perf: Avoid race between cpu hotplug and installing event
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 141
cdd6c482
IM
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
9ee318a7 145
108b02cf
PZ
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
0764771d 150/*
cdd6c482 151 * perf event paranoia level:
0fbdea19
IM
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 154 * 1 - disallow cpu events for unpriv
0fbdea19 155 * 2 - disallow kernel profiling for unpriv
0764771d 156 */
cdd6c482 157int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 158
20443384
FW
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
161
162/*
cdd6c482 163 * max perf event sample rate
df58ab24 164 */
163ec435
PZ
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
1ccd1549 183
cdd6c482 184static atomic64_t perf_event_id;
a96bbc16 185
0b3fcf17
SE
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
0b3fcf17 195
10c6db11
PZ
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
cdd6c482 199void __weak perf_event_print_debug(void) { }
0793a61d 200
84c79910 201extern __weak const char *perf_pmu_name(void)
0793a61d 202{
84c79910 203 return "pmu";
0793a61d
TG
204}
205
0b3fcf17
SE
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
e5d1367f
SE
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
facc4307
PZ
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
e5d1367f
SE
233#ifdef CONFIG_CGROUP_PERF
234
3f7cce3c
SE
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
e5d1367f
SE
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
9c5da09d 256static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 257{
9c5da09d 258 return css_tryget(&event->cgrp->css);
e5d1367f
SE
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
3f7cce3c
SE
307 struct perf_cgroup *cgrp;
308
e5d1367f 309 /*
3f7cce3c
SE
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
e5d1367f 312 */
3f7cce3c 313 if (!is_cgroup_event(event))
e5d1367f
SE
314 return;
315
3f7cce3c
SE
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
e5d1367f
SE
322}
323
324static inline void
3f7cce3c
SE
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
e5d1367f
SE
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
3f7cce3c
SE
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
3f7cce3c 341 info->timestamp = ctx->timestamp;
e5d1367f
SE
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
e5d1367f
SE
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
e566b76e 396 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
facc4307
PZ
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 406 }
e5d1367f
SE
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
a8d757ef
SE
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
e5d1367f 416{
a8d757ef
SE
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
439}
440
a8d757ef
SE
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
e5d1367f 443{
a8d757ef
SE
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
e5d1367f
SE
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
f75e18cb 486 /* must be done before we fput() the file */
9c5da09d
SQ
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
f75e18cb 492
e5d1367f
SE
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
e5d1367f 501 }
3db272c0 502out:
e5d1367f
SE
503 fput_light(file, fput_needed);
504 return ret;
505}
506
507static inline void
508perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509{
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513}
514
515static inline void
516perf_cgroup_defer_enabled(struct perf_event *event)
517{
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526}
527
528static inline void
529perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531{
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547}
548#else /* !CONFIG_CGROUP_PERF */
549
550static inline bool
551perf_cgroup_match(struct perf_event *event)
552{
553 return true;
554}
555
556static inline void perf_detach_cgroup(struct perf_event *event)
557{}
558
559static inline int is_cgroup_event(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565{
566 return 0;
567}
568
569static inline void update_cgrp_time_from_event(struct perf_event *event)
570{
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
e5d1367f
SE
579{
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f
SE
584{
585}
586
587static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590{
591 return -EINVAL;
592}
593
594static inline void
3f7cce3c
SE
595perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
e5d1367f
SE
597{
598}
599
600void
601perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602{
603}
604
605static inline void
606perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607{
608}
609
610static inline u64 perf_cgroup_event_time(struct perf_event *event)
611{
612 return 0;
613}
614
615static inline void
616perf_cgroup_defer_enabled(struct perf_event *event)
617{
618}
619
620static inline void
621perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623{
624}
625#endif
626
33696fc0 627void perf_pmu_disable(struct pmu *pmu)
9e35ad38 628{
33696fc0
PZ
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
9e35ad38 632}
9e35ad38 633
33696fc0 634void perf_pmu_enable(struct pmu *pmu)
9e35ad38 635{
33696fc0
PZ
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
9e35ad38 639}
9e35ad38 640
e9d2b064
PZ
641static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643/*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
108b02cf 648static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 649{
108b02cf 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 651 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 652
e9d2b064 653 WARN_ON(!irqs_disabled());
b5ab4cd5 654
e9d2b064
PZ
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
9e35ad38 657}
9e35ad38 658
cdd6c482 659static void get_ctx(struct perf_event_context *ctx)
a63eaf34 660{
e5289d4a 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
662}
663
cdd6c482 664static void put_ctx(struct perf_event_context *ctx)
a63eaf34 665{
564c2b21
PM
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
c93f7669
PM
669 if (ctx->task)
670 put_task_struct(ctx->task);
cb796ff3 671 kfree_rcu(ctx, rcu_head);
564c2b21 672 }
a63eaf34
PM
673}
674
cdd6c482 675static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
676{
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681}
682
6844c09d
ACM
683static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684{
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692}
693
694static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695{
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703}
704
7f453c24 705/*
cdd6c482 706 * If we inherit events we want to return the parent event id
7f453c24
PZ
707 * to userspace.
708 */
cdd6c482 709static u64 primary_event_id(struct perf_event *event)
7f453c24 710{
cdd6c482 711 u64 id = event->id;
7f453c24 712
cdd6c482
IM
713 if (event->parent)
714 id = event->parent->id;
7f453c24
PZ
715
716 return id;
717}
718
25346b93 719/*
cdd6c482 720 * Get the perf_event_context for a task and lock it.
25346b93
PM
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
cdd6c482 724static struct perf_event_context *
8dc85d54 725perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 726{
cdd6c482 727 struct perf_event_context *ctx;
25346b93
PM
728
729 rcu_read_lock();
9ed6060d 730retry:
8dc85d54 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
cdd6c482 736 * perf_event_task_sched_out, though the
25346b93
PM
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
e625cce1 743 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
746 goto retry;
747 }
b49a9e7e
PZ
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
751 ctx = NULL;
752 }
25346b93
PM
753 }
754 rcu_read_unlock();
755 return ctx;
756}
757
758/*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
8dc85d54
PZ
763static struct perf_event_context *
764perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 765{
cdd6c482 766 struct perf_event_context *ctx;
25346b93
PM
767 unsigned long flags;
768
8dc85d54 769 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
770 if (ctx) {
771 ++ctx->pin_count;
e625cce1 772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
773 }
774 return ctx;
775}
776
cdd6c482 777static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
778{
779 unsigned long flags;
780
e625cce1 781 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 782 --ctx->pin_count;
e625cce1 783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
784}
785
f67218c3
PZ
786/*
787 * Update the record of the current time in a context.
788 */
789static void update_context_time(struct perf_event_context *ctx)
790{
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795}
796
4158755d
SE
797static u64 perf_event_time(struct perf_event *event)
798{
799 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
4158755d
SE
804 return ctx ? ctx->time : 0;
805}
806
f67218c3
PZ
807/*
808 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 809 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
810 */
811static void update_event_times(struct perf_event *event)
812{
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
e5d1367f
SE
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
46cd6a7f 830 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
831 else if (ctx->is_active)
832 run_end = ctx->time;
acd1d7c1
PZ
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
4158755d 841 run_end = perf_event_time(event);
f67218c3
PZ
842
843 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 844
f67218c3
PZ
845}
846
96c21a46
PZ
847/*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850static void update_group_times(struct perf_event *leader)
851{
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857}
858
889ff015
FW
859static struct list_head *
860ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861{
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866}
867
fccc714b 868/*
cdd6c482 869 * Add a event from the lists for its context.
fccc714b
PZ
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
04289bb9 872static void
cdd6c482 873list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 874{
8a49542c
PZ
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
877
878 /*
8a49542c
PZ
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
04289bb9 882 */
8a49542c 883 if (event->group_leader == event) {
889ff015
FW
884 struct list_head *list;
885
d6f962b5
FW
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889ff015
FW
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
5c148194 891 }
592903cd 892
08309379 893 if (is_cgroup_event(event))
e5d1367f 894 ctx->nr_cgroups++;
e5d1367f 895
d010b332
SE
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
cdd6c482 899 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 900 if (!ctx->nr_events)
108b02cf 901 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
bfbd3381 904 ctx->nr_stat++;
04289bb9
IM
905}
906
c320c7b7
ACM
907/*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911static void perf_event__read_size(struct perf_event *event)
912{
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933}
934
935static void perf_event__header_size(struct perf_event *event)
936{
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
6844c09d
ACM
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956}
957
958static void perf_event__id_header_size(struct perf_event *event)
959{
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
c320c7b7
ACM
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
c320c7b7
ACM
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
6844c09d 979 event->id_header_size = size;
c320c7b7
ACM
980}
981
8a49542c
PZ
982static void perf_group_attach(struct perf_event *event)
983{
c320c7b7 984 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 985
74c3337c
PZ
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
8a49542c
PZ
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
c320c7b7
ACM
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
8a49542c
PZ
1008}
1009
a63eaf34 1010/*
cdd6c482 1011 * Remove a event from the lists for its context.
fccc714b 1012 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1013 */
04289bb9 1014static void
cdd6c482 1015list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1016{
68cacd29 1017 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1022 return;
8a49542c
PZ
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
68cacd29 1026 if (is_cgroup_event(event)) {
e5d1367f 1027 ctx->nr_cgroups--;
68cacd29
SE
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
e5d1367f 1037
d010b332
SE
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
cdd6c482
IM
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
bfbd3381 1043 ctx->nr_stat--;
8bc20959 1044
cdd6c482 1045 list_del_rcu(&event->event_entry);
04289bb9 1046
8a49542c
PZ
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
5c148194 1049
96c21a46 1050 update_group_times(event);
b2e74a26
SE
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1061}
1062
8a49542c 1063static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1064{
1065 struct perf_event *sibling, *tmp;
8a49542c
PZ
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
c320c7b7 1082 goto out;
8a49542c
PZ
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
2e2af50b 1087
04289bb9 1088 /*
cdd6c482
IM
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
8a49542c 1091 * to whatever list we are on.
04289bb9 1092 */
cdd6c482 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
04289bb9 1096 sibling->group_leader = sibling;
d6f962b5
FW
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
04289bb9 1100 }
c320c7b7
ACM
1101
1102out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
04289bb9
IM
1107}
1108
fa66f07a
SE
1109static inline int
1110event_filter_match(struct perf_event *event)
1111{
e5d1367f
SE
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
fa66f07a
SE
1114}
1115
9ffcfa6f
SE
1116static void
1117event_sched_out(struct perf_event *event,
3b6f9e5c 1118 struct perf_cpu_context *cpuctx,
cdd6c482 1119 struct perf_event_context *ctx)
3b6f9e5c 1120{
4158755d 1121 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
e5d1367f 1131 delta = tstamp - event->tstamp_stopped;
fa66f07a 1132 event->tstamp_running += delta;
4158755d 1133 event->tstamp_stopped = tstamp;
fa66f07a
SE
1134 }
1135
cdd6c482 1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1137 return;
3b6f9e5c 1138
cdd6c482
IM
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
970892a9 1143 }
4158755d 1144 event->tstamp_stopped = tstamp;
a4eaf7f1 1145 event->pmu->del(event, 0);
cdd6c482 1146 event->oncpu = -1;
3b6f9e5c 1147
cdd6c482 1148 if (!is_software_event(event))
3b6f9e5c
PM
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
0f5a2601
PZ
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
cdd6c482 1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1154 cpuctx->exclusive = 0;
1155}
1156
d859e29f 1157static void
cdd6c482 1158group_sched_out(struct perf_event *group_event,
d859e29f 1159 struct perf_cpu_context *cpuctx,
cdd6c482 1160 struct perf_event_context *ctx)
d859e29f 1161{
cdd6c482 1162 struct perf_event *event;
fa66f07a 1163 int state = group_event->state;
d859e29f 1164
cdd6c482 1165 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
cdd6c482
IM
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
d859e29f 1172
fa66f07a 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1174 cpuctx->exclusive = 0;
1175}
1176
0793a61d 1177/*
cdd6c482 1178 * Cross CPU call to remove a performance event
0793a61d 1179 *
cdd6c482 1180 * We disable the event on the hardware level first. After that we
0793a61d
TG
1181 * remove it from the context list.
1182 */
fe4b04fa 1183static int __perf_remove_from_context(void *info)
0793a61d 1184{
cdd6c482
IM
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
108b02cf 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1188
e625cce1 1189 raw_spin_lock(&ctx->lock);
cdd6c482 1190 event_sched_out(event, cpuctx, ctx);
cdd6c482 1191 list_del_event(event, ctx);
64ce3126
PZ
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
e625cce1 1196 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1197
1198 return 0;
0793a61d
TG
1199}
1200
1201
1202/*
cdd6c482 1203 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1204 *
cdd6c482 1205 * CPU events are removed with a smp call. For task events we only
0793a61d 1206 * call when the task is on a CPU.
c93f7669 1207 *
cdd6c482
IM
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1212 * When called from perf_event_exit_task, it's OK because the
c93f7669 1213 * context has been detached from its task.
0793a61d 1214 */
fe4b04fa 1215static void perf_remove_from_context(struct perf_event *event)
0793a61d 1216{
cdd6c482 1217 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1218 struct task_struct *task = ctx->task;
1219
fe4b04fa
PZ
1220 lockdep_assert_held(&ctx->mutex);
1221
0793a61d
TG
1222 if (!task) {
1223 /*
cdd6c482 1224 * Per cpu events are removed via an smp call and
af901ca1 1225 * the removal is always successful.
0793a61d 1226 */
fe4b04fa 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1228 return;
1229 }
1230
1231retry:
fe4b04fa
PZ
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
0793a61d 1234
e625cce1 1235 raw_spin_lock_irq(&ctx->lock);
0793a61d 1236 /*
fe4b04fa
PZ
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
0793a61d 1239 */
fe4b04fa 1240 if (ctx->is_active) {
e625cce1 1241 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1242 goto retry;
1243 }
1244
1245 /*
fe4b04fa
PZ
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1248 */
fe4b04fa 1249 list_del_event(event, ctx);
e625cce1 1250 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1251}
1252
d859e29f 1253/*
cdd6c482 1254 * Cross CPU call to disable a performance event
d859e29f 1255 */
fe4b04fa 1256static int __perf_event_disable(void *info)
d859e29f 1257{
cdd6c482 1258 struct perf_event *event = info;
cdd6c482 1259 struct perf_event_context *ctx = event->ctx;
108b02cf 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1261
1262 /*
cdd6c482
IM
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
fe4b04fa
PZ
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
d859e29f 1268 */
665c2142 1269 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1270 return -EINVAL;
d859e29f 1271
e625cce1 1272 raw_spin_lock(&ctx->lock);
d859e29f
PM
1273
1274 /*
cdd6c482 1275 * If the event is on, turn it off.
d859e29f
PM
1276 * If it is in error state, leave it in error state.
1277 */
cdd6c482 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1279 update_context_time(ctx);
e5d1367f 1280 update_cgrp_time_from_event(event);
cdd6c482
IM
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
d859e29f 1284 else
cdd6c482
IM
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1287 }
1288
e625cce1 1289 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1290
1291 return 0;
d859e29f
PM
1292}
1293
1294/*
cdd6c482 1295 * Disable a event.
c93f7669 1296 *
cdd6c482
IM
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
c93f7669 1299 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1304 * is the current context on this CPU and preemption is disabled,
cdd6c482 1305 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1306 */
44234adc 1307void perf_event_disable(struct perf_event *event)
d859e29f 1308{
cdd6c482 1309 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
cdd6c482 1314 * Disable the event on the cpu that it's on
d859e29f 1315 */
fe4b04fa 1316 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1317 return;
1318 }
1319
9ed6060d 1320retry:
fe4b04fa
PZ
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
d859e29f 1323
e625cce1 1324 raw_spin_lock_irq(&ctx->lock);
d859e29f 1325 /*
cdd6c482 1326 * If the event is still active, we need to retry the cross-call.
d859e29f 1327 */
cdd6c482 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1329 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
d859e29f
PM
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
cdd6c482
IM
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1345 }
e625cce1 1346 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1347}
dcfce4a0 1348EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1349
e5d1367f
SE
1350static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353{
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383}
1384
4fe757dd
PZ
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
235c7fc7 1389static int
9ffcfa6f 1390event_sched_in(struct perf_event *event,
235c7fc7 1391 struct perf_cpu_context *cpuctx,
6e37738a 1392 struct perf_event_context *ctx)
235c7fc7 1393{
4158755d
SE
1394 u64 tstamp = perf_event_time(event);
1395
cdd6c482 1396 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1397 return 0;
1398
cdd6c482 1399 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1400 event->oncpu = smp_processor_id();
4fe757dd
PZ
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
235c7fc7
IM
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
a4eaf7f1 1417 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
235c7fc7
IM
1420 return -EAGAIN;
1421 }
1422
4158755d 1423 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1424
e5d1367f 1425 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1426
cdd6c482 1427 if (!is_software_event(event))
3b6f9e5c 1428 cpuctx->active_oncpu++;
235c7fc7 1429 ctx->nr_active++;
0f5a2601
PZ
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
235c7fc7 1432
cdd6c482 1433 if (event->attr.exclusive)
3b6f9e5c
PM
1434 cpuctx->exclusive = 1;
1435
235c7fc7
IM
1436 return 0;
1437}
1438
6751b71e 1439static int
cdd6c482 1440group_sched_in(struct perf_event *group_event,
6751b71e 1441 struct perf_cpu_context *cpuctx,
6e37738a 1442 struct perf_event_context *ctx)
6751b71e 1443{
6bde9b6c 1444 struct perf_event *event, *partial_group = NULL;
51b0fe39 1445 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1446 u64 now = ctx->time;
1447 bool simulate = false;
6751b71e 1448
cdd6c482 1449 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1450 return 0;
1451
ad5133b7 1452 pmu->start_txn(pmu);
6bde9b6c 1453
9ffcfa6f 1454 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1455 pmu->cancel_txn(pmu);
6751b71e 1456 return -EAGAIN;
90151c35 1457 }
6751b71e
PM
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
cdd6c482 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1463 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1464 partial_group = event;
6751b71e
PM
1465 goto group_error;
1466 }
1467 }
1468
9ffcfa6f 1469 if (!pmu->commit_txn(pmu))
6e85158c 1470 return 0;
9ffcfa6f 1471
6751b71e
PM
1472group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
d7842da4
SE
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
6751b71e 1486 */
cdd6c482
IM
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
d7842da4
SE
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
6751b71e 1497 }
9ffcfa6f 1498 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1499
ad5133b7 1500 pmu->cancel_txn(pmu);
90151c35 1501
6751b71e
PM
1502 return -EAGAIN;
1503}
1504
3b6f9e5c 1505/*
cdd6c482 1506 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1507 */
cdd6c482 1508static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511{
1512 /*
cdd6c482 1513 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1514 */
d6f962b5 1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
cdd6c482 1519 * events can go on.
3b6f9e5c
PM
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
cdd6c482 1525 * events on the CPU, it can't go on.
3b6f9e5c 1526 */
cdd6c482 1527 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534}
1535
cdd6c482
IM
1536static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
53cfbf59 1538{
4158755d
SE
1539 u64 tstamp = perf_event_time(event);
1540
cdd6c482 1541 list_add_event(event, ctx);
8a49542c 1542 perf_group_attach(event);
4158755d
SE
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
53cfbf59
PM
1546}
1547
2c29ef0f
PZ
1548static void task_ctx_sched_out(struct perf_event_context *ctx);
1549static void
1550ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
fe4b04fa 1554
dce5855b
PZ
1555static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558{
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565}
1566
0793a61d 1567/*
cdd6c482 1568 * Cross CPU call to install and enable a performance event
682076ae
PZ
1569 *
1570 * Must be called with ctx->mutex held
0793a61d 1571 */
fe4b04fa 1572static int __perf_install_in_context(void *info)
0793a61d 1573{
cdd6c482
IM
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
108b02cf 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
b58f6b0d 1580 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1581 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1582
1583 /*
2c29ef0f 1584 * If there was an active task_ctx schedule it out.
0793a61d 1585 */
b58f6b0d 1586 if (task_ctx)
2c29ef0f 1587 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1602 task = task_ctx->task;
1603 }
b58f6b0d 1604
2c29ef0f 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1606
4af4998b 1607 update_context_time(ctx);
e5d1367f
SE
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
0793a61d 1614
cdd6c482 1615 add_event_to_ctx(event, ctx);
0793a61d 1616
d859e29f 1617 /*
2c29ef0f 1618 * Schedule everything back in
d859e29f 1619 */
dce5855b 1620 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1624
1625 return 0;
0793a61d
TG
1626}
1627
1628/*
cdd6c482 1629 * Attach a performance event to a context
0793a61d 1630 *
cdd6c482
IM
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
0793a61d 1633 *
cdd6c482 1634 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638static void
cdd6c482
IM
1639perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
0793a61d
TG
1641 int cpu)
1642{
1643 struct task_struct *task = ctx->task;
1644
fe4b04fa
PZ
1645 lockdep_assert_held(&ctx->mutex);
1646
c3f00c70
PZ
1647 event->ctx = ctx;
1648
0793a61d
TG
1649 if (!task) {
1650 /*
cdd6c482 1651 * Per cpu events are installed via an smp call and
af901ca1 1652 * the install is always successful.
0793a61d 1653 */
fe4b04fa 1654 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1655 return;
1656 }
1657
0793a61d 1658retry:
fe4b04fa
PZ
1659 if (!task_function_call(task, __perf_install_in_context, event))
1660 return;
0793a61d 1661
e625cce1 1662 raw_spin_lock_irq(&ctx->lock);
0793a61d 1663 /*
fe4b04fa
PZ
1664 * If we failed to find a running task, but find the context active now
1665 * that we've acquired the ctx->lock, retry.
0793a61d 1666 */
fe4b04fa 1667 if (ctx->is_active) {
e625cce1 1668 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1669 goto retry;
1670 }
1671
1672 /*
fe4b04fa
PZ
1673 * Since the task isn't running, its safe to add the event, us holding
1674 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1675 */
fe4b04fa 1676 add_event_to_ctx(event, ctx);
e625cce1 1677 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1678}
1679
fa289bec 1680/*
cdd6c482 1681 * Put a event into inactive state and update time fields.
fa289bec
PM
1682 * Enabling the leader of a group effectively enables all
1683 * the group members that aren't explicitly disabled, so we
1684 * have to update their ->tstamp_enabled also.
1685 * Note: this works for group members as well as group leaders
1686 * since the non-leader members' sibling_lists will be empty.
1687 */
1d9b482e 1688static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1689{
cdd6c482 1690 struct perf_event *sub;
4158755d 1691 u64 tstamp = perf_event_time(event);
fa289bec 1692
cdd6c482 1693 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1694 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1695 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1696 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1697 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1698 }
fa289bec
PM
1699}
1700
d859e29f 1701/*
cdd6c482 1702 * Cross CPU call to enable a performance event
d859e29f 1703 */
fe4b04fa 1704static int __perf_event_enable(void *info)
04289bb9 1705{
cdd6c482 1706 struct perf_event *event = info;
cdd6c482
IM
1707 struct perf_event_context *ctx = event->ctx;
1708 struct perf_event *leader = event->group_leader;
108b02cf 1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1710 int err;
04289bb9 1711
fe4b04fa
PZ
1712 if (WARN_ON_ONCE(!ctx->is_active))
1713 return -EINVAL;
3cbed429 1714
e625cce1 1715 raw_spin_lock(&ctx->lock);
4af4998b 1716 update_context_time(ctx);
d859e29f 1717
cdd6c482 1718 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1719 goto unlock;
e5d1367f
SE
1720
1721 /*
1722 * set current task's cgroup time reference point
1723 */
3f7cce3c 1724 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1725
1d9b482e 1726 __perf_event_mark_enabled(event);
04289bb9 1727
e5d1367f
SE
1728 if (!event_filter_match(event)) {
1729 if (is_cgroup_event(event))
1730 perf_cgroup_defer_enabled(event);
f4c4176f 1731 goto unlock;
e5d1367f 1732 }
f4c4176f 1733
04289bb9 1734 /*
cdd6c482 1735 * If the event is in a group and isn't the group leader,
d859e29f 1736 * then don't put it on unless the group is on.
04289bb9 1737 */
cdd6c482 1738 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1739 goto unlock;
3b6f9e5c 1740
cdd6c482 1741 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1742 err = -EEXIST;
e758a33d 1743 } else {
cdd6c482 1744 if (event == leader)
6e37738a 1745 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1746 else
6e37738a 1747 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1748 }
d859e29f
PM
1749
1750 if (err) {
1751 /*
cdd6c482 1752 * If this event can't go on and it's part of a
d859e29f
PM
1753 * group, then the whole group has to come off.
1754 */
cdd6c482 1755 if (leader != event)
d859e29f 1756 group_sched_out(leader, cpuctx, ctx);
0d48696f 1757 if (leader->attr.pinned) {
53cfbf59 1758 update_group_times(leader);
cdd6c482 1759 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1760 }
d859e29f
PM
1761 }
1762
9ed6060d 1763unlock:
e625cce1 1764 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1765
1766 return 0;
d859e29f
PM
1767}
1768
1769/*
cdd6c482 1770 * Enable a event.
c93f7669 1771 *
cdd6c482
IM
1772 * If event->ctx is a cloned context, callers must make sure that
1773 * every task struct that event->ctx->task could possibly point to
c93f7669 1774 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1775 * perf_event_for_each_child or perf_event_for_each as described
1776 * for perf_event_disable.
d859e29f 1777 */
44234adc 1778void perf_event_enable(struct perf_event *event)
d859e29f 1779{
cdd6c482 1780 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
cdd6c482 1785 * Enable the event on the cpu that it's on
d859e29f 1786 */
fe4b04fa 1787 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1788 return;
1789 }
1790
e625cce1 1791 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1792 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1793 goto out;
1794
1795 /*
cdd6c482
IM
1796 * If the event is in error state, clear that first.
1797 * That way, if we see the event in error state below, we
d859e29f
PM
1798 * know that it has gone back into error state, as distinct
1799 * from the task having been scheduled away before the
1800 * cross-call arrived.
1801 */
cdd6c482
IM
1802 if (event->state == PERF_EVENT_STATE_ERROR)
1803 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1804
9ed6060d 1805retry:
fe4b04fa 1806 if (!ctx->is_active) {
1d9b482e 1807 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1808 goto out;
1809 }
1810
e625cce1 1811 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1812
1813 if (!task_function_call(task, __perf_event_enable, event))
1814 return;
d859e29f 1815
e625cce1 1816 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1817
1818 /*
cdd6c482 1819 * If the context is active and the event is still off,
d859e29f
PM
1820 * we need to retry the cross-call.
1821 */
fe4b04fa
PZ
1822 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1823 /*
1824 * task could have been flipped by a concurrent
1825 * perf_event_context_sched_out()
1826 */
1827 task = ctx->task;
d859e29f 1828 goto retry;
fe4b04fa 1829 }
fa289bec 1830
9ed6060d 1831out:
e625cce1 1832 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1833}
dcfce4a0 1834EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1835
26ca5c11 1836int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1837{
2023b359 1838 /*
cdd6c482 1839 * not supported on inherited events
2023b359 1840 */
2e939d1d 1841 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1842 return -EINVAL;
1843
cdd6c482
IM
1844 atomic_add(refresh, &event->event_limit);
1845 perf_event_enable(event);
2023b359
PZ
1846
1847 return 0;
79f14641 1848}
26ca5c11 1849EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1850
5b0311e1
FW
1851static void ctx_sched_out(struct perf_event_context *ctx,
1852 struct perf_cpu_context *cpuctx,
1853 enum event_type_t event_type)
235c7fc7 1854{
cdd6c482 1855 struct perf_event *event;
db24d33e 1856 int is_active = ctx->is_active;
235c7fc7 1857
db24d33e 1858 ctx->is_active &= ~event_type;
cdd6c482 1859 if (likely(!ctx->nr_events))
facc4307
PZ
1860 return;
1861
4af4998b 1862 update_context_time(ctx);
e5d1367f 1863 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1864 if (!ctx->nr_active)
facc4307 1865 return;
5b0311e1 1866
075e0b00 1867 perf_pmu_disable(ctx->pmu);
db24d33e 1868 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1869 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1870 group_sched_out(event, cpuctx, ctx);
9ed6060d 1871 }
889ff015 1872
db24d33e 1873 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1874 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1875 group_sched_out(event, cpuctx, ctx);
9ed6060d 1876 }
1b9a644f 1877 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1878}
1879
564c2b21
PM
1880/*
1881 * Test whether two contexts are equivalent, i.e. whether they
1882 * have both been cloned from the same version of the same context
cdd6c482
IM
1883 * and they both have the same number of enabled events.
1884 * If the number of enabled events is the same, then the set
1885 * of enabled events should be the same, because these are both
1886 * inherited contexts, therefore we can't access individual events
564c2b21 1887 * in them directly with an fd; we can only enable/disable all
cdd6c482 1888 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1889 * via ioctl, which will have the same effect on both contexts.
1890 */
cdd6c482
IM
1891static int context_equiv(struct perf_event_context *ctx1,
1892 struct perf_event_context *ctx2)
564c2b21
PM
1893{
1894 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1895 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1896 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1897}
1898
cdd6c482
IM
1899static void __perf_event_sync_stat(struct perf_event *event,
1900 struct perf_event *next_event)
bfbd3381
PZ
1901{
1902 u64 value;
1903
cdd6c482 1904 if (!event->attr.inherit_stat)
bfbd3381
PZ
1905 return;
1906
1907 /*
cdd6c482 1908 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1909 * because we're in the middle of a context switch and have IRQs
1910 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1911 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1912 * don't need to use it.
1913 */
cdd6c482
IM
1914 switch (event->state) {
1915 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1916 event->pmu->read(event);
1917 /* fall-through */
bfbd3381 1918
cdd6c482
IM
1919 case PERF_EVENT_STATE_INACTIVE:
1920 update_event_times(event);
bfbd3381
PZ
1921 break;
1922
1923 default:
1924 break;
1925 }
1926
1927 /*
cdd6c482 1928 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1929 * values when we flip the contexts.
1930 */
e7850595
PZ
1931 value = local64_read(&next_event->count);
1932 value = local64_xchg(&event->count, value);
1933 local64_set(&next_event->count, value);
bfbd3381 1934
cdd6c482
IM
1935 swap(event->total_time_enabled, next_event->total_time_enabled);
1936 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1937
bfbd3381 1938 /*
19d2e755 1939 * Since we swizzled the values, update the user visible data too.
bfbd3381 1940 */
cdd6c482
IM
1941 perf_event_update_userpage(event);
1942 perf_event_update_userpage(next_event);
bfbd3381
PZ
1943}
1944
1945#define list_next_entry(pos, member) \
1946 list_entry(pos->member.next, typeof(*pos), member)
1947
cdd6c482
IM
1948static void perf_event_sync_stat(struct perf_event_context *ctx,
1949 struct perf_event_context *next_ctx)
bfbd3381 1950{
cdd6c482 1951 struct perf_event *event, *next_event;
bfbd3381
PZ
1952
1953 if (!ctx->nr_stat)
1954 return;
1955
02ffdbc8
PZ
1956 update_context_time(ctx);
1957
cdd6c482
IM
1958 event = list_first_entry(&ctx->event_list,
1959 struct perf_event, event_entry);
bfbd3381 1960
cdd6c482
IM
1961 next_event = list_first_entry(&next_ctx->event_list,
1962 struct perf_event, event_entry);
bfbd3381 1963
cdd6c482
IM
1964 while (&event->event_entry != &ctx->event_list &&
1965 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1966
cdd6c482 1967 __perf_event_sync_stat(event, next_event);
bfbd3381 1968
cdd6c482
IM
1969 event = list_next_entry(event, event_entry);
1970 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1971 }
1972}
1973
fe4b04fa
PZ
1974static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1975 struct task_struct *next)
0793a61d 1976{
8dc85d54 1977 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1978 struct perf_event_context *next_ctx;
1979 struct perf_event_context *parent;
108b02cf 1980 struct perf_cpu_context *cpuctx;
c93f7669 1981 int do_switch = 1;
0793a61d 1982
108b02cf
PZ
1983 if (likely(!ctx))
1984 return;
10989fb2 1985
108b02cf
PZ
1986 cpuctx = __get_cpu_context(ctx);
1987 if (!cpuctx->task_ctx)
0793a61d
TG
1988 return;
1989
c93f7669
PM
1990 rcu_read_lock();
1991 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1992 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1993 if (parent && next_ctx &&
1994 rcu_dereference(next_ctx->parent_ctx) == parent) {
1995 /*
1996 * Looks like the two contexts are clones, so we might be
1997 * able to optimize the context switch. We lock both
1998 * contexts and check that they are clones under the
1999 * lock (including re-checking that neither has been
2000 * uncloned in the meantime). It doesn't matter which
2001 * order we take the locks because no other cpu could
2002 * be trying to lock both of these tasks.
2003 */
e625cce1
TG
2004 raw_spin_lock(&ctx->lock);
2005 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2006 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2007 /*
2008 * XXX do we need a memory barrier of sorts
cdd6c482 2009 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2010 */
8dc85d54
PZ
2011 task->perf_event_ctxp[ctxn] = next_ctx;
2012 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2013 ctx->task = next;
2014 next_ctx->task = task;
2015 do_switch = 0;
bfbd3381 2016
cdd6c482 2017 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2018 }
e625cce1
TG
2019 raw_spin_unlock(&next_ctx->lock);
2020 raw_spin_unlock(&ctx->lock);
564c2b21 2021 }
c93f7669 2022 rcu_read_unlock();
564c2b21 2023
c93f7669 2024 if (do_switch) {
facc4307 2025 raw_spin_lock(&ctx->lock);
5b0311e1 2026 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2027 cpuctx->task_ctx = NULL;
facc4307 2028 raw_spin_unlock(&ctx->lock);
c93f7669 2029 }
0793a61d
TG
2030}
2031
8dc85d54
PZ
2032#define for_each_task_context_nr(ctxn) \
2033 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2034
2035/*
2036 * Called from scheduler to remove the events of the current task,
2037 * with interrupts disabled.
2038 *
2039 * We stop each event and update the event value in event->count.
2040 *
2041 * This does not protect us against NMI, but disable()
2042 * sets the disabled bit in the control field of event _before_
2043 * accessing the event control register. If a NMI hits, then it will
2044 * not restart the event.
2045 */
ab0cce56
JO
2046void __perf_event_task_sched_out(struct task_struct *task,
2047 struct task_struct *next)
8dc85d54
PZ
2048{
2049 int ctxn;
2050
8dc85d54
PZ
2051 for_each_task_context_nr(ctxn)
2052 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2053
2054 /*
2055 * if cgroup events exist on this CPU, then we need
2056 * to check if we have to switch out PMU state.
2057 * cgroup event are system-wide mode only
2058 */
2059 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2060 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2061}
2062
04dc2dbb 2063static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2064{
108b02cf 2065 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2066
a63eaf34
PM
2067 if (!cpuctx->task_ctx)
2068 return;
012b84da
IM
2069
2070 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2071 return;
2072
04dc2dbb 2073 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2074 cpuctx->task_ctx = NULL;
2075}
2076
5b0311e1
FW
2077/*
2078 * Called with IRQs disabled
2079 */
2080static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2081 enum event_type_t event_type)
2082{
2083 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2084}
2085
235c7fc7 2086static void
5b0311e1 2087ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2088 struct perf_cpu_context *cpuctx)
0793a61d 2089{
cdd6c482 2090 struct perf_event *event;
0793a61d 2091
889ff015
FW
2092 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2093 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2094 continue;
5632ab12 2095 if (!event_filter_match(event))
3b6f9e5c
PM
2096 continue;
2097
e5d1367f
SE
2098 /* may need to reset tstamp_enabled */
2099 if (is_cgroup_event(event))
2100 perf_cgroup_mark_enabled(event, ctx);
2101
8c9ed8e1 2102 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2103 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2104
2105 /*
2106 * If this pinned group hasn't been scheduled,
2107 * put it in error state.
2108 */
cdd6c482
IM
2109 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2110 update_group_times(event);
2111 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2112 }
3b6f9e5c 2113 }
5b0311e1
FW
2114}
2115
2116static void
2117ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2118 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2119{
2120 struct perf_event *event;
2121 int can_add_hw = 1;
3b6f9e5c 2122
889ff015
FW
2123 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2124 /* Ignore events in OFF or ERROR state */
2125 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2126 continue;
04289bb9
IM
2127 /*
2128 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2129 * of events:
04289bb9 2130 */
5632ab12 2131 if (!event_filter_match(event))
0793a61d
TG
2132 continue;
2133
e5d1367f
SE
2134 /* may need to reset tstamp_enabled */
2135 if (is_cgroup_event(event))
2136 perf_cgroup_mark_enabled(event, ctx);
2137
9ed6060d 2138 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2139 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2140 can_add_hw = 0;
9ed6060d 2141 }
0793a61d 2142 }
5b0311e1
FW
2143}
2144
2145static void
2146ctx_sched_in(struct perf_event_context *ctx,
2147 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2148 enum event_type_t event_type,
2149 struct task_struct *task)
5b0311e1 2150{
e5d1367f 2151 u64 now;
db24d33e 2152 int is_active = ctx->is_active;
e5d1367f 2153
db24d33e 2154 ctx->is_active |= event_type;
5b0311e1 2155 if (likely(!ctx->nr_events))
facc4307 2156 return;
5b0311e1 2157
e5d1367f
SE
2158 now = perf_clock();
2159 ctx->timestamp = now;
3f7cce3c 2160 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2161 /*
2162 * First go through the list and put on any pinned groups
2163 * in order to give them the best chance of going on.
2164 */
db24d33e 2165 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2166 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2167
2168 /* Then walk through the lower prio flexible groups */
db24d33e 2169 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2170 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2171}
2172
329c0e01 2173static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2174 enum event_type_t event_type,
2175 struct task_struct *task)
329c0e01
FW
2176{
2177 struct perf_event_context *ctx = &cpuctx->ctx;
2178
e5d1367f 2179 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2180}
2181
e5d1367f
SE
2182static void perf_event_context_sched_in(struct perf_event_context *ctx,
2183 struct task_struct *task)
235c7fc7 2184{
108b02cf 2185 struct perf_cpu_context *cpuctx;
235c7fc7 2186
108b02cf 2187 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2188 if (cpuctx->task_ctx == ctx)
2189 return;
2190
facc4307 2191 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2192 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2193 /*
2194 * We want to keep the following priority order:
2195 * cpu pinned (that don't need to move), task pinned,
2196 * cpu flexible, task flexible.
2197 */
2198 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2199
1d5f003f
GN
2200 if (ctx->nr_events)
2201 cpuctx->task_ctx = ctx;
9b33fa6b 2202
86b47c25
GN
2203 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2204
facc4307
PZ
2205 perf_pmu_enable(ctx->pmu);
2206 perf_ctx_unlock(cpuctx, ctx);
2207
b5ab4cd5
PZ
2208 /*
2209 * Since these rotations are per-cpu, we need to ensure the
2210 * cpu-context we got scheduled on is actually rotating.
2211 */
108b02cf 2212 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2213}
2214
d010b332
SE
2215/*
2216 * When sampling the branck stack in system-wide, it may be necessary
2217 * to flush the stack on context switch. This happens when the branch
2218 * stack does not tag its entries with the pid of the current task.
2219 * Otherwise it becomes impossible to associate a branch entry with a
2220 * task. This ambiguity is more likely to appear when the branch stack
2221 * supports priv level filtering and the user sets it to monitor only
2222 * at the user level (which could be a useful measurement in system-wide
2223 * mode). In that case, the risk is high of having a branch stack with
2224 * branch from multiple tasks. Flushing may mean dropping the existing
2225 * entries or stashing them somewhere in the PMU specific code layer.
2226 *
2227 * This function provides the context switch callback to the lower code
2228 * layer. It is invoked ONLY when there is at least one system-wide context
2229 * with at least one active event using taken branch sampling.
2230 */
2231static void perf_branch_stack_sched_in(struct task_struct *prev,
2232 struct task_struct *task)
2233{
2234 struct perf_cpu_context *cpuctx;
2235 struct pmu *pmu;
2236 unsigned long flags;
2237
2238 /* no need to flush branch stack if not changing task */
2239 if (prev == task)
2240 return;
2241
2242 local_irq_save(flags);
2243
2244 rcu_read_lock();
2245
2246 list_for_each_entry_rcu(pmu, &pmus, entry) {
2247 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2248
2249 /*
2250 * check if the context has at least one
2251 * event using PERF_SAMPLE_BRANCH_STACK
2252 */
2253 if (cpuctx->ctx.nr_branch_stack > 0
2254 && pmu->flush_branch_stack) {
2255
2256 pmu = cpuctx->ctx.pmu;
2257
2258 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2259
2260 perf_pmu_disable(pmu);
2261
2262 pmu->flush_branch_stack();
2263
2264 perf_pmu_enable(pmu);
2265
2266 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2267 }
2268 }
2269
2270 rcu_read_unlock();
2271
2272 local_irq_restore(flags);
2273}
2274
8dc85d54
PZ
2275/*
2276 * Called from scheduler to add the events of the current task
2277 * with interrupts disabled.
2278 *
2279 * We restore the event value and then enable it.
2280 *
2281 * This does not protect us against NMI, but enable()
2282 * sets the enabled bit in the control field of event _before_
2283 * accessing the event control register. If a NMI hits, then it will
2284 * keep the event running.
2285 */
ab0cce56
JO
2286void __perf_event_task_sched_in(struct task_struct *prev,
2287 struct task_struct *task)
8dc85d54
PZ
2288{
2289 struct perf_event_context *ctx;
2290 int ctxn;
2291
2292 for_each_task_context_nr(ctxn) {
2293 ctx = task->perf_event_ctxp[ctxn];
2294 if (likely(!ctx))
2295 continue;
2296
e5d1367f 2297 perf_event_context_sched_in(ctx, task);
8dc85d54 2298 }
e5d1367f
SE
2299 /*
2300 * if cgroup events exist on this CPU, then we need
2301 * to check if we have to switch in PMU state.
2302 * cgroup event are system-wide mode only
2303 */
2304 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2305 perf_cgroup_sched_in(prev, task);
d010b332
SE
2306
2307 /* check for system-wide branch_stack events */
2308 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2309 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2310}
2311
abd50713
PZ
2312static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2313{
2314 u64 frequency = event->attr.sample_freq;
2315 u64 sec = NSEC_PER_SEC;
2316 u64 divisor, dividend;
2317
2318 int count_fls, nsec_fls, frequency_fls, sec_fls;
2319
2320 count_fls = fls64(count);
2321 nsec_fls = fls64(nsec);
2322 frequency_fls = fls64(frequency);
2323 sec_fls = 30;
2324
2325 /*
2326 * We got @count in @nsec, with a target of sample_freq HZ
2327 * the target period becomes:
2328 *
2329 * @count * 10^9
2330 * period = -------------------
2331 * @nsec * sample_freq
2332 *
2333 */
2334
2335 /*
2336 * Reduce accuracy by one bit such that @a and @b converge
2337 * to a similar magnitude.
2338 */
fe4b04fa 2339#define REDUCE_FLS(a, b) \
abd50713
PZ
2340do { \
2341 if (a##_fls > b##_fls) { \
2342 a >>= 1; \
2343 a##_fls--; \
2344 } else { \
2345 b >>= 1; \
2346 b##_fls--; \
2347 } \
2348} while (0)
2349
2350 /*
2351 * Reduce accuracy until either term fits in a u64, then proceed with
2352 * the other, so that finally we can do a u64/u64 division.
2353 */
2354 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2355 REDUCE_FLS(nsec, frequency);
2356 REDUCE_FLS(sec, count);
2357 }
2358
2359 if (count_fls + sec_fls > 64) {
2360 divisor = nsec * frequency;
2361
2362 while (count_fls + sec_fls > 64) {
2363 REDUCE_FLS(count, sec);
2364 divisor >>= 1;
2365 }
2366
2367 dividend = count * sec;
2368 } else {
2369 dividend = count * sec;
2370
2371 while (nsec_fls + frequency_fls > 64) {
2372 REDUCE_FLS(nsec, frequency);
2373 dividend >>= 1;
2374 }
2375
2376 divisor = nsec * frequency;
2377 }
2378
f6ab91ad
PZ
2379 if (!divisor)
2380 return dividend;
2381
abd50713
PZ
2382 return div64_u64(dividend, divisor);
2383}
2384
e050e3f0
SE
2385static DEFINE_PER_CPU(int, perf_throttled_count);
2386static DEFINE_PER_CPU(u64, perf_throttled_seq);
2387
f39d47ff 2388static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2389{
cdd6c482 2390 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2391 s64 period, sample_period;
bd2b5b12
PZ
2392 s64 delta;
2393
abd50713 2394 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2395
2396 delta = (s64)(period - hwc->sample_period);
2397 delta = (delta + 7) / 8; /* low pass filter */
2398
2399 sample_period = hwc->sample_period + delta;
2400
2401 if (!sample_period)
2402 sample_period = 1;
2403
bd2b5b12 2404 hwc->sample_period = sample_period;
abd50713 2405
e7850595 2406 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2407 if (disable)
2408 event->pmu->stop(event, PERF_EF_UPDATE);
2409
e7850595 2410 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2411
2412 if (disable)
2413 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2414 }
bd2b5b12
PZ
2415}
2416
e050e3f0
SE
2417/*
2418 * combine freq adjustment with unthrottling to avoid two passes over the
2419 * events. At the same time, make sure, having freq events does not change
2420 * the rate of unthrottling as that would introduce bias.
2421 */
2422static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2423 int needs_unthr)
60db5e09 2424{
cdd6c482
IM
2425 struct perf_event *event;
2426 struct hw_perf_event *hwc;
e050e3f0 2427 u64 now, period = TICK_NSEC;
abd50713 2428 s64 delta;
60db5e09 2429
e050e3f0
SE
2430 /*
2431 * only need to iterate over all events iff:
2432 * - context have events in frequency mode (needs freq adjust)
2433 * - there are events to unthrottle on this cpu
2434 */
2435 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2436 return;
2437
e050e3f0 2438 raw_spin_lock(&ctx->lock);
f39d47ff 2439 perf_pmu_disable(ctx->pmu);
e050e3f0 2440
03541f8b 2441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2442 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2443 continue;
2444
5632ab12 2445 if (!event_filter_match(event))
5d27c23d
PZ
2446 continue;
2447
cdd6c482 2448 hwc = &event->hw;
6a24ed6c 2449
e050e3f0
SE
2450 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2451 hwc->interrupts = 0;
cdd6c482 2452 perf_log_throttle(event, 1);
a4eaf7f1 2453 event->pmu->start(event, 0);
a78ac325
PZ
2454 }
2455
cdd6c482 2456 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2457 continue;
2458
e050e3f0
SE
2459 /*
2460 * stop the event and update event->count
2461 */
2462 event->pmu->stop(event, PERF_EF_UPDATE);
2463
e7850595 2464 now = local64_read(&event->count);
abd50713
PZ
2465 delta = now - hwc->freq_count_stamp;
2466 hwc->freq_count_stamp = now;
60db5e09 2467
e050e3f0
SE
2468 /*
2469 * restart the event
2470 * reload only if value has changed
f39d47ff
SE
2471 * we have stopped the event so tell that
2472 * to perf_adjust_period() to avoid stopping it
2473 * twice.
e050e3f0 2474 */
abd50713 2475 if (delta > 0)
f39d47ff 2476 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2477
2478 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2479 }
e050e3f0 2480
f39d47ff 2481 perf_pmu_enable(ctx->pmu);
e050e3f0 2482 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2483}
2484
235c7fc7 2485/*
cdd6c482 2486 * Round-robin a context's events:
235c7fc7 2487 */
cdd6c482 2488static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2489{
dddd3379
TG
2490 /*
2491 * Rotate the first entry last of non-pinned groups. Rotation might be
2492 * disabled by the inheritance code.
2493 */
2494 if (!ctx->rotate_disable)
2495 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2496}
2497
b5ab4cd5 2498/*
e9d2b064
PZ
2499 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2500 * because they're strictly cpu affine and rotate_start is called with IRQs
2501 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2502 */
e9d2b064 2503static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2504{
8dc85d54 2505 struct perf_event_context *ctx = NULL;
e050e3f0 2506 int rotate = 0, remove = 1;
7fc23a53 2507
b5ab4cd5 2508 if (cpuctx->ctx.nr_events) {
e9d2b064 2509 remove = 0;
b5ab4cd5
PZ
2510 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2511 rotate = 1;
2512 }
235c7fc7 2513
8dc85d54 2514 ctx = cpuctx->task_ctx;
b5ab4cd5 2515 if (ctx && ctx->nr_events) {
e9d2b064 2516 remove = 0;
b5ab4cd5
PZ
2517 if (ctx->nr_events != ctx->nr_active)
2518 rotate = 1;
2519 }
9717e6cd 2520
e050e3f0 2521 if (!rotate)
0f5a2601
PZ
2522 goto done;
2523
facc4307 2524 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2525 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2526
e050e3f0
SE
2527 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2528 if (ctx)
2529 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2530
e050e3f0
SE
2531 rotate_ctx(&cpuctx->ctx);
2532 if (ctx)
2533 rotate_ctx(ctx);
235c7fc7 2534
e050e3f0 2535 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2536
0f5a2601
PZ
2537 perf_pmu_enable(cpuctx->ctx.pmu);
2538 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2539done:
e9d2b064
PZ
2540 if (remove)
2541 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2542}
2543
2544void perf_event_task_tick(void)
2545{
2546 struct list_head *head = &__get_cpu_var(rotation_list);
2547 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2548 struct perf_event_context *ctx;
2549 int throttled;
b5ab4cd5 2550
e9d2b064
PZ
2551 WARN_ON(!irqs_disabled());
2552
e050e3f0
SE
2553 __this_cpu_inc(perf_throttled_seq);
2554 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2555
e9d2b064 2556 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2557 ctx = &cpuctx->ctx;
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560 ctx = cpuctx->task_ctx;
2561 if (ctx)
2562 perf_adjust_freq_unthr_context(ctx, throttled);
2563
e9d2b064
PZ
2564 if (cpuctx->jiffies_interval == 1 ||
2565 !(jiffies % cpuctx->jiffies_interval))
2566 perf_rotate_context(cpuctx);
2567 }
0793a61d
TG
2568}
2569
889ff015
FW
2570static int event_enable_on_exec(struct perf_event *event,
2571 struct perf_event_context *ctx)
2572{
2573 if (!event->attr.enable_on_exec)
2574 return 0;
2575
2576 event->attr.enable_on_exec = 0;
2577 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2578 return 0;
2579
1d9b482e 2580 __perf_event_mark_enabled(event);
889ff015
FW
2581
2582 return 1;
2583}
2584
57e7986e 2585/*
cdd6c482 2586 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2587 * This expects task == current.
2588 */
8dc85d54 2589static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2590{
cdd6c482 2591 struct perf_event *event;
57e7986e
PM
2592 unsigned long flags;
2593 int enabled = 0;
889ff015 2594 int ret;
57e7986e
PM
2595
2596 local_irq_save(flags);
cdd6c482 2597 if (!ctx || !ctx->nr_events)
57e7986e
PM
2598 goto out;
2599
e566b76e
SE
2600 /*
2601 * We must ctxsw out cgroup events to avoid conflict
2602 * when invoking perf_task_event_sched_in() later on
2603 * in this function. Otherwise we end up trying to
2604 * ctxswin cgroup events which are already scheduled
2605 * in.
2606 */
a8d757ef 2607 perf_cgroup_sched_out(current, NULL);
57e7986e 2608
e625cce1 2609 raw_spin_lock(&ctx->lock);
04dc2dbb 2610 task_ctx_sched_out(ctx);
57e7986e 2611
b79387ef 2612 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2613 ret = event_enable_on_exec(event, ctx);
2614 if (ret)
2615 enabled = 1;
57e7986e
PM
2616 }
2617
2618 /*
cdd6c482 2619 * Unclone this context if we enabled any event.
57e7986e 2620 */
71a851b4
PZ
2621 if (enabled)
2622 unclone_ctx(ctx);
57e7986e 2623
e625cce1 2624 raw_spin_unlock(&ctx->lock);
57e7986e 2625
e566b76e
SE
2626 /*
2627 * Also calls ctxswin for cgroup events, if any:
2628 */
e5d1367f 2629 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2630out:
57e7986e
PM
2631 local_irq_restore(flags);
2632}
2633
0793a61d 2634/*
cdd6c482 2635 * Cross CPU call to read the hardware event
0793a61d 2636 */
cdd6c482 2637static void __perf_event_read(void *info)
0793a61d 2638{
cdd6c482
IM
2639 struct perf_event *event = info;
2640 struct perf_event_context *ctx = event->ctx;
108b02cf 2641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2642
e1ac3614
PM
2643 /*
2644 * If this is a task context, we need to check whether it is
2645 * the current task context of this cpu. If not it has been
2646 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2647 * event->count would have been updated to a recent sample
2648 * when the event was scheduled out.
e1ac3614
PM
2649 */
2650 if (ctx->task && cpuctx->task_ctx != ctx)
2651 return;
2652
e625cce1 2653 raw_spin_lock(&ctx->lock);
e5d1367f 2654 if (ctx->is_active) {
542e72fc 2655 update_context_time(ctx);
e5d1367f
SE
2656 update_cgrp_time_from_event(event);
2657 }
cdd6c482 2658 update_event_times(event);
542e72fc
PZ
2659 if (event->state == PERF_EVENT_STATE_ACTIVE)
2660 event->pmu->read(event);
e625cce1 2661 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2662}
2663
b5e58793
PZ
2664static inline u64 perf_event_count(struct perf_event *event)
2665{
e7850595 2666 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2667}
2668
cdd6c482 2669static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2670{
2671 /*
cdd6c482
IM
2672 * If event is enabled and currently active on a CPU, update the
2673 * value in the event structure:
0793a61d 2674 */
cdd6c482
IM
2675 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2676 smp_call_function_single(event->oncpu,
2677 __perf_event_read, event, 1);
2678 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2679 struct perf_event_context *ctx = event->ctx;
2680 unsigned long flags;
2681
e625cce1 2682 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2683 /*
2684 * may read while context is not active
2685 * (e.g., thread is blocked), in that case
2686 * we cannot update context time
2687 */
e5d1367f 2688 if (ctx->is_active) {
c530ccd9 2689 update_context_time(ctx);
e5d1367f
SE
2690 update_cgrp_time_from_event(event);
2691 }
cdd6c482 2692 update_event_times(event);
e625cce1 2693 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2694 }
2695
b5e58793 2696 return perf_event_count(event);
0793a61d
TG
2697}
2698
a63eaf34 2699/*
cdd6c482 2700 * Initialize the perf_event context in a task_struct:
a63eaf34 2701 */
eb184479 2702static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2703{
e625cce1 2704 raw_spin_lock_init(&ctx->lock);
a63eaf34 2705 mutex_init(&ctx->mutex);
889ff015
FW
2706 INIT_LIST_HEAD(&ctx->pinned_groups);
2707 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2708 INIT_LIST_HEAD(&ctx->event_list);
2709 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2710}
2711
2712static struct perf_event_context *
2713alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2714{
2715 struct perf_event_context *ctx;
2716
2717 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2718 if (!ctx)
2719 return NULL;
2720
2721 __perf_event_init_context(ctx);
2722 if (task) {
2723 ctx->task = task;
2724 get_task_struct(task);
0793a61d 2725 }
eb184479
PZ
2726 ctx->pmu = pmu;
2727
2728 return ctx;
a63eaf34
PM
2729}
2730
2ebd4ffb
MH
2731static struct task_struct *
2732find_lively_task_by_vpid(pid_t vpid)
2733{
2734 struct task_struct *task;
2735 int err;
0793a61d
TG
2736
2737 rcu_read_lock();
2ebd4ffb 2738 if (!vpid)
0793a61d
TG
2739 task = current;
2740 else
2ebd4ffb 2741 task = find_task_by_vpid(vpid);
0793a61d
TG
2742 if (task)
2743 get_task_struct(task);
2744 rcu_read_unlock();
2745
2746 if (!task)
2747 return ERR_PTR(-ESRCH);
2748
0793a61d 2749 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2750 err = -EACCES;
2751 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2752 goto errout;
2753
2ebd4ffb
MH
2754 return task;
2755errout:
2756 put_task_struct(task);
2757 return ERR_PTR(err);
2758
2759}
2760
fe4b04fa
PZ
2761/*
2762 * Returns a matching context with refcount and pincount.
2763 */
108b02cf 2764static struct perf_event_context *
38a81da2 2765find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2766{
cdd6c482 2767 struct perf_event_context *ctx;
22a4f650 2768 struct perf_cpu_context *cpuctx;
25346b93 2769 unsigned long flags;
8dc85d54 2770 int ctxn, err;
0793a61d 2771
22a4ec72 2772 if (!task) {
cdd6c482 2773 /* Must be root to operate on a CPU event: */
0764771d 2774 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2775 return ERR_PTR(-EACCES);
2776
0793a61d 2777 /*
cdd6c482 2778 * We could be clever and allow to attach a event to an
0793a61d
TG
2779 * offline CPU and activate it when the CPU comes up, but
2780 * that's for later.
2781 */
f6325e30 2782 if (!cpu_online(cpu))
0793a61d
TG
2783 return ERR_PTR(-ENODEV);
2784
108b02cf 2785 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2786 ctx = &cpuctx->ctx;
c93f7669 2787 get_ctx(ctx);
fe4b04fa 2788 ++ctx->pin_count;
0793a61d 2789
0793a61d
TG
2790 return ctx;
2791 }
2792
8dc85d54
PZ
2793 err = -EINVAL;
2794 ctxn = pmu->task_ctx_nr;
2795 if (ctxn < 0)
2796 goto errout;
2797
9ed6060d 2798retry:
8dc85d54 2799 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2800 if (ctx) {
71a851b4 2801 unclone_ctx(ctx);
fe4b04fa 2802 ++ctx->pin_count;
e625cce1 2803 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2804 } else {
eb184479 2805 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2806 err = -ENOMEM;
2807 if (!ctx)
2808 goto errout;
eb184479 2809
dbe08d82
ON
2810 err = 0;
2811 mutex_lock(&task->perf_event_mutex);
2812 /*
2813 * If it has already passed perf_event_exit_task().
2814 * we must see PF_EXITING, it takes this mutex too.
2815 */
2816 if (task->flags & PF_EXITING)
2817 err = -ESRCH;
2818 else if (task->perf_event_ctxp[ctxn])
2819 err = -EAGAIN;
fe4b04fa 2820 else {
9137fb28 2821 get_ctx(ctx);
fe4b04fa 2822 ++ctx->pin_count;
dbe08d82 2823 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2824 }
dbe08d82
ON
2825 mutex_unlock(&task->perf_event_mutex);
2826
2827 if (unlikely(err)) {
9137fb28 2828 put_ctx(ctx);
dbe08d82
ON
2829
2830 if (err == -EAGAIN)
2831 goto retry;
2832 goto errout;
a63eaf34
PM
2833 }
2834 }
2835
0793a61d 2836 return ctx;
c93f7669 2837
9ed6060d 2838errout:
c93f7669 2839 return ERR_PTR(err);
0793a61d
TG
2840}
2841
6fb2915d
LZ
2842static void perf_event_free_filter(struct perf_event *event);
2843
cdd6c482 2844static void free_event_rcu(struct rcu_head *head)
592903cd 2845{
cdd6c482 2846 struct perf_event *event;
592903cd 2847
cdd6c482
IM
2848 event = container_of(head, struct perf_event, rcu_head);
2849 if (event->ns)
2850 put_pid_ns(event->ns);
6fb2915d 2851 perf_event_free_filter(event);
cdd6c482 2852 kfree(event);
592903cd
PZ
2853}
2854
76369139 2855static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2856
cdd6c482 2857static void free_event(struct perf_event *event)
f1600952 2858{
e360adbe 2859 irq_work_sync(&event->pending);
925d519a 2860
cdd6c482 2861 if (!event->parent) {
82cd6def 2862 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2863 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2864 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2865 atomic_dec(&nr_mmap_events);
2866 if (event->attr.comm)
2867 atomic_dec(&nr_comm_events);
2868 if (event->attr.task)
2869 atomic_dec(&nr_task_events);
927c7a9e
FW
2870 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2871 put_callchain_buffers();
08309379
PZ
2872 if (is_cgroup_event(event)) {
2873 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2874 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2875 }
d010b332
SE
2876
2877 if (has_branch_stack(event)) {
2878 static_key_slow_dec_deferred(&perf_sched_events);
2879 /* is system-wide event */
2880 if (!(event->attach_state & PERF_ATTACH_TASK))
2881 atomic_dec(&per_cpu(perf_branch_stack_events,
2882 event->cpu));
2883 }
f344011c 2884 }
9ee318a7 2885
76369139
FW
2886 if (event->rb) {
2887 ring_buffer_put(event->rb);
2888 event->rb = NULL;
a4be7c27
PZ
2889 }
2890
e5d1367f
SE
2891 if (is_cgroup_event(event))
2892 perf_detach_cgroup(event);
2893
cdd6c482
IM
2894 if (event->destroy)
2895 event->destroy(event);
e077df4f 2896
0c67b408
PZ
2897 if (event->ctx)
2898 put_ctx(event->ctx);
2899
cdd6c482 2900 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2901}
2902
a66a3052 2903int perf_event_release_kernel(struct perf_event *event)
0793a61d 2904{
cdd6c482 2905 struct perf_event_context *ctx = event->ctx;
0793a61d 2906
ad3a37de 2907 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2908 /*
2909 * There are two ways this annotation is useful:
2910 *
2911 * 1) there is a lock recursion from perf_event_exit_task
2912 * see the comment there.
2913 *
2914 * 2) there is a lock-inversion with mmap_sem through
2915 * perf_event_read_group(), which takes faults while
2916 * holding ctx->mutex, however this is called after
2917 * the last filedesc died, so there is no possibility
2918 * to trigger the AB-BA case.
2919 */
2920 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2921 raw_spin_lock_irq(&ctx->lock);
8a49542c 2922 perf_group_detach(event);
050735b0 2923 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2924 perf_remove_from_context(event);
d859e29f 2925 mutex_unlock(&ctx->mutex);
0793a61d 2926
cdd6c482 2927 free_event(event);
0793a61d
TG
2928
2929 return 0;
2930}
a66a3052 2931EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2932
a66a3052
PZ
2933/*
2934 * Called when the last reference to the file is gone.
2935 */
2936static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2937{
a66a3052 2938 struct perf_event *event = file->private_data;
8882135b 2939 struct task_struct *owner;
fb0459d7 2940
a66a3052 2941 file->private_data = NULL;
fb0459d7 2942
8882135b
PZ
2943 rcu_read_lock();
2944 owner = ACCESS_ONCE(event->owner);
2945 /*
2946 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2947 * !owner it means the list deletion is complete and we can indeed
2948 * free this event, otherwise we need to serialize on
2949 * owner->perf_event_mutex.
2950 */
2951 smp_read_barrier_depends();
2952 if (owner) {
2953 /*
2954 * Since delayed_put_task_struct() also drops the last
2955 * task reference we can safely take a new reference
2956 * while holding the rcu_read_lock().
2957 */
2958 get_task_struct(owner);
2959 }
2960 rcu_read_unlock();
2961
2962 if (owner) {
2963 mutex_lock(&owner->perf_event_mutex);
2964 /*
2965 * We have to re-check the event->owner field, if it is cleared
2966 * we raced with perf_event_exit_task(), acquiring the mutex
2967 * ensured they're done, and we can proceed with freeing the
2968 * event.
2969 */
2970 if (event->owner)
2971 list_del_init(&event->owner_entry);
2972 mutex_unlock(&owner->perf_event_mutex);
2973 put_task_struct(owner);
2974 }
2975
a66a3052 2976 return perf_event_release_kernel(event);
fb0459d7 2977}
fb0459d7 2978
59ed446f 2979u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2980{
cdd6c482 2981 struct perf_event *child;
e53c0994
PZ
2982 u64 total = 0;
2983
59ed446f
PZ
2984 *enabled = 0;
2985 *running = 0;
2986
6f10581a 2987 mutex_lock(&event->child_mutex);
cdd6c482 2988 total += perf_event_read(event);
59ed446f
PZ
2989 *enabled += event->total_time_enabled +
2990 atomic64_read(&event->child_total_time_enabled);
2991 *running += event->total_time_running +
2992 atomic64_read(&event->child_total_time_running);
2993
2994 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2995 total += perf_event_read(child);
59ed446f
PZ
2996 *enabled += child->total_time_enabled;
2997 *running += child->total_time_running;
2998 }
6f10581a 2999 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3000
3001 return total;
3002}
fb0459d7 3003EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3004
cdd6c482 3005static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3006 u64 read_format, char __user *buf)
3007{
cdd6c482 3008 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3009 int n = 0, size = 0, ret = -EFAULT;
3010 struct perf_event_context *ctx = leader->ctx;
abf4868b 3011 u64 values[5];
59ed446f 3012 u64 count, enabled, running;
abf4868b 3013
6f10581a 3014 mutex_lock(&ctx->mutex);
59ed446f 3015 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3016
3017 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3019 values[n++] = enabled;
3020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3021 values[n++] = running;
abf4868b
PZ
3022 values[n++] = count;
3023 if (read_format & PERF_FORMAT_ID)
3024 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3025
3026 size = n * sizeof(u64);
3027
3028 if (copy_to_user(buf, values, size))
6f10581a 3029 goto unlock;
3dab77fb 3030
6f10581a 3031 ret = size;
3dab77fb 3032
65abc865 3033 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3034 n = 0;
3dab77fb 3035
59ed446f 3036 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3037 if (read_format & PERF_FORMAT_ID)
3038 values[n++] = primary_event_id(sub);
3039
3040 size = n * sizeof(u64);
3041
184d3da8 3042 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3043 ret = -EFAULT;
3044 goto unlock;
3045 }
abf4868b
PZ
3046
3047 ret += size;
3dab77fb 3048 }
6f10581a
PZ
3049unlock:
3050 mutex_unlock(&ctx->mutex);
3dab77fb 3051
abf4868b 3052 return ret;
3dab77fb
PZ
3053}
3054
cdd6c482 3055static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3056 u64 read_format, char __user *buf)
3057{
59ed446f 3058 u64 enabled, running;
3dab77fb
PZ
3059 u64 values[4];
3060 int n = 0;
3061
59ed446f
PZ
3062 values[n++] = perf_event_read_value(event, &enabled, &running);
3063 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3064 values[n++] = enabled;
3065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3066 values[n++] = running;
3dab77fb 3067 if (read_format & PERF_FORMAT_ID)
cdd6c482 3068 values[n++] = primary_event_id(event);
3dab77fb
PZ
3069
3070 if (copy_to_user(buf, values, n * sizeof(u64)))
3071 return -EFAULT;
3072
3073 return n * sizeof(u64);
3074}
3075
0793a61d 3076/*
cdd6c482 3077 * Read the performance event - simple non blocking version for now
0793a61d
TG
3078 */
3079static ssize_t
cdd6c482 3080perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3081{
cdd6c482 3082 u64 read_format = event->attr.read_format;
3dab77fb 3083 int ret;
0793a61d 3084
3b6f9e5c 3085 /*
cdd6c482 3086 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3087 * error state (i.e. because it was pinned but it couldn't be
3088 * scheduled on to the CPU at some point).
3089 */
cdd6c482 3090 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3091 return 0;
3092
c320c7b7 3093 if (count < event->read_size)
3dab77fb
PZ
3094 return -ENOSPC;
3095
cdd6c482 3096 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3097 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3098 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3099 else
cdd6c482 3100 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3101
3dab77fb 3102 return ret;
0793a61d
TG
3103}
3104
0793a61d
TG
3105static ssize_t
3106perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3107{
cdd6c482 3108 struct perf_event *event = file->private_data;
0793a61d 3109
cdd6c482 3110 return perf_read_hw(event, buf, count);
0793a61d
TG
3111}
3112
3113static unsigned int perf_poll(struct file *file, poll_table *wait)
3114{
cdd6c482 3115 struct perf_event *event = file->private_data;
76369139 3116 struct ring_buffer *rb;
c33a0bc4 3117 unsigned int events = POLL_HUP;
c7138f37 3118
10c6db11
PZ
3119 /*
3120 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3121 * grabs the rb reference but perf_event_set_output() overrides it.
3122 * Here is the timeline for two threads T1, T2:
3123 * t0: T1, rb = rcu_dereference(event->rb)
3124 * t1: T2, old_rb = event->rb
3125 * t2: T2, event->rb = new rb
3126 * t3: T2, ring_buffer_detach(old_rb)
3127 * t4: T1, ring_buffer_attach(rb1)
3128 * t5: T1, poll_wait(event->waitq)
3129 *
3130 * To avoid this problem, we grab mmap_mutex in perf_poll()
3131 * thereby ensuring that the assignment of the new ring buffer
3132 * and the detachment of the old buffer appear atomic to perf_poll()
3133 */
3134 mutex_lock(&event->mmap_mutex);
3135
c7138f37 3136 rcu_read_lock();
76369139 3137 rb = rcu_dereference(event->rb);
10c6db11
PZ
3138 if (rb) {
3139 ring_buffer_attach(event, rb);
76369139 3140 events = atomic_xchg(&rb->poll, 0);
10c6db11 3141 }
c7138f37 3142 rcu_read_unlock();
0793a61d 3143
10c6db11
PZ
3144 mutex_unlock(&event->mmap_mutex);
3145
cdd6c482 3146 poll_wait(file, &event->waitq, wait);
0793a61d 3147
0793a61d
TG
3148 return events;
3149}
3150
cdd6c482 3151static void perf_event_reset(struct perf_event *event)
6de6a7b9 3152{
cdd6c482 3153 (void)perf_event_read(event);
e7850595 3154 local64_set(&event->count, 0);
cdd6c482 3155 perf_event_update_userpage(event);
3df5edad
PZ
3156}
3157
c93f7669 3158/*
cdd6c482
IM
3159 * Holding the top-level event's child_mutex means that any
3160 * descendant process that has inherited this event will block
3161 * in sync_child_event if it goes to exit, thus satisfying the
3162 * task existence requirements of perf_event_enable/disable.
c93f7669 3163 */
cdd6c482
IM
3164static void perf_event_for_each_child(struct perf_event *event,
3165 void (*func)(struct perf_event *))
3df5edad 3166{
cdd6c482 3167 struct perf_event *child;
3df5edad 3168
cdd6c482
IM
3169 WARN_ON_ONCE(event->ctx->parent_ctx);
3170 mutex_lock(&event->child_mutex);
3171 func(event);
3172 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3173 func(child);
cdd6c482 3174 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3175}
3176
cdd6c482
IM
3177static void perf_event_for_each(struct perf_event *event,
3178 void (*func)(struct perf_event *))
3df5edad 3179{
cdd6c482
IM
3180 struct perf_event_context *ctx = event->ctx;
3181 struct perf_event *sibling;
3df5edad 3182
75f937f2
PZ
3183 WARN_ON_ONCE(ctx->parent_ctx);
3184 mutex_lock(&ctx->mutex);
cdd6c482 3185 event = event->group_leader;
75f937f2 3186
cdd6c482 3187 perf_event_for_each_child(event, func);
cdd6c482 3188 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3189 perf_event_for_each_child(sibling, func);
75f937f2 3190 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3191}
3192
cdd6c482 3193static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3194{
cdd6c482 3195 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3196 int ret = 0;
3197 u64 value;
3198
6c7e550f 3199 if (!is_sampling_event(event))
08247e31
PZ
3200 return -EINVAL;
3201
ad0cf347 3202 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3203 return -EFAULT;
3204
3205 if (!value)
3206 return -EINVAL;
3207
e625cce1 3208 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3209 if (event->attr.freq) {
3210 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3211 ret = -EINVAL;
3212 goto unlock;
3213 }
3214
cdd6c482 3215 event->attr.sample_freq = value;
08247e31 3216 } else {
cdd6c482
IM
3217 event->attr.sample_period = value;
3218 event->hw.sample_period = value;
08247e31
PZ
3219 }
3220unlock:
e625cce1 3221 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3222
3223 return ret;
3224}
3225
ac9721f3
PZ
3226static const struct file_operations perf_fops;
3227
3228static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3229{
3230 struct file *file;
3231
3232 file = fget_light(fd, fput_needed);
3233 if (!file)
3234 return ERR_PTR(-EBADF);
3235
3236 if (file->f_op != &perf_fops) {
3237 fput_light(file, *fput_needed);
3238 *fput_needed = 0;
3239 return ERR_PTR(-EBADF);
3240 }
3241
3242 return file->private_data;
3243}
3244
3245static int perf_event_set_output(struct perf_event *event,
3246 struct perf_event *output_event);
6fb2915d 3247static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3248
d859e29f
PM
3249static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3250{
cdd6c482
IM
3251 struct perf_event *event = file->private_data;
3252 void (*func)(struct perf_event *);
3df5edad 3253 u32 flags = arg;
d859e29f
PM
3254
3255 switch (cmd) {
cdd6c482
IM
3256 case PERF_EVENT_IOC_ENABLE:
3257 func = perf_event_enable;
d859e29f 3258 break;
cdd6c482
IM
3259 case PERF_EVENT_IOC_DISABLE:
3260 func = perf_event_disable;
79f14641 3261 break;
cdd6c482
IM
3262 case PERF_EVENT_IOC_RESET:
3263 func = perf_event_reset;
6de6a7b9 3264 break;
3df5edad 3265
cdd6c482
IM
3266 case PERF_EVENT_IOC_REFRESH:
3267 return perf_event_refresh(event, arg);
08247e31 3268
cdd6c482
IM
3269 case PERF_EVENT_IOC_PERIOD:
3270 return perf_event_period(event, (u64 __user *)arg);
08247e31 3271
cdd6c482 3272 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3273 {
3274 struct perf_event *output_event = NULL;
3275 int fput_needed = 0;
3276 int ret;
3277
3278 if (arg != -1) {
3279 output_event = perf_fget_light(arg, &fput_needed);
3280 if (IS_ERR(output_event))
3281 return PTR_ERR(output_event);
3282 }
3283
3284 ret = perf_event_set_output(event, output_event);
3285 if (output_event)
3286 fput_light(output_event->filp, fput_needed);
3287
3288 return ret;
3289 }
a4be7c27 3290
6fb2915d
LZ
3291 case PERF_EVENT_IOC_SET_FILTER:
3292 return perf_event_set_filter(event, (void __user *)arg);
3293
d859e29f 3294 default:
3df5edad 3295 return -ENOTTY;
d859e29f 3296 }
3df5edad
PZ
3297
3298 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3299 perf_event_for_each(event, func);
3df5edad 3300 else
cdd6c482 3301 perf_event_for_each_child(event, func);
3df5edad
PZ
3302
3303 return 0;
d859e29f
PM
3304}
3305
cdd6c482 3306int perf_event_task_enable(void)
771d7cde 3307{
cdd6c482 3308 struct perf_event *event;
771d7cde 3309
cdd6c482
IM
3310 mutex_lock(&current->perf_event_mutex);
3311 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3312 perf_event_for_each_child(event, perf_event_enable);
3313 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3314
3315 return 0;
3316}
3317
cdd6c482 3318int perf_event_task_disable(void)
771d7cde 3319{
cdd6c482 3320 struct perf_event *event;
771d7cde 3321
cdd6c482
IM
3322 mutex_lock(&current->perf_event_mutex);
3323 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3324 perf_event_for_each_child(event, perf_event_disable);
3325 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3326
3327 return 0;
3328}
3329
cdd6c482 3330static int perf_event_index(struct perf_event *event)
194002b2 3331{
a4eaf7f1
PZ
3332 if (event->hw.state & PERF_HES_STOPPED)
3333 return 0;
3334
cdd6c482 3335 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3336 return 0;
3337
35edc2a5 3338 return event->pmu->event_idx(event);
194002b2
PZ
3339}
3340
c4794295 3341static void calc_timer_values(struct perf_event *event,
e3f3541c 3342 u64 *now,
7f310a5d
EM
3343 u64 *enabled,
3344 u64 *running)
c4794295 3345{
e3f3541c 3346 u64 ctx_time;
c4794295 3347
e3f3541c
PZ
3348 *now = perf_clock();
3349 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3350 *enabled = ctx_time - event->tstamp_enabled;
3351 *running = ctx_time - event->tstamp_running;
3352}
3353
c7206205 3354void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3355{
3356}
3357
38ff667b
PZ
3358/*
3359 * Callers need to ensure there can be no nesting of this function, otherwise
3360 * the seqlock logic goes bad. We can not serialize this because the arch
3361 * code calls this from NMI context.
3362 */
cdd6c482 3363void perf_event_update_userpage(struct perf_event *event)
37d81828 3364{
cdd6c482 3365 struct perf_event_mmap_page *userpg;
76369139 3366 struct ring_buffer *rb;
e3f3541c 3367 u64 enabled, running, now;
38ff667b
PZ
3368
3369 rcu_read_lock();
0d641208
EM
3370 /*
3371 * compute total_time_enabled, total_time_running
3372 * based on snapshot values taken when the event
3373 * was last scheduled in.
3374 *
3375 * we cannot simply called update_context_time()
3376 * because of locking issue as we can be called in
3377 * NMI context
3378 */
e3f3541c 3379 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3380 rb = rcu_dereference(event->rb);
3381 if (!rb)
38ff667b
PZ
3382 goto unlock;
3383
76369139 3384 userpg = rb->user_page;
37d81828 3385
7b732a75
PZ
3386 /*
3387 * Disable preemption so as to not let the corresponding user-space
3388 * spin too long if we get preempted.
3389 */
3390 preempt_disable();
37d81828 3391 ++userpg->lock;
92f22a38 3392 barrier();
cdd6c482 3393 userpg->index = perf_event_index(event);
b5e58793 3394 userpg->offset = perf_event_count(event);
365a4038 3395 if (userpg->index)
e7850595 3396 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3397
0d641208 3398 userpg->time_enabled = enabled +
cdd6c482 3399 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3400
0d641208 3401 userpg->time_running = running +
cdd6c482 3402 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3403
c7206205 3404 arch_perf_update_userpage(userpg, now);
e3f3541c 3405
92f22a38 3406 barrier();
37d81828 3407 ++userpg->lock;
7b732a75 3408 preempt_enable();
38ff667b 3409unlock:
7b732a75 3410 rcu_read_unlock();
37d81828
PM
3411}
3412
906010b2
PZ
3413static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3414{
3415 struct perf_event *event = vma->vm_file->private_data;
76369139 3416 struct ring_buffer *rb;
906010b2
PZ
3417 int ret = VM_FAULT_SIGBUS;
3418
3419 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3420 if (vmf->pgoff == 0)
3421 ret = 0;
3422 return ret;
3423 }
3424
3425 rcu_read_lock();
76369139
FW
3426 rb = rcu_dereference(event->rb);
3427 if (!rb)
906010b2
PZ
3428 goto unlock;
3429
3430 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3431 goto unlock;
3432
76369139 3433 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3434 if (!vmf->page)
3435 goto unlock;
3436
3437 get_page(vmf->page);
3438 vmf->page->mapping = vma->vm_file->f_mapping;
3439 vmf->page->index = vmf->pgoff;
3440
3441 ret = 0;
3442unlock:
3443 rcu_read_unlock();
3444
3445 return ret;
3446}
3447
10c6db11
PZ
3448static void ring_buffer_attach(struct perf_event *event,
3449 struct ring_buffer *rb)
3450{
3451 unsigned long flags;
3452
3453 if (!list_empty(&event->rb_entry))
3454 return;
3455
3456 spin_lock_irqsave(&rb->event_lock, flags);
3457 if (!list_empty(&event->rb_entry))
3458 goto unlock;
3459
3460 list_add(&event->rb_entry, &rb->event_list);
3461unlock:
3462 spin_unlock_irqrestore(&rb->event_lock, flags);
3463}
3464
3465static void ring_buffer_detach(struct perf_event *event,
3466 struct ring_buffer *rb)
3467{
3468 unsigned long flags;
3469
3470 if (list_empty(&event->rb_entry))
3471 return;
3472
3473 spin_lock_irqsave(&rb->event_lock, flags);
3474 list_del_init(&event->rb_entry);
3475 wake_up_all(&event->waitq);
3476 spin_unlock_irqrestore(&rb->event_lock, flags);
3477}
3478
3479static void ring_buffer_wakeup(struct perf_event *event)
3480{
3481 struct ring_buffer *rb;
3482
3483 rcu_read_lock();
3484 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3485 if (!rb)
3486 goto unlock;
3487
3488 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3489 wake_up_all(&event->waitq);
44b7f4b9
WD
3490
3491unlock:
10c6db11
PZ
3492 rcu_read_unlock();
3493}
3494
76369139 3495static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3496{
76369139 3497 struct ring_buffer *rb;
906010b2 3498
76369139
FW
3499 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3500 rb_free(rb);
7b732a75
PZ
3501}
3502
76369139 3503static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3504{
76369139 3505 struct ring_buffer *rb;
7b732a75 3506
ac9721f3 3507 rcu_read_lock();
76369139
FW
3508 rb = rcu_dereference(event->rb);
3509 if (rb) {
3510 if (!atomic_inc_not_zero(&rb->refcount))
3511 rb = NULL;
ac9721f3
PZ
3512 }
3513 rcu_read_unlock();
3514
76369139 3515 return rb;
ac9721f3
PZ
3516}
3517
76369139 3518static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3519{
10c6db11
PZ
3520 struct perf_event *event, *n;
3521 unsigned long flags;
3522
76369139 3523 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3524 return;
7b732a75 3525
10c6db11
PZ
3526 spin_lock_irqsave(&rb->event_lock, flags);
3527 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3528 list_del_init(&event->rb_entry);
3529 wake_up_all(&event->waitq);
3530 }
3531 spin_unlock_irqrestore(&rb->event_lock, flags);
3532
76369139 3533 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3534}
3535
3536static void perf_mmap_open(struct vm_area_struct *vma)
3537{
cdd6c482 3538 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3539
cdd6c482 3540 atomic_inc(&event->mmap_count);
7b732a75
PZ
3541}
3542
3543static void perf_mmap_close(struct vm_area_struct *vma)
3544{
cdd6c482 3545 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3546
cdd6c482 3547 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3548 unsigned long size = perf_data_size(event->rb);
ac9721f3 3549 struct user_struct *user = event->mmap_user;
76369139 3550 struct ring_buffer *rb = event->rb;
789f90fc 3551
906010b2 3552 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3553 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3554 rcu_assign_pointer(event->rb, NULL);
10c6db11 3555 ring_buffer_detach(event, rb);
cdd6c482 3556 mutex_unlock(&event->mmap_mutex);
ac9721f3 3557
76369139 3558 ring_buffer_put(rb);
ac9721f3 3559 free_uid(user);
7b732a75 3560 }
37d81828
PM
3561}
3562
f0f37e2f 3563static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3564 .open = perf_mmap_open,
3565 .close = perf_mmap_close,
3566 .fault = perf_mmap_fault,
3567 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3568};
3569
3570static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3571{
cdd6c482 3572 struct perf_event *event = file->private_data;
22a4f650 3573 unsigned long user_locked, user_lock_limit;
789f90fc 3574 struct user_struct *user = current_user();
22a4f650 3575 unsigned long locked, lock_limit;
76369139 3576 struct ring_buffer *rb;
7b732a75
PZ
3577 unsigned long vma_size;
3578 unsigned long nr_pages;
789f90fc 3579 long user_extra, extra;
d57e34fd 3580 int ret = 0, flags = 0;
37d81828 3581
c7920614
PZ
3582 /*
3583 * Don't allow mmap() of inherited per-task counters. This would
3584 * create a performance issue due to all children writing to the
76369139 3585 * same rb.
c7920614
PZ
3586 */
3587 if (event->cpu == -1 && event->attr.inherit)
3588 return -EINVAL;
3589
43a21ea8 3590 if (!(vma->vm_flags & VM_SHARED))
37d81828 3591 return -EINVAL;
7b732a75
PZ
3592
3593 vma_size = vma->vm_end - vma->vm_start;
3594 nr_pages = (vma_size / PAGE_SIZE) - 1;
3595
7730d865 3596 /*
76369139 3597 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3598 * can do bitmasks instead of modulo.
3599 */
3600 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3601 return -EINVAL;
3602
7b732a75 3603 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3604 return -EINVAL;
3605
7b732a75
PZ
3606 if (vma->vm_pgoff != 0)
3607 return -EINVAL;
37d81828 3608
cdd6c482
IM
3609 WARN_ON_ONCE(event->ctx->parent_ctx);
3610 mutex_lock(&event->mmap_mutex);
76369139
FW
3611 if (event->rb) {
3612 if (event->rb->nr_pages == nr_pages)
3613 atomic_inc(&event->rb->refcount);
ac9721f3 3614 else
ebb3c4c4
PZ
3615 ret = -EINVAL;
3616 goto unlock;
3617 }
3618
789f90fc 3619 user_extra = nr_pages + 1;
cdd6c482 3620 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3621
3622 /*
3623 * Increase the limit linearly with more CPUs:
3624 */
3625 user_lock_limit *= num_online_cpus();
3626
789f90fc 3627 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3628
789f90fc
PZ
3629 extra = 0;
3630 if (user_locked > user_lock_limit)
3631 extra = user_locked - user_lock_limit;
7b732a75 3632
78d7d407 3633 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3634 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3635 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3636
459ec28a
IM
3637 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3638 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3639 ret = -EPERM;
3640 goto unlock;
3641 }
7b732a75 3642
76369139 3643 WARN_ON(event->rb);
906010b2 3644
d57e34fd 3645 if (vma->vm_flags & VM_WRITE)
76369139 3646 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3647
4ec8363d
VW
3648 rb = rb_alloc(nr_pages,
3649 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3650 event->cpu, flags);
3651
76369139 3652 if (!rb) {
ac9721f3 3653 ret = -ENOMEM;
ebb3c4c4 3654 goto unlock;
ac9721f3 3655 }
76369139 3656 rcu_assign_pointer(event->rb, rb);
43a21ea8 3657
ac9721f3
PZ
3658 atomic_long_add(user_extra, &user->locked_vm);
3659 event->mmap_locked = extra;
3660 event->mmap_user = get_current_user();
bc3e53f6 3661 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3662
9a0f05cb
PZ
3663 perf_event_update_userpage(event);
3664
ebb3c4c4 3665unlock:
ac9721f3
PZ
3666 if (!ret)
3667 atomic_inc(&event->mmap_count);
cdd6c482 3668 mutex_unlock(&event->mmap_mutex);
37d81828 3669
37d81828
PM
3670 vma->vm_flags |= VM_RESERVED;
3671 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3672
3673 return ret;
37d81828
PM
3674}
3675
3c446b3d
PZ
3676static int perf_fasync(int fd, struct file *filp, int on)
3677{
3c446b3d 3678 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3679 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3680 int retval;
3681
3682 mutex_lock(&inode->i_mutex);
cdd6c482 3683 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3684 mutex_unlock(&inode->i_mutex);
3685
3686 if (retval < 0)
3687 return retval;
3688
3689 return 0;
3690}
3691
0793a61d 3692static const struct file_operations perf_fops = {
3326c1ce 3693 .llseek = no_llseek,
0793a61d
TG
3694 .release = perf_release,
3695 .read = perf_read,
3696 .poll = perf_poll,
d859e29f
PM
3697 .unlocked_ioctl = perf_ioctl,
3698 .compat_ioctl = perf_ioctl,
37d81828 3699 .mmap = perf_mmap,
3c446b3d 3700 .fasync = perf_fasync,
0793a61d
TG
3701};
3702
925d519a 3703/*
cdd6c482 3704 * Perf event wakeup
925d519a
PZ
3705 *
3706 * If there's data, ensure we set the poll() state and publish everything
3707 * to user-space before waking everybody up.
3708 */
3709
cdd6c482 3710void perf_event_wakeup(struct perf_event *event)
925d519a 3711{
10c6db11 3712 ring_buffer_wakeup(event);
4c9e2542 3713
cdd6c482
IM
3714 if (event->pending_kill) {
3715 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3716 event->pending_kill = 0;
4c9e2542 3717 }
925d519a
PZ
3718}
3719
e360adbe 3720static void perf_pending_event(struct irq_work *entry)
79f14641 3721{
cdd6c482
IM
3722 struct perf_event *event = container_of(entry,
3723 struct perf_event, pending);
79f14641 3724
cdd6c482
IM
3725 if (event->pending_disable) {
3726 event->pending_disable = 0;
3727 __perf_event_disable(event);
79f14641
PZ
3728 }
3729
cdd6c482
IM
3730 if (event->pending_wakeup) {
3731 event->pending_wakeup = 0;
3732 perf_event_wakeup(event);
79f14641
PZ
3733 }
3734}
3735
39447b38
ZY
3736/*
3737 * We assume there is only KVM supporting the callbacks.
3738 * Later on, we might change it to a list if there is
3739 * another virtualization implementation supporting the callbacks.
3740 */
3741struct perf_guest_info_callbacks *perf_guest_cbs;
3742
3743int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3744{
3745 perf_guest_cbs = cbs;
3746 return 0;
3747}
3748EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3749
3750int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3751{
3752 perf_guest_cbs = NULL;
3753 return 0;
3754}
3755EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3756
c980d109
ACM
3757static void __perf_event_header__init_id(struct perf_event_header *header,
3758 struct perf_sample_data *data,
3759 struct perf_event *event)
6844c09d
ACM
3760{
3761 u64 sample_type = event->attr.sample_type;
3762
3763 data->type = sample_type;
3764 header->size += event->id_header_size;
3765
3766 if (sample_type & PERF_SAMPLE_TID) {
3767 /* namespace issues */
3768 data->tid_entry.pid = perf_event_pid(event, current);
3769 data->tid_entry.tid = perf_event_tid(event, current);
3770 }
3771
3772 if (sample_type & PERF_SAMPLE_TIME)
3773 data->time = perf_clock();
3774
3775 if (sample_type & PERF_SAMPLE_ID)
3776 data->id = primary_event_id(event);
3777
3778 if (sample_type & PERF_SAMPLE_STREAM_ID)
3779 data->stream_id = event->id;
3780
3781 if (sample_type & PERF_SAMPLE_CPU) {
3782 data->cpu_entry.cpu = raw_smp_processor_id();
3783 data->cpu_entry.reserved = 0;
3784 }
3785}
3786
76369139
FW
3787void perf_event_header__init_id(struct perf_event_header *header,
3788 struct perf_sample_data *data,
3789 struct perf_event *event)
c980d109
ACM
3790{
3791 if (event->attr.sample_id_all)
3792 __perf_event_header__init_id(header, data, event);
3793}
3794
3795static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3796 struct perf_sample_data *data)
3797{
3798 u64 sample_type = data->type;
3799
3800 if (sample_type & PERF_SAMPLE_TID)
3801 perf_output_put(handle, data->tid_entry);
3802
3803 if (sample_type & PERF_SAMPLE_TIME)
3804 perf_output_put(handle, data->time);
3805
3806 if (sample_type & PERF_SAMPLE_ID)
3807 perf_output_put(handle, data->id);
3808
3809 if (sample_type & PERF_SAMPLE_STREAM_ID)
3810 perf_output_put(handle, data->stream_id);
3811
3812 if (sample_type & PERF_SAMPLE_CPU)
3813 perf_output_put(handle, data->cpu_entry);
3814}
3815
76369139
FW
3816void perf_event__output_id_sample(struct perf_event *event,
3817 struct perf_output_handle *handle,
3818 struct perf_sample_data *sample)
c980d109
ACM
3819{
3820 if (event->attr.sample_id_all)
3821 __perf_event__output_id_sample(handle, sample);
3822}
3823
3dab77fb 3824static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3825 struct perf_event *event,
3826 u64 enabled, u64 running)
3dab77fb 3827{
cdd6c482 3828 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3829 u64 values[4];
3830 int n = 0;
3831
b5e58793 3832 values[n++] = perf_event_count(event);
3dab77fb 3833 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3834 values[n++] = enabled +
cdd6c482 3835 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3836 }
3837 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3838 values[n++] = running +
cdd6c482 3839 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3840 }
3841 if (read_format & PERF_FORMAT_ID)
cdd6c482 3842 values[n++] = primary_event_id(event);
3dab77fb 3843
76369139 3844 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3845}
3846
3847/*
cdd6c482 3848 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3849 */
3850static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3851 struct perf_event *event,
3852 u64 enabled, u64 running)
3dab77fb 3853{
cdd6c482
IM
3854 struct perf_event *leader = event->group_leader, *sub;
3855 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3856 u64 values[5];
3857 int n = 0;
3858
3859 values[n++] = 1 + leader->nr_siblings;
3860
3861 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3862 values[n++] = enabled;
3dab77fb
PZ
3863
3864 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3865 values[n++] = running;
3dab77fb 3866
cdd6c482 3867 if (leader != event)
3dab77fb
PZ
3868 leader->pmu->read(leader);
3869
b5e58793 3870 values[n++] = perf_event_count(leader);
3dab77fb 3871 if (read_format & PERF_FORMAT_ID)
cdd6c482 3872 values[n++] = primary_event_id(leader);
3dab77fb 3873
76369139 3874 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3875
65abc865 3876 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3877 n = 0;
3878
cdd6c482 3879 if (sub != event)
3dab77fb
PZ
3880 sub->pmu->read(sub);
3881
b5e58793 3882 values[n++] = perf_event_count(sub);
3dab77fb 3883 if (read_format & PERF_FORMAT_ID)
cdd6c482 3884 values[n++] = primary_event_id(sub);
3dab77fb 3885
76369139 3886 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3887 }
3888}
3889
eed01528
SE
3890#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3891 PERF_FORMAT_TOTAL_TIME_RUNNING)
3892
3dab77fb 3893static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3894 struct perf_event *event)
3dab77fb 3895{
e3f3541c 3896 u64 enabled = 0, running = 0, now;
eed01528
SE
3897 u64 read_format = event->attr.read_format;
3898
3899 /*
3900 * compute total_time_enabled, total_time_running
3901 * based on snapshot values taken when the event
3902 * was last scheduled in.
3903 *
3904 * we cannot simply called update_context_time()
3905 * because of locking issue as we are called in
3906 * NMI context
3907 */
c4794295 3908 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3909 calc_timer_values(event, &now, &enabled, &running);
eed01528 3910
cdd6c482 3911 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3912 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3913 else
eed01528 3914 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3915}
3916
5622f295
MM
3917void perf_output_sample(struct perf_output_handle *handle,
3918 struct perf_event_header *header,
3919 struct perf_sample_data *data,
cdd6c482 3920 struct perf_event *event)
5622f295
MM
3921{
3922 u64 sample_type = data->type;
3923
3924 perf_output_put(handle, *header);
3925
3926 if (sample_type & PERF_SAMPLE_IP)
3927 perf_output_put(handle, data->ip);
3928
3929 if (sample_type & PERF_SAMPLE_TID)
3930 perf_output_put(handle, data->tid_entry);
3931
3932 if (sample_type & PERF_SAMPLE_TIME)
3933 perf_output_put(handle, data->time);
3934
3935 if (sample_type & PERF_SAMPLE_ADDR)
3936 perf_output_put(handle, data->addr);
3937
3938 if (sample_type & PERF_SAMPLE_ID)
3939 perf_output_put(handle, data->id);
3940
3941 if (sample_type & PERF_SAMPLE_STREAM_ID)
3942 perf_output_put(handle, data->stream_id);
3943
3944 if (sample_type & PERF_SAMPLE_CPU)
3945 perf_output_put(handle, data->cpu_entry);
3946
3947 if (sample_type & PERF_SAMPLE_PERIOD)
3948 perf_output_put(handle, data->period);
3949
3950 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3951 perf_output_read(handle, event);
5622f295
MM
3952
3953 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3954 if (data->callchain) {
3955 int size = 1;
3956
3957 if (data->callchain)
3958 size += data->callchain->nr;
3959
3960 size *= sizeof(u64);
3961
76369139 3962 __output_copy(handle, data->callchain, size);
5622f295
MM
3963 } else {
3964 u64 nr = 0;
3965 perf_output_put(handle, nr);
3966 }
3967 }
3968
3969 if (sample_type & PERF_SAMPLE_RAW) {
3970 if (data->raw) {
3971 perf_output_put(handle, data->raw->size);
76369139
FW
3972 __output_copy(handle, data->raw->data,
3973 data->raw->size);
5622f295
MM
3974 } else {
3975 struct {
3976 u32 size;
3977 u32 data;
3978 } raw = {
3979 .size = sizeof(u32),
3980 .data = 0,
3981 };
3982 perf_output_put(handle, raw);
3983 }
3984 }
a7ac67ea
PZ
3985
3986 if (!event->attr.watermark) {
3987 int wakeup_events = event->attr.wakeup_events;
3988
3989 if (wakeup_events) {
3990 struct ring_buffer *rb = handle->rb;
3991 int events = local_inc_return(&rb->events);
3992
3993 if (events >= wakeup_events) {
3994 local_sub(wakeup_events, &rb->events);
3995 local_inc(&rb->wakeup);
3996 }
3997 }
3998 }
bce38cd5
SE
3999
4000 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4001 if (data->br_stack) {
4002 size_t size;
4003
4004 size = data->br_stack->nr
4005 * sizeof(struct perf_branch_entry);
4006
4007 perf_output_put(handle, data->br_stack->nr);
4008 perf_output_copy(handle, data->br_stack->entries, size);
4009 } else {
4010 /*
4011 * we always store at least the value of nr
4012 */
4013 u64 nr = 0;
4014 perf_output_put(handle, nr);
4015 }
4016 }
5622f295
MM
4017}
4018
4019void perf_prepare_sample(struct perf_event_header *header,
4020 struct perf_sample_data *data,
cdd6c482 4021 struct perf_event *event,
5622f295 4022 struct pt_regs *regs)
7b732a75 4023{
cdd6c482 4024 u64 sample_type = event->attr.sample_type;
7b732a75 4025
cdd6c482 4026 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4027 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4028
4029 header->misc = 0;
4030 header->misc |= perf_misc_flags(regs);
6fab0192 4031
c980d109 4032 __perf_event_header__init_id(header, data, event);
6844c09d 4033
c320c7b7 4034 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4035 data->ip = perf_instruction_pointer(regs);
4036
b23f3325 4037 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4038 int size = 1;
394ee076 4039
5622f295
MM
4040 data->callchain = perf_callchain(regs);
4041
4042 if (data->callchain)
4043 size += data->callchain->nr;
4044
4045 header->size += size * sizeof(u64);
394ee076
PZ
4046 }
4047
3a43ce68 4048 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4049 int size = sizeof(u32);
4050
4051 if (data->raw)
4052 size += data->raw->size;
4053 else
4054 size += sizeof(u32);
4055
4056 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4057 header->size += size;
7f453c24 4058 }
bce38cd5
SE
4059
4060 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4061 int size = sizeof(u64); /* nr */
4062 if (data->br_stack) {
4063 size += data->br_stack->nr
4064 * sizeof(struct perf_branch_entry);
4065 }
4066 header->size += size;
4067 }
5622f295 4068}
7f453c24 4069
a8b0ca17 4070static void perf_event_output(struct perf_event *event,
5622f295
MM
4071 struct perf_sample_data *data,
4072 struct pt_regs *regs)
4073{
4074 struct perf_output_handle handle;
4075 struct perf_event_header header;
689802b2 4076
927c7a9e
FW
4077 /* protect the callchain buffers */
4078 rcu_read_lock();
4079
cdd6c482 4080 perf_prepare_sample(&header, data, event, regs);
5c148194 4081
a7ac67ea 4082 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4083 goto exit;
0322cd6e 4084
cdd6c482 4085 perf_output_sample(&handle, &header, data, event);
f413cdb8 4086
8a057d84 4087 perf_output_end(&handle);
927c7a9e
FW
4088
4089exit:
4090 rcu_read_unlock();
0322cd6e
PZ
4091}
4092
38b200d6 4093/*
cdd6c482 4094 * read event_id
38b200d6
PZ
4095 */
4096
4097struct perf_read_event {
4098 struct perf_event_header header;
4099
4100 u32 pid;
4101 u32 tid;
38b200d6
PZ
4102};
4103
4104static void
cdd6c482 4105perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4106 struct task_struct *task)
4107{
4108 struct perf_output_handle handle;
c980d109 4109 struct perf_sample_data sample;
dfc65094 4110 struct perf_read_event read_event = {
38b200d6 4111 .header = {
cdd6c482 4112 .type = PERF_RECORD_READ,
38b200d6 4113 .misc = 0,
c320c7b7 4114 .size = sizeof(read_event) + event->read_size,
38b200d6 4115 },
cdd6c482
IM
4116 .pid = perf_event_pid(event, task),
4117 .tid = perf_event_tid(event, task),
38b200d6 4118 };
3dab77fb 4119 int ret;
38b200d6 4120
c980d109 4121 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4122 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4123 if (ret)
4124 return;
4125
dfc65094 4126 perf_output_put(&handle, read_event);
cdd6c482 4127 perf_output_read(&handle, event);
c980d109 4128 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4129
38b200d6
PZ
4130 perf_output_end(&handle);
4131}
4132
60313ebe 4133/*
9f498cc5
PZ
4134 * task tracking -- fork/exit
4135 *
3af9e859 4136 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4137 */
4138
9f498cc5 4139struct perf_task_event {
3a80b4a3 4140 struct task_struct *task;
cdd6c482 4141 struct perf_event_context *task_ctx;
60313ebe
PZ
4142
4143 struct {
4144 struct perf_event_header header;
4145
4146 u32 pid;
4147 u32 ppid;
9f498cc5
PZ
4148 u32 tid;
4149 u32 ptid;
393b2ad8 4150 u64 time;
cdd6c482 4151 } event_id;
60313ebe
PZ
4152};
4153
cdd6c482 4154static void perf_event_task_output(struct perf_event *event,
9f498cc5 4155 struct perf_task_event *task_event)
60313ebe
PZ
4156{
4157 struct perf_output_handle handle;
c980d109 4158 struct perf_sample_data sample;
9f498cc5 4159 struct task_struct *task = task_event->task;
c980d109 4160 int ret, size = task_event->event_id.header.size;
8bb39f9a 4161
c980d109 4162 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4163
c980d109 4164 ret = perf_output_begin(&handle, event,
a7ac67ea 4165 task_event->event_id.header.size);
ef60777c 4166 if (ret)
c980d109 4167 goto out;
60313ebe 4168
cdd6c482
IM
4169 task_event->event_id.pid = perf_event_pid(event, task);
4170 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4171
cdd6c482
IM
4172 task_event->event_id.tid = perf_event_tid(event, task);
4173 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4174
cdd6c482 4175 perf_output_put(&handle, task_event->event_id);
393b2ad8 4176
c980d109
ACM
4177 perf_event__output_id_sample(event, &handle, &sample);
4178
60313ebe 4179 perf_output_end(&handle);
c980d109
ACM
4180out:
4181 task_event->event_id.header.size = size;
60313ebe
PZ
4182}
4183
cdd6c482 4184static int perf_event_task_match(struct perf_event *event)
60313ebe 4185{
6f93d0a7 4186 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4187 return 0;
4188
5632ab12 4189 if (!event_filter_match(event))
5d27c23d
PZ
4190 return 0;
4191
3af9e859
EM
4192 if (event->attr.comm || event->attr.mmap ||
4193 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4194 return 1;
4195
4196 return 0;
4197}
4198
cdd6c482 4199static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4200 struct perf_task_event *task_event)
60313ebe 4201{
cdd6c482 4202 struct perf_event *event;
60313ebe 4203
cdd6c482
IM
4204 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4205 if (perf_event_task_match(event))
4206 perf_event_task_output(event, task_event);
60313ebe 4207 }
60313ebe
PZ
4208}
4209
cdd6c482 4210static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4211{
4212 struct perf_cpu_context *cpuctx;
8dc85d54 4213 struct perf_event_context *ctx;
108b02cf 4214 struct pmu *pmu;
8dc85d54 4215 int ctxn;
60313ebe 4216
d6ff86cf 4217 rcu_read_lock();
108b02cf 4218 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4219 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4220 if (cpuctx->active_pmu != pmu)
4221 goto next;
108b02cf 4222 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4223
4224 ctx = task_event->task_ctx;
4225 if (!ctx) {
4226 ctxn = pmu->task_ctx_nr;
4227 if (ctxn < 0)
41945f6c 4228 goto next;
8dc85d54
PZ
4229 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4230 }
4231 if (ctx)
4232 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4233next:
4234 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4235 }
60313ebe
PZ
4236 rcu_read_unlock();
4237}
4238
cdd6c482
IM
4239static void perf_event_task(struct task_struct *task,
4240 struct perf_event_context *task_ctx,
3a80b4a3 4241 int new)
60313ebe 4242{
9f498cc5 4243 struct perf_task_event task_event;
60313ebe 4244
cdd6c482
IM
4245 if (!atomic_read(&nr_comm_events) &&
4246 !atomic_read(&nr_mmap_events) &&
4247 !atomic_read(&nr_task_events))
60313ebe
PZ
4248 return;
4249
9f498cc5 4250 task_event = (struct perf_task_event){
3a80b4a3
PZ
4251 .task = task,
4252 .task_ctx = task_ctx,
cdd6c482 4253 .event_id = {
60313ebe 4254 .header = {
cdd6c482 4255 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4256 .misc = 0,
cdd6c482 4257 .size = sizeof(task_event.event_id),
60313ebe 4258 },
573402db
PZ
4259 /* .pid */
4260 /* .ppid */
9f498cc5
PZ
4261 /* .tid */
4262 /* .ptid */
6f93d0a7 4263 .time = perf_clock(),
60313ebe
PZ
4264 },
4265 };
4266
cdd6c482 4267 perf_event_task_event(&task_event);
9f498cc5
PZ
4268}
4269
cdd6c482 4270void perf_event_fork(struct task_struct *task)
9f498cc5 4271{
cdd6c482 4272 perf_event_task(task, NULL, 1);
60313ebe
PZ
4273}
4274
8d1b2d93
PZ
4275/*
4276 * comm tracking
4277 */
4278
4279struct perf_comm_event {
22a4f650
IM
4280 struct task_struct *task;
4281 char *comm;
8d1b2d93
PZ
4282 int comm_size;
4283
4284 struct {
4285 struct perf_event_header header;
4286
4287 u32 pid;
4288 u32 tid;
cdd6c482 4289 } event_id;
8d1b2d93
PZ
4290};
4291
cdd6c482 4292static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4293 struct perf_comm_event *comm_event)
4294{
4295 struct perf_output_handle handle;
c980d109 4296 struct perf_sample_data sample;
cdd6c482 4297 int size = comm_event->event_id.header.size;
c980d109
ACM
4298 int ret;
4299
4300 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4301 ret = perf_output_begin(&handle, event,
a7ac67ea 4302 comm_event->event_id.header.size);
8d1b2d93
PZ
4303
4304 if (ret)
c980d109 4305 goto out;
8d1b2d93 4306
cdd6c482
IM
4307 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4308 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4309
cdd6c482 4310 perf_output_put(&handle, comm_event->event_id);
76369139 4311 __output_copy(&handle, comm_event->comm,
8d1b2d93 4312 comm_event->comm_size);
c980d109
ACM
4313
4314 perf_event__output_id_sample(event, &handle, &sample);
4315
8d1b2d93 4316 perf_output_end(&handle);
c980d109
ACM
4317out:
4318 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4319}
4320
cdd6c482 4321static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4322{
6f93d0a7 4323 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4324 return 0;
4325
5632ab12 4326 if (!event_filter_match(event))
5d27c23d
PZ
4327 return 0;
4328
cdd6c482 4329 if (event->attr.comm)
8d1b2d93
PZ
4330 return 1;
4331
4332 return 0;
4333}
4334
cdd6c482 4335static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4336 struct perf_comm_event *comm_event)
4337{
cdd6c482 4338 struct perf_event *event;
8d1b2d93 4339
cdd6c482
IM
4340 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4341 if (perf_event_comm_match(event))
4342 perf_event_comm_output(event, comm_event);
8d1b2d93 4343 }
8d1b2d93
PZ
4344}
4345
cdd6c482 4346static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4347{
4348 struct perf_cpu_context *cpuctx;
cdd6c482 4349 struct perf_event_context *ctx;
413ee3b4 4350 char comm[TASK_COMM_LEN];
8d1b2d93 4351 unsigned int size;
108b02cf 4352 struct pmu *pmu;
8dc85d54 4353 int ctxn;
8d1b2d93 4354
413ee3b4 4355 memset(comm, 0, sizeof(comm));
96b02d78 4356 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4357 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4358
4359 comm_event->comm = comm;
4360 comm_event->comm_size = size;
4361
cdd6c482 4362 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4363 rcu_read_lock();
108b02cf 4364 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4365 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4366 if (cpuctx->active_pmu != pmu)
4367 goto next;
108b02cf 4368 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4369
4370 ctxn = pmu->task_ctx_nr;
4371 if (ctxn < 0)
41945f6c 4372 goto next;
8dc85d54
PZ
4373
4374 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4375 if (ctx)
4376 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4377next:
4378 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4379 }
665c2142 4380 rcu_read_unlock();
8d1b2d93
PZ
4381}
4382
cdd6c482 4383void perf_event_comm(struct task_struct *task)
8d1b2d93 4384{
9ee318a7 4385 struct perf_comm_event comm_event;
8dc85d54
PZ
4386 struct perf_event_context *ctx;
4387 int ctxn;
9ee318a7 4388
8dc85d54
PZ
4389 for_each_task_context_nr(ctxn) {
4390 ctx = task->perf_event_ctxp[ctxn];
4391 if (!ctx)
4392 continue;
9ee318a7 4393
8dc85d54
PZ
4394 perf_event_enable_on_exec(ctx);
4395 }
9ee318a7 4396
cdd6c482 4397 if (!atomic_read(&nr_comm_events))
9ee318a7 4398 return;
a63eaf34 4399
9ee318a7 4400 comm_event = (struct perf_comm_event){
8d1b2d93 4401 .task = task,
573402db
PZ
4402 /* .comm */
4403 /* .comm_size */
cdd6c482 4404 .event_id = {
573402db 4405 .header = {
cdd6c482 4406 .type = PERF_RECORD_COMM,
573402db
PZ
4407 .misc = 0,
4408 /* .size */
4409 },
4410 /* .pid */
4411 /* .tid */
8d1b2d93
PZ
4412 },
4413 };
4414
cdd6c482 4415 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4416}
4417
0a4a9391
PZ
4418/*
4419 * mmap tracking
4420 */
4421
4422struct perf_mmap_event {
089dd79d
PZ
4423 struct vm_area_struct *vma;
4424
4425 const char *file_name;
4426 int file_size;
0a4a9391
PZ
4427
4428 struct {
4429 struct perf_event_header header;
4430
4431 u32 pid;
4432 u32 tid;
4433 u64 start;
4434 u64 len;
4435 u64 pgoff;
cdd6c482 4436 } event_id;
0a4a9391
PZ
4437};
4438
cdd6c482 4439static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4440 struct perf_mmap_event *mmap_event)
4441{
4442 struct perf_output_handle handle;
c980d109 4443 struct perf_sample_data sample;
cdd6c482 4444 int size = mmap_event->event_id.header.size;
c980d109 4445 int ret;
0a4a9391 4446
c980d109
ACM
4447 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4448 ret = perf_output_begin(&handle, event,
a7ac67ea 4449 mmap_event->event_id.header.size);
0a4a9391 4450 if (ret)
c980d109 4451 goto out;
0a4a9391 4452
cdd6c482
IM
4453 mmap_event->event_id.pid = perf_event_pid(event, current);
4454 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4455
cdd6c482 4456 perf_output_put(&handle, mmap_event->event_id);
76369139 4457 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4458 mmap_event->file_size);
c980d109
ACM
4459
4460 perf_event__output_id_sample(event, &handle, &sample);
4461
78d613eb 4462 perf_output_end(&handle);
c980d109
ACM
4463out:
4464 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4465}
4466
cdd6c482 4467static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4468 struct perf_mmap_event *mmap_event,
4469 int executable)
0a4a9391 4470{
6f93d0a7 4471 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4472 return 0;
4473
5632ab12 4474 if (!event_filter_match(event))
5d27c23d
PZ
4475 return 0;
4476
3af9e859
EM
4477 if ((!executable && event->attr.mmap_data) ||
4478 (executable && event->attr.mmap))
0a4a9391
PZ
4479 return 1;
4480
4481 return 0;
4482}
4483
cdd6c482 4484static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4485 struct perf_mmap_event *mmap_event,
4486 int executable)
0a4a9391 4487{
cdd6c482 4488 struct perf_event *event;
0a4a9391 4489
cdd6c482 4490 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4491 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4492 perf_event_mmap_output(event, mmap_event);
0a4a9391 4493 }
0a4a9391
PZ
4494}
4495
cdd6c482 4496static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4497{
4498 struct perf_cpu_context *cpuctx;
cdd6c482 4499 struct perf_event_context *ctx;
089dd79d
PZ
4500 struct vm_area_struct *vma = mmap_event->vma;
4501 struct file *file = vma->vm_file;
0a4a9391
PZ
4502 unsigned int size;
4503 char tmp[16];
4504 char *buf = NULL;
089dd79d 4505 const char *name;
108b02cf 4506 struct pmu *pmu;
8dc85d54 4507 int ctxn;
0a4a9391 4508
413ee3b4
AB
4509 memset(tmp, 0, sizeof(tmp));
4510
0a4a9391 4511 if (file) {
413ee3b4 4512 /*
76369139 4513 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4514 * need to add enough zero bytes after the string to handle
4515 * the 64bit alignment we do later.
4516 */
4517 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4518 if (!buf) {
4519 name = strncpy(tmp, "//enomem", sizeof(tmp));
4520 goto got_name;
4521 }
d3d21c41 4522 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4523 if (IS_ERR(name)) {
4524 name = strncpy(tmp, "//toolong", sizeof(tmp));
4525 goto got_name;
4526 }
4527 } else {
413ee3b4
AB
4528 if (arch_vma_name(mmap_event->vma)) {
4529 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4530 sizeof(tmp));
089dd79d 4531 goto got_name;
413ee3b4 4532 }
089dd79d
PZ
4533
4534 if (!vma->vm_mm) {
4535 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4536 goto got_name;
3af9e859
EM
4537 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4538 vma->vm_end >= vma->vm_mm->brk) {
4539 name = strncpy(tmp, "[heap]", sizeof(tmp));
4540 goto got_name;
4541 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4542 vma->vm_end >= vma->vm_mm->start_stack) {
4543 name = strncpy(tmp, "[stack]", sizeof(tmp));
4544 goto got_name;
089dd79d
PZ
4545 }
4546
0a4a9391
PZ
4547 name = strncpy(tmp, "//anon", sizeof(tmp));
4548 goto got_name;
4549 }
4550
4551got_name:
888fcee0 4552 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4553
4554 mmap_event->file_name = name;
4555 mmap_event->file_size = size;
4556
cdd6c482 4557 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4558
f6d9dd23 4559 rcu_read_lock();
108b02cf 4560 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4561 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4562 if (cpuctx->active_pmu != pmu)
4563 goto next;
108b02cf
PZ
4564 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4565 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4566
4567 ctxn = pmu->task_ctx_nr;
4568 if (ctxn < 0)
41945f6c 4569 goto next;
8dc85d54
PZ
4570
4571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4572 if (ctx) {
4573 perf_event_mmap_ctx(ctx, mmap_event,
4574 vma->vm_flags & VM_EXEC);
4575 }
41945f6c
PZ
4576next:
4577 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4578 }
665c2142
PZ
4579 rcu_read_unlock();
4580
0a4a9391
PZ
4581 kfree(buf);
4582}
4583
3af9e859 4584void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4585{
9ee318a7
PZ
4586 struct perf_mmap_event mmap_event;
4587
cdd6c482 4588 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4589 return;
4590
4591 mmap_event = (struct perf_mmap_event){
089dd79d 4592 .vma = vma,
573402db
PZ
4593 /* .file_name */
4594 /* .file_size */
cdd6c482 4595 .event_id = {
573402db 4596 .header = {
cdd6c482 4597 .type = PERF_RECORD_MMAP,
39447b38 4598 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4599 /* .size */
4600 },
4601 /* .pid */
4602 /* .tid */
089dd79d
PZ
4603 .start = vma->vm_start,
4604 .len = vma->vm_end - vma->vm_start,
3a0304e9 4605 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4606 },
4607 };
4608
cdd6c482 4609 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4610}
4611
a78ac325
PZ
4612/*
4613 * IRQ throttle logging
4614 */
4615
cdd6c482 4616static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4617{
4618 struct perf_output_handle handle;
c980d109 4619 struct perf_sample_data sample;
a78ac325
PZ
4620 int ret;
4621
4622 struct {
4623 struct perf_event_header header;
4624 u64 time;
cca3f454 4625 u64 id;
7f453c24 4626 u64 stream_id;
a78ac325
PZ
4627 } throttle_event = {
4628 .header = {
cdd6c482 4629 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4630 .misc = 0,
4631 .size = sizeof(throttle_event),
4632 },
def0a9b2 4633 .time = perf_clock(),
cdd6c482
IM
4634 .id = primary_event_id(event),
4635 .stream_id = event->id,
a78ac325
PZ
4636 };
4637
966ee4d6 4638 if (enable)
cdd6c482 4639 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4640
c980d109
ACM
4641 perf_event_header__init_id(&throttle_event.header, &sample, event);
4642
4643 ret = perf_output_begin(&handle, event,
a7ac67ea 4644 throttle_event.header.size);
a78ac325
PZ
4645 if (ret)
4646 return;
4647
4648 perf_output_put(&handle, throttle_event);
c980d109 4649 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4650 perf_output_end(&handle);
4651}
4652
f6c7d5fe 4653/*
cdd6c482 4654 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4655 */
4656
a8b0ca17 4657static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4658 int throttle, struct perf_sample_data *data,
4659 struct pt_regs *regs)
f6c7d5fe 4660{
cdd6c482
IM
4661 int events = atomic_read(&event->event_limit);
4662 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4663 u64 seq;
79f14641
PZ
4664 int ret = 0;
4665
96398826
PZ
4666 /*
4667 * Non-sampling counters might still use the PMI to fold short
4668 * hardware counters, ignore those.
4669 */
4670 if (unlikely(!is_sampling_event(event)))
4671 return 0;
4672
e050e3f0
SE
4673 seq = __this_cpu_read(perf_throttled_seq);
4674 if (seq != hwc->interrupts_seq) {
4675 hwc->interrupts_seq = seq;
4676 hwc->interrupts = 1;
4677 } else {
4678 hwc->interrupts++;
4679 if (unlikely(throttle
4680 && hwc->interrupts >= max_samples_per_tick)) {
4681 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4682 hwc->interrupts = MAX_INTERRUPTS;
4683 perf_log_throttle(event, 0);
a78ac325
PZ
4684 ret = 1;
4685 }
e050e3f0 4686 }
60db5e09 4687
cdd6c482 4688 if (event->attr.freq) {
def0a9b2 4689 u64 now = perf_clock();
abd50713 4690 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4691
abd50713 4692 hwc->freq_time_stamp = now;
bd2b5b12 4693
abd50713 4694 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4695 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4696 }
4697
2023b359
PZ
4698 /*
4699 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4700 * events
2023b359
PZ
4701 */
4702
cdd6c482
IM
4703 event->pending_kill = POLL_IN;
4704 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4705 ret = 1;
cdd6c482 4706 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4707 event->pending_disable = 1;
4708 irq_work_queue(&event->pending);
79f14641
PZ
4709 }
4710
453f19ee 4711 if (event->overflow_handler)
a8b0ca17 4712 event->overflow_handler(event, data, regs);
453f19ee 4713 else
a8b0ca17 4714 perf_event_output(event, data, regs);
453f19ee 4715
f506b3dc 4716 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4717 event->pending_wakeup = 1;
4718 irq_work_queue(&event->pending);
f506b3dc
PZ
4719 }
4720
79f14641 4721 return ret;
f6c7d5fe
PZ
4722}
4723
a8b0ca17 4724int perf_event_overflow(struct perf_event *event,
5622f295
MM
4725 struct perf_sample_data *data,
4726 struct pt_regs *regs)
850bc73f 4727{
a8b0ca17 4728 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4729}
4730
15dbf27c 4731/*
cdd6c482 4732 * Generic software event infrastructure
15dbf27c
PZ
4733 */
4734
b28ab83c
PZ
4735struct swevent_htable {
4736 struct swevent_hlist *swevent_hlist;
4737 struct mutex hlist_mutex;
4738 int hlist_refcount;
4739
4740 /* Recursion avoidance in each contexts */
4741 int recursion[PERF_NR_CONTEXTS];
4742};
4743
4744static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4745
7b4b6658 4746/*
cdd6c482
IM
4747 * We directly increment event->count and keep a second value in
4748 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4749 * is kept in the range [-sample_period, 0] so that we can use the
4750 * sign as trigger.
4751 */
4752
cdd6c482 4753static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4754{
cdd6c482 4755 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4756 u64 period = hwc->last_period;
4757 u64 nr, offset;
4758 s64 old, val;
4759
4760 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4761
4762again:
e7850595 4763 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4764 if (val < 0)
4765 return 0;
15dbf27c 4766
7b4b6658
PZ
4767 nr = div64_u64(period + val, period);
4768 offset = nr * period;
4769 val -= offset;
e7850595 4770 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4771 goto again;
15dbf27c 4772
7b4b6658 4773 return nr;
15dbf27c
PZ
4774}
4775
0cff784a 4776static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4777 struct perf_sample_data *data,
5622f295 4778 struct pt_regs *regs)
15dbf27c 4779{
cdd6c482 4780 struct hw_perf_event *hwc = &event->hw;
850bc73f 4781 int throttle = 0;
15dbf27c 4782
0cff784a
PZ
4783 if (!overflow)
4784 overflow = perf_swevent_set_period(event);
15dbf27c 4785
7b4b6658
PZ
4786 if (hwc->interrupts == MAX_INTERRUPTS)
4787 return;
15dbf27c 4788
7b4b6658 4789 for (; overflow; overflow--) {
a8b0ca17 4790 if (__perf_event_overflow(event, throttle,
5622f295 4791 data, regs)) {
7b4b6658
PZ
4792 /*
4793 * We inhibit the overflow from happening when
4794 * hwc->interrupts == MAX_INTERRUPTS.
4795 */
4796 break;
4797 }
cf450a73 4798 throttle = 1;
7b4b6658 4799 }
15dbf27c
PZ
4800}
4801
a4eaf7f1 4802static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4803 struct perf_sample_data *data,
5622f295 4804 struct pt_regs *regs)
7b4b6658 4805{
cdd6c482 4806 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4807
e7850595 4808 local64_add(nr, &event->count);
d6d020e9 4809
0cff784a
PZ
4810 if (!regs)
4811 return;
4812
6c7e550f 4813 if (!is_sampling_event(event))
7b4b6658 4814 return;
d6d020e9 4815
5d81e5cf
AV
4816 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4817 data->period = nr;
4818 return perf_swevent_overflow(event, 1, data, regs);
4819 } else
4820 data->period = event->hw.last_period;
4821
0cff784a 4822 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4823 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4824
e7850595 4825 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4826 return;
df1a132b 4827
a8b0ca17 4828 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4829}
4830
f5ffe02e
FW
4831static int perf_exclude_event(struct perf_event *event,
4832 struct pt_regs *regs)
4833{
a4eaf7f1 4834 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4835 return 1;
a4eaf7f1 4836
f5ffe02e
FW
4837 if (regs) {
4838 if (event->attr.exclude_user && user_mode(regs))
4839 return 1;
4840
4841 if (event->attr.exclude_kernel && !user_mode(regs))
4842 return 1;
4843 }
4844
4845 return 0;
4846}
4847
cdd6c482 4848static int perf_swevent_match(struct perf_event *event,
1c432d89 4849 enum perf_type_id type,
6fb2915d
LZ
4850 u32 event_id,
4851 struct perf_sample_data *data,
4852 struct pt_regs *regs)
15dbf27c 4853{
cdd6c482 4854 if (event->attr.type != type)
a21ca2ca 4855 return 0;
f5ffe02e 4856
cdd6c482 4857 if (event->attr.config != event_id)
15dbf27c
PZ
4858 return 0;
4859
f5ffe02e
FW
4860 if (perf_exclude_event(event, regs))
4861 return 0;
15dbf27c
PZ
4862
4863 return 1;
4864}
4865
76e1d904
FW
4866static inline u64 swevent_hash(u64 type, u32 event_id)
4867{
4868 u64 val = event_id | (type << 32);
4869
4870 return hash_64(val, SWEVENT_HLIST_BITS);
4871}
4872
49f135ed
FW
4873static inline struct hlist_head *
4874__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4875{
49f135ed
FW
4876 u64 hash = swevent_hash(type, event_id);
4877
4878 return &hlist->heads[hash];
4879}
76e1d904 4880
49f135ed
FW
4881/* For the read side: events when they trigger */
4882static inline struct hlist_head *
b28ab83c 4883find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4884{
4885 struct swevent_hlist *hlist;
76e1d904 4886
b28ab83c 4887 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4888 if (!hlist)
4889 return NULL;
4890
49f135ed
FW
4891 return __find_swevent_head(hlist, type, event_id);
4892}
4893
4894/* For the event head insertion and removal in the hlist */
4895static inline struct hlist_head *
b28ab83c 4896find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4897{
4898 struct swevent_hlist *hlist;
4899 u32 event_id = event->attr.config;
4900 u64 type = event->attr.type;
4901
4902 /*
4903 * Event scheduling is always serialized against hlist allocation
4904 * and release. Which makes the protected version suitable here.
4905 * The context lock guarantees that.
4906 */
b28ab83c 4907 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4908 lockdep_is_held(&event->ctx->lock));
4909 if (!hlist)
4910 return NULL;
4911
4912 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4913}
4914
4915static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4916 u64 nr,
76e1d904
FW
4917 struct perf_sample_data *data,
4918 struct pt_regs *regs)
15dbf27c 4919{
b28ab83c 4920 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4921 struct perf_event *event;
76e1d904
FW
4922 struct hlist_node *node;
4923 struct hlist_head *head;
15dbf27c 4924
76e1d904 4925 rcu_read_lock();
b28ab83c 4926 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4927 if (!head)
4928 goto end;
4929
4930 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4931 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4932 perf_swevent_event(event, nr, data, regs);
15dbf27c 4933 }
76e1d904
FW
4934end:
4935 rcu_read_unlock();
15dbf27c
PZ
4936}
4937
4ed7c92d 4938int perf_swevent_get_recursion_context(void)
96f6d444 4939{
b28ab83c 4940 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4941
b28ab83c 4942 return get_recursion_context(swhash->recursion);
96f6d444 4943}
645e8cc0 4944EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4945
fa9f90be 4946inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4947{
b28ab83c 4948 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4949
b28ab83c 4950 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4951}
15dbf27c 4952
a8b0ca17 4953void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4954{
a4234bfc 4955 struct perf_sample_data data;
4ed7c92d
PZ
4956 int rctx;
4957
1c024eca 4958 preempt_disable_notrace();
4ed7c92d
PZ
4959 rctx = perf_swevent_get_recursion_context();
4960 if (rctx < 0)
4961 return;
a4234bfc 4962
fd0d000b 4963 perf_sample_data_init(&data, addr, 0);
92bf309a 4964
a8b0ca17 4965 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4966
4967 perf_swevent_put_recursion_context(rctx);
1c024eca 4968 preempt_enable_notrace();
b8e83514
PZ
4969}
4970
cdd6c482 4971static void perf_swevent_read(struct perf_event *event)
15dbf27c 4972{
15dbf27c
PZ
4973}
4974
a4eaf7f1 4975static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4976{
b28ab83c 4977 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4978 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4979 struct hlist_head *head;
4980
6c7e550f 4981 if (is_sampling_event(event)) {
7b4b6658 4982 hwc->last_period = hwc->sample_period;
cdd6c482 4983 perf_swevent_set_period(event);
7b4b6658 4984 }
76e1d904 4985
a4eaf7f1
PZ
4986 hwc->state = !(flags & PERF_EF_START);
4987
b28ab83c 4988 head = find_swevent_head(swhash, event);
76e1d904
FW
4989 if (WARN_ON_ONCE(!head))
4990 return -EINVAL;
4991
4992 hlist_add_head_rcu(&event->hlist_entry, head);
4993
15dbf27c
PZ
4994 return 0;
4995}
4996
a4eaf7f1 4997static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 4998{
76e1d904 4999 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5000}
5001
a4eaf7f1 5002static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5003{
a4eaf7f1 5004 event->hw.state = 0;
d6d020e9 5005}
aa9c4c0f 5006
a4eaf7f1 5007static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5008{
a4eaf7f1 5009 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5010}
5011
49f135ed
FW
5012/* Deref the hlist from the update side */
5013static inline struct swevent_hlist *
b28ab83c 5014swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5015{
b28ab83c
PZ
5016 return rcu_dereference_protected(swhash->swevent_hlist,
5017 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5018}
5019
b28ab83c 5020static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5021{
b28ab83c 5022 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5023
49f135ed 5024 if (!hlist)
76e1d904
FW
5025 return;
5026
b28ab83c 5027 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5028 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5029}
5030
5031static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5032{
b28ab83c 5033 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5034
b28ab83c 5035 mutex_lock(&swhash->hlist_mutex);
76e1d904 5036
b28ab83c
PZ
5037 if (!--swhash->hlist_refcount)
5038 swevent_hlist_release(swhash);
76e1d904 5039
b28ab83c 5040 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5041}
5042
5043static void swevent_hlist_put(struct perf_event *event)
5044{
5045 int cpu;
5046
5047 if (event->cpu != -1) {
5048 swevent_hlist_put_cpu(event, event->cpu);
5049 return;
5050 }
5051
5052 for_each_possible_cpu(cpu)
5053 swevent_hlist_put_cpu(event, cpu);
5054}
5055
5056static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5057{
b28ab83c 5058 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5059 int err = 0;
5060
b28ab83c 5061 mutex_lock(&swhash->hlist_mutex);
76e1d904 5062
b28ab83c 5063 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5064 struct swevent_hlist *hlist;
5065
5066 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5067 if (!hlist) {
5068 err = -ENOMEM;
5069 goto exit;
5070 }
b28ab83c 5071 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5072 }
b28ab83c 5073 swhash->hlist_refcount++;
9ed6060d 5074exit:
b28ab83c 5075 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5076
5077 return err;
5078}
5079
5080static int swevent_hlist_get(struct perf_event *event)
5081{
5082 int err;
5083 int cpu, failed_cpu;
5084
5085 if (event->cpu != -1)
5086 return swevent_hlist_get_cpu(event, event->cpu);
5087
5088 get_online_cpus();
5089 for_each_possible_cpu(cpu) {
5090 err = swevent_hlist_get_cpu(event, cpu);
5091 if (err) {
5092 failed_cpu = cpu;
5093 goto fail;
5094 }
5095 }
5096 put_online_cpus();
5097
5098 return 0;
9ed6060d 5099fail:
76e1d904
FW
5100 for_each_possible_cpu(cpu) {
5101 if (cpu == failed_cpu)
5102 break;
5103 swevent_hlist_put_cpu(event, cpu);
5104 }
5105
5106 put_online_cpus();
5107 return err;
5108}
5109
c5905afb 5110struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5111
b0a873eb
PZ
5112static void sw_perf_event_destroy(struct perf_event *event)
5113{
5114 u64 event_id = event->attr.config;
95476b64 5115
b0a873eb
PZ
5116 WARN_ON(event->parent);
5117
c5905afb 5118 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5119 swevent_hlist_put(event);
5120}
5121
5122static int perf_swevent_init(struct perf_event *event)
5123{
5124 int event_id = event->attr.config;
5125
5126 if (event->attr.type != PERF_TYPE_SOFTWARE)
5127 return -ENOENT;
5128
2481c5fa
SE
5129 /*
5130 * no branch sampling for software events
5131 */
5132 if (has_branch_stack(event))
5133 return -EOPNOTSUPP;
5134
b0a873eb
PZ
5135 switch (event_id) {
5136 case PERF_COUNT_SW_CPU_CLOCK:
5137 case PERF_COUNT_SW_TASK_CLOCK:
5138 return -ENOENT;
5139
5140 default:
5141 break;
5142 }
5143
ce677831 5144 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5145 return -ENOENT;
5146
5147 if (!event->parent) {
5148 int err;
5149
5150 err = swevent_hlist_get(event);
5151 if (err)
5152 return err;
5153
c5905afb 5154 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5155 event->destroy = sw_perf_event_destroy;
5156 }
5157
5158 return 0;
5159}
5160
35edc2a5
PZ
5161static int perf_swevent_event_idx(struct perf_event *event)
5162{
5163 return 0;
5164}
5165
b0a873eb 5166static struct pmu perf_swevent = {
89a1e187 5167 .task_ctx_nr = perf_sw_context,
95476b64 5168
b0a873eb 5169 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5170 .add = perf_swevent_add,
5171 .del = perf_swevent_del,
5172 .start = perf_swevent_start,
5173 .stop = perf_swevent_stop,
1c024eca 5174 .read = perf_swevent_read,
35edc2a5
PZ
5175
5176 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5177};
5178
b0a873eb
PZ
5179#ifdef CONFIG_EVENT_TRACING
5180
1c024eca
PZ
5181static int perf_tp_filter_match(struct perf_event *event,
5182 struct perf_sample_data *data)
5183{
5184 void *record = data->raw->data;
5185
5186 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5187 return 1;
5188 return 0;
5189}
5190
5191static int perf_tp_event_match(struct perf_event *event,
5192 struct perf_sample_data *data,
5193 struct pt_regs *regs)
5194{
a0f7d0f7
FW
5195 if (event->hw.state & PERF_HES_STOPPED)
5196 return 0;
580d607c
PZ
5197 /*
5198 * All tracepoints are from kernel-space.
5199 */
5200 if (event->attr.exclude_kernel)
1c024eca
PZ
5201 return 0;
5202
5203 if (!perf_tp_filter_match(event, data))
5204 return 0;
5205
5206 return 1;
5207}
5208
5209void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
ecc55f84 5210 struct pt_regs *regs, struct hlist_head *head, int rctx)
95476b64
FW
5211{
5212 struct perf_sample_data data;
1c024eca
PZ
5213 struct perf_event *event;
5214 struct hlist_node *node;
5215
95476b64
FW
5216 struct perf_raw_record raw = {
5217 .size = entry_size,
5218 .data = record,
5219 };
5220
fd0d000b 5221 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5222 data.raw = &raw;
5223
1c024eca
PZ
5224 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5225 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5226 perf_swevent_event(event, count, &data, regs);
4f41c013 5227 }
ecc55f84
PZ
5228
5229 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5230}
5231EXPORT_SYMBOL_GPL(perf_tp_event);
5232
cdd6c482 5233static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5234{
1c024eca 5235 perf_trace_destroy(event);
e077df4f
PZ
5236}
5237
b0a873eb 5238static int perf_tp_event_init(struct perf_event *event)
e077df4f 5239{
76e1d904
FW
5240 int err;
5241
b0a873eb
PZ
5242 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5243 return -ENOENT;
5244
2481c5fa
SE
5245 /*
5246 * no branch sampling for tracepoint events
5247 */
5248 if (has_branch_stack(event))
5249 return -EOPNOTSUPP;
5250
1c024eca
PZ
5251 err = perf_trace_init(event);
5252 if (err)
b0a873eb 5253 return err;
e077df4f 5254
cdd6c482 5255 event->destroy = tp_perf_event_destroy;
e077df4f 5256
b0a873eb
PZ
5257 return 0;
5258}
5259
5260static struct pmu perf_tracepoint = {
89a1e187
PZ
5261 .task_ctx_nr = perf_sw_context,
5262
b0a873eb 5263 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5264 .add = perf_trace_add,
5265 .del = perf_trace_del,
5266 .start = perf_swevent_start,
5267 .stop = perf_swevent_stop,
b0a873eb 5268 .read = perf_swevent_read,
35edc2a5
PZ
5269
5270 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5271};
5272
5273static inline void perf_tp_register(void)
5274{
2e80a82a 5275 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5276}
6fb2915d
LZ
5277
5278static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5279{
5280 char *filter_str;
5281 int ret;
5282
5283 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5284 return -EINVAL;
5285
5286 filter_str = strndup_user(arg, PAGE_SIZE);
5287 if (IS_ERR(filter_str))
5288 return PTR_ERR(filter_str);
5289
5290 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5291
5292 kfree(filter_str);
5293 return ret;
5294}
5295
5296static void perf_event_free_filter(struct perf_event *event)
5297{
5298 ftrace_profile_free_filter(event);
5299}
5300
e077df4f 5301#else
6fb2915d 5302
b0a873eb 5303static inline void perf_tp_register(void)
e077df4f 5304{
e077df4f 5305}
6fb2915d
LZ
5306
5307static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5308{
5309 return -ENOENT;
5310}
5311
5312static void perf_event_free_filter(struct perf_event *event)
5313{
5314}
5315
07b139c8 5316#endif /* CONFIG_EVENT_TRACING */
e077df4f 5317
24f1e32c 5318#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5319void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5320{
f5ffe02e
FW
5321 struct perf_sample_data sample;
5322 struct pt_regs *regs = data;
5323
fd0d000b 5324 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5325
a4eaf7f1 5326 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5327 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5328}
5329#endif
5330
b0a873eb
PZ
5331/*
5332 * hrtimer based swevent callback
5333 */
f29ac756 5334
b0a873eb 5335static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5336{
b0a873eb
PZ
5337 enum hrtimer_restart ret = HRTIMER_RESTART;
5338 struct perf_sample_data data;
5339 struct pt_regs *regs;
5340 struct perf_event *event;
5341 u64 period;
f29ac756 5342
b0a873eb 5343 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5344
5345 if (event->state != PERF_EVENT_STATE_ACTIVE)
5346 return HRTIMER_NORESTART;
5347
b0a873eb 5348 event->pmu->read(event);
f344011c 5349
fd0d000b 5350 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5351 regs = get_irq_regs();
5352
5353 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5354 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5355 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5356 ret = HRTIMER_NORESTART;
5357 }
24f1e32c 5358
b0a873eb
PZ
5359 period = max_t(u64, 10000, event->hw.sample_period);
5360 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5361
b0a873eb 5362 return ret;
f29ac756
PZ
5363}
5364
b0a873eb 5365static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5366{
b0a873eb 5367 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5368 s64 period;
5369
5370 if (!is_sampling_event(event))
5371 return;
f5ffe02e 5372
5d508e82
FBH
5373 period = local64_read(&hwc->period_left);
5374 if (period) {
5375 if (period < 0)
5376 period = 10000;
fa407f35 5377
5d508e82
FBH
5378 local64_set(&hwc->period_left, 0);
5379 } else {
5380 period = max_t(u64, 10000, hwc->sample_period);
5381 }
5382 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5383 ns_to_ktime(period), 0,
b5ab4cd5 5384 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5385}
b0a873eb
PZ
5386
5387static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5388{
b0a873eb
PZ
5389 struct hw_perf_event *hwc = &event->hw;
5390
6c7e550f 5391 if (is_sampling_event(event)) {
b0a873eb 5392 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5393 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5394
5395 hrtimer_cancel(&hwc->hrtimer);
5396 }
24f1e32c
FW
5397}
5398
ba3dd36c
PZ
5399static void perf_swevent_init_hrtimer(struct perf_event *event)
5400{
5401 struct hw_perf_event *hwc = &event->hw;
5402
5403 if (!is_sampling_event(event))
5404 return;
5405
5406 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5407 hwc->hrtimer.function = perf_swevent_hrtimer;
5408
5409 /*
5410 * Since hrtimers have a fixed rate, we can do a static freq->period
5411 * mapping and avoid the whole period adjust feedback stuff.
5412 */
5413 if (event->attr.freq) {
5414 long freq = event->attr.sample_freq;
5415
5416 event->attr.sample_period = NSEC_PER_SEC / freq;
5417 hwc->sample_period = event->attr.sample_period;
5418 local64_set(&hwc->period_left, hwc->sample_period);
5419 event->attr.freq = 0;
5420 }
5421}
5422
b0a873eb
PZ
5423/*
5424 * Software event: cpu wall time clock
5425 */
5426
5427static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5428{
b0a873eb
PZ
5429 s64 prev;
5430 u64 now;
5431
a4eaf7f1 5432 now = local_clock();
b0a873eb
PZ
5433 prev = local64_xchg(&event->hw.prev_count, now);
5434 local64_add(now - prev, &event->count);
24f1e32c 5435}
24f1e32c 5436
a4eaf7f1 5437static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5438{
a4eaf7f1 5439 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5440 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5441}
5442
a4eaf7f1 5443static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5444{
b0a873eb
PZ
5445 perf_swevent_cancel_hrtimer(event);
5446 cpu_clock_event_update(event);
5447}
f29ac756 5448
a4eaf7f1
PZ
5449static int cpu_clock_event_add(struct perf_event *event, int flags)
5450{
5451 if (flags & PERF_EF_START)
5452 cpu_clock_event_start(event, flags);
5453
5454 return 0;
5455}
5456
5457static void cpu_clock_event_del(struct perf_event *event, int flags)
5458{
5459 cpu_clock_event_stop(event, flags);
5460}
5461
b0a873eb
PZ
5462static void cpu_clock_event_read(struct perf_event *event)
5463{
5464 cpu_clock_event_update(event);
5465}
f344011c 5466
b0a873eb
PZ
5467static int cpu_clock_event_init(struct perf_event *event)
5468{
5469 if (event->attr.type != PERF_TYPE_SOFTWARE)
5470 return -ENOENT;
5471
5472 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5473 return -ENOENT;
5474
2481c5fa
SE
5475 /*
5476 * no branch sampling for software events
5477 */
5478 if (has_branch_stack(event))
5479 return -EOPNOTSUPP;
5480
ba3dd36c
PZ
5481 perf_swevent_init_hrtimer(event);
5482
b0a873eb 5483 return 0;
f29ac756
PZ
5484}
5485
b0a873eb 5486static struct pmu perf_cpu_clock = {
89a1e187
PZ
5487 .task_ctx_nr = perf_sw_context,
5488
b0a873eb 5489 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5490 .add = cpu_clock_event_add,
5491 .del = cpu_clock_event_del,
5492 .start = cpu_clock_event_start,
5493 .stop = cpu_clock_event_stop,
b0a873eb 5494 .read = cpu_clock_event_read,
35edc2a5
PZ
5495
5496 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5497};
5498
5499/*
5500 * Software event: task time clock
5501 */
5502
5503static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5504{
b0a873eb
PZ
5505 u64 prev;
5506 s64 delta;
5c92d124 5507
b0a873eb
PZ
5508 prev = local64_xchg(&event->hw.prev_count, now);
5509 delta = now - prev;
5510 local64_add(delta, &event->count);
5511}
5c92d124 5512
a4eaf7f1 5513static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5514{
a4eaf7f1 5515 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5516 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5517}
5518
a4eaf7f1 5519static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5520{
5521 perf_swevent_cancel_hrtimer(event);
5522 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5523}
5524
5525static int task_clock_event_add(struct perf_event *event, int flags)
5526{
5527 if (flags & PERF_EF_START)
5528 task_clock_event_start(event, flags);
b0a873eb 5529
a4eaf7f1
PZ
5530 return 0;
5531}
5532
5533static void task_clock_event_del(struct perf_event *event, int flags)
5534{
5535 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5536}
5537
5538static void task_clock_event_read(struct perf_event *event)
5539{
768a06e2
PZ
5540 u64 now = perf_clock();
5541 u64 delta = now - event->ctx->timestamp;
5542 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5543
5544 task_clock_event_update(event, time);
5545}
5546
5547static int task_clock_event_init(struct perf_event *event)
6fb2915d 5548{
b0a873eb
PZ
5549 if (event->attr.type != PERF_TYPE_SOFTWARE)
5550 return -ENOENT;
5551
5552 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5553 return -ENOENT;
5554
2481c5fa
SE
5555 /*
5556 * no branch sampling for software events
5557 */
5558 if (has_branch_stack(event))
5559 return -EOPNOTSUPP;
5560
ba3dd36c
PZ
5561 perf_swevent_init_hrtimer(event);
5562
b0a873eb 5563 return 0;
6fb2915d
LZ
5564}
5565
b0a873eb 5566static struct pmu perf_task_clock = {
89a1e187
PZ
5567 .task_ctx_nr = perf_sw_context,
5568
b0a873eb 5569 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5570 .add = task_clock_event_add,
5571 .del = task_clock_event_del,
5572 .start = task_clock_event_start,
5573 .stop = task_clock_event_stop,
b0a873eb 5574 .read = task_clock_event_read,
35edc2a5
PZ
5575
5576 .event_idx = perf_swevent_event_idx,
b0a873eb 5577};
6fb2915d 5578
ad5133b7 5579static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5580{
e077df4f 5581}
6fb2915d 5582
ad5133b7 5583static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5584{
ad5133b7 5585 return 0;
6fb2915d
LZ
5586}
5587
ad5133b7 5588static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5589{
ad5133b7 5590 perf_pmu_disable(pmu);
6fb2915d
LZ
5591}
5592
ad5133b7
PZ
5593static int perf_pmu_commit_txn(struct pmu *pmu)
5594{
5595 perf_pmu_enable(pmu);
5596 return 0;
5597}
e077df4f 5598
ad5133b7 5599static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5600{
ad5133b7 5601 perf_pmu_enable(pmu);
24f1e32c
FW
5602}
5603
35edc2a5
PZ
5604static int perf_event_idx_default(struct perf_event *event)
5605{
5606 return event->hw.idx + 1;
5607}
5608
8dc85d54
PZ
5609/*
5610 * Ensures all contexts with the same task_ctx_nr have the same
5611 * pmu_cpu_context too.
5612 */
5613static void *find_pmu_context(int ctxn)
24f1e32c 5614{
8dc85d54 5615 struct pmu *pmu;
b326e956 5616
8dc85d54
PZ
5617 if (ctxn < 0)
5618 return NULL;
24f1e32c 5619
8dc85d54
PZ
5620 list_for_each_entry(pmu, &pmus, entry) {
5621 if (pmu->task_ctx_nr == ctxn)
5622 return pmu->pmu_cpu_context;
5623 }
24f1e32c 5624
8dc85d54 5625 return NULL;
24f1e32c
FW
5626}
5627
51676957 5628static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5629{
51676957
PZ
5630 int cpu;
5631
5632 for_each_possible_cpu(cpu) {
5633 struct perf_cpu_context *cpuctx;
5634
5635 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5636
5637 if (cpuctx->active_pmu == old_pmu)
5638 cpuctx->active_pmu = pmu;
5639 }
5640}
5641
5642static void free_pmu_context(struct pmu *pmu)
5643{
5644 struct pmu *i;
f5ffe02e 5645
8dc85d54 5646 mutex_lock(&pmus_lock);
0475f9ea 5647 /*
8dc85d54 5648 * Like a real lame refcount.
0475f9ea 5649 */
51676957
PZ
5650 list_for_each_entry(i, &pmus, entry) {
5651 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5652 update_pmu_context(i, pmu);
8dc85d54 5653 goto out;
51676957 5654 }
8dc85d54 5655 }
d6d020e9 5656
51676957 5657 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5658out:
5659 mutex_unlock(&pmus_lock);
24f1e32c 5660}
2e80a82a 5661static struct idr pmu_idr;
d6d020e9 5662
abe43400
PZ
5663static ssize_t
5664type_show(struct device *dev, struct device_attribute *attr, char *page)
5665{
5666 struct pmu *pmu = dev_get_drvdata(dev);
5667
5668 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5669}
5670
5671static struct device_attribute pmu_dev_attrs[] = {
5672 __ATTR_RO(type),
5673 __ATTR_NULL,
5674};
5675
5676static int pmu_bus_running;
5677static struct bus_type pmu_bus = {
5678 .name = "event_source",
5679 .dev_attrs = pmu_dev_attrs,
5680};
5681
5682static void pmu_dev_release(struct device *dev)
5683{
5684 kfree(dev);
5685}
5686
5687static int pmu_dev_alloc(struct pmu *pmu)
5688{
5689 int ret = -ENOMEM;
5690
5691 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5692 if (!pmu->dev)
5693 goto out;
5694
0c9d42ed 5695 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5696 device_initialize(pmu->dev);
5697 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5698 if (ret)
5699 goto free_dev;
5700
5701 dev_set_drvdata(pmu->dev, pmu);
5702 pmu->dev->bus = &pmu_bus;
5703 pmu->dev->release = pmu_dev_release;
5704 ret = device_add(pmu->dev);
5705 if (ret)
5706 goto free_dev;
5707
5708out:
5709 return ret;
5710
5711free_dev:
5712 put_device(pmu->dev);
5713 goto out;
5714}
5715
547e9fd7 5716static struct lock_class_key cpuctx_mutex;
facc4307 5717static struct lock_class_key cpuctx_lock;
547e9fd7 5718
2e80a82a 5719int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5720{
108b02cf 5721 int cpu, ret;
24f1e32c 5722
b0a873eb 5723 mutex_lock(&pmus_lock);
33696fc0
PZ
5724 ret = -ENOMEM;
5725 pmu->pmu_disable_count = alloc_percpu(int);
5726 if (!pmu->pmu_disable_count)
5727 goto unlock;
f29ac756 5728
2e80a82a
PZ
5729 pmu->type = -1;
5730 if (!name)
5731 goto skip_type;
5732 pmu->name = name;
5733
5734 if (type < 0) {
5735 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5736 if (!err)
5737 goto free_pdc;
5738
5739 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5740 if (err) {
5741 ret = err;
5742 goto free_pdc;
5743 }
5744 }
5745 pmu->type = type;
5746
abe43400
PZ
5747 if (pmu_bus_running) {
5748 ret = pmu_dev_alloc(pmu);
5749 if (ret)
5750 goto free_idr;
5751 }
5752
2e80a82a 5753skip_type:
8dc85d54
PZ
5754 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5755 if (pmu->pmu_cpu_context)
5756 goto got_cpu_context;
f29ac756 5757
108b02cf
PZ
5758 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5759 if (!pmu->pmu_cpu_context)
abe43400 5760 goto free_dev;
f344011c 5761
108b02cf
PZ
5762 for_each_possible_cpu(cpu) {
5763 struct perf_cpu_context *cpuctx;
5764
5765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5766 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5767 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5768 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5769 cpuctx->ctx.type = cpu_context;
108b02cf 5770 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5771 cpuctx->jiffies_interval = 1;
5772 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5773 cpuctx->active_pmu = pmu;
108b02cf 5774 }
76e1d904 5775
8dc85d54 5776got_cpu_context:
ad5133b7
PZ
5777 if (!pmu->start_txn) {
5778 if (pmu->pmu_enable) {
5779 /*
5780 * If we have pmu_enable/pmu_disable calls, install
5781 * transaction stubs that use that to try and batch
5782 * hardware accesses.
5783 */
5784 pmu->start_txn = perf_pmu_start_txn;
5785 pmu->commit_txn = perf_pmu_commit_txn;
5786 pmu->cancel_txn = perf_pmu_cancel_txn;
5787 } else {
5788 pmu->start_txn = perf_pmu_nop_void;
5789 pmu->commit_txn = perf_pmu_nop_int;
5790 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5791 }
5c92d124 5792 }
15dbf27c 5793
ad5133b7
PZ
5794 if (!pmu->pmu_enable) {
5795 pmu->pmu_enable = perf_pmu_nop_void;
5796 pmu->pmu_disable = perf_pmu_nop_void;
5797 }
5798
35edc2a5
PZ
5799 if (!pmu->event_idx)
5800 pmu->event_idx = perf_event_idx_default;
5801
b0a873eb 5802 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5803 ret = 0;
5804unlock:
b0a873eb
PZ
5805 mutex_unlock(&pmus_lock);
5806
33696fc0 5807 return ret;
108b02cf 5808
abe43400
PZ
5809free_dev:
5810 device_del(pmu->dev);
5811 put_device(pmu->dev);
5812
2e80a82a
PZ
5813free_idr:
5814 if (pmu->type >= PERF_TYPE_MAX)
5815 idr_remove(&pmu_idr, pmu->type);
5816
108b02cf
PZ
5817free_pdc:
5818 free_percpu(pmu->pmu_disable_count);
5819 goto unlock;
f29ac756
PZ
5820}
5821
b0a873eb 5822void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5823{
b0a873eb
PZ
5824 mutex_lock(&pmus_lock);
5825 list_del_rcu(&pmu->entry);
5826 mutex_unlock(&pmus_lock);
5c92d124 5827
0475f9ea 5828 /*
cde8e884
PZ
5829 * We dereference the pmu list under both SRCU and regular RCU, so
5830 * synchronize against both of those.
0475f9ea 5831 */
b0a873eb 5832 synchronize_srcu(&pmus_srcu);
cde8e884 5833 synchronize_rcu();
d6d020e9 5834
33696fc0 5835 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5836 if (pmu->type >= PERF_TYPE_MAX)
5837 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5838 device_del(pmu->dev);
5839 put_device(pmu->dev);
51676957 5840 free_pmu_context(pmu);
b0a873eb 5841}
d6d020e9 5842
b0a873eb
PZ
5843struct pmu *perf_init_event(struct perf_event *event)
5844{
5845 struct pmu *pmu = NULL;
5846 int idx;
940c5b29 5847 int ret;
b0a873eb
PZ
5848
5849 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5850
5851 rcu_read_lock();
5852 pmu = idr_find(&pmu_idr, event->attr.type);
5853 rcu_read_unlock();
940c5b29 5854 if (pmu) {
7e5b2a01 5855 event->pmu = pmu;
940c5b29
LM
5856 ret = pmu->event_init(event);
5857 if (ret)
5858 pmu = ERR_PTR(ret);
2e80a82a 5859 goto unlock;
940c5b29 5860 }
2e80a82a 5861
b0a873eb 5862 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5863 event->pmu = pmu;
940c5b29 5864 ret = pmu->event_init(event);
b0a873eb 5865 if (!ret)
e5f4d339 5866 goto unlock;
76e1d904 5867
b0a873eb
PZ
5868 if (ret != -ENOENT) {
5869 pmu = ERR_PTR(ret);
e5f4d339 5870 goto unlock;
f344011c 5871 }
5c92d124 5872 }
e5f4d339
PZ
5873 pmu = ERR_PTR(-ENOENT);
5874unlock:
b0a873eb 5875 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5876
4aeb0b42 5877 return pmu;
5c92d124
IM
5878}
5879
0793a61d 5880/*
cdd6c482 5881 * Allocate and initialize a event structure
0793a61d 5882 */
cdd6c482 5883static struct perf_event *
c3f00c70 5884perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5885 struct task_struct *task,
5886 struct perf_event *group_leader,
5887 struct perf_event *parent_event,
4dc0da86
AK
5888 perf_overflow_handler_t overflow_handler,
5889 void *context)
0793a61d 5890{
51b0fe39 5891 struct pmu *pmu;
cdd6c482
IM
5892 struct perf_event *event;
5893 struct hw_perf_event *hwc;
d5d2bc0d 5894 long err;
0793a61d 5895
66832eb4
ON
5896 if ((unsigned)cpu >= nr_cpu_ids) {
5897 if (!task || cpu != -1)
5898 return ERR_PTR(-EINVAL);
5899 }
5900
c3f00c70 5901 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5902 if (!event)
d5d2bc0d 5903 return ERR_PTR(-ENOMEM);
0793a61d 5904
04289bb9 5905 /*
cdd6c482 5906 * Single events are their own group leaders, with an
04289bb9
IM
5907 * empty sibling list:
5908 */
5909 if (!group_leader)
cdd6c482 5910 group_leader = event;
04289bb9 5911
cdd6c482
IM
5912 mutex_init(&event->child_mutex);
5913 INIT_LIST_HEAD(&event->child_list);
fccc714b 5914
cdd6c482
IM
5915 INIT_LIST_HEAD(&event->group_entry);
5916 INIT_LIST_HEAD(&event->event_entry);
5917 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5918 INIT_LIST_HEAD(&event->rb_entry);
5919
cdd6c482 5920 init_waitqueue_head(&event->waitq);
e360adbe 5921 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5922
cdd6c482 5923 mutex_init(&event->mmap_mutex);
7b732a75 5924
cdd6c482
IM
5925 event->cpu = cpu;
5926 event->attr = *attr;
5927 event->group_leader = group_leader;
5928 event->pmu = NULL;
cdd6c482 5929 event->oncpu = -1;
a96bbc16 5930
cdd6c482 5931 event->parent = parent_event;
b84fbc9f 5932
cdd6c482
IM
5933 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5934 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5935
cdd6c482 5936 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5937
d580ff86
PZ
5938 if (task) {
5939 event->attach_state = PERF_ATTACH_TASK;
5940#ifdef CONFIG_HAVE_HW_BREAKPOINT
5941 /*
5942 * hw_breakpoint is a bit difficult here..
5943 */
5944 if (attr->type == PERF_TYPE_BREAKPOINT)
5945 event->hw.bp_target = task;
5946#endif
5947 }
5948
4dc0da86 5949 if (!overflow_handler && parent_event) {
b326e956 5950 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5951 context = parent_event->overflow_handler_context;
5952 }
66832eb4 5953
b326e956 5954 event->overflow_handler = overflow_handler;
4dc0da86 5955 event->overflow_handler_context = context;
97eaf530 5956
0d48696f 5957 if (attr->disabled)
cdd6c482 5958 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5959
4aeb0b42 5960 pmu = NULL;
b8e83514 5961
cdd6c482 5962 hwc = &event->hw;
bd2b5b12 5963 hwc->sample_period = attr->sample_period;
0d48696f 5964 if (attr->freq && attr->sample_freq)
bd2b5b12 5965 hwc->sample_period = 1;
eced1dfc 5966 hwc->last_period = hwc->sample_period;
bd2b5b12 5967
e7850595 5968 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5969
2023b359 5970 /*
cdd6c482 5971 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 5972 */
3dab77fb 5973 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
5974 goto done;
5975
b0a873eb 5976 pmu = perf_init_event(event);
974802ea 5977
d5d2bc0d
PM
5978done:
5979 err = 0;
4aeb0b42 5980 if (!pmu)
d5d2bc0d 5981 err = -EINVAL;
4aeb0b42
RR
5982 else if (IS_ERR(pmu))
5983 err = PTR_ERR(pmu);
5c92d124 5984
d5d2bc0d 5985 if (err) {
cdd6c482
IM
5986 if (event->ns)
5987 put_pid_ns(event->ns);
5988 kfree(event);
d5d2bc0d 5989 return ERR_PTR(err);
621a01ea 5990 }
d5d2bc0d 5991
cdd6c482 5992 if (!event->parent) {
82cd6def 5993 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 5994 static_key_slow_inc(&perf_sched_events.key);
3af9e859 5995 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
5996 atomic_inc(&nr_mmap_events);
5997 if (event->attr.comm)
5998 atomic_inc(&nr_comm_events);
5999 if (event->attr.task)
6000 atomic_inc(&nr_task_events);
927c7a9e
FW
6001 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6002 err = get_callchain_buffers();
6003 if (err) {
6004 free_event(event);
6005 return ERR_PTR(err);
6006 }
6007 }
d010b332
SE
6008 if (has_branch_stack(event)) {
6009 static_key_slow_inc(&perf_sched_events.key);
6010 if (!(event->attach_state & PERF_ATTACH_TASK))
6011 atomic_inc(&per_cpu(perf_branch_stack_events,
6012 event->cpu));
6013 }
f344011c 6014 }
9ee318a7 6015
cdd6c482 6016 return event;
0793a61d
TG
6017}
6018
cdd6c482
IM
6019static int perf_copy_attr(struct perf_event_attr __user *uattr,
6020 struct perf_event_attr *attr)
974802ea 6021{
974802ea 6022 u32 size;
cdf8073d 6023 int ret;
974802ea
PZ
6024
6025 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6026 return -EFAULT;
6027
6028 /*
6029 * zero the full structure, so that a short copy will be nice.
6030 */
6031 memset(attr, 0, sizeof(*attr));
6032
6033 ret = get_user(size, &uattr->size);
6034 if (ret)
6035 return ret;
6036
6037 if (size > PAGE_SIZE) /* silly large */
6038 goto err_size;
6039
6040 if (!size) /* abi compat */
6041 size = PERF_ATTR_SIZE_VER0;
6042
6043 if (size < PERF_ATTR_SIZE_VER0)
6044 goto err_size;
6045
6046 /*
6047 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6048 * ensure all the unknown bits are 0 - i.e. new
6049 * user-space does not rely on any kernel feature
6050 * extensions we dont know about yet.
974802ea
PZ
6051 */
6052 if (size > sizeof(*attr)) {
cdf8073d
IS
6053 unsigned char __user *addr;
6054 unsigned char __user *end;
6055 unsigned char val;
974802ea 6056
cdf8073d
IS
6057 addr = (void __user *)uattr + sizeof(*attr);
6058 end = (void __user *)uattr + size;
974802ea 6059
cdf8073d 6060 for (; addr < end; addr++) {
974802ea
PZ
6061 ret = get_user(val, addr);
6062 if (ret)
6063 return ret;
6064 if (val)
6065 goto err_size;
6066 }
b3e62e35 6067 size = sizeof(*attr);
974802ea
PZ
6068 }
6069
6070 ret = copy_from_user(attr, uattr, size);
6071 if (ret)
6072 return -EFAULT;
6073
cd757645 6074 if (attr->__reserved_1)
974802ea
PZ
6075 return -EINVAL;
6076
6077 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6078 return -EINVAL;
6079
6080 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6081 return -EINVAL;
6082
bce38cd5
SE
6083 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6084 u64 mask = attr->branch_sample_type;
6085
6086 /* only using defined bits */
6087 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6088 return -EINVAL;
6089
6090 /* at least one branch bit must be set */
6091 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6092 return -EINVAL;
6093
6094 /* kernel level capture: check permissions */
6095 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6096 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6097 return -EACCES;
6098
6099 /* propagate priv level, when not set for branch */
6100 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6101
6102 /* exclude_kernel checked on syscall entry */
6103 if (!attr->exclude_kernel)
6104 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6105
6106 if (!attr->exclude_user)
6107 mask |= PERF_SAMPLE_BRANCH_USER;
6108
6109 if (!attr->exclude_hv)
6110 mask |= PERF_SAMPLE_BRANCH_HV;
6111 /*
6112 * adjust user setting (for HW filter setup)
6113 */
6114 attr->branch_sample_type = mask;
6115 }
6116 }
974802ea
PZ
6117out:
6118 return ret;
6119
6120err_size:
6121 put_user(sizeof(*attr), &uattr->size);
6122 ret = -E2BIG;
6123 goto out;
6124}
6125
ac9721f3
PZ
6126static int
6127perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6128{
76369139 6129 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6130 int ret = -EINVAL;
6131
ac9721f3 6132 if (!output_event)
a4be7c27
PZ
6133 goto set;
6134
ac9721f3
PZ
6135 /* don't allow circular references */
6136 if (event == output_event)
a4be7c27
PZ
6137 goto out;
6138
0f139300
PZ
6139 /*
6140 * Don't allow cross-cpu buffers
6141 */
6142 if (output_event->cpu != event->cpu)
6143 goto out;
6144
6145 /*
76369139 6146 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6147 */
6148 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6149 goto out;
6150
a4be7c27 6151set:
cdd6c482 6152 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6153 /* Can't redirect output if we've got an active mmap() */
6154 if (atomic_read(&event->mmap_count))
6155 goto unlock;
a4be7c27 6156
ac9721f3 6157 if (output_event) {
76369139
FW
6158 /* get the rb we want to redirect to */
6159 rb = ring_buffer_get(output_event);
6160 if (!rb)
ac9721f3 6161 goto unlock;
a4be7c27
PZ
6162 }
6163
76369139
FW
6164 old_rb = event->rb;
6165 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6166 if (old_rb)
6167 ring_buffer_detach(event, old_rb);
a4be7c27 6168 ret = 0;
ac9721f3
PZ
6169unlock:
6170 mutex_unlock(&event->mmap_mutex);
6171
76369139
FW
6172 if (old_rb)
6173 ring_buffer_put(old_rb);
a4be7c27 6174out:
a4be7c27
PZ
6175 return ret;
6176}
6177
0793a61d 6178/**
cdd6c482 6179 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6180 *
cdd6c482 6181 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6182 * @pid: target pid
9f66a381 6183 * @cpu: target cpu
cdd6c482 6184 * @group_fd: group leader event fd
0793a61d 6185 */
cdd6c482
IM
6186SYSCALL_DEFINE5(perf_event_open,
6187 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6188 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6189{
b04243ef
PZ
6190 struct perf_event *group_leader = NULL, *output_event = NULL;
6191 struct perf_event *event, *sibling;
cdd6c482
IM
6192 struct perf_event_attr attr;
6193 struct perf_event_context *ctx;
6194 struct file *event_file = NULL;
04289bb9 6195 struct file *group_file = NULL;
38a81da2 6196 struct task_struct *task = NULL;
89a1e187 6197 struct pmu *pmu;
ea635c64 6198 int event_fd;
b04243ef 6199 int move_group = 0;
04289bb9 6200 int fput_needed = 0;
dc86cabe 6201 int err;
0793a61d 6202
2743a5b0 6203 /* for future expandability... */
e5d1367f 6204 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6205 return -EINVAL;
6206
dc86cabe
IM
6207 err = perf_copy_attr(attr_uptr, &attr);
6208 if (err)
6209 return err;
eab656ae 6210
0764771d
PZ
6211 if (!attr.exclude_kernel) {
6212 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6213 return -EACCES;
6214 }
6215
df58ab24 6216 if (attr.freq) {
cdd6c482 6217 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6218 return -EINVAL;
6219 }
6220
e5d1367f
SE
6221 /*
6222 * In cgroup mode, the pid argument is used to pass the fd
6223 * opened to the cgroup directory in cgroupfs. The cpu argument
6224 * designates the cpu on which to monitor threads from that
6225 * cgroup.
6226 */
6227 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6228 return -EINVAL;
6229
ea635c64
AV
6230 event_fd = get_unused_fd_flags(O_RDWR);
6231 if (event_fd < 0)
6232 return event_fd;
6233
ac9721f3
PZ
6234 if (group_fd != -1) {
6235 group_leader = perf_fget_light(group_fd, &fput_needed);
6236 if (IS_ERR(group_leader)) {
6237 err = PTR_ERR(group_leader);
d14b12d7 6238 goto err_fd;
ac9721f3
PZ
6239 }
6240 group_file = group_leader->filp;
6241 if (flags & PERF_FLAG_FD_OUTPUT)
6242 output_event = group_leader;
6243 if (flags & PERF_FLAG_FD_NO_GROUP)
6244 group_leader = NULL;
6245 }
6246
e5d1367f 6247 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6248 task = find_lively_task_by_vpid(pid);
6249 if (IS_ERR(task)) {
6250 err = PTR_ERR(task);
6251 goto err_group_fd;
6252 }
6253 }
6254
fbfc623f
YZ
6255 get_online_cpus();
6256
4dc0da86
AK
6257 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6258 NULL, NULL);
d14b12d7
SE
6259 if (IS_ERR(event)) {
6260 err = PTR_ERR(event);
c6be5a5c 6261 goto err_task;
d14b12d7
SE
6262 }
6263
e5d1367f
SE
6264 if (flags & PERF_FLAG_PID_CGROUP) {
6265 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6266 if (err)
6267 goto err_alloc;
08309379
PZ
6268 /*
6269 * one more event:
6270 * - that has cgroup constraint on event->cpu
6271 * - that may need work on context switch
6272 */
6273 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6274 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6275 }
6276
89a1e187
PZ
6277 /*
6278 * Special case software events and allow them to be part of
6279 * any hardware group.
6280 */
6281 pmu = event->pmu;
b04243ef
PZ
6282
6283 if (group_leader &&
6284 (is_software_event(event) != is_software_event(group_leader))) {
6285 if (is_software_event(event)) {
6286 /*
6287 * If event and group_leader are not both a software
6288 * event, and event is, then group leader is not.
6289 *
6290 * Allow the addition of software events to !software
6291 * groups, this is safe because software events never
6292 * fail to schedule.
6293 */
6294 pmu = group_leader->pmu;
6295 } else if (is_software_event(group_leader) &&
6296 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6297 /*
6298 * In case the group is a pure software group, and we
6299 * try to add a hardware event, move the whole group to
6300 * the hardware context.
6301 */
6302 move_group = 1;
6303 }
6304 }
89a1e187
PZ
6305
6306 /*
6307 * Get the target context (task or percpu):
6308 */
38a81da2 6309 ctx = find_get_context(pmu, task, cpu);
89a1e187
PZ
6310 if (IS_ERR(ctx)) {
6311 err = PTR_ERR(ctx);
c6be5a5c 6312 goto err_alloc;
89a1e187
PZ
6313 }
6314
fd1edb3a
PZ
6315 if (task) {
6316 put_task_struct(task);
6317 task = NULL;
6318 }
6319
ccff286d 6320 /*
cdd6c482 6321 * Look up the group leader (we will attach this event to it):
04289bb9 6322 */
ac9721f3 6323 if (group_leader) {
dc86cabe 6324 err = -EINVAL;
04289bb9 6325
04289bb9 6326 /*
ccff286d
IM
6327 * Do not allow a recursive hierarchy (this new sibling
6328 * becoming part of another group-sibling):
6329 */
6330 if (group_leader->group_leader != group_leader)
c3f00c70 6331 goto err_context;
ccff286d
IM
6332 /*
6333 * Do not allow to attach to a group in a different
6334 * task or CPU context:
04289bb9 6335 */
b04243ef
PZ
6336 if (move_group) {
6337 if (group_leader->ctx->type != ctx->type)
6338 goto err_context;
6339 } else {
6340 if (group_leader->ctx != ctx)
6341 goto err_context;
6342 }
6343
3b6f9e5c
PM
6344 /*
6345 * Only a group leader can be exclusive or pinned
6346 */
0d48696f 6347 if (attr.exclusive || attr.pinned)
c3f00c70 6348 goto err_context;
ac9721f3
PZ
6349 }
6350
6351 if (output_event) {
6352 err = perf_event_set_output(event, output_event);
6353 if (err)
c3f00c70 6354 goto err_context;
ac9721f3 6355 }
0793a61d 6356
ea635c64
AV
6357 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6358 if (IS_ERR(event_file)) {
6359 err = PTR_ERR(event_file);
c3f00c70 6360 goto err_context;
ea635c64 6361 }
9b51f66d 6362
b04243ef
PZ
6363 if (move_group) {
6364 struct perf_event_context *gctx = group_leader->ctx;
6365
6366 mutex_lock(&gctx->mutex);
fe4b04fa 6367 perf_remove_from_context(group_leader);
b04243ef
PZ
6368 list_for_each_entry(sibling, &group_leader->sibling_list,
6369 group_entry) {
fe4b04fa 6370 perf_remove_from_context(sibling);
b04243ef
PZ
6371 put_ctx(gctx);
6372 }
6373 mutex_unlock(&gctx->mutex);
6374 put_ctx(gctx);
ea635c64 6375 }
9b51f66d 6376
cdd6c482 6377 event->filp = event_file;
ad3a37de 6378 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6379 mutex_lock(&ctx->mutex);
b04243ef
PZ
6380
6381 if (move_group) {
6382 perf_install_in_context(ctx, group_leader, cpu);
6383 get_ctx(ctx);
6384 list_for_each_entry(sibling, &group_leader->sibling_list,
6385 group_entry) {
6386 perf_install_in_context(ctx, sibling, cpu);
6387 get_ctx(ctx);
6388 }
6389 }
6390
cdd6c482 6391 perf_install_in_context(ctx, event, cpu);
ad3a37de 6392 ++ctx->generation;
fe4b04fa 6393 perf_unpin_context(ctx);
d859e29f 6394 mutex_unlock(&ctx->mutex);
9b51f66d 6395
fbfc623f
YZ
6396 put_online_cpus();
6397
cdd6c482 6398 event->owner = current;
8882135b 6399
cdd6c482
IM
6400 mutex_lock(&current->perf_event_mutex);
6401 list_add_tail(&event->owner_entry, &current->perf_event_list);
6402 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6403
c320c7b7
ACM
6404 /*
6405 * Precalculate sample_data sizes
6406 */
6407 perf_event__header_size(event);
6844c09d 6408 perf_event__id_header_size(event);
c320c7b7 6409
8a49542c
PZ
6410 /*
6411 * Drop the reference on the group_event after placing the
6412 * new event on the sibling_list. This ensures destruction
6413 * of the group leader will find the pointer to itself in
6414 * perf_group_detach().
6415 */
ea635c64
AV
6416 fput_light(group_file, fput_needed);
6417 fd_install(event_fd, event_file);
6418 return event_fd;
0793a61d 6419
c3f00c70 6420err_context:
fe4b04fa 6421 perf_unpin_context(ctx);
ea635c64 6422 put_ctx(ctx);
c6be5a5c 6423err_alloc:
ea635c64 6424 free_event(event);
e7d0bc04 6425err_task:
fbfc623f 6426 put_online_cpus();
e7d0bc04
PZ
6427 if (task)
6428 put_task_struct(task);
89a1e187 6429err_group_fd:
dc86cabe 6430 fput_light(group_file, fput_needed);
ea635c64
AV
6431err_fd:
6432 put_unused_fd(event_fd);
dc86cabe 6433 return err;
0793a61d
TG
6434}
6435
fb0459d7
AV
6436/**
6437 * perf_event_create_kernel_counter
6438 *
6439 * @attr: attributes of the counter to create
6440 * @cpu: cpu in which the counter is bound
38a81da2 6441 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6442 */
6443struct perf_event *
6444perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6445 struct task_struct *task,
4dc0da86
AK
6446 perf_overflow_handler_t overflow_handler,
6447 void *context)
fb0459d7 6448{
fb0459d7 6449 struct perf_event_context *ctx;
c3f00c70 6450 struct perf_event *event;
fb0459d7 6451 int err;
d859e29f 6452
fb0459d7
AV
6453 /*
6454 * Get the target context (task or percpu):
6455 */
d859e29f 6456
4dc0da86
AK
6457 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6458 overflow_handler, context);
c3f00c70
PZ
6459 if (IS_ERR(event)) {
6460 err = PTR_ERR(event);
6461 goto err;
6462 }
d859e29f 6463
38a81da2 6464 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6465 if (IS_ERR(ctx)) {
6466 err = PTR_ERR(ctx);
c3f00c70 6467 goto err_free;
d859e29f 6468 }
fb0459d7
AV
6469
6470 event->filp = NULL;
6471 WARN_ON_ONCE(ctx->parent_ctx);
6472 mutex_lock(&ctx->mutex);
6473 perf_install_in_context(ctx, event, cpu);
6474 ++ctx->generation;
fe4b04fa 6475 perf_unpin_context(ctx);
fb0459d7
AV
6476 mutex_unlock(&ctx->mutex);
6477
fb0459d7
AV
6478 return event;
6479
c3f00c70
PZ
6480err_free:
6481 free_event(event);
6482err:
c6567f64 6483 return ERR_PTR(err);
9b51f66d 6484}
fb0459d7 6485EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6486
cdd6c482 6487static void sync_child_event(struct perf_event *child_event,
38b200d6 6488 struct task_struct *child)
d859e29f 6489{
cdd6c482 6490 struct perf_event *parent_event = child_event->parent;
8bc20959 6491 u64 child_val;
d859e29f 6492
cdd6c482
IM
6493 if (child_event->attr.inherit_stat)
6494 perf_event_read_event(child_event, child);
38b200d6 6495
b5e58793 6496 child_val = perf_event_count(child_event);
d859e29f
PM
6497
6498 /*
6499 * Add back the child's count to the parent's count:
6500 */
a6e6dea6 6501 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6502 atomic64_add(child_event->total_time_enabled,
6503 &parent_event->child_total_time_enabled);
6504 atomic64_add(child_event->total_time_running,
6505 &parent_event->child_total_time_running);
d859e29f
PM
6506
6507 /*
cdd6c482 6508 * Remove this event from the parent's list
d859e29f 6509 */
cdd6c482
IM
6510 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6511 mutex_lock(&parent_event->child_mutex);
6512 list_del_init(&child_event->child_list);
6513 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6514
6515 /*
cdd6c482 6516 * Release the parent event, if this was the last
d859e29f
PM
6517 * reference to it.
6518 */
cdd6c482 6519 fput(parent_event->filp);
d859e29f
PM
6520}
6521
9b51f66d 6522static void
cdd6c482
IM
6523__perf_event_exit_task(struct perf_event *child_event,
6524 struct perf_event_context *child_ctx,
38b200d6 6525 struct task_struct *child)
9b51f66d 6526{
38b435b1
PZ
6527 if (child_event->parent) {
6528 raw_spin_lock_irq(&child_ctx->lock);
6529 perf_group_detach(child_event);
6530 raw_spin_unlock_irq(&child_ctx->lock);
6531 }
9b51f66d 6532
fe4b04fa 6533 perf_remove_from_context(child_event);
0cc0c027 6534
9b51f66d 6535 /*
38b435b1 6536 * It can happen that the parent exits first, and has events
9b51f66d 6537 * that are still around due to the child reference. These
38b435b1 6538 * events need to be zapped.
9b51f66d 6539 */
38b435b1 6540 if (child_event->parent) {
cdd6c482
IM
6541 sync_child_event(child_event, child);
6542 free_event(child_event);
4bcf349a 6543 }
9b51f66d
IM
6544}
6545
8dc85d54 6546static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6547{
cdd6c482
IM
6548 struct perf_event *child_event, *tmp;
6549 struct perf_event_context *child_ctx;
a63eaf34 6550 unsigned long flags;
9b51f66d 6551
8dc85d54 6552 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6553 perf_event_task(child, NULL, 0);
9b51f66d 6554 return;
9f498cc5 6555 }
9b51f66d 6556
a63eaf34 6557 local_irq_save(flags);
ad3a37de
PM
6558 /*
6559 * We can't reschedule here because interrupts are disabled,
6560 * and either child is current or it is a task that can't be
6561 * scheduled, so we are now safe from rescheduling changing
6562 * our context.
6563 */
806839b2 6564 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6565
6566 /*
6567 * Take the context lock here so that if find_get_context is
cdd6c482 6568 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6569 * incremented the context's refcount before we do put_ctx below.
6570 */
e625cce1 6571 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6572 task_ctx_sched_out(child_ctx);
8dc85d54 6573 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6574 /*
6575 * If this context is a clone; unclone it so it can't get
6576 * swapped to another process while we're removing all
cdd6c482 6577 * the events from it.
71a851b4
PZ
6578 */
6579 unclone_ctx(child_ctx);
5e942bb3 6580 update_context_time(child_ctx);
e625cce1 6581 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6582
6583 /*
cdd6c482
IM
6584 * Report the task dead after unscheduling the events so that we
6585 * won't get any samples after PERF_RECORD_EXIT. We can however still
6586 * get a few PERF_RECORD_READ events.
9f498cc5 6587 */
cdd6c482 6588 perf_event_task(child, child_ctx, 0);
a63eaf34 6589
66fff224
PZ
6590 /*
6591 * We can recurse on the same lock type through:
6592 *
cdd6c482
IM
6593 * __perf_event_exit_task()
6594 * sync_child_event()
6595 * fput(parent_event->filp)
66fff224
PZ
6596 * perf_release()
6597 * mutex_lock(&ctx->mutex)
6598 *
6599 * But since its the parent context it won't be the same instance.
6600 */
a0507c84 6601 mutex_lock(&child_ctx->mutex);
a63eaf34 6602
8bc20959 6603again:
889ff015
FW
6604 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6605 group_entry)
6606 __perf_event_exit_task(child_event, child_ctx, child);
6607
6608 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6609 group_entry)
cdd6c482 6610 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6611
6612 /*
cdd6c482 6613 * If the last event was a group event, it will have appended all
8bc20959
PZ
6614 * its siblings to the list, but we obtained 'tmp' before that which
6615 * will still point to the list head terminating the iteration.
6616 */
889ff015
FW
6617 if (!list_empty(&child_ctx->pinned_groups) ||
6618 !list_empty(&child_ctx->flexible_groups))
8bc20959 6619 goto again;
a63eaf34
PM
6620
6621 mutex_unlock(&child_ctx->mutex);
6622
6623 put_ctx(child_ctx);
9b51f66d
IM
6624}
6625
8dc85d54
PZ
6626/*
6627 * When a child task exits, feed back event values to parent events.
6628 */
6629void perf_event_exit_task(struct task_struct *child)
6630{
8882135b 6631 struct perf_event *event, *tmp;
8dc85d54
PZ
6632 int ctxn;
6633
8882135b
PZ
6634 mutex_lock(&child->perf_event_mutex);
6635 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6636 owner_entry) {
6637 list_del_init(&event->owner_entry);
6638
6639 /*
6640 * Ensure the list deletion is visible before we clear
6641 * the owner, closes a race against perf_release() where
6642 * we need to serialize on the owner->perf_event_mutex.
6643 */
6644 smp_wmb();
6645 event->owner = NULL;
6646 }
6647 mutex_unlock(&child->perf_event_mutex);
6648
8dc85d54
PZ
6649 for_each_task_context_nr(ctxn)
6650 perf_event_exit_task_context(child, ctxn);
6651}
6652
889ff015
FW
6653static void perf_free_event(struct perf_event *event,
6654 struct perf_event_context *ctx)
6655{
6656 struct perf_event *parent = event->parent;
6657
6658 if (WARN_ON_ONCE(!parent))
6659 return;
6660
6661 mutex_lock(&parent->child_mutex);
6662 list_del_init(&event->child_list);
6663 mutex_unlock(&parent->child_mutex);
6664
6665 fput(parent->filp);
6666
8a49542c 6667 perf_group_detach(event);
889ff015
FW
6668 list_del_event(event, ctx);
6669 free_event(event);
6670}
6671
bbbee908
PZ
6672/*
6673 * free an unexposed, unused context as created by inheritance by
8dc85d54 6674 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6675 */
cdd6c482 6676void perf_event_free_task(struct task_struct *task)
bbbee908 6677{
8dc85d54 6678 struct perf_event_context *ctx;
cdd6c482 6679 struct perf_event *event, *tmp;
8dc85d54 6680 int ctxn;
bbbee908 6681
8dc85d54
PZ
6682 for_each_task_context_nr(ctxn) {
6683 ctx = task->perf_event_ctxp[ctxn];
6684 if (!ctx)
6685 continue;
bbbee908 6686
8dc85d54 6687 mutex_lock(&ctx->mutex);
bbbee908 6688again:
8dc85d54
PZ
6689 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6690 group_entry)
6691 perf_free_event(event, ctx);
bbbee908 6692
8dc85d54
PZ
6693 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6694 group_entry)
6695 perf_free_event(event, ctx);
bbbee908 6696
8dc85d54
PZ
6697 if (!list_empty(&ctx->pinned_groups) ||
6698 !list_empty(&ctx->flexible_groups))
6699 goto again;
bbbee908 6700
8dc85d54 6701 mutex_unlock(&ctx->mutex);
bbbee908 6702
8dc85d54
PZ
6703 put_ctx(ctx);
6704 }
889ff015
FW
6705}
6706
4e231c79
PZ
6707void perf_event_delayed_put(struct task_struct *task)
6708{
6709 int ctxn;
6710
6711 for_each_task_context_nr(ctxn)
6712 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6713}
6714
97dee4f3
PZ
6715/*
6716 * inherit a event from parent task to child task:
6717 */
6718static struct perf_event *
6719inherit_event(struct perf_event *parent_event,
6720 struct task_struct *parent,
6721 struct perf_event_context *parent_ctx,
6722 struct task_struct *child,
6723 struct perf_event *group_leader,
6724 struct perf_event_context *child_ctx)
6725{
6726 struct perf_event *child_event;
cee010ec 6727 unsigned long flags;
97dee4f3
PZ
6728
6729 /*
6730 * Instead of creating recursive hierarchies of events,
6731 * we link inherited events back to the original parent,
6732 * which has a filp for sure, which we use as the reference
6733 * count:
6734 */
6735 if (parent_event->parent)
6736 parent_event = parent_event->parent;
6737
6738 child_event = perf_event_alloc(&parent_event->attr,
6739 parent_event->cpu,
d580ff86 6740 child,
97dee4f3 6741 group_leader, parent_event,
4dc0da86 6742 NULL, NULL);
97dee4f3
PZ
6743 if (IS_ERR(child_event))
6744 return child_event;
6745 get_ctx(child_ctx);
6746
6747 /*
6748 * Make the child state follow the state of the parent event,
6749 * not its attr.disabled bit. We hold the parent's mutex,
6750 * so we won't race with perf_event_{en, dis}able_family.
6751 */
6752 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6753 child_event->state = PERF_EVENT_STATE_INACTIVE;
6754 else
6755 child_event->state = PERF_EVENT_STATE_OFF;
6756
6757 if (parent_event->attr.freq) {
6758 u64 sample_period = parent_event->hw.sample_period;
6759 struct hw_perf_event *hwc = &child_event->hw;
6760
6761 hwc->sample_period = sample_period;
6762 hwc->last_period = sample_period;
6763
6764 local64_set(&hwc->period_left, sample_period);
6765 }
6766
6767 child_event->ctx = child_ctx;
6768 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6769 child_event->overflow_handler_context
6770 = parent_event->overflow_handler_context;
97dee4f3 6771
614b6780
TG
6772 /*
6773 * Precalculate sample_data sizes
6774 */
6775 perf_event__header_size(child_event);
6844c09d 6776 perf_event__id_header_size(child_event);
614b6780 6777
97dee4f3
PZ
6778 /*
6779 * Link it up in the child's context:
6780 */
cee010ec 6781 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6782 add_event_to_ctx(child_event, child_ctx);
cee010ec 6783 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6784
6785 /*
6786 * Get a reference to the parent filp - we will fput it
6787 * when the child event exits. This is safe to do because
6788 * we are in the parent and we know that the filp still
6789 * exists and has a nonzero count:
6790 */
6791 atomic_long_inc(&parent_event->filp->f_count);
6792
6793 /*
6794 * Link this into the parent event's child list
6795 */
6796 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6797 mutex_lock(&parent_event->child_mutex);
6798 list_add_tail(&child_event->child_list, &parent_event->child_list);
6799 mutex_unlock(&parent_event->child_mutex);
6800
6801 return child_event;
6802}
6803
6804static int inherit_group(struct perf_event *parent_event,
6805 struct task_struct *parent,
6806 struct perf_event_context *parent_ctx,
6807 struct task_struct *child,
6808 struct perf_event_context *child_ctx)
6809{
6810 struct perf_event *leader;
6811 struct perf_event *sub;
6812 struct perf_event *child_ctr;
6813
6814 leader = inherit_event(parent_event, parent, parent_ctx,
6815 child, NULL, child_ctx);
6816 if (IS_ERR(leader))
6817 return PTR_ERR(leader);
6818 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6819 child_ctr = inherit_event(sub, parent, parent_ctx,
6820 child, leader, child_ctx);
6821 if (IS_ERR(child_ctr))
6822 return PTR_ERR(child_ctr);
6823 }
6824 return 0;
889ff015
FW
6825}
6826
6827static int
6828inherit_task_group(struct perf_event *event, struct task_struct *parent,
6829 struct perf_event_context *parent_ctx,
8dc85d54 6830 struct task_struct *child, int ctxn,
889ff015
FW
6831 int *inherited_all)
6832{
6833 int ret;
8dc85d54 6834 struct perf_event_context *child_ctx;
889ff015
FW
6835
6836 if (!event->attr.inherit) {
6837 *inherited_all = 0;
6838 return 0;
bbbee908
PZ
6839 }
6840
fe4b04fa 6841 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6842 if (!child_ctx) {
6843 /*
6844 * This is executed from the parent task context, so
6845 * inherit events that have been marked for cloning.
6846 * First allocate and initialize a context for the
6847 * child.
6848 */
bbbee908 6849
eb184479 6850 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6851 if (!child_ctx)
6852 return -ENOMEM;
bbbee908 6853
8dc85d54 6854 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6855 }
6856
6857 ret = inherit_group(event, parent, parent_ctx,
6858 child, child_ctx);
6859
6860 if (ret)
6861 *inherited_all = 0;
6862
6863 return ret;
bbbee908
PZ
6864}
6865
9b51f66d 6866/*
cdd6c482 6867 * Initialize the perf_event context in task_struct
9b51f66d 6868 */
8dc85d54 6869int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6870{
889ff015 6871 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6872 struct perf_event_context *cloned_ctx;
6873 struct perf_event *event;
9b51f66d 6874 struct task_struct *parent = current;
564c2b21 6875 int inherited_all = 1;
dddd3379 6876 unsigned long flags;
6ab423e0 6877 int ret = 0;
9b51f66d 6878
8dc85d54 6879 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6880 return 0;
6881
ad3a37de 6882 /*
25346b93
PM
6883 * If the parent's context is a clone, pin it so it won't get
6884 * swapped under us.
ad3a37de 6885 */
8dc85d54 6886 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6887
ad3a37de
PM
6888 /*
6889 * No need to check if parent_ctx != NULL here; since we saw
6890 * it non-NULL earlier, the only reason for it to become NULL
6891 * is if we exit, and since we're currently in the middle of
6892 * a fork we can't be exiting at the same time.
6893 */
ad3a37de 6894
9b51f66d
IM
6895 /*
6896 * Lock the parent list. No need to lock the child - not PID
6897 * hashed yet and not running, so nobody can access it.
6898 */
d859e29f 6899 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6900
6901 /*
6902 * We dont have to disable NMIs - we are only looking at
6903 * the list, not manipulating it:
6904 */
889ff015 6905 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6906 ret = inherit_task_group(event, parent, parent_ctx,
6907 child, ctxn, &inherited_all);
889ff015
FW
6908 if (ret)
6909 break;
6910 }
b93f7978 6911
dddd3379
TG
6912 /*
6913 * We can't hold ctx->lock when iterating the ->flexible_group list due
6914 * to allocations, but we need to prevent rotation because
6915 * rotate_ctx() will change the list from interrupt context.
6916 */
6917 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6918 parent_ctx->rotate_disable = 1;
6919 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6920
889ff015 6921 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6922 ret = inherit_task_group(event, parent, parent_ctx,
6923 child, ctxn, &inherited_all);
889ff015 6924 if (ret)
9b51f66d 6925 break;
564c2b21
PM
6926 }
6927
dddd3379
TG
6928 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6929 parent_ctx->rotate_disable = 0;
dddd3379 6930
8dc85d54 6931 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6932
05cbaa28 6933 if (child_ctx && inherited_all) {
564c2b21
PM
6934 /*
6935 * Mark the child context as a clone of the parent
6936 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6937 *
6938 * Note that if the parent is a clone, the holding of
6939 * parent_ctx->lock avoids it from being uncloned.
564c2b21 6940 */
c5ed5145 6941 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
6942 if (cloned_ctx) {
6943 child_ctx->parent_ctx = cloned_ctx;
25346b93 6944 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
6945 } else {
6946 child_ctx->parent_ctx = parent_ctx;
6947 child_ctx->parent_gen = parent_ctx->generation;
6948 }
6949 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
6950 }
6951
c5ed5145 6952 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 6953 mutex_unlock(&parent_ctx->mutex);
6ab423e0 6954
25346b93 6955 perf_unpin_context(parent_ctx);
fe4b04fa 6956 put_ctx(parent_ctx);
ad3a37de 6957
6ab423e0 6958 return ret;
9b51f66d
IM
6959}
6960
8dc85d54
PZ
6961/*
6962 * Initialize the perf_event context in task_struct
6963 */
6964int perf_event_init_task(struct task_struct *child)
6965{
6966 int ctxn, ret;
6967
8550d7cb
ON
6968 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6969 mutex_init(&child->perf_event_mutex);
6970 INIT_LIST_HEAD(&child->perf_event_list);
6971
8dc85d54
PZ
6972 for_each_task_context_nr(ctxn) {
6973 ret = perf_event_init_context(child, ctxn);
6974 if (ret)
6975 return ret;
6976 }
6977
6978 return 0;
6979}
6980
220b140b
PM
6981static void __init perf_event_init_all_cpus(void)
6982{
b28ab83c 6983 struct swevent_htable *swhash;
220b140b 6984 int cpu;
220b140b
PM
6985
6986 for_each_possible_cpu(cpu) {
b28ab83c
PZ
6987 swhash = &per_cpu(swevent_htable, cpu);
6988 mutex_init(&swhash->hlist_mutex);
e9d2b064 6989 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
6990 }
6991}
6992
cdd6c482 6993static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 6994{
108b02cf 6995 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 6996
b28ab83c 6997 mutex_lock(&swhash->hlist_mutex);
4536e4d1 6998 if (swhash->hlist_refcount > 0) {
76e1d904
FW
6999 struct swevent_hlist *hlist;
7000
b28ab83c
PZ
7001 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7002 WARN_ON(!hlist);
7003 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7004 }
b28ab83c 7005 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7006}
7007
c277443c 7008#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7009static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7010{
e9d2b064
PZ
7011 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7012
7013 WARN_ON(!irqs_disabled());
7014
7015 list_del_init(&cpuctx->rotation_list);
7016}
7017
108b02cf 7018static void __perf_event_exit_context(void *__info)
0793a61d 7019{
108b02cf 7020 struct perf_event_context *ctx = __info;
cdd6c482 7021 struct perf_event *event, *tmp;
0793a61d 7022
108b02cf 7023 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7024
889ff015 7025 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7026 __perf_remove_from_context(event);
889ff015 7027 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7028 __perf_remove_from_context(event);
0793a61d 7029}
108b02cf
PZ
7030
7031static void perf_event_exit_cpu_context(int cpu)
7032{
7033 struct perf_event_context *ctx;
7034 struct pmu *pmu;
7035 int idx;
7036
7037 idx = srcu_read_lock(&pmus_srcu);
7038 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7039 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7040
7041 mutex_lock(&ctx->mutex);
7042 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7043 mutex_unlock(&ctx->mutex);
7044 }
7045 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7046}
7047
cdd6c482 7048static void perf_event_exit_cpu(int cpu)
0793a61d 7049{
b28ab83c 7050 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7051
b28ab83c
PZ
7052 mutex_lock(&swhash->hlist_mutex);
7053 swevent_hlist_release(swhash);
7054 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7055
108b02cf 7056 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7057}
7058#else
cdd6c482 7059static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7060#endif
7061
c277443c
PZ
7062static int
7063perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7064{
7065 int cpu;
7066
7067 for_each_online_cpu(cpu)
7068 perf_event_exit_cpu(cpu);
7069
7070 return NOTIFY_OK;
7071}
7072
7073/*
7074 * Run the perf reboot notifier at the very last possible moment so that
7075 * the generic watchdog code runs as long as possible.
7076 */
7077static struct notifier_block perf_reboot_notifier = {
7078 .notifier_call = perf_reboot,
7079 .priority = INT_MIN,
7080};
7081
0793a61d
TG
7082static int __cpuinit
7083perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7084{
7085 unsigned int cpu = (long)hcpu;
7086
4536e4d1 7087 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7088
7089 case CPU_UP_PREPARE:
5e11637e 7090 case CPU_DOWN_FAILED:
cdd6c482 7091 perf_event_init_cpu(cpu);
0793a61d
TG
7092 break;
7093
5e11637e 7094 case CPU_UP_CANCELED:
0793a61d 7095 case CPU_DOWN_PREPARE:
cdd6c482 7096 perf_event_exit_cpu(cpu);
0793a61d
TG
7097 break;
7098
7099 default:
7100 break;
7101 }
7102
7103 return NOTIFY_OK;
7104}
7105
cdd6c482 7106void __init perf_event_init(void)
0793a61d 7107{
3c502e7a
JW
7108 int ret;
7109
2e80a82a
PZ
7110 idr_init(&pmu_idr);
7111
220b140b 7112 perf_event_init_all_cpus();
b0a873eb 7113 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7114 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7115 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7116 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7117 perf_tp_register();
7118 perf_cpu_notifier(perf_cpu_notify);
c277443c 7119 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7120
7121 ret = init_hw_breakpoint();
7122 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7123
7124 /* do not patch jump label more than once per second */
7125 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7126
7127 /*
7128 * Build time assertion that we keep the data_head at the intended
7129 * location. IOW, validation we got the __reserved[] size right.
7130 */
7131 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7132 != 1024);
0793a61d 7133}
abe43400
PZ
7134
7135static int __init perf_event_sysfs_init(void)
7136{
7137 struct pmu *pmu;
7138 int ret;
7139
7140 mutex_lock(&pmus_lock);
7141
7142 ret = bus_register(&pmu_bus);
7143 if (ret)
7144 goto unlock;
7145
7146 list_for_each_entry(pmu, &pmus, entry) {
7147 if (!pmu->name || pmu->type < 0)
7148 continue;
7149
7150 ret = pmu_dev_alloc(pmu);
7151 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7152 }
7153 pmu_bus_running = 1;
7154 ret = 0;
7155
7156unlock:
7157 mutex_unlock(&pmus_lock);
7158
7159 return ret;
7160}
7161device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7162
7163#ifdef CONFIG_CGROUP_PERF
761b3ef5 7164static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7165{
7166 struct perf_cgroup *jc;
e5d1367f 7167
1b15d055 7168 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7169 if (!jc)
7170 return ERR_PTR(-ENOMEM);
7171
e5d1367f
SE
7172 jc->info = alloc_percpu(struct perf_cgroup_info);
7173 if (!jc->info) {
7174 kfree(jc);
7175 return ERR_PTR(-ENOMEM);
7176 }
7177
e5d1367f
SE
7178 return &jc->css;
7179}
7180
761b3ef5 7181static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7182{
7183 struct perf_cgroup *jc;
7184 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7185 struct perf_cgroup, css);
7186 free_percpu(jc->info);
7187 kfree(jc);
7188}
7189
7190static int __perf_cgroup_move(void *info)
7191{
7192 struct task_struct *task = info;
7193 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7194 return 0;
7195}
7196
761b3ef5 7197static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7198{
bb9d97b6
TH
7199 struct task_struct *task;
7200
7201 cgroup_taskset_for_each(task, cgrp, tset)
7202 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7203}
7204
761b3ef5
LZ
7205static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7206 struct task_struct *task)
e5d1367f
SE
7207{
7208 /*
7209 * cgroup_exit() is called in the copy_process() failure path.
7210 * Ignore this case since the task hasn't ran yet, this avoids
7211 * trying to poke a half freed task state from generic code.
7212 */
7213 if (!(task->flags & PF_EXITING))
7214 return;
7215
bb9d97b6 7216 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7217}
7218
7219struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7220 .name = "perf_event",
7221 .subsys_id = perf_subsys_id,
7222 .create = perf_cgroup_create,
7223 .destroy = perf_cgroup_destroy,
7224 .exit = perf_cgroup_exit,
bb9d97b6 7225 .attach = perf_cgroup_attach,
e5d1367f
SE
7226};
7227#endif /* CONFIG_CGROUP_PERF */