perf/core: Invert perf_read_group() loops
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
fbbe0701 1917 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0492d4c5
PZ
3187struct perf_read_data {
3188 struct perf_event *event;
3189 bool group;
3190};
3191
0793a61d 3192/*
cdd6c482 3193 * Cross CPU call to read the hardware event
0793a61d 3194 */
cdd6c482 3195static void __perf_event_read(void *info)
0793a61d 3196{
0492d4c5
PZ
3197 struct perf_read_data *data = info;
3198 struct perf_event *sub, *event = data->event;
cdd6c482 3199 struct perf_event_context *ctx = event->ctx;
108b02cf 3200 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3201
e1ac3614
PM
3202 /*
3203 * If this is a task context, we need to check whether it is
3204 * the current task context of this cpu. If not it has been
3205 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3206 * event->count would have been updated to a recent sample
3207 * when the event was scheduled out.
e1ac3614
PM
3208 */
3209 if (ctx->task && cpuctx->task_ctx != ctx)
3210 return;
3211
e625cce1 3212 raw_spin_lock(&ctx->lock);
e5d1367f 3213 if (ctx->is_active) {
542e72fc 3214 update_context_time(ctx);
e5d1367f
SE
3215 update_cgrp_time_from_event(event);
3216 }
0492d4c5 3217
cdd6c482 3218 update_event_times(event);
542e72fc
PZ
3219 if (event->state == PERF_EVENT_STATE_ACTIVE)
3220 event->pmu->read(event);
0492d4c5
PZ
3221
3222 if (!data->group)
3223 goto unlock;
3224
3225 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3226 update_event_times(sub);
3227 if (sub->state == PERF_EVENT_STATE_ACTIVE)
3228 sub->pmu->read(sub);
3229 }
3230
3231unlock:
e625cce1 3232 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3233}
3234
b5e58793
PZ
3235static inline u64 perf_event_count(struct perf_event *event)
3236{
eacd3ecc
MF
3237 if (event->pmu->count)
3238 return event->pmu->count(event);
3239
3240 return __perf_event_count(event);
b5e58793
PZ
3241}
3242
ffe8690c
KX
3243/*
3244 * NMI-safe method to read a local event, that is an event that
3245 * is:
3246 * - either for the current task, or for this CPU
3247 * - does not have inherit set, for inherited task events
3248 * will not be local and we cannot read them atomically
3249 * - must not have a pmu::count method
3250 */
3251u64 perf_event_read_local(struct perf_event *event)
3252{
3253 unsigned long flags;
3254 u64 val;
3255
3256 /*
3257 * Disabling interrupts avoids all counter scheduling (context
3258 * switches, timer based rotation and IPIs).
3259 */
3260 local_irq_save(flags);
3261
3262 /* If this is a per-task event, it must be for current */
3263 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3264 event->hw.target != current);
3265
3266 /* If this is a per-CPU event, it must be for this CPU */
3267 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3268 event->cpu != smp_processor_id());
3269
3270 /*
3271 * It must not be an event with inherit set, we cannot read
3272 * all child counters from atomic context.
3273 */
3274 WARN_ON_ONCE(event->attr.inherit);
3275
3276 /*
3277 * It must not have a pmu::count method, those are not
3278 * NMI safe.
3279 */
3280 WARN_ON_ONCE(event->pmu->count);
3281
3282 /*
3283 * If the event is currently on this CPU, its either a per-task event,
3284 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3285 * oncpu == -1).
3286 */
3287 if (event->oncpu == smp_processor_id())
3288 event->pmu->read(event);
3289
3290 val = local64_read(&event->count);
3291 local_irq_restore(flags);
3292
3293 return val;
3294}
3295
0492d4c5 3296static void perf_event_read(struct perf_event *event, bool group)
0793a61d
TG
3297{
3298 /*
cdd6c482
IM
3299 * If event is enabled and currently active on a CPU, update the
3300 * value in the event structure:
0793a61d 3301 */
cdd6c482 3302 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3303 struct perf_read_data data = {
3304 .event = event,
3305 .group = group,
3306 };
cdd6c482 3307 smp_call_function_single(event->oncpu,
0492d4c5 3308 __perf_event_read, &data, 1);
cdd6c482 3309 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3310 struct perf_event_context *ctx = event->ctx;
3311 unsigned long flags;
3312
e625cce1 3313 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3314 /*
3315 * may read while context is not active
3316 * (e.g., thread is blocked), in that case
3317 * we cannot update context time
3318 */
e5d1367f 3319 if (ctx->is_active) {
c530ccd9 3320 update_context_time(ctx);
e5d1367f
SE
3321 update_cgrp_time_from_event(event);
3322 }
0492d4c5
PZ
3323 if (group)
3324 update_group_times(event);
3325 else
3326 update_event_times(event);
e625cce1 3327 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3328 }
0793a61d
TG
3329}
3330
a63eaf34 3331/*
cdd6c482 3332 * Initialize the perf_event context in a task_struct:
a63eaf34 3333 */
eb184479 3334static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3335{
e625cce1 3336 raw_spin_lock_init(&ctx->lock);
a63eaf34 3337 mutex_init(&ctx->mutex);
2fde4f94 3338 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3339 INIT_LIST_HEAD(&ctx->pinned_groups);
3340 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3341 INIT_LIST_HEAD(&ctx->event_list);
3342 atomic_set(&ctx->refcount, 1);
fadfe7be 3343 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3344}
3345
3346static struct perf_event_context *
3347alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3348{
3349 struct perf_event_context *ctx;
3350
3351 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3352 if (!ctx)
3353 return NULL;
3354
3355 __perf_event_init_context(ctx);
3356 if (task) {
3357 ctx->task = task;
3358 get_task_struct(task);
0793a61d 3359 }
eb184479
PZ
3360 ctx->pmu = pmu;
3361
3362 return ctx;
a63eaf34
PM
3363}
3364
2ebd4ffb
MH
3365static struct task_struct *
3366find_lively_task_by_vpid(pid_t vpid)
3367{
3368 struct task_struct *task;
3369 int err;
0793a61d
TG
3370
3371 rcu_read_lock();
2ebd4ffb 3372 if (!vpid)
0793a61d
TG
3373 task = current;
3374 else
2ebd4ffb 3375 task = find_task_by_vpid(vpid);
0793a61d
TG
3376 if (task)
3377 get_task_struct(task);
3378 rcu_read_unlock();
3379
3380 if (!task)
3381 return ERR_PTR(-ESRCH);
3382
0793a61d 3383 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3384 err = -EACCES;
3385 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3386 goto errout;
3387
2ebd4ffb
MH
3388 return task;
3389errout:
3390 put_task_struct(task);
3391 return ERR_PTR(err);
3392
3393}
3394
fe4b04fa
PZ
3395/*
3396 * Returns a matching context with refcount and pincount.
3397 */
108b02cf 3398static struct perf_event_context *
4af57ef2
YZ
3399find_get_context(struct pmu *pmu, struct task_struct *task,
3400 struct perf_event *event)
0793a61d 3401{
211de6eb 3402 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3403 struct perf_cpu_context *cpuctx;
4af57ef2 3404 void *task_ctx_data = NULL;
25346b93 3405 unsigned long flags;
8dc85d54 3406 int ctxn, err;
4af57ef2 3407 int cpu = event->cpu;
0793a61d 3408
22a4ec72 3409 if (!task) {
cdd6c482 3410 /* Must be root to operate on a CPU event: */
0764771d 3411 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3412 return ERR_PTR(-EACCES);
3413
0793a61d 3414 /*
cdd6c482 3415 * We could be clever and allow to attach a event to an
0793a61d
TG
3416 * offline CPU and activate it when the CPU comes up, but
3417 * that's for later.
3418 */
f6325e30 3419 if (!cpu_online(cpu))
0793a61d
TG
3420 return ERR_PTR(-ENODEV);
3421
108b02cf 3422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3423 ctx = &cpuctx->ctx;
c93f7669 3424 get_ctx(ctx);
fe4b04fa 3425 ++ctx->pin_count;
0793a61d 3426
0793a61d
TG
3427 return ctx;
3428 }
3429
8dc85d54
PZ
3430 err = -EINVAL;
3431 ctxn = pmu->task_ctx_nr;
3432 if (ctxn < 0)
3433 goto errout;
3434
4af57ef2
YZ
3435 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3436 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3437 if (!task_ctx_data) {
3438 err = -ENOMEM;
3439 goto errout;
3440 }
3441 }
3442
9ed6060d 3443retry:
8dc85d54 3444 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3445 if (ctx) {
211de6eb 3446 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3447 ++ctx->pin_count;
4af57ef2
YZ
3448
3449 if (task_ctx_data && !ctx->task_ctx_data) {
3450 ctx->task_ctx_data = task_ctx_data;
3451 task_ctx_data = NULL;
3452 }
e625cce1 3453 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3454
3455 if (clone_ctx)
3456 put_ctx(clone_ctx);
9137fb28 3457 } else {
eb184479 3458 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3459 err = -ENOMEM;
3460 if (!ctx)
3461 goto errout;
eb184479 3462
4af57ef2
YZ
3463 if (task_ctx_data) {
3464 ctx->task_ctx_data = task_ctx_data;
3465 task_ctx_data = NULL;
3466 }
3467
dbe08d82
ON
3468 err = 0;
3469 mutex_lock(&task->perf_event_mutex);
3470 /*
3471 * If it has already passed perf_event_exit_task().
3472 * we must see PF_EXITING, it takes this mutex too.
3473 */
3474 if (task->flags & PF_EXITING)
3475 err = -ESRCH;
3476 else if (task->perf_event_ctxp[ctxn])
3477 err = -EAGAIN;
fe4b04fa 3478 else {
9137fb28 3479 get_ctx(ctx);
fe4b04fa 3480 ++ctx->pin_count;
dbe08d82 3481 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3482 }
dbe08d82
ON
3483 mutex_unlock(&task->perf_event_mutex);
3484
3485 if (unlikely(err)) {
9137fb28 3486 put_ctx(ctx);
dbe08d82
ON
3487
3488 if (err == -EAGAIN)
3489 goto retry;
3490 goto errout;
a63eaf34
PM
3491 }
3492 }
3493
4af57ef2 3494 kfree(task_ctx_data);
0793a61d 3495 return ctx;
c93f7669 3496
9ed6060d 3497errout:
4af57ef2 3498 kfree(task_ctx_data);
c93f7669 3499 return ERR_PTR(err);
0793a61d
TG
3500}
3501
6fb2915d 3502static void perf_event_free_filter(struct perf_event *event);
2541517c 3503static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3504
cdd6c482 3505static void free_event_rcu(struct rcu_head *head)
592903cd 3506{
cdd6c482 3507 struct perf_event *event;
592903cd 3508
cdd6c482
IM
3509 event = container_of(head, struct perf_event, rcu_head);
3510 if (event->ns)
3511 put_pid_ns(event->ns);
6fb2915d 3512 perf_event_free_filter(event);
cdd6c482 3513 kfree(event);
592903cd
PZ
3514}
3515
b69cf536
PZ
3516static void ring_buffer_attach(struct perf_event *event,
3517 struct ring_buffer *rb);
925d519a 3518
4beb31f3 3519static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3520{
4beb31f3
FW
3521 if (event->parent)
3522 return;
3523
4beb31f3
FW
3524 if (is_cgroup_event(event))
3525 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3526}
925d519a 3527
4beb31f3
FW
3528static void unaccount_event(struct perf_event *event)
3529{
3530 if (event->parent)
3531 return;
3532
3533 if (event->attach_state & PERF_ATTACH_TASK)
3534 static_key_slow_dec_deferred(&perf_sched_events);
3535 if (event->attr.mmap || event->attr.mmap_data)
3536 atomic_dec(&nr_mmap_events);
3537 if (event->attr.comm)
3538 atomic_dec(&nr_comm_events);
3539 if (event->attr.task)
3540 atomic_dec(&nr_task_events);
948b26b6
FW
3541 if (event->attr.freq)
3542 atomic_dec(&nr_freq_events);
45ac1403
AH
3543 if (event->attr.context_switch) {
3544 static_key_slow_dec_deferred(&perf_sched_events);
3545 atomic_dec(&nr_switch_events);
3546 }
4beb31f3
FW
3547 if (is_cgroup_event(event))
3548 static_key_slow_dec_deferred(&perf_sched_events);
3549 if (has_branch_stack(event))
3550 static_key_slow_dec_deferred(&perf_sched_events);
3551
3552 unaccount_event_cpu(event, event->cpu);
3553}
925d519a 3554
bed5b25a
AS
3555/*
3556 * The following implement mutual exclusion of events on "exclusive" pmus
3557 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3558 * at a time, so we disallow creating events that might conflict, namely:
3559 *
3560 * 1) cpu-wide events in the presence of per-task events,
3561 * 2) per-task events in the presence of cpu-wide events,
3562 * 3) two matching events on the same context.
3563 *
3564 * The former two cases are handled in the allocation path (perf_event_alloc(),
3565 * __free_event()), the latter -- before the first perf_install_in_context().
3566 */
3567static int exclusive_event_init(struct perf_event *event)
3568{
3569 struct pmu *pmu = event->pmu;
3570
3571 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3572 return 0;
3573
3574 /*
3575 * Prevent co-existence of per-task and cpu-wide events on the
3576 * same exclusive pmu.
3577 *
3578 * Negative pmu::exclusive_cnt means there are cpu-wide
3579 * events on this "exclusive" pmu, positive means there are
3580 * per-task events.
3581 *
3582 * Since this is called in perf_event_alloc() path, event::ctx
3583 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3584 * to mean "per-task event", because unlike other attach states it
3585 * never gets cleared.
3586 */
3587 if (event->attach_state & PERF_ATTACH_TASK) {
3588 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3589 return -EBUSY;
3590 } else {
3591 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3592 return -EBUSY;
3593 }
3594
3595 return 0;
3596}
3597
3598static void exclusive_event_destroy(struct perf_event *event)
3599{
3600 struct pmu *pmu = event->pmu;
3601
3602 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3603 return;
3604
3605 /* see comment in exclusive_event_init() */
3606 if (event->attach_state & PERF_ATTACH_TASK)
3607 atomic_dec(&pmu->exclusive_cnt);
3608 else
3609 atomic_inc(&pmu->exclusive_cnt);
3610}
3611
3612static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3613{
3614 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3615 (e1->cpu == e2->cpu ||
3616 e1->cpu == -1 ||
3617 e2->cpu == -1))
3618 return true;
3619 return false;
3620}
3621
3622/* Called under the same ctx::mutex as perf_install_in_context() */
3623static bool exclusive_event_installable(struct perf_event *event,
3624 struct perf_event_context *ctx)
3625{
3626 struct perf_event *iter_event;
3627 struct pmu *pmu = event->pmu;
3628
3629 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3630 return true;
3631
3632 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3633 if (exclusive_event_match(iter_event, event))
3634 return false;
3635 }
3636
3637 return true;
3638}
3639
766d6c07
FW
3640static void __free_event(struct perf_event *event)
3641{
cdd6c482 3642 if (!event->parent) {
927c7a9e
FW
3643 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3644 put_callchain_buffers();
f344011c 3645 }
9ee318a7 3646
dead9f29
AS
3647 perf_event_free_bpf_prog(event);
3648
766d6c07
FW
3649 if (event->destroy)
3650 event->destroy(event);
3651
3652 if (event->ctx)
3653 put_ctx(event->ctx);
3654
bed5b25a
AS
3655 if (event->pmu) {
3656 exclusive_event_destroy(event);
c464c76e 3657 module_put(event->pmu->module);
bed5b25a 3658 }
c464c76e 3659
766d6c07
FW
3660 call_rcu(&event->rcu_head, free_event_rcu);
3661}
683ede43
PZ
3662
3663static void _free_event(struct perf_event *event)
f1600952 3664{
e360adbe 3665 irq_work_sync(&event->pending);
925d519a 3666
4beb31f3 3667 unaccount_event(event);
9ee318a7 3668
76369139 3669 if (event->rb) {
9bb5d40c
PZ
3670 /*
3671 * Can happen when we close an event with re-directed output.
3672 *
3673 * Since we have a 0 refcount, perf_mmap_close() will skip
3674 * over us; possibly making our ring_buffer_put() the last.
3675 */
3676 mutex_lock(&event->mmap_mutex);
b69cf536 3677 ring_buffer_attach(event, NULL);
9bb5d40c 3678 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3679 }
3680
e5d1367f
SE
3681 if (is_cgroup_event(event))
3682 perf_detach_cgroup(event);
3683
766d6c07 3684 __free_event(event);
f1600952
PZ
3685}
3686
683ede43
PZ
3687/*
3688 * Used to free events which have a known refcount of 1, such as in error paths
3689 * where the event isn't exposed yet and inherited events.
3690 */
3691static void free_event(struct perf_event *event)
0793a61d 3692{
683ede43
PZ
3693 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3694 "unexpected event refcount: %ld; ptr=%p\n",
3695 atomic_long_read(&event->refcount), event)) {
3696 /* leak to avoid use-after-free */
3697 return;
3698 }
0793a61d 3699
683ede43 3700 _free_event(event);
0793a61d
TG
3701}
3702
a66a3052 3703/*
f8697762 3704 * Remove user event from the owner task.
a66a3052 3705 */
f8697762 3706static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3707{
8882135b 3708 struct task_struct *owner;
fb0459d7 3709
8882135b
PZ
3710 rcu_read_lock();
3711 owner = ACCESS_ONCE(event->owner);
3712 /*
3713 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3714 * !owner it means the list deletion is complete and we can indeed
3715 * free this event, otherwise we need to serialize on
3716 * owner->perf_event_mutex.
3717 */
3718 smp_read_barrier_depends();
3719 if (owner) {
3720 /*
3721 * Since delayed_put_task_struct() also drops the last
3722 * task reference we can safely take a new reference
3723 * while holding the rcu_read_lock().
3724 */
3725 get_task_struct(owner);
3726 }
3727 rcu_read_unlock();
3728
3729 if (owner) {
f63a8daa
PZ
3730 /*
3731 * If we're here through perf_event_exit_task() we're already
3732 * holding ctx->mutex which would be an inversion wrt. the
3733 * normal lock order.
3734 *
3735 * However we can safely take this lock because its the child
3736 * ctx->mutex.
3737 */
3738 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3739
8882135b
PZ
3740 /*
3741 * We have to re-check the event->owner field, if it is cleared
3742 * we raced with perf_event_exit_task(), acquiring the mutex
3743 * ensured they're done, and we can proceed with freeing the
3744 * event.
3745 */
3746 if (event->owner)
3747 list_del_init(&event->owner_entry);
3748 mutex_unlock(&owner->perf_event_mutex);
3749 put_task_struct(owner);
3750 }
f8697762
JO
3751}
3752
f8697762
JO
3753static void put_event(struct perf_event *event)
3754{
a83fe28e 3755 struct perf_event_context *ctx;
f8697762
JO
3756
3757 if (!atomic_long_dec_and_test(&event->refcount))
3758 return;
3759
3760 if (!is_kernel_event(event))
3761 perf_remove_from_owner(event);
8882135b 3762
683ede43
PZ
3763 /*
3764 * There are two ways this annotation is useful:
3765 *
3766 * 1) there is a lock recursion from perf_event_exit_task
3767 * see the comment there.
3768 *
3769 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3770 * perf_read_group(), which takes faults while
683ede43
PZ
3771 * holding ctx->mutex, however this is called after
3772 * the last filedesc died, so there is no possibility
3773 * to trigger the AB-BA case.
3774 */
a83fe28e
PZ
3775 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3776 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3777 perf_remove_from_context(event, true);
d415a7f1 3778 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3779
3780 _free_event(event);
a6fa941d
AV
3781}
3782
683ede43
PZ
3783int perf_event_release_kernel(struct perf_event *event)
3784{
3785 put_event(event);
3786 return 0;
3787}
3788EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3789
8b10c5e2
PZ
3790/*
3791 * Called when the last reference to the file is gone.
3792 */
a6fa941d
AV
3793static int perf_release(struct inode *inode, struct file *file)
3794{
3795 put_event(file->private_data);
3796 return 0;
fb0459d7 3797}
fb0459d7 3798
fadfe7be
JO
3799/*
3800 * Remove all orphanes events from the context.
3801 */
3802static void orphans_remove_work(struct work_struct *work)
3803{
3804 struct perf_event_context *ctx;
3805 struct perf_event *event, *tmp;
3806
3807 ctx = container_of(work, struct perf_event_context,
3808 orphans_remove.work);
3809
3810 mutex_lock(&ctx->mutex);
3811 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3812 struct perf_event *parent_event = event->parent;
3813
3814 if (!is_orphaned_child(event))
3815 continue;
3816
3817 perf_remove_from_context(event, true);
3818
3819 mutex_lock(&parent_event->child_mutex);
3820 list_del_init(&event->child_list);
3821 mutex_unlock(&parent_event->child_mutex);
3822
3823 free_event(event);
3824 put_event(parent_event);
3825 }
3826
3827 raw_spin_lock_irq(&ctx->lock);
3828 ctx->orphans_remove_sched = false;
3829 raw_spin_unlock_irq(&ctx->lock);
3830 mutex_unlock(&ctx->mutex);
3831
3832 put_ctx(ctx);
3833}
3834
59ed446f 3835u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3836{
cdd6c482 3837 struct perf_event *child;
e53c0994
PZ
3838 u64 total = 0;
3839
59ed446f
PZ
3840 *enabled = 0;
3841 *running = 0;
3842
6f10581a 3843 mutex_lock(&event->child_mutex);
01add3ea 3844
0492d4c5 3845 perf_event_read(event, false);
01add3ea
SB
3846 total += perf_event_count(event);
3847
59ed446f
PZ
3848 *enabled += event->total_time_enabled +
3849 atomic64_read(&event->child_total_time_enabled);
3850 *running += event->total_time_running +
3851 atomic64_read(&event->child_total_time_running);
3852
3853 list_for_each_entry(child, &event->child_list, child_list) {
0492d4c5 3854 perf_event_read(child, false);
01add3ea 3855 total += perf_event_count(child);
59ed446f
PZ
3856 *enabled += child->total_time_enabled;
3857 *running += child->total_time_running;
3858 }
6f10581a 3859 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3860
3861 return total;
3862}
fb0459d7 3863EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3864
fa8c2693
PZ
3865static void __perf_read_group_add(struct perf_event *leader,
3866 u64 read_format, u64 *values)
3dab77fb 3867{
fa8c2693
PZ
3868 struct perf_event *sub;
3869 int n = 1; /* skip @nr */
f63a8daa 3870
fa8c2693 3871 perf_event_read(leader, true);
abf4868b 3872
fa8c2693
PZ
3873 /*
3874 * Since we co-schedule groups, {enabled,running} times of siblings
3875 * will be identical to those of the leader, so we only publish one
3876 * set.
3877 */
3878 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3879 values[n++] += leader->total_time_enabled +
3880 atomic64_read(&leader->child_total_time_enabled);
3881 }
3dab77fb 3882
fa8c2693
PZ
3883 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3884 values[n++] += leader->total_time_running +
3885 atomic64_read(&leader->child_total_time_running);
3886 }
3887
3888 /*
3889 * Write {count,id} tuples for every sibling.
3890 */
3891 values[n++] += perf_event_count(leader);
abf4868b
PZ
3892 if (read_format & PERF_FORMAT_ID)
3893 values[n++] = primary_event_id(leader);
3dab77fb 3894
fa8c2693
PZ
3895 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3896 values[n++] += perf_event_count(sub);
3897 if (read_format & PERF_FORMAT_ID)
3898 values[n++] = primary_event_id(sub);
3899 }
3900}
3dab77fb 3901
fa8c2693
PZ
3902static int perf_read_group(struct perf_event *event,
3903 u64 read_format, char __user *buf)
3904{
3905 struct perf_event *leader = event->group_leader, *child;
3906 struct perf_event_context *ctx = leader->ctx;
3907 int ret = event->read_size;
3908 u64 *values;
3dab77fb 3909
fa8c2693 3910 lockdep_assert_held(&ctx->mutex);
3dab77fb 3911
fa8c2693
PZ
3912 values = kzalloc(event->read_size, GFP_KERNEL);
3913 if (!values)
3914 return -ENOMEM;
3dab77fb 3915
fa8c2693
PZ
3916 values[0] = 1 + leader->nr_siblings;
3917
3918 /*
3919 * By locking the child_mutex of the leader we effectively
3920 * lock the child list of all siblings.. XXX explain how.
3921 */
3922 mutex_lock(&leader->child_mutex);
abf4868b 3923
fa8c2693
PZ
3924 __perf_read_group_add(leader, read_format, values);
3925 list_for_each_entry(child, &leader->child_list, child_list)
3926 __perf_read_group_add(child, read_format, values);
abf4868b 3927
fa8c2693 3928 mutex_unlock(&leader->child_mutex);
abf4868b 3929
fa8c2693
PZ
3930 if (copy_to_user(buf, values, event->read_size))
3931 ret = -EFAULT;
3932
3933 kfree(values);
3dab77fb 3934
abf4868b 3935 return ret;
3dab77fb
PZ
3936}
3937
b15f495b 3938static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3939 u64 read_format, char __user *buf)
3940{
59ed446f 3941 u64 enabled, running;
3dab77fb
PZ
3942 u64 values[4];
3943 int n = 0;
3944
59ed446f
PZ
3945 values[n++] = perf_event_read_value(event, &enabled, &running);
3946 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3947 values[n++] = enabled;
3948 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3949 values[n++] = running;
3dab77fb 3950 if (read_format & PERF_FORMAT_ID)
cdd6c482 3951 values[n++] = primary_event_id(event);
3dab77fb
PZ
3952
3953 if (copy_to_user(buf, values, n * sizeof(u64)))
3954 return -EFAULT;
3955
3956 return n * sizeof(u64);
3957}
3958
dc633982
JO
3959static bool is_event_hup(struct perf_event *event)
3960{
3961 bool no_children;
3962
3963 if (event->state != PERF_EVENT_STATE_EXIT)
3964 return false;
3965
3966 mutex_lock(&event->child_mutex);
3967 no_children = list_empty(&event->child_list);
3968 mutex_unlock(&event->child_mutex);
3969 return no_children;
3970}
3971
0793a61d 3972/*
cdd6c482 3973 * Read the performance event - simple non blocking version for now
0793a61d
TG
3974 */
3975static ssize_t
b15f495b 3976__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3977{
cdd6c482 3978 u64 read_format = event->attr.read_format;
3dab77fb 3979 int ret;
0793a61d 3980
3b6f9e5c 3981 /*
cdd6c482 3982 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3983 * error state (i.e. because it was pinned but it couldn't be
3984 * scheduled on to the CPU at some point).
3985 */
cdd6c482 3986 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3987 return 0;
3988
c320c7b7 3989 if (count < event->read_size)
3dab77fb
PZ
3990 return -ENOSPC;
3991
cdd6c482 3992 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3993 if (read_format & PERF_FORMAT_GROUP)
b15f495b 3994 ret = perf_read_group(event, read_format, buf);
3dab77fb 3995 else
b15f495b 3996 ret = perf_read_one(event, read_format, buf);
0793a61d 3997
3dab77fb 3998 return ret;
0793a61d
TG
3999}
4000
0793a61d
TG
4001static ssize_t
4002perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4003{
cdd6c482 4004 struct perf_event *event = file->private_data;
f63a8daa
PZ
4005 struct perf_event_context *ctx;
4006 int ret;
0793a61d 4007
f63a8daa 4008 ctx = perf_event_ctx_lock(event);
b15f495b 4009 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4010 perf_event_ctx_unlock(event, ctx);
4011
4012 return ret;
0793a61d
TG
4013}
4014
4015static unsigned int perf_poll(struct file *file, poll_table *wait)
4016{
cdd6c482 4017 struct perf_event *event = file->private_data;
76369139 4018 struct ring_buffer *rb;
61b67684 4019 unsigned int events = POLLHUP;
c7138f37 4020
e708d7ad 4021 poll_wait(file, &event->waitq, wait);
179033b3 4022
dc633982 4023 if (is_event_hup(event))
179033b3 4024 return events;
c7138f37 4025
10c6db11 4026 /*
9bb5d40c
PZ
4027 * Pin the event->rb by taking event->mmap_mutex; otherwise
4028 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4029 */
4030 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4031 rb = event->rb;
4032 if (rb)
76369139 4033 events = atomic_xchg(&rb->poll, 0);
10c6db11 4034 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4035 return events;
4036}
4037
f63a8daa 4038static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4039{
0492d4c5 4040 perf_event_read(event, false);
e7850595 4041 local64_set(&event->count, 0);
cdd6c482 4042 perf_event_update_userpage(event);
3df5edad
PZ
4043}
4044
c93f7669 4045/*
cdd6c482
IM
4046 * Holding the top-level event's child_mutex means that any
4047 * descendant process that has inherited this event will block
4048 * in sync_child_event if it goes to exit, thus satisfying the
4049 * task existence requirements of perf_event_enable/disable.
c93f7669 4050 */
cdd6c482
IM
4051static void perf_event_for_each_child(struct perf_event *event,
4052 void (*func)(struct perf_event *))
3df5edad 4053{
cdd6c482 4054 struct perf_event *child;
3df5edad 4055
cdd6c482 4056 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4057
cdd6c482
IM
4058 mutex_lock(&event->child_mutex);
4059 func(event);
4060 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4061 func(child);
cdd6c482 4062 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4063}
4064
cdd6c482
IM
4065static void perf_event_for_each(struct perf_event *event,
4066 void (*func)(struct perf_event *))
3df5edad 4067{
cdd6c482
IM
4068 struct perf_event_context *ctx = event->ctx;
4069 struct perf_event *sibling;
3df5edad 4070
f63a8daa
PZ
4071 lockdep_assert_held(&ctx->mutex);
4072
cdd6c482 4073 event = event->group_leader;
75f937f2 4074
cdd6c482 4075 perf_event_for_each_child(event, func);
cdd6c482 4076 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4077 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4078}
4079
c7999c6f
PZ
4080struct period_event {
4081 struct perf_event *event;
08247e31 4082 u64 value;
c7999c6f 4083};
08247e31 4084
c7999c6f
PZ
4085static int __perf_event_period(void *info)
4086{
4087 struct period_event *pe = info;
4088 struct perf_event *event = pe->event;
4089 struct perf_event_context *ctx = event->ctx;
4090 u64 value = pe->value;
4091 bool active;
08247e31 4092
c7999c6f 4093 raw_spin_lock(&ctx->lock);
cdd6c482 4094 if (event->attr.freq) {
cdd6c482 4095 event->attr.sample_freq = value;
08247e31 4096 } else {
cdd6c482
IM
4097 event->attr.sample_period = value;
4098 event->hw.sample_period = value;
08247e31 4099 }
bad7192b
PZ
4100
4101 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4102 if (active) {
4103 perf_pmu_disable(ctx->pmu);
4104 event->pmu->stop(event, PERF_EF_UPDATE);
4105 }
4106
4107 local64_set(&event->hw.period_left, 0);
4108
4109 if (active) {
4110 event->pmu->start(event, PERF_EF_RELOAD);
4111 perf_pmu_enable(ctx->pmu);
4112 }
c7999c6f 4113 raw_spin_unlock(&ctx->lock);
bad7192b 4114
c7999c6f
PZ
4115 return 0;
4116}
4117
4118static int perf_event_period(struct perf_event *event, u64 __user *arg)
4119{
4120 struct period_event pe = { .event = event, };
4121 struct perf_event_context *ctx = event->ctx;
4122 struct task_struct *task;
4123 u64 value;
4124
4125 if (!is_sampling_event(event))
4126 return -EINVAL;
4127
4128 if (copy_from_user(&value, arg, sizeof(value)))
4129 return -EFAULT;
4130
4131 if (!value)
4132 return -EINVAL;
4133
4134 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4135 return -EINVAL;
4136
4137 task = ctx->task;
4138 pe.value = value;
4139
4140 if (!task) {
4141 cpu_function_call(event->cpu, __perf_event_period, &pe);
4142 return 0;
4143 }
4144
4145retry:
4146 if (!task_function_call(task, __perf_event_period, &pe))
4147 return 0;
4148
4149 raw_spin_lock_irq(&ctx->lock);
4150 if (ctx->is_active) {
4151 raw_spin_unlock_irq(&ctx->lock);
4152 task = ctx->task;
4153 goto retry;
4154 }
4155
4156 __perf_event_period(&pe);
e625cce1 4157 raw_spin_unlock_irq(&ctx->lock);
08247e31 4158
c7999c6f 4159 return 0;
08247e31
PZ
4160}
4161
ac9721f3
PZ
4162static const struct file_operations perf_fops;
4163
2903ff01 4164static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4165{
2903ff01
AV
4166 struct fd f = fdget(fd);
4167 if (!f.file)
4168 return -EBADF;
ac9721f3 4169
2903ff01
AV
4170 if (f.file->f_op != &perf_fops) {
4171 fdput(f);
4172 return -EBADF;
ac9721f3 4173 }
2903ff01
AV
4174 *p = f;
4175 return 0;
ac9721f3
PZ
4176}
4177
4178static int perf_event_set_output(struct perf_event *event,
4179 struct perf_event *output_event);
6fb2915d 4180static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4181static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4182
f63a8daa 4183static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4184{
cdd6c482 4185 void (*func)(struct perf_event *);
3df5edad 4186 u32 flags = arg;
d859e29f
PM
4187
4188 switch (cmd) {
cdd6c482 4189 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4190 func = _perf_event_enable;
d859e29f 4191 break;
cdd6c482 4192 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4193 func = _perf_event_disable;
79f14641 4194 break;
cdd6c482 4195 case PERF_EVENT_IOC_RESET:
f63a8daa 4196 func = _perf_event_reset;
6de6a7b9 4197 break;
3df5edad 4198
cdd6c482 4199 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4200 return _perf_event_refresh(event, arg);
08247e31 4201
cdd6c482
IM
4202 case PERF_EVENT_IOC_PERIOD:
4203 return perf_event_period(event, (u64 __user *)arg);
08247e31 4204
cf4957f1
JO
4205 case PERF_EVENT_IOC_ID:
4206 {
4207 u64 id = primary_event_id(event);
4208
4209 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4210 return -EFAULT;
4211 return 0;
4212 }
4213
cdd6c482 4214 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4215 {
ac9721f3 4216 int ret;
ac9721f3 4217 if (arg != -1) {
2903ff01
AV
4218 struct perf_event *output_event;
4219 struct fd output;
4220 ret = perf_fget_light(arg, &output);
4221 if (ret)
4222 return ret;
4223 output_event = output.file->private_data;
4224 ret = perf_event_set_output(event, output_event);
4225 fdput(output);
4226 } else {
4227 ret = perf_event_set_output(event, NULL);
ac9721f3 4228 }
ac9721f3
PZ
4229 return ret;
4230 }
a4be7c27 4231
6fb2915d
LZ
4232 case PERF_EVENT_IOC_SET_FILTER:
4233 return perf_event_set_filter(event, (void __user *)arg);
4234
2541517c
AS
4235 case PERF_EVENT_IOC_SET_BPF:
4236 return perf_event_set_bpf_prog(event, arg);
4237
d859e29f 4238 default:
3df5edad 4239 return -ENOTTY;
d859e29f 4240 }
3df5edad
PZ
4241
4242 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4243 perf_event_for_each(event, func);
3df5edad 4244 else
cdd6c482 4245 perf_event_for_each_child(event, func);
3df5edad
PZ
4246
4247 return 0;
d859e29f
PM
4248}
4249
f63a8daa
PZ
4250static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4251{
4252 struct perf_event *event = file->private_data;
4253 struct perf_event_context *ctx;
4254 long ret;
4255
4256 ctx = perf_event_ctx_lock(event);
4257 ret = _perf_ioctl(event, cmd, arg);
4258 perf_event_ctx_unlock(event, ctx);
4259
4260 return ret;
4261}
4262
b3f20785
PM
4263#ifdef CONFIG_COMPAT
4264static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4265 unsigned long arg)
4266{
4267 switch (_IOC_NR(cmd)) {
4268 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4269 case _IOC_NR(PERF_EVENT_IOC_ID):
4270 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4271 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4272 cmd &= ~IOCSIZE_MASK;
4273 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4274 }
4275 break;
4276 }
4277 return perf_ioctl(file, cmd, arg);
4278}
4279#else
4280# define perf_compat_ioctl NULL
4281#endif
4282
cdd6c482 4283int perf_event_task_enable(void)
771d7cde 4284{
f63a8daa 4285 struct perf_event_context *ctx;
cdd6c482 4286 struct perf_event *event;
771d7cde 4287
cdd6c482 4288 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4289 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4290 ctx = perf_event_ctx_lock(event);
4291 perf_event_for_each_child(event, _perf_event_enable);
4292 perf_event_ctx_unlock(event, ctx);
4293 }
cdd6c482 4294 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4295
4296 return 0;
4297}
4298
cdd6c482 4299int perf_event_task_disable(void)
771d7cde 4300{
f63a8daa 4301 struct perf_event_context *ctx;
cdd6c482 4302 struct perf_event *event;
771d7cde 4303
cdd6c482 4304 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4305 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4306 ctx = perf_event_ctx_lock(event);
4307 perf_event_for_each_child(event, _perf_event_disable);
4308 perf_event_ctx_unlock(event, ctx);
4309 }
cdd6c482 4310 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4311
4312 return 0;
4313}
4314
cdd6c482 4315static int perf_event_index(struct perf_event *event)
194002b2 4316{
a4eaf7f1
PZ
4317 if (event->hw.state & PERF_HES_STOPPED)
4318 return 0;
4319
cdd6c482 4320 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4321 return 0;
4322
35edc2a5 4323 return event->pmu->event_idx(event);
194002b2
PZ
4324}
4325
c4794295 4326static void calc_timer_values(struct perf_event *event,
e3f3541c 4327 u64 *now,
7f310a5d
EM
4328 u64 *enabled,
4329 u64 *running)
c4794295 4330{
e3f3541c 4331 u64 ctx_time;
c4794295 4332
e3f3541c
PZ
4333 *now = perf_clock();
4334 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4335 *enabled = ctx_time - event->tstamp_enabled;
4336 *running = ctx_time - event->tstamp_running;
4337}
4338
fa731587
PZ
4339static void perf_event_init_userpage(struct perf_event *event)
4340{
4341 struct perf_event_mmap_page *userpg;
4342 struct ring_buffer *rb;
4343
4344 rcu_read_lock();
4345 rb = rcu_dereference(event->rb);
4346 if (!rb)
4347 goto unlock;
4348
4349 userpg = rb->user_page;
4350
4351 /* Allow new userspace to detect that bit 0 is deprecated */
4352 userpg->cap_bit0_is_deprecated = 1;
4353 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4354 userpg->data_offset = PAGE_SIZE;
4355 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4356
4357unlock:
4358 rcu_read_unlock();
4359}
4360
c1317ec2
AL
4361void __weak arch_perf_update_userpage(
4362 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4363{
4364}
4365
38ff667b
PZ
4366/*
4367 * Callers need to ensure there can be no nesting of this function, otherwise
4368 * the seqlock logic goes bad. We can not serialize this because the arch
4369 * code calls this from NMI context.
4370 */
cdd6c482 4371void perf_event_update_userpage(struct perf_event *event)
37d81828 4372{
cdd6c482 4373 struct perf_event_mmap_page *userpg;
76369139 4374 struct ring_buffer *rb;
e3f3541c 4375 u64 enabled, running, now;
38ff667b
PZ
4376
4377 rcu_read_lock();
5ec4c599
PZ
4378 rb = rcu_dereference(event->rb);
4379 if (!rb)
4380 goto unlock;
4381
0d641208
EM
4382 /*
4383 * compute total_time_enabled, total_time_running
4384 * based on snapshot values taken when the event
4385 * was last scheduled in.
4386 *
4387 * we cannot simply called update_context_time()
4388 * because of locking issue as we can be called in
4389 * NMI context
4390 */
e3f3541c 4391 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4392
76369139 4393 userpg = rb->user_page;
7b732a75
PZ
4394 /*
4395 * Disable preemption so as to not let the corresponding user-space
4396 * spin too long if we get preempted.
4397 */
4398 preempt_disable();
37d81828 4399 ++userpg->lock;
92f22a38 4400 barrier();
cdd6c482 4401 userpg->index = perf_event_index(event);
b5e58793 4402 userpg->offset = perf_event_count(event);
365a4038 4403 if (userpg->index)
e7850595 4404 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4405
0d641208 4406 userpg->time_enabled = enabled +
cdd6c482 4407 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4408
0d641208 4409 userpg->time_running = running +
cdd6c482 4410 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4411
c1317ec2 4412 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4413
92f22a38 4414 barrier();
37d81828 4415 ++userpg->lock;
7b732a75 4416 preempt_enable();
38ff667b 4417unlock:
7b732a75 4418 rcu_read_unlock();
37d81828
PM
4419}
4420
906010b2
PZ
4421static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4422{
4423 struct perf_event *event = vma->vm_file->private_data;
76369139 4424 struct ring_buffer *rb;
906010b2
PZ
4425 int ret = VM_FAULT_SIGBUS;
4426
4427 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4428 if (vmf->pgoff == 0)
4429 ret = 0;
4430 return ret;
4431 }
4432
4433 rcu_read_lock();
76369139
FW
4434 rb = rcu_dereference(event->rb);
4435 if (!rb)
906010b2
PZ
4436 goto unlock;
4437
4438 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4439 goto unlock;
4440
76369139 4441 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4442 if (!vmf->page)
4443 goto unlock;
4444
4445 get_page(vmf->page);
4446 vmf->page->mapping = vma->vm_file->f_mapping;
4447 vmf->page->index = vmf->pgoff;
4448
4449 ret = 0;
4450unlock:
4451 rcu_read_unlock();
4452
4453 return ret;
4454}
4455
10c6db11
PZ
4456static void ring_buffer_attach(struct perf_event *event,
4457 struct ring_buffer *rb)
4458{
b69cf536 4459 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4460 unsigned long flags;
4461
b69cf536
PZ
4462 if (event->rb) {
4463 /*
4464 * Should be impossible, we set this when removing
4465 * event->rb_entry and wait/clear when adding event->rb_entry.
4466 */
4467 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4468
b69cf536 4469 old_rb = event->rb;
b69cf536
PZ
4470 spin_lock_irqsave(&old_rb->event_lock, flags);
4471 list_del_rcu(&event->rb_entry);
4472 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4473
2f993cf0
ON
4474 event->rcu_batches = get_state_synchronize_rcu();
4475 event->rcu_pending = 1;
b69cf536 4476 }
10c6db11 4477
b69cf536 4478 if (rb) {
2f993cf0
ON
4479 if (event->rcu_pending) {
4480 cond_synchronize_rcu(event->rcu_batches);
4481 event->rcu_pending = 0;
4482 }
4483
b69cf536
PZ
4484 spin_lock_irqsave(&rb->event_lock, flags);
4485 list_add_rcu(&event->rb_entry, &rb->event_list);
4486 spin_unlock_irqrestore(&rb->event_lock, flags);
4487 }
4488
4489 rcu_assign_pointer(event->rb, rb);
4490
4491 if (old_rb) {
4492 ring_buffer_put(old_rb);
4493 /*
4494 * Since we detached before setting the new rb, so that we
4495 * could attach the new rb, we could have missed a wakeup.
4496 * Provide it now.
4497 */
4498 wake_up_all(&event->waitq);
4499 }
10c6db11
PZ
4500}
4501
4502static void ring_buffer_wakeup(struct perf_event *event)
4503{
4504 struct ring_buffer *rb;
4505
4506 rcu_read_lock();
4507 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4508 if (rb) {
4509 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4510 wake_up_all(&event->waitq);
4511 }
10c6db11
PZ
4512 rcu_read_unlock();
4513}
4514
fdc26706 4515struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4516{
76369139 4517 struct ring_buffer *rb;
7b732a75 4518
ac9721f3 4519 rcu_read_lock();
76369139
FW
4520 rb = rcu_dereference(event->rb);
4521 if (rb) {
4522 if (!atomic_inc_not_zero(&rb->refcount))
4523 rb = NULL;
ac9721f3
PZ
4524 }
4525 rcu_read_unlock();
4526
76369139 4527 return rb;
ac9721f3
PZ
4528}
4529
fdc26706 4530void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4531{
76369139 4532 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4533 return;
7b732a75 4534
9bb5d40c 4535 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4536
76369139 4537 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4538}
4539
4540static void perf_mmap_open(struct vm_area_struct *vma)
4541{
cdd6c482 4542 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4543
cdd6c482 4544 atomic_inc(&event->mmap_count);
9bb5d40c 4545 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4546
45bfb2e5
PZ
4547 if (vma->vm_pgoff)
4548 atomic_inc(&event->rb->aux_mmap_count);
4549
1e0fb9ec
AL
4550 if (event->pmu->event_mapped)
4551 event->pmu->event_mapped(event);
7b732a75
PZ
4552}
4553
9bb5d40c
PZ
4554/*
4555 * A buffer can be mmap()ed multiple times; either directly through the same
4556 * event, or through other events by use of perf_event_set_output().
4557 *
4558 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4559 * the buffer here, where we still have a VM context. This means we need
4560 * to detach all events redirecting to us.
4561 */
7b732a75
PZ
4562static void perf_mmap_close(struct vm_area_struct *vma)
4563{
cdd6c482 4564 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4565
b69cf536 4566 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4567 struct user_struct *mmap_user = rb->mmap_user;
4568 int mmap_locked = rb->mmap_locked;
4569 unsigned long size = perf_data_size(rb);
789f90fc 4570
1e0fb9ec
AL
4571 if (event->pmu->event_unmapped)
4572 event->pmu->event_unmapped(event);
4573
45bfb2e5
PZ
4574 /*
4575 * rb->aux_mmap_count will always drop before rb->mmap_count and
4576 * event->mmap_count, so it is ok to use event->mmap_mutex to
4577 * serialize with perf_mmap here.
4578 */
4579 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4580 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4581 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4582 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4583
4584 rb_free_aux(rb);
4585 mutex_unlock(&event->mmap_mutex);
4586 }
4587
9bb5d40c
PZ
4588 atomic_dec(&rb->mmap_count);
4589
4590 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4591 goto out_put;
9bb5d40c 4592
b69cf536 4593 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4594 mutex_unlock(&event->mmap_mutex);
4595
4596 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4597 if (atomic_read(&rb->mmap_count))
4598 goto out_put;
ac9721f3 4599
9bb5d40c
PZ
4600 /*
4601 * No other mmap()s, detach from all other events that might redirect
4602 * into the now unreachable buffer. Somewhat complicated by the
4603 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4604 */
4605again:
4606 rcu_read_lock();
4607 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4608 if (!atomic_long_inc_not_zero(&event->refcount)) {
4609 /*
4610 * This event is en-route to free_event() which will
4611 * detach it and remove it from the list.
4612 */
4613 continue;
4614 }
4615 rcu_read_unlock();
789f90fc 4616
9bb5d40c
PZ
4617 mutex_lock(&event->mmap_mutex);
4618 /*
4619 * Check we didn't race with perf_event_set_output() which can
4620 * swizzle the rb from under us while we were waiting to
4621 * acquire mmap_mutex.
4622 *
4623 * If we find a different rb; ignore this event, a next
4624 * iteration will no longer find it on the list. We have to
4625 * still restart the iteration to make sure we're not now
4626 * iterating the wrong list.
4627 */
b69cf536
PZ
4628 if (event->rb == rb)
4629 ring_buffer_attach(event, NULL);
4630
cdd6c482 4631 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4632 put_event(event);
ac9721f3 4633
9bb5d40c
PZ
4634 /*
4635 * Restart the iteration; either we're on the wrong list or
4636 * destroyed its integrity by doing a deletion.
4637 */
4638 goto again;
7b732a75 4639 }
9bb5d40c
PZ
4640 rcu_read_unlock();
4641
4642 /*
4643 * It could be there's still a few 0-ref events on the list; they'll
4644 * get cleaned up by free_event() -- they'll also still have their
4645 * ref on the rb and will free it whenever they are done with it.
4646 *
4647 * Aside from that, this buffer is 'fully' detached and unmapped,
4648 * undo the VM accounting.
4649 */
4650
4651 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4652 vma->vm_mm->pinned_vm -= mmap_locked;
4653 free_uid(mmap_user);
4654
b69cf536 4655out_put:
9bb5d40c 4656 ring_buffer_put(rb); /* could be last */
37d81828
PM
4657}
4658
f0f37e2f 4659static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4660 .open = perf_mmap_open,
45bfb2e5 4661 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4662 .fault = perf_mmap_fault,
4663 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4664};
4665
4666static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4667{
cdd6c482 4668 struct perf_event *event = file->private_data;
22a4f650 4669 unsigned long user_locked, user_lock_limit;
789f90fc 4670 struct user_struct *user = current_user();
22a4f650 4671 unsigned long locked, lock_limit;
45bfb2e5 4672 struct ring_buffer *rb = NULL;
7b732a75
PZ
4673 unsigned long vma_size;
4674 unsigned long nr_pages;
45bfb2e5 4675 long user_extra = 0, extra = 0;
d57e34fd 4676 int ret = 0, flags = 0;
37d81828 4677
c7920614
PZ
4678 /*
4679 * Don't allow mmap() of inherited per-task counters. This would
4680 * create a performance issue due to all children writing to the
76369139 4681 * same rb.
c7920614
PZ
4682 */
4683 if (event->cpu == -1 && event->attr.inherit)
4684 return -EINVAL;
4685
43a21ea8 4686 if (!(vma->vm_flags & VM_SHARED))
37d81828 4687 return -EINVAL;
7b732a75
PZ
4688
4689 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4690
4691 if (vma->vm_pgoff == 0) {
4692 nr_pages = (vma_size / PAGE_SIZE) - 1;
4693 } else {
4694 /*
4695 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4696 * mapped, all subsequent mappings should have the same size
4697 * and offset. Must be above the normal perf buffer.
4698 */
4699 u64 aux_offset, aux_size;
4700
4701 if (!event->rb)
4702 return -EINVAL;
4703
4704 nr_pages = vma_size / PAGE_SIZE;
4705
4706 mutex_lock(&event->mmap_mutex);
4707 ret = -EINVAL;
4708
4709 rb = event->rb;
4710 if (!rb)
4711 goto aux_unlock;
4712
4713 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4714 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4715
4716 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4717 goto aux_unlock;
4718
4719 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4720 goto aux_unlock;
4721
4722 /* already mapped with a different offset */
4723 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4724 goto aux_unlock;
4725
4726 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4727 goto aux_unlock;
4728
4729 /* already mapped with a different size */
4730 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4731 goto aux_unlock;
4732
4733 if (!is_power_of_2(nr_pages))
4734 goto aux_unlock;
4735
4736 if (!atomic_inc_not_zero(&rb->mmap_count))
4737 goto aux_unlock;
4738
4739 if (rb_has_aux(rb)) {
4740 atomic_inc(&rb->aux_mmap_count);
4741 ret = 0;
4742 goto unlock;
4743 }
4744
4745 atomic_set(&rb->aux_mmap_count, 1);
4746 user_extra = nr_pages;
4747
4748 goto accounting;
4749 }
7b732a75 4750
7730d865 4751 /*
76369139 4752 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4753 * can do bitmasks instead of modulo.
4754 */
2ed11312 4755 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4756 return -EINVAL;
4757
7b732a75 4758 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4759 return -EINVAL;
4760
cdd6c482 4761 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4762again:
cdd6c482 4763 mutex_lock(&event->mmap_mutex);
76369139 4764 if (event->rb) {
9bb5d40c 4765 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4766 ret = -EINVAL;
9bb5d40c
PZ
4767 goto unlock;
4768 }
4769
4770 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4771 /*
4772 * Raced against perf_mmap_close() through
4773 * perf_event_set_output(). Try again, hope for better
4774 * luck.
4775 */
4776 mutex_unlock(&event->mmap_mutex);
4777 goto again;
4778 }
4779
ebb3c4c4
PZ
4780 goto unlock;
4781 }
4782
789f90fc 4783 user_extra = nr_pages + 1;
45bfb2e5
PZ
4784
4785accounting:
cdd6c482 4786 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4787
4788 /*
4789 * Increase the limit linearly with more CPUs:
4790 */
4791 user_lock_limit *= num_online_cpus();
4792
789f90fc 4793 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4794
789f90fc
PZ
4795 if (user_locked > user_lock_limit)
4796 extra = user_locked - user_lock_limit;
7b732a75 4797
78d7d407 4798 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4799 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4800 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4801
459ec28a
IM
4802 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4803 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4804 ret = -EPERM;
4805 goto unlock;
4806 }
7b732a75 4807
45bfb2e5 4808 WARN_ON(!rb && event->rb);
906010b2 4809
d57e34fd 4810 if (vma->vm_flags & VM_WRITE)
76369139 4811 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4812
76369139 4813 if (!rb) {
45bfb2e5
PZ
4814 rb = rb_alloc(nr_pages,
4815 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4816 event->cpu, flags);
26cb63ad 4817
45bfb2e5
PZ
4818 if (!rb) {
4819 ret = -ENOMEM;
4820 goto unlock;
4821 }
43a21ea8 4822
45bfb2e5
PZ
4823 atomic_set(&rb->mmap_count, 1);
4824 rb->mmap_user = get_current_user();
4825 rb->mmap_locked = extra;
26cb63ad 4826
45bfb2e5 4827 ring_buffer_attach(event, rb);
ac9721f3 4828
45bfb2e5
PZ
4829 perf_event_init_userpage(event);
4830 perf_event_update_userpage(event);
4831 } else {
1a594131
AS
4832 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4833 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4834 if (!ret)
4835 rb->aux_mmap_locked = extra;
4836 }
9a0f05cb 4837
ebb3c4c4 4838unlock:
45bfb2e5
PZ
4839 if (!ret) {
4840 atomic_long_add(user_extra, &user->locked_vm);
4841 vma->vm_mm->pinned_vm += extra;
4842
ac9721f3 4843 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4844 } else if (rb) {
4845 atomic_dec(&rb->mmap_count);
4846 }
4847aux_unlock:
cdd6c482 4848 mutex_unlock(&event->mmap_mutex);
37d81828 4849
9bb5d40c
PZ
4850 /*
4851 * Since pinned accounting is per vm we cannot allow fork() to copy our
4852 * vma.
4853 */
26cb63ad 4854 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4855 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4856
1e0fb9ec
AL
4857 if (event->pmu->event_mapped)
4858 event->pmu->event_mapped(event);
4859
7b732a75 4860 return ret;
37d81828
PM
4861}
4862
3c446b3d
PZ
4863static int perf_fasync(int fd, struct file *filp, int on)
4864{
496ad9aa 4865 struct inode *inode = file_inode(filp);
cdd6c482 4866 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4867 int retval;
4868
4869 mutex_lock(&inode->i_mutex);
cdd6c482 4870 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4871 mutex_unlock(&inode->i_mutex);
4872
4873 if (retval < 0)
4874 return retval;
4875
4876 return 0;
4877}
4878
0793a61d 4879static const struct file_operations perf_fops = {
3326c1ce 4880 .llseek = no_llseek,
0793a61d
TG
4881 .release = perf_release,
4882 .read = perf_read,
4883 .poll = perf_poll,
d859e29f 4884 .unlocked_ioctl = perf_ioctl,
b3f20785 4885 .compat_ioctl = perf_compat_ioctl,
37d81828 4886 .mmap = perf_mmap,
3c446b3d 4887 .fasync = perf_fasync,
0793a61d
TG
4888};
4889
925d519a 4890/*
cdd6c482 4891 * Perf event wakeup
925d519a
PZ
4892 *
4893 * If there's data, ensure we set the poll() state and publish everything
4894 * to user-space before waking everybody up.
4895 */
4896
fed66e2c
PZ
4897static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4898{
4899 /* only the parent has fasync state */
4900 if (event->parent)
4901 event = event->parent;
4902 return &event->fasync;
4903}
4904
cdd6c482 4905void perf_event_wakeup(struct perf_event *event)
925d519a 4906{
10c6db11 4907 ring_buffer_wakeup(event);
4c9e2542 4908
cdd6c482 4909 if (event->pending_kill) {
fed66e2c 4910 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4911 event->pending_kill = 0;
4c9e2542 4912 }
925d519a
PZ
4913}
4914
e360adbe 4915static void perf_pending_event(struct irq_work *entry)
79f14641 4916{
cdd6c482
IM
4917 struct perf_event *event = container_of(entry,
4918 struct perf_event, pending);
d525211f
PZ
4919 int rctx;
4920
4921 rctx = perf_swevent_get_recursion_context();
4922 /*
4923 * If we 'fail' here, that's OK, it means recursion is already disabled
4924 * and we won't recurse 'further'.
4925 */
79f14641 4926
cdd6c482
IM
4927 if (event->pending_disable) {
4928 event->pending_disable = 0;
4929 __perf_event_disable(event);
79f14641
PZ
4930 }
4931
cdd6c482
IM
4932 if (event->pending_wakeup) {
4933 event->pending_wakeup = 0;
4934 perf_event_wakeup(event);
79f14641 4935 }
d525211f
PZ
4936
4937 if (rctx >= 0)
4938 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4939}
4940
39447b38
ZY
4941/*
4942 * We assume there is only KVM supporting the callbacks.
4943 * Later on, we might change it to a list if there is
4944 * another virtualization implementation supporting the callbacks.
4945 */
4946struct perf_guest_info_callbacks *perf_guest_cbs;
4947
4948int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4949{
4950 perf_guest_cbs = cbs;
4951 return 0;
4952}
4953EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4954
4955int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4956{
4957 perf_guest_cbs = NULL;
4958 return 0;
4959}
4960EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4961
4018994f
JO
4962static void
4963perf_output_sample_regs(struct perf_output_handle *handle,
4964 struct pt_regs *regs, u64 mask)
4965{
4966 int bit;
4967
4968 for_each_set_bit(bit, (const unsigned long *) &mask,
4969 sizeof(mask) * BITS_PER_BYTE) {
4970 u64 val;
4971
4972 val = perf_reg_value(regs, bit);
4973 perf_output_put(handle, val);
4974 }
4975}
4976
60e2364e 4977static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4978 struct pt_regs *regs,
4979 struct pt_regs *regs_user_copy)
4018994f 4980{
88a7c26a
AL
4981 if (user_mode(regs)) {
4982 regs_user->abi = perf_reg_abi(current);
2565711f 4983 regs_user->regs = regs;
88a7c26a
AL
4984 } else if (current->mm) {
4985 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4986 } else {
4987 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4988 regs_user->regs = NULL;
4018994f
JO
4989 }
4990}
4991
60e2364e
SE
4992static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4993 struct pt_regs *regs)
4994{
4995 regs_intr->regs = regs;
4996 regs_intr->abi = perf_reg_abi(current);
4997}
4998
4999
c5ebcedb
JO
5000/*
5001 * Get remaining task size from user stack pointer.
5002 *
5003 * It'd be better to take stack vma map and limit this more
5004 * precisly, but there's no way to get it safely under interrupt,
5005 * so using TASK_SIZE as limit.
5006 */
5007static u64 perf_ustack_task_size(struct pt_regs *regs)
5008{
5009 unsigned long addr = perf_user_stack_pointer(regs);
5010
5011 if (!addr || addr >= TASK_SIZE)
5012 return 0;
5013
5014 return TASK_SIZE - addr;
5015}
5016
5017static u16
5018perf_sample_ustack_size(u16 stack_size, u16 header_size,
5019 struct pt_regs *regs)
5020{
5021 u64 task_size;
5022
5023 /* No regs, no stack pointer, no dump. */
5024 if (!regs)
5025 return 0;
5026
5027 /*
5028 * Check if we fit in with the requested stack size into the:
5029 * - TASK_SIZE
5030 * If we don't, we limit the size to the TASK_SIZE.
5031 *
5032 * - remaining sample size
5033 * If we don't, we customize the stack size to
5034 * fit in to the remaining sample size.
5035 */
5036
5037 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5038 stack_size = min(stack_size, (u16) task_size);
5039
5040 /* Current header size plus static size and dynamic size. */
5041 header_size += 2 * sizeof(u64);
5042
5043 /* Do we fit in with the current stack dump size? */
5044 if ((u16) (header_size + stack_size) < header_size) {
5045 /*
5046 * If we overflow the maximum size for the sample,
5047 * we customize the stack dump size to fit in.
5048 */
5049 stack_size = USHRT_MAX - header_size - sizeof(u64);
5050 stack_size = round_up(stack_size, sizeof(u64));
5051 }
5052
5053 return stack_size;
5054}
5055
5056static void
5057perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5058 struct pt_regs *regs)
5059{
5060 /* Case of a kernel thread, nothing to dump */
5061 if (!regs) {
5062 u64 size = 0;
5063 perf_output_put(handle, size);
5064 } else {
5065 unsigned long sp;
5066 unsigned int rem;
5067 u64 dyn_size;
5068
5069 /*
5070 * We dump:
5071 * static size
5072 * - the size requested by user or the best one we can fit
5073 * in to the sample max size
5074 * data
5075 * - user stack dump data
5076 * dynamic size
5077 * - the actual dumped size
5078 */
5079
5080 /* Static size. */
5081 perf_output_put(handle, dump_size);
5082
5083 /* Data. */
5084 sp = perf_user_stack_pointer(regs);
5085 rem = __output_copy_user(handle, (void *) sp, dump_size);
5086 dyn_size = dump_size - rem;
5087
5088 perf_output_skip(handle, rem);
5089
5090 /* Dynamic size. */
5091 perf_output_put(handle, dyn_size);
5092 }
5093}
5094
c980d109
ACM
5095static void __perf_event_header__init_id(struct perf_event_header *header,
5096 struct perf_sample_data *data,
5097 struct perf_event *event)
6844c09d
ACM
5098{
5099 u64 sample_type = event->attr.sample_type;
5100
5101 data->type = sample_type;
5102 header->size += event->id_header_size;
5103
5104 if (sample_type & PERF_SAMPLE_TID) {
5105 /* namespace issues */
5106 data->tid_entry.pid = perf_event_pid(event, current);
5107 data->tid_entry.tid = perf_event_tid(event, current);
5108 }
5109
5110 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5111 data->time = perf_event_clock(event);
6844c09d 5112
ff3d527c 5113 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5114 data->id = primary_event_id(event);
5115
5116 if (sample_type & PERF_SAMPLE_STREAM_ID)
5117 data->stream_id = event->id;
5118
5119 if (sample_type & PERF_SAMPLE_CPU) {
5120 data->cpu_entry.cpu = raw_smp_processor_id();
5121 data->cpu_entry.reserved = 0;
5122 }
5123}
5124
76369139
FW
5125void perf_event_header__init_id(struct perf_event_header *header,
5126 struct perf_sample_data *data,
5127 struct perf_event *event)
c980d109
ACM
5128{
5129 if (event->attr.sample_id_all)
5130 __perf_event_header__init_id(header, data, event);
5131}
5132
5133static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5134 struct perf_sample_data *data)
5135{
5136 u64 sample_type = data->type;
5137
5138 if (sample_type & PERF_SAMPLE_TID)
5139 perf_output_put(handle, data->tid_entry);
5140
5141 if (sample_type & PERF_SAMPLE_TIME)
5142 perf_output_put(handle, data->time);
5143
5144 if (sample_type & PERF_SAMPLE_ID)
5145 perf_output_put(handle, data->id);
5146
5147 if (sample_type & PERF_SAMPLE_STREAM_ID)
5148 perf_output_put(handle, data->stream_id);
5149
5150 if (sample_type & PERF_SAMPLE_CPU)
5151 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5152
5153 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5154 perf_output_put(handle, data->id);
c980d109
ACM
5155}
5156
76369139
FW
5157void perf_event__output_id_sample(struct perf_event *event,
5158 struct perf_output_handle *handle,
5159 struct perf_sample_data *sample)
c980d109
ACM
5160{
5161 if (event->attr.sample_id_all)
5162 __perf_event__output_id_sample(handle, sample);
5163}
5164
3dab77fb 5165static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5166 struct perf_event *event,
5167 u64 enabled, u64 running)
3dab77fb 5168{
cdd6c482 5169 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5170 u64 values[4];
5171 int n = 0;
5172
b5e58793 5173 values[n++] = perf_event_count(event);
3dab77fb 5174 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5175 values[n++] = enabled +
cdd6c482 5176 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5177 }
5178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5179 values[n++] = running +
cdd6c482 5180 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5181 }
5182 if (read_format & PERF_FORMAT_ID)
cdd6c482 5183 values[n++] = primary_event_id(event);
3dab77fb 5184
76369139 5185 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5186}
5187
5188/*
cdd6c482 5189 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5190 */
5191static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5192 struct perf_event *event,
5193 u64 enabled, u64 running)
3dab77fb 5194{
cdd6c482
IM
5195 struct perf_event *leader = event->group_leader, *sub;
5196 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5197 u64 values[5];
5198 int n = 0;
5199
5200 values[n++] = 1 + leader->nr_siblings;
5201
5202 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5203 values[n++] = enabled;
3dab77fb
PZ
5204
5205 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5206 values[n++] = running;
3dab77fb 5207
cdd6c482 5208 if (leader != event)
3dab77fb
PZ
5209 leader->pmu->read(leader);
5210
b5e58793 5211 values[n++] = perf_event_count(leader);
3dab77fb 5212 if (read_format & PERF_FORMAT_ID)
cdd6c482 5213 values[n++] = primary_event_id(leader);
3dab77fb 5214
76369139 5215 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5216
65abc865 5217 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5218 n = 0;
5219
6f5ab001
JO
5220 if ((sub != event) &&
5221 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5222 sub->pmu->read(sub);
5223
b5e58793 5224 values[n++] = perf_event_count(sub);
3dab77fb 5225 if (read_format & PERF_FORMAT_ID)
cdd6c482 5226 values[n++] = primary_event_id(sub);
3dab77fb 5227
76369139 5228 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5229 }
5230}
5231
eed01528
SE
5232#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5233 PERF_FORMAT_TOTAL_TIME_RUNNING)
5234
3dab77fb 5235static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5236 struct perf_event *event)
3dab77fb 5237{
e3f3541c 5238 u64 enabled = 0, running = 0, now;
eed01528
SE
5239 u64 read_format = event->attr.read_format;
5240
5241 /*
5242 * compute total_time_enabled, total_time_running
5243 * based on snapshot values taken when the event
5244 * was last scheduled in.
5245 *
5246 * we cannot simply called update_context_time()
5247 * because of locking issue as we are called in
5248 * NMI context
5249 */
c4794295 5250 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5251 calc_timer_values(event, &now, &enabled, &running);
eed01528 5252
cdd6c482 5253 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5254 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5255 else
eed01528 5256 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5257}
5258
5622f295
MM
5259void perf_output_sample(struct perf_output_handle *handle,
5260 struct perf_event_header *header,
5261 struct perf_sample_data *data,
cdd6c482 5262 struct perf_event *event)
5622f295
MM
5263{
5264 u64 sample_type = data->type;
5265
5266 perf_output_put(handle, *header);
5267
ff3d527c
AH
5268 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5269 perf_output_put(handle, data->id);
5270
5622f295
MM
5271 if (sample_type & PERF_SAMPLE_IP)
5272 perf_output_put(handle, data->ip);
5273
5274 if (sample_type & PERF_SAMPLE_TID)
5275 perf_output_put(handle, data->tid_entry);
5276
5277 if (sample_type & PERF_SAMPLE_TIME)
5278 perf_output_put(handle, data->time);
5279
5280 if (sample_type & PERF_SAMPLE_ADDR)
5281 perf_output_put(handle, data->addr);
5282
5283 if (sample_type & PERF_SAMPLE_ID)
5284 perf_output_put(handle, data->id);
5285
5286 if (sample_type & PERF_SAMPLE_STREAM_ID)
5287 perf_output_put(handle, data->stream_id);
5288
5289 if (sample_type & PERF_SAMPLE_CPU)
5290 perf_output_put(handle, data->cpu_entry);
5291
5292 if (sample_type & PERF_SAMPLE_PERIOD)
5293 perf_output_put(handle, data->period);
5294
5295 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5296 perf_output_read(handle, event);
5622f295
MM
5297
5298 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5299 if (data->callchain) {
5300 int size = 1;
5301
5302 if (data->callchain)
5303 size += data->callchain->nr;
5304
5305 size *= sizeof(u64);
5306
76369139 5307 __output_copy(handle, data->callchain, size);
5622f295
MM
5308 } else {
5309 u64 nr = 0;
5310 perf_output_put(handle, nr);
5311 }
5312 }
5313
5314 if (sample_type & PERF_SAMPLE_RAW) {
5315 if (data->raw) {
5316 perf_output_put(handle, data->raw->size);
76369139
FW
5317 __output_copy(handle, data->raw->data,
5318 data->raw->size);
5622f295
MM
5319 } else {
5320 struct {
5321 u32 size;
5322 u32 data;
5323 } raw = {
5324 .size = sizeof(u32),
5325 .data = 0,
5326 };
5327 perf_output_put(handle, raw);
5328 }
5329 }
a7ac67ea 5330
bce38cd5
SE
5331 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5332 if (data->br_stack) {
5333 size_t size;
5334
5335 size = data->br_stack->nr
5336 * sizeof(struct perf_branch_entry);
5337
5338 perf_output_put(handle, data->br_stack->nr);
5339 perf_output_copy(handle, data->br_stack->entries, size);
5340 } else {
5341 /*
5342 * we always store at least the value of nr
5343 */
5344 u64 nr = 0;
5345 perf_output_put(handle, nr);
5346 }
5347 }
4018994f
JO
5348
5349 if (sample_type & PERF_SAMPLE_REGS_USER) {
5350 u64 abi = data->regs_user.abi;
5351
5352 /*
5353 * If there are no regs to dump, notice it through
5354 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5355 */
5356 perf_output_put(handle, abi);
5357
5358 if (abi) {
5359 u64 mask = event->attr.sample_regs_user;
5360 perf_output_sample_regs(handle,
5361 data->regs_user.regs,
5362 mask);
5363 }
5364 }
c5ebcedb 5365
a5cdd40c 5366 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5367 perf_output_sample_ustack(handle,
5368 data->stack_user_size,
5369 data->regs_user.regs);
a5cdd40c 5370 }
c3feedf2
AK
5371
5372 if (sample_type & PERF_SAMPLE_WEIGHT)
5373 perf_output_put(handle, data->weight);
d6be9ad6
SE
5374
5375 if (sample_type & PERF_SAMPLE_DATA_SRC)
5376 perf_output_put(handle, data->data_src.val);
a5cdd40c 5377
fdfbbd07
AK
5378 if (sample_type & PERF_SAMPLE_TRANSACTION)
5379 perf_output_put(handle, data->txn);
5380
60e2364e
SE
5381 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5382 u64 abi = data->regs_intr.abi;
5383 /*
5384 * If there are no regs to dump, notice it through
5385 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5386 */
5387 perf_output_put(handle, abi);
5388
5389 if (abi) {
5390 u64 mask = event->attr.sample_regs_intr;
5391
5392 perf_output_sample_regs(handle,
5393 data->regs_intr.regs,
5394 mask);
5395 }
5396 }
5397
a5cdd40c
PZ
5398 if (!event->attr.watermark) {
5399 int wakeup_events = event->attr.wakeup_events;
5400
5401 if (wakeup_events) {
5402 struct ring_buffer *rb = handle->rb;
5403 int events = local_inc_return(&rb->events);
5404
5405 if (events >= wakeup_events) {
5406 local_sub(wakeup_events, &rb->events);
5407 local_inc(&rb->wakeup);
5408 }
5409 }
5410 }
5622f295
MM
5411}
5412
5413void perf_prepare_sample(struct perf_event_header *header,
5414 struct perf_sample_data *data,
cdd6c482 5415 struct perf_event *event,
5622f295 5416 struct pt_regs *regs)
7b732a75 5417{
cdd6c482 5418 u64 sample_type = event->attr.sample_type;
7b732a75 5419
cdd6c482 5420 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5421 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5422
5423 header->misc = 0;
5424 header->misc |= perf_misc_flags(regs);
6fab0192 5425
c980d109 5426 __perf_event_header__init_id(header, data, event);
6844c09d 5427
c320c7b7 5428 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5429 data->ip = perf_instruction_pointer(regs);
5430
b23f3325 5431 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5432 int size = 1;
394ee076 5433
e6dab5ff 5434 data->callchain = perf_callchain(event, regs);
5622f295
MM
5435
5436 if (data->callchain)
5437 size += data->callchain->nr;
5438
5439 header->size += size * sizeof(u64);
394ee076
PZ
5440 }
5441
3a43ce68 5442 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5443 int size = sizeof(u32);
5444
5445 if (data->raw)
5446 size += data->raw->size;
5447 else
5448 size += sizeof(u32);
5449
5450 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5451 header->size += size;
7f453c24 5452 }
bce38cd5
SE
5453
5454 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5455 int size = sizeof(u64); /* nr */
5456 if (data->br_stack) {
5457 size += data->br_stack->nr
5458 * sizeof(struct perf_branch_entry);
5459 }
5460 header->size += size;
5461 }
4018994f 5462
2565711f 5463 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5464 perf_sample_regs_user(&data->regs_user, regs,
5465 &data->regs_user_copy);
2565711f 5466
4018994f
JO
5467 if (sample_type & PERF_SAMPLE_REGS_USER) {
5468 /* regs dump ABI info */
5469 int size = sizeof(u64);
5470
4018994f
JO
5471 if (data->regs_user.regs) {
5472 u64 mask = event->attr.sample_regs_user;
5473 size += hweight64(mask) * sizeof(u64);
5474 }
5475
5476 header->size += size;
5477 }
c5ebcedb
JO
5478
5479 if (sample_type & PERF_SAMPLE_STACK_USER) {
5480 /*
5481 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5482 * processed as the last one or have additional check added
5483 * in case new sample type is added, because we could eat
5484 * up the rest of the sample size.
5485 */
c5ebcedb
JO
5486 u16 stack_size = event->attr.sample_stack_user;
5487 u16 size = sizeof(u64);
5488
c5ebcedb 5489 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5490 data->regs_user.regs);
c5ebcedb
JO
5491
5492 /*
5493 * If there is something to dump, add space for the dump
5494 * itself and for the field that tells the dynamic size,
5495 * which is how many have been actually dumped.
5496 */
5497 if (stack_size)
5498 size += sizeof(u64) + stack_size;
5499
5500 data->stack_user_size = stack_size;
5501 header->size += size;
5502 }
60e2364e
SE
5503
5504 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5505 /* regs dump ABI info */
5506 int size = sizeof(u64);
5507
5508 perf_sample_regs_intr(&data->regs_intr, regs);
5509
5510 if (data->regs_intr.regs) {
5511 u64 mask = event->attr.sample_regs_intr;
5512
5513 size += hweight64(mask) * sizeof(u64);
5514 }
5515
5516 header->size += size;
5517 }
5622f295 5518}
7f453c24 5519
21509084
YZ
5520void perf_event_output(struct perf_event *event,
5521 struct perf_sample_data *data,
5522 struct pt_regs *regs)
5622f295
MM
5523{
5524 struct perf_output_handle handle;
5525 struct perf_event_header header;
689802b2 5526
927c7a9e
FW
5527 /* protect the callchain buffers */
5528 rcu_read_lock();
5529
cdd6c482 5530 perf_prepare_sample(&header, data, event, regs);
5c148194 5531
a7ac67ea 5532 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5533 goto exit;
0322cd6e 5534
cdd6c482 5535 perf_output_sample(&handle, &header, data, event);
f413cdb8 5536
8a057d84 5537 perf_output_end(&handle);
927c7a9e
FW
5538
5539exit:
5540 rcu_read_unlock();
0322cd6e
PZ
5541}
5542
38b200d6 5543/*
cdd6c482 5544 * read event_id
38b200d6
PZ
5545 */
5546
5547struct perf_read_event {
5548 struct perf_event_header header;
5549
5550 u32 pid;
5551 u32 tid;
38b200d6
PZ
5552};
5553
5554static void
cdd6c482 5555perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5556 struct task_struct *task)
5557{
5558 struct perf_output_handle handle;
c980d109 5559 struct perf_sample_data sample;
dfc65094 5560 struct perf_read_event read_event = {
38b200d6 5561 .header = {
cdd6c482 5562 .type = PERF_RECORD_READ,
38b200d6 5563 .misc = 0,
c320c7b7 5564 .size = sizeof(read_event) + event->read_size,
38b200d6 5565 },
cdd6c482
IM
5566 .pid = perf_event_pid(event, task),
5567 .tid = perf_event_tid(event, task),
38b200d6 5568 };
3dab77fb 5569 int ret;
38b200d6 5570
c980d109 5571 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5572 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5573 if (ret)
5574 return;
5575
dfc65094 5576 perf_output_put(&handle, read_event);
cdd6c482 5577 perf_output_read(&handle, event);
c980d109 5578 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5579
38b200d6
PZ
5580 perf_output_end(&handle);
5581}
5582
52d857a8
JO
5583typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5584
5585static void
5586perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5587 perf_event_aux_output_cb output,
5588 void *data)
5589{
5590 struct perf_event *event;
5591
5592 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5593 if (event->state < PERF_EVENT_STATE_INACTIVE)
5594 continue;
5595 if (!event_filter_match(event))
5596 continue;
67516844 5597 output(event, data);
52d857a8
JO
5598 }
5599}
5600
5601static void
67516844 5602perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5603 struct perf_event_context *task_ctx)
5604{
5605 struct perf_cpu_context *cpuctx;
5606 struct perf_event_context *ctx;
5607 struct pmu *pmu;
5608 int ctxn;
5609
5610 rcu_read_lock();
5611 list_for_each_entry_rcu(pmu, &pmus, entry) {
5612 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5613 if (cpuctx->unique_pmu != pmu)
5614 goto next;
67516844 5615 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5616 if (task_ctx)
5617 goto next;
5618 ctxn = pmu->task_ctx_nr;
5619 if (ctxn < 0)
5620 goto next;
5621 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5622 if (ctx)
67516844 5623 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5624next:
5625 put_cpu_ptr(pmu->pmu_cpu_context);
5626 }
5627
5628 if (task_ctx) {
5629 preempt_disable();
67516844 5630 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5631 preempt_enable();
5632 }
5633 rcu_read_unlock();
5634}
5635
60313ebe 5636/*
9f498cc5
PZ
5637 * task tracking -- fork/exit
5638 *
13d7a241 5639 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5640 */
5641
9f498cc5 5642struct perf_task_event {
3a80b4a3 5643 struct task_struct *task;
cdd6c482 5644 struct perf_event_context *task_ctx;
60313ebe
PZ
5645
5646 struct {
5647 struct perf_event_header header;
5648
5649 u32 pid;
5650 u32 ppid;
9f498cc5
PZ
5651 u32 tid;
5652 u32 ptid;
393b2ad8 5653 u64 time;
cdd6c482 5654 } event_id;
60313ebe
PZ
5655};
5656
67516844
JO
5657static int perf_event_task_match(struct perf_event *event)
5658{
13d7a241
SE
5659 return event->attr.comm || event->attr.mmap ||
5660 event->attr.mmap2 || event->attr.mmap_data ||
5661 event->attr.task;
67516844
JO
5662}
5663
cdd6c482 5664static void perf_event_task_output(struct perf_event *event,
52d857a8 5665 void *data)
60313ebe 5666{
52d857a8 5667 struct perf_task_event *task_event = data;
60313ebe 5668 struct perf_output_handle handle;
c980d109 5669 struct perf_sample_data sample;
9f498cc5 5670 struct task_struct *task = task_event->task;
c980d109 5671 int ret, size = task_event->event_id.header.size;
8bb39f9a 5672
67516844
JO
5673 if (!perf_event_task_match(event))
5674 return;
5675
c980d109 5676 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5677
c980d109 5678 ret = perf_output_begin(&handle, event,
a7ac67ea 5679 task_event->event_id.header.size);
ef60777c 5680 if (ret)
c980d109 5681 goto out;
60313ebe 5682
cdd6c482
IM
5683 task_event->event_id.pid = perf_event_pid(event, task);
5684 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5685
cdd6c482
IM
5686 task_event->event_id.tid = perf_event_tid(event, task);
5687 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5688
34f43927
PZ
5689 task_event->event_id.time = perf_event_clock(event);
5690
cdd6c482 5691 perf_output_put(&handle, task_event->event_id);
393b2ad8 5692
c980d109
ACM
5693 perf_event__output_id_sample(event, &handle, &sample);
5694
60313ebe 5695 perf_output_end(&handle);
c980d109
ACM
5696out:
5697 task_event->event_id.header.size = size;
60313ebe
PZ
5698}
5699
cdd6c482
IM
5700static void perf_event_task(struct task_struct *task,
5701 struct perf_event_context *task_ctx,
3a80b4a3 5702 int new)
60313ebe 5703{
9f498cc5 5704 struct perf_task_event task_event;
60313ebe 5705
cdd6c482
IM
5706 if (!atomic_read(&nr_comm_events) &&
5707 !atomic_read(&nr_mmap_events) &&
5708 !atomic_read(&nr_task_events))
60313ebe
PZ
5709 return;
5710
9f498cc5 5711 task_event = (struct perf_task_event){
3a80b4a3
PZ
5712 .task = task,
5713 .task_ctx = task_ctx,
cdd6c482 5714 .event_id = {
60313ebe 5715 .header = {
cdd6c482 5716 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5717 .misc = 0,
cdd6c482 5718 .size = sizeof(task_event.event_id),
60313ebe 5719 },
573402db
PZ
5720 /* .pid */
5721 /* .ppid */
9f498cc5
PZ
5722 /* .tid */
5723 /* .ptid */
34f43927 5724 /* .time */
60313ebe
PZ
5725 },
5726 };
5727
67516844 5728 perf_event_aux(perf_event_task_output,
52d857a8
JO
5729 &task_event,
5730 task_ctx);
9f498cc5
PZ
5731}
5732
cdd6c482 5733void perf_event_fork(struct task_struct *task)
9f498cc5 5734{
cdd6c482 5735 perf_event_task(task, NULL, 1);
60313ebe
PZ
5736}
5737
8d1b2d93
PZ
5738/*
5739 * comm tracking
5740 */
5741
5742struct perf_comm_event {
22a4f650
IM
5743 struct task_struct *task;
5744 char *comm;
8d1b2d93
PZ
5745 int comm_size;
5746
5747 struct {
5748 struct perf_event_header header;
5749
5750 u32 pid;
5751 u32 tid;
cdd6c482 5752 } event_id;
8d1b2d93
PZ
5753};
5754
67516844
JO
5755static int perf_event_comm_match(struct perf_event *event)
5756{
5757 return event->attr.comm;
5758}
5759
cdd6c482 5760static void perf_event_comm_output(struct perf_event *event,
52d857a8 5761 void *data)
8d1b2d93 5762{
52d857a8 5763 struct perf_comm_event *comm_event = data;
8d1b2d93 5764 struct perf_output_handle handle;
c980d109 5765 struct perf_sample_data sample;
cdd6c482 5766 int size = comm_event->event_id.header.size;
c980d109
ACM
5767 int ret;
5768
67516844
JO
5769 if (!perf_event_comm_match(event))
5770 return;
5771
c980d109
ACM
5772 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5773 ret = perf_output_begin(&handle, event,
a7ac67ea 5774 comm_event->event_id.header.size);
8d1b2d93
PZ
5775
5776 if (ret)
c980d109 5777 goto out;
8d1b2d93 5778
cdd6c482
IM
5779 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5780 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5781
cdd6c482 5782 perf_output_put(&handle, comm_event->event_id);
76369139 5783 __output_copy(&handle, comm_event->comm,
8d1b2d93 5784 comm_event->comm_size);
c980d109
ACM
5785
5786 perf_event__output_id_sample(event, &handle, &sample);
5787
8d1b2d93 5788 perf_output_end(&handle);
c980d109
ACM
5789out:
5790 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5791}
5792
cdd6c482 5793static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5794{
413ee3b4 5795 char comm[TASK_COMM_LEN];
8d1b2d93 5796 unsigned int size;
8d1b2d93 5797
413ee3b4 5798 memset(comm, 0, sizeof(comm));
96b02d78 5799 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5800 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5801
5802 comm_event->comm = comm;
5803 comm_event->comm_size = size;
5804
cdd6c482 5805 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5806
67516844 5807 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5808 comm_event,
5809 NULL);
8d1b2d93
PZ
5810}
5811
82b89778 5812void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5813{
9ee318a7
PZ
5814 struct perf_comm_event comm_event;
5815
cdd6c482 5816 if (!atomic_read(&nr_comm_events))
9ee318a7 5817 return;
a63eaf34 5818
9ee318a7 5819 comm_event = (struct perf_comm_event){
8d1b2d93 5820 .task = task,
573402db
PZ
5821 /* .comm */
5822 /* .comm_size */
cdd6c482 5823 .event_id = {
573402db 5824 .header = {
cdd6c482 5825 .type = PERF_RECORD_COMM,
82b89778 5826 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5827 /* .size */
5828 },
5829 /* .pid */
5830 /* .tid */
8d1b2d93
PZ
5831 },
5832 };
5833
cdd6c482 5834 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5835}
5836
0a4a9391
PZ
5837/*
5838 * mmap tracking
5839 */
5840
5841struct perf_mmap_event {
089dd79d
PZ
5842 struct vm_area_struct *vma;
5843
5844 const char *file_name;
5845 int file_size;
13d7a241
SE
5846 int maj, min;
5847 u64 ino;
5848 u64 ino_generation;
f972eb63 5849 u32 prot, flags;
0a4a9391
PZ
5850
5851 struct {
5852 struct perf_event_header header;
5853
5854 u32 pid;
5855 u32 tid;
5856 u64 start;
5857 u64 len;
5858 u64 pgoff;
cdd6c482 5859 } event_id;
0a4a9391
PZ
5860};
5861
67516844
JO
5862static int perf_event_mmap_match(struct perf_event *event,
5863 void *data)
5864{
5865 struct perf_mmap_event *mmap_event = data;
5866 struct vm_area_struct *vma = mmap_event->vma;
5867 int executable = vma->vm_flags & VM_EXEC;
5868
5869 return (!executable && event->attr.mmap_data) ||
13d7a241 5870 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5871}
5872
cdd6c482 5873static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5874 void *data)
0a4a9391 5875{
52d857a8 5876 struct perf_mmap_event *mmap_event = data;
0a4a9391 5877 struct perf_output_handle handle;
c980d109 5878 struct perf_sample_data sample;
cdd6c482 5879 int size = mmap_event->event_id.header.size;
c980d109 5880 int ret;
0a4a9391 5881
67516844
JO
5882 if (!perf_event_mmap_match(event, data))
5883 return;
5884
13d7a241
SE
5885 if (event->attr.mmap2) {
5886 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5887 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5888 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5889 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5890 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5891 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5892 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5893 }
5894
c980d109
ACM
5895 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5896 ret = perf_output_begin(&handle, event,
a7ac67ea 5897 mmap_event->event_id.header.size);
0a4a9391 5898 if (ret)
c980d109 5899 goto out;
0a4a9391 5900
cdd6c482
IM
5901 mmap_event->event_id.pid = perf_event_pid(event, current);
5902 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5903
cdd6c482 5904 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5905
5906 if (event->attr.mmap2) {
5907 perf_output_put(&handle, mmap_event->maj);
5908 perf_output_put(&handle, mmap_event->min);
5909 perf_output_put(&handle, mmap_event->ino);
5910 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5911 perf_output_put(&handle, mmap_event->prot);
5912 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5913 }
5914
76369139 5915 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5916 mmap_event->file_size);
c980d109
ACM
5917
5918 perf_event__output_id_sample(event, &handle, &sample);
5919
78d613eb 5920 perf_output_end(&handle);
c980d109
ACM
5921out:
5922 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5923}
5924
cdd6c482 5925static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5926{
089dd79d
PZ
5927 struct vm_area_struct *vma = mmap_event->vma;
5928 struct file *file = vma->vm_file;
13d7a241
SE
5929 int maj = 0, min = 0;
5930 u64 ino = 0, gen = 0;
f972eb63 5931 u32 prot = 0, flags = 0;
0a4a9391
PZ
5932 unsigned int size;
5933 char tmp[16];
5934 char *buf = NULL;
2c42cfbf 5935 char *name;
413ee3b4 5936
0a4a9391 5937 if (file) {
13d7a241
SE
5938 struct inode *inode;
5939 dev_t dev;
3ea2f2b9 5940
2c42cfbf 5941 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5942 if (!buf) {
c7e548b4
ON
5943 name = "//enomem";
5944 goto cpy_name;
0a4a9391 5945 }
413ee3b4 5946 /*
3ea2f2b9 5947 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5948 * need to add enough zero bytes after the string to handle
5949 * the 64bit alignment we do later.
5950 */
9bf39ab2 5951 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5952 if (IS_ERR(name)) {
c7e548b4
ON
5953 name = "//toolong";
5954 goto cpy_name;
0a4a9391 5955 }
13d7a241
SE
5956 inode = file_inode(vma->vm_file);
5957 dev = inode->i_sb->s_dev;
5958 ino = inode->i_ino;
5959 gen = inode->i_generation;
5960 maj = MAJOR(dev);
5961 min = MINOR(dev);
f972eb63
PZ
5962
5963 if (vma->vm_flags & VM_READ)
5964 prot |= PROT_READ;
5965 if (vma->vm_flags & VM_WRITE)
5966 prot |= PROT_WRITE;
5967 if (vma->vm_flags & VM_EXEC)
5968 prot |= PROT_EXEC;
5969
5970 if (vma->vm_flags & VM_MAYSHARE)
5971 flags = MAP_SHARED;
5972 else
5973 flags = MAP_PRIVATE;
5974
5975 if (vma->vm_flags & VM_DENYWRITE)
5976 flags |= MAP_DENYWRITE;
5977 if (vma->vm_flags & VM_MAYEXEC)
5978 flags |= MAP_EXECUTABLE;
5979 if (vma->vm_flags & VM_LOCKED)
5980 flags |= MAP_LOCKED;
5981 if (vma->vm_flags & VM_HUGETLB)
5982 flags |= MAP_HUGETLB;
5983
c7e548b4 5984 goto got_name;
0a4a9391 5985 } else {
fbe26abe
JO
5986 if (vma->vm_ops && vma->vm_ops->name) {
5987 name = (char *) vma->vm_ops->name(vma);
5988 if (name)
5989 goto cpy_name;
5990 }
5991
2c42cfbf 5992 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5993 if (name)
5994 goto cpy_name;
089dd79d 5995
32c5fb7e 5996 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5997 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5998 name = "[heap]";
5999 goto cpy_name;
32c5fb7e
ON
6000 }
6001 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6002 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6003 name = "[stack]";
6004 goto cpy_name;
089dd79d
PZ
6005 }
6006
c7e548b4
ON
6007 name = "//anon";
6008 goto cpy_name;
0a4a9391
PZ
6009 }
6010
c7e548b4
ON
6011cpy_name:
6012 strlcpy(tmp, name, sizeof(tmp));
6013 name = tmp;
0a4a9391 6014got_name:
2c42cfbf
PZ
6015 /*
6016 * Since our buffer works in 8 byte units we need to align our string
6017 * size to a multiple of 8. However, we must guarantee the tail end is
6018 * zero'd out to avoid leaking random bits to userspace.
6019 */
6020 size = strlen(name)+1;
6021 while (!IS_ALIGNED(size, sizeof(u64)))
6022 name[size++] = '\0';
0a4a9391
PZ
6023
6024 mmap_event->file_name = name;
6025 mmap_event->file_size = size;
13d7a241
SE
6026 mmap_event->maj = maj;
6027 mmap_event->min = min;
6028 mmap_event->ino = ino;
6029 mmap_event->ino_generation = gen;
f972eb63
PZ
6030 mmap_event->prot = prot;
6031 mmap_event->flags = flags;
0a4a9391 6032
2fe85427
SE
6033 if (!(vma->vm_flags & VM_EXEC))
6034 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6035
cdd6c482 6036 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6037
67516844 6038 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6039 mmap_event,
6040 NULL);
665c2142 6041
0a4a9391
PZ
6042 kfree(buf);
6043}
6044
3af9e859 6045void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6046{
9ee318a7
PZ
6047 struct perf_mmap_event mmap_event;
6048
cdd6c482 6049 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6050 return;
6051
6052 mmap_event = (struct perf_mmap_event){
089dd79d 6053 .vma = vma,
573402db
PZ
6054 /* .file_name */
6055 /* .file_size */
cdd6c482 6056 .event_id = {
573402db 6057 .header = {
cdd6c482 6058 .type = PERF_RECORD_MMAP,
39447b38 6059 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6060 /* .size */
6061 },
6062 /* .pid */
6063 /* .tid */
089dd79d
PZ
6064 .start = vma->vm_start,
6065 .len = vma->vm_end - vma->vm_start,
3a0304e9 6066 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6067 },
13d7a241
SE
6068 /* .maj (attr_mmap2 only) */
6069 /* .min (attr_mmap2 only) */
6070 /* .ino (attr_mmap2 only) */
6071 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6072 /* .prot (attr_mmap2 only) */
6073 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6074 };
6075
cdd6c482 6076 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6077}
6078
68db7e98
AS
6079void perf_event_aux_event(struct perf_event *event, unsigned long head,
6080 unsigned long size, u64 flags)
6081{
6082 struct perf_output_handle handle;
6083 struct perf_sample_data sample;
6084 struct perf_aux_event {
6085 struct perf_event_header header;
6086 u64 offset;
6087 u64 size;
6088 u64 flags;
6089 } rec = {
6090 .header = {
6091 .type = PERF_RECORD_AUX,
6092 .misc = 0,
6093 .size = sizeof(rec),
6094 },
6095 .offset = head,
6096 .size = size,
6097 .flags = flags,
6098 };
6099 int ret;
6100
6101 perf_event_header__init_id(&rec.header, &sample, event);
6102 ret = perf_output_begin(&handle, event, rec.header.size);
6103
6104 if (ret)
6105 return;
6106
6107 perf_output_put(&handle, rec);
6108 perf_event__output_id_sample(event, &handle, &sample);
6109
6110 perf_output_end(&handle);
6111}
6112
f38b0dbb
KL
6113/*
6114 * Lost/dropped samples logging
6115 */
6116void perf_log_lost_samples(struct perf_event *event, u64 lost)
6117{
6118 struct perf_output_handle handle;
6119 struct perf_sample_data sample;
6120 int ret;
6121
6122 struct {
6123 struct perf_event_header header;
6124 u64 lost;
6125 } lost_samples_event = {
6126 .header = {
6127 .type = PERF_RECORD_LOST_SAMPLES,
6128 .misc = 0,
6129 .size = sizeof(lost_samples_event),
6130 },
6131 .lost = lost,
6132 };
6133
6134 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6135
6136 ret = perf_output_begin(&handle, event,
6137 lost_samples_event.header.size);
6138 if (ret)
6139 return;
6140
6141 perf_output_put(&handle, lost_samples_event);
6142 perf_event__output_id_sample(event, &handle, &sample);
6143 perf_output_end(&handle);
6144}
6145
45ac1403
AH
6146/*
6147 * context_switch tracking
6148 */
6149
6150struct perf_switch_event {
6151 struct task_struct *task;
6152 struct task_struct *next_prev;
6153
6154 struct {
6155 struct perf_event_header header;
6156 u32 next_prev_pid;
6157 u32 next_prev_tid;
6158 } event_id;
6159};
6160
6161static int perf_event_switch_match(struct perf_event *event)
6162{
6163 return event->attr.context_switch;
6164}
6165
6166static void perf_event_switch_output(struct perf_event *event, void *data)
6167{
6168 struct perf_switch_event *se = data;
6169 struct perf_output_handle handle;
6170 struct perf_sample_data sample;
6171 int ret;
6172
6173 if (!perf_event_switch_match(event))
6174 return;
6175
6176 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6177 if (event->ctx->task) {
6178 se->event_id.header.type = PERF_RECORD_SWITCH;
6179 se->event_id.header.size = sizeof(se->event_id.header);
6180 } else {
6181 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6182 se->event_id.header.size = sizeof(se->event_id);
6183 se->event_id.next_prev_pid =
6184 perf_event_pid(event, se->next_prev);
6185 se->event_id.next_prev_tid =
6186 perf_event_tid(event, se->next_prev);
6187 }
6188
6189 perf_event_header__init_id(&se->event_id.header, &sample, event);
6190
6191 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6192 if (ret)
6193 return;
6194
6195 if (event->ctx->task)
6196 perf_output_put(&handle, se->event_id.header);
6197 else
6198 perf_output_put(&handle, se->event_id);
6199
6200 perf_event__output_id_sample(event, &handle, &sample);
6201
6202 perf_output_end(&handle);
6203}
6204
6205static void perf_event_switch(struct task_struct *task,
6206 struct task_struct *next_prev, bool sched_in)
6207{
6208 struct perf_switch_event switch_event;
6209
6210 /* N.B. caller checks nr_switch_events != 0 */
6211
6212 switch_event = (struct perf_switch_event){
6213 .task = task,
6214 .next_prev = next_prev,
6215 .event_id = {
6216 .header = {
6217 /* .type */
6218 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6219 /* .size */
6220 },
6221 /* .next_prev_pid */
6222 /* .next_prev_tid */
6223 },
6224 };
6225
6226 perf_event_aux(perf_event_switch_output,
6227 &switch_event,
6228 NULL);
6229}
6230
a78ac325
PZ
6231/*
6232 * IRQ throttle logging
6233 */
6234
cdd6c482 6235static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6236{
6237 struct perf_output_handle handle;
c980d109 6238 struct perf_sample_data sample;
a78ac325
PZ
6239 int ret;
6240
6241 struct {
6242 struct perf_event_header header;
6243 u64 time;
cca3f454 6244 u64 id;
7f453c24 6245 u64 stream_id;
a78ac325
PZ
6246 } throttle_event = {
6247 .header = {
cdd6c482 6248 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6249 .misc = 0,
6250 .size = sizeof(throttle_event),
6251 },
34f43927 6252 .time = perf_event_clock(event),
cdd6c482
IM
6253 .id = primary_event_id(event),
6254 .stream_id = event->id,
a78ac325
PZ
6255 };
6256
966ee4d6 6257 if (enable)
cdd6c482 6258 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6259
c980d109
ACM
6260 perf_event_header__init_id(&throttle_event.header, &sample, event);
6261
6262 ret = perf_output_begin(&handle, event,
a7ac67ea 6263 throttle_event.header.size);
a78ac325
PZ
6264 if (ret)
6265 return;
6266
6267 perf_output_put(&handle, throttle_event);
c980d109 6268 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6269 perf_output_end(&handle);
6270}
6271
ec0d7729
AS
6272static void perf_log_itrace_start(struct perf_event *event)
6273{
6274 struct perf_output_handle handle;
6275 struct perf_sample_data sample;
6276 struct perf_aux_event {
6277 struct perf_event_header header;
6278 u32 pid;
6279 u32 tid;
6280 } rec;
6281 int ret;
6282
6283 if (event->parent)
6284 event = event->parent;
6285
6286 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6287 event->hw.itrace_started)
6288 return;
6289
ec0d7729
AS
6290 rec.header.type = PERF_RECORD_ITRACE_START;
6291 rec.header.misc = 0;
6292 rec.header.size = sizeof(rec);
6293 rec.pid = perf_event_pid(event, current);
6294 rec.tid = perf_event_tid(event, current);
6295
6296 perf_event_header__init_id(&rec.header, &sample, event);
6297 ret = perf_output_begin(&handle, event, rec.header.size);
6298
6299 if (ret)
6300 return;
6301
6302 perf_output_put(&handle, rec);
6303 perf_event__output_id_sample(event, &handle, &sample);
6304
6305 perf_output_end(&handle);
6306}
6307
f6c7d5fe 6308/*
cdd6c482 6309 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6310 */
6311
a8b0ca17 6312static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6313 int throttle, struct perf_sample_data *data,
6314 struct pt_regs *regs)
f6c7d5fe 6315{
cdd6c482
IM
6316 int events = atomic_read(&event->event_limit);
6317 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6318 u64 seq;
79f14641
PZ
6319 int ret = 0;
6320
96398826
PZ
6321 /*
6322 * Non-sampling counters might still use the PMI to fold short
6323 * hardware counters, ignore those.
6324 */
6325 if (unlikely(!is_sampling_event(event)))
6326 return 0;
6327
e050e3f0
SE
6328 seq = __this_cpu_read(perf_throttled_seq);
6329 if (seq != hwc->interrupts_seq) {
6330 hwc->interrupts_seq = seq;
6331 hwc->interrupts = 1;
6332 } else {
6333 hwc->interrupts++;
6334 if (unlikely(throttle
6335 && hwc->interrupts >= max_samples_per_tick)) {
6336 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6337 hwc->interrupts = MAX_INTERRUPTS;
6338 perf_log_throttle(event, 0);
d84153d6 6339 tick_nohz_full_kick();
a78ac325
PZ
6340 ret = 1;
6341 }
e050e3f0 6342 }
60db5e09 6343
cdd6c482 6344 if (event->attr.freq) {
def0a9b2 6345 u64 now = perf_clock();
abd50713 6346 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6347
abd50713 6348 hwc->freq_time_stamp = now;
bd2b5b12 6349
abd50713 6350 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6351 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6352 }
6353
2023b359
PZ
6354 /*
6355 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6356 * events
2023b359
PZ
6357 */
6358
cdd6c482
IM
6359 event->pending_kill = POLL_IN;
6360 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6361 ret = 1;
cdd6c482 6362 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6363 event->pending_disable = 1;
6364 irq_work_queue(&event->pending);
79f14641
PZ
6365 }
6366
453f19ee 6367 if (event->overflow_handler)
a8b0ca17 6368 event->overflow_handler(event, data, regs);
453f19ee 6369 else
a8b0ca17 6370 perf_event_output(event, data, regs);
453f19ee 6371
fed66e2c 6372 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6373 event->pending_wakeup = 1;
6374 irq_work_queue(&event->pending);
f506b3dc
PZ
6375 }
6376
79f14641 6377 return ret;
f6c7d5fe
PZ
6378}
6379
a8b0ca17 6380int perf_event_overflow(struct perf_event *event,
5622f295
MM
6381 struct perf_sample_data *data,
6382 struct pt_regs *regs)
850bc73f 6383{
a8b0ca17 6384 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6385}
6386
15dbf27c 6387/*
cdd6c482 6388 * Generic software event infrastructure
15dbf27c
PZ
6389 */
6390
b28ab83c
PZ
6391struct swevent_htable {
6392 struct swevent_hlist *swevent_hlist;
6393 struct mutex hlist_mutex;
6394 int hlist_refcount;
6395
6396 /* Recursion avoidance in each contexts */
6397 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6398
6399 /* Keeps track of cpu being initialized/exited */
6400 bool online;
b28ab83c
PZ
6401};
6402
6403static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6404
7b4b6658 6405/*
cdd6c482
IM
6406 * We directly increment event->count and keep a second value in
6407 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6408 * is kept in the range [-sample_period, 0] so that we can use the
6409 * sign as trigger.
6410 */
6411
ab573844 6412u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6413{
cdd6c482 6414 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6415 u64 period = hwc->last_period;
6416 u64 nr, offset;
6417 s64 old, val;
6418
6419 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6420
6421again:
e7850595 6422 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6423 if (val < 0)
6424 return 0;
15dbf27c 6425
7b4b6658
PZ
6426 nr = div64_u64(period + val, period);
6427 offset = nr * period;
6428 val -= offset;
e7850595 6429 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6430 goto again;
15dbf27c 6431
7b4b6658 6432 return nr;
15dbf27c
PZ
6433}
6434
0cff784a 6435static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6436 struct perf_sample_data *data,
5622f295 6437 struct pt_regs *regs)
15dbf27c 6438{
cdd6c482 6439 struct hw_perf_event *hwc = &event->hw;
850bc73f 6440 int throttle = 0;
15dbf27c 6441
0cff784a
PZ
6442 if (!overflow)
6443 overflow = perf_swevent_set_period(event);
15dbf27c 6444
7b4b6658
PZ
6445 if (hwc->interrupts == MAX_INTERRUPTS)
6446 return;
15dbf27c 6447
7b4b6658 6448 for (; overflow; overflow--) {
a8b0ca17 6449 if (__perf_event_overflow(event, throttle,
5622f295 6450 data, regs)) {
7b4b6658
PZ
6451 /*
6452 * We inhibit the overflow from happening when
6453 * hwc->interrupts == MAX_INTERRUPTS.
6454 */
6455 break;
6456 }
cf450a73 6457 throttle = 1;
7b4b6658 6458 }
15dbf27c
PZ
6459}
6460
a4eaf7f1 6461static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6462 struct perf_sample_data *data,
5622f295 6463 struct pt_regs *regs)
7b4b6658 6464{
cdd6c482 6465 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6466
e7850595 6467 local64_add(nr, &event->count);
d6d020e9 6468
0cff784a
PZ
6469 if (!regs)
6470 return;
6471
6c7e550f 6472 if (!is_sampling_event(event))
7b4b6658 6473 return;
d6d020e9 6474
5d81e5cf
AV
6475 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6476 data->period = nr;
6477 return perf_swevent_overflow(event, 1, data, regs);
6478 } else
6479 data->period = event->hw.last_period;
6480
0cff784a 6481 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6482 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6483
e7850595 6484 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6485 return;
df1a132b 6486
a8b0ca17 6487 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6488}
6489
f5ffe02e
FW
6490static int perf_exclude_event(struct perf_event *event,
6491 struct pt_regs *regs)
6492{
a4eaf7f1 6493 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6494 return 1;
a4eaf7f1 6495
f5ffe02e
FW
6496 if (regs) {
6497 if (event->attr.exclude_user && user_mode(regs))
6498 return 1;
6499
6500 if (event->attr.exclude_kernel && !user_mode(regs))
6501 return 1;
6502 }
6503
6504 return 0;
6505}
6506
cdd6c482 6507static int perf_swevent_match(struct perf_event *event,
1c432d89 6508 enum perf_type_id type,
6fb2915d
LZ
6509 u32 event_id,
6510 struct perf_sample_data *data,
6511 struct pt_regs *regs)
15dbf27c 6512{
cdd6c482 6513 if (event->attr.type != type)
a21ca2ca 6514 return 0;
f5ffe02e 6515
cdd6c482 6516 if (event->attr.config != event_id)
15dbf27c
PZ
6517 return 0;
6518
f5ffe02e
FW
6519 if (perf_exclude_event(event, regs))
6520 return 0;
15dbf27c
PZ
6521
6522 return 1;
6523}
6524
76e1d904
FW
6525static inline u64 swevent_hash(u64 type, u32 event_id)
6526{
6527 u64 val = event_id | (type << 32);
6528
6529 return hash_64(val, SWEVENT_HLIST_BITS);
6530}
6531
49f135ed
FW
6532static inline struct hlist_head *
6533__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6534{
49f135ed
FW
6535 u64 hash = swevent_hash(type, event_id);
6536
6537 return &hlist->heads[hash];
6538}
76e1d904 6539
49f135ed
FW
6540/* For the read side: events when they trigger */
6541static inline struct hlist_head *
b28ab83c 6542find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6543{
6544 struct swevent_hlist *hlist;
76e1d904 6545
b28ab83c 6546 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6547 if (!hlist)
6548 return NULL;
6549
49f135ed
FW
6550 return __find_swevent_head(hlist, type, event_id);
6551}
6552
6553/* For the event head insertion and removal in the hlist */
6554static inline struct hlist_head *
b28ab83c 6555find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6556{
6557 struct swevent_hlist *hlist;
6558 u32 event_id = event->attr.config;
6559 u64 type = event->attr.type;
6560
6561 /*
6562 * Event scheduling is always serialized against hlist allocation
6563 * and release. Which makes the protected version suitable here.
6564 * The context lock guarantees that.
6565 */
b28ab83c 6566 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6567 lockdep_is_held(&event->ctx->lock));
6568 if (!hlist)
6569 return NULL;
6570
6571 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6572}
6573
6574static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6575 u64 nr,
76e1d904
FW
6576 struct perf_sample_data *data,
6577 struct pt_regs *regs)
15dbf27c 6578{
4a32fea9 6579 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6580 struct perf_event *event;
76e1d904 6581 struct hlist_head *head;
15dbf27c 6582
76e1d904 6583 rcu_read_lock();
b28ab83c 6584 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6585 if (!head)
6586 goto end;
6587
b67bfe0d 6588 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6589 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6590 perf_swevent_event(event, nr, data, regs);
15dbf27c 6591 }
76e1d904
FW
6592end:
6593 rcu_read_unlock();
15dbf27c
PZ
6594}
6595
86038c5e
PZI
6596DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6597
4ed7c92d 6598int perf_swevent_get_recursion_context(void)
96f6d444 6599{
4a32fea9 6600 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6601
b28ab83c 6602 return get_recursion_context(swhash->recursion);
96f6d444 6603}
645e8cc0 6604EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6605
fa9f90be 6606inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6607{
4a32fea9 6608 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6609
b28ab83c 6610 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6611}
15dbf27c 6612
86038c5e 6613void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6614{
a4234bfc 6615 struct perf_sample_data data;
4ed7c92d 6616
86038c5e 6617 if (WARN_ON_ONCE(!regs))
4ed7c92d 6618 return;
a4234bfc 6619
fd0d000b 6620 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6621 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6622}
6623
6624void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6625{
6626 int rctx;
6627
6628 preempt_disable_notrace();
6629 rctx = perf_swevent_get_recursion_context();
6630 if (unlikely(rctx < 0))
6631 goto fail;
6632
6633 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6634
6635 perf_swevent_put_recursion_context(rctx);
86038c5e 6636fail:
1c024eca 6637 preempt_enable_notrace();
b8e83514
PZ
6638}
6639
cdd6c482 6640static void perf_swevent_read(struct perf_event *event)
15dbf27c 6641{
15dbf27c
PZ
6642}
6643
a4eaf7f1 6644static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6645{
4a32fea9 6646 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6647 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6648 struct hlist_head *head;
6649
6c7e550f 6650 if (is_sampling_event(event)) {
7b4b6658 6651 hwc->last_period = hwc->sample_period;
cdd6c482 6652 perf_swevent_set_period(event);
7b4b6658 6653 }
76e1d904 6654
a4eaf7f1
PZ
6655 hwc->state = !(flags & PERF_EF_START);
6656
b28ab83c 6657 head = find_swevent_head(swhash, event);
39af6b16
JO
6658 if (!head) {
6659 /*
6660 * We can race with cpu hotplug code. Do not
6661 * WARN if the cpu just got unplugged.
6662 */
6663 WARN_ON_ONCE(swhash->online);
76e1d904 6664 return -EINVAL;
39af6b16 6665 }
76e1d904
FW
6666
6667 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6668 perf_event_update_userpage(event);
76e1d904 6669
15dbf27c
PZ
6670 return 0;
6671}
6672
a4eaf7f1 6673static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6674{
76e1d904 6675 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6676}
6677
a4eaf7f1 6678static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6679{
a4eaf7f1 6680 event->hw.state = 0;
d6d020e9 6681}
aa9c4c0f 6682
a4eaf7f1 6683static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6684{
a4eaf7f1 6685 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6686}
6687
49f135ed
FW
6688/* Deref the hlist from the update side */
6689static inline struct swevent_hlist *
b28ab83c 6690swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6691{
b28ab83c
PZ
6692 return rcu_dereference_protected(swhash->swevent_hlist,
6693 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6694}
6695
b28ab83c 6696static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6697{
b28ab83c 6698 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6699
49f135ed 6700 if (!hlist)
76e1d904
FW
6701 return;
6702
70691d4a 6703 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6704 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6705}
6706
6707static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6708{
b28ab83c 6709 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6710
b28ab83c 6711 mutex_lock(&swhash->hlist_mutex);
76e1d904 6712
b28ab83c
PZ
6713 if (!--swhash->hlist_refcount)
6714 swevent_hlist_release(swhash);
76e1d904 6715
b28ab83c 6716 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6717}
6718
6719static void swevent_hlist_put(struct perf_event *event)
6720{
6721 int cpu;
6722
76e1d904
FW
6723 for_each_possible_cpu(cpu)
6724 swevent_hlist_put_cpu(event, cpu);
6725}
6726
6727static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6728{
b28ab83c 6729 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6730 int err = 0;
6731
b28ab83c 6732 mutex_lock(&swhash->hlist_mutex);
76e1d904 6733
b28ab83c 6734 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6735 struct swevent_hlist *hlist;
6736
6737 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6738 if (!hlist) {
6739 err = -ENOMEM;
6740 goto exit;
6741 }
b28ab83c 6742 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6743 }
b28ab83c 6744 swhash->hlist_refcount++;
9ed6060d 6745exit:
b28ab83c 6746 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6747
6748 return err;
6749}
6750
6751static int swevent_hlist_get(struct perf_event *event)
6752{
6753 int err;
6754 int cpu, failed_cpu;
6755
76e1d904
FW
6756 get_online_cpus();
6757 for_each_possible_cpu(cpu) {
6758 err = swevent_hlist_get_cpu(event, cpu);
6759 if (err) {
6760 failed_cpu = cpu;
6761 goto fail;
6762 }
6763 }
6764 put_online_cpus();
6765
6766 return 0;
9ed6060d 6767fail:
76e1d904
FW
6768 for_each_possible_cpu(cpu) {
6769 if (cpu == failed_cpu)
6770 break;
6771 swevent_hlist_put_cpu(event, cpu);
6772 }
6773
6774 put_online_cpus();
6775 return err;
6776}
6777
c5905afb 6778struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6779
b0a873eb
PZ
6780static void sw_perf_event_destroy(struct perf_event *event)
6781{
6782 u64 event_id = event->attr.config;
95476b64 6783
b0a873eb
PZ
6784 WARN_ON(event->parent);
6785
c5905afb 6786 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6787 swevent_hlist_put(event);
6788}
6789
6790static int perf_swevent_init(struct perf_event *event)
6791{
8176cced 6792 u64 event_id = event->attr.config;
b0a873eb
PZ
6793
6794 if (event->attr.type != PERF_TYPE_SOFTWARE)
6795 return -ENOENT;
6796
2481c5fa
SE
6797 /*
6798 * no branch sampling for software events
6799 */
6800 if (has_branch_stack(event))
6801 return -EOPNOTSUPP;
6802
b0a873eb
PZ
6803 switch (event_id) {
6804 case PERF_COUNT_SW_CPU_CLOCK:
6805 case PERF_COUNT_SW_TASK_CLOCK:
6806 return -ENOENT;
6807
6808 default:
6809 break;
6810 }
6811
ce677831 6812 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6813 return -ENOENT;
6814
6815 if (!event->parent) {
6816 int err;
6817
6818 err = swevent_hlist_get(event);
6819 if (err)
6820 return err;
6821
c5905afb 6822 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6823 event->destroy = sw_perf_event_destroy;
6824 }
6825
6826 return 0;
6827}
6828
6829static struct pmu perf_swevent = {
89a1e187 6830 .task_ctx_nr = perf_sw_context,
95476b64 6831
34f43927
PZ
6832 .capabilities = PERF_PMU_CAP_NO_NMI,
6833
b0a873eb 6834 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6835 .add = perf_swevent_add,
6836 .del = perf_swevent_del,
6837 .start = perf_swevent_start,
6838 .stop = perf_swevent_stop,
1c024eca 6839 .read = perf_swevent_read,
1c024eca
PZ
6840};
6841
b0a873eb
PZ
6842#ifdef CONFIG_EVENT_TRACING
6843
1c024eca
PZ
6844static int perf_tp_filter_match(struct perf_event *event,
6845 struct perf_sample_data *data)
6846{
6847 void *record = data->raw->data;
6848
6849 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6850 return 1;
6851 return 0;
6852}
6853
6854static int perf_tp_event_match(struct perf_event *event,
6855 struct perf_sample_data *data,
6856 struct pt_regs *regs)
6857{
a0f7d0f7
FW
6858 if (event->hw.state & PERF_HES_STOPPED)
6859 return 0;
580d607c
PZ
6860 /*
6861 * All tracepoints are from kernel-space.
6862 */
6863 if (event->attr.exclude_kernel)
1c024eca
PZ
6864 return 0;
6865
6866 if (!perf_tp_filter_match(event, data))
6867 return 0;
6868
6869 return 1;
6870}
6871
6872void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6873 struct pt_regs *regs, struct hlist_head *head, int rctx,
6874 struct task_struct *task)
95476b64
FW
6875{
6876 struct perf_sample_data data;
1c024eca 6877 struct perf_event *event;
1c024eca 6878
95476b64
FW
6879 struct perf_raw_record raw = {
6880 .size = entry_size,
6881 .data = record,
6882 };
6883
fd0d000b 6884 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6885 data.raw = &raw;
6886
b67bfe0d 6887 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6888 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6889 perf_swevent_event(event, count, &data, regs);
4f41c013 6890 }
ecc55f84 6891
e6dab5ff
AV
6892 /*
6893 * If we got specified a target task, also iterate its context and
6894 * deliver this event there too.
6895 */
6896 if (task && task != current) {
6897 struct perf_event_context *ctx;
6898 struct trace_entry *entry = record;
6899
6900 rcu_read_lock();
6901 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6902 if (!ctx)
6903 goto unlock;
6904
6905 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6906 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6907 continue;
6908 if (event->attr.config != entry->type)
6909 continue;
6910 if (perf_tp_event_match(event, &data, regs))
6911 perf_swevent_event(event, count, &data, regs);
6912 }
6913unlock:
6914 rcu_read_unlock();
6915 }
6916
ecc55f84 6917 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6918}
6919EXPORT_SYMBOL_GPL(perf_tp_event);
6920
cdd6c482 6921static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6922{
1c024eca 6923 perf_trace_destroy(event);
e077df4f
PZ
6924}
6925
b0a873eb 6926static int perf_tp_event_init(struct perf_event *event)
e077df4f 6927{
76e1d904
FW
6928 int err;
6929
b0a873eb
PZ
6930 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6931 return -ENOENT;
6932
2481c5fa
SE
6933 /*
6934 * no branch sampling for tracepoint events
6935 */
6936 if (has_branch_stack(event))
6937 return -EOPNOTSUPP;
6938
1c024eca
PZ
6939 err = perf_trace_init(event);
6940 if (err)
b0a873eb 6941 return err;
e077df4f 6942
cdd6c482 6943 event->destroy = tp_perf_event_destroy;
e077df4f 6944
b0a873eb
PZ
6945 return 0;
6946}
6947
6948static struct pmu perf_tracepoint = {
89a1e187
PZ
6949 .task_ctx_nr = perf_sw_context,
6950
b0a873eb 6951 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6952 .add = perf_trace_add,
6953 .del = perf_trace_del,
6954 .start = perf_swevent_start,
6955 .stop = perf_swevent_stop,
b0a873eb 6956 .read = perf_swevent_read,
b0a873eb
PZ
6957};
6958
6959static inline void perf_tp_register(void)
6960{
2e80a82a 6961 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6962}
6fb2915d
LZ
6963
6964static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6965{
6966 char *filter_str;
6967 int ret;
6968
6969 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6970 return -EINVAL;
6971
6972 filter_str = strndup_user(arg, PAGE_SIZE);
6973 if (IS_ERR(filter_str))
6974 return PTR_ERR(filter_str);
6975
6976 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6977
6978 kfree(filter_str);
6979 return ret;
6980}
6981
6982static void perf_event_free_filter(struct perf_event *event)
6983{
6984 ftrace_profile_free_filter(event);
6985}
6986
2541517c
AS
6987static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6988{
6989 struct bpf_prog *prog;
6990
6991 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6992 return -EINVAL;
6993
6994 if (event->tp_event->prog)
6995 return -EEXIST;
6996
04a22fae
WN
6997 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6998 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
6999 return -EINVAL;
7000
7001 prog = bpf_prog_get(prog_fd);
7002 if (IS_ERR(prog))
7003 return PTR_ERR(prog);
7004
6c373ca8 7005 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7006 /* valid fd, but invalid bpf program type */
7007 bpf_prog_put(prog);
7008 return -EINVAL;
7009 }
7010
7011 event->tp_event->prog = prog;
7012
7013 return 0;
7014}
7015
7016static void perf_event_free_bpf_prog(struct perf_event *event)
7017{
7018 struct bpf_prog *prog;
7019
7020 if (!event->tp_event)
7021 return;
7022
7023 prog = event->tp_event->prog;
7024 if (prog) {
7025 event->tp_event->prog = NULL;
7026 bpf_prog_put(prog);
7027 }
7028}
7029
e077df4f 7030#else
6fb2915d 7031
b0a873eb 7032static inline void perf_tp_register(void)
e077df4f 7033{
e077df4f 7034}
6fb2915d
LZ
7035
7036static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7037{
7038 return -ENOENT;
7039}
7040
7041static void perf_event_free_filter(struct perf_event *event)
7042{
7043}
7044
2541517c
AS
7045static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7046{
7047 return -ENOENT;
7048}
7049
7050static void perf_event_free_bpf_prog(struct perf_event *event)
7051{
7052}
07b139c8 7053#endif /* CONFIG_EVENT_TRACING */
e077df4f 7054
24f1e32c 7055#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7056void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7057{
f5ffe02e
FW
7058 struct perf_sample_data sample;
7059 struct pt_regs *regs = data;
7060
fd0d000b 7061 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7062
a4eaf7f1 7063 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7064 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7065}
7066#endif
7067
b0a873eb
PZ
7068/*
7069 * hrtimer based swevent callback
7070 */
f29ac756 7071
b0a873eb 7072static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7073{
b0a873eb
PZ
7074 enum hrtimer_restart ret = HRTIMER_RESTART;
7075 struct perf_sample_data data;
7076 struct pt_regs *regs;
7077 struct perf_event *event;
7078 u64 period;
f29ac756 7079
b0a873eb 7080 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7081
7082 if (event->state != PERF_EVENT_STATE_ACTIVE)
7083 return HRTIMER_NORESTART;
7084
b0a873eb 7085 event->pmu->read(event);
f344011c 7086
fd0d000b 7087 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7088 regs = get_irq_regs();
7089
7090 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7091 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7092 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7093 ret = HRTIMER_NORESTART;
7094 }
24f1e32c 7095
b0a873eb
PZ
7096 period = max_t(u64, 10000, event->hw.sample_period);
7097 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7098
b0a873eb 7099 return ret;
f29ac756
PZ
7100}
7101
b0a873eb 7102static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7103{
b0a873eb 7104 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7105 s64 period;
7106
7107 if (!is_sampling_event(event))
7108 return;
f5ffe02e 7109
5d508e82
FBH
7110 period = local64_read(&hwc->period_left);
7111 if (period) {
7112 if (period < 0)
7113 period = 10000;
fa407f35 7114
5d508e82
FBH
7115 local64_set(&hwc->period_left, 0);
7116 } else {
7117 period = max_t(u64, 10000, hwc->sample_period);
7118 }
3497d206
TG
7119 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7120 HRTIMER_MODE_REL_PINNED);
24f1e32c 7121}
b0a873eb
PZ
7122
7123static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7124{
b0a873eb
PZ
7125 struct hw_perf_event *hwc = &event->hw;
7126
6c7e550f 7127 if (is_sampling_event(event)) {
b0a873eb 7128 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7129 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7130
7131 hrtimer_cancel(&hwc->hrtimer);
7132 }
24f1e32c
FW
7133}
7134
ba3dd36c
PZ
7135static void perf_swevent_init_hrtimer(struct perf_event *event)
7136{
7137 struct hw_perf_event *hwc = &event->hw;
7138
7139 if (!is_sampling_event(event))
7140 return;
7141
7142 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7143 hwc->hrtimer.function = perf_swevent_hrtimer;
7144
7145 /*
7146 * Since hrtimers have a fixed rate, we can do a static freq->period
7147 * mapping and avoid the whole period adjust feedback stuff.
7148 */
7149 if (event->attr.freq) {
7150 long freq = event->attr.sample_freq;
7151
7152 event->attr.sample_period = NSEC_PER_SEC / freq;
7153 hwc->sample_period = event->attr.sample_period;
7154 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7155 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7156 event->attr.freq = 0;
7157 }
7158}
7159
b0a873eb
PZ
7160/*
7161 * Software event: cpu wall time clock
7162 */
7163
7164static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7165{
b0a873eb
PZ
7166 s64 prev;
7167 u64 now;
7168
a4eaf7f1 7169 now = local_clock();
b0a873eb
PZ
7170 prev = local64_xchg(&event->hw.prev_count, now);
7171 local64_add(now - prev, &event->count);
24f1e32c 7172}
24f1e32c 7173
a4eaf7f1 7174static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7175{
a4eaf7f1 7176 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7177 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7178}
7179
a4eaf7f1 7180static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7181{
b0a873eb
PZ
7182 perf_swevent_cancel_hrtimer(event);
7183 cpu_clock_event_update(event);
7184}
f29ac756 7185
a4eaf7f1
PZ
7186static int cpu_clock_event_add(struct perf_event *event, int flags)
7187{
7188 if (flags & PERF_EF_START)
7189 cpu_clock_event_start(event, flags);
6a694a60 7190 perf_event_update_userpage(event);
a4eaf7f1
PZ
7191
7192 return 0;
7193}
7194
7195static void cpu_clock_event_del(struct perf_event *event, int flags)
7196{
7197 cpu_clock_event_stop(event, flags);
7198}
7199
b0a873eb
PZ
7200static void cpu_clock_event_read(struct perf_event *event)
7201{
7202 cpu_clock_event_update(event);
7203}
f344011c 7204
b0a873eb
PZ
7205static int cpu_clock_event_init(struct perf_event *event)
7206{
7207 if (event->attr.type != PERF_TYPE_SOFTWARE)
7208 return -ENOENT;
7209
7210 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7211 return -ENOENT;
7212
2481c5fa
SE
7213 /*
7214 * no branch sampling for software events
7215 */
7216 if (has_branch_stack(event))
7217 return -EOPNOTSUPP;
7218
ba3dd36c
PZ
7219 perf_swevent_init_hrtimer(event);
7220
b0a873eb 7221 return 0;
f29ac756
PZ
7222}
7223
b0a873eb 7224static struct pmu perf_cpu_clock = {
89a1e187
PZ
7225 .task_ctx_nr = perf_sw_context,
7226
34f43927
PZ
7227 .capabilities = PERF_PMU_CAP_NO_NMI,
7228
b0a873eb 7229 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7230 .add = cpu_clock_event_add,
7231 .del = cpu_clock_event_del,
7232 .start = cpu_clock_event_start,
7233 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7234 .read = cpu_clock_event_read,
7235};
7236
7237/*
7238 * Software event: task time clock
7239 */
7240
7241static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7242{
b0a873eb
PZ
7243 u64 prev;
7244 s64 delta;
5c92d124 7245
b0a873eb
PZ
7246 prev = local64_xchg(&event->hw.prev_count, now);
7247 delta = now - prev;
7248 local64_add(delta, &event->count);
7249}
5c92d124 7250
a4eaf7f1 7251static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7252{
a4eaf7f1 7253 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7254 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7255}
7256
a4eaf7f1 7257static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7258{
7259 perf_swevent_cancel_hrtimer(event);
7260 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7261}
7262
7263static int task_clock_event_add(struct perf_event *event, int flags)
7264{
7265 if (flags & PERF_EF_START)
7266 task_clock_event_start(event, flags);
6a694a60 7267 perf_event_update_userpage(event);
b0a873eb 7268
a4eaf7f1
PZ
7269 return 0;
7270}
7271
7272static void task_clock_event_del(struct perf_event *event, int flags)
7273{
7274 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7275}
7276
7277static void task_clock_event_read(struct perf_event *event)
7278{
768a06e2
PZ
7279 u64 now = perf_clock();
7280 u64 delta = now - event->ctx->timestamp;
7281 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7282
7283 task_clock_event_update(event, time);
7284}
7285
7286static int task_clock_event_init(struct perf_event *event)
6fb2915d 7287{
b0a873eb
PZ
7288 if (event->attr.type != PERF_TYPE_SOFTWARE)
7289 return -ENOENT;
7290
7291 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7292 return -ENOENT;
7293
2481c5fa
SE
7294 /*
7295 * no branch sampling for software events
7296 */
7297 if (has_branch_stack(event))
7298 return -EOPNOTSUPP;
7299
ba3dd36c
PZ
7300 perf_swevent_init_hrtimer(event);
7301
b0a873eb 7302 return 0;
6fb2915d
LZ
7303}
7304
b0a873eb 7305static struct pmu perf_task_clock = {
89a1e187
PZ
7306 .task_ctx_nr = perf_sw_context,
7307
34f43927
PZ
7308 .capabilities = PERF_PMU_CAP_NO_NMI,
7309
b0a873eb 7310 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7311 .add = task_clock_event_add,
7312 .del = task_clock_event_del,
7313 .start = task_clock_event_start,
7314 .stop = task_clock_event_stop,
b0a873eb
PZ
7315 .read = task_clock_event_read,
7316};
6fb2915d 7317
ad5133b7 7318static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7319{
e077df4f 7320}
6fb2915d 7321
fbbe0701
SB
7322static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7323{
7324}
7325
ad5133b7 7326static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7327{
ad5133b7 7328 return 0;
6fb2915d
LZ
7329}
7330
fbbe0701
SB
7331DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7332
7333static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7334{
fbbe0701
SB
7335 __this_cpu_write(nop_txn_flags, flags);
7336
7337 if (flags & ~PERF_PMU_TXN_ADD)
7338 return;
7339
ad5133b7 7340 perf_pmu_disable(pmu);
6fb2915d
LZ
7341}
7342
ad5133b7
PZ
7343static int perf_pmu_commit_txn(struct pmu *pmu)
7344{
fbbe0701
SB
7345 unsigned int flags = __this_cpu_read(nop_txn_flags);
7346
7347 __this_cpu_write(nop_txn_flags, 0);
7348
7349 if (flags & ~PERF_PMU_TXN_ADD)
7350 return 0;
7351
ad5133b7
PZ
7352 perf_pmu_enable(pmu);
7353 return 0;
7354}
e077df4f 7355
ad5133b7 7356static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7357{
fbbe0701
SB
7358 unsigned int flags = __this_cpu_read(nop_txn_flags);
7359
7360 __this_cpu_write(nop_txn_flags, 0);
7361
7362 if (flags & ~PERF_PMU_TXN_ADD)
7363 return;
7364
ad5133b7 7365 perf_pmu_enable(pmu);
24f1e32c
FW
7366}
7367
35edc2a5
PZ
7368static int perf_event_idx_default(struct perf_event *event)
7369{
c719f560 7370 return 0;
35edc2a5
PZ
7371}
7372
8dc85d54
PZ
7373/*
7374 * Ensures all contexts with the same task_ctx_nr have the same
7375 * pmu_cpu_context too.
7376 */
9e317041 7377static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7378{
8dc85d54 7379 struct pmu *pmu;
b326e956 7380
8dc85d54
PZ
7381 if (ctxn < 0)
7382 return NULL;
24f1e32c 7383
8dc85d54
PZ
7384 list_for_each_entry(pmu, &pmus, entry) {
7385 if (pmu->task_ctx_nr == ctxn)
7386 return pmu->pmu_cpu_context;
7387 }
24f1e32c 7388
8dc85d54 7389 return NULL;
24f1e32c
FW
7390}
7391
51676957 7392static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7393{
51676957
PZ
7394 int cpu;
7395
7396 for_each_possible_cpu(cpu) {
7397 struct perf_cpu_context *cpuctx;
7398
7399 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7400
3f1f3320
PZ
7401 if (cpuctx->unique_pmu == old_pmu)
7402 cpuctx->unique_pmu = pmu;
51676957
PZ
7403 }
7404}
7405
7406static void free_pmu_context(struct pmu *pmu)
7407{
7408 struct pmu *i;
f5ffe02e 7409
8dc85d54 7410 mutex_lock(&pmus_lock);
0475f9ea 7411 /*
8dc85d54 7412 * Like a real lame refcount.
0475f9ea 7413 */
51676957
PZ
7414 list_for_each_entry(i, &pmus, entry) {
7415 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7416 update_pmu_context(i, pmu);
8dc85d54 7417 goto out;
51676957 7418 }
8dc85d54 7419 }
d6d020e9 7420
51676957 7421 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7422out:
7423 mutex_unlock(&pmus_lock);
24f1e32c 7424}
2e80a82a 7425static struct idr pmu_idr;
d6d020e9 7426
abe43400
PZ
7427static ssize_t
7428type_show(struct device *dev, struct device_attribute *attr, char *page)
7429{
7430 struct pmu *pmu = dev_get_drvdata(dev);
7431
7432 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7433}
90826ca7 7434static DEVICE_ATTR_RO(type);
abe43400 7435
62b85639
SE
7436static ssize_t
7437perf_event_mux_interval_ms_show(struct device *dev,
7438 struct device_attribute *attr,
7439 char *page)
7440{
7441 struct pmu *pmu = dev_get_drvdata(dev);
7442
7443 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7444}
7445
272325c4
PZ
7446static DEFINE_MUTEX(mux_interval_mutex);
7447
62b85639
SE
7448static ssize_t
7449perf_event_mux_interval_ms_store(struct device *dev,
7450 struct device_attribute *attr,
7451 const char *buf, size_t count)
7452{
7453 struct pmu *pmu = dev_get_drvdata(dev);
7454 int timer, cpu, ret;
7455
7456 ret = kstrtoint(buf, 0, &timer);
7457 if (ret)
7458 return ret;
7459
7460 if (timer < 1)
7461 return -EINVAL;
7462
7463 /* same value, noting to do */
7464 if (timer == pmu->hrtimer_interval_ms)
7465 return count;
7466
272325c4 7467 mutex_lock(&mux_interval_mutex);
62b85639
SE
7468 pmu->hrtimer_interval_ms = timer;
7469
7470 /* update all cpuctx for this PMU */
272325c4
PZ
7471 get_online_cpus();
7472 for_each_online_cpu(cpu) {
62b85639
SE
7473 struct perf_cpu_context *cpuctx;
7474 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7475 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7476
272325c4
PZ
7477 cpu_function_call(cpu,
7478 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7479 }
272325c4
PZ
7480 put_online_cpus();
7481 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7482
7483 return count;
7484}
90826ca7 7485static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7486
90826ca7
GKH
7487static struct attribute *pmu_dev_attrs[] = {
7488 &dev_attr_type.attr,
7489 &dev_attr_perf_event_mux_interval_ms.attr,
7490 NULL,
abe43400 7491};
90826ca7 7492ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7493
7494static int pmu_bus_running;
7495static struct bus_type pmu_bus = {
7496 .name = "event_source",
90826ca7 7497 .dev_groups = pmu_dev_groups,
abe43400
PZ
7498};
7499
7500static void pmu_dev_release(struct device *dev)
7501{
7502 kfree(dev);
7503}
7504
7505static int pmu_dev_alloc(struct pmu *pmu)
7506{
7507 int ret = -ENOMEM;
7508
7509 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7510 if (!pmu->dev)
7511 goto out;
7512
0c9d42ed 7513 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7514 device_initialize(pmu->dev);
7515 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7516 if (ret)
7517 goto free_dev;
7518
7519 dev_set_drvdata(pmu->dev, pmu);
7520 pmu->dev->bus = &pmu_bus;
7521 pmu->dev->release = pmu_dev_release;
7522 ret = device_add(pmu->dev);
7523 if (ret)
7524 goto free_dev;
7525
7526out:
7527 return ret;
7528
7529free_dev:
7530 put_device(pmu->dev);
7531 goto out;
7532}
7533
547e9fd7 7534static struct lock_class_key cpuctx_mutex;
facc4307 7535static struct lock_class_key cpuctx_lock;
547e9fd7 7536
03d8e80b 7537int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7538{
108b02cf 7539 int cpu, ret;
24f1e32c 7540
b0a873eb 7541 mutex_lock(&pmus_lock);
33696fc0
PZ
7542 ret = -ENOMEM;
7543 pmu->pmu_disable_count = alloc_percpu(int);
7544 if (!pmu->pmu_disable_count)
7545 goto unlock;
f29ac756 7546
2e80a82a
PZ
7547 pmu->type = -1;
7548 if (!name)
7549 goto skip_type;
7550 pmu->name = name;
7551
7552 if (type < 0) {
0e9c3be2
TH
7553 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7554 if (type < 0) {
7555 ret = type;
2e80a82a
PZ
7556 goto free_pdc;
7557 }
7558 }
7559 pmu->type = type;
7560
abe43400
PZ
7561 if (pmu_bus_running) {
7562 ret = pmu_dev_alloc(pmu);
7563 if (ret)
7564 goto free_idr;
7565 }
7566
2e80a82a 7567skip_type:
8dc85d54
PZ
7568 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7569 if (pmu->pmu_cpu_context)
7570 goto got_cpu_context;
f29ac756 7571
c4814202 7572 ret = -ENOMEM;
108b02cf
PZ
7573 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7574 if (!pmu->pmu_cpu_context)
abe43400 7575 goto free_dev;
f344011c 7576
108b02cf
PZ
7577 for_each_possible_cpu(cpu) {
7578 struct perf_cpu_context *cpuctx;
7579
7580 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7581 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7582 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7583 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7584 cpuctx->ctx.pmu = pmu;
9e630205 7585
272325c4 7586 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7587
3f1f3320 7588 cpuctx->unique_pmu = pmu;
108b02cf 7589 }
76e1d904 7590
8dc85d54 7591got_cpu_context:
ad5133b7
PZ
7592 if (!pmu->start_txn) {
7593 if (pmu->pmu_enable) {
7594 /*
7595 * If we have pmu_enable/pmu_disable calls, install
7596 * transaction stubs that use that to try and batch
7597 * hardware accesses.
7598 */
7599 pmu->start_txn = perf_pmu_start_txn;
7600 pmu->commit_txn = perf_pmu_commit_txn;
7601 pmu->cancel_txn = perf_pmu_cancel_txn;
7602 } else {
fbbe0701 7603 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7604 pmu->commit_txn = perf_pmu_nop_int;
7605 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7606 }
5c92d124 7607 }
15dbf27c 7608
ad5133b7
PZ
7609 if (!pmu->pmu_enable) {
7610 pmu->pmu_enable = perf_pmu_nop_void;
7611 pmu->pmu_disable = perf_pmu_nop_void;
7612 }
7613
35edc2a5
PZ
7614 if (!pmu->event_idx)
7615 pmu->event_idx = perf_event_idx_default;
7616
b0a873eb 7617 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7618 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7619 ret = 0;
7620unlock:
b0a873eb
PZ
7621 mutex_unlock(&pmus_lock);
7622
33696fc0 7623 return ret;
108b02cf 7624
abe43400
PZ
7625free_dev:
7626 device_del(pmu->dev);
7627 put_device(pmu->dev);
7628
2e80a82a
PZ
7629free_idr:
7630 if (pmu->type >= PERF_TYPE_MAX)
7631 idr_remove(&pmu_idr, pmu->type);
7632
108b02cf
PZ
7633free_pdc:
7634 free_percpu(pmu->pmu_disable_count);
7635 goto unlock;
f29ac756 7636}
c464c76e 7637EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7638
b0a873eb 7639void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7640{
b0a873eb
PZ
7641 mutex_lock(&pmus_lock);
7642 list_del_rcu(&pmu->entry);
7643 mutex_unlock(&pmus_lock);
5c92d124 7644
0475f9ea 7645 /*
cde8e884
PZ
7646 * We dereference the pmu list under both SRCU and regular RCU, so
7647 * synchronize against both of those.
0475f9ea 7648 */
b0a873eb 7649 synchronize_srcu(&pmus_srcu);
cde8e884 7650 synchronize_rcu();
d6d020e9 7651
33696fc0 7652 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7653 if (pmu->type >= PERF_TYPE_MAX)
7654 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7655 device_del(pmu->dev);
7656 put_device(pmu->dev);
51676957 7657 free_pmu_context(pmu);
b0a873eb 7658}
c464c76e 7659EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7660
cc34b98b
MR
7661static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7662{
ccd41c86 7663 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7664 int ret;
7665
7666 if (!try_module_get(pmu->module))
7667 return -ENODEV;
ccd41c86
PZ
7668
7669 if (event->group_leader != event) {
8b10c5e2
PZ
7670 /*
7671 * This ctx->mutex can nest when we're called through
7672 * inheritance. See the perf_event_ctx_lock_nested() comment.
7673 */
7674 ctx = perf_event_ctx_lock_nested(event->group_leader,
7675 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7676 BUG_ON(!ctx);
7677 }
7678
cc34b98b
MR
7679 event->pmu = pmu;
7680 ret = pmu->event_init(event);
ccd41c86
PZ
7681
7682 if (ctx)
7683 perf_event_ctx_unlock(event->group_leader, ctx);
7684
cc34b98b
MR
7685 if (ret)
7686 module_put(pmu->module);
7687
7688 return ret;
7689}
7690
b0a873eb
PZ
7691struct pmu *perf_init_event(struct perf_event *event)
7692{
7693 struct pmu *pmu = NULL;
7694 int idx;
940c5b29 7695 int ret;
b0a873eb
PZ
7696
7697 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7698
7699 rcu_read_lock();
7700 pmu = idr_find(&pmu_idr, event->attr.type);
7701 rcu_read_unlock();
940c5b29 7702 if (pmu) {
cc34b98b 7703 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7704 if (ret)
7705 pmu = ERR_PTR(ret);
2e80a82a 7706 goto unlock;
940c5b29 7707 }
2e80a82a 7708
b0a873eb 7709 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7710 ret = perf_try_init_event(pmu, event);
b0a873eb 7711 if (!ret)
e5f4d339 7712 goto unlock;
76e1d904 7713
b0a873eb
PZ
7714 if (ret != -ENOENT) {
7715 pmu = ERR_PTR(ret);
e5f4d339 7716 goto unlock;
f344011c 7717 }
5c92d124 7718 }
e5f4d339
PZ
7719 pmu = ERR_PTR(-ENOENT);
7720unlock:
b0a873eb 7721 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7722
4aeb0b42 7723 return pmu;
5c92d124
IM
7724}
7725
4beb31f3
FW
7726static void account_event_cpu(struct perf_event *event, int cpu)
7727{
7728 if (event->parent)
7729 return;
7730
4beb31f3
FW
7731 if (is_cgroup_event(event))
7732 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7733}
7734
766d6c07
FW
7735static void account_event(struct perf_event *event)
7736{
4beb31f3
FW
7737 if (event->parent)
7738 return;
7739
766d6c07
FW
7740 if (event->attach_state & PERF_ATTACH_TASK)
7741 static_key_slow_inc(&perf_sched_events.key);
7742 if (event->attr.mmap || event->attr.mmap_data)
7743 atomic_inc(&nr_mmap_events);
7744 if (event->attr.comm)
7745 atomic_inc(&nr_comm_events);
7746 if (event->attr.task)
7747 atomic_inc(&nr_task_events);
948b26b6
FW
7748 if (event->attr.freq) {
7749 if (atomic_inc_return(&nr_freq_events) == 1)
7750 tick_nohz_full_kick_all();
7751 }
45ac1403
AH
7752 if (event->attr.context_switch) {
7753 atomic_inc(&nr_switch_events);
7754 static_key_slow_inc(&perf_sched_events.key);
7755 }
4beb31f3 7756 if (has_branch_stack(event))
766d6c07 7757 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7758 if (is_cgroup_event(event))
766d6c07 7759 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7760
7761 account_event_cpu(event, event->cpu);
766d6c07
FW
7762}
7763
0793a61d 7764/*
cdd6c482 7765 * Allocate and initialize a event structure
0793a61d 7766 */
cdd6c482 7767static struct perf_event *
c3f00c70 7768perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7769 struct task_struct *task,
7770 struct perf_event *group_leader,
7771 struct perf_event *parent_event,
4dc0da86 7772 perf_overflow_handler_t overflow_handler,
79dff51e 7773 void *context, int cgroup_fd)
0793a61d 7774{
51b0fe39 7775 struct pmu *pmu;
cdd6c482
IM
7776 struct perf_event *event;
7777 struct hw_perf_event *hwc;
90983b16 7778 long err = -EINVAL;
0793a61d 7779
66832eb4
ON
7780 if ((unsigned)cpu >= nr_cpu_ids) {
7781 if (!task || cpu != -1)
7782 return ERR_PTR(-EINVAL);
7783 }
7784
c3f00c70 7785 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7786 if (!event)
d5d2bc0d 7787 return ERR_PTR(-ENOMEM);
0793a61d 7788
04289bb9 7789 /*
cdd6c482 7790 * Single events are their own group leaders, with an
04289bb9
IM
7791 * empty sibling list:
7792 */
7793 if (!group_leader)
cdd6c482 7794 group_leader = event;
04289bb9 7795
cdd6c482
IM
7796 mutex_init(&event->child_mutex);
7797 INIT_LIST_HEAD(&event->child_list);
fccc714b 7798
cdd6c482
IM
7799 INIT_LIST_HEAD(&event->group_entry);
7800 INIT_LIST_HEAD(&event->event_entry);
7801 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7802 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7803 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7804 INIT_HLIST_NODE(&event->hlist_entry);
7805
10c6db11 7806
cdd6c482 7807 init_waitqueue_head(&event->waitq);
e360adbe 7808 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7809
cdd6c482 7810 mutex_init(&event->mmap_mutex);
7b732a75 7811
a6fa941d 7812 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7813 event->cpu = cpu;
7814 event->attr = *attr;
7815 event->group_leader = group_leader;
7816 event->pmu = NULL;
cdd6c482 7817 event->oncpu = -1;
a96bbc16 7818
cdd6c482 7819 event->parent = parent_event;
b84fbc9f 7820
17cf22c3 7821 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7822 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7823
cdd6c482 7824 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7825
d580ff86
PZ
7826 if (task) {
7827 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7828 /*
50f16a8b
PZ
7829 * XXX pmu::event_init needs to know what task to account to
7830 * and we cannot use the ctx information because we need the
7831 * pmu before we get a ctx.
d580ff86 7832 */
50f16a8b 7833 event->hw.target = task;
d580ff86
PZ
7834 }
7835
34f43927
PZ
7836 event->clock = &local_clock;
7837 if (parent_event)
7838 event->clock = parent_event->clock;
7839
4dc0da86 7840 if (!overflow_handler && parent_event) {
b326e956 7841 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7842 context = parent_event->overflow_handler_context;
7843 }
66832eb4 7844
b326e956 7845 event->overflow_handler = overflow_handler;
4dc0da86 7846 event->overflow_handler_context = context;
97eaf530 7847
0231bb53 7848 perf_event__state_init(event);
a86ed508 7849
4aeb0b42 7850 pmu = NULL;
b8e83514 7851
cdd6c482 7852 hwc = &event->hw;
bd2b5b12 7853 hwc->sample_period = attr->sample_period;
0d48696f 7854 if (attr->freq && attr->sample_freq)
bd2b5b12 7855 hwc->sample_period = 1;
eced1dfc 7856 hwc->last_period = hwc->sample_period;
bd2b5b12 7857
e7850595 7858 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7859
2023b359 7860 /*
cdd6c482 7861 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7862 */
3dab77fb 7863 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7864 goto err_ns;
a46a2300
YZ
7865
7866 if (!has_branch_stack(event))
7867 event->attr.branch_sample_type = 0;
2023b359 7868
79dff51e
MF
7869 if (cgroup_fd != -1) {
7870 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7871 if (err)
7872 goto err_ns;
7873 }
7874
b0a873eb 7875 pmu = perf_init_event(event);
4aeb0b42 7876 if (!pmu)
90983b16
FW
7877 goto err_ns;
7878 else if (IS_ERR(pmu)) {
4aeb0b42 7879 err = PTR_ERR(pmu);
90983b16 7880 goto err_ns;
621a01ea 7881 }
d5d2bc0d 7882
bed5b25a
AS
7883 err = exclusive_event_init(event);
7884 if (err)
7885 goto err_pmu;
7886
cdd6c482 7887 if (!event->parent) {
927c7a9e
FW
7888 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7889 err = get_callchain_buffers();
90983b16 7890 if (err)
bed5b25a 7891 goto err_per_task;
d010b332 7892 }
f344011c 7893 }
9ee318a7 7894
cdd6c482 7895 return event;
90983b16 7896
bed5b25a
AS
7897err_per_task:
7898 exclusive_event_destroy(event);
7899
90983b16
FW
7900err_pmu:
7901 if (event->destroy)
7902 event->destroy(event);
c464c76e 7903 module_put(pmu->module);
90983b16 7904err_ns:
79dff51e
MF
7905 if (is_cgroup_event(event))
7906 perf_detach_cgroup(event);
90983b16
FW
7907 if (event->ns)
7908 put_pid_ns(event->ns);
7909 kfree(event);
7910
7911 return ERR_PTR(err);
0793a61d
TG
7912}
7913
cdd6c482
IM
7914static int perf_copy_attr(struct perf_event_attr __user *uattr,
7915 struct perf_event_attr *attr)
974802ea 7916{
974802ea 7917 u32 size;
cdf8073d 7918 int ret;
974802ea
PZ
7919
7920 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7921 return -EFAULT;
7922
7923 /*
7924 * zero the full structure, so that a short copy will be nice.
7925 */
7926 memset(attr, 0, sizeof(*attr));
7927
7928 ret = get_user(size, &uattr->size);
7929 if (ret)
7930 return ret;
7931
7932 if (size > PAGE_SIZE) /* silly large */
7933 goto err_size;
7934
7935 if (!size) /* abi compat */
7936 size = PERF_ATTR_SIZE_VER0;
7937
7938 if (size < PERF_ATTR_SIZE_VER0)
7939 goto err_size;
7940
7941 /*
7942 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7943 * ensure all the unknown bits are 0 - i.e. new
7944 * user-space does not rely on any kernel feature
7945 * extensions we dont know about yet.
974802ea
PZ
7946 */
7947 if (size > sizeof(*attr)) {
cdf8073d
IS
7948 unsigned char __user *addr;
7949 unsigned char __user *end;
7950 unsigned char val;
974802ea 7951
cdf8073d
IS
7952 addr = (void __user *)uattr + sizeof(*attr);
7953 end = (void __user *)uattr + size;
974802ea 7954
cdf8073d 7955 for (; addr < end; addr++) {
974802ea
PZ
7956 ret = get_user(val, addr);
7957 if (ret)
7958 return ret;
7959 if (val)
7960 goto err_size;
7961 }
b3e62e35 7962 size = sizeof(*attr);
974802ea
PZ
7963 }
7964
7965 ret = copy_from_user(attr, uattr, size);
7966 if (ret)
7967 return -EFAULT;
7968
cd757645 7969 if (attr->__reserved_1)
974802ea
PZ
7970 return -EINVAL;
7971
7972 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7973 return -EINVAL;
7974
7975 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7976 return -EINVAL;
7977
bce38cd5
SE
7978 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7979 u64 mask = attr->branch_sample_type;
7980
7981 /* only using defined bits */
7982 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7983 return -EINVAL;
7984
7985 /* at least one branch bit must be set */
7986 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7987 return -EINVAL;
7988
bce38cd5
SE
7989 /* propagate priv level, when not set for branch */
7990 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7991
7992 /* exclude_kernel checked on syscall entry */
7993 if (!attr->exclude_kernel)
7994 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7995
7996 if (!attr->exclude_user)
7997 mask |= PERF_SAMPLE_BRANCH_USER;
7998
7999 if (!attr->exclude_hv)
8000 mask |= PERF_SAMPLE_BRANCH_HV;
8001 /*
8002 * adjust user setting (for HW filter setup)
8003 */
8004 attr->branch_sample_type = mask;
8005 }
e712209a
SE
8006 /* privileged levels capture (kernel, hv): check permissions */
8007 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8008 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8009 return -EACCES;
bce38cd5 8010 }
4018994f 8011
c5ebcedb 8012 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8013 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8014 if (ret)
8015 return ret;
8016 }
8017
8018 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8019 if (!arch_perf_have_user_stack_dump())
8020 return -ENOSYS;
8021
8022 /*
8023 * We have __u32 type for the size, but so far
8024 * we can only use __u16 as maximum due to the
8025 * __u16 sample size limit.
8026 */
8027 if (attr->sample_stack_user >= USHRT_MAX)
8028 ret = -EINVAL;
8029 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8030 ret = -EINVAL;
8031 }
4018994f 8032
60e2364e
SE
8033 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8034 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8035out:
8036 return ret;
8037
8038err_size:
8039 put_user(sizeof(*attr), &uattr->size);
8040 ret = -E2BIG;
8041 goto out;
8042}
8043
ac9721f3
PZ
8044static int
8045perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8046{
b69cf536 8047 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8048 int ret = -EINVAL;
8049
ac9721f3 8050 if (!output_event)
a4be7c27
PZ
8051 goto set;
8052
ac9721f3
PZ
8053 /* don't allow circular references */
8054 if (event == output_event)
a4be7c27
PZ
8055 goto out;
8056
0f139300
PZ
8057 /*
8058 * Don't allow cross-cpu buffers
8059 */
8060 if (output_event->cpu != event->cpu)
8061 goto out;
8062
8063 /*
76369139 8064 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8065 */
8066 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8067 goto out;
8068
34f43927
PZ
8069 /*
8070 * Mixing clocks in the same buffer is trouble you don't need.
8071 */
8072 if (output_event->clock != event->clock)
8073 goto out;
8074
45bfb2e5
PZ
8075 /*
8076 * If both events generate aux data, they must be on the same PMU
8077 */
8078 if (has_aux(event) && has_aux(output_event) &&
8079 event->pmu != output_event->pmu)
8080 goto out;
8081
a4be7c27 8082set:
cdd6c482 8083 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8084 /* Can't redirect output if we've got an active mmap() */
8085 if (atomic_read(&event->mmap_count))
8086 goto unlock;
a4be7c27 8087
ac9721f3 8088 if (output_event) {
76369139
FW
8089 /* get the rb we want to redirect to */
8090 rb = ring_buffer_get(output_event);
8091 if (!rb)
ac9721f3 8092 goto unlock;
a4be7c27
PZ
8093 }
8094
b69cf536 8095 ring_buffer_attach(event, rb);
9bb5d40c 8096
a4be7c27 8097 ret = 0;
ac9721f3
PZ
8098unlock:
8099 mutex_unlock(&event->mmap_mutex);
8100
a4be7c27 8101out:
a4be7c27
PZ
8102 return ret;
8103}
8104
f63a8daa
PZ
8105static void mutex_lock_double(struct mutex *a, struct mutex *b)
8106{
8107 if (b < a)
8108 swap(a, b);
8109
8110 mutex_lock(a);
8111 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8112}
8113
34f43927
PZ
8114static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8115{
8116 bool nmi_safe = false;
8117
8118 switch (clk_id) {
8119 case CLOCK_MONOTONIC:
8120 event->clock = &ktime_get_mono_fast_ns;
8121 nmi_safe = true;
8122 break;
8123
8124 case CLOCK_MONOTONIC_RAW:
8125 event->clock = &ktime_get_raw_fast_ns;
8126 nmi_safe = true;
8127 break;
8128
8129 case CLOCK_REALTIME:
8130 event->clock = &ktime_get_real_ns;
8131 break;
8132
8133 case CLOCK_BOOTTIME:
8134 event->clock = &ktime_get_boot_ns;
8135 break;
8136
8137 case CLOCK_TAI:
8138 event->clock = &ktime_get_tai_ns;
8139 break;
8140
8141 default:
8142 return -EINVAL;
8143 }
8144
8145 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8146 return -EINVAL;
8147
8148 return 0;
8149}
8150
0793a61d 8151/**
cdd6c482 8152 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8153 *
cdd6c482 8154 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8155 * @pid: target pid
9f66a381 8156 * @cpu: target cpu
cdd6c482 8157 * @group_fd: group leader event fd
0793a61d 8158 */
cdd6c482
IM
8159SYSCALL_DEFINE5(perf_event_open,
8160 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8161 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8162{
b04243ef
PZ
8163 struct perf_event *group_leader = NULL, *output_event = NULL;
8164 struct perf_event *event, *sibling;
cdd6c482 8165 struct perf_event_attr attr;
f63a8daa 8166 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8167 struct file *event_file = NULL;
2903ff01 8168 struct fd group = {NULL, 0};
38a81da2 8169 struct task_struct *task = NULL;
89a1e187 8170 struct pmu *pmu;
ea635c64 8171 int event_fd;
b04243ef 8172 int move_group = 0;
dc86cabe 8173 int err;
a21b0b35 8174 int f_flags = O_RDWR;
79dff51e 8175 int cgroup_fd = -1;
0793a61d 8176
2743a5b0 8177 /* for future expandability... */
e5d1367f 8178 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8179 return -EINVAL;
8180
dc86cabe
IM
8181 err = perf_copy_attr(attr_uptr, &attr);
8182 if (err)
8183 return err;
eab656ae 8184
0764771d
PZ
8185 if (!attr.exclude_kernel) {
8186 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8187 return -EACCES;
8188 }
8189
df58ab24 8190 if (attr.freq) {
cdd6c482 8191 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8192 return -EINVAL;
0819b2e3
PZ
8193 } else {
8194 if (attr.sample_period & (1ULL << 63))
8195 return -EINVAL;
df58ab24
PZ
8196 }
8197
e5d1367f
SE
8198 /*
8199 * In cgroup mode, the pid argument is used to pass the fd
8200 * opened to the cgroup directory in cgroupfs. The cpu argument
8201 * designates the cpu on which to monitor threads from that
8202 * cgroup.
8203 */
8204 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8205 return -EINVAL;
8206
a21b0b35
YD
8207 if (flags & PERF_FLAG_FD_CLOEXEC)
8208 f_flags |= O_CLOEXEC;
8209
8210 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8211 if (event_fd < 0)
8212 return event_fd;
8213
ac9721f3 8214 if (group_fd != -1) {
2903ff01
AV
8215 err = perf_fget_light(group_fd, &group);
8216 if (err)
d14b12d7 8217 goto err_fd;
2903ff01 8218 group_leader = group.file->private_data;
ac9721f3
PZ
8219 if (flags & PERF_FLAG_FD_OUTPUT)
8220 output_event = group_leader;
8221 if (flags & PERF_FLAG_FD_NO_GROUP)
8222 group_leader = NULL;
8223 }
8224
e5d1367f 8225 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8226 task = find_lively_task_by_vpid(pid);
8227 if (IS_ERR(task)) {
8228 err = PTR_ERR(task);
8229 goto err_group_fd;
8230 }
8231 }
8232
1f4ee503
PZ
8233 if (task && group_leader &&
8234 group_leader->attr.inherit != attr.inherit) {
8235 err = -EINVAL;
8236 goto err_task;
8237 }
8238
fbfc623f
YZ
8239 get_online_cpus();
8240
79dff51e
MF
8241 if (flags & PERF_FLAG_PID_CGROUP)
8242 cgroup_fd = pid;
8243
4dc0da86 8244 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8245 NULL, NULL, cgroup_fd);
d14b12d7
SE
8246 if (IS_ERR(event)) {
8247 err = PTR_ERR(event);
1f4ee503 8248 goto err_cpus;
d14b12d7
SE
8249 }
8250
53b25335
VW
8251 if (is_sampling_event(event)) {
8252 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8253 err = -ENOTSUPP;
8254 goto err_alloc;
8255 }
8256 }
8257
766d6c07
FW
8258 account_event(event);
8259
89a1e187
PZ
8260 /*
8261 * Special case software events and allow them to be part of
8262 * any hardware group.
8263 */
8264 pmu = event->pmu;
b04243ef 8265
34f43927
PZ
8266 if (attr.use_clockid) {
8267 err = perf_event_set_clock(event, attr.clockid);
8268 if (err)
8269 goto err_alloc;
8270 }
8271
b04243ef
PZ
8272 if (group_leader &&
8273 (is_software_event(event) != is_software_event(group_leader))) {
8274 if (is_software_event(event)) {
8275 /*
8276 * If event and group_leader are not both a software
8277 * event, and event is, then group leader is not.
8278 *
8279 * Allow the addition of software events to !software
8280 * groups, this is safe because software events never
8281 * fail to schedule.
8282 */
8283 pmu = group_leader->pmu;
8284 } else if (is_software_event(group_leader) &&
8285 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8286 /*
8287 * In case the group is a pure software group, and we
8288 * try to add a hardware event, move the whole group to
8289 * the hardware context.
8290 */
8291 move_group = 1;
8292 }
8293 }
89a1e187
PZ
8294
8295 /*
8296 * Get the target context (task or percpu):
8297 */
4af57ef2 8298 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8299 if (IS_ERR(ctx)) {
8300 err = PTR_ERR(ctx);
c6be5a5c 8301 goto err_alloc;
89a1e187
PZ
8302 }
8303
bed5b25a
AS
8304 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8305 err = -EBUSY;
8306 goto err_context;
8307 }
8308
fd1edb3a
PZ
8309 if (task) {
8310 put_task_struct(task);
8311 task = NULL;
8312 }
8313
ccff286d 8314 /*
cdd6c482 8315 * Look up the group leader (we will attach this event to it):
04289bb9 8316 */
ac9721f3 8317 if (group_leader) {
dc86cabe 8318 err = -EINVAL;
04289bb9 8319
04289bb9 8320 /*
ccff286d
IM
8321 * Do not allow a recursive hierarchy (this new sibling
8322 * becoming part of another group-sibling):
8323 */
8324 if (group_leader->group_leader != group_leader)
c3f00c70 8325 goto err_context;
34f43927
PZ
8326
8327 /* All events in a group should have the same clock */
8328 if (group_leader->clock != event->clock)
8329 goto err_context;
8330
ccff286d
IM
8331 /*
8332 * Do not allow to attach to a group in a different
8333 * task or CPU context:
04289bb9 8334 */
b04243ef 8335 if (move_group) {
c3c87e77
PZ
8336 /*
8337 * Make sure we're both on the same task, or both
8338 * per-cpu events.
8339 */
8340 if (group_leader->ctx->task != ctx->task)
8341 goto err_context;
8342
8343 /*
8344 * Make sure we're both events for the same CPU;
8345 * grouping events for different CPUs is broken; since
8346 * you can never concurrently schedule them anyhow.
8347 */
8348 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8349 goto err_context;
8350 } else {
8351 if (group_leader->ctx != ctx)
8352 goto err_context;
8353 }
8354
3b6f9e5c
PM
8355 /*
8356 * Only a group leader can be exclusive or pinned
8357 */
0d48696f 8358 if (attr.exclusive || attr.pinned)
c3f00c70 8359 goto err_context;
ac9721f3
PZ
8360 }
8361
8362 if (output_event) {
8363 err = perf_event_set_output(event, output_event);
8364 if (err)
c3f00c70 8365 goto err_context;
ac9721f3 8366 }
0793a61d 8367
a21b0b35
YD
8368 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8369 f_flags);
ea635c64
AV
8370 if (IS_ERR(event_file)) {
8371 err = PTR_ERR(event_file);
c3f00c70 8372 goto err_context;
ea635c64 8373 }
9b51f66d 8374
b04243ef 8375 if (move_group) {
f63a8daa
PZ
8376 gctx = group_leader->ctx;
8377
8378 /*
8379 * See perf_event_ctx_lock() for comments on the details
8380 * of swizzling perf_event::ctx.
8381 */
8382 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8383
46ce0fe9 8384 perf_remove_from_context(group_leader, false);
0231bb53 8385
b04243ef
PZ
8386 list_for_each_entry(sibling, &group_leader->sibling_list,
8387 group_entry) {
46ce0fe9 8388 perf_remove_from_context(sibling, false);
b04243ef
PZ
8389 put_ctx(gctx);
8390 }
f63a8daa
PZ
8391 } else {
8392 mutex_lock(&ctx->mutex);
ea635c64 8393 }
9b51f66d 8394
ad3a37de 8395 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8396
8397 if (move_group) {
f63a8daa
PZ
8398 /*
8399 * Wait for everybody to stop referencing the events through
8400 * the old lists, before installing it on new lists.
8401 */
0cda4c02 8402 synchronize_rcu();
f63a8daa 8403
8f95b435
PZI
8404 /*
8405 * Install the group siblings before the group leader.
8406 *
8407 * Because a group leader will try and install the entire group
8408 * (through the sibling list, which is still in-tact), we can
8409 * end up with siblings installed in the wrong context.
8410 *
8411 * By installing siblings first we NO-OP because they're not
8412 * reachable through the group lists.
8413 */
b04243ef
PZ
8414 list_for_each_entry(sibling, &group_leader->sibling_list,
8415 group_entry) {
8f95b435 8416 perf_event__state_init(sibling);
9fc81d87 8417 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8418 get_ctx(ctx);
8419 }
8f95b435
PZI
8420
8421 /*
8422 * Removing from the context ends up with disabled
8423 * event. What we want here is event in the initial
8424 * startup state, ready to be add into new context.
8425 */
8426 perf_event__state_init(group_leader);
8427 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8428 get_ctx(ctx);
b04243ef
PZ
8429 }
8430
bed5b25a
AS
8431 if (!exclusive_event_installable(event, ctx)) {
8432 err = -EBUSY;
8433 mutex_unlock(&ctx->mutex);
8434 fput(event_file);
8435 goto err_context;
8436 }
8437
e2d37cd2 8438 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8439 perf_unpin_context(ctx);
f63a8daa
PZ
8440
8441 if (move_group) {
8442 mutex_unlock(&gctx->mutex);
8443 put_ctx(gctx);
8444 }
d859e29f 8445 mutex_unlock(&ctx->mutex);
9b51f66d 8446
fbfc623f
YZ
8447 put_online_cpus();
8448
cdd6c482 8449 event->owner = current;
8882135b 8450
cdd6c482
IM
8451 mutex_lock(&current->perf_event_mutex);
8452 list_add_tail(&event->owner_entry, &current->perf_event_list);
8453 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8454
c320c7b7
ACM
8455 /*
8456 * Precalculate sample_data sizes
8457 */
8458 perf_event__header_size(event);
6844c09d 8459 perf_event__id_header_size(event);
c320c7b7 8460
8a49542c
PZ
8461 /*
8462 * Drop the reference on the group_event after placing the
8463 * new event on the sibling_list. This ensures destruction
8464 * of the group leader will find the pointer to itself in
8465 * perf_group_detach().
8466 */
2903ff01 8467 fdput(group);
ea635c64
AV
8468 fd_install(event_fd, event_file);
8469 return event_fd;
0793a61d 8470
c3f00c70 8471err_context:
fe4b04fa 8472 perf_unpin_context(ctx);
ea635c64 8473 put_ctx(ctx);
c6be5a5c 8474err_alloc:
ea635c64 8475 free_event(event);
1f4ee503 8476err_cpus:
fbfc623f 8477 put_online_cpus();
1f4ee503 8478err_task:
e7d0bc04
PZ
8479 if (task)
8480 put_task_struct(task);
89a1e187 8481err_group_fd:
2903ff01 8482 fdput(group);
ea635c64
AV
8483err_fd:
8484 put_unused_fd(event_fd);
dc86cabe 8485 return err;
0793a61d
TG
8486}
8487
fb0459d7
AV
8488/**
8489 * perf_event_create_kernel_counter
8490 *
8491 * @attr: attributes of the counter to create
8492 * @cpu: cpu in which the counter is bound
38a81da2 8493 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8494 */
8495struct perf_event *
8496perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8497 struct task_struct *task,
4dc0da86
AK
8498 perf_overflow_handler_t overflow_handler,
8499 void *context)
fb0459d7 8500{
fb0459d7 8501 struct perf_event_context *ctx;
c3f00c70 8502 struct perf_event *event;
fb0459d7 8503 int err;
d859e29f 8504
fb0459d7
AV
8505 /*
8506 * Get the target context (task or percpu):
8507 */
d859e29f 8508
4dc0da86 8509 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8510 overflow_handler, context, -1);
c3f00c70
PZ
8511 if (IS_ERR(event)) {
8512 err = PTR_ERR(event);
8513 goto err;
8514 }
d859e29f 8515
f8697762
JO
8516 /* Mark owner so we could distinguish it from user events. */
8517 event->owner = EVENT_OWNER_KERNEL;
8518
766d6c07
FW
8519 account_event(event);
8520
4af57ef2 8521 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8522 if (IS_ERR(ctx)) {
8523 err = PTR_ERR(ctx);
c3f00c70 8524 goto err_free;
d859e29f 8525 }
fb0459d7 8526
fb0459d7
AV
8527 WARN_ON_ONCE(ctx->parent_ctx);
8528 mutex_lock(&ctx->mutex);
bed5b25a
AS
8529 if (!exclusive_event_installable(event, ctx)) {
8530 mutex_unlock(&ctx->mutex);
8531 perf_unpin_context(ctx);
8532 put_ctx(ctx);
8533 err = -EBUSY;
8534 goto err_free;
8535 }
8536
fb0459d7 8537 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8538 perf_unpin_context(ctx);
fb0459d7
AV
8539 mutex_unlock(&ctx->mutex);
8540
fb0459d7
AV
8541 return event;
8542
c3f00c70
PZ
8543err_free:
8544 free_event(event);
8545err:
c6567f64 8546 return ERR_PTR(err);
9b51f66d 8547}
fb0459d7 8548EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8549
0cda4c02
YZ
8550void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8551{
8552 struct perf_event_context *src_ctx;
8553 struct perf_event_context *dst_ctx;
8554 struct perf_event *event, *tmp;
8555 LIST_HEAD(events);
8556
8557 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8558 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8559
f63a8daa
PZ
8560 /*
8561 * See perf_event_ctx_lock() for comments on the details
8562 * of swizzling perf_event::ctx.
8563 */
8564 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8565 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8566 event_entry) {
46ce0fe9 8567 perf_remove_from_context(event, false);
9a545de0 8568 unaccount_event_cpu(event, src_cpu);
0cda4c02 8569 put_ctx(src_ctx);
9886167d 8570 list_add(&event->migrate_entry, &events);
0cda4c02 8571 }
0cda4c02 8572
8f95b435
PZI
8573 /*
8574 * Wait for the events to quiesce before re-instating them.
8575 */
0cda4c02
YZ
8576 synchronize_rcu();
8577
8f95b435
PZI
8578 /*
8579 * Re-instate events in 2 passes.
8580 *
8581 * Skip over group leaders and only install siblings on this first
8582 * pass, siblings will not get enabled without a leader, however a
8583 * leader will enable its siblings, even if those are still on the old
8584 * context.
8585 */
8586 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8587 if (event->group_leader == event)
8588 continue;
8589
8590 list_del(&event->migrate_entry);
8591 if (event->state >= PERF_EVENT_STATE_OFF)
8592 event->state = PERF_EVENT_STATE_INACTIVE;
8593 account_event_cpu(event, dst_cpu);
8594 perf_install_in_context(dst_ctx, event, dst_cpu);
8595 get_ctx(dst_ctx);
8596 }
8597
8598 /*
8599 * Once all the siblings are setup properly, install the group leaders
8600 * to make it go.
8601 */
9886167d
PZ
8602 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8603 list_del(&event->migrate_entry);
0cda4c02
YZ
8604 if (event->state >= PERF_EVENT_STATE_OFF)
8605 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8606 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8607 perf_install_in_context(dst_ctx, event, dst_cpu);
8608 get_ctx(dst_ctx);
8609 }
8610 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8611 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8612}
8613EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8614
cdd6c482 8615static void sync_child_event(struct perf_event *child_event,
38b200d6 8616 struct task_struct *child)
d859e29f 8617{
cdd6c482 8618 struct perf_event *parent_event = child_event->parent;
8bc20959 8619 u64 child_val;
d859e29f 8620
cdd6c482
IM
8621 if (child_event->attr.inherit_stat)
8622 perf_event_read_event(child_event, child);
38b200d6 8623
b5e58793 8624 child_val = perf_event_count(child_event);
d859e29f
PM
8625
8626 /*
8627 * Add back the child's count to the parent's count:
8628 */
a6e6dea6 8629 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8630 atomic64_add(child_event->total_time_enabled,
8631 &parent_event->child_total_time_enabled);
8632 atomic64_add(child_event->total_time_running,
8633 &parent_event->child_total_time_running);
d859e29f
PM
8634
8635 /*
cdd6c482 8636 * Remove this event from the parent's list
d859e29f 8637 */
cdd6c482
IM
8638 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8639 mutex_lock(&parent_event->child_mutex);
8640 list_del_init(&child_event->child_list);
8641 mutex_unlock(&parent_event->child_mutex);
d859e29f 8642
dc633982
JO
8643 /*
8644 * Make sure user/parent get notified, that we just
8645 * lost one event.
8646 */
8647 perf_event_wakeup(parent_event);
8648
d859e29f 8649 /*
cdd6c482 8650 * Release the parent event, if this was the last
d859e29f
PM
8651 * reference to it.
8652 */
a6fa941d 8653 put_event(parent_event);
d859e29f
PM
8654}
8655
9b51f66d 8656static void
cdd6c482
IM
8657__perf_event_exit_task(struct perf_event *child_event,
8658 struct perf_event_context *child_ctx,
38b200d6 8659 struct task_struct *child)
9b51f66d 8660{
1903d50c
PZ
8661 /*
8662 * Do not destroy the 'original' grouping; because of the context
8663 * switch optimization the original events could've ended up in a
8664 * random child task.
8665 *
8666 * If we were to destroy the original group, all group related
8667 * operations would cease to function properly after this random
8668 * child dies.
8669 *
8670 * Do destroy all inherited groups, we don't care about those
8671 * and being thorough is better.
8672 */
8673 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8674
9b51f66d 8675 /*
38b435b1 8676 * It can happen that the parent exits first, and has events
9b51f66d 8677 * that are still around due to the child reference. These
38b435b1 8678 * events need to be zapped.
9b51f66d 8679 */
38b435b1 8680 if (child_event->parent) {
cdd6c482
IM
8681 sync_child_event(child_event, child);
8682 free_event(child_event);
179033b3
JO
8683 } else {
8684 child_event->state = PERF_EVENT_STATE_EXIT;
8685 perf_event_wakeup(child_event);
4bcf349a 8686 }
9b51f66d
IM
8687}
8688
8dc85d54 8689static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8690{
ebf905fc 8691 struct perf_event *child_event, *next;
211de6eb 8692 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8693 unsigned long flags;
9b51f66d 8694
8dc85d54 8695 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8696 perf_event_task(child, NULL, 0);
9b51f66d 8697 return;
9f498cc5 8698 }
9b51f66d 8699
a63eaf34 8700 local_irq_save(flags);
ad3a37de
PM
8701 /*
8702 * We can't reschedule here because interrupts are disabled,
8703 * and either child is current or it is a task that can't be
8704 * scheduled, so we are now safe from rescheduling changing
8705 * our context.
8706 */
806839b2 8707 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8708
8709 /*
8710 * Take the context lock here so that if find_get_context is
cdd6c482 8711 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8712 * incremented the context's refcount before we do put_ctx below.
8713 */
e625cce1 8714 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8715 task_ctx_sched_out(child_ctx);
8dc85d54 8716 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8717
71a851b4
PZ
8718 /*
8719 * If this context is a clone; unclone it so it can't get
8720 * swapped to another process while we're removing all
cdd6c482 8721 * the events from it.
71a851b4 8722 */
211de6eb 8723 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8724 update_context_time(child_ctx);
e625cce1 8725 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8726
211de6eb
PZ
8727 if (clone_ctx)
8728 put_ctx(clone_ctx);
4a1c0f26 8729
9f498cc5 8730 /*
cdd6c482
IM
8731 * Report the task dead after unscheduling the events so that we
8732 * won't get any samples after PERF_RECORD_EXIT. We can however still
8733 * get a few PERF_RECORD_READ events.
9f498cc5 8734 */
cdd6c482 8735 perf_event_task(child, child_ctx, 0);
a63eaf34 8736
66fff224
PZ
8737 /*
8738 * We can recurse on the same lock type through:
8739 *
cdd6c482
IM
8740 * __perf_event_exit_task()
8741 * sync_child_event()
a6fa941d
AV
8742 * put_event()
8743 * mutex_lock(&ctx->mutex)
66fff224
PZ
8744 *
8745 * But since its the parent context it won't be the same instance.
8746 */
a0507c84 8747 mutex_lock(&child_ctx->mutex);
a63eaf34 8748
ebf905fc 8749 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8750 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8751
a63eaf34
PM
8752 mutex_unlock(&child_ctx->mutex);
8753
8754 put_ctx(child_ctx);
9b51f66d
IM
8755}
8756
8dc85d54
PZ
8757/*
8758 * When a child task exits, feed back event values to parent events.
8759 */
8760void perf_event_exit_task(struct task_struct *child)
8761{
8882135b 8762 struct perf_event *event, *tmp;
8dc85d54
PZ
8763 int ctxn;
8764
8882135b
PZ
8765 mutex_lock(&child->perf_event_mutex);
8766 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8767 owner_entry) {
8768 list_del_init(&event->owner_entry);
8769
8770 /*
8771 * Ensure the list deletion is visible before we clear
8772 * the owner, closes a race against perf_release() where
8773 * we need to serialize on the owner->perf_event_mutex.
8774 */
8775 smp_wmb();
8776 event->owner = NULL;
8777 }
8778 mutex_unlock(&child->perf_event_mutex);
8779
8dc85d54
PZ
8780 for_each_task_context_nr(ctxn)
8781 perf_event_exit_task_context(child, ctxn);
8782}
8783
889ff015
FW
8784static void perf_free_event(struct perf_event *event,
8785 struct perf_event_context *ctx)
8786{
8787 struct perf_event *parent = event->parent;
8788
8789 if (WARN_ON_ONCE(!parent))
8790 return;
8791
8792 mutex_lock(&parent->child_mutex);
8793 list_del_init(&event->child_list);
8794 mutex_unlock(&parent->child_mutex);
8795
a6fa941d 8796 put_event(parent);
889ff015 8797
652884fe 8798 raw_spin_lock_irq(&ctx->lock);
8a49542c 8799 perf_group_detach(event);
889ff015 8800 list_del_event(event, ctx);
652884fe 8801 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8802 free_event(event);
8803}
8804
bbbee908 8805/*
652884fe 8806 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8807 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8808 *
8809 * Not all locks are strictly required, but take them anyway to be nice and
8810 * help out with the lockdep assertions.
bbbee908 8811 */
cdd6c482 8812void perf_event_free_task(struct task_struct *task)
bbbee908 8813{
8dc85d54 8814 struct perf_event_context *ctx;
cdd6c482 8815 struct perf_event *event, *tmp;
8dc85d54 8816 int ctxn;
bbbee908 8817
8dc85d54
PZ
8818 for_each_task_context_nr(ctxn) {
8819 ctx = task->perf_event_ctxp[ctxn];
8820 if (!ctx)
8821 continue;
bbbee908 8822
8dc85d54 8823 mutex_lock(&ctx->mutex);
bbbee908 8824again:
8dc85d54
PZ
8825 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8826 group_entry)
8827 perf_free_event(event, ctx);
bbbee908 8828
8dc85d54
PZ
8829 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8830 group_entry)
8831 perf_free_event(event, ctx);
bbbee908 8832
8dc85d54
PZ
8833 if (!list_empty(&ctx->pinned_groups) ||
8834 !list_empty(&ctx->flexible_groups))
8835 goto again;
bbbee908 8836
8dc85d54 8837 mutex_unlock(&ctx->mutex);
bbbee908 8838
8dc85d54
PZ
8839 put_ctx(ctx);
8840 }
889ff015
FW
8841}
8842
4e231c79
PZ
8843void perf_event_delayed_put(struct task_struct *task)
8844{
8845 int ctxn;
8846
8847 for_each_task_context_nr(ctxn)
8848 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8849}
8850
ffe8690c
KX
8851struct perf_event *perf_event_get(unsigned int fd)
8852{
8853 int err;
8854 struct fd f;
8855 struct perf_event *event;
8856
8857 err = perf_fget_light(fd, &f);
8858 if (err)
8859 return ERR_PTR(err);
8860
8861 event = f.file->private_data;
8862 atomic_long_inc(&event->refcount);
8863 fdput(f);
8864
8865 return event;
8866}
8867
8868const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8869{
8870 if (!event)
8871 return ERR_PTR(-EINVAL);
8872
8873 return &event->attr;
8874}
8875
97dee4f3
PZ
8876/*
8877 * inherit a event from parent task to child task:
8878 */
8879static struct perf_event *
8880inherit_event(struct perf_event *parent_event,
8881 struct task_struct *parent,
8882 struct perf_event_context *parent_ctx,
8883 struct task_struct *child,
8884 struct perf_event *group_leader,
8885 struct perf_event_context *child_ctx)
8886{
1929def9 8887 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8888 struct perf_event *child_event;
cee010ec 8889 unsigned long flags;
97dee4f3
PZ
8890
8891 /*
8892 * Instead of creating recursive hierarchies of events,
8893 * we link inherited events back to the original parent,
8894 * which has a filp for sure, which we use as the reference
8895 * count:
8896 */
8897 if (parent_event->parent)
8898 parent_event = parent_event->parent;
8899
8900 child_event = perf_event_alloc(&parent_event->attr,
8901 parent_event->cpu,
d580ff86 8902 child,
97dee4f3 8903 group_leader, parent_event,
79dff51e 8904 NULL, NULL, -1);
97dee4f3
PZ
8905 if (IS_ERR(child_event))
8906 return child_event;
a6fa941d 8907
fadfe7be
JO
8908 if (is_orphaned_event(parent_event) ||
8909 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8910 free_event(child_event);
8911 return NULL;
8912 }
8913
97dee4f3
PZ
8914 get_ctx(child_ctx);
8915
8916 /*
8917 * Make the child state follow the state of the parent event,
8918 * not its attr.disabled bit. We hold the parent's mutex,
8919 * so we won't race with perf_event_{en, dis}able_family.
8920 */
1929def9 8921 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8922 child_event->state = PERF_EVENT_STATE_INACTIVE;
8923 else
8924 child_event->state = PERF_EVENT_STATE_OFF;
8925
8926 if (parent_event->attr.freq) {
8927 u64 sample_period = parent_event->hw.sample_period;
8928 struct hw_perf_event *hwc = &child_event->hw;
8929
8930 hwc->sample_period = sample_period;
8931 hwc->last_period = sample_period;
8932
8933 local64_set(&hwc->period_left, sample_period);
8934 }
8935
8936 child_event->ctx = child_ctx;
8937 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8938 child_event->overflow_handler_context
8939 = parent_event->overflow_handler_context;
97dee4f3 8940
614b6780
TG
8941 /*
8942 * Precalculate sample_data sizes
8943 */
8944 perf_event__header_size(child_event);
6844c09d 8945 perf_event__id_header_size(child_event);
614b6780 8946
97dee4f3
PZ
8947 /*
8948 * Link it up in the child's context:
8949 */
cee010ec 8950 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8951 add_event_to_ctx(child_event, child_ctx);
cee010ec 8952 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8953
97dee4f3
PZ
8954 /*
8955 * Link this into the parent event's child list
8956 */
8957 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8958 mutex_lock(&parent_event->child_mutex);
8959 list_add_tail(&child_event->child_list, &parent_event->child_list);
8960 mutex_unlock(&parent_event->child_mutex);
8961
8962 return child_event;
8963}
8964
8965static int inherit_group(struct perf_event *parent_event,
8966 struct task_struct *parent,
8967 struct perf_event_context *parent_ctx,
8968 struct task_struct *child,
8969 struct perf_event_context *child_ctx)
8970{
8971 struct perf_event *leader;
8972 struct perf_event *sub;
8973 struct perf_event *child_ctr;
8974
8975 leader = inherit_event(parent_event, parent, parent_ctx,
8976 child, NULL, child_ctx);
8977 if (IS_ERR(leader))
8978 return PTR_ERR(leader);
8979 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8980 child_ctr = inherit_event(sub, parent, parent_ctx,
8981 child, leader, child_ctx);
8982 if (IS_ERR(child_ctr))
8983 return PTR_ERR(child_ctr);
8984 }
8985 return 0;
889ff015
FW
8986}
8987
8988static int
8989inherit_task_group(struct perf_event *event, struct task_struct *parent,
8990 struct perf_event_context *parent_ctx,
8dc85d54 8991 struct task_struct *child, int ctxn,
889ff015
FW
8992 int *inherited_all)
8993{
8994 int ret;
8dc85d54 8995 struct perf_event_context *child_ctx;
889ff015
FW
8996
8997 if (!event->attr.inherit) {
8998 *inherited_all = 0;
8999 return 0;
bbbee908
PZ
9000 }
9001
fe4b04fa 9002 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9003 if (!child_ctx) {
9004 /*
9005 * This is executed from the parent task context, so
9006 * inherit events that have been marked for cloning.
9007 * First allocate and initialize a context for the
9008 * child.
9009 */
bbbee908 9010
734df5ab 9011 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9012 if (!child_ctx)
9013 return -ENOMEM;
bbbee908 9014
8dc85d54 9015 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9016 }
9017
9018 ret = inherit_group(event, parent, parent_ctx,
9019 child, child_ctx);
9020
9021 if (ret)
9022 *inherited_all = 0;
9023
9024 return ret;
bbbee908
PZ
9025}
9026
9b51f66d 9027/*
cdd6c482 9028 * Initialize the perf_event context in task_struct
9b51f66d 9029 */
985c8dcb 9030static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9031{
889ff015 9032 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9033 struct perf_event_context *cloned_ctx;
9034 struct perf_event *event;
9b51f66d 9035 struct task_struct *parent = current;
564c2b21 9036 int inherited_all = 1;
dddd3379 9037 unsigned long flags;
6ab423e0 9038 int ret = 0;
9b51f66d 9039
8dc85d54 9040 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9041 return 0;
9042
ad3a37de 9043 /*
25346b93
PM
9044 * If the parent's context is a clone, pin it so it won't get
9045 * swapped under us.
ad3a37de 9046 */
8dc85d54 9047 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9048 if (!parent_ctx)
9049 return 0;
25346b93 9050
ad3a37de
PM
9051 /*
9052 * No need to check if parent_ctx != NULL here; since we saw
9053 * it non-NULL earlier, the only reason for it to become NULL
9054 * is if we exit, and since we're currently in the middle of
9055 * a fork we can't be exiting at the same time.
9056 */
ad3a37de 9057
9b51f66d
IM
9058 /*
9059 * Lock the parent list. No need to lock the child - not PID
9060 * hashed yet and not running, so nobody can access it.
9061 */
d859e29f 9062 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9063
9064 /*
9065 * We dont have to disable NMIs - we are only looking at
9066 * the list, not manipulating it:
9067 */
889ff015 9068 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9069 ret = inherit_task_group(event, parent, parent_ctx,
9070 child, ctxn, &inherited_all);
889ff015
FW
9071 if (ret)
9072 break;
9073 }
b93f7978 9074
dddd3379
TG
9075 /*
9076 * We can't hold ctx->lock when iterating the ->flexible_group list due
9077 * to allocations, but we need to prevent rotation because
9078 * rotate_ctx() will change the list from interrupt context.
9079 */
9080 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9081 parent_ctx->rotate_disable = 1;
9082 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9083
889ff015 9084 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9085 ret = inherit_task_group(event, parent, parent_ctx,
9086 child, ctxn, &inherited_all);
889ff015 9087 if (ret)
9b51f66d 9088 break;
564c2b21
PM
9089 }
9090
dddd3379
TG
9091 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9092 parent_ctx->rotate_disable = 0;
dddd3379 9093
8dc85d54 9094 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9095
05cbaa28 9096 if (child_ctx && inherited_all) {
564c2b21
PM
9097 /*
9098 * Mark the child context as a clone of the parent
9099 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9100 *
9101 * Note that if the parent is a clone, the holding of
9102 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9103 */
c5ed5145 9104 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9105 if (cloned_ctx) {
9106 child_ctx->parent_ctx = cloned_ctx;
25346b93 9107 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9108 } else {
9109 child_ctx->parent_ctx = parent_ctx;
9110 child_ctx->parent_gen = parent_ctx->generation;
9111 }
9112 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9113 }
9114
c5ed5145 9115 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9116 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9117
25346b93 9118 perf_unpin_context(parent_ctx);
fe4b04fa 9119 put_ctx(parent_ctx);
ad3a37de 9120
6ab423e0 9121 return ret;
9b51f66d
IM
9122}
9123
8dc85d54
PZ
9124/*
9125 * Initialize the perf_event context in task_struct
9126 */
9127int perf_event_init_task(struct task_struct *child)
9128{
9129 int ctxn, ret;
9130
8550d7cb
ON
9131 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9132 mutex_init(&child->perf_event_mutex);
9133 INIT_LIST_HEAD(&child->perf_event_list);
9134
8dc85d54
PZ
9135 for_each_task_context_nr(ctxn) {
9136 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9137 if (ret) {
9138 perf_event_free_task(child);
8dc85d54 9139 return ret;
6c72e350 9140 }
8dc85d54
PZ
9141 }
9142
9143 return 0;
9144}
9145
220b140b
PM
9146static void __init perf_event_init_all_cpus(void)
9147{
b28ab83c 9148 struct swevent_htable *swhash;
220b140b 9149 int cpu;
220b140b
PM
9150
9151 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9152 swhash = &per_cpu(swevent_htable, cpu);
9153 mutex_init(&swhash->hlist_mutex);
2fde4f94 9154 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9155 }
9156}
9157
0db0628d 9158static void perf_event_init_cpu(int cpu)
0793a61d 9159{
108b02cf 9160 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9161
b28ab83c 9162 mutex_lock(&swhash->hlist_mutex);
39af6b16 9163 swhash->online = true;
4536e4d1 9164 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9165 struct swevent_hlist *hlist;
9166
b28ab83c
PZ
9167 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9168 WARN_ON(!hlist);
9169 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9170 }
b28ab83c 9171 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9172}
9173
2965faa5 9174#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9175static void __perf_event_exit_context(void *__info)
0793a61d 9176{
226424ee 9177 struct remove_event re = { .detach_group = true };
108b02cf 9178 struct perf_event_context *ctx = __info;
0793a61d 9179
e3703f8c 9180 rcu_read_lock();
46ce0fe9
PZ
9181 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9182 __perf_remove_from_context(&re);
e3703f8c 9183 rcu_read_unlock();
0793a61d 9184}
108b02cf
PZ
9185
9186static void perf_event_exit_cpu_context(int cpu)
9187{
9188 struct perf_event_context *ctx;
9189 struct pmu *pmu;
9190 int idx;
9191
9192 idx = srcu_read_lock(&pmus_srcu);
9193 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9194 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9195
9196 mutex_lock(&ctx->mutex);
9197 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9198 mutex_unlock(&ctx->mutex);
9199 }
9200 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9201}
9202
cdd6c482 9203static void perf_event_exit_cpu(int cpu)
0793a61d 9204{
b28ab83c 9205 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9206
e3703f8c
PZ
9207 perf_event_exit_cpu_context(cpu);
9208
b28ab83c 9209 mutex_lock(&swhash->hlist_mutex);
39af6b16 9210 swhash->online = false;
b28ab83c
PZ
9211 swevent_hlist_release(swhash);
9212 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9213}
9214#else
cdd6c482 9215static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9216#endif
9217
c277443c
PZ
9218static int
9219perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9220{
9221 int cpu;
9222
9223 for_each_online_cpu(cpu)
9224 perf_event_exit_cpu(cpu);
9225
9226 return NOTIFY_OK;
9227}
9228
9229/*
9230 * Run the perf reboot notifier at the very last possible moment so that
9231 * the generic watchdog code runs as long as possible.
9232 */
9233static struct notifier_block perf_reboot_notifier = {
9234 .notifier_call = perf_reboot,
9235 .priority = INT_MIN,
9236};
9237
0db0628d 9238static int
0793a61d
TG
9239perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9240{
9241 unsigned int cpu = (long)hcpu;
9242
4536e4d1 9243 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9244
9245 case CPU_UP_PREPARE:
5e11637e 9246 case CPU_DOWN_FAILED:
cdd6c482 9247 perf_event_init_cpu(cpu);
0793a61d
TG
9248 break;
9249
5e11637e 9250 case CPU_UP_CANCELED:
0793a61d 9251 case CPU_DOWN_PREPARE:
cdd6c482 9252 perf_event_exit_cpu(cpu);
0793a61d 9253 break;
0793a61d
TG
9254 default:
9255 break;
9256 }
9257
9258 return NOTIFY_OK;
9259}
9260
cdd6c482 9261void __init perf_event_init(void)
0793a61d 9262{
3c502e7a
JW
9263 int ret;
9264
2e80a82a
PZ
9265 idr_init(&pmu_idr);
9266
220b140b 9267 perf_event_init_all_cpus();
b0a873eb 9268 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9269 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9270 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9271 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9272 perf_tp_register();
9273 perf_cpu_notifier(perf_cpu_notify);
c277443c 9274 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9275
9276 ret = init_hw_breakpoint();
9277 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9278
9279 /* do not patch jump label more than once per second */
9280 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9281
9282 /*
9283 * Build time assertion that we keep the data_head at the intended
9284 * location. IOW, validation we got the __reserved[] size right.
9285 */
9286 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9287 != 1024);
0793a61d 9288}
abe43400 9289
fd979c01
CS
9290ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9291 char *page)
9292{
9293 struct perf_pmu_events_attr *pmu_attr =
9294 container_of(attr, struct perf_pmu_events_attr, attr);
9295
9296 if (pmu_attr->event_str)
9297 return sprintf(page, "%s\n", pmu_attr->event_str);
9298
9299 return 0;
9300}
9301
abe43400
PZ
9302static int __init perf_event_sysfs_init(void)
9303{
9304 struct pmu *pmu;
9305 int ret;
9306
9307 mutex_lock(&pmus_lock);
9308
9309 ret = bus_register(&pmu_bus);
9310 if (ret)
9311 goto unlock;
9312
9313 list_for_each_entry(pmu, &pmus, entry) {
9314 if (!pmu->name || pmu->type < 0)
9315 continue;
9316
9317 ret = pmu_dev_alloc(pmu);
9318 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9319 }
9320 pmu_bus_running = 1;
9321 ret = 0;
9322
9323unlock:
9324 mutex_unlock(&pmus_lock);
9325
9326 return ret;
9327}
9328device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9329
9330#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9331static struct cgroup_subsys_state *
9332perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9333{
9334 struct perf_cgroup *jc;
e5d1367f 9335
1b15d055 9336 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9337 if (!jc)
9338 return ERR_PTR(-ENOMEM);
9339
e5d1367f
SE
9340 jc->info = alloc_percpu(struct perf_cgroup_info);
9341 if (!jc->info) {
9342 kfree(jc);
9343 return ERR_PTR(-ENOMEM);
9344 }
9345
e5d1367f
SE
9346 return &jc->css;
9347}
9348
eb95419b 9349static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9350{
eb95419b
TH
9351 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9352
e5d1367f
SE
9353 free_percpu(jc->info);
9354 kfree(jc);
9355}
9356
9357static int __perf_cgroup_move(void *info)
9358{
9359 struct task_struct *task = info;
9360 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9361 return 0;
9362}
9363
eb95419b
TH
9364static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9365 struct cgroup_taskset *tset)
e5d1367f 9366{
bb9d97b6
TH
9367 struct task_struct *task;
9368
924f0d9a 9369 cgroup_taskset_for_each(task, tset)
bb9d97b6 9370 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9371}
9372
eb95419b
TH
9373static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9374 struct cgroup_subsys_state *old_css,
761b3ef5 9375 struct task_struct *task)
e5d1367f 9376{
bb9d97b6 9377 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9378}
9379
073219e9 9380struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9381 .css_alloc = perf_cgroup_css_alloc,
9382 .css_free = perf_cgroup_css_free,
e7e7ee2e 9383 .exit = perf_cgroup_exit,
bb9d97b6 9384 .attach = perf_cgroup_attach,
e5d1367f
SE
9385};
9386#endif /* CONFIG_CGROUP_PERF */