perf: Fix event->ctx locking
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
4e2ba650 406 css_put(&event->cgrp->css);
e5d1367f
SE
407 event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412 return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
3f7cce3c
SE
445 struct perf_cgroup *cgrp;
446
e5d1367f 447 /*
3f7cce3c
SE
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
e5d1367f 450 */
3f7cce3c 451 if (!is_cgroup_event(event))
e5d1367f
SE
452 return;
453
3f7cce3c
SE
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
e5d1367f
SE
460}
461
462static inline void
3f7cce3c
SE
463perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
e5d1367f
SE
465{
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
3f7cce3c
SE
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
3f7cce3c 479 info->timestamp = ctx->timestamp;
e5d1367f
SE
480}
481
482#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
e5d1367f 514
e5d1367f
SE
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
e566b76e 536 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
e5d1367f
SE
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
facc4307
PZ
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 547 }
e5d1367f
SE
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553}
554
a8d757ef
SE
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
e5d1367f 557{
a8d757ef
SE
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f 584{
a8d757ef
SE
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
2903ff01
AV
611 struct fd f = fdget(fd);
612 int ret = 0;
e5d1367f 613
2903ff01 614 if (!f.file)
e5d1367f
SE
615 return -EBADF;
616
b583043e 617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 618 &perf_event_cgrp_subsys);
3db272c0
LZ
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
e5d1367f
SE
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
e5d1367f 635 }
3db272c0 636out:
2903ff01 637 fdput(f);
e5d1367f
SE
638 return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665{
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687 return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
a8d757ef
SE
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
e5d1367f
SE
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
e5d1367f
SE
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724{
725 return -EINVAL;
726}
727
728static inline void
3f7cce3c
SE
729perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
e5d1367f
SE
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746 return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757{
758}
759#endif
760
9e630205
SE
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 824 int timer;
9e630205
SE
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
62b85639
SE
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
33696fc0 861void perf_pmu_disable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
9e35ad38 866}
9e35ad38 867
33696fc0 868void perf_pmu_enable(struct pmu *pmu)
9e35ad38 869{
33696fc0
PZ
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
9e35ad38 873}
9e35ad38 874
e9d2b064
PZ
875static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877/*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
108b02cf 882static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 883{
108b02cf 884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4a32fea9 885 struct list_head *head = this_cpu_ptr(&rotation_list);
b5ab4cd5 886
e9d2b064 887 WARN_ON(!irqs_disabled());
b5ab4cd5 888
d84153d6 889 if (list_empty(&cpuctx->rotation_list))
e9d2b064 890 list_add(&cpuctx->rotation_list, head);
9e35ad38 891}
9e35ad38 892
cdd6c482 893static void get_ctx(struct perf_event_context *ctx)
a63eaf34 894{
e5289d4a 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
cb796ff3 905 kfree_rcu(ctx, rcu_head);
564c2b21 906 }
a63eaf34
PM
907}
908
f63a8daa
PZ
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
920 *
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
925 *
926 * The places that change perf_event::ctx will issue:
927 *
928 * perf_remove_from_context();
929 * synchronize_rcu();
930 * perf_install_in_context();
931 *
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
937 *
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940 * function.
941 *
942 * Lock order:
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
948 * mmap_sem
949 */
950static struct perf_event_context *perf_event_ctx_lock(struct perf_event *event)
951{
952 struct perf_event_context *ctx;
953
954again:
955 rcu_read_lock();
956 ctx = ACCESS_ONCE(event->ctx);
957 if (!atomic_inc_not_zero(&ctx->refcount)) {
958 rcu_read_unlock();
959 goto again;
960 }
961 rcu_read_unlock();
962
963 mutex_lock(&ctx->mutex);
964 if (event->ctx != ctx) {
965 mutex_unlock(&ctx->mutex);
966 put_ctx(ctx);
967 goto again;
968 }
969
970 return ctx;
971}
972
973static void perf_event_ctx_unlock(struct perf_event *event,
974 struct perf_event_context *ctx)
975{
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978}
979
211de6eb
PZ
980/*
981 * This must be done under the ctx->lock, such as to serialize against
982 * context_equiv(), therefore we cannot call put_ctx() since that might end up
983 * calling scheduler related locks and ctx->lock nests inside those.
984 */
985static __must_check struct perf_event_context *
986unclone_ctx(struct perf_event_context *ctx)
71a851b4 987{
211de6eb
PZ
988 struct perf_event_context *parent_ctx = ctx->parent_ctx;
989
990 lockdep_assert_held(&ctx->lock);
991
992 if (parent_ctx)
71a851b4 993 ctx->parent_ctx = NULL;
5a3126d4 994 ctx->generation++;
211de6eb
PZ
995
996 return parent_ctx;
71a851b4
PZ
997}
998
6844c09d
ACM
999static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1000{
1001 /*
1002 * only top level events have the pid namespace they were created in
1003 */
1004 if (event->parent)
1005 event = event->parent;
1006
1007 return task_tgid_nr_ns(p, event->ns);
1008}
1009
1010static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1011{
1012 /*
1013 * only top level events have the pid namespace they were created in
1014 */
1015 if (event->parent)
1016 event = event->parent;
1017
1018 return task_pid_nr_ns(p, event->ns);
1019}
1020
7f453c24 1021/*
cdd6c482 1022 * If we inherit events we want to return the parent event id
7f453c24
PZ
1023 * to userspace.
1024 */
cdd6c482 1025static u64 primary_event_id(struct perf_event *event)
7f453c24 1026{
cdd6c482 1027 u64 id = event->id;
7f453c24 1028
cdd6c482
IM
1029 if (event->parent)
1030 id = event->parent->id;
7f453c24
PZ
1031
1032 return id;
1033}
1034
25346b93 1035/*
cdd6c482 1036 * Get the perf_event_context for a task and lock it.
25346b93
PM
1037 * This has to cope with with the fact that until it is locked,
1038 * the context could get moved to another task.
1039 */
cdd6c482 1040static struct perf_event_context *
8dc85d54 1041perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1042{
cdd6c482 1043 struct perf_event_context *ctx;
25346b93 1044
9ed6060d 1045retry:
058ebd0e
PZ
1046 /*
1047 * One of the few rules of preemptible RCU is that one cannot do
1048 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1049 * part of the read side critical section was preemptible -- see
1050 * rcu_read_unlock_special().
1051 *
1052 * Since ctx->lock nests under rq->lock we must ensure the entire read
1053 * side critical section is non-preemptible.
1054 */
1055 preempt_disable();
1056 rcu_read_lock();
8dc85d54 1057 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1058 if (ctx) {
1059 /*
1060 * If this context is a clone of another, it might
1061 * get swapped for another underneath us by
cdd6c482 1062 * perf_event_task_sched_out, though the
25346b93
PM
1063 * rcu_read_lock() protects us from any context
1064 * getting freed. Lock the context and check if it
1065 * got swapped before we could get the lock, and retry
1066 * if so. If we locked the right context, then it
1067 * can't get swapped on us any more.
1068 */
e625cce1 1069 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1070 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1071 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1072 rcu_read_unlock();
1073 preempt_enable();
25346b93
PM
1074 goto retry;
1075 }
b49a9e7e
PZ
1076
1077 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1079 ctx = NULL;
1080 }
25346b93
PM
1081 }
1082 rcu_read_unlock();
058ebd0e 1083 preempt_enable();
25346b93
PM
1084 return ctx;
1085}
1086
1087/*
1088 * Get the context for a task and increment its pin_count so it
1089 * can't get swapped to another task. This also increments its
1090 * reference count so that the context can't get freed.
1091 */
8dc85d54
PZ
1092static struct perf_event_context *
1093perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1094{
cdd6c482 1095 struct perf_event_context *ctx;
25346b93
PM
1096 unsigned long flags;
1097
8dc85d54 1098 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1099 if (ctx) {
1100 ++ctx->pin_count;
e625cce1 1101 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1102 }
1103 return ctx;
1104}
1105
cdd6c482 1106static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1107{
1108 unsigned long flags;
1109
e625cce1 1110 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1111 --ctx->pin_count;
e625cce1 1112 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1113}
1114
f67218c3
PZ
1115/*
1116 * Update the record of the current time in a context.
1117 */
1118static void update_context_time(struct perf_event_context *ctx)
1119{
1120 u64 now = perf_clock();
1121
1122 ctx->time += now - ctx->timestamp;
1123 ctx->timestamp = now;
1124}
1125
4158755d
SE
1126static u64 perf_event_time(struct perf_event *event)
1127{
1128 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1129
1130 if (is_cgroup_event(event))
1131 return perf_cgroup_event_time(event);
1132
4158755d
SE
1133 return ctx ? ctx->time : 0;
1134}
1135
f67218c3
PZ
1136/*
1137 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1138 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1139 */
1140static void update_event_times(struct perf_event *event)
1141{
1142 struct perf_event_context *ctx = event->ctx;
1143 u64 run_end;
1144
1145 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1146 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1147 return;
e5d1367f
SE
1148 /*
1149 * in cgroup mode, time_enabled represents
1150 * the time the event was enabled AND active
1151 * tasks were in the monitored cgroup. This is
1152 * independent of the activity of the context as
1153 * there may be a mix of cgroup and non-cgroup events.
1154 *
1155 * That is why we treat cgroup events differently
1156 * here.
1157 */
1158 if (is_cgroup_event(event))
46cd6a7f 1159 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1160 else if (ctx->is_active)
1161 run_end = ctx->time;
acd1d7c1
PZ
1162 else
1163 run_end = event->tstamp_stopped;
1164
1165 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1166
1167 if (event->state == PERF_EVENT_STATE_INACTIVE)
1168 run_end = event->tstamp_stopped;
1169 else
4158755d 1170 run_end = perf_event_time(event);
f67218c3
PZ
1171
1172 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1173
f67218c3
PZ
1174}
1175
96c21a46
PZ
1176/*
1177 * Update total_time_enabled and total_time_running for all events in a group.
1178 */
1179static void update_group_times(struct perf_event *leader)
1180{
1181 struct perf_event *event;
1182
1183 update_event_times(leader);
1184 list_for_each_entry(event, &leader->sibling_list, group_entry)
1185 update_event_times(event);
1186}
1187
889ff015
FW
1188static struct list_head *
1189ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1190{
1191 if (event->attr.pinned)
1192 return &ctx->pinned_groups;
1193 else
1194 return &ctx->flexible_groups;
1195}
1196
fccc714b 1197/*
cdd6c482 1198 * Add a event from the lists for its context.
fccc714b
PZ
1199 * Must be called with ctx->mutex and ctx->lock held.
1200 */
04289bb9 1201static void
cdd6c482 1202list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1203{
8a49542c
PZ
1204 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1205 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1206
1207 /*
8a49542c
PZ
1208 * If we're a stand alone event or group leader, we go to the context
1209 * list, group events are kept attached to the group so that
1210 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1211 */
8a49542c 1212 if (event->group_leader == event) {
889ff015
FW
1213 struct list_head *list;
1214
d6f962b5
FW
1215 if (is_software_event(event))
1216 event->group_flags |= PERF_GROUP_SOFTWARE;
1217
889ff015
FW
1218 list = ctx_group_list(event, ctx);
1219 list_add_tail(&event->group_entry, list);
5c148194 1220 }
592903cd 1221
08309379 1222 if (is_cgroup_event(event))
e5d1367f 1223 ctx->nr_cgroups++;
e5d1367f 1224
d010b332
SE
1225 if (has_branch_stack(event))
1226 ctx->nr_branch_stack++;
1227
cdd6c482 1228 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1229 if (!ctx->nr_events)
108b02cf 1230 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1231 ctx->nr_events++;
1232 if (event->attr.inherit_stat)
bfbd3381 1233 ctx->nr_stat++;
5a3126d4
PZ
1234
1235 ctx->generation++;
04289bb9
IM
1236}
1237
0231bb53
JO
1238/*
1239 * Initialize event state based on the perf_event_attr::disabled.
1240 */
1241static inline void perf_event__state_init(struct perf_event *event)
1242{
1243 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1244 PERF_EVENT_STATE_INACTIVE;
1245}
1246
c320c7b7
ACM
1247/*
1248 * Called at perf_event creation and when events are attached/detached from a
1249 * group.
1250 */
1251static void perf_event__read_size(struct perf_event *event)
1252{
1253 int entry = sizeof(u64); /* value */
1254 int size = 0;
1255 int nr = 1;
1256
1257 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1258 size += sizeof(u64);
1259
1260 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1261 size += sizeof(u64);
1262
1263 if (event->attr.read_format & PERF_FORMAT_ID)
1264 entry += sizeof(u64);
1265
1266 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1267 nr += event->group_leader->nr_siblings;
1268 size += sizeof(u64);
1269 }
1270
1271 size += entry * nr;
1272 event->read_size = size;
1273}
1274
1275static void perf_event__header_size(struct perf_event *event)
1276{
1277 struct perf_sample_data *data;
1278 u64 sample_type = event->attr.sample_type;
1279 u16 size = 0;
1280
1281 perf_event__read_size(event);
1282
1283 if (sample_type & PERF_SAMPLE_IP)
1284 size += sizeof(data->ip);
1285
6844c09d
ACM
1286 if (sample_type & PERF_SAMPLE_ADDR)
1287 size += sizeof(data->addr);
1288
1289 if (sample_type & PERF_SAMPLE_PERIOD)
1290 size += sizeof(data->period);
1291
c3feedf2
AK
1292 if (sample_type & PERF_SAMPLE_WEIGHT)
1293 size += sizeof(data->weight);
1294
6844c09d
ACM
1295 if (sample_type & PERF_SAMPLE_READ)
1296 size += event->read_size;
1297
d6be9ad6
SE
1298 if (sample_type & PERF_SAMPLE_DATA_SRC)
1299 size += sizeof(data->data_src.val);
1300
fdfbbd07
AK
1301 if (sample_type & PERF_SAMPLE_TRANSACTION)
1302 size += sizeof(data->txn);
1303
6844c09d
ACM
1304 event->header_size = size;
1305}
1306
1307static void perf_event__id_header_size(struct perf_event *event)
1308{
1309 struct perf_sample_data *data;
1310 u64 sample_type = event->attr.sample_type;
1311 u16 size = 0;
1312
c320c7b7
ACM
1313 if (sample_type & PERF_SAMPLE_TID)
1314 size += sizeof(data->tid_entry);
1315
1316 if (sample_type & PERF_SAMPLE_TIME)
1317 size += sizeof(data->time);
1318
ff3d527c
AH
1319 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1320 size += sizeof(data->id);
1321
c320c7b7
ACM
1322 if (sample_type & PERF_SAMPLE_ID)
1323 size += sizeof(data->id);
1324
1325 if (sample_type & PERF_SAMPLE_STREAM_ID)
1326 size += sizeof(data->stream_id);
1327
1328 if (sample_type & PERF_SAMPLE_CPU)
1329 size += sizeof(data->cpu_entry);
1330
6844c09d 1331 event->id_header_size = size;
c320c7b7
ACM
1332}
1333
8a49542c
PZ
1334static void perf_group_attach(struct perf_event *event)
1335{
c320c7b7 1336 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1337
74c3337c
PZ
1338 /*
1339 * We can have double attach due to group movement in perf_event_open.
1340 */
1341 if (event->attach_state & PERF_ATTACH_GROUP)
1342 return;
1343
8a49542c
PZ
1344 event->attach_state |= PERF_ATTACH_GROUP;
1345
1346 if (group_leader == event)
1347 return;
1348
652884fe
PZ
1349 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1350
8a49542c
PZ
1351 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1352 !is_software_event(event))
1353 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1354
1355 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1356 group_leader->nr_siblings++;
c320c7b7
ACM
1357
1358 perf_event__header_size(group_leader);
1359
1360 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1361 perf_event__header_size(pos);
8a49542c
PZ
1362}
1363
a63eaf34 1364/*
cdd6c482 1365 * Remove a event from the lists for its context.
fccc714b 1366 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1367 */
04289bb9 1368static void
cdd6c482 1369list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1370{
68cacd29 1371 struct perf_cpu_context *cpuctx;
652884fe
PZ
1372
1373 WARN_ON_ONCE(event->ctx != ctx);
1374 lockdep_assert_held(&ctx->lock);
1375
8a49542c
PZ
1376 /*
1377 * We can have double detach due to exit/hot-unplug + close.
1378 */
1379 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1380 return;
8a49542c
PZ
1381
1382 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1383
68cacd29 1384 if (is_cgroup_event(event)) {
e5d1367f 1385 ctx->nr_cgroups--;
68cacd29
SE
1386 cpuctx = __get_cpu_context(ctx);
1387 /*
1388 * if there are no more cgroup events
1389 * then cler cgrp to avoid stale pointer
1390 * in update_cgrp_time_from_cpuctx()
1391 */
1392 if (!ctx->nr_cgroups)
1393 cpuctx->cgrp = NULL;
1394 }
e5d1367f 1395
d010b332
SE
1396 if (has_branch_stack(event))
1397 ctx->nr_branch_stack--;
1398
cdd6c482
IM
1399 ctx->nr_events--;
1400 if (event->attr.inherit_stat)
bfbd3381 1401 ctx->nr_stat--;
8bc20959 1402
cdd6c482 1403 list_del_rcu(&event->event_entry);
04289bb9 1404
8a49542c
PZ
1405 if (event->group_leader == event)
1406 list_del_init(&event->group_entry);
5c148194 1407
96c21a46 1408 update_group_times(event);
b2e74a26
SE
1409
1410 /*
1411 * If event was in error state, then keep it
1412 * that way, otherwise bogus counts will be
1413 * returned on read(). The only way to get out
1414 * of error state is by explicit re-enabling
1415 * of the event
1416 */
1417 if (event->state > PERF_EVENT_STATE_OFF)
1418 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1419
1420 ctx->generation++;
050735b0
PZ
1421}
1422
8a49542c 1423static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1424{
1425 struct perf_event *sibling, *tmp;
8a49542c
PZ
1426 struct list_head *list = NULL;
1427
1428 /*
1429 * We can have double detach due to exit/hot-unplug + close.
1430 */
1431 if (!(event->attach_state & PERF_ATTACH_GROUP))
1432 return;
1433
1434 event->attach_state &= ~PERF_ATTACH_GROUP;
1435
1436 /*
1437 * If this is a sibling, remove it from its group.
1438 */
1439 if (event->group_leader != event) {
1440 list_del_init(&event->group_entry);
1441 event->group_leader->nr_siblings--;
c320c7b7 1442 goto out;
8a49542c
PZ
1443 }
1444
1445 if (!list_empty(&event->group_entry))
1446 list = &event->group_entry;
2e2af50b 1447
04289bb9 1448 /*
cdd6c482
IM
1449 * If this was a group event with sibling events then
1450 * upgrade the siblings to singleton events by adding them
8a49542c 1451 * to whatever list we are on.
04289bb9 1452 */
cdd6c482 1453 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1454 if (list)
1455 list_move_tail(&sibling->group_entry, list);
04289bb9 1456 sibling->group_leader = sibling;
d6f962b5
FW
1457
1458 /* Inherit group flags from the previous leader */
1459 sibling->group_flags = event->group_flags;
652884fe
PZ
1460
1461 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1462 }
c320c7b7
ACM
1463
1464out:
1465 perf_event__header_size(event->group_leader);
1466
1467 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1468 perf_event__header_size(tmp);
04289bb9
IM
1469}
1470
fadfe7be
JO
1471/*
1472 * User event without the task.
1473 */
1474static bool is_orphaned_event(struct perf_event *event)
1475{
1476 return event && !is_kernel_event(event) && !event->owner;
1477}
1478
1479/*
1480 * Event has a parent but parent's task finished and it's
1481 * alive only because of children holding refference.
1482 */
1483static bool is_orphaned_child(struct perf_event *event)
1484{
1485 return is_orphaned_event(event->parent);
1486}
1487
1488static void orphans_remove_work(struct work_struct *work);
1489
1490static void schedule_orphans_remove(struct perf_event_context *ctx)
1491{
1492 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1493 return;
1494
1495 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1496 get_ctx(ctx);
1497 ctx->orphans_remove_sched = true;
1498 }
1499}
1500
1501static int __init perf_workqueue_init(void)
1502{
1503 perf_wq = create_singlethread_workqueue("perf");
1504 WARN(!perf_wq, "failed to create perf workqueue\n");
1505 return perf_wq ? 0 : -1;
1506}
1507
1508core_initcall(perf_workqueue_init);
1509
fa66f07a
SE
1510static inline int
1511event_filter_match(struct perf_event *event)
1512{
e5d1367f
SE
1513 return (event->cpu == -1 || event->cpu == smp_processor_id())
1514 && perf_cgroup_match(event);
fa66f07a
SE
1515}
1516
9ffcfa6f
SE
1517static void
1518event_sched_out(struct perf_event *event,
3b6f9e5c 1519 struct perf_cpu_context *cpuctx,
cdd6c482 1520 struct perf_event_context *ctx)
3b6f9e5c 1521{
4158755d 1522 u64 tstamp = perf_event_time(event);
fa66f07a 1523 u64 delta;
652884fe
PZ
1524
1525 WARN_ON_ONCE(event->ctx != ctx);
1526 lockdep_assert_held(&ctx->lock);
1527
fa66f07a
SE
1528 /*
1529 * An event which could not be activated because of
1530 * filter mismatch still needs to have its timings
1531 * maintained, otherwise bogus information is return
1532 * via read() for time_enabled, time_running:
1533 */
1534 if (event->state == PERF_EVENT_STATE_INACTIVE
1535 && !event_filter_match(event)) {
e5d1367f 1536 delta = tstamp - event->tstamp_stopped;
fa66f07a 1537 event->tstamp_running += delta;
4158755d 1538 event->tstamp_stopped = tstamp;
fa66f07a
SE
1539 }
1540
cdd6c482 1541 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1542 return;
3b6f9e5c 1543
44377277
AS
1544 perf_pmu_disable(event->pmu);
1545
cdd6c482
IM
1546 event->state = PERF_EVENT_STATE_INACTIVE;
1547 if (event->pending_disable) {
1548 event->pending_disable = 0;
1549 event->state = PERF_EVENT_STATE_OFF;
970892a9 1550 }
4158755d 1551 event->tstamp_stopped = tstamp;
a4eaf7f1 1552 event->pmu->del(event, 0);
cdd6c482 1553 event->oncpu = -1;
3b6f9e5c 1554
cdd6c482 1555 if (!is_software_event(event))
3b6f9e5c
PM
1556 cpuctx->active_oncpu--;
1557 ctx->nr_active--;
0f5a2601
PZ
1558 if (event->attr.freq && event->attr.sample_freq)
1559 ctx->nr_freq--;
cdd6c482 1560 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1561 cpuctx->exclusive = 0;
44377277 1562
fadfe7be
JO
1563 if (is_orphaned_child(event))
1564 schedule_orphans_remove(ctx);
1565
44377277 1566 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1567}
1568
d859e29f 1569static void
cdd6c482 1570group_sched_out(struct perf_event *group_event,
d859e29f 1571 struct perf_cpu_context *cpuctx,
cdd6c482 1572 struct perf_event_context *ctx)
d859e29f 1573{
cdd6c482 1574 struct perf_event *event;
fa66f07a 1575 int state = group_event->state;
d859e29f 1576
cdd6c482 1577 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1578
1579 /*
1580 * Schedule out siblings (if any):
1581 */
cdd6c482
IM
1582 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1583 event_sched_out(event, cpuctx, ctx);
d859e29f 1584
fa66f07a 1585 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1586 cpuctx->exclusive = 0;
1587}
1588
46ce0fe9
PZ
1589struct remove_event {
1590 struct perf_event *event;
1591 bool detach_group;
1592};
1593
0793a61d 1594/*
cdd6c482 1595 * Cross CPU call to remove a performance event
0793a61d 1596 *
cdd6c482 1597 * We disable the event on the hardware level first. After that we
0793a61d
TG
1598 * remove it from the context list.
1599 */
fe4b04fa 1600static int __perf_remove_from_context(void *info)
0793a61d 1601{
46ce0fe9
PZ
1602 struct remove_event *re = info;
1603 struct perf_event *event = re->event;
cdd6c482 1604 struct perf_event_context *ctx = event->ctx;
108b02cf 1605 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1606
e625cce1 1607 raw_spin_lock(&ctx->lock);
cdd6c482 1608 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1609 if (re->detach_group)
1610 perf_group_detach(event);
cdd6c482 1611 list_del_event(event, ctx);
64ce3126
PZ
1612 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1613 ctx->is_active = 0;
1614 cpuctx->task_ctx = NULL;
1615 }
e625cce1 1616 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1617
1618 return 0;
0793a61d
TG
1619}
1620
1621
1622/*
cdd6c482 1623 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1624 *
cdd6c482 1625 * CPU events are removed with a smp call. For task events we only
0793a61d 1626 * call when the task is on a CPU.
c93f7669 1627 *
cdd6c482
IM
1628 * If event->ctx is a cloned context, callers must make sure that
1629 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1630 * remains valid. This is OK when called from perf_release since
1631 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1632 * When called from perf_event_exit_task, it's OK because the
c93f7669 1633 * context has been detached from its task.
0793a61d 1634 */
46ce0fe9 1635static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1636{
cdd6c482 1637 struct perf_event_context *ctx = event->ctx;
0793a61d 1638 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1639 struct remove_event re = {
1640 .event = event,
1641 .detach_group = detach_group,
1642 };
0793a61d 1643
fe4b04fa
PZ
1644 lockdep_assert_held(&ctx->mutex);
1645
0793a61d
TG
1646 if (!task) {
1647 /*
226424ee
MR
1648 * Per cpu events are removed via an smp call. The removal can
1649 * fail if the CPU is currently offline, but in that case we
1650 * already called __perf_remove_from_context from
1651 * perf_event_exit_cpu.
0793a61d 1652 */
46ce0fe9 1653 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1654 return;
1655 }
1656
1657retry:
46ce0fe9 1658 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1659 return;
0793a61d 1660
e625cce1 1661 raw_spin_lock_irq(&ctx->lock);
0793a61d 1662 /*
fe4b04fa
PZ
1663 * If we failed to find a running task, but find the context active now
1664 * that we've acquired the ctx->lock, retry.
0793a61d 1665 */
fe4b04fa 1666 if (ctx->is_active) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
0793a61d
TG
1673 goto retry;
1674 }
1675
1676 /*
fe4b04fa
PZ
1677 * Since the task isn't running, its safe to remove the event, us
1678 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1679 */
46ce0fe9
PZ
1680 if (detach_group)
1681 perf_group_detach(event);
fe4b04fa 1682 list_del_event(event, ctx);
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1684}
1685
d859e29f 1686/*
cdd6c482 1687 * Cross CPU call to disable a performance event
d859e29f 1688 */
500ad2d8 1689int __perf_event_disable(void *info)
d859e29f 1690{
cdd6c482 1691 struct perf_event *event = info;
cdd6c482 1692 struct perf_event_context *ctx = event->ctx;
108b02cf 1693 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1694
1695 /*
cdd6c482
IM
1696 * If this is a per-task event, need to check whether this
1697 * event's task is the current task on this cpu.
fe4b04fa
PZ
1698 *
1699 * Can trigger due to concurrent perf_event_context_sched_out()
1700 * flipping contexts around.
d859e29f 1701 */
665c2142 1702 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1703 return -EINVAL;
d859e29f 1704
e625cce1 1705 raw_spin_lock(&ctx->lock);
d859e29f
PM
1706
1707 /*
cdd6c482 1708 * If the event is on, turn it off.
d859e29f
PM
1709 * If it is in error state, leave it in error state.
1710 */
cdd6c482 1711 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1712 update_context_time(ctx);
e5d1367f 1713 update_cgrp_time_from_event(event);
cdd6c482
IM
1714 update_group_times(event);
1715 if (event == event->group_leader)
1716 group_sched_out(event, cpuctx, ctx);
d859e29f 1717 else
cdd6c482
IM
1718 event_sched_out(event, cpuctx, ctx);
1719 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1720 }
1721
e625cce1 1722 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1723
1724 return 0;
d859e29f
PM
1725}
1726
1727/*
cdd6c482 1728 * Disable a event.
c93f7669 1729 *
cdd6c482
IM
1730 * If event->ctx is a cloned context, callers must make sure that
1731 * every task struct that event->ctx->task could possibly point to
c93f7669 1732 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1733 * perf_event_for_each_child or perf_event_for_each because they
1734 * hold the top-level event's child_mutex, so any descendant that
1735 * goes to exit will block in sync_child_event.
1736 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1737 * is the current context on this CPU and preemption is disabled,
cdd6c482 1738 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1739 */
f63a8daa 1740static void _perf_event_disable(struct perf_event *event)
d859e29f 1741{
cdd6c482 1742 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1743 struct task_struct *task = ctx->task;
1744
1745 if (!task) {
1746 /*
cdd6c482 1747 * Disable the event on the cpu that it's on
d859e29f 1748 */
fe4b04fa 1749 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1750 return;
1751 }
1752
9ed6060d 1753retry:
fe4b04fa
PZ
1754 if (!task_function_call(task, __perf_event_disable, event))
1755 return;
d859e29f 1756
e625cce1 1757 raw_spin_lock_irq(&ctx->lock);
d859e29f 1758 /*
cdd6c482 1759 * If the event is still active, we need to retry the cross-call.
d859e29f 1760 */
cdd6c482 1761 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1762 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1763 /*
1764 * Reload the task pointer, it might have been changed by
1765 * a concurrent perf_event_context_sched_out().
1766 */
1767 task = ctx->task;
d859e29f
PM
1768 goto retry;
1769 }
1770
1771 /*
1772 * Since we have the lock this context can't be scheduled
1773 * in, so we can change the state safely.
1774 */
cdd6c482
IM
1775 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 update_group_times(event);
1777 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1778 }
e625cce1 1779 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1780}
f63a8daa
PZ
1781
1782/*
1783 * Strictly speaking kernel users cannot create groups and therefore this
1784 * interface does not need the perf_event_ctx_lock() magic.
1785 */
1786void perf_event_disable(struct perf_event *event)
1787{
1788 struct perf_event_context *ctx;
1789
1790 ctx = perf_event_ctx_lock(event);
1791 _perf_event_disable(event);
1792 perf_event_ctx_unlock(event, ctx);
1793}
dcfce4a0 1794EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1795
e5d1367f
SE
1796static void perf_set_shadow_time(struct perf_event *event,
1797 struct perf_event_context *ctx,
1798 u64 tstamp)
1799{
1800 /*
1801 * use the correct time source for the time snapshot
1802 *
1803 * We could get by without this by leveraging the
1804 * fact that to get to this function, the caller
1805 * has most likely already called update_context_time()
1806 * and update_cgrp_time_xx() and thus both timestamp
1807 * are identical (or very close). Given that tstamp is,
1808 * already adjusted for cgroup, we could say that:
1809 * tstamp - ctx->timestamp
1810 * is equivalent to
1811 * tstamp - cgrp->timestamp.
1812 *
1813 * Then, in perf_output_read(), the calculation would
1814 * work with no changes because:
1815 * - event is guaranteed scheduled in
1816 * - no scheduled out in between
1817 * - thus the timestamp would be the same
1818 *
1819 * But this is a bit hairy.
1820 *
1821 * So instead, we have an explicit cgroup call to remain
1822 * within the time time source all along. We believe it
1823 * is cleaner and simpler to understand.
1824 */
1825 if (is_cgroup_event(event))
1826 perf_cgroup_set_shadow_time(event, tstamp);
1827 else
1828 event->shadow_ctx_time = tstamp - ctx->timestamp;
1829}
1830
4fe757dd
PZ
1831#define MAX_INTERRUPTS (~0ULL)
1832
1833static void perf_log_throttle(struct perf_event *event, int enable);
1834
235c7fc7 1835static int
9ffcfa6f 1836event_sched_in(struct perf_event *event,
235c7fc7 1837 struct perf_cpu_context *cpuctx,
6e37738a 1838 struct perf_event_context *ctx)
235c7fc7 1839{
4158755d 1840 u64 tstamp = perf_event_time(event);
44377277 1841 int ret = 0;
4158755d 1842
63342411
PZ
1843 lockdep_assert_held(&ctx->lock);
1844
cdd6c482 1845 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1846 return 0;
1847
cdd6c482 1848 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1849 event->oncpu = smp_processor_id();
4fe757dd
PZ
1850
1851 /*
1852 * Unthrottle events, since we scheduled we might have missed several
1853 * ticks already, also for a heavily scheduling task there is little
1854 * guarantee it'll get a tick in a timely manner.
1855 */
1856 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1857 perf_log_throttle(event, 1);
1858 event->hw.interrupts = 0;
1859 }
1860
235c7fc7
IM
1861 /*
1862 * The new state must be visible before we turn it on in the hardware:
1863 */
1864 smp_wmb();
1865
44377277
AS
1866 perf_pmu_disable(event->pmu);
1867
a4eaf7f1 1868 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1869 event->state = PERF_EVENT_STATE_INACTIVE;
1870 event->oncpu = -1;
44377277
AS
1871 ret = -EAGAIN;
1872 goto out;
235c7fc7
IM
1873 }
1874
4158755d 1875 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1876
e5d1367f 1877 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1878
cdd6c482 1879 if (!is_software_event(event))
3b6f9e5c 1880 cpuctx->active_oncpu++;
235c7fc7 1881 ctx->nr_active++;
0f5a2601
PZ
1882 if (event->attr.freq && event->attr.sample_freq)
1883 ctx->nr_freq++;
235c7fc7 1884
cdd6c482 1885 if (event->attr.exclusive)
3b6f9e5c
PM
1886 cpuctx->exclusive = 1;
1887
fadfe7be
JO
1888 if (is_orphaned_child(event))
1889 schedule_orphans_remove(ctx);
1890
44377277
AS
1891out:
1892 perf_pmu_enable(event->pmu);
1893
1894 return ret;
235c7fc7
IM
1895}
1896
6751b71e 1897static int
cdd6c482 1898group_sched_in(struct perf_event *group_event,
6751b71e 1899 struct perf_cpu_context *cpuctx,
6e37738a 1900 struct perf_event_context *ctx)
6751b71e 1901{
6bde9b6c 1902 struct perf_event *event, *partial_group = NULL;
4a234593 1903 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1904 u64 now = ctx->time;
1905 bool simulate = false;
6751b71e 1906
cdd6c482 1907 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1908 return 0;
1909
ad5133b7 1910 pmu->start_txn(pmu);
6bde9b6c 1911
9ffcfa6f 1912 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1913 pmu->cancel_txn(pmu);
9e630205 1914 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1915 return -EAGAIN;
90151c35 1916 }
6751b71e
PM
1917
1918 /*
1919 * Schedule in siblings as one group (if any):
1920 */
cdd6c482 1921 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1922 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1923 partial_group = event;
6751b71e
PM
1924 goto group_error;
1925 }
1926 }
1927
9ffcfa6f 1928 if (!pmu->commit_txn(pmu))
6e85158c 1929 return 0;
9ffcfa6f 1930
6751b71e
PM
1931group_error:
1932 /*
1933 * Groups can be scheduled in as one unit only, so undo any
1934 * partial group before returning:
d7842da4
SE
1935 * The events up to the failed event are scheduled out normally,
1936 * tstamp_stopped will be updated.
1937 *
1938 * The failed events and the remaining siblings need to have
1939 * their timings updated as if they had gone thru event_sched_in()
1940 * and event_sched_out(). This is required to get consistent timings
1941 * across the group. This also takes care of the case where the group
1942 * could never be scheduled by ensuring tstamp_stopped is set to mark
1943 * the time the event was actually stopped, such that time delta
1944 * calculation in update_event_times() is correct.
6751b71e 1945 */
cdd6c482
IM
1946 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1947 if (event == partial_group)
d7842da4
SE
1948 simulate = true;
1949
1950 if (simulate) {
1951 event->tstamp_running += now - event->tstamp_stopped;
1952 event->tstamp_stopped = now;
1953 } else {
1954 event_sched_out(event, cpuctx, ctx);
1955 }
6751b71e 1956 }
9ffcfa6f 1957 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1958
ad5133b7 1959 pmu->cancel_txn(pmu);
90151c35 1960
9e630205
SE
1961 perf_cpu_hrtimer_restart(cpuctx);
1962
6751b71e
PM
1963 return -EAGAIN;
1964}
1965
3b6f9e5c 1966/*
cdd6c482 1967 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1968 */
cdd6c482 1969static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1970 struct perf_cpu_context *cpuctx,
1971 int can_add_hw)
1972{
1973 /*
cdd6c482 1974 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1975 */
d6f962b5 1976 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1977 return 1;
1978 /*
1979 * If an exclusive group is already on, no other hardware
cdd6c482 1980 * events can go on.
3b6f9e5c
PM
1981 */
1982 if (cpuctx->exclusive)
1983 return 0;
1984 /*
1985 * If this group is exclusive and there are already
cdd6c482 1986 * events on the CPU, it can't go on.
3b6f9e5c 1987 */
cdd6c482 1988 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1989 return 0;
1990 /*
1991 * Otherwise, try to add it if all previous groups were able
1992 * to go on.
1993 */
1994 return can_add_hw;
1995}
1996
cdd6c482
IM
1997static void add_event_to_ctx(struct perf_event *event,
1998 struct perf_event_context *ctx)
53cfbf59 1999{
4158755d
SE
2000 u64 tstamp = perf_event_time(event);
2001
cdd6c482 2002 list_add_event(event, ctx);
8a49542c 2003 perf_group_attach(event);
4158755d
SE
2004 event->tstamp_enabled = tstamp;
2005 event->tstamp_running = tstamp;
2006 event->tstamp_stopped = tstamp;
53cfbf59
PM
2007}
2008
2c29ef0f
PZ
2009static void task_ctx_sched_out(struct perf_event_context *ctx);
2010static void
2011ctx_sched_in(struct perf_event_context *ctx,
2012 struct perf_cpu_context *cpuctx,
2013 enum event_type_t event_type,
2014 struct task_struct *task);
fe4b04fa 2015
dce5855b
PZ
2016static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2017 struct perf_event_context *ctx,
2018 struct task_struct *task)
2019{
2020 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2021 if (ctx)
2022 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2023 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2024 if (ctx)
2025 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2026}
2027
0793a61d 2028/*
cdd6c482 2029 * Cross CPU call to install and enable a performance event
682076ae
PZ
2030 *
2031 * Must be called with ctx->mutex held
0793a61d 2032 */
fe4b04fa 2033static int __perf_install_in_context(void *info)
0793a61d 2034{
cdd6c482
IM
2035 struct perf_event *event = info;
2036 struct perf_event_context *ctx = event->ctx;
108b02cf 2037 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2038 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2039 struct task_struct *task = current;
2040
b58f6b0d 2041 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2042 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2043
2044 /*
2c29ef0f 2045 * If there was an active task_ctx schedule it out.
0793a61d 2046 */
b58f6b0d 2047 if (task_ctx)
2c29ef0f 2048 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2049
2050 /*
2051 * If the context we're installing events in is not the
2052 * active task_ctx, flip them.
2053 */
2054 if (ctx->task && task_ctx != ctx) {
2055 if (task_ctx)
2056 raw_spin_unlock(&task_ctx->lock);
2057 raw_spin_lock(&ctx->lock);
2058 task_ctx = ctx;
2059 }
2060
2061 if (task_ctx) {
2062 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2063 task = task_ctx->task;
2064 }
b58f6b0d 2065
2c29ef0f 2066 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2067
4af4998b 2068 update_context_time(ctx);
e5d1367f
SE
2069 /*
2070 * update cgrp time only if current cgrp
2071 * matches event->cgrp. Must be done before
2072 * calling add_event_to_ctx()
2073 */
2074 update_cgrp_time_from_event(event);
0793a61d 2075
cdd6c482 2076 add_event_to_ctx(event, ctx);
0793a61d 2077
d859e29f 2078 /*
2c29ef0f 2079 * Schedule everything back in
d859e29f 2080 */
dce5855b 2081 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2082
2083 perf_pmu_enable(cpuctx->ctx.pmu);
2084 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2085
2086 return 0;
0793a61d
TG
2087}
2088
2089/*
cdd6c482 2090 * Attach a performance event to a context
0793a61d 2091 *
cdd6c482
IM
2092 * First we add the event to the list with the hardware enable bit
2093 * in event->hw_config cleared.
0793a61d 2094 *
cdd6c482 2095 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2096 * call to enable it in the task context. The task might have been
2097 * scheduled away, but we check this in the smp call again.
2098 */
2099static void
cdd6c482
IM
2100perf_install_in_context(struct perf_event_context *ctx,
2101 struct perf_event *event,
0793a61d
TG
2102 int cpu)
2103{
2104 struct task_struct *task = ctx->task;
2105
fe4b04fa
PZ
2106 lockdep_assert_held(&ctx->mutex);
2107
c3f00c70 2108 event->ctx = ctx;
0cda4c02
YZ
2109 if (event->cpu != -1)
2110 event->cpu = cpu;
c3f00c70 2111
0793a61d
TG
2112 if (!task) {
2113 /*
cdd6c482 2114 * Per cpu events are installed via an smp call and
af901ca1 2115 * the install is always successful.
0793a61d 2116 */
fe4b04fa 2117 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2118 return;
2119 }
2120
0793a61d 2121retry:
fe4b04fa
PZ
2122 if (!task_function_call(task, __perf_install_in_context, event))
2123 return;
0793a61d 2124
e625cce1 2125 raw_spin_lock_irq(&ctx->lock);
0793a61d 2126 /*
fe4b04fa
PZ
2127 * If we failed to find a running task, but find the context active now
2128 * that we've acquired the ctx->lock, retry.
0793a61d 2129 */
fe4b04fa 2130 if (ctx->is_active) {
e625cce1 2131 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2132 /*
2133 * Reload the task pointer, it might have been changed by
2134 * a concurrent perf_event_context_sched_out().
2135 */
2136 task = ctx->task;
0793a61d
TG
2137 goto retry;
2138 }
2139
2140 /*
fe4b04fa
PZ
2141 * Since the task isn't running, its safe to add the event, us holding
2142 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2143 */
fe4b04fa 2144 add_event_to_ctx(event, ctx);
e625cce1 2145 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2146}
2147
fa289bec 2148/*
cdd6c482 2149 * Put a event into inactive state and update time fields.
fa289bec
PM
2150 * Enabling the leader of a group effectively enables all
2151 * the group members that aren't explicitly disabled, so we
2152 * have to update their ->tstamp_enabled also.
2153 * Note: this works for group members as well as group leaders
2154 * since the non-leader members' sibling_lists will be empty.
2155 */
1d9b482e 2156static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2157{
cdd6c482 2158 struct perf_event *sub;
4158755d 2159 u64 tstamp = perf_event_time(event);
fa289bec 2160
cdd6c482 2161 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2162 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2163 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2164 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2165 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2166 }
fa289bec
PM
2167}
2168
d859e29f 2169/*
cdd6c482 2170 * Cross CPU call to enable a performance event
d859e29f 2171 */
fe4b04fa 2172static int __perf_event_enable(void *info)
04289bb9 2173{
cdd6c482 2174 struct perf_event *event = info;
cdd6c482
IM
2175 struct perf_event_context *ctx = event->ctx;
2176 struct perf_event *leader = event->group_leader;
108b02cf 2177 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2178 int err;
04289bb9 2179
06f41796
JO
2180 /*
2181 * There's a time window between 'ctx->is_active' check
2182 * in perf_event_enable function and this place having:
2183 * - IRQs on
2184 * - ctx->lock unlocked
2185 *
2186 * where the task could be killed and 'ctx' deactivated
2187 * by perf_event_exit_task.
2188 */
2189 if (!ctx->is_active)
fe4b04fa 2190 return -EINVAL;
3cbed429 2191
e625cce1 2192 raw_spin_lock(&ctx->lock);
4af4998b 2193 update_context_time(ctx);
d859e29f 2194
cdd6c482 2195 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2196 goto unlock;
e5d1367f
SE
2197
2198 /*
2199 * set current task's cgroup time reference point
2200 */
3f7cce3c 2201 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2202
1d9b482e 2203 __perf_event_mark_enabled(event);
04289bb9 2204
e5d1367f
SE
2205 if (!event_filter_match(event)) {
2206 if (is_cgroup_event(event))
2207 perf_cgroup_defer_enabled(event);
f4c4176f 2208 goto unlock;
e5d1367f 2209 }
f4c4176f 2210
04289bb9 2211 /*
cdd6c482 2212 * If the event is in a group and isn't the group leader,
d859e29f 2213 * then don't put it on unless the group is on.
04289bb9 2214 */
cdd6c482 2215 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2216 goto unlock;
3b6f9e5c 2217
cdd6c482 2218 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2219 err = -EEXIST;
e758a33d 2220 } else {
cdd6c482 2221 if (event == leader)
6e37738a 2222 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2223 else
6e37738a 2224 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2225 }
d859e29f
PM
2226
2227 if (err) {
2228 /*
cdd6c482 2229 * If this event can't go on and it's part of a
d859e29f
PM
2230 * group, then the whole group has to come off.
2231 */
9e630205 2232 if (leader != event) {
d859e29f 2233 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2234 perf_cpu_hrtimer_restart(cpuctx);
2235 }
0d48696f 2236 if (leader->attr.pinned) {
53cfbf59 2237 update_group_times(leader);
cdd6c482 2238 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2239 }
d859e29f
PM
2240 }
2241
9ed6060d 2242unlock:
e625cce1 2243 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2244
2245 return 0;
d859e29f
PM
2246}
2247
2248/*
cdd6c482 2249 * Enable a event.
c93f7669 2250 *
cdd6c482
IM
2251 * If event->ctx is a cloned context, callers must make sure that
2252 * every task struct that event->ctx->task could possibly point to
c93f7669 2253 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2254 * perf_event_for_each_child or perf_event_for_each as described
2255 * for perf_event_disable.
d859e29f 2256 */
f63a8daa 2257static void _perf_event_enable(struct perf_event *event)
d859e29f 2258{
cdd6c482 2259 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2260 struct task_struct *task = ctx->task;
2261
2262 if (!task) {
2263 /*
cdd6c482 2264 * Enable the event on the cpu that it's on
d859e29f 2265 */
fe4b04fa 2266 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2267 return;
2268 }
2269
e625cce1 2270 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2271 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2272 goto out;
2273
2274 /*
cdd6c482
IM
2275 * If the event is in error state, clear that first.
2276 * That way, if we see the event in error state below, we
d859e29f
PM
2277 * know that it has gone back into error state, as distinct
2278 * from the task having been scheduled away before the
2279 * cross-call arrived.
2280 */
cdd6c482
IM
2281 if (event->state == PERF_EVENT_STATE_ERROR)
2282 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2283
9ed6060d 2284retry:
fe4b04fa 2285 if (!ctx->is_active) {
1d9b482e 2286 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2287 goto out;
2288 }
2289
e625cce1 2290 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2291
2292 if (!task_function_call(task, __perf_event_enable, event))
2293 return;
d859e29f 2294
e625cce1 2295 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2296
2297 /*
cdd6c482 2298 * If the context is active and the event is still off,
d859e29f
PM
2299 * we need to retry the cross-call.
2300 */
fe4b04fa
PZ
2301 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2302 /*
2303 * task could have been flipped by a concurrent
2304 * perf_event_context_sched_out()
2305 */
2306 task = ctx->task;
d859e29f 2307 goto retry;
fe4b04fa 2308 }
fa289bec 2309
9ed6060d 2310out:
e625cce1 2311 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2312}
f63a8daa
PZ
2313
2314/*
2315 * See perf_event_disable();
2316 */
2317void perf_event_enable(struct perf_event *event)
2318{
2319 struct perf_event_context *ctx;
2320
2321 ctx = perf_event_ctx_lock(event);
2322 _perf_event_enable(event);
2323 perf_event_ctx_unlock(event, ctx);
2324}
dcfce4a0 2325EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2326
f63a8daa 2327static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2328{
2023b359 2329 /*
cdd6c482 2330 * not supported on inherited events
2023b359 2331 */
2e939d1d 2332 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2333 return -EINVAL;
2334
cdd6c482 2335 atomic_add(refresh, &event->event_limit);
f63a8daa 2336 _perf_event_enable(event);
2023b359
PZ
2337
2338 return 0;
79f14641 2339}
f63a8daa
PZ
2340
2341/*
2342 * See perf_event_disable()
2343 */
2344int perf_event_refresh(struct perf_event *event, int refresh)
2345{
2346 struct perf_event_context *ctx;
2347 int ret;
2348
2349 ctx = perf_event_ctx_lock(event);
2350 ret = _perf_event_refresh(event, refresh);
2351 perf_event_ctx_unlock(event, ctx);
2352
2353 return ret;
2354}
26ca5c11 2355EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2356
5b0311e1
FW
2357static void ctx_sched_out(struct perf_event_context *ctx,
2358 struct perf_cpu_context *cpuctx,
2359 enum event_type_t event_type)
235c7fc7 2360{
cdd6c482 2361 struct perf_event *event;
db24d33e 2362 int is_active = ctx->is_active;
235c7fc7 2363
db24d33e 2364 ctx->is_active &= ~event_type;
cdd6c482 2365 if (likely(!ctx->nr_events))
facc4307
PZ
2366 return;
2367
4af4998b 2368 update_context_time(ctx);
e5d1367f 2369 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2370 if (!ctx->nr_active)
facc4307 2371 return;
5b0311e1 2372
075e0b00 2373 perf_pmu_disable(ctx->pmu);
db24d33e 2374 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2375 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2376 group_sched_out(event, cpuctx, ctx);
9ed6060d 2377 }
889ff015 2378
db24d33e 2379 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2380 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2381 group_sched_out(event, cpuctx, ctx);
9ed6060d 2382 }
1b9a644f 2383 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2384}
2385
564c2b21 2386/*
5a3126d4
PZ
2387 * Test whether two contexts are equivalent, i.e. whether they have both been
2388 * cloned from the same version of the same context.
2389 *
2390 * Equivalence is measured using a generation number in the context that is
2391 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2392 * and list_del_event().
564c2b21 2393 */
cdd6c482
IM
2394static int context_equiv(struct perf_event_context *ctx1,
2395 struct perf_event_context *ctx2)
564c2b21 2396{
211de6eb
PZ
2397 lockdep_assert_held(&ctx1->lock);
2398 lockdep_assert_held(&ctx2->lock);
2399
5a3126d4
PZ
2400 /* Pinning disables the swap optimization */
2401 if (ctx1->pin_count || ctx2->pin_count)
2402 return 0;
2403
2404 /* If ctx1 is the parent of ctx2 */
2405 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2406 return 1;
2407
2408 /* If ctx2 is the parent of ctx1 */
2409 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2410 return 1;
2411
2412 /*
2413 * If ctx1 and ctx2 have the same parent; we flatten the parent
2414 * hierarchy, see perf_event_init_context().
2415 */
2416 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2417 ctx1->parent_gen == ctx2->parent_gen)
2418 return 1;
2419
2420 /* Unmatched */
2421 return 0;
564c2b21
PM
2422}
2423
cdd6c482
IM
2424static void __perf_event_sync_stat(struct perf_event *event,
2425 struct perf_event *next_event)
bfbd3381
PZ
2426{
2427 u64 value;
2428
cdd6c482 2429 if (!event->attr.inherit_stat)
bfbd3381
PZ
2430 return;
2431
2432 /*
cdd6c482 2433 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2434 * because we're in the middle of a context switch and have IRQs
2435 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2436 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2437 * don't need to use it.
2438 */
cdd6c482
IM
2439 switch (event->state) {
2440 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2441 event->pmu->read(event);
2442 /* fall-through */
bfbd3381 2443
cdd6c482
IM
2444 case PERF_EVENT_STATE_INACTIVE:
2445 update_event_times(event);
bfbd3381
PZ
2446 break;
2447
2448 default:
2449 break;
2450 }
2451
2452 /*
cdd6c482 2453 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2454 * values when we flip the contexts.
2455 */
e7850595
PZ
2456 value = local64_read(&next_event->count);
2457 value = local64_xchg(&event->count, value);
2458 local64_set(&next_event->count, value);
bfbd3381 2459
cdd6c482
IM
2460 swap(event->total_time_enabled, next_event->total_time_enabled);
2461 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2462
bfbd3381 2463 /*
19d2e755 2464 * Since we swizzled the values, update the user visible data too.
bfbd3381 2465 */
cdd6c482
IM
2466 perf_event_update_userpage(event);
2467 perf_event_update_userpage(next_event);
bfbd3381
PZ
2468}
2469
cdd6c482
IM
2470static void perf_event_sync_stat(struct perf_event_context *ctx,
2471 struct perf_event_context *next_ctx)
bfbd3381 2472{
cdd6c482 2473 struct perf_event *event, *next_event;
bfbd3381
PZ
2474
2475 if (!ctx->nr_stat)
2476 return;
2477
02ffdbc8
PZ
2478 update_context_time(ctx);
2479
cdd6c482
IM
2480 event = list_first_entry(&ctx->event_list,
2481 struct perf_event, event_entry);
bfbd3381 2482
cdd6c482
IM
2483 next_event = list_first_entry(&next_ctx->event_list,
2484 struct perf_event, event_entry);
bfbd3381 2485
cdd6c482
IM
2486 while (&event->event_entry != &ctx->event_list &&
2487 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2488
cdd6c482 2489 __perf_event_sync_stat(event, next_event);
bfbd3381 2490
cdd6c482
IM
2491 event = list_next_entry(event, event_entry);
2492 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2493 }
2494}
2495
fe4b04fa
PZ
2496static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2497 struct task_struct *next)
0793a61d 2498{
8dc85d54 2499 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2500 struct perf_event_context *next_ctx;
5a3126d4 2501 struct perf_event_context *parent, *next_parent;
108b02cf 2502 struct perf_cpu_context *cpuctx;
c93f7669 2503 int do_switch = 1;
0793a61d 2504
108b02cf
PZ
2505 if (likely(!ctx))
2506 return;
10989fb2 2507
108b02cf
PZ
2508 cpuctx = __get_cpu_context(ctx);
2509 if (!cpuctx->task_ctx)
0793a61d
TG
2510 return;
2511
c93f7669 2512 rcu_read_lock();
8dc85d54 2513 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2514 if (!next_ctx)
2515 goto unlock;
2516
2517 parent = rcu_dereference(ctx->parent_ctx);
2518 next_parent = rcu_dereference(next_ctx->parent_ctx);
2519
2520 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2521 if (!parent && !next_parent)
5a3126d4
PZ
2522 goto unlock;
2523
2524 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2525 /*
2526 * Looks like the two contexts are clones, so we might be
2527 * able to optimize the context switch. We lock both
2528 * contexts and check that they are clones under the
2529 * lock (including re-checking that neither has been
2530 * uncloned in the meantime). It doesn't matter which
2531 * order we take the locks because no other cpu could
2532 * be trying to lock both of these tasks.
2533 */
e625cce1
TG
2534 raw_spin_lock(&ctx->lock);
2535 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2536 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2537 /*
2538 * XXX do we need a memory barrier of sorts
cdd6c482 2539 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2540 */
8dc85d54
PZ
2541 task->perf_event_ctxp[ctxn] = next_ctx;
2542 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2543 ctx->task = next;
2544 next_ctx->task = task;
2545 do_switch = 0;
bfbd3381 2546
cdd6c482 2547 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2548 }
e625cce1
TG
2549 raw_spin_unlock(&next_ctx->lock);
2550 raw_spin_unlock(&ctx->lock);
564c2b21 2551 }
5a3126d4 2552unlock:
c93f7669 2553 rcu_read_unlock();
564c2b21 2554
c93f7669 2555 if (do_switch) {
facc4307 2556 raw_spin_lock(&ctx->lock);
5b0311e1 2557 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2558 cpuctx->task_ctx = NULL;
facc4307 2559 raw_spin_unlock(&ctx->lock);
c93f7669 2560 }
0793a61d
TG
2561}
2562
8dc85d54
PZ
2563#define for_each_task_context_nr(ctxn) \
2564 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2565
2566/*
2567 * Called from scheduler to remove the events of the current task,
2568 * with interrupts disabled.
2569 *
2570 * We stop each event and update the event value in event->count.
2571 *
2572 * This does not protect us against NMI, but disable()
2573 * sets the disabled bit in the control field of event _before_
2574 * accessing the event control register. If a NMI hits, then it will
2575 * not restart the event.
2576 */
ab0cce56
JO
2577void __perf_event_task_sched_out(struct task_struct *task,
2578 struct task_struct *next)
8dc85d54
PZ
2579{
2580 int ctxn;
2581
8dc85d54
PZ
2582 for_each_task_context_nr(ctxn)
2583 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2584
2585 /*
2586 * if cgroup events exist on this CPU, then we need
2587 * to check if we have to switch out PMU state.
2588 * cgroup event are system-wide mode only
2589 */
4a32fea9 2590 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2591 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2592}
2593
04dc2dbb 2594static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2595{
108b02cf 2596 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2597
a63eaf34
PM
2598 if (!cpuctx->task_ctx)
2599 return;
012b84da
IM
2600
2601 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2602 return;
2603
04dc2dbb 2604 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2605 cpuctx->task_ctx = NULL;
2606}
2607
5b0311e1
FW
2608/*
2609 * Called with IRQs disabled
2610 */
2611static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2612 enum event_type_t event_type)
2613{
2614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2615}
2616
235c7fc7 2617static void
5b0311e1 2618ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2619 struct perf_cpu_context *cpuctx)
0793a61d 2620{
cdd6c482 2621 struct perf_event *event;
0793a61d 2622
889ff015
FW
2623 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2624 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2625 continue;
5632ab12 2626 if (!event_filter_match(event))
3b6f9e5c
PM
2627 continue;
2628
e5d1367f
SE
2629 /* may need to reset tstamp_enabled */
2630 if (is_cgroup_event(event))
2631 perf_cgroup_mark_enabled(event, ctx);
2632
8c9ed8e1 2633 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2634 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2635
2636 /*
2637 * If this pinned group hasn't been scheduled,
2638 * put it in error state.
2639 */
cdd6c482
IM
2640 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2641 update_group_times(event);
2642 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2643 }
3b6f9e5c 2644 }
5b0311e1
FW
2645}
2646
2647static void
2648ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2649 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2650{
2651 struct perf_event *event;
2652 int can_add_hw = 1;
3b6f9e5c 2653
889ff015
FW
2654 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2655 /* Ignore events in OFF or ERROR state */
2656 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2657 continue;
04289bb9
IM
2658 /*
2659 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2660 * of events:
04289bb9 2661 */
5632ab12 2662 if (!event_filter_match(event))
0793a61d
TG
2663 continue;
2664
e5d1367f
SE
2665 /* may need to reset tstamp_enabled */
2666 if (is_cgroup_event(event))
2667 perf_cgroup_mark_enabled(event, ctx);
2668
9ed6060d 2669 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2670 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2671 can_add_hw = 0;
9ed6060d 2672 }
0793a61d 2673 }
5b0311e1
FW
2674}
2675
2676static void
2677ctx_sched_in(struct perf_event_context *ctx,
2678 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2679 enum event_type_t event_type,
2680 struct task_struct *task)
5b0311e1 2681{
e5d1367f 2682 u64 now;
db24d33e 2683 int is_active = ctx->is_active;
e5d1367f 2684
db24d33e 2685 ctx->is_active |= event_type;
5b0311e1 2686 if (likely(!ctx->nr_events))
facc4307 2687 return;
5b0311e1 2688
e5d1367f
SE
2689 now = perf_clock();
2690 ctx->timestamp = now;
3f7cce3c 2691 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2692 /*
2693 * First go through the list and put on any pinned groups
2694 * in order to give them the best chance of going on.
2695 */
db24d33e 2696 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2697 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2698
2699 /* Then walk through the lower prio flexible groups */
db24d33e 2700 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2701 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2702}
2703
329c0e01 2704static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2705 enum event_type_t event_type,
2706 struct task_struct *task)
329c0e01
FW
2707{
2708 struct perf_event_context *ctx = &cpuctx->ctx;
2709
e5d1367f 2710 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2711}
2712
e5d1367f
SE
2713static void perf_event_context_sched_in(struct perf_event_context *ctx,
2714 struct task_struct *task)
235c7fc7 2715{
108b02cf 2716 struct perf_cpu_context *cpuctx;
235c7fc7 2717
108b02cf 2718 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2719 if (cpuctx->task_ctx == ctx)
2720 return;
2721
facc4307 2722 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2723 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2724 /*
2725 * We want to keep the following priority order:
2726 * cpu pinned (that don't need to move), task pinned,
2727 * cpu flexible, task flexible.
2728 */
2729 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2730
1d5f003f
GN
2731 if (ctx->nr_events)
2732 cpuctx->task_ctx = ctx;
9b33fa6b 2733
86b47c25
GN
2734 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2735
facc4307
PZ
2736 perf_pmu_enable(ctx->pmu);
2737 perf_ctx_unlock(cpuctx, ctx);
2738
b5ab4cd5
PZ
2739 /*
2740 * Since these rotations are per-cpu, we need to ensure the
2741 * cpu-context we got scheduled on is actually rotating.
2742 */
108b02cf 2743 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2744}
2745
d010b332
SE
2746/*
2747 * When sampling the branck stack in system-wide, it may be necessary
2748 * to flush the stack on context switch. This happens when the branch
2749 * stack does not tag its entries with the pid of the current task.
2750 * Otherwise it becomes impossible to associate a branch entry with a
2751 * task. This ambiguity is more likely to appear when the branch stack
2752 * supports priv level filtering and the user sets it to monitor only
2753 * at the user level (which could be a useful measurement in system-wide
2754 * mode). In that case, the risk is high of having a branch stack with
2755 * branch from multiple tasks. Flushing may mean dropping the existing
2756 * entries or stashing them somewhere in the PMU specific code layer.
2757 *
2758 * This function provides the context switch callback to the lower code
2759 * layer. It is invoked ONLY when there is at least one system-wide context
2760 * with at least one active event using taken branch sampling.
2761 */
2762static void perf_branch_stack_sched_in(struct task_struct *prev,
2763 struct task_struct *task)
2764{
2765 struct perf_cpu_context *cpuctx;
2766 struct pmu *pmu;
2767 unsigned long flags;
2768
2769 /* no need to flush branch stack if not changing task */
2770 if (prev == task)
2771 return;
2772
2773 local_irq_save(flags);
2774
2775 rcu_read_lock();
2776
2777 list_for_each_entry_rcu(pmu, &pmus, entry) {
2778 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2779
2780 /*
2781 * check if the context has at least one
2782 * event using PERF_SAMPLE_BRANCH_STACK
2783 */
2784 if (cpuctx->ctx.nr_branch_stack > 0
2785 && pmu->flush_branch_stack) {
2786
d010b332
SE
2787 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2788
2789 perf_pmu_disable(pmu);
2790
2791 pmu->flush_branch_stack();
2792
2793 perf_pmu_enable(pmu);
2794
2795 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2796 }
2797 }
2798
2799 rcu_read_unlock();
2800
2801 local_irq_restore(flags);
2802}
2803
8dc85d54
PZ
2804/*
2805 * Called from scheduler to add the events of the current task
2806 * with interrupts disabled.
2807 *
2808 * We restore the event value and then enable it.
2809 *
2810 * This does not protect us against NMI, but enable()
2811 * sets the enabled bit in the control field of event _before_
2812 * accessing the event control register. If a NMI hits, then it will
2813 * keep the event running.
2814 */
ab0cce56
JO
2815void __perf_event_task_sched_in(struct task_struct *prev,
2816 struct task_struct *task)
8dc85d54
PZ
2817{
2818 struct perf_event_context *ctx;
2819 int ctxn;
2820
2821 for_each_task_context_nr(ctxn) {
2822 ctx = task->perf_event_ctxp[ctxn];
2823 if (likely(!ctx))
2824 continue;
2825
e5d1367f 2826 perf_event_context_sched_in(ctx, task);
8dc85d54 2827 }
e5d1367f
SE
2828 /*
2829 * if cgroup events exist on this CPU, then we need
2830 * to check if we have to switch in PMU state.
2831 * cgroup event are system-wide mode only
2832 */
4a32fea9 2833 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2834 perf_cgroup_sched_in(prev, task);
d010b332
SE
2835
2836 /* check for system-wide branch_stack events */
4a32fea9 2837 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
d010b332 2838 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2839}
2840
abd50713
PZ
2841static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2842{
2843 u64 frequency = event->attr.sample_freq;
2844 u64 sec = NSEC_PER_SEC;
2845 u64 divisor, dividend;
2846
2847 int count_fls, nsec_fls, frequency_fls, sec_fls;
2848
2849 count_fls = fls64(count);
2850 nsec_fls = fls64(nsec);
2851 frequency_fls = fls64(frequency);
2852 sec_fls = 30;
2853
2854 /*
2855 * We got @count in @nsec, with a target of sample_freq HZ
2856 * the target period becomes:
2857 *
2858 * @count * 10^9
2859 * period = -------------------
2860 * @nsec * sample_freq
2861 *
2862 */
2863
2864 /*
2865 * Reduce accuracy by one bit such that @a and @b converge
2866 * to a similar magnitude.
2867 */
fe4b04fa 2868#define REDUCE_FLS(a, b) \
abd50713
PZ
2869do { \
2870 if (a##_fls > b##_fls) { \
2871 a >>= 1; \
2872 a##_fls--; \
2873 } else { \
2874 b >>= 1; \
2875 b##_fls--; \
2876 } \
2877} while (0)
2878
2879 /*
2880 * Reduce accuracy until either term fits in a u64, then proceed with
2881 * the other, so that finally we can do a u64/u64 division.
2882 */
2883 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2884 REDUCE_FLS(nsec, frequency);
2885 REDUCE_FLS(sec, count);
2886 }
2887
2888 if (count_fls + sec_fls > 64) {
2889 divisor = nsec * frequency;
2890
2891 while (count_fls + sec_fls > 64) {
2892 REDUCE_FLS(count, sec);
2893 divisor >>= 1;
2894 }
2895
2896 dividend = count * sec;
2897 } else {
2898 dividend = count * sec;
2899
2900 while (nsec_fls + frequency_fls > 64) {
2901 REDUCE_FLS(nsec, frequency);
2902 dividend >>= 1;
2903 }
2904
2905 divisor = nsec * frequency;
2906 }
2907
f6ab91ad
PZ
2908 if (!divisor)
2909 return dividend;
2910
abd50713
PZ
2911 return div64_u64(dividend, divisor);
2912}
2913
e050e3f0
SE
2914static DEFINE_PER_CPU(int, perf_throttled_count);
2915static DEFINE_PER_CPU(u64, perf_throttled_seq);
2916
f39d47ff 2917static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2918{
cdd6c482 2919 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2920 s64 period, sample_period;
bd2b5b12
PZ
2921 s64 delta;
2922
abd50713 2923 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2924
2925 delta = (s64)(period - hwc->sample_period);
2926 delta = (delta + 7) / 8; /* low pass filter */
2927
2928 sample_period = hwc->sample_period + delta;
2929
2930 if (!sample_period)
2931 sample_period = 1;
2932
bd2b5b12 2933 hwc->sample_period = sample_period;
abd50713 2934
e7850595 2935 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2936 if (disable)
2937 event->pmu->stop(event, PERF_EF_UPDATE);
2938
e7850595 2939 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2940
2941 if (disable)
2942 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2943 }
bd2b5b12
PZ
2944}
2945
e050e3f0
SE
2946/*
2947 * combine freq adjustment with unthrottling to avoid two passes over the
2948 * events. At the same time, make sure, having freq events does not change
2949 * the rate of unthrottling as that would introduce bias.
2950 */
2951static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2952 int needs_unthr)
60db5e09 2953{
cdd6c482
IM
2954 struct perf_event *event;
2955 struct hw_perf_event *hwc;
e050e3f0 2956 u64 now, period = TICK_NSEC;
abd50713 2957 s64 delta;
60db5e09 2958
e050e3f0
SE
2959 /*
2960 * only need to iterate over all events iff:
2961 * - context have events in frequency mode (needs freq adjust)
2962 * - there are events to unthrottle on this cpu
2963 */
2964 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2965 return;
2966
e050e3f0 2967 raw_spin_lock(&ctx->lock);
f39d47ff 2968 perf_pmu_disable(ctx->pmu);
e050e3f0 2969
03541f8b 2970 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2971 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2972 continue;
2973
5632ab12 2974 if (!event_filter_match(event))
5d27c23d
PZ
2975 continue;
2976
44377277
AS
2977 perf_pmu_disable(event->pmu);
2978
cdd6c482 2979 hwc = &event->hw;
6a24ed6c 2980
ae23bff1 2981 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2982 hwc->interrupts = 0;
cdd6c482 2983 perf_log_throttle(event, 1);
a4eaf7f1 2984 event->pmu->start(event, 0);
a78ac325
PZ
2985 }
2986
cdd6c482 2987 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2988 goto next;
60db5e09 2989
e050e3f0
SE
2990 /*
2991 * stop the event and update event->count
2992 */
2993 event->pmu->stop(event, PERF_EF_UPDATE);
2994
e7850595 2995 now = local64_read(&event->count);
abd50713
PZ
2996 delta = now - hwc->freq_count_stamp;
2997 hwc->freq_count_stamp = now;
60db5e09 2998
e050e3f0
SE
2999 /*
3000 * restart the event
3001 * reload only if value has changed
f39d47ff
SE
3002 * we have stopped the event so tell that
3003 * to perf_adjust_period() to avoid stopping it
3004 * twice.
e050e3f0 3005 */
abd50713 3006 if (delta > 0)
f39d47ff 3007 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3008
3009 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3010 next:
3011 perf_pmu_enable(event->pmu);
60db5e09 3012 }
e050e3f0 3013
f39d47ff 3014 perf_pmu_enable(ctx->pmu);
e050e3f0 3015 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3016}
3017
235c7fc7 3018/*
cdd6c482 3019 * Round-robin a context's events:
235c7fc7 3020 */
cdd6c482 3021static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3022{
dddd3379
TG
3023 /*
3024 * Rotate the first entry last of non-pinned groups. Rotation might be
3025 * disabled by the inheritance code.
3026 */
3027 if (!ctx->rotate_disable)
3028 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3029}
3030
b5ab4cd5 3031/*
e9d2b064
PZ
3032 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
3033 * because they're strictly cpu affine and rotate_start is called with IRQs
3034 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 3035 */
9e630205 3036static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3037{
8dc85d54 3038 struct perf_event_context *ctx = NULL;
e050e3f0 3039 int rotate = 0, remove = 1;
7fc23a53 3040
b5ab4cd5 3041 if (cpuctx->ctx.nr_events) {
e9d2b064 3042 remove = 0;
b5ab4cd5
PZ
3043 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3044 rotate = 1;
3045 }
235c7fc7 3046
8dc85d54 3047 ctx = cpuctx->task_ctx;
b5ab4cd5 3048 if (ctx && ctx->nr_events) {
e9d2b064 3049 remove = 0;
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
e9d2b064
PZ
3073 if (remove)
3074 list_del_init(&cpuctx->rotation_list);
9e630205
SE
3075
3076 return rotate;
e9d2b064
PZ
3077}
3078
026249ef
FW
3079#ifdef CONFIG_NO_HZ_FULL
3080bool perf_event_can_stop_tick(void)
3081{
948b26b6 3082 if (atomic_read(&nr_freq_events) ||
d84153d6 3083 __this_cpu_read(perf_throttled_count))
026249ef 3084 return false;
d84153d6
FW
3085 else
3086 return true;
026249ef
FW
3087}
3088#endif
3089
e9d2b064
PZ
3090void perf_event_task_tick(void)
3091{
4a32fea9 3092 struct list_head *head = this_cpu_ptr(&rotation_list);
e9d2b064 3093 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
3094 struct perf_event_context *ctx;
3095 int throttled;
b5ab4cd5 3096
e9d2b064
PZ
3097 WARN_ON(!irqs_disabled());
3098
e050e3f0
SE
3099 __this_cpu_inc(perf_throttled_seq);
3100 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3101
e9d2b064 3102 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
3103 ctx = &cpuctx->ctx;
3104 perf_adjust_freq_unthr_context(ctx, throttled);
3105
3106 ctx = cpuctx->task_ctx;
3107 if (ctx)
3108 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 3109 }
0793a61d
TG
3110}
3111
889ff015
FW
3112static int event_enable_on_exec(struct perf_event *event,
3113 struct perf_event_context *ctx)
3114{
3115 if (!event->attr.enable_on_exec)
3116 return 0;
3117
3118 event->attr.enable_on_exec = 0;
3119 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3120 return 0;
3121
1d9b482e 3122 __perf_event_mark_enabled(event);
889ff015
FW
3123
3124 return 1;
3125}
3126
57e7986e 3127/*
cdd6c482 3128 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3129 * This expects task == current.
3130 */
8dc85d54 3131static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3132{
211de6eb 3133 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3134 struct perf_event *event;
57e7986e
PM
3135 unsigned long flags;
3136 int enabled = 0;
889ff015 3137 int ret;
57e7986e
PM
3138
3139 local_irq_save(flags);
cdd6c482 3140 if (!ctx || !ctx->nr_events)
57e7986e
PM
3141 goto out;
3142
e566b76e
SE
3143 /*
3144 * We must ctxsw out cgroup events to avoid conflict
3145 * when invoking perf_task_event_sched_in() later on
3146 * in this function. Otherwise we end up trying to
3147 * ctxswin cgroup events which are already scheduled
3148 * in.
3149 */
a8d757ef 3150 perf_cgroup_sched_out(current, NULL);
57e7986e 3151
e625cce1 3152 raw_spin_lock(&ctx->lock);
04dc2dbb 3153 task_ctx_sched_out(ctx);
57e7986e 3154
b79387ef 3155 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3156 ret = event_enable_on_exec(event, ctx);
3157 if (ret)
3158 enabled = 1;
57e7986e
PM
3159 }
3160
3161 /*
cdd6c482 3162 * Unclone this context if we enabled any event.
57e7986e 3163 */
71a851b4 3164 if (enabled)
211de6eb 3165 clone_ctx = unclone_ctx(ctx);
57e7986e 3166
e625cce1 3167 raw_spin_unlock(&ctx->lock);
57e7986e 3168
e566b76e
SE
3169 /*
3170 * Also calls ctxswin for cgroup events, if any:
3171 */
e5d1367f 3172 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3173out:
57e7986e 3174 local_irq_restore(flags);
211de6eb
PZ
3175
3176 if (clone_ctx)
3177 put_ctx(clone_ctx);
57e7986e
PM
3178}
3179
e041e328
PZ
3180void perf_event_exec(void)
3181{
3182 struct perf_event_context *ctx;
3183 int ctxn;
3184
3185 rcu_read_lock();
3186 for_each_task_context_nr(ctxn) {
3187 ctx = current->perf_event_ctxp[ctxn];
3188 if (!ctx)
3189 continue;
3190
3191 perf_event_enable_on_exec(ctx);
3192 }
3193 rcu_read_unlock();
3194}
3195
0793a61d 3196/*
cdd6c482 3197 * Cross CPU call to read the hardware event
0793a61d 3198 */
cdd6c482 3199static void __perf_event_read(void *info)
0793a61d 3200{
cdd6c482
IM
3201 struct perf_event *event = info;
3202 struct perf_event_context *ctx = event->ctx;
108b02cf 3203 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3204
e1ac3614
PM
3205 /*
3206 * If this is a task context, we need to check whether it is
3207 * the current task context of this cpu. If not it has been
3208 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3209 * event->count would have been updated to a recent sample
3210 * when the event was scheduled out.
e1ac3614
PM
3211 */
3212 if (ctx->task && cpuctx->task_ctx != ctx)
3213 return;
3214
e625cce1 3215 raw_spin_lock(&ctx->lock);
e5d1367f 3216 if (ctx->is_active) {
542e72fc 3217 update_context_time(ctx);
e5d1367f
SE
3218 update_cgrp_time_from_event(event);
3219 }
cdd6c482 3220 update_event_times(event);
542e72fc
PZ
3221 if (event->state == PERF_EVENT_STATE_ACTIVE)
3222 event->pmu->read(event);
e625cce1 3223 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3224}
3225
b5e58793
PZ
3226static inline u64 perf_event_count(struct perf_event *event)
3227{
e7850595 3228 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3229}
3230
cdd6c482 3231static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3232{
3233 /*
cdd6c482
IM
3234 * If event is enabled and currently active on a CPU, update the
3235 * value in the event structure:
0793a61d 3236 */
cdd6c482
IM
3237 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3238 smp_call_function_single(event->oncpu,
3239 __perf_event_read, event, 1);
3240 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3241 struct perf_event_context *ctx = event->ctx;
3242 unsigned long flags;
3243
e625cce1 3244 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3245 /*
3246 * may read while context is not active
3247 * (e.g., thread is blocked), in that case
3248 * we cannot update context time
3249 */
e5d1367f 3250 if (ctx->is_active) {
c530ccd9 3251 update_context_time(ctx);
e5d1367f
SE
3252 update_cgrp_time_from_event(event);
3253 }
cdd6c482 3254 update_event_times(event);
e625cce1 3255 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3256 }
3257
b5e58793 3258 return perf_event_count(event);
0793a61d
TG
3259}
3260
a63eaf34 3261/*
cdd6c482 3262 * Initialize the perf_event context in a task_struct:
a63eaf34 3263 */
eb184479 3264static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3265{
e625cce1 3266 raw_spin_lock_init(&ctx->lock);
a63eaf34 3267 mutex_init(&ctx->mutex);
889ff015
FW
3268 INIT_LIST_HEAD(&ctx->pinned_groups);
3269 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3270 INIT_LIST_HEAD(&ctx->event_list);
3271 atomic_set(&ctx->refcount, 1);
fadfe7be 3272 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3273}
3274
3275static struct perf_event_context *
3276alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3277{
3278 struct perf_event_context *ctx;
3279
3280 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3281 if (!ctx)
3282 return NULL;
3283
3284 __perf_event_init_context(ctx);
3285 if (task) {
3286 ctx->task = task;
3287 get_task_struct(task);
0793a61d 3288 }
eb184479
PZ
3289 ctx->pmu = pmu;
3290
3291 return ctx;
a63eaf34
PM
3292}
3293
2ebd4ffb
MH
3294static struct task_struct *
3295find_lively_task_by_vpid(pid_t vpid)
3296{
3297 struct task_struct *task;
3298 int err;
0793a61d
TG
3299
3300 rcu_read_lock();
2ebd4ffb 3301 if (!vpid)
0793a61d
TG
3302 task = current;
3303 else
2ebd4ffb 3304 task = find_task_by_vpid(vpid);
0793a61d
TG
3305 if (task)
3306 get_task_struct(task);
3307 rcu_read_unlock();
3308
3309 if (!task)
3310 return ERR_PTR(-ESRCH);
3311
0793a61d 3312 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3313 err = -EACCES;
3314 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3315 goto errout;
3316
2ebd4ffb
MH
3317 return task;
3318errout:
3319 put_task_struct(task);
3320 return ERR_PTR(err);
3321
3322}
3323
fe4b04fa
PZ
3324/*
3325 * Returns a matching context with refcount and pincount.
3326 */
108b02cf 3327static struct perf_event_context *
38a81da2 3328find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3329{
211de6eb 3330 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3331 struct perf_cpu_context *cpuctx;
25346b93 3332 unsigned long flags;
8dc85d54 3333 int ctxn, err;
0793a61d 3334
22a4ec72 3335 if (!task) {
cdd6c482 3336 /* Must be root to operate on a CPU event: */
0764771d 3337 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3338 return ERR_PTR(-EACCES);
3339
0793a61d 3340 /*
cdd6c482 3341 * We could be clever and allow to attach a event to an
0793a61d
TG
3342 * offline CPU and activate it when the CPU comes up, but
3343 * that's for later.
3344 */
f6325e30 3345 if (!cpu_online(cpu))
0793a61d
TG
3346 return ERR_PTR(-ENODEV);
3347
108b02cf 3348 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3349 ctx = &cpuctx->ctx;
c93f7669 3350 get_ctx(ctx);
fe4b04fa 3351 ++ctx->pin_count;
0793a61d 3352
0793a61d
TG
3353 return ctx;
3354 }
3355
8dc85d54
PZ
3356 err = -EINVAL;
3357 ctxn = pmu->task_ctx_nr;
3358 if (ctxn < 0)
3359 goto errout;
3360
9ed6060d 3361retry:
8dc85d54 3362 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3363 if (ctx) {
211de6eb 3364 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3365 ++ctx->pin_count;
e625cce1 3366 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3367
3368 if (clone_ctx)
3369 put_ctx(clone_ctx);
9137fb28 3370 } else {
eb184479 3371 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3372 err = -ENOMEM;
3373 if (!ctx)
3374 goto errout;
eb184479 3375
dbe08d82
ON
3376 err = 0;
3377 mutex_lock(&task->perf_event_mutex);
3378 /*
3379 * If it has already passed perf_event_exit_task().
3380 * we must see PF_EXITING, it takes this mutex too.
3381 */
3382 if (task->flags & PF_EXITING)
3383 err = -ESRCH;
3384 else if (task->perf_event_ctxp[ctxn])
3385 err = -EAGAIN;
fe4b04fa 3386 else {
9137fb28 3387 get_ctx(ctx);
fe4b04fa 3388 ++ctx->pin_count;
dbe08d82 3389 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3390 }
dbe08d82
ON
3391 mutex_unlock(&task->perf_event_mutex);
3392
3393 if (unlikely(err)) {
9137fb28 3394 put_ctx(ctx);
dbe08d82
ON
3395
3396 if (err == -EAGAIN)
3397 goto retry;
3398 goto errout;
a63eaf34
PM
3399 }
3400 }
3401
0793a61d 3402 return ctx;
c93f7669 3403
9ed6060d 3404errout:
c93f7669 3405 return ERR_PTR(err);
0793a61d
TG
3406}
3407
6fb2915d
LZ
3408static void perf_event_free_filter(struct perf_event *event);
3409
cdd6c482 3410static void free_event_rcu(struct rcu_head *head)
592903cd 3411{
cdd6c482 3412 struct perf_event *event;
592903cd 3413
cdd6c482
IM
3414 event = container_of(head, struct perf_event, rcu_head);
3415 if (event->ns)
3416 put_pid_ns(event->ns);
6fb2915d 3417 perf_event_free_filter(event);
cdd6c482 3418 kfree(event);
592903cd
PZ
3419}
3420
76369139 3421static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3422static void ring_buffer_attach(struct perf_event *event,
3423 struct ring_buffer *rb);
925d519a 3424
4beb31f3 3425static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3426{
4beb31f3
FW
3427 if (event->parent)
3428 return;
3429
3430 if (has_branch_stack(event)) {
3431 if (!(event->attach_state & PERF_ATTACH_TASK))
3432 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3433 }
3434 if (is_cgroup_event(event))
3435 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3436}
925d519a 3437
4beb31f3
FW
3438static void unaccount_event(struct perf_event *event)
3439{
3440 if (event->parent)
3441 return;
3442
3443 if (event->attach_state & PERF_ATTACH_TASK)
3444 static_key_slow_dec_deferred(&perf_sched_events);
3445 if (event->attr.mmap || event->attr.mmap_data)
3446 atomic_dec(&nr_mmap_events);
3447 if (event->attr.comm)
3448 atomic_dec(&nr_comm_events);
3449 if (event->attr.task)
3450 atomic_dec(&nr_task_events);
948b26b6
FW
3451 if (event->attr.freq)
3452 atomic_dec(&nr_freq_events);
4beb31f3
FW
3453 if (is_cgroup_event(event))
3454 static_key_slow_dec_deferred(&perf_sched_events);
3455 if (has_branch_stack(event))
3456 static_key_slow_dec_deferred(&perf_sched_events);
3457
3458 unaccount_event_cpu(event, event->cpu);
3459}
925d519a 3460
766d6c07
FW
3461static void __free_event(struct perf_event *event)
3462{
cdd6c482 3463 if (!event->parent) {
927c7a9e
FW
3464 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3465 put_callchain_buffers();
f344011c 3466 }
9ee318a7 3467
766d6c07
FW
3468 if (event->destroy)
3469 event->destroy(event);
3470
3471 if (event->ctx)
3472 put_ctx(event->ctx);
3473
c464c76e
YZ
3474 if (event->pmu)
3475 module_put(event->pmu->module);
3476
766d6c07
FW
3477 call_rcu(&event->rcu_head, free_event_rcu);
3478}
683ede43
PZ
3479
3480static void _free_event(struct perf_event *event)
f1600952 3481{
e360adbe 3482 irq_work_sync(&event->pending);
925d519a 3483
4beb31f3 3484 unaccount_event(event);
9ee318a7 3485
76369139 3486 if (event->rb) {
9bb5d40c
PZ
3487 /*
3488 * Can happen when we close an event with re-directed output.
3489 *
3490 * Since we have a 0 refcount, perf_mmap_close() will skip
3491 * over us; possibly making our ring_buffer_put() the last.
3492 */
3493 mutex_lock(&event->mmap_mutex);
b69cf536 3494 ring_buffer_attach(event, NULL);
9bb5d40c 3495 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3496 }
3497
e5d1367f
SE
3498 if (is_cgroup_event(event))
3499 perf_detach_cgroup(event);
3500
766d6c07 3501 __free_event(event);
f1600952
PZ
3502}
3503
683ede43
PZ
3504/*
3505 * Used to free events which have a known refcount of 1, such as in error paths
3506 * where the event isn't exposed yet and inherited events.
3507 */
3508static void free_event(struct perf_event *event)
0793a61d 3509{
683ede43
PZ
3510 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3511 "unexpected event refcount: %ld; ptr=%p\n",
3512 atomic_long_read(&event->refcount), event)) {
3513 /* leak to avoid use-after-free */
3514 return;
3515 }
0793a61d 3516
683ede43 3517 _free_event(event);
0793a61d
TG
3518}
3519
a66a3052 3520/*
f8697762 3521 * Remove user event from the owner task.
a66a3052 3522 */
f8697762 3523static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3524{
8882135b 3525 struct task_struct *owner;
fb0459d7 3526
8882135b
PZ
3527 rcu_read_lock();
3528 owner = ACCESS_ONCE(event->owner);
3529 /*
3530 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3531 * !owner it means the list deletion is complete and we can indeed
3532 * free this event, otherwise we need to serialize on
3533 * owner->perf_event_mutex.
3534 */
3535 smp_read_barrier_depends();
3536 if (owner) {
3537 /*
3538 * Since delayed_put_task_struct() also drops the last
3539 * task reference we can safely take a new reference
3540 * while holding the rcu_read_lock().
3541 */
3542 get_task_struct(owner);
3543 }
3544 rcu_read_unlock();
3545
3546 if (owner) {
f63a8daa
PZ
3547 /*
3548 * If we're here through perf_event_exit_task() we're already
3549 * holding ctx->mutex which would be an inversion wrt. the
3550 * normal lock order.
3551 *
3552 * However we can safely take this lock because its the child
3553 * ctx->mutex.
3554 */
3555 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3556
8882135b
PZ
3557 /*
3558 * We have to re-check the event->owner field, if it is cleared
3559 * we raced with perf_event_exit_task(), acquiring the mutex
3560 * ensured they're done, and we can proceed with freeing the
3561 * event.
3562 */
3563 if (event->owner)
3564 list_del_init(&event->owner_entry);
3565 mutex_unlock(&owner->perf_event_mutex);
3566 put_task_struct(owner);
3567 }
f8697762
JO
3568}
3569
3570/*
3571 * Called when the last reference to the file is gone.
3572 */
3573static void put_event(struct perf_event *event)
3574{
3575 struct perf_event_context *ctx = event->ctx;
3576
3577 if (!atomic_long_dec_and_test(&event->refcount))
3578 return;
3579
3580 if (!is_kernel_event(event))
3581 perf_remove_from_owner(event);
8882135b 3582
683ede43
PZ
3583 WARN_ON_ONCE(ctx->parent_ctx);
3584 /*
3585 * There are two ways this annotation is useful:
3586 *
3587 * 1) there is a lock recursion from perf_event_exit_task
3588 * see the comment there.
3589 *
3590 * 2) there is a lock-inversion with mmap_sem through
3591 * perf_event_read_group(), which takes faults while
3592 * holding ctx->mutex, however this is called after
3593 * the last filedesc died, so there is no possibility
3594 * to trigger the AB-BA case.
3595 */
3596 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3597 perf_remove_from_context(event, true);
3598 mutex_unlock(&ctx->mutex);
3599
3600 _free_event(event);
a6fa941d
AV
3601}
3602
683ede43
PZ
3603int perf_event_release_kernel(struct perf_event *event)
3604{
3605 put_event(event);
3606 return 0;
3607}
3608EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3609
a6fa941d
AV
3610static int perf_release(struct inode *inode, struct file *file)
3611{
3612 put_event(file->private_data);
3613 return 0;
fb0459d7 3614}
fb0459d7 3615
fadfe7be
JO
3616/*
3617 * Remove all orphanes events from the context.
3618 */
3619static void orphans_remove_work(struct work_struct *work)
3620{
3621 struct perf_event_context *ctx;
3622 struct perf_event *event, *tmp;
3623
3624 ctx = container_of(work, struct perf_event_context,
3625 orphans_remove.work);
3626
3627 mutex_lock(&ctx->mutex);
3628 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3629 struct perf_event *parent_event = event->parent;
3630
3631 if (!is_orphaned_child(event))
3632 continue;
3633
3634 perf_remove_from_context(event, true);
3635
3636 mutex_lock(&parent_event->child_mutex);
3637 list_del_init(&event->child_list);
3638 mutex_unlock(&parent_event->child_mutex);
3639
3640 free_event(event);
3641 put_event(parent_event);
3642 }
3643
3644 raw_spin_lock_irq(&ctx->lock);
3645 ctx->orphans_remove_sched = false;
3646 raw_spin_unlock_irq(&ctx->lock);
3647 mutex_unlock(&ctx->mutex);
3648
3649 put_ctx(ctx);
3650}
3651
59ed446f 3652u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3653{
cdd6c482 3654 struct perf_event *child;
e53c0994
PZ
3655 u64 total = 0;
3656
59ed446f
PZ
3657 *enabled = 0;
3658 *running = 0;
3659
6f10581a 3660 mutex_lock(&event->child_mutex);
cdd6c482 3661 total += perf_event_read(event);
59ed446f
PZ
3662 *enabled += event->total_time_enabled +
3663 atomic64_read(&event->child_total_time_enabled);
3664 *running += event->total_time_running +
3665 atomic64_read(&event->child_total_time_running);
3666
3667 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3668 total += perf_event_read(child);
59ed446f
PZ
3669 *enabled += child->total_time_enabled;
3670 *running += child->total_time_running;
3671 }
6f10581a 3672 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3673
3674 return total;
3675}
fb0459d7 3676EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3677
cdd6c482 3678static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3679 u64 read_format, char __user *buf)
3680{
cdd6c482 3681 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3682 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3683 int n = 0, size = 0, ret;
59ed446f 3684 u64 count, enabled, running;
f63a8daa
PZ
3685 u64 values[5];
3686
3687 lockdep_assert_held(&ctx->mutex);
abf4868b 3688
59ed446f 3689 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3690
3691 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3692 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3693 values[n++] = enabled;
3694 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3695 values[n++] = running;
abf4868b
PZ
3696 values[n++] = count;
3697 if (read_format & PERF_FORMAT_ID)
3698 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3699
3700 size = n * sizeof(u64);
3701
3702 if (copy_to_user(buf, values, size))
f63a8daa 3703 return -EFAULT;
3dab77fb 3704
6f10581a 3705 ret = size;
3dab77fb 3706
65abc865 3707 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3708 n = 0;
3dab77fb 3709
59ed446f 3710 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3711 if (read_format & PERF_FORMAT_ID)
3712 values[n++] = primary_event_id(sub);
3713
3714 size = n * sizeof(u64);
3715
184d3da8 3716 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3717 return -EFAULT;
6f10581a 3718 }
abf4868b
PZ
3719
3720 ret += size;
3dab77fb
PZ
3721 }
3722
abf4868b 3723 return ret;
3dab77fb
PZ
3724}
3725
cdd6c482 3726static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3727 u64 read_format, char __user *buf)
3728{
59ed446f 3729 u64 enabled, running;
3dab77fb
PZ
3730 u64 values[4];
3731 int n = 0;
3732
59ed446f
PZ
3733 values[n++] = perf_event_read_value(event, &enabled, &running);
3734 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3735 values[n++] = enabled;
3736 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3737 values[n++] = running;
3dab77fb 3738 if (read_format & PERF_FORMAT_ID)
cdd6c482 3739 values[n++] = primary_event_id(event);
3dab77fb
PZ
3740
3741 if (copy_to_user(buf, values, n * sizeof(u64)))
3742 return -EFAULT;
3743
3744 return n * sizeof(u64);
3745}
3746
dc633982
JO
3747static bool is_event_hup(struct perf_event *event)
3748{
3749 bool no_children;
3750
3751 if (event->state != PERF_EVENT_STATE_EXIT)
3752 return false;
3753
3754 mutex_lock(&event->child_mutex);
3755 no_children = list_empty(&event->child_list);
3756 mutex_unlock(&event->child_mutex);
3757 return no_children;
3758}
3759
0793a61d 3760/*
cdd6c482 3761 * Read the performance event - simple non blocking version for now
0793a61d
TG
3762 */
3763static ssize_t
cdd6c482 3764perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3765{
cdd6c482 3766 u64 read_format = event->attr.read_format;
3dab77fb 3767 int ret;
0793a61d 3768
3b6f9e5c 3769 /*
cdd6c482 3770 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3771 * error state (i.e. because it was pinned but it couldn't be
3772 * scheduled on to the CPU at some point).
3773 */
cdd6c482 3774 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3775 return 0;
3776
c320c7b7 3777 if (count < event->read_size)
3dab77fb
PZ
3778 return -ENOSPC;
3779
cdd6c482 3780 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3781 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3782 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3783 else
cdd6c482 3784 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3785
3dab77fb 3786 return ret;
0793a61d
TG
3787}
3788
0793a61d
TG
3789static ssize_t
3790perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3791{
cdd6c482 3792 struct perf_event *event = file->private_data;
f63a8daa
PZ
3793 struct perf_event_context *ctx;
3794 int ret;
0793a61d 3795
f63a8daa
PZ
3796 ctx = perf_event_ctx_lock(event);
3797 ret = perf_read_hw(event, buf, count);
3798 perf_event_ctx_unlock(event, ctx);
3799
3800 return ret;
0793a61d
TG
3801}
3802
3803static unsigned int perf_poll(struct file *file, poll_table *wait)
3804{
cdd6c482 3805 struct perf_event *event = file->private_data;
76369139 3806 struct ring_buffer *rb;
61b67684 3807 unsigned int events = POLLHUP;
c7138f37 3808
e708d7ad 3809 poll_wait(file, &event->waitq, wait);
179033b3 3810
dc633982 3811 if (is_event_hup(event))
179033b3 3812 return events;
c7138f37 3813
10c6db11 3814 /*
9bb5d40c
PZ
3815 * Pin the event->rb by taking event->mmap_mutex; otherwise
3816 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3817 */
3818 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3819 rb = event->rb;
3820 if (rb)
76369139 3821 events = atomic_xchg(&rb->poll, 0);
10c6db11 3822 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3823 return events;
3824}
3825
f63a8daa 3826static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3827{
cdd6c482 3828 (void)perf_event_read(event);
e7850595 3829 local64_set(&event->count, 0);
cdd6c482 3830 perf_event_update_userpage(event);
3df5edad
PZ
3831}
3832
c93f7669 3833/*
cdd6c482
IM
3834 * Holding the top-level event's child_mutex means that any
3835 * descendant process that has inherited this event will block
3836 * in sync_child_event if it goes to exit, thus satisfying the
3837 * task existence requirements of perf_event_enable/disable.
c93f7669 3838 */
cdd6c482
IM
3839static void perf_event_for_each_child(struct perf_event *event,
3840 void (*func)(struct perf_event *))
3df5edad 3841{
cdd6c482 3842 struct perf_event *child;
3df5edad 3843
cdd6c482 3844 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3845
cdd6c482
IM
3846 mutex_lock(&event->child_mutex);
3847 func(event);
3848 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3849 func(child);
cdd6c482 3850 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3851}
3852
cdd6c482
IM
3853static void perf_event_for_each(struct perf_event *event,
3854 void (*func)(struct perf_event *))
3df5edad 3855{
cdd6c482
IM
3856 struct perf_event_context *ctx = event->ctx;
3857 struct perf_event *sibling;
3df5edad 3858
f63a8daa
PZ
3859 lockdep_assert_held(&ctx->mutex);
3860
cdd6c482 3861 event = event->group_leader;
75f937f2 3862
cdd6c482 3863 perf_event_for_each_child(event, func);
cdd6c482 3864 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3865 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3866}
3867
cdd6c482 3868static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3869{
cdd6c482 3870 struct perf_event_context *ctx = event->ctx;
bad7192b 3871 int ret = 0, active;
08247e31
PZ
3872 u64 value;
3873
6c7e550f 3874 if (!is_sampling_event(event))
08247e31
PZ
3875 return -EINVAL;
3876
ad0cf347 3877 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3878 return -EFAULT;
3879
3880 if (!value)
3881 return -EINVAL;
3882
e625cce1 3883 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3884 if (event->attr.freq) {
3885 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3886 ret = -EINVAL;
3887 goto unlock;
3888 }
3889
cdd6c482 3890 event->attr.sample_freq = value;
08247e31 3891 } else {
cdd6c482
IM
3892 event->attr.sample_period = value;
3893 event->hw.sample_period = value;
08247e31 3894 }
bad7192b
PZ
3895
3896 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3897 if (active) {
3898 perf_pmu_disable(ctx->pmu);
3899 event->pmu->stop(event, PERF_EF_UPDATE);
3900 }
3901
3902 local64_set(&event->hw.period_left, 0);
3903
3904 if (active) {
3905 event->pmu->start(event, PERF_EF_RELOAD);
3906 perf_pmu_enable(ctx->pmu);
3907 }
3908
08247e31 3909unlock:
e625cce1 3910 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3911
3912 return ret;
3913}
3914
ac9721f3
PZ
3915static const struct file_operations perf_fops;
3916
2903ff01 3917static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3918{
2903ff01
AV
3919 struct fd f = fdget(fd);
3920 if (!f.file)
3921 return -EBADF;
ac9721f3 3922
2903ff01
AV
3923 if (f.file->f_op != &perf_fops) {
3924 fdput(f);
3925 return -EBADF;
ac9721f3 3926 }
2903ff01
AV
3927 *p = f;
3928 return 0;
ac9721f3
PZ
3929}
3930
3931static int perf_event_set_output(struct perf_event *event,
3932 struct perf_event *output_event);
6fb2915d 3933static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3934
f63a8daa 3935static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3936{
cdd6c482 3937 void (*func)(struct perf_event *);
3df5edad 3938 u32 flags = arg;
d859e29f
PM
3939
3940 switch (cmd) {
cdd6c482 3941 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3942 func = _perf_event_enable;
d859e29f 3943 break;
cdd6c482 3944 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3945 func = _perf_event_disable;
79f14641 3946 break;
cdd6c482 3947 case PERF_EVENT_IOC_RESET:
f63a8daa 3948 func = _perf_event_reset;
6de6a7b9 3949 break;
3df5edad 3950
cdd6c482 3951 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3952 return _perf_event_refresh(event, arg);
08247e31 3953
cdd6c482
IM
3954 case PERF_EVENT_IOC_PERIOD:
3955 return perf_event_period(event, (u64 __user *)arg);
08247e31 3956
cf4957f1
JO
3957 case PERF_EVENT_IOC_ID:
3958 {
3959 u64 id = primary_event_id(event);
3960
3961 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3962 return -EFAULT;
3963 return 0;
3964 }
3965
cdd6c482 3966 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3967 {
ac9721f3 3968 int ret;
ac9721f3 3969 if (arg != -1) {
2903ff01
AV
3970 struct perf_event *output_event;
3971 struct fd output;
3972 ret = perf_fget_light(arg, &output);
3973 if (ret)
3974 return ret;
3975 output_event = output.file->private_data;
3976 ret = perf_event_set_output(event, output_event);
3977 fdput(output);
3978 } else {
3979 ret = perf_event_set_output(event, NULL);
ac9721f3 3980 }
ac9721f3
PZ
3981 return ret;
3982 }
a4be7c27 3983
6fb2915d
LZ
3984 case PERF_EVENT_IOC_SET_FILTER:
3985 return perf_event_set_filter(event, (void __user *)arg);
3986
d859e29f 3987 default:
3df5edad 3988 return -ENOTTY;
d859e29f 3989 }
3df5edad
PZ
3990
3991 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3992 perf_event_for_each(event, func);
3df5edad 3993 else
cdd6c482 3994 perf_event_for_each_child(event, func);
3df5edad
PZ
3995
3996 return 0;
d859e29f
PM
3997}
3998
f63a8daa
PZ
3999static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4000{
4001 struct perf_event *event = file->private_data;
4002 struct perf_event_context *ctx;
4003 long ret;
4004
4005 ctx = perf_event_ctx_lock(event);
4006 ret = _perf_ioctl(event, cmd, arg);
4007 perf_event_ctx_unlock(event, ctx);
4008
4009 return ret;
4010}
4011
b3f20785
PM
4012#ifdef CONFIG_COMPAT
4013static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4014 unsigned long arg)
4015{
4016 switch (_IOC_NR(cmd)) {
4017 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4018 case _IOC_NR(PERF_EVENT_IOC_ID):
4019 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4020 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4021 cmd &= ~IOCSIZE_MASK;
4022 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4023 }
4024 break;
4025 }
4026 return perf_ioctl(file, cmd, arg);
4027}
4028#else
4029# define perf_compat_ioctl NULL
4030#endif
4031
cdd6c482 4032int perf_event_task_enable(void)
771d7cde 4033{
f63a8daa 4034 struct perf_event_context *ctx;
cdd6c482 4035 struct perf_event *event;
771d7cde 4036
cdd6c482 4037 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4038 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4039 ctx = perf_event_ctx_lock(event);
4040 perf_event_for_each_child(event, _perf_event_enable);
4041 perf_event_ctx_unlock(event, ctx);
4042 }
cdd6c482 4043 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4044
4045 return 0;
4046}
4047
cdd6c482 4048int perf_event_task_disable(void)
771d7cde 4049{
f63a8daa 4050 struct perf_event_context *ctx;
cdd6c482 4051 struct perf_event *event;
771d7cde 4052
cdd6c482 4053 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4054 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4055 ctx = perf_event_ctx_lock(event);
4056 perf_event_for_each_child(event, _perf_event_disable);
4057 perf_event_ctx_unlock(event, ctx);
4058 }
cdd6c482 4059 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4060
4061 return 0;
4062}
4063
cdd6c482 4064static int perf_event_index(struct perf_event *event)
194002b2 4065{
a4eaf7f1
PZ
4066 if (event->hw.state & PERF_HES_STOPPED)
4067 return 0;
4068
cdd6c482 4069 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4070 return 0;
4071
35edc2a5 4072 return event->pmu->event_idx(event);
194002b2
PZ
4073}
4074
c4794295 4075static void calc_timer_values(struct perf_event *event,
e3f3541c 4076 u64 *now,
7f310a5d
EM
4077 u64 *enabled,
4078 u64 *running)
c4794295 4079{
e3f3541c 4080 u64 ctx_time;
c4794295 4081
e3f3541c
PZ
4082 *now = perf_clock();
4083 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4084 *enabled = ctx_time - event->tstamp_enabled;
4085 *running = ctx_time - event->tstamp_running;
4086}
4087
fa731587
PZ
4088static void perf_event_init_userpage(struct perf_event *event)
4089{
4090 struct perf_event_mmap_page *userpg;
4091 struct ring_buffer *rb;
4092
4093 rcu_read_lock();
4094 rb = rcu_dereference(event->rb);
4095 if (!rb)
4096 goto unlock;
4097
4098 userpg = rb->user_page;
4099
4100 /* Allow new userspace to detect that bit 0 is deprecated */
4101 userpg->cap_bit0_is_deprecated = 1;
4102 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4103
4104unlock:
4105 rcu_read_unlock();
4106}
4107
c7206205 4108void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4109{
4110}
4111
38ff667b
PZ
4112/*
4113 * Callers need to ensure there can be no nesting of this function, otherwise
4114 * the seqlock logic goes bad. We can not serialize this because the arch
4115 * code calls this from NMI context.
4116 */
cdd6c482 4117void perf_event_update_userpage(struct perf_event *event)
37d81828 4118{
cdd6c482 4119 struct perf_event_mmap_page *userpg;
76369139 4120 struct ring_buffer *rb;
e3f3541c 4121 u64 enabled, running, now;
38ff667b
PZ
4122
4123 rcu_read_lock();
5ec4c599
PZ
4124 rb = rcu_dereference(event->rb);
4125 if (!rb)
4126 goto unlock;
4127
0d641208
EM
4128 /*
4129 * compute total_time_enabled, total_time_running
4130 * based on snapshot values taken when the event
4131 * was last scheduled in.
4132 *
4133 * we cannot simply called update_context_time()
4134 * because of locking issue as we can be called in
4135 * NMI context
4136 */
e3f3541c 4137 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4138
76369139 4139 userpg = rb->user_page;
7b732a75
PZ
4140 /*
4141 * Disable preemption so as to not let the corresponding user-space
4142 * spin too long if we get preempted.
4143 */
4144 preempt_disable();
37d81828 4145 ++userpg->lock;
92f22a38 4146 barrier();
cdd6c482 4147 userpg->index = perf_event_index(event);
b5e58793 4148 userpg->offset = perf_event_count(event);
365a4038 4149 if (userpg->index)
e7850595 4150 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4151
0d641208 4152 userpg->time_enabled = enabled +
cdd6c482 4153 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4154
0d641208 4155 userpg->time_running = running +
cdd6c482 4156 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4157
c7206205 4158 arch_perf_update_userpage(userpg, now);
e3f3541c 4159
92f22a38 4160 barrier();
37d81828 4161 ++userpg->lock;
7b732a75 4162 preempt_enable();
38ff667b 4163unlock:
7b732a75 4164 rcu_read_unlock();
37d81828
PM
4165}
4166
906010b2
PZ
4167static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4168{
4169 struct perf_event *event = vma->vm_file->private_data;
76369139 4170 struct ring_buffer *rb;
906010b2
PZ
4171 int ret = VM_FAULT_SIGBUS;
4172
4173 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4174 if (vmf->pgoff == 0)
4175 ret = 0;
4176 return ret;
4177 }
4178
4179 rcu_read_lock();
76369139
FW
4180 rb = rcu_dereference(event->rb);
4181 if (!rb)
906010b2
PZ
4182 goto unlock;
4183
4184 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4185 goto unlock;
4186
76369139 4187 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4188 if (!vmf->page)
4189 goto unlock;
4190
4191 get_page(vmf->page);
4192 vmf->page->mapping = vma->vm_file->f_mapping;
4193 vmf->page->index = vmf->pgoff;
4194
4195 ret = 0;
4196unlock:
4197 rcu_read_unlock();
4198
4199 return ret;
4200}
4201
10c6db11
PZ
4202static void ring_buffer_attach(struct perf_event *event,
4203 struct ring_buffer *rb)
4204{
b69cf536 4205 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4206 unsigned long flags;
4207
b69cf536
PZ
4208 if (event->rb) {
4209 /*
4210 * Should be impossible, we set this when removing
4211 * event->rb_entry and wait/clear when adding event->rb_entry.
4212 */
4213 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4214
b69cf536
PZ
4215 old_rb = event->rb;
4216 event->rcu_batches = get_state_synchronize_rcu();
4217 event->rcu_pending = 1;
10c6db11 4218
b69cf536
PZ
4219 spin_lock_irqsave(&old_rb->event_lock, flags);
4220 list_del_rcu(&event->rb_entry);
4221 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4222 }
10c6db11 4223
b69cf536
PZ
4224 if (event->rcu_pending && rb) {
4225 cond_synchronize_rcu(event->rcu_batches);
4226 event->rcu_pending = 0;
4227 }
10c6db11 4228
b69cf536
PZ
4229 if (rb) {
4230 spin_lock_irqsave(&rb->event_lock, flags);
4231 list_add_rcu(&event->rb_entry, &rb->event_list);
4232 spin_unlock_irqrestore(&rb->event_lock, flags);
4233 }
4234
4235 rcu_assign_pointer(event->rb, rb);
4236
4237 if (old_rb) {
4238 ring_buffer_put(old_rb);
4239 /*
4240 * Since we detached before setting the new rb, so that we
4241 * could attach the new rb, we could have missed a wakeup.
4242 * Provide it now.
4243 */
4244 wake_up_all(&event->waitq);
4245 }
10c6db11
PZ
4246}
4247
4248static void ring_buffer_wakeup(struct perf_event *event)
4249{
4250 struct ring_buffer *rb;
4251
4252 rcu_read_lock();
4253 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4254 if (rb) {
4255 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4256 wake_up_all(&event->waitq);
4257 }
10c6db11
PZ
4258 rcu_read_unlock();
4259}
4260
76369139 4261static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4262{
76369139 4263 struct ring_buffer *rb;
906010b2 4264
76369139
FW
4265 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4266 rb_free(rb);
7b732a75
PZ
4267}
4268
76369139 4269static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4270{
76369139 4271 struct ring_buffer *rb;
7b732a75 4272
ac9721f3 4273 rcu_read_lock();
76369139
FW
4274 rb = rcu_dereference(event->rb);
4275 if (rb) {
4276 if (!atomic_inc_not_zero(&rb->refcount))
4277 rb = NULL;
ac9721f3
PZ
4278 }
4279 rcu_read_unlock();
4280
76369139 4281 return rb;
ac9721f3
PZ
4282}
4283
76369139 4284static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4285{
76369139 4286 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4287 return;
7b732a75 4288
9bb5d40c 4289 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4290
76369139 4291 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4292}
4293
4294static void perf_mmap_open(struct vm_area_struct *vma)
4295{
cdd6c482 4296 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4297
cdd6c482 4298 atomic_inc(&event->mmap_count);
9bb5d40c 4299 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4300}
4301
9bb5d40c
PZ
4302/*
4303 * A buffer can be mmap()ed multiple times; either directly through the same
4304 * event, or through other events by use of perf_event_set_output().
4305 *
4306 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4307 * the buffer here, where we still have a VM context. This means we need
4308 * to detach all events redirecting to us.
4309 */
7b732a75
PZ
4310static void perf_mmap_close(struct vm_area_struct *vma)
4311{
cdd6c482 4312 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4313
b69cf536 4314 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4315 struct user_struct *mmap_user = rb->mmap_user;
4316 int mmap_locked = rb->mmap_locked;
4317 unsigned long size = perf_data_size(rb);
789f90fc 4318
9bb5d40c
PZ
4319 atomic_dec(&rb->mmap_count);
4320
4321 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4322 goto out_put;
9bb5d40c 4323
b69cf536 4324 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4325 mutex_unlock(&event->mmap_mutex);
4326
4327 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4328 if (atomic_read(&rb->mmap_count))
4329 goto out_put;
ac9721f3 4330
9bb5d40c
PZ
4331 /*
4332 * No other mmap()s, detach from all other events that might redirect
4333 * into the now unreachable buffer. Somewhat complicated by the
4334 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4335 */
4336again:
4337 rcu_read_lock();
4338 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4339 if (!atomic_long_inc_not_zero(&event->refcount)) {
4340 /*
4341 * This event is en-route to free_event() which will
4342 * detach it and remove it from the list.
4343 */
4344 continue;
4345 }
4346 rcu_read_unlock();
789f90fc 4347
9bb5d40c
PZ
4348 mutex_lock(&event->mmap_mutex);
4349 /*
4350 * Check we didn't race with perf_event_set_output() which can
4351 * swizzle the rb from under us while we were waiting to
4352 * acquire mmap_mutex.
4353 *
4354 * If we find a different rb; ignore this event, a next
4355 * iteration will no longer find it on the list. We have to
4356 * still restart the iteration to make sure we're not now
4357 * iterating the wrong list.
4358 */
b69cf536
PZ
4359 if (event->rb == rb)
4360 ring_buffer_attach(event, NULL);
4361
cdd6c482 4362 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4363 put_event(event);
ac9721f3 4364
9bb5d40c
PZ
4365 /*
4366 * Restart the iteration; either we're on the wrong list or
4367 * destroyed its integrity by doing a deletion.
4368 */
4369 goto again;
7b732a75 4370 }
9bb5d40c
PZ
4371 rcu_read_unlock();
4372
4373 /*
4374 * It could be there's still a few 0-ref events on the list; they'll
4375 * get cleaned up by free_event() -- they'll also still have their
4376 * ref on the rb and will free it whenever they are done with it.
4377 *
4378 * Aside from that, this buffer is 'fully' detached and unmapped,
4379 * undo the VM accounting.
4380 */
4381
4382 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4383 vma->vm_mm->pinned_vm -= mmap_locked;
4384 free_uid(mmap_user);
4385
b69cf536 4386out_put:
9bb5d40c 4387 ring_buffer_put(rb); /* could be last */
37d81828
PM
4388}
4389
f0f37e2f 4390static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4391 .open = perf_mmap_open,
4392 .close = perf_mmap_close,
4393 .fault = perf_mmap_fault,
4394 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4395};
4396
4397static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4398{
cdd6c482 4399 struct perf_event *event = file->private_data;
22a4f650 4400 unsigned long user_locked, user_lock_limit;
789f90fc 4401 struct user_struct *user = current_user();
22a4f650 4402 unsigned long locked, lock_limit;
76369139 4403 struct ring_buffer *rb;
7b732a75
PZ
4404 unsigned long vma_size;
4405 unsigned long nr_pages;
789f90fc 4406 long user_extra, extra;
d57e34fd 4407 int ret = 0, flags = 0;
37d81828 4408
c7920614
PZ
4409 /*
4410 * Don't allow mmap() of inherited per-task counters. This would
4411 * create a performance issue due to all children writing to the
76369139 4412 * same rb.
c7920614
PZ
4413 */
4414 if (event->cpu == -1 && event->attr.inherit)
4415 return -EINVAL;
4416
43a21ea8 4417 if (!(vma->vm_flags & VM_SHARED))
37d81828 4418 return -EINVAL;
7b732a75
PZ
4419
4420 vma_size = vma->vm_end - vma->vm_start;
4421 nr_pages = (vma_size / PAGE_SIZE) - 1;
4422
7730d865 4423 /*
76369139 4424 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4425 * can do bitmasks instead of modulo.
4426 */
4427 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4428 return -EINVAL;
4429
7b732a75 4430 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4431 return -EINVAL;
4432
7b732a75
PZ
4433 if (vma->vm_pgoff != 0)
4434 return -EINVAL;
37d81828 4435
cdd6c482 4436 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4437again:
cdd6c482 4438 mutex_lock(&event->mmap_mutex);
76369139 4439 if (event->rb) {
9bb5d40c 4440 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4441 ret = -EINVAL;
9bb5d40c
PZ
4442 goto unlock;
4443 }
4444
4445 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4446 /*
4447 * Raced against perf_mmap_close() through
4448 * perf_event_set_output(). Try again, hope for better
4449 * luck.
4450 */
4451 mutex_unlock(&event->mmap_mutex);
4452 goto again;
4453 }
4454
ebb3c4c4
PZ
4455 goto unlock;
4456 }
4457
789f90fc 4458 user_extra = nr_pages + 1;
cdd6c482 4459 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4460
4461 /*
4462 * Increase the limit linearly with more CPUs:
4463 */
4464 user_lock_limit *= num_online_cpus();
4465
789f90fc 4466 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4467
789f90fc
PZ
4468 extra = 0;
4469 if (user_locked > user_lock_limit)
4470 extra = user_locked - user_lock_limit;
7b732a75 4471
78d7d407 4472 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4473 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4474 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4475
459ec28a
IM
4476 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4477 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4478 ret = -EPERM;
4479 goto unlock;
4480 }
7b732a75 4481
76369139 4482 WARN_ON(event->rb);
906010b2 4483
d57e34fd 4484 if (vma->vm_flags & VM_WRITE)
76369139 4485 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4486
4ec8363d
VW
4487 rb = rb_alloc(nr_pages,
4488 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4489 event->cpu, flags);
4490
76369139 4491 if (!rb) {
ac9721f3 4492 ret = -ENOMEM;
ebb3c4c4 4493 goto unlock;
ac9721f3 4494 }
26cb63ad 4495
9bb5d40c 4496 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4497 rb->mmap_locked = extra;
4498 rb->mmap_user = get_current_user();
43a21ea8 4499
ac9721f3 4500 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4501 vma->vm_mm->pinned_vm += extra;
4502
9bb5d40c 4503 ring_buffer_attach(event, rb);
ac9721f3 4504
fa731587 4505 perf_event_init_userpage(event);
9a0f05cb
PZ
4506 perf_event_update_userpage(event);
4507
ebb3c4c4 4508unlock:
ac9721f3
PZ
4509 if (!ret)
4510 atomic_inc(&event->mmap_count);
cdd6c482 4511 mutex_unlock(&event->mmap_mutex);
37d81828 4512
9bb5d40c
PZ
4513 /*
4514 * Since pinned accounting is per vm we cannot allow fork() to copy our
4515 * vma.
4516 */
26cb63ad 4517 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4518 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4519
4520 return ret;
37d81828
PM
4521}
4522
3c446b3d
PZ
4523static int perf_fasync(int fd, struct file *filp, int on)
4524{
496ad9aa 4525 struct inode *inode = file_inode(filp);
cdd6c482 4526 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4527 int retval;
4528
4529 mutex_lock(&inode->i_mutex);
cdd6c482 4530 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4531 mutex_unlock(&inode->i_mutex);
4532
4533 if (retval < 0)
4534 return retval;
4535
4536 return 0;
4537}
4538
0793a61d 4539static const struct file_operations perf_fops = {
3326c1ce 4540 .llseek = no_llseek,
0793a61d
TG
4541 .release = perf_release,
4542 .read = perf_read,
4543 .poll = perf_poll,
d859e29f 4544 .unlocked_ioctl = perf_ioctl,
b3f20785 4545 .compat_ioctl = perf_compat_ioctl,
37d81828 4546 .mmap = perf_mmap,
3c446b3d 4547 .fasync = perf_fasync,
0793a61d
TG
4548};
4549
925d519a 4550/*
cdd6c482 4551 * Perf event wakeup
925d519a
PZ
4552 *
4553 * If there's data, ensure we set the poll() state and publish everything
4554 * to user-space before waking everybody up.
4555 */
4556
cdd6c482 4557void perf_event_wakeup(struct perf_event *event)
925d519a 4558{
10c6db11 4559 ring_buffer_wakeup(event);
4c9e2542 4560
cdd6c482
IM
4561 if (event->pending_kill) {
4562 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4563 event->pending_kill = 0;
4c9e2542 4564 }
925d519a
PZ
4565}
4566
e360adbe 4567static void perf_pending_event(struct irq_work *entry)
79f14641 4568{
cdd6c482
IM
4569 struct perf_event *event = container_of(entry,
4570 struct perf_event, pending);
79f14641 4571
cdd6c482
IM
4572 if (event->pending_disable) {
4573 event->pending_disable = 0;
4574 __perf_event_disable(event);
79f14641
PZ
4575 }
4576
cdd6c482
IM
4577 if (event->pending_wakeup) {
4578 event->pending_wakeup = 0;
4579 perf_event_wakeup(event);
79f14641
PZ
4580 }
4581}
4582
39447b38
ZY
4583/*
4584 * We assume there is only KVM supporting the callbacks.
4585 * Later on, we might change it to a list if there is
4586 * another virtualization implementation supporting the callbacks.
4587 */
4588struct perf_guest_info_callbacks *perf_guest_cbs;
4589
4590int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4591{
4592 perf_guest_cbs = cbs;
4593 return 0;
4594}
4595EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4596
4597int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4598{
4599 perf_guest_cbs = NULL;
4600 return 0;
4601}
4602EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4603
4018994f
JO
4604static void
4605perf_output_sample_regs(struct perf_output_handle *handle,
4606 struct pt_regs *regs, u64 mask)
4607{
4608 int bit;
4609
4610 for_each_set_bit(bit, (const unsigned long *) &mask,
4611 sizeof(mask) * BITS_PER_BYTE) {
4612 u64 val;
4613
4614 val = perf_reg_value(regs, bit);
4615 perf_output_put(handle, val);
4616 }
4617}
4618
60e2364e 4619static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4620 struct pt_regs *regs,
4621 struct pt_regs *regs_user_copy)
4018994f 4622{
88a7c26a
AL
4623 if (user_mode(regs)) {
4624 regs_user->abi = perf_reg_abi(current);
2565711f 4625 regs_user->regs = regs;
88a7c26a
AL
4626 } else if (current->mm) {
4627 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4628 } else {
4629 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4630 regs_user->regs = NULL;
4018994f
JO
4631 }
4632}
4633
60e2364e
SE
4634static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4635 struct pt_regs *regs)
4636{
4637 regs_intr->regs = regs;
4638 regs_intr->abi = perf_reg_abi(current);
4639}
4640
4641
c5ebcedb
JO
4642/*
4643 * Get remaining task size from user stack pointer.
4644 *
4645 * It'd be better to take stack vma map and limit this more
4646 * precisly, but there's no way to get it safely under interrupt,
4647 * so using TASK_SIZE as limit.
4648 */
4649static u64 perf_ustack_task_size(struct pt_regs *regs)
4650{
4651 unsigned long addr = perf_user_stack_pointer(regs);
4652
4653 if (!addr || addr >= TASK_SIZE)
4654 return 0;
4655
4656 return TASK_SIZE - addr;
4657}
4658
4659static u16
4660perf_sample_ustack_size(u16 stack_size, u16 header_size,
4661 struct pt_regs *regs)
4662{
4663 u64 task_size;
4664
4665 /* No regs, no stack pointer, no dump. */
4666 if (!regs)
4667 return 0;
4668
4669 /*
4670 * Check if we fit in with the requested stack size into the:
4671 * - TASK_SIZE
4672 * If we don't, we limit the size to the TASK_SIZE.
4673 *
4674 * - remaining sample size
4675 * If we don't, we customize the stack size to
4676 * fit in to the remaining sample size.
4677 */
4678
4679 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4680 stack_size = min(stack_size, (u16) task_size);
4681
4682 /* Current header size plus static size and dynamic size. */
4683 header_size += 2 * sizeof(u64);
4684
4685 /* Do we fit in with the current stack dump size? */
4686 if ((u16) (header_size + stack_size) < header_size) {
4687 /*
4688 * If we overflow the maximum size for the sample,
4689 * we customize the stack dump size to fit in.
4690 */
4691 stack_size = USHRT_MAX - header_size - sizeof(u64);
4692 stack_size = round_up(stack_size, sizeof(u64));
4693 }
4694
4695 return stack_size;
4696}
4697
4698static void
4699perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4700 struct pt_regs *regs)
4701{
4702 /* Case of a kernel thread, nothing to dump */
4703 if (!regs) {
4704 u64 size = 0;
4705 perf_output_put(handle, size);
4706 } else {
4707 unsigned long sp;
4708 unsigned int rem;
4709 u64 dyn_size;
4710
4711 /*
4712 * We dump:
4713 * static size
4714 * - the size requested by user or the best one we can fit
4715 * in to the sample max size
4716 * data
4717 * - user stack dump data
4718 * dynamic size
4719 * - the actual dumped size
4720 */
4721
4722 /* Static size. */
4723 perf_output_put(handle, dump_size);
4724
4725 /* Data. */
4726 sp = perf_user_stack_pointer(regs);
4727 rem = __output_copy_user(handle, (void *) sp, dump_size);
4728 dyn_size = dump_size - rem;
4729
4730 perf_output_skip(handle, rem);
4731
4732 /* Dynamic size. */
4733 perf_output_put(handle, dyn_size);
4734 }
4735}
4736
c980d109
ACM
4737static void __perf_event_header__init_id(struct perf_event_header *header,
4738 struct perf_sample_data *data,
4739 struct perf_event *event)
6844c09d
ACM
4740{
4741 u64 sample_type = event->attr.sample_type;
4742
4743 data->type = sample_type;
4744 header->size += event->id_header_size;
4745
4746 if (sample_type & PERF_SAMPLE_TID) {
4747 /* namespace issues */
4748 data->tid_entry.pid = perf_event_pid(event, current);
4749 data->tid_entry.tid = perf_event_tid(event, current);
4750 }
4751
4752 if (sample_type & PERF_SAMPLE_TIME)
4753 data->time = perf_clock();
4754
ff3d527c 4755 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4756 data->id = primary_event_id(event);
4757
4758 if (sample_type & PERF_SAMPLE_STREAM_ID)
4759 data->stream_id = event->id;
4760
4761 if (sample_type & PERF_SAMPLE_CPU) {
4762 data->cpu_entry.cpu = raw_smp_processor_id();
4763 data->cpu_entry.reserved = 0;
4764 }
4765}
4766
76369139
FW
4767void perf_event_header__init_id(struct perf_event_header *header,
4768 struct perf_sample_data *data,
4769 struct perf_event *event)
c980d109
ACM
4770{
4771 if (event->attr.sample_id_all)
4772 __perf_event_header__init_id(header, data, event);
4773}
4774
4775static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4776 struct perf_sample_data *data)
4777{
4778 u64 sample_type = data->type;
4779
4780 if (sample_type & PERF_SAMPLE_TID)
4781 perf_output_put(handle, data->tid_entry);
4782
4783 if (sample_type & PERF_SAMPLE_TIME)
4784 perf_output_put(handle, data->time);
4785
4786 if (sample_type & PERF_SAMPLE_ID)
4787 perf_output_put(handle, data->id);
4788
4789 if (sample_type & PERF_SAMPLE_STREAM_ID)
4790 perf_output_put(handle, data->stream_id);
4791
4792 if (sample_type & PERF_SAMPLE_CPU)
4793 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4794
4795 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4796 perf_output_put(handle, data->id);
c980d109
ACM
4797}
4798
76369139
FW
4799void perf_event__output_id_sample(struct perf_event *event,
4800 struct perf_output_handle *handle,
4801 struct perf_sample_data *sample)
c980d109
ACM
4802{
4803 if (event->attr.sample_id_all)
4804 __perf_event__output_id_sample(handle, sample);
4805}
4806
3dab77fb 4807static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4808 struct perf_event *event,
4809 u64 enabled, u64 running)
3dab77fb 4810{
cdd6c482 4811 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4812 u64 values[4];
4813 int n = 0;
4814
b5e58793 4815 values[n++] = perf_event_count(event);
3dab77fb 4816 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4817 values[n++] = enabled +
cdd6c482 4818 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4819 }
4820 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4821 values[n++] = running +
cdd6c482 4822 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4823 }
4824 if (read_format & PERF_FORMAT_ID)
cdd6c482 4825 values[n++] = primary_event_id(event);
3dab77fb 4826
76369139 4827 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4828}
4829
4830/*
cdd6c482 4831 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4832 */
4833static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4834 struct perf_event *event,
4835 u64 enabled, u64 running)
3dab77fb 4836{
cdd6c482
IM
4837 struct perf_event *leader = event->group_leader, *sub;
4838 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4839 u64 values[5];
4840 int n = 0;
4841
4842 values[n++] = 1 + leader->nr_siblings;
4843
4844 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4845 values[n++] = enabled;
3dab77fb
PZ
4846
4847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4848 values[n++] = running;
3dab77fb 4849
cdd6c482 4850 if (leader != event)
3dab77fb
PZ
4851 leader->pmu->read(leader);
4852
b5e58793 4853 values[n++] = perf_event_count(leader);
3dab77fb 4854 if (read_format & PERF_FORMAT_ID)
cdd6c482 4855 values[n++] = primary_event_id(leader);
3dab77fb 4856
76369139 4857 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4858
65abc865 4859 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4860 n = 0;
4861
6f5ab001
JO
4862 if ((sub != event) &&
4863 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4864 sub->pmu->read(sub);
4865
b5e58793 4866 values[n++] = perf_event_count(sub);
3dab77fb 4867 if (read_format & PERF_FORMAT_ID)
cdd6c482 4868 values[n++] = primary_event_id(sub);
3dab77fb 4869
76369139 4870 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4871 }
4872}
4873
eed01528
SE
4874#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4875 PERF_FORMAT_TOTAL_TIME_RUNNING)
4876
3dab77fb 4877static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4878 struct perf_event *event)
3dab77fb 4879{
e3f3541c 4880 u64 enabled = 0, running = 0, now;
eed01528
SE
4881 u64 read_format = event->attr.read_format;
4882
4883 /*
4884 * compute total_time_enabled, total_time_running
4885 * based on snapshot values taken when the event
4886 * was last scheduled in.
4887 *
4888 * we cannot simply called update_context_time()
4889 * because of locking issue as we are called in
4890 * NMI context
4891 */
c4794295 4892 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4893 calc_timer_values(event, &now, &enabled, &running);
eed01528 4894
cdd6c482 4895 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4896 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4897 else
eed01528 4898 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4899}
4900
5622f295
MM
4901void perf_output_sample(struct perf_output_handle *handle,
4902 struct perf_event_header *header,
4903 struct perf_sample_data *data,
cdd6c482 4904 struct perf_event *event)
5622f295
MM
4905{
4906 u64 sample_type = data->type;
4907
4908 perf_output_put(handle, *header);
4909
ff3d527c
AH
4910 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4911 perf_output_put(handle, data->id);
4912
5622f295
MM
4913 if (sample_type & PERF_SAMPLE_IP)
4914 perf_output_put(handle, data->ip);
4915
4916 if (sample_type & PERF_SAMPLE_TID)
4917 perf_output_put(handle, data->tid_entry);
4918
4919 if (sample_type & PERF_SAMPLE_TIME)
4920 perf_output_put(handle, data->time);
4921
4922 if (sample_type & PERF_SAMPLE_ADDR)
4923 perf_output_put(handle, data->addr);
4924
4925 if (sample_type & PERF_SAMPLE_ID)
4926 perf_output_put(handle, data->id);
4927
4928 if (sample_type & PERF_SAMPLE_STREAM_ID)
4929 perf_output_put(handle, data->stream_id);
4930
4931 if (sample_type & PERF_SAMPLE_CPU)
4932 perf_output_put(handle, data->cpu_entry);
4933
4934 if (sample_type & PERF_SAMPLE_PERIOD)
4935 perf_output_put(handle, data->period);
4936
4937 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4938 perf_output_read(handle, event);
5622f295
MM
4939
4940 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4941 if (data->callchain) {
4942 int size = 1;
4943
4944 if (data->callchain)
4945 size += data->callchain->nr;
4946
4947 size *= sizeof(u64);
4948
76369139 4949 __output_copy(handle, data->callchain, size);
5622f295
MM
4950 } else {
4951 u64 nr = 0;
4952 perf_output_put(handle, nr);
4953 }
4954 }
4955
4956 if (sample_type & PERF_SAMPLE_RAW) {
4957 if (data->raw) {
4958 perf_output_put(handle, data->raw->size);
76369139
FW
4959 __output_copy(handle, data->raw->data,
4960 data->raw->size);
5622f295
MM
4961 } else {
4962 struct {
4963 u32 size;
4964 u32 data;
4965 } raw = {
4966 .size = sizeof(u32),
4967 .data = 0,
4968 };
4969 perf_output_put(handle, raw);
4970 }
4971 }
a7ac67ea 4972
bce38cd5
SE
4973 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4974 if (data->br_stack) {
4975 size_t size;
4976
4977 size = data->br_stack->nr
4978 * sizeof(struct perf_branch_entry);
4979
4980 perf_output_put(handle, data->br_stack->nr);
4981 perf_output_copy(handle, data->br_stack->entries, size);
4982 } else {
4983 /*
4984 * we always store at least the value of nr
4985 */
4986 u64 nr = 0;
4987 perf_output_put(handle, nr);
4988 }
4989 }
4018994f
JO
4990
4991 if (sample_type & PERF_SAMPLE_REGS_USER) {
4992 u64 abi = data->regs_user.abi;
4993
4994 /*
4995 * If there are no regs to dump, notice it through
4996 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4997 */
4998 perf_output_put(handle, abi);
4999
5000 if (abi) {
5001 u64 mask = event->attr.sample_regs_user;
5002 perf_output_sample_regs(handle,
5003 data->regs_user.regs,
5004 mask);
5005 }
5006 }
c5ebcedb 5007
a5cdd40c 5008 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5009 perf_output_sample_ustack(handle,
5010 data->stack_user_size,
5011 data->regs_user.regs);
a5cdd40c 5012 }
c3feedf2
AK
5013
5014 if (sample_type & PERF_SAMPLE_WEIGHT)
5015 perf_output_put(handle, data->weight);
d6be9ad6
SE
5016
5017 if (sample_type & PERF_SAMPLE_DATA_SRC)
5018 perf_output_put(handle, data->data_src.val);
a5cdd40c 5019
fdfbbd07
AK
5020 if (sample_type & PERF_SAMPLE_TRANSACTION)
5021 perf_output_put(handle, data->txn);
5022
60e2364e
SE
5023 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5024 u64 abi = data->regs_intr.abi;
5025 /*
5026 * If there are no regs to dump, notice it through
5027 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5028 */
5029 perf_output_put(handle, abi);
5030
5031 if (abi) {
5032 u64 mask = event->attr.sample_regs_intr;
5033
5034 perf_output_sample_regs(handle,
5035 data->regs_intr.regs,
5036 mask);
5037 }
5038 }
5039
a5cdd40c
PZ
5040 if (!event->attr.watermark) {
5041 int wakeup_events = event->attr.wakeup_events;
5042
5043 if (wakeup_events) {
5044 struct ring_buffer *rb = handle->rb;
5045 int events = local_inc_return(&rb->events);
5046
5047 if (events >= wakeup_events) {
5048 local_sub(wakeup_events, &rb->events);
5049 local_inc(&rb->wakeup);
5050 }
5051 }
5052 }
5622f295
MM
5053}
5054
5055void perf_prepare_sample(struct perf_event_header *header,
5056 struct perf_sample_data *data,
cdd6c482 5057 struct perf_event *event,
5622f295 5058 struct pt_regs *regs)
7b732a75 5059{
cdd6c482 5060 u64 sample_type = event->attr.sample_type;
7b732a75 5061
cdd6c482 5062 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5063 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5064
5065 header->misc = 0;
5066 header->misc |= perf_misc_flags(regs);
6fab0192 5067
c980d109 5068 __perf_event_header__init_id(header, data, event);
6844c09d 5069
c320c7b7 5070 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5071 data->ip = perf_instruction_pointer(regs);
5072
b23f3325 5073 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5074 int size = 1;
394ee076 5075
e6dab5ff 5076 data->callchain = perf_callchain(event, regs);
5622f295
MM
5077
5078 if (data->callchain)
5079 size += data->callchain->nr;
5080
5081 header->size += size * sizeof(u64);
394ee076
PZ
5082 }
5083
3a43ce68 5084 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5085 int size = sizeof(u32);
5086
5087 if (data->raw)
5088 size += data->raw->size;
5089 else
5090 size += sizeof(u32);
5091
5092 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5093 header->size += size;
7f453c24 5094 }
bce38cd5
SE
5095
5096 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5097 int size = sizeof(u64); /* nr */
5098 if (data->br_stack) {
5099 size += data->br_stack->nr
5100 * sizeof(struct perf_branch_entry);
5101 }
5102 header->size += size;
5103 }
4018994f 5104
2565711f 5105 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5106 perf_sample_regs_user(&data->regs_user, regs,
5107 &data->regs_user_copy);
2565711f 5108
4018994f
JO
5109 if (sample_type & PERF_SAMPLE_REGS_USER) {
5110 /* regs dump ABI info */
5111 int size = sizeof(u64);
5112
4018994f
JO
5113 if (data->regs_user.regs) {
5114 u64 mask = event->attr.sample_regs_user;
5115 size += hweight64(mask) * sizeof(u64);
5116 }
5117
5118 header->size += size;
5119 }
c5ebcedb
JO
5120
5121 if (sample_type & PERF_SAMPLE_STACK_USER) {
5122 /*
5123 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5124 * processed as the last one or have additional check added
5125 * in case new sample type is added, because we could eat
5126 * up the rest of the sample size.
5127 */
c5ebcedb
JO
5128 u16 stack_size = event->attr.sample_stack_user;
5129 u16 size = sizeof(u64);
5130
c5ebcedb 5131 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5132 data->regs_user.regs);
c5ebcedb
JO
5133
5134 /*
5135 * If there is something to dump, add space for the dump
5136 * itself and for the field that tells the dynamic size,
5137 * which is how many have been actually dumped.
5138 */
5139 if (stack_size)
5140 size += sizeof(u64) + stack_size;
5141
5142 data->stack_user_size = stack_size;
5143 header->size += size;
5144 }
60e2364e
SE
5145
5146 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5147 /* regs dump ABI info */
5148 int size = sizeof(u64);
5149
5150 perf_sample_regs_intr(&data->regs_intr, regs);
5151
5152 if (data->regs_intr.regs) {
5153 u64 mask = event->attr.sample_regs_intr;
5154
5155 size += hweight64(mask) * sizeof(u64);
5156 }
5157
5158 header->size += size;
5159 }
5622f295 5160}
7f453c24 5161
a8b0ca17 5162static void perf_event_output(struct perf_event *event,
5622f295
MM
5163 struct perf_sample_data *data,
5164 struct pt_regs *regs)
5165{
5166 struct perf_output_handle handle;
5167 struct perf_event_header header;
689802b2 5168
927c7a9e
FW
5169 /* protect the callchain buffers */
5170 rcu_read_lock();
5171
cdd6c482 5172 perf_prepare_sample(&header, data, event, regs);
5c148194 5173
a7ac67ea 5174 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5175 goto exit;
0322cd6e 5176
cdd6c482 5177 perf_output_sample(&handle, &header, data, event);
f413cdb8 5178
8a057d84 5179 perf_output_end(&handle);
927c7a9e
FW
5180
5181exit:
5182 rcu_read_unlock();
0322cd6e
PZ
5183}
5184
38b200d6 5185/*
cdd6c482 5186 * read event_id
38b200d6
PZ
5187 */
5188
5189struct perf_read_event {
5190 struct perf_event_header header;
5191
5192 u32 pid;
5193 u32 tid;
38b200d6
PZ
5194};
5195
5196static void
cdd6c482 5197perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5198 struct task_struct *task)
5199{
5200 struct perf_output_handle handle;
c980d109 5201 struct perf_sample_data sample;
dfc65094 5202 struct perf_read_event read_event = {
38b200d6 5203 .header = {
cdd6c482 5204 .type = PERF_RECORD_READ,
38b200d6 5205 .misc = 0,
c320c7b7 5206 .size = sizeof(read_event) + event->read_size,
38b200d6 5207 },
cdd6c482
IM
5208 .pid = perf_event_pid(event, task),
5209 .tid = perf_event_tid(event, task),
38b200d6 5210 };
3dab77fb 5211 int ret;
38b200d6 5212
c980d109 5213 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5214 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5215 if (ret)
5216 return;
5217
dfc65094 5218 perf_output_put(&handle, read_event);
cdd6c482 5219 perf_output_read(&handle, event);
c980d109 5220 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5221
38b200d6
PZ
5222 perf_output_end(&handle);
5223}
5224
52d857a8
JO
5225typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5226
5227static void
5228perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5229 perf_event_aux_output_cb output,
5230 void *data)
5231{
5232 struct perf_event *event;
5233
5234 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5235 if (event->state < PERF_EVENT_STATE_INACTIVE)
5236 continue;
5237 if (!event_filter_match(event))
5238 continue;
67516844 5239 output(event, data);
52d857a8
JO
5240 }
5241}
5242
5243static void
67516844 5244perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5245 struct perf_event_context *task_ctx)
5246{
5247 struct perf_cpu_context *cpuctx;
5248 struct perf_event_context *ctx;
5249 struct pmu *pmu;
5250 int ctxn;
5251
5252 rcu_read_lock();
5253 list_for_each_entry_rcu(pmu, &pmus, entry) {
5254 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5255 if (cpuctx->unique_pmu != pmu)
5256 goto next;
67516844 5257 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5258 if (task_ctx)
5259 goto next;
5260 ctxn = pmu->task_ctx_nr;
5261 if (ctxn < 0)
5262 goto next;
5263 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5264 if (ctx)
67516844 5265 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5266next:
5267 put_cpu_ptr(pmu->pmu_cpu_context);
5268 }
5269
5270 if (task_ctx) {
5271 preempt_disable();
67516844 5272 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5273 preempt_enable();
5274 }
5275 rcu_read_unlock();
5276}
5277
60313ebe 5278/*
9f498cc5
PZ
5279 * task tracking -- fork/exit
5280 *
13d7a241 5281 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5282 */
5283
9f498cc5 5284struct perf_task_event {
3a80b4a3 5285 struct task_struct *task;
cdd6c482 5286 struct perf_event_context *task_ctx;
60313ebe
PZ
5287
5288 struct {
5289 struct perf_event_header header;
5290
5291 u32 pid;
5292 u32 ppid;
9f498cc5
PZ
5293 u32 tid;
5294 u32 ptid;
393b2ad8 5295 u64 time;
cdd6c482 5296 } event_id;
60313ebe
PZ
5297};
5298
67516844
JO
5299static int perf_event_task_match(struct perf_event *event)
5300{
13d7a241
SE
5301 return event->attr.comm || event->attr.mmap ||
5302 event->attr.mmap2 || event->attr.mmap_data ||
5303 event->attr.task;
67516844
JO
5304}
5305
cdd6c482 5306static void perf_event_task_output(struct perf_event *event,
52d857a8 5307 void *data)
60313ebe 5308{
52d857a8 5309 struct perf_task_event *task_event = data;
60313ebe 5310 struct perf_output_handle handle;
c980d109 5311 struct perf_sample_data sample;
9f498cc5 5312 struct task_struct *task = task_event->task;
c980d109 5313 int ret, size = task_event->event_id.header.size;
8bb39f9a 5314
67516844
JO
5315 if (!perf_event_task_match(event))
5316 return;
5317
c980d109 5318 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5319
c980d109 5320 ret = perf_output_begin(&handle, event,
a7ac67ea 5321 task_event->event_id.header.size);
ef60777c 5322 if (ret)
c980d109 5323 goto out;
60313ebe 5324
cdd6c482
IM
5325 task_event->event_id.pid = perf_event_pid(event, task);
5326 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5327
cdd6c482
IM
5328 task_event->event_id.tid = perf_event_tid(event, task);
5329 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5330
cdd6c482 5331 perf_output_put(&handle, task_event->event_id);
393b2ad8 5332
c980d109
ACM
5333 perf_event__output_id_sample(event, &handle, &sample);
5334
60313ebe 5335 perf_output_end(&handle);
c980d109
ACM
5336out:
5337 task_event->event_id.header.size = size;
60313ebe
PZ
5338}
5339
cdd6c482
IM
5340static void perf_event_task(struct task_struct *task,
5341 struct perf_event_context *task_ctx,
3a80b4a3 5342 int new)
60313ebe 5343{
9f498cc5 5344 struct perf_task_event task_event;
60313ebe 5345
cdd6c482
IM
5346 if (!atomic_read(&nr_comm_events) &&
5347 !atomic_read(&nr_mmap_events) &&
5348 !atomic_read(&nr_task_events))
60313ebe
PZ
5349 return;
5350
9f498cc5 5351 task_event = (struct perf_task_event){
3a80b4a3
PZ
5352 .task = task,
5353 .task_ctx = task_ctx,
cdd6c482 5354 .event_id = {
60313ebe 5355 .header = {
cdd6c482 5356 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5357 .misc = 0,
cdd6c482 5358 .size = sizeof(task_event.event_id),
60313ebe 5359 },
573402db
PZ
5360 /* .pid */
5361 /* .ppid */
9f498cc5
PZ
5362 /* .tid */
5363 /* .ptid */
6f93d0a7 5364 .time = perf_clock(),
60313ebe
PZ
5365 },
5366 };
5367
67516844 5368 perf_event_aux(perf_event_task_output,
52d857a8
JO
5369 &task_event,
5370 task_ctx);
9f498cc5
PZ
5371}
5372
cdd6c482 5373void perf_event_fork(struct task_struct *task)
9f498cc5 5374{
cdd6c482 5375 perf_event_task(task, NULL, 1);
60313ebe
PZ
5376}
5377
8d1b2d93
PZ
5378/*
5379 * comm tracking
5380 */
5381
5382struct perf_comm_event {
22a4f650
IM
5383 struct task_struct *task;
5384 char *comm;
8d1b2d93
PZ
5385 int comm_size;
5386
5387 struct {
5388 struct perf_event_header header;
5389
5390 u32 pid;
5391 u32 tid;
cdd6c482 5392 } event_id;
8d1b2d93
PZ
5393};
5394
67516844
JO
5395static int perf_event_comm_match(struct perf_event *event)
5396{
5397 return event->attr.comm;
5398}
5399
cdd6c482 5400static void perf_event_comm_output(struct perf_event *event,
52d857a8 5401 void *data)
8d1b2d93 5402{
52d857a8 5403 struct perf_comm_event *comm_event = data;
8d1b2d93 5404 struct perf_output_handle handle;
c980d109 5405 struct perf_sample_data sample;
cdd6c482 5406 int size = comm_event->event_id.header.size;
c980d109
ACM
5407 int ret;
5408
67516844
JO
5409 if (!perf_event_comm_match(event))
5410 return;
5411
c980d109
ACM
5412 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5413 ret = perf_output_begin(&handle, event,
a7ac67ea 5414 comm_event->event_id.header.size);
8d1b2d93
PZ
5415
5416 if (ret)
c980d109 5417 goto out;
8d1b2d93 5418
cdd6c482
IM
5419 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5420 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5421
cdd6c482 5422 perf_output_put(&handle, comm_event->event_id);
76369139 5423 __output_copy(&handle, comm_event->comm,
8d1b2d93 5424 comm_event->comm_size);
c980d109
ACM
5425
5426 perf_event__output_id_sample(event, &handle, &sample);
5427
8d1b2d93 5428 perf_output_end(&handle);
c980d109
ACM
5429out:
5430 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5431}
5432
cdd6c482 5433static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5434{
413ee3b4 5435 char comm[TASK_COMM_LEN];
8d1b2d93 5436 unsigned int size;
8d1b2d93 5437
413ee3b4 5438 memset(comm, 0, sizeof(comm));
96b02d78 5439 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5440 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5441
5442 comm_event->comm = comm;
5443 comm_event->comm_size = size;
5444
cdd6c482 5445 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5446
67516844 5447 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5448 comm_event,
5449 NULL);
8d1b2d93
PZ
5450}
5451
82b89778 5452void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5453{
9ee318a7
PZ
5454 struct perf_comm_event comm_event;
5455
cdd6c482 5456 if (!atomic_read(&nr_comm_events))
9ee318a7 5457 return;
a63eaf34 5458
9ee318a7 5459 comm_event = (struct perf_comm_event){
8d1b2d93 5460 .task = task,
573402db
PZ
5461 /* .comm */
5462 /* .comm_size */
cdd6c482 5463 .event_id = {
573402db 5464 .header = {
cdd6c482 5465 .type = PERF_RECORD_COMM,
82b89778 5466 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5467 /* .size */
5468 },
5469 /* .pid */
5470 /* .tid */
8d1b2d93
PZ
5471 },
5472 };
5473
cdd6c482 5474 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5475}
5476
0a4a9391
PZ
5477/*
5478 * mmap tracking
5479 */
5480
5481struct perf_mmap_event {
089dd79d
PZ
5482 struct vm_area_struct *vma;
5483
5484 const char *file_name;
5485 int file_size;
13d7a241
SE
5486 int maj, min;
5487 u64 ino;
5488 u64 ino_generation;
f972eb63 5489 u32 prot, flags;
0a4a9391
PZ
5490
5491 struct {
5492 struct perf_event_header header;
5493
5494 u32 pid;
5495 u32 tid;
5496 u64 start;
5497 u64 len;
5498 u64 pgoff;
cdd6c482 5499 } event_id;
0a4a9391
PZ
5500};
5501
67516844
JO
5502static int perf_event_mmap_match(struct perf_event *event,
5503 void *data)
5504{
5505 struct perf_mmap_event *mmap_event = data;
5506 struct vm_area_struct *vma = mmap_event->vma;
5507 int executable = vma->vm_flags & VM_EXEC;
5508
5509 return (!executable && event->attr.mmap_data) ||
13d7a241 5510 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5511}
5512
cdd6c482 5513static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5514 void *data)
0a4a9391 5515{
52d857a8 5516 struct perf_mmap_event *mmap_event = data;
0a4a9391 5517 struct perf_output_handle handle;
c980d109 5518 struct perf_sample_data sample;
cdd6c482 5519 int size = mmap_event->event_id.header.size;
c980d109 5520 int ret;
0a4a9391 5521
67516844
JO
5522 if (!perf_event_mmap_match(event, data))
5523 return;
5524
13d7a241
SE
5525 if (event->attr.mmap2) {
5526 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5527 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5528 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5529 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5530 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5531 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5532 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5533 }
5534
c980d109
ACM
5535 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5536 ret = perf_output_begin(&handle, event,
a7ac67ea 5537 mmap_event->event_id.header.size);
0a4a9391 5538 if (ret)
c980d109 5539 goto out;
0a4a9391 5540
cdd6c482
IM
5541 mmap_event->event_id.pid = perf_event_pid(event, current);
5542 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5543
cdd6c482 5544 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5545
5546 if (event->attr.mmap2) {
5547 perf_output_put(&handle, mmap_event->maj);
5548 perf_output_put(&handle, mmap_event->min);
5549 perf_output_put(&handle, mmap_event->ino);
5550 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5551 perf_output_put(&handle, mmap_event->prot);
5552 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5553 }
5554
76369139 5555 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5556 mmap_event->file_size);
c980d109
ACM
5557
5558 perf_event__output_id_sample(event, &handle, &sample);
5559
78d613eb 5560 perf_output_end(&handle);
c980d109
ACM
5561out:
5562 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5563}
5564
cdd6c482 5565static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5566{
089dd79d
PZ
5567 struct vm_area_struct *vma = mmap_event->vma;
5568 struct file *file = vma->vm_file;
13d7a241
SE
5569 int maj = 0, min = 0;
5570 u64 ino = 0, gen = 0;
f972eb63 5571 u32 prot = 0, flags = 0;
0a4a9391
PZ
5572 unsigned int size;
5573 char tmp[16];
5574 char *buf = NULL;
2c42cfbf 5575 char *name;
413ee3b4 5576
0a4a9391 5577 if (file) {
13d7a241
SE
5578 struct inode *inode;
5579 dev_t dev;
3ea2f2b9 5580
2c42cfbf 5581 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5582 if (!buf) {
c7e548b4
ON
5583 name = "//enomem";
5584 goto cpy_name;
0a4a9391 5585 }
413ee3b4 5586 /*
3ea2f2b9 5587 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5588 * need to add enough zero bytes after the string to handle
5589 * the 64bit alignment we do later.
5590 */
3ea2f2b9 5591 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5592 if (IS_ERR(name)) {
c7e548b4
ON
5593 name = "//toolong";
5594 goto cpy_name;
0a4a9391 5595 }
13d7a241
SE
5596 inode = file_inode(vma->vm_file);
5597 dev = inode->i_sb->s_dev;
5598 ino = inode->i_ino;
5599 gen = inode->i_generation;
5600 maj = MAJOR(dev);
5601 min = MINOR(dev);
f972eb63
PZ
5602
5603 if (vma->vm_flags & VM_READ)
5604 prot |= PROT_READ;
5605 if (vma->vm_flags & VM_WRITE)
5606 prot |= PROT_WRITE;
5607 if (vma->vm_flags & VM_EXEC)
5608 prot |= PROT_EXEC;
5609
5610 if (vma->vm_flags & VM_MAYSHARE)
5611 flags = MAP_SHARED;
5612 else
5613 flags = MAP_PRIVATE;
5614
5615 if (vma->vm_flags & VM_DENYWRITE)
5616 flags |= MAP_DENYWRITE;
5617 if (vma->vm_flags & VM_MAYEXEC)
5618 flags |= MAP_EXECUTABLE;
5619 if (vma->vm_flags & VM_LOCKED)
5620 flags |= MAP_LOCKED;
5621 if (vma->vm_flags & VM_HUGETLB)
5622 flags |= MAP_HUGETLB;
5623
c7e548b4 5624 goto got_name;
0a4a9391 5625 } else {
fbe26abe
JO
5626 if (vma->vm_ops && vma->vm_ops->name) {
5627 name = (char *) vma->vm_ops->name(vma);
5628 if (name)
5629 goto cpy_name;
5630 }
5631
2c42cfbf 5632 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5633 if (name)
5634 goto cpy_name;
089dd79d 5635
32c5fb7e 5636 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5637 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5638 name = "[heap]";
5639 goto cpy_name;
32c5fb7e
ON
5640 }
5641 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5642 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5643 name = "[stack]";
5644 goto cpy_name;
089dd79d
PZ
5645 }
5646
c7e548b4
ON
5647 name = "//anon";
5648 goto cpy_name;
0a4a9391
PZ
5649 }
5650
c7e548b4
ON
5651cpy_name:
5652 strlcpy(tmp, name, sizeof(tmp));
5653 name = tmp;
0a4a9391 5654got_name:
2c42cfbf
PZ
5655 /*
5656 * Since our buffer works in 8 byte units we need to align our string
5657 * size to a multiple of 8. However, we must guarantee the tail end is
5658 * zero'd out to avoid leaking random bits to userspace.
5659 */
5660 size = strlen(name)+1;
5661 while (!IS_ALIGNED(size, sizeof(u64)))
5662 name[size++] = '\0';
0a4a9391
PZ
5663
5664 mmap_event->file_name = name;
5665 mmap_event->file_size = size;
13d7a241
SE
5666 mmap_event->maj = maj;
5667 mmap_event->min = min;
5668 mmap_event->ino = ino;
5669 mmap_event->ino_generation = gen;
f972eb63
PZ
5670 mmap_event->prot = prot;
5671 mmap_event->flags = flags;
0a4a9391 5672
2fe85427
SE
5673 if (!(vma->vm_flags & VM_EXEC))
5674 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5675
cdd6c482 5676 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5677
67516844 5678 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5679 mmap_event,
5680 NULL);
665c2142 5681
0a4a9391
PZ
5682 kfree(buf);
5683}
5684
3af9e859 5685void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5686{
9ee318a7
PZ
5687 struct perf_mmap_event mmap_event;
5688
cdd6c482 5689 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5690 return;
5691
5692 mmap_event = (struct perf_mmap_event){
089dd79d 5693 .vma = vma,
573402db
PZ
5694 /* .file_name */
5695 /* .file_size */
cdd6c482 5696 .event_id = {
573402db 5697 .header = {
cdd6c482 5698 .type = PERF_RECORD_MMAP,
39447b38 5699 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5700 /* .size */
5701 },
5702 /* .pid */
5703 /* .tid */
089dd79d
PZ
5704 .start = vma->vm_start,
5705 .len = vma->vm_end - vma->vm_start,
3a0304e9 5706 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5707 },
13d7a241
SE
5708 /* .maj (attr_mmap2 only) */
5709 /* .min (attr_mmap2 only) */
5710 /* .ino (attr_mmap2 only) */
5711 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5712 /* .prot (attr_mmap2 only) */
5713 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5714 };
5715
cdd6c482 5716 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5717}
5718
a78ac325
PZ
5719/*
5720 * IRQ throttle logging
5721 */
5722
cdd6c482 5723static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5724{
5725 struct perf_output_handle handle;
c980d109 5726 struct perf_sample_data sample;
a78ac325
PZ
5727 int ret;
5728
5729 struct {
5730 struct perf_event_header header;
5731 u64 time;
cca3f454 5732 u64 id;
7f453c24 5733 u64 stream_id;
a78ac325
PZ
5734 } throttle_event = {
5735 .header = {
cdd6c482 5736 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5737 .misc = 0,
5738 .size = sizeof(throttle_event),
5739 },
def0a9b2 5740 .time = perf_clock(),
cdd6c482
IM
5741 .id = primary_event_id(event),
5742 .stream_id = event->id,
a78ac325
PZ
5743 };
5744
966ee4d6 5745 if (enable)
cdd6c482 5746 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5747
c980d109
ACM
5748 perf_event_header__init_id(&throttle_event.header, &sample, event);
5749
5750 ret = perf_output_begin(&handle, event,
a7ac67ea 5751 throttle_event.header.size);
a78ac325
PZ
5752 if (ret)
5753 return;
5754
5755 perf_output_put(&handle, throttle_event);
c980d109 5756 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5757 perf_output_end(&handle);
5758}
5759
f6c7d5fe 5760/*
cdd6c482 5761 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5762 */
5763
a8b0ca17 5764static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5765 int throttle, struct perf_sample_data *data,
5766 struct pt_regs *regs)
f6c7d5fe 5767{
cdd6c482
IM
5768 int events = atomic_read(&event->event_limit);
5769 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5770 u64 seq;
79f14641
PZ
5771 int ret = 0;
5772
96398826
PZ
5773 /*
5774 * Non-sampling counters might still use the PMI to fold short
5775 * hardware counters, ignore those.
5776 */
5777 if (unlikely(!is_sampling_event(event)))
5778 return 0;
5779
e050e3f0
SE
5780 seq = __this_cpu_read(perf_throttled_seq);
5781 if (seq != hwc->interrupts_seq) {
5782 hwc->interrupts_seq = seq;
5783 hwc->interrupts = 1;
5784 } else {
5785 hwc->interrupts++;
5786 if (unlikely(throttle
5787 && hwc->interrupts >= max_samples_per_tick)) {
5788 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5789 hwc->interrupts = MAX_INTERRUPTS;
5790 perf_log_throttle(event, 0);
d84153d6 5791 tick_nohz_full_kick();
a78ac325
PZ
5792 ret = 1;
5793 }
e050e3f0 5794 }
60db5e09 5795
cdd6c482 5796 if (event->attr.freq) {
def0a9b2 5797 u64 now = perf_clock();
abd50713 5798 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5799
abd50713 5800 hwc->freq_time_stamp = now;
bd2b5b12 5801
abd50713 5802 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5803 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5804 }
5805
2023b359
PZ
5806 /*
5807 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5808 * events
2023b359
PZ
5809 */
5810
cdd6c482
IM
5811 event->pending_kill = POLL_IN;
5812 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5813 ret = 1;
cdd6c482 5814 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5815 event->pending_disable = 1;
5816 irq_work_queue(&event->pending);
79f14641
PZ
5817 }
5818
453f19ee 5819 if (event->overflow_handler)
a8b0ca17 5820 event->overflow_handler(event, data, regs);
453f19ee 5821 else
a8b0ca17 5822 perf_event_output(event, data, regs);
453f19ee 5823
f506b3dc 5824 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5825 event->pending_wakeup = 1;
5826 irq_work_queue(&event->pending);
f506b3dc
PZ
5827 }
5828
79f14641 5829 return ret;
f6c7d5fe
PZ
5830}
5831
a8b0ca17 5832int perf_event_overflow(struct perf_event *event,
5622f295
MM
5833 struct perf_sample_data *data,
5834 struct pt_regs *regs)
850bc73f 5835{
a8b0ca17 5836 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5837}
5838
15dbf27c 5839/*
cdd6c482 5840 * Generic software event infrastructure
15dbf27c
PZ
5841 */
5842
b28ab83c
PZ
5843struct swevent_htable {
5844 struct swevent_hlist *swevent_hlist;
5845 struct mutex hlist_mutex;
5846 int hlist_refcount;
5847
5848 /* Recursion avoidance in each contexts */
5849 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5850
5851 /* Keeps track of cpu being initialized/exited */
5852 bool online;
b28ab83c
PZ
5853};
5854
5855static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5856
7b4b6658 5857/*
cdd6c482
IM
5858 * We directly increment event->count and keep a second value in
5859 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5860 * is kept in the range [-sample_period, 0] so that we can use the
5861 * sign as trigger.
5862 */
5863
ab573844 5864u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5865{
cdd6c482 5866 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5867 u64 period = hwc->last_period;
5868 u64 nr, offset;
5869 s64 old, val;
5870
5871 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5872
5873again:
e7850595 5874 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5875 if (val < 0)
5876 return 0;
15dbf27c 5877
7b4b6658
PZ
5878 nr = div64_u64(period + val, period);
5879 offset = nr * period;
5880 val -= offset;
e7850595 5881 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5882 goto again;
15dbf27c 5883
7b4b6658 5884 return nr;
15dbf27c
PZ
5885}
5886
0cff784a 5887static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5888 struct perf_sample_data *data,
5622f295 5889 struct pt_regs *regs)
15dbf27c 5890{
cdd6c482 5891 struct hw_perf_event *hwc = &event->hw;
850bc73f 5892 int throttle = 0;
15dbf27c 5893
0cff784a
PZ
5894 if (!overflow)
5895 overflow = perf_swevent_set_period(event);
15dbf27c 5896
7b4b6658
PZ
5897 if (hwc->interrupts == MAX_INTERRUPTS)
5898 return;
15dbf27c 5899
7b4b6658 5900 for (; overflow; overflow--) {
a8b0ca17 5901 if (__perf_event_overflow(event, throttle,
5622f295 5902 data, regs)) {
7b4b6658
PZ
5903 /*
5904 * We inhibit the overflow from happening when
5905 * hwc->interrupts == MAX_INTERRUPTS.
5906 */
5907 break;
5908 }
cf450a73 5909 throttle = 1;
7b4b6658 5910 }
15dbf27c
PZ
5911}
5912
a4eaf7f1 5913static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5914 struct perf_sample_data *data,
5622f295 5915 struct pt_regs *regs)
7b4b6658 5916{
cdd6c482 5917 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5918
e7850595 5919 local64_add(nr, &event->count);
d6d020e9 5920
0cff784a
PZ
5921 if (!regs)
5922 return;
5923
6c7e550f 5924 if (!is_sampling_event(event))
7b4b6658 5925 return;
d6d020e9 5926
5d81e5cf
AV
5927 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5928 data->period = nr;
5929 return perf_swevent_overflow(event, 1, data, regs);
5930 } else
5931 data->period = event->hw.last_period;
5932
0cff784a 5933 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5934 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5935
e7850595 5936 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5937 return;
df1a132b 5938
a8b0ca17 5939 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5940}
5941
f5ffe02e
FW
5942static int perf_exclude_event(struct perf_event *event,
5943 struct pt_regs *regs)
5944{
a4eaf7f1 5945 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5946 return 1;
a4eaf7f1 5947
f5ffe02e
FW
5948 if (regs) {
5949 if (event->attr.exclude_user && user_mode(regs))
5950 return 1;
5951
5952 if (event->attr.exclude_kernel && !user_mode(regs))
5953 return 1;
5954 }
5955
5956 return 0;
5957}
5958
cdd6c482 5959static int perf_swevent_match(struct perf_event *event,
1c432d89 5960 enum perf_type_id type,
6fb2915d
LZ
5961 u32 event_id,
5962 struct perf_sample_data *data,
5963 struct pt_regs *regs)
15dbf27c 5964{
cdd6c482 5965 if (event->attr.type != type)
a21ca2ca 5966 return 0;
f5ffe02e 5967
cdd6c482 5968 if (event->attr.config != event_id)
15dbf27c
PZ
5969 return 0;
5970
f5ffe02e
FW
5971 if (perf_exclude_event(event, regs))
5972 return 0;
15dbf27c
PZ
5973
5974 return 1;
5975}
5976
76e1d904
FW
5977static inline u64 swevent_hash(u64 type, u32 event_id)
5978{
5979 u64 val = event_id | (type << 32);
5980
5981 return hash_64(val, SWEVENT_HLIST_BITS);
5982}
5983
49f135ed
FW
5984static inline struct hlist_head *
5985__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5986{
49f135ed
FW
5987 u64 hash = swevent_hash(type, event_id);
5988
5989 return &hlist->heads[hash];
5990}
76e1d904 5991
49f135ed
FW
5992/* For the read side: events when they trigger */
5993static inline struct hlist_head *
b28ab83c 5994find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5995{
5996 struct swevent_hlist *hlist;
76e1d904 5997
b28ab83c 5998 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5999 if (!hlist)
6000 return NULL;
6001
49f135ed
FW
6002 return __find_swevent_head(hlist, type, event_id);
6003}
6004
6005/* For the event head insertion and removal in the hlist */
6006static inline struct hlist_head *
b28ab83c 6007find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6008{
6009 struct swevent_hlist *hlist;
6010 u32 event_id = event->attr.config;
6011 u64 type = event->attr.type;
6012
6013 /*
6014 * Event scheduling is always serialized against hlist allocation
6015 * and release. Which makes the protected version suitable here.
6016 * The context lock guarantees that.
6017 */
b28ab83c 6018 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6019 lockdep_is_held(&event->ctx->lock));
6020 if (!hlist)
6021 return NULL;
6022
6023 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6024}
6025
6026static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6027 u64 nr,
76e1d904
FW
6028 struct perf_sample_data *data,
6029 struct pt_regs *regs)
15dbf27c 6030{
4a32fea9 6031 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6032 struct perf_event *event;
76e1d904 6033 struct hlist_head *head;
15dbf27c 6034
76e1d904 6035 rcu_read_lock();
b28ab83c 6036 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6037 if (!head)
6038 goto end;
6039
b67bfe0d 6040 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6041 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6042 perf_swevent_event(event, nr, data, regs);
15dbf27c 6043 }
76e1d904
FW
6044end:
6045 rcu_read_unlock();
15dbf27c
PZ
6046}
6047
86038c5e
PZI
6048DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6049
4ed7c92d 6050int perf_swevent_get_recursion_context(void)
96f6d444 6051{
4a32fea9 6052 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6053
b28ab83c 6054 return get_recursion_context(swhash->recursion);
96f6d444 6055}
645e8cc0 6056EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6057
fa9f90be 6058inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6059{
4a32fea9 6060 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6061
b28ab83c 6062 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6063}
15dbf27c 6064
86038c5e 6065void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6066{
a4234bfc 6067 struct perf_sample_data data;
4ed7c92d 6068
86038c5e 6069 if (WARN_ON_ONCE(!regs))
4ed7c92d 6070 return;
a4234bfc 6071
fd0d000b 6072 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6073 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6074}
6075
6076void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6077{
6078 int rctx;
6079
6080 preempt_disable_notrace();
6081 rctx = perf_swevent_get_recursion_context();
6082 if (unlikely(rctx < 0))
6083 goto fail;
6084
6085 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6086
6087 perf_swevent_put_recursion_context(rctx);
86038c5e 6088fail:
1c024eca 6089 preempt_enable_notrace();
b8e83514
PZ
6090}
6091
cdd6c482 6092static void perf_swevent_read(struct perf_event *event)
15dbf27c 6093{
15dbf27c
PZ
6094}
6095
a4eaf7f1 6096static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6097{
4a32fea9 6098 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6099 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6100 struct hlist_head *head;
6101
6c7e550f 6102 if (is_sampling_event(event)) {
7b4b6658 6103 hwc->last_period = hwc->sample_period;
cdd6c482 6104 perf_swevent_set_period(event);
7b4b6658 6105 }
76e1d904 6106
a4eaf7f1
PZ
6107 hwc->state = !(flags & PERF_EF_START);
6108
b28ab83c 6109 head = find_swevent_head(swhash, event);
39af6b16
JO
6110 if (!head) {
6111 /*
6112 * We can race with cpu hotplug code. Do not
6113 * WARN if the cpu just got unplugged.
6114 */
6115 WARN_ON_ONCE(swhash->online);
76e1d904 6116 return -EINVAL;
39af6b16 6117 }
76e1d904
FW
6118
6119 hlist_add_head_rcu(&event->hlist_entry, head);
6120
15dbf27c
PZ
6121 return 0;
6122}
6123
a4eaf7f1 6124static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6125{
76e1d904 6126 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6127}
6128
a4eaf7f1 6129static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6130{
a4eaf7f1 6131 event->hw.state = 0;
d6d020e9 6132}
aa9c4c0f 6133
a4eaf7f1 6134static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6135{
a4eaf7f1 6136 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6137}
6138
49f135ed
FW
6139/* Deref the hlist from the update side */
6140static inline struct swevent_hlist *
b28ab83c 6141swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6142{
b28ab83c
PZ
6143 return rcu_dereference_protected(swhash->swevent_hlist,
6144 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6145}
6146
b28ab83c 6147static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6148{
b28ab83c 6149 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6150
49f135ed 6151 if (!hlist)
76e1d904
FW
6152 return;
6153
70691d4a 6154 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6155 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6156}
6157
6158static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6159{
b28ab83c 6160 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6161
b28ab83c 6162 mutex_lock(&swhash->hlist_mutex);
76e1d904 6163
b28ab83c
PZ
6164 if (!--swhash->hlist_refcount)
6165 swevent_hlist_release(swhash);
76e1d904 6166
b28ab83c 6167 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6168}
6169
6170static void swevent_hlist_put(struct perf_event *event)
6171{
6172 int cpu;
6173
76e1d904
FW
6174 for_each_possible_cpu(cpu)
6175 swevent_hlist_put_cpu(event, cpu);
6176}
6177
6178static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6179{
b28ab83c 6180 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6181 int err = 0;
6182
b28ab83c 6183 mutex_lock(&swhash->hlist_mutex);
76e1d904 6184
b28ab83c 6185 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6186 struct swevent_hlist *hlist;
6187
6188 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6189 if (!hlist) {
6190 err = -ENOMEM;
6191 goto exit;
6192 }
b28ab83c 6193 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6194 }
b28ab83c 6195 swhash->hlist_refcount++;
9ed6060d 6196exit:
b28ab83c 6197 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6198
6199 return err;
6200}
6201
6202static int swevent_hlist_get(struct perf_event *event)
6203{
6204 int err;
6205 int cpu, failed_cpu;
6206
76e1d904
FW
6207 get_online_cpus();
6208 for_each_possible_cpu(cpu) {
6209 err = swevent_hlist_get_cpu(event, cpu);
6210 if (err) {
6211 failed_cpu = cpu;
6212 goto fail;
6213 }
6214 }
6215 put_online_cpus();
6216
6217 return 0;
9ed6060d 6218fail:
76e1d904
FW
6219 for_each_possible_cpu(cpu) {
6220 if (cpu == failed_cpu)
6221 break;
6222 swevent_hlist_put_cpu(event, cpu);
6223 }
6224
6225 put_online_cpus();
6226 return err;
6227}
6228
c5905afb 6229struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6230
b0a873eb
PZ
6231static void sw_perf_event_destroy(struct perf_event *event)
6232{
6233 u64 event_id = event->attr.config;
95476b64 6234
b0a873eb
PZ
6235 WARN_ON(event->parent);
6236
c5905afb 6237 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6238 swevent_hlist_put(event);
6239}
6240
6241static int perf_swevent_init(struct perf_event *event)
6242{
8176cced 6243 u64 event_id = event->attr.config;
b0a873eb
PZ
6244
6245 if (event->attr.type != PERF_TYPE_SOFTWARE)
6246 return -ENOENT;
6247
2481c5fa
SE
6248 /*
6249 * no branch sampling for software events
6250 */
6251 if (has_branch_stack(event))
6252 return -EOPNOTSUPP;
6253
b0a873eb
PZ
6254 switch (event_id) {
6255 case PERF_COUNT_SW_CPU_CLOCK:
6256 case PERF_COUNT_SW_TASK_CLOCK:
6257 return -ENOENT;
6258
6259 default:
6260 break;
6261 }
6262
ce677831 6263 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6264 return -ENOENT;
6265
6266 if (!event->parent) {
6267 int err;
6268
6269 err = swevent_hlist_get(event);
6270 if (err)
6271 return err;
6272
c5905afb 6273 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6274 event->destroy = sw_perf_event_destroy;
6275 }
6276
6277 return 0;
6278}
6279
6280static struct pmu perf_swevent = {
89a1e187 6281 .task_ctx_nr = perf_sw_context,
95476b64 6282
b0a873eb 6283 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6284 .add = perf_swevent_add,
6285 .del = perf_swevent_del,
6286 .start = perf_swevent_start,
6287 .stop = perf_swevent_stop,
1c024eca 6288 .read = perf_swevent_read,
1c024eca
PZ
6289};
6290
b0a873eb
PZ
6291#ifdef CONFIG_EVENT_TRACING
6292
1c024eca
PZ
6293static int perf_tp_filter_match(struct perf_event *event,
6294 struct perf_sample_data *data)
6295{
6296 void *record = data->raw->data;
6297
6298 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6299 return 1;
6300 return 0;
6301}
6302
6303static int perf_tp_event_match(struct perf_event *event,
6304 struct perf_sample_data *data,
6305 struct pt_regs *regs)
6306{
a0f7d0f7
FW
6307 if (event->hw.state & PERF_HES_STOPPED)
6308 return 0;
580d607c
PZ
6309 /*
6310 * All tracepoints are from kernel-space.
6311 */
6312 if (event->attr.exclude_kernel)
1c024eca
PZ
6313 return 0;
6314
6315 if (!perf_tp_filter_match(event, data))
6316 return 0;
6317
6318 return 1;
6319}
6320
6321void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6322 struct pt_regs *regs, struct hlist_head *head, int rctx,
6323 struct task_struct *task)
95476b64
FW
6324{
6325 struct perf_sample_data data;
1c024eca 6326 struct perf_event *event;
1c024eca 6327
95476b64
FW
6328 struct perf_raw_record raw = {
6329 .size = entry_size,
6330 .data = record,
6331 };
6332
fd0d000b 6333 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6334 data.raw = &raw;
6335
b67bfe0d 6336 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6337 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6338 perf_swevent_event(event, count, &data, regs);
4f41c013 6339 }
ecc55f84 6340
e6dab5ff
AV
6341 /*
6342 * If we got specified a target task, also iterate its context and
6343 * deliver this event there too.
6344 */
6345 if (task && task != current) {
6346 struct perf_event_context *ctx;
6347 struct trace_entry *entry = record;
6348
6349 rcu_read_lock();
6350 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6351 if (!ctx)
6352 goto unlock;
6353
6354 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6355 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6356 continue;
6357 if (event->attr.config != entry->type)
6358 continue;
6359 if (perf_tp_event_match(event, &data, regs))
6360 perf_swevent_event(event, count, &data, regs);
6361 }
6362unlock:
6363 rcu_read_unlock();
6364 }
6365
ecc55f84 6366 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6367}
6368EXPORT_SYMBOL_GPL(perf_tp_event);
6369
cdd6c482 6370static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6371{
1c024eca 6372 perf_trace_destroy(event);
e077df4f
PZ
6373}
6374
b0a873eb 6375static int perf_tp_event_init(struct perf_event *event)
e077df4f 6376{
76e1d904
FW
6377 int err;
6378
b0a873eb
PZ
6379 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6380 return -ENOENT;
6381
2481c5fa
SE
6382 /*
6383 * no branch sampling for tracepoint events
6384 */
6385 if (has_branch_stack(event))
6386 return -EOPNOTSUPP;
6387
1c024eca
PZ
6388 err = perf_trace_init(event);
6389 if (err)
b0a873eb 6390 return err;
e077df4f 6391
cdd6c482 6392 event->destroy = tp_perf_event_destroy;
e077df4f 6393
b0a873eb
PZ
6394 return 0;
6395}
6396
6397static struct pmu perf_tracepoint = {
89a1e187
PZ
6398 .task_ctx_nr = perf_sw_context,
6399
b0a873eb 6400 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6401 .add = perf_trace_add,
6402 .del = perf_trace_del,
6403 .start = perf_swevent_start,
6404 .stop = perf_swevent_stop,
b0a873eb 6405 .read = perf_swevent_read,
b0a873eb
PZ
6406};
6407
6408static inline void perf_tp_register(void)
6409{
2e80a82a 6410 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6411}
6fb2915d
LZ
6412
6413static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6414{
6415 char *filter_str;
6416 int ret;
6417
6418 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6419 return -EINVAL;
6420
6421 filter_str = strndup_user(arg, PAGE_SIZE);
6422 if (IS_ERR(filter_str))
6423 return PTR_ERR(filter_str);
6424
6425 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6426
6427 kfree(filter_str);
6428 return ret;
6429}
6430
6431static void perf_event_free_filter(struct perf_event *event)
6432{
6433 ftrace_profile_free_filter(event);
6434}
6435
e077df4f 6436#else
6fb2915d 6437
b0a873eb 6438static inline void perf_tp_register(void)
e077df4f 6439{
e077df4f 6440}
6fb2915d
LZ
6441
6442static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6443{
6444 return -ENOENT;
6445}
6446
6447static void perf_event_free_filter(struct perf_event *event)
6448{
6449}
6450
07b139c8 6451#endif /* CONFIG_EVENT_TRACING */
e077df4f 6452
24f1e32c 6453#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6454void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6455{
f5ffe02e
FW
6456 struct perf_sample_data sample;
6457 struct pt_regs *regs = data;
6458
fd0d000b 6459 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6460
a4eaf7f1 6461 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6462 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6463}
6464#endif
6465
b0a873eb
PZ
6466/*
6467 * hrtimer based swevent callback
6468 */
f29ac756 6469
b0a873eb 6470static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6471{
b0a873eb
PZ
6472 enum hrtimer_restart ret = HRTIMER_RESTART;
6473 struct perf_sample_data data;
6474 struct pt_regs *regs;
6475 struct perf_event *event;
6476 u64 period;
f29ac756 6477
b0a873eb 6478 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6479
6480 if (event->state != PERF_EVENT_STATE_ACTIVE)
6481 return HRTIMER_NORESTART;
6482
b0a873eb 6483 event->pmu->read(event);
f344011c 6484
fd0d000b 6485 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6486 regs = get_irq_regs();
6487
6488 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6489 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6490 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6491 ret = HRTIMER_NORESTART;
6492 }
24f1e32c 6493
b0a873eb
PZ
6494 period = max_t(u64, 10000, event->hw.sample_period);
6495 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6496
b0a873eb 6497 return ret;
f29ac756
PZ
6498}
6499
b0a873eb 6500static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6501{
b0a873eb 6502 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6503 s64 period;
6504
6505 if (!is_sampling_event(event))
6506 return;
f5ffe02e 6507
5d508e82
FBH
6508 period = local64_read(&hwc->period_left);
6509 if (period) {
6510 if (period < 0)
6511 period = 10000;
fa407f35 6512
5d508e82
FBH
6513 local64_set(&hwc->period_left, 0);
6514 } else {
6515 period = max_t(u64, 10000, hwc->sample_period);
6516 }
6517 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6518 ns_to_ktime(period), 0,
b5ab4cd5 6519 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6520}
b0a873eb
PZ
6521
6522static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6523{
b0a873eb
PZ
6524 struct hw_perf_event *hwc = &event->hw;
6525
6c7e550f 6526 if (is_sampling_event(event)) {
b0a873eb 6527 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6528 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6529
6530 hrtimer_cancel(&hwc->hrtimer);
6531 }
24f1e32c
FW
6532}
6533
ba3dd36c
PZ
6534static void perf_swevent_init_hrtimer(struct perf_event *event)
6535{
6536 struct hw_perf_event *hwc = &event->hw;
6537
6538 if (!is_sampling_event(event))
6539 return;
6540
6541 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6542 hwc->hrtimer.function = perf_swevent_hrtimer;
6543
6544 /*
6545 * Since hrtimers have a fixed rate, we can do a static freq->period
6546 * mapping and avoid the whole period adjust feedback stuff.
6547 */
6548 if (event->attr.freq) {
6549 long freq = event->attr.sample_freq;
6550
6551 event->attr.sample_period = NSEC_PER_SEC / freq;
6552 hwc->sample_period = event->attr.sample_period;
6553 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6554 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6555 event->attr.freq = 0;
6556 }
6557}
6558
b0a873eb
PZ
6559/*
6560 * Software event: cpu wall time clock
6561 */
6562
6563static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6564{
b0a873eb
PZ
6565 s64 prev;
6566 u64 now;
6567
a4eaf7f1 6568 now = local_clock();
b0a873eb
PZ
6569 prev = local64_xchg(&event->hw.prev_count, now);
6570 local64_add(now - prev, &event->count);
24f1e32c 6571}
24f1e32c 6572
a4eaf7f1 6573static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6574{
a4eaf7f1 6575 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6576 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6577}
6578
a4eaf7f1 6579static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6580{
b0a873eb
PZ
6581 perf_swevent_cancel_hrtimer(event);
6582 cpu_clock_event_update(event);
6583}
f29ac756 6584
a4eaf7f1
PZ
6585static int cpu_clock_event_add(struct perf_event *event, int flags)
6586{
6587 if (flags & PERF_EF_START)
6588 cpu_clock_event_start(event, flags);
6589
6590 return 0;
6591}
6592
6593static void cpu_clock_event_del(struct perf_event *event, int flags)
6594{
6595 cpu_clock_event_stop(event, flags);
6596}
6597
b0a873eb
PZ
6598static void cpu_clock_event_read(struct perf_event *event)
6599{
6600 cpu_clock_event_update(event);
6601}
f344011c 6602
b0a873eb
PZ
6603static int cpu_clock_event_init(struct perf_event *event)
6604{
6605 if (event->attr.type != PERF_TYPE_SOFTWARE)
6606 return -ENOENT;
6607
6608 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6609 return -ENOENT;
6610
2481c5fa
SE
6611 /*
6612 * no branch sampling for software events
6613 */
6614 if (has_branch_stack(event))
6615 return -EOPNOTSUPP;
6616
ba3dd36c
PZ
6617 perf_swevent_init_hrtimer(event);
6618
b0a873eb 6619 return 0;
f29ac756
PZ
6620}
6621
b0a873eb 6622static struct pmu perf_cpu_clock = {
89a1e187
PZ
6623 .task_ctx_nr = perf_sw_context,
6624
b0a873eb 6625 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6626 .add = cpu_clock_event_add,
6627 .del = cpu_clock_event_del,
6628 .start = cpu_clock_event_start,
6629 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6630 .read = cpu_clock_event_read,
6631};
6632
6633/*
6634 * Software event: task time clock
6635 */
6636
6637static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6638{
b0a873eb
PZ
6639 u64 prev;
6640 s64 delta;
5c92d124 6641
b0a873eb
PZ
6642 prev = local64_xchg(&event->hw.prev_count, now);
6643 delta = now - prev;
6644 local64_add(delta, &event->count);
6645}
5c92d124 6646
a4eaf7f1 6647static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6648{
a4eaf7f1 6649 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6650 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6651}
6652
a4eaf7f1 6653static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6654{
6655 perf_swevent_cancel_hrtimer(event);
6656 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6657}
6658
6659static int task_clock_event_add(struct perf_event *event, int flags)
6660{
6661 if (flags & PERF_EF_START)
6662 task_clock_event_start(event, flags);
b0a873eb 6663
a4eaf7f1
PZ
6664 return 0;
6665}
6666
6667static void task_clock_event_del(struct perf_event *event, int flags)
6668{
6669 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6670}
6671
6672static void task_clock_event_read(struct perf_event *event)
6673{
768a06e2
PZ
6674 u64 now = perf_clock();
6675 u64 delta = now - event->ctx->timestamp;
6676 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6677
6678 task_clock_event_update(event, time);
6679}
6680
6681static int task_clock_event_init(struct perf_event *event)
6fb2915d 6682{
b0a873eb
PZ
6683 if (event->attr.type != PERF_TYPE_SOFTWARE)
6684 return -ENOENT;
6685
6686 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6687 return -ENOENT;
6688
2481c5fa
SE
6689 /*
6690 * no branch sampling for software events
6691 */
6692 if (has_branch_stack(event))
6693 return -EOPNOTSUPP;
6694
ba3dd36c
PZ
6695 perf_swevent_init_hrtimer(event);
6696
b0a873eb 6697 return 0;
6fb2915d
LZ
6698}
6699
b0a873eb 6700static struct pmu perf_task_clock = {
89a1e187
PZ
6701 .task_ctx_nr = perf_sw_context,
6702
b0a873eb 6703 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6704 .add = task_clock_event_add,
6705 .del = task_clock_event_del,
6706 .start = task_clock_event_start,
6707 .stop = task_clock_event_stop,
b0a873eb
PZ
6708 .read = task_clock_event_read,
6709};
6fb2915d 6710
ad5133b7 6711static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6712{
e077df4f 6713}
6fb2915d 6714
ad5133b7 6715static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6716{
ad5133b7 6717 return 0;
6fb2915d
LZ
6718}
6719
ad5133b7 6720static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6721{
ad5133b7 6722 perf_pmu_disable(pmu);
6fb2915d
LZ
6723}
6724
ad5133b7
PZ
6725static int perf_pmu_commit_txn(struct pmu *pmu)
6726{
6727 perf_pmu_enable(pmu);
6728 return 0;
6729}
e077df4f 6730
ad5133b7 6731static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6732{
ad5133b7 6733 perf_pmu_enable(pmu);
24f1e32c
FW
6734}
6735
35edc2a5
PZ
6736static int perf_event_idx_default(struct perf_event *event)
6737{
c719f560 6738 return 0;
35edc2a5
PZ
6739}
6740
8dc85d54
PZ
6741/*
6742 * Ensures all contexts with the same task_ctx_nr have the same
6743 * pmu_cpu_context too.
6744 */
9e317041 6745static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6746{
8dc85d54 6747 struct pmu *pmu;
b326e956 6748
8dc85d54
PZ
6749 if (ctxn < 0)
6750 return NULL;
24f1e32c 6751
8dc85d54
PZ
6752 list_for_each_entry(pmu, &pmus, entry) {
6753 if (pmu->task_ctx_nr == ctxn)
6754 return pmu->pmu_cpu_context;
6755 }
24f1e32c 6756
8dc85d54 6757 return NULL;
24f1e32c
FW
6758}
6759
51676957 6760static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6761{
51676957
PZ
6762 int cpu;
6763
6764 for_each_possible_cpu(cpu) {
6765 struct perf_cpu_context *cpuctx;
6766
6767 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6768
3f1f3320
PZ
6769 if (cpuctx->unique_pmu == old_pmu)
6770 cpuctx->unique_pmu = pmu;
51676957
PZ
6771 }
6772}
6773
6774static void free_pmu_context(struct pmu *pmu)
6775{
6776 struct pmu *i;
f5ffe02e 6777
8dc85d54 6778 mutex_lock(&pmus_lock);
0475f9ea 6779 /*
8dc85d54 6780 * Like a real lame refcount.
0475f9ea 6781 */
51676957
PZ
6782 list_for_each_entry(i, &pmus, entry) {
6783 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6784 update_pmu_context(i, pmu);
8dc85d54 6785 goto out;
51676957 6786 }
8dc85d54 6787 }
d6d020e9 6788
51676957 6789 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6790out:
6791 mutex_unlock(&pmus_lock);
24f1e32c 6792}
2e80a82a 6793static struct idr pmu_idr;
d6d020e9 6794
abe43400
PZ
6795static ssize_t
6796type_show(struct device *dev, struct device_attribute *attr, char *page)
6797{
6798 struct pmu *pmu = dev_get_drvdata(dev);
6799
6800 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6801}
90826ca7 6802static DEVICE_ATTR_RO(type);
abe43400 6803
62b85639
SE
6804static ssize_t
6805perf_event_mux_interval_ms_show(struct device *dev,
6806 struct device_attribute *attr,
6807 char *page)
6808{
6809 struct pmu *pmu = dev_get_drvdata(dev);
6810
6811 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6812}
6813
6814static ssize_t
6815perf_event_mux_interval_ms_store(struct device *dev,
6816 struct device_attribute *attr,
6817 const char *buf, size_t count)
6818{
6819 struct pmu *pmu = dev_get_drvdata(dev);
6820 int timer, cpu, ret;
6821
6822 ret = kstrtoint(buf, 0, &timer);
6823 if (ret)
6824 return ret;
6825
6826 if (timer < 1)
6827 return -EINVAL;
6828
6829 /* same value, noting to do */
6830 if (timer == pmu->hrtimer_interval_ms)
6831 return count;
6832
6833 pmu->hrtimer_interval_ms = timer;
6834
6835 /* update all cpuctx for this PMU */
6836 for_each_possible_cpu(cpu) {
6837 struct perf_cpu_context *cpuctx;
6838 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6839 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6840
6841 if (hrtimer_active(&cpuctx->hrtimer))
6842 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6843 }
6844
6845 return count;
6846}
90826ca7 6847static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6848
90826ca7
GKH
6849static struct attribute *pmu_dev_attrs[] = {
6850 &dev_attr_type.attr,
6851 &dev_attr_perf_event_mux_interval_ms.attr,
6852 NULL,
abe43400 6853};
90826ca7 6854ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6855
6856static int pmu_bus_running;
6857static struct bus_type pmu_bus = {
6858 .name = "event_source",
90826ca7 6859 .dev_groups = pmu_dev_groups,
abe43400
PZ
6860};
6861
6862static void pmu_dev_release(struct device *dev)
6863{
6864 kfree(dev);
6865}
6866
6867static int pmu_dev_alloc(struct pmu *pmu)
6868{
6869 int ret = -ENOMEM;
6870
6871 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6872 if (!pmu->dev)
6873 goto out;
6874
0c9d42ed 6875 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6876 device_initialize(pmu->dev);
6877 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6878 if (ret)
6879 goto free_dev;
6880
6881 dev_set_drvdata(pmu->dev, pmu);
6882 pmu->dev->bus = &pmu_bus;
6883 pmu->dev->release = pmu_dev_release;
6884 ret = device_add(pmu->dev);
6885 if (ret)
6886 goto free_dev;
6887
6888out:
6889 return ret;
6890
6891free_dev:
6892 put_device(pmu->dev);
6893 goto out;
6894}
6895
547e9fd7 6896static struct lock_class_key cpuctx_mutex;
facc4307 6897static struct lock_class_key cpuctx_lock;
547e9fd7 6898
03d8e80b 6899int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6900{
108b02cf 6901 int cpu, ret;
24f1e32c 6902
b0a873eb 6903 mutex_lock(&pmus_lock);
33696fc0
PZ
6904 ret = -ENOMEM;
6905 pmu->pmu_disable_count = alloc_percpu(int);
6906 if (!pmu->pmu_disable_count)
6907 goto unlock;
f29ac756 6908
2e80a82a
PZ
6909 pmu->type = -1;
6910 if (!name)
6911 goto skip_type;
6912 pmu->name = name;
6913
6914 if (type < 0) {
0e9c3be2
TH
6915 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6916 if (type < 0) {
6917 ret = type;
2e80a82a
PZ
6918 goto free_pdc;
6919 }
6920 }
6921 pmu->type = type;
6922
abe43400
PZ
6923 if (pmu_bus_running) {
6924 ret = pmu_dev_alloc(pmu);
6925 if (ret)
6926 goto free_idr;
6927 }
6928
2e80a82a 6929skip_type:
8dc85d54
PZ
6930 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6931 if (pmu->pmu_cpu_context)
6932 goto got_cpu_context;
f29ac756 6933
c4814202 6934 ret = -ENOMEM;
108b02cf
PZ
6935 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6936 if (!pmu->pmu_cpu_context)
abe43400 6937 goto free_dev;
f344011c 6938
108b02cf
PZ
6939 for_each_possible_cpu(cpu) {
6940 struct perf_cpu_context *cpuctx;
6941
6942 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6943 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6944 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6945 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6946 cpuctx->ctx.pmu = pmu;
9e630205
SE
6947
6948 __perf_cpu_hrtimer_init(cpuctx, cpu);
6949
e9d2b064 6950 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6951 cpuctx->unique_pmu = pmu;
108b02cf 6952 }
76e1d904 6953
8dc85d54 6954got_cpu_context:
ad5133b7
PZ
6955 if (!pmu->start_txn) {
6956 if (pmu->pmu_enable) {
6957 /*
6958 * If we have pmu_enable/pmu_disable calls, install
6959 * transaction stubs that use that to try and batch
6960 * hardware accesses.
6961 */
6962 pmu->start_txn = perf_pmu_start_txn;
6963 pmu->commit_txn = perf_pmu_commit_txn;
6964 pmu->cancel_txn = perf_pmu_cancel_txn;
6965 } else {
6966 pmu->start_txn = perf_pmu_nop_void;
6967 pmu->commit_txn = perf_pmu_nop_int;
6968 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6969 }
5c92d124 6970 }
15dbf27c 6971
ad5133b7
PZ
6972 if (!pmu->pmu_enable) {
6973 pmu->pmu_enable = perf_pmu_nop_void;
6974 pmu->pmu_disable = perf_pmu_nop_void;
6975 }
6976
35edc2a5
PZ
6977 if (!pmu->event_idx)
6978 pmu->event_idx = perf_event_idx_default;
6979
b0a873eb 6980 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6981 ret = 0;
6982unlock:
b0a873eb
PZ
6983 mutex_unlock(&pmus_lock);
6984
33696fc0 6985 return ret;
108b02cf 6986
abe43400
PZ
6987free_dev:
6988 device_del(pmu->dev);
6989 put_device(pmu->dev);
6990
2e80a82a
PZ
6991free_idr:
6992 if (pmu->type >= PERF_TYPE_MAX)
6993 idr_remove(&pmu_idr, pmu->type);
6994
108b02cf
PZ
6995free_pdc:
6996 free_percpu(pmu->pmu_disable_count);
6997 goto unlock;
f29ac756 6998}
c464c76e 6999EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7000
b0a873eb 7001void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7002{
b0a873eb
PZ
7003 mutex_lock(&pmus_lock);
7004 list_del_rcu(&pmu->entry);
7005 mutex_unlock(&pmus_lock);
5c92d124 7006
0475f9ea 7007 /*
cde8e884
PZ
7008 * We dereference the pmu list under both SRCU and regular RCU, so
7009 * synchronize against both of those.
0475f9ea 7010 */
b0a873eb 7011 synchronize_srcu(&pmus_srcu);
cde8e884 7012 synchronize_rcu();
d6d020e9 7013
33696fc0 7014 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7015 if (pmu->type >= PERF_TYPE_MAX)
7016 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7017 device_del(pmu->dev);
7018 put_device(pmu->dev);
51676957 7019 free_pmu_context(pmu);
b0a873eb 7020}
c464c76e 7021EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7022
b0a873eb
PZ
7023struct pmu *perf_init_event(struct perf_event *event)
7024{
7025 struct pmu *pmu = NULL;
7026 int idx;
940c5b29 7027 int ret;
b0a873eb
PZ
7028
7029 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7030
7031 rcu_read_lock();
7032 pmu = idr_find(&pmu_idr, event->attr.type);
7033 rcu_read_unlock();
940c5b29 7034 if (pmu) {
c464c76e
YZ
7035 if (!try_module_get(pmu->module)) {
7036 pmu = ERR_PTR(-ENODEV);
7037 goto unlock;
7038 }
7e5b2a01 7039 event->pmu = pmu;
940c5b29
LM
7040 ret = pmu->event_init(event);
7041 if (ret)
7042 pmu = ERR_PTR(ret);
2e80a82a 7043 goto unlock;
940c5b29 7044 }
2e80a82a 7045
b0a873eb 7046 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
7047 if (!try_module_get(pmu->module)) {
7048 pmu = ERR_PTR(-ENODEV);
7049 goto unlock;
7050 }
7e5b2a01 7051 event->pmu = pmu;
940c5b29 7052 ret = pmu->event_init(event);
b0a873eb 7053 if (!ret)
e5f4d339 7054 goto unlock;
76e1d904 7055
b0a873eb
PZ
7056 if (ret != -ENOENT) {
7057 pmu = ERR_PTR(ret);
e5f4d339 7058 goto unlock;
f344011c 7059 }
5c92d124 7060 }
e5f4d339
PZ
7061 pmu = ERR_PTR(-ENOENT);
7062unlock:
b0a873eb 7063 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7064
4aeb0b42 7065 return pmu;
5c92d124
IM
7066}
7067
4beb31f3
FW
7068static void account_event_cpu(struct perf_event *event, int cpu)
7069{
7070 if (event->parent)
7071 return;
7072
7073 if (has_branch_stack(event)) {
7074 if (!(event->attach_state & PERF_ATTACH_TASK))
7075 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7076 }
7077 if (is_cgroup_event(event))
7078 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7079}
7080
766d6c07
FW
7081static void account_event(struct perf_event *event)
7082{
4beb31f3
FW
7083 if (event->parent)
7084 return;
7085
766d6c07
FW
7086 if (event->attach_state & PERF_ATTACH_TASK)
7087 static_key_slow_inc(&perf_sched_events.key);
7088 if (event->attr.mmap || event->attr.mmap_data)
7089 atomic_inc(&nr_mmap_events);
7090 if (event->attr.comm)
7091 atomic_inc(&nr_comm_events);
7092 if (event->attr.task)
7093 atomic_inc(&nr_task_events);
948b26b6
FW
7094 if (event->attr.freq) {
7095 if (atomic_inc_return(&nr_freq_events) == 1)
7096 tick_nohz_full_kick_all();
7097 }
4beb31f3 7098 if (has_branch_stack(event))
766d6c07 7099 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7100 if (is_cgroup_event(event))
766d6c07 7101 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7102
7103 account_event_cpu(event, event->cpu);
766d6c07
FW
7104}
7105
0793a61d 7106/*
cdd6c482 7107 * Allocate and initialize a event structure
0793a61d 7108 */
cdd6c482 7109static struct perf_event *
c3f00c70 7110perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7111 struct task_struct *task,
7112 struct perf_event *group_leader,
7113 struct perf_event *parent_event,
4dc0da86
AK
7114 perf_overflow_handler_t overflow_handler,
7115 void *context)
0793a61d 7116{
51b0fe39 7117 struct pmu *pmu;
cdd6c482
IM
7118 struct perf_event *event;
7119 struct hw_perf_event *hwc;
90983b16 7120 long err = -EINVAL;
0793a61d 7121
66832eb4
ON
7122 if ((unsigned)cpu >= nr_cpu_ids) {
7123 if (!task || cpu != -1)
7124 return ERR_PTR(-EINVAL);
7125 }
7126
c3f00c70 7127 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7128 if (!event)
d5d2bc0d 7129 return ERR_PTR(-ENOMEM);
0793a61d 7130
04289bb9 7131 /*
cdd6c482 7132 * Single events are their own group leaders, with an
04289bb9
IM
7133 * empty sibling list:
7134 */
7135 if (!group_leader)
cdd6c482 7136 group_leader = event;
04289bb9 7137
cdd6c482
IM
7138 mutex_init(&event->child_mutex);
7139 INIT_LIST_HEAD(&event->child_list);
fccc714b 7140
cdd6c482
IM
7141 INIT_LIST_HEAD(&event->group_entry);
7142 INIT_LIST_HEAD(&event->event_entry);
7143 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7144 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7145 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7146 INIT_HLIST_NODE(&event->hlist_entry);
7147
10c6db11 7148
cdd6c482 7149 init_waitqueue_head(&event->waitq);
e360adbe 7150 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7151
cdd6c482 7152 mutex_init(&event->mmap_mutex);
7b732a75 7153
a6fa941d 7154 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7155 event->cpu = cpu;
7156 event->attr = *attr;
7157 event->group_leader = group_leader;
7158 event->pmu = NULL;
cdd6c482 7159 event->oncpu = -1;
a96bbc16 7160
cdd6c482 7161 event->parent = parent_event;
b84fbc9f 7162
17cf22c3 7163 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7164 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7165
cdd6c482 7166 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7167
d580ff86
PZ
7168 if (task) {
7169 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
7170
7171 if (attr->type == PERF_TYPE_TRACEPOINT)
7172 event->hw.tp_target = task;
d580ff86
PZ
7173#ifdef CONFIG_HAVE_HW_BREAKPOINT
7174 /*
7175 * hw_breakpoint is a bit difficult here..
7176 */
f22c1bb6 7177 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
7178 event->hw.bp_target = task;
7179#endif
7180 }
7181
4dc0da86 7182 if (!overflow_handler && parent_event) {
b326e956 7183 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7184 context = parent_event->overflow_handler_context;
7185 }
66832eb4 7186
b326e956 7187 event->overflow_handler = overflow_handler;
4dc0da86 7188 event->overflow_handler_context = context;
97eaf530 7189
0231bb53 7190 perf_event__state_init(event);
a86ed508 7191
4aeb0b42 7192 pmu = NULL;
b8e83514 7193
cdd6c482 7194 hwc = &event->hw;
bd2b5b12 7195 hwc->sample_period = attr->sample_period;
0d48696f 7196 if (attr->freq && attr->sample_freq)
bd2b5b12 7197 hwc->sample_period = 1;
eced1dfc 7198 hwc->last_period = hwc->sample_period;
bd2b5b12 7199
e7850595 7200 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7201
2023b359 7202 /*
cdd6c482 7203 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7204 */
3dab77fb 7205 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7206 goto err_ns;
2023b359 7207
b0a873eb 7208 pmu = perf_init_event(event);
4aeb0b42 7209 if (!pmu)
90983b16
FW
7210 goto err_ns;
7211 else if (IS_ERR(pmu)) {
4aeb0b42 7212 err = PTR_ERR(pmu);
90983b16 7213 goto err_ns;
621a01ea 7214 }
d5d2bc0d 7215
cdd6c482 7216 if (!event->parent) {
927c7a9e
FW
7217 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7218 err = get_callchain_buffers();
90983b16
FW
7219 if (err)
7220 goto err_pmu;
d010b332 7221 }
f344011c 7222 }
9ee318a7 7223
cdd6c482 7224 return event;
90983b16
FW
7225
7226err_pmu:
7227 if (event->destroy)
7228 event->destroy(event);
c464c76e 7229 module_put(pmu->module);
90983b16
FW
7230err_ns:
7231 if (event->ns)
7232 put_pid_ns(event->ns);
7233 kfree(event);
7234
7235 return ERR_PTR(err);
0793a61d
TG
7236}
7237
cdd6c482
IM
7238static int perf_copy_attr(struct perf_event_attr __user *uattr,
7239 struct perf_event_attr *attr)
974802ea 7240{
974802ea 7241 u32 size;
cdf8073d 7242 int ret;
974802ea
PZ
7243
7244 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7245 return -EFAULT;
7246
7247 /*
7248 * zero the full structure, so that a short copy will be nice.
7249 */
7250 memset(attr, 0, sizeof(*attr));
7251
7252 ret = get_user(size, &uattr->size);
7253 if (ret)
7254 return ret;
7255
7256 if (size > PAGE_SIZE) /* silly large */
7257 goto err_size;
7258
7259 if (!size) /* abi compat */
7260 size = PERF_ATTR_SIZE_VER0;
7261
7262 if (size < PERF_ATTR_SIZE_VER0)
7263 goto err_size;
7264
7265 /*
7266 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7267 * ensure all the unknown bits are 0 - i.e. new
7268 * user-space does not rely on any kernel feature
7269 * extensions we dont know about yet.
974802ea
PZ
7270 */
7271 if (size > sizeof(*attr)) {
cdf8073d
IS
7272 unsigned char __user *addr;
7273 unsigned char __user *end;
7274 unsigned char val;
974802ea 7275
cdf8073d
IS
7276 addr = (void __user *)uattr + sizeof(*attr);
7277 end = (void __user *)uattr + size;
974802ea 7278
cdf8073d 7279 for (; addr < end; addr++) {
974802ea
PZ
7280 ret = get_user(val, addr);
7281 if (ret)
7282 return ret;
7283 if (val)
7284 goto err_size;
7285 }
b3e62e35 7286 size = sizeof(*attr);
974802ea
PZ
7287 }
7288
7289 ret = copy_from_user(attr, uattr, size);
7290 if (ret)
7291 return -EFAULT;
7292
cd757645 7293 if (attr->__reserved_1)
974802ea
PZ
7294 return -EINVAL;
7295
7296 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7297 return -EINVAL;
7298
7299 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7300 return -EINVAL;
7301
bce38cd5
SE
7302 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7303 u64 mask = attr->branch_sample_type;
7304
7305 /* only using defined bits */
7306 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7307 return -EINVAL;
7308
7309 /* at least one branch bit must be set */
7310 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7311 return -EINVAL;
7312
bce38cd5
SE
7313 /* propagate priv level, when not set for branch */
7314 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7315
7316 /* exclude_kernel checked on syscall entry */
7317 if (!attr->exclude_kernel)
7318 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7319
7320 if (!attr->exclude_user)
7321 mask |= PERF_SAMPLE_BRANCH_USER;
7322
7323 if (!attr->exclude_hv)
7324 mask |= PERF_SAMPLE_BRANCH_HV;
7325 /*
7326 * adjust user setting (for HW filter setup)
7327 */
7328 attr->branch_sample_type = mask;
7329 }
e712209a
SE
7330 /* privileged levels capture (kernel, hv): check permissions */
7331 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7332 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7333 return -EACCES;
bce38cd5 7334 }
4018994f 7335
c5ebcedb 7336 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7337 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7338 if (ret)
7339 return ret;
7340 }
7341
7342 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7343 if (!arch_perf_have_user_stack_dump())
7344 return -ENOSYS;
7345
7346 /*
7347 * We have __u32 type for the size, but so far
7348 * we can only use __u16 as maximum due to the
7349 * __u16 sample size limit.
7350 */
7351 if (attr->sample_stack_user >= USHRT_MAX)
7352 ret = -EINVAL;
7353 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7354 ret = -EINVAL;
7355 }
4018994f 7356
60e2364e
SE
7357 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7358 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7359out:
7360 return ret;
7361
7362err_size:
7363 put_user(sizeof(*attr), &uattr->size);
7364 ret = -E2BIG;
7365 goto out;
7366}
7367
ac9721f3
PZ
7368static int
7369perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7370{
b69cf536 7371 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7372 int ret = -EINVAL;
7373
ac9721f3 7374 if (!output_event)
a4be7c27
PZ
7375 goto set;
7376
ac9721f3
PZ
7377 /* don't allow circular references */
7378 if (event == output_event)
a4be7c27
PZ
7379 goto out;
7380
0f139300
PZ
7381 /*
7382 * Don't allow cross-cpu buffers
7383 */
7384 if (output_event->cpu != event->cpu)
7385 goto out;
7386
7387 /*
76369139 7388 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7389 */
7390 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7391 goto out;
7392
a4be7c27 7393set:
cdd6c482 7394 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7395 /* Can't redirect output if we've got an active mmap() */
7396 if (atomic_read(&event->mmap_count))
7397 goto unlock;
a4be7c27 7398
ac9721f3 7399 if (output_event) {
76369139
FW
7400 /* get the rb we want to redirect to */
7401 rb = ring_buffer_get(output_event);
7402 if (!rb)
ac9721f3 7403 goto unlock;
a4be7c27
PZ
7404 }
7405
b69cf536 7406 ring_buffer_attach(event, rb);
9bb5d40c 7407
a4be7c27 7408 ret = 0;
ac9721f3
PZ
7409unlock:
7410 mutex_unlock(&event->mmap_mutex);
7411
a4be7c27 7412out:
a4be7c27
PZ
7413 return ret;
7414}
7415
f63a8daa
PZ
7416static void mutex_lock_double(struct mutex *a, struct mutex *b)
7417{
7418 if (b < a)
7419 swap(a, b);
7420
7421 mutex_lock(a);
7422 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7423}
7424
0793a61d 7425/**
cdd6c482 7426 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7427 *
cdd6c482 7428 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7429 * @pid: target pid
9f66a381 7430 * @cpu: target cpu
cdd6c482 7431 * @group_fd: group leader event fd
0793a61d 7432 */
cdd6c482
IM
7433SYSCALL_DEFINE5(perf_event_open,
7434 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7435 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7436{
b04243ef
PZ
7437 struct perf_event *group_leader = NULL, *output_event = NULL;
7438 struct perf_event *event, *sibling;
cdd6c482 7439 struct perf_event_attr attr;
f63a8daa 7440 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7441 struct file *event_file = NULL;
2903ff01 7442 struct fd group = {NULL, 0};
38a81da2 7443 struct task_struct *task = NULL;
89a1e187 7444 struct pmu *pmu;
ea635c64 7445 int event_fd;
b04243ef 7446 int move_group = 0;
dc86cabe 7447 int err;
a21b0b35 7448 int f_flags = O_RDWR;
0793a61d 7449
2743a5b0 7450 /* for future expandability... */
e5d1367f 7451 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7452 return -EINVAL;
7453
dc86cabe
IM
7454 err = perf_copy_attr(attr_uptr, &attr);
7455 if (err)
7456 return err;
eab656ae 7457
0764771d
PZ
7458 if (!attr.exclude_kernel) {
7459 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7460 return -EACCES;
7461 }
7462
df58ab24 7463 if (attr.freq) {
cdd6c482 7464 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7465 return -EINVAL;
0819b2e3
PZ
7466 } else {
7467 if (attr.sample_period & (1ULL << 63))
7468 return -EINVAL;
df58ab24
PZ
7469 }
7470
e5d1367f
SE
7471 /*
7472 * In cgroup mode, the pid argument is used to pass the fd
7473 * opened to the cgroup directory in cgroupfs. The cpu argument
7474 * designates the cpu on which to monitor threads from that
7475 * cgroup.
7476 */
7477 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7478 return -EINVAL;
7479
a21b0b35
YD
7480 if (flags & PERF_FLAG_FD_CLOEXEC)
7481 f_flags |= O_CLOEXEC;
7482
7483 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7484 if (event_fd < 0)
7485 return event_fd;
7486
ac9721f3 7487 if (group_fd != -1) {
2903ff01
AV
7488 err = perf_fget_light(group_fd, &group);
7489 if (err)
d14b12d7 7490 goto err_fd;
2903ff01 7491 group_leader = group.file->private_data;
ac9721f3
PZ
7492 if (flags & PERF_FLAG_FD_OUTPUT)
7493 output_event = group_leader;
7494 if (flags & PERF_FLAG_FD_NO_GROUP)
7495 group_leader = NULL;
7496 }
7497
e5d1367f 7498 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7499 task = find_lively_task_by_vpid(pid);
7500 if (IS_ERR(task)) {
7501 err = PTR_ERR(task);
7502 goto err_group_fd;
7503 }
7504 }
7505
1f4ee503
PZ
7506 if (task && group_leader &&
7507 group_leader->attr.inherit != attr.inherit) {
7508 err = -EINVAL;
7509 goto err_task;
7510 }
7511
fbfc623f
YZ
7512 get_online_cpus();
7513
4dc0da86
AK
7514 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7515 NULL, NULL);
d14b12d7
SE
7516 if (IS_ERR(event)) {
7517 err = PTR_ERR(event);
1f4ee503 7518 goto err_cpus;
d14b12d7
SE
7519 }
7520
e5d1367f
SE
7521 if (flags & PERF_FLAG_PID_CGROUP) {
7522 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7523 if (err) {
7524 __free_event(event);
1f4ee503 7525 goto err_cpus;
766d6c07 7526 }
e5d1367f
SE
7527 }
7528
53b25335
VW
7529 if (is_sampling_event(event)) {
7530 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7531 err = -ENOTSUPP;
7532 goto err_alloc;
7533 }
7534 }
7535
766d6c07
FW
7536 account_event(event);
7537
89a1e187
PZ
7538 /*
7539 * Special case software events and allow them to be part of
7540 * any hardware group.
7541 */
7542 pmu = event->pmu;
b04243ef
PZ
7543
7544 if (group_leader &&
7545 (is_software_event(event) != is_software_event(group_leader))) {
7546 if (is_software_event(event)) {
7547 /*
7548 * If event and group_leader are not both a software
7549 * event, and event is, then group leader is not.
7550 *
7551 * Allow the addition of software events to !software
7552 * groups, this is safe because software events never
7553 * fail to schedule.
7554 */
7555 pmu = group_leader->pmu;
7556 } else if (is_software_event(group_leader) &&
7557 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7558 /*
7559 * In case the group is a pure software group, and we
7560 * try to add a hardware event, move the whole group to
7561 * the hardware context.
7562 */
7563 move_group = 1;
7564 }
7565 }
89a1e187
PZ
7566
7567 /*
7568 * Get the target context (task or percpu):
7569 */
e2d37cd2 7570 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7571 if (IS_ERR(ctx)) {
7572 err = PTR_ERR(ctx);
c6be5a5c 7573 goto err_alloc;
89a1e187
PZ
7574 }
7575
fd1edb3a
PZ
7576 if (task) {
7577 put_task_struct(task);
7578 task = NULL;
7579 }
7580
ccff286d 7581 /*
cdd6c482 7582 * Look up the group leader (we will attach this event to it):
04289bb9 7583 */
ac9721f3 7584 if (group_leader) {
dc86cabe 7585 err = -EINVAL;
04289bb9 7586
04289bb9 7587 /*
ccff286d
IM
7588 * Do not allow a recursive hierarchy (this new sibling
7589 * becoming part of another group-sibling):
7590 */
7591 if (group_leader->group_leader != group_leader)
c3f00c70 7592 goto err_context;
ccff286d
IM
7593 /*
7594 * Do not allow to attach to a group in a different
7595 * task or CPU context:
04289bb9 7596 */
b04243ef 7597 if (move_group) {
c3c87e77
PZ
7598 /*
7599 * Make sure we're both on the same task, or both
7600 * per-cpu events.
7601 */
7602 if (group_leader->ctx->task != ctx->task)
7603 goto err_context;
7604
7605 /*
7606 * Make sure we're both events for the same CPU;
7607 * grouping events for different CPUs is broken; since
7608 * you can never concurrently schedule them anyhow.
7609 */
7610 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7611 goto err_context;
7612 } else {
7613 if (group_leader->ctx != ctx)
7614 goto err_context;
7615 }
7616
3b6f9e5c
PM
7617 /*
7618 * Only a group leader can be exclusive or pinned
7619 */
0d48696f 7620 if (attr.exclusive || attr.pinned)
c3f00c70 7621 goto err_context;
ac9721f3
PZ
7622 }
7623
7624 if (output_event) {
7625 err = perf_event_set_output(event, output_event);
7626 if (err)
c3f00c70 7627 goto err_context;
ac9721f3 7628 }
0793a61d 7629
a21b0b35
YD
7630 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7631 f_flags);
ea635c64
AV
7632 if (IS_ERR(event_file)) {
7633 err = PTR_ERR(event_file);
c3f00c70 7634 goto err_context;
ea635c64 7635 }
9b51f66d 7636
b04243ef 7637 if (move_group) {
f63a8daa
PZ
7638 gctx = group_leader->ctx;
7639
7640 /*
7641 * See perf_event_ctx_lock() for comments on the details
7642 * of swizzling perf_event::ctx.
7643 */
7644 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7645
46ce0fe9 7646 perf_remove_from_context(group_leader, false);
0231bb53
JO
7647
7648 /*
7649 * Removing from the context ends up with disabled
7650 * event. What we want here is event in the initial
7651 * startup state, ready to be add into new context.
7652 */
7653 perf_event__state_init(group_leader);
b04243ef
PZ
7654 list_for_each_entry(sibling, &group_leader->sibling_list,
7655 group_entry) {
46ce0fe9 7656 perf_remove_from_context(sibling, false);
0231bb53 7657 perf_event__state_init(sibling);
b04243ef
PZ
7658 put_ctx(gctx);
7659 }
f63a8daa
PZ
7660 } else {
7661 mutex_lock(&ctx->mutex);
ea635c64 7662 }
9b51f66d 7663
ad3a37de 7664 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7665
7666 if (move_group) {
f63a8daa
PZ
7667 /*
7668 * Wait for everybody to stop referencing the events through
7669 * the old lists, before installing it on new lists.
7670 */
0cda4c02 7671 synchronize_rcu();
f63a8daa 7672
9fc81d87 7673 perf_install_in_context(ctx, group_leader, group_leader->cpu);
b04243ef
PZ
7674 get_ctx(ctx);
7675 list_for_each_entry(sibling, &group_leader->sibling_list,
7676 group_entry) {
9fc81d87 7677 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7678 get_ctx(ctx);
7679 }
7680 }
7681
e2d37cd2 7682 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7683 perf_unpin_context(ctx);
f63a8daa
PZ
7684
7685 if (move_group) {
7686 mutex_unlock(&gctx->mutex);
7687 put_ctx(gctx);
7688 }
d859e29f 7689 mutex_unlock(&ctx->mutex);
9b51f66d 7690
fbfc623f
YZ
7691 put_online_cpus();
7692
cdd6c482 7693 event->owner = current;
8882135b 7694
cdd6c482
IM
7695 mutex_lock(&current->perf_event_mutex);
7696 list_add_tail(&event->owner_entry, &current->perf_event_list);
7697 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7698
c320c7b7
ACM
7699 /*
7700 * Precalculate sample_data sizes
7701 */
7702 perf_event__header_size(event);
6844c09d 7703 perf_event__id_header_size(event);
c320c7b7 7704
8a49542c
PZ
7705 /*
7706 * Drop the reference on the group_event after placing the
7707 * new event on the sibling_list. This ensures destruction
7708 * of the group leader will find the pointer to itself in
7709 * perf_group_detach().
7710 */
2903ff01 7711 fdput(group);
ea635c64
AV
7712 fd_install(event_fd, event_file);
7713 return event_fd;
0793a61d 7714
c3f00c70 7715err_context:
fe4b04fa 7716 perf_unpin_context(ctx);
ea635c64 7717 put_ctx(ctx);
c6be5a5c 7718err_alloc:
ea635c64 7719 free_event(event);
1f4ee503 7720err_cpus:
fbfc623f 7721 put_online_cpus();
1f4ee503 7722err_task:
e7d0bc04
PZ
7723 if (task)
7724 put_task_struct(task);
89a1e187 7725err_group_fd:
2903ff01 7726 fdput(group);
ea635c64
AV
7727err_fd:
7728 put_unused_fd(event_fd);
dc86cabe 7729 return err;
0793a61d
TG
7730}
7731
fb0459d7
AV
7732/**
7733 * perf_event_create_kernel_counter
7734 *
7735 * @attr: attributes of the counter to create
7736 * @cpu: cpu in which the counter is bound
38a81da2 7737 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7738 */
7739struct perf_event *
7740perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7741 struct task_struct *task,
4dc0da86
AK
7742 perf_overflow_handler_t overflow_handler,
7743 void *context)
fb0459d7 7744{
fb0459d7 7745 struct perf_event_context *ctx;
c3f00c70 7746 struct perf_event *event;
fb0459d7 7747 int err;
d859e29f 7748
fb0459d7
AV
7749 /*
7750 * Get the target context (task or percpu):
7751 */
d859e29f 7752
4dc0da86
AK
7753 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7754 overflow_handler, context);
c3f00c70
PZ
7755 if (IS_ERR(event)) {
7756 err = PTR_ERR(event);
7757 goto err;
7758 }
d859e29f 7759
f8697762
JO
7760 /* Mark owner so we could distinguish it from user events. */
7761 event->owner = EVENT_OWNER_KERNEL;
7762
766d6c07
FW
7763 account_event(event);
7764
38a81da2 7765 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7766 if (IS_ERR(ctx)) {
7767 err = PTR_ERR(ctx);
c3f00c70 7768 goto err_free;
d859e29f 7769 }
fb0459d7 7770
fb0459d7
AV
7771 WARN_ON_ONCE(ctx->parent_ctx);
7772 mutex_lock(&ctx->mutex);
7773 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7774 perf_unpin_context(ctx);
fb0459d7
AV
7775 mutex_unlock(&ctx->mutex);
7776
fb0459d7
AV
7777 return event;
7778
c3f00c70
PZ
7779err_free:
7780 free_event(event);
7781err:
c6567f64 7782 return ERR_PTR(err);
9b51f66d 7783}
fb0459d7 7784EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7785
0cda4c02
YZ
7786void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7787{
7788 struct perf_event_context *src_ctx;
7789 struct perf_event_context *dst_ctx;
7790 struct perf_event *event, *tmp;
7791 LIST_HEAD(events);
7792
7793 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7794 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7795
f63a8daa
PZ
7796 /*
7797 * See perf_event_ctx_lock() for comments on the details
7798 * of swizzling perf_event::ctx.
7799 */
7800 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7801 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7802 event_entry) {
46ce0fe9 7803 perf_remove_from_context(event, false);
9a545de0 7804 unaccount_event_cpu(event, src_cpu);
0cda4c02 7805 put_ctx(src_ctx);
9886167d 7806 list_add(&event->migrate_entry, &events);
0cda4c02 7807 }
0cda4c02
YZ
7808
7809 synchronize_rcu();
7810
9886167d
PZ
7811 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7812 list_del(&event->migrate_entry);
0cda4c02
YZ
7813 if (event->state >= PERF_EVENT_STATE_OFF)
7814 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7815 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7816 perf_install_in_context(dst_ctx, event, dst_cpu);
7817 get_ctx(dst_ctx);
7818 }
7819 mutex_unlock(&dst_ctx->mutex);
f63a8daa 7820 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
7821}
7822EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7823
cdd6c482 7824static void sync_child_event(struct perf_event *child_event,
38b200d6 7825 struct task_struct *child)
d859e29f 7826{
cdd6c482 7827 struct perf_event *parent_event = child_event->parent;
8bc20959 7828 u64 child_val;
d859e29f 7829
cdd6c482
IM
7830 if (child_event->attr.inherit_stat)
7831 perf_event_read_event(child_event, child);
38b200d6 7832
b5e58793 7833 child_val = perf_event_count(child_event);
d859e29f
PM
7834
7835 /*
7836 * Add back the child's count to the parent's count:
7837 */
a6e6dea6 7838 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7839 atomic64_add(child_event->total_time_enabled,
7840 &parent_event->child_total_time_enabled);
7841 atomic64_add(child_event->total_time_running,
7842 &parent_event->child_total_time_running);
d859e29f
PM
7843
7844 /*
cdd6c482 7845 * Remove this event from the parent's list
d859e29f 7846 */
cdd6c482
IM
7847 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7848 mutex_lock(&parent_event->child_mutex);
7849 list_del_init(&child_event->child_list);
7850 mutex_unlock(&parent_event->child_mutex);
d859e29f 7851
dc633982
JO
7852 /*
7853 * Make sure user/parent get notified, that we just
7854 * lost one event.
7855 */
7856 perf_event_wakeup(parent_event);
7857
d859e29f 7858 /*
cdd6c482 7859 * Release the parent event, if this was the last
d859e29f
PM
7860 * reference to it.
7861 */
a6fa941d 7862 put_event(parent_event);
d859e29f
PM
7863}
7864
9b51f66d 7865static void
cdd6c482
IM
7866__perf_event_exit_task(struct perf_event *child_event,
7867 struct perf_event_context *child_ctx,
38b200d6 7868 struct task_struct *child)
9b51f66d 7869{
1903d50c
PZ
7870 /*
7871 * Do not destroy the 'original' grouping; because of the context
7872 * switch optimization the original events could've ended up in a
7873 * random child task.
7874 *
7875 * If we were to destroy the original group, all group related
7876 * operations would cease to function properly after this random
7877 * child dies.
7878 *
7879 * Do destroy all inherited groups, we don't care about those
7880 * and being thorough is better.
7881 */
7882 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7883
9b51f66d 7884 /*
38b435b1 7885 * It can happen that the parent exits first, and has events
9b51f66d 7886 * that are still around due to the child reference. These
38b435b1 7887 * events need to be zapped.
9b51f66d 7888 */
38b435b1 7889 if (child_event->parent) {
cdd6c482
IM
7890 sync_child_event(child_event, child);
7891 free_event(child_event);
179033b3
JO
7892 } else {
7893 child_event->state = PERF_EVENT_STATE_EXIT;
7894 perf_event_wakeup(child_event);
4bcf349a 7895 }
9b51f66d
IM
7896}
7897
8dc85d54 7898static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7899{
ebf905fc 7900 struct perf_event *child_event, *next;
211de6eb 7901 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7902 unsigned long flags;
9b51f66d 7903
8dc85d54 7904 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7905 perf_event_task(child, NULL, 0);
9b51f66d 7906 return;
9f498cc5 7907 }
9b51f66d 7908
a63eaf34 7909 local_irq_save(flags);
ad3a37de
PM
7910 /*
7911 * We can't reschedule here because interrupts are disabled,
7912 * and either child is current or it is a task that can't be
7913 * scheduled, so we are now safe from rescheduling changing
7914 * our context.
7915 */
806839b2 7916 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7917
7918 /*
7919 * Take the context lock here so that if find_get_context is
cdd6c482 7920 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7921 * incremented the context's refcount before we do put_ctx below.
7922 */
e625cce1 7923 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7924 task_ctx_sched_out(child_ctx);
8dc85d54 7925 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7926
71a851b4
PZ
7927 /*
7928 * If this context is a clone; unclone it so it can't get
7929 * swapped to another process while we're removing all
cdd6c482 7930 * the events from it.
71a851b4 7931 */
211de6eb 7932 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7933 update_context_time(child_ctx);
e625cce1 7934 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7935
211de6eb
PZ
7936 if (clone_ctx)
7937 put_ctx(clone_ctx);
4a1c0f26 7938
9f498cc5 7939 /*
cdd6c482
IM
7940 * Report the task dead after unscheduling the events so that we
7941 * won't get any samples after PERF_RECORD_EXIT. We can however still
7942 * get a few PERF_RECORD_READ events.
9f498cc5 7943 */
cdd6c482 7944 perf_event_task(child, child_ctx, 0);
a63eaf34 7945
66fff224
PZ
7946 /*
7947 * We can recurse on the same lock type through:
7948 *
cdd6c482
IM
7949 * __perf_event_exit_task()
7950 * sync_child_event()
a6fa941d
AV
7951 * put_event()
7952 * mutex_lock(&ctx->mutex)
66fff224
PZ
7953 *
7954 * But since its the parent context it won't be the same instance.
7955 */
a0507c84 7956 mutex_lock(&child_ctx->mutex);
a63eaf34 7957
ebf905fc 7958 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7959 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7960
a63eaf34
PM
7961 mutex_unlock(&child_ctx->mutex);
7962
7963 put_ctx(child_ctx);
9b51f66d
IM
7964}
7965
8dc85d54
PZ
7966/*
7967 * When a child task exits, feed back event values to parent events.
7968 */
7969void perf_event_exit_task(struct task_struct *child)
7970{
8882135b 7971 struct perf_event *event, *tmp;
8dc85d54
PZ
7972 int ctxn;
7973
8882135b
PZ
7974 mutex_lock(&child->perf_event_mutex);
7975 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7976 owner_entry) {
7977 list_del_init(&event->owner_entry);
7978
7979 /*
7980 * Ensure the list deletion is visible before we clear
7981 * the owner, closes a race against perf_release() where
7982 * we need to serialize on the owner->perf_event_mutex.
7983 */
7984 smp_wmb();
7985 event->owner = NULL;
7986 }
7987 mutex_unlock(&child->perf_event_mutex);
7988
8dc85d54
PZ
7989 for_each_task_context_nr(ctxn)
7990 perf_event_exit_task_context(child, ctxn);
7991}
7992
889ff015
FW
7993static void perf_free_event(struct perf_event *event,
7994 struct perf_event_context *ctx)
7995{
7996 struct perf_event *parent = event->parent;
7997
7998 if (WARN_ON_ONCE(!parent))
7999 return;
8000
8001 mutex_lock(&parent->child_mutex);
8002 list_del_init(&event->child_list);
8003 mutex_unlock(&parent->child_mutex);
8004
a6fa941d 8005 put_event(parent);
889ff015 8006
652884fe 8007 raw_spin_lock_irq(&ctx->lock);
8a49542c 8008 perf_group_detach(event);
889ff015 8009 list_del_event(event, ctx);
652884fe 8010 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8011 free_event(event);
8012}
8013
bbbee908 8014/*
652884fe 8015 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8016 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8017 *
8018 * Not all locks are strictly required, but take them anyway to be nice and
8019 * help out with the lockdep assertions.
bbbee908 8020 */
cdd6c482 8021void perf_event_free_task(struct task_struct *task)
bbbee908 8022{
8dc85d54 8023 struct perf_event_context *ctx;
cdd6c482 8024 struct perf_event *event, *tmp;
8dc85d54 8025 int ctxn;
bbbee908 8026
8dc85d54
PZ
8027 for_each_task_context_nr(ctxn) {
8028 ctx = task->perf_event_ctxp[ctxn];
8029 if (!ctx)
8030 continue;
bbbee908 8031
8dc85d54 8032 mutex_lock(&ctx->mutex);
bbbee908 8033again:
8dc85d54
PZ
8034 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8035 group_entry)
8036 perf_free_event(event, ctx);
bbbee908 8037
8dc85d54
PZ
8038 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8039 group_entry)
8040 perf_free_event(event, ctx);
bbbee908 8041
8dc85d54
PZ
8042 if (!list_empty(&ctx->pinned_groups) ||
8043 !list_empty(&ctx->flexible_groups))
8044 goto again;
bbbee908 8045
8dc85d54 8046 mutex_unlock(&ctx->mutex);
bbbee908 8047
8dc85d54
PZ
8048 put_ctx(ctx);
8049 }
889ff015
FW
8050}
8051
4e231c79
PZ
8052void perf_event_delayed_put(struct task_struct *task)
8053{
8054 int ctxn;
8055
8056 for_each_task_context_nr(ctxn)
8057 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8058}
8059
97dee4f3
PZ
8060/*
8061 * inherit a event from parent task to child task:
8062 */
8063static struct perf_event *
8064inherit_event(struct perf_event *parent_event,
8065 struct task_struct *parent,
8066 struct perf_event_context *parent_ctx,
8067 struct task_struct *child,
8068 struct perf_event *group_leader,
8069 struct perf_event_context *child_ctx)
8070{
1929def9 8071 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8072 struct perf_event *child_event;
cee010ec 8073 unsigned long flags;
97dee4f3
PZ
8074
8075 /*
8076 * Instead of creating recursive hierarchies of events,
8077 * we link inherited events back to the original parent,
8078 * which has a filp for sure, which we use as the reference
8079 * count:
8080 */
8081 if (parent_event->parent)
8082 parent_event = parent_event->parent;
8083
8084 child_event = perf_event_alloc(&parent_event->attr,
8085 parent_event->cpu,
d580ff86 8086 child,
97dee4f3 8087 group_leader, parent_event,
4dc0da86 8088 NULL, NULL);
97dee4f3
PZ
8089 if (IS_ERR(child_event))
8090 return child_event;
a6fa941d 8091
fadfe7be
JO
8092 if (is_orphaned_event(parent_event) ||
8093 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8094 free_event(child_event);
8095 return NULL;
8096 }
8097
97dee4f3
PZ
8098 get_ctx(child_ctx);
8099
8100 /*
8101 * Make the child state follow the state of the parent event,
8102 * not its attr.disabled bit. We hold the parent's mutex,
8103 * so we won't race with perf_event_{en, dis}able_family.
8104 */
1929def9 8105 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8106 child_event->state = PERF_EVENT_STATE_INACTIVE;
8107 else
8108 child_event->state = PERF_EVENT_STATE_OFF;
8109
8110 if (parent_event->attr.freq) {
8111 u64 sample_period = parent_event->hw.sample_period;
8112 struct hw_perf_event *hwc = &child_event->hw;
8113
8114 hwc->sample_period = sample_period;
8115 hwc->last_period = sample_period;
8116
8117 local64_set(&hwc->period_left, sample_period);
8118 }
8119
8120 child_event->ctx = child_ctx;
8121 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8122 child_event->overflow_handler_context
8123 = parent_event->overflow_handler_context;
97dee4f3 8124
614b6780
TG
8125 /*
8126 * Precalculate sample_data sizes
8127 */
8128 perf_event__header_size(child_event);
6844c09d 8129 perf_event__id_header_size(child_event);
614b6780 8130
97dee4f3
PZ
8131 /*
8132 * Link it up in the child's context:
8133 */
cee010ec 8134 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8135 add_event_to_ctx(child_event, child_ctx);
cee010ec 8136 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8137
97dee4f3
PZ
8138 /*
8139 * Link this into the parent event's child list
8140 */
8141 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8142 mutex_lock(&parent_event->child_mutex);
8143 list_add_tail(&child_event->child_list, &parent_event->child_list);
8144 mutex_unlock(&parent_event->child_mutex);
8145
8146 return child_event;
8147}
8148
8149static int inherit_group(struct perf_event *parent_event,
8150 struct task_struct *parent,
8151 struct perf_event_context *parent_ctx,
8152 struct task_struct *child,
8153 struct perf_event_context *child_ctx)
8154{
8155 struct perf_event *leader;
8156 struct perf_event *sub;
8157 struct perf_event *child_ctr;
8158
8159 leader = inherit_event(parent_event, parent, parent_ctx,
8160 child, NULL, child_ctx);
8161 if (IS_ERR(leader))
8162 return PTR_ERR(leader);
8163 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8164 child_ctr = inherit_event(sub, parent, parent_ctx,
8165 child, leader, child_ctx);
8166 if (IS_ERR(child_ctr))
8167 return PTR_ERR(child_ctr);
8168 }
8169 return 0;
889ff015
FW
8170}
8171
8172static int
8173inherit_task_group(struct perf_event *event, struct task_struct *parent,
8174 struct perf_event_context *parent_ctx,
8dc85d54 8175 struct task_struct *child, int ctxn,
889ff015
FW
8176 int *inherited_all)
8177{
8178 int ret;
8dc85d54 8179 struct perf_event_context *child_ctx;
889ff015
FW
8180
8181 if (!event->attr.inherit) {
8182 *inherited_all = 0;
8183 return 0;
bbbee908
PZ
8184 }
8185
fe4b04fa 8186 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8187 if (!child_ctx) {
8188 /*
8189 * This is executed from the parent task context, so
8190 * inherit events that have been marked for cloning.
8191 * First allocate and initialize a context for the
8192 * child.
8193 */
bbbee908 8194
734df5ab 8195 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8196 if (!child_ctx)
8197 return -ENOMEM;
bbbee908 8198
8dc85d54 8199 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8200 }
8201
8202 ret = inherit_group(event, parent, parent_ctx,
8203 child, child_ctx);
8204
8205 if (ret)
8206 *inherited_all = 0;
8207
8208 return ret;
bbbee908
PZ
8209}
8210
9b51f66d 8211/*
cdd6c482 8212 * Initialize the perf_event context in task_struct
9b51f66d 8213 */
985c8dcb 8214static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8215{
889ff015 8216 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8217 struct perf_event_context *cloned_ctx;
8218 struct perf_event *event;
9b51f66d 8219 struct task_struct *parent = current;
564c2b21 8220 int inherited_all = 1;
dddd3379 8221 unsigned long flags;
6ab423e0 8222 int ret = 0;
9b51f66d 8223
8dc85d54 8224 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8225 return 0;
8226
ad3a37de 8227 /*
25346b93
PM
8228 * If the parent's context is a clone, pin it so it won't get
8229 * swapped under us.
ad3a37de 8230 */
8dc85d54 8231 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8232 if (!parent_ctx)
8233 return 0;
25346b93 8234
ad3a37de
PM
8235 /*
8236 * No need to check if parent_ctx != NULL here; since we saw
8237 * it non-NULL earlier, the only reason for it to become NULL
8238 * is if we exit, and since we're currently in the middle of
8239 * a fork we can't be exiting at the same time.
8240 */
ad3a37de 8241
9b51f66d
IM
8242 /*
8243 * Lock the parent list. No need to lock the child - not PID
8244 * hashed yet and not running, so nobody can access it.
8245 */
d859e29f 8246 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8247
8248 /*
8249 * We dont have to disable NMIs - we are only looking at
8250 * the list, not manipulating it:
8251 */
889ff015 8252 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8253 ret = inherit_task_group(event, parent, parent_ctx,
8254 child, ctxn, &inherited_all);
889ff015
FW
8255 if (ret)
8256 break;
8257 }
b93f7978 8258
dddd3379
TG
8259 /*
8260 * We can't hold ctx->lock when iterating the ->flexible_group list due
8261 * to allocations, but we need to prevent rotation because
8262 * rotate_ctx() will change the list from interrupt context.
8263 */
8264 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8265 parent_ctx->rotate_disable = 1;
8266 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8267
889ff015 8268 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8269 ret = inherit_task_group(event, parent, parent_ctx,
8270 child, ctxn, &inherited_all);
889ff015 8271 if (ret)
9b51f66d 8272 break;
564c2b21
PM
8273 }
8274
dddd3379
TG
8275 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8276 parent_ctx->rotate_disable = 0;
dddd3379 8277
8dc85d54 8278 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8279
05cbaa28 8280 if (child_ctx && inherited_all) {
564c2b21
PM
8281 /*
8282 * Mark the child context as a clone of the parent
8283 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8284 *
8285 * Note that if the parent is a clone, the holding of
8286 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8287 */
c5ed5145 8288 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8289 if (cloned_ctx) {
8290 child_ctx->parent_ctx = cloned_ctx;
25346b93 8291 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8292 } else {
8293 child_ctx->parent_ctx = parent_ctx;
8294 child_ctx->parent_gen = parent_ctx->generation;
8295 }
8296 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8297 }
8298
c5ed5145 8299 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8300 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8301
25346b93 8302 perf_unpin_context(parent_ctx);
fe4b04fa 8303 put_ctx(parent_ctx);
ad3a37de 8304
6ab423e0 8305 return ret;
9b51f66d
IM
8306}
8307
8dc85d54
PZ
8308/*
8309 * Initialize the perf_event context in task_struct
8310 */
8311int perf_event_init_task(struct task_struct *child)
8312{
8313 int ctxn, ret;
8314
8550d7cb
ON
8315 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8316 mutex_init(&child->perf_event_mutex);
8317 INIT_LIST_HEAD(&child->perf_event_list);
8318
8dc85d54
PZ
8319 for_each_task_context_nr(ctxn) {
8320 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8321 if (ret) {
8322 perf_event_free_task(child);
8dc85d54 8323 return ret;
6c72e350 8324 }
8dc85d54
PZ
8325 }
8326
8327 return 0;
8328}
8329
220b140b
PM
8330static void __init perf_event_init_all_cpus(void)
8331{
b28ab83c 8332 struct swevent_htable *swhash;
220b140b 8333 int cpu;
220b140b
PM
8334
8335 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8336 swhash = &per_cpu(swevent_htable, cpu);
8337 mutex_init(&swhash->hlist_mutex);
e9d2b064 8338 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
8339 }
8340}
8341
0db0628d 8342static void perf_event_init_cpu(int cpu)
0793a61d 8343{
108b02cf 8344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8345
b28ab83c 8346 mutex_lock(&swhash->hlist_mutex);
39af6b16 8347 swhash->online = true;
4536e4d1 8348 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8349 struct swevent_hlist *hlist;
8350
b28ab83c
PZ
8351 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8352 WARN_ON(!hlist);
8353 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8354 }
b28ab83c 8355 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8356}
8357
c277443c 8358#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 8359static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 8360{
e9d2b064
PZ
8361 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8362
8363 WARN_ON(!irqs_disabled());
8364
8365 list_del_init(&cpuctx->rotation_list);
8366}
8367
108b02cf 8368static void __perf_event_exit_context(void *__info)
0793a61d 8369{
226424ee 8370 struct remove_event re = { .detach_group = true };
108b02cf 8371 struct perf_event_context *ctx = __info;
0793a61d 8372
108b02cf 8373 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 8374
e3703f8c 8375 rcu_read_lock();
46ce0fe9
PZ
8376 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8377 __perf_remove_from_context(&re);
e3703f8c 8378 rcu_read_unlock();
0793a61d 8379}
108b02cf
PZ
8380
8381static void perf_event_exit_cpu_context(int cpu)
8382{
8383 struct perf_event_context *ctx;
8384 struct pmu *pmu;
8385 int idx;
8386
8387 idx = srcu_read_lock(&pmus_srcu);
8388 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8389 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8390
8391 mutex_lock(&ctx->mutex);
8392 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8393 mutex_unlock(&ctx->mutex);
8394 }
8395 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8396}
8397
cdd6c482 8398static void perf_event_exit_cpu(int cpu)
0793a61d 8399{
b28ab83c 8400 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8401
e3703f8c
PZ
8402 perf_event_exit_cpu_context(cpu);
8403
b28ab83c 8404 mutex_lock(&swhash->hlist_mutex);
39af6b16 8405 swhash->online = false;
b28ab83c
PZ
8406 swevent_hlist_release(swhash);
8407 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8408}
8409#else
cdd6c482 8410static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8411#endif
8412
c277443c
PZ
8413static int
8414perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8415{
8416 int cpu;
8417
8418 for_each_online_cpu(cpu)
8419 perf_event_exit_cpu(cpu);
8420
8421 return NOTIFY_OK;
8422}
8423
8424/*
8425 * Run the perf reboot notifier at the very last possible moment so that
8426 * the generic watchdog code runs as long as possible.
8427 */
8428static struct notifier_block perf_reboot_notifier = {
8429 .notifier_call = perf_reboot,
8430 .priority = INT_MIN,
8431};
8432
0db0628d 8433static int
0793a61d
TG
8434perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8435{
8436 unsigned int cpu = (long)hcpu;
8437
4536e4d1 8438 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8439
8440 case CPU_UP_PREPARE:
5e11637e 8441 case CPU_DOWN_FAILED:
cdd6c482 8442 perf_event_init_cpu(cpu);
0793a61d
TG
8443 break;
8444
5e11637e 8445 case CPU_UP_CANCELED:
0793a61d 8446 case CPU_DOWN_PREPARE:
cdd6c482 8447 perf_event_exit_cpu(cpu);
0793a61d 8448 break;
0793a61d
TG
8449 default:
8450 break;
8451 }
8452
8453 return NOTIFY_OK;
8454}
8455
cdd6c482 8456void __init perf_event_init(void)
0793a61d 8457{
3c502e7a
JW
8458 int ret;
8459
2e80a82a
PZ
8460 idr_init(&pmu_idr);
8461
220b140b 8462 perf_event_init_all_cpus();
b0a873eb 8463 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8464 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8465 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8466 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8467 perf_tp_register();
8468 perf_cpu_notifier(perf_cpu_notify);
c277443c 8469 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8470
8471 ret = init_hw_breakpoint();
8472 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8473
8474 /* do not patch jump label more than once per second */
8475 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8476
8477 /*
8478 * Build time assertion that we keep the data_head at the intended
8479 * location. IOW, validation we got the __reserved[] size right.
8480 */
8481 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8482 != 1024);
0793a61d 8483}
abe43400
PZ
8484
8485static int __init perf_event_sysfs_init(void)
8486{
8487 struct pmu *pmu;
8488 int ret;
8489
8490 mutex_lock(&pmus_lock);
8491
8492 ret = bus_register(&pmu_bus);
8493 if (ret)
8494 goto unlock;
8495
8496 list_for_each_entry(pmu, &pmus, entry) {
8497 if (!pmu->name || pmu->type < 0)
8498 continue;
8499
8500 ret = pmu_dev_alloc(pmu);
8501 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8502 }
8503 pmu_bus_running = 1;
8504 ret = 0;
8505
8506unlock:
8507 mutex_unlock(&pmus_lock);
8508
8509 return ret;
8510}
8511device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8512
8513#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8514static struct cgroup_subsys_state *
8515perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8516{
8517 struct perf_cgroup *jc;
e5d1367f 8518
1b15d055 8519 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8520 if (!jc)
8521 return ERR_PTR(-ENOMEM);
8522
e5d1367f
SE
8523 jc->info = alloc_percpu(struct perf_cgroup_info);
8524 if (!jc->info) {
8525 kfree(jc);
8526 return ERR_PTR(-ENOMEM);
8527 }
8528
e5d1367f
SE
8529 return &jc->css;
8530}
8531
eb95419b 8532static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8533{
eb95419b
TH
8534 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8535
e5d1367f
SE
8536 free_percpu(jc->info);
8537 kfree(jc);
8538}
8539
8540static int __perf_cgroup_move(void *info)
8541{
8542 struct task_struct *task = info;
8543 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8544 return 0;
8545}
8546
eb95419b
TH
8547static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8548 struct cgroup_taskset *tset)
e5d1367f 8549{
bb9d97b6
TH
8550 struct task_struct *task;
8551
924f0d9a 8552 cgroup_taskset_for_each(task, tset)
bb9d97b6 8553 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8554}
8555
eb95419b
TH
8556static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8557 struct cgroup_subsys_state *old_css,
761b3ef5 8558 struct task_struct *task)
e5d1367f
SE
8559{
8560 /*
8561 * cgroup_exit() is called in the copy_process() failure path.
8562 * Ignore this case since the task hasn't ran yet, this avoids
8563 * trying to poke a half freed task state from generic code.
8564 */
8565 if (!(task->flags & PF_EXITING))
8566 return;
8567
bb9d97b6 8568 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8569}
8570
073219e9 8571struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8572 .css_alloc = perf_cgroup_css_alloc,
8573 .css_free = perf_cgroup_css_free,
e7e7ee2e 8574 .exit = perf_cgroup_exit,
bb9d97b6 8575 .attach = perf_cgroup_attach,
e5d1367f
SE
8576};
8577#endif /* CONFIG_CGROUP_PERF */