6302 unsigned long flags;
9b51f66d 6303
8dc85d54 6304 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6305 perf_event_task(child, NULL, 0);
9b51f66d 6306 return;
9f498cc5 6307 }
9b51f66d 6308
a63eaf34 6309 local_irq_save(flags);
ad3a37de
PM
6310 /*
6311 * We can't reschedule here because interrupts are disabled,
6312 * and either child is current or it is a task that can't be
6313 * scheduled, so we are now safe from rescheduling changing
6314 * our context.
6315 */
806839b2 6316 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6317
6318 /*
6319 * Take the context lock here so that if find_get_context is
cdd6c482 6320 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6321 * incremented the context's refcount before we do put_ctx below.
6322 */
e625cce1 6323 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6324 task_ctx_sched_out(child_ctx);
8dc85d54 6325 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6326 /*
6327 * If this context is a clone; unclone it so it can't get
6328 * swapped to another process while we're removing all
cdd6c482 6329 * the events from it.
71a851b4
PZ
6330 */
6331 unclone_ctx(child_ctx);
5e942bb3 6332 update_context_time(child_ctx);
e625cce1 6333 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6334
6335 /*
cdd6c482
IM
6336 * Report the task dead after unscheduling the events so that we
6337 * won't get any samples after PERF_RECORD_EXIT. We can however still
6338 * get a few PERF_RECORD_READ events.
9f498cc5 6339 */
cdd6c482 6340 perf_event_task(child, child_ctx, 0);
a63eaf34 6341
66fff224
PZ
6342 /*
6343 * We can recurse on the same lock type through:
6344 *
cdd6c482
IM
6345 * __perf_event_exit_task()
6346 * sync_child_event()
6347 * fput(parent_event->filp)
66fff224
PZ
6348 * perf_release()
6349 * mutex_lock(&ctx->mutex)
6350 *
6351 * But since its the parent context it won't be the same instance.
6352 */
a0507c84 6353 mutex_lock(&child_ctx->mutex);
a63eaf34 6354
8bc20959 6355again:
889ff015
FW
6356 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6357 group_entry)
6358 __perf_event_exit_task(child_event, child_ctx, child);
6359
6360 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6361 group_entry)
cdd6c482 6362 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6363
6364 /*
cdd6c482 6365 * If the last event was a group event, it will have appended all
8bc20959
PZ
6366 * its siblings to the list, but we obtained 'tmp' before that which
6367 * will still point to the list head terminating the iteration.
6368 */
889ff015
FW
6369 if (!list_empty(&child_ctx->pinned_groups) ||
6370 !list_empty(&child_ctx->flexible_groups))
8bc20959 6371 goto again;
a63eaf34
PM
6372
6373 mutex_unlock(&child_ctx->mutex);
6374
6375 put_ctx(child_ctx);
9b51f66d
IM
6376}
6377
8dc85d54
PZ
6378/*
6379 * When a child task exits, feed back event values to parent events.
6380 */
6381void perf_event_exit_task(struct task_struct *child)
6382{
8882135b 6383 struct perf_event *event, *tmp;
8dc85d54
PZ
6384 int ctxn;
6385
8882135b
PZ
6386 mutex_lock(&child->perf_event_mutex);
6387 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6388 owner_entry) {
6389 list_del_init(&event->owner_entry);
6390
6391 /*
6392 * Ensure the list deletion is visible before we clear
6393 * the owner, closes a race against perf_release() where
6394 * we need to serialize on the owner->perf_event_mutex.
6395 */
6396 smp_wmb();
6397 event->owner = NULL;
6398 }
6399 mutex_unlock(&child->perf_event_mutex);
6400
8dc85d54
PZ
6401 for_each_task_context_nr(ctxn)
6402 perf_event_exit_task_context(child, ctxn);
6403}
6404
889ff015
FW
6405static void perf_free_event(struct perf_event *event,
6406 struct perf_event_context *ctx)
6407{
6408 struct perf_event *parent = event->parent;
6409
6410 if (WARN_ON_ONCE(!parent))
6411 return;
6412
6413 mutex_lock(&parent->child_mutex);
6414 list_del_init(&event->child_list);
6415 mutex_unlock(&parent->child_mutex);
6416
6417 fput(parent->filp);
6418
8a49542c 6419 perf_group_detach(event);
889ff015
FW
6420 list_del_event(event, ctx);
6421 free_event(event);
6422}
6423
bbbee908
PZ
6424/*
6425 * free an unexposed, unused context as created by inheritance by
8dc85d54 6426 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6427 */
cdd6c482 6428void perf_event_free_task(struct task_struct *task)
bbbee908 6429{
8dc85d54 6430 struct perf_event_context *ctx;
cdd6c482 6431 struct perf_event *event, *tmp;
8dc85d54 6432 int ctxn;
bbbee908 6433
8dc85d54
PZ
6434 for_each_task_context_nr(ctxn) {
6435 ctx = task->perf_event_ctxp[ctxn];
6436 if (!ctx)
6437 continue;
bbbee908 6438
8dc85d54 6439 mutex_lock(&ctx->mutex);
bbbee908 6440again:
8dc85d54
PZ
6441 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6442 group_entry)
6443 perf_free_event(event, ctx);
bbbee908 6444
8dc85d54
PZ
6445 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6446 group_entry)
6447 perf_free_event(event, ctx);
bbbee908 6448
8dc85d54
PZ
6449 if (!list_empty(&ctx->pinned_groups) ||
6450 !list_empty(&ctx->flexible_groups))
6451 goto again;
bbbee908 6452
8dc85d54 6453 mutex_unlock(&ctx->mutex);
bbbee908 6454
8dc85d54
PZ
6455 put_ctx(ctx);
6456 }
889ff015
FW
6457}
6458
4e231c79
PZ
6459void perf_event_delayed_put(struct task_struct *task)
6460{
6461 int ctxn;
6462
6463 for_each_task_context_nr(ctxn)
6464 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6465}
6466
97dee4f3
PZ
6467/*
6468 * inherit a event from parent task to child task:
6469 */
6470static struct perf_event *
6471inherit_event(struct perf_event *parent_event,
6472 struct task_struct *parent,
6473 struct perf_event_context *parent_ctx,
6474 struct task_struct *child,
6475 struct perf_event *group_leader,
6476 struct perf_event_context *child_ctx)
6477{
6478 struct perf_event *child_event;
cee010ec 6479 unsigned long flags;
97dee4f3
PZ
6480
6481 /*
6482 * Instead of creating recursive hierarchies of events,
6483 * we link inherited events back to the original parent,
6484 * which has a filp for sure, which we use as the reference
6485 * count:
6486 */
6487 if (parent_event->parent)
6488 parent_event = parent_event->parent;
6489
6490 child_event = perf_event_alloc(&parent_event->attr,
6491 parent_event->cpu,
d580ff86 6492 child,
97dee4f3 6493 group_leader, parent_event,
4dc0da86 6494 NULL, NULL);
97dee4f3
PZ
6495 if (IS_ERR(child_event))
6496 return child_event;
6497 get_ctx(child_ctx);
6498
6499 /*
6500 * Make the child state follow the state of the parent event,
6501 * not its attr.disabled bit. We hold the parent's mutex,
6502 * so we won't race with perf_event_{en, dis}able_family.
6503 */
6504 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6505 child_event->state = PERF_EVENT_STATE_INACTIVE;
6506 else
6507 child_event->state = PERF_EVENT_STATE_OFF;
6508
6509 if (parent_event->attr.freq) {
6510 u64 sample_period = parent_event->hw.sample_period;
6511 struct hw_perf_event *hwc = &child_event->hw;
6512
6513 hwc->sample_period = sample_period;
6514 hwc->last_period = sample_period;
6515
6516 local64_set(&hwc->period_left, sample_period);
6517 }
6518
6519 child_event->ctx = child_ctx;
6520 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6521 child_event->overflow_handler_context
6522 = parent_event->overflow_handler_context;
97dee4f3 6523
614b6780
TG
6524 /*
6525 * Precalculate sample_data sizes
6526 */
6527 perf_event__header_size(child_event);
6844c09d 6528 perf_event__id_header_size(child_event);
614b6780 6529
97dee4f3
PZ
6530 /*
6531 * Link it up in the child's context:
6532 */
cee010ec 6533 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6534 add_event_to_ctx(child_event, child_ctx);
cee010ec 6535 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6536
6537 /*
6538 * Get a reference to the parent filp - we will fput it
6539 * when the child event exits. This is safe to do because
6540 * we are in the parent and we know that the filp still
6541 * exists and has a nonzero count:
6542 */
6543 atomic_long_inc(&parent_event->filp->f_count);
6544
6545 /*
6546 * Link this into the parent event's child list
6547 */
6548 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6549 mutex_lock(&parent_event->child_mutex);
6550 list_add_tail(&child_event->child_list, &parent_event->child_list);
6551 mutex_unlock(&parent_event->child_mutex);
6552
6553 return child_event;
6554}
6555
6556static int inherit_group(struct perf_event *parent_event,
6557 struct task_struct *parent,
6558 struct perf_event_context *parent_ctx,
6559 struct task_struct *child,
6560 struct perf_event_context *child_ctx)
6561{
6562 struct perf_event *leader;
6563 struct perf_event *sub;
6564 struct perf_event *child_ctr;
6565
6566 leader = inherit_event(parent_event, parent, parent_ctx,
6567 child, NULL, child_ctx);
6568 if (IS_ERR(leader))
6569 return PTR_ERR(leader);
6570 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6571 child_ctr = inherit_event(sub, parent, parent_ctx,
6572 child, leader, child_ctx);
6573 if (IS_ERR(child_ctr))
6574 return PTR_ERR(child_ctr);
6575 }
6576 return 0;
889ff015
FW
6577}
6578
6579static int
6580inherit_task_group(struct perf_event *event, struct task_struct *parent,
6581 struct perf_event_context *parent_ctx,
8dc85d54 6582 struct task_struct *child, int ctxn,
889ff015
FW
6583 int *inherited_all)
6584{
6585 int ret;
8dc85d54 6586 struct perf_event_context *child_ctx;
889ff015
FW
6587
6588 if (!event->attr.inherit) {
6589 *inherited_all = 0;
6590 return 0;
bbbee908
PZ
6591 }
6592
fe4b04fa 6593 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6594 if (!child_ctx) {
6595 /*
6596 * This is executed from the parent task context, so
6597 * inherit events that have been marked for cloning.
6598 * First allocate and initialize a context for the
6599 * child.
6600 */
bbbee908 6601
eb184479 6602 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6603 if (!child_ctx)
6604 return -ENOMEM;
bbbee908 6605
8dc85d54 6606 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6607 }
6608
6609 ret = inherit_group(event, parent, parent_ctx,
6610 child, child_ctx);
6611
6612 if (ret)
6613 *inherited_all = 0;
6614
6615 return ret;
bbbee908
PZ
6616}
6617
9b51f66d 6618/*
cdd6c482 6619 * Initialize the perf_event context in task_struct
9b51f66d 6620 */
8dc85d54 6621int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6622{
889ff015 6623 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6624 struct perf_event_context *cloned_ctx;
6625 struct perf_event *event;
9b51f66d 6626 struct task_struct *parent = current;
564c2b21 6627 int inherited_all = 1;
dddd3379 6628 unsigned long flags;
6ab423e0 6629 int ret = 0;
9b51f66d 6630
8dc85d54 6631 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6632 return 0;
6633
ad3a37de 6634 /*
25346b93
PM
6635 * If the parent's context is a clone, pin it so it won't get
6636 * swapped under us.
ad3a37de 6637 */
8dc85d54 6638 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6639
ad3a37de
PM
6640 /*
6641 * No need to check if parent_ctx != NULL here; since we saw
6642 * it non-NULL earlier, the only reason for it to become NULL
6643 * is if we exit, and since we're currently in the middle of
6644 * a fork we can't be exiting at the same time.
6645 */
ad3a37de 6646
9b51f66d
IM
6647 /*
6648 * Lock the parent list. No need to lock the child - not PID
6649 * hashed yet and not running, so nobody can access it.
6650 */
d859e29f 6651 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6652
6653 /*
6654 * We dont have to disable NMIs - we are only looking at
6655 * the list, not manipulating it:
6656 */
889ff015 6657 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6658 ret = inherit_task_group(event, parent, parent_ctx,
6659 child, ctxn, &inherited_all);
889ff015
FW
6660 if (ret)
6661 break;
6662 }
b93f7978 6663
dddd3379
TG
6664 /*
6665 * We can't hold ctx->lock when iterating the ->flexible_group list due
6666 * to allocations, but we need to prevent rotation because
6667 * rotate_ctx() will change the list from interrupt context.
6668 */
6669 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6670 parent_ctx->rotate_disable = 1;
6671 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6672
889ff015 6673 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6674 ret = inherit_task_group(event, parent, parent_ctx,
6675 child, ctxn, &inherited_all);
889ff015 6676 if (ret)
9b51f66d 6677 break;
564c2b21
PM
6678 }
6679
dddd3379
TG
6680 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6681 parent_ctx->rotate_disable = 0;
dddd3379 6682
8dc85d54 6683 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6684
05cbaa28 6685 if (child_ctx && inherited_all) {
564c2b21
PM
6686 /*
6687 * Mark the child context as a clone of the parent
6688 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6689 *
6690 * Note that if the parent is a clone, the holding of
6691 * parent_ctx->lock avoids it from being uncloned.
564c2b21 6692 */
c5ed5145 6693 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
6694 if (cloned_ctx) {
6695 child_ctx->parent_ctx = cloned_ctx;
25346b93 6696 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
6697 } else {
6698 child_ctx->parent_ctx = parent_ctx;
6699 child_ctx->parent_gen = parent_ctx->generation;
6700 }
6701 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
6702 }
6703
c5ed5145 6704 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 6705 mutex_unlock(&parent_ctx->mutex);
6ab423e0 6706
25346b93 6707 perf_unpin_context(parent_ctx);
fe4b04fa 6708 put_ctx(parent_ctx);
ad3a37de 6709
6ab423e0 6710 return ret;
9b51f66d
IM
6711}
6712
8dc85d54
PZ
6713/*
6714 * Initialize the perf_event context in task_struct
6715 */
6716int perf_event_init_task(struct task_struct *child)
6717{
6718 int ctxn, ret;
6719
8550d7cb
ON
6720 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6721 mutex_init(&child->perf_event_mutex);
6722 INIT_LIST_HEAD(&child->perf_event_list);
6723
8dc85d54
PZ
6724 for_each_task_context_nr(ctxn) {
6725 ret = perf_event_init_context(child, ctxn);
6726 if (ret)
6727 return ret;
6728 }
6729
6730 return 0;
6731}
6732
220b140b
PM
6733static void __init perf_event_init_all_cpus(void)
6734{
b28ab83c 6735 struct swevent_htable *swhash;
220b140b 6736 int cpu;
220b140b
PM
6737
6738 for_each_possible_cpu(cpu) {
b28ab83c
PZ
6739 swhash = &per_cpu(swevent_htable, cpu);
6740 mutex_init(&swhash->hlist_mutex);
e9d2b064 6741 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
6742 }
6743}
6744
cdd6c482 6745static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 6746{
108b02cf 6747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 6748
b28ab83c 6749 mutex_lock(&swhash->hlist_mutex);
4536e4d1 6750 if (swhash->hlist_refcount > 0) {
76e1d904
FW
6751 struct swevent_hlist *hlist;
6752
b28ab83c
PZ
6753 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6754 WARN_ON(!hlist);
6755 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6756 }
b28ab83c 6757 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
6758}
6759
c277443c 6760#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 6761static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 6762{
e9d2b064
PZ
6763 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6764
6765 WARN_ON(!irqs_disabled());
6766
6767 list_del_init(&cpuctx->rotation_list);
6768}
6769
108b02cf 6770static void __perf_event_exit_context(void *__info)
0793a61d 6771{
108b02cf 6772 struct perf_event_context *ctx = __info;
cdd6c482 6773 struct perf_event *event, *tmp;
0793a61d 6774
108b02cf 6775 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 6776
889ff015 6777 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 6778 __perf_remove_from_context(event);
889ff015 6779 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 6780 __perf_remove_from_context(event);
0793a61d 6781}
108b02cf
PZ
6782
6783static void perf_event_exit_cpu_context(int cpu)
6784{
6785 struct perf_event_context *ctx;
6786 struct pmu *pmu;
6787 int idx;
6788
6789 idx = srcu_read_lock(&pmus_srcu);
6790 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 6791 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
6792
6793 mutex_lock(&ctx->mutex);
6794 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6795 mutex_unlock(&ctx->mutex);
6796 }
6797 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
6798}
6799
cdd6c482 6800static void perf_event_exit_cpu(int cpu)
0793a61d 6801{
b28ab83c 6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 6803
b28ab83c
PZ
6804 mutex_lock(&swhash->hlist_mutex);
6805 swevent_hlist_release(swhash);
6806 mutex_unlock(&swhash->hlist_mutex);
76e1d904 6807
108b02cf 6808 perf_event_exit_cpu_context(cpu);
0793a61d
TG
6809}
6810#else
cdd6c482 6811static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
6812#endif
6813
c277443c
PZ
6814static int
6815perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6816{
6817 int cpu;
6818
6819 for_each_online_cpu(cpu)
6820 perf_event_exit_cpu(cpu);
6821
6822 return NOTIFY_OK;
6823}
6824
6825/*
6826 * Run the perf reboot notifier at the very last possible moment so that
6827 * the generic watchdog code runs as long as possible.
6828 */
6829static struct notifier_block perf_reboot_notifier = {
6830 .notifier_call = perf_reboot,
6831 .priority = INT_MIN,
6832};
6833
0793a61d
TG
6834static int __cpuinit
6835perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6836{
6837 unsigned int cpu = (long)hcpu;
6838
4536e4d1 6839 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
6840
6841 case CPU_UP_PREPARE:
5e11637e 6842 case CPU_DOWN_FAILED:
cdd6c482 6843 perf_event_init_cpu(cpu);
0793a61d
TG
6844 break;
6845
5e11637e 6846 case CPU_UP_CANCELED:
0793a61d 6847 case CPU_DOWN_PREPARE:
cdd6c482 6848 perf_event_exit_cpu(cpu);
0793a61d
TG
6849 break;
6850
6851 default:
6852 break;
6853 }
6854
6855 return NOTIFY_OK;
6856}
6857
cdd6c482 6858void __init perf_event_init(void)
0793a61d 6859{
3c502e7a
JW
6860 int ret;
6861
2e80a82a
PZ
6862 idr_init(&pmu_idr);
6863
220b140b 6864 perf_event_init_all_cpus();
b0a873eb 6865 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
6866 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6867 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6868 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
6869 perf_tp_register();
6870 perf_cpu_notifier(perf_cpu_notify);
c277443c 6871 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
6872
6873 ret = init_hw_breakpoint();
6874 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
6875
6876 /* do not patch jump label more than once per second */
6877 jump_label_rate_limit(&perf_sched_events, HZ);
0793a61d 6878}
abe43400
PZ
6879
6880static int __init perf_event_sysfs_init(void)
6881{
6882 struct pmu *pmu;
6883 int ret;
6884
6885 mutex_lock(&pmus_lock);
6886
6887 ret = bus_register(&pmu_bus);
6888 if (ret)
6889 goto unlock;
6890
6891 list_for_each_entry(pmu, &pmus, entry) {
6892 if (!pmu->name || pmu->type < 0)
6893 continue;
6894
6895 ret = pmu_dev_alloc(pmu);
6896 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6897 }
6898 pmu_bus_running = 1;
6899 ret = 0;
6900
6901unlock:
6902 mutex_unlock(&pmus_lock);
6903
6904 return ret;
6905}
6906device_initcall(perf_event_sysfs_init);
e5d1367f
SE
6907
6908#ifdef CONFIG_CGROUP_PERF
6909static struct cgroup_subsys_state *perf_cgroup_create(
6910 struct cgroup_subsys *ss, struct cgroup *cont)
6911{
6912 struct perf_cgroup *jc;
e5d1367f 6913
1b15d055 6914 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
6915 if (!jc)
6916 return ERR_PTR(-ENOMEM);
6917
e5d1367f
SE
6918 jc->info = alloc_percpu(struct perf_cgroup_info);
6919 if (!jc->info) {
6920 kfree(jc);
6921 return ERR_PTR(-ENOMEM);
6922 }
6923
e5d1367f
SE
6924 return &jc->css;
6925}
6926
6927static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6928 struct cgroup *cont)
6929{
6930 struct perf_cgroup *jc;
6931 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6932 struct perf_cgroup, css);
6933 free_percpu(jc->info);
6934 kfree(jc);
6935}
6936
6937static int __perf_cgroup_move(void *info)
6938{
6939 struct task_struct *task = info;
6940 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6941 return 0;
6942}
6943
bb9d97b6
TH
6944static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6945 struct cgroup_taskset *tset)
e5d1367f 6946{
bb9d97b6
TH
6947 struct task_struct *task;
6948
6949 cgroup_taskset_for_each(task, cgrp, tset)
6950 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
6951}
6952
e5d1367f
SE
6953static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6954 struct cgroup *old_cgrp, struct task_struct *task)
6955{
6956 /*
6957 * cgroup_exit() is called in the copy_process() failure path.
6958 * Ignore this case since the task hasn't ran yet, this avoids
6959 * trying to poke a half freed task state from generic code.
6960 */
6961 if (!(task->flags & PF_EXITING))
6962 return;
6963
bb9d97b6 6964 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
6965}
6966
6967struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
6968 .name = "perf_event",
6969 .subsys_id = perf_subsys_id,
6970 .create = perf_cgroup_create,
6971 .destroy = perf_cgroup_destroy,
6972 .exit = perf_cgroup_exit,
bb9d97b6 6973 .attach = perf_cgroup_attach,
e5d1367f
SE
6974};
6975#endif /* CONFIG_CGROUP_PERF */