perf: Robustify event->owner usage and SMP ordering
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
fae3fde6
PZ
129static inline struct perf_cpu_context *
130__get_cpu_context(struct perf_event_context *ctx)
131{
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133}
134
135static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137{
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141}
142
143static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145{
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149}
150
63b6da39
PZ
151#define TASK_TOMBSTONE ((void *)-1L)
152
153static bool is_kernel_event(struct perf_event *event)
154{
f47c02c0 155 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
156}
157
39a43640
PZ
158/*
159 * On task ctx scheduling...
160 *
161 * When !ctx->nr_events a task context will not be scheduled. This means
162 * we can disable the scheduler hooks (for performance) without leaving
163 * pending task ctx state.
164 *
165 * This however results in two special cases:
166 *
167 * - removing the last event from a task ctx; this is relatively straight
168 * forward and is done in __perf_remove_from_context.
169 *
170 * - adding the first event to a task ctx; this is tricky because we cannot
171 * rely on ctx->is_active and therefore cannot use event_function_call().
172 * See perf_install_in_context().
173 *
174 * This is because we need a ctx->lock serialized variable (ctx->is_active)
175 * to reliably determine if a particular task/context is scheduled in. The
176 * task_curr() use in task_function_call() is racy in that a remote context
177 * switch is not a single atomic operation.
178 *
179 * As is, the situation is 'safe' because we set rq->curr before we do the
180 * actual context switch. This means that task_curr() will fail early, but
181 * we'll continue spinning on ctx->is_active until we've passed
182 * perf_event_task_sched_out().
183 *
184 * Without this ctx->lock serialized variable we could have race where we find
185 * the task (and hence the context) would not be active while in fact they are.
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39
PZ
216 if (ctx->task != current) {
217 ret = -EAGAIN;
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
0017960f 276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
281again:
63b6da39
PZ
282 if (task == TASK_TOMBSTONE)
283 return;
284
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task != TASK_TOMBSTONE) {
295 if (ctx->is_active) {
296 raw_spin_unlock_irq(&ctx->lock);
297 goto again;
298 }
299 func(event, NULL, ctx, data);
0017960f 300 }
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
320};
321
e5d1367f
SE
322/*
323 * perf_sched_events : >0 events exist
324 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
325 */
c5905afb 326struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 327static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 328static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 329
cdd6c482
IM
330static atomic_t nr_mmap_events __read_mostly;
331static atomic_t nr_comm_events __read_mostly;
332static atomic_t nr_task_events __read_mostly;
948b26b6 333static atomic_t nr_freq_events __read_mostly;
45ac1403 334static atomic_t nr_switch_events __read_mostly;
9ee318a7 335
108b02cf
PZ
336static LIST_HEAD(pmus);
337static DEFINE_MUTEX(pmus_lock);
338static struct srcu_struct pmus_srcu;
339
0764771d 340/*
cdd6c482 341 * perf event paranoia level:
0fbdea19
IM
342 * -1 - not paranoid at all
343 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 344 * 1 - disallow cpu events for unpriv
0fbdea19 345 * 2 - disallow kernel profiling for unpriv
0764771d 346 */
cdd6c482 347int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 348
20443384
FW
349/* Minimum for 512 kiB + 1 user control page */
350int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
351
352/*
cdd6c482 353 * max perf event sample rate
df58ab24 354 */
14c63f17
DH
355#define DEFAULT_MAX_SAMPLE_RATE 100000
356#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
357#define DEFAULT_CPU_TIME_MAX_PERCENT 25
358
359int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
360
361static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
362static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
363
d9494cb4
PZ
364static int perf_sample_allowed_ns __read_mostly =
365 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 366
18ab2cd3 367static void update_perf_cpu_limits(void)
14c63f17
DH
368{
369 u64 tmp = perf_sample_period_ns;
370
371 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 372 do_div(tmp, 100);
d9494cb4 373 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 374}
163ec435 375
9e630205
SE
376static int perf_rotate_context(struct perf_cpu_context *cpuctx);
377
163ec435
PZ
378int perf_proc_update_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381{
723478c8 382 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
383
384 if (ret || !write)
385 return ret;
386
387 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
388 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
389 update_perf_cpu_limits();
390
391 return 0;
392}
393
394int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
395
396int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399{
400 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
401
402 if (ret || !write)
403 return ret;
404
405 update_perf_cpu_limits();
163ec435
PZ
406
407 return 0;
408}
1ccd1549 409
14c63f17
DH
410/*
411 * perf samples are done in some very critical code paths (NMIs).
412 * If they take too much CPU time, the system can lock up and not
413 * get any real work done. This will drop the sample rate when
414 * we detect that events are taking too long.
415 */
416#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 417static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 418
6a02ad66 419static void perf_duration_warn(struct irq_work *w)
14c63f17 420{
6a02ad66 421 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 422 u64 avg_local_sample_len;
e5302920 423 u64 local_samples_len;
6a02ad66 424
4a32fea9 425 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
426 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
427
428 printk_ratelimited(KERN_WARNING
429 "perf interrupt took too long (%lld > %lld), lowering "
430 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 431 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
432 sysctl_perf_event_sample_rate);
433}
434
435static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
436
437void perf_sample_event_took(u64 sample_len_ns)
438{
d9494cb4 439 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
440 u64 avg_local_sample_len;
441 u64 local_samples_len;
14c63f17 442
d9494cb4 443 if (allowed_ns == 0)
14c63f17
DH
444 return;
445
446 /* decay the counter by 1 average sample */
4a32fea9 447 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
448 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
449 local_samples_len += sample_len_ns;
4a32fea9 450 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
451
452 /*
453 * note: this will be biased artifically low until we have
454 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
455 * from having to maintain a count.
456 */
457 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
458
d9494cb4 459 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
460 return;
461
462 if (max_samples_per_tick <= 1)
463 return;
464
465 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
466 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468
14c63f17 469 update_perf_cpu_limits();
6a02ad66 470
cd578abb
PZ
471 if (!irq_work_queue(&perf_duration_work)) {
472 early_printk("perf interrupt took too long (%lld > %lld), lowering "
473 "kernel.perf_event_max_sample_rate to %d\n",
474 avg_local_sample_len, allowed_ns >> 1,
475 sysctl_perf_event_sample_rate);
476 }
14c63f17
DH
477}
478
cdd6c482 479static atomic64_t perf_event_id;
a96bbc16 480
0b3fcf17
SE
481static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
482 enum event_type_t event_type);
483
484static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
485 enum event_type_t event_type,
486 struct task_struct *task);
487
488static void update_context_time(struct perf_event_context *ctx);
489static u64 perf_event_time(struct perf_event *event);
0b3fcf17 490
cdd6c482 491void __weak perf_event_print_debug(void) { }
0793a61d 492
84c79910 493extern __weak const char *perf_pmu_name(void)
0793a61d 494{
84c79910 495 return "pmu";
0793a61d
TG
496}
497
0b3fcf17
SE
498static inline u64 perf_clock(void)
499{
500 return local_clock();
501}
502
34f43927
PZ
503static inline u64 perf_event_clock(struct perf_event *event)
504{
505 return event->clock();
506}
507
e5d1367f
SE
508#ifdef CONFIG_CGROUP_PERF
509
e5d1367f
SE
510static inline bool
511perf_cgroup_match(struct perf_event *event)
512{
513 struct perf_event_context *ctx = event->ctx;
514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
515
ef824fa1
TH
516 /* @event doesn't care about cgroup */
517 if (!event->cgrp)
518 return true;
519
520 /* wants specific cgroup scope but @cpuctx isn't associated with any */
521 if (!cpuctx->cgrp)
522 return false;
523
524 /*
525 * Cgroup scoping is recursive. An event enabled for a cgroup is
526 * also enabled for all its descendant cgroups. If @cpuctx's
527 * cgroup is a descendant of @event's (the test covers identity
528 * case), it's a match.
529 */
530 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
531 event->cgrp->css.cgroup);
e5d1367f
SE
532}
533
e5d1367f
SE
534static inline void perf_detach_cgroup(struct perf_event *event)
535{
4e2ba650 536 css_put(&event->cgrp->css);
e5d1367f
SE
537 event->cgrp = NULL;
538}
539
540static inline int is_cgroup_event(struct perf_event *event)
541{
542 return event->cgrp != NULL;
543}
544
545static inline u64 perf_cgroup_event_time(struct perf_event *event)
546{
547 struct perf_cgroup_info *t;
548
549 t = per_cpu_ptr(event->cgrp->info, event->cpu);
550 return t->time;
551}
552
553static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
554{
555 struct perf_cgroup_info *info;
556 u64 now;
557
558 now = perf_clock();
559
560 info = this_cpu_ptr(cgrp->info);
561
562 info->time += now - info->timestamp;
563 info->timestamp = now;
564}
565
566static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
567{
568 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
569 if (cgrp_out)
570 __update_cgrp_time(cgrp_out);
571}
572
573static inline void update_cgrp_time_from_event(struct perf_event *event)
574{
3f7cce3c
SE
575 struct perf_cgroup *cgrp;
576
e5d1367f 577 /*
3f7cce3c
SE
578 * ensure we access cgroup data only when needed and
579 * when we know the cgroup is pinned (css_get)
e5d1367f 580 */
3f7cce3c 581 if (!is_cgroup_event(event))
e5d1367f
SE
582 return;
583
614e4c4e 584 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
585 /*
586 * Do not update time when cgroup is not active
587 */
588 if (cgrp == event->cgrp)
589 __update_cgrp_time(event->cgrp);
e5d1367f
SE
590}
591
592static inline void
3f7cce3c
SE
593perf_cgroup_set_timestamp(struct task_struct *task,
594 struct perf_event_context *ctx)
e5d1367f
SE
595{
596 struct perf_cgroup *cgrp;
597 struct perf_cgroup_info *info;
598
3f7cce3c
SE
599 /*
600 * ctx->lock held by caller
601 * ensure we do not access cgroup data
602 * unless we have the cgroup pinned (css_get)
603 */
604 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 608 info = this_cpu_ptr(cgrp->info);
3f7cce3c 609 info->timestamp = ctx->timestamp;
e5d1367f
SE
610}
611
612#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
613#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
614
615/*
616 * reschedule events based on the cgroup constraint of task.
617 *
618 * mode SWOUT : schedule out everything
619 * mode SWIN : schedule in based on cgroup for next
620 */
18ab2cd3 621static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
622{
623 struct perf_cpu_context *cpuctx;
624 struct pmu *pmu;
625 unsigned long flags;
626
627 /*
628 * disable interrupts to avoid geting nr_cgroup
629 * changes via __perf_event_disable(). Also
630 * avoids preemption.
631 */
632 local_irq_save(flags);
633
634 /*
635 * we reschedule only in the presence of cgroup
636 * constrained events.
637 */
e5d1367f
SE
638
639 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 640 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
641 if (cpuctx->unique_pmu != pmu)
642 continue; /* ensure we process each cpuctx once */
e5d1367f 643
e5d1367f
SE
644 /*
645 * perf_cgroup_events says at least one
646 * context on this CPU has cgroup events.
647 *
648 * ctx->nr_cgroups reports the number of cgroup
649 * events for a context.
650 */
651 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
652 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
653 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
654
655 if (mode & PERF_CGROUP_SWOUT) {
656 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
657 /*
658 * must not be done before ctxswout due
659 * to event_filter_match() in event_sched_out()
660 */
661 cpuctx->cgrp = NULL;
662 }
663
664 if (mode & PERF_CGROUP_SWIN) {
e566b76e 665 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
666 /*
667 * set cgrp before ctxsw in to allow
668 * event_filter_match() to not have to pass
669 * task around
614e4c4e
SE
670 * we pass the cpuctx->ctx to perf_cgroup_from_task()
671 * because cgorup events are only per-cpu
e5d1367f 672 */
614e4c4e 673 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
674 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
675 }
facc4307
PZ
676 perf_pmu_enable(cpuctx->ctx.pmu);
677 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 678 }
e5d1367f
SE
679 }
680
e5d1367f
SE
681 local_irq_restore(flags);
682}
683
a8d757ef
SE
684static inline void perf_cgroup_sched_out(struct task_struct *task,
685 struct task_struct *next)
e5d1367f 686{
a8d757ef
SE
687 struct perf_cgroup *cgrp1;
688 struct perf_cgroup *cgrp2 = NULL;
689
ddaaf4e2 690 rcu_read_lock();
a8d757ef
SE
691 /*
692 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
693 * we do not need to pass the ctx here because we know
694 * we are holding the rcu lock
a8d757ef 695 */
614e4c4e 696 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 697 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
698
699 /*
700 * only schedule out current cgroup events if we know
701 * that we are switching to a different cgroup. Otherwise,
702 * do no touch the cgroup events.
703 */
704 if (cgrp1 != cgrp2)
705 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
706
707 rcu_read_unlock();
e5d1367f
SE
708}
709
a8d757ef
SE
710static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
e5d1367f 712{
a8d757ef
SE
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
ddaaf4e2 716 rcu_read_lock();
a8d757ef
SE
717 /*
718 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
a8d757ef 721 */
614e4c4e 722 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 723 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
724
725 /*
726 * only need to schedule in cgroup events if we are changing
727 * cgroup during ctxsw. Cgroup events were not scheduled
728 * out of ctxsw out if that was not the case.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
732
733 rcu_read_unlock();
e5d1367f
SE
734}
735
736static inline int perf_cgroup_connect(int fd, struct perf_event *event,
737 struct perf_event_attr *attr,
738 struct perf_event *group_leader)
739{
740 struct perf_cgroup *cgrp;
741 struct cgroup_subsys_state *css;
2903ff01
AV
742 struct fd f = fdget(fd);
743 int ret = 0;
e5d1367f 744
2903ff01 745 if (!f.file)
e5d1367f
SE
746 return -EBADF;
747
b583043e 748 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 749 &perf_event_cgrp_subsys);
3db272c0
LZ
750 if (IS_ERR(css)) {
751 ret = PTR_ERR(css);
752 goto out;
753 }
e5d1367f
SE
754
755 cgrp = container_of(css, struct perf_cgroup, css);
756 event->cgrp = cgrp;
757
758 /*
759 * all events in a group must monitor
760 * the same cgroup because a task belongs
761 * to only one perf cgroup at a time
762 */
763 if (group_leader && group_leader->cgrp != cgrp) {
764 perf_detach_cgroup(event);
765 ret = -EINVAL;
e5d1367f 766 }
3db272c0 767out:
2903ff01 768 fdput(f);
e5d1367f
SE
769 return ret;
770}
771
772static inline void
773perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
774{
775 struct perf_cgroup_info *t;
776 t = per_cpu_ptr(event->cgrp->info, event->cpu);
777 event->shadow_ctx_time = now - t->timestamp;
778}
779
780static inline void
781perf_cgroup_defer_enabled(struct perf_event *event)
782{
783 /*
784 * when the current task's perf cgroup does not match
785 * the event's, we need to remember to call the
786 * perf_mark_enable() function the first time a task with
787 * a matching perf cgroup is scheduled in.
788 */
789 if (is_cgroup_event(event) && !perf_cgroup_match(event))
790 event->cgrp_defer_enabled = 1;
791}
792
793static inline void
794perf_cgroup_mark_enabled(struct perf_event *event,
795 struct perf_event_context *ctx)
796{
797 struct perf_event *sub;
798 u64 tstamp = perf_event_time(event);
799
800 if (!event->cgrp_defer_enabled)
801 return;
802
803 event->cgrp_defer_enabled = 0;
804
805 event->tstamp_enabled = tstamp - event->total_time_enabled;
806 list_for_each_entry(sub, &event->sibling_list, group_entry) {
807 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
808 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
809 sub->cgrp_defer_enabled = 0;
810 }
811 }
812}
813#else /* !CONFIG_CGROUP_PERF */
814
815static inline bool
816perf_cgroup_match(struct perf_event *event)
817{
818 return true;
819}
820
821static inline void perf_detach_cgroup(struct perf_event *event)
822{}
823
824static inline int is_cgroup_event(struct perf_event *event)
825{
826 return 0;
827}
828
829static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
830{
831 return 0;
832}
833
834static inline void update_cgrp_time_from_event(struct perf_event *event)
835{
836}
837
838static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
839{
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f
SE
844{
845}
846
a8d757ef
SE
847static inline void perf_cgroup_sched_in(struct task_struct *prev,
848 struct task_struct *task)
e5d1367f
SE
849{
850}
851
852static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
853 struct perf_event_attr *attr,
854 struct perf_event *group_leader)
855{
856 return -EINVAL;
857}
858
859static inline void
3f7cce3c
SE
860perf_cgroup_set_timestamp(struct task_struct *task,
861 struct perf_event_context *ctx)
e5d1367f
SE
862{
863}
864
865void
866perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
867{
868}
869
870static inline void
871perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
872{
873}
874
875static inline u64 perf_cgroup_event_time(struct perf_event *event)
876{
877 return 0;
878}
879
880static inline void
881perf_cgroup_defer_enabled(struct perf_event *event)
882{
883}
884
885static inline void
886perf_cgroup_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888{
889}
890#endif
891
9e630205
SE
892/*
893 * set default to be dependent on timer tick just
894 * like original code
895 */
896#define PERF_CPU_HRTIMER (1000 / HZ)
897/*
898 * function must be called with interrupts disbled
899 */
272325c4 900static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
901{
902 struct perf_cpu_context *cpuctx;
9e630205
SE
903 int rotations = 0;
904
905 WARN_ON(!irqs_disabled());
906
907 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
908 rotations = perf_rotate_context(cpuctx);
909
4cfafd30
PZ
910 raw_spin_lock(&cpuctx->hrtimer_lock);
911 if (rotations)
9e630205 912 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
913 else
914 cpuctx->hrtimer_active = 0;
915 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 916
4cfafd30 917 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
918}
919
272325c4 920static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 921{
272325c4 922 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 923 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 924 u64 interval;
9e630205
SE
925
926 /* no multiplexing needed for SW PMU */
927 if (pmu->task_ctx_nr == perf_sw_context)
928 return;
929
62b85639
SE
930 /*
931 * check default is sane, if not set then force to
932 * default interval (1/tick)
933 */
272325c4
PZ
934 interval = pmu->hrtimer_interval_ms;
935 if (interval < 1)
936 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 937
272325c4 938 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 939
4cfafd30
PZ
940 raw_spin_lock_init(&cpuctx->hrtimer_lock);
941 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 942 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
943}
944
272325c4 945static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 946{
272325c4 947 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 948 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 949 unsigned long flags;
9e630205
SE
950
951 /* not for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 953 return 0;
9e630205 954
4cfafd30
PZ
955 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
956 if (!cpuctx->hrtimer_active) {
957 cpuctx->hrtimer_active = 1;
958 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
959 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
960 }
961 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 962
272325c4 963 return 0;
9e630205
SE
964}
965
33696fc0 966void perf_pmu_disable(struct pmu *pmu)
9e35ad38 967{
33696fc0
PZ
968 int *count = this_cpu_ptr(pmu->pmu_disable_count);
969 if (!(*count)++)
970 pmu->pmu_disable(pmu);
9e35ad38 971}
9e35ad38 972
33696fc0 973void perf_pmu_enable(struct pmu *pmu)
9e35ad38 974{
33696fc0
PZ
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!--(*count))
977 pmu->pmu_enable(pmu);
9e35ad38 978}
9e35ad38 979
2fde4f94 980static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
981
982/*
2fde4f94
MR
983 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
984 * perf_event_task_tick() are fully serialized because they're strictly cpu
985 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
986 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 987 */
2fde4f94 988static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 989{
2fde4f94 990 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 991
e9d2b064 992 WARN_ON(!irqs_disabled());
b5ab4cd5 993
2fde4f94
MR
994 WARN_ON(!list_empty(&ctx->active_ctx_list));
995
996 list_add(&ctx->active_ctx_list, head);
997}
998
999static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1000{
1001 WARN_ON(!irqs_disabled());
1002
1003 WARN_ON(list_empty(&ctx->active_ctx_list));
1004
1005 list_del_init(&ctx->active_ctx_list);
9e35ad38 1006}
9e35ad38 1007
cdd6c482 1008static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1009{
e5289d4a 1010 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1011}
1012
4af57ef2
YZ
1013static void free_ctx(struct rcu_head *head)
1014{
1015 struct perf_event_context *ctx;
1016
1017 ctx = container_of(head, struct perf_event_context, rcu_head);
1018 kfree(ctx->task_ctx_data);
1019 kfree(ctx);
1020}
1021
cdd6c482 1022static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1023{
564c2b21
PM
1024 if (atomic_dec_and_test(&ctx->refcount)) {
1025 if (ctx->parent_ctx)
1026 put_ctx(ctx->parent_ctx);
63b6da39 1027 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1028 put_task_struct(ctx->task);
4af57ef2 1029 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1030 }
a63eaf34
PM
1031}
1032
f63a8daa
PZ
1033/*
1034 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1035 * perf_pmu_migrate_context() we need some magic.
1036 *
1037 * Those places that change perf_event::ctx will hold both
1038 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1039 *
8b10c5e2
PZ
1040 * Lock ordering is by mutex address. There are two other sites where
1041 * perf_event_context::mutex nests and those are:
1042 *
1043 * - perf_event_exit_task_context() [ child , 0 ]
1044 * __perf_event_exit_task()
1045 * sync_child_event()
1046 * put_event() [ parent, 1 ]
1047 *
1048 * - perf_event_init_context() [ parent, 0 ]
1049 * inherit_task_group()
1050 * inherit_group()
1051 * inherit_event()
1052 * perf_event_alloc()
1053 * perf_init_event()
1054 * perf_try_init_event() [ child , 1 ]
1055 *
1056 * While it appears there is an obvious deadlock here -- the parent and child
1057 * nesting levels are inverted between the two. This is in fact safe because
1058 * life-time rules separate them. That is an exiting task cannot fork, and a
1059 * spawning task cannot (yet) exit.
1060 *
1061 * But remember that that these are parent<->child context relations, and
1062 * migration does not affect children, therefore these two orderings should not
1063 * interact.
f63a8daa
PZ
1064 *
1065 * The change in perf_event::ctx does not affect children (as claimed above)
1066 * because the sys_perf_event_open() case will install a new event and break
1067 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1068 * concerned with cpuctx and that doesn't have children.
1069 *
1070 * The places that change perf_event::ctx will issue:
1071 *
1072 * perf_remove_from_context();
1073 * synchronize_rcu();
1074 * perf_install_in_context();
1075 *
1076 * to affect the change. The remove_from_context() + synchronize_rcu() should
1077 * quiesce the event, after which we can install it in the new location. This
1078 * means that only external vectors (perf_fops, prctl) can perturb the event
1079 * while in transit. Therefore all such accessors should also acquire
1080 * perf_event_context::mutex to serialize against this.
1081 *
1082 * However; because event->ctx can change while we're waiting to acquire
1083 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1084 * function.
1085 *
1086 * Lock order:
1087 * task_struct::perf_event_mutex
1088 * perf_event_context::mutex
f63a8daa 1089 * perf_event::child_mutex;
07c4a776 1090 * perf_event_context::lock
f63a8daa
PZ
1091 * perf_event::mmap_mutex
1092 * mmap_sem
1093 */
a83fe28e
PZ
1094static struct perf_event_context *
1095perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1096{
1097 struct perf_event_context *ctx;
1098
1099again:
1100 rcu_read_lock();
1101 ctx = ACCESS_ONCE(event->ctx);
1102 if (!atomic_inc_not_zero(&ctx->refcount)) {
1103 rcu_read_unlock();
1104 goto again;
1105 }
1106 rcu_read_unlock();
1107
a83fe28e 1108 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1109 if (event->ctx != ctx) {
1110 mutex_unlock(&ctx->mutex);
1111 put_ctx(ctx);
1112 goto again;
1113 }
1114
1115 return ctx;
1116}
1117
a83fe28e
PZ
1118static inline struct perf_event_context *
1119perf_event_ctx_lock(struct perf_event *event)
1120{
1121 return perf_event_ctx_lock_nested(event, 0);
1122}
1123
f63a8daa
PZ
1124static void perf_event_ctx_unlock(struct perf_event *event,
1125 struct perf_event_context *ctx)
1126{
1127 mutex_unlock(&ctx->mutex);
1128 put_ctx(ctx);
1129}
1130
211de6eb
PZ
1131/*
1132 * This must be done under the ctx->lock, such as to serialize against
1133 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1134 * calling scheduler related locks and ctx->lock nests inside those.
1135 */
1136static __must_check struct perf_event_context *
1137unclone_ctx(struct perf_event_context *ctx)
71a851b4 1138{
211de6eb
PZ
1139 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1140
1141 lockdep_assert_held(&ctx->lock);
1142
1143 if (parent_ctx)
71a851b4 1144 ctx->parent_ctx = NULL;
5a3126d4 1145 ctx->generation++;
211de6eb
PZ
1146
1147 return parent_ctx;
71a851b4
PZ
1148}
1149
6844c09d
ACM
1150static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1151{
1152 /*
1153 * only top level events have the pid namespace they were created in
1154 */
1155 if (event->parent)
1156 event = event->parent;
1157
1158 return task_tgid_nr_ns(p, event->ns);
1159}
1160
1161static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1162{
1163 /*
1164 * only top level events have the pid namespace they were created in
1165 */
1166 if (event->parent)
1167 event = event->parent;
1168
1169 return task_pid_nr_ns(p, event->ns);
1170}
1171
7f453c24 1172/*
cdd6c482 1173 * If we inherit events we want to return the parent event id
7f453c24
PZ
1174 * to userspace.
1175 */
cdd6c482 1176static u64 primary_event_id(struct perf_event *event)
7f453c24 1177{
cdd6c482 1178 u64 id = event->id;
7f453c24 1179
cdd6c482
IM
1180 if (event->parent)
1181 id = event->parent->id;
7f453c24
PZ
1182
1183 return id;
1184}
1185
25346b93 1186/*
cdd6c482 1187 * Get the perf_event_context for a task and lock it.
63b6da39 1188 *
25346b93
PM
1189 * This has to cope with with the fact that until it is locked,
1190 * the context could get moved to another task.
1191 */
cdd6c482 1192static struct perf_event_context *
8dc85d54 1193perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1194{
cdd6c482 1195 struct perf_event_context *ctx;
25346b93 1196
9ed6060d 1197retry:
058ebd0e
PZ
1198 /*
1199 * One of the few rules of preemptible RCU is that one cannot do
1200 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1201 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1202 * rcu_read_unlock_special().
1203 *
1204 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1205 * side critical section has interrupts disabled.
058ebd0e 1206 */
2fd59077 1207 local_irq_save(*flags);
058ebd0e 1208 rcu_read_lock();
8dc85d54 1209 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1210 if (ctx) {
1211 /*
1212 * If this context is a clone of another, it might
1213 * get swapped for another underneath us by
cdd6c482 1214 * perf_event_task_sched_out, though the
25346b93
PM
1215 * rcu_read_lock() protects us from any context
1216 * getting freed. Lock the context and check if it
1217 * got swapped before we could get the lock, and retry
1218 * if so. If we locked the right context, then it
1219 * can't get swapped on us any more.
1220 */
2fd59077 1221 raw_spin_lock(&ctx->lock);
8dc85d54 1222 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1223 raw_spin_unlock(&ctx->lock);
058ebd0e 1224 rcu_read_unlock();
2fd59077 1225 local_irq_restore(*flags);
25346b93
PM
1226 goto retry;
1227 }
b49a9e7e 1228
63b6da39
PZ
1229 if (ctx->task == TASK_TOMBSTONE ||
1230 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1231 raw_spin_unlock(&ctx->lock);
b49a9e7e 1232 ctx = NULL;
828b6f0e
PZ
1233 } else {
1234 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1235 }
25346b93
PM
1236 }
1237 rcu_read_unlock();
2fd59077
PM
1238 if (!ctx)
1239 local_irq_restore(*flags);
25346b93
PM
1240 return ctx;
1241}
1242
1243/*
1244 * Get the context for a task and increment its pin_count so it
1245 * can't get swapped to another task. This also increments its
1246 * reference count so that the context can't get freed.
1247 */
8dc85d54
PZ
1248static struct perf_event_context *
1249perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1250{
cdd6c482 1251 struct perf_event_context *ctx;
25346b93
PM
1252 unsigned long flags;
1253
8dc85d54 1254 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1255 if (ctx) {
1256 ++ctx->pin_count;
e625cce1 1257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1258 }
1259 return ctx;
1260}
1261
cdd6c482 1262static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1263{
1264 unsigned long flags;
1265
e625cce1 1266 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1267 --ctx->pin_count;
e625cce1 1268 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1269}
1270
f67218c3
PZ
1271/*
1272 * Update the record of the current time in a context.
1273 */
1274static void update_context_time(struct perf_event_context *ctx)
1275{
1276 u64 now = perf_clock();
1277
1278 ctx->time += now - ctx->timestamp;
1279 ctx->timestamp = now;
1280}
1281
4158755d
SE
1282static u64 perf_event_time(struct perf_event *event)
1283{
1284 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1285
1286 if (is_cgroup_event(event))
1287 return perf_cgroup_event_time(event);
1288
4158755d
SE
1289 return ctx ? ctx->time : 0;
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1294 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1295 */
1296static void update_event_times(struct perf_event *event)
1297{
1298 struct perf_event_context *ctx = event->ctx;
1299 u64 run_end;
1300
1301 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1302 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1303 return;
e5d1367f
SE
1304 /*
1305 * in cgroup mode, time_enabled represents
1306 * the time the event was enabled AND active
1307 * tasks were in the monitored cgroup. This is
1308 * independent of the activity of the context as
1309 * there may be a mix of cgroup and non-cgroup events.
1310 *
1311 * That is why we treat cgroup events differently
1312 * here.
1313 */
1314 if (is_cgroup_event(event))
46cd6a7f 1315 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1316 else if (ctx->is_active)
1317 run_end = ctx->time;
acd1d7c1
PZ
1318 else
1319 run_end = event->tstamp_stopped;
1320
1321 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1322
1323 if (event->state == PERF_EVENT_STATE_INACTIVE)
1324 run_end = event->tstamp_stopped;
1325 else
4158755d 1326 run_end = perf_event_time(event);
f67218c3
PZ
1327
1328 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1329
f67218c3
PZ
1330}
1331
96c21a46
PZ
1332/*
1333 * Update total_time_enabled and total_time_running for all events in a group.
1334 */
1335static void update_group_times(struct perf_event *leader)
1336{
1337 struct perf_event *event;
1338
1339 update_event_times(leader);
1340 list_for_each_entry(event, &leader->sibling_list, group_entry)
1341 update_event_times(event);
1342}
1343
889ff015
FW
1344static struct list_head *
1345ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1346{
1347 if (event->attr.pinned)
1348 return &ctx->pinned_groups;
1349 else
1350 return &ctx->flexible_groups;
1351}
1352
fccc714b 1353/*
cdd6c482 1354 * Add a event from the lists for its context.
fccc714b
PZ
1355 * Must be called with ctx->mutex and ctx->lock held.
1356 */
04289bb9 1357static void
cdd6c482 1358list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1359{
c994d613
PZ
1360 lockdep_assert_held(&ctx->lock);
1361
8a49542c
PZ
1362 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1363 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1364
1365 /*
8a49542c
PZ
1366 * If we're a stand alone event or group leader, we go to the context
1367 * list, group events are kept attached to the group so that
1368 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1369 */
8a49542c 1370 if (event->group_leader == event) {
889ff015
FW
1371 struct list_head *list;
1372
d6f962b5
FW
1373 if (is_software_event(event))
1374 event->group_flags |= PERF_GROUP_SOFTWARE;
1375
889ff015
FW
1376 list = ctx_group_list(event, ctx);
1377 list_add_tail(&event->group_entry, list);
5c148194 1378 }
592903cd 1379
08309379 1380 if (is_cgroup_event(event))
e5d1367f 1381 ctx->nr_cgroups++;
e5d1367f 1382
cdd6c482
IM
1383 list_add_rcu(&event->event_entry, &ctx->event_list);
1384 ctx->nr_events++;
1385 if (event->attr.inherit_stat)
bfbd3381 1386 ctx->nr_stat++;
5a3126d4
PZ
1387
1388 ctx->generation++;
04289bb9
IM
1389}
1390
0231bb53
JO
1391/*
1392 * Initialize event state based on the perf_event_attr::disabled.
1393 */
1394static inline void perf_event__state_init(struct perf_event *event)
1395{
1396 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1397 PERF_EVENT_STATE_INACTIVE;
1398}
1399
a723968c 1400static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1401{
1402 int entry = sizeof(u64); /* value */
1403 int size = 0;
1404 int nr = 1;
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1410 size += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_ID)
1413 entry += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1416 nr += nr_siblings;
c320c7b7
ACM
1417 size += sizeof(u64);
1418 }
1419
1420 size += entry * nr;
1421 event->read_size = size;
1422}
1423
a723968c 1424static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1425{
1426 struct perf_sample_data *data;
c320c7b7
ACM
1427 u16 size = 0;
1428
c320c7b7
ACM
1429 if (sample_type & PERF_SAMPLE_IP)
1430 size += sizeof(data->ip);
1431
6844c09d
ACM
1432 if (sample_type & PERF_SAMPLE_ADDR)
1433 size += sizeof(data->addr);
1434
1435 if (sample_type & PERF_SAMPLE_PERIOD)
1436 size += sizeof(data->period);
1437
c3feedf2
AK
1438 if (sample_type & PERF_SAMPLE_WEIGHT)
1439 size += sizeof(data->weight);
1440
6844c09d
ACM
1441 if (sample_type & PERF_SAMPLE_READ)
1442 size += event->read_size;
1443
d6be9ad6
SE
1444 if (sample_type & PERF_SAMPLE_DATA_SRC)
1445 size += sizeof(data->data_src.val);
1446
fdfbbd07
AK
1447 if (sample_type & PERF_SAMPLE_TRANSACTION)
1448 size += sizeof(data->txn);
1449
6844c09d
ACM
1450 event->header_size = size;
1451}
1452
a723968c
PZ
1453/*
1454 * Called at perf_event creation and when events are attached/detached from a
1455 * group.
1456 */
1457static void perf_event__header_size(struct perf_event *event)
1458{
1459 __perf_event_read_size(event,
1460 event->group_leader->nr_siblings);
1461 __perf_event_header_size(event, event->attr.sample_type);
1462}
1463
6844c09d
ACM
1464static void perf_event__id_header_size(struct perf_event *event)
1465{
1466 struct perf_sample_data *data;
1467 u64 sample_type = event->attr.sample_type;
1468 u16 size = 0;
1469
c320c7b7
ACM
1470 if (sample_type & PERF_SAMPLE_TID)
1471 size += sizeof(data->tid_entry);
1472
1473 if (sample_type & PERF_SAMPLE_TIME)
1474 size += sizeof(data->time);
1475
ff3d527c
AH
1476 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1477 size += sizeof(data->id);
1478
c320c7b7
ACM
1479 if (sample_type & PERF_SAMPLE_ID)
1480 size += sizeof(data->id);
1481
1482 if (sample_type & PERF_SAMPLE_STREAM_ID)
1483 size += sizeof(data->stream_id);
1484
1485 if (sample_type & PERF_SAMPLE_CPU)
1486 size += sizeof(data->cpu_entry);
1487
6844c09d 1488 event->id_header_size = size;
c320c7b7
ACM
1489}
1490
a723968c
PZ
1491static bool perf_event_validate_size(struct perf_event *event)
1492{
1493 /*
1494 * The values computed here will be over-written when we actually
1495 * attach the event.
1496 */
1497 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1498 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1499 perf_event__id_header_size(event);
1500
1501 /*
1502 * Sum the lot; should not exceed the 64k limit we have on records.
1503 * Conservative limit to allow for callchains and other variable fields.
1504 */
1505 if (event->read_size + event->header_size +
1506 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1507 return false;
1508
1509 return true;
1510}
1511
8a49542c
PZ
1512static void perf_group_attach(struct perf_event *event)
1513{
c320c7b7 1514 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1515
74c3337c
PZ
1516 /*
1517 * We can have double attach due to group movement in perf_event_open.
1518 */
1519 if (event->attach_state & PERF_ATTACH_GROUP)
1520 return;
1521
8a49542c
PZ
1522 event->attach_state |= PERF_ATTACH_GROUP;
1523
1524 if (group_leader == event)
1525 return;
1526
652884fe
PZ
1527 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1528
8a49542c
PZ
1529 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1530 !is_software_event(event))
1531 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1532
1533 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1534 group_leader->nr_siblings++;
c320c7b7
ACM
1535
1536 perf_event__header_size(group_leader);
1537
1538 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1539 perf_event__header_size(pos);
8a49542c
PZ
1540}
1541
a63eaf34 1542/*
cdd6c482 1543 * Remove a event from the lists for its context.
fccc714b 1544 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1545 */
04289bb9 1546static void
cdd6c482 1547list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1548{
68cacd29 1549 struct perf_cpu_context *cpuctx;
652884fe
PZ
1550
1551 WARN_ON_ONCE(event->ctx != ctx);
1552 lockdep_assert_held(&ctx->lock);
1553
8a49542c
PZ
1554 /*
1555 * We can have double detach due to exit/hot-unplug + close.
1556 */
1557 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1558 return;
8a49542c
PZ
1559
1560 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1561
68cacd29 1562 if (is_cgroup_event(event)) {
e5d1367f 1563 ctx->nr_cgroups--;
70a01657
PZ
1564 /*
1565 * Because cgroup events are always per-cpu events, this will
1566 * always be called from the right CPU.
1567 */
68cacd29
SE
1568 cpuctx = __get_cpu_context(ctx);
1569 /*
70a01657
PZ
1570 * If there are no more cgroup events then clear cgrp to avoid
1571 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1572 */
1573 if (!ctx->nr_cgroups)
1574 cpuctx->cgrp = NULL;
1575 }
e5d1367f 1576
cdd6c482
IM
1577 ctx->nr_events--;
1578 if (event->attr.inherit_stat)
bfbd3381 1579 ctx->nr_stat--;
8bc20959 1580
cdd6c482 1581 list_del_rcu(&event->event_entry);
04289bb9 1582
8a49542c
PZ
1583 if (event->group_leader == event)
1584 list_del_init(&event->group_entry);
5c148194 1585
96c21a46 1586 update_group_times(event);
b2e74a26
SE
1587
1588 /*
1589 * If event was in error state, then keep it
1590 * that way, otherwise bogus counts will be
1591 * returned on read(). The only way to get out
1592 * of error state is by explicit re-enabling
1593 * of the event
1594 */
1595 if (event->state > PERF_EVENT_STATE_OFF)
1596 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1597
1598 ctx->generation++;
050735b0
PZ
1599}
1600
8a49542c 1601static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1602{
1603 struct perf_event *sibling, *tmp;
8a49542c
PZ
1604 struct list_head *list = NULL;
1605
1606 /*
1607 * We can have double detach due to exit/hot-unplug + close.
1608 */
1609 if (!(event->attach_state & PERF_ATTACH_GROUP))
1610 return;
1611
1612 event->attach_state &= ~PERF_ATTACH_GROUP;
1613
1614 /*
1615 * If this is a sibling, remove it from its group.
1616 */
1617 if (event->group_leader != event) {
1618 list_del_init(&event->group_entry);
1619 event->group_leader->nr_siblings--;
c320c7b7 1620 goto out;
8a49542c
PZ
1621 }
1622
1623 if (!list_empty(&event->group_entry))
1624 list = &event->group_entry;
2e2af50b 1625
04289bb9 1626 /*
cdd6c482
IM
1627 * If this was a group event with sibling events then
1628 * upgrade the siblings to singleton events by adding them
8a49542c 1629 * to whatever list we are on.
04289bb9 1630 */
cdd6c482 1631 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1632 if (list)
1633 list_move_tail(&sibling->group_entry, list);
04289bb9 1634 sibling->group_leader = sibling;
d6f962b5
FW
1635
1636 /* Inherit group flags from the previous leader */
1637 sibling->group_flags = event->group_flags;
652884fe
PZ
1638
1639 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1640 }
c320c7b7
ACM
1641
1642out:
1643 perf_event__header_size(event->group_leader);
1644
1645 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1646 perf_event__header_size(tmp);
04289bb9
IM
1647}
1648
fadfe7be
JO
1649/*
1650 * User event without the task.
1651 */
1652static bool is_orphaned_event(struct perf_event *event)
1653{
f47c02c0 1654 return event && !is_kernel_event(event) && !READ_ONCE(event->owner);
fadfe7be
JO
1655}
1656
1657/*
1658 * Event has a parent but parent's task finished and it's
1659 * alive only because of children holding refference.
1660 */
1661static bool is_orphaned_child(struct perf_event *event)
1662{
1663 return is_orphaned_event(event->parent);
1664}
1665
1666static void orphans_remove_work(struct work_struct *work);
1667
1668static void schedule_orphans_remove(struct perf_event_context *ctx)
1669{
1670 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1671 return;
1672
1673 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1674 get_ctx(ctx);
1675 ctx->orphans_remove_sched = true;
1676 }
1677}
1678
1679static int __init perf_workqueue_init(void)
1680{
1681 perf_wq = create_singlethread_workqueue("perf");
1682 WARN(!perf_wq, "failed to create perf workqueue\n");
1683 return perf_wq ? 0 : -1;
1684}
1685
1686core_initcall(perf_workqueue_init);
1687
66eb579e
MR
1688static inline int pmu_filter_match(struct perf_event *event)
1689{
1690 struct pmu *pmu = event->pmu;
1691 return pmu->filter_match ? pmu->filter_match(event) : 1;
1692}
1693
fa66f07a
SE
1694static inline int
1695event_filter_match(struct perf_event *event)
1696{
e5d1367f 1697 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1698 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1699}
1700
9ffcfa6f
SE
1701static void
1702event_sched_out(struct perf_event *event,
3b6f9e5c 1703 struct perf_cpu_context *cpuctx,
cdd6c482 1704 struct perf_event_context *ctx)
3b6f9e5c 1705{
4158755d 1706 u64 tstamp = perf_event_time(event);
fa66f07a 1707 u64 delta;
652884fe
PZ
1708
1709 WARN_ON_ONCE(event->ctx != ctx);
1710 lockdep_assert_held(&ctx->lock);
1711
fa66f07a
SE
1712 /*
1713 * An event which could not be activated because of
1714 * filter mismatch still needs to have its timings
1715 * maintained, otherwise bogus information is return
1716 * via read() for time_enabled, time_running:
1717 */
1718 if (event->state == PERF_EVENT_STATE_INACTIVE
1719 && !event_filter_match(event)) {
e5d1367f 1720 delta = tstamp - event->tstamp_stopped;
fa66f07a 1721 event->tstamp_running += delta;
4158755d 1722 event->tstamp_stopped = tstamp;
fa66f07a
SE
1723 }
1724
cdd6c482 1725 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1726 return;
3b6f9e5c 1727
44377277
AS
1728 perf_pmu_disable(event->pmu);
1729
cdd6c482
IM
1730 event->state = PERF_EVENT_STATE_INACTIVE;
1731 if (event->pending_disable) {
1732 event->pending_disable = 0;
1733 event->state = PERF_EVENT_STATE_OFF;
970892a9 1734 }
4158755d 1735 event->tstamp_stopped = tstamp;
a4eaf7f1 1736 event->pmu->del(event, 0);
cdd6c482 1737 event->oncpu = -1;
3b6f9e5c 1738
cdd6c482 1739 if (!is_software_event(event))
3b6f9e5c 1740 cpuctx->active_oncpu--;
2fde4f94
MR
1741 if (!--ctx->nr_active)
1742 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1743 if (event->attr.freq && event->attr.sample_freq)
1744 ctx->nr_freq--;
cdd6c482 1745 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1746 cpuctx->exclusive = 0;
44377277 1747
fadfe7be
JO
1748 if (is_orphaned_child(event))
1749 schedule_orphans_remove(ctx);
1750
44377277 1751 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1752}
1753
d859e29f 1754static void
cdd6c482 1755group_sched_out(struct perf_event *group_event,
d859e29f 1756 struct perf_cpu_context *cpuctx,
cdd6c482 1757 struct perf_event_context *ctx)
d859e29f 1758{
cdd6c482 1759 struct perf_event *event;
fa66f07a 1760 int state = group_event->state;
d859e29f 1761
cdd6c482 1762 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1763
1764 /*
1765 * Schedule out siblings (if any):
1766 */
cdd6c482
IM
1767 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1768 event_sched_out(event, cpuctx, ctx);
d859e29f 1769
fa66f07a 1770 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1771 cpuctx->exclusive = 0;
1772}
1773
0793a61d 1774/*
cdd6c482 1775 * Cross CPU call to remove a performance event
0793a61d 1776 *
cdd6c482 1777 * We disable the event on the hardware level first. After that we
0793a61d
TG
1778 * remove it from the context list.
1779 */
fae3fde6
PZ
1780static void
1781__perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
0793a61d 1785{
fae3fde6 1786 bool detach_group = (unsigned long)info;
0793a61d 1787
cdd6c482 1788 event_sched_out(event, cpuctx, ctx);
fae3fde6 1789 if (detach_group)
46ce0fe9 1790 perf_group_detach(event);
cdd6c482 1791 list_del_event(event, ctx);
39a43640
PZ
1792
1793 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1794 ctx->is_active = 0;
39a43640
PZ
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
64ce3126 1799 }
0793a61d
TG
1800}
1801
0793a61d 1802/*
cdd6c482 1803 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1804 *
cdd6c482
IM
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1809 * When called from perf_event_exit_task, it's OK because the
c93f7669 1810 * context has been detached from its task.
0793a61d 1811 */
46ce0fe9 1812static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1813{
fae3fde6 1814 lockdep_assert_held(&event->ctx->mutex);
fe4b04fa 1815
0017960f 1816 event_function_call(event, __perf_remove_from_context,
fae3fde6 1817 (void *)(unsigned long)detach_group);
0793a61d
TG
1818}
1819
d859e29f 1820/*
cdd6c482 1821 * Cross CPU call to disable a performance event
d859e29f 1822 */
fae3fde6
PZ
1823static void __perf_event_disable(struct perf_event *event,
1824 struct perf_cpu_context *cpuctx,
1825 struct perf_event_context *ctx,
1826 void *info)
7b648018 1827{
fae3fde6
PZ
1828 if (event->state < PERF_EVENT_STATE_INACTIVE)
1829 return;
7b648018 1830
fae3fde6
PZ
1831 update_context_time(ctx);
1832 update_cgrp_time_from_event(event);
1833 update_group_times(event);
1834 if (event == event->group_leader)
1835 group_sched_out(event, cpuctx, ctx);
1836 else
1837 event_sched_out(event, cpuctx, ctx);
1838 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1839}
1840
d859e29f 1841/*
cdd6c482 1842 * Disable a event.
c93f7669 1843 *
cdd6c482
IM
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
c93f7669 1846 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1847 * perf_event_for_each_child or perf_event_for_each because they
1848 * hold the top-level event's child_mutex, so any descendant that
1849 * goes to exit will block in sync_child_event.
1850 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1851 * is the current context on this CPU and preemption is disabled,
cdd6c482 1852 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1853 */
f63a8daa 1854static void _perf_event_disable(struct perf_event *event)
d859e29f 1855{
cdd6c482 1856 struct perf_event_context *ctx = event->ctx;
d859e29f 1857
e625cce1 1858 raw_spin_lock_irq(&ctx->lock);
7b648018 1859 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1860 raw_spin_unlock_irq(&ctx->lock);
7b648018 1861 return;
53cfbf59 1862 }
e625cce1 1863 raw_spin_unlock_irq(&ctx->lock);
7b648018 1864
fae3fde6
PZ
1865 event_function_call(event, __perf_event_disable, NULL);
1866}
1867
1868void perf_event_disable_local(struct perf_event *event)
1869{
1870 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1871}
f63a8daa
PZ
1872
1873/*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877void perf_event_disable(struct perf_event *event)
1878{
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884}
dcfce4a0 1885EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1886
e5d1367f
SE
1887static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890{
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920}
1921
4fe757dd
PZ
1922#define MAX_INTERRUPTS (~0ULL)
1923
1924static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1925static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1926
235c7fc7 1927static int
9ffcfa6f 1928event_sched_in(struct perf_event *event,
235c7fc7 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
235c7fc7 1931{
4158755d 1932 u64 tstamp = perf_event_time(event);
44377277 1933 int ret = 0;
4158755d 1934
63342411
PZ
1935 lockdep_assert_held(&ctx->lock);
1936
cdd6c482 1937 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1938 return 0;
1939
cdd6c482 1940 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1941 event->oncpu = smp_processor_id();
4fe757dd
PZ
1942
1943 /*
1944 * Unthrottle events, since we scheduled we might have missed several
1945 * ticks already, also for a heavily scheduling task there is little
1946 * guarantee it'll get a tick in a timely manner.
1947 */
1948 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1949 perf_log_throttle(event, 1);
1950 event->hw.interrupts = 0;
1951 }
1952
235c7fc7
IM
1953 /*
1954 * The new state must be visible before we turn it on in the hardware:
1955 */
1956 smp_wmb();
1957
44377277
AS
1958 perf_pmu_disable(event->pmu);
1959
72f669c0
SL
1960 perf_set_shadow_time(event, ctx, tstamp);
1961
ec0d7729
AS
1962 perf_log_itrace_start(event);
1963
a4eaf7f1 1964 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1965 event->state = PERF_EVENT_STATE_INACTIVE;
1966 event->oncpu = -1;
44377277
AS
1967 ret = -EAGAIN;
1968 goto out;
235c7fc7
IM
1969 }
1970
00a2916f
PZ
1971 event->tstamp_running += tstamp - event->tstamp_stopped;
1972
cdd6c482 1973 if (!is_software_event(event))
3b6f9e5c 1974 cpuctx->active_oncpu++;
2fde4f94
MR
1975 if (!ctx->nr_active++)
1976 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1977 if (event->attr.freq && event->attr.sample_freq)
1978 ctx->nr_freq++;
235c7fc7 1979
cdd6c482 1980 if (event->attr.exclusive)
3b6f9e5c
PM
1981 cpuctx->exclusive = 1;
1982
fadfe7be
JO
1983 if (is_orphaned_child(event))
1984 schedule_orphans_remove(ctx);
1985
44377277
AS
1986out:
1987 perf_pmu_enable(event->pmu);
1988
1989 return ret;
235c7fc7
IM
1990}
1991
6751b71e 1992static int
cdd6c482 1993group_sched_in(struct perf_event *group_event,
6751b71e 1994 struct perf_cpu_context *cpuctx,
6e37738a 1995 struct perf_event_context *ctx)
6751b71e 1996{
6bde9b6c 1997 struct perf_event *event, *partial_group = NULL;
4a234593 1998 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1999 u64 now = ctx->time;
2000 bool simulate = false;
6751b71e 2001
cdd6c482 2002 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2003 return 0;
2004
fbbe0701 2005 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2006
9ffcfa6f 2007 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2008 pmu->cancel_txn(pmu);
272325c4 2009 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2010 return -EAGAIN;
90151c35 2011 }
6751b71e
PM
2012
2013 /*
2014 * Schedule in siblings as one group (if any):
2015 */
cdd6c482 2016 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2017 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2018 partial_group = event;
6751b71e
PM
2019 goto group_error;
2020 }
2021 }
2022
9ffcfa6f 2023 if (!pmu->commit_txn(pmu))
6e85158c 2024 return 0;
9ffcfa6f 2025
6751b71e
PM
2026group_error:
2027 /*
2028 * Groups can be scheduled in as one unit only, so undo any
2029 * partial group before returning:
d7842da4
SE
2030 * The events up to the failed event are scheduled out normally,
2031 * tstamp_stopped will be updated.
2032 *
2033 * The failed events and the remaining siblings need to have
2034 * their timings updated as if they had gone thru event_sched_in()
2035 * and event_sched_out(). This is required to get consistent timings
2036 * across the group. This also takes care of the case where the group
2037 * could never be scheduled by ensuring tstamp_stopped is set to mark
2038 * the time the event was actually stopped, such that time delta
2039 * calculation in update_event_times() is correct.
6751b71e 2040 */
cdd6c482
IM
2041 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2042 if (event == partial_group)
d7842da4
SE
2043 simulate = true;
2044
2045 if (simulate) {
2046 event->tstamp_running += now - event->tstamp_stopped;
2047 event->tstamp_stopped = now;
2048 } else {
2049 event_sched_out(event, cpuctx, ctx);
2050 }
6751b71e 2051 }
9ffcfa6f 2052 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2053
ad5133b7 2054 pmu->cancel_txn(pmu);
90151c35 2055
272325c4 2056 perf_mux_hrtimer_restart(cpuctx);
9e630205 2057
6751b71e
PM
2058 return -EAGAIN;
2059}
2060
3b6f9e5c 2061/*
cdd6c482 2062 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2063 */
cdd6c482 2064static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2065 struct perf_cpu_context *cpuctx,
2066 int can_add_hw)
2067{
2068 /*
cdd6c482 2069 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2070 */
d6f962b5 2071 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2072 return 1;
2073 /*
2074 * If an exclusive group is already on, no other hardware
cdd6c482 2075 * events can go on.
3b6f9e5c
PM
2076 */
2077 if (cpuctx->exclusive)
2078 return 0;
2079 /*
2080 * If this group is exclusive and there are already
cdd6c482 2081 * events on the CPU, it can't go on.
3b6f9e5c 2082 */
cdd6c482 2083 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2084 return 0;
2085 /*
2086 * Otherwise, try to add it if all previous groups were able
2087 * to go on.
2088 */
2089 return can_add_hw;
2090}
2091
cdd6c482
IM
2092static void add_event_to_ctx(struct perf_event *event,
2093 struct perf_event_context *ctx)
53cfbf59 2094{
4158755d
SE
2095 u64 tstamp = perf_event_time(event);
2096
cdd6c482 2097 list_add_event(event, ctx);
8a49542c 2098 perf_group_attach(event);
4158755d
SE
2099 event->tstamp_enabled = tstamp;
2100 event->tstamp_running = tstamp;
2101 event->tstamp_stopped = tstamp;
53cfbf59
PM
2102}
2103
3e349507
PZ
2104static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx);
2c29ef0f
PZ
2106static void
2107ctx_sched_in(struct perf_event_context *ctx,
2108 struct perf_cpu_context *cpuctx,
2109 enum event_type_t event_type,
2110 struct task_struct *task);
fe4b04fa 2111
dce5855b
PZ
2112static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115{
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122}
2123
3e349507
PZ
2124static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126{
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133}
2134
0793a61d 2135/*
cdd6c482 2136 * Cross CPU call to install and enable a performance event
682076ae
PZ
2137 *
2138 * Must be called with ctx->mutex held
0793a61d 2139 */
fe4b04fa 2140static int __perf_install_in_context(void *info)
0793a61d 2141{
39a43640 2142 struct perf_event_context *ctx = info;
108b02cf 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2c29ef0f 2145
63b6da39 2146 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2147 if (ctx->task) {
63b6da39 2148 raw_spin_lock(&ctx->lock);
39a43640
PZ
2149 /*
2150 * If we hit the 'wrong' task, we've since scheduled and
2151 * everything should be sorted, nothing to do!
2152 */
63b6da39 2153 task_ctx = ctx;
39a43640 2154 if (ctx->task != current)
63b6da39 2155 goto unlock;
b58f6b0d 2156
39a43640
PZ
2157 /*
2158 * If task_ctx is set, it had better be to us.
2159 */
2160 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2161 } else if (task_ctx) {
2162 raw_spin_lock(&task_ctx->lock);
b58f6b0d
PZ
2163 }
2164
39a43640 2165 ctx_resched(cpuctx, task_ctx);
63b6da39 2166unlock:
2c29ef0f 2167 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2168
2169 return 0;
0793a61d
TG
2170}
2171
2172/*
cdd6c482 2173 * Attach a performance event to a context
0793a61d
TG
2174 */
2175static void
cdd6c482
IM
2176perf_install_in_context(struct perf_event_context *ctx,
2177 struct perf_event *event,
0793a61d
TG
2178 int cpu)
2179{
39a43640
PZ
2180 struct task_struct *task = NULL;
2181
fe4b04fa
PZ
2182 lockdep_assert_held(&ctx->mutex);
2183
c3f00c70 2184 event->ctx = ctx;
0cda4c02
YZ
2185 if (event->cpu != -1)
2186 event->cpu = cpu;
c3f00c70 2187
39a43640
PZ
2188 /*
2189 * Installing events is tricky because we cannot rely on ctx->is_active
2190 * to be set in case this is the nr_events 0 -> 1 transition.
2191 *
2192 * So what we do is we add the event to the list here, which will allow
2193 * a future context switch to DTRT and then send a racy IPI. If the IPI
2194 * fails to hit the right task, this means a context switch must have
2195 * happened and that will have taken care of business.
2196 */
2197 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
2198 task = ctx->task;
2199 /*
2200 * Worse, we cannot even rely on the ctx actually existing anymore. If
2201 * between find_get_context() and perf_install_in_context() the task
2202 * went through perf_event_exit_task() its dead and we should not be
2203 * adding new events.
2204 */
2205 if (task == TASK_TOMBSTONE) {
2206 raw_spin_unlock_irq(&ctx->lock);
2207 return;
2208 }
39a43640
PZ
2209 update_context_time(ctx);
2210 /*
2211 * Update cgrp time only if current cgrp matches event->cgrp.
2212 * Must be done before calling add_event_to_ctx().
2213 */
2214 update_cgrp_time_from_event(event);
2215 add_event_to_ctx(event, ctx);
39a43640
PZ
2216 raw_spin_unlock_irq(&ctx->lock);
2217
2218 if (task)
2219 task_function_call(task, __perf_install_in_context, ctx);
2220 else
2221 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2222}
2223
fa289bec 2224/*
cdd6c482 2225 * Put a event into inactive state and update time fields.
fa289bec
PM
2226 * Enabling the leader of a group effectively enables all
2227 * the group members that aren't explicitly disabled, so we
2228 * have to update their ->tstamp_enabled also.
2229 * Note: this works for group members as well as group leaders
2230 * since the non-leader members' sibling_lists will be empty.
2231 */
1d9b482e 2232static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2233{
cdd6c482 2234 struct perf_event *sub;
4158755d 2235 u64 tstamp = perf_event_time(event);
fa289bec 2236
cdd6c482 2237 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2238 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2239 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2240 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2241 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2242 }
fa289bec
PM
2243}
2244
d859e29f 2245/*
cdd6c482 2246 * Cross CPU call to enable a performance event
d859e29f 2247 */
fae3fde6
PZ
2248static void __perf_event_enable(struct perf_event *event,
2249 struct perf_cpu_context *cpuctx,
2250 struct perf_event_context *ctx,
2251 void *info)
04289bb9 2252{
cdd6c482 2253 struct perf_event *leader = event->group_leader;
fae3fde6 2254 struct perf_event_context *task_ctx;
d859e29f 2255
6e801e01
PZ
2256 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2257 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2258 return;
e5d1367f 2259
fae3fde6 2260 update_context_time(ctx);
1d9b482e 2261 __perf_event_mark_enabled(event);
04289bb9 2262
fae3fde6
PZ
2263 if (!ctx->is_active)
2264 return;
2265
e5d1367f 2266 if (!event_filter_match(event)) {
fae3fde6
PZ
2267 if (is_cgroup_event(event)) {
2268 perf_cgroup_set_timestamp(current, ctx); // XXX ?
e5d1367f 2269 perf_cgroup_defer_enabled(event);
fae3fde6
PZ
2270 }
2271 return;
e5d1367f 2272 }
f4c4176f 2273
04289bb9 2274 /*
cdd6c482 2275 * If the event is in a group and isn't the group leader,
d859e29f 2276 * then don't put it on unless the group is on.
04289bb9 2277 */
cdd6c482 2278 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
fae3fde6 2279 return;
3b6f9e5c 2280
fae3fde6
PZ
2281 task_ctx = cpuctx->task_ctx;
2282 if (ctx->task)
2283 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2284
fae3fde6 2285 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2286}
2287
d859e29f 2288/*
cdd6c482 2289 * Enable a event.
c93f7669 2290 *
cdd6c482
IM
2291 * If event->ctx is a cloned context, callers must make sure that
2292 * every task struct that event->ctx->task could possibly point to
c93f7669 2293 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2294 * perf_event_for_each_child or perf_event_for_each as described
2295 * for perf_event_disable.
d859e29f 2296 */
f63a8daa 2297static void _perf_event_enable(struct perf_event *event)
d859e29f 2298{
cdd6c482 2299 struct perf_event_context *ctx = event->ctx;
d859e29f 2300
7b648018 2301 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2302 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2303 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2304 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2305 return;
2306 }
2307
d859e29f 2308 /*
cdd6c482 2309 * If the event is in error state, clear that first.
7b648018
PZ
2310 *
2311 * That way, if we see the event in error state below, we know that it
2312 * has gone back into error state, as distinct from the task having
2313 * been scheduled away before the cross-call arrived.
d859e29f 2314 */
cdd6c482
IM
2315 if (event->state == PERF_EVENT_STATE_ERROR)
2316 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2317 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2318
fae3fde6 2319 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2320}
f63a8daa
PZ
2321
2322/*
2323 * See perf_event_disable();
2324 */
2325void perf_event_enable(struct perf_event *event)
2326{
2327 struct perf_event_context *ctx;
2328
2329 ctx = perf_event_ctx_lock(event);
2330 _perf_event_enable(event);
2331 perf_event_ctx_unlock(event, ctx);
2332}
dcfce4a0 2333EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2334
f63a8daa 2335static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2336{
2023b359 2337 /*
cdd6c482 2338 * not supported on inherited events
2023b359 2339 */
2e939d1d 2340 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2341 return -EINVAL;
2342
cdd6c482 2343 atomic_add(refresh, &event->event_limit);
f63a8daa 2344 _perf_event_enable(event);
2023b359
PZ
2345
2346 return 0;
79f14641 2347}
f63a8daa
PZ
2348
2349/*
2350 * See perf_event_disable()
2351 */
2352int perf_event_refresh(struct perf_event *event, int refresh)
2353{
2354 struct perf_event_context *ctx;
2355 int ret;
2356
2357 ctx = perf_event_ctx_lock(event);
2358 ret = _perf_event_refresh(event, refresh);
2359 perf_event_ctx_unlock(event, ctx);
2360
2361 return ret;
2362}
26ca5c11 2363EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2364
5b0311e1
FW
2365static void ctx_sched_out(struct perf_event_context *ctx,
2366 struct perf_cpu_context *cpuctx,
2367 enum event_type_t event_type)
235c7fc7 2368{
db24d33e 2369 int is_active = ctx->is_active;
c994d613
PZ
2370 struct perf_event *event;
2371
2372 lockdep_assert_held(&ctx->lock);
235c7fc7 2373
39a43640
PZ
2374 if (likely(!ctx->nr_events)) {
2375 /*
2376 * See __perf_remove_from_context().
2377 */
2378 WARN_ON_ONCE(ctx->is_active);
2379 if (ctx->task)
2380 WARN_ON_ONCE(cpuctx->task_ctx);
2381 return;
2382 }
2383
db24d33e 2384 ctx->is_active &= ~event_type;
63e30d3e
PZ
2385 if (ctx->task) {
2386 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2387 if (!ctx->is_active)
2388 cpuctx->task_ctx = NULL;
2389 }
2390
4af4998b 2391 update_context_time(ctx);
e5d1367f 2392 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2393 if (!ctx->nr_active)
facc4307 2394 return;
5b0311e1 2395
075e0b00 2396 perf_pmu_disable(ctx->pmu);
db24d33e 2397 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2398 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2399 group_sched_out(event, cpuctx, ctx);
9ed6060d 2400 }
889ff015 2401
db24d33e 2402 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2403 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2404 group_sched_out(event, cpuctx, ctx);
9ed6060d 2405 }
1b9a644f 2406 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2407}
2408
564c2b21 2409/*
5a3126d4
PZ
2410 * Test whether two contexts are equivalent, i.e. whether they have both been
2411 * cloned from the same version of the same context.
2412 *
2413 * Equivalence is measured using a generation number in the context that is
2414 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2415 * and list_del_event().
564c2b21 2416 */
cdd6c482
IM
2417static int context_equiv(struct perf_event_context *ctx1,
2418 struct perf_event_context *ctx2)
564c2b21 2419{
211de6eb
PZ
2420 lockdep_assert_held(&ctx1->lock);
2421 lockdep_assert_held(&ctx2->lock);
2422
5a3126d4
PZ
2423 /* Pinning disables the swap optimization */
2424 if (ctx1->pin_count || ctx2->pin_count)
2425 return 0;
2426
2427 /* If ctx1 is the parent of ctx2 */
2428 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2429 return 1;
2430
2431 /* If ctx2 is the parent of ctx1 */
2432 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2433 return 1;
2434
2435 /*
2436 * If ctx1 and ctx2 have the same parent; we flatten the parent
2437 * hierarchy, see perf_event_init_context().
2438 */
2439 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2440 ctx1->parent_gen == ctx2->parent_gen)
2441 return 1;
2442
2443 /* Unmatched */
2444 return 0;
564c2b21
PM
2445}
2446
cdd6c482
IM
2447static void __perf_event_sync_stat(struct perf_event *event,
2448 struct perf_event *next_event)
bfbd3381
PZ
2449{
2450 u64 value;
2451
cdd6c482 2452 if (!event->attr.inherit_stat)
bfbd3381
PZ
2453 return;
2454
2455 /*
cdd6c482 2456 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2457 * because we're in the middle of a context switch and have IRQs
2458 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2459 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2460 * don't need to use it.
2461 */
cdd6c482
IM
2462 switch (event->state) {
2463 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2464 event->pmu->read(event);
2465 /* fall-through */
bfbd3381 2466
cdd6c482
IM
2467 case PERF_EVENT_STATE_INACTIVE:
2468 update_event_times(event);
bfbd3381
PZ
2469 break;
2470
2471 default:
2472 break;
2473 }
2474
2475 /*
cdd6c482 2476 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2477 * values when we flip the contexts.
2478 */
e7850595
PZ
2479 value = local64_read(&next_event->count);
2480 value = local64_xchg(&event->count, value);
2481 local64_set(&next_event->count, value);
bfbd3381 2482
cdd6c482
IM
2483 swap(event->total_time_enabled, next_event->total_time_enabled);
2484 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2485
bfbd3381 2486 /*
19d2e755 2487 * Since we swizzled the values, update the user visible data too.
bfbd3381 2488 */
cdd6c482
IM
2489 perf_event_update_userpage(event);
2490 perf_event_update_userpage(next_event);
bfbd3381
PZ
2491}
2492
cdd6c482
IM
2493static void perf_event_sync_stat(struct perf_event_context *ctx,
2494 struct perf_event_context *next_ctx)
bfbd3381 2495{
cdd6c482 2496 struct perf_event *event, *next_event;
bfbd3381
PZ
2497
2498 if (!ctx->nr_stat)
2499 return;
2500
02ffdbc8
PZ
2501 update_context_time(ctx);
2502
cdd6c482
IM
2503 event = list_first_entry(&ctx->event_list,
2504 struct perf_event, event_entry);
bfbd3381 2505
cdd6c482
IM
2506 next_event = list_first_entry(&next_ctx->event_list,
2507 struct perf_event, event_entry);
bfbd3381 2508
cdd6c482
IM
2509 while (&event->event_entry != &ctx->event_list &&
2510 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2511
cdd6c482 2512 __perf_event_sync_stat(event, next_event);
bfbd3381 2513
cdd6c482
IM
2514 event = list_next_entry(event, event_entry);
2515 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2516 }
2517}
2518
fe4b04fa
PZ
2519static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2520 struct task_struct *next)
0793a61d 2521{
8dc85d54 2522 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2523 struct perf_event_context *next_ctx;
5a3126d4 2524 struct perf_event_context *parent, *next_parent;
108b02cf 2525 struct perf_cpu_context *cpuctx;
c93f7669 2526 int do_switch = 1;
0793a61d 2527
108b02cf
PZ
2528 if (likely(!ctx))
2529 return;
10989fb2 2530
108b02cf
PZ
2531 cpuctx = __get_cpu_context(ctx);
2532 if (!cpuctx->task_ctx)
0793a61d
TG
2533 return;
2534
c93f7669 2535 rcu_read_lock();
8dc85d54 2536 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2537 if (!next_ctx)
2538 goto unlock;
2539
2540 parent = rcu_dereference(ctx->parent_ctx);
2541 next_parent = rcu_dereference(next_ctx->parent_ctx);
2542
2543 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2544 if (!parent && !next_parent)
5a3126d4
PZ
2545 goto unlock;
2546
2547 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2548 /*
2549 * Looks like the two contexts are clones, so we might be
2550 * able to optimize the context switch. We lock both
2551 * contexts and check that they are clones under the
2552 * lock (including re-checking that neither has been
2553 * uncloned in the meantime). It doesn't matter which
2554 * order we take the locks because no other cpu could
2555 * be trying to lock both of these tasks.
2556 */
e625cce1
TG
2557 raw_spin_lock(&ctx->lock);
2558 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2559 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2560 WRITE_ONCE(ctx->task, next);
2561 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2562
2563 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2564
63b6da39
PZ
2565 /*
2566 * RCU_INIT_POINTER here is safe because we've not
2567 * modified the ctx and the above modification of
2568 * ctx->task and ctx->task_ctx_data are immaterial
2569 * since those values are always verified under
2570 * ctx->lock which we're now holding.
2571 */
2572 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2573 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2574
c93f7669 2575 do_switch = 0;
bfbd3381 2576
cdd6c482 2577 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2578 }
e625cce1
TG
2579 raw_spin_unlock(&next_ctx->lock);
2580 raw_spin_unlock(&ctx->lock);
564c2b21 2581 }
5a3126d4 2582unlock:
c93f7669 2583 rcu_read_unlock();
564c2b21 2584
c93f7669 2585 if (do_switch) {
facc4307 2586 raw_spin_lock(&ctx->lock);
8833d0e2 2587 task_ctx_sched_out(cpuctx, ctx);
facc4307 2588 raw_spin_unlock(&ctx->lock);
c93f7669 2589 }
0793a61d
TG
2590}
2591
ba532500
YZ
2592void perf_sched_cb_dec(struct pmu *pmu)
2593{
2594 this_cpu_dec(perf_sched_cb_usages);
2595}
2596
2597void perf_sched_cb_inc(struct pmu *pmu)
2598{
2599 this_cpu_inc(perf_sched_cb_usages);
2600}
2601
2602/*
2603 * This function provides the context switch callback to the lower code
2604 * layer. It is invoked ONLY when the context switch callback is enabled.
2605 */
2606static void perf_pmu_sched_task(struct task_struct *prev,
2607 struct task_struct *next,
2608 bool sched_in)
2609{
2610 struct perf_cpu_context *cpuctx;
2611 struct pmu *pmu;
2612 unsigned long flags;
2613
2614 if (prev == next)
2615 return;
2616
2617 local_irq_save(flags);
2618
2619 rcu_read_lock();
2620
2621 list_for_each_entry_rcu(pmu, &pmus, entry) {
2622 if (pmu->sched_task) {
2623 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2624
2625 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2626
2627 perf_pmu_disable(pmu);
2628
2629 pmu->sched_task(cpuctx->task_ctx, sched_in);
2630
2631 perf_pmu_enable(pmu);
2632
2633 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2634 }
2635 }
2636
2637 rcu_read_unlock();
2638
2639 local_irq_restore(flags);
2640}
2641
45ac1403
AH
2642static void perf_event_switch(struct task_struct *task,
2643 struct task_struct *next_prev, bool sched_in);
2644
8dc85d54
PZ
2645#define for_each_task_context_nr(ctxn) \
2646 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2647
2648/*
2649 * Called from scheduler to remove the events of the current task,
2650 * with interrupts disabled.
2651 *
2652 * We stop each event and update the event value in event->count.
2653 *
2654 * This does not protect us against NMI, but disable()
2655 * sets the disabled bit in the control field of event _before_
2656 * accessing the event control register. If a NMI hits, then it will
2657 * not restart the event.
2658 */
ab0cce56
JO
2659void __perf_event_task_sched_out(struct task_struct *task,
2660 struct task_struct *next)
8dc85d54
PZ
2661{
2662 int ctxn;
2663
ba532500
YZ
2664 if (__this_cpu_read(perf_sched_cb_usages))
2665 perf_pmu_sched_task(task, next, false);
2666
45ac1403
AH
2667 if (atomic_read(&nr_switch_events))
2668 perf_event_switch(task, next, false);
2669
8dc85d54
PZ
2670 for_each_task_context_nr(ctxn)
2671 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2672
2673 /*
2674 * if cgroup events exist on this CPU, then we need
2675 * to check if we have to switch out PMU state.
2676 * cgroup event are system-wide mode only
2677 */
4a32fea9 2678 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2679 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2680}
2681
3e349507
PZ
2682static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2683 struct perf_event_context *ctx)
a08b159f 2684{
a63eaf34
PM
2685 if (!cpuctx->task_ctx)
2686 return;
012b84da
IM
2687
2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 return;
2690
04dc2dbb 2691 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2692}
2693
5b0311e1
FW
2694/*
2695 * Called with IRQs disabled
2696 */
2697static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2698 enum event_type_t event_type)
2699{
2700 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2701}
2702
235c7fc7 2703static void
5b0311e1 2704ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2705 struct perf_cpu_context *cpuctx)
0793a61d 2706{
cdd6c482 2707 struct perf_event *event;
0793a61d 2708
889ff015
FW
2709 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2710 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2711 continue;
5632ab12 2712 if (!event_filter_match(event))
3b6f9e5c
PM
2713 continue;
2714
e5d1367f
SE
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
8c9ed8e1 2719 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2720 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2721
2722 /*
2723 * If this pinned group hasn't been scheduled,
2724 * put it in error state.
2725 */
cdd6c482
IM
2726 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2727 update_group_times(event);
2728 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2729 }
3b6f9e5c 2730 }
5b0311e1
FW
2731}
2732
2733static void
2734ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2735 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2736{
2737 struct perf_event *event;
2738 int can_add_hw = 1;
3b6f9e5c 2739
889ff015
FW
2740 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2741 /* Ignore events in OFF or ERROR state */
2742 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2743 continue;
04289bb9
IM
2744 /*
2745 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2746 * of events:
04289bb9 2747 */
5632ab12 2748 if (!event_filter_match(event))
0793a61d
TG
2749 continue;
2750
e5d1367f
SE
2751 /* may need to reset tstamp_enabled */
2752 if (is_cgroup_event(event))
2753 perf_cgroup_mark_enabled(event, ctx);
2754
9ed6060d 2755 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2756 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2757 can_add_hw = 0;
9ed6060d 2758 }
0793a61d 2759 }
5b0311e1
FW
2760}
2761
2762static void
2763ctx_sched_in(struct perf_event_context *ctx,
2764 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2765 enum event_type_t event_type,
2766 struct task_struct *task)
5b0311e1 2767{
db24d33e 2768 int is_active = ctx->is_active;
c994d613
PZ
2769 u64 now;
2770
2771 lockdep_assert_held(&ctx->lock);
e5d1367f 2772
39a43640
PZ
2773 if (likely(!ctx->nr_events))
2774 return;
2775
db24d33e 2776 ctx->is_active |= event_type;
63e30d3e
PZ
2777 if (ctx->task) {
2778 if (!is_active)
2779 cpuctx->task_ctx = ctx;
2780 else
2781 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2782 }
2783
e5d1367f
SE
2784 now = perf_clock();
2785 ctx->timestamp = now;
3f7cce3c 2786 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2787 /*
2788 * First go through the list and put on any pinned groups
2789 * in order to give them the best chance of going on.
2790 */
db24d33e 2791 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2792 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2793
2794 /* Then walk through the lower prio flexible groups */
db24d33e 2795 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2796 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2797}
2798
329c0e01 2799static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2800 enum event_type_t event_type,
2801 struct task_struct *task)
329c0e01
FW
2802{
2803 struct perf_event_context *ctx = &cpuctx->ctx;
2804
e5d1367f 2805 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2806}
2807
e5d1367f
SE
2808static void perf_event_context_sched_in(struct perf_event_context *ctx,
2809 struct task_struct *task)
235c7fc7 2810{
108b02cf 2811 struct perf_cpu_context *cpuctx;
235c7fc7 2812
108b02cf 2813 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2814 if (cpuctx->task_ctx == ctx)
2815 return;
2816
facc4307 2817 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2818 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2819 /*
2820 * We want to keep the following priority order:
2821 * cpu pinned (that don't need to move), task pinned,
2822 * cpu flexible, task flexible.
2823 */
2824 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2825 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2826 perf_pmu_enable(ctx->pmu);
2827 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2828}
2829
8dc85d54
PZ
2830/*
2831 * Called from scheduler to add the events of the current task
2832 * with interrupts disabled.
2833 *
2834 * We restore the event value and then enable it.
2835 *
2836 * This does not protect us against NMI, but enable()
2837 * sets the enabled bit in the control field of event _before_
2838 * accessing the event control register. If a NMI hits, then it will
2839 * keep the event running.
2840 */
ab0cce56
JO
2841void __perf_event_task_sched_in(struct task_struct *prev,
2842 struct task_struct *task)
8dc85d54
PZ
2843{
2844 struct perf_event_context *ctx;
2845 int ctxn;
2846
7e41d177
PZ
2847 /*
2848 * If cgroup events exist on this CPU, then we need to check if we have
2849 * to switch in PMU state; cgroup event are system-wide mode only.
2850 *
2851 * Since cgroup events are CPU events, we must schedule these in before
2852 * we schedule in the task events.
2853 */
2854 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2855 perf_cgroup_sched_in(prev, task);
2856
8dc85d54
PZ
2857 for_each_task_context_nr(ctxn) {
2858 ctx = task->perf_event_ctxp[ctxn];
2859 if (likely(!ctx))
2860 continue;
2861
e5d1367f 2862 perf_event_context_sched_in(ctx, task);
8dc85d54 2863 }
d010b332 2864
45ac1403
AH
2865 if (atomic_read(&nr_switch_events))
2866 perf_event_switch(task, prev, true);
2867
ba532500
YZ
2868 if (__this_cpu_read(perf_sched_cb_usages))
2869 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2870}
2871
abd50713
PZ
2872static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2873{
2874 u64 frequency = event->attr.sample_freq;
2875 u64 sec = NSEC_PER_SEC;
2876 u64 divisor, dividend;
2877
2878 int count_fls, nsec_fls, frequency_fls, sec_fls;
2879
2880 count_fls = fls64(count);
2881 nsec_fls = fls64(nsec);
2882 frequency_fls = fls64(frequency);
2883 sec_fls = 30;
2884
2885 /*
2886 * We got @count in @nsec, with a target of sample_freq HZ
2887 * the target period becomes:
2888 *
2889 * @count * 10^9
2890 * period = -------------------
2891 * @nsec * sample_freq
2892 *
2893 */
2894
2895 /*
2896 * Reduce accuracy by one bit such that @a and @b converge
2897 * to a similar magnitude.
2898 */
fe4b04fa 2899#define REDUCE_FLS(a, b) \
abd50713
PZ
2900do { \
2901 if (a##_fls > b##_fls) { \
2902 a >>= 1; \
2903 a##_fls--; \
2904 } else { \
2905 b >>= 1; \
2906 b##_fls--; \
2907 } \
2908} while (0)
2909
2910 /*
2911 * Reduce accuracy until either term fits in a u64, then proceed with
2912 * the other, so that finally we can do a u64/u64 division.
2913 */
2914 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2915 REDUCE_FLS(nsec, frequency);
2916 REDUCE_FLS(sec, count);
2917 }
2918
2919 if (count_fls + sec_fls > 64) {
2920 divisor = nsec * frequency;
2921
2922 while (count_fls + sec_fls > 64) {
2923 REDUCE_FLS(count, sec);
2924 divisor >>= 1;
2925 }
2926
2927 dividend = count * sec;
2928 } else {
2929 dividend = count * sec;
2930
2931 while (nsec_fls + frequency_fls > 64) {
2932 REDUCE_FLS(nsec, frequency);
2933 dividend >>= 1;
2934 }
2935
2936 divisor = nsec * frequency;
2937 }
2938
f6ab91ad
PZ
2939 if (!divisor)
2940 return dividend;
2941
abd50713
PZ
2942 return div64_u64(dividend, divisor);
2943}
2944
e050e3f0
SE
2945static DEFINE_PER_CPU(int, perf_throttled_count);
2946static DEFINE_PER_CPU(u64, perf_throttled_seq);
2947
f39d47ff 2948static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2949{
cdd6c482 2950 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2951 s64 period, sample_period;
bd2b5b12
PZ
2952 s64 delta;
2953
abd50713 2954 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2955
2956 delta = (s64)(period - hwc->sample_period);
2957 delta = (delta + 7) / 8; /* low pass filter */
2958
2959 sample_period = hwc->sample_period + delta;
2960
2961 if (!sample_period)
2962 sample_period = 1;
2963
bd2b5b12 2964 hwc->sample_period = sample_period;
abd50713 2965
e7850595 2966 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2967 if (disable)
2968 event->pmu->stop(event, PERF_EF_UPDATE);
2969
e7850595 2970 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2971
2972 if (disable)
2973 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2974 }
bd2b5b12
PZ
2975}
2976
e050e3f0
SE
2977/*
2978 * combine freq adjustment with unthrottling to avoid two passes over the
2979 * events. At the same time, make sure, having freq events does not change
2980 * the rate of unthrottling as that would introduce bias.
2981 */
2982static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2983 int needs_unthr)
60db5e09 2984{
cdd6c482
IM
2985 struct perf_event *event;
2986 struct hw_perf_event *hwc;
e050e3f0 2987 u64 now, period = TICK_NSEC;
abd50713 2988 s64 delta;
60db5e09 2989
e050e3f0
SE
2990 /*
2991 * only need to iterate over all events iff:
2992 * - context have events in frequency mode (needs freq adjust)
2993 * - there are events to unthrottle on this cpu
2994 */
2995 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2996 return;
2997
e050e3f0 2998 raw_spin_lock(&ctx->lock);
f39d47ff 2999 perf_pmu_disable(ctx->pmu);
e050e3f0 3000
03541f8b 3001 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3002 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3003 continue;
3004
5632ab12 3005 if (!event_filter_match(event))
5d27c23d
PZ
3006 continue;
3007
44377277
AS
3008 perf_pmu_disable(event->pmu);
3009
cdd6c482 3010 hwc = &event->hw;
6a24ed6c 3011
ae23bff1 3012 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3013 hwc->interrupts = 0;
cdd6c482 3014 perf_log_throttle(event, 1);
a4eaf7f1 3015 event->pmu->start(event, 0);
a78ac325
PZ
3016 }
3017
cdd6c482 3018 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3019 goto next;
60db5e09 3020
e050e3f0
SE
3021 /*
3022 * stop the event and update event->count
3023 */
3024 event->pmu->stop(event, PERF_EF_UPDATE);
3025
e7850595 3026 now = local64_read(&event->count);
abd50713
PZ
3027 delta = now - hwc->freq_count_stamp;
3028 hwc->freq_count_stamp = now;
60db5e09 3029
e050e3f0
SE
3030 /*
3031 * restart the event
3032 * reload only if value has changed
f39d47ff
SE
3033 * we have stopped the event so tell that
3034 * to perf_adjust_period() to avoid stopping it
3035 * twice.
e050e3f0 3036 */
abd50713 3037 if (delta > 0)
f39d47ff 3038 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3039
3040 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3041 next:
3042 perf_pmu_enable(event->pmu);
60db5e09 3043 }
e050e3f0 3044
f39d47ff 3045 perf_pmu_enable(ctx->pmu);
e050e3f0 3046 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3047}
3048
235c7fc7 3049/*
cdd6c482 3050 * Round-robin a context's events:
235c7fc7 3051 */
cdd6c482 3052static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3053{
dddd3379
TG
3054 /*
3055 * Rotate the first entry last of non-pinned groups. Rotation might be
3056 * disabled by the inheritance code.
3057 */
3058 if (!ctx->rotate_disable)
3059 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3060}
3061
9e630205 3062static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3063{
8dc85d54 3064 struct perf_event_context *ctx = NULL;
2fde4f94 3065 int rotate = 0;
7fc23a53 3066
b5ab4cd5 3067 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3068 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3069 rotate = 1;
3070 }
235c7fc7 3071
8dc85d54 3072 ctx = cpuctx->task_ctx;
b5ab4cd5 3073 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3074 if (ctx->nr_events != ctx->nr_active)
3075 rotate = 1;
3076 }
9717e6cd 3077
e050e3f0 3078 if (!rotate)
0f5a2601
PZ
3079 goto done;
3080
facc4307 3081 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3082 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3083
e050e3f0
SE
3084 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3085 if (ctx)
3086 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3087
e050e3f0
SE
3088 rotate_ctx(&cpuctx->ctx);
3089 if (ctx)
3090 rotate_ctx(ctx);
235c7fc7 3091
e050e3f0 3092 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3093
0f5a2601
PZ
3094 perf_pmu_enable(cpuctx->ctx.pmu);
3095 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3096done:
9e630205
SE
3097
3098 return rotate;
e9d2b064
PZ
3099}
3100
026249ef
FW
3101#ifdef CONFIG_NO_HZ_FULL
3102bool perf_event_can_stop_tick(void)
3103{
948b26b6 3104 if (atomic_read(&nr_freq_events) ||
d84153d6 3105 __this_cpu_read(perf_throttled_count))
026249ef 3106 return false;
d84153d6
FW
3107 else
3108 return true;
026249ef
FW
3109}
3110#endif
3111
e9d2b064
PZ
3112void perf_event_task_tick(void)
3113{
2fde4f94
MR
3114 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3115 struct perf_event_context *ctx, *tmp;
e050e3f0 3116 int throttled;
b5ab4cd5 3117
e9d2b064
PZ
3118 WARN_ON(!irqs_disabled());
3119
e050e3f0
SE
3120 __this_cpu_inc(perf_throttled_seq);
3121 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3122
2fde4f94 3123 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3124 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3125}
3126
889ff015
FW
3127static int event_enable_on_exec(struct perf_event *event,
3128 struct perf_event_context *ctx)
3129{
3130 if (!event->attr.enable_on_exec)
3131 return 0;
3132
3133 event->attr.enable_on_exec = 0;
3134 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3135 return 0;
3136
1d9b482e 3137 __perf_event_mark_enabled(event);
889ff015
FW
3138
3139 return 1;
3140}
3141
57e7986e 3142/*
cdd6c482 3143 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3144 * This expects task == current.
3145 */
c1274499 3146static void perf_event_enable_on_exec(int ctxn)
57e7986e 3147{
c1274499 3148 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3149 struct perf_cpu_context *cpuctx;
cdd6c482 3150 struct perf_event *event;
57e7986e
PM
3151 unsigned long flags;
3152 int enabled = 0;
3153
3154 local_irq_save(flags);
c1274499 3155 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3156 if (!ctx || !ctx->nr_events)
57e7986e
PM
3157 goto out;
3158
3e349507
PZ
3159 cpuctx = __get_cpu_context(ctx);
3160 perf_ctx_lock(cpuctx, ctx);
3161 list_for_each_entry(event, &ctx->event_list, event_entry)
3162 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3163
3164 /*
3e349507 3165 * Unclone and reschedule this context if we enabled any event.
57e7986e 3166 */
3e349507 3167 if (enabled) {
211de6eb 3168 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3169 ctx_resched(cpuctx, ctx);
3170 }
3171 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3172
9ed6060d 3173out:
57e7986e 3174 local_irq_restore(flags);
211de6eb
PZ
3175
3176 if (clone_ctx)
3177 put_ctx(clone_ctx);
57e7986e
PM
3178}
3179
e041e328
PZ
3180void perf_event_exec(void)
3181{
e041e328
PZ
3182 int ctxn;
3183
3184 rcu_read_lock();
c1274499
PZ
3185 for_each_task_context_nr(ctxn)
3186 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3187 rcu_read_unlock();
3188}
3189
0492d4c5
PZ
3190struct perf_read_data {
3191 struct perf_event *event;
3192 bool group;
7d88962e 3193 int ret;
0492d4c5
PZ
3194};
3195
0793a61d 3196/*
cdd6c482 3197 * Cross CPU call to read the hardware event
0793a61d 3198 */
cdd6c482 3199static void __perf_event_read(void *info)
0793a61d 3200{
0492d4c5
PZ
3201 struct perf_read_data *data = info;
3202 struct perf_event *sub, *event = data->event;
cdd6c482 3203 struct perf_event_context *ctx = event->ctx;
108b02cf 3204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3205 struct pmu *pmu = event->pmu;
621a01ea 3206
e1ac3614
PM
3207 /*
3208 * If this is a task context, we need to check whether it is
3209 * the current task context of this cpu. If not it has been
3210 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3211 * event->count would have been updated to a recent sample
3212 * when the event was scheduled out.
e1ac3614
PM
3213 */
3214 if (ctx->task && cpuctx->task_ctx != ctx)
3215 return;
3216
e625cce1 3217 raw_spin_lock(&ctx->lock);
e5d1367f 3218 if (ctx->is_active) {
542e72fc 3219 update_context_time(ctx);
e5d1367f
SE
3220 update_cgrp_time_from_event(event);
3221 }
0492d4c5 3222
cdd6c482 3223 update_event_times(event);
4a00c16e
SB
3224 if (event->state != PERF_EVENT_STATE_ACTIVE)
3225 goto unlock;
0492d4c5 3226
4a00c16e
SB
3227 if (!data->group) {
3228 pmu->read(event);
3229 data->ret = 0;
0492d4c5 3230 goto unlock;
4a00c16e
SB
3231 }
3232
3233 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3234
3235 pmu->read(event);
0492d4c5
PZ
3236
3237 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3238 update_event_times(sub);
4a00c16e
SB
3239 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3240 /*
3241 * Use sibling's PMU rather than @event's since
3242 * sibling could be on different (eg: software) PMU.
3243 */
0492d4c5 3244 sub->pmu->read(sub);
4a00c16e 3245 }
0492d4c5 3246 }
4a00c16e
SB
3247
3248 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3249
3250unlock:
e625cce1 3251 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3252}
3253
b5e58793
PZ
3254static inline u64 perf_event_count(struct perf_event *event)
3255{
eacd3ecc
MF
3256 if (event->pmu->count)
3257 return event->pmu->count(event);
3258
3259 return __perf_event_count(event);
b5e58793
PZ
3260}
3261
ffe8690c
KX
3262/*
3263 * NMI-safe method to read a local event, that is an event that
3264 * is:
3265 * - either for the current task, or for this CPU
3266 * - does not have inherit set, for inherited task events
3267 * will not be local and we cannot read them atomically
3268 * - must not have a pmu::count method
3269 */
3270u64 perf_event_read_local(struct perf_event *event)
3271{
3272 unsigned long flags;
3273 u64 val;
3274
3275 /*
3276 * Disabling interrupts avoids all counter scheduling (context
3277 * switches, timer based rotation and IPIs).
3278 */
3279 local_irq_save(flags);
3280
3281 /* If this is a per-task event, it must be for current */
3282 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3283 event->hw.target != current);
3284
3285 /* If this is a per-CPU event, it must be for this CPU */
3286 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3287 event->cpu != smp_processor_id());
3288
3289 /*
3290 * It must not be an event with inherit set, we cannot read
3291 * all child counters from atomic context.
3292 */
3293 WARN_ON_ONCE(event->attr.inherit);
3294
3295 /*
3296 * It must not have a pmu::count method, those are not
3297 * NMI safe.
3298 */
3299 WARN_ON_ONCE(event->pmu->count);
3300
3301 /*
3302 * If the event is currently on this CPU, its either a per-task event,
3303 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3304 * oncpu == -1).
3305 */
3306 if (event->oncpu == smp_processor_id())
3307 event->pmu->read(event);
3308
3309 val = local64_read(&event->count);
3310 local_irq_restore(flags);
3311
3312 return val;
3313}
3314
7d88962e 3315static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3316{
7d88962e
SB
3317 int ret = 0;
3318
0793a61d 3319 /*
cdd6c482
IM
3320 * If event is enabled and currently active on a CPU, update the
3321 * value in the event structure:
0793a61d 3322 */
cdd6c482 3323 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3324 struct perf_read_data data = {
3325 .event = event,
3326 .group = group,
7d88962e 3327 .ret = 0,
0492d4c5 3328 };
cdd6c482 3329 smp_call_function_single(event->oncpu,
0492d4c5 3330 __perf_event_read, &data, 1);
7d88962e 3331 ret = data.ret;
cdd6c482 3332 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3333 struct perf_event_context *ctx = event->ctx;
3334 unsigned long flags;
3335
e625cce1 3336 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3337 /*
3338 * may read while context is not active
3339 * (e.g., thread is blocked), in that case
3340 * we cannot update context time
3341 */
e5d1367f 3342 if (ctx->is_active) {
c530ccd9 3343 update_context_time(ctx);
e5d1367f
SE
3344 update_cgrp_time_from_event(event);
3345 }
0492d4c5
PZ
3346 if (group)
3347 update_group_times(event);
3348 else
3349 update_event_times(event);
e625cce1 3350 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3351 }
7d88962e
SB
3352
3353 return ret;
0793a61d
TG
3354}
3355
a63eaf34 3356/*
cdd6c482 3357 * Initialize the perf_event context in a task_struct:
a63eaf34 3358 */
eb184479 3359static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3360{
e625cce1 3361 raw_spin_lock_init(&ctx->lock);
a63eaf34 3362 mutex_init(&ctx->mutex);
2fde4f94 3363 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3364 INIT_LIST_HEAD(&ctx->pinned_groups);
3365 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3366 INIT_LIST_HEAD(&ctx->event_list);
3367 atomic_set(&ctx->refcount, 1);
fadfe7be 3368 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3369}
3370
3371static struct perf_event_context *
3372alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3373{
3374 struct perf_event_context *ctx;
3375
3376 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3377 if (!ctx)
3378 return NULL;
3379
3380 __perf_event_init_context(ctx);
3381 if (task) {
3382 ctx->task = task;
3383 get_task_struct(task);
0793a61d 3384 }
eb184479
PZ
3385 ctx->pmu = pmu;
3386
3387 return ctx;
a63eaf34
PM
3388}
3389
2ebd4ffb
MH
3390static struct task_struct *
3391find_lively_task_by_vpid(pid_t vpid)
3392{
3393 struct task_struct *task;
3394 int err;
0793a61d
TG
3395
3396 rcu_read_lock();
2ebd4ffb 3397 if (!vpid)
0793a61d
TG
3398 task = current;
3399 else
2ebd4ffb 3400 task = find_task_by_vpid(vpid);
0793a61d
TG
3401 if (task)
3402 get_task_struct(task);
3403 rcu_read_unlock();
3404
3405 if (!task)
3406 return ERR_PTR(-ESRCH);
3407
0793a61d 3408 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3409 err = -EACCES;
3410 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3411 goto errout;
3412
2ebd4ffb
MH
3413 return task;
3414errout:
3415 put_task_struct(task);
3416 return ERR_PTR(err);
3417
3418}
3419
fe4b04fa
PZ
3420/*
3421 * Returns a matching context with refcount and pincount.
3422 */
108b02cf 3423static struct perf_event_context *
4af57ef2
YZ
3424find_get_context(struct pmu *pmu, struct task_struct *task,
3425 struct perf_event *event)
0793a61d 3426{
211de6eb 3427 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3428 struct perf_cpu_context *cpuctx;
4af57ef2 3429 void *task_ctx_data = NULL;
25346b93 3430 unsigned long flags;
8dc85d54 3431 int ctxn, err;
4af57ef2 3432 int cpu = event->cpu;
0793a61d 3433
22a4ec72 3434 if (!task) {
cdd6c482 3435 /* Must be root to operate on a CPU event: */
0764771d 3436 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3437 return ERR_PTR(-EACCES);
3438
0793a61d 3439 /*
cdd6c482 3440 * We could be clever and allow to attach a event to an
0793a61d
TG
3441 * offline CPU and activate it when the CPU comes up, but
3442 * that's for later.
3443 */
f6325e30 3444 if (!cpu_online(cpu))
0793a61d
TG
3445 return ERR_PTR(-ENODEV);
3446
108b02cf 3447 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3448 ctx = &cpuctx->ctx;
c93f7669 3449 get_ctx(ctx);
fe4b04fa 3450 ++ctx->pin_count;
0793a61d 3451
0793a61d
TG
3452 return ctx;
3453 }
3454
8dc85d54
PZ
3455 err = -EINVAL;
3456 ctxn = pmu->task_ctx_nr;
3457 if (ctxn < 0)
3458 goto errout;
3459
4af57ef2
YZ
3460 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3461 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3462 if (!task_ctx_data) {
3463 err = -ENOMEM;
3464 goto errout;
3465 }
3466 }
3467
9ed6060d 3468retry:
8dc85d54 3469 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3470 if (ctx) {
211de6eb 3471 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3472 ++ctx->pin_count;
4af57ef2
YZ
3473
3474 if (task_ctx_data && !ctx->task_ctx_data) {
3475 ctx->task_ctx_data = task_ctx_data;
3476 task_ctx_data = NULL;
3477 }
e625cce1 3478 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3479
3480 if (clone_ctx)
3481 put_ctx(clone_ctx);
9137fb28 3482 } else {
eb184479 3483 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3484 err = -ENOMEM;
3485 if (!ctx)
3486 goto errout;
eb184479 3487
4af57ef2
YZ
3488 if (task_ctx_data) {
3489 ctx->task_ctx_data = task_ctx_data;
3490 task_ctx_data = NULL;
3491 }
3492
dbe08d82
ON
3493 err = 0;
3494 mutex_lock(&task->perf_event_mutex);
3495 /*
3496 * If it has already passed perf_event_exit_task().
3497 * we must see PF_EXITING, it takes this mutex too.
3498 */
3499 if (task->flags & PF_EXITING)
3500 err = -ESRCH;
3501 else if (task->perf_event_ctxp[ctxn])
3502 err = -EAGAIN;
fe4b04fa 3503 else {
9137fb28 3504 get_ctx(ctx);
fe4b04fa 3505 ++ctx->pin_count;
dbe08d82 3506 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3507 }
dbe08d82
ON
3508 mutex_unlock(&task->perf_event_mutex);
3509
3510 if (unlikely(err)) {
9137fb28 3511 put_ctx(ctx);
dbe08d82
ON
3512
3513 if (err == -EAGAIN)
3514 goto retry;
3515 goto errout;
a63eaf34
PM
3516 }
3517 }
3518
4af57ef2 3519 kfree(task_ctx_data);
0793a61d 3520 return ctx;
c93f7669 3521
9ed6060d 3522errout:
4af57ef2 3523 kfree(task_ctx_data);
c93f7669 3524 return ERR_PTR(err);
0793a61d
TG
3525}
3526
6fb2915d 3527static void perf_event_free_filter(struct perf_event *event);
2541517c 3528static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3529
cdd6c482 3530static void free_event_rcu(struct rcu_head *head)
592903cd 3531{
cdd6c482 3532 struct perf_event *event;
592903cd 3533
cdd6c482
IM
3534 event = container_of(head, struct perf_event, rcu_head);
3535 if (event->ns)
3536 put_pid_ns(event->ns);
6fb2915d 3537 perf_event_free_filter(event);
cdd6c482 3538 kfree(event);
592903cd
PZ
3539}
3540
b69cf536
PZ
3541static void ring_buffer_attach(struct perf_event *event,
3542 struct ring_buffer *rb);
925d519a 3543
4beb31f3 3544static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3545{
4beb31f3
FW
3546 if (event->parent)
3547 return;
3548
4beb31f3
FW
3549 if (is_cgroup_event(event))
3550 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3551}
925d519a 3552
4beb31f3
FW
3553static void unaccount_event(struct perf_event *event)
3554{
25432ae9
PZ
3555 bool dec = false;
3556
4beb31f3
FW
3557 if (event->parent)
3558 return;
3559
3560 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3561 dec = true;
4beb31f3
FW
3562 if (event->attr.mmap || event->attr.mmap_data)
3563 atomic_dec(&nr_mmap_events);
3564 if (event->attr.comm)
3565 atomic_dec(&nr_comm_events);
3566 if (event->attr.task)
3567 atomic_dec(&nr_task_events);
948b26b6
FW
3568 if (event->attr.freq)
3569 atomic_dec(&nr_freq_events);
45ac1403 3570 if (event->attr.context_switch) {
25432ae9 3571 dec = true;
45ac1403
AH
3572 atomic_dec(&nr_switch_events);
3573 }
4beb31f3 3574 if (is_cgroup_event(event))
25432ae9 3575 dec = true;
4beb31f3 3576 if (has_branch_stack(event))
25432ae9
PZ
3577 dec = true;
3578
3579 if (dec)
4beb31f3
FW
3580 static_key_slow_dec_deferred(&perf_sched_events);
3581
3582 unaccount_event_cpu(event, event->cpu);
3583}
925d519a 3584
bed5b25a
AS
3585/*
3586 * The following implement mutual exclusion of events on "exclusive" pmus
3587 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3588 * at a time, so we disallow creating events that might conflict, namely:
3589 *
3590 * 1) cpu-wide events in the presence of per-task events,
3591 * 2) per-task events in the presence of cpu-wide events,
3592 * 3) two matching events on the same context.
3593 *
3594 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3595 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3596 */
3597static int exclusive_event_init(struct perf_event *event)
3598{
3599 struct pmu *pmu = event->pmu;
3600
3601 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3602 return 0;
3603
3604 /*
3605 * Prevent co-existence of per-task and cpu-wide events on the
3606 * same exclusive pmu.
3607 *
3608 * Negative pmu::exclusive_cnt means there are cpu-wide
3609 * events on this "exclusive" pmu, positive means there are
3610 * per-task events.
3611 *
3612 * Since this is called in perf_event_alloc() path, event::ctx
3613 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3614 * to mean "per-task event", because unlike other attach states it
3615 * never gets cleared.
3616 */
3617 if (event->attach_state & PERF_ATTACH_TASK) {
3618 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3619 return -EBUSY;
3620 } else {
3621 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3622 return -EBUSY;
3623 }
3624
3625 return 0;
3626}
3627
3628static void exclusive_event_destroy(struct perf_event *event)
3629{
3630 struct pmu *pmu = event->pmu;
3631
3632 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3633 return;
3634
3635 /* see comment in exclusive_event_init() */
3636 if (event->attach_state & PERF_ATTACH_TASK)
3637 atomic_dec(&pmu->exclusive_cnt);
3638 else
3639 atomic_inc(&pmu->exclusive_cnt);
3640}
3641
3642static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3643{
3644 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3645 (e1->cpu == e2->cpu ||
3646 e1->cpu == -1 ||
3647 e2->cpu == -1))
3648 return true;
3649 return false;
3650}
3651
3652/* Called under the same ctx::mutex as perf_install_in_context() */
3653static bool exclusive_event_installable(struct perf_event *event,
3654 struct perf_event_context *ctx)
3655{
3656 struct perf_event *iter_event;
3657 struct pmu *pmu = event->pmu;
3658
3659 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3660 return true;
3661
3662 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3663 if (exclusive_event_match(iter_event, event))
3664 return false;
3665 }
3666
3667 return true;
3668}
3669
683ede43 3670static void _free_event(struct perf_event *event)
f1600952 3671{
e360adbe 3672 irq_work_sync(&event->pending);
925d519a 3673
4beb31f3 3674 unaccount_event(event);
9ee318a7 3675
76369139 3676 if (event->rb) {
9bb5d40c
PZ
3677 /*
3678 * Can happen when we close an event with re-directed output.
3679 *
3680 * Since we have a 0 refcount, perf_mmap_close() will skip
3681 * over us; possibly making our ring_buffer_put() the last.
3682 */
3683 mutex_lock(&event->mmap_mutex);
b69cf536 3684 ring_buffer_attach(event, NULL);
9bb5d40c 3685 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3686 }
3687
e5d1367f
SE
3688 if (is_cgroup_event(event))
3689 perf_detach_cgroup(event);
3690
a0733e69
PZ
3691 if (!event->parent) {
3692 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3693 put_callchain_buffers();
3694 }
3695
3696 perf_event_free_bpf_prog(event);
3697
3698 if (event->destroy)
3699 event->destroy(event);
3700
3701 if (event->ctx)
3702 put_ctx(event->ctx);
3703
3704 if (event->pmu) {
3705 exclusive_event_destroy(event);
3706 module_put(event->pmu->module);
3707 }
3708
3709 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3710}
3711
683ede43
PZ
3712/*
3713 * Used to free events which have a known refcount of 1, such as in error paths
3714 * where the event isn't exposed yet and inherited events.
3715 */
3716static void free_event(struct perf_event *event)
0793a61d 3717{
683ede43
PZ
3718 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3719 "unexpected event refcount: %ld; ptr=%p\n",
3720 atomic_long_read(&event->refcount), event)) {
3721 /* leak to avoid use-after-free */
3722 return;
3723 }
0793a61d 3724
683ede43 3725 _free_event(event);
0793a61d
TG
3726}
3727
a66a3052 3728/*
f8697762 3729 * Remove user event from the owner task.
a66a3052 3730 */
f8697762 3731static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3732{
8882135b 3733 struct task_struct *owner;
fb0459d7 3734
8882135b 3735 rcu_read_lock();
8882135b 3736 /*
f47c02c0
PZ
3737 * Matches the smp_store_release() in perf_event_exit_task(). If we
3738 * observe !owner it means the list deletion is complete and we can
3739 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3740 * owner->perf_event_mutex.
3741 */
f47c02c0 3742 owner = lockless_dereference(event->owner);
8882135b
PZ
3743 if (owner) {
3744 /*
3745 * Since delayed_put_task_struct() also drops the last
3746 * task reference we can safely take a new reference
3747 * while holding the rcu_read_lock().
3748 */
3749 get_task_struct(owner);
3750 }
3751 rcu_read_unlock();
3752
3753 if (owner) {
f63a8daa
PZ
3754 /*
3755 * If we're here through perf_event_exit_task() we're already
3756 * holding ctx->mutex which would be an inversion wrt. the
3757 * normal lock order.
3758 *
3759 * However we can safely take this lock because its the child
3760 * ctx->mutex.
3761 */
3762 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3763
8882135b
PZ
3764 /*
3765 * We have to re-check the event->owner field, if it is cleared
3766 * we raced with perf_event_exit_task(), acquiring the mutex
3767 * ensured they're done, and we can proceed with freeing the
3768 * event.
3769 */
f47c02c0 3770 if (event->owner) {
8882135b 3771 list_del_init(&event->owner_entry);
f47c02c0
PZ
3772 smp_store_release(&event->owner, NULL);
3773 }
8882135b
PZ
3774 mutex_unlock(&owner->perf_event_mutex);
3775 put_task_struct(owner);
3776 }
f8697762
JO
3777}
3778
f8697762
JO
3779static void put_event(struct perf_event *event)
3780{
a83fe28e 3781 struct perf_event_context *ctx;
f8697762
JO
3782
3783 if (!atomic_long_dec_and_test(&event->refcount))
3784 return;
3785
3786 if (!is_kernel_event(event))
3787 perf_remove_from_owner(event);
8882135b 3788
683ede43
PZ
3789 /*
3790 * There are two ways this annotation is useful:
3791 *
3792 * 1) there is a lock recursion from perf_event_exit_task
3793 * see the comment there.
3794 *
3795 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3796 * perf_read_group(), which takes faults while
683ede43
PZ
3797 * holding ctx->mutex, however this is called after
3798 * the last filedesc died, so there is no possibility
3799 * to trigger the AB-BA case.
3800 */
a83fe28e
PZ
3801 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3802 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3803 perf_remove_from_context(event, true);
d415a7f1 3804 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3805
3806 _free_event(event);
a6fa941d
AV
3807}
3808
683ede43
PZ
3809int perf_event_release_kernel(struct perf_event *event)
3810{
3811 put_event(event);
3812 return 0;
3813}
3814EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3815
8b10c5e2
PZ
3816/*
3817 * Called when the last reference to the file is gone.
3818 */
a6fa941d
AV
3819static int perf_release(struct inode *inode, struct file *file)
3820{
3821 put_event(file->private_data);
3822 return 0;
fb0459d7 3823}
fb0459d7 3824
fadfe7be
JO
3825/*
3826 * Remove all orphanes events from the context.
3827 */
3828static void orphans_remove_work(struct work_struct *work)
3829{
3830 struct perf_event_context *ctx;
3831 struct perf_event *event, *tmp;
3832
3833 ctx = container_of(work, struct perf_event_context,
3834 orphans_remove.work);
3835
3836 mutex_lock(&ctx->mutex);
3837 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3838 struct perf_event *parent_event = event->parent;
3839
3840 if (!is_orphaned_child(event))
3841 continue;
3842
3843 perf_remove_from_context(event, true);
3844
3845 mutex_lock(&parent_event->child_mutex);
3846 list_del_init(&event->child_list);
3847 mutex_unlock(&parent_event->child_mutex);
3848
3849 free_event(event);
3850 put_event(parent_event);
3851 }
3852
3853 raw_spin_lock_irq(&ctx->lock);
3854 ctx->orphans_remove_sched = false;
3855 raw_spin_unlock_irq(&ctx->lock);
3856 mutex_unlock(&ctx->mutex);
3857
3858 put_ctx(ctx);
3859}
3860
59ed446f 3861u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3862{
cdd6c482 3863 struct perf_event *child;
e53c0994
PZ
3864 u64 total = 0;
3865
59ed446f
PZ
3866 *enabled = 0;
3867 *running = 0;
3868
6f10581a 3869 mutex_lock(&event->child_mutex);
01add3ea 3870
7d88962e 3871 (void)perf_event_read(event, false);
01add3ea
SB
3872 total += perf_event_count(event);
3873
59ed446f
PZ
3874 *enabled += event->total_time_enabled +
3875 atomic64_read(&event->child_total_time_enabled);
3876 *running += event->total_time_running +
3877 atomic64_read(&event->child_total_time_running);
3878
3879 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3880 (void)perf_event_read(child, false);
01add3ea 3881 total += perf_event_count(child);
59ed446f
PZ
3882 *enabled += child->total_time_enabled;
3883 *running += child->total_time_running;
3884 }
6f10581a 3885 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3886
3887 return total;
3888}
fb0459d7 3889EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3890
7d88962e 3891static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3892 u64 read_format, u64 *values)
3dab77fb 3893{
fa8c2693
PZ
3894 struct perf_event *sub;
3895 int n = 1; /* skip @nr */
7d88962e 3896 int ret;
f63a8daa 3897
7d88962e
SB
3898 ret = perf_event_read(leader, true);
3899 if (ret)
3900 return ret;
abf4868b 3901
fa8c2693
PZ
3902 /*
3903 * Since we co-schedule groups, {enabled,running} times of siblings
3904 * will be identical to those of the leader, so we only publish one
3905 * set.
3906 */
3907 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3908 values[n++] += leader->total_time_enabled +
3909 atomic64_read(&leader->child_total_time_enabled);
3910 }
3dab77fb 3911
fa8c2693
PZ
3912 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3913 values[n++] += leader->total_time_running +
3914 atomic64_read(&leader->child_total_time_running);
3915 }
3916
3917 /*
3918 * Write {count,id} tuples for every sibling.
3919 */
3920 values[n++] += perf_event_count(leader);
abf4868b
PZ
3921 if (read_format & PERF_FORMAT_ID)
3922 values[n++] = primary_event_id(leader);
3dab77fb 3923
fa8c2693
PZ
3924 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3925 values[n++] += perf_event_count(sub);
3926 if (read_format & PERF_FORMAT_ID)
3927 values[n++] = primary_event_id(sub);
3928 }
7d88962e
SB
3929
3930 return 0;
fa8c2693 3931}
3dab77fb 3932
fa8c2693
PZ
3933static int perf_read_group(struct perf_event *event,
3934 u64 read_format, char __user *buf)
3935{
3936 struct perf_event *leader = event->group_leader, *child;
3937 struct perf_event_context *ctx = leader->ctx;
7d88962e 3938 int ret;
fa8c2693 3939 u64 *values;
3dab77fb 3940
fa8c2693 3941 lockdep_assert_held(&ctx->mutex);
3dab77fb 3942
fa8c2693
PZ
3943 values = kzalloc(event->read_size, GFP_KERNEL);
3944 if (!values)
3945 return -ENOMEM;
3dab77fb 3946
fa8c2693
PZ
3947 values[0] = 1 + leader->nr_siblings;
3948
3949 /*
3950 * By locking the child_mutex of the leader we effectively
3951 * lock the child list of all siblings.. XXX explain how.
3952 */
3953 mutex_lock(&leader->child_mutex);
abf4868b 3954
7d88962e
SB
3955 ret = __perf_read_group_add(leader, read_format, values);
3956 if (ret)
3957 goto unlock;
3958
3959 list_for_each_entry(child, &leader->child_list, child_list) {
3960 ret = __perf_read_group_add(child, read_format, values);
3961 if (ret)
3962 goto unlock;
3963 }
abf4868b 3964
fa8c2693 3965 mutex_unlock(&leader->child_mutex);
abf4868b 3966
7d88962e 3967 ret = event->read_size;
fa8c2693
PZ
3968 if (copy_to_user(buf, values, event->read_size))
3969 ret = -EFAULT;
7d88962e 3970 goto out;
fa8c2693 3971
7d88962e
SB
3972unlock:
3973 mutex_unlock(&leader->child_mutex);
3974out:
fa8c2693 3975 kfree(values);
abf4868b 3976 return ret;
3dab77fb
PZ
3977}
3978
b15f495b 3979static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3980 u64 read_format, char __user *buf)
3981{
59ed446f 3982 u64 enabled, running;
3dab77fb
PZ
3983 u64 values[4];
3984 int n = 0;
3985
59ed446f
PZ
3986 values[n++] = perf_event_read_value(event, &enabled, &running);
3987 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3988 values[n++] = enabled;
3989 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3990 values[n++] = running;
3dab77fb 3991 if (read_format & PERF_FORMAT_ID)
cdd6c482 3992 values[n++] = primary_event_id(event);
3dab77fb
PZ
3993
3994 if (copy_to_user(buf, values, n * sizeof(u64)))
3995 return -EFAULT;
3996
3997 return n * sizeof(u64);
3998}
3999
dc633982
JO
4000static bool is_event_hup(struct perf_event *event)
4001{
4002 bool no_children;
4003
4004 if (event->state != PERF_EVENT_STATE_EXIT)
4005 return false;
4006
4007 mutex_lock(&event->child_mutex);
4008 no_children = list_empty(&event->child_list);
4009 mutex_unlock(&event->child_mutex);
4010 return no_children;
4011}
4012
0793a61d 4013/*
cdd6c482 4014 * Read the performance event - simple non blocking version for now
0793a61d
TG
4015 */
4016static ssize_t
b15f495b 4017__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4018{
cdd6c482 4019 u64 read_format = event->attr.read_format;
3dab77fb 4020 int ret;
0793a61d 4021
3b6f9e5c 4022 /*
cdd6c482 4023 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4024 * error state (i.e. because it was pinned but it couldn't be
4025 * scheduled on to the CPU at some point).
4026 */
cdd6c482 4027 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4028 return 0;
4029
c320c7b7 4030 if (count < event->read_size)
3dab77fb
PZ
4031 return -ENOSPC;
4032
cdd6c482 4033 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4034 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4035 ret = perf_read_group(event, read_format, buf);
3dab77fb 4036 else
b15f495b 4037 ret = perf_read_one(event, read_format, buf);
0793a61d 4038
3dab77fb 4039 return ret;
0793a61d
TG
4040}
4041
0793a61d
TG
4042static ssize_t
4043perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4044{
cdd6c482 4045 struct perf_event *event = file->private_data;
f63a8daa
PZ
4046 struct perf_event_context *ctx;
4047 int ret;
0793a61d 4048
f63a8daa 4049 ctx = perf_event_ctx_lock(event);
b15f495b 4050 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4051 perf_event_ctx_unlock(event, ctx);
4052
4053 return ret;
0793a61d
TG
4054}
4055
4056static unsigned int perf_poll(struct file *file, poll_table *wait)
4057{
cdd6c482 4058 struct perf_event *event = file->private_data;
76369139 4059 struct ring_buffer *rb;
61b67684 4060 unsigned int events = POLLHUP;
c7138f37 4061
e708d7ad 4062 poll_wait(file, &event->waitq, wait);
179033b3 4063
dc633982 4064 if (is_event_hup(event))
179033b3 4065 return events;
c7138f37 4066
10c6db11 4067 /*
9bb5d40c
PZ
4068 * Pin the event->rb by taking event->mmap_mutex; otherwise
4069 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4070 */
4071 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4072 rb = event->rb;
4073 if (rb)
76369139 4074 events = atomic_xchg(&rb->poll, 0);
10c6db11 4075 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4076 return events;
4077}
4078
f63a8daa 4079static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4080{
7d88962e 4081 (void)perf_event_read(event, false);
e7850595 4082 local64_set(&event->count, 0);
cdd6c482 4083 perf_event_update_userpage(event);
3df5edad
PZ
4084}
4085
c93f7669 4086/*
cdd6c482
IM
4087 * Holding the top-level event's child_mutex means that any
4088 * descendant process that has inherited this event will block
4089 * in sync_child_event if it goes to exit, thus satisfying the
4090 * task existence requirements of perf_event_enable/disable.
c93f7669 4091 */
cdd6c482
IM
4092static void perf_event_for_each_child(struct perf_event *event,
4093 void (*func)(struct perf_event *))
3df5edad 4094{
cdd6c482 4095 struct perf_event *child;
3df5edad 4096
cdd6c482 4097 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4098
cdd6c482
IM
4099 mutex_lock(&event->child_mutex);
4100 func(event);
4101 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4102 func(child);
cdd6c482 4103 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4104}
4105
cdd6c482
IM
4106static void perf_event_for_each(struct perf_event *event,
4107 void (*func)(struct perf_event *))
3df5edad 4108{
cdd6c482
IM
4109 struct perf_event_context *ctx = event->ctx;
4110 struct perf_event *sibling;
3df5edad 4111
f63a8daa
PZ
4112 lockdep_assert_held(&ctx->mutex);
4113
cdd6c482 4114 event = event->group_leader;
75f937f2 4115
cdd6c482 4116 perf_event_for_each_child(event, func);
cdd6c482 4117 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4118 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4119}
4120
fae3fde6
PZ
4121static void __perf_event_period(struct perf_event *event,
4122 struct perf_cpu_context *cpuctx,
4123 struct perf_event_context *ctx,
4124 void *info)
c7999c6f 4125{
fae3fde6 4126 u64 value = *((u64 *)info);
c7999c6f 4127 bool active;
08247e31 4128
cdd6c482 4129 if (event->attr.freq) {
cdd6c482 4130 event->attr.sample_freq = value;
08247e31 4131 } else {
cdd6c482
IM
4132 event->attr.sample_period = value;
4133 event->hw.sample_period = value;
08247e31 4134 }
bad7192b
PZ
4135
4136 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4137 if (active) {
4138 perf_pmu_disable(ctx->pmu);
4139 event->pmu->stop(event, PERF_EF_UPDATE);
4140 }
4141
4142 local64_set(&event->hw.period_left, 0);
4143
4144 if (active) {
4145 event->pmu->start(event, PERF_EF_RELOAD);
4146 perf_pmu_enable(ctx->pmu);
4147 }
c7999c6f
PZ
4148}
4149
4150static int perf_event_period(struct perf_event *event, u64 __user *arg)
4151{
c7999c6f
PZ
4152 u64 value;
4153
4154 if (!is_sampling_event(event))
4155 return -EINVAL;
4156
4157 if (copy_from_user(&value, arg, sizeof(value)))
4158 return -EFAULT;
4159
4160 if (!value)
4161 return -EINVAL;
4162
4163 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4164 return -EINVAL;
4165
fae3fde6 4166 event_function_call(event, __perf_event_period, &value);
08247e31 4167
c7999c6f 4168 return 0;
08247e31
PZ
4169}
4170
ac9721f3
PZ
4171static const struct file_operations perf_fops;
4172
2903ff01 4173static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4174{
2903ff01
AV
4175 struct fd f = fdget(fd);
4176 if (!f.file)
4177 return -EBADF;
ac9721f3 4178
2903ff01
AV
4179 if (f.file->f_op != &perf_fops) {
4180 fdput(f);
4181 return -EBADF;
ac9721f3 4182 }
2903ff01
AV
4183 *p = f;
4184 return 0;
ac9721f3
PZ
4185}
4186
4187static int perf_event_set_output(struct perf_event *event,
4188 struct perf_event *output_event);
6fb2915d 4189static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4190static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4191
f63a8daa 4192static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4193{
cdd6c482 4194 void (*func)(struct perf_event *);
3df5edad 4195 u32 flags = arg;
d859e29f
PM
4196
4197 switch (cmd) {
cdd6c482 4198 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4199 func = _perf_event_enable;
d859e29f 4200 break;
cdd6c482 4201 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4202 func = _perf_event_disable;
79f14641 4203 break;
cdd6c482 4204 case PERF_EVENT_IOC_RESET:
f63a8daa 4205 func = _perf_event_reset;
6de6a7b9 4206 break;
3df5edad 4207
cdd6c482 4208 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4209 return _perf_event_refresh(event, arg);
08247e31 4210
cdd6c482
IM
4211 case PERF_EVENT_IOC_PERIOD:
4212 return perf_event_period(event, (u64 __user *)arg);
08247e31 4213
cf4957f1
JO
4214 case PERF_EVENT_IOC_ID:
4215 {
4216 u64 id = primary_event_id(event);
4217
4218 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4219 return -EFAULT;
4220 return 0;
4221 }
4222
cdd6c482 4223 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4224 {
ac9721f3 4225 int ret;
ac9721f3 4226 if (arg != -1) {
2903ff01
AV
4227 struct perf_event *output_event;
4228 struct fd output;
4229 ret = perf_fget_light(arg, &output);
4230 if (ret)
4231 return ret;
4232 output_event = output.file->private_data;
4233 ret = perf_event_set_output(event, output_event);
4234 fdput(output);
4235 } else {
4236 ret = perf_event_set_output(event, NULL);
ac9721f3 4237 }
ac9721f3
PZ
4238 return ret;
4239 }
a4be7c27 4240
6fb2915d
LZ
4241 case PERF_EVENT_IOC_SET_FILTER:
4242 return perf_event_set_filter(event, (void __user *)arg);
4243
2541517c
AS
4244 case PERF_EVENT_IOC_SET_BPF:
4245 return perf_event_set_bpf_prog(event, arg);
4246
d859e29f 4247 default:
3df5edad 4248 return -ENOTTY;
d859e29f 4249 }
3df5edad
PZ
4250
4251 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4252 perf_event_for_each(event, func);
3df5edad 4253 else
cdd6c482 4254 perf_event_for_each_child(event, func);
3df5edad
PZ
4255
4256 return 0;
d859e29f
PM
4257}
4258
f63a8daa
PZ
4259static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4260{
4261 struct perf_event *event = file->private_data;
4262 struct perf_event_context *ctx;
4263 long ret;
4264
4265 ctx = perf_event_ctx_lock(event);
4266 ret = _perf_ioctl(event, cmd, arg);
4267 perf_event_ctx_unlock(event, ctx);
4268
4269 return ret;
4270}
4271
b3f20785
PM
4272#ifdef CONFIG_COMPAT
4273static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4274 unsigned long arg)
4275{
4276 switch (_IOC_NR(cmd)) {
4277 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4278 case _IOC_NR(PERF_EVENT_IOC_ID):
4279 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4280 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4281 cmd &= ~IOCSIZE_MASK;
4282 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4283 }
4284 break;
4285 }
4286 return perf_ioctl(file, cmd, arg);
4287}
4288#else
4289# define perf_compat_ioctl NULL
4290#endif
4291
cdd6c482 4292int perf_event_task_enable(void)
771d7cde 4293{
f63a8daa 4294 struct perf_event_context *ctx;
cdd6c482 4295 struct perf_event *event;
771d7cde 4296
cdd6c482 4297 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4298 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4299 ctx = perf_event_ctx_lock(event);
4300 perf_event_for_each_child(event, _perf_event_enable);
4301 perf_event_ctx_unlock(event, ctx);
4302 }
cdd6c482 4303 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4304
4305 return 0;
4306}
4307
cdd6c482 4308int perf_event_task_disable(void)
771d7cde 4309{
f63a8daa 4310 struct perf_event_context *ctx;
cdd6c482 4311 struct perf_event *event;
771d7cde 4312
cdd6c482 4313 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4314 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4315 ctx = perf_event_ctx_lock(event);
4316 perf_event_for_each_child(event, _perf_event_disable);
4317 perf_event_ctx_unlock(event, ctx);
4318 }
cdd6c482 4319 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4320
4321 return 0;
4322}
4323
cdd6c482 4324static int perf_event_index(struct perf_event *event)
194002b2 4325{
a4eaf7f1
PZ
4326 if (event->hw.state & PERF_HES_STOPPED)
4327 return 0;
4328
cdd6c482 4329 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4330 return 0;
4331
35edc2a5 4332 return event->pmu->event_idx(event);
194002b2
PZ
4333}
4334
c4794295 4335static void calc_timer_values(struct perf_event *event,
e3f3541c 4336 u64 *now,
7f310a5d
EM
4337 u64 *enabled,
4338 u64 *running)
c4794295 4339{
e3f3541c 4340 u64 ctx_time;
c4794295 4341
e3f3541c
PZ
4342 *now = perf_clock();
4343 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4344 *enabled = ctx_time - event->tstamp_enabled;
4345 *running = ctx_time - event->tstamp_running;
4346}
4347
fa731587
PZ
4348static void perf_event_init_userpage(struct perf_event *event)
4349{
4350 struct perf_event_mmap_page *userpg;
4351 struct ring_buffer *rb;
4352
4353 rcu_read_lock();
4354 rb = rcu_dereference(event->rb);
4355 if (!rb)
4356 goto unlock;
4357
4358 userpg = rb->user_page;
4359
4360 /* Allow new userspace to detect that bit 0 is deprecated */
4361 userpg->cap_bit0_is_deprecated = 1;
4362 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4363 userpg->data_offset = PAGE_SIZE;
4364 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4365
4366unlock:
4367 rcu_read_unlock();
4368}
4369
c1317ec2
AL
4370void __weak arch_perf_update_userpage(
4371 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4372{
4373}
4374
38ff667b
PZ
4375/*
4376 * Callers need to ensure there can be no nesting of this function, otherwise
4377 * the seqlock logic goes bad. We can not serialize this because the arch
4378 * code calls this from NMI context.
4379 */
cdd6c482 4380void perf_event_update_userpage(struct perf_event *event)
37d81828 4381{
cdd6c482 4382 struct perf_event_mmap_page *userpg;
76369139 4383 struct ring_buffer *rb;
e3f3541c 4384 u64 enabled, running, now;
38ff667b
PZ
4385
4386 rcu_read_lock();
5ec4c599
PZ
4387 rb = rcu_dereference(event->rb);
4388 if (!rb)
4389 goto unlock;
4390
0d641208
EM
4391 /*
4392 * compute total_time_enabled, total_time_running
4393 * based on snapshot values taken when the event
4394 * was last scheduled in.
4395 *
4396 * we cannot simply called update_context_time()
4397 * because of locking issue as we can be called in
4398 * NMI context
4399 */
e3f3541c 4400 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4401
76369139 4402 userpg = rb->user_page;
7b732a75
PZ
4403 /*
4404 * Disable preemption so as to not let the corresponding user-space
4405 * spin too long if we get preempted.
4406 */
4407 preempt_disable();
37d81828 4408 ++userpg->lock;
92f22a38 4409 barrier();
cdd6c482 4410 userpg->index = perf_event_index(event);
b5e58793 4411 userpg->offset = perf_event_count(event);
365a4038 4412 if (userpg->index)
e7850595 4413 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4414
0d641208 4415 userpg->time_enabled = enabled +
cdd6c482 4416 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4417
0d641208 4418 userpg->time_running = running +
cdd6c482 4419 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4420
c1317ec2 4421 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4422
92f22a38 4423 barrier();
37d81828 4424 ++userpg->lock;
7b732a75 4425 preempt_enable();
38ff667b 4426unlock:
7b732a75 4427 rcu_read_unlock();
37d81828
PM
4428}
4429
906010b2
PZ
4430static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4431{
4432 struct perf_event *event = vma->vm_file->private_data;
76369139 4433 struct ring_buffer *rb;
906010b2
PZ
4434 int ret = VM_FAULT_SIGBUS;
4435
4436 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4437 if (vmf->pgoff == 0)
4438 ret = 0;
4439 return ret;
4440 }
4441
4442 rcu_read_lock();
76369139
FW
4443 rb = rcu_dereference(event->rb);
4444 if (!rb)
906010b2
PZ
4445 goto unlock;
4446
4447 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4448 goto unlock;
4449
76369139 4450 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4451 if (!vmf->page)
4452 goto unlock;
4453
4454 get_page(vmf->page);
4455 vmf->page->mapping = vma->vm_file->f_mapping;
4456 vmf->page->index = vmf->pgoff;
4457
4458 ret = 0;
4459unlock:
4460 rcu_read_unlock();
4461
4462 return ret;
4463}
4464
10c6db11
PZ
4465static void ring_buffer_attach(struct perf_event *event,
4466 struct ring_buffer *rb)
4467{
b69cf536 4468 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4469 unsigned long flags;
4470
b69cf536
PZ
4471 if (event->rb) {
4472 /*
4473 * Should be impossible, we set this when removing
4474 * event->rb_entry and wait/clear when adding event->rb_entry.
4475 */
4476 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4477
b69cf536 4478 old_rb = event->rb;
b69cf536
PZ
4479 spin_lock_irqsave(&old_rb->event_lock, flags);
4480 list_del_rcu(&event->rb_entry);
4481 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4482
2f993cf0
ON
4483 event->rcu_batches = get_state_synchronize_rcu();
4484 event->rcu_pending = 1;
b69cf536 4485 }
10c6db11 4486
b69cf536 4487 if (rb) {
2f993cf0
ON
4488 if (event->rcu_pending) {
4489 cond_synchronize_rcu(event->rcu_batches);
4490 event->rcu_pending = 0;
4491 }
4492
b69cf536
PZ
4493 spin_lock_irqsave(&rb->event_lock, flags);
4494 list_add_rcu(&event->rb_entry, &rb->event_list);
4495 spin_unlock_irqrestore(&rb->event_lock, flags);
4496 }
4497
4498 rcu_assign_pointer(event->rb, rb);
4499
4500 if (old_rb) {
4501 ring_buffer_put(old_rb);
4502 /*
4503 * Since we detached before setting the new rb, so that we
4504 * could attach the new rb, we could have missed a wakeup.
4505 * Provide it now.
4506 */
4507 wake_up_all(&event->waitq);
4508 }
10c6db11
PZ
4509}
4510
4511static void ring_buffer_wakeup(struct perf_event *event)
4512{
4513 struct ring_buffer *rb;
4514
4515 rcu_read_lock();
4516 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4517 if (rb) {
4518 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4519 wake_up_all(&event->waitq);
4520 }
10c6db11
PZ
4521 rcu_read_unlock();
4522}
4523
fdc26706 4524struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4525{
76369139 4526 struct ring_buffer *rb;
7b732a75 4527
ac9721f3 4528 rcu_read_lock();
76369139
FW
4529 rb = rcu_dereference(event->rb);
4530 if (rb) {
4531 if (!atomic_inc_not_zero(&rb->refcount))
4532 rb = NULL;
ac9721f3
PZ
4533 }
4534 rcu_read_unlock();
4535
76369139 4536 return rb;
ac9721f3
PZ
4537}
4538
fdc26706 4539void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4540{
76369139 4541 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4542 return;
7b732a75 4543
9bb5d40c 4544 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4545
76369139 4546 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4547}
4548
4549static void perf_mmap_open(struct vm_area_struct *vma)
4550{
cdd6c482 4551 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4552
cdd6c482 4553 atomic_inc(&event->mmap_count);
9bb5d40c 4554 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4555
45bfb2e5
PZ
4556 if (vma->vm_pgoff)
4557 atomic_inc(&event->rb->aux_mmap_count);
4558
1e0fb9ec
AL
4559 if (event->pmu->event_mapped)
4560 event->pmu->event_mapped(event);
7b732a75
PZ
4561}
4562
9bb5d40c
PZ
4563/*
4564 * A buffer can be mmap()ed multiple times; either directly through the same
4565 * event, or through other events by use of perf_event_set_output().
4566 *
4567 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4568 * the buffer here, where we still have a VM context. This means we need
4569 * to detach all events redirecting to us.
4570 */
7b732a75
PZ
4571static void perf_mmap_close(struct vm_area_struct *vma)
4572{
cdd6c482 4573 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4574
b69cf536 4575 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4576 struct user_struct *mmap_user = rb->mmap_user;
4577 int mmap_locked = rb->mmap_locked;
4578 unsigned long size = perf_data_size(rb);
789f90fc 4579
1e0fb9ec
AL
4580 if (event->pmu->event_unmapped)
4581 event->pmu->event_unmapped(event);
4582
45bfb2e5
PZ
4583 /*
4584 * rb->aux_mmap_count will always drop before rb->mmap_count and
4585 * event->mmap_count, so it is ok to use event->mmap_mutex to
4586 * serialize with perf_mmap here.
4587 */
4588 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4589 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4590 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4591 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4592
4593 rb_free_aux(rb);
4594 mutex_unlock(&event->mmap_mutex);
4595 }
4596
9bb5d40c
PZ
4597 atomic_dec(&rb->mmap_count);
4598
4599 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4600 goto out_put;
9bb5d40c 4601
b69cf536 4602 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4603 mutex_unlock(&event->mmap_mutex);
4604
4605 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4606 if (atomic_read(&rb->mmap_count))
4607 goto out_put;
ac9721f3 4608
9bb5d40c
PZ
4609 /*
4610 * No other mmap()s, detach from all other events that might redirect
4611 * into the now unreachable buffer. Somewhat complicated by the
4612 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4613 */
4614again:
4615 rcu_read_lock();
4616 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4617 if (!atomic_long_inc_not_zero(&event->refcount)) {
4618 /*
4619 * This event is en-route to free_event() which will
4620 * detach it and remove it from the list.
4621 */
4622 continue;
4623 }
4624 rcu_read_unlock();
789f90fc 4625
9bb5d40c
PZ
4626 mutex_lock(&event->mmap_mutex);
4627 /*
4628 * Check we didn't race with perf_event_set_output() which can
4629 * swizzle the rb from under us while we were waiting to
4630 * acquire mmap_mutex.
4631 *
4632 * If we find a different rb; ignore this event, a next
4633 * iteration will no longer find it on the list. We have to
4634 * still restart the iteration to make sure we're not now
4635 * iterating the wrong list.
4636 */
b69cf536
PZ
4637 if (event->rb == rb)
4638 ring_buffer_attach(event, NULL);
4639
cdd6c482 4640 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4641 put_event(event);
ac9721f3 4642
9bb5d40c
PZ
4643 /*
4644 * Restart the iteration; either we're on the wrong list or
4645 * destroyed its integrity by doing a deletion.
4646 */
4647 goto again;
7b732a75 4648 }
9bb5d40c
PZ
4649 rcu_read_unlock();
4650
4651 /*
4652 * It could be there's still a few 0-ref events on the list; they'll
4653 * get cleaned up by free_event() -- they'll also still have their
4654 * ref on the rb and will free it whenever they are done with it.
4655 *
4656 * Aside from that, this buffer is 'fully' detached and unmapped,
4657 * undo the VM accounting.
4658 */
4659
4660 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4661 vma->vm_mm->pinned_vm -= mmap_locked;
4662 free_uid(mmap_user);
4663
b69cf536 4664out_put:
9bb5d40c 4665 ring_buffer_put(rb); /* could be last */
37d81828
PM
4666}
4667
f0f37e2f 4668static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4669 .open = perf_mmap_open,
45bfb2e5 4670 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4671 .fault = perf_mmap_fault,
4672 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4673};
4674
4675static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4676{
cdd6c482 4677 struct perf_event *event = file->private_data;
22a4f650 4678 unsigned long user_locked, user_lock_limit;
789f90fc 4679 struct user_struct *user = current_user();
22a4f650 4680 unsigned long locked, lock_limit;
45bfb2e5 4681 struct ring_buffer *rb = NULL;
7b732a75
PZ
4682 unsigned long vma_size;
4683 unsigned long nr_pages;
45bfb2e5 4684 long user_extra = 0, extra = 0;
d57e34fd 4685 int ret = 0, flags = 0;
37d81828 4686
c7920614
PZ
4687 /*
4688 * Don't allow mmap() of inherited per-task counters. This would
4689 * create a performance issue due to all children writing to the
76369139 4690 * same rb.
c7920614
PZ
4691 */
4692 if (event->cpu == -1 && event->attr.inherit)
4693 return -EINVAL;
4694
43a21ea8 4695 if (!(vma->vm_flags & VM_SHARED))
37d81828 4696 return -EINVAL;
7b732a75
PZ
4697
4698 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4699
4700 if (vma->vm_pgoff == 0) {
4701 nr_pages = (vma_size / PAGE_SIZE) - 1;
4702 } else {
4703 /*
4704 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4705 * mapped, all subsequent mappings should have the same size
4706 * and offset. Must be above the normal perf buffer.
4707 */
4708 u64 aux_offset, aux_size;
4709
4710 if (!event->rb)
4711 return -EINVAL;
4712
4713 nr_pages = vma_size / PAGE_SIZE;
4714
4715 mutex_lock(&event->mmap_mutex);
4716 ret = -EINVAL;
4717
4718 rb = event->rb;
4719 if (!rb)
4720 goto aux_unlock;
4721
4722 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4723 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4724
4725 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4726 goto aux_unlock;
4727
4728 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4729 goto aux_unlock;
4730
4731 /* already mapped with a different offset */
4732 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4733 goto aux_unlock;
4734
4735 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4736 goto aux_unlock;
4737
4738 /* already mapped with a different size */
4739 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4740 goto aux_unlock;
4741
4742 if (!is_power_of_2(nr_pages))
4743 goto aux_unlock;
4744
4745 if (!atomic_inc_not_zero(&rb->mmap_count))
4746 goto aux_unlock;
4747
4748 if (rb_has_aux(rb)) {
4749 atomic_inc(&rb->aux_mmap_count);
4750 ret = 0;
4751 goto unlock;
4752 }
4753
4754 atomic_set(&rb->aux_mmap_count, 1);
4755 user_extra = nr_pages;
4756
4757 goto accounting;
4758 }
7b732a75 4759
7730d865 4760 /*
76369139 4761 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4762 * can do bitmasks instead of modulo.
4763 */
2ed11312 4764 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4765 return -EINVAL;
4766
7b732a75 4767 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4768 return -EINVAL;
4769
cdd6c482 4770 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4771again:
cdd6c482 4772 mutex_lock(&event->mmap_mutex);
76369139 4773 if (event->rb) {
9bb5d40c 4774 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4775 ret = -EINVAL;
9bb5d40c
PZ
4776 goto unlock;
4777 }
4778
4779 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4780 /*
4781 * Raced against perf_mmap_close() through
4782 * perf_event_set_output(). Try again, hope for better
4783 * luck.
4784 */
4785 mutex_unlock(&event->mmap_mutex);
4786 goto again;
4787 }
4788
ebb3c4c4
PZ
4789 goto unlock;
4790 }
4791
789f90fc 4792 user_extra = nr_pages + 1;
45bfb2e5
PZ
4793
4794accounting:
cdd6c482 4795 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4796
4797 /*
4798 * Increase the limit linearly with more CPUs:
4799 */
4800 user_lock_limit *= num_online_cpus();
4801
789f90fc 4802 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4803
789f90fc
PZ
4804 if (user_locked > user_lock_limit)
4805 extra = user_locked - user_lock_limit;
7b732a75 4806
78d7d407 4807 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4808 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4809 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4810
459ec28a
IM
4811 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4812 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4813 ret = -EPERM;
4814 goto unlock;
4815 }
7b732a75 4816
45bfb2e5 4817 WARN_ON(!rb && event->rb);
906010b2 4818
d57e34fd 4819 if (vma->vm_flags & VM_WRITE)
76369139 4820 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4821
76369139 4822 if (!rb) {
45bfb2e5
PZ
4823 rb = rb_alloc(nr_pages,
4824 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4825 event->cpu, flags);
26cb63ad 4826
45bfb2e5
PZ
4827 if (!rb) {
4828 ret = -ENOMEM;
4829 goto unlock;
4830 }
43a21ea8 4831
45bfb2e5
PZ
4832 atomic_set(&rb->mmap_count, 1);
4833 rb->mmap_user = get_current_user();
4834 rb->mmap_locked = extra;
26cb63ad 4835
45bfb2e5 4836 ring_buffer_attach(event, rb);
ac9721f3 4837
45bfb2e5
PZ
4838 perf_event_init_userpage(event);
4839 perf_event_update_userpage(event);
4840 } else {
1a594131
AS
4841 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4842 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4843 if (!ret)
4844 rb->aux_mmap_locked = extra;
4845 }
9a0f05cb 4846
ebb3c4c4 4847unlock:
45bfb2e5
PZ
4848 if (!ret) {
4849 atomic_long_add(user_extra, &user->locked_vm);
4850 vma->vm_mm->pinned_vm += extra;
4851
ac9721f3 4852 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4853 } else if (rb) {
4854 atomic_dec(&rb->mmap_count);
4855 }
4856aux_unlock:
cdd6c482 4857 mutex_unlock(&event->mmap_mutex);
37d81828 4858
9bb5d40c
PZ
4859 /*
4860 * Since pinned accounting is per vm we cannot allow fork() to copy our
4861 * vma.
4862 */
26cb63ad 4863 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4864 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4865
1e0fb9ec
AL
4866 if (event->pmu->event_mapped)
4867 event->pmu->event_mapped(event);
4868
7b732a75 4869 return ret;
37d81828
PM
4870}
4871
3c446b3d
PZ
4872static int perf_fasync(int fd, struct file *filp, int on)
4873{
496ad9aa 4874 struct inode *inode = file_inode(filp);
cdd6c482 4875 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4876 int retval;
4877
4878 mutex_lock(&inode->i_mutex);
cdd6c482 4879 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4880 mutex_unlock(&inode->i_mutex);
4881
4882 if (retval < 0)
4883 return retval;
4884
4885 return 0;
4886}
4887
0793a61d 4888static const struct file_operations perf_fops = {
3326c1ce 4889 .llseek = no_llseek,
0793a61d
TG
4890 .release = perf_release,
4891 .read = perf_read,
4892 .poll = perf_poll,
d859e29f 4893 .unlocked_ioctl = perf_ioctl,
b3f20785 4894 .compat_ioctl = perf_compat_ioctl,
37d81828 4895 .mmap = perf_mmap,
3c446b3d 4896 .fasync = perf_fasync,
0793a61d
TG
4897};
4898
925d519a 4899/*
cdd6c482 4900 * Perf event wakeup
925d519a
PZ
4901 *
4902 * If there's data, ensure we set the poll() state and publish everything
4903 * to user-space before waking everybody up.
4904 */
4905
fed66e2c
PZ
4906static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4907{
4908 /* only the parent has fasync state */
4909 if (event->parent)
4910 event = event->parent;
4911 return &event->fasync;
4912}
4913
cdd6c482 4914void perf_event_wakeup(struct perf_event *event)
925d519a 4915{
10c6db11 4916 ring_buffer_wakeup(event);
4c9e2542 4917
cdd6c482 4918 if (event->pending_kill) {
fed66e2c 4919 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4920 event->pending_kill = 0;
4c9e2542 4921 }
925d519a
PZ
4922}
4923
e360adbe 4924static void perf_pending_event(struct irq_work *entry)
79f14641 4925{
cdd6c482
IM
4926 struct perf_event *event = container_of(entry,
4927 struct perf_event, pending);
d525211f
PZ
4928 int rctx;
4929
4930 rctx = perf_swevent_get_recursion_context();
4931 /*
4932 * If we 'fail' here, that's OK, it means recursion is already disabled
4933 * and we won't recurse 'further'.
4934 */
79f14641 4935
cdd6c482
IM
4936 if (event->pending_disable) {
4937 event->pending_disable = 0;
fae3fde6 4938 perf_event_disable_local(event);
79f14641
PZ
4939 }
4940
cdd6c482
IM
4941 if (event->pending_wakeup) {
4942 event->pending_wakeup = 0;
4943 perf_event_wakeup(event);
79f14641 4944 }
d525211f
PZ
4945
4946 if (rctx >= 0)
4947 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4948}
4949
39447b38
ZY
4950/*
4951 * We assume there is only KVM supporting the callbacks.
4952 * Later on, we might change it to a list if there is
4953 * another virtualization implementation supporting the callbacks.
4954 */
4955struct perf_guest_info_callbacks *perf_guest_cbs;
4956
4957int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4958{
4959 perf_guest_cbs = cbs;
4960 return 0;
4961}
4962EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4963
4964int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4965{
4966 perf_guest_cbs = NULL;
4967 return 0;
4968}
4969EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4970
4018994f
JO
4971static void
4972perf_output_sample_regs(struct perf_output_handle *handle,
4973 struct pt_regs *regs, u64 mask)
4974{
4975 int bit;
4976
4977 for_each_set_bit(bit, (const unsigned long *) &mask,
4978 sizeof(mask) * BITS_PER_BYTE) {
4979 u64 val;
4980
4981 val = perf_reg_value(regs, bit);
4982 perf_output_put(handle, val);
4983 }
4984}
4985
60e2364e 4986static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4987 struct pt_regs *regs,
4988 struct pt_regs *regs_user_copy)
4018994f 4989{
88a7c26a
AL
4990 if (user_mode(regs)) {
4991 regs_user->abi = perf_reg_abi(current);
2565711f 4992 regs_user->regs = regs;
88a7c26a
AL
4993 } else if (current->mm) {
4994 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4995 } else {
4996 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4997 regs_user->regs = NULL;
4018994f
JO
4998 }
4999}
5000
60e2364e
SE
5001static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5002 struct pt_regs *regs)
5003{
5004 regs_intr->regs = regs;
5005 regs_intr->abi = perf_reg_abi(current);
5006}
5007
5008
c5ebcedb
JO
5009/*
5010 * Get remaining task size from user stack pointer.
5011 *
5012 * It'd be better to take stack vma map and limit this more
5013 * precisly, but there's no way to get it safely under interrupt,
5014 * so using TASK_SIZE as limit.
5015 */
5016static u64 perf_ustack_task_size(struct pt_regs *regs)
5017{
5018 unsigned long addr = perf_user_stack_pointer(regs);
5019
5020 if (!addr || addr >= TASK_SIZE)
5021 return 0;
5022
5023 return TASK_SIZE - addr;
5024}
5025
5026static u16
5027perf_sample_ustack_size(u16 stack_size, u16 header_size,
5028 struct pt_regs *regs)
5029{
5030 u64 task_size;
5031
5032 /* No regs, no stack pointer, no dump. */
5033 if (!regs)
5034 return 0;
5035
5036 /*
5037 * Check if we fit in with the requested stack size into the:
5038 * - TASK_SIZE
5039 * If we don't, we limit the size to the TASK_SIZE.
5040 *
5041 * - remaining sample size
5042 * If we don't, we customize the stack size to
5043 * fit in to the remaining sample size.
5044 */
5045
5046 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5047 stack_size = min(stack_size, (u16) task_size);
5048
5049 /* Current header size plus static size and dynamic size. */
5050 header_size += 2 * sizeof(u64);
5051
5052 /* Do we fit in with the current stack dump size? */
5053 if ((u16) (header_size + stack_size) < header_size) {
5054 /*
5055 * If we overflow the maximum size for the sample,
5056 * we customize the stack dump size to fit in.
5057 */
5058 stack_size = USHRT_MAX - header_size - sizeof(u64);
5059 stack_size = round_up(stack_size, sizeof(u64));
5060 }
5061
5062 return stack_size;
5063}
5064
5065static void
5066perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5067 struct pt_regs *regs)
5068{
5069 /* Case of a kernel thread, nothing to dump */
5070 if (!regs) {
5071 u64 size = 0;
5072 perf_output_put(handle, size);
5073 } else {
5074 unsigned long sp;
5075 unsigned int rem;
5076 u64 dyn_size;
5077
5078 /*
5079 * We dump:
5080 * static size
5081 * - the size requested by user or the best one we can fit
5082 * in to the sample max size
5083 * data
5084 * - user stack dump data
5085 * dynamic size
5086 * - the actual dumped size
5087 */
5088
5089 /* Static size. */
5090 perf_output_put(handle, dump_size);
5091
5092 /* Data. */
5093 sp = perf_user_stack_pointer(regs);
5094 rem = __output_copy_user(handle, (void *) sp, dump_size);
5095 dyn_size = dump_size - rem;
5096
5097 perf_output_skip(handle, rem);
5098
5099 /* Dynamic size. */
5100 perf_output_put(handle, dyn_size);
5101 }
5102}
5103
c980d109
ACM
5104static void __perf_event_header__init_id(struct perf_event_header *header,
5105 struct perf_sample_data *data,
5106 struct perf_event *event)
6844c09d
ACM
5107{
5108 u64 sample_type = event->attr.sample_type;
5109
5110 data->type = sample_type;
5111 header->size += event->id_header_size;
5112
5113 if (sample_type & PERF_SAMPLE_TID) {
5114 /* namespace issues */
5115 data->tid_entry.pid = perf_event_pid(event, current);
5116 data->tid_entry.tid = perf_event_tid(event, current);
5117 }
5118
5119 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5120 data->time = perf_event_clock(event);
6844c09d 5121
ff3d527c 5122 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5123 data->id = primary_event_id(event);
5124
5125 if (sample_type & PERF_SAMPLE_STREAM_ID)
5126 data->stream_id = event->id;
5127
5128 if (sample_type & PERF_SAMPLE_CPU) {
5129 data->cpu_entry.cpu = raw_smp_processor_id();
5130 data->cpu_entry.reserved = 0;
5131 }
5132}
5133
76369139
FW
5134void perf_event_header__init_id(struct perf_event_header *header,
5135 struct perf_sample_data *data,
5136 struct perf_event *event)
c980d109
ACM
5137{
5138 if (event->attr.sample_id_all)
5139 __perf_event_header__init_id(header, data, event);
5140}
5141
5142static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5143 struct perf_sample_data *data)
5144{
5145 u64 sample_type = data->type;
5146
5147 if (sample_type & PERF_SAMPLE_TID)
5148 perf_output_put(handle, data->tid_entry);
5149
5150 if (sample_type & PERF_SAMPLE_TIME)
5151 perf_output_put(handle, data->time);
5152
5153 if (sample_type & PERF_SAMPLE_ID)
5154 perf_output_put(handle, data->id);
5155
5156 if (sample_type & PERF_SAMPLE_STREAM_ID)
5157 perf_output_put(handle, data->stream_id);
5158
5159 if (sample_type & PERF_SAMPLE_CPU)
5160 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5161
5162 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5163 perf_output_put(handle, data->id);
c980d109
ACM
5164}
5165
76369139
FW
5166void perf_event__output_id_sample(struct perf_event *event,
5167 struct perf_output_handle *handle,
5168 struct perf_sample_data *sample)
c980d109
ACM
5169{
5170 if (event->attr.sample_id_all)
5171 __perf_event__output_id_sample(handle, sample);
5172}
5173
3dab77fb 5174static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5175 struct perf_event *event,
5176 u64 enabled, u64 running)
3dab77fb 5177{
cdd6c482 5178 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5179 u64 values[4];
5180 int n = 0;
5181
b5e58793 5182 values[n++] = perf_event_count(event);
3dab77fb 5183 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5184 values[n++] = enabled +
cdd6c482 5185 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5186 }
5187 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5188 values[n++] = running +
cdd6c482 5189 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5190 }
5191 if (read_format & PERF_FORMAT_ID)
cdd6c482 5192 values[n++] = primary_event_id(event);
3dab77fb 5193
76369139 5194 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5195}
5196
5197/*
cdd6c482 5198 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5199 */
5200static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5201 struct perf_event *event,
5202 u64 enabled, u64 running)
3dab77fb 5203{
cdd6c482
IM
5204 struct perf_event *leader = event->group_leader, *sub;
5205 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5206 u64 values[5];
5207 int n = 0;
5208
5209 values[n++] = 1 + leader->nr_siblings;
5210
5211 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5212 values[n++] = enabled;
3dab77fb
PZ
5213
5214 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5215 values[n++] = running;
3dab77fb 5216
cdd6c482 5217 if (leader != event)
3dab77fb
PZ
5218 leader->pmu->read(leader);
5219
b5e58793 5220 values[n++] = perf_event_count(leader);
3dab77fb 5221 if (read_format & PERF_FORMAT_ID)
cdd6c482 5222 values[n++] = primary_event_id(leader);
3dab77fb 5223
76369139 5224 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5225
65abc865 5226 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5227 n = 0;
5228
6f5ab001
JO
5229 if ((sub != event) &&
5230 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5231 sub->pmu->read(sub);
5232
b5e58793 5233 values[n++] = perf_event_count(sub);
3dab77fb 5234 if (read_format & PERF_FORMAT_ID)
cdd6c482 5235 values[n++] = primary_event_id(sub);
3dab77fb 5236
76369139 5237 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5238 }
5239}
5240
eed01528
SE
5241#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5242 PERF_FORMAT_TOTAL_TIME_RUNNING)
5243
3dab77fb 5244static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5245 struct perf_event *event)
3dab77fb 5246{
e3f3541c 5247 u64 enabled = 0, running = 0, now;
eed01528
SE
5248 u64 read_format = event->attr.read_format;
5249
5250 /*
5251 * compute total_time_enabled, total_time_running
5252 * based on snapshot values taken when the event
5253 * was last scheduled in.
5254 *
5255 * we cannot simply called update_context_time()
5256 * because of locking issue as we are called in
5257 * NMI context
5258 */
c4794295 5259 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5260 calc_timer_values(event, &now, &enabled, &running);
eed01528 5261
cdd6c482 5262 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5263 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5264 else
eed01528 5265 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5266}
5267
5622f295
MM
5268void perf_output_sample(struct perf_output_handle *handle,
5269 struct perf_event_header *header,
5270 struct perf_sample_data *data,
cdd6c482 5271 struct perf_event *event)
5622f295
MM
5272{
5273 u64 sample_type = data->type;
5274
5275 perf_output_put(handle, *header);
5276
ff3d527c
AH
5277 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5278 perf_output_put(handle, data->id);
5279
5622f295
MM
5280 if (sample_type & PERF_SAMPLE_IP)
5281 perf_output_put(handle, data->ip);
5282
5283 if (sample_type & PERF_SAMPLE_TID)
5284 perf_output_put(handle, data->tid_entry);
5285
5286 if (sample_type & PERF_SAMPLE_TIME)
5287 perf_output_put(handle, data->time);
5288
5289 if (sample_type & PERF_SAMPLE_ADDR)
5290 perf_output_put(handle, data->addr);
5291
5292 if (sample_type & PERF_SAMPLE_ID)
5293 perf_output_put(handle, data->id);
5294
5295 if (sample_type & PERF_SAMPLE_STREAM_ID)
5296 perf_output_put(handle, data->stream_id);
5297
5298 if (sample_type & PERF_SAMPLE_CPU)
5299 perf_output_put(handle, data->cpu_entry);
5300
5301 if (sample_type & PERF_SAMPLE_PERIOD)
5302 perf_output_put(handle, data->period);
5303
5304 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5305 perf_output_read(handle, event);
5622f295
MM
5306
5307 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5308 if (data->callchain) {
5309 int size = 1;
5310
5311 if (data->callchain)
5312 size += data->callchain->nr;
5313
5314 size *= sizeof(u64);
5315
76369139 5316 __output_copy(handle, data->callchain, size);
5622f295
MM
5317 } else {
5318 u64 nr = 0;
5319 perf_output_put(handle, nr);
5320 }
5321 }
5322
5323 if (sample_type & PERF_SAMPLE_RAW) {
5324 if (data->raw) {
fa128e6a
AS
5325 u32 raw_size = data->raw->size;
5326 u32 real_size = round_up(raw_size + sizeof(u32),
5327 sizeof(u64)) - sizeof(u32);
5328 u64 zero = 0;
5329
5330 perf_output_put(handle, real_size);
5331 __output_copy(handle, data->raw->data, raw_size);
5332 if (real_size - raw_size)
5333 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5334 } else {
5335 struct {
5336 u32 size;
5337 u32 data;
5338 } raw = {
5339 .size = sizeof(u32),
5340 .data = 0,
5341 };
5342 perf_output_put(handle, raw);
5343 }
5344 }
a7ac67ea 5345
bce38cd5
SE
5346 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5347 if (data->br_stack) {
5348 size_t size;
5349
5350 size = data->br_stack->nr
5351 * sizeof(struct perf_branch_entry);
5352
5353 perf_output_put(handle, data->br_stack->nr);
5354 perf_output_copy(handle, data->br_stack->entries, size);
5355 } else {
5356 /*
5357 * we always store at least the value of nr
5358 */
5359 u64 nr = 0;
5360 perf_output_put(handle, nr);
5361 }
5362 }
4018994f
JO
5363
5364 if (sample_type & PERF_SAMPLE_REGS_USER) {
5365 u64 abi = data->regs_user.abi;
5366
5367 /*
5368 * If there are no regs to dump, notice it through
5369 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5370 */
5371 perf_output_put(handle, abi);
5372
5373 if (abi) {
5374 u64 mask = event->attr.sample_regs_user;
5375 perf_output_sample_regs(handle,
5376 data->regs_user.regs,
5377 mask);
5378 }
5379 }
c5ebcedb 5380
a5cdd40c 5381 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5382 perf_output_sample_ustack(handle,
5383 data->stack_user_size,
5384 data->regs_user.regs);
a5cdd40c 5385 }
c3feedf2
AK
5386
5387 if (sample_type & PERF_SAMPLE_WEIGHT)
5388 perf_output_put(handle, data->weight);
d6be9ad6
SE
5389
5390 if (sample_type & PERF_SAMPLE_DATA_SRC)
5391 perf_output_put(handle, data->data_src.val);
a5cdd40c 5392
fdfbbd07
AK
5393 if (sample_type & PERF_SAMPLE_TRANSACTION)
5394 perf_output_put(handle, data->txn);
5395
60e2364e
SE
5396 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5397 u64 abi = data->regs_intr.abi;
5398 /*
5399 * If there are no regs to dump, notice it through
5400 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5401 */
5402 perf_output_put(handle, abi);
5403
5404 if (abi) {
5405 u64 mask = event->attr.sample_regs_intr;
5406
5407 perf_output_sample_regs(handle,
5408 data->regs_intr.regs,
5409 mask);
5410 }
5411 }
5412
a5cdd40c
PZ
5413 if (!event->attr.watermark) {
5414 int wakeup_events = event->attr.wakeup_events;
5415
5416 if (wakeup_events) {
5417 struct ring_buffer *rb = handle->rb;
5418 int events = local_inc_return(&rb->events);
5419
5420 if (events >= wakeup_events) {
5421 local_sub(wakeup_events, &rb->events);
5422 local_inc(&rb->wakeup);
5423 }
5424 }
5425 }
5622f295
MM
5426}
5427
5428void perf_prepare_sample(struct perf_event_header *header,
5429 struct perf_sample_data *data,
cdd6c482 5430 struct perf_event *event,
5622f295 5431 struct pt_regs *regs)
7b732a75 5432{
cdd6c482 5433 u64 sample_type = event->attr.sample_type;
7b732a75 5434
cdd6c482 5435 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5436 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5437
5438 header->misc = 0;
5439 header->misc |= perf_misc_flags(regs);
6fab0192 5440
c980d109 5441 __perf_event_header__init_id(header, data, event);
6844c09d 5442
c320c7b7 5443 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5444 data->ip = perf_instruction_pointer(regs);
5445
b23f3325 5446 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5447 int size = 1;
394ee076 5448
e6dab5ff 5449 data->callchain = perf_callchain(event, regs);
5622f295
MM
5450
5451 if (data->callchain)
5452 size += data->callchain->nr;
5453
5454 header->size += size * sizeof(u64);
394ee076
PZ
5455 }
5456
3a43ce68 5457 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5458 int size = sizeof(u32);
5459
5460 if (data->raw)
5461 size += data->raw->size;
5462 else
5463 size += sizeof(u32);
5464
fa128e6a 5465 header->size += round_up(size, sizeof(u64));
7f453c24 5466 }
bce38cd5
SE
5467
5468 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5469 int size = sizeof(u64); /* nr */
5470 if (data->br_stack) {
5471 size += data->br_stack->nr
5472 * sizeof(struct perf_branch_entry);
5473 }
5474 header->size += size;
5475 }
4018994f 5476
2565711f 5477 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5478 perf_sample_regs_user(&data->regs_user, regs,
5479 &data->regs_user_copy);
2565711f 5480
4018994f
JO
5481 if (sample_type & PERF_SAMPLE_REGS_USER) {
5482 /* regs dump ABI info */
5483 int size = sizeof(u64);
5484
4018994f
JO
5485 if (data->regs_user.regs) {
5486 u64 mask = event->attr.sample_regs_user;
5487 size += hweight64(mask) * sizeof(u64);
5488 }
5489
5490 header->size += size;
5491 }
c5ebcedb
JO
5492
5493 if (sample_type & PERF_SAMPLE_STACK_USER) {
5494 /*
5495 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5496 * processed as the last one or have additional check added
5497 * in case new sample type is added, because we could eat
5498 * up the rest of the sample size.
5499 */
c5ebcedb
JO
5500 u16 stack_size = event->attr.sample_stack_user;
5501 u16 size = sizeof(u64);
5502
c5ebcedb 5503 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5504 data->regs_user.regs);
c5ebcedb
JO
5505
5506 /*
5507 * If there is something to dump, add space for the dump
5508 * itself and for the field that tells the dynamic size,
5509 * which is how many have been actually dumped.
5510 */
5511 if (stack_size)
5512 size += sizeof(u64) + stack_size;
5513
5514 data->stack_user_size = stack_size;
5515 header->size += size;
5516 }
60e2364e
SE
5517
5518 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5519 /* regs dump ABI info */
5520 int size = sizeof(u64);
5521
5522 perf_sample_regs_intr(&data->regs_intr, regs);
5523
5524 if (data->regs_intr.regs) {
5525 u64 mask = event->attr.sample_regs_intr;
5526
5527 size += hweight64(mask) * sizeof(u64);
5528 }
5529
5530 header->size += size;
5531 }
5622f295 5532}
7f453c24 5533
21509084
YZ
5534void perf_event_output(struct perf_event *event,
5535 struct perf_sample_data *data,
5536 struct pt_regs *regs)
5622f295
MM
5537{
5538 struct perf_output_handle handle;
5539 struct perf_event_header header;
689802b2 5540
927c7a9e
FW
5541 /* protect the callchain buffers */
5542 rcu_read_lock();
5543
cdd6c482 5544 perf_prepare_sample(&header, data, event, regs);
5c148194 5545
a7ac67ea 5546 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5547 goto exit;
0322cd6e 5548
cdd6c482 5549 perf_output_sample(&handle, &header, data, event);
f413cdb8 5550
8a057d84 5551 perf_output_end(&handle);
927c7a9e
FW
5552
5553exit:
5554 rcu_read_unlock();
0322cd6e
PZ
5555}
5556
38b200d6 5557/*
cdd6c482 5558 * read event_id
38b200d6
PZ
5559 */
5560
5561struct perf_read_event {
5562 struct perf_event_header header;
5563
5564 u32 pid;
5565 u32 tid;
38b200d6
PZ
5566};
5567
5568static void
cdd6c482 5569perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5570 struct task_struct *task)
5571{
5572 struct perf_output_handle handle;
c980d109 5573 struct perf_sample_data sample;
dfc65094 5574 struct perf_read_event read_event = {
38b200d6 5575 .header = {
cdd6c482 5576 .type = PERF_RECORD_READ,
38b200d6 5577 .misc = 0,
c320c7b7 5578 .size = sizeof(read_event) + event->read_size,
38b200d6 5579 },
cdd6c482
IM
5580 .pid = perf_event_pid(event, task),
5581 .tid = perf_event_tid(event, task),
38b200d6 5582 };
3dab77fb 5583 int ret;
38b200d6 5584
c980d109 5585 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5586 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5587 if (ret)
5588 return;
5589
dfc65094 5590 perf_output_put(&handle, read_event);
cdd6c482 5591 perf_output_read(&handle, event);
c980d109 5592 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5593
38b200d6
PZ
5594 perf_output_end(&handle);
5595}
5596
52d857a8
JO
5597typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5598
5599static void
5600perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5601 perf_event_aux_output_cb output,
5602 void *data)
5603{
5604 struct perf_event *event;
5605
5606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5607 if (event->state < PERF_EVENT_STATE_INACTIVE)
5608 continue;
5609 if (!event_filter_match(event))
5610 continue;
67516844 5611 output(event, data);
52d857a8
JO
5612 }
5613}
5614
4e93ad60
JO
5615static void
5616perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5617 struct perf_event_context *task_ctx)
5618{
5619 rcu_read_lock();
5620 preempt_disable();
5621 perf_event_aux_ctx(task_ctx, output, data);
5622 preempt_enable();
5623 rcu_read_unlock();
5624}
5625
52d857a8 5626static void
67516844 5627perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5628 struct perf_event_context *task_ctx)
5629{
5630 struct perf_cpu_context *cpuctx;
5631 struct perf_event_context *ctx;
5632 struct pmu *pmu;
5633 int ctxn;
5634
4e93ad60
JO
5635 /*
5636 * If we have task_ctx != NULL we only notify
5637 * the task context itself. The task_ctx is set
5638 * only for EXIT events before releasing task
5639 * context.
5640 */
5641 if (task_ctx) {
5642 perf_event_aux_task_ctx(output, data, task_ctx);
5643 return;
5644 }
5645
52d857a8
JO
5646 rcu_read_lock();
5647 list_for_each_entry_rcu(pmu, &pmus, entry) {
5648 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5649 if (cpuctx->unique_pmu != pmu)
5650 goto next;
67516844 5651 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5652 ctxn = pmu->task_ctx_nr;
5653 if (ctxn < 0)
5654 goto next;
5655 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5656 if (ctx)
67516844 5657 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5658next:
5659 put_cpu_ptr(pmu->pmu_cpu_context);
5660 }
52d857a8
JO
5661 rcu_read_unlock();
5662}
5663
60313ebe 5664/*
9f498cc5
PZ
5665 * task tracking -- fork/exit
5666 *
13d7a241 5667 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5668 */
5669
9f498cc5 5670struct perf_task_event {
3a80b4a3 5671 struct task_struct *task;
cdd6c482 5672 struct perf_event_context *task_ctx;
60313ebe
PZ
5673
5674 struct {
5675 struct perf_event_header header;
5676
5677 u32 pid;
5678 u32 ppid;
9f498cc5
PZ
5679 u32 tid;
5680 u32 ptid;
393b2ad8 5681 u64 time;
cdd6c482 5682 } event_id;
60313ebe
PZ
5683};
5684
67516844
JO
5685static int perf_event_task_match(struct perf_event *event)
5686{
13d7a241
SE
5687 return event->attr.comm || event->attr.mmap ||
5688 event->attr.mmap2 || event->attr.mmap_data ||
5689 event->attr.task;
67516844
JO
5690}
5691
cdd6c482 5692static void perf_event_task_output(struct perf_event *event,
52d857a8 5693 void *data)
60313ebe 5694{
52d857a8 5695 struct perf_task_event *task_event = data;
60313ebe 5696 struct perf_output_handle handle;
c980d109 5697 struct perf_sample_data sample;
9f498cc5 5698 struct task_struct *task = task_event->task;
c980d109 5699 int ret, size = task_event->event_id.header.size;
8bb39f9a 5700
67516844
JO
5701 if (!perf_event_task_match(event))
5702 return;
5703
c980d109 5704 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5705
c980d109 5706 ret = perf_output_begin(&handle, event,
a7ac67ea 5707 task_event->event_id.header.size);
ef60777c 5708 if (ret)
c980d109 5709 goto out;
60313ebe 5710
cdd6c482
IM
5711 task_event->event_id.pid = perf_event_pid(event, task);
5712 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5713
cdd6c482
IM
5714 task_event->event_id.tid = perf_event_tid(event, task);
5715 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5716
34f43927
PZ
5717 task_event->event_id.time = perf_event_clock(event);
5718
cdd6c482 5719 perf_output_put(&handle, task_event->event_id);
393b2ad8 5720
c980d109
ACM
5721 perf_event__output_id_sample(event, &handle, &sample);
5722
60313ebe 5723 perf_output_end(&handle);
c980d109
ACM
5724out:
5725 task_event->event_id.header.size = size;
60313ebe
PZ
5726}
5727
cdd6c482
IM
5728static void perf_event_task(struct task_struct *task,
5729 struct perf_event_context *task_ctx,
3a80b4a3 5730 int new)
60313ebe 5731{
9f498cc5 5732 struct perf_task_event task_event;
60313ebe 5733
cdd6c482
IM
5734 if (!atomic_read(&nr_comm_events) &&
5735 !atomic_read(&nr_mmap_events) &&
5736 !atomic_read(&nr_task_events))
60313ebe
PZ
5737 return;
5738
9f498cc5 5739 task_event = (struct perf_task_event){
3a80b4a3
PZ
5740 .task = task,
5741 .task_ctx = task_ctx,
cdd6c482 5742 .event_id = {
60313ebe 5743 .header = {
cdd6c482 5744 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5745 .misc = 0,
cdd6c482 5746 .size = sizeof(task_event.event_id),
60313ebe 5747 },
573402db
PZ
5748 /* .pid */
5749 /* .ppid */
9f498cc5
PZ
5750 /* .tid */
5751 /* .ptid */
34f43927 5752 /* .time */
60313ebe
PZ
5753 },
5754 };
5755
67516844 5756 perf_event_aux(perf_event_task_output,
52d857a8
JO
5757 &task_event,
5758 task_ctx);
9f498cc5
PZ
5759}
5760
cdd6c482 5761void perf_event_fork(struct task_struct *task)
9f498cc5 5762{
cdd6c482 5763 perf_event_task(task, NULL, 1);
60313ebe
PZ
5764}
5765
8d1b2d93
PZ
5766/*
5767 * comm tracking
5768 */
5769
5770struct perf_comm_event {
22a4f650
IM
5771 struct task_struct *task;
5772 char *comm;
8d1b2d93
PZ
5773 int comm_size;
5774
5775 struct {
5776 struct perf_event_header header;
5777
5778 u32 pid;
5779 u32 tid;
cdd6c482 5780 } event_id;
8d1b2d93
PZ
5781};
5782
67516844
JO
5783static int perf_event_comm_match(struct perf_event *event)
5784{
5785 return event->attr.comm;
5786}
5787
cdd6c482 5788static void perf_event_comm_output(struct perf_event *event,
52d857a8 5789 void *data)
8d1b2d93 5790{
52d857a8 5791 struct perf_comm_event *comm_event = data;
8d1b2d93 5792 struct perf_output_handle handle;
c980d109 5793 struct perf_sample_data sample;
cdd6c482 5794 int size = comm_event->event_id.header.size;
c980d109
ACM
5795 int ret;
5796
67516844
JO
5797 if (!perf_event_comm_match(event))
5798 return;
5799
c980d109
ACM
5800 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5801 ret = perf_output_begin(&handle, event,
a7ac67ea 5802 comm_event->event_id.header.size);
8d1b2d93
PZ
5803
5804 if (ret)
c980d109 5805 goto out;
8d1b2d93 5806
cdd6c482
IM
5807 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5808 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5809
cdd6c482 5810 perf_output_put(&handle, comm_event->event_id);
76369139 5811 __output_copy(&handle, comm_event->comm,
8d1b2d93 5812 comm_event->comm_size);
c980d109
ACM
5813
5814 perf_event__output_id_sample(event, &handle, &sample);
5815
8d1b2d93 5816 perf_output_end(&handle);
c980d109
ACM
5817out:
5818 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5819}
5820
cdd6c482 5821static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5822{
413ee3b4 5823 char comm[TASK_COMM_LEN];
8d1b2d93 5824 unsigned int size;
8d1b2d93 5825
413ee3b4 5826 memset(comm, 0, sizeof(comm));
96b02d78 5827 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5828 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5829
5830 comm_event->comm = comm;
5831 comm_event->comm_size = size;
5832
cdd6c482 5833 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5834
67516844 5835 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5836 comm_event,
5837 NULL);
8d1b2d93
PZ
5838}
5839
82b89778 5840void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5841{
9ee318a7
PZ
5842 struct perf_comm_event comm_event;
5843
cdd6c482 5844 if (!atomic_read(&nr_comm_events))
9ee318a7 5845 return;
a63eaf34 5846
9ee318a7 5847 comm_event = (struct perf_comm_event){
8d1b2d93 5848 .task = task,
573402db
PZ
5849 /* .comm */
5850 /* .comm_size */
cdd6c482 5851 .event_id = {
573402db 5852 .header = {
cdd6c482 5853 .type = PERF_RECORD_COMM,
82b89778 5854 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5855 /* .size */
5856 },
5857 /* .pid */
5858 /* .tid */
8d1b2d93
PZ
5859 },
5860 };
5861
cdd6c482 5862 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5863}
5864
0a4a9391
PZ
5865/*
5866 * mmap tracking
5867 */
5868
5869struct perf_mmap_event {
089dd79d
PZ
5870 struct vm_area_struct *vma;
5871
5872 const char *file_name;
5873 int file_size;
13d7a241
SE
5874 int maj, min;
5875 u64 ino;
5876 u64 ino_generation;
f972eb63 5877 u32 prot, flags;
0a4a9391
PZ
5878
5879 struct {
5880 struct perf_event_header header;
5881
5882 u32 pid;
5883 u32 tid;
5884 u64 start;
5885 u64 len;
5886 u64 pgoff;
cdd6c482 5887 } event_id;
0a4a9391
PZ
5888};
5889
67516844
JO
5890static int perf_event_mmap_match(struct perf_event *event,
5891 void *data)
5892{
5893 struct perf_mmap_event *mmap_event = data;
5894 struct vm_area_struct *vma = mmap_event->vma;
5895 int executable = vma->vm_flags & VM_EXEC;
5896
5897 return (!executable && event->attr.mmap_data) ||
13d7a241 5898 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5899}
5900
cdd6c482 5901static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5902 void *data)
0a4a9391 5903{
52d857a8 5904 struct perf_mmap_event *mmap_event = data;
0a4a9391 5905 struct perf_output_handle handle;
c980d109 5906 struct perf_sample_data sample;
cdd6c482 5907 int size = mmap_event->event_id.header.size;
c980d109 5908 int ret;
0a4a9391 5909
67516844
JO
5910 if (!perf_event_mmap_match(event, data))
5911 return;
5912
13d7a241
SE
5913 if (event->attr.mmap2) {
5914 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5915 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5916 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5917 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5918 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5919 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5920 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5921 }
5922
c980d109
ACM
5923 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5924 ret = perf_output_begin(&handle, event,
a7ac67ea 5925 mmap_event->event_id.header.size);
0a4a9391 5926 if (ret)
c980d109 5927 goto out;
0a4a9391 5928
cdd6c482
IM
5929 mmap_event->event_id.pid = perf_event_pid(event, current);
5930 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5931
cdd6c482 5932 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5933
5934 if (event->attr.mmap2) {
5935 perf_output_put(&handle, mmap_event->maj);
5936 perf_output_put(&handle, mmap_event->min);
5937 perf_output_put(&handle, mmap_event->ino);
5938 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5939 perf_output_put(&handle, mmap_event->prot);
5940 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5941 }
5942
76369139 5943 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5944 mmap_event->file_size);
c980d109
ACM
5945
5946 perf_event__output_id_sample(event, &handle, &sample);
5947
78d613eb 5948 perf_output_end(&handle);
c980d109
ACM
5949out:
5950 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5951}
5952
cdd6c482 5953static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5954{
089dd79d
PZ
5955 struct vm_area_struct *vma = mmap_event->vma;
5956 struct file *file = vma->vm_file;
13d7a241
SE
5957 int maj = 0, min = 0;
5958 u64 ino = 0, gen = 0;
f972eb63 5959 u32 prot = 0, flags = 0;
0a4a9391
PZ
5960 unsigned int size;
5961 char tmp[16];
5962 char *buf = NULL;
2c42cfbf 5963 char *name;
413ee3b4 5964
0a4a9391 5965 if (file) {
13d7a241
SE
5966 struct inode *inode;
5967 dev_t dev;
3ea2f2b9 5968
2c42cfbf 5969 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5970 if (!buf) {
c7e548b4
ON
5971 name = "//enomem";
5972 goto cpy_name;
0a4a9391 5973 }
413ee3b4 5974 /*
3ea2f2b9 5975 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5976 * need to add enough zero bytes after the string to handle
5977 * the 64bit alignment we do later.
5978 */
9bf39ab2 5979 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5980 if (IS_ERR(name)) {
c7e548b4
ON
5981 name = "//toolong";
5982 goto cpy_name;
0a4a9391 5983 }
13d7a241
SE
5984 inode = file_inode(vma->vm_file);
5985 dev = inode->i_sb->s_dev;
5986 ino = inode->i_ino;
5987 gen = inode->i_generation;
5988 maj = MAJOR(dev);
5989 min = MINOR(dev);
f972eb63
PZ
5990
5991 if (vma->vm_flags & VM_READ)
5992 prot |= PROT_READ;
5993 if (vma->vm_flags & VM_WRITE)
5994 prot |= PROT_WRITE;
5995 if (vma->vm_flags & VM_EXEC)
5996 prot |= PROT_EXEC;
5997
5998 if (vma->vm_flags & VM_MAYSHARE)
5999 flags = MAP_SHARED;
6000 else
6001 flags = MAP_PRIVATE;
6002
6003 if (vma->vm_flags & VM_DENYWRITE)
6004 flags |= MAP_DENYWRITE;
6005 if (vma->vm_flags & VM_MAYEXEC)
6006 flags |= MAP_EXECUTABLE;
6007 if (vma->vm_flags & VM_LOCKED)
6008 flags |= MAP_LOCKED;
6009 if (vma->vm_flags & VM_HUGETLB)
6010 flags |= MAP_HUGETLB;
6011
c7e548b4 6012 goto got_name;
0a4a9391 6013 } else {
fbe26abe
JO
6014 if (vma->vm_ops && vma->vm_ops->name) {
6015 name = (char *) vma->vm_ops->name(vma);
6016 if (name)
6017 goto cpy_name;
6018 }
6019
2c42cfbf 6020 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6021 if (name)
6022 goto cpy_name;
089dd79d 6023
32c5fb7e 6024 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6025 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6026 name = "[heap]";
6027 goto cpy_name;
32c5fb7e
ON
6028 }
6029 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6030 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6031 name = "[stack]";
6032 goto cpy_name;
089dd79d
PZ
6033 }
6034
c7e548b4
ON
6035 name = "//anon";
6036 goto cpy_name;
0a4a9391
PZ
6037 }
6038
c7e548b4
ON
6039cpy_name:
6040 strlcpy(tmp, name, sizeof(tmp));
6041 name = tmp;
0a4a9391 6042got_name:
2c42cfbf
PZ
6043 /*
6044 * Since our buffer works in 8 byte units we need to align our string
6045 * size to a multiple of 8. However, we must guarantee the tail end is
6046 * zero'd out to avoid leaking random bits to userspace.
6047 */
6048 size = strlen(name)+1;
6049 while (!IS_ALIGNED(size, sizeof(u64)))
6050 name[size++] = '\0';
0a4a9391
PZ
6051
6052 mmap_event->file_name = name;
6053 mmap_event->file_size = size;
13d7a241
SE
6054 mmap_event->maj = maj;
6055 mmap_event->min = min;
6056 mmap_event->ino = ino;
6057 mmap_event->ino_generation = gen;
f972eb63
PZ
6058 mmap_event->prot = prot;
6059 mmap_event->flags = flags;
0a4a9391 6060
2fe85427
SE
6061 if (!(vma->vm_flags & VM_EXEC))
6062 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6063
cdd6c482 6064 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6065
67516844 6066 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6067 mmap_event,
6068 NULL);
665c2142 6069
0a4a9391
PZ
6070 kfree(buf);
6071}
6072
3af9e859 6073void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6074{
9ee318a7
PZ
6075 struct perf_mmap_event mmap_event;
6076
cdd6c482 6077 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6078 return;
6079
6080 mmap_event = (struct perf_mmap_event){
089dd79d 6081 .vma = vma,
573402db
PZ
6082 /* .file_name */
6083 /* .file_size */
cdd6c482 6084 .event_id = {
573402db 6085 .header = {
cdd6c482 6086 .type = PERF_RECORD_MMAP,
39447b38 6087 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6088 /* .size */
6089 },
6090 /* .pid */
6091 /* .tid */
089dd79d
PZ
6092 .start = vma->vm_start,
6093 .len = vma->vm_end - vma->vm_start,
3a0304e9 6094 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6095 },
13d7a241
SE
6096 /* .maj (attr_mmap2 only) */
6097 /* .min (attr_mmap2 only) */
6098 /* .ino (attr_mmap2 only) */
6099 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6100 /* .prot (attr_mmap2 only) */
6101 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6102 };
6103
cdd6c482 6104 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6105}
6106
68db7e98
AS
6107void perf_event_aux_event(struct perf_event *event, unsigned long head,
6108 unsigned long size, u64 flags)
6109{
6110 struct perf_output_handle handle;
6111 struct perf_sample_data sample;
6112 struct perf_aux_event {
6113 struct perf_event_header header;
6114 u64 offset;
6115 u64 size;
6116 u64 flags;
6117 } rec = {
6118 .header = {
6119 .type = PERF_RECORD_AUX,
6120 .misc = 0,
6121 .size = sizeof(rec),
6122 },
6123 .offset = head,
6124 .size = size,
6125 .flags = flags,
6126 };
6127 int ret;
6128
6129 perf_event_header__init_id(&rec.header, &sample, event);
6130 ret = perf_output_begin(&handle, event, rec.header.size);
6131
6132 if (ret)
6133 return;
6134
6135 perf_output_put(&handle, rec);
6136 perf_event__output_id_sample(event, &handle, &sample);
6137
6138 perf_output_end(&handle);
6139}
6140
f38b0dbb
KL
6141/*
6142 * Lost/dropped samples logging
6143 */
6144void perf_log_lost_samples(struct perf_event *event, u64 lost)
6145{
6146 struct perf_output_handle handle;
6147 struct perf_sample_data sample;
6148 int ret;
6149
6150 struct {
6151 struct perf_event_header header;
6152 u64 lost;
6153 } lost_samples_event = {
6154 .header = {
6155 .type = PERF_RECORD_LOST_SAMPLES,
6156 .misc = 0,
6157 .size = sizeof(lost_samples_event),
6158 },
6159 .lost = lost,
6160 };
6161
6162 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6163
6164 ret = perf_output_begin(&handle, event,
6165 lost_samples_event.header.size);
6166 if (ret)
6167 return;
6168
6169 perf_output_put(&handle, lost_samples_event);
6170 perf_event__output_id_sample(event, &handle, &sample);
6171 perf_output_end(&handle);
6172}
6173
45ac1403
AH
6174/*
6175 * context_switch tracking
6176 */
6177
6178struct perf_switch_event {
6179 struct task_struct *task;
6180 struct task_struct *next_prev;
6181
6182 struct {
6183 struct perf_event_header header;
6184 u32 next_prev_pid;
6185 u32 next_prev_tid;
6186 } event_id;
6187};
6188
6189static int perf_event_switch_match(struct perf_event *event)
6190{
6191 return event->attr.context_switch;
6192}
6193
6194static void perf_event_switch_output(struct perf_event *event, void *data)
6195{
6196 struct perf_switch_event *se = data;
6197 struct perf_output_handle handle;
6198 struct perf_sample_data sample;
6199 int ret;
6200
6201 if (!perf_event_switch_match(event))
6202 return;
6203
6204 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6205 if (event->ctx->task) {
6206 se->event_id.header.type = PERF_RECORD_SWITCH;
6207 se->event_id.header.size = sizeof(se->event_id.header);
6208 } else {
6209 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6210 se->event_id.header.size = sizeof(se->event_id);
6211 se->event_id.next_prev_pid =
6212 perf_event_pid(event, se->next_prev);
6213 se->event_id.next_prev_tid =
6214 perf_event_tid(event, se->next_prev);
6215 }
6216
6217 perf_event_header__init_id(&se->event_id.header, &sample, event);
6218
6219 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6220 if (ret)
6221 return;
6222
6223 if (event->ctx->task)
6224 perf_output_put(&handle, se->event_id.header);
6225 else
6226 perf_output_put(&handle, se->event_id);
6227
6228 perf_event__output_id_sample(event, &handle, &sample);
6229
6230 perf_output_end(&handle);
6231}
6232
6233static void perf_event_switch(struct task_struct *task,
6234 struct task_struct *next_prev, bool sched_in)
6235{
6236 struct perf_switch_event switch_event;
6237
6238 /* N.B. caller checks nr_switch_events != 0 */
6239
6240 switch_event = (struct perf_switch_event){
6241 .task = task,
6242 .next_prev = next_prev,
6243 .event_id = {
6244 .header = {
6245 /* .type */
6246 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6247 /* .size */
6248 },
6249 /* .next_prev_pid */
6250 /* .next_prev_tid */
6251 },
6252 };
6253
6254 perf_event_aux(perf_event_switch_output,
6255 &switch_event,
6256 NULL);
6257}
6258
a78ac325
PZ
6259/*
6260 * IRQ throttle logging
6261 */
6262
cdd6c482 6263static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6264{
6265 struct perf_output_handle handle;
c980d109 6266 struct perf_sample_data sample;
a78ac325
PZ
6267 int ret;
6268
6269 struct {
6270 struct perf_event_header header;
6271 u64 time;
cca3f454 6272 u64 id;
7f453c24 6273 u64 stream_id;
a78ac325
PZ
6274 } throttle_event = {
6275 .header = {
cdd6c482 6276 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6277 .misc = 0,
6278 .size = sizeof(throttle_event),
6279 },
34f43927 6280 .time = perf_event_clock(event),
cdd6c482
IM
6281 .id = primary_event_id(event),
6282 .stream_id = event->id,
a78ac325
PZ
6283 };
6284
966ee4d6 6285 if (enable)
cdd6c482 6286 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6287
c980d109
ACM
6288 perf_event_header__init_id(&throttle_event.header, &sample, event);
6289
6290 ret = perf_output_begin(&handle, event,
a7ac67ea 6291 throttle_event.header.size);
a78ac325
PZ
6292 if (ret)
6293 return;
6294
6295 perf_output_put(&handle, throttle_event);
c980d109 6296 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6297 perf_output_end(&handle);
6298}
6299
ec0d7729
AS
6300static void perf_log_itrace_start(struct perf_event *event)
6301{
6302 struct perf_output_handle handle;
6303 struct perf_sample_data sample;
6304 struct perf_aux_event {
6305 struct perf_event_header header;
6306 u32 pid;
6307 u32 tid;
6308 } rec;
6309 int ret;
6310
6311 if (event->parent)
6312 event = event->parent;
6313
6314 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6315 event->hw.itrace_started)
6316 return;
6317
ec0d7729
AS
6318 rec.header.type = PERF_RECORD_ITRACE_START;
6319 rec.header.misc = 0;
6320 rec.header.size = sizeof(rec);
6321 rec.pid = perf_event_pid(event, current);
6322 rec.tid = perf_event_tid(event, current);
6323
6324 perf_event_header__init_id(&rec.header, &sample, event);
6325 ret = perf_output_begin(&handle, event, rec.header.size);
6326
6327 if (ret)
6328 return;
6329
6330 perf_output_put(&handle, rec);
6331 perf_event__output_id_sample(event, &handle, &sample);
6332
6333 perf_output_end(&handle);
6334}
6335
f6c7d5fe 6336/*
cdd6c482 6337 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6338 */
6339
a8b0ca17 6340static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6341 int throttle, struct perf_sample_data *data,
6342 struct pt_regs *regs)
f6c7d5fe 6343{
cdd6c482
IM
6344 int events = atomic_read(&event->event_limit);
6345 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6346 u64 seq;
79f14641
PZ
6347 int ret = 0;
6348
96398826
PZ
6349 /*
6350 * Non-sampling counters might still use the PMI to fold short
6351 * hardware counters, ignore those.
6352 */
6353 if (unlikely(!is_sampling_event(event)))
6354 return 0;
6355
e050e3f0
SE
6356 seq = __this_cpu_read(perf_throttled_seq);
6357 if (seq != hwc->interrupts_seq) {
6358 hwc->interrupts_seq = seq;
6359 hwc->interrupts = 1;
6360 } else {
6361 hwc->interrupts++;
6362 if (unlikely(throttle
6363 && hwc->interrupts >= max_samples_per_tick)) {
6364 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6365 hwc->interrupts = MAX_INTERRUPTS;
6366 perf_log_throttle(event, 0);
d84153d6 6367 tick_nohz_full_kick();
a78ac325
PZ
6368 ret = 1;
6369 }
e050e3f0 6370 }
60db5e09 6371
cdd6c482 6372 if (event->attr.freq) {
def0a9b2 6373 u64 now = perf_clock();
abd50713 6374 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6375
abd50713 6376 hwc->freq_time_stamp = now;
bd2b5b12 6377
abd50713 6378 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6379 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6380 }
6381
2023b359
PZ
6382 /*
6383 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6384 * events
2023b359
PZ
6385 */
6386
cdd6c482
IM
6387 event->pending_kill = POLL_IN;
6388 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6389 ret = 1;
cdd6c482 6390 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6391 event->pending_disable = 1;
6392 irq_work_queue(&event->pending);
79f14641
PZ
6393 }
6394
453f19ee 6395 if (event->overflow_handler)
a8b0ca17 6396 event->overflow_handler(event, data, regs);
453f19ee 6397 else
a8b0ca17 6398 perf_event_output(event, data, regs);
453f19ee 6399
fed66e2c 6400 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6401 event->pending_wakeup = 1;
6402 irq_work_queue(&event->pending);
f506b3dc
PZ
6403 }
6404
79f14641 6405 return ret;
f6c7d5fe
PZ
6406}
6407
a8b0ca17 6408int perf_event_overflow(struct perf_event *event,
5622f295
MM
6409 struct perf_sample_data *data,
6410 struct pt_regs *regs)
850bc73f 6411{
a8b0ca17 6412 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6413}
6414
15dbf27c 6415/*
cdd6c482 6416 * Generic software event infrastructure
15dbf27c
PZ
6417 */
6418
b28ab83c
PZ
6419struct swevent_htable {
6420 struct swevent_hlist *swevent_hlist;
6421 struct mutex hlist_mutex;
6422 int hlist_refcount;
6423
6424 /* Recursion avoidance in each contexts */
6425 int recursion[PERF_NR_CONTEXTS];
6426};
6427
6428static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6429
7b4b6658 6430/*
cdd6c482
IM
6431 * We directly increment event->count and keep a second value in
6432 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6433 * is kept in the range [-sample_period, 0] so that we can use the
6434 * sign as trigger.
6435 */
6436
ab573844 6437u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6438{
cdd6c482 6439 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6440 u64 period = hwc->last_period;
6441 u64 nr, offset;
6442 s64 old, val;
6443
6444 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6445
6446again:
e7850595 6447 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6448 if (val < 0)
6449 return 0;
15dbf27c 6450
7b4b6658
PZ
6451 nr = div64_u64(period + val, period);
6452 offset = nr * period;
6453 val -= offset;
e7850595 6454 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6455 goto again;
15dbf27c 6456
7b4b6658 6457 return nr;
15dbf27c
PZ
6458}
6459
0cff784a 6460static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6461 struct perf_sample_data *data,
5622f295 6462 struct pt_regs *regs)
15dbf27c 6463{
cdd6c482 6464 struct hw_perf_event *hwc = &event->hw;
850bc73f 6465 int throttle = 0;
15dbf27c 6466
0cff784a
PZ
6467 if (!overflow)
6468 overflow = perf_swevent_set_period(event);
15dbf27c 6469
7b4b6658
PZ
6470 if (hwc->interrupts == MAX_INTERRUPTS)
6471 return;
15dbf27c 6472
7b4b6658 6473 for (; overflow; overflow--) {
a8b0ca17 6474 if (__perf_event_overflow(event, throttle,
5622f295 6475 data, regs)) {
7b4b6658
PZ
6476 /*
6477 * We inhibit the overflow from happening when
6478 * hwc->interrupts == MAX_INTERRUPTS.
6479 */
6480 break;
6481 }
cf450a73 6482 throttle = 1;
7b4b6658 6483 }
15dbf27c
PZ
6484}
6485
a4eaf7f1 6486static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6487 struct perf_sample_data *data,
5622f295 6488 struct pt_regs *regs)
7b4b6658 6489{
cdd6c482 6490 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6491
e7850595 6492 local64_add(nr, &event->count);
d6d020e9 6493
0cff784a
PZ
6494 if (!regs)
6495 return;
6496
6c7e550f 6497 if (!is_sampling_event(event))
7b4b6658 6498 return;
d6d020e9 6499
5d81e5cf
AV
6500 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6501 data->period = nr;
6502 return perf_swevent_overflow(event, 1, data, regs);
6503 } else
6504 data->period = event->hw.last_period;
6505
0cff784a 6506 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6507 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6508
e7850595 6509 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6510 return;
df1a132b 6511
a8b0ca17 6512 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6513}
6514
f5ffe02e
FW
6515static int perf_exclude_event(struct perf_event *event,
6516 struct pt_regs *regs)
6517{
a4eaf7f1 6518 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6519 return 1;
a4eaf7f1 6520
f5ffe02e
FW
6521 if (regs) {
6522 if (event->attr.exclude_user && user_mode(regs))
6523 return 1;
6524
6525 if (event->attr.exclude_kernel && !user_mode(regs))
6526 return 1;
6527 }
6528
6529 return 0;
6530}
6531
cdd6c482 6532static int perf_swevent_match(struct perf_event *event,
1c432d89 6533 enum perf_type_id type,
6fb2915d
LZ
6534 u32 event_id,
6535 struct perf_sample_data *data,
6536 struct pt_regs *regs)
15dbf27c 6537{
cdd6c482 6538 if (event->attr.type != type)
a21ca2ca 6539 return 0;
f5ffe02e 6540
cdd6c482 6541 if (event->attr.config != event_id)
15dbf27c
PZ
6542 return 0;
6543
f5ffe02e
FW
6544 if (perf_exclude_event(event, regs))
6545 return 0;
15dbf27c
PZ
6546
6547 return 1;
6548}
6549
76e1d904
FW
6550static inline u64 swevent_hash(u64 type, u32 event_id)
6551{
6552 u64 val = event_id | (type << 32);
6553
6554 return hash_64(val, SWEVENT_HLIST_BITS);
6555}
6556
49f135ed
FW
6557static inline struct hlist_head *
6558__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6559{
49f135ed
FW
6560 u64 hash = swevent_hash(type, event_id);
6561
6562 return &hlist->heads[hash];
6563}
76e1d904 6564
49f135ed
FW
6565/* For the read side: events when they trigger */
6566static inline struct hlist_head *
b28ab83c 6567find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6568{
6569 struct swevent_hlist *hlist;
76e1d904 6570
b28ab83c 6571 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6572 if (!hlist)
6573 return NULL;
6574
49f135ed
FW
6575 return __find_swevent_head(hlist, type, event_id);
6576}
6577
6578/* For the event head insertion and removal in the hlist */
6579static inline struct hlist_head *
b28ab83c 6580find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6581{
6582 struct swevent_hlist *hlist;
6583 u32 event_id = event->attr.config;
6584 u64 type = event->attr.type;
6585
6586 /*
6587 * Event scheduling is always serialized against hlist allocation
6588 * and release. Which makes the protected version suitable here.
6589 * The context lock guarantees that.
6590 */
b28ab83c 6591 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6592 lockdep_is_held(&event->ctx->lock));
6593 if (!hlist)
6594 return NULL;
6595
6596 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6597}
6598
6599static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6600 u64 nr,
76e1d904
FW
6601 struct perf_sample_data *data,
6602 struct pt_regs *regs)
15dbf27c 6603{
4a32fea9 6604 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6605 struct perf_event *event;
76e1d904 6606 struct hlist_head *head;
15dbf27c 6607
76e1d904 6608 rcu_read_lock();
b28ab83c 6609 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6610 if (!head)
6611 goto end;
6612
b67bfe0d 6613 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6614 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6615 perf_swevent_event(event, nr, data, regs);
15dbf27c 6616 }
76e1d904
FW
6617end:
6618 rcu_read_unlock();
15dbf27c
PZ
6619}
6620
86038c5e
PZI
6621DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6622
4ed7c92d 6623int perf_swevent_get_recursion_context(void)
96f6d444 6624{
4a32fea9 6625 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6626
b28ab83c 6627 return get_recursion_context(swhash->recursion);
96f6d444 6628}
645e8cc0 6629EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6630
fa9f90be 6631inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6632{
4a32fea9 6633 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6634
b28ab83c 6635 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6636}
15dbf27c 6637
86038c5e 6638void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6639{
a4234bfc 6640 struct perf_sample_data data;
4ed7c92d 6641
86038c5e 6642 if (WARN_ON_ONCE(!regs))
4ed7c92d 6643 return;
a4234bfc 6644
fd0d000b 6645 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6646 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6647}
6648
6649void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6650{
6651 int rctx;
6652
6653 preempt_disable_notrace();
6654 rctx = perf_swevent_get_recursion_context();
6655 if (unlikely(rctx < 0))
6656 goto fail;
6657
6658 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6659
6660 perf_swevent_put_recursion_context(rctx);
86038c5e 6661fail:
1c024eca 6662 preempt_enable_notrace();
b8e83514
PZ
6663}
6664
cdd6c482 6665static void perf_swevent_read(struct perf_event *event)
15dbf27c 6666{
15dbf27c
PZ
6667}
6668
a4eaf7f1 6669static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6670{
4a32fea9 6671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6672 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6673 struct hlist_head *head;
6674
6c7e550f 6675 if (is_sampling_event(event)) {
7b4b6658 6676 hwc->last_period = hwc->sample_period;
cdd6c482 6677 perf_swevent_set_period(event);
7b4b6658 6678 }
76e1d904 6679
a4eaf7f1
PZ
6680 hwc->state = !(flags & PERF_EF_START);
6681
b28ab83c 6682 head = find_swevent_head(swhash, event);
12ca6ad2 6683 if (WARN_ON_ONCE(!head))
76e1d904
FW
6684 return -EINVAL;
6685
6686 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6687 perf_event_update_userpage(event);
76e1d904 6688
15dbf27c
PZ
6689 return 0;
6690}
6691
a4eaf7f1 6692static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6693{
76e1d904 6694 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6695}
6696
a4eaf7f1 6697static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6698{
a4eaf7f1 6699 event->hw.state = 0;
d6d020e9 6700}
aa9c4c0f 6701
a4eaf7f1 6702static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6703{
a4eaf7f1 6704 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6705}
6706
49f135ed
FW
6707/* Deref the hlist from the update side */
6708static inline struct swevent_hlist *
b28ab83c 6709swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6710{
b28ab83c
PZ
6711 return rcu_dereference_protected(swhash->swevent_hlist,
6712 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6713}
6714
b28ab83c 6715static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6716{
b28ab83c 6717 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6718
49f135ed 6719 if (!hlist)
76e1d904
FW
6720 return;
6721
70691d4a 6722 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6723 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6724}
6725
6726static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6727{
b28ab83c 6728 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6729
b28ab83c 6730 mutex_lock(&swhash->hlist_mutex);
76e1d904 6731
b28ab83c
PZ
6732 if (!--swhash->hlist_refcount)
6733 swevent_hlist_release(swhash);
76e1d904 6734
b28ab83c 6735 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6736}
6737
6738static void swevent_hlist_put(struct perf_event *event)
6739{
6740 int cpu;
6741
76e1d904
FW
6742 for_each_possible_cpu(cpu)
6743 swevent_hlist_put_cpu(event, cpu);
6744}
6745
6746static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6747{
b28ab83c 6748 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6749 int err = 0;
6750
b28ab83c 6751 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6752 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6753 struct swevent_hlist *hlist;
6754
6755 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6756 if (!hlist) {
6757 err = -ENOMEM;
6758 goto exit;
6759 }
b28ab83c 6760 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6761 }
b28ab83c 6762 swhash->hlist_refcount++;
9ed6060d 6763exit:
b28ab83c 6764 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6765
6766 return err;
6767}
6768
6769static int swevent_hlist_get(struct perf_event *event)
6770{
6771 int err;
6772 int cpu, failed_cpu;
6773
76e1d904
FW
6774 get_online_cpus();
6775 for_each_possible_cpu(cpu) {
6776 err = swevent_hlist_get_cpu(event, cpu);
6777 if (err) {
6778 failed_cpu = cpu;
6779 goto fail;
6780 }
6781 }
6782 put_online_cpus();
6783
6784 return 0;
9ed6060d 6785fail:
76e1d904
FW
6786 for_each_possible_cpu(cpu) {
6787 if (cpu == failed_cpu)
6788 break;
6789 swevent_hlist_put_cpu(event, cpu);
6790 }
6791
6792 put_online_cpus();
6793 return err;
6794}
6795
c5905afb 6796struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6797
b0a873eb
PZ
6798static void sw_perf_event_destroy(struct perf_event *event)
6799{
6800 u64 event_id = event->attr.config;
95476b64 6801
b0a873eb
PZ
6802 WARN_ON(event->parent);
6803
c5905afb 6804 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6805 swevent_hlist_put(event);
6806}
6807
6808static int perf_swevent_init(struct perf_event *event)
6809{
8176cced 6810 u64 event_id = event->attr.config;
b0a873eb
PZ
6811
6812 if (event->attr.type != PERF_TYPE_SOFTWARE)
6813 return -ENOENT;
6814
2481c5fa
SE
6815 /*
6816 * no branch sampling for software events
6817 */
6818 if (has_branch_stack(event))
6819 return -EOPNOTSUPP;
6820
b0a873eb
PZ
6821 switch (event_id) {
6822 case PERF_COUNT_SW_CPU_CLOCK:
6823 case PERF_COUNT_SW_TASK_CLOCK:
6824 return -ENOENT;
6825
6826 default:
6827 break;
6828 }
6829
ce677831 6830 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6831 return -ENOENT;
6832
6833 if (!event->parent) {
6834 int err;
6835
6836 err = swevent_hlist_get(event);
6837 if (err)
6838 return err;
6839
c5905afb 6840 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6841 event->destroy = sw_perf_event_destroy;
6842 }
6843
6844 return 0;
6845}
6846
6847static struct pmu perf_swevent = {
89a1e187 6848 .task_ctx_nr = perf_sw_context,
95476b64 6849
34f43927
PZ
6850 .capabilities = PERF_PMU_CAP_NO_NMI,
6851
b0a873eb 6852 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6853 .add = perf_swevent_add,
6854 .del = perf_swevent_del,
6855 .start = perf_swevent_start,
6856 .stop = perf_swevent_stop,
1c024eca 6857 .read = perf_swevent_read,
1c024eca
PZ
6858};
6859
b0a873eb
PZ
6860#ifdef CONFIG_EVENT_TRACING
6861
1c024eca
PZ
6862static int perf_tp_filter_match(struct perf_event *event,
6863 struct perf_sample_data *data)
6864{
6865 void *record = data->raw->data;
6866
b71b437e
PZ
6867 /* only top level events have filters set */
6868 if (event->parent)
6869 event = event->parent;
6870
1c024eca
PZ
6871 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6872 return 1;
6873 return 0;
6874}
6875
6876static int perf_tp_event_match(struct perf_event *event,
6877 struct perf_sample_data *data,
6878 struct pt_regs *regs)
6879{
a0f7d0f7
FW
6880 if (event->hw.state & PERF_HES_STOPPED)
6881 return 0;
580d607c
PZ
6882 /*
6883 * All tracepoints are from kernel-space.
6884 */
6885 if (event->attr.exclude_kernel)
1c024eca
PZ
6886 return 0;
6887
6888 if (!perf_tp_filter_match(event, data))
6889 return 0;
6890
6891 return 1;
6892}
6893
6894void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6895 struct pt_regs *regs, struct hlist_head *head, int rctx,
6896 struct task_struct *task)
95476b64
FW
6897{
6898 struct perf_sample_data data;
1c024eca 6899 struct perf_event *event;
1c024eca 6900
95476b64
FW
6901 struct perf_raw_record raw = {
6902 .size = entry_size,
6903 .data = record,
6904 };
6905
fd0d000b 6906 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6907 data.raw = &raw;
6908
b67bfe0d 6909 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6910 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6911 perf_swevent_event(event, count, &data, regs);
4f41c013 6912 }
ecc55f84 6913
e6dab5ff
AV
6914 /*
6915 * If we got specified a target task, also iterate its context and
6916 * deliver this event there too.
6917 */
6918 if (task && task != current) {
6919 struct perf_event_context *ctx;
6920 struct trace_entry *entry = record;
6921
6922 rcu_read_lock();
6923 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6924 if (!ctx)
6925 goto unlock;
6926
6927 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6928 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6929 continue;
6930 if (event->attr.config != entry->type)
6931 continue;
6932 if (perf_tp_event_match(event, &data, regs))
6933 perf_swevent_event(event, count, &data, regs);
6934 }
6935unlock:
6936 rcu_read_unlock();
6937 }
6938
ecc55f84 6939 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6940}
6941EXPORT_SYMBOL_GPL(perf_tp_event);
6942
cdd6c482 6943static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6944{
1c024eca 6945 perf_trace_destroy(event);
e077df4f
PZ
6946}
6947
b0a873eb 6948static int perf_tp_event_init(struct perf_event *event)
e077df4f 6949{
76e1d904
FW
6950 int err;
6951
b0a873eb
PZ
6952 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6953 return -ENOENT;
6954
2481c5fa
SE
6955 /*
6956 * no branch sampling for tracepoint events
6957 */
6958 if (has_branch_stack(event))
6959 return -EOPNOTSUPP;
6960
1c024eca
PZ
6961 err = perf_trace_init(event);
6962 if (err)
b0a873eb 6963 return err;
e077df4f 6964
cdd6c482 6965 event->destroy = tp_perf_event_destroy;
e077df4f 6966
b0a873eb
PZ
6967 return 0;
6968}
6969
6970static struct pmu perf_tracepoint = {
89a1e187
PZ
6971 .task_ctx_nr = perf_sw_context,
6972
b0a873eb 6973 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6974 .add = perf_trace_add,
6975 .del = perf_trace_del,
6976 .start = perf_swevent_start,
6977 .stop = perf_swevent_stop,
b0a873eb 6978 .read = perf_swevent_read,
b0a873eb
PZ
6979};
6980
6981static inline void perf_tp_register(void)
6982{
2e80a82a 6983 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6984}
6fb2915d
LZ
6985
6986static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6987{
6988 char *filter_str;
6989 int ret;
6990
6991 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6992 return -EINVAL;
6993
6994 filter_str = strndup_user(arg, PAGE_SIZE);
6995 if (IS_ERR(filter_str))
6996 return PTR_ERR(filter_str);
6997
6998 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6999
7000 kfree(filter_str);
7001 return ret;
7002}
7003
7004static void perf_event_free_filter(struct perf_event *event)
7005{
7006 ftrace_profile_free_filter(event);
7007}
7008
2541517c
AS
7009static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7010{
7011 struct bpf_prog *prog;
7012
7013 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7014 return -EINVAL;
7015
7016 if (event->tp_event->prog)
7017 return -EEXIST;
7018
04a22fae
WN
7019 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7020 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7021 return -EINVAL;
7022
7023 prog = bpf_prog_get(prog_fd);
7024 if (IS_ERR(prog))
7025 return PTR_ERR(prog);
7026
6c373ca8 7027 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7028 /* valid fd, but invalid bpf program type */
7029 bpf_prog_put(prog);
7030 return -EINVAL;
7031 }
7032
7033 event->tp_event->prog = prog;
7034
7035 return 0;
7036}
7037
7038static void perf_event_free_bpf_prog(struct perf_event *event)
7039{
7040 struct bpf_prog *prog;
7041
7042 if (!event->tp_event)
7043 return;
7044
7045 prog = event->tp_event->prog;
7046 if (prog) {
7047 event->tp_event->prog = NULL;
7048 bpf_prog_put(prog);
7049 }
7050}
7051
e077df4f 7052#else
6fb2915d 7053
b0a873eb 7054static inline void perf_tp_register(void)
e077df4f 7055{
e077df4f 7056}
6fb2915d
LZ
7057
7058static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7059{
7060 return -ENOENT;
7061}
7062
7063static void perf_event_free_filter(struct perf_event *event)
7064{
7065}
7066
2541517c
AS
7067static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7068{
7069 return -ENOENT;
7070}
7071
7072static void perf_event_free_bpf_prog(struct perf_event *event)
7073{
7074}
07b139c8 7075#endif /* CONFIG_EVENT_TRACING */
e077df4f 7076
24f1e32c 7077#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7078void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7079{
f5ffe02e
FW
7080 struct perf_sample_data sample;
7081 struct pt_regs *regs = data;
7082
fd0d000b 7083 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7084
a4eaf7f1 7085 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7086 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7087}
7088#endif
7089
b0a873eb
PZ
7090/*
7091 * hrtimer based swevent callback
7092 */
f29ac756 7093
b0a873eb 7094static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7095{
b0a873eb
PZ
7096 enum hrtimer_restart ret = HRTIMER_RESTART;
7097 struct perf_sample_data data;
7098 struct pt_regs *regs;
7099 struct perf_event *event;
7100 u64 period;
f29ac756 7101
b0a873eb 7102 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7103
7104 if (event->state != PERF_EVENT_STATE_ACTIVE)
7105 return HRTIMER_NORESTART;
7106
b0a873eb 7107 event->pmu->read(event);
f344011c 7108
fd0d000b 7109 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7110 regs = get_irq_regs();
7111
7112 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7113 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7114 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7115 ret = HRTIMER_NORESTART;
7116 }
24f1e32c 7117
b0a873eb
PZ
7118 period = max_t(u64, 10000, event->hw.sample_period);
7119 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7120
b0a873eb 7121 return ret;
f29ac756
PZ
7122}
7123
b0a873eb 7124static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7125{
b0a873eb 7126 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7127 s64 period;
7128
7129 if (!is_sampling_event(event))
7130 return;
f5ffe02e 7131
5d508e82
FBH
7132 period = local64_read(&hwc->period_left);
7133 if (period) {
7134 if (period < 0)
7135 period = 10000;
fa407f35 7136
5d508e82
FBH
7137 local64_set(&hwc->period_left, 0);
7138 } else {
7139 period = max_t(u64, 10000, hwc->sample_period);
7140 }
3497d206
TG
7141 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7142 HRTIMER_MODE_REL_PINNED);
24f1e32c 7143}
b0a873eb
PZ
7144
7145static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7146{
b0a873eb
PZ
7147 struct hw_perf_event *hwc = &event->hw;
7148
6c7e550f 7149 if (is_sampling_event(event)) {
b0a873eb 7150 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7151 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7152
7153 hrtimer_cancel(&hwc->hrtimer);
7154 }
24f1e32c
FW
7155}
7156
ba3dd36c
PZ
7157static void perf_swevent_init_hrtimer(struct perf_event *event)
7158{
7159 struct hw_perf_event *hwc = &event->hw;
7160
7161 if (!is_sampling_event(event))
7162 return;
7163
7164 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7165 hwc->hrtimer.function = perf_swevent_hrtimer;
7166
7167 /*
7168 * Since hrtimers have a fixed rate, we can do a static freq->period
7169 * mapping and avoid the whole period adjust feedback stuff.
7170 */
7171 if (event->attr.freq) {
7172 long freq = event->attr.sample_freq;
7173
7174 event->attr.sample_period = NSEC_PER_SEC / freq;
7175 hwc->sample_period = event->attr.sample_period;
7176 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7177 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7178 event->attr.freq = 0;
7179 }
7180}
7181
b0a873eb
PZ
7182/*
7183 * Software event: cpu wall time clock
7184 */
7185
7186static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7187{
b0a873eb
PZ
7188 s64 prev;
7189 u64 now;
7190
a4eaf7f1 7191 now = local_clock();
b0a873eb
PZ
7192 prev = local64_xchg(&event->hw.prev_count, now);
7193 local64_add(now - prev, &event->count);
24f1e32c 7194}
24f1e32c 7195
a4eaf7f1 7196static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7197{
a4eaf7f1 7198 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7199 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7200}
7201
a4eaf7f1 7202static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7203{
b0a873eb
PZ
7204 perf_swevent_cancel_hrtimer(event);
7205 cpu_clock_event_update(event);
7206}
f29ac756 7207
a4eaf7f1
PZ
7208static int cpu_clock_event_add(struct perf_event *event, int flags)
7209{
7210 if (flags & PERF_EF_START)
7211 cpu_clock_event_start(event, flags);
6a694a60 7212 perf_event_update_userpage(event);
a4eaf7f1
PZ
7213
7214 return 0;
7215}
7216
7217static void cpu_clock_event_del(struct perf_event *event, int flags)
7218{
7219 cpu_clock_event_stop(event, flags);
7220}
7221
b0a873eb
PZ
7222static void cpu_clock_event_read(struct perf_event *event)
7223{
7224 cpu_clock_event_update(event);
7225}
f344011c 7226
b0a873eb
PZ
7227static int cpu_clock_event_init(struct perf_event *event)
7228{
7229 if (event->attr.type != PERF_TYPE_SOFTWARE)
7230 return -ENOENT;
7231
7232 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7233 return -ENOENT;
7234
2481c5fa
SE
7235 /*
7236 * no branch sampling for software events
7237 */
7238 if (has_branch_stack(event))
7239 return -EOPNOTSUPP;
7240
ba3dd36c
PZ
7241 perf_swevent_init_hrtimer(event);
7242
b0a873eb 7243 return 0;
f29ac756
PZ
7244}
7245
b0a873eb 7246static struct pmu perf_cpu_clock = {
89a1e187
PZ
7247 .task_ctx_nr = perf_sw_context,
7248
34f43927
PZ
7249 .capabilities = PERF_PMU_CAP_NO_NMI,
7250
b0a873eb 7251 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7252 .add = cpu_clock_event_add,
7253 .del = cpu_clock_event_del,
7254 .start = cpu_clock_event_start,
7255 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7256 .read = cpu_clock_event_read,
7257};
7258
7259/*
7260 * Software event: task time clock
7261 */
7262
7263static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7264{
b0a873eb
PZ
7265 u64 prev;
7266 s64 delta;
5c92d124 7267
b0a873eb
PZ
7268 prev = local64_xchg(&event->hw.prev_count, now);
7269 delta = now - prev;
7270 local64_add(delta, &event->count);
7271}
5c92d124 7272
a4eaf7f1 7273static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7274{
a4eaf7f1 7275 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7276 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7277}
7278
a4eaf7f1 7279static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7280{
7281 perf_swevent_cancel_hrtimer(event);
7282 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7283}
7284
7285static int task_clock_event_add(struct perf_event *event, int flags)
7286{
7287 if (flags & PERF_EF_START)
7288 task_clock_event_start(event, flags);
6a694a60 7289 perf_event_update_userpage(event);
b0a873eb 7290
a4eaf7f1
PZ
7291 return 0;
7292}
7293
7294static void task_clock_event_del(struct perf_event *event, int flags)
7295{
7296 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7297}
7298
7299static void task_clock_event_read(struct perf_event *event)
7300{
768a06e2
PZ
7301 u64 now = perf_clock();
7302 u64 delta = now - event->ctx->timestamp;
7303 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7304
7305 task_clock_event_update(event, time);
7306}
7307
7308static int task_clock_event_init(struct perf_event *event)
6fb2915d 7309{
b0a873eb
PZ
7310 if (event->attr.type != PERF_TYPE_SOFTWARE)
7311 return -ENOENT;
7312
7313 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7314 return -ENOENT;
7315
2481c5fa
SE
7316 /*
7317 * no branch sampling for software events
7318 */
7319 if (has_branch_stack(event))
7320 return -EOPNOTSUPP;
7321
ba3dd36c
PZ
7322 perf_swevent_init_hrtimer(event);
7323
b0a873eb 7324 return 0;
6fb2915d
LZ
7325}
7326
b0a873eb 7327static struct pmu perf_task_clock = {
89a1e187
PZ
7328 .task_ctx_nr = perf_sw_context,
7329
34f43927
PZ
7330 .capabilities = PERF_PMU_CAP_NO_NMI,
7331
b0a873eb 7332 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7333 .add = task_clock_event_add,
7334 .del = task_clock_event_del,
7335 .start = task_clock_event_start,
7336 .stop = task_clock_event_stop,
b0a873eb
PZ
7337 .read = task_clock_event_read,
7338};
6fb2915d 7339
ad5133b7 7340static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7341{
e077df4f 7342}
6fb2915d 7343
fbbe0701
SB
7344static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7345{
7346}
7347
ad5133b7 7348static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7349{
ad5133b7 7350 return 0;
6fb2915d
LZ
7351}
7352
18ab2cd3 7353static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7354
7355static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7356{
fbbe0701
SB
7357 __this_cpu_write(nop_txn_flags, flags);
7358
7359 if (flags & ~PERF_PMU_TXN_ADD)
7360 return;
7361
ad5133b7 7362 perf_pmu_disable(pmu);
6fb2915d
LZ
7363}
7364
ad5133b7
PZ
7365static int perf_pmu_commit_txn(struct pmu *pmu)
7366{
fbbe0701
SB
7367 unsigned int flags = __this_cpu_read(nop_txn_flags);
7368
7369 __this_cpu_write(nop_txn_flags, 0);
7370
7371 if (flags & ~PERF_PMU_TXN_ADD)
7372 return 0;
7373
ad5133b7
PZ
7374 perf_pmu_enable(pmu);
7375 return 0;
7376}
e077df4f 7377
ad5133b7 7378static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7379{
fbbe0701
SB
7380 unsigned int flags = __this_cpu_read(nop_txn_flags);
7381
7382 __this_cpu_write(nop_txn_flags, 0);
7383
7384 if (flags & ~PERF_PMU_TXN_ADD)
7385 return;
7386
ad5133b7 7387 perf_pmu_enable(pmu);
24f1e32c
FW
7388}
7389
35edc2a5
PZ
7390static int perf_event_idx_default(struct perf_event *event)
7391{
c719f560 7392 return 0;
35edc2a5
PZ
7393}
7394
8dc85d54
PZ
7395/*
7396 * Ensures all contexts with the same task_ctx_nr have the same
7397 * pmu_cpu_context too.
7398 */
9e317041 7399static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7400{
8dc85d54 7401 struct pmu *pmu;
b326e956 7402
8dc85d54
PZ
7403 if (ctxn < 0)
7404 return NULL;
24f1e32c 7405
8dc85d54
PZ
7406 list_for_each_entry(pmu, &pmus, entry) {
7407 if (pmu->task_ctx_nr == ctxn)
7408 return pmu->pmu_cpu_context;
7409 }
24f1e32c 7410
8dc85d54 7411 return NULL;
24f1e32c
FW
7412}
7413
51676957 7414static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7415{
51676957
PZ
7416 int cpu;
7417
7418 for_each_possible_cpu(cpu) {
7419 struct perf_cpu_context *cpuctx;
7420
7421 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7422
3f1f3320
PZ
7423 if (cpuctx->unique_pmu == old_pmu)
7424 cpuctx->unique_pmu = pmu;
51676957
PZ
7425 }
7426}
7427
7428static void free_pmu_context(struct pmu *pmu)
7429{
7430 struct pmu *i;
f5ffe02e 7431
8dc85d54 7432 mutex_lock(&pmus_lock);
0475f9ea 7433 /*
8dc85d54 7434 * Like a real lame refcount.
0475f9ea 7435 */
51676957
PZ
7436 list_for_each_entry(i, &pmus, entry) {
7437 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7438 update_pmu_context(i, pmu);
8dc85d54 7439 goto out;
51676957 7440 }
8dc85d54 7441 }
d6d020e9 7442
51676957 7443 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7444out:
7445 mutex_unlock(&pmus_lock);
24f1e32c 7446}
2e80a82a 7447static struct idr pmu_idr;
d6d020e9 7448
abe43400
PZ
7449static ssize_t
7450type_show(struct device *dev, struct device_attribute *attr, char *page)
7451{
7452 struct pmu *pmu = dev_get_drvdata(dev);
7453
7454 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7455}
90826ca7 7456static DEVICE_ATTR_RO(type);
abe43400 7457
62b85639
SE
7458static ssize_t
7459perf_event_mux_interval_ms_show(struct device *dev,
7460 struct device_attribute *attr,
7461 char *page)
7462{
7463 struct pmu *pmu = dev_get_drvdata(dev);
7464
7465 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7466}
7467
272325c4
PZ
7468static DEFINE_MUTEX(mux_interval_mutex);
7469
62b85639
SE
7470static ssize_t
7471perf_event_mux_interval_ms_store(struct device *dev,
7472 struct device_attribute *attr,
7473 const char *buf, size_t count)
7474{
7475 struct pmu *pmu = dev_get_drvdata(dev);
7476 int timer, cpu, ret;
7477
7478 ret = kstrtoint(buf, 0, &timer);
7479 if (ret)
7480 return ret;
7481
7482 if (timer < 1)
7483 return -EINVAL;
7484
7485 /* same value, noting to do */
7486 if (timer == pmu->hrtimer_interval_ms)
7487 return count;
7488
272325c4 7489 mutex_lock(&mux_interval_mutex);
62b85639
SE
7490 pmu->hrtimer_interval_ms = timer;
7491
7492 /* update all cpuctx for this PMU */
272325c4
PZ
7493 get_online_cpus();
7494 for_each_online_cpu(cpu) {
62b85639
SE
7495 struct perf_cpu_context *cpuctx;
7496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7497 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7498
272325c4
PZ
7499 cpu_function_call(cpu,
7500 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7501 }
272325c4
PZ
7502 put_online_cpus();
7503 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7504
7505 return count;
7506}
90826ca7 7507static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7508
90826ca7
GKH
7509static struct attribute *pmu_dev_attrs[] = {
7510 &dev_attr_type.attr,
7511 &dev_attr_perf_event_mux_interval_ms.attr,
7512 NULL,
abe43400 7513};
90826ca7 7514ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7515
7516static int pmu_bus_running;
7517static struct bus_type pmu_bus = {
7518 .name = "event_source",
90826ca7 7519 .dev_groups = pmu_dev_groups,
abe43400
PZ
7520};
7521
7522static void pmu_dev_release(struct device *dev)
7523{
7524 kfree(dev);
7525}
7526
7527static int pmu_dev_alloc(struct pmu *pmu)
7528{
7529 int ret = -ENOMEM;
7530
7531 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7532 if (!pmu->dev)
7533 goto out;
7534
0c9d42ed 7535 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7536 device_initialize(pmu->dev);
7537 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7538 if (ret)
7539 goto free_dev;
7540
7541 dev_set_drvdata(pmu->dev, pmu);
7542 pmu->dev->bus = &pmu_bus;
7543 pmu->dev->release = pmu_dev_release;
7544 ret = device_add(pmu->dev);
7545 if (ret)
7546 goto free_dev;
7547
7548out:
7549 return ret;
7550
7551free_dev:
7552 put_device(pmu->dev);
7553 goto out;
7554}
7555
547e9fd7 7556static struct lock_class_key cpuctx_mutex;
facc4307 7557static struct lock_class_key cpuctx_lock;
547e9fd7 7558
03d8e80b 7559int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7560{
108b02cf 7561 int cpu, ret;
24f1e32c 7562
b0a873eb 7563 mutex_lock(&pmus_lock);
33696fc0
PZ
7564 ret = -ENOMEM;
7565 pmu->pmu_disable_count = alloc_percpu(int);
7566 if (!pmu->pmu_disable_count)
7567 goto unlock;
f29ac756 7568
2e80a82a
PZ
7569 pmu->type = -1;
7570 if (!name)
7571 goto skip_type;
7572 pmu->name = name;
7573
7574 if (type < 0) {
0e9c3be2
TH
7575 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7576 if (type < 0) {
7577 ret = type;
2e80a82a
PZ
7578 goto free_pdc;
7579 }
7580 }
7581 pmu->type = type;
7582
abe43400
PZ
7583 if (pmu_bus_running) {
7584 ret = pmu_dev_alloc(pmu);
7585 if (ret)
7586 goto free_idr;
7587 }
7588
2e80a82a 7589skip_type:
8dc85d54
PZ
7590 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7591 if (pmu->pmu_cpu_context)
7592 goto got_cpu_context;
f29ac756 7593
c4814202 7594 ret = -ENOMEM;
108b02cf
PZ
7595 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7596 if (!pmu->pmu_cpu_context)
abe43400 7597 goto free_dev;
f344011c 7598
108b02cf
PZ
7599 for_each_possible_cpu(cpu) {
7600 struct perf_cpu_context *cpuctx;
7601
7602 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7603 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7604 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7605 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7606 cpuctx->ctx.pmu = pmu;
9e630205 7607
272325c4 7608 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7609
3f1f3320 7610 cpuctx->unique_pmu = pmu;
108b02cf 7611 }
76e1d904 7612
8dc85d54 7613got_cpu_context:
ad5133b7
PZ
7614 if (!pmu->start_txn) {
7615 if (pmu->pmu_enable) {
7616 /*
7617 * If we have pmu_enable/pmu_disable calls, install
7618 * transaction stubs that use that to try and batch
7619 * hardware accesses.
7620 */
7621 pmu->start_txn = perf_pmu_start_txn;
7622 pmu->commit_txn = perf_pmu_commit_txn;
7623 pmu->cancel_txn = perf_pmu_cancel_txn;
7624 } else {
fbbe0701 7625 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7626 pmu->commit_txn = perf_pmu_nop_int;
7627 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7628 }
5c92d124 7629 }
15dbf27c 7630
ad5133b7
PZ
7631 if (!pmu->pmu_enable) {
7632 pmu->pmu_enable = perf_pmu_nop_void;
7633 pmu->pmu_disable = perf_pmu_nop_void;
7634 }
7635
35edc2a5
PZ
7636 if (!pmu->event_idx)
7637 pmu->event_idx = perf_event_idx_default;
7638
b0a873eb 7639 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7640 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7641 ret = 0;
7642unlock:
b0a873eb
PZ
7643 mutex_unlock(&pmus_lock);
7644
33696fc0 7645 return ret;
108b02cf 7646
abe43400
PZ
7647free_dev:
7648 device_del(pmu->dev);
7649 put_device(pmu->dev);
7650
2e80a82a
PZ
7651free_idr:
7652 if (pmu->type >= PERF_TYPE_MAX)
7653 idr_remove(&pmu_idr, pmu->type);
7654
108b02cf
PZ
7655free_pdc:
7656 free_percpu(pmu->pmu_disable_count);
7657 goto unlock;
f29ac756 7658}
c464c76e 7659EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7660
b0a873eb 7661void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7662{
b0a873eb
PZ
7663 mutex_lock(&pmus_lock);
7664 list_del_rcu(&pmu->entry);
7665 mutex_unlock(&pmus_lock);
5c92d124 7666
0475f9ea 7667 /*
cde8e884
PZ
7668 * We dereference the pmu list under both SRCU and regular RCU, so
7669 * synchronize against both of those.
0475f9ea 7670 */
b0a873eb 7671 synchronize_srcu(&pmus_srcu);
cde8e884 7672 synchronize_rcu();
d6d020e9 7673
33696fc0 7674 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7675 if (pmu->type >= PERF_TYPE_MAX)
7676 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7677 device_del(pmu->dev);
7678 put_device(pmu->dev);
51676957 7679 free_pmu_context(pmu);
b0a873eb 7680}
c464c76e 7681EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7682
cc34b98b
MR
7683static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7684{
ccd41c86 7685 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7686 int ret;
7687
7688 if (!try_module_get(pmu->module))
7689 return -ENODEV;
ccd41c86
PZ
7690
7691 if (event->group_leader != event) {
8b10c5e2
PZ
7692 /*
7693 * This ctx->mutex can nest when we're called through
7694 * inheritance. See the perf_event_ctx_lock_nested() comment.
7695 */
7696 ctx = perf_event_ctx_lock_nested(event->group_leader,
7697 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7698 BUG_ON(!ctx);
7699 }
7700
cc34b98b
MR
7701 event->pmu = pmu;
7702 ret = pmu->event_init(event);
ccd41c86
PZ
7703
7704 if (ctx)
7705 perf_event_ctx_unlock(event->group_leader, ctx);
7706
cc34b98b
MR
7707 if (ret)
7708 module_put(pmu->module);
7709
7710 return ret;
7711}
7712
18ab2cd3 7713static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7714{
7715 struct pmu *pmu = NULL;
7716 int idx;
940c5b29 7717 int ret;
b0a873eb
PZ
7718
7719 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7720
7721 rcu_read_lock();
7722 pmu = idr_find(&pmu_idr, event->attr.type);
7723 rcu_read_unlock();
940c5b29 7724 if (pmu) {
cc34b98b 7725 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7726 if (ret)
7727 pmu = ERR_PTR(ret);
2e80a82a 7728 goto unlock;
940c5b29 7729 }
2e80a82a 7730
b0a873eb 7731 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7732 ret = perf_try_init_event(pmu, event);
b0a873eb 7733 if (!ret)
e5f4d339 7734 goto unlock;
76e1d904 7735
b0a873eb
PZ
7736 if (ret != -ENOENT) {
7737 pmu = ERR_PTR(ret);
e5f4d339 7738 goto unlock;
f344011c 7739 }
5c92d124 7740 }
e5f4d339
PZ
7741 pmu = ERR_PTR(-ENOENT);
7742unlock:
b0a873eb 7743 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7744
4aeb0b42 7745 return pmu;
5c92d124
IM
7746}
7747
4beb31f3
FW
7748static void account_event_cpu(struct perf_event *event, int cpu)
7749{
7750 if (event->parent)
7751 return;
7752
4beb31f3
FW
7753 if (is_cgroup_event(event))
7754 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7755}
7756
766d6c07
FW
7757static void account_event(struct perf_event *event)
7758{
25432ae9
PZ
7759 bool inc = false;
7760
4beb31f3
FW
7761 if (event->parent)
7762 return;
7763
766d6c07 7764 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7765 inc = true;
766d6c07
FW
7766 if (event->attr.mmap || event->attr.mmap_data)
7767 atomic_inc(&nr_mmap_events);
7768 if (event->attr.comm)
7769 atomic_inc(&nr_comm_events);
7770 if (event->attr.task)
7771 atomic_inc(&nr_task_events);
948b26b6
FW
7772 if (event->attr.freq) {
7773 if (atomic_inc_return(&nr_freq_events) == 1)
7774 tick_nohz_full_kick_all();
7775 }
45ac1403
AH
7776 if (event->attr.context_switch) {
7777 atomic_inc(&nr_switch_events);
25432ae9 7778 inc = true;
45ac1403 7779 }
4beb31f3 7780 if (has_branch_stack(event))
25432ae9 7781 inc = true;
4beb31f3 7782 if (is_cgroup_event(event))
25432ae9
PZ
7783 inc = true;
7784
7785 if (inc)
766d6c07 7786 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7787
7788 account_event_cpu(event, event->cpu);
766d6c07
FW
7789}
7790
0793a61d 7791/*
cdd6c482 7792 * Allocate and initialize a event structure
0793a61d 7793 */
cdd6c482 7794static struct perf_event *
c3f00c70 7795perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7796 struct task_struct *task,
7797 struct perf_event *group_leader,
7798 struct perf_event *parent_event,
4dc0da86 7799 perf_overflow_handler_t overflow_handler,
79dff51e 7800 void *context, int cgroup_fd)
0793a61d 7801{
51b0fe39 7802 struct pmu *pmu;
cdd6c482
IM
7803 struct perf_event *event;
7804 struct hw_perf_event *hwc;
90983b16 7805 long err = -EINVAL;
0793a61d 7806
66832eb4
ON
7807 if ((unsigned)cpu >= nr_cpu_ids) {
7808 if (!task || cpu != -1)
7809 return ERR_PTR(-EINVAL);
7810 }
7811
c3f00c70 7812 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7813 if (!event)
d5d2bc0d 7814 return ERR_PTR(-ENOMEM);
0793a61d 7815
04289bb9 7816 /*
cdd6c482 7817 * Single events are their own group leaders, with an
04289bb9
IM
7818 * empty sibling list:
7819 */
7820 if (!group_leader)
cdd6c482 7821 group_leader = event;
04289bb9 7822
cdd6c482
IM
7823 mutex_init(&event->child_mutex);
7824 INIT_LIST_HEAD(&event->child_list);
fccc714b 7825
cdd6c482
IM
7826 INIT_LIST_HEAD(&event->group_entry);
7827 INIT_LIST_HEAD(&event->event_entry);
7828 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7829 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7830 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7831 INIT_HLIST_NODE(&event->hlist_entry);
7832
10c6db11 7833
cdd6c482 7834 init_waitqueue_head(&event->waitq);
e360adbe 7835 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7836
cdd6c482 7837 mutex_init(&event->mmap_mutex);
7b732a75 7838
a6fa941d 7839 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7840 event->cpu = cpu;
7841 event->attr = *attr;
7842 event->group_leader = group_leader;
7843 event->pmu = NULL;
cdd6c482 7844 event->oncpu = -1;
a96bbc16 7845
cdd6c482 7846 event->parent = parent_event;
b84fbc9f 7847
17cf22c3 7848 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7849 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7850
cdd6c482 7851 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7852
d580ff86
PZ
7853 if (task) {
7854 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7855 /*
50f16a8b
PZ
7856 * XXX pmu::event_init needs to know what task to account to
7857 * and we cannot use the ctx information because we need the
7858 * pmu before we get a ctx.
d580ff86 7859 */
50f16a8b 7860 event->hw.target = task;
d580ff86
PZ
7861 }
7862
34f43927
PZ
7863 event->clock = &local_clock;
7864 if (parent_event)
7865 event->clock = parent_event->clock;
7866
4dc0da86 7867 if (!overflow_handler && parent_event) {
b326e956 7868 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7869 context = parent_event->overflow_handler_context;
7870 }
66832eb4 7871
b326e956 7872 event->overflow_handler = overflow_handler;
4dc0da86 7873 event->overflow_handler_context = context;
97eaf530 7874
0231bb53 7875 perf_event__state_init(event);
a86ed508 7876
4aeb0b42 7877 pmu = NULL;
b8e83514 7878
cdd6c482 7879 hwc = &event->hw;
bd2b5b12 7880 hwc->sample_period = attr->sample_period;
0d48696f 7881 if (attr->freq && attr->sample_freq)
bd2b5b12 7882 hwc->sample_period = 1;
eced1dfc 7883 hwc->last_period = hwc->sample_period;
bd2b5b12 7884
e7850595 7885 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7886
2023b359 7887 /*
cdd6c482 7888 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7889 */
3dab77fb 7890 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7891 goto err_ns;
a46a2300
YZ
7892
7893 if (!has_branch_stack(event))
7894 event->attr.branch_sample_type = 0;
2023b359 7895
79dff51e
MF
7896 if (cgroup_fd != -1) {
7897 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7898 if (err)
7899 goto err_ns;
7900 }
7901
b0a873eb 7902 pmu = perf_init_event(event);
4aeb0b42 7903 if (!pmu)
90983b16
FW
7904 goto err_ns;
7905 else if (IS_ERR(pmu)) {
4aeb0b42 7906 err = PTR_ERR(pmu);
90983b16 7907 goto err_ns;
621a01ea 7908 }
d5d2bc0d 7909
bed5b25a
AS
7910 err = exclusive_event_init(event);
7911 if (err)
7912 goto err_pmu;
7913
cdd6c482 7914 if (!event->parent) {
927c7a9e
FW
7915 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7916 err = get_callchain_buffers();
90983b16 7917 if (err)
bed5b25a 7918 goto err_per_task;
d010b332 7919 }
f344011c 7920 }
9ee318a7 7921
cdd6c482 7922 return event;
90983b16 7923
bed5b25a
AS
7924err_per_task:
7925 exclusive_event_destroy(event);
7926
90983b16
FW
7927err_pmu:
7928 if (event->destroy)
7929 event->destroy(event);
c464c76e 7930 module_put(pmu->module);
90983b16 7931err_ns:
79dff51e
MF
7932 if (is_cgroup_event(event))
7933 perf_detach_cgroup(event);
90983b16
FW
7934 if (event->ns)
7935 put_pid_ns(event->ns);
7936 kfree(event);
7937
7938 return ERR_PTR(err);
0793a61d
TG
7939}
7940
cdd6c482
IM
7941static int perf_copy_attr(struct perf_event_attr __user *uattr,
7942 struct perf_event_attr *attr)
974802ea 7943{
974802ea 7944 u32 size;
cdf8073d 7945 int ret;
974802ea
PZ
7946
7947 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7948 return -EFAULT;
7949
7950 /*
7951 * zero the full structure, so that a short copy will be nice.
7952 */
7953 memset(attr, 0, sizeof(*attr));
7954
7955 ret = get_user(size, &uattr->size);
7956 if (ret)
7957 return ret;
7958
7959 if (size > PAGE_SIZE) /* silly large */
7960 goto err_size;
7961
7962 if (!size) /* abi compat */
7963 size = PERF_ATTR_SIZE_VER0;
7964
7965 if (size < PERF_ATTR_SIZE_VER0)
7966 goto err_size;
7967
7968 /*
7969 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7970 * ensure all the unknown bits are 0 - i.e. new
7971 * user-space does not rely on any kernel feature
7972 * extensions we dont know about yet.
974802ea
PZ
7973 */
7974 if (size > sizeof(*attr)) {
cdf8073d
IS
7975 unsigned char __user *addr;
7976 unsigned char __user *end;
7977 unsigned char val;
974802ea 7978
cdf8073d
IS
7979 addr = (void __user *)uattr + sizeof(*attr);
7980 end = (void __user *)uattr + size;
974802ea 7981
cdf8073d 7982 for (; addr < end; addr++) {
974802ea
PZ
7983 ret = get_user(val, addr);
7984 if (ret)
7985 return ret;
7986 if (val)
7987 goto err_size;
7988 }
b3e62e35 7989 size = sizeof(*attr);
974802ea
PZ
7990 }
7991
7992 ret = copy_from_user(attr, uattr, size);
7993 if (ret)
7994 return -EFAULT;
7995
cd757645 7996 if (attr->__reserved_1)
974802ea
PZ
7997 return -EINVAL;
7998
7999 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8000 return -EINVAL;
8001
8002 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8003 return -EINVAL;
8004
bce38cd5
SE
8005 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8006 u64 mask = attr->branch_sample_type;
8007
8008 /* only using defined bits */
8009 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8010 return -EINVAL;
8011
8012 /* at least one branch bit must be set */
8013 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8014 return -EINVAL;
8015
bce38cd5
SE
8016 /* propagate priv level, when not set for branch */
8017 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8018
8019 /* exclude_kernel checked on syscall entry */
8020 if (!attr->exclude_kernel)
8021 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8022
8023 if (!attr->exclude_user)
8024 mask |= PERF_SAMPLE_BRANCH_USER;
8025
8026 if (!attr->exclude_hv)
8027 mask |= PERF_SAMPLE_BRANCH_HV;
8028 /*
8029 * adjust user setting (for HW filter setup)
8030 */
8031 attr->branch_sample_type = mask;
8032 }
e712209a
SE
8033 /* privileged levels capture (kernel, hv): check permissions */
8034 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8035 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8036 return -EACCES;
bce38cd5 8037 }
4018994f 8038
c5ebcedb 8039 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8040 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8041 if (ret)
8042 return ret;
8043 }
8044
8045 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8046 if (!arch_perf_have_user_stack_dump())
8047 return -ENOSYS;
8048
8049 /*
8050 * We have __u32 type for the size, but so far
8051 * we can only use __u16 as maximum due to the
8052 * __u16 sample size limit.
8053 */
8054 if (attr->sample_stack_user >= USHRT_MAX)
8055 ret = -EINVAL;
8056 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8057 ret = -EINVAL;
8058 }
4018994f 8059
60e2364e
SE
8060 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8061 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8062out:
8063 return ret;
8064
8065err_size:
8066 put_user(sizeof(*attr), &uattr->size);
8067 ret = -E2BIG;
8068 goto out;
8069}
8070
ac9721f3
PZ
8071static int
8072perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8073{
b69cf536 8074 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8075 int ret = -EINVAL;
8076
ac9721f3 8077 if (!output_event)
a4be7c27
PZ
8078 goto set;
8079
ac9721f3
PZ
8080 /* don't allow circular references */
8081 if (event == output_event)
a4be7c27
PZ
8082 goto out;
8083
0f139300
PZ
8084 /*
8085 * Don't allow cross-cpu buffers
8086 */
8087 if (output_event->cpu != event->cpu)
8088 goto out;
8089
8090 /*
76369139 8091 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8092 */
8093 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8094 goto out;
8095
34f43927
PZ
8096 /*
8097 * Mixing clocks in the same buffer is trouble you don't need.
8098 */
8099 if (output_event->clock != event->clock)
8100 goto out;
8101
45bfb2e5
PZ
8102 /*
8103 * If both events generate aux data, they must be on the same PMU
8104 */
8105 if (has_aux(event) && has_aux(output_event) &&
8106 event->pmu != output_event->pmu)
8107 goto out;
8108
a4be7c27 8109set:
cdd6c482 8110 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8111 /* Can't redirect output if we've got an active mmap() */
8112 if (atomic_read(&event->mmap_count))
8113 goto unlock;
a4be7c27 8114
ac9721f3 8115 if (output_event) {
76369139
FW
8116 /* get the rb we want to redirect to */
8117 rb = ring_buffer_get(output_event);
8118 if (!rb)
ac9721f3 8119 goto unlock;
a4be7c27
PZ
8120 }
8121
b69cf536 8122 ring_buffer_attach(event, rb);
9bb5d40c 8123
a4be7c27 8124 ret = 0;
ac9721f3
PZ
8125unlock:
8126 mutex_unlock(&event->mmap_mutex);
8127
a4be7c27 8128out:
a4be7c27
PZ
8129 return ret;
8130}
8131
f63a8daa
PZ
8132static void mutex_lock_double(struct mutex *a, struct mutex *b)
8133{
8134 if (b < a)
8135 swap(a, b);
8136
8137 mutex_lock(a);
8138 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8139}
8140
34f43927
PZ
8141static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8142{
8143 bool nmi_safe = false;
8144
8145 switch (clk_id) {
8146 case CLOCK_MONOTONIC:
8147 event->clock = &ktime_get_mono_fast_ns;
8148 nmi_safe = true;
8149 break;
8150
8151 case CLOCK_MONOTONIC_RAW:
8152 event->clock = &ktime_get_raw_fast_ns;
8153 nmi_safe = true;
8154 break;
8155
8156 case CLOCK_REALTIME:
8157 event->clock = &ktime_get_real_ns;
8158 break;
8159
8160 case CLOCK_BOOTTIME:
8161 event->clock = &ktime_get_boot_ns;
8162 break;
8163
8164 case CLOCK_TAI:
8165 event->clock = &ktime_get_tai_ns;
8166 break;
8167
8168 default:
8169 return -EINVAL;
8170 }
8171
8172 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8173 return -EINVAL;
8174
8175 return 0;
8176}
8177
0793a61d 8178/**
cdd6c482 8179 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8180 *
cdd6c482 8181 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8182 * @pid: target pid
9f66a381 8183 * @cpu: target cpu
cdd6c482 8184 * @group_fd: group leader event fd
0793a61d 8185 */
cdd6c482
IM
8186SYSCALL_DEFINE5(perf_event_open,
8187 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8188 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8189{
b04243ef
PZ
8190 struct perf_event *group_leader = NULL, *output_event = NULL;
8191 struct perf_event *event, *sibling;
cdd6c482 8192 struct perf_event_attr attr;
f63a8daa 8193 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8194 struct file *event_file = NULL;
2903ff01 8195 struct fd group = {NULL, 0};
38a81da2 8196 struct task_struct *task = NULL;
89a1e187 8197 struct pmu *pmu;
ea635c64 8198 int event_fd;
b04243ef 8199 int move_group = 0;
dc86cabe 8200 int err;
a21b0b35 8201 int f_flags = O_RDWR;
79dff51e 8202 int cgroup_fd = -1;
0793a61d 8203
2743a5b0 8204 /* for future expandability... */
e5d1367f 8205 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8206 return -EINVAL;
8207
dc86cabe
IM
8208 err = perf_copy_attr(attr_uptr, &attr);
8209 if (err)
8210 return err;
eab656ae 8211
0764771d
PZ
8212 if (!attr.exclude_kernel) {
8213 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8214 return -EACCES;
8215 }
8216
df58ab24 8217 if (attr.freq) {
cdd6c482 8218 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8219 return -EINVAL;
0819b2e3
PZ
8220 } else {
8221 if (attr.sample_period & (1ULL << 63))
8222 return -EINVAL;
df58ab24
PZ
8223 }
8224
e5d1367f
SE
8225 /*
8226 * In cgroup mode, the pid argument is used to pass the fd
8227 * opened to the cgroup directory in cgroupfs. The cpu argument
8228 * designates the cpu on which to monitor threads from that
8229 * cgroup.
8230 */
8231 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8232 return -EINVAL;
8233
a21b0b35
YD
8234 if (flags & PERF_FLAG_FD_CLOEXEC)
8235 f_flags |= O_CLOEXEC;
8236
8237 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8238 if (event_fd < 0)
8239 return event_fd;
8240
ac9721f3 8241 if (group_fd != -1) {
2903ff01
AV
8242 err = perf_fget_light(group_fd, &group);
8243 if (err)
d14b12d7 8244 goto err_fd;
2903ff01 8245 group_leader = group.file->private_data;
ac9721f3
PZ
8246 if (flags & PERF_FLAG_FD_OUTPUT)
8247 output_event = group_leader;
8248 if (flags & PERF_FLAG_FD_NO_GROUP)
8249 group_leader = NULL;
8250 }
8251
e5d1367f 8252 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8253 task = find_lively_task_by_vpid(pid);
8254 if (IS_ERR(task)) {
8255 err = PTR_ERR(task);
8256 goto err_group_fd;
8257 }
8258 }
8259
1f4ee503
PZ
8260 if (task && group_leader &&
8261 group_leader->attr.inherit != attr.inherit) {
8262 err = -EINVAL;
8263 goto err_task;
8264 }
8265
fbfc623f
YZ
8266 get_online_cpus();
8267
79dff51e
MF
8268 if (flags & PERF_FLAG_PID_CGROUP)
8269 cgroup_fd = pid;
8270
4dc0da86 8271 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8272 NULL, NULL, cgroup_fd);
d14b12d7
SE
8273 if (IS_ERR(event)) {
8274 err = PTR_ERR(event);
1f4ee503 8275 goto err_cpus;
d14b12d7
SE
8276 }
8277
53b25335
VW
8278 if (is_sampling_event(event)) {
8279 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8280 err = -ENOTSUPP;
8281 goto err_alloc;
8282 }
8283 }
8284
766d6c07
FW
8285 account_event(event);
8286
89a1e187
PZ
8287 /*
8288 * Special case software events and allow them to be part of
8289 * any hardware group.
8290 */
8291 pmu = event->pmu;
b04243ef 8292
34f43927
PZ
8293 if (attr.use_clockid) {
8294 err = perf_event_set_clock(event, attr.clockid);
8295 if (err)
8296 goto err_alloc;
8297 }
8298
b04243ef
PZ
8299 if (group_leader &&
8300 (is_software_event(event) != is_software_event(group_leader))) {
8301 if (is_software_event(event)) {
8302 /*
8303 * If event and group_leader are not both a software
8304 * event, and event is, then group leader is not.
8305 *
8306 * Allow the addition of software events to !software
8307 * groups, this is safe because software events never
8308 * fail to schedule.
8309 */
8310 pmu = group_leader->pmu;
8311 } else if (is_software_event(group_leader) &&
8312 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8313 /*
8314 * In case the group is a pure software group, and we
8315 * try to add a hardware event, move the whole group to
8316 * the hardware context.
8317 */
8318 move_group = 1;
8319 }
8320 }
89a1e187
PZ
8321
8322 /*
8323 * Get the target context (task or percpu):
8324 */
4af57ef2 8325 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8326 if (IS_ERR(ctx)) {
8327 err = PTR_ERR(ctx);
c6be5a5c 8328 goto err_alloc;
89a1e187
PZ
8329 }
8330
bed5b25a
AS
8331 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8332 err = -EBUSY;
8333 goto err_context;
8334 }
8335
fd1edb3a
PZ
8336 if (task) {
8337 put_task_struct(task);
8338 task = NULL;
8339 }
8340
ccff286d 8341 /*
cdd6c482 8342 * Look up the group leader (we will attach this event to it):
04289bb9 8343 */
ac9721f3 8344 if (group_leader) {
dc86cabe 8345 err = -EINVAL;
04289bb9 8346
04289bb9 8347 /*
ccff286d
IM
8348 * Do not allow a recursive hierarchy (this new sibling
8349 * becoming part of another group-sibling):
8350 */
8351 if (group_leader->group_leader != group_leader)
c3f00c70 8352 goto err_context;
34f43927
PZ
8353
8354 /* All events in a group should have the same clock */
8355 if (group_leader->clock != event->clock)
8356 goto err_context;
8357
ccff286d
IM
8358 /*
8359 * Do not allow to attach to a group in a different
8360 * task or CPU context:
04289bb9 8361 */
b04243ef 8362 if (move_group) {
c3c87e77
PZ
8363 /*
8364 * Make sure we're both on the same task, or both
8365 * per-cpu events.
8366 */
8367 if (group_leader->ctx->task != ctx->task)
8368 goto err_context;
8369
8370 /*
8371 * Make sure we're both events for the same CPU;
8372 * grouping events for different CPUs is broken; since
8373 * you can never concurrently schedule them anyhow.
8374 */
8375 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8376 goto err_context;
8377 } else {
8378 if (group_leader->ctx != ctx)
8379 goto err_context;
8380 }
8381
3b6f9e5c
PM
8382 /*
8383 * Only a group leader can be exclusive or pinned
8384 */
0d48696f 8385 if (attr.exclusive || attr.pinned)
c3f00c70 8386 goto err_context;
ac9721f3
PZ
8387 }
8388
8389 if (output_event) {
8390 err = perf_event_set_output(event, output_event);
8391 if (err)
c3f00c70 8392 goto err_context;
ac9721f3 8393 }
0793a61d 8394
a21b0b35
YD
8395 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8396 f_flags);
ea635c64
AV
8397 if (IS_ERR(event_file)) {
8398 err = PTR_ERR(event_file);
c3f00c70 8399 goto err_context;
ea635c64 8400 }
9b51f66d 8401
b04243ef 8402 if (move_group) {
f63a8daa 8403 gctx = group_leader->ctx;
f55fc2a5
PZ
8404 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8405 } else {
8406 mutex_lock(&ctx->mutex);
8407 }
8408
a723968c
PZ
8409 if (!perf_event_validate_size(event)) {
8410 err = -E2BIG;
8411 goto err_locked;
8412 }
8413
f55fc2a5
PZ
8414 /*
8415 * Must be under the same ctx::mutex as perf_install_in_context(),
8416 * because we need to serialize with concurrent event creation.
8417 */
8418 if (!exclusive_event_installable(event, ctx)) {
8419 /* exclusive and group stuff are assumed mutually exclusive */
8420 WARN_ON_ONCE(move_group);
f63a8daa 8421
f55fc2a5
PZ
8422 err = -EBUSY;
8423 goto err_locked;
8424 }
f63a8daa 8425
f55fc2a5
PZ
8426 WARN_ON_ONCE(ctx->parent_ctx);
8427
8428 if (move_group) {
f63a8daa
PZ
8429 /*
8430 * See perf_event_ctx_lock() for comments on the details
8431 * of swizzling perf_event::ctx.
8432 */
46ce0fe9 8433 perf_remove_from_context(group_leader, false);
0231bb53 8434
b04243ef
PZ
8435 list_for_each_entry(sibling, &group_leader->sibling_list,
8436 group_entry) {
46ce0fe9 8437 perf_remove_from_context(sibling, false);
b04243ef
PZ
8438 put_ctx(gctx);
8439 }
b04243ef 8440
f63a8daa
PZ
8441 /*
8442 * Wait for everybody to stop referencing the events through
8443 * the old lists, before installing it on new lists.
8444 */
0cda4c02 8445 synchronize_rcu();
f63a8daa 8446
8f95b435
PZI
8447 /*
8448 * Install the group siblings before the group leader.
8449 *
8450 * Because a group leader will try and install the entire group
8451 * (through the sibling list, which is still in-tact), we can
8452 * end up with siblings installed in the wrong context.
8453 *
8454 * By installing siblings first we NO-OP because they're not
8455 * reachable through the group lists.
8456 */
b04243ef
PZ
8457 list_for_each_entry(sibling, &group_leader->sibling_list,
8458 group_entry) {
8f95b435 8459 perf_event__state_init(sibling);
9fc81d87 8460 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8461 get_ctx(ctx);
8462 }
8f95b435
PZI
8463
8464 /*
8465 * Removing from the context ends up with disabled
8466 * event. What we want here is event in the initial
8467 * startup state, ready to be add into new context.
8468 */
8469 perf_event__state_init(group_leader);
8470 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8471 get_ctx(ctx);
b04243ef 8472
f55fc2a5
PZ
8473 /*
8474 * Now that all events are installed in @ctx, nothing
8475 * references @gctx anymore, so drop the last reference we have
8476 * on it.
8477 */
8478 put_ctx(gctx);
bed5b25a
AS
8479 }
8480
f73e22ab
PZ
8481 /*
8482 * Precalculate sample_data sizes; do while holding ctx::mutex such
8483 * that we're serialized against further additions and before
8484 * perf_install_in_context() which is the point the event is active and
8485 * can use these values.
8486 */
8487 perf_event__header_size(event);
8488 perf_event__id_header_size(event);
8489
78cd2c74
PZ
8490 event->owner = current;
8491
e2d37cd2 8492 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8493 perf_unpin_context(ctx);
f63a8daa 8494
f55fc2a5 8495 if (move_group)
f63a8daa 8496 mutex_unlock(&gctx->mutex);
d859e29f 8497 mutex_unlock(&ctx->mutex);
9b51f66d 8498
fbfc623f
YZ
8499 put_online_cpus();
8500
cdd6c482
IM
8501 mutex_lock(&current->perf_event_mutex);
8502 list_add_tail(&event->owner_entry, &current->perf_event_list);
8503 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8504
8a49542c
PZ
8505 /*
8506 * Drop the reference on the group_event after placing the
8507 * new event on the sibling_list. This ensures destruction
8508 * of the group leader will find the pointer to itself in
8509 * perf_group_detach().
8510 */
2903ff01 8511 fdput(group);
ea635c64
AV
8512 fd_install(event_fd, event_file);
8513 return event_fd;
0793a61d 8514
f55fc2a5
PZ
8515err_locked:
8516 if (move_group)
8517 mutex_unlock(&gctx->mutex);
8518 mutex_unlock(&ctx->mutex);
8519/* err_file: */
8520 fput(event_file);
c3f00c70 8521err_context:
fe4b04fa 8522 perf_unpin_context(ctx);
ea635c64 8523 put_ctx(ctx);
c6be5a5c 8524err_alloc:
ea635c64 8525 free_event(event);
1f4ee503 8526err_cpus:
fbfc623f 8527 put_online_cpus();
1f4ee503 8528err_task:
e7d0bc04
PZ
8529 if (task)
8530 put_task_struct(task);
89a1e187 8531err_group_fd:
2903ff01 8532 fdput(group);
ea635c64
AV
8533err_fd:
8534 put_unused_fd(event_fd);
dc86cabe 8535 return err;
0793a61d
TG
8536}
8537
fb0459d7
AV
8538/**
8539 * perf_event_create_kernel_counter
8540 *
8541 * @attr: attributes of the counter to create
8542 * @cpu: cpu in which the counter is bound
38a81da2 8543 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8544 */
8545struct perf_event *
8546perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8547 struct task_struct *task,
4dc0da86
AK
8548 perf_overflow_handler_t overflow_handler,
8549 void *context)
fb0459d7 8550{
fb0459d7 8551 struct perf_event_context *ctx;
c3f00c70 8552 struct perf_event *event;
fb0459d7 8553 int err;
d859e29f 8554
fb0459d7
AV
8555 /*
8556 * Get the target context (task or percpu):
8557 */
d859e29f 8558
4dc0da86 8559 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8560 overflow_handler, context, -1);
c3f00c70
PZ
8561 if (IS_ERR(event)) {
8562 err = PTR_ERR(event);
8563 goto err;
8564 }
d859e29f 8565
f8697762 8566 /* Mark owner so we could distinguish it from user events. */
63b6da39 8567 event->owner = TASK_TOMBSTONE;
f8697762 8568
766d6c07
FW
8569 account_event(event);
8570
4af57ef2 8571 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8572 if (IS_ERR(ctx)) {
8573 err = PTR_ERR(ctx);
c3f00c70 8574 goto err_free;
d859e29f 8575 }
fb0459d7 8576
fb0459d7
AV
8577 WARN_ON_ONCE(ctx->parent_ctx);
8578 mutex_lock(&ctx->mutex);
bed5b25a
AS
8579 if (!exclusive_event_installable(event, ctx)) {
8580 mutex_unlock(&ctx->mutex);
8581 perf_unpin_context(ctx);
8582 put_ctx(ctx);
8583 err = -EBUSY;
8584 goto err_free;
8585 }
8586
fb0459d7 8587 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8588 perf_unpin_context(ctx);
fb0459d7
AV
8589 mutex_unlock(&ctx->mutex);
8590
fb0459d7
AV
8591 return event;
8592
c3f00c70
PZ
8593err_free:
8594 free_event(event);
8595err:
c6567f64 8596 return ERR_PTR(err);
9b51f66d 8597}
fb0459d7 8598EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8599
0cda4c02
YZ
8600void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8601{
8602 struct perf_event_context *src_ctx;
8603 struct perf_event_context *dst_ctx;
8604 struct perf_event *event, *tmp;
8605 LIST_HEAD(events);
8606
8607 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8608 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8609
f63a8daa
PZ
8610 /*
8611 * See perf_event_ctx_lock() for comments on the details
8612 * of swizzling perf_event::ctx.
8613 */
8614 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8615 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8616 event_entry) {
46ce0fe9 8617 perf_remove_from_context(event, false);
9a545de0 8618 unaccount_event_cpu(event, src_cpu);
0cda4c02 8619 put_ctx(src_ctx);
9886167d 8620 list_add(&event->migrate_entry, &events);
0cda4c02 8621 }
0cda4c02 8622
8f95b435
PZI
8623 /*
8624 * Wait for the events to quiesce before re-instating them.
8625 */
0cda4c02
YZ
8626 synchronize_rcu();
8627
8f95b435
PZI
8628 /*
8629 * Re-instate events in 2 passes.
8630 *
8631 * Skip over group leaders and only install siblings on this first
8632 * pass, siblings will not get enabled without a leader, however a
8633 * leader will enable its siblings, even if those are still on the old
8634 * context.
8635 */
8636 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8637 if (event->group_leader == event)
8638 continue;
8639
8640 list_del(&event->migrate_entry);
8641 if (event->state >= PERF_EVENT_STATE_OFF)
8642 event->state = PERF_EVENT_STATE_INACTIVE;
8643 account_event_cpu(event, dst_cpu);
8644 perf_install_in_context(dst_ctx, event, dst_cpu);
8645 get_ctx(dst_ctx);
8646 }
8647
8648 /*
8649 * Once all the siblings are setup properly, install the group leaders
8650 * to make it go.
8651 */
9886167d
PZ
8652 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8653 list_del(&event->migrate_entry);
0cda4c02
YZ
8654 if (event->state >= PERF_EVENT_STATE_OFF)
8655 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8656 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8657 perf_install_in_context(dst_ctx, event, dst_cpu);
8658 get_ctx(dst_ctx);
8659 }
8660 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8661 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8662}
8663EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8664
cdd6c482 8665static void sync_child_event(struct perf_event *child_event,
38b200d6 8666 struct task_struct *child)
d859e29f 8667{
cdd6c482 8668 struct perf_event *parent_event = child_event->parent;
8bc20959 8669 u64 child_val;
d859e29f 8670
cdd6c482
IM
8671 if (child_event->attr.inherit_stat)
8672 perf_event_read_event(child_event, child);
38b200d6 8673
b5e58793 8674 child_val = perf_event_count(child_event);
d859e29f
PM
8675
8676 /*
8677 * Add back the child's count to the parent's count:
8678 */
a6e6dea6 8679 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8680 atomic64_add(child_event->total_time_enabled,
8681 &parent_event->child_total_time_enabled);
8682 atomic64_add(child_event->total_time_running,
8683 &parent_event->child_total_time_running);
d859e29f
PM
8684
8685 /*
cdd6c482 8686 * Remove this event from the parent's list
d859e29f 8687 */
cdd6c482
IM
8688 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8689 mutex_lock(&parent_event->child_mutex);
8690 list_del_init(&child_event->child_list);
8691 mutex_unlock(&parent_event->child_mutex);
d859e29f 8692
dc633982
JO
8693 /*
8694 * Make sure user/parent get notified, that we just
8695 * lost one event.
8696 */
8697 perf_event_wakeup(parent_event);
8698
d859e29f 8699 /*
cdd6c482 8700 * Release the parent event, if this was the last
d859e29f
PM
8701 * reference to it.
8702 */
a6fa941d 8703 put_event(parent_event);
d859e29f
PM
8704}
8705
9b51f66d 8706static void
cdd6c482
IM
8707__perf_event_exit_task(struct perf_event *child_event,
8708 struct perf_event_context *child_ctx,
38b200d6 8709 struct task_struct *child)
9b51f66d 8710{
1903d50c
PZ
8711 /*
8712 * Do not destroy the 'original' grouping; because of the context
8713 * switch optimization the original events could've ended up in a
8714 * random child task.
8715 *
8716 * If we were to destroy the original group, all group related
8717 * operations would cease to function properly after this random
8718 * child dies.
8719 *
8720 * Do destroy all inherited groups, we don't care about those
8721 * and being thorough is better.
8722 */
32132a3d
PZ
8723 raw_spin_lock_irq(&child_ctx->lock);
8724 WARN_ON_ONCE(child_ctx->is_active);
8725
8726 if (!!child_event->parent)
8727 perf_group_detach(child_event);
8728 list_del_event(child_event, child_ctx);
8729 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8730
9b51f66d 8731 /*
38b435b1 8732 * It can happen that the parent exits first, and has events
9b51f66d 8733 * that are still around due to the child reference. These
38b435b1 8734 * events need to be zapped.
9b51f66d 8735 */
38b435b1 8736 if (child_event->parent) {
cdd6c482
IM
8737 sync_child_event(child_event, child);
8738 free_event(child_event);
179033b3
JO
8739 } else {
8740 child_event->state = PERF_EVENT_STATE_EXIT;
8741 perf_event_wakeup(child_event);
4bcf349a 8742 }
9b51f66d
IM
8743}
8744
8dc85d54 8745static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8746{
211de6eb 8747 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8748 struct perf_event *child_event, *next;
63b6da39
PZ
8749
8750 WARN_ON_ONCE(child != current);
9b51f66d 8751
6a3351b6 8752 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8753 if (!child_ctx)
9b51f66d
IM
8754 return;
8755
6a3351b6
PZ
8756 /*
8757 * In order to reduce the amount of tricky in ctx tear-down, we hold
8758 * ctx::mutex over the entire thing. This serializes against almost
8759 * everything that wants to access the ctx.
8760 *
8761 * The exception is sys_perf_event_open() /
8762 * perf_event_create_kernel_count() which does find_get_context()
8763 * without ctx::mutex (it cannot because of the move_group double mutex
8764 * lock thing). See the comments in perf_install_in_context().
8765 *
8766 * We can recurse on the same lock type through:
8767 *
8768 * __perf_event_exit_task()
8769 * sync_child_event()
8770 * put_event()
8771 * mutex_lock(&ctx->mutex)
8772 *
8773 * But since its the parent context it won't be the same instance.
8774 */
8775 mutex_lock(&child_ctx->mutex);
8776
8777 /*
8778 * In a single ctx::lock section, de-schedule the events and detach the
8779 * context from the task such that we cannot ever get it scheduled back
8780 * in.
8781 */
8782 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8783 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
c93f7669
PM
8784
8785 /*
63b6da39
PZ
8786 * Now that the context is inactive, destroy the task <-> ctx relation
8787 * and mark the context dead.
c93f7669 8788 */
63b6da39
PZ
8789 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8790 put_ctx(child_ctx); /* cannot be last */
8791 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8792 put_task_struct(current); /* cannot be last */
4a1c0f26 8793
211de6eb 8794 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8795 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8796
211de6eb
PZ
8797 if (clone_ctx)
8798 put_ctx(clone_ctx);
4a1c0f26 8799
9f498cc5 8800 /*
cdd6c482
IM
8801 * Report the task dead after unscheduling the events so that we
8802 * won't get any samples after PERF_RECORD_EXIT. We can however still
8803 * get a few PERF_RECORD_READ events.
9f498cc5 8804 */
cdd6c482 8805 perf_event_task(child, child_ctx, 0);
a63eaf34 8806
ebf905fc 8807 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8808 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8809
a63eaf34
PM
8810 mutex_unlock(&child_ctx->mutex);
8811
8812 put_ctx(child_ctx);
9b51f66d
IM
8813}
8814
8dc85d54
PZ
8815/*
8816 * When a child task exits, feed back event values to parent events.
8817 */
8818void perf_event_exit_task(struct task_struct *child)
8819{
8882135b 8820 struct perf_event *event, *tmp;
8dc85d54
PZ
8821 int ctxn;
8822
8882135b
PZ
8823 mutex_lock(&child->perf_event_mutex);
8824 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8825 owner_entry) {
8826 list_del_init(&event->owner_entry);
8827
8828 /*
8829 * Ensure the list deletion is visible before we clear
8830 * the owner, closes a race against perf_release() where
8831 * we need to serialize on the owner->perf_event_mutex.
8832 */
f47c02c0 8833 smp_store_release(&event->owner, NULL);
8882135b
PZ
8834 }
8835 mutex_unlock(&child->perf_event_mutex);
8836
8dc85d54
PZ
8837 for_each_task_context_nr(ctxn)
8838 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8839
8840 /*
8841 * The perf_event_exit_task_context calls perf_event_task
8842 * with child's task_ctx, which generates EXIT events for
8843 * child contexts and sets child->perf_event_ctxp[] to NULL.
8844 * At this point we need to send EXIT events to cpu contexts.
8845 */
8846 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8847}
8848
889ff015
FW
8849static void perf_free_event(struct perf_event *event,
8850 struct perf_event_context *ctx)
8851{
8852 struct perf_event *parent = event->parent;
8853
8854 if (WARN_ON_ONCE(!parent))
8855 return;
8856
8857 mutex_lock(&parent->child_mutex);
8858 list_del_init(&event->child_list);
8859 mutex_unlock(&parent->child_mutex);
8860
a6fa941d 8861 put_event(parent);
889ff015 8862
652884fe 8863 raw_spin_lock_irq(&ctx->lock);
8a49542c 8864 perf_group_detach(event);
889ff015 8865 list_del_event(event, ctx);
652884fe 8866 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8867 free_event(event);
8868}
8869
bbbee908 8870/*
652884fe 8871 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8872 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8873 *
8874 * Not all locks are strictly required, but take them anyway to be nice and
8875 * help out with the lockdep assertions.
bbbee908 8876 */
cdd6c482 8877void perf_event_free_task(struct task_struct *task)
bbbee908 8878{
8dc85d54 8879 struct perf_event_context *ctx;
cdd6c482 8880 struct perf_event *event, *tmp;
8dc85d54 8881 int ctxn;
bbbee908 8882
8dc85d54
PZ
8883 for_each_task_context_nr(ctxn) {
8884 ctx = task->perf_event_ctxp[ctxn];
8885 if (!ctx)
8886 continue;
bbbee908 8887
8dc85d54 8888 mutex_lock(&ctx->mutex);
bbbee908 8889again:
8dc85d54
PZ
8890 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8891 group_entry)
8892 perf_free_event(event, ctx);
bbbee908 8893
8dc85d54
PZ
8894 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8895 group_entry)
8896 perf_free_event(event, ctx);
bbbee908 8897
8dc85d54
PZ
8898 if (!list_empty(&ctx->pinned_groups) ||
8899 !list_empty(&ctx->flexible_groups))
8900 goto again;
bbbee908 8901
8dc85d54 8902 mutex_unlock(&ctx->mutex);
bbbee908 8903
8dc85d54
PZ
8904 put_ctx(ctx);
8905 }
889ff015
FW
8906}
8907
4e231c79
PZ
8908void perf_event_delayed_put(struct task_struct *task)
8909{
8910 int ctxn;
8911
8912 for_each_task_context_nr(ctxn)
8913 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8914}
8915
e03e7ee3 8916struct file *perf_event_get(unsigned int fd)
ffe8690c 8917{
e03e7ee3 8918 struct file *file;
ffe8690c 8919
e03e7ee3
AS
8920 file = fget_raw(fd);
8921 if (!file)
8922 return ERR_PTR(-EBADF);
ffe8690c 8923
e03e7ee3
AS
8924 if (file->f_op != &perf_fops) {
8925 fput(file);
8926 return ERR_PTR(-EBADF);
8927 }
ffe8690c 8928
e03e7ee3 8929 return file;
ffe8690c
KX
8930}
8931
8932const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8933{
8934 if (!event)
8935 return ERR_PTR(-EINVAL);
8936
8937 return &event->attr;
8938}
8939
97dee4f3
PZ
8940/*
8941 * inherit a event from parent task to child task:
8942 */
8943static struct perf_event *
8944inherit_event(struct perf_event *parent_event,
8945 struct task_struct *parent,
8946 struct perf_event_context *parent_ctx,
8947 struct task_struct *child,
8948 struct perf_event *group_leader,
8949 struct perf_event_context *child_ctx)
8950{
1929def9 8951 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8952 struct perf_event *child_event;
cee010ec 8953 unsigned long flags;
97dee4f3
PZ
8954
8955 /*
8956 * Instead of creating recursive hierarchies of events,
8957 * we link inherited events back to the original parent,
8958 * which has a filp for sure, which we use as the reference
8959 * count:
8960 */
8961 if (parent_event->parent)
8962 parent_event = parent_event->parent;
8963
8964 child_event = perf_event_alloc(&parent_event->attr,
8965 parent_event->cpu,
d580ff86 8966 child,
97dee4f3 8967 group_leader, parent_event,
79dff51e 8968 NULL, NULL, -1);
97dee4f3
PZ
8969 if (IS_ERR(child_event))
8970 return child_event;
a6fa941d 8971
fadfe7be
JO
8972 if (is_orphaned_event(parent_event) ||
8973 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8974 free_event(child_event);
8975 return NULL;
8976 }
8977
97dee4f3
PZ
8978 get_ctx(child_ctx);
8979
8980 /*
8981 * Make the child state follow the state of the parent event,
8982 * not its attr.disabled bit. We hold the parent's mutex,
8983 * so we won't race with perf_event_{en, dis}able_family.
8984 */
1929def9 8985 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8986 child_event->state = PERF_EVENT_STATE_INACTIVE;
8987 else
8988 child_event->state = PERF_EVENT_STATE_OFF;
8989
8990 if (parent_event->attr.freq) {
8991 u64 sample_period = parent_event->hw.sample_period;
8992 struct hw_perf_event *hwc = &child_event->hw;
8993
8994 hwc->sample_period = sample_period;
8995 hwc->last_period = sample_period;
8996
8997 local64_set(&hwc->period_left, sample_period);
8998 }
8999
9000 child_event->ctx = child_ctx;
9001 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9002 child_event->overflow_handler_context
9003 = parent_event->overflow_handler_context;
97dee4f3 9004
614b6780
TG
9005 /*
9006 * Precalculate sample_data sizes
9007 */
9008 perf_event__header_size(child_event);
6844c09d 9009 perf_event__id_header_size(child_event);
614b6780 9010
97dee4f3
PZ
9011 /*
9012 * Link it up in the child's context:
9013 */
cee010ec 9014 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9015 add_event_to_ctx(child_event, child_ctx);
cee010ec 9016 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9017
97dee4f3
PZ
9018 /*
9019 * Link this into the parent event's child list
9020 */
9021 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9022 mutex_lock(&parent_event->child_mutex);
9023 list_add_tail(&child_event->child_list, &parent_event->child_list);
9024 mutex_unlock(&parent_event->child_mutex);
9025
9026 return child_event;
9027}
9028
9029static int inherit_group(struct perf_event *parent_event,
9030 struct task_struct *parent,
9031 struct perf_event_context *parent_ctx,
9032 struct task_struct *child,
9033 struct perf_event_context *child_ctx)
9034{
9035 struct perf_event *leader;
9036 struct perf_event *sub;
9037 struct perf_event *child_ctr;
9038
9039 leader = inherit_event(parent_event, parent, parent_ctx,
9040 child, NULL, child_ctx);
9041 if (IS_ERR(leader))
9042 return PTR_ERR(leader);
9043 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9044 child_ctr = inherit_event(sub, parent, parent_ctx,
9045 child, leader, child_ctx);
9046 if (IS_ERR(child_ctr))
9047 return PTR_ERR(child_ctr);
9048 }
9049 return 0;
889ff015
FW
9050}
9051
9052static int
9053inherit_task_group(struct perf_event *event, struct task_struct *parent,
9054 struct perf_event_context *parent_ctx,
8dc85d54 9055 struct task_struct *child, int ctxn,
889ff015
FW
9056 int *inherited_all)
9057{
9058 int ret;
8dc85d54 9059 struct perf_event_context *child_ctx;
889ff015
FW
9060
9061 if (!event->attr.inherit) {
9062 *inherited_all = 0;
9063 return 0;
bbbee908
PZ
9064 }
9065
fe4b04fa 9066 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9067 if (!child_ctx) {
9068 /*
9069 * This is executed from the parent task context, so
9070 * inherit events that have been marked for cloning.
9071 * First allocate and initialize a context for the
9072 * child.
9073 */
bbbee908 9074
734df5ab 9075 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9076 if (!child_ctx)
9077 return -ENOMEM;
bbbee908 9078
8dc85d54 9079 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9080 }
9081
9082 ret = inherit_group(event, parent, parent_ctx,
9083 child, child_ctx);
9084
9085 if (ret)
9086 *inherited_all = 0;
9087
9088 return ret;
bbbee908
PZ
9089}
9090
9b51f66d 9091/*
cdd6c482 9092 * Initialize the perf_event context in task_struct
9b51f66d 9093 */
985c8dcb 9094static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9095{
889ff015 9096 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9097 struct perf_event_context *cloned_ctx;
9098 struct perf_event *event;
9b51f66d 9099 struct task_struct *parent = current;
564c2b21 9100 int inherited_all = 1;
dddd3379 9101 unsigned long flags;
6ab423e0 9102 int ret = 0;
9b51f66d 9103
8dc85d54 9104 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9105 return 0;
9106
ad3a37de 9107 /*
25346b93
PM
9108 * If the parent's context is a clone, pin it so it won't get
9109 * swapped under us.
ad3a37de 9110 */
8dc85d54 9111 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9112 if (!parent_ctx)
9113 return 0;
25346b93 9114
ad3a37de
PM
9115 /*
9116 * No need to check if parent_ctx != NULL here; since we saw
9117 * it non-NULL earlier, the only reason for it to become NULL
9118 * is if we exit, and since we're currently in the middle of
9119 * a fork we can't be exiting at the same time.
9120 */
ad3a37de 9121
9b51f66d
IM
9122 /*
9123 * Lock the parent list. No need to lock the child - not PID
9124 * hashed yet and not running, so nobody can access it.
9125 */
d859e29f 9126 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9127
9128 /*
9129 * We dont have to disable NMIs - we are only looking at
9130 * the list, not manipulating it:
9131 */
889ff015 9132 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9133 ret = inherit_task_group(event, parent, parent_ctx,
9134 child, ctxn, &inherited_all);
889ff015
FW
9135 if (ret)
9136 break;
9137 }
b93f7978 9138
dddd3379
TG
9139 /*
9140 * We can't hold ctx->lock when iterating the ->flexible_group list due
9141 * to allocations, but we need to prevent rotation because
9142 * rotate_ctx() will change the list from interrupt context.
9143 */
9144 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9145 parent_ctx->rotate_disable = 1;
9146 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9147
889ff015 9148 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9149 ret = inherit_task_group(event, parent, parent_ctx,
9150 child, ctxn, &inherited_all);
889ff015 9151 if (ret)
9b51f66d 9152 break;
564c2b21
PM
9153 }
9154
dddd3379
TG
9155 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9156 parent_ctx->rotate_disable = 0;
dddd3379 9157
8dc85d54 9158 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9159
05cbaa28 9160 if (child_ctx && inherited_all) {
564c2b21
PM
9161 /*
9162 * Mark the child context as a clone of the parent
9163 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9164 *
9165 * Note that if the parent is a clone, the holding of
9166 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9167 */
c5ed5145 9168 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9169 if (cloned_ctx) {
9170 child_ctx->parent_ctx = cloned_ctx;
25346b93 9171 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9172 } else {
9173 child_ctx->parent_ctx = parent_ctx;
9174 child_ctx->parent_gen = parent_ctx->generation;
9175 }
9176 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9177 }
9178
c5ed5145 9179 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9180 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9181
25346b93 9182 perf_unpin_context(parent_ctx);
fe4b04fa 9183 put_ctx(parent_ctx);
ad3a37de 9184
6ab423e0 9185 return ret;
9b51f66d
IM
9186}
9187
8dc85d54
PZ
9188/*
9189 * Initialize the perf_event context in task_struct
9190 */
9191int perf_event_init_task(struct task_struct *child)
9192{
9193 int ctxn, ret;
9194
8550d7cb
ON
9195 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9196 mutex_init(&child->perf_event_mutex);
9197 INIT_LIST_HEAD(&child->perf_event_list);
9198
8dc85d54
PZ
9199 for_each_task_context_nr(ctxn) {
9200 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9201 if (ret) {
9202 perf_event_free_task(child);
8dc85d54 9203 return ret;
6c72e350 9204 }
8dc85d54
PZ
9205 }
9206
9207 return 0;
9208}
9209
220b140b
PM
9210static void __init perf_event_init_all_cpus(void)
9211{
b28ab83c 9212 struct swevent_htable *swhash;
220b140b 9213 int cpu;
220b140b
PM
9214
9215 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9216 swhash = &per_cpu(swevent_htable, cpu);
9217 mutex_init(&swhash->hlist_mutex);
2fde4f94 9218 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9219 }
9220}
9221
0db0628d 9222static void perf_event_init_cpu(int cpu)
0793a61d 9223{
108b02cf 9224 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9225
b28ab83c 9226 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9227 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9228 struct swevent_hlist *hlist;
9229
b28ab83c
PZ
9230 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9231 WARN_ON(!hlist);
9232 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9233 }
b28ab83c 9234 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9235}
9236
2965faa5 9237#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9238static void __perf_event_exit_context(void *__info)
0793a61d 9239{
108b02cf 9240 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9241 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9242 struct perf_event *event;
0793a61d 9243
fae3fde6
PZ
9244 raw_spin_lock(&ctx->lock);
9245 list_for_each_entry(event, &ctx->event_list, event_entry)
9246 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9247 raw_spin_unlock(&ctx->lock);
0793a61d 9248}
108b02cf
PZ
9249
9250static void perf_event_exit_cpu_context(int cpu)
9251{
9252 struct perf_event_context *ctx;
9253 struct pmu *pmu;
9254 int idx;
9255
9256 idx = srcu_read_lock(&pmus_srcu);
9257 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9258 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9259
9260 mutex_lock(&ctx->mutex);
9261 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9262 mutex_unlock(&ctx->mutex);
9263 }
9264 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9265}
9266
cdd6c482 9267static void perf_event_exit_cpu(int cpu)
0793a61d 9268{
e3703f8c 9269 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9270}
9271#else
cdd6c482 9272static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9273#endif
9274
c277443c
PZ
9275static int
9276perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9277{
9278 int cpu;
9279
9280 for_each_online_cpu(cpu)
9281 perf_event_exit_cpu(cpu);
9282
9283 return NOTIFY_OK;
9284}
9285
9286/*
9287 * Run the perf reboot notifier at the very last possible moment so that
9288 * the generic watchdog code runs as long as possible.
9289 */
9290static struct notifier_block perf_reboot_notifier = {
9291 .notifier_call = perf_reboot,
9292 .priority = INT_MIN,
9293};
9294
0db0628d 9295static int
0793a61d
TG
9296perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9297{
9298 unsigned int cpu = (long)hcpu;
9299
4536e4d1 9300 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9301
9302 case CPU_UP_PREPARE:
5e11637e 9303 case CPU_DOWN_FAILED:
cdd6c482 9304 perf_event_init_cpu(cpu);
0793a61d
TG
9305 break;
9306
5e11637e 9307 case CPU_UP_CANCELED:
0793a61d 9308 case CPU_DOWN_PREPARE:
cdd6c482 9309 perf_event_exit_cpu(cpu);
0793a61d 9310 break;
0793a61d
TG
9311 default:
9312 break;
9313 }
9314
9315 return NOTIFY_OK;
9316}
9317
cdd6c482 9318void __init perf_event_init(void)
0793a61d 9319{
3c502e7a
JW
9320 int ret;
9321
2e80a82a
PZ
9322 idr_init(&pmu_idr);
9323
220b140b 9324 perf_event_init_all_cpus();
b0a873eb 9325 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9326 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9327 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9328 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9329 perf_tp_register();
9330 perf_cpu_notifier(perf_cpu_notify);
c277443c 9331 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9332
9333 ret = init_hw_breakpoint();
9334 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9335
9336 /* do not patch jump label more than once per second */
9337 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9338
9339 /*
9340 * Build time assertion that we keep the data_head at the intended
9341 * location. IOW, validation we got the __reserved[] size right.
9342 */
9343 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9344 != 1024);
0793a61d 9345}
abe43400 9346
fd979c01
CS
9347ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9348 char *page)
9349{
9350 struct perf_pmu_events_attr *pmu_attr =
9351 container_of(attr, struct perf_pmu_events_attr, attr);
9352
9353 if (pmu_attr->event_str)
9354 return sprintf(page, "%s\n", pmu_attr->event_str);
9355
9356 return 0;
9357}
9358
abe43400
PZ
9359static int __init perf_event_sysfs_init(void)
9360{
9361 struct pmu *pmu;
9362 int ret;
9363
9364 mutex_lock(&pmus_lock);
9365
9366 ret = bus_register(&pmu_bus);
9367 if (ret)
9368 goto unlock;
9369
9370 list_for_each_entry(pmu, &pmus, entry) {
9371 if (!pmu->name || pmu->type < 0)
9372 continue;
9373
9374 ret = pmu_dev_alloc(pmu);
9375 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9376 }
9377 pmu_bus_running = 1;
9378 ret = 0;
9379
9380unlock:
9381 mutex_unlock(&pmus_lock);
9382
9383 return ret;
9384}
9385device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9386
9387#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9388static struct cgroup_subsys_state *
9389perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9390{
9391 struct perf_cgroup *jc;
e5d1367f 9392
1b15d055 9393 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9394 if (!jc)
9395 return ERR_PTR(-ENOMEM);
9396
e5d1367f
SE
9397 jc->info = alloc_percpu(struct perf_cgroup_info);
9398 if (!jc->info) {
9399 kfree(jc);
9400 return ERR_PTR(-ENOMEM);
9401 }
9402
e5d1367f
SE
9403 return &jc->css;
9404}
9405
eb95419b 9406static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9407{
eb95419b
TH
9408 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9409
e5d1367f
SE
9410 free_percpu(jc->info);
9411 kfree(jc);
9412}
9413
9414static int __perf_cgroup_move(void *info)
9415{
9416 struct task_struct *task = info;
ddaaf4e2 9417 rcu_read_lock();
e5d1367f 9418 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9419 rcu_read_unlock();
e5d1367f
SE
9420 return 0;
9421}
9422
1f7dd3e5 9423static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9424{
bb9d97b6 9425 struct task_struct *task;
1f7dd3e5 9426 struct cgroup_subsys_state *css;
bb9d97b6 9427
1f7dd3e5 9428 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9429 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9430}
9431
073219e9 9432struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9433 .css_alloc = perf_cgroup_css_alloc,
9434 .css_free = perf_cgroup_css_free,
bb9d97b6 9435 .attach = perf_cgroup_attach,
e5d1367f
SE
9436};
9437#endif /* CONFIG_CGROUP_PERF */