perf: Roll back callchain buffer refcount under the callchain mutex
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
ba8a75c1 144static DEFINE_PER_CPU(atomic_t, perf_freq_events);
e5d1367f 145
cdd6c482
IM
146static atomic_t nr_mmap_events __read_mostly;
147static atomic_t nr_comm_events __read_mostly;
148static atomic_t nr_task_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
14c63f17
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
231DEFINE_PER_CPU(u64, running_sample_length);
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
14c63f17
DH
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
2903ff01 595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
596 if (IS_ERR(css)) {
597 ret = PTR_ERR(css);
598 goto out;
599 }
e5d1367f
SE
600
601 cgrp = container_of(css, struct perf_cgroup, css);
602 event->cgrp = cgrp;
603
f75e18cb 604 /* must be done before we fput() the file */
9c5da09d
SQ
605 if (!perf_tryget_cgroup(event)) {
606 event->cgrp = NULL;
607 ret = -ENOENT;
608 goto out;
609 }
f75e18cb 610
e5d1367f
SE
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
753static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
754{
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
757 int rotations = 0;
758
759 WARN_ON(!irqs_disabled());
760
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
762
763 rotations = perf_rotate_context(cpuctx);
764
765 /*
766 * arm timer if needed
767 */
768 if (rotations) {
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
771 }
772
773 return ret;
774}
775
776/* CPU is going down */
777void perf_cpu_hrtimer_cancel(int cpu)
778{
779 struct perf_cpu_context *cpuctx;
780 struct pmu *pmu;
781 unsigned long flags;
782
783 if (WARN_ON(cpu != smp_processor_id()))
784 return;
785
786 local_irq_save(flags);
787
788 rcu_read_lock();
789
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
792
793 if (pmu->task_ctx_nr == perf_sw_context)
794 continue;
795
796 hrtimer_cancel(&cpuctx->hrtimer);
797 }
798
799 rcu_read_unlock();
800
801 local_irq_restore(flags);
802}
803
804static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
805{
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 808 int timer;
9e630205
SE
809
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
812 return;
813
62b85639
SE
814 /*
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
817 */
818 timer = pmu->hrtimer_interval_ms;
819 if (timer < 1)
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
821
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
823
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
826}
827
828static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
829{
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
832
833 /* not for SW PMU */
834 if (pmu->task_ctx_nr == perf_sw_context)
835 return;
836
837 if (hrtimer_active(hr))
838 return;
839
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
843}
844
33696fc0 845void perf_pmu_disable(struct pmu *pmu)
9e35ad38 846{
33696fc0
PZ
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
848 if (!(*count)++)
849 pmu->pmu_disable(pmu);
9e35ad38 850}
9e35ad38 851
33696fc0 852void perf_pmu_enable(struct pmu *pmu)
9e35ad38 853{
33696fc0
PZ
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
855 if (!--(*count))
856 pmu->pmu_enable(pmu);
9e35ad38 857}
9e35ad38 858
e9d2b064
PZ
859static DEFINE_PER_CPU(struct list_head, rotation_list);
860
861/*
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
865 */
108b02cf 866static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 867{
108b02cf 868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 869 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 870
e9d2b064 871 WARN_ON(!irqs_disabled());
b5ab4cd5 872
d84153d6 873 if (list_empty(&cpuctx->rotation_list))
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
cdd6c482 882static void put_ctx(struct perf_event_context *ctx)
a63eaf34 883{
564c2b21
PM
884 if (atomic_dec_and_test(&ctx->refcount)) {
885 if (ctx->parent_ctx)
886 put_ctx(ctx->parent_ctx);
c93f7669
PM
887 if (ctx->task)
888 put_task_struct(ctx->task);
cb796ff3 889 kfree_rcu(ctx, rcu_head);
564c2b21 890 }
a63eaf34
PM
891}
892
cdd6c482 893static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
894{
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
898 }
899}
900
6844c09d
ACM
901static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
902{
903 /*
904 * only top level events have the pid namespace they were created in
905 */
906 if (event->parent)
907 event = event->parent;
908
909 return task_tgid_nr_ns(p, event->ns);
910}
911
912static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
913{
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_pid_nr_ns(p, event->ns);
921}
922
7f453c24 923/*
cdd6c482 924 * If we inherit events we want to return the parent event id
7f453c24
PZ
925 * to userspace.
926 */
cdd6c482 927static u64 primary_event_id(struct perf_event *event)
7f453c24 928{
cdd6c482 929 u64 id = event->id;
7f453c24 930
cdd6c482
IM
931 if (event->parent)
932 id = event->parent->id;
7f453c24
PZ
933
934 return id;
935}
936
25346b93 937/*
cdd6c482 938 * Get the perf_event_context for a task and lock it.
25346b93
PM
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
941 */
cdd6c482 942static struct perf_event_context *
8dc85d54 943perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 944{
cdd6c482 945 struct perf_event_context *ctx;
25346b93 946
9ed6060d 947retry:
058ebd0e
PZ
948 /*
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
953 *
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
956 */
957 preempt_disable();
958 rcu_read_lock();
8dc85d54 959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
960 if (ctx) {
961 /*
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
cdd6c482 964 * perf_event_task_sched_out, though the
25346b93
PM
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
970 */
e625cce1 971 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
974 rcu_read_unlock();
975 preempt_enable();
25346b93
PM
976 goto retry;
977 }
b49a9e7e
PZ
978
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
981 ctx = NULL;
982 }
25346b93
PM
983 }
984 rcu_read_unlock();
058ebd0e 985 preempt_enable();
25346b93
PM
986 return ctx;
987}
988
989/*
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
993 */
8dc85d54
PZ
994static struct perf_event_context *
995perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 996{
cdd6c482 997 struct perf_event_context *ctx;
25346b93
PM
998 unsigned long flags;
999
8dc85d54 1000 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1001 if (ctx) {
1002 ++ctx->pin_count;
e625cce1 1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1004 }
1005 return ctx;
1006}
1007
cdd6c482 1008static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1009{
1010 unsigned long flags;
1011
e625cce1 1012 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1013 --ctx->pin_count;
e625cce1 1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1015}
1016
f67218c3
PZ
1017/*
1018 * Update the record of the current time in a context.
1019 */
1020static void update_context_time(struct perf_event_context *ctx)
1021{
1022 u64 now = perf_clock();
1023
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1026}
1027
4158755d
SE
1028static u64 perf_event_time(struct perf_event *event)
1029{
1030 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1031
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1034
4158755d
SE
1035 return ctx ? ctx->time : 0;
1036}
1037
f67218c3
PZ
1038/*
1039 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1040 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1041 */
1042static void update_event_times(struct perf_event *event)
1043{
1044 struct perf_event_context *ctx = event->ctx;
1045 u64 run_end;
1046
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1049 return;
e5d1367f
SE
1050 /*
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1056 *
1057 * That is why we treat cgroup events differently
1058 * here.
1059 */
1060 if (is_cgroup_event(event))
46cd6a7f 1061 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
acd1d7c1
PZ
1064 else
1065 run_end = event->tstamp_stopped;
1066
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1068
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1071 else
4158755d 1072 run_end = perf_event_time(event);
f67218c3
PZ
1073
1074 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1075
f67218c3
PZ
1076}
1077
96c21a46
PZ
1078/*
1079 * Update total_time_enabled and total_time_running for all events in a group.
1080 */
1081static void update_group_times(struct perf_event *leader)
1082{
1083 struct perf_event *event;
1084
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1088}
1089
889ff015
FW
1090static struct list_head *
1091ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1092{
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1095 else
1096 return &ctx->flexible_groups;
1097}
1098
fccc714b 1099/*
cdd6c482 1100 * Add a event from the lists for its context.
fccc714b
PZ
1101 * Must be called with ctx->mutex and ctx->lock held.
1102 */
04289bb9 1103static void
cdd6c482 1104list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1105{
8a49542c
PZ
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1108
1109 /*
8a49542c
PZ
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1113 */
8a49542c 1114 if (event->group_leader == event) {
889ff015
FW
1115 struct list_head *list;
1116
d6f962b5
FW
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1119
889ff015
FW
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
5c148194 1122 }
592903cd 1123
08309379 1124 if (is_cgroup_event(event))
e5d1367f 1125 ctx->nr_cgroups++;
e5d1367f 1126
d010b332
SE
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1129
cdd6c482 1130 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1131 if (!ctx->nr_events)
108b02cf 1132 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1133 ctx->nr_events++;
1134 if (event->attr.inherit_stat)
bfbd3381 1135 ctx->nr_stat++;
04289bb9
IM
1136}
1137
0231bb53
JO
1138/*
1139 * Initialize event state based on the perf_event_attr::disabled.
1140 */
1141static inline void perf_event__state_init(struct perf_event *event)
1142{
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1145}
1146
c320c7b7
ACM
1147/*
1148 * Called at perf_event creation and when events are attached/detached from a
1149 * group.
1150 */
1151static void perf_event__read_size(struct perf_event *event)
1152{
1153 int entry = sizeof(u64); /* value */
1154 int size = 0;
1155 int nr = 1;
1156
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1169 }
1170
1171 size += entry * nr;
1172 event->read_size = size;
1173}
1174
1175static void perf_event__header_size(struct perf_event *event)
1176{
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1179 u16 size = 0;
1180
1181 perf_event__read_size(event);
1182
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1185
6844c09d
ACM
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1188
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1191
c3feedf2
AK
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1194
6844c09d
ACM
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1197
d6be9ad6
SE
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1200
6844c09d
ACM
1201 event->header_size = size;
1202}
1203
1204static void perf_event__id_header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
c320c7b7
ACM
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1212
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1215
c320c7b7
ACM
1216 if (sample_type & PERF_SAMPLE_ID)
1217 size += sizeof(data->id);
1218
1219 if (sample_type & PERF_SAMPLE_STREAM_ID)
1220 size += sizeof(data->stream_id);
1221
1222 if (sample_type & PERF_SAMPLE_CPU)
1223 size += sizeof(data->cpu_entry);
1224
6844c09d 1225 event->id_header_size = size;
c320c7b7
ACM
1226}
1227
8a49542c
PZ
1228static void perf_group_attach(struct perf_event *event)
1229{
c320c7b7 1230 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1231
74c3337c
PZ
1232 /*
1233 * We can have double attach due to group movement in perf_event_open.
1234 */
1235 if (event->attach_state & PERF_ATTACH_GROUP)
1236 return;
1237
8a49542c
PZ
1238 event->attach_state |= PERF_ATTACH_GROUP;
1239
1240 if (group_leader == event)
1241 return;
1242
1243 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1244 !is_software_event(event))
1245 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1246
1247 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1248 group_leader->nr_siblings++;
c320c7b7
ACM
1249
1250 perf_event__header_size(group_leader);
1251
1252 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1253 perf_event__header_size(pos);
8a49542c
PZ
1254}
1255
a63eaf34 1256/*
cdd6c482 1257 * Remove a event from the lists for its context.
fccc714b 1258 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1259 */
04289bb9 1260static void
cdd6c482 1261list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1262{
68cacd29 1263 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1264 /*
1265 * We can have double detach due to exit/hot-unplug + close.
1266 */
1267 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1268 return;
8a49542c
PZ
1269
1270 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1271
68cacd29 1272 if (is_cgroup_event(event)) {
e5d1367f 1273 ctx->nr_cgroups--;
68cacd29
SE
1274 cpuctx = __get_cpu_context(ctx);
1275 /*
1276 * if there are no more cgroup events
1277 * then cler cgrp to avoid stale pointer
1278 * in update_cgrp_time_from_cpuctx()
1279 */
1280 if (!ctx->nr_cgroups)
1281 cpuctx->cgrp = NULL;
1282 }
e5d1367f 1283
d010b332
SE
1284 if (has_branch_stack(event))
1285 ctx->nr_branch_stack--;
1286
cdd6c482
IM
1287 ctx->nr_events--;
1288 if (event->attr.inherit_stat)
bfbd3381 1289 ctx->nr_stat--;
8bc20959 1290
cdd6c482 1291 list_del_rcu(&event->event_entry);
04289bb9 1292
8a49542c
PZ
1293 if (event->group_leader == event)
1294 list_del_init(&event->group_entry);
5c148194 1295
96c21a46 1296 update_group_times(event);
b2e74a26
SE
1297
1298 /*
1299 * If event was in error state, then keep it
1300 * that way, otherwise bogus counts will be
1301 * returned on read(). The only way to get out
1302 * of error state is by explicit re-enabling
1303 * of the event
1304 */
1305 if (event->state > PERF_EVENT_STATE_OFF)
1306 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1307}
1308
8a49542c 1309static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1310{
1311 struct perf_event *sibling, *tmp;
8a49542c
PZ
1312 struct list_head *list = NULL;
1313
1314 /*
1315 * We can have double detach due to exit/hot-unplug + close.
1316 */
1317 if (!(event->attach_state & PERF_ATTACH_GROUP))
1318 return;
1319
1320 event->attach_state &= ~PERF_ATTACH_GROUP;
1321
1322 /*
1323 * If this is a sibling, remove it from its group.
1324 */
1325 if (event->group_leader != event) {
1326 list_del_init(&event->group_entry);
1327 event->group_leader->nr_siblings--;
c320c7b7 1328 goto out;
8a49542c
PZ
1329 }
1330
1331 if (!list_empty(&event->group_entry))
1332 list = &event->group_entry;
2e2af50b 1333
04289bb9 1334 /*
cdd6c482
IM
1335 * If this was a group event with sibling events then
1336 * upgrade the siblings to singleton events by adding them
8a49542c 1337 * to whatever list we are on.
04289bb9 1338 */
cdd6c482 1339 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1340 if (list)
1341 list_move_tail(&sibling->group_entry, list);
04289bb9 1342 sibling->group_leader = sibling;
d6f962b5
FW
1343
1344 /* Inherit group flags from the previous leader */
1345 sibling->group_flags = event->group_flags;
04289bb9 1346 }
c320c7b7
ACM
1347
1348out:
1349 perf_event__header_size(event->group_leader);
1350
1351 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1352 perf_event__header_size(tmp);
04289bb9
IM
1353}
1354
fa66f07a
SE
1355static inline int
1356event_filter_match(struct perf_event *event)
1357{
e5d1367f
SE
1358 return (event->cpu == -1 || event->cpu == smp_processor_id())
1359 && perf_cgroup_match(event);
fa66f07a
SE
1360}
1361
9ffcfa6f
SE
1362static void
1363event_sched_out(struct perf_event *event,
3b6f9e5c 1364 struct perf_cpu_context *cpuctx,
cdd6c482 1365 struct perf_event_context *ctx)
3b6f9e5c 1366{
4158755d 1367 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1368 u64 delta;
1369 /*
1370 * An event which could not be activated because of
1371 * filter mismatch still needs to have its timings
1372 * maintained, otherwise bogus information is return
1373 * via read() for time_enabled, time_running:
1374 */
1375 if (event->state == PERF_EVENT_STATE_INACTIVE
1376 && !event_filter_match(event)) {
e5d1367f 1377 delta = tstamp - event->tstamp_stopped;
fa66f07a 1378 event->tstamp_running += delta;
4158755d 1379 event->tstamp_stopped = tstamp;
fa66f07a
SE
1380 }
1381
cdd6c482 1382 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1383 return;
3b6f9e5c 1384
cdd6c482
IM
1385 event->state = PERF_EVENT_STATE_INACTIVE;
1386 if (event->pending_disable) {
1387 event->pending_disable = 0;
1388 event->state = PERF_EVENT_STATE_OFF;
970892a9 1389 }
4158755d 1390 event->tstamp_stopped = tstamp;
a4eaf7f1 1391 event->pmu->del(event, 0);
cdd6c482 1392 event->oncpu = -1;
3b6f9e5c 1393
cdd6c482 1394 if (!is_software_event(event))
3b6f9e5c
PM
1395 cpuctx->active_oncpu--;
1396 ctx->nr_active--;
0f5a2601
PZ
1397 if (event->attr.freq && event->attr.sample_freq)
1398 ctx->nr_freq--;
cdd6c482 1399 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1400 cpuctx->exclusive = 0;
1401}
1402
d859e29f 1403static void
cdd6c482 1404group_sched_out(struct perf_event *group_event,
d859e29f 1405 struct perf_cpu_context *cpuctx,
cdd6c482 1406 struct perf_event_context *ctx)
d859e29f 1407{
cdd6c482 1408 struct perf_event *event;
fa66f07a 1409 int state = group_event->state;
d859e29f 1410
cdd6c482 1411 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1412
1413 /*
1414 * Schedule out siblings (if any):
1415 */
cdd6c482
IM
1416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1417 event_sched_out(event, cpuctx, ctx);
d859e29f 1418
fa66f07a 1419 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1420 cpuctx->exclusive = 0;
1421}
1422
0793a61d 1423/*
cdd6c482 1424 * Cross CPU call to remove a performance event
0793a61d 1425 *
cdd6c482 1426 * We disable the event on the hardware level first. After that we
0793a61d
TG
1427 * remove it from the context list.
1428 */
fe4b04fa 1429static int __perf_remove_from_context(void *info)
0793a61d 1430{
cdd6c482
IM
1431 struct perf_event *event = info;
1432 struct perf_event_context *ctx = event->ctx;
108b02cf 1433 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1434
e625cce1 1435 raw_spin_lock(&ctx->lock);
cdd6c482 1436 event_sched_out(event, cpuctx, ctx);
cdd6c482 1437 list_del_event(event, ctx);
64ce3126
PZ
1438 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1439 ctx->is_active = 0;
1440 cpuctx->task_ctx = NULL;
1441 }
e625cce1 1442 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1443
1444 return 0;
0793a61d
TG
1445}
1446
1447
1448/*
cdd6c482 1449 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1450 *
cdd6c482 1451 * CPU events are removed with a smp call. For task events we only
0793a61d 1452 * call when the task is on a CPU.
c93f7669 1453 *
cdd6c482
IM
1454 * If event->ctx is a cloned context, callers must make sure that
1455 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1456 * remains valid. This is OK when called from perf_release since
1457 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1458 * When called from perf_event_exit_task, it's OK because the
c93f7669 1459 * context has been detached from its task.
0793a61d 1460 */
fe4b04fa 1461static void perf_remove_from_context(struct perf_event *event)
0793a61d 1462{
cdd6c482 1463 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1464 struct task_struct *task = ctx->task;
1465
fe4b04fa
PZ
1466 lockdep_assert_held(&ctx->mutex);
1467
0793a61d
TG
1468 if (!task) {
1469 /*
cdd6c482 1470 * Per cpu events are removed via an smp call and
af901ca1 1471 * the removal is always successful.
0793a61d 1472 */
fe4b04fa 1473 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1474 return;
1475 }
1476
1477retry:
fe4b04fa
PZ
1478 if (!task_function_call(task, __perf_remove_from_context, event))
1479 return;
0793a61d 1480
e625cce1 1481 raw_spin_lock_irq(&ctx->lock);
0793a61d 1482 /*
fe4b04fa
PZ
1483 * If we failed to find a running task, but find the context active now
1484 * that we've acquired the ctx->lock, retry.
0793a61d 1485 */
fe4b04fa 1486 if (ctx->is_active) {
e625cce1 1487 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1488 goto retry;
1489 }
1490
1491 /*
fe4b04fa
PZ
1492 * Since the task isn't running, its safe to remove the event, us
1493 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1494 */
fe4b04fa 1495 list_del_event(event, ctx);
e625cce1 1496 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1497}
1498
d859e29f 1499/*
cdd6c482 1500 * Cross CPU call to disable a performance event
d859e29f 1501 */
500ad2d8 1502int __perf_event_disable(void *info)
d859e29f 1503{
cdd6c482 1504 struct perf_event *event = info;
cdd6c482 1505 struct perf_event_context *ctx = event->ctx;
108b02cf 1506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1507
1508 /*
cdd6c482
IM
1509 * If this is a per-task event, need to check whether this
1510 * event's task is the current task on this cpu.
fe4b04fa
PZ
1511 *
1512 * Can trigger due to concurrent perf_event_context_sched_out()
1513 * flipping contexts around.
d859e29f 1514 */
665c2142 1515 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1516 return -EINVAL;
d859e29f 1517
e625cce1 1518 raw_spin_lock(&ctx->lock);
d859e29f
PM
1519
1520 /*
cdd6c482 1521 * If the event is on, turn it off.
d859e29f
PM
1522 * If it is in error state, leave it in error state.
1523 */
cdd6c482 1524 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1525 update_context_time(ctx);
e5d1367f 1526 update_cgrp_time_from_event(event);
cdd6c482
IM
1527 update_group_times(event);
1528 if (event == event->group_leader)
1529 group_sched_out(event, cpuctx, ctx);
d859e29f 1530 else
cdd6c482
IM
1531 event_sched_out(event, cpuctx, ctx);
1532 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1533 }
1534
e625cce1 1535 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1536
1537 return 0;
d859e29f
PM
1538}
1539
1540/*
cdd6c482 1541 * Disable a event.
c93f7669 1542 *
cdd6c482
IM
1543 * If event->ctx is a cloned context, callers must make sure that
1544 * every task struct that event->ctx->task could possibly point to
c93f7669 1545 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1546 * perf_event_for_each_child or perf_event_for_each because they
1547 * hold the top-level event's child_mutex, so any descendant that
1548 * goes to exit will block in sync_child_event.
1549 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1550 * is the current context on this CPU and preemption is disabled,
cdd6c482 1551 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1552 */
44234adc 1553void perf_event_disable(struct perf_event *event)
d859e29f 1554{
cdd6c482 1555 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1556 struct task_struct *task = ctx->task;
1557
1558 if (!task) {
1559 /*
cdd6c482 1560 * Disable the event on the cpu that it's on
d859e29f 1561 */
fe4b04fa 1562 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1563 return;
1564 }
1565
9ed6060d 1566retry:
fe4b04fa
PZ
1567 if (!task_function_call(task, __perf_event_disable, event))
1568 return;
d859e29f 1569
e625cce1 1570 raw_spin_lock_irq(&ctx->lock);
d859e29f 1571 /*
cdd6c482 1572 * If the event is still active, we need to retry the cross-call.
d859e29f 1573 */
cdd6c482 1574 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1575 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1576 /*
1577 * Reload the task pointer, it might have been changed by
1578 * a concurrent perf_event_context_sched_out().
1579 */
1580 task = ctx->task;
d859e29f
PM
1581 goto retry;
1582 }
1583
1584 /*
1585 * Since we have the lock this context can't be scheduled
1586 * in, so we can change the state safely.
1587 */
cdd6c482
IM
1588 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1589 update_group_times(event);
1590 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1591 }
e625cce1 1592 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1593}
dcfce4a0 1594EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1595
e5d1367f
SE
1596static void perf_set_shadow_time(struct perf_event *event,
1597 struct perf_event_context *ctx,
1598 u64 tstamp)
1599{
1600 /*
1601 * use the correct time source for the time snapshot
1602 *
1603 * We could get by without this by leveraging the
1604 * fact that to get to this function, the caller
1605 * has most likely already called update_context_time()
1606 * and update_cgrp_time_xx() and thus both timestamp
1607 * are identical (or very close). Given that tstamp is,
1608 * already adjusted for cgroup, we could say that:
1609 * tstamp - ctx->timestamp
1610 * is equivalent to
1611 * tstamp - cgrp->timestamp.
1612 *
1613 * Then, in perf_output_read(), the calculation would
1614 * work with no changes because:
1615 * - event is guaranteed scheduled in
1616 * - no scheduled out in between
1617 * - thus the timestamp would be the same
1618 *
1619 * But this is a bit hairy.
1620 *
1621 * So instead, we have an explicit cgroup call to remain
1622 * within the time time source all along. We believe it
1623 * is cleaner and simpler to understand.
1624 */
1625 if (is_cgroup_event(event))
1626 perf_cgroup_set_shadow_time(event, tstamp);
1627 else
1628 event->shadow_ctx_time = tstamp - ctx->timestamp;
1629}
1630
4fe757dd
PZ
1631#define MAX_INTERRUPTS (~0ULL)
1632
1633static void perf_log_throttle(struct perf_event *event, int enable);
1634
235c7fc7 1635static int
9ffcfa6f 1636event_sched_in(struct perf_event *event,
235c7fc7 1637 struct perf_cpu_context *cpuctx,
6e37738a 1638 struct perf_event_context *ctx)
235c7fc7 1639{
4158755d
SE
1640 u64 tstamp = perf_event_time(event);
1641
cdd6c482 1642 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1643 return 0;
1644
cdd6c482 1645 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1646 event->oncpu = smp_processor_id();
4fe757dd
PZ
1647
1648 /*
1649 * Unthrottle events, since we scheduled we might have missed several
1650 * ticks already, also for a heavily scheduling task there is little
1651 * guarantee it'll get a tick in a timely manner.
1652 */
1653 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1654 perf_log_throttle(event, 1);
1655 event->hw.interrupts = 0;
1656 }
1657
235c7fc7
IM
1658 /*
1659 * The new state must be visible before we turn it on in the hardware:
1660 */
1661 smp_wmb();
1662
a4eaf7f1 1663 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1664 event->state = PERF_EVENT_STATE_INACTIVE;
1665 event->oncpu = -1;
235c7fc7
IM
1666 return -EAGAIN;
1667 }
1668
4158755d 1669 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1670
e5d1367f 1671 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1672
cdd6c482 1673 if (!is_software_event(event))
3b6f9e5c 1674 cpuctx->active_oncpu++;
235c7fc7 1675 ctx->nr_active++;
0f5a2601
PZ
1676 if (event->attr.freq && event->attr.sample_freq)
1677 ctx->nr_freq++;
235c7fc7 1678
cdd6c482 1679 if (event->attr.exclusive)
3b6f9e5c
PM
1680 cpuctx->exclusive = 1;
1681
235c7fc7
IM
1682 return 0;
1683}
1684
6751b71e 1685static int
cdd6c482 1686group_sched_in(struct perf_event *group_event,
6751b71e 1687 struct perf_cpu_context *cpuctx,
6e37738a 1688 struct perf_event_context *ctx)
6751b71e 1689{
6bde9b6c 1690 struct perf_event *event, *partial_group = NULL;
51b0fe39 1691 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1692 u64 now = ctx->time;
1693 bool simulate = false;
6751b71e 1694
cdd6c482 1695 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1696 return 0;
1697
ad5133b7 1698 pmu->start_txn(pmu);
6bde9b6c 1699
9ffcfa6f 1700 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1701 pmu->cancel_txn(pmu);
9e630205 1702 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1703 return -EAGAIN;
90151c35 1704 }
6751b71e
PM
1705
1706 /*
1707 * Schedule in siblings as one group (if any):
1708 */
cdd6c482 1709 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1710 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1711 partial_group = event;
6751b71e
PM
1712 goto group_error;
1713 }
1714 }
1715
9ffcfa6f 1716 if (!pmu->commit_txn(pmu))
6e85158c 1717 return 0;
9ffcfa6f 1718
6751b71e
PM
1719group_error:
1720 /*
1721 * Groups can be scheduled in as one unit only, so undo any
1722 * partial group before returning:
d7842da4
SE
1723 * The events up to the failed event are scheduled out normally,
1724 * tstamp_stopped will be updated.
1725 *
1726 * The failed events and the remaining siblings need to have
1727 * their timings updated as if they had gone thru event_sched_in()
1728 * and event_sched_out(). This is required to get consistent timings
1729 * across the group. This also takes care of the case where the group
1730 * could never be scheduled by ensuring tstamp_stopped is set to mark
1731 * the time the event was actually stopped, such that time delta
1732 * calculation in update_event_times() is correct.
6751b71e 1733 */
cdd6c482
IM
1734 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1735 if (event == partial_group)
d7842da4
SE
1736 simulate = true;
1737
1738 if (simulate) {
1739 event->tstamp_running += now - event->tstamp_stopped;
1740 event->tstamp_stopped = now;
1741 } else {
1742 event_sched_out(event, cpuctx, ctx);
1743 }
6751b71e 1744 }
9ffcfa6f 1745 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1746
ad5133b7 1747 pmu->cancel_txn(pmu);
90151c35 1748
9e630205
SE
1749 perf_cpu_hrtimer_restart(cpuctx);
1750
6751b71e
PM
1751 return -EAGAIN;
1752}
1753
3b6f9e5c 1754/*
cdd6c482 1755 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1756 */
cdd6c482 1757static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1758 struct perf_cpu_context *cpuctx,
1759 int can_add_hw)
1760{
1761 /*
cdd6c482 1762 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1763 */
d6f962b5 1764 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1765 return 1;
1766 /*
1767 * If an exclusive group is already on, no other hardware
cdd6c482 1768 * events can go on.
3b6f9e5c
PM
1769 */
1770 if (cpuctx->exclusive)
1771 return 0;
1772 /*
1773 * If this group is exclusive and there are already
cdd6c482 1774 * events on the CPU, it can't go on.
3b6f9e5c 1775 */
cdd6c482 1776 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1777 return 0;
1778 /*
1779 * Otherwise, try to add it if all previous groups were able
1780 * to go on.
1781 */
1782 return can_add_hw;
1783}
1784
cdd6c482
IM
1785static void add_event_to_ctx(struct perf_event *event,
1786 struct perf_event_context *ctx)
53cfbf59 1787{
4158755d
SE
1788 u64 tstamp = perf_event_time(event);
1789
cdd6c482 1790 list_add_event(event, ctx);
8a49542c 1791 perf_group_attach(event);
4158755d
SE
1792 event->tstamp_enabled = tstamp;
1793 event->tstamp_running = tstamp;
1794 event->tstamp_stopped = tstamp;
53cfbf59
PM
1795}
1796
2c29ef0f
PZ
1797static void task_ctx_sched_out(struct perf_event_context *ctx);
1798static void
1799ctx_sched_in(struct perf_event_context *ctx,
1800 struct perf_cpu_context *cpuctx,
1801 enum event_type_t event_type,
1802 struct task_struct *task);
fe4b04fa 1803
dce5855b
PZ
1804static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1805 struct perf_event_context *ctx,
1806 struct task_struct *task)
1807{
1808 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1809 if (ctx)
1810 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1811 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1814}
1815
0793a61d 1816/*
cdd6c482 1817 * Cross CPU call to install and enable a performance event
682076ae
PZ
1818 *
1819 * Must be called with ctx->mutex held
0793a61d 1820 */
fe4b04fa 1821static int __perf_install_in_context(void *info)
0793a61d 1822{
cdd6c482
IM
1823 struct perf_event *event = info;
1824 struct perf_event_context *ctx = event->ctx;
108b02cf 1825 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1826 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1827 struct task_struct *task = current;
1828
b58f6b0d 1829 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1830 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1831
1832 /*
2c29ef0f 1833 * If there was an active task_ctx schedule it out.
0793a61d 1834 */
b58f6b0d 1835 if (task_ctx)
2c29ef0f 1836 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1837
1838 /*
1839 * If the context we're installing events in is not the
1840 * active task_ctx, flip them.
1841 */
1842 if (ctx->task && task_ctx != ctx) {
1843 if (task_ctx)
1844 raw_spin_unlock(&task_ctx->lock);
1845 raw_spin_lock(&ctx->lock);
1846 task_ctx = ctx;
1847 }
1848
1849 if (task_ctx) {
1850 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1851 task = task_ctx->task;
1852 }
b58f6b0d 1853
2c29ef0f 1854 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1855
4af4998b 1856 update_context_time(ctx);
e5d1367f
SE
1857 /*
1858 * update cgrp time only if current cgrp
1859 * matches event->cgrp. Must be done before
1860 * calling add_event_to_ctx()
1861 */
1862 update_cgrp_time_from_event(event);
0793a61d 1863
cdd6c482 1864 add_event_to_ctx(event, ctx);
0793a61d 1865
d859e29f 1866 /*
2c29ef0f 1867 * Schedule everything back in
d859e29f 1868 */
dce5855b 1869 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1870
1871 perf_pmu_enable(cpuctx->ctx.pmu);
1872 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 1873
d84153d6
FW
1874 if (atomic_read(&__get_cpu_var(perf_freq_events)))
1875 tick_nohz_full_kick();
1876
fe4b04fa 1877 return 0;
0793a61d
TG
1878}
1879
1880/*
cdd6c482 1881 * Attach a performance event to a context
0793a61d 1882 *
cdd6c482
IM
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
0793a61d 1885 *
cdd6c482 1886 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890static void
cdd6c482
IM
1891perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
0793a61d
TG
1893 int cpu)
1894{
1895 struct task_struct *task = ctx->task;
1896
fe4b04fa
PZ
1897 lockdep_assert_held(&ctx->mutex);
1898
c3f00c70 1899 event->ctx = ctx;
0cda4c02
YZ
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
c3f00c70 1902
0793a61d
TG
1903 if (!task) {
1904 /*
cdd6c482 1905 * Per cpu events are installed via an smp call and
af901ca1 1906 * the install is always successful.
0793a61d 1907 */
fe4b04fa 1908 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1909 return;
1910 }
1911
0793a61d 1912retry:
fe4b04fa
PZ
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
0793a61d 1915
e625cce1 1916 raw_spin_lock_irq(&ctx->lock);
0793a61d 1917 /*
fe4b04fa
PZ
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
0793a61d 1920 */
fe4b04fa 1921 if (ctx->is_active) {
e625cce1 1922 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1923 goto retry;
1924 }
1925
1926 /*
fe4b04fa
PZ
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1929 */
fe4b04fa 1930 add_event_to_ctx(event, ctx);
e625cce1 1931 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1932}
1933
fa289bec 1934/*
cdd6c482 1935 * Put a event into inactive state and update time fields.
fa289bec
PM
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1d9b482e 1942static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1943{
cdd6c482 1944 struct perf_event *sub;
4158755d 1945 u64 tstamp = perf_event_time(event);
fa289bec 1946
cdd6c482 1947 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1952 }
fa289bec
PM
1953}
1954
d859e29f 1955/*
cdd6c482 1956 * Cross CPU call to enable a performance event
d859e29f 1957 */
fe4b04fa 1958static int __perf_event_enable(void *info)
04289bb9 1959{
cdd6c482 1960 struct perf_event *event = info;
cdd6c482
IM
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
108b02cf 1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1964 int err;
04289bb9 1965
06f41796
JO
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
fe4b04fa 1976 return -EINVAL;
3cbed429 1977
e625cce1 1978 raw_spin_lock(&ctx->lock);
4af4998b 1979 update_context_time(ctx);
d859e29f 1980
cdd6c482 1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1982 goto unlock;
e5d1367f
SE
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
3f7cce3c 1987 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1988
1d9b482e 1989 __perf_event_mark_enabled(event);
04289bb9 1990
e5d1367f
SE
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
f4c4176f 1994 goto unlock;
e5d1367f 1995 }
f4c4176f 1996
04289bb9 1997 /*
cdd6c482 1998 * If the event is in a group and isn't the group leader,
d859e29f 1999 * then don't put it on unless the group is on.
04289bb9 2000 */
cdd6c482 2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2002 goto unlock;
3b6f9e5c 2003
cdd6c482 2004 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2005 err = -EEXIST;
e758a33d 2006 } else {
cdd6c482 2007 if (event == leader)
6e37738a 2008 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2009 else
6e37738a 2010 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2011 }
d859e29f
PM
2012
2013 if (err) {
2014 /*
cdd6c482 2015 * If this event can't go on and it's part of a
d859e29f
PM
2016 * group, then the whole group has to come off.
2017 */
9e630205 2018 if (leader != event) {
d859e29f 2019 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
0d48696f 2022 if (leader->attr.pinned) {
53cfbf59 2023 update_group_times(leader);
cdd6c482 2024 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2025 }
d859e29f
PM
2026 }
2027
9ed6060d 2028unlock:
e625cce1 2029 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2030
2031 return 0;
d859e29f
PM
2032}
2033
2034/*
cdd6c482 2035 * Enable a event.
c93f7669 2036 *
cdd6c482
IM
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
c93f7669 2039 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
d859e29f 2042 */
44234adc 2043void perf_event_enable(struct perf_event *event)
d859e29f 2044{
cdd6c482 2045 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
cdd6c482 2050 * Enable the event on the cpu that it's on
d859e29f 2051 */
fe4b04fa 2052 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2053 return;
2054 }
2055
e625cce1 2056 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2058 goto out;
2059
2060 /*
cdd6c482
IM
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
d859e29f
PM
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
cdd6c482
IM
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2069
9ed6060d 2070retry:
fe4b04fa 2071 if (!ctx->is_active) {
1d9b482e 2072 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2073 goto out;
2074 }
2075
e625cce1 2076 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
d859e29f 2080
e625cce1 2081 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2082
2083 /*
cdd6c482 2084 * If the context is active and the event is still off,
d859e29f
PM
2085 * we need to retry the cross-call.
2086 */
fe4b04fa
PZ
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
d859e29f 2093 goto retry;
fe4b04fa 2094 }
fa289bec 2095
9ed6060d 2096out:
e625cce1 2097 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2098}
dcfce4a0 2099EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2100
26ca5c11 2101int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2102{
2023b359 2103 /*
cdd6c482 2104 * not supported on inherited events
2023b359 2105 */
2e939d1d 2106 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2107 return -EINVAL;
2108
cdd6c482
IM
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2023b359
PZ
2111
2112 return 0;
79f14641 2113}
26ca5c11 2114EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2115
5b0311e1
FW
2116static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
235c7fc7 2119{
cdd6c482 2120 struct perf_event *event;
db24d33e 2121 int is_active = ctx->is_active;
235c7fc7 2122
db24d33e 2123 ctx->is_active &= ~event_type;
cdd6c482 2124 if (likely(!ctx->nr_events))
facc4307
PZ
2125 return;
2126
4af4998b 2127 update_context_time(ctx);
e5d1367f 2128 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2129 if (!ctx->nr_active)
facc4307 2130 return;
5b0311e1 2131
075e0b00 2132 perf_pmu_disable(ctx->pmu);
db24d33e 2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
9ed6060d 2136 }
889ff015 2137
db24d33e 2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2140 group_sched_out(event, cpuctx, ctx);
9ed6060d 2141 }
1b9a644f 2142 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2143}
2144
564c2b21
PM
2145/*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
cdd6c482
IM
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
564c2b21 2152 * in them directly with an fd; we can only enable/disable all
cdd6c482 2153 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
cdd6c482
IM
2156static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
564c2b21
PM
2158{
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2160 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2161 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2162}
2163
cdd6c482
IM
2164static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
bfbd3381
PZ
2166{
2167 u64 value;
2168
cdd6c482 2169 if (!event->attr.inherit_stat)
bfbd3381
PZ
2170 return;
2171
2172 /*
cdd6c482 2173 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2176 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2177 * don't need to use it.
2178 */
cdd6c482
IM
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2181 event->pmu->read(event);
2182 /* fall-through */
bfbd3381 2183
cdd6c482
IM
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
bfbd3381
PZ
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
cdd6c482 2193 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2194 * values when we flip the contexts.
2195 */
e7850595
PZ
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
bfbd3381 2199
cdd6c482
IM
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2202
bfbd3381 2203 /*
19d2e755 2204 * Since we swizzled the values, update the user visible data too.
bfbd3381 2205 */
cdd6c482
IM
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
bfbd3381
PZ
2208}
2209
2210#define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
cdd6c482
IM
2213static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
bfbd3381 2215{
cdd6c482 2216 struct perf_event *event, *next_event;
bfbd3381
PZ
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
02ffdbc8
PZ
2221 update_context_time(ctx);
2222
cdd6c482
IM
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
bfbd3381 2225
cdd6c482
IM
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
bfbd3381 2228
cdd6c482
IM
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2231
cdd6c482 2232 __perf_event_sync_stat(event, next_event);
bfbd3381 2233
cdd6c482
IM
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2236 }
2237}
2238
fe4b04fa
PZ
2239static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
0793a61d 2241{
8dc85d54 2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
108b02cf 2245 struct perf_cpu_context *cpuctx;
c93f7669 2246 int do_switch = 1;
0793a61d 2247
108b02cf
PZ
2248 if (likely(!ctx))
2249 return;
10989fb2 2250
108b02cf
PZ
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
0793a61d
TG
2253 return;
2254
c93f7669
PM
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2257 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
e625cce1
TG
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2271 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2272 /*
2273 * XXX do we need a memory barrier of sorts
cdd6c482 2274 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2275 */
8dc85d54
PZ
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
bfbd3381 2281
cdd6c482 2282 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2283 }
e625cce1
TG
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
564c2b21 2286 }
c93f7669 2287 rcu_read_unlock();
564c2b21 2288
c93f7669 2289 if (do_switch) {
facc4307 2290 raw_spin_lock(&ctx->lock);
5b0311e1 2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2292 cpuctx->task_ctx = NULL;
facc4307 2293 raw_spin_unlock(&ctx->lock);
c93f7669 2294 }
0793a61d
TG
2295}
2296
8dc85d54
PZ
2297#define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300/*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
ab0cce56
JO
2311void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
8dc85d54
PZ
2313{
2314 int ctxn;
2315
8dc85d54
PZ
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2325 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2326}
2327
04dc2dbb 2328static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2329{
108b02cf 2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2331
a63eaf34
PM
2332 if (!cpuctx->task_ctx)
2333 return;
012b84da
IM
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
04dc2dbb 2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2339 cpuctx->task_ctx = NULL;
2340}
2341
5b0311e1
FW
2342/*
2343 * Called with IRQs disabled
2344 */
2345static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347{
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2349}
2350
235c7fc7 2351static void
5b0311e1 2352ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2353 struct perf_cpu_context *cpuctx)
0793a61d 2354{
cdd6c482 2355 struct perf_event *event;
0793a61d 2356
889ff015
FW
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2359 continue;
5632ab12 2360 if (!event_filter_match(event))
3b6f9e5c
PM
2361 continue;
2362
e5d1367f
SE
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
8c9ed8e1 2367 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2368 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
cdd6c482
IM
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2377 }
3b6f9e5c 2378 }
5b0311e1
FW
2379}
2380
2381static void
2382ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2383 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2384{
2385 struct perf_event *event;
2386 int can_add_hw = 1;
3b6f9e5c 2387
889ff015
FW
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2391 continue;
04289bb9
IM
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2394 * of events:
04289bb9 2395 */
5632ab12 2396 if (!event_filter_match(event))
0793a61d
TG
2397 continue;
2398
e5d1367f
SE
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
9ed6060d 2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2404 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2405 can_add_hw = 0;
9ed6060d 2406 }
0793a61d 2407 }
5b0311e1
FW
2408}
2409
2410static void
2411ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2413 enum event_type_t event_type,
2414 struct task_struct *task)
5b0311e1 2415{
e5d1367f 2416 u64 now;
db24d33e 2417 int is_active = ctx->is_active;
e5d1367f 2418
db24d33e 2419 ctx->is_active |= event_type;
5b0311e1 2420 if (likely(!ctx->nr_events))
facc4307 2421 return;
5b0311e1 2422
e5d1367f
SE
2423 now = perf_clock();
2424 ctx->timestamp = now;
3f7cce3c 2425 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
db24d33e 2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2431 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2432
2433 /* Then walk through the lower prio flexible groups */
db24d33e 2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2435 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2436}
2437
329c0e01 2438static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2439 enum event_type_t event_type,
2440 struct task_struct *task)
329c0e01
FW
2441{
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
e5d1367f 2444 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2445}
2446
e5d1367f
SE
2447static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
235c7fc7 2449{
108b02cf 2450 struct perf_cpu_context *cpuctx;
235c7fc7 2451
108b02cf 2452 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
facc4307 2456 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2457 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
1d5f003f
GN
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
9b33fa6b 2467
86b47c25
GN
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
facc4307
PZ
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
b5ab4cd5
PZ
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
108b02cf 2477 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2478}
2479
d010b332
SE
2480/*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498{
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538}
2539
8dc85d54
PZ
2540/*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
ab0cce56
JO
2551void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
8dc85d54
PZ
2553{
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
e5d1367f 2562 perf_event_context_sched_in(ctx, task);
8dc85d54 2563 }
e5d1367f
SE
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2570 perf_cgroup_sched_in(prev, task);
d010b332
SE
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2575}
2576
abd50713
PZ
2577static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578{
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
fe4b04fa 2604#define REDUCE_FLS(a, b) \
abd50713
PZ
2605do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613} while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
f6ab91ad
PZ
2644 if (!divisor)
2645 return dividend;
2646
abd50713
PZ
2647 return div64_u64(dividend, divisor);
2648}
2649
e050e3f0
SE
2650static DEFINE_PER_CPU(int, perf_throttled_count);
2651static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
f39d47ff 2653static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2654{
cdd6c482 2655 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2656 s64 period, sample_period;
bd2b5b12
PZ
2657 s64 delta;
2658
abd50713 2659 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
bd2b5b12 2669 hwc->sample_period = sample_period;
abd50713 2670
e7850595 2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
e7850595 2675 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2679 }
bd2b5b12
PZ
2680}
2681
e050e3f0
SE
2682/*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
60db5e09 2689{
cdd6c482
IM
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
e050e3f0 2692 u64 now, period = TICK_NSEC;
abd50713 2693 s64 delta;
60db5e09 2694
e050e3f0
SE
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2701 return;
2702
e050e3f0 2703 raw_spin_lock(&ctx->lock);
f39d47ff 2704 perf_pmu_disable(ctx->pmu);
e050e3f0 2705
03541f8b 2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2708 continue;
2709
5632ab12 2710 if (!event_filter_match(event))
5d27c23d
PZ
2711 continue;
2712
cdd6c482 2713 hwc = &event->hw;
6a24ed6c 2714
e050e3f0
SE
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
cdd6c482 2717 perf_log_throttle(event, 1);
a4eaf7f1 2718 event->pmu->start(event, 0);
a78ac325
PZ
2719 }
2720
cdd6c482 2721 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2722 continue;
2723
e050e3f0
SE
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
e7850595 2729 now = local64_read(&event->count);
abd50713
PZ
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
60db5e09 2732
e050e3f0
SE
2733 /*
2734 * restart the event
2735 * reload only if value has changed
f39d47ff
SE
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
e050e3f0 2739 */
abd50713 2740 if (delta > 0)
f39d47ff 2741 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2744 }
e050e3f0 2745
f39d47ff 2746 perf_pmu_enable(ctx->pmu);
e050e3f0 2747 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2748}
2749
235c7fc7 2750/*
cdd6c482 2751 * Round-robin a context's events:
235c7fc7 2752 */
cdd6c482 2753static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2754{
dddd3379
TG
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2761}
2762
b5ab4cd5 2763/*
e9d2b064
PZ
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2767 */
9e630205 2768static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2769{
8dc85d54 2770 struct perf_event_context *ctx = NULL;
e050e3f0 2771 int rotate = 0, remove = 1;
7fc23a53 2772
b5ab4cd5 2773 if (cpuctx->ctx.nr_events) {
e9d2b064 2774 remove = 0;
b5ab4cd5
PZ
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
235c7fc7 2778
8dc85d54 2779 ctx = cpuctx->task_ctx;
b5ab4cd5 2780 if (ctx && ctx->nr_events) {
e9d2b064 2781 remove = 0;
b5ab4cd5
PZ
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
9717e6cd 2785
e050e3f0 2786 if (!rotate)
0f5a2601
PZ
2787 goto done;
2788
facc4307 2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2790 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2791
e050e3f0
SE
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2795
e050e3f0
SE
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
235c7fc7 2799
e050e3f0 2800 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2801
0f5a2601
PZ
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2804done:
e9d2b064
PZ
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2807
2808 return rotate;
e9d2b064
PZ
2809}
2810
026249ef
FW
2811#ifdef CONFIG_NO_HZ_FULL
2812bool perf_event_can_stop_tick(void)
2813{
d84153d6
FW
2814 if (atomic_read(&__get_cpu_var(perf_freq_events)) ||
2815 __this_cpu_read(perf_throttled_count))
026249ef 2816 return false;
d84153d6
FW
2817 else
2818 return true;
026249ef
FW
2819}
2820#endif
2821
e9d2b064
PZ
2822void perf_event_task_tick(void)
2823{
2824 struct list_head *head = &__get_cpu_var(rotation_list);
2825 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2826 struct perf_event_context *ctx;
2827 int throttled;
b5ab4cd5 2828
e9d2b064
PZ
2829 WARN_ON(!irqs_disabled());
2830
e050e3f0
SE
2831 __this_cpu_inc(perf_throttled_seq);
2832 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2833
e9d2b064 2834 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2835 ctx = &cpuctx->ctx;
2836 perf_adjust_freq_unthr_context(ctx, throttled);
2837
2838 ctx = cpuctx->task_ctx;
2839 if (ctx)
2840 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2841 }
0793a61d
TG
2842}
2843
889ff015
FW
2844static int event_enable_on_exec(struct perf_event *event,
2845 struct perf_event_context *ctx)
2846{
2847 if (!event->attr.enable_on_exec)
2848 return 0;
2849
2850 event->attr.enable_on_exec = 0;
2851 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2852 return 0;
2853
1d9b482e 2854 __perf_event_mark_enabled(event);
889ff015
FW
2855
2856 return 1;
2857}
2858
57e7986e 2859/*
cdd6c482 2860 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2861 * This expects task == current.
2862 */
8dc85d54 2863static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2864{
cdd6c482 2865 struct perf_event *event;
57e7986e
PM
2866 unsigned long flags;
2867 int enabled = 0;
889ff015 2868 int ret;
57e7986e
PM
2869
2870 local_irq_save(flags);
cdd6c482 2871 if (!ctx || !ctx->nr_events)
57e7986e
PM
2872 goto out;
2873
e566b76e
SE
2874 /*
2875 * We must ctxsw out cgroup events to avoid conflict
2876 * when invoking perf_task_event_sched_in() later on
2877 * in this function. Otherwise we end up trying to
2878 * ctxswin cgroup events which are already scheduled
2879 * in.
2880 */
a8d757ef 2881 perf_cgroup_sched_out(current, NULL);
57e7986e 2882
e625cce1 2883 raw_spin_lock(&ctx->lock);
04dc2dbb 2884 task_ctx_sched_out(ctx);
57e7986e 2885
b79387ef 2886 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2887 ret = event_enable_on_exec(event, ctx);
2888 if (ret)
2889 enabled = 1;
57e7986e
PM
2890 }
2891
2892 /*
cdd6c482 2893 * Unclone this context if we enabled any event.
57e7986e 2894 */
71a851b4
PZ
2895 if (enabled)
2896 unclone_ctx(ctx);
57e7986e 2897
e625cce1 2898 raw_spin_unlock(&ctx->lock);
57e7986e 2899
e566b76e
SE
2900 /*
2901 * Also calls ctxswin for cgroup events, if any:
2902 */
e5d1367f 2903 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2904out:
57e7986e
PM
2905 local_irq_restore(flags);
2906}
2907
0793a61d 2908/*
cdd6c482 2909 * Cross CPU call to read the hardware event
0793a61d 2910 */
cdd6c482 2911static void __perf_event_read(void *info)
0793a61d 2912{
cdd6c482
IM
2913 struct perf_event *event = info;
2914 struct perf_event_context *ctx = event->ctx;
108b02cf 2915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2916
e1ac3614
PM
2917 /*
2918 * If this is a task context, we need to check whether it is
2919 * the current task context of this cpu. If not it has been
2920 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2921 * event->count would have been updated to a recent sample
2922 * when the event was scheduled out.
e1ac3614
PM
2923 */
2924 if (ctx->task && cpuctx->task_ctx != ctx)
2925 return;
2926
e625cce1 2927 raw_spin_lock(&ctx->lock);
e5d1367f 2928 if (ctx->is_active) {
542e72fc 2929 update_context_time(ctx);
e5d1367f
SE
2930 update_cgrp_time_from_event(event);
2931 }
cdd6c482 2932 update_event_times(event);
542e72fc
PZ
2933 if (event->state == PERF_EVENT_STATE_ACTIVE)
2934 event->pmu->read(event);
e625cce1 2935 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2936}
2937
b5e58793
PZ
2938static inline u64 perf_event_count(struct perf_event *event)
2939{
e7850595 2940 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2941}
2942
cdd6c482 2943static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2944{
2945 /*
cdd6c482
IM
2946 * If event is enabled and currently active on a CPU, update the
2947 * value in the event structure:
0793a61d 2948 */
cdd6c482
IM
2949 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2950 smp_call_function_single(event->oncpu,
2951 __perf_event_read, event, 1);
2952 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2953 struct perf_event_context *ctx = event->ctx;
2954 unsigned long flags;
2955
e625cce1 2956 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2957 /*
2958 * may read while context is not active
2959 * (e.g., thread is blocked), in that case
2960 * we cannot update context time
2961 */
e5d1367f 2962 if (ctx->is_active) {
c530ccd9 2963 update_context_time(ctx);
e5d1367f
SE
2964 update_cgrp_time_from_event(event);
2965 }
cdd6c482 2966 update_event_times(event);
e625cce1 2967 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2968 }
2969
b5e58793 2970 return perf_event_count(event);
0793a61d
TG
2971}
2972
a63eaf34 2973/*
cdd6c482 2974 * Initialize the perf_event context in a task_struct:
a63eaf34 2975 */
eb184479 2976static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2977{
e625cce1 2978 raw_spin_lock_init(&ctx->lock);
a63eaf34 2979 mutex_init(&ctx->mutex);
889ff015
FW
2980 INIT_LIST_HEAD(&ctx->pinned_groups);
2981 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2982 INIT_LIST_HEAD(&ctx->event_list);
2983 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2984}
2985
2986static struct perf_event_context *
2987alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2988{
2989 struct perf_event_context *ctx;
2990
2991 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2992 if (!ctx)
2993 return NULL;
2994
2995 __perf_event_init_context(ctx);
2996 if (task) {
2997 ctx->task = task;
2998 get_task_struct(task);
0793a61d 2999 }
eb184479
PZ
3000 ctx->pmu = pmu;
3001
3002 return ctx;
a63eaf34
PM
3003}
3004
2ebd4ffb
MH
3005static struct task_struct *
3006find_lively_task_by_vpid(pid_t vpid)
3007{
3008 struct task_struct *task;
3009 int err;
0793a61d
TG
3010
3011 rcu_read_lock();
2ebd4ffb 3012 if (!vpid)
0793a61d
TG
3013 task = current;
3014 else
2ebd4ffb 3015 task = find_task_by_vpid(vpid);
0793a61d
TG
3016 if (task)
3017 get_task_struct(task);
3018 rcu_read_unlock();
3019
3020 if (!task)
3021 return ERR_PTR(-ESRCH);
3022
0793a61d 3023 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3024 err = -EACCES;
3025 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3026 goto errout;
3027
2ebd4ffb
MH
3028 return task;
3029errout:
3030 put_task_struct(task);
3031 return ERR_PTR(err);
3032
3033}
3034
fe4b04fa
PZ
3035/*
3036 * Returns a matching context with refcount and pincount.
3037 */
108b02cf 3038static struct perf_event_context *
38a81da2 3039find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3040{
cdd6c482 3041 struct perf_event_context *ctx;
22a4f650 3042 struct perf_cpu_context *cpuctx;
25346b93 3043 unsigned long flags;
8dc85d54 3044 int ctxn, err;
0793a61d 3045
22a4ec72 3046 if (!task) {
cdd6c482 3047 /* Must be root to operate on a CPU event: */
0764771d 3048 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3049 return ERR_PTR(-EACCES);
3050
0793a61d 3051 /*
cdd6c482 3052 * We could be clever and allow to attach a event to an
0793a61d
TG
3053 * offline CPU and activate it when the CPU comes up, but
3054 * that's for later.
3055 */
f6325e30 3056 if (!cpu_online(cpu))
0793a61d
TG
3057 return ERR_PTR(-ENODEV);
3058
108b02cf 3059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3060 ctx = &cpuctx->ctx;
c93f7669 3061 get_ctx(ctx);
fe4b04fa 3062 ++ctx->pin_count;
0793a61d 3063
0793a61d
TG
3064 return ctx;
3065 }
3066
8dc85d54
PZ
3067 err = -EINVAL;
3068 ctxn = pmu->task_ctx_nr;
3069 if (ctxn < 0)
3070 goto errout;
3071
9ed6060d 3072retry:
8dc85d54 3073 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3074 if (ctx) {
71a851b4 3075 unclone_ctx(ctx);
fe4b04fa 3076 ++ctx->pin_count;
e625cce1 3077 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3078 } else {
eb184479 3079 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3080 err = -ENOMEM;
3081 if (!ctx)
3082 goto errout;
eb184479 3083
dbe08d82
ON
3084 err = 0;
3085 mutex_lock(&task->perf_event_mutex);
3086 /*
3087 * If it has already passed perf_event_exit_task().
3088 * we must see PF_EXITING, it takes this mutex too.
3089 */
3090 if (task->flags & PF_EXITING)
3091 err = -ESRCH;
3092 else if (task->perf_event_ctxp[ctxn])
3093 err = -EAGAIN;
fe4b04fa 3094 else {
9137fb28 3095 get_ctx(ctx);
fe4b04fa 3096 ++ctx->pin_count;
dbe08d82 3097 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3098 }
dbe08d82
ON
3099 mutex_unlock(&task->perf_event_mutex);
3100
3101 if (unlikely(err)) {
9137fb28 3102 put_ctx(ctx);
dbe08d82
ON
3103
3104 if (err == -EAGAIN)
3105 goto retry;
3106 goto errout;
a63eaf34
PM
3107 }
3108 }
3109
0793a61d 3110 return ctx;
c93f7669 3111
9ed6060d 3112errout:
c93f7669 3113 return ERR_PTR(err);
0793a61d
TG
3114}
3115
6fb2915d
LZ
3116static void perf_event_free_filter(struct perf_event *event);
3117
cdd6c482 3118static void free_event_rcu(struct rcu_head *head)
592903cd 3119{
cdd6c482 3120 struct perf_event *event;
592903cd 3121
cdd6c482
IM
3122 event = container_of(head, struct perf_event, rcu_head);
3123 if (event->ns)
3124 put_pid_ns(event->ns);
6fb2915d 3125 perf_event_free_filter(event);
cdd6c482 3126 kfree(event);
592903cd
PZ
3127}
3128
76369139 3129static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3130static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3131
4beb31f3
FW
3132static void unaccount_event_cpu(struct perf_event *event, int cpu)
3133{
3134 if (event->parent)
3135 return;
3136
3137 if (has_branch_stack(event)) {
3138 if (!(event->attach_state & PERF_ATTACH_TASK))
3139 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3140 }
3141 if (is_cgroup_event(event))
3142 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
ba8a75c1
FW
3143
3144 if (event->attr.freq)
3145 atomic_dec(&per_cpu(perf_freq_events, cpu));
4beb31f3
FW
3146}
3147
3148static void unaccount_event(struct perf_event *event)
3149{
3150 if (event->parent)
3151 return;
3152
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
3161 if (is_cgroup_event(event))
3162 static_key_slow_dec_deferred(&perf_sched_events);
3163 if (has_branch_stack(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3165
3166 unaccount_event_cpu(event, event->cpu);
3167}
3168
766d6c07
FW
3169static void __free_event(struct perf_event *event)
3170{
3171 if (!event->parent) {
3172 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3173 put_callchain_buffers();
3174 }
3175
3176 if (event->destroy)
3177 event->destroy(event);
3178
3179 if (event->ctx)
3180 put_ctx(event->ctx);
3181
3182 call_rcu(&event->rcu_head, free_event_rcu);
3183}
cdd6c482 3184static void free_event(struct perf_event *event)
f1600952 3185{
e360adbe 3186 irq_work_sync(&event->pending);
925d519a 3187
4beb31f3 3188 unaccount_event(event);
9ee318a7 3189
76369139 3190 if (event->rb) {
9bb5d40c
PZ
3191 struct ring_buffer *rb;
3192
3193 /*
3194 * Can happen when we close an event with re-directed output.
3195 *
3196 * Since we have a 0 refcount, perf_mmap_close() will skip
3197 * over us; possibly making our ring_buffer_put() the last.
3198 */
3199 mutex_lock(&event->mmap_mutex);
3200 rb = event->rb;
3201 if (rb) {
3202 rcu_assign_pointer(event->rb, NULL);
3203 ring_buffer_detach(event, rb);
3204 ring_buffer_put(rb); /* could be last */
3205 }
3206 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3207 }
3208
e5d1367f
SE
3209 if (is_cgroup_event(event))
3210 perf_detach_cgroup(event);
3211
0c67b408 3212
766d6c07 3213 __free_event(event);
f1600952
PZ
3214}
3215
a66a3052 3216int perf_event_release_kernel(struct perf_event *event)
0793a61d 3217{
cdd6c482 3218 struct perf_event_context *ctx = event->ctx;
0793a61d 3219
ad3a37de 3220 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3221 /*
3222 * There are two ways this annotation is useful:
3223 *
3224 * 1) there is a lock recursion from perf_event_exit_task
3225 * see the comment there.
3226 *
3227 * 2) there is a lock-inversion with mmap_sem through
3228 * perf_event_read_group(), which takes faults while
3229 * holding ctx->mutex, however this is called after
3230 * the last filedesc died, so there is no possibility
3231 * to trigger the AB-BA case.
3232 */
3233 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3234 raw_spin_lock_irq(&ctx->lock);
8a49542c 3235 perf_group_detach(event);
050735b0 3236 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3237 perf_remove_from_context(event);
d859e29f 3238 mutex_unlock(&ctx->mutex);
0793a61d 3239
cdd6c482 3240 free_event(event);
0793a61d
TG
3241
3242 return 0;
3243}
a66a3052 3244EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3245
a66a3052
PZ
3246/*
3247 * Called when the last reference to the file is gone.
3248 */
a6fa941d 3249static void put_event(struct perf_event *event)
fb0459d7 3250{
8882135b 3251 struct task_struct *owner;
fb0459d7 3252
a6fa941d
AV
3253 if (!atomic_long_dec_and_test(&event->refcount))
3254 return;
fb0459d7 3255
8882135b
PZ
3256 rcu_read_lock();
3257 owner = ACCESS_ONCE(event->owner);
3258 /*
3259 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3260 * !owner it means the list deletion is complete and we can indeed
3261 * free this event, otherwise we need to serialize on
3262 * owner->perf_event_mutex.
3263 */
3264 smp_read_barrier_depends();
3265 if (owner) {
3266 /*
3267 * Since delayed_put_task_struct() also drops the last
3268 * task reference we can safely take a new reference
3269 * while holding the rcu_read_lock().
3270 */
3271 get_task_struct(owner);
3272 }
3273 rcu_read_unlock();
3274
3275 if (owner) {
3276 mutex_lock(&owner->perf_event_mutex);
3277 /*
3278 * We have to re-check the event->owner field, if it is cleared
3279 * we raced with perf_event_exit_task(), acquiring the mutex
3280 * ensured they're done, and we can proceed with freeing the
3281 * event.
3282 */
3283 if (event->owner)
3284 list_del_init(&event->owner_entry);
3285 mutex_unlock(&owner->perf_event_mutex);
3286 put_task_struct(owner);
3287 }
3288
a6fa941d
AV
3289 perf_event_release_kernel(event);
3290}
3291
3292static int perf_release(struct inode *inode, struct file *file)
3293{
3294 put_event(file->private_data);
3295 return 0;
fb0459d7 3296}
fb0459d7 3297
59ed446f 3298u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3299{
cdd6c482 3300 struct perf_event *child;
e53c0994
PZ
3301 u64 total = 0;
3302
59ed446f
PZ
3303 *enabled = 0;
3304 *running = 0;
3305
6f10581a 3306 mutex_lock(&event->child_mutex);
cdd6c482 3307 total += perf_event_read(event);
59ed446f
PZ
3308 *enabled += event->total_time_enabled +
3309 atomic64_read(&event->child_total_time_enabled);
3310 *running += event->total_time_running +
3311 atomic64_read(&event->child_total_time_running);
3312
3313 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3314 total += perf_event_read(child);
59ed446f
PZ
3315 *enabled += child->total_time_enabled;
3316 *running += child->total_time_running;
3317 }
6f10581a 3318 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3319
3320 return total;
3321}
fb0459d7 3322EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3323
cdd6c482 3324static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3325 u64 read_format, char __user *buf)
3326{
cdd6c482 3327 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3328 int n = 0, size = 0, ret = -EFAULT;
3329 struct perf_event_context *ctx = leader->ctx;
abf4868b 3330 u64 values[5];
59ed446f 3331 u64 count, enabled, running;
abf4868b 3332
6f10581a 3333 mutex_lock(&ctx->mutex);
59ed446f 3334 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3335
3336 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3338 values[n++] = enabled;
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3340 values[n++] = running;
abf4868b
PZ
3341 values[n++] = count;
3342 if (read_format & PERF_FORMAT_ID)
3343 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3344
3345 size = n * sizeof(u64);
3346
3347 if (copy_to_user(buf, values, size))
6f10581a 3348 goto unlock;
3dab77fb 3349
6f10581a 3350 ret = size;
3dab77fb 3351
65abc865 3352 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3353 n = 0;
3dab77fb 3354
59ed446f 3355 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3356 if (read_format & PERF_FORMAT_ID)
3357 values[n++] = primary_event_id(sub);
3358
3359 size = n * sizeof(u64);
3360
184d3da8 3361 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3362 ret = -EFAULT;
3363 goto unlock;
3364 }
abf4868b
PZ
3365
3366 ret += size;
3dab77fb 3367 }
6f10581a
PZ
3368unlock:
3369 mutex_unlock(&ctx->mutex);
3dab77fb 3370
abf4868b 3371 return ret;
3dab77fb
PZ
3372}
3373
cdd6c482 3374static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3375 u64 read_format, char __user *buf)
3376{
59ed446f 3377 u64 enabled, running;
3dab77fb
PZ
3378 u64 values[4];
3379 int n = 0;
3380
59ed446f
PZ
3381 values[n++] = perf_event_read_value(event, &enabled, &running);
3382 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3383 values[n++] = enabled;
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3385 values[n++] = running;
3dab77fb 3386 if (read_format & PERF_FORMAT_ID)
cdd6c482 3387 values[n++] = primary_event_id(event);
3dab77fb
PZ
3388
3389 if (copy_to_user(buf, values, n * sizeof(u64)))
3390 return -EFAULT;
3391
3392 return n * sizeof(u64);
3393}
3394
0793a61d 3395/*
cdd6c482 3396 * Read the performance event - simple non blocking version for now
0793a61d
TG
3397 */
3398static ssize_t
cdd6c482 3399perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3400{
cdd6c482 3401 u64 read_format = event->attr.read_format;
3dab77fb 3402 int ret;
0793a61d 3403
3b6f9e5c 3404 /*
cdd6c482 3405 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3406 * error state (i.e. because it was pinned but it couldn't be
3407 * scheduled on to the CPU at some point).
3408 */
cdd6c482 3409 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3410 return 0;
3411
c320c7b7 3412 if (count < event->read_size)
3dab77fb
PZ
3413 return -ENOSPC;
3414
cdd6c482 3415 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3416 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3417 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3418 else
cdd6c482 3419 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3420
3dab77fb 3421 return ret;
0793a61d
TG
3422}
3423
0793a61d
TG
3424static ssize_t
3425perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3426{
cdd6c482 3427 struct perf_event *event = file->private_data;
0793a61d 3428
cdd6c482 3429 return perf_read_hw(event, buf, count);
0793a61d
TG
3430}
3431
3432static unsigned int perf_poll(struct file *file, poll_table *wait)
3433{
cdd6c482 3434 struct perf_event *event = file->private_data;
76369139 3435 struct ring_buffer *rb;
c33a0bc4 3436 unsigned int events = POLL_HUP;
c7138f37 3437
10c6db11 3438 /*
9bb5d40c
PZ
3439 * Pin the event->rb by taking event->mmap_mutex; otherwise
3440 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3441 */
3442 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3443 rb = event->rb;
3444 if (rb)
76369139 3445 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3446 mutex_unlock(&event->mmap_mutex);
3447
cdd6c482 3448 poll_wait(file, &event->waitq, wait);
0793a61d 3449
0793a61d
TG
3450 return events;
3451}
3452
cdd6c482 3453static void perf_event_reset(struct perf_event *event)
6de6a7b9 3454{
cdd6c482 3455 (void)perf_event_read(event);
e7850595 3456 local64_set(&event->count, 0);
cdd6c482 3457 perf_event_update_userpage(event);
3df5edad
PZ
3458}
3459
c93f7669 3460/*
cdd6c482
IM
3461 * Holding the top-level event's child_mutex means that any
3462 * descendant process that has inherited this event will block
3463 * in sync_child_event if it goes to exit, thus satisfying the
3464 * task existence requirements of perf_event_enable/disable.
c93f7669 3465 */
cdd6c482
IM
3466static void perf_event_for_each_child(struct perf_event *event,
3467 void (*func)(struct perf_event *))
3df5edad 3468{
cdd6c482 3469 struct perf_event *child;
3df5edad 3470
cdd6c482
IM
3471 WARN_ON_ONCE(event->ctx->parent_ctx);
3472 mutex_lock(&event->child_mutex);
3473 func(event);
3474 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3475 func(child);
cdd6c482 3476 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3477}
3478
cdd6c482
IM
3479static void perf_event_for_each(struct perf_event *event,
3480 void (*func)(struct perf_event *))
3df5edad 3481{
cdd6c482
IM
3482 struct perf_event_context *ctx = event->ctx;
3483 struct perf_event *sibling;
3df5edad 3484
75f937f2
PZ
3485 WARN_ON_ONCE(ctx->parent_ctx);
3486 mutex_lock(&ctx->mutex);
cdd6c482 3487 event = event->group_leader;
75f937f2 3488
cdd6c482 3489 perf_event_for_each_child(event, func);
cdd6c482 3490 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3491 perf_event_for_each_child(sibling, func);
75f937f2 3492 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3493}
3494
cdd6c482 3495static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3496{
cdd6c482 3497 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3498 int ret = 0;
3499 u64 value;
3500
6c7e550f 3501 if (!is_sampling_event(event))
08247e31
PZ
3502 return -EINVAL;
3503
ad0cf347 3504 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3505 return -EFAULT;
3506
3507 if (!value)
3508 return -EINVAL;
3509
e625cce1 3510 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3511 if (event->attr.freq) {
3512 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3513 ret = -EINVAL;
3514 goto unlock;
3515 }
3516
cdd6c482 3517 event->attr.sample_freq = value;
08247e31 3518 } else {
cdd6c482
IM
3519 event->attr.sample_period = value;
3520 event->hw.sample_period = value;
08247e31
PZ
3521 }
3522unlock:
e625cce1 3523 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3524
3525 return ret;
3526}
3527
ac9721f3
PZ
3528static const struct file_operations perf_fops;
3529
2903ff01 3530static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3531{
2903ff01
AV
3532 struct fd f = fdget(fd);
3533 if (!f.file)
3534 return -EBADF;
ac9721f3 3535
2903ff01
AV
3536 if (f.file->f_op != &perf_fops) {
3537 fdput(f);
3538 return -EBADF;
ac9721f3 3539 }
2903ff01
AV
3540 *p = f;
3541 return 0;
ac9721f3
PZ
3542}
3543
3544static int perf_event_set_output(struct perf_event *event,
3545 struct perf_event *output_event);
6fb2915d 3546static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3547
d859e29f
PM
3548static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3549{
cdd6c482
IM
3550 struct perf_event *event = file->private_data;
3551 void (*func)(struct perf_event *);
3df5edad 3552 u32 flags = arg;
d859e29f
PM
3553
3554 switch (cmd) {
cdd6c482
IM
3555 case PERF_EVENT_IOC_ENABLE:
3556 func = perf_event_enable;
d859e29f 3557 break;
cdd6c482
IM
3558 case PERF_EVENT_IOC_DISABLE:
3559 func = perf_event_disable;
79f14641 3560 break;
cdd6c482
IM
3561 case PERF_EVENT_IOC_RESET:
3562 func = perf_event_reset;
6de6a7b9 3563 break;
3df5edad 3564
cdd6c482
IM
3565 case PERF_EVENT_IOC_REFRESH:
3566 return perf_event_refresh(event, arg);
08247e31 3567
cdd6c482
IM
3568 case PERF_EVENT_IOC_PERIOD:
3569 return perf_event_period(event, (u64 __user *)arg);
08247e31 3570
cf4957f1
JO
3571 case PERF_EVENT_IOC_ID:
3572 {
3573 u64 id = primary_event_id(event);
3574
3575 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3576 return -EFAULT;
3577 return 0;
3578 }
3579
cdd6c482 3580 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3581 {
ac9721f3 3582 int ret;
ac9721f3 3583 if (arg != -1) {
2903ff01
AV
3584 struct perf_event *output_event;
3585 struct fd output;
3586 ret = perf_fget_light(arg, &output);
3587 if (ret)
3588 return ret;
3589 output_event = output.file->private_data;
3590 ret = perf_event_set_output(event, output_event);
3591 fdput(output);
3592 } else {
3593 ret = perf_event_set_output(event, NULL);
ac9721f3 3594 }
ac9721f3
PZ
3595 return ret;
3596 }
a4be7c27 3597
6fb2915d
LZ
3598 case PERF_EVENT_IOC_SET_FILTER:
3599 return perf_event_set_filter(event, (void __user *)arg);
3600
d859e29f 3601 default:
3df5edad 3602 return -ENOTTY;
d859e29f 3603 }
3df5edad
PZ
3604
3605 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3606 perf_event_for_each(event, func);
3df5edad 3607 else
cdd6c482 3608 perf_event_for_each_child(event, func);
3df5edad
PZ
3609
3610 return 0;
d859e29f
PM
3611}
3612
cdd6c482 3613int perf_event_task_enable(void)
771d7cde 3614{
cdd6c482 3615 struct perf_event *event;
771d7cde 3616
cdd6c482
IM
3617 mutex_lock(&current->perf_event_mutex);
3618 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3619 perf_event_for_each_child(event, perf_event_enable);
3620 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3621
3622 return 0;
3623}
3624
cdd6c482 3625int perf_event_task_disable(void)
771d7cde 3626{
cdd6c482 3627 struct perf_event *event;
771d7cde 3628
cdd6c482
IM
3629 mutex_lock(&current->perf_event_mutex);
3630 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3631 perf_event_for_each_child(event, perf_event_disable);
3632 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3633
3634 return 0;
3635}
3636
cdd6c482 3637static int perf_event_index(struct perf_event *event)
194002b2 3638{
a4eaf7f1
PZ
3639 if (event->hw.state & PERF_HES_STOPPED)
3640 return 0;
3641
cdd6c482 3642 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3643 return 0;
3644
35edc2a5 3645 return event->pmu->event_idx(event);
194002b2
PZ
3646}
3647
c4794295 3648static void calc_timer_values(struct perf_event *event,
e3f3541c 3649 u64 *now,
7f310a5d
EM
3650 u64 *enabled,
3651 u64 *running)
c4794295 3652{
e3f3541c 3653 u64 ctx_time;
c4794295 3654
e3f3541c
PZ
3655 *now = perf_clock();
3656 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3657 *enabled = ctx_time - event->tstamp_enabled;
3658 *running = ctx_time - event->tstamp_running;
3659}
3660
c7206205 3661void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3662{
3663}
3664
38ff667b
PZ
3665/*
3666 * Callers need to ensure there can be no nesting of this function, otherwise
3667 * the seqlock logic goes bad. We can not serialize this because the arch
3668 * code calls this from NMI context.
3669 */
cdd6c482 3670void perf_event_update_userpage(struct perf_event *event)
37d81828 3671{
cdd6c482 3672 struct perf_event_mmap_page *userpg;
76369139 3673 struct ring_buffer *rb;
e3f3541c 3674 u64 enabled, running, now;
38ff667b
PZ
3675
3676 rcu_read_lock();
0d641208
EM
3677 /*
3678 * compute total_time_enabled, total_time_running
3679 * based on snapshot values taken when the event
3680 * was last scheduled in.
3681 *
3682 * we cannot simply called update_context_time()
3683 * because of locking issue as we can be called in
3684 * NMI context
3685 */
e3f3541c 3686 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3687 rb = rcu_dereference(event->rb);
3688 if (!rb)
38ff667b
PZ
3689 goto unlock;
3690
76369139 3691 userpg = rb->user_page;
37d81828 3692
7b732a75
PZ
3693 /*
3694 * Disable preemption so as to not let the corresponding user-space
3695 * spin too long if we get preempted.
3696 */
3697 preempt_disable();
37d81828 3698 ++userpg->lock;
92f22a38 3699 barrier();
cdd6c482 3700 userpg->index = perf_event_index(event);
b5e58793 3701 userpg->offset = perf_event_count(event);
365a4038 3702 if (userpg->index)
e7850595 3703 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3704
0d641208 3705 userpg->time_enabled = enabled +
cdd6c482 3706 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3707
0d641208 3708 userpg->time_running = running +
cdd6c482 3709 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3710
c7206205 3711 arch_perf_update_userpage(userpg, now);
e3f3541c 3712
92f22a38 3713 barrier();
37d81828 3714 ++userpg->lock;
7b732a75 3715 preempt_enable();
38ff667b 3716unlock:
7b732a75 3717 rcu_read_unlock();
37d81828
PM
3718}
3719
906010b2
PZ
3720static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3721{
3722 struct perf_event *event = vma->vm_file->private_data;
76369139 3723 struct ring_buffer *rb;
906010b2
PZ
3724 int ret = VM_FAULT_SIGBUS;
3725
3726 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3727 if (vmf->pgoff == 0)
3728 ret = 0;
3729 return ret;
3730 }
3731
3732 rcu_read_lock();
76369139
FW
3733 rb = rcu_dereference(event->rb);
3734 if (!rb)
906010b2
PZ
3735 goto unlock;
3736
3737 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3738 goto unlock;
3739
76369139 3740 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3741 if (!vmf->page)
3742 goto unlock;
3743
3744 get_page(vmf->page);
3745 vmf->page->mapping = vma->vm_file->f_mapping;
3746 vmf->page->index = vmf->pgoff;
3747
3748 ret = 0;
3749unlock:
3750 rcu_read_unlock();
3751
3752 return ret;
3753}
3754
10c6db11
PZ
3755static void ring_buffer_attach(struct perf_event *event,
3756 struct ring_buffer *rb)
3757{
3758 unsigned long flags;
3759
3760 if (!list_empty(&event->rb_entry))
3761 return;
3762
3763 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3764 if (list_empty(&event->rb_entry))
3765 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3766 spin_unlock_irqrestore(&rb->event_lock, flags);
3767}
3768
9bb5d40c 3769static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3770{
3771 unsigned long flags;
3772
3773 if (list_empty(&event->rb_entry))
3774 return;
3775
3776 spin_lock_irqsave(&rb->event_lock, flags);
3777 list_del_init(&event->rb_entry);
3778 wake_up_all(&event->waitq);
3779 spin_unlock_irqrestore(&rb->event_lock, flags);
3780}
3781
3782static void ring_buffer_wakeup(struct perf_event *event)
3783{
3784 struct ring_buffer *rb;
3785
3786 rcu_read_lock();
3787 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3788 if (rb) {
3789 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3790 wake_up_all(&event->waitq);
3791 }
10c6db11
PZ
3792 rcu_read_unlock();
3793}
3794
76369139 3795static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3796{
76369139 3797 struct ring_buffer *rb;
906010b2 3798
76369139
FW
3799 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3800 rb_free(rb);
7b732a75
PZ
3801}
3802
76369139 3803static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3804{
76369139 3805 struct ring_buffer *rb;
7b732a75 3806
ac9721f3 3807 rcu_read_lock();
76369139
FW
3808 rb = rcu_dereference(event->rb);
3809 if (rb) {
3810 if (!atomic_inc_not_zero(&rb->refcount))
3811 rb = NULL;
ac9721f3
PZ
3812 }
3813 rcu_read_unlock();
3814
76369139 3815 return rb;
ac9721f3
PZ
3816}
3817
76369139 3818static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3819{
76369139 3820 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3821 return;
7b732a75 3822
9bb5d40c 3823 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3824
76369139 3825 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3826}
3827
3828static void perf_mmap_open(struct vm_area_struct *vma)
3829{
cdd6c482 3830 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3831
cdd6c482 3832 atomic_inc(&event->mmap_count);
9bb5d40c 3833 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3834}
3835
9bb5d40c
PZ
3836/*
3837 * A buffer can be mmap()ed multiple times; either directly through the same
3838 * event, or through other events by use of perf_event_set_output().
3839 *
3840 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3841 * the buffer here, where we still have a VM context. This means we need
3842 * to detach all events redirecting to us.
3843 */
7b732a75
PZ
3844static void perf_mmap_close(struct vm_area_struct *vma)
3845{
cdd6c482 3846 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3847
9bb5d40c
PZ
3848 struct ring_buffer *rb = event->rb;
3849 struct user_struct *mmap_user = rb->mmap_user;
3850 int mmap_locked = rb->mmap_locked;
3851 unsigned long size = perf_data_size(rb);
789f90fc 3852
9bb5d40c
PZ
3853 atomic_dec(&rb->mmap_count);
3854
3855 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3856 return;
3857
3858 /* Detach current event from the buffer. */
3859 rcu_assign_pointer(event->rb, NULL);
3860 ring_buffer_detach(event, rb);
3861 mutex_unlock(&event->mmap_mutex);
3862
3863 /* If there's still other mmap()s of this buffer, we're done. */
3864 if (atomic_read(&rb->mmap_count)) {
3865 ring_buffer_put(rb); /* can't be last */
3866 return;
3867 }
ac9721f3 3868
9bb5d40c
PZ
3869 /*
3870 * No other mmap()s, detach from all other events that might redirect
3871 * into the now unreachable buffer. Somewhat complicated by the
3872 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3873 */
3874again:
3875 rcu_read_lock();
3876 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3877 if (!atomic_long_inc_not_zero(&event->refcount)) {
3878 /*
3879 * This event is en-route to free_event() which will
3880 * detach it and remove it from the list.
3881 */
3882 continue;
3883 }
3884 rcu_read_unlock();
789f90fc 3885
9bb5d40c
PZ
3886 mutex_lock(&event->mmap_mutex);
3887 /*
3888 * Check we didn't race with perf_event_set_output() which can
3889 * swizzle the rb from under us while we were waiting to
3890 * acquire mmap_mutex.
3891 *
3892 * If we find a different rb; ignore this event, a next
3893 * iteration will no longer find it on the list. We have to
3894 * still restart the iteration to make sure we're not now
3895 * iterating the wrong list.
3896 */
3897 if (event->rb == rb) {
3898 rcu_assign_pointer(event->rb, NULL);
3899 ring_buffer_detach(event, rb);
3900 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3901 }
cdd6c482 3902 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3903 put_event(event);
ac9721f3 3904
9bb5d40c
PZ
3905 /*
3906 * Restart the iteration; either we're on the wrong list or
3907 * destroyed its integrity by doing a deletion.
3908 */
3909 goto again;
7b732a75 3910 }
9bb5d40c
PZ
3911 rcu_read_unlock();
3912
3913 /*
3914 * It could be there's still a few 0-ref events on the list; they'll
3915 * get cleaned up by free_event() -- they'll also still have their
3916 * ref on the rb and will free it whenever they are done with it.
3917 *
3918 * Aside from that, this buffer is 'fully' detached and unmapped,
3919 * undo the VM accounting.
3920 */
3921
3922 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3923 vma->vm_mm->pinned_vm -= mmap_locked;
3924 free_uid(mmap_user);
3925
3926 ring_buffer_put(rb); /* could be last */
37d81828
PM
3927}
3928
f0f37e2f 3929static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3930 .open = perf_mmap_open,
3931 .close = perf_mmap_close,
3932 .fault = perf_mmap_fault,
3933 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3934};
3935
3936static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3937{
cdd6c482 3938 struct perf_event *event = file->private_data;
22a4f650 3939 unsigned long user_locked, user_lock_limit;
789f90fc 3940 struct user_struct *user = current_user();
22a4f650 3941 unsigned long locked, lock_limit;
76369139 3942 struct ring_buffer *rb;
7b732a75
PZ
3943 unsigned long vma_size;
3944 unsigned long nr_pages;
789f90fc 3945 long user_extra, extra;
d57e34fd 3946 int ret = 0, flags = 0;
37d81828 3947
c7920614
PZ
3948 /*
3949 * Don't allow mmap() of inherited per-task counters. This would
3950 * create a performance issue due to all children writing to the
76369139 3951 * same rb.
c7920614
PZ
3952 */
3953 if (event->cpu == -1 && event->attr.inherit)
3954 return -EINVAL;
3955
43a21ea8 3956 if (!(vma->vm_flags & VM_SHARED))
37d81828 3957 return -EINVAL;
7b732a75
PZ
3958
3959 vma_size = vma->vm_end - vma->vm_start;
3960 nr_pages = (vma_size / PAGE_SIZE) - 1;
3961
7730d865 3962 /*
76369139 3963 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3964 * can do bitmasks instead of modulo.
3965 */
3966 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3967 return -EINVAL;
3968
7b732a75 3969 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3970 return -EINVAL;
3971
7b732a75
PZ
3972 if (vma->vm_pgoff != 0)
3973 return -EINVAL;
37d81828 3974
cdd6c482 3975 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3976again:
cdd6c482 3977 mutex_lock(&event->mmap_mutex);
76369139 3978 if (event->rb) {
9bb5d40c 3979 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3980 ret = -EINVAL;
9bb5d40c
PZ
3981 goto unlock;
3982 }
3983
3984 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3985 /*
3986 * Raced against perf_mmap_close() through
3987 * perf_event_set_output(). Try again, hope for better
3988 * luck.
3989 */
3990 mutex_unlock(&event->mmap_mutex);
3991 goto again;
3992 }
3993
ebb3c4c4
PZ
3994 goto unlock;
3995 }
3996
789f90fc 3997 user_extra = nr_pages + 1;
cdd6c482 3998 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3999
4000 /*
4001 * Increase the limit linearly with more CPUs:
4002 */
4003 user_lock_limit *= num_online_cpus();
4004
789f90fc 4005 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4006
789f90fc
PZ
4007 extra = 0;
4008 if (user_locked > user_lock_limit)
4009 extra = user_locked - user_lock_limit;
7b732a75 4010
78d7d407 4011 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4012 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4013 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4014
459ec28a
IM
4015 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4016 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4017 ret = -EPERM;
4018 goto unlock;
4019 }
7b732a75 4020
76369139 4021 WARN_ON(event->rb);
906010b2 4022
d57e34fd 4023 if (vma->vm_flags & VM_WRITE)
76369139 4024 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4025
4ec8363d
VW
4026 rb = rb_alloc(nr_pages,
4027 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4028 event->cpu, flags);
4029
76369139 4030 if (!rb) {
ac9721f3 4031 ret = -ENOMEM;
ebb3c4c4 4032 goto unlock;
ac9721f3 4033 }
26cb63ad 4034
9bb5d40c 4035 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4036 rb->mmap_locked = extra;
4037 rb->mmap_user = get_current_user();
43a21ea8 4038
ac9721f3 4039 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4040 vma->vm_mm->pinned_vm += extra;
4041
9bb5d40c 4042 ring_buffer_attach(event, rb);
26cb63ad 4043 rcu_assign_pointer(event->rb, rb);
ac9721f3 4044
9a0f05cb
PZ
4045 perf_event_update_userpage(event);
4046
ebb3c4c4 4047unlock:
ac9721f3
PZ
4048 if (!ret)
4049 atomic_inc(&event->mmap_count);
cdd6c482 4050 mutex_unlock(&event->mmap_mutex);
37d81828 4051
9bb5d40c
PZ
4052 /*
4053 * Since pinned accounting is per vm we cannot allow fork() to copy our
4054 * vma.
4055 */
26cb63ad 4056 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4057 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4058
4059 return ret;
37d81828
PM
4060}
4061
3c446b3d
PZ
4062static int perf_fasync(int fd, struct file *filp, int on)
4063{
496ad9aa 4064 struct inode *inode = file_inode(filp);
cdd6c482 4065 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4066 int retval;
4067
4068 mutex_lock(&inode->i_mutex);
cdd6c482 4069 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4070 mutex_unlock(&inode->i_mutex);
4071
4072 if (retval < 0)
4073 return retval;
4074
4075 return 0;
4076}
4077
0793a61d 4078static const struct file_operations perf_fops = {
3326c1ce 4079 .llseek = no_llseek,
0793a61d
TG
4080 .release = perf_release,
4081 .read = perf_read,
4082 .poll = perf_poll,
d859e29f
PM
4083 .unlocked_ioctl = perf_ioctl,
4084 .compat_ioctl = perf_ioctl,
37d81828 4085 .mmap = perf_mmap,
3c446b3d 4086 .fasync = perf_fasync,
0793a61d
TG
4087};
4088
925d519a 4089/*
cdd6c482 4090 * Perf event wakeup
925d519a
PZ
4091 *
4092 * If there's data, ensure we set the poll() state and publish everything
4093 * to user-space before waking everybody up.
4094 */
4095
cdd6c482 4096void perf_event_wakeup(struct perf_event *event)
925d519a 4097{
10c6db11 4098 ring_buffer_wakeup(event);
4c9e2542 4099
cdd6c482
IM
4100 if (event->pending_kill) {
4101 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4102 event->pending_kill = 0;
4c9e2542 4103 }
925d519a
PZ
4104}
4105
e360adbe 4106static void perf_pending_event(struct irq_work *entry)
79f14641 4107{
cdd6c482
IM
4108 struct perf_event *event = container_of(entry,
4109 struct perf_event, pending);
79f14641 4110
cdd6c482
IM
4111 if (event->pending_disable) {
4112 event->pending_disable = 0;
4113 __perf_event_disable(event);
79f14641
PZ
4114 }
4115
cdd6c482
IM
4116 if (event->pending_wakeup) {
4117 event->pending_wakeup = 0;
4118 perf_event_wakeup(event);
79f14641
PZ
4119 }
4120}
4121
39447b38
ZY
4122/*
4123 * We assume there is only KVM supporting the callbacks.
4124 * Later on, we might change it to a list if there is
4125 * another virtualization implementation supporting the callbacks.
4126 */
4127struct perf_guest_info_callbacks *perf_guest_cbs;
4128
4129int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4130{
4131 perf_guest_cbs = cbs;
4132 return 0;
4133}
4134EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4135
4136int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4137{
4138 perf_guest_cbs = NULL;
4139 return 0;
4140}
4141EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4142
4018994f
JO
4143static void
4144perf_output_sample_regs(struct perf_output_handle *handle,
4145 struct pt_regs *regs, u64 mask)
4146{
4147 int bit;
4148
4149 for_each_set_bit(bit, (const unsigned long *) &mask,
4150 sizeof(mask) * BITS_PER_BYTE) {
4151 u64 val;
4152
4153 val = perf_reg_value(regs, bit);
4154 perf_output_put(handle, val);
4155 }
4156}
4157
4158static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4159 struct pt_regs *regs)
4160{
4161 if (!user_mode(regs)) {
4162 if (current->mm)
4163 regs = task_pt_regs(current);
4164 else
4165 regs = NULL;
4166 }
4167
4168 if (regs) {
4169 regs_user->regs = regs;
4170 regs_user->abi = perf_reg_abi(current);
4171 }
4172}
4173
c5ebcedb
JO
4174/*
4175 * Get remaining task size from user stack pointer.
4176 *
4177 * It'd be better to take stack vma map and limit this more
4178 * precisly, but there's no way to get it safely under interrupt,
4179 * so using TASK_SIZE as limit.
4180 */
4181static u64 perf_ustack_task_size(struct pt_regs *regs)
4182{
4183 unsigned long addr = perf_user_stack_pointer(regs);
4184
4185 if (!addr || addr >= TASK_SIZE)
4186 return 0;
4187
4188 return TASK_SIZE - addr;
4189}
4190
4191static u16
4192perf_sample_ustack_size(u16 stack_size, u16 header_size,
4193 struct pt_regs *regs)
4194{
4195 u64 task_size;
4196
4197 /* No regs, no stack pointer, no dump. */
4198 if (!regs)
4199 return 0;
4200
4201 /*
4202 * Check if we fit in with the requested stack size into the:
4203 * - TASK_SIZE
4204 * If we don't, we limit the size to the TASK_SIZE.
4205 *
4206 * - remaining sample size
4207 * If we don't, we customize the stack size to
4208 * fit in to the remaining sample size.
4209 */
4210
4211 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4212 stack_size = min(stack_size, (u16) task_size);
4213
4214 /* Current header size plus static size and dynamic size. */
4215 header_size += 2 * sizeof(u64);
4216
4217 /* Do we fit in with the current stack dump size? */
4218 if ((u16) (header_size + stack_size) < header_size) {
4219 /*
4220 * If we overflow the maximum size for the sample,
4221 * we customize the stack dump size to fit in.
4222 */
4223 stack_size = USHRT_MAX - header_size - sizeof(u64);
4224 stack_size = round_up(stack_size, sizeof(u64));
4225 }
4226
4227 return stack_size;
4228}
4229
4230static void
4231perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4232 struct pt_regs *regs)
4233{
4234 /* Case of a kernel thread, nothing to dump */
4235 if (!regs) {
4236 u64 size = 0;
4237 perf_output_put(handle, size);
4238 } else {
4239 unsigned long sp;
4240 unsigned int rem;
4241 u64 dyn_size;
4242
4243 /*
4244 * We dump:
4245 * static size
4246 * - the size requested by user or the best one we can fit
4247 * in to the sample max size
4248 * data
4249 * - user stack dump data
4250 * dynamic size
4251 * - the actual dumped size
4252 */
4253
4254 /* Static size. */
4255 perf_output_put(handle, dump_size);
4256
4257 /* Data. */
4258 sp = perf_user_stack_pointer(regs);
4259 rem = __output_copy_user(handle, (void *) sp, dump_size);
4260 dyn_size = dump_size - rem;
4261
4262 perf_output_skip(handle, rem);
4263
4264 /* Dynamic size. */
4265 perf_output_put(handle, dyn_size);
4266 }
4267}
4268
c980d109
ACM
4269static void __perf_event_header__init_id(struct perf_event_header *header,
4270 struct perf_sample_data *data,
4271 struct perf_event *event)
6844c09d
ACM
4272{
4273 u64 sample_type = event->attr.sample_type;
4274
4275 data->type = sample_type;
4276 header->size += event->id_header_size;
4277
4278 if (sample_type & PERF_SAMPLE_TID) {
4279 /* namespace issues */
4280 data->tid_entry.pid = perf_event_pid(event, current);
4281 data->tid_entry.tid = perf_event_tid(event, current);
4282 }
4283
4284 if (sample_type & PERF_SAMPLE_TIME)
4285 data->time = perf_clock();
4286
4287 if (sample_type & PERF_SAMPLE_ID)
4288 data->id = primary_event_id(event);
4289
4290 if (sample_type & PERF_SAMPLE_STREAM_ID)
4291 data->stream_id = event->id;
4292
4293 if (sample_type & PERF_SAMPLE_CPU) {
4294 data->cpu_entry.cpu = raw_smp_processor_id();
4295 data->cpu_entry.reserved = 0;
4296 }
4297}
4298
76369139
FW
4299void perf_event_header__init_id(struct perf_event_header *header,
4300 struct perf_sample_data *data,
4301 struct perf_event *event)
c980d109
ACM
4302{
4303 if (event->attr.sample_id_all)
4304 __perf_event_header__init_id(header, data, event);
4305}
4306
4307static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4308 struct perf_sample_data *data)
4309{
4310 u64 sample_type = data->type;
4311
4312 if (sample_type & PERF_SAMPLE_TID)
4313 perf_output_put(handle, data->tid_entry);
4314
4315 if (sample_type & PERF_SAMPLE_TIME)
4316 perf_output_put(handle, data->time);
4317
4318 if (sample_type & PERF_SAMPLE_ID)
4319 perf_output_put(handle, data->id);
4320
4321 if (sample_type & PERF_SAMPLE_STREAM_ID)
4322 perf_output_put(handle, data->stream_id);
4323
4324 if (sample_type & PERF_SAMPLE_CPU)
4325 perf_output_put(handle, data->cpu_entry);
4326}
4327
76369139
FW
4328void perf_event__output_id_sample(struct perf_event *event,
4329 struct perf_output_handle *handle,
4330 struct perf_sample_data *sample)
c980d109
ACM
4331{
4332 if (event->attr.sample_id_all)
4333 __perf_event__output_id_sample(handle, sample);
4334}
4335
3dab77fb 4336static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4337 struct perf_event *event,
4338 u64 enabled, u64 running)
3dab77fb 4339{
cdd6c482 4340 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4341 u64 values[4];
4342 int n = 0;
4343
b5e58793 4344 values[n++] = perf_event_count(event);
3dab77fb 4345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4346 values[n++] = enabled +
cdd6c482 4347 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4348 }
4349 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4350 values[n++] = running +
cdd6c482 4351 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4352 }
4353 if (read_format & PERF_FORMAT_ID)
cdd6c482 4354 values[n++] = primary_event_id(event);
3dab77fb 4355
76369139 4356 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4357}
4358
4359/*
cdd6c482 4360 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4361 */
4362static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4363 struct perf_event *event,
4364 u64 enabled, u64 running)
3dab77fb 4365{
cdd6c482
IM
4366 struct perf_event *leader = event->group_leader, *sub;
4367 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4368 u64 values[5];
4369 int n = 0;
4370
4371 values[n++] = 1 + leader->nr_siblings;
4372
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4374 values[n++] = enabled;
3dab77fb
PZ
4375
4376 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4377 values[n++] = running;
3dab77fb 4378
cdd6c482 4379 if (leader != event)
3dab77fb
PZ
4380 leader->pmu->read(leader);
4381
b5e58793 4382 values[n++] = perf_event_count(leader);
3dab77fb 4383 if (read_format & PERF_FORMAT_ID)
cdd6c482 4384 values[n++] = primary_event_id(leader);
3dab77fb 4385
76369139 4386 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4387
65abc865 4388 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4389 n = 0;
4390
6f5ab001
JO
4391 if ((sub != event) &&
4392 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4393 sub->pmu->read(sub);
4394
b5e58793 4395 values[n++] = perf_event_count(sub);
3dab77fb 4396 if (read_format & PERF_FORMAT_ID)
cdd6c482 4397 values[n++] = primary_event_id(sub);
3dab77fb 4398
76369139 4399 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4400 }
4401}
4402
eed01528
SE
4403#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4404 PERF_FORMAT_TOTAL_TIME_RUNNING)
4405
3dab77fb 4406static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4407 struct perf_event *event)
3dab77fb 4408{
e3f3541c 4409 u64 enabled = 0, running = 0, now;
eed01528
SE
4410 u64 read_format = event->attr.read_format;
4411
4412 /*
4413 * compute total_time_enabled, total_time_running
4414 * based on snapshot values taken when the event
4415 * was last scheduled in.
4416 *
4417 * we cannot simply called update_context_time()
4418 * because of locking issue as we are called in
4419 * NMI context
4420 */
c4794295 4421 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4422 calc_timer_values(event, &now, &enabled, &running);
eed01528 4423
cdd6c482 4424 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4425 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4426 else
eed01528 4427 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4428}
4429
5622f295
MM
4430void perf_output_sample(struct perf_output_handle *handle,
4431 struct perf_event_header *header,
4432 struct perf_sample_data *data,
cdd6c482 4433 struct perf_event *event)
5622f295
MM
4434{
4435 u64 sample_type = data->type;
4436
4437 perf_output_put(handle, *header);
4438
4439 if (sample_type & PERF_SAMPLE_IP)
4440 perf_output_put(handle, data->ip);
4441
4442 if (sample_type & PERF_SAMPLE_TID)
4443 perf_output_put(handle, data->tid_entry);
4444
4445 if (sample_type & PERF_SAMPLE_TIME)
4446 perf_output_put(handle, data->time);
4447
4448 if (sample_type & PERF_SAMPLE_ADDR)
4449 perf_output_put(handle, data->addr);
4450
4451 if (sample_type & PERF_SAMPLE_ID)
4452 perf_output_put(handle, data->id);
4453
4454 if (sample_type & PERF_SAMPLE_STREAM_ID)
4455 perf_output_put(handle, data->stream_id);
4456
4457 if (sample_type & PERF_SAMPLE_CPU)
4458 perf_output_put(handle, data->cpu_entry);
4459
4460 if (sample_type & PERF_SAMPLE_PERIOD)
4461 perf_output_put(handle, data->period);
4462
4463 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4464 perf_output_read(handle, event);
5622f295
MM
4465
4466 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4467 if (data->callchain) {
4468 int size = 1;
4469
4470 if (data->callchain)
4471 size += data->callchain->nr;
4472
4473 size *= sizeof(u64);
4474
76369139 4475 __output_copy(handle, data->callchain, size);
5622f295
MM
4476 } else {
4477 u64 nr = 0;
4478 perf_output_put(handle, nr);
4479 }
4480 }
4481
4482 if (sample_type & PERF_SAMPLE_RAW) {
4483 if (data->raw) {
4484 perf_output_put(handle, data->raw->size);
76369139
FW
4485 __output_copy(handle, data->raw->data,
4486 data->raw->size);
5622f295
MM
4487 } else {
4488 struct {
4489 u32 size;
4490 u32 data;
4491 } raw = {
4492 .size = sizeof(u32),
4493 .data = 0,
4494 };
4495 perf_output_put(handle, raw);
4496 }
4497 }
a7ac67ea 4498
bce38cd5
SE
4499 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4500 if (data->br_stack) {
4501 size_t size;
4502
4503 size = data->br_stack->nr
4504 * sizeof(struct perf_branch_entry);
4505
4506 perf_output_put(handle, data->br_stack->nr);
4507 perf_output_copy(handle, data->br_stack->entries, size);
4508 } else {
4509 /*
4510 * we always store at least the value of nr
4511 */
4512 u64 nr = 0;
4513 perf_output_put(handle, nr);
4514 }
4515 }
4018994f
JO
4516
4517 if (sample_type & PERF_SAMPLE_REGS_USER) {
4518 u64 abi = data->regs_user.abi;
4519
4520 /*
4521 * If there are no regs to dump, notice it through
4522 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4523 */
4524 perf_output_put(handle, abi);
4525
4526 if (abi) {
4527 u64 mask = event->attr.sample_regs_user;
4528 perf_output_sample_regs(handle,
4529 data->regs_user.regs,
4530 mask);
4531 }
4532 }
c5ebcedb 4533
a5cdd40c 4534 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4535 perf_output_sample_ustack(handle,
4536 data->stack_user_size,
4537 data->regs_user.regs);
a5cdd40c 4538 }
c3feedf2
AK
4539
4540 if (sample_type & PERF_SAMPLE_WEIGHT)
4541 perf_output_put(handle, data->weight);
d6be9ad6
SE
4542
4543 if (sample_type & PERF_SAMPLE_DATA_SRC)
4544 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4545
4546 if (!event->attr.watermark) {
4547 int wakeup_events = event->attr.wakeup_events;
4548
4549 if (wakeup_events) {
4550 struct ring_buffer *rb = handle->rb;
4551 int events = local_inc_return(&rb->events);
4552
4553 if (events >= wakeup_events) {
4554 local_sub(wakeup_events, &rb->events);
4555 local_inc(&rb->wakeup);
4556 }
4557 }
4558 }
5622f295
MM
4559}
4560
4561void perf_prepare_sample(struct perf_event_header *header,
4562 struct perf_sample_data *data,
cdd6c482 4563 struct perf_event *event,
5622f295 4564 struct pt_regs *regs)
7b732a75 4565{
cdd6c482 4566 u64 sample_type = event->attr.sample_type;
7b732a75 4567
cdd6c482 4568 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4569 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4570
4571 header->misc = 0;
4572 header->misc |= perf_misc_flags(regs);
6fab0192 4573
c980d109 4574 __perf_event_header__init_id(header, data, event);
6844c09d 4575
c320c7b7 4576 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4577 data->ip = perf_instruction_pointer(regs);
4578
b23f3325 4579 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4580 int size = 1;
394ee076 4581
e6dab5ff 4582 data->callchain = perf_callchain(event, regs);
5622f295
MM
4583
4584 if (data->callchain)
4585 size += data->callchain->nr;
4586
4587 header->size += size * sizeof(u64);
394ee076
PZ
4588 }
4589
3a43ce68 4590 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4591 int size = sizeof(u32);
4592
4593 if (data->raw)
4594 size += data->raw->size;
4595 else
4596 size += sizeof(u32);
4597
4598 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4599 header->size += size;
7f453c24 4600 }
bce38cd5
SE
4601
4602 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4603 int size = sizeof(u64); /* nr */
4604 if (data->br_stack) {
4605 size += data->br_stack->nr
4606 * sizeof(struct perf_branch_entry);
4607 }
4608 header->size += size;
4609 }
4018994f
JO
4610
4611 if (sample_type & PERF_SAMPLE_REGS_USER) {
4612 /* regs dump ABI info */
4613 int size = sizeof(u64);
4614
4615 perf_sample_regs_user(&data->regs_user, regs);
4616
4617 if (data->regs_user.regs) {
4618 u64 mask = event->attr.sample_regs_user;
4619 size += hweight64(mask) * sizeof(u64);
4620 }
4621
4622 header->size += size;
4623 }
c5ebcedb
JO
4624
4625 if (sample_type & PERF_SAMPLE_STACK_USER) {
4626 /*
4627 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4628 * processed as the last one or have additional check added
4629 * in case new sample type is added, because we could eat
4630 * up the rest of the sample size.
4631 */
4632 struct perf_regs_user *uregs = &data->regs_user;
4633 u16 stack_size = event->attr.sample_stack_user;
4634 u16 size = sizeof(u64);
4635
4636 if (!uregs->abi)
4637 perf_sample_regs_user(uregs, regs);
4638
4639 stack_size = perf_sample_ustack_size(stack_size, header->size,
4640 uregs->regs);
4641
4642 /*
4643 * If there is something to dump, add space for the dump
4644 * itself and for the field that tells the dynamic size,
4645 * which is how many have been actually dumped.
4646 */
4647 if (stack_size)
4648 size += sizeof(u64) + stack_size;
4649
4650 data->stack_user_size = stack_size;
4651 header->size += size;
4652 }
5622f295 4653}
7f453c24 4654
a8b0ca17 4655static void perf_event_output(struct perf_event *event,
5622f295
MM
4656 struct perf_sample_data *data,
4657 struct pt_regs *regs)
4658{
4659 struct perf_output_handle handle;
4660 struct perf_event_header header;
689802b2 4661
927c7a9e
FW
4662 /* protect the callchain buffers */
4663 rcu_read_lock();
4664
cdd6c482 4665 perf_prepare_sample(&header, data, event, regs);
5c148194 4666
a7ac67ea 4667 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4668 goto exit;
0322cd6e 4669
cdd6c482 4670 perf_output_sample(&handle, &header, data, event);
f413cdb8 4671
8a057d84 4672 perf_output_end(&handle);
927c7a9e
FW
4673
4674exit:
4675 rcu_read_unlock();
0322cd6e
PZ
4676}
4677
38b200d6 4678/*
cdd6c482 4679 * read event_id
38b200d6
PZ
4680 */
4681
4682struct perf_read_event {
4683 struct perf_event_header header;
4684
4685 u32 pid;
4686 u32 tid;
38b200d6
PZ
4687};
4688
4689static void
cdd6c482 4690perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4691 struct task_struct *task)
4692{
4693 struct perf_output_handle handle;
c980d109 4694 struct perf_sample_data sample;
dfc65094 4695 struct perf_read_event read_event = {
38b200d6 4696 .header = {
cdd6c482 4697 .type = PERF_RECORD_READ,
38b200d6 4698 .misc = 0,
c320c7b7 4699 .size = sizeof(read_event) + event->read_size,
38b200d6 4700 },
cdd6c482
IM
4701 .pid = perf_event_pid(event, task),
4702 .tid = perf_event_tid(event, task),
38b200d6 4703 };
3dab77fb 4704 int ret;
38b200d6 4705
c980d109 4706 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4707 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4708 if (ret)
4709 return;
4710
dfc65094 4711 perf_output_put(&handle, read_event);
cdd6c482 4712 perf_output_read(&handle, event);
c980d109 4713 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4714
38b200d6
PZ
4715 perf_output_end(&handle);
4716}
4717
52d857a8
JO
4718typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4719
4720static void
4721perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4722 perf_event_aux_output_cb output,
4723 void *data)
4724{
4725 struct perf_event *event;
4726
4727 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4728 if (event->state < PERF_EVENT_STATE_INACTIVE)
4729 continue;
4730 if (!event_filter_match(event))
4731 continue;
67516844 4732 output(event, data);
52d857a8
JO
4733 }
4734}
4735
4736static void
67516844 4737perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4738 struct perf_event_context *task_ctx)
4739{
4740 struct perf_cpu_context *cpuctx;
4741 struct perf_event_context *ctx;
4742 struct pmu *pmu;
4743 int ctxn;
4744
4745 rcu_read_lock();
4746 list_for_each_entry_rcu(pmu, &pmus, entry) {
4747 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4748 if (cpuctx->unique_pmu != pmu)
4749 goto next;
67516844 4750 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4751 if (task_ctx)
4752 goto next;
4753 ctxn = pmu->task_ctx_nr;
4754 if (ctxn < 0)
4755 goto next;
4756 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4757 if (ctx)
67516844 4758 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4759next:
4760 put_cpu_ptr(pmu->pmu_cpu_context);
4761 }
4762
4763 if (task_ctx) {
4764 preempt_disable();
67516844 4765 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4766 preempt_enable();
4767 }
4768 rcu_read_unlock();
4769}
4770
60313ebe 4771/*
9f498cc5
PZ
4772 * task tracking -- fork/exit
4773 *
3af9e859 4774 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4775 */
4776
9f498cc5 4777struct perf_task_event {
3a80b4a3 4778 struct task_struct *task;
cdd6c482 4779 struct perf_event_context *task_ctx;
60313ebe
PZ
4780
4781 struct {
4782 struct perf_event_header header;
4783
4784 u32 pid;
4785 u32 ppid;
9f498cc5
PZ
4786 u32 tid;
4787 u32 ptid;
393b2ad8 4788 u64 time;
cdd6c482 4789 } event_id;
60313ebe
PZ
4790};
4791
67516844
JO
4792static int perf_event_task_match(struct perf_event *event)
4793{
4794 return event->attr.comm || event->attr.mmap ||
4795 event->attr.mmap_data || event->attr.task;
4796}
4797
cdd6c482 4798static void perf_event_task_output(struct perf_event *event,
52d857a8 4799 void *data)
60313ebe 4800{
52d857a8 4801 struct perf_task_event *task_event = data;
60313ebe 4802 struct perf_output_handle handle;
c980d109 4803 struct perf_sample_data sample;
9f498cc5 4804 struct task_struct *task = task_event->task;
c980d109 4805 int ret, size = task_event->event_id.header.size;
8bb39f9a 4806
67516844
JO
4807 if (!perf_event_task_match(event))
4808 return;
4809
c980d109 4810 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4811
c980d109 4812 ret = perf_output_begin(&handle, event,
a7ac67ea 4813 task_event->event_id.header.size);
ef60777c 4814 if (ret)
c980d109 4815 goto out;
60313ebe 4816
cdd6c482
IM
4817 task_event->event_id.pid = perf_event_pid(event, task);
4818 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4819
cdd6c482
IM
4820 task_event->event_id.tid = perf_event_tid(event, task);
4821 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4822
cdd6c482 4823 perf_output_put(&handle, task_event->event_id);
393b2ad8 4824
c980d109
ACM
4825 perf_event__output_id_sample(event, &handle, &sample);
4826
60313ebe 4827 perf_output_end(&handle);
c980d109
ACM
4828out:
4829 task_event->event_id.header.size = size;
60313ebe
PZ
4830}
4831
cdd6c482
IM
4832static void perf_event_task(struct task_struct *task,
4833 struct perf_event_context *task_ctx,
3a80b4a3 4834 int new)
60313ebe 4835{
9f498cc5 4836 struct perf_task_event task_event;
60313ebe 4837
cdd6c482
IM
4838 if (!atomic_read(&nr_comm_events) &&
4839 !atomic_read(&nr_mmap_events) &&
4840 !atomic_read(&nr_task_events))
60313ebe
PZ
4841 return;
4842
9f498cc5 4843 task_event = (struct perf_task_event){
3a80b4a3
PZ
4844 .task = task,
4845 .task_ctx = task_ctx,
cdd6c482 4846 .event_id = {
60313ebe 4847 .header = {
cdd6c482 4848 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4849 .misc = 0,
cdd6c482 4850 .size = sizeof(task_event.event_id),
60313ebe 4851 },
573402db
PZ
4852 /* .pid */
4853 /* .ppid */
9f498cc5
PZ
4854 /* .tid */
4855 /* .ptid */
6f93d0a7 4856 .time = perf_clock(),
60313ebe
PZ
4857 },
4858 };
4859
67516844 4860 perf_event_aux(perf_event_task_output,
52d857a8
JO
4861 &task_event,
4862 task_ctx);
9f498cc5
PZ
4863}
4864
cdd6c482 4865void perf_event_fork(struct task_struct *task)
9f498cc5 4866{
cdd6c482 4867 perf_event_task(task, NULL, 1);
60313ebe
PZ
4868}
4869
8d1b2d93
PZ
4870/*
4871 * comm tracking
4872 */
4873
4874struct perf_comm_event {
22a4f650
IM
4875 struct task_struct *task;
4876 char *comm;
8d1b2d93
PZ
4877 int comm_size;
4878
4879 struct {
4880 struct perf_event_header header;
4881
4882 u32 pid;
4883 u32 tid;
cdd6c482 4884 } event_id;
8d1b2d93
PZ
4885};
4886
67516844
JO
4887static int perf_event_comm_match(struct perf_event *event)
4888{
4889 return event->attr.comm;
4890}
4891
cdd6c482 4892static void perf_event_comm_output(struct perf_event *event,
52d857a8 4893 void *data)
8d1b2d93 4894{
52d857a8 4895 struct perf_comm_event *comm_event = data;
8d1b2d93 4896 struct perf_output_handle handle;
c980d109 4897 struct perf_sample_data sample;
cdd6c482 4898 int size = comm_event->event_id.header.size;
c980d109
ACM
4899 int ret;
4900
67516844
JO
4901 if (!perf_event_comm_match(event))
4902 return;
4903
c980d109
ACM
4904 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4905 ret = perf_output_begin(&handle, event,
a7ac67ea 4906 comm_event->event_id.header.size);
8d1b2d93
PZ
4907
4908 if (ret)
c980d109 4909 goto out;
8d1b2d93 4910
cdd6c482
IM
4911 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4912 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4913
cdd6c482 4914 perf_output_put(&handle, comm_event->event_id);
76369139 4915 __output_copy(&handle, comm_event->comm,
8d1b2d93 4916 comm_event->comm_size);
c980d109
ACM
4917
4918 perf_event__output_id_sample(event, &handle, &sample);
4919
8d1b2d93 4920 perf_output_end(&handle);
c980d109
ACM
4921out:
4922 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4923}
4924
cdd6c482 4925static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4926{
413ee3b4 4927 char comm[TASK_COMM_LEN];
8d1b2d93 4928 unsigned int size;
8d1b2d93 4929
413ee3b4 4930 memset(comm, 0, sizeof(comm));
96b02d78 4931 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4932 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4933
4934 comm_event->comm = comm;
4935 comm_event->comm_size = size;
4936
cdd6c482 4937 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4938
67516844 4939 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4940 comm_event,
4941 NULL);
8d1b2d93
PZ
4942}
4943
cdd6c482 4944void perf_event_comm(struct task_struct *task)
8d1b2d93 4945{
9ee318a7 4946 struct perf_comm_event comm_event;
8dc85d54
PZ
4947 struct perf_event_context *ctx;
4948 int ctxn;
9ee318a7 4949
c79aa0d9 4950 rcu_read_lock();
8dc85d54
PZ
4951 for_each_task_context_nr(ctxn) {
4952 ctx = task->perf_event_ctxp[ctxn];
4953 if (!ctx)
4954 continue;
9ee318a7 4955
8dc85d54
PZ
4956 perf_event_enable_on_exec(ctx);
4957 }
c79aa0d9 4958 rcu_read_unlock();
9ee318a7 4959
cdd6c482 4960 if (!atomic_read(&nr_comm_events))
9ee318a7 4961 return;
a63eaf34 4962
9ee318a7 4963 comm_event = (struct perf_comm_event){
8d1b2d93 4964 .task = task,
573402db
PZ
4965 /* .comm */
4966 /* .comm_size */
cdd6c482 4967 .event_id = {
573402db 4968 .header = {
cdd6c482 4969 .type = PERF_RECORD_COMM,
573402db
PZ
4970 .misc = 0,
4971 /* .size */
4972 },
4973 /* .pid */
4974 /* .tid */
8d1b2d93
PZ
4975 },
4976 };
4977
cdd6c482 4978 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4979}
4980
0a4a9391
PZ
4981/*
4982 * mmap tracking
4983 */
4984
4985struct perf_mmap_event {
089dd79d
PZ
4986 struct vm_area_struct *vma;
4987
4988 const char *file_name;
4989 int file_size;
0a4a9391
PZ
4990
4991 struct {
4992 struct perf_event_header header;
4993
4994 u32 pid;
4995 u32 tid;
4996 u64 start;
4997 u64 len;
4998 u64 pgoff;
cdd6c482 4999 } event_id;
0a4a9391
PZ
5000};
5001
67516844
JO
5002static int perf_event_mmap_match(struct perf_event *event,
5003 void *data)
5004{
5005 struct perf_mmap_event *mmap_event = data;
5006 struct vm_area_struct *vma = mmap_event->vma;
5007 int executable = vma->vm_flags & VM_EXEC;
5008
5009 return (!executable && event->attr.mmap_data) ||
5010 (executable && event->attr.mmap);
5011}
5012
cdd6c482 5013static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5014 void *data)
0a4a9391 5015{
52d857a8 5016 struct perf_mmap_event *mmap_event = data;
0a4a9391 5017 struct perf_output_handle handle;
c980d109 5018 struct perf_sample_data sample;
cdd6c482 5019 int size = mmap_event->event_id.header.size;
c980d109 5020 int ret;
0a4a9391 5021
67516844
JO
5022 if (!perf_event_mmap_match(event, data))
5023 return;
5024
c980d109
ACM
5025 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5026 ret = perf_output_begin(&handle, event,
a7ac67ea 5027 mmap_event->event_id.header.size);
0a4a9391 5028 if (ret)
c980d109 5029 goto out;
0a4a9391 5030
cdd6c482
IM
5031 mmap_event->event_id.pid = perf_event_pid(event, current);
5032 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5033
cdd6c482 5034 perf_output_put(&handle, mmap_event->event_id);
76369139 5035 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5036 mmap_event->file_size);
c980d109
ACM
5037
5038 perf_event__output_id_sample(event, &handle, &sample);
5039
78d613eb 5040 perf_output_end(&handle);
c980d109
ACM
5041out:
5042 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5043}
5044
cdd6c482 5045static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5046{
089dd79d
PZ
5047 struct vm_area_struct *vma = mmap_event->vma;
5048 struct file *file = vma->vm_file;
0a4a9391
PZ
5049 unsigned int size;
5050 char tmp[16];
5051 char *buf = NULL;
089dd79d 5052 const char *name;
0a4a9391 5053
413ee3b4
AB
5054 memset(tmp, 0, sizeof(tmp));
5055
0a4a9391 5056 if (file) {
413ee3b4 5057 /*
76369139 5058 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5059 * need to add enough zero bytes after the string to handle
5060 * the 64bit alignment we do later.
5061 */
5062 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5063 if (!buf) {
5064 name = strncpy(tmp, "//enomem", sizeof(tmp));
5065 goto got_name;
5066 }
d3d21c41 5067 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5068 if (IS_ERR(name)) {
5069 name = strncpy(tmp, "//toolong", sizeof(tmp));
5070 goto got_name;
5071 }
5072 } else {
413ee3b4
AB
5073 if (arch_vma_name(mmap_event->vma)) {
5074 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5075 sizeof(tmp) - 1);
5076 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5077 goto got_name;
413ee3b4 5078 }
089dd79d
PZ
5079
5080 if (!vma->vm_mm) {
5081 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5082 goto got_name;
3af9e859
EM
5083 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5084 vma->vm_end >= vma->vm_mm->brk) {
5085 name = strncpy(tmp, "[heap]", sizeof(tmp));
5086 goto got_name;
5087 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5088 vma->vm_end >= vma->vm_mm->start_stack) {
5089 name = strncpy(tmp, "[stack]", sizeof(tmp));
5090 goto got_name;
089dd79d
PZ
5091 }
5092
0a4a9391
PZ
5093 name = strncpy(tmp, "//anon", sizeof(tmp));
5094 goto got_name;
5095 }
5096
5097got_name:
888fcee0 5098 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5099
5100 mmap_event->file_name = name;
5101 mmap_event->file_size = size;
5102
2fe85427
SE
5103 if (!(vma->vm_flags & VM_EXEC))
5104 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5105
cdd6c482 5106 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5107
67516844 5108 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5109 mmap_event,
5110 NULL);
665c2142 5111
0a4a9391
PZ
5112 kfree(buf);
5113}
5114
3af9e859 5115void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5116{
9ee318a7
PZ
5117 struct perf_mmap_event mmap_event;
5118
cdd6c482 5119 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5120 return;
5121
5122 mmap_event = (struct perf_mmap_event){
089dd79d 5123 .vma = vma,
573402db
PZ
5124 /* .file_name */
5125 /* .file_size */
cdd6c482 5126 .event_id = {
573402db 5127 .header = {
cdd6c482 5128 .type = PERF_RECORD_MMAP,
39447b38 5129 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5130 /* .size */
5131 },
5132 /* .pid */
5133 /* .tid */
089dd79d
PZ
5134 .start = vma->vm_start,
5135 .len = vma->vm_end - vma->vm_start,
3a0304e9 5136 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5137 },
5138 };
5139
cdd6c482 5140 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5141}
5142
a78ac325
PZ
5143/*
5144 * IRQ throttle logging
5145 */
5146
cdd6c482 5147static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5148{
5149 struct perf_output_handle handle;
c980d109 5150 struct perf_sample_data sample;
a78ac325
PZ
5151 int ret;
5152
5153 struct {
5154 struct perf_event_header header;
5155 u64 time;
cca3f454 5156 u64 id;
7f453c24 5157 u64 stream_id;
a78ac325
PZ
5158 } throttle_event = {
5159 .header = {
cdd6c482 5160 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5161 .misc = 0,
5162 .size = sizeof(throttle_event),
5163 },
def0a9b2 5164 .time = perf_clock(),
cdd6c482
IM
5165 .id = primary_event_id(event),
5166 .stream_id = event->id,
a78ac325
PZ
5167 };
5168
966ee4d6 5169 if (enable)
cdd6c482 5170 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5171
c980d109
ACM
5172 perf_event_header__init_id(&throttle_event.header, &sample, event);
5173
5174 ret = perf_output_begin(&handle, event,
a7ac67ea 5175 throttle_event.header.size);
a78ac325
PZ
5176 if (ret)
5177 return;
5178
5179 perf_output_put(&handle, throttle_event);
c980d109 5180 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5181 perf_output_end(&handle);
5182}
5183
f6c7d5fe 5184/*
cdd6c482 5185 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5186 */
5187
a8b0ca17 5188static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5189 int throttle, struct perf_sample_data *data,
5190 struct pt_regs *regs)
f6c7d5fe 5191{
cdd6c482
IM
5192 int events = atomic_read(&event->event_limit);
5193 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5194 u64 seq;
79f14641
PZ
5195 int ret = 0;
5196
96398826
PZ
5197 /*
5198 * Non-sampling counters might still use the PMI to fold short
5199 * hardware counters, ignore those.
5200 */
5201 if (unlikely(!is_sampling_event(event)))
5202 return 0;
5203
e050e3f0
SE
5204 seq = __this_cpu_read(perf_throttled_seq);
5205 if (seq != hwc->interrupts_seq) {
5206 hwc->interrupts_seq = seq;
5207 hwc->interrupts = 1;
5208 } else {
5209 hwc->interrupts++;
5210 if (unlikely(throttle
5211 && hwc->interrupts >= max_samples_per_tick)) {
5212 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5213 hwc->interrupts = MAX_INTERRUPTS;
5214 perf_log_throttle(event, 0);
d84153d6 5215 tick_nohz_full_kick();
a78ac325
PZ
5216 ret = 1;
5217 }
e050e3f0 5218 }
60db5e09 5219
cdd6c482 5220 if (event->attr.freq) {
def0a9b2 5221 u64 now = perf_clock();
abd50713 5222 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5223
abd50713 5224 hwc->freq_time_stamp = now;
bd2b5b12 5225
abd50713 5226 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5227 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5228 }
5229
2023b359
PZ
5230 /*
5231 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5232 * events
2023b359
PZ
5233 */
5234
cdd6c482
IM
5235 event->pending_kill = POLL_IN;
5236 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5237 ret = 1;
cdd6c482 5238 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5239 event->pending_disable = 1;
5240 irq_work_queue(&event->pending);
79f14641
PZ
5241 }
5242
453f19ee 5243 if (event->overflow_handler)
a8b0ca17 5244 event->overflow_handler(event, data, regs);
453f19ee 5245 else
a8b0ca17 5246 perf_event_output(event, data, regs);
453f19ee 5247
f506b3dc 5248 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5249 event->pending_wakeup = 1;
5250 irq_work_queue(&event->pending);
f506b3dc
PZ
5251 }
5252
79f14641 5253 return ret;
f6c7d5fe
PZ
5254}
5255
a8b0ca17 5256int perf_event_overflow(struct perf_event *event,
5622f295
MM
5257 struct perf_sample_data *data,
5258 struct pt_regs *regs)
850bc73f 5259{
a8b0ca17 5260 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5261}
5262
15dbf27c 5263/*
cdd6c482 5264 * Generic software event infrastructure
15dbf27c
PZ
5265 */
5266
b28ab83c
PZ
5267struct swevent_htable {
5268 struct swevent_hlist *swevent_hlist;
5269 struct mutex hlist_mutex;
5270 int hlist_refcount;
5271
5272 /* Recursion avoidance in each contexts */
5273 int recursion[PERF_NR_CONTEXTS];
5274};
5275
5276static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5277
7b4b6658 5278/*
cdd6c482
IM
5279 * We directly increment event->count and keep a second value in
5280 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5281 * is kept in the range [-sample_period, 0] so that we can use the
5282 * sign as trigger.
5283 */
5284
ab573844 5285u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5286{
cdd6c482 5287 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5288 u64 period = hwc->last_period;
5289 u64 nr, offset;
5290 s64 old, val;
5291
5292 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5293
5294again:
e7850595 5295 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5296 if (val < 0)
5297 return 0;
15dbf27c 5298
7b4b6658
PZ
5299 nr = div64_u64(period + val, period);
5300 offset = nr * period;
5301 val -= offset;
e7850595 5302 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5303 goto again;
15dbf27c 5304
7b4b6658 5305 return nr;
15dbf27c
PZ
5306}
5307
0cff784a 5308static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5309 struct perf_sample_data *data,
5622f295 5310 struct pt_regs *regs)
15dbf27c 5311{
cdd6c482 5312 struct hw_perf_event *hwc = &event->hw;
850bc73f 5313 int throttle = 0;
15dbf27c 5314
0cff784a
PZ
5315 if (!overflow)
5316 overflow = perf_swevent_set_period(event);
15dbf27c 5317
7b4b6658
PZ
5318 if (hwc->interrupts == MAX_INTERRUPTS)
5319 return;
15dbf27c 5320
7b4b6658 5321 for (; overflow; overflow--) {
a8b0ca17 5322 if (__perf_event_overflow(event, throttle,
5622f295 5323 data, regs)) {
7b4b6658
PZ
5324 /*
5325 * We inhibit the overflow from happening when
5326 * hwc->interrupts == MAX_INTERRUPTS.
5327 */
5328 break;
5329 }
cf450a73 5330 throttle = 1;
7b4b6658 5331 }
15dbf27c
PZ
5332}
5333
a4eaf7f1 5334static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5335 struct perf_sample_data *data,
5622f295 5336 struct pt_regs *regs)
7b4b6658 5337{
cdd6c482 5338 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5339
e7850595 5340 local64_add(nr, &event->count);
d6d020e9 5341
0cff784a
PZ
5342 if (!regs)
5343 return;
5344
6c7e550f 5345 if (!is_sampling_event(event))
7b4b6658 5346 return;
d6d020e9 5347
5d81e5cf
AV
5348 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5349 data->period = nr;
5350 return perf_swevent_overflow(event, 1, data, regs);
5351 } else
5352 data->period = event->hw.last_period;
5353
0cff784a 5354 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5355 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5356
e7850595 5357 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5358 return;
df1a132b 5359
a8b0ca17 5360 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5361}
5362
f5ffe02e
FW
5363static int perf_exclude_event(struct perf_event *event,
5364 struct pt_regs *regs)
5365{
a4eaf7f1 5366 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5367 return 1;
a4eaf7f1 5368
f5ffe02e
FW
5369 if (regs) {
5370 if (event->attr.exclude_user && user_mode(regs))
5371 return 1;
5372
5373 if (event->attr.exclude_kernel && !user_mode(regs))
5374 return 1;
5375 }
5376
5377 return 0;
5378}
5379
cdd6c482 5380static int perf_swevent_match(struct perf_event *event,
1c432d89 5381 enum perf_type_id type,
6fb2915d
LZ
5382 u32 event_id,
5383 struct perf_sample_data *data,
5384 struct pt_regs *regs)
15dbf27c 5385{
cdd6c482 5386 if (event->attr.type != type)
a21ca2ca 5387 return 0;
f5ffe02e 5388
cdd6c482 5389 if (event->attr.config != event_id)
15dbf27c
PZ
5390 return 0;
5391
f5ffe02e
FW
5392 if (perf_exclude_event(event, regs))
5393 return 0;
15dbf27c
PZ
5394
5395 return 1;
5396}
5397
76e1d904
FW
5398static inline u64 swevent_hash(u64 type, u32 event_id)
5399{
5400 u64 val = event_id | (type << 32);
5401
5402 return hash_64(val, SWEVENT_HLIST_BITS);
5403}
5404
49f135ed
FW
5405static inline struct hlist_head *
5406__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5407{
49f135ed
FW
5408 u64 hash = swevent_hash(type, event_id);
5409
5410 return &hlist->heads[hash];
5411}
76e1d904 5412
49f135ed
FW
5413/* For the read side: events when they trigger */
5414static inline struct hlist_head *
b28ab83c 5415find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5416{
5417 struct swevent_hlist *hlist;
76e1d904 5418
b28ab83c 5419 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5420 if (!hlist)
5421 return NULL;
5422
49f135ed
FW
5423 return __find_swevent_head(hlist, type, event_id);
5424}
5425
5426/* For the event head insertion and removal in the hlist */
5427static inline struct hlist_head *
b28ab83c 5428find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5429{
5430 struct swevent_hlist *hlist;
5431 u32 event_id = event->attr.config;
5432 u64 type = event->attr.type;
5433
5434 /*
5435 * Event scheduling is always serialized against hlist allocation
5436 * and release. Which makes the protected version suitable here.
5437 * The context lock guarantees that.
5438 */
b28ab83c 5439 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5440 lockdep_is_held(&event->ctx->lock));
5441 if (!hlist)
5442 return NULL;
5443
5444 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5445}
5446
5447static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5448 u64 nr,
76e1d904
FW
5449 struct perf_sample_data *data,
5450 struct pt_regs *regs)
15dbf27c 5451{
b28ab83c 5452 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5453 struct perf_event *event;
76e1d904 5454 struct hlist_head *head;
15dbf27c 5455
76e1d904 5456 rcu_read_lock();
b28ab83c 5457 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5458 if (!head)
5459 goto end;
5460
b67bfe0d 5461 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5462 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5463 perf_swevent_event(event, nr, data, regs);
15dbf27c 5464 }
76e1d904
FW
5465end:
5466 rcu_read_unlock();
15dbf27c
PZ
5467}
5468
4ed7c92d 5469int perf_swevent_get_recursion_context(void)
96f6d444 5470{
b28ab83c 5471 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5472
b28ab83c 5473 return get_recursion_context(swhash->recursion);
96f6d444 5474}
645e8cc0 5475EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5476
fa9f90be 5477inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5478{
b28ab83c 5479 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5480
b28ab83c 5481 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5482}
15dbf27c 5483
a8b0ca17 5484void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5485{
a4234bfc 5486 struct perf_sample_data data;
4ed7c92d
PZ
5487 int rctx;
5488
1c024eca 5489 preempt_disable_notrace();
4ed7c92d
PZ
5490 rctx = perf_swevent_get_recursion_context();
5491 if (rctx < 0)
5492 return;
a4234bfc 5493
fd0d000b 5494 perf_sample_data_init(&data, addr, 0);
92bf309a 5495
a8b0ca17 5496 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5497
5498 perf_swevent_put_recursion_context(rctx);
1c024eca 5499 preempt_enable_notrace();
b8e83514
PZ
5500}
5501
cdd6c482 5502static void perf_swevent_read(struct perf_event *event)
15dbf27c 5503{
15dbf27c
PZ
5504}
5505
a4eaf7f1 5506static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5507{
b28ab83c 5508 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5509 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5510 struct hlist_head *head;
5511
6c7e550f 5512 if (is_sampling_event(event)) {
7b4b6658 5513 hwc->last_period = hwc->sample_period;
cdd6c482 5514 perf_swevent_set_period(event);
7b4b6658 5515 }
76e1d904 5516
a4eaf7f1
PZ
5517 hwc->state = !(flags & PERF_EF_START);
5518
b28ab83c 5519 head = find_swevent_head(swhash, event);
76e1d904
FW
5520 if (WARN_ON_ONCE(!head))
5521 return -EINVAL;
5522
5523 hlist_add_head_rcu(&event->hlist_entry, head);
5524
15dbf27c
PZ
5525 return 0;
5526}
5527
a4eaf7f1 5528static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5529{
76e1d904 5530 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5531}
5532
a4eaf7f1 5533static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5534{
a4eaf7f1 5535 event->hw.state = 0;
d6d020e9 5536}
aa9c4c0f 5537
a4eaf7f1 5538static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5539{
a4eaf7f1 5540 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5541}
5542
49f135ed
FW
5543/* Deref the hlist from the update side */
5544static inline struct swevent_hlist *
b28ab83c 5545swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5546{
b28ab83c
PZ
5547 return rcu_dereference_protected(swhash->swevent_hlist,
5548 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5549}
5550
b28ab83c 5551static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5552{
b28ab83c 5553 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5554
49f135ed 5555 if (!hlist)
76e1d904
FW
5556 return;
5557
b28ab83c 5558 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5559 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5560}
5561
5562static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5563{
b28ab83c 5564 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5565
b28ab83c 5566 mutex_lock(&swhash->hlist_mutex);
76e1d904 5567
b28ab83c
PZ
5568 if (!--swhash->hlist_refcount)
5569 swevent_hlist_release(swhash);
76e1d904 5570
b28ab83c 5571 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5572}
5573
5574static void swevent_hlist_put(struct perf_event *event)
5575{
5576 int cpu;
5577
5578 if (event->cpu != -1) {
5579 swevent_hlist_put_cpu(event, event->cpu);
5580 return;
5581 }
5582
5583 for_each_possible_cpu(cpu)
5584 swevent_hlist_put_cpu(event, cpu);
5585}
5586
5587static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5588{
b28ab83c 5589 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5590 int err = 0;
5591
b28ab83c 5592 mutex_lock(&swhash->hlist_mutex);
76e1d904 5593
b28ab83c 5594 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5595 struct swevent_hlist *hlist;
5596
5597 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5598 if (!hlist) {
5599 err = -ENOMEM;
5600 goto exit;
5601 }
b28ab83c 5602 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5603 }
b28ab83c 5604 swhash->hlist_refcount++;
9ed6060d 5605exit:
b28ab83c 5606 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5607
5608 return err;
5609}
5610
5611static int swevent_hlist_get(struct perf_event *event)
5612{
5613 int err;
5614 int cpu, failed_cpu;
5615
5616 if (event->cpu != -1)
5617 return swevent_hlist_get_cpu(event, event->cpu);
5618
5619 get_online_cpus();
5620 for_each_possible_cpu(cpu) {
5621 err = swevent_hlist_get_cpu(event, cpu);
5622 if (err) {
5623 failed_cpu = cpu;
5624 goto fail;
5625 }
5626 }
5627 put_online_cpus();
5628
5629 return 0;
9ed6060d 5630fail:
76e1d904
FW
5631 for_each_possible_cpu(cpu) {
5632 if (cpu == failed_cpu)
5633 break;
5634 swevent_hlist_put_cpu(event, cpu);
5635 }
5636
5637 put_online_cpus();
5638 return err;
5639}
5640
c5905afb 5641struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5642
b0a873eb
PZ
5643static void sw_perf_event_destroy(struct perf_event *event)
5644{
5645 u64 event_id = event->attr.config;
95476b64 5646
b0a873eb
PZ
5647 WARN_ON(event->parent);
5648
c5905afb 5649 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5650 swevent_hlist_put(event);
5651}
5652
5653static int perf_swevent_init(struct perf_event *event)
5654{
8176cced 5655 u64 event_id = event->attr.config;
b0a873eb
PZ
5656
5657 if (event->attr.type != PERF_TYPE_SOFTWARE)
5658 return -ENOENT;
5659
2481c5fa
SE
5660 /*
5661 * no branch sampling for software events
5662 */
5663 if (has_branch_stack(event))
5664 return -EOPNOTSUPP;
5665
b0a873eb
PZ
5666 switch (event_id) {
5667 case PERF_COUNT_SW_CPU_CLOCK:
5668 case PERF_COUNT_SW_TASK_CLOCK:
5669 return -ENOENT;
5670
5671 default:
5672 break;
5673 }
5674
ce677831 5675 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5676 return -ENOENT;
5677
5678 if (!event->parent) {
5679 int err;
5680
5681 err = swevent_hlist_get(event);
5682 if (err)
5683 return err;
5684
c5905afb 5685 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5686 event->destroy = sw_perf_event_destroy;
5687 }
5688
5689 return 0;
5690}
5691
35edc2a5
PZ
5692static int perf_swevent_event_idx(struct perf_event *event)
5693{
5694 return 0;
5695}
5696
b0a873eb 5697static struct pmu perf_swevent = {
89a1e187 5698 .task_ctx_nr = perf_sw_context,
95476b64 5699
b0a873eb 5700 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5701 .add = perf_swevent_add,
5702 .del = perf_swevent_del,
5703 .start = perf_swevent_start,
5704 .stop = perf_swevent_stop,
1c024eca 5705 .read = perf_swevent_read,
35edc2a5
PZ
5706
5707 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5708};
5709
b0a873eb
PZ
5710#ifdef CONFIG_EVENT_TRACING
5711
1c024eca
PZ
5712static int perf_tp_filter_match(struct perf_event *event,
5713 struct perf_sample_data *data)
5714{
5715 void *record = data->raw->data;
5716
5717 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5718 return 1;
5719 return 0;
5720}
5721
5722static int perf_tp_event_match(struct perf_event *event,
5723 struct perf_sample_data *data,
5724 struct pt_regs *regs)
5725{
a0f7d0f7
FW
5726 if (event->hw.state & PERF_HES_STOPPED)
5727 return 0;
580d607c
PZ
5728 /*
5729 * All tracepoints are from kernel-space.
5730 */
5731 if (event->attr.exclude_kernel)
1c024eca
PZ
5732 return 0;
5733
5734 if (!perf_tp_filter_match(event, data))
5735 return 0;
5736
5737 return 1;
5738}
5739
5740void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5741 struct pt_regs *regs, struct hlist_head *head, int rctx,
5742 struct task_struct *task)
95476b64
FW
5743{
5744 struct perf_sample_data data;
1c024eca 5745 struct perf_event *event;
1c024eca 5746
95476b64
FW
5747 struct perf_raw_record raw = {
5748 .size = entry_size,
5749 .data = record,
5750 };
5751
fd0d000b 5752 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5753 data.raw = &raw;
5754
b67bfe0d 5755 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5756 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5757 perf_swevent_event(event, count, &data, regs);
4f41c013 5758 }
ecc55f84 5759
e6dab5ff
AV
5760 /*
5761 * If we got specified a target task, also iterate its context and
5762 * deliver this event there too.
5763 */
5764 if (task && task != current) {
5765 struct perf_event_context *ctx;
5766 struct trace_entry *entry = record;
5767
5768 rcu_read_lock();
5769 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5770 if (!ctx)
5771 goto unlock;
5772
5773 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5774 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5775 continue;
5776 if (event->attr.config != entry->type)
5777 continue;
5778 if (perf_tp_event_match(event, &data, regs))
5779 perf_swevent_event(event, count, &data, regs);
5780 }
5781unlock:
5782 rcu_read_unlock();
5783 }
5784
ecc55f84 5785 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5786}
5787EXPORT_SYMBOL_GPL(perf_tp_event);
5788
cdd6c482 5789static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5790{
1c024eca 5791 perf_trace_destroy(event);
e077df4f
PZ
5792}
5793
b0a873eb 5794static int perf_tp_event_init(struct perf_event *event)
e077df4f 5795{
76e1d904
FW
5796 int err;
5797
b0a873eb
PZ
5798 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5799 return -ENOENT;
5800
2481c5fa
SE
5801 /*
5802 * no branch sampling for tracepoint events
5803 */
5804 if (has_branch_stack(event))
5805 return -EOPNOTSUPP;
5806
1c024eca
PZ
5807 err = perf_trace_init(event);
5808 if (err)
b0a873eb 5809 return err;
e077df4f 5810
cdd6c482 5811 event->destroy = tp_perf_event_destroy;
e077df4f 5812
b0a873eb
PZ
5813 return 0;
5814}
5815
5816static struct pmu perf_tracepoint = {
89a1e187
PZ
5817 .task_ctx_nr = perf_sw_context,
5818
b0a873eb 5819 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5820 .add = perf_trace_add,
5821 .del = perf_trace_del,
5822 .start = perf_swevent_start,
5823 .stop = perf_swevent_stop,
b0a873eb 5824 .read = perf_swevent_read,
35edc2a5
PZ
5825
5826 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5827};
5828
5829static inline void perf_tp_register(void)
5830{
2e80a82a 5831 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5832}
6fb2915d
LZ
5833
5834static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5835{
5836 char *filter_str;
5837 int ret;
5838
5839 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5840 return -EINVAL;
5841
5842 filter_str = strndup_user(arg, PAGE_SIZE);
5843 if (IS_ERR(filter_str))
5844 return PTR_ERR(filter_str);
5845
5846 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5847
5848 kfree(filter_str);
5849 return ret;
5850}
5851
5852static void perf_event_free_filter(struct perf_event *event)
5853{
5854 ftrace_profile_free_filter(event);
5855}
5856
e077df4f 5857#else
6fb2915d 5858
b0a873eb 5859static inline void perf_tp_register(void)
e077df4f 5860{
e077df4f 5861}
6fb2915d
LZ
5862
5863static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5864{
5865 return -ENOENT;
5866}
5867
5868static void perf_event_free_filter(struct perf_event *event)
5869{
5870}
5871
07b139c8 5872#endif /* CONFIG_EVENT_TRACING */
e077df4f 5873
24f1e32c 5874#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5875void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5876{
f5ffe02e
FW
5877 struct perf_sample_data sample;
5878 struct pt_regs *regs = data;
5879
fd0d000b 5880 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5881
a4eaf7f1 5882 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5883 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5884}
5885#endif
5886
b0a873eb
PZ
5887/*
5888 * hrtimer based swevent callback
5889 */
f29ac756 5890
b0a873eb 5891static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5892{
b0a873eb
PZ
5893 enum hrtimer_restart ret = HRTIMER_RESTART;
5894 struct perf_sample_data data;
5895 struct pt_regs *regs;
5896 struct perf_event *event;
5897 u64 period;
f29ac756 5898
b0a873eb 5899 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5900
5901 if (event->state != PERF_EVENT_STATE_ACTIVE)
5902 return HRTIMER_NORESTART;
5903
b0a873eb 5904 event->pmu->read(event);
f344011c 5905
fd0d000b 5906 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5907 regs = get_irq_regs();
5908
5909 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5910 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5911 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5912 ret = HRTIMER_NORESTART;
5913 }
24f1e32c 5914
b0a873eb
PZ
5915 period = max_t(u64, 10000, event->hw.sample_period);
5916 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5917
b0a873eb 5918 return ret;
f29ac756
PZ
5919}
5920
b0a873eb 5921static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5922{
b0a873eb 5923 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5924 s64 period;
5925
5926 if (!is_sampling_event(event))
5927 return;
f5ffe02e 5928
5d508e82
FBH
5929 period = local64_read(&hwc->period_left);
5930 if (period) {
5931 if (period < 0)
5932 period = 10000;
fa407f35 5933
5d508e82
FBH
5934 local64_set(&hwc->period_left, 0);
5935 } else {
5936 period = max_t(u64, 10000, hwc->sample_period);
5937 }
5938 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5939 ns_to_ktime(period), 0,
b5ab4cd5 5940 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5941}
b0a873eb
PZ
5942
5943static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5944{
b0a873eb
PZ
5945 struct hw_perf_event *hwc = &event->hw;
5946
6c7e550f 5947 if (is_sampling_event(event)) {
b0a873eb 5948 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5949 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5950
5951 hrtimer_cancel(&hwc->hrtimer);
5952 }
24f1e32c
FW
5953}
5954
ba3dd36c
PZ
5955static void perf_swevent_init_hrtimer(struct perf_event *event)
5956{
5957 struct hw_perf_event *hwc = &event->hw;
5958
5959 if (!is_sampling_event(event))
5960 return;
5961
5962 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5963 hwc->hrtimer.function = perf_swevent_hrtimer;
5964
5965 /*
5966 * Since hrtimers have a fixed rate, we can do a static freq->period
5967 * mapping and avoid the whole period adjust feedback stuff.
5968 */
5969 if (event->attr.freq) {
5970 long freq = event->attr.sample_freq;
5971
5972 event->attr.sample_period = NSEC_PER_SEC / freq;
5973 hwc->sample_period = event->attr.sample_period;
5974 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5975 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5976 event->attr.freq = 0;
5977 }
5978}
5979
b0a873eb
PZ
5980/*
5981 * Software event: cpu wall time clock
5982 */
5983
5984static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5985{
b0a873eb
PZ
5986 s64 prev;
5987 u64 now;
5988
a4eaf7f1 5989 now = local_clock();
b0a873eb
PZ
5990 prev = local64_xchg(&event->hw.prev_count, now);
5991 local64_add(now - prev, &event->count);
24f1e32c 5992}
24f1e32c 5993
a4eaf7f1 5994static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5995{
a4eaf7f1 5996 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5997 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5998}
5999
a4eaf7f1 6000static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6001{
b0a873eb
PZ
6002 perf_swevent_cancel_hrtimer(event);
6003 cpu_clock_event_update(event);
6004}
f29ac756 6005
a4eaf7f1
PZ
6006static int cpu_clock_event_add(struct perf_event *event, int flags)
6007{
6008 if (flags & PERF_EF_START)
6009 cpu_clock_event_start(event, flags);
6010
6011 return 0;
6012}
6013
6014static void cpu_clock_event_del(struct perf_event *event, int flags)
6015{
6016 cpu_clock_event_stop(event, flags);
6017}
6018
b0a873eb
PZ
6019static void cpu_clock_event_read(struct perf_event *event)
6020{
6021 cpu_clock_event_update(event);
6022}
f344011c 6023
b0a873eb
PZ
6024static int cpu_clock_event_init(struct perf_event *event)
6025{
6026 if (event->attr.type != PERF_TYPE_SOFTWARE)
6027 return -ENOENT;
6028
6029 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6030 return -ENOENT;
6031
2481c5fa
SE
6032 /*
6033 * no branch sampling for software events
6034 */
6035 if (has_branch_stack(event))
6036 return -EOPNOTSUPP;
6037
ba3dd36c
PZ
6038 perf_swevent_init_hrtimer(event);
6039
b0a873eb 6040 return 0;
f29ac756
PZ
6041}
6042
b0a873eb 6043static struct pmu perf_cpu_clock = {
89a1e187
PZ
6044 .task_ctx_nr = perf_sw_context,
6045
b0a873eb 6046 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6047 .add = cpu_clock_event_add,
6048 .del = cpu_clock_event_del,
6049 .start = cpu_clock_event_start,
6050 .stop = cpu_clock_event_stop,
b0a873eb 6051 .read = cpu_clock_event_read,
35edc2a5
PZ
6052
6053 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6054};
6055
6056/*
6057 * Software event: task time clock
6058 */
6059
6060static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6061{
b0a873eb
PZ
6062 u64 prev;
6063 s64 delta;
5c92d124 6064
b0a873eb
PZ
6065 prev = local64_xchg(&event->hw.prev_count, now);
6066 delta = now - prev;
6067 local64_add(delta, &event->count);
6068}
5c92d124 6069
a4eaf7f1 6070static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6071{
a4eaf7f1 6072 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6073 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6074}
6075
a4eaf7f1 6076static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6077{
6078 perf_swevent_cancel_hrtimer(event);
6079 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6080}
6081
6082static int task_clock_event_add(struct perf_event *event, int flags)
6083{
6084 if (flags & PERF_EF_START)
6085 task_clock_event_start(event, flags);
b0a873eb 6086
a4eaf7f1
PZ
6087 return 0;
6088}
6089
6090static void task_clock_event_del(struct perf_event *event, int flags)
6091{
6092 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6093}
6094
6095static void task_clock_event_read(struct perf_event *event)
6096{
768a06e2
PZ
6097 u64 now = perf_clock();
6098 u64 delta = now - event->ctx->timestamp;
6099 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6100
6101 task_clock_event_update(event, time);
6102}
6103
6104static int task_clock_event_init(struct perf_event *event)
6fb2915d 6105{
b0a873eb
PZ
6106 if (event->attr.type != PERF_TYPE_SOFTWARE)
6107 return -ENOENT;
6108
6109 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6110 return -ENOENT;
6111
2481c5fa
SE
6112 /*
6113 * no branch sampling for software events
6114 */
6115 if (has_branch_stack(event))
6116 return -EOPNOTSUPP;
6117
ba3dd36c
PZ
6118 perf_swevent_init_hrtimer(event);
6119
b0a873eb 6120 return 0;
6fb2915d
LZ
6121}
6122
b0a873eb 6123static struct pmu perf_task_clock = {
89a1e187
PZ
6124 .task_ctx_nr = perf_sw_context,
6125
b0a873eb 6126 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6127 .add = task_clock_event_add,
6128 .del = task_clock_event_del,
6129 .start = task_clock_event_start,
6130 .stop = task_clock_event_stop,
b0a873eb 6131 .read = task_clock_event_read,
35edc2a5
PZ
6132
6133 .event_idx = perf_swevent_event_idx,
b0a873eb 6134};
6fb2915d 6135
ad5133b7 6136static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6137{
e077df4f 6138}
6fb2915d 6139
ad5133b7 6140static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6141{
ad5133b7 6142 return 0;
6fb2915d
LZ
6143}
6144
ad5133b7 6145static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6146{
ad5133b7 6147 perf_pmu_disable(pmu);
6fb2915d
LZ
6148}
6149
ad5133b7
PZ
6150static int perf_pmu_commit_txn(struct pmu *pmu)
6151{
6152 perf_pmu_enable(pmu);
6153 return 0;
6154}
e077df4f 6155
ad5133b7 6156static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6157{
ad5133b7 6158 perf_pmu_enable(pmu);
24f1e32c
FW
6159}
6160
35edc2a5
PZ
6161static int perf_event_idx_default(struct perf_event *event)
6162{
6163 return event->hw.idx + 1;
6164}
6165
8dc85d54
PZ
6166/*
6167 * Ensures all contexts with the same task_ctx_nr have the same
6168 * pmu_cpu_context too.
6169 */
6170static void *find_pmu_context(int ctxn)
24f1e32c 6171{
8dc85d54 6172 struct pmu *pmu;
b326e956 6173
8dc85d54
PZ
6174 if (ctxn < 0)
6175 return NULL;
24f1e32c 6176
8dc85d54
PZ
6177 list_for_each_entry(pmu, &pmus, entry) {
6178 if (pmu->task_ctx_nr == ctxn)
6179 return pmu->pmu_cpu_context;
6180 }
24f1e32c 6181
8dc85d54 6182 return NULL;
24f1e32c
FW
6183}
6184
51676957 6185static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6186{
51676957
PZ
6187 int cpu;
6188
6189 for_each_possible_cpu(cpu) {
6190 struct perf_cpu_context *cpuctx;
6191
6192 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6193
3f1f3320
PZ
6194 if (cpuctx->unique_pmu == old_pmu)
6195 cpuctx->unique_pmu = pmu;
51676957
PZ
6196 }
6197}
6198
6199static void free_pmu_context(struct pmu *pmu)
6200{
6201 struct pmu *i;
f5ffe02e 6202
8dc85d54 6203 mutex_lock(&pmus_lock);
0475f9ea 6204 /*
8dc85d54 6205 * Like a real lame refcount.
0475f9ea 6206 */
51676957
PZ
6207 list_for_each_entry(i, &pmus, entry) {
6208 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6209 update_pmu_context(i, pmu);
8dc85d54 6210 goto out;
51676957 6211 }
8dc85d54 6212 }
d6d020e9 6213
51676957 6214 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6215out:
6216 mutex_unlock(&pmus_lock);
24f1e32c 6217}
2e80a82a 6218static struct idr pmu_idr;
d6d020e9 6219
abe43400
PZ
6220static ssize_t
6221type_show(struct device *dev, struct device_attribute *attr, char *page)
6222{
6223 struct pmu *pmu = dev_get_drvdata(dev);
6224
6225 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6226}
6227
62b85639
SE
6228static ssize_t
6229perf_event_mux_interval_ms_show(struct device *dev,
6230 struct device_attribute *attr,
6231 char *page)
6232{
6233 struct pmu *pmu = dev_get_drvdata(dev);
6234
6235 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6236}
6237
6238static ssize_t
6239perf_event_mux_interval_ms_store(struct device *dev,
6240 struct device_attribute *attr,
6241 const char *buf, size_t count)
6242{
6243 struct pmu *pmu = dev_get_drvdata(dev);
6244 int timer, cpu, ret;
6245
6246 ret = kstrtoint(buf, 0, &timer);
6247 if (ret)
6248 return ret;
6249
6250 if (timer < 1)
6251 return -EINVAL;
6252
6253 /* same value, noting to do */
6254 if (timer == pmu->hrtimer_interval_ms)
6255 return count;
6256
6257 pmu->hrtimer_interval_ms = timer;
6258
6259 /* update all cpuctx for this PMU */
6260 for_each_possible_cpu(cpu) {
6261 struct perf_cpu_context *cpuctx;
6262 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6263 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6264
6265 if (hrtimer_active(&cpuctx->hrtimer))
6266 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6267 }
6268
6269 return count;
6270}
6271
abe43400 6272static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6273 __ATTR_RO(type),
6274 __ATTR_RW(perf_event_mux_interval_ms),
6275 __ATTR_NULL,
abe43400
PZ
6276};
6277
6278static int pmu_bus_running;
6279static struct bus_type pmu_bus = {
6280 .name = "event_source",
6281 .dev_attrs = pmu_dev_attrs,
6282};
6283
6284static void pmu_dev_release(struct device *dev)
6285{
6286 kfree(dev);
6287}
6288
6289static int pmu_dev_alloc(struct pmu *pmu)
6290{
6291 int ret = -ENOMEM;
6292
6293 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6294 if (!pmu->dev)
6295 goto out;
6296
0c9d42ed 6297 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6298 device_initialize(pmu->dev);
6299 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6300 if (ret)
6301 goto free_dev;
6302
6303 dev_set_drvdata(pmu->dev, pmu);
6304 pmu->dev->bus = &pmu_bus;
6305 pmu->dev->release = pmu_dev_release;
6306 ret = device_add(pmu->dev);
6307 if (ret)
6308 goto free_dev;
6309
6310out:
6311 return ret;
6312
6313free_dev:
6314 put_device(pmu->dev);
6315 goto out;
6316}
6317
547e9fd7 6318static struct lock_class_key cpuctx_mutex;
facc4307 6319static struct lock_class_key cpuctx_lock;
547e9fd7 6320
03d8e80b 6321int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6322{
108b02cf 6323 int cpu, ret;
24f1e32c 6324
b0a873eb 6325 mutex_lock(&pmus_lock);
33696fc0
PZ
6326 ret = -ENOMEM;
6327 pmu->pmu_disable_count = alloc_percpu(int);
6328 if (!pmu->pmu_disable_count)
6329 goto unlock;
f29ac756 6330
2e80a82a
PZ
6331 pmu->type = -1;
6332 if (!name)
6333 goto skip_type;
6334 pmu->name = name;
6335
6336 if (type < 0) {
0e9c3be2
TH
6337 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6338 if (type < 0) {
6339 ret = type;
2e80a82a
PZ
6340 goto free_pdc;
6341 }
6342 }
6343 pmu->type = type;
6344
abe43400
PZ
6345 if (pmu_bus_running) {
6346 ret = pmu_dev_alloc(pmu);
6347 if (ret)
6348 goto free_idr;
6349 }
6350
2e80a82a 6351skip_type:
8dc85d54
PZ
6352 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6353 if (pmu->pmu_cpu_context)
6354 goto got_cpu_context;
f29ac756 6355
c4814202 6356 ret = -ENOMEM;
108b02cf
PZ
6357 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6358 if (!pmu->pmu_cpu_context)
abe43400 6359 goto free_dev;
f344011c 6360
108b02cf
PZ
6361 for_each_possible_cpu(cpu) {
6362 struct perf_cpu_context *cpuctx;
6363
6364 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6365 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6366 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6367 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6368 cpuctx->ctx.type = cpu_context;
108b02cf 6369 cpuctx->ctx.pmu = pmu;
9e630205
SE
6370
6371 __perf_cpu_hrtimer_init(cpuctx, cpu);
6372
e9d2b064 6373 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6374 cpuctx->unique_pmu = pmu;
108b02cf 6375 }
76e1d904 6376
8dc85d54 6377got_cpu_context:
ad5133b7
PZ
6378 if (!pmu->start_txn) {
6379 if (pmu->pmu_enable) {
6380 /*
6381 * If we have pmu_enable/pmu_disable calls, install
6382 * transaction stubs that use that to try and batch
6383 * hardware accesses.
6384 */
6385 pmu->start_txn = perf_pmu_start_txn;
6386 pmu->commit_txn = perf_pmu_commit_txn;
6387 pmu->cancel_txn = perf_pmu_cancel_txn;
6388 } else {
6389 pmu->start_txn = perf_pmu_nop_void;
6390 pmu->commit_txn = perf_pmu_nop_int;
6391 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6392 }
5c92d124 6393 }
15dbf27c 6394
ad5133b7
PZ
6395 if (!pmu->pmu_enable) {
6396 pmu->pmu_enable = perf_pmu_nop_void;
6397 pmu->pmu_disable = perf_pmu_nop_void;
6398 }
6399
35edc2a5
PZ
6400 if (!pmu->event_idx)
6401 pmu->event_idx = perf_event_idx_default;
6402
b0a873eb 6403 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6404 ret = 0;
6405unlock:
b0a873eb
PZ
6406 mutex_unlock(&pmus_lock);
6407
33696fc0 6408 return ret;
108b02cf 6409
abe43400
PZ
6410free_dev:
6411 device_del(pmu->dev);
6412 put_device(pmu->dev);
6413
2e80a82a
PZ
6414free_idr:
6415 if (pmu->type >= PERF_TYPE_MAX)
6416 idr_remove(&pmu_idr, pmu->type);
6417
108b02cf
PZ
6418free_pdc:
6419 free_percpu(pmu->pmu_disable_count);
6420 goto unlock;
f29ac756
PZ
6421}
6422
b0a873eb 6423void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6424{
b0a873eb
PZ
6425 mutex_lock(&pmus_lock);
6426 list_del_rcu(&pmu->entry);
6427 mutex_unlock(&pmus_lock);
5c92d124 6428
0475f9ea 6429 /*
cde8e884
PZ
6430 * We dereference the pmu list under both SRCU and regular RCU, so
6431 * synchronize against both of those.
0475f9ea 6432 */
b0a873eb 6433 synchronize_srcu(&pmus_srcu);
cde8e884 6434 synchronize_rcu();
d6d020e9 6435
33696fc0 6436 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6437 if (pmu->type >= PERF_TYPE_MAX)
6438 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6439 device_del(pmu->dev);
6440 put_device(pmu->dev);
51676957 6441 free_pmu_context(pmu);
b0a873eb 6442}
d6d020e9 6443
b0a873eb
PZ
6444struct pmu *perf_init_event(struct perf_event *event)
6445{
6446 struct pmu *pmu = NULL;
6447 int idx;
940c5b29 6448 int ret;
b0a873eb
PZ
6449
6450 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6451
6452 rcu_read_lock();
6453 pmu = idr_find(&pmu_idr, event->attr.type);
6454 rcu_read_unlock();
940c5b29 6455 if (pmu) {
7e5b2a01 6456 event->pmu = pmu;
940c5b29
LM
6457 ret = pmu->event_init(event);
6458 if (ret)
6459 pmu = ERR_PTR(ret);
2e80a82a 6460 goto unlock;
940c5b29 6461 }
2e80a82a 6462
b0a873eb 6463 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6464 event->pmu = pmu;
940c5b29 6465 ret = pmu->event_init(event);
b0a873eb 6466 if (!ret)
e5f4d339 6467 goto unlock;
76e1d904 6468
b0a873eb
PZ
6469 if (ret != -ENOENT) {
6470 pmu = ERR_PTR(ret);
e5f4d339 6471 goto unlock;
f344011c 6472 }
5c92d124 6473 }
e5f4d339
PZ
6474 pmu = ERR_PTR(-ENOENT);
6475unlock:
b0a873eb 6476 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6477
4aeb0b42 6478 return pmu;
5c92d124
IM
6479}
6480
4beb31f3
FW
6481static void account_event_cpu(struct perf_event *event, int cpu)
6482{
6483 if (event->parent)
6484 return;
6485
6486 if (has_branch_stack(event)) {
6487 if (!(event->attach_state & PERF_ATTACH_TASK))
6488 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6489 }
6490 if (is_cgroup_event(event))
6491 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
ba8a75c1
FW
6492
6493 if (event->attr.freq)
6494 atomic_inc(&per_cpu(perf_freq_events, cpu));
4beb31f3
FW
6495}
6496
766d6c07
FW
6497static void account_event(struct perf_event *event)
6498{
4beb31f3
FW
6499 if (event->parent)
6500 return;
6501
766d6c07
FW
6502 if (event->attach_state & PERF_ATTACH_TASK)
6503 static_key_slow_inc(&perf_sched_events.key);
6504 if (event->attr.mmap || event->attr.mmap_data)
6505 atomic_inc(&nr_mmap_events);
6506 if (event->attr.comm)
6507 atomic_inc(&nr_comm_events);
6508 if (event->attr.task)
6509 atomic_inc(&nr_task_events);
4beb31f3 6510 if (has_branch_stack(event))
766d6c07 6511 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6512 if (is_cgroup_event(event))
766d6c07 6513 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6514
6515 account_event_cpu(event, event->cpu);
766d6c07
FW
6516}
6517
0793a61d 6518/*
cdd6c482 6519 * Allocate and initialize a event structure
0793a61d 6520 */
cdd6c482 6521static struct perf_event *
c3f00c70 6522perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6523 struct task_struct *task,
6524 struct perf_event *group_leader,
6525 struct perf_event *parent_event,
4dc0da86
AK
6526 perf_overflow_handler_t overflow_handler,
6527 void *context)
0793a61d 6528{
51b0fe39 6529 struct pmu *pmu;
cdd6c482
IM
6530 struct perf_event *event;
6531 struct hw_perf_event *hwc;
90983b16 6532 long err = -EINVAL;
0793a61d 6533
66832eb4
ON
6534 if ((unsigned)cpu >= nr_cpu_ids) {
6535 if (!task || cpu != -1)
6536 return ERR_PTR(-EINVAL);
6537 }
6538
c3f00c70 6539 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6540 if (!event)
d5d2bc0d 6541 return ERR_PTR(-ENOMEM);
0793a61d 6542
04289bb9 6543 /*
cdd6c482 6544 * Single events are their own group leaders, with an
04289bb9
IM
6545 * empty sibling list:
6546 */
6547 if (!group_leader)
cdd6c482 6548 group_leader = event;
04289bb9 6549
cdd6c482
IM
6550 mutex_init(&event->child_mutex);
6551 INIT_LIST_HEAD(&event->child_list);
fccc714b 6552
cdd6c482
IM
6553 INIT_LIST_HEAD(&event->group_entry);
6554 INIT_LIST_HEAD(&event->event_entry);
6555 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6556 INIT_LIST_HEAD(&event->rb_entry);
6557
cdd6c482 6558 init_waitqueue_head(&event->waitq);
e360adbe 6559 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6560
cdd6c482 6561 mutex_init(&event->mmap_mutex);
7b732a75 6562
a6fa941d 6563 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6564 event->cpu = cpu;
6565 event->attr = *attr;
6566 event->group_leader = group_leader;
6567 event->pmu = NULL;
cdd6c482 6568 event->oncpu = -1;
a96bbc16 6569
cdd6c482 6570 event->parent = parent_event;
b84fbc9f 6571
17cf22c3 6572 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6573 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6574
cdd6c482 6575 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6576
d580ff86
PZ
6577 if (task) {
6578 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6579
6580 if (attr->type == PERF_TYPE_TRACEPOINT)
6581 event->hw.tp_target = task;
d580ff86
PZ
6582#ifdef CONFIG_HAVE_HW_BREAKPOINT
6583 /*
6584 * hw_breakpoint is a bit difficult here..
6585 */
f22c1bb6 6586 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6587 event->hw.bp_target = task;
6588#endif
6589 }
6590
4dc0da86 6591 if (!overflow_handler && parent_event) {
b326e956 6592 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6593 context = parent_event->overflow_handler_context;
6594 }
66832eb4 6595
b326e956 6596 event->overflow_handler = overflow_handler;
4dc0da86 6597 event->overflow_handler_context = context;
97eaf530 6598
0231bb53 6599 perf_event__state_init(event);
a86ed508 6600
4aeb0b42 6601 pmu = NULL;
b8e83514 6602
cdd6c482 6603 hwc = &event->hw;
bd2b5b12 6604 hwc->sample_period = attr->sample_period;
0d48696f 6605 if (attr->freq && attr->sample_freq)
bd2b5b12 6606 hwc->sample_period = 1;
eced1dfc 6607 hwc->last_period = hwc->sample_period;
bd2b5b12 6608
e7850595 6609 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6610
2023b359 6611 /*
cdd6c482 6612 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6613 */
3dab77fb 6614 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6615 goto err_ns;
2023b359 6616
b0a873eb 6617 pmu = perf_init_event(event);
4aeb0b42 6618 if (!pmu)
90983b16
FW
6619 goto err_ns;
6620 else if (IS_ERR(pmu)) {
4aeb0b42 6621 err = PTR_ERR(pmu);
90983b16 6622 goto err_ns;
621a01ea 6623 }
d5d2bc0d 6624
cdd6c482 6625 if (!event->parent) {
90983b16
FW
6626 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6627 err = get_callchain_buffers();
6628 if (err)
6629 goto err_pmu;
6630 }
f344011c 6631 }
9ee318a7 6632
cdd6c482 6633 return event;
90983b16
FW
6634
6635err_pmu:
6636 if (event->destroy)
6637 event->destroy(event);
6638err_ns:
6639 if (event->ns)
6640 put_pid_ns(event->ns);
6641 kfree(event);
6642
6643 return ERR_PTR(err);
0793a61d
TG
6644}
6645
cdd6c482
IM
6646static int perf_copy_attr(struct perf_event_attr __user *uattr,
6647 struct perf_event_attr *attr)
974802ea 6648{
974802ea 6649 u32 size;
cdf8073d 6650 int ret;
974802ea
PZ
6651
6652 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6653 return -EFAULT;
6654
6655 /*
6656 * zero the full structure, so that a short copy will be nice.
6657 */
6658 memset(attr, 0, sizeof(*attr));
6659
6660 ret = get_user(size, &uattr->size);
6661 if (ret)
6662 return ret;
6663
6664 if (size > PAGE_SIZE) /* silly large */
6665 goto err_size;
6666
6667 if (!size) /* abi compat */
6668 size = PERF_ATTR_SIZE_VER0;
6669
6670 if (size < PERF_ATTR_SIZE_VER0)
6671 goto err_size;
6672
6673 /*
6674 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6675 * ensure all the unknown bits are 0 - i.e. new
6676 * user-space does not rely on any kernel feature
6677 * extensions we dont know about yet.
974802ea
PZ
6678 */
6679 if (size > sizeof(*attr)) {
cdf8073d
IS
6680 unsigned char __user *addr;
6681 unsigned char __user *end;
6682 unsigned char val;
974802ea 6683
cdf8073d
IS
6684 addr = (void __user *)uattr + sizeof(*attr);
6685 end = (void __user *)uattr + size;
974802ea 6686
cdf8073d 6687 for (; addr < end; addr++) {
974802ea
PZ
6688 ret = get_user(val, addr);
6689 if (ret)
6690 return ret;
6691 if (val)
6692 goto err_size;
6693 }
b3e62e35 6694 size = sizeof(*attr);
974802ea
PZ
6695 }
6696
6697 ret = copy_from_user(attr, uattr, size);
6698 if (ret)
6699 return -EFAULT;
6700
cd757645 6701 if (attr->__reserved_1)
974802ea
PZ
6702 return -EINVAL;
6703
6704 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6705 return -EINVAL;
6706
6707 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6708 return -EINVAL;
6709
bce38cd5
SE
6710 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6711 u64 mask = attr->branch_sample_type;
6712
6713 /* only using defined bits */
6714 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6715 return -EINVAL;
6716
6717 /* at least one branch bit must be set */
6718 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6719 return -EINVAL;
6720
bce38cd5
SE
6721 /* propagate priv level, when not set for branch */
6722 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6723
6724 /* exclude_kernel checked on syscall entry */
6725 if (!attr->exclude_kernel)
6726 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6727
6728 if (!attr->exclude_user)
6729 mask |= PERF_SAMPLE_BRANCH_USER;
6730
6731 if (!attr->exclude_hv)
6732 mask |= PERF_SAMPLE_BRANCH_HV;
6733 /*
6734 * adjust user setting (for HW filter setup)
6735 */
6736 attr->branch_sample_type = mask;
6737 }
e712209a
SE
6738 /* privileged levels capture (kernel, hv): check permissions */
6739 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6740 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6741 return -EACCES;
bce38cd5 6742 }
4018994f 6743
c5ebcedb 6744 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6745 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6746 if (ret)
6747 return ret;
6748 }
6749
6750 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6751 if (!arch_perf_have_user_stack_dump())
6752 return -ENOSYS;
6753
6754 /*
6755 * We have __u32 type for the size, but so far
6756 * we can only use __u16 as maximum due to the
6757 * __u16 sample size limit.
6758 */
6759 if (attr->sample_stack_user >= USHRT_MAX)
6760 ret = -EINVAL;
6761 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6762 ret = -EINVAL;
6763 }
4018994f 6764
974802ea
PZ
6765out:
6766 return ret;
6767
6768err_size:
6769 put_user(sizeof(*attr), &uattr->size);
6770 ret = -E2BIG;
6771 goto out;
6772}
6773
ac9721f3
PZ
6774static int
6775perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6776{
76369139 6777 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6778 int ret = -EINVAL;
6779
ac9721f3 6780 if (!output_event)
a4be7c27
PZ
6781 goto set;
6782
ac9721f3
PZ
6783 /* don't allow circular references */
6784 if (event == output_event)
a4be7c27
PZ
6785 goto out;
6786
0f139300
PZ
6787 /*
6788 * Don't allow cross-cpu buffers
6789 */
6790 if (output_event->cpu != event->cpu)
6791 goto out;
6792
6793 /*
76369139 6794 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6795 */
6796 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6797 goto out;
6798
a4be7c27 6799set:
cdd6c482 6800 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6801 /* Can't redirect output if we've got an active mmap() */
6802 if (atomic_read(&event->mmap_count))
6803 goto unlock;
a4be7c27 6804
9bb5d40c
PZ
6805 old_rb = event->rb;
6806
ac9721f3 6807 if (output_event) {
76369139
FW
6808 /* get the rb we want to redirect to */
6809 rb = ring_buffer_get(output_event);
6810 if (!rb)
ac9721f3 6811 goto unlock;
a4be7c27
PZ
6812 }
6813
10c6db11
PZ
6814 if (old_rb)
6815 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6816
6817 if (rb)
6818 ring_buffer_attach(event, rb);
6819
6820 rcu_assign_pointer(event->rb, rb);
6821
6822 if (old_rb) {
6823 ring_buffer_put(old_rb);
6824 /*
6825 * Since we detached before setting the new rb, so that we
6826 * could attach the new rb, we could have missed a wakeup.
6827 * Provide it now.
6828 */
6829 wake_up_all(&event->waitq);
6830 }
6831
a4be7c27 6832 ret = 0;
ac9721f3
PZ
6833unlock:
6834 mutex_unlock(&event->mmap_mutex);
6835
a4be7c27 6836out:
a4be7c27
PZ
6837 return ret;
6838}
6839
0793a61d 6840/**
cdd6c482 6841 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6842 *
cdd6c482 6843 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6844 * @pid: target pid
9f66a381 6845 * @cpu: target cpu
cdd6c482 6846 * @group_fd: group leader event fd
0793a61d 6847 */
cdd6c482
IM
6848SYSCALL_DEFINE5(perf_event_open,
6849 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6850 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6851{
b04243ef
PZ
6852 struct perf_event *group_leader = NULL, *output_event = NULL;
6853 struct perf_event *event, *sibling;
cdd6c482
IM
6854 struct perf_event_attr attr;
6855 struct perf_event_context *ctx;
6856 struct file *event_file = NULL;
2903ff01 6857 struct fd group = {NULL, 0};
38a81da2 6858 struct task_struct *task = NULL;
89a1e187 6859 struct pmu *pmu;
ea635c64 6860 int event_fd;
b04243ef 6861 int move_group = 0;
dc86cabe 6862 int err;
0793a61d 6863
2743a5b0 6864 /* for future expandability... */
e5d1367f 6865 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6866 return -EINVAL;
6867
dc86cabe
IM
6868 err = perf_copy_attr(attr_uptr, &attr);
6869 if (err)
6870 return err;
eab656ae 6871
0764771d
PZ
6872 if (!attr.exclude_kernel) {
6873 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6874 return -EACCES;
6875 }
6876
df58ab24 6877 if (attr.freq) {
cdd6c482 6878 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6879 return -EINVAL;
6880 }
6881
e5d1367f
SE
6882 /*
6883 * In cgroup mode, the pid argument is used to pass the fd
6884 * opened to the cgroup directory in cgroupfs. The cpu argument
6885 * designates the cpu on which to monitor threads from that
6886 * cgroup.
6887 */
6888 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6889 return -EINVAL;
6890
ab72a702 6891 event_fd = get_unused_fd();
ea635c64
AV
6892 if (event_fd < 0)
6893 return event_fd;
6894
ac9721f3 6895 if (group_fd != -1) {
2903ff01
AV
6896 err = perf_fget_light(group_fd, &group);
6897 if (err)
d14b12d7 6898 goto err_fd;
2903ff01 6899 group_leader = group.file->private_data;
ac9721f3
PZ
6900 if (flags & PERF_FLAG_FD_OUTPUT)
6901 output_event = group_leader;
6902 if (flags & PERF_FLAG_FD_NO_GROUP)
6903 group_leader = NULL;
6904 }
6905
e5d1367f 6906 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6907 task = find_lively_task_by_vpid(pid);
6908 if (IS_ERR(task)) {
6909 err = PTR_ERR(task);
6910 goto err_group_fd;
6911 }
6912 }
6913
fbfc623f
YZ
6914 get_online_cpus();
6915
4dc0da86
AK
6916 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6917 NULL, NULL);
d14b12d7
SE
6918 if (IS_ERR(event)) {
6919 err = PTR_ERR(event);
c6be5a5c 6920 goto err_task;
d14b12d7
SE
6921 }
6922
e5d1367f
SE
6923 if (flags & PERF_FLAG_PID_CGROUP) {
6924 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6925 if (err) {
6926 __free_event(event);
6927 goto err_task;
6928 }
e5d1367f
SE
6929 }
6930
766d6c07
FW
6931 account_event(event);
6932
89a1e187
PZ
6933 /*
6934 * Special case software events and allow them to be part of
6935 * any hardware group.
6936 */
6937 pmu = event->pmu;
b04243ef
PZ
6938
6939 if (group_leader &&
6940 (is_software_event(event) != is_software_event(group_leader))) {
6941 if (is_software_event(event)) {
6942 /*
6943 * If event and group_leader are not both a software
6944 * event, and event is, then group leader is not.
6945 *
6946 * Allow the addition of software events to !software
6947 * groups, this is safe because software events never
6948 * fail to schedule.
6949 */
6950 pmu = group_leader->pmu;
6951 } else if (is_software_event(group_leader) &&
6952 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6953 /*
6954 * In case the group is a pure software group, and we
6955 * try to add a hardware event, move the whole group to
6956 * the hardware context.
6957 */
6958 move_group = 1;
6959 }
6960 }
89a1e187
PZ
6961
6962 /*
6963 * Get the target context (task or percpu):
6964 */
e2d37cd2 6965 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6966 if (IS_ERR(ctx)) {
6967 err = PTR_ERR(ctx);
c6be5a5c 6968 goto err_alloc;
89a1e187
PZ
6969 }
6970
fd1edb3a
PZ
6971 if (task) {
6972 put_task_struct(task);
6973 task = NULL;
6974 }
6975
ccff286d 6976 /*
cdd6c482 6977 * Look up the group leader (we will attach this event to it):
04289bb9 6978 */
ac9721f3 6979 if (group_leader) {
dc86cabe 6980 err = -EINVAL;
04289bb9 6981
04289bb9 6982 /*
ccff286d
IM
6983 * Do not allow a recursive hierarchy (this new sibling
6984 * becoming part of another group-sibling):
6985 */
6986 if (group_leader->group_leader != group_leader)
c3f00c70 6987 goto err_context;
ccff286d
IM
6988 /*
6989 * Do not allow to attach to a group in a different
6990 * task or CPU context:
04289bb9 6991 */
b04243ef
PZ
6992 if (move_group) {
6993 if (group_leader->ctx->type != ctx->type)
6994 goto err_context;
6995 } else {
6996 if (group_leader->ctx != ctx)
6997 goto err_context;
6998 }
6999
3b6f9e5c
PM
7000 /*
7001 * Only a group leader can be exclusive or pinned
7002 */
0d48696f 7003 if (attr.exclusive || attr.pinned)
c3f00c70 7004 goto err_context;
ac9721f3
PZ
7005 }
7006
7007 if (output_event) {
7008 err = perf_event_set_output(event, output_event);
7009 if (err)
c3f00c70 7010 goto err_context;
ac9721f3 7011 }
0793a61d 7012
ea635c64
AV
7013 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7014 if (IS_ERR(event_file)) {
7015 err = PTR_ERR(event_file);
c3f00c70 7016 goto err_context;
ea635c64 7017 }
9b51f66d 7018
b04243ef
PZ
7019 if (move_group) {
7020 struct perf_event_context *gctx = group_leader->ctx;
7021
7022 mutex_lock(&gctx->mutex);
fe4b04fa 7023 perf_remove_from_context(group_leader);
0231bb53
JO
7024
7025 /*
7026 * Removing from the context ends up with disabled
7027 * event. What we want here is event in the initial
7028 * startup state, ready to be add into new context.
7029 */
7030 perf_event__state_init(group_leader);
b04243ef
PZ
7031 list_for_each_entry(sibling, &group_leader->sibling_list,
7032 group_entry) {
fe4b04fa 7033 perf_remove_from_context(sibling);
0231bb53 7034 perf_event__state_init(sibling);
b04243ef
PZ
7035 put_ctx(gctx);
7036 }
7037 mutex_unlock(&gctx->mutex);
7038 put_ctx(gctx);
ea635c64 7039 }
9b51f66d 7040
ad3a37de 7041 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7042 mutex_lock(&ctx->mutex);
b04243ef
PZ
7043
7044 if (move_group) {
0cda4c02 7045 synchronize_rcu();
e2d37cd2 7046 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7047 get_ctx(ctx);
7048 list_for_each_entry(sibling, &group_leader->sibling_list,
7049 group_entry) {
e2d37cd2 7050 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7051 get_ctx(ctx);
7052 }
7053 }
7054
e2d37cd2 7055 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7056 ++ctx->generation;
fe4b04fa 7057 perf_unpin_context(ctx);
d859e29f 7058 mutex_unlock(&ctx->mutex);
9b51f66d 7059
fbfc623f
YZ
7060 put_online_cpus();
7061
cdd6c482 7062 event->owner = current;
8882135b 7063
cdd6c482
IM
7064 mutex_lock(&current->perf_event_mutex);
7065 list_add_tail(&event->owner_entry, &current->perf_event_list);
7066 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7067
c320c7b7
ACM
7068 /*
7069 * Precalculate sample_data sizes
7070 */
7071 perf_event__header_size(event);
6844c09d 7072 perf_event__id_header_size(event);
c320c7b7 7073
8a49542c
PZ
7074 /*
7075 * Drop the reference on the group_event after placing the
7076 * new event on the sibling_list. This ensures destruction
7077 * of the group leader will find the pointer to itself in
7078 * perf_group_detach().
7079 */
2903ff01 7080 fdput(group);
ea635c64
AV
7081 fd_install(event_fd, event_file);
7082 return event_fd;
0793a61d 7083
c3f00c70 7084err_context:
fe4b04fa 7085 perf_unpin_context(ctx);
ea635c64 7086 put_ctx(ctx);
c6be5a5c 7087err_alloc:
ea635c64 7088 free_event(event);
e7d0bc04 7089err_task:
fbfc623f 7090 put_online_cpus();
e7d0bc04
PZ
7091 if (task)
7092 put_task_struct(task);
89a1e187 7093err_group_fd:
2903ff01 7094 fdput(group);
ea635c64
AV
7095err_fd:
7096 put_unused_fd(event_fd);
dc86cabe 7097 return err;
0793a61d
TG
7098}
7099
fb0459d7
AV
7100/**
7101 * perf_event_create_kernel_counter
7102 *
7103 * @attr: attributes of the counter to create
7104 * @cpu: cpu in which the counter is bound
38a81da2 7105 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7106 */
7107struct perf_event *
7108perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7109 struct task_struct *task,
4dc0da86
AK
7110 perf_overflow_handler_t overflow_handler,
7111 void *context)
fb0459d7 7112{
fb0459d7 7113 struct perf_event_context *ctx;
c3f00c70 7114 struct perf_event *event;
fb0459d7 7115 int err;
d859e29f 7116
fb0459d7
AV
7117 /*
7118 * Get the target context (task or percpu):
7119 */
d859e29f 7120
4dc0da86
AK
7121 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7122 overflow_handler, context);
c3f00c70
PZ
7123 if (IS_ERR(event)) {
7124 err = PTR_ERR(event);
7125 goto err;
7126 }
d859e29f 7127
766d6c07
FW
7128 account_event(event);
7129
38a81da2 7130 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7131 if (IS_ERR(ctx)) {
7132 err = PTR_ERR(ctx);
c3f00c70 7133 goto err_free;
d859e29f 7134 }
fb0459d7 7135
fb0459d7
AV
7136 WARN_ON_ONCE(ctx->parent_ctx);
7137 mutex_lock(&ctx->mutex);
7138 perf_install_in_context(ctx, event, cpu);
7139 ++ctx->generation;
fe4b04fa 7140 perf_unpin_context(ctx);
fb0459d7
AV
7141 mutex_unlock(&ctx->mutex);
7142
fb0459d7
AV
7143 return event;
7144
c3f00c70
PZ
7145err_free:
7146 free_event(event);
7147err:
c6567f64 7148 return ERR_PTR(err);
9b51f66d 7149}
fb0459d7 7150EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7151
0cda4c02
YZ
7152void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7153{
7154 struct perf_event_context *src_ctx;
7155 struct perf_event_context *dst_ctx;
7156 struct perf_event *event, *tmp;
7157 LIST_HEAD(events);
7158
7159 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7160 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7161
7162 mutex_lock(&src_ctx->mutex);
7163 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7164 event_entry) {
7165 perf_remove_from_context(event);
9a545de0 7166 unaccount_event_cpu(event, src_cpu);
0cda4c02
YZ
7167 put_ctx(src_ctx);
7168 list_add(&event->event_entry, &events);
7169 }
7170 mutex_unlock(&src_ctx->mutex);
7171
7172 synchronize_rcu();
7173
7174 mutex_lock(&dst_ctx->mutex);
7175 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7176 list_del(&event->event_entry);
7177 if (event->state >= PERF_EVENT_STATE_OFF)
7178 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7179 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7180 perf_install_in_context(dst_ctx, event, dst_cpu);
7181 get_ctx(dst_ctx);
7182 }
7183 mutex_unlock(&dst_ctx->mutex);
7184}
7185EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7186
cdd6c482 7187static void sync_child_event(struct perf_event *child_event,
38b200d6 7188 struct task_struct *child)
d859e29f 7189{
cdd6c482 7190 struct perf_event *parent_event = child_event->parent;
8bc20959 7191 u64 child_val;
d859e29f 7192
cdd6c482
IM
7193 if (child_event->attr.inherit_stat)
7194 perf_event_read_event(child_event, child);
38b200d6 7195
b5e58793 7196 child_val = perf_event_count(child_event);
d859e29f
PM
7197
7198 /*
7199 * Add back the child's count to the parent's count:
7200 */
a6e6dea6 7201 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7202 atomic64_add(child_event->total_time_enabled,
7203 &parent_event->child_total_time_enabled);
7204 atomic64_add(child_event->total_time_running,
7205 &parent_event->child_total_time_running);
d859e29f
PM
7206
7207 /*
cdd6c482 7208 * Remove this event from the parent's list
d859e29f 7209 */
cdd6c482
IM
7210 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7211 mutex_lock(&parent_event->child_mutex);
7212 list_del_init(&child_event->child_list);
7213 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7214
7215 /*
cdd6c482 7216 * Release the parent event, if this was the last
d859e29f
PM
7217 * reference to it.
7218 */
a6fa941d 7219 put_event(parent_event);
d859e29f
PM
7220}
7221
9b51f66d 7222static void
cdd6c482
IM
7223__perf_event_exit_task(struct perf_event *child_event,
7224 struct perf_event_context *child_ctx,
38b200d6 7225 struct task_struct *child)
9b51f66d 7226{
38b435b1
PZ
7227 if (child_event->parent) {
7228 raw_spin_lock_irq(&child_ctx->lock);
7229 perf_group_detach(child_event);
7230 raw_spin_unlock_irq(&child_ctx->lock);
7231 }
9b51f66d 7232
fe4b04fa 7233 perf_remove_from_context(child_event);
0cc0c027 7234
9b51f66d 7235 /*
38b435b1 7236 * It can happen that the parent exits first, and has events
9b51f66d 7237 * that are still around due to the child reference. These
38b435b1 7238 * events need to be zapped.
9b51f66d 7239 */
38b435b1 7240 if (child_event->parent) {
cdd6c482
IM
7241 sync_child_event(child_event, child);
7242 free_event(child_event);
4bcf349a 7243 }
9b51f66d
IM
7244}
7245
8dc85d54 7246static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7247{
cdd6c482
IM
7248 struct perf_event *child_event, *tmp;
7249 struct perf_event_context *child_ctx;
a63eaf34 7250 unsigned long flags;
9b51f66d 7251
8dc85d54 7252 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7253 perf_event_task(child, NULL, 0);
9b51f66d 7254 return;
9f498cc5 7255 }
9b51f66d 7256
a63eaf34 7257 local_irq_save(flags);
ad3a37de
PM
7258 /*
7259 * We can't reschedule here because interrupts are disabled,
7260 * and either child is current or it is a task that can't be
7261 * scheduled, so we are now safe from rescheduling changing
7262 * our context.
7263 */
806839b2 7264 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7265
7266 /*
7267 * Take the context lock here so that if find_get_context is
cdd6c482 7268 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7269 * incremented the context's refcount before we do put_ctx below.
7270 */
e625cce1 7271 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7272 task_ctx_sched_out(child_ctx);
8dc85d54 7273 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7274 /*
7275 * If this context is a clone; unclone it so it can't get
7276 * swapped to another process while we're removing all
cdd6c482 7277 * the events from it.
71a851b4
PZ
7278 */
7279 unclone_ctx(child_ctx);
5e942bb3 7280 update_context_time(child_ctx);
e625cce1 7281 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7282
7283 /*
cdd6c482
IM
7284 * Report the task dead after unscheduling the events so that we
7285 * won't get any samples after PERF_RECORD_EXIT. We can however still
7286 * get a few PERF_RECORD_READ events.
9f498cc5 7287 */
cdd6c482 7288 perf_event_task(child, child_ctx, 0);
a63eaf34 7289
66fff224
PZ
7290 /*
7291 * We can recurse on the same lock type through:
7292 *
cdd6c482
IM
7293 * __perf_event_exit_task()
7294 * sync_child_event()
a6fa941d
AV
7295 * put_event()
7296 * mutex_lock(&ctx->mutex)
66fff224
PZ
7297 *
7298 * But since its the parent context it won't be the same instance.
7299 */
a0507c84 7300 mutex_lock(&child_ctx->mutex);
a63eaf34 7301
8bc20959 7302again:
889ff015
FW
7303 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7304 group_entry)
7305 __perf_event_exit_task(child_event, child_ctx, child);
7306
7307 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7308 group_entry)
cdd6c482 7309 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7310
7311 /*
cdd6c482 7312 * If the last event was a group event, it will have appended all
8bc20959
PZ
7313 * its siblings to the list, but we obtained 'tmp' before that which
7314 * will still point to the list head terminating the iteration.
7315 */
889ff015
FW
7316 if (!list_empty(&child_ctx->pinned_groups) ||
7317 !list_empty(&child_ctx->flexible_groups))
8bc20959 7318 goto again;
a63eaf34
PM
7319
7320 mutex_unlock(&child_ctx->mutex);
7321
7322 put_ctx(child_ctx);
9b51f66d
IM
7323}
7324
8dc85d54
PZ
7325/*
7326 * When a child task exits, feed back event values to parent events.
7327 */
7328void perf_event_exit_task(struct task_struct *child)
7329{
8882135b 7330 struct perf_event *event, *tmp;
8dc85d54
PZ
7331 int ctxn;
7332
8882135b
PZ
7333 mutex_lock(&child->perf_event_mutex);
7334 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7335 owner_entry) {
7336 list_del_init(&event->owner_entry);
7337
7338 /*
7339 * Ensure the list deletion is visible before we clear
7340 * the owner, closes a race against perf_release() where
7341 * we need to serialize on the owner->perf_event_mutex.
7342 */
7343 smp_wmb();
7344 event->owner = NULL;
7345 }
7346 mutex_unlock(&child->perf_event_mutex);
7347
8dc85d54
PZ
7348 for_each_task_context_nr(ctxn)
7349 perf_event_exit_task_context(child, ctxn);
7350}
7351
889ff015
FW
7352static void perf_free_event(struct perf_event *event,
7353 struct perf_event_context *ctx)
7354{
7355 struct perf_event *parent = event->parent;
7356
7357 if (WARN_ON_ONCE(!parent))
7358 return;
7359
7360 mutex_lock(&parent->child_mutex);
7361 list_del_init(&event->child_list);
7362 mutex_unlock(&parent->child_mutex);
7363
a6fa941d 7364 put_event(parent);
889ff015 7365
8a49542c 7366 perf_group_detach(event);
889ff015
FW
7367 list_del_event(event, ctx);
7368 free_event(event);
7369}
7370
bbbee908
PZ
7371/*
7372 * free an unexposed, unused context as created by inheritance by
8dc85d54 7373 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7374 */
cdd6c482 7375void perf_event_free_task(struct task_struct *task)
bbbee908 7376{
8dc85d54 7377 struct perf_event_context *ctx;
cdd6c482 7378 struct perf_event *event, *tmp;
8dc85d54 7379 int ctxn;
bbbee908 7380
8dc85d54
PZ
7381 for_each_task_context_nr(ctxn) {
7382 ctx = task->perf_event_ctxp[ctxn];
7383 if (!ctx)
7384 continue;
bbbee908 7385
8dc85d54 7386 mutex_lock(&ctx->mutex);
bbbee908 7387again:
8dc85d54
PZ
7388 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7389 group_entry)
7390 perf_free_event(event, ctx);
bbbee908 7391
8dc85d54
PZ
7392 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7393 group_entry)
7394 perf_free_event(event, ctx);
bbbee908 7395
8dc85d54
PZ
7396 if (!list_empty(&ctx->pinned_groups) ||
7397 !list_empty(&ctx->flexible_groups))
7398 goto again;
bbbee908 7399
8dc85d54 7400 mutex_unlock(&ctx->mutex);
bbbee908 7401
8dc85d54
PZ
7402 put_ctx(ctx);
7403 }
889ff015
FW
7404}
7405
4e231c79
PZ
7406void perf_event_delayed_put(struct task_struct *task)
7407{
7408 int ctxn;
7409
7410 for_each_task_context_nr(ctxn)
7411 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7412}
7413
97dee4f3
PZ
7414/*
7415 * inherit a event from parent task to child task:
7416 */
7417static struct perf_event *
7418inherit_event(struct perf_event *parent_event,
7419 struct task_struct *parent,
7420 struct perf_event_context *parent_ctx,
7421 struct task_struct *child,
7422 struct perf_event *group_leader,
7423 struct perf_event_context *child_ctx)
7424{
7425 struct perf_event *child_event;
cee010ec 7426 unsigned long flags;
97dee4f3
PZ
7427
7428 /*
7429 * Instead of creating recursive hierarchies of events,
7430 * we link inherited events back to the original parent,
7431 * which has a filp for sure, which we use as the reference
7432 * count:
7433 */
7434 if (parent_event->parent)
7435 parent_event = parent_event->parent;
7436
7437 child_event = perf_event_alloc(&parent_event->attr,
7438 parent_event->cpu,
d580ff86 7439 child,
97dee4f3 7440 group_leader, parent_event,
4dc0da86 7441 NULL, NULL);
97dee4f3
PZ
7442 if (IS_ERR(child_event))
7443 return child_event;
a6fa941d
AV
7444
7445 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7446 free_event(child_event);
7447 return NULL;
7448 }
7449
97dee4f3
PZ
7450 get_ctx(child_ctx);
7451
7452 /*
7453 * Make the child state follow the state of the parent event,
7454 * not its attr.disabled bit. We hold the parent's mutex,
7455 * so we won't race with perf_event_{en, dis}able_family.
7456 */
7457 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7458 child_event->state = PERF_EVENT_STATE_INACTIVE;
7459 else
7460 child_event->state = PERF_EVENT_STATE_OFF;
7461
7462 if (parent_event->attr.freq) {
7463 u64 sample_period = parent_event->hw.sample_period;
7464 struct hw_perf_event *hwc = &child_event->hw;
7465
7466 hwc->sample_period = sample_period;
7467 hwc->last_period = sample_period;
7468
7469 local64_set(&hwc->period_left, sample_period);
7470 }
7471
7472 child_event->ctx = child_ctx;
7473 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7474 child_event->overflow_handler_context
7475 = parent_event->overflow_handler_context;
97dee4f3 7476
614b6780
TG
7477 /*
7478 * Precalculate sample_data sizes
7479 */
7480 perf_event__header_size(child_event);
6844c09d 7481 perf_event__id_header_size(child_event);
614b6780 7482
97dee4f3
PZ
7483 /*
7484 * Link it up in the child's context:
7485 */
cee010ec 7486 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7487 add_event_to_ctx(child_event, child_ctx);
cee010ec 7488 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7489
97dee4f3
PZ
7490 /*
7491 * Link this into the parent event's child list
7492 */
7493 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7494 mutex_lock(&parent_event->child_mutex);
7495 list_add_tail(&child_event->child_list, &parent_event->child_list);
7496 mutex_unlock(&parent_event->child_mutex);
7497
7498 return child_event;
7499}
7500
7501static int inherit_group(struct perf_event *parent_event,
7502 struct task_struct *parent,
7503 struct perf_event_context *parent_ctx,
7504 struct task_struct *child,
7505 struct perf_event_context *child_ctx)
7506{
7507 struct perf_event *leader;
7508 struct perf_event *sub;
7509 struct perf_event *child_ctr;
7510
7511 leader = inherit_event(parent_event, parent, parent_ctx,
7512 child, NULL, child_ctx);
7513 if (IS_ERR(leader))
7514 return PTR_ERR(leader);
7515 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7516 child_ctr = inherit_event(sub, parent, parent_ctx,
7517 child, leader, child_ctx);
7518 if (IS_ERR(child_ctr))
7519 return PTR_ERR(child_ctr);
7520 }
7521 return 0;
889ff015
FW
7522}
7523
7524static int
7525inherit_task_group(struct perf_event *event, struct task_struct *parent,
7526 struct perf_event_context *parent_ctx,
8dc85d54 7527 struct task_struct *child, int ctxn,
889ff015
FW
7528 int *inherited_all)
7529{
7530 int ret;
8dc85d54 7531 struct perf_event_context *child_ctx;
889ff015
FW
7532
7533 if (!event->attr.inherit) {
7534 *inherited_all = 0;
7535 return 0;
bbbee908
PZ
7536 }
7537
fe4b04fa 7538 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7539 if (!child_ctx) {
7540 /*
7541 * This is executed from the parent task context, so
7542 * inherit events that have been marked for cloning.
7543 * First allocate and initialize a context for the
7544 * child.
7545 */
bbbee908 7546
734df5ab 7547 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7548 if (!child_ctx)
7549 return -ENOMEM;
bbbee908 7550
8dc85d54 7551 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7552 }
7553
7554 ret = inherit_group(event, parent, parent_ctx,
7555 child, child_ctx);
7556
7557 if (ret)
7558 *inherited_all = 0;
7559
7560 return ret;
bbbee908
PZ
7561}
7562
9b51f66d 7563/*
cdd6c482 7564 * Initialize the perf_event context in task_struct
9b51f66d 7565 */
8dc85d54 7566int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7567{
889ff015 7568 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7569 struct perf_event_context *cloned_ctx;
7570 struct perf_event *event;
9b51f66d 7571 struct task_struct *parent = current;
564c2b21 7572 int inherited_all = 1;
dddd3379 7573 unsigned long flags;
6ab423e0 7574 int ret = 0;
9b51f66d 7575
8dc85d54 7576 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7577 return 0;
7578
ad3a37de 7579 /*
25346b93
PM
7580 * If the parent's context is a clone, pin it so it won't get
7581 * swapped under us.
ad3a37de 7582 */
8dc85d54 7583 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7584
ad3a37de
PM
7585 /*
7586 * No need to check if parent_ctx != NULL here; since we saw
7587 * it non-NULL earlier, the only reason for it to become NULL
7588 * is if we exit, and since we're currently in the middle of
7589 * a fork we can't be exiting at the same time.
7590 */
ad3a37de 7591
9b51f66d
IM
7592 /*
7593 * Lock the parent list. No need to lock the child - not PID
7594 * hashed yet and not running, so nobody can access it.
7595 */
d859e29f 7596 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7597
7598 /*
7599 * We dont have to disable NMIs - we are only looking at
7600 * the list, not manipulating it:
7601 */
889ff015 7602 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7603 ret = inherit_task_group(event, parent, parent_ctx,
7604 child, ctxn, &inherited_all);
889ff015
FW
7605 if (ret)
7606 break;
7607 }
b93f7978 7608
dddd3379
TG
7609 /*
7610 * We can't hold ctx->lock when iterating the ->flexible_group list due
7611 * to allocations, but we need to prevent rotation because
7612 * rotate_ctx() will change the list from interrupt context.
7613 */
7614 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7615 parent_ctx->rotate_disable = 1;
7616 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7617
889ff015 7618 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7619 ret = inherit_task_group(event, parent, parent_ctx,
7620 child, ctxn, &inherited_all);
889ff015 7621 if (ret)
9b51f66d 7622 break;
564c2b21
PM
7623 }
7624
dddd3379
TG
7625 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7626 parent_ctx->rotate_disable = 0;
dddd3379 7627
8dc85d54 7628 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7629
05cbaa28 7630 if (child_ctx && inherited_all) {
564c2b21
PM
7631 /*
7632 * Mark the child context as a clone of the parent
7633 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7634 *
7635 * Note that if the parent is a clone, the holding of
7636 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7637 */
c5ed5145 7638 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7639 if (cloned_ctx) {
7640 child_ctx->parent_ctx = cloned_ctx;
25346b93 7641 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7642 } else {
7643 child_ctx->parent_ctx = parent_ctx;
7644 child_ctx->parent_gen = parent_ctx->generation;
7645 }
7646 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7647 }
7648
c5ed5145 7649 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7650 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7651
25346b93 7652 perf_unpin_context(parent_ctx);
fe4b04fa 7653 put_ctx(parent_ctx);
ad3a37de 7654
6ab423e0 7655 return ret;
9b51f66d
IM
7656}
7657
8dc85d54
PZ
7658/*
7659 * Initialize the perf_event context in task_struct
7660 */
7661int perf_event_init_task(struct task_struct *child)
7662{
7663 int ctxn, ret;
7664
8550d7cb
ON
7665 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7666 mutex_init(&child->perf_event_mutex);
7667 INIT_LIST_HEAD(&child->perf_event_list);
7668
8dc85d54
PZ
7669 for_each_task_context_nr(ctxn) {
7670 ret = perf_event_init_context(child, ctxn);
7671 if (ret)
7672 return ret;
7673 }
7674
7675 return 0;
7676}
7677
220b140b
PM
7678static void __init perf_event_init_all_cpus(void)
7679{
b28ab83c 7680 struct swevent_htable *swhash;
220b140b 7681 int cpu;
220b140b
PM
7682
7683 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7684 swhash = &per_cpu(swevent_htable, cpu);
7685 mutex_init(&swhash->hlist_mutex);
e9d2b064 7686 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7687 }
7688}
7689
0db0628d 7690static void perf_event_init_cpu(int cpu)
0793a61d 7691{
108b02cf 7692 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7693
b28ab83c 7694 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7695 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7696 struct swevent_hlist *hlist;
7697
b28ab83c
PZ
7698 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7699 WARN_ON(!hlist);
7700 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7701 }
b28ab83c 7702 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7703}
7704
c277443c 7705#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7706static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7707{
e9d2b064
PZ
7708 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7709
7710 WARN_ON(!irqs_disabled());
7711
7712 list_del_init(&cpuctx->rotation_list);
7713}
7714
108b02cf 7715static void __perf_event_exit_context(void *__info)
0793a61d 7716{
108b02cf 7717 struct perf_event_context *ctx = __info;
cdd6c482 7718 struct perf_event *event, *tmp;
0793a61d 7719
108b02cf 7720 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7721
889ff015 7722 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7723 __perf_remove_from_context(event);
889ff015 7724 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7725 __perf_remove_from_context(event);
0793a61d 7726}
108b02cf
PZ
7727
7728static void perf_event_exit_cpu_context(int cpu)
7729{
7730 struct perf_event_context *ctx;
7731 struct pmu *pmu;
7732 int idx;
7733
7734 idx = srcu_read_lock(&pmus_srcu);
7735 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7736 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7737
7738 mutex_lock(&ctx->mutex);
7739 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7740 mutex_unlock(&ctx->mutex);
7741 }
7742 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7743}
7744
cdd6c482 7745static void perf_event_exit_cpu(int cpu)
0793a61d 7746{
b28ab83c 7747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7748
b28ab83c
PZ
7749 mutex_lock(&swhash->hlist_mutex);
7750 swevent_hlist_release(swhash);
7751 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7752
108b02cf 7753 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7754}
7755#else
cdd6c482 7756static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7757#endif
7758
c277443c
PZ
7759static int
7760perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7761{
7762 int cpu;
7763
7764 for_each_online_cpu(cpu)
7765 perf_event_exit_cpu(cpu);
7766
7767 return NOTIFY_OK;
7768}
7769
7770/*
7771 * Run the perf reboot notifier at the very last possible moment so that
7772 * the generic watchdog code runs as long as possible.
7773 */
7774static struct notifier_block perf_reboot_notifier = {
7775 .notifier_call = perf_reboot,
7776 .priority = INT_MIN,
7777};
7778
0db0628d 7779static int
0793a61d
TG
7780perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7781{
7782 unsigned int cpu = (long)hcpu;
7783
4536e4d1 7784 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7785
7786 case CPU_UP_PREPARE:
5e11637e 7787 case CPU_DOWN_FAILED:
cdd6c482 7788 perf_event_init_cpu(cpu);
0793a61d
TG
7789 break;
7790
5e11637e 7791 case CPU_UP_CANCELED:
0793a61d 7792 case CPU_DOWN_PREPARE:
cdd6c482 7793 perf_event_exit_cpu(cpu);
0793a61d 7794 break;
0793a61d
TG
7795 default:
7796 break;
7797 }
7798
7799 return NOTIFY_OK;
7800}
7801
cdd6c482 7802void __init perf_event_init(void)
0793a61d 7803{
3c502e7a
JW
7804 int ret;
7805
2e80a82a
PZ
7806 idr_init(&pmu_idr);
7807
220b140b 7808 perf_event_init_all_cpus();
b0a873eb 7809 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7810 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7811 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7812 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7813 perf_tp_register();
7814 perf_cpu_notifier(perf_cpu_notify);
c277443c 7815 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7816
7817 ret = init_hw_breakpoint();
7818 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7819
7820 /* do not patch jump label more than once per second */
7821 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7822
7823 /*
7824 * Build time assertion that we keep the data_head at the intended
7825 * location. IOW, validation we got the __reserved[] size right.
7826 */
7827 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7828 != 1024);
0793a61d 7829}
abe43400
PZ
7830
7831static int __init perf_event_sysfs_init(void)
7832{
7833 struct pmu *pmu;
7834 int ret;
7835
7836 mutex_lock(&pmus_lock);
7837
7838 ret = bus_register(&pmu_bus);
7839 if (ret)
7840 goto unlock;
7841
7842 list_for_each_entry(pmu, &pmus, entry) {
7843 if (!pmu->name || pmu->type < 0)
7844 continue;
7845
7846 ret = pmu_dev_alloc(pmu);
7847 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7848 }
7849 pmu_bus_running = 1;
7850 ret = 0;
7851
7852unlock:
7853 mutex_unlock(&pmus_lock);
7854
7855 return ret;
7856}
7857device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7858
7859#ifdef CONFIG_CGROUP_PERF
92fb9748 7860static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7861{
7862 struct perf_cgroup *jc;
e5d1367f 7863
1b15d055 7864 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7865 if (!jc)
7866 return ERR_PTR(-ENOMEM);
7867
e5d1367f
SE
7868 jc->info = alloc_percpu(struct perf_cgroup_info);
7869 if (!jc->info) {
7870 kfree(jc);
7871 return ERR_PTR(-ENOMEM);
7872 }
7873
e5d1367f
SE
7874 return &jc->css;
7875}
7876
92fb9748 7877static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7878{
7879 struct perf_cgroup *jc;
7880 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7881 struct perf_cgroup, css);
7882 free_percpu(jc->info);
7883 kfree(jc);
7884}
7885
7886static int __perf_cgroup_move(void *info)
7887{
7888 struct task_struct *task = info;
7889 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7890 return 0;
7891}
7892
761b3ef5 7893static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7894{
bb9d97b6
TH
7895 struct task_struct *task;
7896
7897 cgroup_taskset_for_each(task, cgrp, tset)
7898 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7899}
7900
761b3ef5
LZ
7901static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7902 struct task_struct *task)
e5d1367f
SE
7903{
7904 /*
7905 * cgroup_exit() is called in the copy_process() failure path.
7906 * Ignore this case since the task hasn't ran yet, this avoids
7907 * trying to poke a half freed task state from generic code.
7908 */
7909 if (!(task->flags & PF_EXITING))
7910 return;
7911
bb9d97b6 7912 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7913}
7914
7915struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7916 .name = "perf_event",
7917 .subsys_id = perf_subsys_id,
92fb9748
TH
7918 .css_alloc = perf_cgroup_css_alloc,
7919 .css_free = perf_cgroup_css_free,
e7e7ee2e 7920 .exit = perf_cgroup_exit,
bb9d97b6 7921 .attach = perf_cgroup_attach,
e5d1367f
SE
7922};
7923#endif /* CONFIG_CGROUP_PERF */