Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
0017960f
PZ
129static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133{
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158}
159
f8697762
JO
160#define EVENT_OWNER_KERNEL ((void *) -1)
161
162static bool is_kernel_event(struct perf_event *event)
163{
164 return event->owner == EVENT_OWNER_KERNEL;
165}
166
e5d1367f
SE
167#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
e5d1367f 171
bce38cd5
SE
172/*
173 * branch priv levels that need permission checks
174 */
175#define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
0b3fcf17
SE
179enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183};
184
e5d1367f
SE
185/*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
c5905afb 189struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 190static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 191static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 192
cdd6c482
IM
193static atomic_t nr_mmap_events __read_mostly;
194static atomic_t nr_comm_events __read_mostly;
195static atomic_t nr_task_events __read_mostly;
948b26b6 196static atomic_t nr_freq_events __read_mostly;
45ac1403 197static atomic_t nr_switch_events __read_mostly;
9ee318a7 198
108b02cf
PZ
199static LIST_HEAD(pmus);
200static DEFINE_MUTEX(pmus_lock);
201static struct srcu_struct pmus_srcu;
202
0764771d 203/*
cdd6c482 204 * perf event paranoia level:
0fbdea19
IM
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 207 * 1 - disallow cpu events for unpriv
0fbdea19 208 * 2 - disallow kernel profiling for unpriv
0764771d 209 */
cdd6c482 210int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 211
20443384
FW
212/* Minimum for 512 kiB + 1 user control page */
213int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
214
215/*
cdd6c482 216 * max perf event sample rate
df58ab24 217 */
14c63f17
DH
218#define DEFAULT_MAX_SAMPLE_RATE 100000
219#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220#define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
d9494cb4
PZ
227static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 229
18ab2cd3 230static void update_perf_cpu_limits(void)
14c63f17
DH
231{
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 235 do_div(tmp, 100);
d9494cb4 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 237}
163ec435 238
9e630205
SE
239static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
163ec435
PZ
241int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
723478c8 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255}
256
257int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262{
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
163ec435
PZ
269
270 return 0;
271}
1ccd1549 272
14c63f17
DH
273/*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 280static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 281
6a02ad66 282static void perf_duration_warn(struct irq_work *w)
14c63f17 283{
6a02ad66 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 285 u64 avg_local_sample_len;
e5302920 286 u64 local_samples_len;
6a02ad66 287
4a32fea9 288 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 294 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
295 sysctl_perf_event_sample_rate);
296}
297
298static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300void perf_sample_event_took(u64 sample_len_ns)
301{
d9494cb4 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
14c63f17 305
d9494cb4 306 if (allowed_ns == 0)
14c63f17
DH
307 return;
308
309 /* decay the counter by 1 average sample */
4a32fea9 310 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
4a32fea9 313 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
d9494cb4 322 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
14c63f17 332 update_perf_cpu_limits();
6a02ad66 333
cd578abb
PZ
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
14c63f17
DH
340}
341
cdd6c482 342static atomic64_t perf_event_id;
a96bbc16 343
0b3fcf17
SE
344static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351static void update_context_time(struct perf_event_context *ctx);
352static u64 perf_event_time(struct perf_event *event);
0b3fcf17 353
cdd6c482 354void __weak perf_event_print_debug(void) { }
0793a61d 355
84c79910 356extern __weak const char *perf_pmu_name(void)
0793a61d 357{
84c79910 358 return "pmu";
0793a61d
TG
359}
360
0b3fcf17
SE
361static inline u64 perf_clock(void)
362{
363 return local_clock();
364}
365
34f43927
PZ
366static inline u64 perf_event_clock(struct perf_event *event)
367{
368 return event->clock();
369}
370
e5d1367f
SE
371static inline struct perf_cpu_context *
372__get_cpu_context(struct perf_event_context *ctx)
373{
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375}
376
facc4307
PZ
377static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379{
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383}
384
385static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387{
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391}
392
e5d1367f
SE
393#ifdef CONFIG_CGROUP_PERF
394
e5d1367f
SE
395static inline bool
396perf_cgroup_match(struct perf_event *event)
397{
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
ef824fa1
TH
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
e5d1367f
SE
417}
418
e5d1367f
SE
419static inline void perf_detach_cgroup(struct perf_event *event)
420{
4e2ba650 421 css_put(&event->cgrp->css);
e5d1367f
SE
422 event->cgrp = NULL;
423}
424
425static inline int is_cgroup_event(struct perf_event *event)
426{
427 return event->cgrp != NULL;
428}
429
430static inline u64 perf_cgroup_event_time(struct perf_event *event)
431{
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436}
437
438static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439{
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449}
450
451static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452{
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456}
457
458static inline void update_cgrp_time_from_event(struct perf_event *event)
459{
3f7cce3c
SE
460 struct perf_cgroup *cgrp;
461
e5d1367f 462 /*
3f7cce3c
SE
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
e5d1367f 465 */
3f7cce3c 466 if (!is_cgroup_event(event))
e5d1367f
SE
467 return;
468
614e4c4e 469 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
e5d1367f
SE
475}
476
477static inline void
3f7cce3c
SE
478perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
e5d1367f
SE
480{
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
3f7cce3c
SE
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
490 return;
491
614e4c4e 492 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 493 info = this_cpu_ptr(cgrp->info);
3f7cce3c 494 info->timestamp = ctx->timestamp;
e5d1367f
SE
495}
496
497#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500/*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
18ab2cd3 506static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
507{
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
e5d1367f
SE
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
e5d1367f 528
e5d1367f
SE
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
e566b76e 550 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
614e4c4e
SE
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
e5d1367f 557 */
614e4c4e 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
facc4307
PZ
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 563 }
e5d1367f
SE
564 }
565
e5d1367f
SE
566 local_irq_restore(flags);
567}
568
a8d757ef
SE
569static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
e5d1367f 571{
a8d757ef
SE
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
ddaaf4e2 575 rcu_read_lock();
a8d757ef
SE
576 /*
577 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
a8d757ef 580 */
614e4c4e 581 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
582
583 /*
584 * next is NULL when called from perf_event_enable_on_exec()
585 * that will systematically cause a cgroup_switch()
586 */
587 if (next)
614e4c4e 588 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
589
590 /*
591 * only schedule out current cgroup events if we know
592 * that we are switching to a different cgroup. Otherwise,
593 * do no touch the cgroup events.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
597
598 rcu_read_unlock();
e5d1367f
SE
599}
600
a8d757ef
SE
601static inline void perf_cgroup_sched_in(struct task_struct *prev,
602 struct task_struct *task)
e5d1367f 603{
a8d757ef
SE
604 struct perf_cgroup *cgrp1;
605 struct perf_cgroup *cgrp2 = NULL;
606
ddaaf4e2 607 rcu_read_lock();
a8d757ef
SE
608 /*
609 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
a8d757ef 612 */
614e4c4e 613 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
614
615 /* prev can never be NULL */
614e4c4e 616 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
617
618 /*
619 * only need to schedule in cgroup events if we are changing
620 * cgroup during ctxsw. Cgroup events were not scheduled
621 * out of ctxsw out if that was not the case.
622 */
623 if (cgrp1 != cgrp2)
624 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
625
626 rcu_read_unlock();
e5d1367f
SE
627}
628
629static inline int perf_cgroup_connect(int fd, struct perf_event *event,
630 struct perf_event_attr *attr,
631 struct perf_event *group_leader)
632{
633 struct perf_cgroup *cgrp;
634 struct cgroup_subsys_state *css;
2903ff01
AV
635 struct fd f = fdget(fd);
636 int ret = 0;
e5d1367f 637
2903ff01 638 if (!f.file)
e5d1367f
SE
639 return -EBADF;
640
b583043e 641 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 642 &perf_event_cgrp_subsys);
3db272c0
LZ
643 if (IS_ERR(css)) {
644 ret = PTR_ERR(css);
645 goto out;
646 }
e5d1367f
SE
647
648 cgrp = container_of(css, struct perf_cgroup, css);
649 event->cgrp = cgrp;
650
651 /*
652 * all events in a group must monitor
653 * the same cgroup because a task belongs
654 * to only one perf cgroup at a time
655 */
656 if (group_leader && group_leader->cgrp != cgrp) {
657 perf_detach_cgroup(event);
658 ret = -EINVAL;
e5d1367f 659 }
3db272c0 660out:
2903ff01 661 fdput(f);
e5d1367f
SE
662 return ret;
663}
664
665static inline void
666perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
667{
668 struct perf_cgroup_info *t;
669 t = per_cpu_ptr(event->cgrp->info, event->cpu);
670 event->shadow_ctx_time = now - t->timestamp;
671}
672
673static inline void
674perf_cgroup_defer_enabled(struct perf_event *event)
675{
676 /*
677 * when the current task's perf cgroup does not match
678 * the event's, we need to remember to call the
679 * perf_mark_enable() function the first time a task with
680 * a matching perf cgroup is scheduled in.
681 */
682 if (is_cgroup_event(event) && !perf_cgroup_match(event))
683 event->cgrp_defer_enabled = 1;
684}
685
686static inline void
687perf_cgroup_mark_enabled(struct perf_event *event,
688 struct perf_event_context *ctx)
689{
690 struct perf_event *sub;
691 u64 tstamp = perf_event_time(event);
692
693 if (!event->cgrp_defer_enabled)
694 return;
695
696 event->cgrp_defer_enabled = 0;
697
698 event->tstamp_enabled = tstamp - event->total_time_enabled;
699 list_for_each_entry(sub, &event->sibling_list, group_entry) {
700 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
701 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
702 sub->cgrp_defer_enabled = 0;
703 }
704 }
705}
706#else /* !CONFIG_CGROUP_PERF */
707
708static inline bool
709perf_cgroup_match(struct perf_event *event)
710{
711 return true;
712}
713
714static inline void perf_detach_cgroup(struct perf_event *event)
715{}
716
717static inline int is_cgroup_event(struct perf_event *event)
718{
719 return 0;
720}
721
722static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
723{
724 return 0;
725}
726
727static inline void update_cgrp_time_from_event(struct perf_event *event)
728{
729}
730
731static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732{
733}
734
a8d757ef
SE
735static inline void perf_cgroup_sched_out(struct task_struct *task,
736 struct task_struct *next)
e5d1367f
SE
737{
738}
739
a8d757ef
SE
740static inline void perf_cgroup_sched_in(struct task_struct *prev,
741 struct task_struct *task)
e5d1367f
SE
742{
743}
744
745static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
746 struct perf_event_attr *attr,
747 struct perf_event *group_leader)
748{
749 return -EINVAL;
750}
751
752static inline void
3f7cce3c
SE
753perf_cgroup_set_timestamp(struct task_struct *task,
754 struct perf_event_context *ctx)
e5d1367f
SE
755{
756}
757
758void
759perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
760{
761}
762
763static inline void
764perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
765{
766}
767
768static inline u64 perf_cgroup_event_time(struct perf_event *event)
769{
770 return 0;
771}
772
773static inline void
774perf_cgroup_defer_enabled(struct perf_event *event)
775{
776}
777
778static inline void
779perf_cgroup_mark_enabled(struct perf_event *event,
780 struct perf_event_context *ctx)
781{
782}
783#endif
784
9e630205
SE
785/*
786 * set default to be dependent on timer tick just
787 * like original code
788 */
789#define PERF_CPU_HRTIMER (1000 / HZ)
790/*
791 * function must be called with interrupts disbled
792 */
272325c4 793static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
794{
795 struct perf_cpu_context *cpuctx;
9e630205
SE
796 int rotations = 0;
797
798 WARN_ON(!irqs_disabled());
799
800 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
801 rotations = perf_rotate_context(cpuctx);
802
4cfafd30
PZ
803 raw_spin_lock(&cpuctx->hrtimer_lock);
804 if (rotations)
9e630205 805 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
806 else
807 cpuctx->hrtimer_active = 0;
808 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 809
4cfafd30 810 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
811}
812
272325c4 813static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 814{
272325c4 815 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 816 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 817 u64 interval;
9e630205
SE
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
62b85639
SE
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
272325c4
PZ
827 interval = pmu->hrtimer_interval_ms;
828 if (interval < 1)
829 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 830
272325c4 831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 832
4cfafd30
PZ
833 raw_spin_lock_init(&cpuctx->hrtimer_lock);
834 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 835 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
836}
837
272325c4 838static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 839{
272325c4 840 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 841 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 842 unsigned long flags;
9e630205
SE
843
844 /* not for SW PMU */
845 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 846 return 0;
9e630205 847
4cfafd30
PZ
848 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
849 if (!cpuctx->hrtimer_active) {
850 cpuctx->hrtimer_active = 1;
851 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
852 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
853 }
854 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 855
272325c4 856 return 0;
9e630205
SE
857}
858
33696fc0 859void perf_pmu_disable(struct pmu *pmu)
9e35ad38 860{
33696fc0
PZ
861 int *count = this_cpu_ptr(pmu->pmu_disable_count);
862 if (!(*count)++)
863 pmu->pmu_disable(pmu);
9e35ad38 864}
9e35ad38 865
33696fc0 866void perf_pmu_enable(struct pmu *pmu)
9e35ad38 867{
33696fc0
PZ
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!--(*count))
870 pmu->pmu_enable(pmu);
9e35ad38 871}
9e35ad38 872
2fde4f94 873static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
874
875/*
2fde4f94
MR
876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877 * perf_event_task_tick() are fully serialized because they're strictly cpu
878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 880 */
2fde4f94 881static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 882{
2fde4f94 883 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 884
e9d2b064 885 WARN_ON(!irqs_disabled());
b5ab4cd5 886
2fde4f94
MR
887 WARN_ON(!list_empty(&ctx->active_ctx_list));
888
889 list_add(&ctx->active_ctx_list, head);
890}
891
892static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
893{
894 WARN_ON(!irqs_disabled());
895
896 WARN_ON(list_empty(&ctx->active_ctx_list));
897
898 list_del_init(&ctx->active_ctx_list);
9e35ad38 899}
9e35ad38 900
cdd6c482 901static void get_ctx(struct perf_event_context *ctx)
a63eaf34 902{
e5289d4a 903 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
904}
905
4af57ef2
YZ
906static void free_ctx(struct rcu_head *head)
907{
908 struct perf_event_context *ctx;
909
910 ctx = container_of(head, struct perf_event_context, rcu_head);
911 kfree(ctx->task_ctx_data);
912 kfree(ctx);
913}
914
cdd6c482 915static void put_ctx(struct perf_event_context *ctx)
a63eaf34 916{
564c2b21
PM
917 if (atomic_dec_and_test(&ctx->refcount)) {
918 if (ctx->parent_ctx)
919 put_ctx(ctx->parent_ctx);
c93f7669
PM
920 if (ctx->task)
921 put_task_struct(ctx->task);
4af57ef2 922 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 923 }
a63eaf34
PM
924}
925
f63a8daa
PZ
926/*
927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928 * perf_pmu_migrate_context() we need some magic.
929 *
930 * Those places that change perf_event::ctx will hold both
931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
932 *
8b10c5e2
PZ
933 * Lock ordering is by mutex address. There are two other sites where
934 * perf_event_context::mutex nests and those are:
935 *
936 * - perf_event_exit_task_context() [ child , 0 ]
937 * __perf_event_exit_task()
938 * sync_child_event()
939 * put_event() [ parent, 1 ]
940 *
941 * - perf_event_init_context() [ parent, 0 ]
942 * inherit_task_group()
943 * inherit_group()
944 * inherit_event()
945 * perf_event_alloc()
946 * perf_init_event()
947 * perf_try_init_event() [ child , 1 ]
948 *
949 * While it appears there is an obvious deadlock here -- the parent and child
950 * nesting levels are inverted between the two. This is in fact safe because
951 * life-time rules separate them. That is an exiting task cannot fork, and a
952 * spawning task cannot (yet) exit.
953 *
954 * But remember that that these are parent<->child context relations, and
955 * migration does not affect children, therefore these two orderings should not
956 * interact.
f63a8daa
PZ
957 *
958 * The change in perf_event::ctx does not affect children (as claimed above)
959 * because the sys_perf_event_open() case will install a new event and break
960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961 * concerned with cpuctx and that doesn't have children.
962 *
963 * The places that change perf_event::ctx will issue:
964 *
965 * perf_remove_from_context();
966 * synchronize_rcu();
967 * perf_install_in_context();
968 *
969 * to affect the change. The remove_from_context() + synchronize_rcu() should
970 * quiesce the event, after which we can install it in the new location. This
971 * means that only external vectors (perf_fops, prctl) can perturb the event
972 * while in transit. Therefore all such accessors should also acquire
973 * perf_event_context::mutex to serialize against this.
974 *
975 * However; because event->ctx can change while we're waiting to acquire
976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
977 * function.
978 *
979 * Lock order:
980 * task_struct::perf_event_mutex
981 * perf_event_context::mutex
982 * perf_event_context::lock
983 * perf_event::child_mutex;
984 * perf_event::mmap_mutex
985 * mmap_sem
986 */
a83fe28e
PZ
987static struct perf_event_context *
988perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
989{
990 struct perf_event_context *ctx;
991
992again:
993 rcu_read_lock();
994 ctx = ACCESS_ONCE(event->ctx);
995 if (!atomic_inc_not_zero(&ctx->refcount)) {
996 rcu_read_unlock();
997 goto again;
998 }
999 rcu_read_unlock();
1000
a83fe28e 1001 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1002 if (event->ctx != ctx) {
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1005 goto again;
1006 }
1007
1008 return ctx;
1009}
1010
a83fe28e
PZ
1011static inline struct perf_event_context *
1012perf_event_ctx_lock(struct perf_event *event)
1013{
1014 return perf_event_ctx_lock_nested(event, 0);
1015}
1016
f63a8daa
PZ
1017static void perf_event_ctx_unlock(struct perf_event *event,
1018 struct perf_event_context *ctx)
1019{
1020 mutex_unlock(&ctx->mutex);
1021 put_ctx(ctx);
1022}
1023
211de6eb
PZ
1024/*
1025 * This must be done under the ctx->lock, such as to serialize against
1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027 * calling scheduler related locks and ctx->lock nests inside those.
1028 */
1029static __must_check struct perf_event_context *
1030unclone_ctx(struct perf_event_context *ctx)
71a851b4 1031{
211de6eb
PZ
1032 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1033
1034 lockdep_assert_held(&ctx->lock);
1035
1036 if (parent_ctx)
71a851b4 1037 ctx->parent_ctx = NULL;
5a3126d4 1038 ctx->generation++;
211de6eb
PZ
1039
1040 return parent_ctx;
71a851b4
PZ
1041}
1042
6844c09d
ACM
1043static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1044{
1045 /*
1046 * only top level events have the pid namespace they were created in
1047 */
1048 if (event->parent)
1049 event = event->parent;
1050
1051 return task_tgid_nr_ns(p, event->ns);
1052}
1053
1054static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1055{
1056 /*
1057 * only top level events have the pid namespace they were created in
1058 */
1059 if (event->parent)
1060 event = event->parent;
1061
1062 return task_pid_nr_ns(p, event->ns);
1063}
1064
7f453c24 1065/*
cdd6c482 1066 * If we inherit events we want to return the parent event id
7f453c24
PZ
1067 * to userspace.
1068 */
cdd6c482 1069static u64 primary_event_id(struct perf_event *event)
7f453c24 1070{
cdd6c482 1071 u64 id = event->id;
7f453c24 1072
cdd6c482
IM
1073 if (event->parent)
1074 id = event->parent->id;
7f453c24
PZ
1075
1076 return id;
1077}
1078
25346b93 1079/*
cdd6c482 1080 * Get the perf_event_context for a task and lock it.
25346b93
PM
1081 * This has to cope with with the fact that until it is locked,
1082 * the context could get moved to another task.
1083 */
cdd6c482 1084static struct perf_event_context *
8dc85d54 1085perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1086{
cdd6c482 1087 struct perf_event_context *ctx;
25346b93 1088
9ed6060d 1089retry:
058ebd0e
PZ
1090 /*
1091 * One of the few rules of preemptible RCU is that one cannot do
1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1093 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1094 * rcu_read_unlock_special().
1095 *
1096 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1097 * side critical section has interrupts disabled.
058ebd0e 1098 */
2fd59077 1099 local_irq_save(*flags);
058ebd0e 1100 rcu_read_lock();
8dc85d54 1101 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1102 if (ctx) {
1103 /*
1104 * If this context is a clone of another, it might
1105 * get swapped for another underneath us by
cdd6c482 1106 * perf_event_task_sched_out, though the
25346b93
PM
1107 * rcu_read_lock() protects us from any context
1108 * getting freed. Lock the context and check if it
1109 * got swapped before we could get the lock, and retry
1110 * if so. If we locked the right context, then it
1111 * can't get swapped on us any more.
1112 */
2fd59077 1113 raw_spin_lock(&ctx->lock);
8dc85d54 1114 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1115 raw_spin_unlock(&ctx->lock);
058ebd0e 1116 rcu_read_unlock();
2fd59077 1117 local_irq_restore(*flags);
25346b93
PM
1118 goto retry;
1119 }
b49a9e7e
PZ
1120
1121 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1122 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1123 ctx = NULL;
1124 }
25346b93
PM
1125 }
1126 rcu_read_unlock();
2fd59077
PM
1127 if (!ctx)
1128 local_irq_restore(*flags);
25346b93
PM
1129 return ctx;
1130}
1131
1132/*
1133 * Get the context for a task and increment its pin_count so it
1134 * can't get swapped to another task. This also increments its
1135 * reference count so that the context can't get freed.
1136 */
8dc85d54
PZ
1137static struct perf_event_context *
1138perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1139{
cdd6c482 1140 struct perf_event_context *ctx;
25346b93
PM
1141 unsigned long flags;
1142
8dc85d54 1143 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1144 if (ctx) {
1145 ++ctx->pin_count;
e625cce1 1146 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1147 }
1148 return ctx;
1149}
1150
cdd6c482 1151static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1152{
1153 unsigned long flags;
1154
e625cce1 1155 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1156 --ctx->pin_count;
e625cce1 1157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1158}
1159
f67218c3
PZ
1160/*
1161 * Update the record of the current time in a context.
1162 */
1163static void update_context_time(struct perf_event_context *ctx)
1164{
1165 u64 now = perf_clock();
1166
1167 ctx->time += now - ctx->timestamp;
1168 ctx->timestamp = now;
1169}
1170
4158755d
SE
1171static u64 perf_event_time(struct perf_event *event)
1172{
1173 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1174
1175 if (is_cgroup_event(event))
1176 return perf_cgroup_event_time(event);
1177
4158755d
SE
1178 return ctx ? ctx->time : 0;
1179}
1180
f67218c3
PZ
1181/*
1182 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1183 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1184 */
1185static void update_event_times(struct perf_event *event)
1186{
1187 struct perf_event_context *ctx = event->ctx;
1188 u64 run_end;
1189
1190 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1191 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1192 return;
e5d1367f
SE
1193 /*
1194 * in cgroup mode, time_enabled represents
1195 * the time the event was enabled AND active
1196 * tasks were in the monitored cgroup. This is
1197 * independent of the activity of the context as
1198 * there may be a mix of cgroup and non-cgroup events.
1199 *
1200 * That is why we treat cgroup events differently
1201 * here.
1202 */
1203 if (is_cgroup_event(event))
46cd6a7f 1204 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1205 else if (ctx->is_active)
1206 run_end = ctx->time;
acd1d7c1
PZ
1207 else
1208 run_end = event->tstamp_stopped;
1209
1210 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1211
1212 if (event->state == PERF_EVENT_STATE_INACTIVE)
1213 run_end = event->tstamp_stopped;
1214 else
4158755d 1215 run_end = perf_event_time(event);
f67218c3
PZ
1216
1217 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1218
f67218c3
PZ
1219}
1220
96c21a46
PZ
1221/*
1222 * Update total_time_enabled and total_time_running for all events in a group.
1223 */
1224static void update_group_times(struct perf_event *leader)
1225{
1226 struct perf_event *event;
1227
1228 update_event_times(leader);
1229 list_for_each_entry(event, &leader->sibling_list, group_entry)
1230 update_event_times(event);
1231}
1232
889ff015
FW
1233static struct list_head *
1234ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1235{
1236 if (event->attr.pinned)
1237 return &ctx->pinned_groups;
1238 else
1239 return &ctx->flexible_groups;
1240}
1241
fccc714b 1242/*
cdd6c482 1243 * Add a event from the lists for its context.
fccc714b
PZ
1244 * Must be called with ctx->mutex and ctx->lock held.
1245 */
04289bb9 1246static void
cdd6c482 1247list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1248{
8a49542c
PZ
1249 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1250 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1251
1252 /*
8a49542c
PZ
1253 * If we're a stand alone event or group leader, we go to the context
1254 * list, group events are kept attached to the group so that
1255 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1256 */
8a49542c 1257 if (event->group_leader == event) {
889ff015
FW
1258 struct list_head *list;
1259
d6f962b5
FW
1260 if (is_software_event(event))
1261 event->group_flags |= PERF_GROUP_SOFTWARE;
1262
889ff015
FW
1263 list = ctx_group_list(event, ctx);
1264 list_add_tail(&event->group_entry, list);
5c148194 1265 }
592903cd 1266
08309379 1267 if (is_cgroup_event(event))
e5d1367f 1268 ctx->nr_cgroups++;
e5d1367f 1269
cdd6c482
IM
1270 list_add_rcu(&event->event_entry, &ctx->event_list);
1271 ctx->nr_events++;
1272 if (event->attr.inherit_stat)
bfbd3381 1273 ctx->nr_stat++;
5a3126d4
PZ
1274
1275 ctx->generation++;
04289bb9
IM
1276}
1277
0231bb53
JO
1278/*
1279 * Initialize event state based on the perf_event_attr::disabled.
1280 */
1281static inline void perf_event__state_init(struct perf_event *event)
1282{
1283 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1284 PERF_EVENT_STATE_INACTIVE;
1285}
1286
a723968c 1287static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1288{
1289 int entry = sizeof(u64); /* value */
1290 int size = 0;
1291 int nr = 1;
1292
1293 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1294 size += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1297 size += sizeof(u64);
1298
1299 if (event->attr.read_format & PERF_FORMAT_ID)
1300 entry += sizeof(u64);
1301
1302 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1303 nr += nr_siblings;
c320c7b7
ACM
1304 size += sizeof(u64);
1305 }
1306
1307 size += entry * nr;
1308 event->read_size = size;
1309}
1310
a723968c 1311static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1312{
1313 struct perf_sample_data *data;
c320c7b7
ACM
1314 u16 size = 0;
1315
c320c7b7
ACM
1316 if (sample_type & PERF_SAMPLE_IP)
1317 size += sizeof(data->ip);
1318
6844c09d
ACM
1319 if (sample_type & PERF_SAMPLE_ADDR)
1320 size += sizeof(data->addr);
1321
1322 if (sample_type & PERF_SAMPLE_PERIOD)
1323 size += sizeof(data->period);
1324
c3feedf2
AK
1325 if (sample_type & PERF_SAMPLE_WEIGHT)
1326 size += sizeof(data->weight);
1327
6844c09d
ACM
1328 if (sample_type & PERF_SAMPLE_READ)
1329 size += event->read_size;
1330
d6be9ad6
SE
1331 if (sample_type & PERF_SAMPLE_DATA_SRC)
1332 size += sizeof(data->data_src.val);
1333
fdfbbd07
AK
1334 if (sample_type & PERF_SAMPLE_TRANSACTION)
1335 size += sizeof(data->txn);
1336
6844c09d
ACM
1337 event->header_size = size;
1338}
1339
a723968c
PZ
1340/*
1341 * Called at perf_event creation and when events are attached/detached from a
1342 * group.
1343 */
1344static void perf_event__header_size(struct perf_event *event)
1345{
1346 __perf_event_read_size(event,
1347 event->group_leader->nr_siblings);
1348 __perf_event_header_size(event, event->attr.sample_type);
1349}
1350
6844c09d
ACM
1351static void perf_event__id_header_size(struct perf_event *event)
1352{
1353 struct perf_sample_data *data;
1354 u64 sample_type = event->attr.sample_type;
1355 u16 size = 0;
1356
c320c7b7
ACM
1357 if (sample_type & PERF_SAMPLE_TID)
1358 size += sizeof(data->tid_entry);
1359
1360 if (sample_type & PERF_SAMPLE_TIME)
1361 size += sizeof(data->time);
1362
ff3d527c
AH
1363 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1364 size += sizeof(data->id);
1365
c320c7b7
ACM
1366 if (sample_type & PERF_SAMPLE_ID)
1367 size += sizeof(data->id);
1368
1369 if (sample_type & PERF_SAMPLE_STREAM_ID)
1370 size += sizeof(data->stream_id);
1371
1372 if (sample_type & PERF_SAMPLE_CPU)
1373 size += sizeof(data->cpu_entry);
1374
6844c09d 1375 event->id_header_size = size;
c320c7b7
ACM
1376}
1377
a723968c
PZ
1378static bool perf_event_validate_size(struct perf_event *event)
1379{
1380 /*
1381 * The values computed here will be over-written when we actually
1382 * attach the event.
1383 */
1384 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1385 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1386 perf_event__id_header_size(event);
1387
1388 /*
1389 * Sum the lot; should not exceed the 64k limit we have on records.
1390 * Conservative limit to allow for callchains and other variable fields.
1391 */
1392 if (event->read_size + event->header_size +
1393 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1394 return false;
1395
1396 return true;
1397}
1398
8a49542c
PZ
1399static void perf_group_attach(struct perf_event *event)
1400{
c320c7b7 1401 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1402
74c3337c
PZ
1403 /*
1404 * We can have double attach due to group movement in perf_event_open.
1405 */
1406 if (event->attach_state & PERF_ATTACH_GROUP)
1407 return;
1408
8a49542c
PZ
1409 event->attach_state |= PERF_ATTACH_GROUP;
1410
1411 if (group_leader == event)
1412 return;
1413
652884fe
PZ
1414 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1415
8a49542c
PZ
1416 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1417 !is_software_event(event))
1418 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1419
1420 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1421 group_leader->nr_siblings++;
c320c7b7
ACM
1422
1423 perf_event__header_size(group_leader);
1424
1425 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1426 perf_event__header_size(pos);
8a49542c
PZ
1427}
1428
a63eaf34 1429/*
cdd6c482 1430 * Remove a event from the lists for its context.
fccc714b 1431 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1432 */
04289bb9 1433static void
cdd6c482 1434list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1435{
68cacd29 1436 struct perf_cpu_context *cpuctx;
652884fe
PZ
1437
1438 WARN_ON_ONCE(event->ctx != ctx);
1439 lockdep_assert_held(&ctx->lock);
1440
8a49542c
PZ
1441 /*
1442 * We can have double detach due to exit/hot-unplug + close.
1443 */
1444 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1445 return;
8a49542c
PZ
1446
1447 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1448
68cacd29 1449 if (is_cgroup_event(event)) {
e5d1367f 1450 ctx->nr_cgroups--;
68cacd29
SE
1451 cpuctx = __get_cpu_context(ctx);
1452 /*
1453 * if there are no more cgroup events
1454 * then cler cgrp to avoid stale pointer
1455 * in update_cgrp_time_from_cpuctx()
1456 */
1457 if (!ctx->nr_cgroups)
1458 cpuctx->cgrp = NULL;
1459 }
e5d1367f 1460
cdd6c482
IM
1461 ctx->nr_events--;
1462 if (event->attr.inherit_stat)
bfbd3381 1463 ctx->nr_stat--;
8bc20959 1464
cdd6c482 1465 list_del_rcu(&event->event_entry);
04289bb9 1466
8a49542c
PZ
1467 if (event->group_leader == event)
1468 list_del_init(&event->group_entry);
5c148194 1469
96c21a46 1470 update_group_times(event);
b2e74a26
SE
1471
1472 /*
1473 * If event was in error state, then keep it
1474 * that way, otherwise bogus counts will be
1475 * returned on read(). The only way to get out
1476 * of error state is by explicit re-enabling
1477 * of the event
1478 */
1479 if (event->state > PERF_EVENT_STATE_OFF)
1480 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1481
1482 ctx->generation++;
050735b0
PZ
1483}
1484
8a49542c 1485static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1486{
1487 struct perf_event *sibling, *tmp;
8a49542c
PZ
1488 struct list_head *list = NULL;
1489
1490 /*
1491 * We can have double detach due to exit/hot-unplug + close.
1492 */
1493 if (!(event->attach_state & PERF_ATTACH_GROUP))
1494 return;
1495
1496 event->attach_state &= ~PERF_ATTACH_GROUP;
1497
1498 /*
1499 * If this is a sibling, remove it from its group.
1500 */
1501 if (event->group_leader != event) {
1502 list_del_init(&event->group_entry);
1503 event->group_leader->nr_siblings--;
c320c7b7 1504 goto out;
8a49542c
PZ
1505 }
1506
1507 if (!list_empty(&event->group_entry))
1508 list = &event->group_entry;
2e2af50b 1509
04289bb9 1510 /*
cdd6c482
IM
1511 * If this was a group event with sibling events then
1512 * upgrade the siblings to singleton events by adding them
8a49542c 1513 * to whatever list we are on.
04289bb9 1514 */
cdd6c482 1515 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1516 if (list)
1517 list_move_tail(&sibling->group_entry, list);
04289bb9 1518 sibling->group_leader = sibling;
d6f962b5
FW
1519
1520 /* Inherit group flags from the previous leader */
1521 sibling->group_flags = event->group_flags;
652884fe
PZ
1522
1523 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1524 }
c320c7b7
ACM
1525
1526out:
1527 perf_event__header_size(event->group_leader);
1528
1529 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1530 perf_event__header_size(tmp);
04289bb9
IM
1531}
1532
fadfe7be
JO
1533/*
1534 * User event without the task.
1535 */
1536static bool is_orphaned_event(struct perf_event *event)
1537{
1538 return event && !is_kernel_event(event) && !event->owner;
1539}
1540
1541/*
1542 * Event has a parent but parent's task finished and it's
1543 * alive only because of children holding refference.
1544 */
1545static bool is_orphaned_child(struct perf_event *event)
1546{
1547 return is_orphaned_event(event->parent);
1548}
1549
1550static void orphans_remove_work(struct work_struct *work);
1551
1552static void schedule_orphans_remove(struct perf_event_context *ctx)
1553{
1554 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1555 return;
1556
1557 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1558 get_ctx(ctx);
1559 ctx->orphans_remove_sched = true;
1560 }
1561}
1562
1563static int __init perf_workqueue_init(void)
1564{
1565 perf_wq = create_singlethread_workqueue("perf");
1566 WARN(!perf_wq, "failed to create perf workqueue\n");
1567 return perf_wq ? 0 : -1;
1568}
1569
1570core_initcall(perf_workqueue_init);
1571
66eb579e
MR
1572static inline int pmu_filter_match(struct perf_event *event)
1573{
1574 struct pmu *pmu = event->pmu;
1575 return pmu->filter_match ? pmu->filter_match(event) : 1;
1576}
1577
fa66f07a
SE
1578static inline int
1579event_filter_match(struct perf_event *event)
1580{
e5d1367f 1581 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1582 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1583}
1584
9ffcfa6f
SE
1585static void
1586event_sched_out(struct perf_event *event,
3b6f9e5c 1587 struct perf_cpu_context *cpuctx,
cdd6c482 1588 struct perf_event_context *ctx)
3b6f9e5c 1589{
4158755d 1590 u64 tstamp = perf_event_time(event);
fa66f07a 1591 u64 delta;
652884fe
PZ
1592
1593 WARN_ON_ONCE(event->ctx != ctx);
1594 lockdep_assert_held(&ctx->lock);
1595
fa66f07a
SE
1596 /*
1597 * An event which could not be activated because of
1598 * filter mismatch still needs to have its timings
1599 * maintained, otherwise bogus information is return
1600 * via read() for time_enabled, time_running:
1601 */
1602 if (event->state == PERF_EVENT_STATE_INACTIVE
1603 && !event_filter_match(event)) {
e5d1367f 1604 delta = tstamp - event->tstamp_stopped;
fa66f07a 1605 event->tstamp_running += delta;
4158755d 1606 event->tstamp_stopped = tstamp;
fa66f07a
SE
1607 }
1608
cdd6c482 1609 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1610 return;
3b6f9e5c 1611
44377277
AS
1612 perf_pmu_disable(event->pmu);
1613
cdd6c482
IM
1614 event->state = PERF_EVENT_STATE_INACTIVE;
1615 if (event->pending_disable) {
1616 event->pending_disable = 0;
1617 event->state = PERF_EVENT_STATE_OFF;
970892a9 1618 }
4158755d 1619 event->tstamp_stopped = tstamp;
a4eaf7f1 1620 event->pmu->del(event, 0);
cdd6c482 1621 event->oncpu = -1;
3b6f9e5c 1622
cdd6c482 1623 if (!is_software_event(event))
3b6f9e5c 1624 cpuctx->active_oncpu--;
2fde4f94
MR
1625 if (!--ctx->nr_active)
1626 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1627 if (event->attr.freq && event->attr.sample_freq)
1628 ctx->nr_freq--;
cdd6c482 1629 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1630 cpuctx->exclusive = 0;
44377277 1631
fadfe7be
JO
1632 if (is_orphaned_child(event))
1633 schedule_orphans_remove(ctx);
1634
44377277 1635 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1636}
1637
d859e29f 1638static void
cdd6c482 1639group_sched_out(struct perf_event *group_event,
d859e29f 1640 struct perf_cpu_context *cpuctx,
cdd6c482 1641 struct perf_event_context *ctx)
d859e29f 1642{
cdd6c482 1643 struct perf_event *event;
fa66f07a 1644 int state = group_event->state;
d859e29f 1645
cdd6c482 1646 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1647
1648 /*
1649 * Schedule out siblings (if any):
1650 */
cdd6c482
IM
1651 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1652 event_sched_out(event, cpuctx, ctx);
d859e29f 1653
fa66f07a 1654 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1655 cpuctx->exclusive = 0;
1656}
1657
46ce0fe9
PZ
1658struct remove_event {
1659 struct perf_event *event;
1660 bool detach_group;
1661};
1662
0017960f
PZ
1663static void ___perf_remove_from_context(void *info)
1664{
1665 struct remove_event *re = info;
1666 struct perf_event *event = re->event;
1667 struct perf_event_context *ctx = event->ctx;
1668
1669 if (re->detach_group)
1670 perf_group_detach(event);
1671 list_del_event(event, ctx);
1672}
1673
0793a61d 1674/*
cdd6c482 1675 * Cross CPU call to remove a performance event
0793a61d 1676 *
cdd6c482 1677 * We disable the event on the hardware level first. After that we
0793a61d
TG
1678 * remove it from the context list.
1679 */
fe4b04fa 1680static int __perf_remove_from_context(void *info)
0793a61d 1681{
46ce0fe9
PZ
1682 struct remove_event *re = info;
1683 struct perf_event *event = re->event;
cdd6c482 1684 struct perf_event_context *ctx = event->ctx;
108b02cf 1685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1686
e625cce1 1687 raw_spin_lock(&ctx->lock);
cdd6c482 1688 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1689 if (re->detach_group)
1690 perf_group_detach(event);
cdd6c482 1691 list_del_event(event, ctx);
64ce3126
PZ
1692 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1693 ctx->is_active = 0;
1694 cpuctx->task_ctx = NULL;
1695 }
e625cce1 1696 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1697
1698 return 0;
0793a61d
TG
1699}
1700
0793a61d 1701/*
cdd6c482 1702 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1703 *
cdd6c482 1704 * CPU events are removed with a smp call. For task events we only
0793a61d 1705 * call when the task is on a CPU.
c93f7669 1706 *
cdd6c482
IM
1707 * If event->ctx is a cloned context, callers must make sure that
1708 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1709 * remains valid. This is OK when called from perf_release since
1710 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1711 * When called from perf_event_exit_task, it's OK because the
c93f7669 1712 * context has been detached from its task.
0793a61d 1713 */
46ce0fe9 1714static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1715{
cdd6c482 1716 struct perf_event_context *ctx = event->ctx;
46ce0fe9
PZ
1717 struct remove_event re = {
1718 .event = event,
1719 .detach_group = detach_group,
1720 };
0793a61d 1721
fe4b04fa
PZ
1722 lockdep_assert_held(&ctx->mutex);
1723
0017960f
PZ
1724 event_function_call(event, __perf_remove_from_context,
1725 ___perf_remove_from_context, &re);
0793a61d
TG
1726}
1727
d859e29f 1728/*
cdd6c482 1729 * Cross CPU call to disable a performance event
d859e29f 1730 */
500ad2d8 1731int __perf_event_disable(void *info)
d859e29f 1732{
cdd6c482 1733 struct perf_event *event = info;
cdd6c482 1734 struct perf_event_context *ctx = event->ctx;
108b02cf 1735 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1736
1737 /*
cdd6c482
IM
1738 * If this is a per-task event, need to check whether this
1739 * event's task is the current task on this cpu.
fe4b04fa
PZ
1740 *
1741 * Can trigger due to concurrent perf_event_context_sched_out()
1742 * flipping contexts around.
d859e29f 1743 */
665c2142 1744 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1745 return -EINVAL;
d859e29f 1746
e625cce1 1747 raw_spin_lock(&ctx->lock);
d859e29f
PM
1748
1749 /*
cdd6c482 1750 * If the event is on, turn it off.
d859e29f
PM
1751 * If it is in error state, leave it in error state.
1752 */
cdd6c482 1753 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1754 update_context_time(ctx);
e5d1367f 1755 update_cgrp_time_from_event(event);
cdd6c482
IM
1756 update_group_times(event);
1757 if (event == event->group_leader)
1758 group_sched_out(event, cpuctx, ctx);
d859e29f 1759 else
cdd6c482
IM
1760 event_sched_out(event, cpuctx, ctx);
1761 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1762 }
1763
e625cce1 1764 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1765
1766 return 0;
d859e29f
PM
1767}
1768
7b648018
PZ
1769void ___perf_event_disable(void *info)
1770{
1771 struct perf_event *event = info;
1772
1773 /*
1774 * Since we have the lock this context can't be scheduled
1775 * in, so we can change the state safely.
1776 */
1777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 update_group_times(event);
1779 event->state = PERF_EVENT_STATE_OFF;
1780 }
1781}
1782
d859e29f 1783/*
cdd6c482 1784 * Disable a event.
c93f7669 1785 *
cdd6c482
IM
1786 * If event->ctx is a cloned context, callers must make sure that
1787 * every task struct that event->ctx->task could possibly point to
c93f7669 1788 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1789 * perf_event_for_each_child or perf_event_for_each because they
1790 * hold the top-level event's child_mutex, so any descendant that
1791 * goes to exit will block in sync_child_event.
1792 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1793 * is the current context on this CPU and preemption is disabled,
cdd6c482 1794 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1795 */
f63a8daa 1796static void _perf_event_disable(struct perf_event *event)
d859e29f 1797{
cdd6c482 1798 struct perf_event_context *ctx = event->ctx;
d859e29f 1799
e625cce1 1800 raw_spin_lock_irq(&ctx->lock);
7b648018 1801 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1802 raw_spin_unlock_irq(&ctx->lock);
7b648018 1803 return;
53cfbf59 1804 }
e625cce1 1805 raw_spin_unlock_irq(&ctx->lock);
7b648018
PZ
1806
1807 event_function_call(event, __perf_event_disable,
1808 ___perf_event_disable, event);
d859e29f 1809}
f63a8daa
PZ
1810
1811/*
1812 * Strictly speaking kernel users cannot create groups and therefore this
1813 * interface does not need the perf_event_ctx_lock() magic.
1814 */
1815void perf_event_disable(struct perf_event *event)
1816{
1817 struct perf_event_context *ctx;
1818
1819 ctx = perf_event_ctx_lock(event);
1820 _perf_event_disable(event);
1821 perf_event_ctx_unlock(event, ctx);
1822}
dcfce4a0 1823EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1824
e5d1367f
SE
1825static void perf_set_shadow_time(struct perf_event *event,
1826 struct perf_event_context *ctx,
1827 u64 tstamp)
1828{
1829 /*
1830 * use the correct time source for the time snapshot
1831 *
1832 * We could get by without this by leveraging the
1833 * fact that to get to this function, the caller
1834 * has most likely already called update_context_time()
1835 * and update_cgrp_time_xx() and thus both timestamp
1836 * are identical (or very close). Given that tstamp is,
1837 * already adjusted for cgroup, we could say that:
1838 * tstamp - ctx->timestamp
1839 * is equivalent to
1840 * tstamp - cgrp->timestamp.
1841 *
1842 * Then, in perf_output_read(), the calculation would
1843 * work with no changes because:
1844 * - event is guaranteed scheduled in
1845 * - no scheduled out in between
1846 * - thus the timestamp would be the same
1847 *
1848 * But this is a bit hairy.
1849 *
1850 * So instead, we have an explicit cgroup call to remain
1851 * within the time time source all along. We believe it
1852 * is cleaner and simpler to understand.
1853 */
1854 if (is_cgroup_event(event))
1855 perf_cgroup_set_shadow_time(event, tstamp);
1856 else
1857 event->shadow_ctx_time = tstamp - ctx->timestamp;
1858}
1859
4fe757dd
PZ
1860#define MAX_INTERRUPTS (~0ULL)
1861
1862static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1863static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1864
235c7fc7 1865static int
9ffcfa6f 1866event_sched_in(struct perf_event *event,
235c7fc7 1867 struct perf_cpu_context *cpuctx,
6e37738a 1868 struct perf_event_context *ctx)
235c7fc7 1869{
4158755d 1870 u64 tstamp = perf_event_time(event);
44377277 1871 int ret = 0;
4158755d 1872
63342411
PZ
1873 lockdep_assert_held(&ctx->lock);
1874
cdd6c482 1875 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1876 return 0;
1877
cdd6c482 1878 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1879 event->oncpu = smp_processor_id();
4fe757dd
PZ
1880
1881 /*
1882 * Unthrottle events, since we scheduled we might have missed several
1883 * ticks already, also for a heavily scheduling task there is little
1884 * guarantee it'll get a tick in a timely manner.
1885 */
1886 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 perf_log_throttle(event, 1);
1888 event->hw.interrupts = 0;
1889 }
1890
235c7fc7
IM
1891 /*
1892 * The new state must be visible before we turn it on in the hardware:
1893 */
1894 smp_wmb();
1895
44377277
AS
1896 perf_pmu_disable(event->pmu);
1897
72f669c0
SL
1898 perf_set_shadow_time(event, ctx, tstamp);
1899
ec0d7729
AS
1900 perf_log_itrace_start(event);
1901
a4eaf7f1 1902 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1903 event->state = PERF_EVENT_STATE_INACTIVE;
1904 event->oncpu = -1;
44377277
AS
1905 ret = -EAGAIN;
1906 goto out;
235c7fc7
IM
1907 }
1908
00a2916f
PZ
1909 event->tstamp_running += tstamp - event->tstamp_stopped;
1910
cdd6c482 1911 if (!is_software_event(event))
3b6f9e5c 1912 cpuctx->active_oncpu++;
2fde4f94
MR
1913 if (!ctx->nr_active++)
1914 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1915 if (event->attr.freq && event->attr.sample_freq)
1916 ctx->nr_freq++;
235c7fc7 1917
cdd6c482 1918 if (event->attr.exclusive)
3b6f9e5c
PM
1919 cpuctx->exclusive = 1;
1920
fadfe7be
JO
1921 if (is_orphaned_child(event))
1922 schedule_orphans_remove(ctx);
1923
44377277
AS
1924out:
1925 perf_pmu_enable(event->pmu);
1926
1927 return ret;
235c7fc7
IM
1928}
1929
6751b71e 1930static int
cdd6c482 1931group_sched_in(struct perf_event *group_event,
6751b71e 1932 struct perf_cpu_context *cpuctx,
6e37738a 1933 struct perf_event_context *ctx)
6751b71e 1934{
6bde9b6c 1935 struct perf_event *event, *partial_group = NULL;
4a234593 1936 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1937 u64 now = ctx->time;
1938 bool simulate = false;
6751b71e 1939
cdd6c482 1940 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1941 return 0;
1942
fbbe0701 1943 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1944
9ffcfa6f 1945 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1946 pmu->cancel_txn(pmu);
272325c4 1947 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1948 return -EAGAIN;
90151c35 1949 }
6751b71e
PM
1950
1951 /*
1952 * Schedule in siblings as one group (if any):
1953 */
cdd6c482 1954 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1955 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1956 partial_group = event;
6751b71e
PM
1957 goto group_error;
1958 }
1959 }
1960
9ffcfa6f 1961 if (!pmu->commit_txn(pmu))
6e85158c 1962 return 0;
9ffcfa6f 1963
6751b71e
PM
1964group_error:
1965 /*
1966 * Groups can be scheduled in as one unit only, so undo any
1967 * partial group before returning:
d7842da4
SE
1968 * The events up to the failed event are scheduled out normally,
1969 * tstamp_stopped will be updated.
1970 *
1971 * The failed events and the remaining siblings need to have
1972 * their timings updated as if they had gone thru event_sched_in()
1973 * and event_sched_out(). This is required to get consistent timings
1974 * across the group. This also takes care of the case where the group
1975 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 * the time the event was actually stopped, such that time delta
1977 * calculation in update_event_times() is correct.
6751b71e 1978 */
cdd6c482
IM
1979 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 if (event == partial_group)
d7842da4
SE
1981 simulate = true;
1982
1983 if (simulate) {
1984 event->tstamp_running += now - event->tstamp_stopped;
1985 event->tstamp_stopped = now;
1986 } else {
1987 event_sched_out(event, cpuctx, ctx);
1988 }
6751b71e 1989 }
9ffcfa6f 1990 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1991
ad5133b7 1992 pmu->cancel_txn(pmu);
90151c35 1993
272325c4 1994 perf_mux_hrtimer_restart(cpuctx);
9e630205 1995
6751b71e
PM
1996 return -EAGAIN;
1997}
1998
3b6f9e5c 1999/*
cdd6c482 2000 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2001 */
cdd6c482 2002static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2003 struct perf_cpu_context *cpuctx,
2004 int can_add_hw)
2005{
2006 /*
cdd6c482 2007 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2008 */
d6f962b5 2009 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2010 return 1;
2011 /*
2012 * If an exclusive group is already on, no other hardware
cdd6c482 2013 * events can go on.
3b6f9e5c
PM
2014 */
2015 if (cpuctx->exclusive)
2016 return 0;
2017 /*
2018 * If this group is exclusive and there are already
cdd6c482 2019 * events on the CPU, it can't go on.
3b6f9e5c 2020 */
cdd6c482 2021 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2022 return 0;
2023 /*
2024 * Otherwise, try to add it if all previous groups were able
2025 * to go on.
2026 */
2027 return can_add_hw;
2028}
2029
cdd6c482
IM
2030static void add_event_to_ctx(struct perf_event *event,
2031 struct perf_event_context *ctx)
53cfbf59 2032{
4158755d
SE
2033 u64 tstamp = perf_event_time(event);
2034
cdd6c482 2035 list_add_event(event, ctx);
8a49542c 2036 perf_group_attach(event);
4158755d
SE
2037 event->tstamp_enabled = tstamp;
2038 event->tstamp_running = tstamp;
2039 event->tstamp_stopped = tstamp;
53cfbf59
PM
2040}
2041
2c29ef0f
PZ
2042static void task_ctx_sched_out(struct perf_event_context *ctx);
2043static void
2044ctx_sched_in(struct perf_event_context *ctx,
2045 struct perf_cpu_context *cpuctx,
2046 enum event_type_t event_type,
2047 struct task_struct *task);
fe4b04fa 2048
dce5855b
PZ
2049static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 struct perf_event_context *ctx,
2051 struct task_struct *task)
2052{
2053 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 if (ctx)
2055 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 if (ctx)
2058 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059}
2060
0017960f
PZ
2061static void ___perf_install_in_context(void *info)
2062{
2063 struct perf_event *event = info;
2064 struct perf_event_context *ctx = event->ctx;
2065
2066 /*
2067 * Since the task isn't running, its safe to add the event, us holding
2068 * the ctx->lock ensures the task won't get scheduled in.
2069 */
2070 add_event_to_ctx(event, ctx);
2071}
2072
0793a61d 2073/*
cdd6c482 2074 * Cross CPU call to install and enable a performance event
682076ae
PZ
2075 *
2076 * Must be called with ctx->mutex held
0793a61d 2077 */
fe4b04fa 2078static int __perf_install_in_context(void *info)
0793a61d 2079{
cdd6c482
IM
2080 struct perf_event *event = info;
2081 struct perf_event_context *ctx = event->ctx;
108b02cf 2082 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2083 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2084 struct task_struct *task = current;
2085
b58f6b0d 2086 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2087 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2088
2089 /*
2c29ef0f 2090 * If there was an active task_ctx schedule it out.
0793a61d 2091 */
b58f6b0d 2092 if (task_ctx)
2c29ef0f 2093 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2094
2095 /*
2096 * If the context we're installing events in is not the
2097 * active task_ctx, flip them.
2098 */
2099 if (ctx->task && task_ctx != ctx) {
2100 if (task_ctx)
2101 raw_spin_unlock(&task_ctx->lock);
2102 raw_spin_lock(&ctx->lock);
2103 task_ctx = ctx;
2104 }
2105
2106 if (task_ctx) {
2107 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2108 task = task_ctx->task;
2109 }
b58f6b0d 2110
2c29ef0f 2111 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2112
4af4998b 2113 update_context_time(ctx);
e5d1367f
SE
2114 /*
2115 * update cgrp time only if current cgrp
2116 * matches event->cgrp. Must be done before
2117 * calling add_event_to_ctx()
2118 */
2119 update_cgrp_time_from_event(event);
0793a61d 2120
cdd6c482 2121 add_event_to_ctx(event, ctx);
0793a61d 2122
d859e29f 2123 /*
2c29ef0f 2124 * Schedule everything back in
d859e29f 2125 */
dce5855b 2126 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2127
2128 perf_pmu_enable(cpuctx->ctx.pmu);
2129 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2130
2131 return 0;
0793a61d
TG
2132}
2133
2134/*
cdd6c482 2135 * Attach a performance event to a context
0793a61d 2136 *
cdd6c482
IM
2137 * First we add the event to the list with the hardware enable bit
2138 * in event->hw_config cleared.
0793a61d 2139 *
cdd6c482 2140 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2141 * call to enable it in the task context. The task might have been
2142 * scheduled away, but we check this in the smp call again.
2143 */
2144static void
cdd6c482
IM
2145perf_install_in_context(struct perf_event_context *ctx,
2146 struct perf_event *event,
0793a61d
TG
2147 int cpu)
2148{
fe4b04fa
PZ
2149 lockdep_assert_held(&ctx->mutex);
2150
c3f00c70 2151 event->ctx = ctx;
0cda4c02
YZ
2152 if (event->cpu != -1)
2153 event->cpu = cpu;
c3f00c70 2154
0017960f
PZ
2155 event_function_call(event, __perf_install_in_context,
2156 ___perf_install_in_context, event);
0793a61d
TG
2157}
2158
fa289bec 2159/*
cdd6c482 2160 * Put a event into inactive state and update time fields.
fa289bec
PM
2161 * Enabling the leader of a group effectively enables all
2162 * the group members that aren't explicitly disabled, so we
2163 * have to update their ->tstamp_enabled also.
2164 * Note: this works for group members as well as group leaders
2165 * since the non-leader members' sibling_lists will be empty.
2166 */
1d9b482e 2167static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2168{
cdd6c482 2169 struct perf_event *sub;
4158755d 2170 u64 tstamp = perf_event_time(event);
fa289bec 2171
cdd6c482 2172 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2173 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2174 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2175 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2176 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2177 }
fa289bec
PM
2178}
2179
d859e29f 2180/*
cdd6c482 2181 * Cross CPU call to enable a performance event
d859e29f 2182 */
fe4b04fa 2183static int __perf_event_enable(void *info)
04289bb9 2184{
cdd6c482 2185 struct perf_event *event = info;
cdd6c482
IM
2186 struct perf_event_context *ctx = event->ctx;
2187 struct perf_event *leader = event->group_leader;
108b02cf 2188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2189 int err;
04289bb9 2190
06f41796
JO
2191 /*
2192 * There's a time window between 'ctx->is_active' check
2193 * in perf_event_enable function and this place having:
2194 * - IRQs on
2195 * - ctx->lock unlocked
2196 *
2197 * where the task could be killed and 'ctx' deactivated
2198 * by perf_event_exit_task.
2199 */
2200 if (!ctx->is_active)
fe4b04fa 2201 return -EINVAL;
3cbed429 2202
e625cce1 2203 raw_spin_lock(&ctx->lock);
4af4998b 2204 update_context_time(ctx);
d859e29f 2205
cdd6c482 2206 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2207 goto unlock;
e5d1367f
SE
2208
2209 /*
2210 * set current task's cgroup time reference point
2211 */
3f7cce3c 2212 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2213
1d9b482e 2214 __perf_event_mark_enabled(event);
04289bb9 2215
e5d1367f
SE
2216 if (!event_filter_match(event)) {
2217 if (is_cgroup_event(event))
2218 perf_cgroup_defer_enabled(event);
f4c4176f 2219 goto unlock;
e5d1367f 2220 }
f4c4176f 2221
04289bb9 2222 /*
cdd6c482 2223 * If the event is in a group and isn't the group leader,
d859e29f 2224 * then don't put it on unless the group is on.
04289bb9 2225 */
cdd6c482 2226 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2227 goto unlock;
3b6f9e5c 2228
cdd6c482 2229 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2230 err = -EEXIST;
e758a33d 2231 } else {
cdd6c482 2232 if (event == leader)
6e37738a 2233 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2234 else
6e37738a 2235 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2236 }
d859e29f
PM
2237
2238 if (err) {
2239 /*
cdd6c482 2240 * If this event can't go on and it's part of a
d859e29f
PM
2241 * group, then the whole group has to come off.
2242 */
9e630205 2243 if (leader != event) {
d859e29f 2244 group_sched_out(leader, cpuctx, ctx);
272325c4 2245 perf_mux_hrtimer_restart(cpuctx);
9e630205 2246 }
0d48696f 2247 if (leader->attr.pinned) {
53cfbf59 2248 update_group_times(leader);
cdd6c482 2249 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2250 }
d859e29f
PM
2251 }
2252
9ed6060d 2253unlock:
e625cce1 2254 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2255
2256 return 0;
d859e29f
PM
2257}
2258
7b648018
PZ
2259void ___perf_event_enable(void *info)
2260{
2261 __perf_event_mark_enabled((struct perf_event *)info);
2262}
2263
d859e29f 2264/*
cdd6c482 2265 * Enable a event.
c93f7669 2266 *
cdd6c482
IM
2267 * If event->ctx is a cloned context, callers must make sure that
2268 * every task struct that event->ctx->task could possibly point to
c93f7669 2269 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2270 * perf_event_for_each_child or perf_event_for_each as described
2271 * for perf_event_disable.
d859e29f 2272 */
f63a8daa 2273static void _perf_event_enable(struct perf_event *event)
d859e29f 2274{
cdd6c482 2275 struct perf_event_context *ctx = event->ctx;
d859e29f 2276
7b648018
PZ
2277 raw_spin_lock_irq(&ctx->lock);
2278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2279 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2280 return;
2281 }
2282
d859e29f 2283 /*
cdd6c482 2284 * If the event is in error state, clear that first.
7b648018
PZ
2285 *
2286 * That way, if we see the event in error state below, we know that it
2287 * has gone back into error state, as distinct from the task having
2288 * been scheduled away before the cross-call arrived.
d859e29f 2289 */
cdd6c482
IM
2290 if (event->state == PERF_EVENT_STATE_ERROR)
2291 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2292 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2293
7b648018
PZ
2294 event_function_call(event, __perf_event_enable,
2295 ___perf_event_enable, event);
d859e29f 2296}
f63a8daa
PZ
2297
2298/*
2299 * See perf_event_disable();
2300 */
2301void perf_event_enable(struct perf_event *event)
2302{
2303 struct perf_event_context *ctx;
2304
2305 ctx = perf_event_ctx_lock(event);
2306 _perf_event_enable(event);
2307 perf_event_ctx_unlock(event, ctx);
2308}
dcfce4a0 2309EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2310
f63a8daa 2311static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2312{
2023b359 2313 /*
cdd6c482 2314 * not supported on inherited events
2023b359 2315 */
2e939d1d 2316 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2317 return -EINVAL;
2318
cdd6c482 2319 atomic_add(refresh, &event->event_limit);
f63a8daa 2320 _perf_event_enable(event);
2023b359
PZ
2321
2322 return 0;
79f14641 2323}
f63a8daa
PZ
2324
2325/*
2326 * See perf_event_disable()
2327 */
2328int perf_event_refresh(struct perf_event *event, int refresh)
2329{
2330 struct perf_event_context *ctx;
2331 int ret;
2332
2333 ctx = perf_event_ctx_lock(event);
2334 ret = _perf_event_refresh(event, refresh);
2335 perf_event_ctx_unlock(event, ctx);
2336
2337 return ret;
2338}
26ca5c11 2339EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2340
5b0311e1
FW
2341static void ctx_sched_out(struct perf_event_context *ctx,
2342 struct perf_cpu_context *cpuctx,
2343 enum event_type_t event_type)
235c7fc7 2344{
cdd6c482 2345 struct perf_event *event;
db24d33e 2346 int is_active = ctx->is_active;
235c7fc7 2347
db24d33e 2348 ctx->is_active &= ~event_type;
cdd6c482 2349 if (likely(!ctx->nr_events))
facc4307
PZ
2350 return;
2351
4af4998b 2352 update_context_time(ctx);
e5d1367f 2353 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2354 if (!ctx->nr_active)
facc4307 2355 return;
5b0311e1 2356
075e0b00 2357 perf_pmu_disable(ctx->pmu);
db24d33e 2358 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2359 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2360 group_sched_out(event, cpuctx, ctx);
9ed6060d 2361 }
889ff015 2362
db24d33e 2363 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2364 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2365 group_sched_out(event, cpuctx, ctx);
9ed6060d 2366 }
1b9a644f 2367 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2368}
2369
564c2b21 2370/*
5a3126d4
PZ
2371 * Test whether two contexts are equivalent, i.e. whether they have both been
2372 * cloned from the same version of the same context.
2373 *
2374 * Equivalence is measured using a generation number in the context that is
2375 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2376 * and list_del_event().
564c2b21 2377 */
cdd6c482
IM
2378static int context_equiv(struct perf_event_context *ctx1,
2379 struct perf_event_context *ctx2)
564c2b21 2380{
211de6eb
PZ
2381 lockdep_assert_held(&ctx1->lock);
2382 lockdep_assert_held(&ctx2->lock);
2383
5a3126d4
PZ
2384 /* Pinning disables the swap optimization */
2385 if (ctx1->pin_count || ctx2->pin_count)
2386 return 0;
2387
2388 /* If ctx1 is the parent of ctx2 */
2389 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2390 return 1;
2391
2392 /* If ctx2 is the parent of ctx1 */
2393 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2394 return 1;
2395
2396 /*
2397 * If ctx1 and ctx2 have the same parent; we flatten the parent
2398 * hierarchy, see perf_event_init_context().
2399 */
2400 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2401 ctx1->parent_gen == ctx2->parent_gen)
2402 return 1;
2403
2404 /* Unmatched */
2405 return 0;
564c2b21
PM
2406}
2407
cdd6c482
IM
2408static void __perf_event_sync_stat(struct perf_event *event,
2409 struct perf_event *next_event)
bfbd3381
PZ
2410{
2411 u64 value;
2412
cdd6c482 2413 if (!event->attr.inherit_stat)
bfbd3381
PZ
2414 return;
2415
2416 /*
cdd6c482 2417 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2418 * because we're in the middle of a context switch and have IRQs
2419 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2420 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2421 * don't need to use it.
2422 */
cdd6c482
IM
2423 switch (event->state) {
2424 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2425 event->pmu->read(event);
2426 /* fall-through */
bfbd3381 2427
cdd6c482
IM
2428 case PERF_EVENT_STATE_INACTIVE:
2429 update_event_times(event);
bfbd3381
PZ
2430 break;
2431
2432 default:
2433 break;
2434 }
2435
2436 /*
cdd6c482 2437 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2438 * values when we flip the contexts.
2439 */
e7850595
PZ
2440 value = local64_read(&next_event->count);
2441 value = local64_xchg(&event->count, value);
2442 local64_set(&next_event->count, value);
bfbd3381 2443
cdd6c482
IM
2444 swap(event->total_time_enabled, next_event->total_time_enabled);
2445 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2446
bfbd3381 2447 /*
19d2e755 2448 * Since we swizzled the values, update the user visible data too.
bfbd3381 2449 */
cdd6c482
IM
2450 perf_event_update_userpage(event);
2451 perf_event_update_userpage(next_event);
bfbd3381
PZ
2452}
2453
cdd6c482
IM
2454static void perf_event_sync_stat(struct perf_event_context *ctx,
2455 struct perf_event_context *next_ctx)
bfbd3381 2456{
cdd6c482 2457 struct perf_event *event, *next_event;
bfbd3381
PZ
2458
2459 if (!ctx->nr_stat)
2460 return;
2461
02ffdbc8
PZ
2462 update_context_time(ctx);
2463
cdd6c482
IM
2464 event = list_first_entry(&ctx->event_list,
2465 struct perf_event, event_entry);
bfbd3381 2466
cdd6c482
IM
2467 next_event = list_first_entry(&next_ctx->event_list,
2468 struct perf_event, event_entry);
bfbd3381 2469
cdd6c482
IM
2470 while (&event->event_entry != &ctx->event_list &&
2471 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2472
cdd6c482 2473 __perf_event_sync_stat(event, next_event);
bfbd3381 2474
cdd6c482
IM
2475 event = list_next_entry(event, event_entry);
2476 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2477 }
2478}
2479
fe4b04fa
PZ
2480static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2481 struct task_struct *next)
0793a61d 2482{
8dc85d54 2483 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2484 struct perf_event_context *next_ctx;
5a3126d4 2485 struct perf_event_context *parent, *next_parent;
108b02cf 2486 struct perf_cpu_context *cpuctx;
c93f7669 2487 int do_switch = 1;
0793a61d 2488
108b02cf
PZ
2489 if (likely(!ctx))
2490 return;
10989fb2 2491
108b02cf
PZ
2492 cpuctx = __get_cpu_context(ctx);
2493 if (!cpuctx->task_ctx)
0793a61d
TG
2494 return;
2495
c93f7669 2496 rcu_read_lock();
8dc85d54 2497 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2498 if (!next_ctx)
2499 goto unlock;
2500
2501 parent = rcu_dereference(ctx->parent_ctx);
2502 next_parent = rcu_dereference(next_ctx->parent_ctx);
2503
2504 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2505 if (!parent && !next_parent)
5a3126d4
PZ
2506 goto unlock;
2507
2508 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2509 /*
2510 * Looks like the two contexts are clones, so we might be
2511 * able to optimize the context switch. We lock both
2512 * contexts and check that they are clones under the
2513 * lock (including re-checking that neither has been
2514 * uncloned in the meantime). It doesn't matter which
2515 * order we take the locks because no other cpu could
2516 * be trying to lock both of these tasks.
2517 */
e625cce1
TG
2518 raw_spin_lock(&ctx->lock);
2519 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2520 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2521 /*
2522 * XXX do we need a memory barrier of sorts
cdd6c482 2523 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2524 */
8dc85d54
PZ
2525 task->perf_event_ctxp[ctxn] = next_ctx;
2526 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2527 ctx->task = next;
2528 next_ctx->task = task;
5a158c3c
YZ
2529
2530 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2531
c93f7669 2532 do_switch = 0;
bfbd3381 2533
cdd6c482 2534 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2535 }
e625cce1
TG
2536 raw_spin_unlock(&next_ctx->lock);
2537 raw_spin_unlock(&ctx->lock);
564c2b21 2538 }
5a3126d4 2539unlock:
c93f7669 2540 rcu_read_unlock();
564c2b21 2541
c93f7669 2542 if (do_switch) {
facc4307 2543 raw_spin_lock(&ctx->lock);
5b0311e1 2544 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2545 cpuctx->task_ctx = NULL;
facc4307 2546 raw_spin_unlock(&ctx->lock);
c93f7669 2547 }
0793a61d
TG
2548}
2549
ba532500
YZ
2550void perf_sched_cb_dec(struct pmu *pmu)
2551{
2552 this_cpu_dec(perf_sched_cb_usages);
2553}
2554
2555void perf_sched_cb_inc(struct pmu *pmu)
2556{
2557 this_cpu_inc(perf_sched_cb_usages);
2558}
2559
2560/*
2561 * This function provides the context switch callback to the lower code
2562 * layer. It is invoked ONLY when the context switch callback is enabled.
2563 */
2564static void perf_pmu_sched_task(struct task_struct *prev,
2565 struct task_struct *next,
2566 bool sched_in)
2567{
2568 struct perf_cpu_context *cpuctx;
2569 struct pmu *pmu;
2570 unsigned long flags;
2571
2572 if (prev == next)
2573 return;
2574
2575 local_irq_save(flags);
2576
2577 rcu_read_lock();
2578
2579 list_for_each_entry_rcu(pmu, &pmus, entry) {
2580 if (pmu->sched_task) {
2581 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2582
2583 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2584
2585 perf_pmu_disable(pmu);
2586
2587 pmu->sched_task(cpuctx->task_ctx, sched_in);
2588
2589 perf_pmu_enable(pmu);
2590
2591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2592 }
2593 }
2594
2595 rcu_read_unlock();
2596
2597 local_irq_restore(flags);
2598}
2599
45ac1403
AH
2600static void perf_event_switch(struct task_struct *task,
2601 struct task_struct *next_prev, bool sched_in);
2602
8dc85d54
PZ
2603#define for_each_task_context_nr(ctxn) \
2604 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2605
2606/*
2607 * Called from scheduler to remove the events of the current task,
2608 * with interrupts disabled.
2609 *
2610 * We stop each event and update the event value in event->count.
2611 *
2612 * This does not protect us against NMI, but disable()
2613 * sets the disabled bit in the control field of event _before_
2614 * accessing the event control register. If a NMI hits, then it will
2615 * not restart the event.
2616 */
ab0cce56
JO
2617void __perf_event_task_sched_out(struct task_struct *task,
2618 struct task_struct *next)
8dc85d54
PZ
2619{
2620 int ctxn;
2621
ba532500
YZ
2622 if (__this_cpu_read(perf_sched_cb_usages))
2623 perf_pmu_sched_task(task, next, false);
2624
45ac1403
AH
2625 if (atomic_read(&nr_switch_events))
2626 perf_event_switch(task, next, false);
2627
8dc85d54
PZ
2628 for_each_task_context_nr(ctxn)
2629 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2630
2631 /*
2632 * if cgroup events exist on this CPU, then we need
2633 * to check if we have to switch out PMU state.
2634 * cgroup event are system-wide mode only
2635 */
4a32fea9 2636 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2637 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2638}
2639
04dc2dbb 2640static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2641{
108b02cf 2642 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2643
a63eaf34
PM
2644 if (!cpuctx->task_ctx)
2645 return;
012b84da
IM
2646
2647 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2648 return;
2649
04dc2dbb 2650 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2651 cpuctx->task_ctx = NULL;
2652}
2653
5b0311e1
FW
2654/*
2655 * Called with IRQs disabled
2656 */
2657static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2658 enum event_type_t event_type)
2659{
2660 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2661}
2662
235c7fc7 2663static void
5b0311e1 2664ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2665 struct perf_cpu_context *cpuctx)
0793a61d 2666{
cdd6c482 2667 struct perf_event *event;
0793a61d 2668
889ff015
FW
2669 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2670 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2671 continue;
5632ab12 2672 if (!event_filter_match(event))
3b6f9e5c
PM
2673 continue;
2674
e5d1367f
SE
2675 /* may need to reset tstamp_enabled */
2676 if (is_cgroup_event(event))
2677 perf_cgroup_mark_enabled(event, ctx);
2678
8c9ed8e1 2679 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2680 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2681
2682 /*
2683 * If this pinned group hasn't been scheduled,
2684 * put it in error state.
2685 */
cdd6c482
IM
2686 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2687 update_group_times(event);
2688 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2689 }
3b6f9e5c 2690 }
5b0311e1
FW
2691}
2692
2693static void
2694ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2695 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2696{
2697 struct perf_event *event;
2698 int can_add_hw = 1;
3b6f9e5c 2699
889ff015
FW
2700 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2701 /* Ignore events in OFF or ERROR state */
2702 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2703 continue;
04289bb9
IM
2704 /*
2705 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2706 * of events:
04289bb9 2707 */
5632ab12 2708 if (!event_filter_match(event))
0793a61d
TG
2709 continue;
2710
e5d1367f
SE
2711 /* may need to reset tstamp_enabled */
2712 if (is_cgroup_event(event))
2713 perf_cgroup_mark_enabled(event, ctx);
2714
9ed6060d 2715 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2716 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2717 can_add_hw = 0;
9ed6060d 2718 }
0793a61d 2719 }
5b0311e1
FW
2720}
2721
2722static void
2723ctx_sched_in(struct perf_event_context *ctx,
2724 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2725 enum event_type_t event_type,
2726 struct task_struct *task)
5b0311e1 2727{
e5d1367f 2728 u64 now;
db24d33e 2729 int is_active = ctx->is_active;
e5d1367f 2730
db24d33e 2731 ctx->is_active |= event_type;
5b0311e1 2732 if (likely(!ctx->nr_events))
facc4307 2733 return;
5b0311e1 2734
e5d1367f
SE
2735 now = perf_clock();
2736 ctx->timestamp = now;
3f7cce3c 2737 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2738 /*
2739 * First go through the list and put on any pinned groups
2740 * in order to give them the best chance of going on.
2741 */
db24d33e 2742 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2743 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2744
2745 /* Then walk through the lower prio flexible groups */
db24d33e 2746 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2747 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2748}
2749
329c0e01 2750static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2751 enum event_type_t event_type,
2752 struct task_struct *task)
329c0e01
FW
2753{
2754 struct perf_event_context *ctx = &cpuctx->ctx;
2755
e5d1367f 2756 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2757}
2758
e5d1367f
SE
2759static void perf_event_context_sched_in(struct perf_event_context *ctx,
2760 struct task_struct *task)
235c7fc7 2761{
108b02cf 2762 struct perf_cpu_context *cpuctx;
235c7fc7 2763
108b02cf 2764 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2765 if (cpuctx->task_ctx == ctx)
2766 return;
2767
facc4307 2768 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2769 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2770 /*
2771 * We want to keep the following priority order:
2772 * cpu pinned (that don't need to move), task pinned,
2773 * cpu flexible, task flexible.
2774 */
2775 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2776
1d5f003f
GN
2777 if (ctx->nr_events)
2778 cpuctx->task_ctx = ctx;
9b33fa6b 2779
86b47c25
GN
2780 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2781
facc4307
PZ
2782 perf_pmu_enable(ctx->pmu);
2783 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2784}
2785
8dc85d54
PZ
2786/*
2787 * Called from scheduler to add the events of the current task
2788 * with interrupts disabled.
2789 *
2790 * We restore the event value and then enable it.
2791 *
2792 * This does not protect us against NMI, but enable()
2793 * sets the enabled bit in the control field of event _before_
2794 * accessing the event control register. If a NMI hits, then it will
2795 * keep the event running.
2796 */
ab0cce56
JO
2797void __perf_event_task_sched_in(struct task_struct *prev,
2798 struct task_struct *task)
8dc85d54
PZ
2799{
2800 struct perf_event_context *ctx;
2801 int ctxn;
2802
2803 for_each_task_context_nr(ctxn) {
2804 ctx = task->perf_event_ctxp[ctxn];
2805 if (likely(!ctx))
2806 continue;
2807
e5d1367f 2808 perf_event_context_sched_in(ctx, task);
8dc85d54 2809 }
e5d1367f
SE
2810 /*
2811 * if cgroup events exist on this CPU, then we need
2812 * to check if we have to switch in PMU state.
2813 * cgroup event are system-wide mode only
2814 */
4a32fea9 2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2816 perf_cgroup_sched_in(prev, task);
d010b332 2817
45ac1403
AH
2818 if (atomic_read(&nr_switch_events))
2819 perf_event_switch(task, prev, true);
2820
ba532500
YZ
2821 if (__this_cpu_read(perf_sched_cb_usages))
2822 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2823}
2824
abd50713
PZ
2825static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2826{
2827 u64 frequency = event->attr.sample_freq;
2828 u64 sec = NSEC_PER_SEC;
2829 u64 divisor, dividend;
2830
2831 int count_fls, nsec_fls, frequency_fls, sec_fls;
2832
2833 count_fls = fls64(count);
2834 nsec_fls = fls64(nsec);
2835 frequency_fls = fls64(frequency);
2836 sec_fls = 30;
2837
2838 /*
2839 * We got @count in @nsec, with a target of sample_freq HZ
2840 * the target period becomes:
2841 *
2842 * @count * 10^9
2843 * period = -------------------
2844 * @nsec * sample_freq
2845 *
2846 */
2847
2848 /*
2849 * Reduce accuracy by one bit such that @a and @b converge
2850 * to a similar magnitude.
2851 */
fe4b04fa 2852#define REDUCE_FLS(a, b) \
abd50713
PZ
2853do { \
2854 if (a##_fls > b##_fls) { \
2855 a >>= 1; \
2856 a##_fls--; \
2857 } else { \
2858 b >>= 1; \
2859 b##_fls--; \
2860 } \
2861} while (0)
2862
2863 /*
2864 * Reduce accuracy until either term fits in a u64, then proceed with
2865 * the other, so that finally we can do a u64/u64 division.
2866 */
2867 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2868 REDUCE_FLS(nsec, frequency);
2869 REDUCE_FLS(sec, count);
2870 }
2871
2872 if (count_fls + sec_fls > 64) {
2873 divisor = nsec * frequency;
2874
2875 while (count_fls + sec_fls > 64) {
2876 REDUCE_FLS(count, sec);
2877 divisor >>= 1;
2878 }
2879
2880 dividend = count * sec;
2881 } else {
2882 dividend = count * sec;
2883
2884 while (nsec_fls + frequency_fls > 64) {
2885 REDUCE_FLS(nsec, frequency);
2886 dividend >>= 1;
2887 }
2888
2889 divisor = nsec * frequency;
2890 }
2891
f6ab91ad
PZ
2892 if (!divisor)
2893 return dividend;
2894
abd50713
PZ
2895 return div64_u64(dividend, divisor);
2896}
2897
e050e3f0
SE
2898static DEFINE_PER_CPU(int, perf_throttled_count);
2899static DEFINE_PER_CPU(u64, perf_throttled_seq);
2900
f39d47ff 2901static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2902{
cdd6c482 2903 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2904 s64 period, sample_period;
bd2b5b12
PZ
2905 s64 delta;
2906
abd50713 2907 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2908
2909 delta = (s64)(period - hwc->sample_period);
2910 delta = (delta + 7) / 8; /* low pass filter */
2911
2912 sample_period = hwc->sample_period + delta;
2913
2914 if (!sample_period)
2915 sample_period = 1;
2916
bd2b5b12 2917 hwc->sample_period = sample_period;
abd50713 2918
e7850595 2919 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2920 if (disable)
2921 event->pmu->stop(event, PERF_EF_UPDATE);
2922
e7850595 2923 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2924
2925 if (disable)
2926 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2927 }
bd2b5b12
PZ
2928}
2929
e050e3f0
SE
2930/*
2931 * combine freq adjustment with unthrottling to avoid two passes over the
2932 * events. At the same time, make sure, having freq events does not change
2933 * the rate of unthrottling as that would introduce bias.
2934 */
2935static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2936 int needs_unthr)
60db5e09 2937{
cdd6c482
IM
2938 struct perf_event *event;
2939 struct hw_perf_event *hwc;
e050e3f0 2940 u64 now, period = TICK_NSEC;
abd50713 2941 s64 delta;
60db5e09 2942
e050e3f0
SE
2943 /*
2944 * only need to iterate over all events iff:
2945 * - context have events in frequency mode (needs freq adjust)
2946 * - there are events to unthrottle on this cpu
2947 */
2948 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2949 return;
2950
e050e3f0 2951 raw_spin_lock(&ctx->lock);
f39d47ff 2952 perf_pmu_disable(ctx->pmu);
e050e3f0 2953
03541f8b 2954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2955 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2956 continue;
2957
5632ab12 2958 if (!event_filter_match(event))
5d27c23d
PZ
2959 continue;
2960
44377277
AS
2961 perf_pmu_disable(event->pmu);
2962
cdd6c482 2963 hwc = &event->hw;
6a24ed6c 2964
ae23bff1 2965 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2966 hwc->interrupts = 0;
cdd6c482 2967 perf_log_throttle(event, 1);
a4eaf7f1 2968 event->pmu->start(event, 0);
a78ac325
PZ
2969 }
2970
cdd6c482 2971 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2972 goto next;
60db5e09 2973
e050e3f0
SE
2974 /*
2975 * stop the event and update event->count
2976 */
2977 event->pmu->stop(event, PERF_EF_UPDATE);
2978
e7850595 2979 now = local64_read(&event->count);
abd50713
PZ
2980 delta = now - hwc->freq_count_stamp;
2981 hwc->freq_count_stamp = now;
60db5e09 2982
e050e3f0
SE
2983 /*
2984 * restart the event
2985 * reload only if value has changed
f39d47ff
SE
2986 * we have stopped the event so tell that
2987 * to perf_adjust_period() to avoid stopping it
2988 * twice.
e050e3f0 2989 */
abd50713 2990 if (delta > 0)
f39d47ff 2991 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2992
2993 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2994 next:
2995 perf_pmu_enable(event->pmu);
60db5e09 2996 }
e050e3f0 2997
f39d47ff 2998 perf_pmu_enable(ctx->pmu);
e050e3f0 2999 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3000}
3001
235c7fc7 3002/*
cdd6c482 3003 * Round-robin a context's events:
235c7fc7 3004 */
cdd6c482 3005static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3006{
dddd3379
TG
3007 /*
3008 * Rotate the first entry last of non-pinned groups. Rotation might be
3009 * disabled by the inheritance code.
3010 */
3011 if (!ctx->rotate_disable)
3012 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3013}
3014
9e630205 3015static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3016{
8dc85d54 3017 struct perf_event_context *ctx = NULL;
2fde4f94 3018 int rotate = 0;
7fc23a53 3019
b5ab4cd5 3020 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3021 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3022 rotate = 1;
3023 }
235c7fc7 3024
8dc85d54 3025 ctx = cpuctx->task_ctx;
b5ab4cd5 3026 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3027 if (ctx->nr_events != ctx->nr_active)
3028 rotate = 1;
3029 }
9717e6cd 3030
e050e3f0 3031 if (!rotate)
0f5a2601
PZ
3032 goto done;
3033
facc4307 3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3035 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3036
e050e3f0
SE
3037 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3038 if (ctx)
3039 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3040
e050e3f0
SE
3041 rotate_ctx(&cpuctx->ctx);
3042 if (ctx)
3043 rotate_ctx(ctx);
235c7fc7 3044
e050e3f0 3045 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3046
0f5a2601
PZ
3047 perf_pmu_enable(cpuctx->ctx.pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3049done:
9e630205
SE
3050
3051 return rotate;
e9d2b064
PZ
3052}
3053
026249ef
FW
3054#ifdef CONFIG_NO_HZ_FULL
3055bool perf_event_can_stop_tick(void)
3056{
948b26b6 3057 if (atomic_read(&nr_freq_events) ||
d84153d6 3058 __this_cpu_read(perf_throttled_count))
026249ef 3059 return false;
d84153d6
FW
3060 else
3061 return true;
026249ef
FW
3062}
3063#endif
3064
e9d2b064
PZ
3065void perf_event_task_tick(void)
3066{
2fde4f94
MR
3067 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3068 struct perf_event_context *ctx, *tmp;
e050e3f0 3069 int throttled;
b5ab4cd5 3070
e9d2b064
PZ
3071 WARN_ON(!irqs_disabled());
3072
e050e3f0
SE
3073 __this_cpu_inc(perf_throttled_seq);
3074 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3075
2fde4f94 3076 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3077 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3078}
3079
889ff015
FW
3080static int event_enable_on_exec(struct perf_event *event,
3081 struct perf_event_context *ctx)
3082{
3083 if (!event->attr.enable_on_exec)
3084 return 0;
3085
3086 event->attr.enable_on_exec = 0;
3087 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3088 return 0;
3089
1d9b482e 3090 __perf_event_mark_enabled(event);
889ff015
FW
3091
3092 return 1;
3093}
3094
57e7986e 3095/*
cdd6c482 3096 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3097 * This expects task == current.
3098 */
c1274499 3099static void perf_event_enable_on_exec(int ctxn)
57e7986e 3100{
c1274499 3101 struct perf_event_context *ctx, *clone_ctx = NULL;
cdd6c482 3102 struct perf_event *event;
57e7986e
PM
3103 unsigned long flags;
3104 int enabled = 0;
889ff015 3105 int ret;
57e7986e
PM
3106
3107 local_irq_save(flags);
c1274499 3108 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3109 if (!ctx || !ctx->nr_events)
57e7986e
PM
3110 goto out;
3111
e566b76e
SE
3112 /*
3113 * We must ctxsw out cgroup events to avoid conflict
3114 * when invoking perf_task_event_sched_in() later on
3115 * in this function. Otherwise we end up trying to
3116 * ctxswin cgroup events which are already scheduled
3117 * in.
3118 */
a8d757ef 3119 perf_cgroup_sched_out(current, NULL);
57e7986e 3120
e625cce1 3121 raw_spin_lock(&ctx->lock);
04dc2dbb 3122 task_ctx_sched_out(ctx);
57e7986e 3123
b79387ef 3124 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3125 ret = event_enable_on_exec(event, ctx);
3126 if (ret)
3127 enabled = 1;
57e7986e
PM
3128 }
3129
3130 /*
cdd6c482 3131 * Unclone this context if we enabled any event.
57e7986e 3132 */
71a851b4 3133 if (enabled)
211de6eb 3134 clone_ctx = unclone_ctx(ctx);
57e7986e 3135
e625cce1 3136 raw_spin_unlock(&ctx->lock);
57e7986e 3137
e566b76e
SE
3138 /*
3139 * Also calls ctxswin for cgroup events, if any:
3140 */
e5d1367f 3141 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3142out:
57e7986e 3143 local_irq_restore(flags);
211de6eb
PZ
3144
3145 if (clone_ctx)
3146 put_ctx(clone_ctx);
57e7986e
PM
3147}
3148
e041e328
PZ
3149void perf_event_exec(void)
3150{
e041e328
PZ
3151 int ctxn;
3152
3153 rcu_read_lock();
c1274499
PZ
3154 for_each_task_context_nr(ctxn)
3155 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3156 rcu_read_unlock();
3157}
3158
0492d4c5
PZ
3159struct perf_read_data {
3160 struct perf_event *event;
3161 bool group;
7d88962e 3162 int ret;
0492d4c5
PZ
3163};
3164
0793a61d 3165/*
cdd6c482 3166 * Cross CPU call to read the hardware event
0793a61d 3167 */
cdd6c482 3168static void __perf_event_read(void *info)
0793a61d 3169{
0492d4c5
PZ
3170 struct perf_read_data *data = info;
3171 struct perf_event *sub, *event = data->event;
cdd6c482 3172 struct perf_event_context *ctx = event->ctx;
108b02cf 3173 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3174 struct pmu *pmu = event->pmu;
621a01ea 3175
e1ac3614
PM
3176 /*
3177 * If this is a task context, we need to check whether it is
3178 * the current task context of this cpu. If not it has been
3179 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3180 * event->count would have been updated to a recent sample
3181 * when the event was scheduled out.
e1ac3614
PM
3182 */
3183 if (ctx->task && cpuctx->task_ctx != ctx)
3184 return;
3185
e625cce1 3186 raw_spin_lock(&ctx->lock);
e5d1367f 3187 if (ctx->is_active) {
542e72fc 3188 update_context_time(ctx);
e5d1367f
SE
3189 update_cgrp_time_from_event(event);
3190 }
0492d4c5 3191
cdd6c482 3192 update_event_times(event);
4a00c16e
SB
3193 if (event->state != PERF_EVENT_STATE_ACTIVE)
3194 goto unlock;
0492d4c5 3195
4a00c16e
SB
3196 if (!data->group) {
3197 pmu->read(event);
3198 data->ret = 0;
0492d4c5 3199 goto unlock;
4a00c16e
SB
3200 }
3201
3202 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3203
3204 pmu->read(event);
0492d4c5
PZ
3205
3206 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3207 update_event_times(sub);
4a00c16e
SB
3208 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3209 /*
3210 * Use sibling's PMU rather than @event's since
3211 * sibling could be on different (eg: software) PMU.
3212 */
0492d4c5 3213 sub->pmu->read(sub);
4a00c16e 3214 }
0492d4c5 3215 }
4a00c16e
SB
3216
3217 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3218
3219unlock:
e625cce1 3220 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3221}
3222
b5e58793
PZ
3223static inline u64 perf_event_count(struct perf_event *event)
3224{
eacd3ecc
MF
3225 if (event->pmu->count)
3226 return event->pmu->count(event);
3227
3228 return __perf_event_count(event);
b5e58793
PZ
3229}
3230
ffe8690c
KX
3231/*
3232 * NMI-safe method to read a local event, that is an event that
3233 * is:
3234 * - either for the current task, or for this CPU
3235 * - does not have inherit set, for inherited task events
3236 * will not be local and we cannot read them atomically
3237 * - must not have a pmu::count method
3238 */
3239u64 perf_event_read_local(struct perf_event *event)
3240{
3241 unsigned long flags;
3242 u64 val;
3243
3244 /*
3245 * Disabling interrupts avoids all counter scheduling (context
3246 * switches, timer based rotation and IPIs).
3247 */
3248 local_irq_save(flags);
3249
3250 /* If this is a per-task event, it must be for current */
3251 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3252 event->hw.target != current);
3253
3254 /* If this is a per-CPU event, it must be for this CPU */
3255 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3256 event->cpu != smp_processor_id());
3257
3258 /*
3259 * It must not be an event with inherit set, we cannot read
3260 * all child counters from atomic context.
3261 */
3262 WARN_ON_ONCE(event->attr.inherit);
3263
3264 /*
3265 * It must not have a pmu::count method, those are not
3266 * NMI safe.
3267 */
3268 WARN_ON_ONCE(event->pmu->count);
3269
3270 /*
3271 * If the event is currently on this CPU, its either a per-task event,
3272 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3273 * oncpu == -1).
3274 */
3275 if (event->oncpu == smp_processor_id())
3276 event->pmu->read(event);
3277
3278 val = local64_read(&event->count);
3279 local_irq_restore(flags);
3280
3281 return val;
3282}
3283
7d88962e 3284static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3285{
7d88962e
SB
3286 int ret = 0;
3287
0793a61d 3288 /*
cdd6c482
IM
3289 * If event is enabled and currently active on a CPU, update the
3290 * value in the event structure:
0793a61d 3291 */
cdd6c482 3292 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3293 struct perf_read_data data = {
3294 .event = event,
3295 .group = group,
7d88962e 3296 .ret = 0,
0492d4c5 3297 };
cdd6c482 3298 smp_call_function_single(event->oncpu,
0492d4c5 3299 __perf_event_read, &data, 1);
7d88962e 3300 ret = data.ret;
cdd6c482 3301 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3302 struct perf_event_context *ctx = event->ctx;
3303 unsigned long flags;
3304
e625cce1 3305 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3306 /*
3307 * may read while context is not active
3308 * (e.g., thread is blocked), in that case
3309 * we cannot update context time
3310 */
e5d1367f 3311 if (ctx->is_active) {
c530ccd9 3312 update_context_time(ctx);
e5d1367f
SE
3313 update_cgrp_time_from_event(event);
3314 }
0492d4c5
PZ
3315 if (group)
3316 update_group_times(event);
3317 else
3318 update_event_times(event);
e625cce1 3319 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3320 }
7d88962e
SB
3321
3322 return ret;
0793a61d
TG
3323}
3324
a63eaf34 3325/*
cdd6c482 3326 * Initialize the perf_event context in a task_struct:
a63eaf34 3327 */
eb184479 3328static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3329{
e625cce1 3330 raw_spin_lock_init(&ctx->lock);
a63eaf34 3331 mutex_init(&ctx->mutex);
2fde4f94 3332 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3333 INIT_LIST_HEAD(&ctx->pinned_groups);
3334 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3335 INIT_LIST_HEAD(&ctx->event_list);
3336 atomic_set(&ctx->refcount, 1);
fadfe7be 3337 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3338}
3339
3340static struct perf_event_context *
3341alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3342{
3343 struct perf_event_context *ctx;
3344
3345 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3346 if (!ctx)
3347 return NULL;
3348
3349 __perf_event_init_context(ctx);
3350 if (task) {
3351 ctx->task = task;
3352 get_task_struct(task);
0793a61d 3353 }
eb184479
PZ
3354 ctx->pmu = pmu;
3355
3356 return ctx;
a63eaf34
PM
3357}
3358
2ebd4ffb
MH
3359static struct task_struct *
3360find_lively_task_by_vpid(pid_t vpid)
3361{
3362 struct task_struct *task;
3363 int err;
0793a61d
TG
3364
3365 rcu_read_lock();
2ebd4ffb 3366 if (!vpid)
0793a61d
TG
3367 task = current;
3368 else
2ebd4ffb 3369 task = find_task_by_vpid(vpid);
0793a61d
TG
3370 if (task)
3371 get_task_struct(task);
3372 rcu_read_unlock();
3373
3374 if (!task)
3375 return ERR_PTR(-ESRCH);
3376
0793a61d 3377 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3378 err = -EACCES;
3379 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3380 goto errout;
3381
2ebd4ffb
MH
3382 return task;
3383errout:
3384 put_task_struct(task);
3385 return ERR_PTR(err);
3386
3387}
3388
fe4b04fa
PZ
3389/*
3390 * Returns a matching context with refcount and pincount.
3391 */
108b02cf 3392static struct perf_event_context *
4af57ef2
YZ
3393find_get_context(struct pmu *pmu, struct task_struct *task,
3394 struct perf_event *event)
0793a61d 3395{
211de6eb 3396 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3397 struct perf_cpu_context *cpuctx;
4af57ef2 3398 void *task_ctx_data = NULL;
25346b93 3399 unsigned long flags;
8dc85d54 3400 int ctxn, err;
4af57ef2 3401 int cpu = event->cpu;
0793a61d 3402
22a4ec72 3403 if (!task) {
cdd6c482 3404 /* Must be root to operate on a CPU event: */
0764771d 3405 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3406 return ERR_PTR(-EACCES);
3407
0793a61d 3408 /*
cdd6c482 3409 * We could be clever and allow to attach a event to an
0793a61d
TG
3410 * offline CPU and activate it when the CPU comes up, but
3411 * that's for later.
3412 */
f6325e30 3413 if (!cpu_online(cpu))
0793a61d
TG
3414 return ERR_PTR(-ENODEV);
3415
108b02cf 3416 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3417 ctx = &cpuctx->ctx;
c93f7669 3418 get_ctx(ctx);
fe4b04fa 3419 ++ctx->pin_count;
0793a61d 3420
0793a61d
TG
3421 return ctx;
3422 }
3423
8dc85d54
PZ
3424 err = -EINVAL;
3425 ctxn = pmu->task_ctx_nr;
3426 if (ctxn < 0)
3427 goto errout;
3428
4af57ef2
YZ
3429 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3430 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3431 if (!task_ctx_data) {
3432 err = -ENOMEM;
3433 goto errout;
3434 }
3435 }
3436
9ed6060d 3437retry:
8dc85d54 3438 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3439 if (ctx) {
211de6eb 3440 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3441 ++ctx->pin_count;
4af57ef2
YZ
3442
3443 if (task_ctx_data && !ctx->task_ctx_data) {
3444 ctx->task_ctx_data = task_ctx_data;
3445 task_ctx_data = NULL;
3446 }
e625cce1 3447 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3448
3449 if (clone_ctx)
3450 put_ctx(clone_ctx);
9137fb28 3451 } else {
eb184479 3452 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3453 err = -ENOMEM;
3454 if (!ctx)
3455 goto errout;
eb184479 3456
4af57ef2
YZ
3457 if (task_ctx_data) {
3458 ctx->task_ctx_data = task_ctx_data;
3459 task_ctx_data = NULL;
3460 }
3461
dbe08d82
ON
3462 err = 0;
3463 mutex_lock(&task->perf_event_mutex);
3464 /*
3465 * If it has already passed perf_event_exit_task().
3466 * we must see PF_EXITING, it takes this mutex too.
3467 */
3468 if (task->flags & PF_EXITING)
3469 err = -ESRCH;
3470 else if (task->perf_event_ctxp[ctxn])
3471 err = -EAGAIN;
fe4b04fa 3472 else {
9137fb28 3473 get_ctx(ctx);
fe4b04fa 3474 ++ctx->pin_count;
dbe08d82 3475 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3476 }
dbe08d82
ON
3477 mutex_unlock(&task->perf_event_mutex);
3478
3479 if (unlikely(err)) {
9137fb28 3480 put_ctx(ctx);
dbe08d82
ON
3481
3482 if (err == -EAGAIN)
3483 goto retry;
3484 goto errout;
a63eaf34
PM
3485 }
3486 }
3487
4af57ef2 3488 kfree(task_ctx_data);
0793a61d 3489 return ctx;
c93f7669 3490
9ed6060d 3491errout:
4af57ef2 3492 kfree(task_ctx_data);
c93f7669 3493 return ERR_PTR(err);
0793a61d
TG
3494}
3495
6fb2915d 3496static void perf_event_free_filter(struct perf_event *event);
2541517c 3497static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3498
cdd6c482 3499static void free_event_rcu(struct rcu_head *head)
592903cd 3500{
cdd6c482 3501 struct perf_event *event;
592903cd 3502
cdd6c482
IM
3503 event = container_of(head, struct perf_event, rcu_head);
3504 if (event->ns)
3505 put_pid_ns(event->ns);
6fb2915d 3506 perf_event_free_filter(event);
cdd6c482 3507 kfree(event);
592903cd
PZ
3508}
3509
b69cf536
PZ
3510static void ring_buffer_attach(struct perf_event *event,
3511 struct ring_buffer *rb);
925d519a 3512
4beb31f3 3513static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3514{
4beb31f3
FW
3515 if (event->parent)
3516 return;
3517
4beb31f3
FW
3518 if (is_cgroup_event(event))
3519 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3520}
925d519a 3521
4beb31f3
FW
3522static void unaccount_event(struct perf_event *event)
3523{
3524 if (event->parent)
3525 return;
3526
3527 if (event->attach_state & PERF_ATTACH_TASK)
3528 static_key_slow_dec_deferred(&perf_sched_events);
3529 if (event->attr.mmap || event->attr.mmap_data)
3530 atomic_dec(&nr_mmap_events);
3531 if (event->attr.comm)
3532 atomic_dec(&nr_comm_events);
3533 if (event->attr.task)
3534 atomic_dec(&nr_task_events);
948b26b6
FW
3535 if (event->attr.freq)
3536 atomic_dec(&nr_freq_events);
45ac1403
AH
3537 if (event->attr.context_switch) {
3538 static_key_slow_dec_deferred(&perf_sched_events);
3539 atomic_dec(&nr_switch_events);
3540 }
4beb31f3
FW
3541 if (is_cgroup_event(event))
3542 static_key_slow_dec_deferred(&perf_sched_events);
3543 if (has_branch_stack(event))
3544 static_key_slow_dec_deferred(&perf_sched_events);
3545
3546 unaccount_event_cpu(event, event->cpu);
3547}
925d519a 3548
bed5b25a
AS
3549/*
3550 * The following implement mutual exclusion of events on "exclusive" pmus
3551 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3552 * at a time, so we disallow creating events that might conflict, namely:
3553 *
3554 * 1) cpu-wide events in the presence of per-task events,
3555 * 2) per-task events in the presence of cpu-wide events,
3556 * 3) two matching events on the same context.
3557 *
3558 * The former two cases are handled in the allocation path (perf_event_alloc(),
3559 * __free_event()), the latter -- before the first perf_install_in_context().
3560 */
3561static int exclusive_event_init(struct perf_event *event)
3562{
3563 struct pmu *pmu = event->pmu;
3564
3565 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3566 return 0;
3567
3568 /*
3569 * Prevent co-existence of per-task and cpu-wide events on the
3570 * same exclusive pmu.
3571 *
3572 * Negative pmu::exclusive_cnt means there are cpu-wide
3573 * events on this "exclusive" pmu, positive means there are
3574 * per-task events.
3575 *
3576 * Since this is called in perf_event_alloc() path, event::ctx
3577 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3578 * to mean "per-task event", because unlike other attach states it
3579 * never gets cleared.
3580 */
3581 if (event->attach_state & PERF_ATTACH_TASK) {
3582 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3583 return -EBUSY;
3584 } else {
3585 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3586 return -EBUSY;
3587 }
3588
3589 return 0;
3590}
3591
3592static void exclusive_event_destroy(struct perf_event *event)
3593{
3594 struct pmu *pmu = event->pmu;
3595
3596 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3597 return;
3598
3599 /* see comment in exclusive_event_init() */
3600 if (event->attach_state & PERF_ATTACH_TASK)
3601 atomic_dec(&pmu->exclusive_cnt);
3602 else
3603 atomic_inc(&pmu->exclusive_cnt);
3604}
3605
3606static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3607{
3608 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3609 (e1->cpu == e2->cpu ||
3610 e1->cpu == -1 ||
3611 e2->cpu == -1))
3612 return true;
3613 return false;
3614}
3615
3616/* Called under the same ctx::mutex as perf_install_in_context() */
3617static bool exclusive_event_installable(struct perf_event *event,
3618 struct perf_event_context *ctx)
3619{
3620 struct perf_event *iter_event;
3621 struct pmu *pmu = event->pmu;
3622
3623 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3624 return true;
3625
3626 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3627 if (exclusive_event_match(iter_event, event))
3628 return false;
3629 }
3630
3631 return true;
3632}
3633
766d6c07
FW
3634static void __free_event(struct perf_event *event)
3635{
cdd6c482 3636 if (!event->parent) {
927c7a9e
FW
3637 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3638 put_callchain_buffers();
f344011c 3639 }
9ee318a7 3640
dead9f29
AS
3641 perf_event_free_bpf_prog(event);
3642
766d6c07
FW
3643 if (event->destroy)
3644 event->destroy(event);
3645
3646 if (event->ctx)
3647 put_ctx(event->ctx);
3648
bed5b25a
AS
3649 if (event->pmu) {
3650 exclusive_event_destroy(event);
c464c76e 3651 module_put(event->pmu->module);
bed5b25a 3652 }
c464c76e 3653
766d6c07
FW
3654 call_rcu(&event->rcu_head, free_event_rcu);
3655}
683ede43
PZ
3656
3657static void _free_event(struct perf_event *event)
f1600952 3658{
e360adbe 3659 irq_work_sync(&event->pending);
925d519a 3660
4beb31f3 3661 unaccount_event(event);
9ee318a7 3662
76369139 3663 if (event->rb) {
9bb5d40c
PZ
3664 /*
3665 * Can happen when we close an event with re-directed output.
3666 *
3667 * Since we have a 0 refcount, perf_mmap_close() will skip
3668 * over us; possibly making our ring_buffer_put() the last.
3669 */
3670 mutex_lock(&event->mmap_mutex);
b69cf536 3671 ring_buffer_attach(event, NULL);
9bb5d40c 3672 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3673 }
3674
e5d1367f
SE
3675 if (is_cgroup_event(event))
3676 perf_detach_cgroup(event);
3677
766d6c07 3678 __free_event(event);
f1600952
PZ
3679}
3680
683ede43
PZ
3681/*
3682 * Used to free events which have a known refcount of 1, such as in error paths
3683 * where the event isn't exposed yet and inherited events.
3684 */
3685static void free_event(struct perf_event *event)
0793a61d 3686{
683ede43
PZ
3687 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3688 "unexpected event refcount: %ld; ptr=%p\n",
3689 atomic_long_read(&event->refcount), event)) {
3690 /* leak to avoid use-after-free */
3691 return;
3692 }
0793a61d 3693
683ede43 3694 _free_event(event);
0793a61d
TG
3695}
3696
a66a3052 3697/*
f8697762 3698 * Remove user event from the owner task.
a66a3052 3699 */
f8697762 3700static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3701{
8882135b 3702 struct task_struct *owner;
fb0459d7 3703
8882135b
PZ
3704 rcu_read_lock();
3705 owner = ACCESS_ONCE(event->owner);
3706 /*
3707 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3708 * !owner it means the list deletion is complete and we can indeed
3709 * free this event, otherwise we need to serialize on
3710 * owner->perf_event_mutex.
3711 */
3712 smp_read_barrier_depends();
3713 if (owner) {
3714 /*
3715 * Since delayed_put_task_struct() also drops the last
3716 * task reference we can safely take a new reference
3717 * while holding the rcu_read_lock().
3718 */
3719 get_task_struct(owner);
3720 }
3721 rcu_read_unlock();
3722
3723 if (owner) {
f63a8daa
PZ
3724 /*
3725 * If we're here through perf_event_exit_task() we're already
3726 * holding ctx->mutex which would be an inversion wrt. the
3727 * normal lock order.
3728 *
3729 * However we can safely take this lock because its the child
3730 * ctx->mutex.
3731 */
3732 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3733
8882135b
PZ
3734 /*
3735 * We have to re-check the event->owner field, if it is cleared
3736 * we raced with perf_event_exit_task(), acquiring the mutex
3737 * ensured they're done, and we can proceed with freeing the
3738 * event.
3739 */
3740 if (event->owner)
3741 list_del_init(&event->owner_entry);
3742 mutex_unlock(&owner->perf_event_mutex);
3743 put_task_struct(owner);
3744 }
f8697762
JO
3745}
3746
f8697762
JO
3747static void put_event(struct perf_event *event)
3748{
a83fe28e 3749 struct perf_event_context *ctx;
f8697762
JO
3750
3751 if (!atomic_long_dec_and_test(&event->refcount))
3752 return;
3753
3754 if (!is_kernel_event(event))
3755 perf_remove_from_owner(event);
8882135b 3756
683ede43
PZ
3757 /*
3758 * There are two ways this annotation is useful:
3759 *
3760 * 1) there is a lock recursion from perf_event_exit_task
3761 * see the comment there.
3762 *
3763 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3764 * perf_read_group(), which takes faults while
683ede43
PZ
3765 * holding ctx->mutex, however this is called after
3766 * the last filedesc died, so there is no possibility
3767 * to trigger the AB-BA case.
3768 */
a83fe28e
PZ
3769 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3770 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3771 perf_remove_from_context(event, true);
d415a7f1 3772 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3773
3774 _free_event(event);
a6fa941d
AV
3775}
3776
683ede43
PZ
3777int perf_event_release_kernel(struct perf_event *event)
3778{
3779 put_event(event);
3780 return 0;
3781}
3782EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3783
8b10c5e2
PZ
3784/*
3785 * Called when the last reference to the file is gone.
3786 */
a6fa941d
AV
3787static int perf_release(struct inode *inode, struct file *file)
3788{
3789 put_event(file->private_data);
3790 return 0;
fb0459d7 3791}
fb0459d7 3792
fadfe7be
JO
3793/*
3794 * Remove all orphanes events from the context.
3795 */
3796static void orphans_remove_work(struct work_struct *work)
3797{
3798 struct perf_event_context *ctx;
3799 struct perf_event *event, *tmp;
3800
3801 ctx = container_of(work, struct perf_event_context,
3802 orphans_remove.work);
3803
3804 mutex_lock(&ctx->mutex);
3805 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3806 struct perf_event *parent_event = event->parent;
3807
3808 if (!is_orphaned_child(event))
3809 continue;
3810
3811 perf_remove_from_context(event, true);
3812
3813 mutex_lock(&parent_event->child_mutex);
3814 list_del_init(&event->child_list);
3815 mutex_unlock(&parent_event->child_mutex);
3816
3817 free_event(event);
3818 put_event(parent_event);
3819 }
3820
3821 raw_spin_lock_irq(&ctx->lock);
3822 ctx->orphans_remove_sched = false;
3823 raw_spin_unlock_irq(&ctx->lock);
3824 mutex_unlock(&ctx->mutex);
3825
3826 put_ctx(ctx);
3827}
3828
59ed446f 3829u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3830{
cdd6c482 3831 struct perf_event *child;
e53c0994
PZ
3832 u64 total = 0;
3833
59ed446f
PZ
3834 *enabled = 0;
3835 *running = 0;
3836
6f10581a 3837 mutex_lock(&event->child_mutex);
01add3ea 3838
7d88962e 3839 (void)perf_event_read(event, false);
01add3ea
SB
3840 total += perf_event_count(event);
3841
59ed446f
PZ
3842 *enabled += event->total_time_enabled +
3843 atomic64_read(&event->child_total_time_enabled);
3844 *running += event->total_time_running +
3845 atomic64_read(&event->child_total_time_running);
3846
3847 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3848 (void)perf_event_read(child, false);
01add3ea 3849 total += perf_event_count(child);
59ed446f
PZ
3850 *enabled += child->total_time_enabled;
3851 *running += child->total_time_running;
3852 }
6f10581a 3853 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3854
3855 return total;
3856}
fb0459d7 3857EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3858
7d88962e 3859static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3860 u64 read_format, u64 *values)
3dab77fb 3861{
fa8c2693
PZ
3862 struct perf_event *sub;
3863 int n = 1; /* skip @nr */
7d88962e 3864 int ret;
f63a8daa 3865
7d88962e
SB
3866 ret = perf_event_read(leader, true);
3867 if (ret)
3868 return ret;
abf4868b 3869
fa8c2693
PZ
3870 /*
3871 * Since we co-schedule groups, {enabled,running} times of siblings
3872 * will be identical to those of the leader, so we only publish one
3873 * set.
3874 */
3875 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3876 values[n++] += leader->total_time_enabled +
3877 atomic64_read(&leader->child_total_time_enabled);
3878 }
3dab77fb 3879
fa8c2693
PZ
3880 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3881 values[n++] += leader->total_time_running +
3882 atomic64_read(&leader->child_total_time_running);
3883 }
3884
3885 /*
3886 * Write {count,id} tuples for every sibling.
3887 */
3888 values[n++] += perf_event_count(leader);
abf4868b
PZ
3889 if (read_format & PERF_FORMAT_ID)
3890 values[n++] = primary_event_id(leader);
3dab77fb 3891
fa8c2693
PZ
3892 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893 values[n++] += perf_event_count(sub);
3894 if (read_format & PERF_FORMAT_ID)
3895 values[n++] = primary_event_id(sub);
3896 }
7d88962e
SB
3897
3898 return 0;
fa8c2693 3899}
3dab77fb 3900
fa8c2693
PZ
3901static int perf_read_group(struct perf_event *event,
3902 u64 read_format, char __user *buf)
3903{
3904 struct perf_event *leader = event->group_leader, *child;
3905 struct perf_event_context *ctx = leader->ctx;
7d88962e 3906 int ret;
fa8c2693 3907 u64 *values;
3dab77fb 3908
fa8c2693 3909 lockdep_assert_held(&ctx->mutex);
3dab77fb 3910
fa8c2693
PZ
3911 values = kzalloc(event->read_size, GFP_KERNEL);
3912 if (!values)
3913 return -ENOMEM;
3dab77fb 3914
fa8c2693
PZ
3915 values[0] = 1 + leader->nr_siblings;
3916
3917 /*
3918 * By locking the child_mutex of the leader we effectively
3919 * lock the child list of all siblings.. XXX explain how.
3920 */
3921 mutex_lock(&leader->child_mutex);
abf4868b 3922
7d88962e
SB
3923 ret = __perf_read_group_add(leader, read_format, values);
3924 if (ret)
3925 goto unlock;
3926
3927 list_for_each_entry(child, &leader->child_list, child_list) {
3928 ret = __perf_read_group_add(child, read_format, values);
3929 if (ret)
3930 goto unlock;
3931 }
abf4868b 3932
fa8c2693 3933 mutex_unlock(&leader->child_mutex);
abf4868b 3934
7d88962e 3935 ret = event->read_size;
fa8c2693
PZ
3936 if (copy_to_user(buf, values, event->read_size))
3937 ret = -EFAULT;
7d88962e 3938 goto out;
fa8c2693 3939
7d88962e
SB
3940unlock:
3941 mutex_unlock(&leader->child_mutex);
3942out:
fa8c2693 3943 kfree(values);
abf4868b 3944 return ret;
3dab77fb
PZ
3945}
3946
b15f495b 3947static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3948 u64 read_format, char __user *buf)
3949{
59ed446f 3950 u64 enabled, running;
3dab77fb
PZ
3951 u64 values[4];
3952 int n = 0;
3953
59ed446f
PZ
3954 values[n++] = perf_event_read_value(event, &enabled, &running);
3955 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3956 values[n++] = enabled;
3957 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3958 values[n++] = running;
3dab77fb 3959 if (read_format & PERF_FORMAT_ID)
cdd6c482 3960 values[n++] = primary_event_id(event);
3dab77fb
PZ
3961
3962 if (copy_to_user(buf, values, n * sizeof(u64)))
3963 return -EFAULT;
3964
3965 return n * sizeof(u64);
3966}
3967
dc633982
JO
3968static bool is_event_hup(struct perf_event *event)
3969{
3970 bool no_children;
3971
3972 if (event->state != PERF_EVENT_STATE_EXIT)
3973 return false;
3974
3975 mutex_lock(&event->child_mutex);
3976 no_children = list_empty(&event->child_list);
3977 mutex_unlock(&event->child_mutex);
3978 return no_children;
3979}
3980
0793a61d 3981/*
cdd6c482 3982 * Read the performance event - simple non blocking version for now
0793a61d
TG
3983 */
3984static ssize_t
b15f495b 3985__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3986{
cdd6c482 3987 u64 read_format = event->attr.read_format;
3dab77fb 3988 int ret;
0793a61d 3989
3b6f9e5c 3990 /*
cdd6c482 3991 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3992 * error state (i.e. because it was pinned but it couldn't be
3993 * scheduled on to the CPU at some point).
3994 */
cdd6c482 3995 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3996 return 0;
3997
c320c7b7 3998 if (count < event->read_size)
3dab77fb
PZ
3999 return -ENOSPC;
4000
cdd6c482 4001 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4002 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4003 ret = perf_read_group(event, read_format, buf);
3dab77fb 4004 else
b15f495b 4005 ret = perf_read_one(event, read_format, buf);
0793a61d 4006
3dab77fb 4007 return ret;
0793a61d
TG
4008}
4009
0793a61d
TG
4010static ssize_t
4011perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4012{
cdd6c482 4013 struct perf_event *event = file->private_data;
f63a8daa
PZ
4014 struct perf_event_context *ctx;
4015 int ret;
0793a61d 4016
f63a8daa 4017 ctx = perf_event_ctx_lock(event);
b15f495b 4018 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4019 perf_event_ctx_unlock(event, ctx);
4020
4021 return ret;
0793a61d
TG
4022}
4023
4024static unsigned int perf_poll(struct file *file, poll_table *wait)
4025{
cdd6c482 4026 struct perf_event *event = file->private_data;
76369139 4027 struct ring_buffer *rb;
61b67684 4028 unsigned int events = POLLHUP;
c7138f37 4029
e708d7ad 4030 poll_wait(file, &event->waitq, wait);
179033b3 4031
dc633982 4032 if (is_event_hup(event))
179033b3 4033 return events;
c7138f37 4034
10c6db11 4035 /*
9bb5d40c
PZ
4036 * Pin the event->rb by taking event->mmap_mutex; otherwise
4037 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4038 */
4039 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4040 rb = event->rb;
4041 if (rb)
76369139 4042 events = atomic_xchg(&rb->poll, 0);
10c6db11 4043 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4044 return events;
4045}
4046
f63a8daa 4047static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4048{
7d88962e 4049 (void)perf_event_read(event, false);
e7850595 4050 local64_set(&event->count, 0);
cdd6c482 4051 perf_event_update_userpage(event);
3df5edad
PZ
4052}
4053
c93f7669 4054/*
cdd6c482
IM
4055 * Holding the top-level event's child_mutex means that any
4056 * descendant process that has inherited this event will block
4057 * in sync_child_event if it goes to exit, thus satisfying the
4058 * task existence requirements of perf_event_enable/disable.
c93f7669 4059 */
cdd6c482
IM
4060static void perf_event_for_each_child(struct perf_event *event,
4061 void (*func)(struct perf_event *))
3df5edad 4062{
cdd6c482 4063 struct perf_event *child;
3df5edad 4064
cdd6c482 4065 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4066
cdd6c482
IM
4067 mutex_lock(&event->child_mutex);
4068 func(event);
4069 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4070 func(child);
cdd6c482 4071 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4072}
4073
cdd6c482
IM
4074static void perf_event_for_each(struct perf_event *event,
4075 void (*func)(struct perf_event *))
3df5edad 4076{
cdd6c482
IM
4077 struct perf_event_context *ctx = event->ctx;
4078 struct perf_event *sibling;
3df5edad 4079
f63a8daa
PZ
4080 lockdep_assert_held(&ctx->mutex);
4081
cdd6c482 4082 event = event->group_leader;
75f937f2 4083
cdd6c482 4084 perf_event_for_each_child(event, func);
cdd6c482 4085 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4086 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4087}
4088
c7999c6f
PZ
4089struct period_event {
4090 struct perf_event *event;
08247e31 4091 u64 value;
c7999c6f 4092};
08247e31 4093
0017960f
PZ
4094static void ___perf_event_period(void *info)
4095{
4096 struct period_event *pe = info;
4097 struct perf_event *event = pe->event;
4098 u64 value = pe->value;
4099
4100 if (event->attr.freq) {
4101 event->attr.sample_freq = value;
4102 } else {
4103 event->attr.sample_period = value;
4104 event->hw.sample_period = value;
4105 }
4106
4107 local64_set(&event->hw.period_left, 0);
4108}
4109
c7999c6f
PZ
4110static int __perf_event_period(void *info)
4111{
4112 struct period_event *pe = info;
4113 struct perf_event *event = pe->event;
4114 struct perf_event_context *ctx = event->ctx;
4115 u64 value = pe->value;
4116 bool active;
08247e31 4117
c7999c6f 4118 raw_spin_lock(&ctx->lock);
cdd6c482 4119 if (event->attr.freq) {
cdd6c482 4120 event->attr.sample_freq = value;
08247e31 4121 } else {
cdd6c482
IM
4122 event->attr.sample_period = value;
4123 event->hw.sample_period = value;
08247e31 4124 }
bad7192b
PZ
4125
4126 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4127 if (active) {
4128 perf_pmu_disable(ctx->pmu);
4129 event->pmu->stop(event, PERF_EF_UPDATE);
4130 }
4131
4132 local64_set(&event->hw.period_left, 0);
4133
4134 if (active) {
4135 event->pmu->start(event, PERF_EF_RELOAD);
4136 perf_pmu_enable(ctx->pmu);
4137 }
c7999c6f 4138 raw_spin_unlock(&ctx->lock);
bad7192b 4139
c7999c6f
PZ
4140 return 0;
4141}
4142
4143static int perf_event_period(struct perf_event *event, u64 __user *arg)
4144{
4145 struct period_event pe = { .event = event, };
c7999c6f
PZ
4146 u64 value;
4147
4148 if (!is_sampling_event(event))
4149 return -EINVAL;
4150
4151 if (copy_from_user(&value, arg, sizeof(value)))
4152 return -EFAULT;
4153
4154 if (!value)
4155 return -EINVAL;
4156
4157 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4158 return -EINVAL;
4159
c7999c6f
PZ
4160 pe.value = value;
4161
0017960f
PZ
4162 event_function_call(event, __perf_event_period,
4163 ___perf_event_period, &pe);
08247e31 4164
c7999c6f 4165 return 0;
08247e31
PZ
4166}
4167
ac9721f3
PZ
4168static const struct file_operations perf_fops;
4169
2903ff01 4170static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4171{
2903ff01
AV
4172 struct fd f = fdget(fd);
4173 if (!f.file)
4174 return -EBADF;
ac9721f3 4175
2903ff01
AV
4176 if (f.file->f_op != &perf_fops) {
4177 fdput(f);
4178 return -EBADF;
ac9721f3 4179 }
2903ff01
AV
4180 *p = f;
4181 return 0;
ac9721f3
PZ
4182}
4183
4184static int perf_event_set_output(struct perf_event *event,
4185 struct perf_event *output_event);
6fb2915d 4186static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4187static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4188
f63a8daa 4189static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4190{
cdd6c482 4191 void (*func)(struct perf_event *);
3df5edad 4192 u32 flags = arg;
d859e29f
PM
4193
4194 switch (cmd) {
cdd6c482 4195 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4196 func = _perf_event_enable;
d859e29f 4197 break;
cdd6c482 4198 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4199 func = _perf_event_disable;
79f14641 4200 break;
cdd6c482 4201 case PERF_EVENT_IOC_RESET:
f63a8daa 4202 func = _perf_event_reset;
6de6a7b9 4203 break;
3df5edad 4204
cdd6c482 4205 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4206 return _perf_event_refresh(event, arg);
08247e31 4207
cdd6c482
IM
4208 case PERF_EVENT_IOC_PERIOD:
4209 return perf_event_period(event, (u64 __user *)arg);
08247e31 4210
cf4957f1
JO
4211 case PERF_EVENT_IOC_ID:
4212 {
4213 u64 id = primary_event_id(event);
4214
4215 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4216 return -EFAULT;
4217 return 0;
4218 }
4219
cdd6c482 4220 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4221 {
ac9721f3 4222 int ret;
ac9721f3 4223 if (arg != -1) {
2903ff01
AV
4224 struct perf_event *output_event;
4225 struct fd output;
4226 ret = perf_fget_light(arg, &output);
4227 if (ret)
4228 return ret;
4229 output_event = output.file->private_data;
4230 ret = perf_event_set_output(event, output_event);
4231 fdput(output);
4232 } else {
4233 ret = perf_event_set_output(event, NULL);
ac9721f3 4234 }
ac9721f3
PZ
4235 return ret;
4236 }
a4be7c27 4237
6fb2915d
LZ
4238 case PERF_EVENT_IOC_SET_FILTER:
4239 return perf_event_set_filter(event, (void __user *)arg);
4240
2541517c
AS
4241 case PERF_EVENT_IOC_SET_BPF:
4242 return perf_event_set_bpf_prog(event, arg);
4243
d859e29f 4244 default:
3df5edad 4245 return -ENOTTY;
d859e29f 4246 }
3df5edad
PZ
4247
4248 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4249 perf_event_for_each(event, func);
3df5edad 4250 else
cdd6c482 4251 perf_event_for_each_child(event, func);
3df5edad
PZ
4252
4253 return 0;
d859e29f
PM
4254}
4255
f63a8daa
PZ
4256static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4257{
4258 struct perf_event *event = file->private_data;
4259 struct perf_event_context *ctx;
4260 long ret;
4261
4262 ctx = perf_event_ctx_lock(event);
4263 ret = _perf_ioctl(event, cmd, arg);
4264 perf_event_ctx_unlock(event, ctx);
4265
4266 return ret;
4267}
4268
b3f20785
PM
4269#ifdef CONFIG_COMPAT
4270static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4271 unsigned long arg)
4272{
4273 switch (_IOC_NR(cmd)) {
4274 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4275 case _IOC_NR(PERF_EVENT_IOC_ID):
4276 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4277 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4278 cmd &= ~IOCSIZE_MASK;
4279 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4280 }
4281 break;
4282 }
4283 return perf_ioctl(file, cmd, arg);
4284}
4285#else
4286# define perf_compat_ioctl NULL
4287#endif
4288
cdd6c482 4289int perf_event_task_enable(void)
771d7cde 4290{
f63a8daa 4291 struct perf_event_context *ctx;
cdd6c482 4292 struct perf_event *event;
771d7cde 4293
cdd6c482 4294 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4295 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4296 ctx = perf_event_ctx_lock(event);
4297 perf_event_for_each_child(event, _perf_event_enable);
4298 perf_event_ctx_unlock(event, ctx);
4299 }
cdd6c482 4300 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4301
4302 return 0;
4303}
4304
cdd6c482 4305int perf_event_task_disable(void)
771d7cde 4306{
f63a8daa 4307 struct perf_event_context *ctx;
cdd6c482 4308 struct perf_event *event;
771d7cde 4309
cdd6c482 4310 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4311 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4312 ctx = perf_event_ctx_lock(event);
4313 perf_event_for_each_child(event, _perf_event_disable);
4314 perf_event_ctx_unlock(event, ctx);
4315 }
cdd6c482 4316 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4317
4318 return 0;
4319}
4320
cdd6c482 4321static int perf_event_index(struct perf_event *event)
194002b2 4322{
a4eaf7f1
PZ
4323 if (event->hw.state & PERF_HES_STOPPED)
4324 return 0;
4325
cdd6c482 4326 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4327 return 0;
4328
35edc2a5 4329 return event->pmu->event_idx(event);
194002b2
PZ
4330}
4331
c4794295 4332static void calc_timer_values(struct perf_event *event,
e3f3541c 4333 u64 *now,
7f310a5d
EM
4334 u64 *enabled,
4335 u64 *running)
c4794295 4336{
e3f3541c 4337 u64 ctx_time;
c4794295 4338
e3f3541c
PZ
4339 *now = perf_clock();
4340 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4341 *enabled = ctx_time - event->tstamp_enabled;
4342 *running = ctx_time - event->tstamp_running;
4343}
4344
fa731587
PZ
4345static void perf_event_init_userpage(struct perf_event *event)
4346{
4347 struct perf_event_mmap_page *userpg;
4348 struct ring_buffer *rb;
4349
4350 rcu_read_lock();
4351 rb = rcu_dereference(event->rb);
4352 if (!rb)
4353 goto unlock;
4354
4355 userpg = rb->user_page;
4356
4357 /* Allow new userspace to detect that bit 0 is deprecated */
4358 userpg->cap_bit0_is_deprecated = 1;
4359 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4360 userpg->data_offset = PAGE_SIZE;
4361 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4362
4363unlock:
4364 rcu_read_unlock();
4365}
4366
c1317ec2
AL
4367void __weak arch_perf_update_userpage(
4368 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4369{
4370}
4371
38ff667b
PZ
4372/*
4373 * Callers need to ensure there can be no nesting of this function, otherwise
4374 * the seqlock logic goes bad. We can not serialize this because the arch
4375 * code calls this from NMI context.
4376 */
cdd6c482 4377void perf_event_update_userpage(struct perf_event *event)
37d81828 4378{
cdd6c482 4379 struct perf_event_mmap_page *userpg;
76369139 4380 struct ring_buffer *rb;
e3f3541c 4381 u64 enabled, running, now;
38ff667b
PZ
4382
4383 rcu_read_lock();
5ec4c599
PZ
4384 rb = rcu_dereference(event->rb);
4385 if (!rb)
4386 goto unlock;
4387
0d641208
EM
4388 /*
4389 * compute total_time_enabled, total_time_running
4390 * based on snapshot values taken when the event
4391 * was last scheduled in.
4392 *
4393 * we cannot simply called update_context_time()
4394 * because of locking issue as we can be called in
4395 * NMI context
4396 */
e3f3541c 4397 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4398
76369139 4399 userpg = rb->user_page;
7b732a75
PZ
4400 /*
4401 * Disable preemption so as to not let the corresponding user-space
4402 * spin too long if we get preempted.
4403 */
4404 preempt_disable();
37d81828 4405 ++userpg->lock;
92f22a38 4406 barrier();
cdd6c482 4407 userpg->index = perf_event_index(event);
b5e58793 4408 userpg->offset = perf_event_count(event);
365a4038 4409 if (userpg->index)
e7850595 4410 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4411
0d641208 4412 userpg->time_enabled = enabled +
cdd6c482 4413 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4414
0d641208 4415 userpg->time_running = running +
cdd6c482 4416 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4417
c1317ec2 4418 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4419
92f22a38 4420 barrier();
37d81828 4421 ++userpg->lock;
7b732a75 4422 preempt_enable();
38ff667b 4423unlock:
7b732a75 4424 rcu_read_unlock();
37d81828
PM
4425}
4426
906010b2
PZ
4427static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4428{
4429 struct perf_event *event = vma->vm_file->private_data;
76369139 4430 struct ring_buffer *rb;
906010b2
PZ
4431 int ret = VM_FAULT_SIGBUS;
4432
4433 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4434 if (vmf->pgoff == 0)
4435 ret = 0;
4436 return ret;
4437 }
4438
4439 rcu_read_lock();
76369139
FW
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
906010b2
PZ
4442 goto unlock;
4443
4444 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4445 goto unlock;
4446
76369139 4447 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4448 if (!vmf->page)
4449 goto unlock;
4450
4451 get_page(vmf->page);
4452 vmf->page->mapping = vma->vm_file->f_mapping;
4453 vmf->page->index = vmf->pgoff;
4454
4455 ret = 0;
4456unlock:
4457 rcu_read_unlock();
4458
4459 return ret;
4460}
4461
10c6db11
PZ
4462static void ring_buffer_attach(struct perf_event *event,
4463 struct ring_buffer *rb)
4464{
b69cf536 4465 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4466 unsigned long flags;
4467
b69cf536
PZ
4468 if (event->rb) {
4469 /*
4470 * Should be impossible, we set this when removing
4471 * event->rb_entry and wait/clear when adding event->rb_entry.
4472 */
4473 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4474
b69cf536 4475 old_rb = event->rb;
b69cf536
PZ
4476 spin_lock_irqsave(&old_rb->event_lock, flags);
4477 list_del_rcu(&event->rb_entry);
4478 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4479
2f993cf0
ON
4480 event->rcu_batches = get_state_synchronize_rcu();
4481 event->rcu_pending = 1;
b69cf536 4482 }
10c6db11 4483
b69cf536 4484 if (rb) {
2f993cf0
ON
4485 if (event->rcu_pending) {
4486 cond_synchronize_rcu(event->rcu_batches);
4487 event->rcu_pending = 0;
4488 }
4489
b69cf536
PZ
4490 spin_lock_irqsave(&rb->event_lock, flags);
4491 list_add_rcu(&event->rb_entry, &rb->event_list);
4492 spin_unlock_irqrestore(&rb->event_lock, flags);
4493 }
4494
4495 rcu_assign_pointer(event->rb, rb);
4496
4497 if (old_rb) {
4498 ring_buffer_put(old_rb);
4499 /*
4500 * Since we detached before setting the new rb, so that we
4501 * could attach the new rb, we could have missed a wakeup.
4502 * Provide it now.
4503 */
4504 wake_up_all(&event->waitq);
4505 }
10c6db11
PZ
4506}
4507
4508static void ring_buffer_wakeup(struct perf_event *event)
4509{
4510 struct ring_buffer *rb;
4511
4512 rcu_read_lock();
4513 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4514 if (rb) {
4515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4516 wake_up_all(&event->waitq);
4517 }
10c6db11
PZ
4518 rcu_read_unlock();
4519}
4520
fdc26706 4521struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4522{
76369139 4523 struct ring_buffer *rb;
7b732a75 4524
ac9721f3 4525 rcu_read_lock();
76369139
FW
4526 rb = rcu_dereference(event->rb);
4527 if (rb) {
4528 if (!atomic_inc_not_zero(&rb->refcount))
4529 rb = NULL;
ac9721f3
PZ
4530 }
4531 rcu_read_unlock();
4532
76369139 4533 return rb;
ac9721f3
PZ
4534}
4535
fdc26706 4536void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4537{
76369139 4538 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4539 return;
7b732a75 4540
9bb5d40c 4541 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4542
76369139 4543 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4544}
4545
4546static void perf_mmap_open(struct vm_area_struct *vma)
4547{
cdd6c482 4548 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4549
cdd6c482 4550 atomic_inc(&event->mmap_count);
9bb5d40c 4551 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4552
45bfb2e5
PZ
4553 if (vma->vm_pgoff)
4554 atomic_inc(&event->rb->aux_mmap_count);
4555
1e0fb9ec
AL
4556 if (event->pmu->event_mapped)
4557 event->pmu->event_mapped(event);
7b732a75
PZ
4558}
4559
9bb5d40c
PZ
4560/*
4561 * A buffer can be mmap()ed multiple times; either directly through the same
4562 * event, or through other events by use of perf_event_set_output().
4563 *
4564 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4565 * the buffer here, where we still have a VM context. This means we need
4566 * to detach all events redirecting to us.
4567 */
7b732a75
PZ
4568static void perf_mmap_close(struct vm_area_struct *vma)
4569{
cdd6c482 4570 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4571
b69cf536 4572 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4573 struct user_struct *mmap_user = rb->mmap_user;
4574 int mmap_locked = rb->mmap_locked;
4575 unsigned long size = perf_data_size(rb);
789f90fc 4576
1e0fb9ec
AL
4577 if (event->pmu->event_unmapped)
4578 event->pmu->event_unmapped(event);
4579
45bfb2e5
PZ
4580 /*
4581 * rb->aux_mmap_count will always drop before rb->mmap_count and
4582 * event->mmap_count, so it is ok to use event->mmap_mutex to
4583 * serialize with perf_mmap here.
4584 */
4585 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4586 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4587 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4588 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4589
4590 rb_free_aux(rb);
4591 mutex_unlock(&event->mmap_mutex);
4592 }
4593
9bb5d40c
PZ
4594 atomic_dec(&rb->mmap_count);
4595
4596 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4597 goto out_put;
9bb5d40c 4598
b69cf536 4599 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4600 mutex_unlock(&event->mmap_mutex);
4601
4602 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4603 if (atomic_read(&rb->mmap_count))
4604 goto out_put;
ac9721f3 4605
9bb5d40c
PZ
4606 /*
4607 * No other mmap()s, detach from all other events that might redirect
4608 * into the now unreachable buffer. Somewhat complicated by the
4609 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4610 */
4611again:
4612 rcu_read_lock();
4613 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4614 if (!atomic_long_inc_not_zero(&event->refcount)) {
4615 /*
4616 * This event is en-route to free_event() which will
4617 * detach it and remove it from the list.
4618 */
4619 continue;
4620 }
4621 rcu_read_unlock();
789f90fc 4622
9bb5d40c
PZ
4623 mutex_lock(&event->mmap_mutex);
4624 /*
4625 * Check we didn't race with perf_event_set_output() which can
4626 * swizzle the rb from under us while we were waiting to
4627 * acquire mmap_mutex.
4628 *
4629 * If we find a different rb; ignore this event, a next
4630 * iteration will no longer find it on the list. We have to
4631 * still restart the iteration to make sure we're not now
4632 * iterating the wrong list.
4633 */
b69cf536
PZ
4634 if (event->rb == rb)
4635 ring_buffer_attach(event, NULL);
4636
cdd6c482 4637 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4638 put_event(event);
ac9721f3 4639
9bb5d40c
PZ
4640 /*
4641 * Restart the iteration; either we're on the wrong list or
4642 * destroyed its integrity by doing a deletion.
4643 */
4644 goto again;
7b732a75 4645 }
9bb5d40c
PZ
4646 rcu_read_unlock();
4647
4648 /*
4649 * It could be there's still a few 0-ref events on the list; they'll
4650 * get cleaned up by free_event() -- they'll also still have their
4651 * ref on the rb and will free it whenever they are done with it.
4652 *
4653 * Aside from that, this buffer is 'fully' detached and unmapped,
4654 * undo the VM accounting.
4655 */
4656
4657 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4658 vma->vm_mm->pinned_vm -= mmap_locked;
4659 free_uid(mmap_user);
4660
b69cf536 4661out_put:
9bb5d40c 4662 ring_buffer_put(rb); /* could be last */
37d81828
PM
4663}
4664
f0f37e2f 4665static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4666 .open = perf_mmap_open,
45bfb2e5 4667 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4668 .fault = perf_mmap_fault,
4669 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4670};
4671
4672static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4673{
cdd6c482 4674 struct perf_event *event = file->private_data;
22a4f650 4675 unsigned long user_locked, user_lock_limit;
789f90fc 4676 struct user_struct *user = current_user();
22a4f650 4677 unsigned long locked, lock_limit;
45bfb2e5 4678 struct ring_buffer *rb = NULL;
7b732a75
PZ
4679 unsigned long vma_size;
4680 unsigned long nr_pages;
45bfb2e5 4681 long user_extra = 0, extra = 0;
d57e34fd 4682 int ret = 0, flags = 0;
37d81828 4683
c7920614
PZ
4684 /*
4685 * Don't allow mmap() of inherited per-task counters. This would
4686 * create a performance issue due to all children writing to the
76369139 4687 * same rb.
c7920614
PZ
4688 */
4689 if (event->cpu == -1 && event->attr.inherit)
4690 return -EINVAL;
4691
43a21ea8 4692 if (!(vma->vm_flags & VM_SHARED))
37d81828 4693 return -EINVAL;
7b732a75
PZ
4694
4695 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4696
4697 if (vma->vm_pgoff == 0) {
4698 nr_pages = (vma_size / PAGE_SIZE) - 1;
4699 } else {
4700 /*
4701 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4702 * mapped, all subsequent mappings should have the same size
4703 * and offset. Must be above the normal perf buffer.
4704 */
4705 u64 aux_offset, aux_size;
4706
4707 if (!event->rb)
4708 return -EINVAL;
4709
4710 nr_pages = vma_size / PAGE_SIZE;
4711
4712 mutex_lock(&event->mmap_mutex);
4713 ret = -EINVAL;
4714
4715 rb = event->rb;
4716 if (!rb)
4717 goto aux_unlock;
4718
4719 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4720 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4721
4722 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4723 goto aux_unlock;
4724
4725 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4726 goto aux_unlock;
4727
4728 /* already mapped with a different offset */
4729 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4730 goto aux_unlock;
4731
4732 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4733 goto aux_unlock;
4734
4735 /* already mapped with a different size */
4736 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4737 goto aux_unlock;
4738
4739 if (!is_power_of_2(nr_pages))
4740 goto aux_unlock;
4741
4742 if (!atomic_inc_not_zero(&rb->mmap_count))
4743 goto aux_unlock;
4744
4745 if (rb_has_aux(rb)) {
4746 atomic_inc(&rb->aux_mmap_count);
4747 ret = 0;
4748 goto unlock;
4749 }
4750
4751 atomic_set(&rb->aux_mmap_count, 1);
4752 user_extra = nr_pages;
4753
4754 goto accounting;
4755 }
7b732a75 4756
7730d865 4757 /*
76369139 4758 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4759 * can do bitmasks instead of modulo.
4760 */
2ed11312 4761 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4762 return -EINVAL;
4763
7b732a75 4764 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4765 return -EINVAL;
4766
cdd6c482 4767 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4768again:
cdd6c482 4769 mutex_lock(&event->mmap_mutex);
76369139 4770 if (event->rb) {
9bb5d40c 4771 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4772 ret = -EINVAL;
9bb5d40c
PZ
4773 goto unlock;
4774 }
4775
4776 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4777 /*
4778 * Raced against perf_mmap_close() through
4779 * perf_event_set_output(). Try again, hope for better
4780 * luck.
4781 */
4782 mutex_unlock(&event->mmap_mutex);
4783 goto again;
4784 }
4785
ebb3c4c4
PZ
4786 goto unlock;
4787 }
4788
789f90fc 4789 user_extra = nr_pages + 1;
45bfb2e5
PZ
4790
4791accounting:
cdd6c482 4792 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4793
4794 /*
4795 * Increase the limit linearly with more CPUs:
4796 */
4797 user_lock_limit *= num_online_cpus();
4798
789f90fc 4799 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4800
789f90fc
PZ
4801 if (user_locked > user_lock_limit)
4802 extra = user_locked - user_lock_limit;
7b732a75 4803
78d7d407 4804 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4805 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4806 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4807
459ec28a
IM
4808 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4809 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4810 ret = -EPERM;
4811 goto unlock;
4812 }
7b732a75 4813
45bfb2e5 4814 WARN_ON(!rb && event->rb);
906010b2 4815
d57e34fd 4816 if (vma->vm_flags & VM_WRITE)
76369139 4817 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4818
76369139 4819 if (!rb) {
45bfb2e5
PZ
4820 rb = rb_alloc(nr_pages,
4821 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4822 event->cpu, flags);
26cb63ad 4823
45bfb2e5
PZ
4824 if (!rb) {
4825 ret = -ENOMEM;
4826 goto unlock;
4827 }
43a21ea8 4828
45bfb2e5
PZ
4829 atomic_set(&rb->mmap_count, 1);
4830 rb->mmap_user = get_current_user();
4831 rb->mmap_locked = extra;
26cb63ad 4832
45bfb2e5 4833 ring_buffer_attach(event, rb);
ac9721f3 4834
45bfb2e5
PZ
4835 perf_event_init_userpage(event);
4836 perf_event_update_userpage(event);
4837 } else {
1a594131
AS
4838 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4839 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4840 if (!ret)
4841 rb->aux_mmap_locked = extra;
4842 }
9a0f05cb 4843
ebb3c4c4 4844unlock:
45bfb2e5
PZ
4845 if (!ret) {
4846 atomic_long_add(user_extra, &user->locked_vm);
4847 vma->vm_mm->pinned_vm += extra;
4848
ac9721f3 4849 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4850 } else if (rb) {
4851 atomic_dec(&rb->mmap_count);
4852 }
4853aux_unlock:
cdd6c482 4854 mutex_unlock(&event->mmap_mutex);
37d81828 4855
9bb5d40c
PZ
4856 /*
4857 * Since pinned accounting is per vm we cannot allow fork() to copy our
4858 * vma.
4859 */
26cb63ad 4860 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4861 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4862
1e0fb9ec
AL
4863 if (event->pmu->event_mapped)
4864 event->pmu->event_mapped(event);
4865
7b732a75 4866 return ret;
37d81828
PM
4867}
4868
3c446b3d
PZ
4869static int perf_fasync(int fd, struct file *filp, int on)
4870{
496ad9aa 4871 struct inode *inode = file_inode(filp);
cdd6c482 4872 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4873 int retval;
4874
4875 mutex_lock(&inode->i_mutex);
cdd6c482 4876 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4877 mutex_unlock(&inode->i_mutex);
4878
4879 if (retval < 0)
4880 return retval;
4881
4882 return 0;
4883}
4884
0793a61d 4885static const struct file_operations perf_fops = {
3326c1ce 4886 .llseek = no_llseek,
0793a61d
TG
4887 .release = perf_release,
4888 .read = perf_read,
4889 .poll = perf_poll,
d859e29f 4890 .unlocked_ioctl = perf_ioctl,
b3f20785 4891 .compat_ioctl = perf_compat_ioctl,
37d81828 4892 .mmap = perf_mmap,
3c446b3d 4893 .fasync = perf_fasync,
0793a61d
TG
4894};
4895
925d519a 4896/*
cdd6c482 4897 * Perf event wakeup
925d519a
PZ
4898 *
4899 * If there's data, ensure we set the poll() state and publish everything
4900 * to user-space before waking everybody up.
4901 */
4902
fed66e2c
PZ
4903static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4904{
4905 /* only the parent has fasync state */
4906 if (event->parent)
4907 event = event->parent;
4908 return &event->fasync;
4909}
4910
cdd6c482 4911void perf_event_wakeup(struct perf_event *event)
925d519a 4912{
10c6db11 4913 ring_buffer_wakeup(event);
4c9e2542 4914
cdd6c482 4915 if (event->pending_kill) {
fed66e2c 4916 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4917 event->pending_kill = 0;
4c9e2542 4918 }
925d519a
PZ
4919}
4920
e360adbe 4921static void perf_pending_event(struct irq_work *entry)
79f14641 4922{
cdd6c482
IM
4923 struct perf_event *event = container_of(entry,
4924 struct perf_event, pending);
d525211f
PZ
4925 int rctx;
4926
4927 rctx = perf_swevent_get_recursion_context();
4928 /*
4929 * If we 'fail' here, that's OK, it means recursion is already disabled
4930 * and we won't recurse 'further'.
4931 */
79f14641 4932
cdd6c482
IM
4933 if (event->pending_disable) {
4934 event->pending_disable = 0;
4935 __perf_event_disable(event);
79f14641
PZ
4936 }
4937
cdd6c482
IM
4938 if (event->pending_wakeup) {
4939 event->pending_wakeup = 0;
4940 perf_event_wakeup(event);
79f14641 4941 }
d525211f
PZ
4942
4943 if (rctx >= 0)
4944 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4945}
4946
39447b38
ZY
4947/*
4948 * We assume there is only KVM supporting the callbacks.
4949 * Later on, we might change it to a list if there is
4950 * another virtualization implementation supporting the callbacks.
4951 */
4952struct perf_guest_info_callbacks *perf_guest_cbs;
4953
4954int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4955{
4956 perf_guest_cbs = cbs;
4957 return 0;
4958}
4959EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4960
4961int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4962{
4963 perf_guest_cbs = NULL;
4964 return 0;
4965}
4966EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4967
4018994f
JO
4968static void
4969perf_output_sample_regs(struct perf_output_handle *handle,
4970 struct pt_regs *regs, u64 mask)
4971{
4972 int bit;
4973
4974 for_each_set_bit(bit, (const unsigned long *) &mask,
4975 sizeof(mask) * BITS_PER_BYTE) {
4976 u64 val;
4977
4978 val = perf_reg_value(regs, bit);
4979 perf_output_put(handle, val);
4980 }
4981}
4982
60e2364e 4983static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4984 struct pt_regs *regs,
4985 struct pt_regs *regs_user_copy)
4018994f 4986{
88a7c26a
AL
4987 if (user_mode(regs)) {
4988 regs_user->abi = perf_reg_abi(current);
2565711f 4989 regs_user->regs = regs;
88a7c26a
AL
4990 } else if (current->mm) {
4991 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4992 } else {
4993 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4994 regs_user->regs = NULL;
4018994f
JO
4995 }
4996}
4997
60e2364e
SE
4998static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4999 struct pt_regs *regs)
5000{
5001 regs_intr->regs = regs;
5002 regs_intr->abi = perf_reg_abi(current);
5003}
5004
5005
c5ebcedb
JO
5006/*
5007 * Get remaining task size from user stack pointer.
5008 *
5009 * It'd be better to take stack vma map and limit this more
5010 * precisly, but there's no way to get it safely under interrupt,
5011 * so using TASK_SIZE as limit.
5012 */
5013static u64 perf_ustack_task_size(struct pt_regs *regs)
5014{
5015 unsigned long addr = perf_user_stack_pointer(regs);
5016
5017 if (!addr || addr >= TASK_SIZE)
5018 return 0;
5019
5020 return TASK_SIZE - addr;
5021}
5022
5023static u16
5024perf_sample_ustack_size(u16 stack_size, u16 header_size,
5025 struct pt_regs *regs)
5026{
5027 u64 task_size;
5028
5029 /* No regs, no stack pointer, no dump. */
5030 if (!regs)
5031 return 0;
5032
5033 /*
5034 * Check if we fit in with the requested stack size into the:
5035 * - TASK_SIZE
5036 * If we don't, we limit the size to the TASK_SIZE.
5037 *
5038 * - remaining sample size
5039 * If we don't, we customize the stack size to
5040 * fit in to the remaining sample size.
5041 */
5042
5043 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5044 stack_size = min(stack_size, (u16) task_size);
5045
5046 /* Current header size plus static size and dynamic size. */
5047 header_size += 2 * sizeof(u64);
5048
5049 /* Do we fit in with the current stack dump size? */
5050 if ((u16) (header_size + stack_size) < header_size) {
5051 /*
5052 * If we overflow the maximum size for the sample,
5053 * we customize the stack dump size to fit in.
5054 */
5055 stack_size = USHRT_MAX - header_size - sizeof(u64);
5056 stack_size = round_up(stack_size, sizeof(u64));
5057 }
5058
5059 return stack_size;
5060}
5061
5062static void
5063perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5064 struct pt_regs *regs)
5065{
5066 /* Case of a kernel thread, nothing to dump */
5067 if (!regs) {
5068 u64 size = 0;
5069 perf_output_put(handle, size);
5070 } else {
5071 unsigned long sp;
5072 unsigned int rem;
5073 u64 dyn_size;
5074
5075 /*
5076 * We dump:
5077 * static size
5078 * - the size requested by user or the best one we can fit
5079 * in to the sample max size
5080 * data
5081 * - user stack dump data
5082 * dynamic size
5083 * - the actual dumped size
5084 */
5085
5086 /* Static size. */
5087 perf_output_put(handle, dump_size);
5088
5089 /* Data. */
5090 sp = perf_user_stack_pointer(regs);
5091 rem = __output_copy_user(handle, (void *) sp, dump_size);
5092 dyn_size = dump_size - rem;
5093
5094 perf_output_skip(handle, rem);
5095
5096 /* Dynamic size. */
5097 perf_output_put(handle, dyn_size);
5098 }
5099}
5100
c980d109
ACM
5101static void __perf_event_header__init_id(struct perf_event_header *header,
5102 struct perf_sample_data *data,
5103 struct perf_event *event)
6844c09d
ACM
5104{
5105 u64 sample_type = event->attr.sample_type;
5106
5107 data->type = sample_type;
5108 header->size += event->id_header_size;
5109
5110 if (sample_type & PERF_SAMPLE_TID) {
5111 /* namespace issues */
5112 data->tid_entry.pid = perf_event_pid(event, current);
5113 data->tid_entry.tid = perf_event_tid(event, current);
5114 }
5115
5116 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5117 data->time = perf_event_clock(event);
6844c09d 5118
ff3d527c 5119 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5120 data->id = primary_event_id(event);
5121
5122 if (sample_type & PERF_SAMPLE_STREAM_ID)
5123 data->stream_id = event->id;
5124
5125 if (sample_type & PERF_SAMPLE_CPU) {
5126 data->cpu_entry.cpu = raw_smp_processor_id();
5127 data->cpu_entry.reserved = 0;
5128 }
5129}
5130
76369139
FW
5131void perf_event_header__init_id(struct perf_event_header *header,
5132 struct perf_sample_data *data,
5133 struct perf_event *event)
c980d109
ACM
5134{
5135 if (event->attr.sample_id_all)
5136 __perf_event_header__init_id(header, data, event);
5137}
5138
5139static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5140 struct perf_sample_data *data)
5141{
5142 u64 sample_type = data->type;
5143
5144 if (sample_type & PERF_SAMPLE_TID)
5145 perf_output_put(handle, data->tid_entry);
5146
5147 if (sample_type & PERF_SAMPLE_TIME)
5148 perf_output_put(handle, data->time);
5149
5150 if (sample_type & PERF_SAMPLE_ID)
5151 perf_output_put(handle, data->id);
5152
5153 if (sample_type & PERF_SAMPLE_STREAM_ID)
5154 perf_output_put(handle, data->stream_id);
5155
5156 if (sample_type & PERF_SAMPLE_CPU)
5157 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5158
5159 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5160 perf_output_put(handle, data->id);
c980d109
ACM
5161}
5162
76369139
FW
5163void perf_event__output_id_sample(struct perf_event *event,
5164 struct perf_output_handle *handle,
5165 struct perf_sample_data *sample)
c980d109
ACM
5166{
5167 if (event->attr.sample_id_all)
5168 __perf_event__output_id_sample(handle, sample);
5169}
5170
3dab77fb 5171static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5172 struct perf_event *event,
5173 u64 enabled, u64 running)
3dab77fb 5174{
cdd6c482 5175 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5176 u64 values[4];
5177 int n = 0;
5178
b5e58793 5179 values[n++] = perf_event_count(event);
3dab77fb 5180 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5181 values[n++] = enabled +
cdd6c482 5182 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5183 }
5184 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5185 values[n++] = running +
cdd6c482 5186 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5187 }
5188 if (read_format & PERF_FORMAT_ID)
cdd6c482 5189 values[n++] = primary_event_id(event);
3dab77fb 5190
76369139 5191 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5192}
5193
5194/*
cdd6c482 5195 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5196 */
5197static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5198 struct perf_event *event,
5199 u64 enabled, u64 running)
3dab77fb 5200{
cdd6c482
IM
5201 struct perf_event *leader = event->group_leader, *sub;
5202 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5203 u64 values[5];
5204 int n = 0;
5205
5206 values[n++] = 1 + leader->nr_siblings;
5207
5208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5209 values[n++] = enabled;
3dab77fb
PZ
5210
5211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5212 values[n++] = running;
3dab77fb 5213
cdd6c482 5214 if (leader != event)
3dab77fb
PZ
5215 leader->pmu->read(leader);
5216
b5e58793 5217 values[n++] = perf_event_count(leader);
3dab77fb 5218 if (read_format & PERF_FORMAT_ID)
cdd6c482 5219 values[n++] = primary_event_id(leader);
3dab77fb 5220
76369139 5221 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5222
65abc865 5223 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5224 n = 0;
5225
6f5ab001
JO
5226 if ((sub != event) &&
5227 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5228 sub->pmu->read(sub);
5229
b5e58793 5230 values[n++] = perf_event_count(sub);
3dab77fb 5231 if (read_format & PERF_FORMAT_ID)
cdd6c482 5232 values[n++] = primary_event_id(sub);
3dab77fb 5233
76369139 5234 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5235 }
5236}
5237
eed01528
SE
5238#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5239 PERF_FORMAT_TOTAL_TIME_RUNNING)
5240
3dab77fb 5241static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5242 struct perf_event *event)
3dab77fb 5243{
e3f3541c 5244 u64 enabled = 0, running = 0, now;
eed01528
SE
5245 u64 read_format = event->attr.read_format;
5246
5247 /*
5248 * compute total_time_enabled, total_time_running
5249 * based on snapshot values taken when the event
5250 * was last scheduled in.
5251 *
5252 * we cannot simply called update_context_time()
5253 * because of locking issue as we are called in
5254 * NMI context
5255 */
c4794295 5256 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5257 calc_timer_values(event, &now, &enabled, &running);
eed01528 5258
cdd6c482 5259 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5260 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5261 else
eed01528 5262 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5263}
5264
5622f295
MM
5265void perf_output_sample(struct perf_output_handle *handle,
5266 struct perf_event_header *header,
5267 struct perf_sample_data *data,
cdd6c482 5268 struct perf_event *event)
5622f295
MM
5269{
5270 u64 sample_type = data->type;
5271
5272 perf_output_put(handle, *header);
5273
ff3d527c
AH
5274 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5275 perf_output_put(handle, data->id);
5276
5622f295
MM
5277 if (sample_type & PERF_SAMPLE_IP)
5278 perf_output_put(handle, data->ip);
5279
5280 if (sample_type & PERF_SAMPLE_TID)
5281 perf_output_put(handle, data->tid_entry);
5282
5283 if (sample_type & PERF_SAMPLE_TIME)
5284 perf_output_put(handle, data->time);
5285
5286 if (sample_type & PERF_SAMPLE_ADDR)
5287 perf_output_put(handle, data->addr);
5288
5289 if (sample_type & PERF_SAMPLE_ID)
5290 perf_output_put(handle, data->id);
5291
5292 if (sample_type & PERF_SAMPLE_STREAM_ID)
5293 perf_output_put(handle, data->stream_id);
5294
5295 if (sample_type & PERF_SAMPLE_CPU)
5296 perf_output_put(handle, data->cpu_entry);
5297
5298 if (sample_type & PERF_SAMPLE_PERIOD)
5299 perf_output_put(handle, data->period);
5300
5301 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5302 perf_output_read(handle, event);
5622f295
MM
5303
5304 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5305 if (data->callchain) {
5306 int size = 1;
5307
5308 if (data->callchain)
5309 size += data->callchain->nr;
5310
5311 size *= sizeof(u64);
5312
76369139 5313 __output_copy(handle, data->callchain, size);
5622f295
MM
5314 } else {
5315 u64 nr = 0;
5316 perf_output_put(handle, nr);
5317 }
5318 }
5319
5320 if (sample_type & PERF_SAMPLE_RAW) {
5321 if (data->raw) {
fa128e6a
AS
5322 u32 raw_size = data->raw->size;
5323 u32 real_size = round_up(raw_size + sizeof(u32),
5324 sizeof(u64)) - sizeof(u32);
5325 u64 zero = 0;
5326
5327 perf_output_put(handle, real_size);
5328 __output_copy(handle, data->raw->data, raw_size);
5329 if (real_size - raw_size)
5330 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5331 } else {
5332 struct {
5333 u32 size;
5334 u32 data;
5335 } raw = {
5336 .size = sizeof(u32),
5337 .data = 0,
5338 };
5339 perf_output_put(handle, raw);
5340 }
5341 }
a7ac67ea 5342
bce38cd5
SE
5343 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5344 if (data->br_stack) {
5345 size_t size;
5346
5347 size = data->br_stack->nr
5348 * sizeof(struct perf_branch_entry);
5349
5350 perf_output_put(handle, data->br_stack->nr);
5351 perf_output_copy(handle, data->br_stack->entries, size);
5352 } else {
5353 /*
5354 * we always store at least the value of nr
5355 */
5356 u64 nr = 0;
5357 perf_output_put(handle, nr);
5358 }
5359 }
4018994f
JO
5360
5361 if (sample_type & PERF_SAMPLE_REGS_USER) {
5362 u64 abi = data->regs_user.abi;
5363
5364 /*
5365 * If there are no regs to dump, notice it through
5366 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5367 */
5368 perf_output_put(handle, abi);
5369
5370 if (abi) {
5371 u64 mask = event->attr.sample_regs_user;
5372 perf_output_sample_regs(handle,
5373 data->regs_user.regs,
5374 mask);
5375 }
5376 }
c5ebcedb 5377
a5cdd40c 5378 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5379 perf_output_sample_ustack(handle,
5380 data->stack_user_size,
5381 data->regs_user.regs);
a5cdd40c 5382 }
c3feedf2
AK
5383
5384 if (sample_type & PERF_SAMPLE_WEIGHT)
5385 perf_output_put(handle, data->weight);
d6be9ad6
SE
5386
5387 if (sample_type & PERF_SAMPLE_DATA_SRC)
5388 perf_output_put(handle, data->data_src.val);
a5cdd40c 5389
fdfbbd07
AK
5390 if (sample_type & PERF_SAMPLE_TRANSACTION)
5391 perf_output_put(handle, data->txn);
5392
60e2364e
SE
5393 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5394 u64 abi = data->regs_intr.abi;
5395 /*
5396 * If there are no regs to dump, notice it through
5397 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5398 */
5399 perf_output_put(handle, abi);
5400
5401 if (abi) {
5402 u64 mask = event->attr.sample_regs_intr;
5403
5404 perf_output_sample_regs(handle,
5405 data->regs_intr.regs,
5406 mask);
5407 }
5408 }
5409
a5cdd40c
PZ
5410 if (!event->attr.watermark) {
5411 int wakeup_events = event->attr.wakeup_events;
5412
5413 if (wakeup_events) {
5414 struct ring_buffer *rb = handle->rb;
5415 int events = local_inc_return(&rb->events);
5416
5417 if (events >= wakeup_events) {
5418 local_sub(wakeup_events, &rb->events);
5419 local_inc(&rb->wakeup);
5420 }
5421 }
5422 }
5622f295
MM
5423}
5424
5425void perf_prepare_sample(struct perf_event_header *header,
5426 struct perf_sample_data *data,
cdd6c482 5427 struct perf_event *event,
5622f295 5428 struct pt_regs *regs)
7b732a75 5429{
cdd6c482 5430 u64 sample_type = event->attr.sample_type;
7b732a75 5431
cdd6c482 5432 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5433 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5434
5435 header->misc = 0;
5436 header->misc |= perf_misc_flags(regs);
6fab0192 5437
c980d109 5438 __perf_event_header__init_id(header, data, event);
6844c09d 5439
c320c7b7 5440 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5441 data->ip = perf_instruction_pointer(regs);
5442
b23f3325 5443 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5444 int size = 1;
394ee076 5445
e6dab5ff 5446 data->callchain = perf_callchain(event, regs);
5622f295
MM
5447
5448 if (data->callchain)
5449 size += data->callchain->nr;
5450
5451 header->size += size * sizeof(u64);
394ee076
PZ
5452 }
5453
3a43ce68 5454 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5455 int size = sizeof(u32);
5456
5457 if (data->raw)
5458 size += data->raw->size;
5459 else
5460 size += sizeof(u32);
5461
fa128e6a 5462 header->size += round_up(size, sizeof(u64));
7f453c24 5463 }
bce38cd5
SE
5464
5465 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5466 int size = sizeof(u64); /* nr */
5467 if (data->br_stack) {
5468 size += data->br_stack->nr
5469 * sizeof(struct perf_branch_entry);
5470 }
5471 header->size += size;
5472 }
4018994f 5473
2565711f 5474 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5475 perf_sample_regs_user(&data->regs_user, regs,
5476 &data->regs_user_copy);
2565711f 5477
4018994f
JO
5478 if (sample_type & PERF_SAMPLE_REGS_USER) {
5479 /* regs dump ABI info */
5480 int size = sizeof(u64);
5481
4018994f
JO
5482 if (data->regs_user.regs) {
5483 u64 mask = event->attr.sample_regs_user;
5484 size += hweight64(mask) * sizeof(u64);
5485 }
5486
5487 header->size += size;
5488 }
c5ebcedb
JO
5489
5490 if (sample_type & PERF_SAMPLE_STACK_USER) {
5491 /*
5492 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5493 * processed as the last one or have additional check added
5494 * in case new sample type is added, because we could eat
5495 * up the rest of the sample size.
5496 */
c5ebcedb
JO
5497 u16 stack_size = event->attr.sample_stack_user;
5498 u16 size = sizeof(u64);
5499
c5ebcedb 5500 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5501 data->regs_user.regs);
c5ebcedb
JO
5502
5503 /*
5504 * If there is something to dump, add space for the dump
5505 * itself and for the field that tells the dynamic size,
5506 * which is how many have been actually dumped.
5507 */
5508 if (stack_size)
5509 size += sizeof(u64) + stack_size;
5510
5511 data->stack_user_size = stack_size;
5512 header->size += size;
5513 }
60e2364e
SE
5514
5515 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5516 /* regs dump ABI info */
5517 int size = sizeof(u64);
5518
5519 perf_sample_regs_intr(&data->regs_intr, regs);
5520
5521 if (data->regs_intr.regs) {
5522 u64 mask = event->attr.sample_regs_intr;
5523
5524 size += hweight64(mask) * sizeof(u64);
5525 }
5526
5527 header->size += size;
5528 }
5622f295 5529}
7f453c24 5530
21509084
YZ
5531void perf_event_output(struct perf_event *event,
5532 struct perf_sample_data *data,
5533 struct pt_regs *regs)
5622f295
MM
5534{
5535 struct perf_output_handle handle;
5536 struct perf_event_header header;
689802b2 5537
927c7a9e
FW
5538 /* protect the callchain buffers */
5539 rcu_read_lock();
5540
cdd6c482 5541 perf_prepare_sample(&header, data, event, regs);
5c148194 5542
a7ac67ea 5543 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5544 goto exit;
0322cd6e 5545
cdd6c482 5546 perf_output_sample(&handle, &header, data, event);
f413cdb8 5547
8a057d84 5548 perf_output_end(&handle);
927c7a9e
FW
5549
5550exit:
5551 rcu_read_unlock();
0322cd6e
PZ
5552}
5553
38b200d6 5554/*
cdd6c482 5555 * read event_id
38b200d6
PZ
5556 */
5557
5558struct perf_read_event {
5559 struct perf_event_header header;
5560
5561 u32 pid;
5562 u32 tid;
38b200d6
PZ
5563};
5564
5565static void
cdd6c482 5566perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5567 struct task_struct *task)
5568{
5569 struct perf_output_handle handle;
c980d109 5570 struct perf_sample_data sample;
dfc65094 5571 struct perf_read_event read_event = {
38b200d6 5572 .header = {
cdd6c482 5573 .type = PERF_RECORD_READ,
38b200d6 5574 .misc = 0,
c320c7b7 5575 .size = sizeof(read_event) + event->read_size,
38b200d6 5576 },
cdd6c482
IM
5577 .pid = perf_event_pid(event, task),
5578 .tid = perf_event_tid(event, task),
38b200d6 5579 };
3dab77fb 5580 int ret;
38b200d6 5581
c980d109 5582 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5583 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5584 if (ret)
5585 return;
5586
dfc65094 5587 perf_output_put(&handle, read_event);
cdd6c482 5588 perf_output_read(&handle, event);
c980d109 5589 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5590
38b200d6
PZ
5591 perf_output_end(&handle);
5592}
5593
52d857a8
JO
5594typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5595
5596static void
5597perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5598 perf_event_aux_output_cb output,
5599 void *data)
5600{
5601 struct perf_event *event;
5602
5603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5604 if (event->state < PERF_EVENT_STATE_INACTIVE)
5605 continue;
5606 if (!event_filter_match(event))
5607 continue;
67516844 5608 output(event, data);
52d857a8
JO
5609 }
5610}
5611
4e93ad60
JO
5612static void
5613perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5614 struct perf_event_context *task_ctx)
5615{
5616 rcu_read_lock();
5617 preempt_disable();
5618 perf_event_aux_ctx(task_ctx, output, data);
5619 preempt_enable();
5620 rcu_read_unlock();
5621}
5622
52d857a8 5623static void
67516844 5624perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5625 struct perf_event_context *task_ctx)
5626{
5627 struct perf_cpu_context *cpuctx;
5628 struct perf_event_context *ctx;
5629 struct pmu *pmu;
5630 int ctxn;
5631
4e93ad60
JO
5632 /*
5633 * If we have task_ctx != NULL we only notify
5634 * the task context itself. The task_ctx is set
5635 * only for EXIT events before releasing task
5636 * context.
5637 */
5638 if (task_ctx) {
5639 perf_event_aux_task_ctx(output, data, task_ctx);
5640 return;
5641 }
5642
52d857a8
JO
5643 rcu_read_lock();
5644 list_for_each_entry_rcu(pmu, &pmus, entry) {
5645 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5646 if (cpuctx->unique_pmu != pmu)
5647 goto next;
67516844 5648 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5649 ctxn = pmu->task_ctx_nr;
5650 if (ctxn < 0)
5651 goto next;
5652 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5653 if (ctx)
67516844 5654 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5655next:
5656 put_cpu_ptr(pmu->pmu_cpu_context);
5657 }
52d857a8
JO
5658 rcu_read_unlock();
5659}
5660
60313ebe 5661/*
9f498cc5
PZ
5662 * task tracking -- fork/exit
5663 *
13d7a241 5664 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5665 */
5666
9f498cc5 5667struct perf_task_event {
3a80b4a3 5668 struct task_struct *task;
cdd6c482 5669 struct perf_event_context *task_ctx;
60313ebe
PZ
5670
5671 struct {
5672 struct perf_event_header header;
5673
5674 u32 pid;
5675 u32 ppid;
9f498cc5
PZ
5676 u32 tid;
5677 u32 ptid;
393b2ad8 5678 u64 time;
cdd6c482 5679 } event_id;
60313ebe
PZ
5680};
5681
67516844
JO
5682static int perf_event_task_match(struct perf_event *event)
5683{
13d7a241
SE
5684 return event->attr.comm || event->attr.mmap ||
5685 event->attr.mmap2 || event->attr.mmap_data ||
5686 event->attr.task;
67516844
JO
5687}
5688
cdd6c482 5689static void perf_event_task_output(struct perf_event *event,
52d857a8 5690 void *data)
60313ebe 5691{
52d857a8 5692 struct perf_task_event *task_event = data;
60313ebe 5693 struct perf_output_handle handle;
c980d109 5694 struct perf_sample_data sample;
9f498cc5 5695 struct task_struct *task = task_event->task;
c980d109 5696 int ret, size = task_event->event_id.header.size;
8bb39f9a 5697
67516844
JO
5698 if (!perf_event_task_match(event))
5699 return;
5700
c980d109 5701 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5702
c980d109 5703 ret = perf_output_begin(&handle, event,
a7ac67ea 5704 task_event->event_id.header.size);
ef60777c 5705 if (ret)
c980d109 5706 goto out;
60313ebe 5707
cdd6c482
IM
5708 task_event->event_id.pid = perf_event_pid(event, task);
5709 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5710
cdd6c482
IM
5711 task_event->event_id.tid = perf_event_tid(event, task);
5712 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5713
34f43927
PZ
5714 task_event->event_id.time = perf_event_clock(event);
5715
cdd6c482 5716 perf_output_put(&handle, task_event->event_id);
393b2ad8 5717
c980d109
ACM
5718 perf_event__output_id_sample(event, &handle, &sample);
5719
60313ebe 5720 perf_output_end(&handle);
c980d109
ACM
5721out:
5722 task_event->event_id.header.size = size;
60313ebe
PZ
5723}
5724
cdd6c482
IM
5725static void perf_event_task(struct task_struct *task,
5726 struct perf_event_context *task_ctx,
3a80b4a3 5727 int new)
60313ebe 5728{
9f498cc5 5729 struct perf_task_event task_event;
60313ebe 5730
cdd6c482
IM
5731 if (!atomic_read(&nr_comm_events) &&
5732 !atomic_read(&nr_mmap_events) &&
5733 !atomic_read(&nr_task_events))
60313ebe
PZ
5734 return;
5735
9f498cc5 5736 task_event = (struct perf_task_event){
3a80b4a3
PZ
5737 .task = task,
5738 .task_ctx = task_ctx,
cdd6c482 5739 .event_id = {
60313ebe 5740 .header = {
cdd6c482 5741 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5742 .misc = 0,
cdd6c482 5743 .size = sizeof(task_event.event_id),
60313ebe 5744 },
573402db
PZ
5745 /* .pid */
5746 /* .ppid */
9f498cc5
PZ
5747 /* .tid */
5748 /* .ptid */
34f43927 5749 /* .time */
60313ebe
PZ
5750 },
5751 };
5752
67516844 5753 perf_event_aux(perf_event_task_output,
52d857a8
JO
5754 &task_event,
5755 task_ctx);
9f498cc5
PZ
5756}
5757
cdd6c482 5758void perf_event_fork(struct task_struct *task)
9f498cc5 5759{
cdd6c482 5760 perf_event_task(task, NULL, 1);
60313ebe
PZ
5761}
5762
8d1b2d93
PZ
5763/*
5764 * comm tracking
5765 */
5766
5767struct perf_comm_event {
22a4f650
IM
5768 struct task_struct *task;
5769 char *comm;
8d1b2d93
PZ
5770 int comm_size;
5771
5772 struct {
5773 struct perf_event_header header;
5774
5775 u32 pid;
5776 u32 tid;
cdd6c482 5777 } event_id;
8d1b2d93
PZ
5778};
5779
67516844
JO
5780static int perf_event_comm_match(struct perf_event *event)
5781{
5782 return event->attr.comm;
5783}
5784
cdd6c482 5785static void perf_event_comm_output(struct perf_event *event,
52d857a8 5786 void *data)
8d1b2d93 5787{
52d857a8 5788 struct perf_comm_event *comm_event = data;
8d1b2d93 5789 struct perf_output_handle handle;
c980d109 5790 struct perf_sample_data sample;
cdd6c482 5791 int size = comm_event->event_id.header.size;
c980d109
ACM
5792 int ret;
5793
67516844
JO
5794 if (!perf_event_comm_match(event))
5795 return;
5796
c980d109
ACM
5797 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5798 ret = perf_output_begin(&handle, event,
a7ac67ea 5799 comm_event->event_id.header.size);
8d1b2d93
PZ
5800
5801 if (ret)
c980d109 5802 goto out;
8d1b2d93 5803
cdd6c482
IM
5804 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5805 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5806
cdd6c482 5807 perf_output_put(&handle, comm_event->event_id);
76369139 5808 __output_copy(&handle, comm_event->comm,
8d1b2d93 5809 comm_event->comm_size);
c980d109
ACM
5810
5811 perf_event__output_id_sample(event, &handle, &sample);
5812
8d1b2d93 5813 perf_output_end(&handle);
c980d109
ACM
5814out:
5815 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5816}
5817
cdd6c482 5818static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5819{
413ee3b4 5820 char comm[TASK_COMM_LEN];
8d1b2d93 5821 unsigned int size;
8d1b2d93 5822
413ee3b4 5823 memset(comm, 0, sizeof(comm));
96b02d78 5824 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5825 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5826
5827 comm_event->comm = comm;
5828 comm_event->comm_size = size;
5829
cdd6c482 5830 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5831
67516844 5832 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5833 comm_event,
5834 NULL);
8d1b2d93
PZ
5835}
5836
82b89778 5837void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5838{
9ee318a7
PZ
5839 struct perf_comm_event comm_event;
5840
cdd6c482 5841 if (!atomic_read(&nr_comm_events))
9ee318a7 5842 return;
a63eaf34 5843
9ee318a7 5844 comm_event = (struct perf_comm_event){
8d1b2d93 5845 .task = task,
573402db
PZ
5846 /* .comm */
5847 /* .comm_size */
cdd6c482 5848 .event_id = {
573402db 5849 .header = {
cdd6c482 5850 .type = PERF_RECORD_COMM,
82b89778 5851 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5852 /* .size */
5853 },
5854 /* .pid */
5855 /* .tid */
8d1b2d93
PZ
5856 },
5857 };
5858
cdd6c482 5859 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5860}
5861
0a4a9391
PZ
5862/*
5863 * mmap tracking
5864 */
5865
5866struct perf_mmap_event {
089dd79d
PZ
5867 struct vm_area_struct *vma;
5868
5869 const char *file_name;
5870 int file_size;
13d7a241
SE
5871 int maj, min;
5872 u64 ino;
5873 u64 ino_generation;
f972eb63 5874 u32 prot, flags;
0a4a9391
PZ
5875
5876 struct {
5877 struct perf_event_header header;
5878
5879 u32 pid;
5880 u32 tid;
5881 u64 start;
5882 u64 len;
5883 u64 pgoff;
cdd6c482 5884 } event_id;
0a4a9391
PZ
5885};
5886
67516844
JO
5887static int perf_event_mmap_match(struct perf_event *event,
5888 void *data)
5889{
5890 struct perf_mmap_event *mmap_event = data;
5891 struct vm_area_struct *vma = mmap_event->vma;
5892 int executable = vma->vm_flags & VM_EXEC;
5893
5894 return (!executable && event->attr.mmap_data) ||
13d7a241 5895 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5896}
5897
cdd6c482 5898static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5899 void *data)
0a4a9391 5900{
52d857a8 5901 struct perf_mmap_event *mmap_event = data;
0a4a9391 5902 struct perf_output_handle handle;
c980d109 5903 struct perf_sample_data sample;
cdd6c482 5904 int size = mmap_event->event_id.header.size;
c980d109 5905 int ret;
0a4a9391 5906
67516844
JO
5907 if (!perf_event_mmap_match(event, data))
5908 return;
5909
13d7a241
SE
5910 if (event->attr.mmap2) {
5911 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5912 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5913 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5914 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5915 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5916 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5917 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5918 }
5919
c980d109
ACM
5920 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5921 ret = perf_output_begin(&handle, event,
a7ac67ea 5922 mmap_event->event_id.header.size);
0a4a9391 5923 if (ret)
c980d109 5924 goto out;
0a4a9391 5925
cdd6c482
IM
5926 mmap_event->event_id.pid = perf_event_pid(event, current);
5927 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5928
cdd6c482 5929 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5930
5931 if (event->attr.mmap2) {
5932 perf_output_put(&handle, mmap_event->maj);
5933 perf_output_put(&handle, mmap_event->min);
5934 perf_output_put(&handle, mmap_event->ino);
5935 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5936 perf_output_put(&handle, mmap_event->prot);
5937 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5938 }
5939
76369139 5940 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5941 mmap_event->file_size);
c980d109
ACM
5942
5943 perf_event__output_id_sample(event, &handle, &sample);
5944
78d613eb 5945 perf_output_end(&handle);
c980d109
ACM
5946out:
5947 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5948}
5949
cdd6c482 5950static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5951{
089dd79d
PZ
5952 struct vm_area_struct *vma = mmap_event->vma;
5953 struct file *file = vma->vm_file;
13d7a241
SE
5954 int maj = 0, min = 0;
5955 u64 ino = 0, gen = 0;
f972eb63 5956 u32 prot = 0, flags = 0;
0a4a9391
PZ
5957 unsigned int size;
5958 char tmp[16];
5959 char *buf = NULL;
2c42cfbf 5960 char *name;
413ee3b4 5961
0a4a9391 5962 if (file) {
13d7a241
SE
5963 struct inode *inode;
5964 dev_t dev;
3ea2f2b9 5965
2c42cfbf 5966 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5967 if (!buf) {
c7e548b4
ON
5968 name = "//enomem";
5969 goto cpy_name;
0a4a9391 5970 }
413ee3b4 5971 /*
3ea2f2b9 5972 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5973 * need to add enough zero bytes after the string to handle
5974 * the 64bit alignment we do later.
5975 */
9bf39ab2 5976 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5977 if (IS_ERR(name)) {
c7e548b4
ON
5978 name = "//toolong";
5979 goto cpy_name;
0a4a9391 5980 }
13d7a241
SE
5981 inode = file_inode(vma->vm_file);
5982 dev = inode->i_sb->s_dev;
5983 ino = inode->i_ino;
5984 gen = inode->i_generation;
5985 maj = MAJOR(dev);
5986 min = MINOR(dev);
f972eb63
PZ
5987
5988 if (vma->vm_flags & VM_READ)
5989 prot |= PROT_READ;
5990 if (vma->vm_flags & VM_WRITE)
5991 prot |= PROT_WRITE;
5992 if (vma->vm_flags & VM_EXEC)
5993 prot |= PROT_EXEC;
5994
5995 if (vma->vm_flags & VM_MAYSHARE)
5996 flags = MAP_SHARED;
5997 else
5998 flags = MAP_PRIVATE;
5999
6000 if (vma->vm_flags & VM_DENYWRITE)
6001 flags |= MAP_DENYWRITE;
6002 if (vma->vm_flags & VM_MAYEXEC)
6003 flags |= MAP_EXECUTABLE;
6004 if (vma->vm_flags & VM_LOCKED)
6005 flags |= MAP_LOCKED;
6006 if (vma->vm_flags & VM_HUGETLB)
6007 flags |= MAP_HUGETLB;
6008
c7e548b4 6009 goto got_name;
0a4a9391 6010 } else {
fbe26abe
JO
6011 if (vma->vm_ops && vma->vm_ops->name) {
6012 name = (char *) vma->vm_ops->name(vma);
6013 if (name)
6014 goto cpy_name;
6015 }
6016
2c42cfbf 6017 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6018 if (name)
6019 goto cpy_name;
089dd79d 6020
32c5fb7e 6021 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6022 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6023 name = "[heap]";
6024 goto cpy_name;
32c5fb7e
ON
6025 }
6026 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6027 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6028 name = "[stack]";
6029 goto cpy_name;
089dd79d
PZ
6030 }
6031
c7e548b4
ON
6032 name = "//anon";
6033 goto cpy_name;
0a4a9391
PZ
6034 }
6035
c7e548b4
ON
6036cpy_name:
6037 strlcpy(tmp, name, sizeof(tmp));
6038 name = tmp;
0a4a9391 6039got_name:
2c42cfbf
PZ
6040 /*
6041 * Since our buffer works in 8 byte units we need to align our string
6042 * size to a multiple of 8. However, we must guarantee the tail end is
6043 * zero'd out to avoid leaking random bits to userspace.
6044 */
6045 size = strlen(name)+1;
6046 while (!IS_ALIGNED(size, sizeof(u64)))
6047 name[size++] = '\0';
0a4a9391
PZ
6048
6049 mmap_event->file_name = name;
6050 mmap_event->file_size = size;
13d7a241
SE
6051 mmap_event->maj = maj;
6052 mmap_event->min = min;
6053 mmap_event->ino = ino;
6054 mmap_event->ino_generation = gen;
f972eb63
PZ
6055 mmap_event->prot = prot;
6056 mmap_event->flags = flags;
0a4a9391 6057
2fe85427
SE
6058 if (!(vma->vm_flags & VM_EXEC))
6059 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6060
cdd6c482 6061 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6062
67516844 6063 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6064 mmap_event,
6065 NULL);
665c2142 6066
0a4a9391
PZ
6067 kfree(buf);
6068}
6069
3af9e859 6070void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6071{
9ee318a7
PZ
6072 struct perf_mmap_event mmap_event;
6073
cdd6c482 6074 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6075 return;
6076
6077 mmap_event = (struct perf_mmap_event){
089dd79d 6078 .vma = vma,
573402db
PZ
6079 /* .file_name */
6080 /* .file_size */
cdd6c482 6081 .event_id = {
573402db 6082 .header = {
cdd6c482 6083 .type = PERF_RECORD_MMAP,
39447b38 6084 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6085 /* .size */
6086 },
6087 /* .pid */
6088 /* .tid */
089dd79d
PZ
6089 .start = vma->vm_start,
6090 .len = vma->vm_end - vma->vm_start,
3a0304e9 6091 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6092 },
13d7a241
SE
6093 /* .maj (attr_mmap2 only) */
6094 /* .min (attr_mmap2 only) */
6095 /* .ino (attr_mmap2 only) */
6096 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6097 /* .prot (attr_mmap2 only) */
6098 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6099 };
6100
cdd6c482 6101 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6102}
6103
68db7e98
AS
6104void perf_event_aux_event(struct perf_event *event, unsigned long head,
6105 unsigned long size, u64 flags)
6106{
6107 struct perf_output_handle handle;
6108 struct perf_sample_data sample;
6109 struct perf_aux_event {
6110 struct perf_event_header header;
6111 u64 offset;
6112 u64 size;
6113 u64 flags;
6114 } rec = {
6115 .header = {
6116 .type = PERF_RECORD_AUX,
6117 .misc = 0,
6118 .size = sizeof(rec),
6119 },
6120 .offset = head,
6121 .size = size,
6122 .flags = flags,
6123 };
6124 int ret;
6125
6126 perf_event_header__init_id(&rec.header, &sample, event);
6127 ret = perf_output_begin(&handle, event, rec.header.size);
6128
6129 if (ret)
6130 return;
6131
6132 perf_output_put(&handle, rec);
6133 perf_event__output_id_sample(event, &handle, &sample);
6134
6135 perf_output_end(&handle);
6136}
6137
f38b0dbb
KL
6138/*
6139 * Lost/dropped samples logging
6140 */
6141void perf_log_lost_samples(struct perf_event *event, u64 lost)
6142{
6143 struct perf_output_handle handle;
6144 struct perf_sample_data sample;
6145 int ret;
6146
6147 struct {
6148 struct perf_event_header header;
6149 u64 lost;
6150 } lost_samples_event = {
6151 .header = {
6152 .type = PERF_RECORD_LOST_SAMPLES,
6153 .misc = 0,
6154 .size = sizeof(lost_samples_event),
6155 },
6156 .lost = lost,
6157 };
6158
6159 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6160
6161 ret = perf_output_begin(&handle, event,
6162 lost_samples_event.header.size);
6163 if (ret)
6164 return;
6165
6166 perf_output_put(&handle, lost_samples_event);
6167 perf_event__output_id_sample(event, &handle, &sample);
6168 perf_output_end(&handle);
6169}
6170
45ac1403
AH
6171/*
6172 * context_switch tracking
6173 */
6174
6175struct perf_switch_event {
6176 struct task_struct *task;
6177 struct task_struct *next_prev;
6178
6179 struct {
6180 struct perf_event_header header;
6181 u32 next_prev_pid;
6182 u32 next_prev_tid;
6183 } event_id;
6184};
6185
6186static int perf_event_switch_match(struct perf_event *event)
6187{
6188 return event->attr.context_switch;
6189}
6190
6191static void perf_event_switch_output(struct perf_event *event, void *data)
6192{
6193 struct perf_switch_event *se = data;
6194 struct perf_output_handle handle;
6195 struct perf_sample_data sample;
6196 int ret;
6197
6198 if (!perf_event_switch_match(event))
6199 return;
6200
6201 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6202 if (event->ctx->task) {
6203 se->event_id.header.type = PERF_RECORD_SWITCH;
6204 se->event_id.header.size = sizeof(se->event_id.header);
6205 } else {
6206 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6207 se->event_id.header.size = sizeof(se->event_id);
6208 se->event_id.next_prev_pid =
6209 perf_event_pid(event, se->next_prev);
6210 se->event_id.next_prev_tid =
6211 perf_event_tid(event, se->next_prev);
6212 }
6213
6214 perf_event_header__init_id(&se->event_id.header, &sample, event);
6215
6216 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6217 if (ret)
6218 return;
6219
6220 if (event->ctx->task)
6221 perf_output_put(&handle, se->event_id.header);
6222 else
6223 perf_output_put(&handle, se->event_id);
6224
6225 perf_event__output_id_sample(event, &handle, &sample);
6226
6227 perf_output_end(&handle);
6228}
6229
6230static void perf_event_switch(struct task_struct *task,
6231 struct task_struct *next_prev, bool sched_in)
6232{
6233 struct perf_switch_event switch_event;
6234
6235 /* N.B. caller checks nr_switch_events != 0 */
6236
6237 switch_event = (struct perf_switch_event){
6238 .task = task,
6239 .next_prev = next_prev,
6240 .event_id = {
6241 .header = {
6242 /* .type */
6243 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6244 /* .size */
6245 },
6246 /* .next_prev_pid */
6247 /* .next_prev_tid */
6248 },
6249 };
6250
6251 perf_event_aux(perf_event_switch_output,
6252 &switch_event,
6253 NULL);
6254}
6255
a78ac325
PZ
6256/*
6257 * IRQ throttle logging
6258 */
6259
cdd6c482 6260static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6261{
6262 struct perf_output_handle handle;
c980d109 6263 struct perf_sample_data sample;
a78ac325
PZ
6264 int ret;
6265
6266 struct {
6267 struct perf_event_header header;
6268 u64 time;
cca3f454 6269 u64 id;
7f453c24 6270 u64 stream_id;
a78ac325
PZ
6271 } throttle_event = {
6272 .header = {
cdd6c482 6273 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6274 .misc = 0,
6275 .size = sizeof(throttle_event),
6276 },
34f43927 6277 .time = perf_event_clock(event),
cdd6c482
IM
6278 .id = primary_event_id(event),
6279 .stream_id = event->id,
a78ac325
PZ
6280 };
6281
966ee4d6 6282 if (enable)
cdd6c482 6283 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6284
c980d109
ACM
6285 perf_event_header__init_id(&throttle_event.header, &sample, event);
6286
6287 ret = perf_output_begin(&handle, event,
a7ac67ea 6288 throttle_event.header.size);
a78ac325
PZ
6289 if (ret)
6290 return;
6291
6292 perf_output_put(&handle, throttle_event);
c980d109 6293 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6294 perf_output_end(&handle);
6295}
6296
ec0d7729
AS
6297static void perf_log_itrace_start(struct perf_event *event)
6298{
6299 struct perf_output_handle handle;
6300 struct perf_sample_data sample;
6301 struct perf_aux_event {
6302 struct perf_event_header header;
6303 u32 pid;
6304 u32 tid;
6305 } rec;
6306 int ret;
6307
6308 if (event->parent)
6309 event = event->parent;
6310
6311 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6312 event->hw.itrace_started)
6313 return;
6314
ec0d7729
AS
6315 rec.header.type = PERF_RECORD_ITRACE_START;
6316 rec.header.misc = 0;
6317 rec.header.size = sizeof(rec);
6318 rec.pid = perf_event_pid(event, current);
6319 rec.tid = perf_event_tid(event, current);
6320
6321 perf_event_header__init_id(&rec.header, &sample, event);
6322 ret = perf_output_begin(&handle, event, rec.header.size);
6323
6324 if (ret)
6325 return;
6326
6327 perf_output_put(&handle, rec);
6328 perf_event__output_id_sample(event, &handle, &sample);
6329
6330 perf_output_end(&handle);
6331}
6332
f6c7d5fe 6333/*
cdd6c482 6334 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6335 */
6336
a8b0ca17 6337static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6338 int throttle, struct perf_sample_data *data,
6339 struct pt_regs *regs)
f6c7d5fe 6340{
cdd6c482
IM
6341 int events = atomic_read(&event->event_limit);
6342 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6343 u64 seq;
79f14641
PZ
6344 int ret = 0;
6345
96398826
PZ
6346 /*
6347 * Non-sampling counters might still use the PMI to fold short
6348 * hardware counters, ignore those.
6349 */
6350 if (unlikely(!is_sampling_event(event)))
6351 return 0;
6352
e050e3f0
SE
6353 seq = __this_cpu_read(perf_throttled_seq);
6354 if (seq != hwc->interrupts_seq) {
6355 hwc->interrupts_seq = seq;
6356 hwc->interrupts = 1;
6357 } else {
6358 hwc->interrupts++;
6359 if (unlikely(throttle
6360 && hwc->interrupts >= max_samples_per_tick)) {
6361 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6362 hwc->interrupts = MAX_INTERRUPTS;
6363 perf_log_throttle(event, 0);
d84153d6 6364 tick_nohz_full_kick();
a78ac325
PZ
6365 ret = 1;
6366 }
e050e3f0 6367 }
60db5e09 6368
cdd6c482 6369 if (event->attr.freq) {
def0a9b2 6370 u64 now = perf_clock();
abd50713 6371 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6372
abd50713 6373 hwc->freq_time_stamp = now;
bd2b5b12 6374
abd50713 6375 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6376 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6377 }
6378
2023b359
PZ
6379 /*
6380 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6381 * events
2023b359
PZ
6382 */
6383
cdd6c482
IM
6384 event->pending_kill = POLL_IN;
6385 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6386 ret = 1;
cdd6c482 6387 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6388 event->pending_disable = 1;
6389 irq_work_queue(&event->pending);
79f14641
PZ
6390 }
6391
453f19ee 6392 if (event->overflow_handler)
a8b0ca17 6393 event->overflow_handler(event, data, regs);
453f19ee 6394 else
a8b0ca17 6395 perf_event_output(event, data, regs);
453f19ee 6396
fed66e2c 6397 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6398 event->pending_wakeup = 1;
6399 irq_work_queue(&event->pending);
f506b3dc
PZ
6400 }
6401
79f14641 6402 return ret;
f6c7d5fe
PZ
6403}
6404
a8b0ca17 6405int perf_event_overflow(struct perf_event *event,
5622f295
MM
6406 struct perf_sample_data *data,
6407 struct pt_regs *regs)
850bc73f 6408{
a8b0ca17 6409 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6410}
6411
15dbf27c 6412/*
cdd6c482 6413 * Generic software event infrastructure
15dbf27c
PZ
6414 */
6415
b28ab83c
PZ
6416struct swevent_htable {
6417 struct swevent_hlist *swevent_hlist;
6418 struct mutex hlist_mutex;
6419 int hlist_refcount;
6420
6421 /* Recursion avoidance in each contexts */
6422 int recursion[PERF_NR_CONTEXTS];
6423};
6424
6425static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6426
7b4b6658 6427/*
cdd6c482
IM
6428 * We directly increment event->count and keep a second value in
6429 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6430 * is kept in the range [-sample_period, 0] so that we can use the
6431 * sign as trigger.
6432 */
6433
ab573844 6434u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6435{
cdd6c482 6436 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6437 u64 period = hwc->last_period;
6438 u64 nr, offset;
6439 s64 old, val;
6440
6441 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6442
6443again:
e7850595 6444 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6445 if (val < 0)
6446 return 0;
15dbf27c 6447
7b4b6658
PZ
6448 nr = div64_u64(period + val, period);
6449 offset = nr * period;
6450 val -= offset;
e7850595 6451 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6452 goto again;
15dbf27c 6453
7b4b6658 6454 return nr;
15dbf27c
PZ
6455}
6456
0cff784a 6457static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6458 struct perf_sample_data *data,
5622f295 6459 struct pt_regs *regs)
15dbf27c 6460{
cdd6c482 6461 struct hw_perf_event *hwc = &event->hw;
850bc73f 6462 int throttle = 0;
15dbf27c 6463
0cff784a
PZ
6464 if (!overflow)
6465 overflow = perf_swevent_set_period(event);
15dbf27c 6466
7b4b6658
PZ
6467 if (hwc->interrupts == MAX_INTERRUPTS)
6468 return;
15dbf27c 6469
7b4b6658 6470 for (; overflow; overflow--) {
a8b0ca17 6471 if (__perf_event_overflow(event, throttle,
5622f295 6472 data, regs)) {
7b4b6658
PZ
6473 /*
6474 * We inhibit the overflow from happening when
6475 * hwc->interrupts == MAX_INTERRUPTS.
6476 */
6477 break;
6478 }
cf450a73 6479 throttle = 1;
7b4b6658 6480 }
15dbf27c
PZ
6481}
6482
a4eaf7f1 6483static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6484 struct perf_sample_data *data,
5622f295 6485 struct pt_regs *regs)
7b4b6658 6486{
cdd6c482 6487 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6488
e7850595 6489 local64_add(nr, &event->count);
d6d020e9 6490
0cff784a
PZ
6491 if (!regs)
6492 return;
6493
6c7e550f 6494 if (!is_sampling_event(event))
7b4b6658 6495 return;
d6d020e9 6496
5d81e5cf
AV
6497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6498 data->period = nr;
6499 return perf_swevent_overflow(event, 1, data, regs);
6500 } else
6501 data->period = event->hw.last_period;
6502
0cff784a 6503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6504 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6505
e7850595 6506 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6507 return;
df1a132b 6508
a8b0ca17 6509 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6510}
6511
f5ffe02e
FW
6512static int perf_exclude_event(struct perf_event *event,
6513 struct pt_regs *regs)
6514{
a4eaf7f1 6515 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6516 return 1;
a4eaf7f1 6517
f5ffe02e
FW
6518 if (regs) {
6519 if (event->attr.exclude_user && user_mode(regs))
6520 return 1;
6521
6522 if (event->attr.exclude_kernel && !user_mode(regs))
6523 return 1;
6524 }
6525
6526 return 0;
6527}
6528
cdd6c482 6529static int perf_swevent_match(struct perf_event *event,
1c432d89 6530 enum perf_type_id type,
6fb2915d
LZ
6531 u32 event_id,
6532 struct perf_sample_data *data,
6533 struct pt_regs *regs)
15dbf27c 6534{
cdd6c482 6535 if (event->attr.type != type)
a21ca2ca 6536 return 0;
f5ffe02e 6537
cdd6c482 6538 if (event->attr.config != event_id)
15dbf27c
PZ
6539 return 0;
6540
f5ffe02e
FW
6541 if (perf_exclude_event(event, regs))
6542 return 0;
15dbf27c
PZ
6543
6544 return 1;
6545}
6546
76e1d904
FW
6547static inline u64 swevent_hash(u64 type, u32 event_id)
6548{
6549 u64 val = event_id | (type << 32);
6550
6551 return hash_64(val, SWEVENT_HLIST_BITS);
6552}
6553
49f135ed
FW
6554static inline struct hlist_head *
6555__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6556{
49f135ed
FW
6557 u64 hash = swevent_hash(type, event_id);
6558
6559 return &hlist->heads[hash];
6560}
76e1d904 6561
49f135ed
FW
6562/* For the read side: events when they trigger */
6563static inline struct hlist_head *
b28ab83c 6564find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6565{
6566 struct swevent_hlist *hlist;
76e1d904 6567
b28ab83c 6568 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6569 if (!hlist)
6570 return NULL;
6571
49f135ed
FW
6572 return __find_swevent_head(hlist, type, event_id);
6573}
6574
6575/* For the event head insertion and removal in the hlist */
6576static inline struct hlist_head *
b28ab83c 6577find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6578{
6579 struct swevent_hlist *hlist;
6580 u32 event_id = event->attr.config;
6581 u64 type = event->attr.type;
6582
6583 /*
6584 * Event scheduling is always serialized against hlist allocation
6585 * and release. Which makes the protected version suitable here.
6586 * The context lock guarantees that.
6587 */
b28ab83c 6588 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6589 lockdep_is_held(&event->ctx->lock));
6590 if (!hlist)
6591 return NULL;
6592
6593 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6594}
6595
6596static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6597 u64 nr,
76e1d904
FW
6598 struct perf_sample_data *data,
6599 struct pt_regs *regs)
15dbf27c 6600{
4a32fea9 6601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6602 struct perf_event *event;
76e1d904 6603 struct hlist_head *head;
15dbf27c 6604
76e1d904 6605 rcu_read_lock();
b28ab83c 6606 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6607 if (!head)
6608 goto end;
6609
b67bfe0d 6610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6611 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6612 perf_swevent_event(event, nr, data, regs);
15dbf27c 6613 }
76e1d904
FW
6614end:
6615 rcu_read_unlock();
15dbf27c
PZ
6616}
6617
86038c5e
PZI
6618DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6619
4ed7c92d 6620int perf_swevent_get_recursion_context(void)
96f6d444 6621{
4a32fea9 6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6623
b28ab83c 6624 return get_recursion_context(swhash->recursion);
96f6d444 6625}
645e8cc0 6626EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6627
fa9f90be 6628inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6629{
4a32fea9 6630 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6631
b28ab83c 6632 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6633}
15dbf27c 6634
86038c5e 6635void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6636{
a4234bfc 6637 struct perf_sample_data data;
4ed7c92d 6638
86038c5e 6639 if (WARN_ON_ONCE(!regs))
4ed7c92d 6640 return;
a4234bfc 6641
fd0d000b 6642 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6643 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6644}
6645
6646void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6647{
6648 int rctx;
6649
6650 preempt_disable_notrace();
6651 rctx = perf_swevent_get_recursion_context();
6652 if (unlikely(rctx < 0))
6653 goto fail;
6654
6655 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6656
6657 perf_swevent_put_recursion_context(rctx);
86038c5e 6658fail:
1c024eca 6659 preempt_enable_notrace();
b8e83514
PZ
6660}
6661
cdd6c482 6662static void perf_swevent_read(struct perf_event *event)
15dbf27c 6663{
15dbf27c
PZ
6664}
6665
a4eaf7f1 6666static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6667{
4a32fea9 6668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6669 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6670 struct hlist_head *head;
6671
6c7e550f 6672 if (is_sampling_event(event)) {
7b4b6658 6673 hwc->last_period = hwc->sample_period;
cdd6c482 6674 perf_swevent_set_period(event);
7b4b6658 6675 }
76e1d904 6676
a4eaf7f1
PZ
6677 hwc->state = !(flags & PERF_EF_START);
6678
b28ab83c 6679 head = find_swevent_head(swhash, event);
12ca6ad2 6680 if (WARN_ON_ONCE(!head))
76e1d904
FW
6681 return -EINVAL;
6682
6683 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6684 perf_event_update_userpage(event);
76e1d904 6685
15dbf27c
PZ
6686 return 0;
6687}
6688
a4eaf7f1 6689static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6690{
76e1d904 6691 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6692}
6693
a4eaf7f1 6694static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6695{
a4eaf7f1 6696 event->hw.state = 0;
d6d020e9 6697}
aa9c4c0f 6698
a4eaf7f1 6699static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6700{
a4eaf7f1 6701 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6702}
6703
49f135ed
FW
6704/* Deref the hlist from the update side */
6705static inline struct swevent_hlist *
b28ab83c 6706swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6707{
b28ab83c
PZ
6708 return rcu_dereference_protected(swhash->swevent_hlist,
6709 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6710}
6711
b28ab83c 6712static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6713{
b28ab83c 6714 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6715
49f135ed 6716 if (!hlist)
76e1d904
FW
6717 return;
6718
70691d4a 6719 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6720 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6721}
6722
6723static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6724{
b28ab83c 6725 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6726
b28ab83c 6727 mutex_lock(&swhash->hlist_mutex);
76e1d904 6728
b28ab83c
PZ
6729 if (!--swhash->hlist_refcount)
6730 swevent_hlist_release(swhash);
76e1d904 6731
b28ab83c 6732 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6733}
6734
6735static void swevent_hlist_put(struct perf_event *event)
6736{
6737 int cpu;
6738
76e1d904
FW
6739 for_each_possible_cpu(cpu)
6740 swevent_hlist_put_cpu(event, cpu);
6741}
6742
6743static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6744{
b28ab83c 6745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6746 int err = 0;
6747
b28ab83c 6748 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6749 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6750 struct swevent_hlist *hlist;
6751
6752 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6753 if (!hlist) {
6754 err = -ENOMEM;
6755 goto exit;
6756 }
b28ab83c 6757 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6758 }
b28ab83c 6759 swhash->hlist_refcount++;
9ed6060d 6760exit:
b28ab83c 6761 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6762
6763 return err;
6764}
6765
6766static int swevent_hlist_get(struct perf_event *event)
6767{
6768 int err;
6769 int cpu, failed_cpu;
6770
76e1d904
FW
6771 get_online_cpus();
6772 for_each_possible_cpu(cpu) {
6773 err = swevent_hlist_get_cpu(event, cpu);
6774 if (err) {
6775 failed_cpu = cpu;
6776 goto fail;
6777 }
6778 }
6779 put_online_cpus();
6780
6781 return 0;
9ed6060d 6782fail:
76e1d904
FW
6783 for_each_possible_cpu(cpu) {
6784 if (cpu == failed_cpu)
6785 break;
6786 swevent_hlist_put_cpu(event, cpu);
6787 }
6788
6789 put_online_cpus();
6790 return err;
6791}
6792
c5905afb 6793struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6794
b0a873eb
PZ
6795static void sw_perf_event_destroy(struct perf_event *event)
6796{
6797 u64 event_id = event->attr.config;
95476b64 6798
b0a873eb
PZ
6799 WARN_ON(event->parent);
6800
c5905afb 6801 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6802 swevent_hlist_put(event);
6803}
6804
6805static int perf_swevent_init(struct perf_event *event)
6806{
8176cced 6807 u64 event_id = event->attr.config;
b0a873eb
PZ
6808
6809 if (event->attr.type != PERF_TYPE_SOFTWARE)
6810 return -ENOENT;
6811
2481c5fa
SE
6812 /*
6813 * no branch sampling for software events
6814 */
6815 if (has_branch_stack(event))
6816 return -EOPNOTSUPP;
6817
b0a873eb
PZ
6818 switch (event_id) {
6819 case PERF_COUNT_SW_CPU_CLOCK:
6820 case PERF_COUNT_SW_TASK_CLOCK:
6821 return -ENOENT;
6822
6823 default:
6824 break;
6825 }
6826
ce677831 6827 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6828 return -ENOENT;
6829
6830 if (!event->parent) {
6831 int err;
6832
6833 err = swevent_hlist_get(event);
6834 if (err)
6835 return err;
6836
c5905afb 6837 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6838 event->destroy = sw_perf_event_destroy;
6839 }
6840
6841 return 0;
6842}
6843
6844static struct pmu perf_swevent = {
89a1e187 6845 .task_ctx_nr = perf_sw_context,
95476b64 6846
34f43927
PZ
6847 .capabilities = PERF_PMU_CAP_NO_NMI,
6848
b0a873eb 6849 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6850 .add = perf_swevent_add,
6851 .del = perf_swevent_del,
6852 .start = perf_swevent_start,
6853 .stop = perf_swevent_stop,
1c024eca 6854 .read = perf_swevent_read,
1c024eca
PZ
6855};
6856
b0a873eb
PZ
6857#ifdef CONFIG_EVENT_TRACING
6858
1c024eca
PZ
6859static int perf_tp_filter_match(struct perf_event *event,
6860 struct perf_sample_data *data)
6861{
6862 void *record = data->raw->data;
6863
b71b437e
PZ
6864 /* only top level events have filters set */
6865 if (event->parent)
6866 event = event->parent;
6867
1c024eca
PZ
6868 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6869 return 1;
6870 return 0;
6871}
6872
6873static int perf_tp_event_match(struct perf_event *event,
6874 struct perf_sample_data *data,
6875 struct pt_regs *regs)
6876{
a0f7d0f7
FW
6877 if (event->hw.state & PERF_HES_STOPPED)
6878 return 0;
580d607c
PZ
6879 /*
6880 * All tracepoints are from kernel-space.
6881 */
6882 if (event->attr.exclude_kernel)
1c024eca
PZ
6883 return 0;
6884
6885 if (!perf_tp_filter_match(event, data))
6886 return 0;
6887
6888 return 1;
6889}
6890
6891void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6892 struct pt_regs *regs, struct hlist_head *head, int rctx,
6893 struct task_struct *task)
95476b64
FW
6894{
6895 struct perf_sample_data data;
1c024eca 6896 struct perf_event *event;
1c024eca 6897
95476b64
FW
6898 struct perf_raw_record raw = {
6899 .size = entry_size,
6900 .data = record,
6901 };
6902
fd0d000b 6903 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6904 data.raw = &raw;
6905
b67bfe0d 6906 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6907 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6908 perf_swevent_event(event, count, &data, regs);
4f41c013 6909 }
ecc55f84 6910
e6dab5ff
AV
6911 /*
6912 * If we got specified a target task, also iterate its context and
6913 * deliver this event there too.
6914 */
6915 if (task && task != current) {
6916 struct perf_event_context *ctx;
6917 struct trace_entry *entry = record;
6918
6919 rcu_read_lock();
6920 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6921 if (!ctx)
6922 goto unlock;
6923
6924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6925 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6926 continue;
6927 if (event->attr.config != entry->type)
6928 continue;
6929 if (perf_tp_event_match(event, &data, regs))
6930 perf_swevent_event(event, count, &data, regs);
6931 }
6932unlock:
6933 rcu_read_unlock();
6934 }
6935
ecc55f84 6936 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6937}
6938EXPORT_SYMBOL_GPL(perf_tp_event);
6939
cdd6c482 6940static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6941{
1c024eca 6942 perf_trace_destroy(event);
e077df4f
PZ
6943}
6944
b0a873eb 6945static int perf_tp_event_init(struct perf_event *event)
e077df4f 6946{
76e1d904
FW
6947 int err;
6948
b0a873eb
PZ
6949 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6950 return -ENOENT;
6951
2481c5fa
SE
6952 /*
6953 * no branch sampling for tracepoint events
6954 */
6955 if (has_branch_stack(event))
6956 return -EOPNOTSUPP;
6957
1c024eca
PZ
6958 err = perf_trace_init(event);
6959 if (err)
b0a873eb 6960 return err;
e077df4f 6961
cdd6c482 6962 event->destroy = tp_perf_event_destroy;
e077df4f 6963
b0a873eb
PZ
6964 return 0;
6965}
6966
6967static struct pmu perf_tracepoint = {
89a1e187
PZ
6968 .task_ctx_nr = perf_sw_context,
6969
b0a873eb 6970 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6971 .add = perf_trace_add,
6972 .del = perf_trace_del,
6973 .start = perf_swevent_start,
6974 .stop = perf_swevent_stop,
b0a873eb 6975 .read = perf_swevent_read,
b0a873eb
PZ
6976};
6977
6978static inline void perf_tp_register(void)
6979{
2e80a82a 6980 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6981}
6fb2915d
LZ
6982
6983static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6984{
6985 char *filter_str;
6986 int ret;
6987
6988 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6989 return -EINVAL;
6990
6991 filter_str = strndup_user(arg, PAGE_SIZE);
6992 if (IS_ERR(filter_str))
6993 return PTR_ERR(filter_str);
6994
6995 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6996
6997 kfree(filter_str);
6998 return ret;
6999}
7000
7001static void perf_event_free_filter(struct perf_event *event)
7002{
7003 ftrace_profile_free_filter(event);
7004}
7005
2541517c
AS
7006static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7007{
7008 struct bpf_prog *prog;
7009
7010 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7011 return -EINVAL;
7012
7013 if (event->tp_event->prog)
7014 return -EEXIST;
7015
04a22fae
WN
7016 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7017 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7018 return -EINVAL;
7019
7020 prog = bpf_prog_get(prog_fd);
7021 if (IS_ERR(prog))
7022 return PTR_ERR(prog);
7023
6c373ca8 7024 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7025 /* valid fd, but invalid bpf program type */
7026 bpf_prog_put(prog);
7027 return -EINVAL;
7028 }
7029
7030 event->tp_event->prog = prog;
7031
7032 return 0;
7033}
7034
7035static void perf_event_free_bpf_prog(struct perf_event *event)
7036{
7037 struct bpf_prog *prog;
7038
7039 if (!event->tp_event)
7040 return;
7041
7042 prog = event->tp_event->prog;
7043 if (prog) {
7044 event->tp_event->prog = NULL;
7045 bpf_prog_put(prog);
7046 }
7047}
7048
e077df4f 7049#else
6fb2915d 7050
b0a873eb 7051static inline void perf_tp_register(void)
e077df4f 7052{
e077df4f 7053}
6fb2915d
LZ
7054
7055static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7056{
7057 return -ENOENT;
7058}
7059
7060static void perf_event_free_filter(struct perf_event *event)
7061{
7062}
7063
2541517c
AS
7064static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7065{
7066 return -ENOENT;
7067}
7068
7069static void perf_event_free_bpf_prog(struct perf_event *event)
7070{
7071}
07b139c8 7072#endif /* CONFIG_EVENT_TRACING */
e077df4f 7073
24f1e32c 7074#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7075void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7076{
f5ffe02e
FW
7077 struct perf_sample_data sample;
7078 struct pt_regs *regs = data;
7079
fd0d000b 7080 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7081
a4eaf7f1 7082 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7083 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7084}
7085#endif
7086
b0a873eb
PZ
7087/*
7088 * hrtimer based swevent callback
7089 */
f29ac756 7090
b0a873eb 7091static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7092{
b0a873eb
PZ
7093 enum hrtimer_restart ret = HRTIMER_RESTART;
7094 struct perf_sample_data data;
7095 struct pt_regs *regs;
7096 struct perf_event *event;
7097 u64 period;
f29ac756 7098
b0a873eb 7099 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7100
7101 if (event->state != PERF_EVENT_STATE_ACTIVE)
7102 return HRTIMER_NORESTART;
7103
b0a873eb 7104 event->pmu->read(event);
f344011c 7105
fd0d000b 7106 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7107 regs = get_irq_regs();
7108
7109 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7110 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7111 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7112 ret = HRTIMER_NORESTART;
7113 }
24f1e32c 7114
b0a873eb
PZ
7115 period = max_t(u64, 10000, event->hw.sample_period);
7116 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7117
b0a873eb 7118 return ret;
f29ac756
PZ
7119}
7120
b0a873eb 7121static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7122{
b0a873eb 7123 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7124 s64 period;
7125
7126 if (!is_sampling_event(event))
7127 return;
f5ffe02e 7128
5d508e82
FBH
7129 period = local64_read(&hwc->period_left);
7130 if (period) {
7131 if (period < 0)
7132 period = 10000;
fa407f35 7133
5d508e82
FBH
7134 local64_set(&hwc->period_left, 0);
7135 } else {
7136 period = max_t(u64, 10000, hwc->sample_period);
7137 }
3497d206
TG
7138 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7139 HRTIMER_MODE_REL_PINNED);
24f1e32c 7140}
b0a873eb
PZ
7141
7142static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7143{
b0a873eb
PZ
7144 struct hw_perf_event *hwc = &event->hw;
7145
6c7e550f 7146 if (is_sampling_event(event)) {
b0a873eb 7147 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7148 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7149
7150 hrtimer_cancel(&hwc->hrtimer);
7151 }
24f1e32c
FW
7152}
7153
ba3dd36c
PZ
7154static void perf_swevent_init_hrtimer(struct perf_event *event)
7155{
7156 struct hw_perf_event *hwc = &event->hw;
7157
7158 if (!is_sampling_event(event))
7159 return;
7160
7161 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7162 hwc->hrtimer.function = perf_swevent_hrtimer;
7163
7164 /*
7165 * Since hrtimers have a fixed rate, we can do a static freq->period
7166 * mapping and avoid the whole period adjust feedback stuff.
7167 */
7168 if (event->attr.freq) {
7169 long freq = event->attr.sample_freq;
7170
7171 event->attr.sample_period = NSEC_PER_SEC / freq;
7172 hwc->sample_period = event->attr.sample_period;
7173 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7174 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7175 event->attr.freq = 0;
7176 }
7177}
7178
b0a873eb
PZ
7179/*
7180 * Software event: cpu wall time clock
7181 */
7182
7183static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7184{
b0a873eb
PZ
7185 s64 prev;
7186 u64 now;
7187
a4eaf7f1 7188 now = local_clock();
b0a873eb
PZ
7189 prev = local64_xchg(&event->hw.prev_count, now);
7190 local64_add(now - prev, &event->count);
24f1e32c 7191}
24f1e32c 7192
a4eaf7f1 7193static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7194{
a4eaf7f1 7195 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7196 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7197}
7198
a4eaf7f1 7199static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7200{
b0a873eb
PZ
7201 perf_swevent_cancel_hrtimer(event);
7202 cpu_clock_event_update(event);
7203}
f29ac756 7204
a4eaf7f1
PZ
7205static int cpu_clock_event_add(struct perf_event *event, int flags)
7206{
7207 if (flags & PERF_EF_START)
7208 cpu_clock_event_start(event, flags);
6a694a60 7209 perf_event_update_userpage(event);
a4eaf7f1
PZ
7210
7211 return 0;
7212}
7213
7214static void cpu_clock_event_del(struct perf_event *event, int flags)
7215{
7216 cpu_clock_event_stop(event, flags);
7217}
7218
b0a873eb
PZ
7219static void cpu_clock_event_read(struct perf_event *event)
7220{
7221 cpu_clock_event_update(event);
7222}
f344011c 7223
b0a873eb
PZ
7224static int cpu_clock_event_init(struct perf_event *event)
7225{
7226 if (event->attr.type != PERF_TYPE_SOFTWARE)
7227 return -ENOENT;
7228
7229 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7230 return -ENOENT;
7231
2481c5fa
SE
7232 /*
7233 * no branch sampling for software events
7234 */
7235 if (has_branch_stack(event))
7236 return -EOPNOTSUPP;
7237
ba3dd36c
PZ
7238 perf_swevent_init_hrtimer(event);
7239
b0a873eb 7240 return 0;
f29ac756
PZ
7241}
7242
b0a873eb 7243static struct pmu perf_cpu_clock = {
89a1e187
PZ
7244 .task_ctx_nr = perf_sw_context,
7245
34f43927
PZ
7246 .capabilities = PERF_PMU_CAP_NO_NMI,
7247
b0a873eb 7248 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7249 .add = cpu_clock_event_add,
7250 .del = cpu_clock_event_del,
7251 .start = cpu_clock_event_start,
7252 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7253 .read = cpu_clock_event_read,
7254};
7255
7256/*
7257 * Software event: task time clock
7258 */
7259
7260static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7261{
b0a873eb
PZ
7262 u64 prev;
7263 s64 delta;
5c92d124 7264
b0a873eb
PZ
7265 prev = local64_xchg(&event->hw.prev_count, now);
7266 delta = now - prev;
7267 local64_add(delta, &event->count);
7268}
5c92d124 7269
a4eaf7f1 7270static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7271{
a4eaf7f1 7272 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7273 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7274}
7275
a4eaf7f1 7276static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7277{
7278 perf_swevent_cancel_hrtimer(event);
7279 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7280}
7281
7282static int task_clock_event_add(struct perf_event *event, int flags)
7283{
7284 if (flags & PERF_EF_START)
7285 task_clock_event_start(event, flags);
6a694a60 7286 perf_event_update_userpage(event);
b0a873eb 7287
a4eaf7f1
PZ
7288 return 0;
7289}
7290
7291static void task_clock_event_del(struct perf_event *event, int flags)
7292{
7293 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7294}
7295
7296static void task_clock_event_read(struct perf_event *event)
7297{
768a06e2
PZ
7298 u64 now = perf_clock();
7299 u64 delta = now - event->ctx->timestamp;
7300 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7301
7302 task_clock_event_update(event, time);
7303}
7304
7305static int task_clock_event_init(struct perf_event *event)
6fb2915d 7306{
b0a873eb
PZ
7307 if (event->attr.type != PERF_TYPE_SOFTWARE)
7308 return -ENOENT;
7309
7310 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7311 return -ENOENT;
7312
2481c5fa
SE
7313 /*
7314 * no branch sampling for software events
7315 */
7316 if (has_branch_stack(event))
7317 return -EOPNOTSUPP;
7318
ba3dd36c
PZ
7319 perf_swevent_init_hrtimer(event);
7320
b0a873eb 7321 return 0;
6fb2915d
LZ
7322}
7323
b0a873eb 7324static struct pmu perf_task_clock = {
89a1e187
PZ
7325 .task_ctx_nr = perf_sw_context,
7326
34f43927
PZ
7327 .capabilities = PERF_PMU_CAP_NO_NMI,
7328
b0a873eb 7329 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7330 .add = task_clock_event_add,
7331 .del = task_clock_event_del,
7332 .start = task_clock_event_start,
7333 .stop = task_clock_event_stop,
b0a873eb
PZ
7334 .read = task_clock_event_read,
7335};
6fb2915d 7336
ad5133b7 7337static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7338{
e077df4f 7339}
6fb2915d 7340
fbbe0701
SB
7341static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7342{
7343}
7344
ad5133b7 7345static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7346{
ad5133b7 7347 return 0;
6fb2915d
LZ
7348}
7349
18ab2cd3 7350static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7351
7352static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7353{
fbbe0701
SB
7354 __this_cpu_write(nop_txn_flags, flags);
7355
7356 if (flags & ~PERF_PMU_TXN_ADD)
7357 return;
7358
ad5133b7 7359 perf_pmu_disable(pmu);
6fb2915d
LZ
7360}
7361
ad5133b7
PZ
7362static int perf_pmu_commit_txn(struct pmu *pmu)
7363{
fbbe0701
SB
7364 unsigned int flags = __this_cpu_read(nop_txn_flags);
7365
7366 __this_cpu_write(nop_txn_flags, 0);
7367
7368 if (flags & ~PERF_PMU_TXN_ADD)
7369 return 0;
7370
ad5133b7
PZ
7371 perf_pmu_enable(pmu);
7372 return 0;
7373}
e077df4f 7374
ad5133b7 7375static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7376{
fbbe0701
SB
7377 unsigned int flags = __this_cpu_read(nop_txn_flags);
7378
7379 __this_cpu_write(nop_txn_flags, 0);
7380
7381 if (flags & ~PERF_PMU_TXN_ADD)
7382 return;
7383
ad5133b7 7384 perf_pmu_enable(pmu);
24f1e32c
FW
7385}
7386
35edc2a5
PZ
7387static int perf_event_idx_default(struct perf_event *event)
7388{
c719f560 7389 return 0;
35edc2a5
PZ
7390}
7391
8dc85d54
PZ
7392/*
7393 * Ensures all contexts with the same task_ctx_nr have the same
7394 * pmu_cpu_context too.
7395 */
9e317041 7396static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7397{
8dc85d54 7398 struct pmu *pmu;
b326e956 7399
8dc85d54
PZ
7400 if (ctxn < 0)
7401 return NULL;
24f1e32c 7402
8dc85d54
PZ
7403 list_for_each_entry(pmu, &pmus, entry) {
7404 if (pmu->task_ctx_nr == ctxn)
7405 return pmu->pmu_cpu_context;
7406 }
24f1e32c 7407
8dc85d54 7408 return NULL;
24f1e32c
FW
7409}
7410
51676957 7411static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7412{
51676957
PZ
7413 int cpu;
7414
7415 for_each_possible_cpu(cpu) {
7416 struct perf_cpu_context *cpuctx;
7417
7418 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7419
3f1f3320
PZ
7420 if (cpuctx->unique_pmu == old_pmu)
7421 cpuctx->unique_pmu = pmu;
51676957
PZ
7422 }
7423}
7424
7425static void free_pmu_context(struct pmu *pmu)
7426{
7427 struct pmu *i;
f5ffe02e 7428
8dc85d54 7429 mutex_lock(&pmus_lock);
0475f9ea 7430 /*
8dc85d54 7431 * Like a real lame refcount.
0475f9ea 7432 */
51676957
PZ
7433 list_for_each_entry(i, &pmus, entry) {
7434 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7435 update_pmu_context(i, pmu);
8dc85d54 7436 goto out;
51676957 7437 }
8dc85d54 7438 }
d6d020e9 7439
51676957 7440 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7441out:
7442 mutex_unlock(&pmus_lock);
24f1e32c 7443}
2e80a82a 7444static struct idr pmu_idr;
d6d020e9 7445
abe43400
PZ
7446static ssize_t
7447type_show(struct device *dev, struct device_attribute *attr, char *page)
7448{
7449 struct pmu *pmu = dev_get_drvdata(dev);
7450
7451 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7452}
90826ca7 7453static DEVICE_ATTR_RO(type);
abe43400 7454
62b85639
SE
7455static ssize_t
7456perf_event_mux_interval_ms_show(struct device *dev,
7457 struct device_attribute *attr,
7458 char *page)
7459{
7460 struct pmu *pmu = dev_get_drvdata(dev);
7461
7462 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7463}
7464
272325c4
PZ
7465static DEFINE_MUTEX(mux_interval_mutex);
7466
62b85639
SE
7467static ssize_t
7468perf_event_mux_interval_ms_store(struct device *dev,
7469 struct device_attribute *attr,
7470 const char *buf, size_t count)
7471{
7472 struct pmu *pmu = dev_get_drvdata(dev);
7473 int timer, cpu, ret;
7474
7475 ret = kstrtoint(buf, 0, &timer);
7476 if (ret)
7477 return ret;
7478
7479 if (timer < 1)
7480 return -EINVAL;
7481
7482 /* same value, noting to do */
7483 if (timer == pmu->hrtimer_interval_ms)
7484 return count;
7485
272325c4 7486 mutex_lock(&mux_interval_mutex);
62b85639
SE
7487 pmu->hrtimer_interval_ms = timer;
7488
7489 /* update all cpuctx for this PMU */
272325c4
PZ
7490 get_online_cpus();
7491 for_each_online_cpu(cpu) {
62b85639
SE
7492 struct perf_cpu_context *cpuctx;
7493 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7494 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7495
272325c4
PZ
7496 cpu_function_call(cpu,
7497 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7498 }
272325c4
PZ
7499 put_online_cpus();
7500 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7501
7502 return count;
7503}
90826ca7 7504static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7505
90826ca7
GKH
7506static struct attribute *pmu_dev_attrs[] = {
7507 &dev_attr_type.attr,
7508 &dev_attr_perf_event_mux_interval_ms.attr,
7509 NULL,
abe43400 7510};
90826ca7 7511ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7512
7513static int pmu_bus_running;
7514static struct bus_type pmu_bus = {
7515 .name = "event_source",
90826ca7 7516 .dev_groups = pmu_dev_groups,
abe43400
PZ
7517};
7518
7519static void pmu_dev_release(struct device *dev)
7520{
7521 kfree(dev);
7522}
7523
7524static int pmu_dev_alloc(struct pmu *pmu)
7525{
7526 int ret = -ENOMEM;
7527
7528 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7529 if (!pmu->dev)
7530 goto out;
7531
0c9d42ed 7532 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7533 device_initialize(pmu->dev);
7534 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7535 if (ret)
7536 goto free_dev;
7537
7538 dev_set_drvdata(pmu->dev, pmu);
7539 pmu->dev->bus = &pmu_bus;
7540 pmu->dev->release = pmu_dev_release;
7541 ret = device_add(pmu->dev);
7542 if (ret)
7543 goto free_dev;
7544
7545out:
7546 return ret;
7547
7548free_dev:
7549 put_device(pmu->dev);
7550 goto out;
7551}
7552
547e9fd7 7553static struct lock_class_key cpuctx_mutex;
facc4307 7554static struct lock_class_key cpuctx_lock;
547e9fd7 7555
03d8e80b 7556int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7557{
108b02cf 7558 int cpu, ret;
24f1e32c 7559
b0a873eb 7560 mutex_lock(&pmus_lock);
33696fc0
PZ
7561 ret = -ENOMEM;
7562 pmu->pmu_disable_count = alloc_percpu(int);
7563 if (!pmu->pmu_disable_count)
7564 goto unlock;
f29ac756 7565
2e80a82a
PZ
7566 pmu->type = -1;
7567 if (!name)
7568 goto skip_type;
7569 pmu->name = name;
7570
7571 if (type < 0) {
0e9c3be2
TH
7572 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7573 if (type < 0) {
7574 ret = type;
2e80a82a
PZ
7575 goto free_pdc;
7576 }
7577 }
7578 pmu->type = type;
7579
abe43400
PZ
7580 if (pmu_bus_running) {
7581 ret = pmu_dev_alloc(pmu);
7582 if (ret)
7583 goto free_idr;
7584 }
7585
2e80a82a 7586skip_type:
8dc85d54
PZ
7587 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7588 if (pmu->pmu_cpu_context)
7589 goto got_cpu_context;
f29ac756 7590
c4814202 7591 ret = -ENOMEM;
108b02cf
PZ
7592 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7593 if (!pmu->pmu_cpu_context)
abe43400 7594 goto free_dev;
f344011c 7595
108b02cf
PZ
7596 for_each_possible_cpu(cpu) {
7597 struct perf_cpu_context *cpuctx;
7598
7599 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7600 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7601 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7602 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7603 cpuctx->ctx.pmu = pmu;
9e630205 7604
272325c4 7605 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7606
3f1f3320 7607 cpuctx->unique_pmu = pmu;
108b02cf 7608 }
76e1d904 7609
8dc85d54 7610got_cpu_context:
ad5133b7
PZ
7611 if (!pmu->start_txn) {
7612 if (pmu->pmu_enable) {
7613 /*
7614 * If we have pmu_enable/pmu_disable calls, install
7615 * transaction stubs that use that to try and batch
7616 * hardware accesses.
7617 */
7618 pmu->start_txn = perf_pmu_start_txn;
7619 pmu->commit_txn = perf_pmu_commit_txn;
7620 pmu->cancel_txn = perf_pmu_cancel_txn;
7621 } else {
fbbe0701 7622 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7623 pmu->commit_txn = perf_pmu_nop_int;
7624 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7625 }
5c92d124 7626 }
15dbf27c 7627
ad5133b7
PZ
7628 if (!pmu->pmu_enable) {
7629 pmu->pmu_enable = perf_pmu_nop_void;
7630 pmu->pmu_disable = perf_pmu_nop_void;
7631 }
7632
35edc2a5
PZ
7633 if (!pmu->event_idx)
7634 pmu->event_idx = perf_event_idx_default;
7635
b0a873eb 7636 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7637 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7638 ret = 0;
7639unlock:
b0a873eb
PZ
7640 mutex_unlock(&pmus_lock);
7641
33696fc0 7642 return ret;
108b02cf 7643
abe43400
PZ
7644free_dev:
7645 device_del(pmu->dev);
7646 put_device(pmu->dev);
7647
2e80a82a
PZ
7648free_idr:
7649 if (pmu->type >= PERF_TYPE_MAX)
7650 idr_remove(&pmu_idr, pmu->type);
7651
108b02cf
PZ
7652free_pdc:
7653 free_percpu(pmu->pmu_disable_count);
7654 goto unlock;
f29ac756 7655}
c464c76e 7656EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7657
b0a873eb 7658void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7659{
b0a873eb
PZ
7660 mutex_lock(&pmus_lock);
7661 list_del_rcu(&pmu->entry);
7662 mutex_unlock(&pmus_lock);
5c92d124 7663
0475f9ea 7664 /*
cde8e884
PZ
7665 * We dereference the pmu list under both SRCU and regular RCU, so
7666 * synchronize against both of those.
0475f9ea 7667 */
b0a873eb 7668 synchronize_srcu(&pmus_srcu);
cde8e884 7669 synchronize_rcu();
d6d020e9 7670
33696fc0 7671 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7672 if (pmu->type >= PERF_TYPE_MAX)
7673 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7674 device_del(pmu->dev);
7675 put_device(pmu->dev);
51676957 7676 free_pmu_context(pmu);
b0a873eb 7677}
c464c76e 7678EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7679
cc34b98b
MR
7680static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7681{
ccd41c86 7682 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7683 int ret;
7684
7685 if (!try_module_get(pmu->module))
7686 return -ENODEV;
ccd41c86
PZ
7687
7688 if (event->group_leader != event) {
8b10c5e2
PZ
7689 /*
7690 * This ctx->mutex can nest when we're called through
7691 * inheritance. See the perf_event_ctx_lock_nested() comment.
7692 */
7693 ctx = perf_event_ctx_lock_nested(event->group_leader,
7694 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7695 BUG_ON(!ctx);
7696 }
7697
cc34b98b
MR
7698 event->pmu = pmu;
7699 ret = pmu->event_init(event);
ccd41c86
PZ
7700
7701 if (ctx)
7702 perf_event_ctx_unlock(event->group_leader, ctx);
7703
cc34b98b
MR
7704 if (ret)
7705 module_put(pmu->module);
7706
7707 return ret;
7708}
7709
18ab2cd3 7710static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7711{
7712 struct pmu *pmu = NULL;
7713 int idx;
940c5b29 7714 int ret;
b0a873eb
PZ
7715
7716 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7717
7718 rcu_read_lock();
7719 pmu = idr_find(&pmu_idr, event->attr.type);
7720 rcu_read_unlock();
940c5b29 7721 if (pmu) {
cc34b98b 7722 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7723 if (ret)
7724 pmu = ERR_PTR(ret);
2e80a82a 7725 goto unlock;
940c5b29 7726 }
2e80a82a 7727
b0a873eb 7728 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7729 ret = perf_try_init_event(pmu, event);
b0a873eb 7730 if (!ret)
e5f4d339 7731 goto unlock;
76e1d904 7732
b0a873eb
PZ
7733 if (ret != -ENOENT) {
7734 pmu = ERR_PTR(ret);
e5f4d339 7735 goto unlock;
f344011c 7736 }
5c92d124 7737 }
e5f4d339
PZ
7738 pmu = ERR_PTR(-ENOENT);
7739unlock:
b0a873eb 7740 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7741
4aeb0b42 7742 return pmu;
5c92d124
IM
7743}
7744
4beb31f3
FW
7745static void account_event_cpu(struct perf_event *event, int cpu)
7746{
7747 if (event->parent)
7748 return;
7749
4beb31f3
FW
7750 if (is_cgroup_event(event))
7751 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7752}
7753
766d6c07
FW
7754static void account_event(struct perf_event *event)
7755{
4beb31f3
FW
7756 if (event->parent)
7757 return;
7758
766d6c07
FW
7759 if (event->attach_state & PERF_ATTACH_TASK)
7760 static_key_slow_inc(&perf_sched_events.key);
7761 if (event->attr.mmap || event->attr.mmap_data)
7762 atomic_inc(&nr_mmap_events);
7763 if (event->attr.comm)
7764 atomic_inc(&nr_comm_events);
7765 if (event->attr.task)
7766 atomic_inc(&nr_task_events);
948b26b6
FW
7767 if (event->attr.freq) {
7768 if (atomic_inc_return(&nr_freq_events) == 1)
7769 tick_nohz_full_kick_all();
7770 }
45ac1403
AH
7771 if (event->attr.context_switch) {
7772 atomic_inc(&nr_switch_events);
7773 static_key_slow_inc(&perf_sched_events.key);
7774 }
4beb31f3 7775 if (has_branch_stack(event))
766d6c07 7776 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7777 if (is_cgroup_event(event))
766d6c07 7778 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7779
7780 account_event_cpu(event, event->cpu);
766d6c07
FW
7781}
7782
0793a61d 7783/*
cdd6c482 7784 * Allocate and initialize a event structure
0793a61d 7785 */
cdd6c482 7786static struct perf_event *
c3f00c70 7787perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7788 struct task_struct *task,
7789 struct perf_event *group_leader,
7790 struct perf_event *parent_event,
4dc0da86 7791 perf_overflow_handler_t overflow_handler,
79dff51e 7792 void *context, int cgroup_fd)
0793a61d 7793{
51b0fe39 7794 struct pmu *pmu;
cdd6c482
IM
7795 struct perf_event *event;
7796 struct hw_perf_event *hwc;
90983b16 7797 long err = -EINVAL;
0793a61d 7798
66832eb4
ON
7799 if ((unsigned)cpu >= nr_cpu_ids) {
7800 if (!task || cpu != -1)
7801 return ERR_PTR(-EINVAL);
7802 }
7803
c3f00c70 7804 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7805 if (!event)
d5d2bc0d 7806 return ERR_PTR(-ENOMEM);
0793a61d 7807
04289bb9 7808 /*
cdd6c482 7809 * Single events are their own group leaders, with an
04289bb9
IM
7810 * empty sibling list:
7811 */
7812 if (!group_leader)
cdd6c482 7813 group_leader = event;
04289bb9 7814
cdd6c482
IM
7815 mutex_init(&event->child_mutex);
7816 INIT_LIST_HEAD(&event->child_list);
fccc714b 7817
cdd6c482
IM
7818 INIT_LIST_HEAD(&event->group_entry);
7819 INIT_LIST_HEAD(&event->event_entry);
7820 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7821 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7822 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7823 INIT_HLIST_NODE(&event->hlist_entry);
7824
10c6db11 7825
cdd6c482 7826 init_waitqueue_head(&event->waitq);
e360adbe 7827 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7828
cdd6c482 7829 mutex_init(&event->mmap_mutex);
7b732a75 7830
a6fa941d 7831 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7832 event->cpu = cpu;
7833 event->attr = *attr;
7834 event->group_leader = group_leader;
7835 event->pmu = NULL;
cdd6c482 7836 event->oncpu = -1;
a96bbc16 7837
cdd6c482 7838 event->parent = parent_event;
b84fbc9f 7839
17cf22c3 7840 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7841 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7842
cdd6c482 7843 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7844
d580ff86
PZ
7845 if (task) {
7846 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7847 /*
50f16a8b
PZ
7848 * XXX pmu::event_init needs to know what task to account to
7849 * and we cannot use the ctx information because we need the
7850 * pmu before we get a ctx.
d580ff86 7851 */
50f16a8b 7852 event->hw.target = task;
d580ff86
PZ
7853 }
7854
34f43927
PZ
7855 event->clock = &local_clock;
7856 if (parent_event)
7857 event->clock = parent_event->clock;
7858
4dc0da86 7859 if (!overflow_handler && parent_event) {
b326e956 7860 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7861 context = parent_event->overflow_handler_context;
7862 }
66832eb4 7863
b326e956 7864 event->overflow_handler = overflow_handler;
4dc0da86 7865 event->overflow_handler_context = context;
97eaf530 7866
0231bb53 7867 perf_event__state_init(event);
a86ed508 7868
4aeb0b42 7869 pmu = NULL;
b8e83514 7870
cdd6c482 7871 hwc = &event->hw;
bd2b5b12 7872 hwc->sample_period = attr->sample_period;
0d48696f 7873 if (attr->freq && attr->sample_freq)
bd2b5b12 7874 hwc->sample_period = 1;
eced1dfc 7875 hwc->last_period = hwc->sample_period;
bd2b5b12 7876
e7850595 7877 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7878
2023b359 7879 /*
cdd6c482 7880 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7881 */
3dab77fb 7882 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7883 goto err_ns;
a46a2300
YZ
7884
7885 if (!has_branch_stack(event))
7886 event->attr.branch_sample_type = 0;
2023b359 7887
79dff51e
MF
7888 if (cgroup_fd != -1) {
7889 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7890 if (err)
7891 goto err_ns;
7892 }
7893
b0a873eb 7894 pmu = perf_init_event(event);
4aeb0b42 7895 if (!pmu)
90983b16
FW
7896 goto err_ns;
7897 else if (IS_ERR(pmu)) {
4aeb0b42 7898 err = PTR_ERR(pmu);
90983b16 7899 goto err_ns;
621a01ea 7900 }
d5d2bc0d 7901
bed5b25a
AS
7902 err = exclusive_event_init(event);
7903 if (err)
7904 goto err_pmu;
7905
cdd6c482 7906 if (!event->parent) {
927c7a9e
FW
7907 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7908 err = get_callchain_buffers();
90983b16 7909 if (err)
bed5b25a 7910 goto err_per_task;
d010b332 7911 }
f344011c 7912 }
9ee318a7 7913
cdd6c482 7914 return event;
90983b16 7915
bed5b25a
AS
7916err_per_task:
7917 exclusive_event_destroy(event);
7918
90983b16
FW
7919err_pmu:
7920 if (event->destroy)
7921 event->destroy(event);
c464c76e 7922 module_put(pmu->module);
90983b16 7923err_ns:
79dff51e
MF
7924 if (is_cgroup_event(event))
7925 perf_detach_cgroup(event);
90983b16
FW
7926 if (event->ns)
7927 put_pid_ns(event->ns);
7928 kfree(event);
7929
7930 return ERR_PTR(err);
0793a61d
TG
7931}
7932
cdd6c482
IM
7933static int perf_copy_attr(struct perf_event_attr __user *uattr,
7934 struct perf_event_attr *attr)
974802ea 7935{
974802ea 7936 u32 size;
cdf8073d 7937 int ret;
974802ea
PZ
7938
7939 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7940 return -EFAULT;
7941
7942 /*
7943 * zero the full structure, so that a short copy will be nice.
7944 */
7945 memset(attr, 0, sizeof(*attr));
7946
7947 ret = get_user(size, &uattr->size);
7948 if (ret)
7949 return ret;
7950
7951 if (size > PAGE_SIZE) /* silly large */
7952 goto err_size;
7953
7954 if (!size) /* abi compat */
7955 size = PERF_ATTR_SIZE_VER0;
7956
7957 if (size < PERF_ATTR_SIZE_VER0)
7958 goto err_size;
7959
7960 /*
7961 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7962 * ensure all the unknown bits are 0 - i.e. new
7963 * user-space does not rely on any kernel feature
7964 * extensions we dont know about yet.
974802ea
PZ
7965 */
7966 if (size > sizeof(*attr)) {
cdf8073d
IS
7967 unsigned char __user *addr;
7968 unsigned char __user *end;
7969 unsigned char val;
974802ea 7970
cdf8073d
IS
7971 addr = (void __user *)uattr + sizeof(*attr);
7972 end = (void __user *)uattr + size;
974802ea 7973
cdf8073d 7974 for (; addr < end; addr++) {
974802ea
PZ
7975 ret = get_user(val, addr);
7976 if (ret)
7977 return ret;
7978 if (val)
7979 goto err_size;
7980 }
b3e62e35 7981 size = sizeof(*attr);
974802ea
PZ
7982 }
7983
7984 ret = copy_from_user(attr, uattr, size);
7985 if (ret)
7986 return -EFAULT;
7987
cd757645 7988 if (attr->__reserved_1)
974802ea
PZ
7989 return -EINVAL;
7990
7991 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7992 return -EINVAL;
7993
7994 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7995 return -EINVAL;
7996
bce38cd5
SE
7997 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7998 u64 mask = attr->branch_sample_type;
7999
8000 /* only using defined bits */
8001 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8002 return -EINVAL;
8003
8004 /* at least one branch bit must be set */
8005 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8006 return -EINVAL;
8007
bce38cd5
SE
8008 /* propagate priv level, when not set for branch */
8009 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8010
8011 /* exclude_kernel checked on syscall entry */
8012 if (!attr->exclude_kernel)
8013 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8014
8015 if (!attr->exclude_user)
8016 mask |= PERF_SAMPLE_BRANCH_USER;
8017
8018 if (!attr->exclude_hv)
8019 mask |= PERF_SAMPLE_BRANCH_HV;
8020 /*
8021 * adjust user setting (for HW filter setup)
8022 */
8023 attr->branch_sample_type = mask;
8024 }
e712209a
SE
8025 /* privileged levels capture (kernel, hv): check permissions */
8026 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8027 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8028 return -EACCES;
bce38cd5 8029 }
4018994f 8030
c5ebcedb 8031 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8032 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8033 if (ret)
8034 return ret;
8035 }
8036
8037 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8038 if (!arch_perf_have_user_stack_dump())
8039 return -ENOSYS;
8040
8041 /*
8042 * We have __u32 type for the size, but so far
8043 * we can only use __u16 as maximum due to the
8044 * __u16 sample size limit.
8045 */
8046 if (attr->sample_stack_user >= USHRT_MAX)
8047 ret = -EINVAL;
8048 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8049 ret = -EINVAL;
8050 }
4018994f 8051
60e2364e
SE
8052 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8053 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8054out:
8055 return ret;
8056
8057err_size:
8058 put_user(sizeof(*attr), &uattr->size);
8059 ret = -E2BIG;
8060 goto out;
8061}
8062
ac9721f3
PZ
8063static int
8064perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8065{
b69cf536 8066 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8067 int ret = -EINVAL;
8068
ac9721f3 8069 if (!output_event)
a4be7c27
PZ
8070 goto set;
8071
ac9721f3
PZ
8072 /* don't allow circular references */
8073 if (event == output_event)
a4be7c27
PZ
8074 goto out;
8075
0f139300
PZ
8076 /*
8077 * Don't allow cross-cpu buffers
8078 */
8079 if (output_event->cpu != event->cpu)
8080 goto out;
8081
8082 /*
76369139 8083 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8084 */
8085 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8086 goto out;
8087
34f43927
PZ
8088 /*
8089 * Mixing clocks in the same buffer is trouble you don't need.
8090 */
8091 if (output_event->clock != event->clock)
8092 goto out;
8093
45bfb2e5
PZ
8094 /*
8095 * If both events generate aux data, they must be on the same PMU
8096 */
8097 if (has_aux(event) && has_aux(output_event) &&
8098 event->pmu != output_event->pmu)
8099 goto out;
8100
a4be7c27 8101set:
cdd6c482 8102 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8103 /* Can't redirect output if we've got an active mmap() */
8104 if (atomic_read(&event->mmap_count))
8105 goto unlock;
a4be7c27 8106
ac9721f3 8107 if (output_event) {
76369139
FW
8108 /* get the rb we want to redirect to */
8109 rb = ring_buffer_get(output_event);
8110 if (!rb)
ac9721f3 8111 goto unlock;
a4be7c27
PZ
8112 }
8113
b69cf536 8114 ring_buffer_attach(event, rb);
9bb5d40c 8115
a4be7c27 8116 ret = 0;
ac9721f3
PZ
8117unlock:
8118 mutex_unlock(&event->mmap_mutex);
8119
a4be7c27 8120out:
a4be7c27
PZ
8121 return ret;
8122}
8123
f63a8daa
PZ
8124static void mutex_lock_double(struct mutex *a, struct mutex *b)
8125{
8126 if (b < a)
8127 swap(a, b);
8128
8129 mutex_lock(a);
8130 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8131}
8132
34f43927
PZ
8133static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8134{
8135 bool nmi_safe = false;
8136
8137 switch (clk_id) {
8138 case CLOCK_MONOTONIC:
8139 event->clock = &ktime_get_mono_fast_ns;
8140 nmi_safe = true;
8141 break;
8142
8143 case CLOCK_MONOTONIC_RAW:
8144 event->clock = &ktime_get_raw_fast_ns;
8145 nmi_safe = true;
8146 break;
8147
8148 case CLOCK_REALTIME:
8149 event->clock = &ktime_get_real_ns;
8150 break;
8151
8152 case CLOCK_BOOTTIME:
8153 event->clock = &ktime_get_boot_ns;
8154 break;
8155
8156 case CLOCK_TAI:
8157 event->clock = &ktime_get_tai_ns;
8158 break;
8159
8160 default:
8161 return -EINVAL;
8162 }
8163
8164 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8165 return -EINVAL;
8166
8167 return 0;
8168}
8169
0793a61d 8170/**
cdd6c482 8171 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8172 *
cdd6c482 8173 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8174 * @pid: target pid
9f66a381 8175 * @cpu: target cpu
cdd6c482 8176 * @group_fd: group leader event fd
0793a61d 8177 */
cdd6c482
IM
8178SYSCALL_DEFINE5(perf_event_open,
8179 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8180 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8181{
b04243ef
PZ
8182 struct perf_event *group_leader = NULL, *output_event = NULL;
8183 struct perf_event *event, *sibling;
cdd6c482 8184 struct perf_event_attr attr;
f63a8daa 8185 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8186 struct file *event_file = NULL;
2903ff01 8187 struct fd group = {NULL, 0};
38a81da2 8188 struct task_struct *task = NULL;
89a1e187 8189 struct pmu *pmu;
ea635c64 8190 int event_fd;
b04243ef 8191 int move_group = 0;
dc86cabe 8192 int err;
a21b0b35 8193 int f_flags = O_RDWR;
79dff51e 8194 int cgroup_fd = -1;
0793a61d 8195
2743a5b0 8196 /* for future expandability... */
e5d1367f 8197 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8198 return -EINVAL;
8199
dc86cabe
IM
8200 err = perf_copy_attr(attr_uptr, &attr);
8201 if (err)
8202 return err;
eab656ae 8203
0764771d
PZ
8204 if (!attr.exclude_kernel) {
8205 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8206 return -EACCES;
8207 }
8208
df58ab24 8209 if (attr.freq) {
cdd6c482 8210 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8211 return -EINVAL;
0819b2e3
PZ
8212 } else {
8213 if (attr.sample_period & (1ULL << 63))
8214 return -EINVAL;
df58ab24
PZ
8215 }
8216
e5d1367f
SE
8217 /*
8218 * In cgroup mode, the pid argument is used to pass the fd
8219 * opened to the cgroup directory in cgroupfs. The cpu argument
8220 * designates the cpu on which to monitor threads from that
8221 * cgroup.
8222 */
8223 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8224 return -EINVAL;
8225
a21b0b35
YD
8226 if (flags & PERF_FLAG_FD_CLOEXEC)
8227 f_flags |= O_CLOEXEC;
8228
8229 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8230 if (event_fd < 0)
8231 return event_fd;
8232
ac9721f3 8233 if (group_fd != -1) {
2903ff01
AV
8234 err = perf_fget_light(group_fd, &group);
8235 if (err)
d14b12d7 8236 goto err_fd;
2903ff01 8237 group_leader = group.file->private_data;
ac9721f3
PZ
8238 if (flags & PERF_FLAG_FD_OUTPUT)
8239 output_event = group_leader;
8240 if (flags & PERF_FLAG_FD_NO_GROUP)
8241 group_leader = NULL;
8242 }
8243
e5d1367f 8244 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8245 task = find_lively_task_by_vpid(pid);
8246 if (IS_ERR(task)) {
8247 err = PTR_ERR(task);
8248 goto err_group_fd;
8249 }
8250 }
8251
1f4ee503
PZ
8252 if (task && group_leader &&
8253 group_leader->attr.inherit != attr.inherit) {
8254 err = -EINVAL;
8255 goto err_task;
8256 }
8257
fbfc623f
YZ
8258 get_online_cpus();
8259
79dff51e
MF
8260 if (flags & PERF_FLAG_PID_CGROUP)
8261 cgroup_fd = pid;
8262
4dc0da86 8263 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8264 NULL, NULL, cgroup_fd);
d14b12d7
SE
8265 if (IS_ERR(event)) {
8266 err = PTR_ERR(event);
1f4ee503 8267 goto err_cpus;
d14b12d7
SE
8268 }
8269
53b25335
VW
8270 if (is_sampling_event(event)) {
8271 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8272 err = -ENOTSUPP;
8273 goto err_alloc;
8274 }
8275 }
8276
766d6c07
FW
8277 account_event(event);
8278
89a1e187
PZ
8279 /*
8280 * Special case software events and allow them to be part of
8281 * any hardware group.
8282 */
8283 pmu = event->pmu;
b04243ef 8284
34f43927
PZ
8285 if (attr.use_clockid) {
8286 err = perf_event_set_clock(event, attr.clockid);
8287 if (err)
8288 goto err_alloc;
8289 }
8290
b04243ef
PZ
8291 if (group_leader &&
8292 (is_software_event(event) != is_software_event(group_leader))) {
8293 if (is_software_event(event)) {
8294 /*
8295 * If event and group_leader are not both a software
8296 * event, and event is, then group leader is not.
8297 *
8298 * Allow the addition of software events to !software
8299 * groups, this is safe because software events never
8300 * fail to schedule.
8301 */
8302 pmu = group_leader->pmu;
8303 } else if (is_software_event(group_leader) &&
8304 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8305 /*
8306 * In case the group is a pure software group, and we
8307 * try to add a hardware event, move the whole group to
8308 * the hardware context.
8309 */
8310 move_group = 1;
8311 }
8312 }
89a1e187
PZ
8313
8314 /*
8315 * Get the target context (task or percpu):
8316 */
4af57ef2 8317 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8318 if (IS_ERR(ctx)) {
8319 err = PTR_ERR(ctx);
c6be5a5c 8320 goto err_alloc;
89a1e187
PZ
8321 }
8322
bed5b25a
AS
8323 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8324 err = -EBUSY;
8325 goto err_context;
8326 }
8327
fd1edb3a
PZ
8328 if (task) {
8329 put_task_struct(task);
8330 task = NULL;
8331 }
8332
ccff286d 8333 /*
cdd6c482 8334 * Look up the group leader (we will attach this event to it):
04289bb9 8335 */
ac9721f3 8336 if (group_leader) {
dc86cabe 8337 err = -EINVAL;
04289bb9 8338
04289bb9 8339 /*
ccff286d
IM
8340 * Do not allow a recursive hierarchy (this new sibling
8341 * becoming part of another group-sibling):
8342 */
8343 if (group_leader->group_leader != group_leader)
c3f00c70 8344 goto err_context;
34f43927
PZ
8345
8346 /* All events in a group should have the same clock */
8347 if (group_leader->clock != event->clock)
8348 goto err_context;
8349
ccff286d
IM
8350 /*
8351 * Do not allow to attach to a group in a different
8352 * task or CPU context:
04289bb9 8353 */
b04243ef 8354 if (move_group) {
c3c87e77
PZ
8355 /*
8356 * Make sure we're both on the same task, or both
8357 * per-cpu events.
8358 */
8359 if (group_leader->ctx->task != ctx->task)
8360 goto err_context;
8361
8362 /*
8363 * Make sure we're both events for the same CPU;
8364 * grouping events for different CPUs is broken; since
8365 * you can never concurrently schedule them anyhow.
8366 */
8367 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8368 goto err_context;
8369 } else {
8370 if (group_leader->ctx != ctx)
8371 goto err_context;
8372 }
8373
3b6f9e5c
PM
8374 /*
8375 * Only a group leader can be exclusive or pinned
8376 */
0d48696f 8377 if (attr.exclusive || attr.pinned)
c3f00c70 8378 goto err_context;
ac9721f3
PZ
8379 }
8380
8381 if (output_event) {
8382 err = perf_event_set_output(event, output_event);
8383 if (err)
c3f00c70 8384 goto err_context;
ac9721f3 8385 }
0793a61d 8386
a21b0b35
YD
8387 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8388 f_flags);
ea635c64
AV
8389 if (IS_ERR(event_file)) {
8390 err = PTR_ERR(event_file);
c3f00c70 8391 goto err_context;
ea635c64 8392 }
9b51f66d 8393
b04243ef 8394 if (move_group) {
f63a8daa 8395 gctx = group_leader->ctx;
f55fc2a5
PZ
8396 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8397 } else {
8398 mutex_lock(&ctx->mutex);
8399 }
8400
a723968c
PZ
8401 if (!perf_event_validate_size(event)) {
8402 err = -E2BIG;
8403 goto err_locked;
8404 }
8405
f55fc2a5
PZ
8406 /*
8407 * Must be under the same ctx::mutex as perf_install_in_context(),
8408 * because we need to serialize with concurrent event creation.
8409 */
8410 if (!exclusive_event_installable(event, ctx)) {
8411 /* exclusive and group stuff are assumed mutually exclusive */
8412 WARN_ON_ONCE(move_group);
f63a8daa 8413
f55fc2a5
PZ
8414 err = -EBUSY;
8415 goto err_locked;
8416 }
f63a8daa 8417
f55fc2a5
PZ
8418 WARN_ON_ONCE(ctx->parent_ctx);
8419
8420 if (move_group) {
f63a8daa
PZ
8421 /*
8422 * See perf_event_ctx_lock() for comments on the details
8423 * of swizzling perf_event::ctx.
8424 */
46ce0fe9 8425 perf_remove_from_context(group_leader, false);
0231bb53 8426
b04243ef
PZ
8427 list_for_each_entry(sibling, &group_leader->sibling_list,
8428 group_entry) {
46ce0fe9 8429 perf_remove_from_context(sibling, false);
b04243ef
PZ
8430 put_ctx(gctx);
8431 }
b04243ef 8432
f63a8daa
PZ
8433 /*
8434 * Wait for everybody to stop referencing the events through
8435 * the old lists, before installing it on new lists.
8436 */
0cda4c02 8437 synchronize_rcu();
f63a8daa 8438
8f95b435
PZI
8439 /*
8440 * Install the group siblings before the group leader.
8441 *
8442 * Because a group leader will try and install the entire group
8443 * (through the sibling list, which is still in-tact), we can
8444 * end up with siblings installed in the wrong context.
8445 *
8446 * By installing siblings first we NO-OP because they're not
8447 * reachable through the group lists.
8448 */
b04243ef
PZ
8449 list_for_each_entry(sibling, &group_leader->sibling_list,
8450 group_entry) {
8f95b435 8451 perf_event__state_init(sibling);
9fc81d87 8452 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8453 get_ctx(ctx);
8454 }
8f95b435
PZI
8455
8456 /*
8457 * Removing from the context ends up with disabled
8458 * event. What we want here is event in the initial
8459 * startup state, ready to be add into new context.
8460 */
8461 perf_event__state_init(group_leader);
8462 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8463 get_ctx(ctx);
b04243ef 8464
f55fc2a5
PZ
8465 /*
8466 * Now that all events are installed in @ctx, nothing
8467 * references @gctx anymore, so drop the last reference we have
8468 * on it.
8469 */
8470 put_ctx(gctx);
bed5b25a
AS
8471 }
8472
f73e22ab
PZ
8473 /*
8474 * Precalculate sample_data sizes; do while holding ctx::mutex such
8475 * that we're serialized against further additions and before
8476 * perf_install_in_context() which is the point the event is active and
8477 * can use these values.
8478 */
8479 perf_event__header_size(event);
8480 perf_event__id_header_size(event);
8481
e2d37cd2 8482 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8483 perf_unpin_context(ctx);
f63a8daa 8484
f55fc2a5 8485 if (move_group)
f63a8daa 8486 mutex_unlock(&gctx->mutex);
d859e29f 8487 mutex_unlock(&ctx->mutex);
9b51f66d 8488
fbfc623f
YZ
8489 put_online_cpus();
8490
cdd6c482 8491 event->owner = current;
8882135b 8492
cdd6c482
IM
8493 mutex_lock(&current->perf_event_mutex);
8494 list_add_tail(&event->owner_entry, &current->perf_event_list);
8495 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8496
8a49542c
PZ
8497 /*
8498 * Drop the reference on the group_event after placing the
8499 * new event on the sibling_list. This ensures destruction
8500 * of the group leader will find the pointer to itself in
8501 * perf_group_detach().
8502 */
2903ff01 8503 fdput(group);
ea635c64
AV
8504 fd_install(event_fd, event_file);
8505 return event_fd;
0793a61d 8506
f55fc2a5
PZ
8507err_locked:
8508 if (move_group)
8509 mutex_unlock(&gctx->mutex);
8510 mutex_unlock(&ctx->mutex);
8511/* err_file: */
8512 fput(event_file);
c3f00c70 8513err_context:
fe4b04fa 8514 perf_unpin_context(ctx);
ea635c64 8515 put_ctx(ctx);
c6be5a5c 8516err_alloc:
ea635c64 8517 free_event(event);
1f4ee503 8518err_cpus:
fbfc623f 8519 put_online_cpus();
1f4ee503 8520err_task:
e7d0bc04
PZ
8521 if (task)
8522 put_task_struct(task);
89a1e187 8523err_group_fd:
2903ff01 8524 fdput(group);
ea635c64
AV
8525err_fd:
8526 put_unused_fd(event_fd);
dc86cabe 8527 return err;
0793a61d
TG
8528}
8529
fb0459d7
AV
8530/**
8531 * perf_event_create_kernel_counter
8532 *
8533 * @attr: attributes of the counter to create
8534 * @cpu: cpu in which the counter is bound
38a81da2 8535 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8536 */
8537struct perf_event *
8538perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8539 struct task_struct *task,
4dc0da86
AK
8540 perf_overflow_handler_t overflow_handler,
8541 void *context)
fb0459d7 8542{
fb0459d7 8543 struct perf_event_context *ctx;
c3f00c70 8544 struct perf_event *event;
fb0459d7 8545 int err;
d859e29f 8546
fb0459d7
AV
8547 /*
8548 * Get the target context (task or percpu):
8549 */
d859e29f 8550
4dc0da86 8551 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8552 overflow_handler, context, -1);
c3f00c70
PZ
8553 if (IS_ERR(event)) {
8554 err = PTR_ERR(event);
8555 goto err;
8556 }
d859e29f 8557
f8697762
JO
8558 /* Mark owner so we could distinguish it from user events. */
8559 event->owner = EVENT_OWNER_KERNEL;
8560
766d6c07
FW
8561 account_event(event);
8562
4af57ef2 8563 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8564 if (IS_ERR(ctx)) {
8565 err = PTR_ERR(ctx);
c3f00c70 8566 goto err_free;
d859e29f 8567 }
fb0459d7 8568
fb0459d7
AV
8569 WARN_ON_ONCE(ctx->parent_ctx);
8570 mutex_lock(&ctx->mutex);
bed5b25a
AS
8571 if (!exclusive_event_installable(event, ctx)) {
8572 mutex_unlock(&ctx->mutex);
8573 perf_unpin_context(ctx);
8574 put_ctx(ctx);
8575 err = -EBUSY;
8576 goto err_free;
8577 }
8578
fb0459d7 8579 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8580 perf_unpin_context(ctx);
fb0459d7
AV
8581 mutex_unlock(&ctx->mutex);
8582
fb0459d7
AV
8583 return event;
8584
c3f00c70
PZ
8585err_free:
8586 free_event(event);
8587err:
c6567f64 8588 return ERR_PTR(err);
9b51f66d 8589}
fb0459d7 8590EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8591
0cda4c02
YZ
8592void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8593{
8594 struct perf_event_context *src_ctx;
8595 struct perf_event_context *dst_ctx;
8596 struct perf_event *event, *tmp;
8597 LIST_HEAD(events);
8598
8599 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8600 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8601
f63a8daa
PZ
8602 /*
8603 * See perf_event_ctx_lock() for comments on the details
8604 * of swizzling perf_event::ctx.
8605 */
8606 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8607 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8608 event_entry) {
46ce0fe9 8609 perf_remove_from_context(event, false);
9a545de0 8610 unaccount_event_cpu(event, src_cpu);
0cda4c02 8611 put_ctx(src_ctx);
9886167d 8612 list_add(&event->migrate_entry, &events);
0cda4c02 8613 }
0cda4c02 8614
8f95b435
PZI
8615 /*
8616 * Wait for the events to quiesce before re-instating them.
8617 */
0cda4c02
YZ
8618 synchronize_rcu();
8619
8f95b435
PZI
8620 /*
8621 * Re-instate events in 2 passes.
8622 *
8623 * Skip over group leaders and only install siblings on this first
8624 * pass, siblings will not get enabled without a leader, however a
8625 * leader will enable its siblings, even if those are still on the old
8626 * context.
8627 */
8628 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8629 if (event->group_leader == event)
8630 continue;
8631
8632 list_del(&event->migrate_entry);
8633 if (event->state >= PERF_EVENT_STATE_OFF)
8634 event->state = PERF_EVENT_STATE_INACTIVE;
8635 account_event_cpu(event, dst_cpu);
8636 perf_install_in_context(dst_ctx, event, dst_cpu);
8637 get_ctx(dst_ctx);
8638 }
8639
8640 /*
8641 * Once all the siblings are setup properly, install the group leaders
8642 * to make it go.
8643 */
9886167d
PZ
8644 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8645 list_del(&event->migrate_entry);
0cda4c02
YZ
8646 if (event->state >= PERF_EVENT_STATE_OFF)
8647 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8648 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8649 perf_install_in_context(dst_ctx, event, dst_cpu);
8650 get_ctx(dst_ctx);
8651 }
8652 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8653 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8654}
8655EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8656
cdd6c482 8657static void sync_child_event(struct perf_event *child_event,
38b200d6 8658 struct task_struct *child)
d859e29f 8659{
cdd6c482 8660 struct perf_event *parent_event = child_event->parent;
8bc20959 8661 u64 child_val;
d859e29f 8662
cdd6c482
IM
8663 if (child_event->attr.inherit_stat)
8664 perf_event_read_event(child_event, child);
38b200d6 8665
b5e58793 8666 child_val = perf_event_count(child_event);
d859e29f
PM
8667
8668 /*
8669 * Add back the child's count to the parent's count:
8670 */
a6e6dea6 8671 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8672 atomic64_add(child_event->total_time_enabled,
8673 &parent_event->child_total_time_enabled);
8674 atomic64_add(child_event->total_time_running,
8675 &parent_event->child_total_time_running);
d859e29f
PM
8676
8677 /*
cdd6c482 8678 * Remove this event from the parent's list
d859e29f 8679 */
cdd6c482
IM
8680 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8681 mutex_lock(&parent_event->child_mutex);
8682 list_del_init(&child_event->child_list);
8683 mutex_unlock(&parent_event->child_mutex);
d859e29f 8684
dc633982
JO
8685 /*
8686 * Make sure user/parent get notified, that we just
8687 * lost one event.
8688 */
8689 perf_event_wakeup(parent_event);
8690
d859e29f 8691 /*
cdd6c482 8692 * Release the parent event, if this was the last
d859e29f
PM
8693 * reference to it.
8694 */
a6fa941d 8695 put_event(parent_event);
d859e29f
PM
8696}
8697
9b51f66d 8698static void
cdd6c482
IM
8699__perf_event_exit_task(struct perf_event *child_event,
8700 struct perf_event_context *child_ctx,
38b200d6 8701 struct task_struct *child)
9b51f66d 8702{
1903d50c
PZ
8703 /*
8704 * Do not destroy the 'original' grouping; because of the context
8705 * switch optimization the original events could've ended up in a
8706 * random child task.
8707 *
8708 * If we were to destroy the original group, all group related
8709 * operations would cease to function properly after this random
8710 * child dies.
8711 *
8712 * Do destroy all inherited groups, we don't care about those
8713 * and being thorough is better.
8714 */
8715 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8716
9b51f66d 8717 /*
38b435b1 8718 * It can happen that the parent exits first, and has events
9b51f66d 8719 * that are still around due to the child reference. These
38b435b1 8720 * events need to be zapped.
9b51f66d 8721 */
38b435b1 8722 if (child_event->parent) {
cdd6c482
IM
8723 sync_child_event(child_event, child);
8724 free_event(child_event);
179033b3
JO
8725 } else {
8726 child_event->state = PERF_EVENT_STATE_EXIT;
8727 perf_event_wakeup(child_event);
4bcf349a 8728 }
9b51f66d
IM
8729}
8730
8dc85d54 8731static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8732{
ebf905fc 8733 struct perf_event *child_event, *next;
211de6eb 8734 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8735 unsigned long flags;
9b51f66d 8736
4e93ad60 8737 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8738 return;
8739
a63eaf34 8740 local_irq_save(flags);
ad3a37de
PM
8741 /*
8742 * We can't reschedule here because interrupts are disabled,
8743 * and either child is current or it is a task that can't be
8744 * scheduled, so we are now safe from rescheduling changing
8745 * our context.
8746 */
806839b2 8747 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8748
8749 /*
8750 * Take the context lock here so that if find_get_context is
cdd6c482 8751 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8752 * incremented the context's refcount before we do put_ctx below.
8753 */
e625cce1 8754 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8755 task_ctx_sched_out(child_ctx);
8dc85d54 8756 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8757
71a851b4
PZ
8758 /*
8759 * If this context is a clone; unclone it so it can't get
8760 * swapped to another process while we're removing all
cdd6c482 8761 * the events from it.
71a851b4 8762 */
211de6eb 8763 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8764 update_context_time(child_ctx);
e625cce1 8765 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8766
211de6eb
PZ
8767 if (clone_ctx)
8768 put_ctx(clone_ctx);
4a1c0f26 8769
9f498cc5 8770 /*
cdd6c482
IM
8771 * Report the task dead after unscheduling the events so that we
8772 * won't get any samples after PERF_RECORD_EXIT. We can however still
8773 * get a few PERF_RECORD_READ events.
9f498cc5 8774 */
cdd6c482 8775 perf_event_task(child, child_ctx, 0);
a63eaf34 8776
66fff224
PZ
8777 /*
8778 * We can recurse on the same lock type through:
8779 *
cdd6c482
IM
8780 * __perf_event_exit_task()
8781 * sync_child_event()
a6fa941d
AV
8782 * put_event()
8783 * mutex_lock(&ctx->mutex)
66fff224
PZ
8784 *
8785 * But since its the parent context it won't be the same instance.
8786 */
a0507c84 8787 mutex_lock(&child_ctx->mutex);
a63eaf34 8788
ebf905fc 8789 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8790 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8791
a63eaf34
PM
8792 mutex_unlock(&child_ctx->mutex);
8793
8794 put_ctx(child_ctx);
9b51f66d
IM
8795}
8796
8dc85d54
PZ
8797/*
8798 * When a child task exits, feed back event values to parent events.
8799 */
8800void perf_event_exit_task(struct task_struct *child)
8801{
8882135b 8802 struct perf_event *event, *tmp;
8dc85d54
PZ
8803 int ctxn;
8804
8882135b
PZ
8805 mutex_lock(&child->perf_event_mutex);
8806 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8807 owner_entry) {
8808 list_del_init(&event->owner_entry);
8809
8810 /*
8811 * Ensure the list deletion is visible before we clear
8812 * the owner, closes a race against perf_release() where
8813 * we need to serialize on the owner->perf_event_mutex.
8814 */
8815 smp_wmb();
8816 event->owner = NULL;
8817 }
8818 mutex_unlock(&child->perf_event_mutex);
8819
8dc85d54
PZ
8820 for_each_task_context_nr(ctxn)
8821 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8822
8823 /*
8824 * The perf_event_exit_task_context calls perf_event_task
8825 * with child's task_ctx, which generates EXIT events for
8826 * child contexts and sets child->perf_event_ctxp[] to NULL.
8827 * At this point we need to send EXIT events to cpu contexts.
8828 */
8829 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8830}
8831
889ff015
FW
8832static void perf_free_event(struct perf_event *event,
8833 struct perf_event_context *ctx)
8834{
8835 struct perf_event *parent = event->parent;
8836
8837 if (WARN_ON_ONCE(!parent))
8838 return;
8839
8840 mutex_lock(&parent->child_mutex);
8841 list_del_init(&event->child_list);
8842 mutex_unlock(&parent->child_mutex);
8843
a6fa941d 8844 put_event(parent);
889ff015 8845
652884fe 8846 raw_spin_lock_irq(&ctx->lock);
8a49542c 8847 perf_group_detach(event);
889ff015 8848 list_del_event(event, ctx);
652884fe 8849 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8850 free_event(event);
8851}
8852
bbbee908 8853/*
652884fe 8854 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8855 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8856 *
8857 * Not all locks are strictly required, but take them anyway to be nice and
8858 * help out with the lockdep assertions.
bbbee908 8859 */
cdd6c482 8860void perf_event_free_task(struct task_struct *task)
bbbee908 8861{
8dc85d54 8862 struct perf_event_context *ctx;
cdd6c482 8863 struct perf_event *event, *tmp;
8dc85d54 8864 int ctxn;
bbbee908 8865
8dc85d54
PZ
8866 for_each_task_context_nr(ctxn) {
8867 ctx = task->perf_event_ctxp[ctxn];
8868 if (!ctx)
8869 continue;
bbbee908 8870
8dc85d54 8871 mutex_lock(&ctx->mutex);
bbbee908 8872again:
8dc85d54
PZ
8873 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8874 group_entry)
8875 perf_free_event(event, ctx);
bbbee908 8876
8dc85d54
PZ
8877 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8878 group_entry)
8879 perf_free_event(event, ctx);
bbbee908 8880
8dc85d54
PZ
8881 if (!list_empty(&ctx->pinned_groups) ||
8882 !list_empty(&ctx->flexible_groups))
8883 goto again;
bbbee908 8884
8dc85d54 8885 mutex_unlock(&ctx->mutex);
bbbee908 8886
8dc85d54
PZ
8887 put_ctx(ctx);
8888 }
889ff015
FW
8889}
8890
4e231c79
PZ
8891void perf_event_delayed_put(struct task_struct *task)
8892{
8893 int ctxn;
8894
8895 for_each_task_context_nr(ctxn)
8896 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8897}
8898
ffe8690c
KX
8899struct perf_event *perf_event_get(unsigned int fd)
8900{
8901 int err;
8902 struct fd f;
8903 struct perf_event *event;
8904
8905 err = perf_fget_light(fd, &f);
8906 if (err)
8907 return ERR_PTR(err);
8908
8909 event = f.file->private_data;
8910 atomic_long_inc(&event->refcount);
8911 fdput(f);
8912
8913 return event;
8914}
8915
8916const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8917{
8918 if (!event)
8919 return ERR_PTR(-EINVAL);
8920
8921 return &event->attr;
8922}
8923
97dee4f3
PZ
8924/*
8925 * inherit a event from parent task to child task:
8926 */
8927static struct perf_event *
8928inherit_event(struct perf_event *parent_event,
8929 struct task_struct *parent,
8930 struct perf_event_context *parent_ctx,
8931 struct task_struct *child,
8932 struct perf_event *group_leader,
8933 struct perf_event_context *child_ctx)
8934{
1929def9 8935 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8936 struct perf_event *child_event;
cee010ec 8937 unsigned long flags;
97dee4f3
PZ
8938
8939 /*
8940 * Instead of creating recursive hierarchies of events,
8941 * we link inherited events back to the original parent,
8942 * which has a filp for sure, which we use as the reference
8943 * count:
8944 */
8945 if (parent_event->parent)
8946 parent_event = parent_event->parent;
8947
8948 child_event = perf_event_alloc(&parent_event->attr,
8949 parent_event->cpu,
d580ff86 8950 child,
97dee4f3 8951 group_leader, parent_event,
79dff51e 8952 NULL, NULL, -1);
97dee4f3
PZ
8953 if (IS_ERR(child_event))
8954 return child_event;
a6fa941d 8955
fadfe7be
JO
8956 if (is_orphaned_event(parent_event) ||
8957 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8958 free_event(child_event);
8959 return NULL;
8960 }
8961
97dee4f3
PZ
8962 get_ctx(child_ctx);
8963
8964 /*
8965 * Make the child state follow the state of the parent event,
8966 * not its attr.disabled bit. We hold the parent's mutex,
8967 * so we won't race with perf_event_{en, dis}able_family.
8968 */
1929def9 8969 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8970 child_event->state = PERF_EVENT_STATE_INACTIVE;
8971 else
8972 child_event->state = PERF_EVENT_STATE_OFF;
8973
8974 if (parent_event->attr.freq) {
8975 u64 sample_period = parent_event->hw.sample_period;
8976 struct hw_perf_event *hwc = &child_event->hw;
8977
8978 hwc->sample_period = sample_period;
8979 hwc->last_period = sample_period;
8980
8981 local64_set(&hwc->period_left, sample_period);
8982 }
8983
8984 child_event->ctx = child_ctx;
8985 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8986 child_event->overflow_handler_context
8987 = parent_event->overflow_handler_context;
97dee4f3 8988
614b6780
TG
8989 /*
8990 * Precalculate sample_data sizes
8991 */
8992 perf_event__header_size(child_event);
6844c09d 8993 perf_event__id_header_size(child_event);
614b6780 8994
97dee4f3
PZ
8995 /*
8996 * Link it up in the child's context:
8997 */
cee010ec 8998 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8999 add_event_to_ctx(child_event, child_ctx);
cee010ec 9000 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9001
97dee4f3
PZ
9002 /*
9003 * Link this into the parent event's child list
9004 */
9005 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9006 mutex_lock(&parent_event->child_mutex);
9007 list_add_tail(&child_event->child_list, &parent_event->child_list);
9008 mutex_unlock(&parent_event->child_mutex);
9009
9010 return child_event;
9011}
9012
9013static int inherit_group(struct perf_event *parent_event,
9014 struct task_struct *parent,
9015 struct perf_event_context *parent_ctx,
9016 struct task_struct *child,
9017 struct perf_event_context *child_ctx)
9018{
9019 struct perf_event *leader;
9020 struct perf_event *sub;
9021 struct perf_event *child_ctr;
9022
9023 leader = inherit_event(parent_event, parent, parent_ctx,
9024 child, NULL, child_ctx);
9025 if (IS_ERR(leader))
9026 return PTR_ERR(leader);
9027 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9028 child_ctr = inherit_event(sub, parent, parent_ctx,
9029 child, leader, child_ctx);
9030 if (IS_ERR(child_ctr))
9031 return PTR_ERR(child_ctr);
9032 }
9033 return 0;
889ff015
FW
9034}
9035
9036static int
9037inherit_task_group(struct perf_event *event, struct task_struct *parent,
9038 struct perf_event_context *parent_ctx,
8dc85d54 9039 struct task_struct *child, int ctxn,
889ff015
FW
9040 int *inherited_all)
9041{
9042 int ret;
8dc85d54 9043 struct perf_event_context *child_ctx;
889ff015
FW
9044
9045 if (!event->attr.inherit) {
9046 *inherited_all = 0;
9047 return 0;
bbbee908
PZ
9048 }
9049
fe4b04fa 9050 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9051 if (!child_ctx) {
9052 /*
9053 * This is executed from the parent task context, so
9054 * inherit events that have been marked for cloning.
9055 * First allocate and initialize a context for the
9056 * child.
9057 */
bbbee908 9058
734df5ab 9059 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9060 if (!child_ctx)
9061 return -ENOMEM;
bbbee908 9062
8dc85d54 9063 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9064 }
9065
9066 ret = inherit_group(event, parent, parent_ctx,
9067 child, child_ctx);
9068
9069 if (ret)
9070 *inherited_all = 0;
9071
9072 return ret;
bbbee908
PZ
9073}
9074
9b51f66d 9075/*
cdd6c482 9076 * Initialize the perf_event context in task_struct
9b51f66d 9077 */
985c8dcb 9078static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9079{
889ff015 9080 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9081 struct perf_event_context *cloned_ctx;
9082 struct perf_event *event;
9b51f66d 9083 struct task_struct *parent = current;
564c2b21 9084 int inherited_all = 1;
dddd3379 9085 unsigned long flags;
6ab423e0 9086 int ret = 0;
9b51f66d 9087
8dc85d54 9088 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9089 return 0;
9090
ad3a37de 9091 /*
25346b93
PM
9092 * If the parent's context is a clone, pin it so it won't get
9093 * swapped under us.
ad3a37de 9094 */
8dc85d54 9095 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9096 if (!parent_ctx)
9097 return 0;
25346b93 9098
ad3a37de
PM
9099 /*
9100 * No need to check if parent_ctx != NULL here; since we saw
9101 * it non-NULL earlier, the only reason for it to become NULL
9102 * is if we exit, and since we're currently in the middle of
9103 * a fork we can't be exiting at the same time.
9104 */
ad3a37de 9105
9b51f66d
IM
9106 /*
9107 * Lock the parent list. No need to lock the child - not PID
9108 * hashed yet and not running, so nobody can access it.
9109 */
d859e29f 9110 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9111
9112 /*
9113 * We dont have to disable NMIs - we are only looking at
9114 * the list, not manipulating it:
9115 */
889ff015 9116 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9117 ret = inherit_task_group(event, parent, parent_ctx,
9118 child, ctxn, &inherited_all);
889ff015
FW
9119 if (ret)
9120 break;
9121 }
b93f7978 9122
dddd3379
TG
9123 /*
9124 * We can't hold ctx->lock when iterating the ->flexible_group list due
9125 * to allocations, but we need to prevent rotation because
9126 * rotate_ctx() will change the list from interrupt context.
9127 */
9128 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9129 parent_ctx->rotate_disable = 1;
9130 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9131
889ff015 9132 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9133 ret = inherit_task_group(event, parent, parent_ctx,
9134 child, ctxn, &inherited_all);
889ff015 9135 if (ret)
9b51f66d 9136 break;
564c2b21
PM
9137 }
9138
dddd3379
TG
9139 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9140 parent_ctx->rotate_disable = 0;
dddd3379 9141
8dc85d54 9142 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9143
05cbaa28 9144 if (child_ctx && inherited_all) {
564c2b21
PM
9145 /*
9146 * Mark the child context as a clone of the parent
9147 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9148 *
9149 * Note that if the parent is a clone, the holding of
9150 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9151 */
c5ed5145 9152 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9153 if (cloned_ctx) {
9154 child_ctx->parent_ctx = cloned_ctx;
25346b93 9155 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9156 } else {
9157 child_ctx->parent_ctx = parent_ctx;
9158 child_ctx->parent_gen = parent_ctx->generation;
9159 }
9160 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9161 }
9162
c5ed5145 9163 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9164 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9165
25346b93 9166 perf_unpin_context(parent_ctx);
fe4b04fa 9167 put_ctx(parent_ctx);
ad3a37de 9168
6ab423e0 9169 return ret;
9b51f66d
IM
9170}
9171
8dc85d54
PZ
9172/*
9173 * Initialize the perf_event context in task_struct
9174 */
9175int perf_event_init_task(struct task_struct *child)
9176{
9177 int ctxn, ret;
9178
8550d7cb
ON
9179 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9180 mutex_init(&child->perf_event_mutex);
9181 INIT_LIST_HEAD(&child->perf_event_list);
9182
8dc85d54
PZ
9183 for_each_task_context_nr(ctxn) {
9184 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9185 if (ret) {
9186 perf_event_free_task(child);
8dc85d54 9187 return ret;
6c72e350 9188 }
8dc85d54
PZ
9189 }
9190
9191 return 0;
9192}
9193
220b140b
PM
9194static void __init perf_event_init_all_cpus(void)
9195{
b28ab83c 9196 struct swevent_htable *swhash;
220b140b 9197 int cpu;
220b140b
PM
9198
9199 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9200 swhash = &per_cpu(swevent_htable, cpu);
9201 mutex_init(&swhash->hlist_mutex);
2fde4f94 9202 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9203 }
9204}
9205
0db0628d 9206static void perf_event_init_cpu(int cpu)
0793a61d 9207{
108b02cf 9208 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9209
b28ab83c 9210 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9211 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9212 struct swevent_hlist *hlist;
9213
b28ab83c
PZ
9214 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9215 WARN_ON(!hlist);
9216 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9217 }
b28ab83c 9218 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9219}
9220
2965faa5 9221#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9222static void __perf_event_exit_context(void *__info)
0793a61d 9223{
226424ee 9224 struct remove_event re = { .detach_group = true };
108b02cf 9225 struct perf_event_context *ctx = __info;
0793a61d 9226
e3703f8c 9227 rcu_read_lock();
46ce0fe9
PZ
9228 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9229 __perf_remove_from_context(&re);
e3703f8c 9230 rcu_read_unlock();
0793a61d 9231}
108b02cf
PZ
9232
9233static void perf_event_exit_cpu_context(int cpu)
9234{
9235 struct perf_event_context *ctx;
9236 struct pmu *pmu;
9237 int idx;
9238
9239 idx = srcu_read_lock(&pmus_srcu);
9240 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9241 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9242
9243 mutex_lock(&ctx->mutex);
9244 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9245 mutex_unlock(&ctx->mutex);
9246 }
9247 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9248}
9249
cdd6c482 9250static void perf_event_exit_cpu(int cpu)
0793a61d 9251{
e3703f8c 9252 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9253}
9254#else
cdd6c482 9255static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9256#endif
9257
c277443c
PZ
9258static int
9259perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9260{
9261 int cpu;
9262
9263 for_each_online_cpu(cpu)
9264 perf_event_exit_cpu(cpu);
9265
9266 return NOTIFY_OK;
9267}
9268
9269/*
9270 * Run the perf reboot notifier at the very last possible moment so that
9271 * the generic watchdog code runs as long as possible.
9272 */
9273static struct notifier_block perf_reboot_notifier = {
9274 .notifier_call = perf_reboot,
9275 .priority = INT_MIN,
9276};
9277
0db0628d 9278static int
0793a61d
TG
9279perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9280{
9281 unsigned int cpu = (long)hcpu;
9282
4536e4d1 9283 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9284
9285 case CPU_UP_PREPARE:
5e11637e 9286 case CPU_DOWN_FAILED:
cdd6c482 9287 perf_event_init_cpu(cpu);
0793a61d
TG
9288 break;
9289
5e11637e 9290 case CPU_UP_CANCELED:
0793a61d 9291 case CPU_DOWN_PREPARE:
cdd6c482 9292 perf_event_exit_cpu(cpu);
0793a61d 9293 break;
0793a61d
TG
9294 default:
9295 break;
9296 }
9297
9298 return NOTIFY_OK;
9299}
9300
cdd6c482 9301void __init perf_event_init(void)
0793a61d 9302{
3c502e7a
JW
9303 int ret;
9304
2e80a82a
PZ
9305 idr_init(&pmu_idr);
9306
220b140b 9307 perf_event_init_all_cpus();
b0a873eb 9308 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9309 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9310 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9311 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9312 perf_tp_register();
9313 perf_cpu_notifier(perf_cpu_notify);
c277443c 9314 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9315
9316 ret = init_hw_breakpoint();
9317 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9318
9319 /* do not patch jump label more than once per second */
9320 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9321
9322 /*
9323 * Build time assertion that we keep the data_head at the intended
9324 * location. IOW, validation we got the __reserved[] size right.
9325 */
9326 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9327 != 1024);
0793a61d 9328}
abe43400 9329
fd979c01
CS
9330ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9331 char *page)
9332{
9333 struct perf_pmu_events_attr *pmu_attr =
9334 container_of(attr, struct perf_pmu_events_attr, attr);
9335
9336 if (pmu_attr->event_str)
9337 return sprintf(page, "%s\n", pmu_attr->event_str);
9338
9339 return 0;
9340}
9341
abe43400
PZ
9342static int __init perf_event_sysfs_init(void)
9343{
9344 struct pmu *pmu;
9345 int ret;
9346
9347 mutex_lock(&pmus_lock);
9348
9349 ret = bus_register(&pmu_bus);
9350 if (ret)
9351 goto unlock;
9352
9353 list_for_each_entry(pmu, &pmus, entry) {
9354 if (!pmu->name || pmu->type < 0)
9355 continue;
9356
9357 ret = pmu_dev_alloc(pmu);
9358 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9359 }
9360 pmu_bus_running = 1;
9361 ret = 0;
9362
9363unlock:
9364 mutex_unlock(&pmus_lock);
9365
9366 return ret;
9367}
9368device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9369
9370#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9371static struct cgroup_subsys_state *
9372perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9373{
9374 struct perf_cgroup *jc;
e5d1367f 9375
1b15d055 9376 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9377 if (!jc)
9378 return ERR_PTR(-ENOMEM);
9379
e5d1367f
SE
9380 jc->info = alloc_percpu(struct perf_cgroup_info);
9381 if (!jc->info) {
9382 kfree(jc);
9383 return ERR_PTR(-ENOMEM);
9384 }
9385
e5d1367f
SE
9386 return &jc->css;
9387}
9388
eb95419b 9389static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9390{
eb95419b
TH
9391 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9392
e5d1367f
SE
9393 free_percpu(jc->info);
9394 kfree(jc);
9395}
9396
9397static int __perf_cgroup_move(void *info)
9398{
9399 struct task_struct *task = info;
ddaaf4e2 9400 rcu_read_lock();
e5d1367f 9401 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9402 rcu_read_unlock();
e5d1367f
SE
9403 return 0;
9404}
9405
1f7dd3e5 9406static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9407{
bb9d97b6 9408 struct task_struct *task;
1f7dd3e5 9409 struct cgroup_subsys_state *css;
bb9d97b6 9410
1f7dd3e5 9411 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9412 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9413}
9414
073219e9 9415struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9416 .css_alloc = perf_cgroup_css_alloc,
9417 .css_free = perf_cgroup_css_free,
bb9d97b6 9418 .attach = perf_cgroup_attach,
e5d1367f
SE
9419};
9420#endif /* CONFIG_CGROUP_PERF */