perf/x86/intel: Add LBR filter support for Silvermont and Airmont CPUs
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
b303e7c1
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100 ||
416 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
417 printk(KERN_WARNING
418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 WRITE_ONCE(perf_sample_allowed_ns, 0);
420 } else {
421 update_perf_cpu_limits();
422 }
163ec435
PZ
423
424 return 0;
425}
1ccd1549 426
14c63f17
DH
427/*
428 * perf samples are done in some very critical code paths (NMIs).
429 * If they take too much CPU time, the system can lock up and not
430 * get any real work done. This will drop the sample rate when
431 * we detect that events are taking too long.
432 */
433#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 434static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 435
91a612ee
PZ
436static u64 __report_avg;
437static u64 __report_allowed;
438
6a02ad66 439static void perf_duration_warn(struct irq_work *w)
14c63f17 440{
6a02ad66 441 printk_ratelimited(KERN_WARNING
91a612ee
PZ
442 "perf: interrupt took too long (%lld > %lld), lowering "
443 "kernel.perf_event_max_sample_rate to %d\n",
444 __report_avg, __report_allowed,
445 sysctl_perf_event_sample_rate);
6a02ad66
PZ
446}
447
448static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
449
450void perf_sample_event_took(u64 sample_len_ns)
451{
91a612ee
PZ
452 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
453 u64 running_len;
454 u64 avg_len;
455 u32 max;
14c63f17 456
91a612ee 457 if (max_len == 0)
14c63f17
DH
458 return;
459
91a612ee
PZ
460 /* Decay the counter by 1 average sample. */
461 running_len = __this_cpu_read(running_sample_length);
462 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
463 running_len += sample_len_ns;
464 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
465
466 /*
91a612ee
PZ
467 * Note: this will be biased artifically low until we have
468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
469 * from having to maintain a count.
470 */
91a612ee
PZ
471 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
472 if (avg_len <= max_len)
14c63f17
DH
473 return;
474
91a612ee
PZ
475 __report_avg = avg_len;
476 __report_allowed = max_len;
14c63f17 477
91a612ee
PZ
478 /*
479 * Compute a throttle threshold 25% below the current duration.
480 */
481 avg_len += avg_len / 4;
482 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
483 if (avg_len < max)
484 max /= (u32)avg_len;
485 else
486 max = 1;
14c63f17 487
91a612ee
PZ
488 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
489 WRITE_ONCE(max_samples_per_tick, max);
490
491 sysctl_perf_event_sample_rate = max * HZ;
492 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 493
cd578abb 494 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 495 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 496 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 497 __report_avg, __report_allowed,
cd578abb
PZ
498 sysctl_perf_event_sample_rate);
499 }
14c63f17
DH
500}
501
cdd6c482 502static atomic64_t perf_event_id;
a96bbc16 503
0b3fcf17
SE
504static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
505 enum event_type_t event_type);
506
507static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
508 enum event_type_t event_type,
509 struct task_struct *task);
510
511static void update_context_time(struct perf_event_context *ctx);
512static u64 perf_event_time(struct perf_event *event);
0b3fcf17 513
cdd6c482 514void __weak perf_event_print_debug(void) { }
0793a61d 515
84c79910 516extern __weak const char *perf_pmu_name(void)
0793a61d 517{
84c79910 518 return "pmu";
0793a61d
TG
519}
520
0b3fcf17
SE
521static inline u64 perf_clock(void)
522{
523 return local_clock();
524}
525
34f43927
PZ
526static inline u64 perf_event_clock(struct perf_event *event)
527{
528 return event->clock();
529}
530
e5d1367f
SE
531#ifdef CONFIG_CGROUP_PERF
532
e5d1367f
SE
533static inline bool
534perf_cgroup_match(struct perf_event *event)
535{
536 struct perf_event_context *ctx = event->ctx;
537 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
538
ef824fa1
TH
539 /* @event doesn't care about cgroup */
540 if (!event->cgrp)
541 return true;
542
543 /* wants specific cgroup scope but @cpuctx isn't associated with any */
544 if (!cpuctx->cgrp)
545 return false;
546
547 /*
548 * Cgroup scoping is recursive. An event enabled for a cgroup is
549 * also enabled for all its descendant cgroups. If @cpuctx's
550 * cgroup is a descendant of @event's (the test covers identity
551 * case), it's a match.
552 */
553 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
554 event->cgrp->css.cgroup);
e5d1367f
SE
555}
556
e5d1367f
SE
557static inline void perf_detach_cgroup(struct perf_event *event)
558{
4e2ba650 559 css_put(&event->cgrp->css);
e5d1367f
SE
560 event->cgrp = NULL;
561}
562
563static inline int is_cgroup_event(struct perf_event *event)
564{
565 return event->cgrp != NULL;
566}
567
568static inline u64 perf_cgroup_event_time(struct perf_event *event)
569{
570 struct perf_cgroup_info *t;
571
572 t = per_cpu_ptr(event->cgrp->info, event->cpu);
573 return t->time;
574}
575
576static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
577{
578 struct perf_cgroup_info *info;
579 u64 now;
580
581 now = perf_clock();
582
583 info = this_cpu_ptr(cgrp->info);
584
585 info->time += now - info->timestamp;
586 info->timestamp = now;
587}
588
589static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
590{
591 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
592 if (cgrp_out)
593 __update_cgrp_time(cgrp_out);
594}
595
596static inline void update_cgrp_time_from_event(struct perf_event *event)
597{
3f7cce3c
SE
598 struct perf_cgroup *cgrp;
599
e5d1367f 600 /*
3f7cce3c
SE
601 * ensure we access cgroup data only when needed and
602 * when we know the cgroup is pinned (css_get)
e5d1367f 603 */
3f7cce3c 604 if (!is_cgroup_event(event))
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
608 /*
609 * Do not update time when cgroup is not active
610 */
611 if (cgrp == event->cgrp)
612 __update_cgrp_time(event->cgrp);
e5d1367f
SE
613}
614
615static inline void
3f7cce3c
SE
616perf_cgroup_set_timestamp(struct task_struct *task,
617 struct perf_event_context *ctx)
e5d1367f
SE
618{
619 struct perf_cgroup *cgrp;
620 struct perf_cgroup_info *info;
621
3f7cce3c
SE
622 /*
623 * ctx->lock held by caller
624 * ensure we do not access cgroup data
625 * unless we have the cgroup pinned (css_get)
626 */
627 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
628 return;
629
614e4c4e 630 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 631 info = this_cpu_ptr(cgrp->info);
3f7cce3c 632 info->timestamp = ctx->timestamp;
e5d1367f
SE
633}
634
635#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
636#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
637
638/*
639 * reschedule events based on the cgroup constraint of task.
640 *
641 * mode SWOUT : schedule out everything
642 * mode SWIN : schedule in based on cgroup for next
643 */
18ab2cd3 644static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
645{
646 struct perf_cpu_context *cpuctx;
647 struct pmu *pmu;
648 unsigned long flags;
649
650 /*
651 * disable interrupts to avoid geting nr_cgroup
652 * changes via __perf_event_disable(). Also
653 * avoids preemption.
654 */
655 local_irq_save(flags);
656
657 /*
658 * we reschedule only in the presence of cgroup
659 * constrained events.
660 */
e5d1367f
SE
661
662 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 663 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
664 if (cpuctx->unique_pmu != pmu)
665 continue; /* ensure we process each cpuctx once */
e5d1367f 666
e5d1367f
SE
667 /*
668 * perf_cgroup_events says at least one
669 * context on this CPU has cgroup events.
670 *
671 * ctx->nr_cgroups reports the number of cgroup
672 * events for a context.
673 */
674 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
675 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
676 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
677
678 if (mode & PERF_CGROUP_SWOUT) {
679 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
680 /*
681 * must not be done before ctxswout due
682 * to event_filter_match() in event_sched_out()
683 */
684 cpuctx->cgrp = NULL;
685 }
686
687 if (mode & PERF_CGROUP_SWIN) {
e566b76e 688 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
689 /*
690 * set cgrp before ctxsw in to allow
691 * event_filter_match() to not have to pass
692 * task around
614e4c4e
SE
693 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 * because cgorup events are only per-cpu
e5d1367f 695 */
614e4c4e 696 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
697 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
698 }
facc4307
PZ
699 perf_pmu_enable(cpuctx->ctx.pmu);
700 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 701 }
e5d1367f
SE
702 }
703
e5d1367f
SE
704 local_irq_restore(flags);
705}
706
a8d757ef
SE
707static inline void perf_cgroup_sched_out(struct task_struct *task,
708 struct task_struct *next)
e5d1367f 709{
a8d757ef
SE
710 struct perf_cgroup *cgrp1;
711 struct perf_cgroup *cgrp2 = NULL;
712
ddaaf4e2 713 rcu_read_lock();
a8d757ef
SE
714 /*
715 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
716 * we do not need to pass the ctx here because we know
717 * we are holding the rcu lock
a8d757ef 718 */
614e4c4e 719 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 720 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
721
722 /*
723 * only schedule out current cgroup events if we know
724 * that we are switching to a different cgroup. Otherwise,
725 * do no touch the cgroup events.
726 */
727 if (cgrp1 != cgrp2)
728 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
729
730 rcu_read_unlock();
e5d1367f
SE
731}
732
a8d757ef
SE
733static inline void perf_cgroup_sched_in(struct task_struct *prev,
734 struct task_struct *task)
e5d1367f 735{
a8d757ef
SE
736 struct perf_cgroup *cgrp1;
737 struct perf_cgroup *cgrp2 = NULL;
738
ddaaf4e2 739 rcu_read_lock();
a8d757ef
SE
740 /*
741 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
742 * we do not need to pass the ctx here because we know
743 * we are holding the rcu lock
a8d757ef 744 */
614e4c4e 745 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 746 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
747
748 /*
749 * only need to schedule in cgroup events if we are changing
750 * cgroup during ctxsw. Cgroup events were not scheduled
751 * out of ctxsw out if that was not the case.
752 */
753 if (cgrp1 != cgrp2)
754 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
755
756 rcu_read_unlock();
e5d1367f
SE
757}
758
759static inline int perf_cgroup_connect(int fd, struct perf_event *event,
760 struct perf_event_attr *attr,
761 struct perf_event *group_leader)
762{
763 struct perf_cgroup *cgrp;
764 struct cgroup_subsys_state *css;
2903ff01
AV
765 struct fd f = fdget(fd);
766 int ret = 0;
e5d1367f 767
2903ff01 768 if (!f.file)
e5d1367f
SE
769 return -EBADF;
770
b583043e 771 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 772 &perf_event_cgrp_subsys);
3db272c0
LZ
773 if (IS_ERR(css)) {
774 ret = PTR_ERR(css);
775 goto out;
776 }
e5d1367f
SE
777
778 cgrp = container_of(css, struct perf_cgroup, css);
779 event->cgrp = cgrp;
780
781 /*
782 * all events in a group must monitor
783 * the same cgroup because a task belongs
784 * to only one perf cgroup at a time
785 */
786 if (group_leader && group_leader->cgrp != cgrp) {
787 perf_detach_cgroup(event);
788 ret = -EINVAL;
e5d1367f 789 }
3db272c0 790out:
2903ff01 791 fdput(f);
e5d1367f
SE
792 return ret;
793}
794
795static inline void
796perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
797{
798 struct perf_cgroup_info *t;
799 t = per_cpu_ptr(event->cgrp->info, event->cpu);
800 event->shadow_ctx_time = now - t->timestamp;
801}
802
803static inline void
804perf_cgroup_defer_enabled(struct perf_event *event)
805{
806 /*
807 * when the current task's perf cgroup does not match
808 * the event's, we need to remember to call the
809 * perf_mark_enable() function the first time a task with
810 * a matching perf cgroup is scheduled in.
811 */
812 if (is_cgroup_event(event) && !perf_cgroup_match(event))
813 event->cgrp_defer_enabled = 1;
814}
815
816static inline void
817perf_cgroup_mark_enabled(struct perf_event *event,
818 struct perf_event_context *ctx)
819{
820 struct perf_event *sub;
821 u64 tstamp = perf_event_time(event);
822
823 if (!event->cgrp_defer_enabled)
824 return;
825
826 event->cgrp_defer_enabled = 0;
827
828 event->tstamp_enabled = tstamp - event->total_time_enabled;
829 list_for_each_entry(sub, &event->sibling_list, group_entry) {
830 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
831 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
832 sub->cgrp_defer_enabled = 0;
833 }
834 }
835}
836#else /* !CONFIG_CGROUP_PERF */
837
838static inline bool
839perf_cgroup_match(struct perf_event *event)
840{
841 return true;
842}
843
844static inline void perf_detach_cgroup(struct perf_event *event)
845{}
846
847static inline int is_cgroup_event(struct perf_event *event)
848{
849 return 0;
850}
851
852static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
853{
854 return 0;
855}
856
857static inline void update_cgrp_time_from_event(struct perf_event *event)
858{
859}
860
861static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
862{
863}
864
a8d757ef
SE
865static inline void perf_cgroup_sched_out(struct task_struct *task,
866 struct task_struct *next)
e5d1367f
SE
867{
868}
869
a8d757ef
SE
870static inline void perf_cgroup_sched_in(struct task_struct *prev,
871 struct task_struct *task)
e5d1367f
SE
872{
873}
874
875static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
876 struct perf_event_attr *attr,
877 struct perf_event *group_leader)
878{
879 return -EINVAL;
880}
881
882static inline void
3f7cce3c
SE
883perf_cgroup_set_timestamp(struct task_struct *task,
884 struct perf_event_context *ctx)
e5d1367f
SE
885{
886}
887
888void
889perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
890{
891}
892
893static inline void
894perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
895{
896}
897
898static inline u64 perf_cgroup_event_time(struct perf_event *event)
899{
900 return 0;
901}
902
903static inline void
904perf_cgroup_defer_enabled(struct perf_event *event)
905{
906}
907
908static inline void
909perf_cgroup_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911{
912}
913#endif
914
9e630205
SE
915/*
916 * set default to be dependent on timer tick just
917 * like original code
918 */
919#define PERF_CPU_HRTIMER (1000 / HZ)
920/*
921 * function must be called with interrupts disbled
922 */
272325c4 923static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
924{
925 struct perf_cpu_context *cpuctx;
9e630205
SE
926 int rotations = 0;
927
928 WARN_ON(!irqs_disabled());
929
930 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
931 rotations = perf_rotate_context(cpuctx);
932
4cfafd30
PZ
933 raw_spin_lock(&cpuctx->hrtimer_lock);
934 if (rotations)
9e630205 935 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
936 else
937 cpuctx->hrtimer_active = 0;
938 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 939
4cfafd30 940 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
941}
942
272325c4 943static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 944{
272325c4 945 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 946 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 947 u64 interval;
9e630205
SE
948
949 /* no multiplexing needed for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
951 return;
952
62b85639
SE
953 /*
954 * check default is sane, if not set then force to
955 * default interval (1/tick)
956 */
272325c4
PZ
957 interval = pmu->hrtimer_interval_ms;
958 if (interval < 1)
959 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 960
272325c4 961 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 962
4cfafd30
PZ
963 raw_spin_lock_init(&cpuctx->hrtimer_lock);
964 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 965 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
966}
967
272325c4 968static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 969{
272325c4 970 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 971 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 972 unsigned long flags;
9e630205
SE
973
974 /* not for SW PMU */
975 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 976 return 0;
9e630205 977
4cfafd30
PZ
978 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
979 if (!cpuctx->hrtimer_active) {
980 cpuctx->hrtimer_active = 1;
981 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
982 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
983 }
984 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 985
272325c4 986 return 0;
9e630205
SE
987}
988
33696fc0 989void perf_pmu_disable(struct pmu *pmu)
9e35ad38 990{
33696fc0
PZ
991 int *count = this_cpu_ptr(pmu->pmu_disable_count);
992 if (!(*count)++)
993 pmu->pmu_disable(pmu);
9e35ad38 994}
9e35ad38 995
33696fc0 996void perf_pmu_enable(struct pmu *pmu)
9e35ad38 997{
33696fc0
PZ
998 int *count = this_cpu_ptr(pmu->pmu_disable_count);
999 if (!--(*count))
1000 pmu->pmu_enable(pmu);
9e35ad38 1001}
9e35ad38 1002
2fde4f94 1003static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1004
1005/*
2fde4f94
MR
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1010 */
2fde4f94 1011static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1012{
2fde4f94 1013 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1014
e9d2b064 1015 WARN_ON(!irqs_disabled());
b5ab4cd5 1016
2fde4f94
MR
1017 WARN_ON(!list_empty(&ctx->active_ctx_list));
1018
1019 list_add(&ctx->active_ctx_list, head);
1020}
1021
1022static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023{
1024 WARN_ON(!irqs_disabled());
1025
1026 WARN_ON(list_empty(&ctx->active_ctx_list));
1027
1028 list_del_init(&ctx->active_ctx_list);
9e35ad38 1029}
9e35ad38 1030
cdd6c482 1031static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1032{
e5289d4a 1033 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1034}
1035
4af57ef2
YZ
1036static void free_ctx(struct rcu_head *head)
1037{
1038 struct perf_event_context *ctx;
1039
1040 ctx = container_of(head, struct perf_event_context, rcu_head);
1041 kfree(ctx->task_ctx_data);
1042 kfree(ctx);
1043}
1044
cdd6c482 1045static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1046{
564c2b21
PM
1047 if (atomic_dec_and_test(&ctx->refcount)) {
1048 if (ctx->parent_ctx)
1049 put_ctx(ctx->parent_ctx);
63b6da39 1050 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1051 put_task_struct(ctx->task);
4af57ef2 1052 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1053 }
a63eaf34
PM
1054}
1055
f63a8daa
PZ
1056/*
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1059 *
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062 *
8b10c5e2
PZ
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1065 *
1066 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1067 * perf_event_exit_event()
1068 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1069 *
1070 * - perf_event_init_context() [ parent, 0 ]
1071 * inherit_task_group()
1072 * inherit_group()
1073 * inherit_event()
1074 * perf_event_alloc()
1075 * perf_init_event()
1076 * perf_try_init_event() [ child , 1 ]
1077 *
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1082 *
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1085 * interact.
f63a8daa
PZ
1086 *
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1091 *
1092 * The places that change perf_event::ctx will issue:
1093 *
1094 * perf_remove_from_context();
1095 * synchronize_rcu();
1096 * perf_install_in_context();
1097 *
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1103 *
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106 * function.
1107 *
1108 * Lock order:
1109 * task_struct::perf_event_mutex
1110 * perf_event_context::mutex
f63a8daa 1111 * perf_event::child_mutex;
07c4a776 1112 * perf_event_context::lock
f63a8daa
PZ
1113 * perf_event::mmap_mutex
1114 * mmap_sem
1115 */
a83fe28e
PZ
1116static struct perf_event_context *
1117perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1118{
1119 struct perf_event_context *ctx;
1120
1121again:
1122 rcu_read_lock();
1123 ctx = ACCESS_ONCE(event->ctx);
1124 if (!atomic_inc_not_zero(&ctx->refcount)) {
1125 rcu_read_unlock();
1126 goto again;
1127 }
1128 rcu_read_unlock();
1129
a83fe28e 1130 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1131 if (event->ctx != ctx) {
1132 mutex_unlock(&ctx->mutex);
1133 put_ctx(ctx);
1134 goto again;
1135 }
1136
1137 return ctx;
1138}
1139
a83fe28e
PZ
1140static inline struct perf_event_context *
1141perf_event_ctx_lock(struct perf_event *event)
1142{
1143 return perf_event_ctx_lock_nested(event, 0);
1144}
1145
f63a8daa
PZ
1146static void perf_event_ctx_unlock(struct perf_event *event,
1147 struct perf_event_context *ctx)
1148{
1149 mutex_unlock(&ctx->mutex);
1150 put_ctx(ctx);
1151}
1152
211de6eb
PZ
1153/*
1154 * This must be done under the ctx->lock, such as to serialize against
1155 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1156 * calling scheduler related locks and ctx->lock nests inside those.
1157 */
1158static __must_check struct perf_event_context *
1159unclone_ctx(struct perf_event_context *ctx)
71a851b4 1160{
211de6eb
PZ
1161 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1162
1163 lockdep_assert_held(&ctx->lock);
1164
1165 if (parent_ctx)
71a851b4 1166 ctx->parent_ctx = NULL;
5a3126d4 1167 ctx->generation++;
211de6eb
PZ
1168
1169 return parent_ctx;
71a851b4
PZ
1170}
1171
6844c09d
ACM
1172static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1173{
1174 /*
1175 * only top level events have the pid namespace they were created in
1176 */
1177 if (event->parent)
1178 event = event->parent;
1179
1180 return task_tgid_nr_ns(p, event->ns);
1181}
1182
1183static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1184{
1185 /*
1186 * only top level events have the pid namespace they were created in
1187 */
1188 if (event->parent)
1189 event = event->parent;
1190
1191 return task_pid_nr_ns(p, event->ns);
1192}
1193
7f453c24 1194/*
cdd6c482 1195 * If we inherit events we want to return the parent event id
7f453c24
PZ
1196 * to userspace.
1197 */
cdd6c482 1198static u64 primary_event_id(struct perf_event *event)
7f453c24 1199{
cdd6c482 1200 u64 id = event->id;
7f453c24 1201
cdd6c482
IM
1202 if (event->parent)
1203 id = event->parent->id;
7f453c24
PZ
1204
1205 return id;
1206}
1207
25346b93 1208/*
cdd6c482 1209 * Get the perf_event_context for a task and lock it.
63b6da39 1210 *
25346b93
PM
1211 * This has to cope with with the fact that until it is locked,
1212 * the context could get moved to another task.
1213 */
cdd6c482 1214static struct perf_event_context *
8dc85d54 1215perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1216{
cdd6c482 1217 struct perf_event_context *ctx;
25346b93 1218
9ed6060d 1219retry:
058ebd0e
PZ
1220 /*
1221 * One of the few rules of preemptible RCU is that one cannot do
1222 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1223 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1224 * rcu_read_unlock_special().
1225 *
1226 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1227 * side critical section has interrupts disabled.
058ebd0e 1228 */
2fd59077 1229 local_irq_save(*flags);
058ebd0e 1230 rcu_read_lock();
8dc85d54 1231 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1232 if (ctx) {
1233 /*
1234 * If this context is a clone of another, it might
1235 * get swapped for another underneath us by
cdd6c482 1236 * perf_event_task_sched_out, though the
25346b93
PM
1237 * rcu_read_lock() protects us from any context
1238 * getting freed. Lock the context and check if it
1239 * got swapped before we could get the lock, and retry
1240 * if so. If we locked the right context, then it
1241 * can't get swapped on us any more.
1242 */
2fd59077 1243 raw_spin_lock(&ctx->lock);
8dc85d54 1244 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1245 raw_spin_unlock(&ctx->lock);
058ebd0e 1246 rcu_read_unlock();
2fd59077 1247 local_irq_restore(*flags);
25346b93
PM
1248 goto retry;
1249 }
b49a9e7e 1250
63b6da39
PZ
1251 if (ctx->task == TASK_TOMBSTONE ||
1252 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1253 raw_spin_unlock(&ctx->lock);
b49a9e7e 1254 ctx = NULL;
828b6f0e
PZ
1255 } else {
1256 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1257 }
25346b93
PM
1258 }
1259 rcu_read_unlock();
2fd59077
PM
1260 if (!ctx)
1261 local_irq_restore(*flags);
25346b93
PM
1262 return ctx;
1263}
1264
1265/*
1266 * Get the context for a task and increment its pin_count so it
1267 * can't get swapped to another task. This also increments its
1268 * reference count so that the context can't get freed.
1269 */
8dc85d54
PZ
1270static struct perf_event_context *
1271perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1272{
cdd6c482 1273 struct perf_event_context *ctx;
25346b93
PM
1274 unsigned long flags;
1275
8dc85d54 1276 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1277 if (ctx) {
1278 ++ctx->pin_count;
e625cce1 1279 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1280 }
1281 return ctx;
1282}
1283
cdd6c482 1284static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1285{
1286 unsigned long flags;
1287
e625cce1 1288 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1289 --ctx->pin_count;
e625cce1 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1291}
1292
f67218c3
PZ
1293/*
1294 * Update the record of the current time in a context.
1295 */
1296static void update_context_time(struct perf_event_context *ctx)
1297{
1298 u64 now = perf_clock();
1299
1300 ctx->time += now - ctx->timestamp;
1301 ctx->timestamp = now;
1302}
1303
4158755d
SE
1304static u64 perf_event_time(struct perf_event *event)
1305{
1306 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1307
1308 if (is_cgroup_event(event))
1309 return perf_cgroup_event_time(event);
1310
4158755d
SE
1311 return ctx ? ctx->time : 0;
1312}
1313
f67218c3
PZ
1314/*
1315 * Update the total_time_enabled and total_time_running fields for a event.
1316 */
1317static void update_event_times(struct perf_event *event)
1318{
1319 struct perf_event_context *ctx = event->ctx;
1320 u64 run_end;
1321
3cbaa590
PZ
1322 lockdep_assert_held(&ctx->lock);
1323
f67218c3
PZ
1324 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1325 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1326 return;
3cbaa590 1327
e5d1367f
SE
1328 /*
1329 * in cgroup mode, time_enabled represents
1330 * the time the event was enabled AND active
1331 * tasks were in the monitored cgroup. This is
1332 * independent of the activity of the context as
1333 * there may be a mix of cgroup and non-cgroup events.
1334 *
1335 * That is why we treat cgroup events differently
1336 * here.
1337 */
1338 if (is_cgroup_event(event))
46cd6a7f 1339 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1340 else if (ctx->is_active)
1341 run_end = ctx->time;
acd1d7c1
PZ
1342 else
1343 run_end = event->tstamp_stopped;
1344
1345 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1346
1347 if (event->state == PERF_EVENT_STATE_INACTIVE)
1348 run_end = event->tstamp_stopped;
1349 else
4158755d 1350 run_end = perf_event_time(event);
f67218c3
PZ
1351
1352 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1353
f67218c3
PZ
1354}
1355
96c21a46
PZ
1356/*
1357 * Update total_time_enabled and total_time_running for all events in a group.
1358 */
1359static void update_group_times(struct perf_event *leader)
1360{
1361 struct perf_event *event;
1362
1363 update_event_times(leader);
1364 list_for_each_entry(event, &leader->sibling_list, group_entry)
1365 update_event_times(event);
1366}
1367
889ff015
FW
1368static struct list_head *
1369ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1370{
1371 if (event->attr.pinned)
1372 return &ctx->pinned_groups;
1373 else
1374 return &ctx->flexible_groups;
1375}
1376
fccc714b 1377/*
cdd6c482 1378 * Add a event from the lists for its context.
fccc714b
PZ
1379 * Must be called with ctx->mutex and ctx->lock held.
1380 */
04289bb9 1381static void
cdd6c482 1382list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1383{
c994d613
PZ
1384 lockdep_assert_held(&ctx->lock);
1385
8a49542c
PZ
1386 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1387 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1388
1389 /*
8a49542c
PZ
1390 * If we're a stand alone event or group leader, we go to the context
1391 * list, group events are kept attached to the group so that
1392 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1393 */
8a49542c 1394 if (event->group_leader == event) {
889ff015
FW
1395 struct list_head *list;
1396
d6f962b5
FW
1397 if (is_software_event(event))
1398 event->group_flags |= PERF_GROUP_SOFTWARE;
1399
889ff015
FW
1400 list = ctx_group_list(event, ctx);
1401 list_add_tail(&event->group_entry, list);
5c148194 1402 }
592903cd 1403
08309379 1404 if (is_cgroup_event(event))
e5d1367f 1405 ctx->nr_cgroups++;
e5d1367f 1406
cdd6c482
IM
1407 list_add_rcu(&event->event_entry, &ctx->event_list);
1408 ctx->nr_events++;
1409 if (event->attr.inherit_stat)
bfbd3381 1410 ctx->nr_stat++;
5a3126d4
PZ
1411
1412 ctx->generation++;
04289bb9
IM
1413}
1414
0231bb53
JO
1415/*
1416 * Initialize event state based on the perf_event_attr::disabled.
1417 */
1418static inline void perf_event__state_init(struct perf_event *event)
1419{
1420 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1421 PERF_EVENT_STATE_INACTIVE;
1422}
1423
a723968c 1424static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1425{
1426 int entry = sizeof(u64); /* value */
1427 int size = 0;
1428 int nr = 1;
1429
1430 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1431 size += sizeof(u64);
1432
1433 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1434 size += sizeof(u64);
1435
1436 if (event->attr.read_format & PERF_FORMAT_ID)
1437 entry += sizeof(u64);
1438
1439 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1440 nr += nr_siblings;
c320c7b7
ACM
1441 size += sizeof(u64);
1442 }
1443
1444 size += entry * nr;
1445 event->read_size = size;
1446}
1447
a723968c 1448static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1449{
1450 struct perf_sample_data *data;
c320c7b7
ACM
1451 u16 size = 0;
1452
c320c7b7
ACM
1453 if (sample_type & PERF_SAMPLE_IP)
1454 size += sizeof(data->ip);
1455
6844c09d
ACM
1456 if (sample_type & PERF_SAMPLE_ADDR)
1457 size += sizeof(data->addr);
1458
1459 if (sample_type & PERF_SAMPLE_PERIOD)
1460 size += sizeof(data->period);
1461
c3feedf2
AK
1462 if (sample_type & PERF_SAMPLE_WEIGHT)
1463 size += sizeof(data->weight);
1464
6844c09d
ACM
1465 if (sample_type & PERF_SAMPLE_READ)
1466 size += event->read_size;
1467
d6be9ad6
SE
1468 if (sample_type & PERF_SAMPLE_DATA_SRC)
1469 size += sizeof(data->data_src.val);
1470
fdfbbd07
AK
1471 if (sample_type & PERF_SAMPLE_TRANSACTION)
1472 size += sizeof(data->txn);
1473
6844c09d
ACM
1474 event->header_size = size;
1475}
1476
a723968c
PZ
1477/*
1478 * Called at perf_event creation and when events are attached/detached from a
1479 * group.
1480 */
1481static void perf_event__header_size(struct perf_event *event)
1482{
1483 __perf_event_read_size(event,
1484 event->group_leader->nr_siblings);
1485 __perf_event_header_size(event, event->attr.sample_type);
1486}
1487
6844c09d
ACM
1488static void perf_event__id_header_size(struct perf_event *event)
1489{
1490 struct perf_sample_data *data;
1491 u64 sample_type = event->attr.sample_type;
1492 u16 size = 0;
1493
c320c7b7
ACM
1494 if (sample_type & PERF_SAMPLE_TID)
1495 size += sizeof(data->tid_entry);
1496
1497 if (sample_type & PERF_SAMPLE_TIME)
1498 size += sizeof(data->time);
1499
ff3d527c
AH
1500 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1501 size += sizeof(data->id);
1502
c320c7b7
ACM
1503 if (sample_type & PERF_SAMPLE_ID)
1504 size += sizeof(data->id);
1505
1506 if (sample_type & PERF_SAMPLE_STREAM_ID)
1507 size += sizeof(data->stream_id);
1508
1509 if (sample_type & PERF_SAMPLE_CPU)
1510 size += sizeof(data->cpu_entry);
1511
6844c09d 1512 event->id_header_size = size;
c320c7b7
ACM
1513}
1514
a723968c
PZ
1515static bool perf_event_validate_size(struct perf_event *event)
1516{
1517 /*
1518 * The values computed here will be over-written when we actually
1519 * attach the event.
1520 */
1521 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1522 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1523 perf_event__id_header_size(event);
1524
1525 /*
1526 * Sum the lot; should not exceed the 64k limit we have on records.
1527 * Conservative limit to allow for callchains and other variable fields.
1528 */
1529 if (event->read_size + event->header_size +
1530 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1531 return false;
1532
1533 return true;
1534}
1535
8a49542c
PZ
1536static void perf_group_attach(struct perf_event *event)
1537{
c320c7b7 1538 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1539
74c3337c
PZ
1540 /*
1541 * We can have double attach due to group movement in perf_event_open.
1542 */
1543 if (event->attach_state & PERF_ATTACH_GROUP)
1544 return;
1545
8a49542c
PZ
1546 event->attach_state |= PERF_ATTACH_GROUP;
1547
1548 if (group_leader == event)
1549 return;
1550
652884fe
PZ
1551 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1552
8a49542c
PZ
1553 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1554 !is_software_event(event))
1555 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1556
1557 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1558 group_leader->nr_siblings++;
c320c7b7
ACM
1559
1560 perf_event__header_size(group_leader);
1561
1562 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1563 perf_event__header_size(pos);
8a49542c
PZ
1564}
1565
a63eaf34 1566/*
cdd6c482 1567 * Remove a event from the lists for its context.
fccc714b 1568 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1569 */
04289bb9 1570static void
cdd6c482 1571list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1572{
68cacd29 1573 struct perf_cpu_context *cpuctx;
652884fe
PZ
1574
1575 WARN_ON_ONCE(event->ctx != ctx);
1576 lockdep_assert_held(&ctx->lock);
1577
8a49542c
PZ
1578 /*
1579 * We can have double detach due to exit/hot-unplug + close.
1580 */
1581 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1582 return;
8a49542c
PZ
1583
1584 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1585
68cacd29 1586 if (is_cgroup_event(event)) {
e5d1367f 1587 ctx->nr_cgroups--;
70a01657
PZ
1588 /*
1589 * Because cgroup events are always per-cpu events, this will
1590 * always be called from the right CPU.
1591 */
68cacd29
SE
1592 cpuctx = __get_cpu_context(ctx);
1593 /*
70a01657
PZ
1594 * If there are no more cgroup events then clear cgrp to avoid
1595 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1596 */
1597 if (!ctx->nr_cgroups)
1598 cpuctx->cgrp = NULL;
1599 }
e5d1367f 1600
cdd6c482
IM
1601 ctx->nr_events--;
1602 if (event->attr.inherit_stat)
bfbd3381 1603 ctx->nr_stat--;
8bc20959 1604
cdd6c482 1605 list_del_rcu(&event->event_entry);
04289bb9 1606
8a49542c
PZ
1607 if (event->group_leader == event)
1608 list_del_init(&event->group_entry);
5c148194 1609
96c21a46 1610 update_group_times(event);
b2e74a26
SE
1611
1612 /*
1613 * If event was in error state, then keep it
1614 * that way, otherwise bogus counts will be
1615 * returned on read(). The only way to get out
1616 * of error state is by explicit re-enabling
1617 * of the event
1618 */
1619 if (event->state > PERF_EVENT_STATE_OFF)
1620 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1621
1622 ctx->generation++;
050735b0
PZ
1623}
1624
8a49542c 1625static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1626{
1627 struct perf_event *sibling, *tmp;
8a49542c
PZ
1628 struct list_head *list = NULL;
1629
1630 /*
1631 * We can have double detach due to exit/hot-unplug + close.
1632 */
1633 if (!(event->attach_state & PERF_ATTACH_GROUP))
1634 return;
1635
1636 event->attach_state &= ~PERF_ATTACH_GROUP;
1637
1638 /*
1639 * If this is a sibling, remove it from its group.
1640 */
1641 if (event->group_leader != event) {
1642 list_del_init(&event->group_entry);
1643 event->group_leader->nr_siblings--;
c320c7b7 1644 goto out;
8a49542c
PZ
1645 }
1646
1647 if (!list_empty(&event->group_entry))
1648 list = &event->group_entry;
2e2af50b 1649
04289bb9 1650 /*
cdd6c482
IM
1651 * If this was a group event with sibling events then
1652 * upgrade the siblings to singleton events by adding them
8a49542c 1653 * to whatever list we are on.
04289bb9 1654 */
cdd6c482 1655 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1656 if (list)
1657 list_move_tail(&sibling->group_entry, list);
04289bb9 1658 sibling->group_leader = sibling;
d6f962b5
FW
1659
1660 /* Inherit group flags from the previous leader */
1661 sibling->group_flags = event->group_flags;
652884fe
PZ
1662
1663 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1664 }
c320c7b7
ACM
1665
1666out:
1667 perf_event__header_size(event->group_leader);
1668
1669 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1670 perf_event__header_size(tmp);
04289bb9
IM
1671}
1672
fadfe7be
JO
1673static bool is_orphaned_event(struct perf_event *event)
1674{
a69b0ca4 1675 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1676}
1677
66eb579e
MR
1678static inline int pmu_filter_match(struct perf_event *event)
1679{
1680 struct pmu *pmu = event->pmu;
1681 return pmu->filter_match ? pmu->filter_match(event) : 1;
1682}
1683
fa66f07a
SE
1684static inline int
1685event_filter_match(struct perf_event *event)
1686{
e5d1367f 1687 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1688 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1689}
1690
9ffcfa6f
SE
1691static void
1692event_sched_out(struct perf_event *event,
3b6f9e5c 1693 struct perf_cpu_context *cpuctx,
cdd6c482 1694 struct perf_event_context *ctx)
3b6f9e5c 1695{
4158755d 1696 u64 tstamp = perf_event_time(event);
fa66f07a 1697 u64 delta;
652884fe
PZ
1698
1699 WARN_ON_ONCE(event->ctx != ctx);
1700 lockdep_assert_held(&ctx->lock);
1701
fa66f07a
SE
1702 /*
1703 * An event which could not be activated because of
1704 * filter mismatch still needs to have its timings
1705 * maintained, otherwise bogus information is return
1706 * via read() for time_enabled, time_running:
1707 */
1708 if (event->state == PERF_EVENT_STATE_INACTIVE
1709 && !event_filter_match(event)) {
e5d1367f 1710 delta = tstamp - event->tstamp_stopped;
fa66f07a 1711 event->tstamp_running += delta;
4158755d 1712 event->tstamp_stopped = tstamp;
fa66f07a
SE
1713 }
1714
cdd6c482 1715 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1716 return;
3b6f9e5c 1717
44377277
AS
1718 perf_pmu_disable(event->pmu);
1719
28a967c3
PZ
1720 event->tstamp_stopped = tstamp;
1721 event->pmu->del(event, 0);
1722 event->oncpu = -1;
cdd6c482
IM
1723 event->state = PERF_EVENT_STATE_INACTIVE;
1724 if (event->pending_disable) {
1725 event->pending_disable = 0;
1726 event->state = PERF_EVENT_STATE_OFF;
970892a9 1727 }
3b6f9e5c 1728
cdd6c482 1729 if (!is_software_event(event))
3b6f9e5c 1730 cpuctx->active_oncpu--;
2fde4f94
MR
1731 if (!--ctx->nr_active)
1732 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1733 if (event->attr.freq && event->attr.sample_freq)
1734 ctx->nr_freq--;
cdd6c482 1735 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1736 cpuctx->exclusive = 0;
44377277
AS
1737
1738 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1739}
1740
d859e29f 1741static void
cdd6c482 1742group_sched_out(struct perf_event *group_event,
d859e29f 1743 struct perf_cpu_context *cpuctx,
cdd6c482 1744 struct perf_event_context *ctx)
d859e29f 1745{
cdd6c482 1746 struct perf_event *event;
fa66f07a 1747 int state = group_event->state;
d859e29f 1748
cdd6c482 1749 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1750
1751 /*
1752 * Schedule out siblings (if any):
1753 */
cdd6c482
IM
1754 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1755 event_sched_out(event, cpuctx, ctx);
d859e29f 1756
fa66f07a 1757 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1758 cpuctx->exclusive = 0;
1759}
1760
45a0e07a 1761#define DETACH_GROUP 0x01UL
0017960f 1762
0793a61d 1763/*
cdd6c482 1764 * Cross CPU call to remove a performance event
0793a61d 1765 *
cdd6c482 1766 * We disable the event on the hardware level first. After that we
0793a61d
TG
1767 * remove it from the context list.
1768 */
fae3fde6
PZ
1769static void
1770__perf_remove_from_context(struct perf_event *event,
1771 struct perf_cpu_context *cpuctx,
1772 struct perf_event_context *ctx,
1773 void *info)
0793a61d 1774{
45a0e07a 1775 unsigned long flags = (unsigned long)info;
0793a61d 1776
cdd6c482 1777 event_sched_out(event, cpuctx, ctx);
45a0e07a 1778 if (flags & DETACH_GROUP)
46ce0fe9 1779 perf_group_detach(event);
cdd6c482 1780 list_del_event(event, ctx);
39a43640
PZ
1781
1782 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1783 ctx->is_active = 0;
39a43640
PZ
1784 if (ctx->task) {
1785 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1786 cpuctx->task_ctx = NULL;
1787 }
64ce3126 1788 }
0793a61d
TG
1789}
1790
0793a61d 1791/*
cdd6c482 1792 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1793 *
cdd6c482
IM
1794 * If event->ctx is a cloned context, callers must make sure that
1795 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1796 * remains valid. This is OK when called from perf_release since
1797 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1798 * When called from perf_event_exit_task, it's OK because the
c93f7669 1799 * context has been detached from its task.
0793a61d 1800 */
45a0e07a 1801static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1802{
fae3fde6 1803 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1804
45a0e07a 1805 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1806}
1807
d859e29f 1808/*
cdd6c482 1809 * Cross CPU call to disable a performance event
d859e29f 1810 */
fae3fde6
PZ
1811static void __perf_event_disable(struct perf_event *event,
1812 struct perf_cpu_context *cpuctx,
1813 struct perf_event_context *ctx,
1814 void *info)
7b648018 1815{
fae3fde6
PZ
1816 if (event->state < PERF_EVENT_STATE_INACTIVE)
1817 return;
7b648018 1818
fae3fde6
PZ
1819 update_context_time(ctx);
1820 update_cgrp_time_from_event(event);
1821 update_group_times(event);
1822 if (event == event->group_leader)
1823 group_sched_out(event, cpuctx, ctx);
1824 else
1825 event_sched_out(event, cpuctx, ctx);
1826 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1827}
1828
d859e29f 1829/*
cdd6c482 1830 * Disable a event.
c93f7669 1831 *
cdd6c482
IM
1832 * If event->ctx is a cloned context, callers must make sure that
1833 * every task struct that event->ctx->task could possibly point to
c93f7669 1834 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1835 * perf_event_for_each_child or perf_event_for_each because they
1836 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1837 * goes to exit will block in perf_event_exit_event().
1838 *
cdd6c482 1839 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1840 * is the current context on this CPU and preemption is disabled,
cdd6c482 1841 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1842 */
f63a8daa 1843static void _perf_event_disable(struct perf_event *event)
d859e29f 1844{
cdd6c482 1845 struct perf_event_context *ctx = event->ctx;
d859e29f 1846
e625cce1 1847 raw_spin_lock_irq(&ctx->lock);
7b648018 1848 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1849 raw_spin_unlock_irq(&ctx->lock);
7b648018 1850 return;
53cfbf59 1851 }
e625cce1 1852 raw_spin_unlock_irq(&ctx->lock);
7b648018 1853
fae3fde6
PZ
1854 event_function_call(event, __perf_event_disable, NULL);
1855}
1856
1857void perf_event_disable_local(struct perf_event *event)
1858{
1859 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1860}
f63a8daa
PZ
1861
1862/*
1863 * Strictly speaking kernel users cannot create groups and therefore this
1864 * interface does not need the perf_event_ctx_lock() magic.
1865 */
1866void perf_event_disable(struct perf_event *event)
1867{
1868 struct perf_event_context *ctx;
1869
1870 ctx = perf_event_ctx_lock(event);
1871 _perf_event_disable(event);
1872 perf_event_ctx_unlock(event, ctx);
1873}
dcfce4a0 1874EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1875
e5d1367f
SE
1876static void perf_set_shadow_time(struct perf_event *event,
1877 struct perf_event_context *ctx,
1878 u64 tstamp)
1879{
1880 /*
1881 * use the correct time source for the time snapshot
1882 *
1883 * We could get by without this by leveraging the
1884 * fact that to get to this function, the caller
1885 * has most likely already called update_context_time()
1886 * and update_cgrp_time_xx() and thus both timestamp
1887 * are identical (or very close). Given that tstamp is,
1888 * already adjusted for cgroup, we could say that:
1889 * tstamp - ctx->timestamp
1890 * is equivalent to
1891 * tstamp - cgrp->timestamp.
1892 *
1893 * Then, in perf_output_read(), the calculation would
1894 * work with no changes because:
1895 * - event is guaranteed scheduled in
1896 * - no scheduled out in between
1897 * - thus the timestamp would be the same
1898 *
1899 * But this is a bit hairy.
1900 *
1901 * So instead, we have an explicit cgroup call to remain
1902 * within the time time source all along. We believe it
1903 * is cleaner and simpler to understand.
1904 */
1905 if (is_cgroup_event(event))
1906 perf_cgroup_set_shadow_time(event, tstamp);
1907 else
1908 event->shadow_ctx_time = tstamp - ctx->timestamp;
1909}
1910
4fe757dd
PZ
1911#define MAX_INTERRUPTS (~0ULL)
1912
1913static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1914static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1915
235c7fc7 1916static int
9ffcfa6f 1917event_sched_in(struct perf_event *event,
235c7fc7 1918 struct perf_cpu_context *cpuctx,
6e37738a 1919 struct perf_event_context *ctx)
235c7fc7 1920{
4158755d 1921 u64 tstamp = perf_event_time(event);
44377277 1922 int ret = 0;
4158755d 1923
63342411
PZ
1924 lockdep_assert_held(&ctx->lock);
1925
cdd6c482 1926 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1927 return 0;
1928
95ff4ca2
AS
1929 WRITE_ONCE(event->oncpu, smp_processor_id());
1930 /*
1931 * Order event::oncpu write to happen before the ACTIVE state
1932 * is visible.
1933 */
1934 smp_wmb();
1935 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1936
1937 /*
1938 * Unthrottle events, since we scheduled we might have missed several
1939 * ticks already, also for a heavily scheduling task there is little
1940 * guarantee it'll get a tick in a timely manner.
1941 */
1942 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1943 perf_log_throttle(event, 1);
1944 event->hw.interrupts = 0;
1945 }
1946
235c7fc7
IM
1947 /*
1948 * The new state must be visible before we turn it on in the hardware:
1949 */
1950 smp_wmb();
1951
44377277
AS
1952 perf_pmu_disable(event->pmu);
1953
72f669c0
SL
1954 perf_set_shadow_time(event, ctx, tstamp);
1955
ec0d7729
AS
1956 perf_log_itrace_start(event);
1957
a4eaf7f1 1958 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1959 event->state = PERF_EVENT_STATE_INACTIVE;
1960 event->oncpu = -1;
44377277
AS
1961 ret = -EAGAIN;
1962 goto out;
235c7fc7
IM
1963 }
1964
00a2916f
PZ
1965 event->tstamp_running += tstamp - event->tstamp_stopped;
1966
cdd6c482 1967 if (!is_software_event(event))
3b6f9e5c 1968 cpuctx->active_oncpu++;
2fde4f94
MR
1969 if (!ctx->nr_active++)
1970 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1971 if (event->attr.freq && event->attr.sample_freq)
1972 ctx->nr_freq++;
235c7fc7 1973
cdd6c482 1974 if (event->attr.exclusive)
3b6f9e5c
PM
1975 cpuctx->exclusive = 1;
1976
44377277
AS
1977out:
1978 perf_pmu_enable(event->pmu);
1979
1980 return ret;
235c7fc7
IM
1981}
1982
6751b71e 1983static int
cdd6c482 1984group_sched_in(struct perf_event *group_event,
6751b71e 1985 struct perf_cpu_context *cpuctx,
6e37738a 1986 struct perf_event_context *ctx)
6751b71e 1987{
6bde9b6c 1988 struct perf_event *event, *partial_group = NULL;
4a234593 1989 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1990 u64 now = ctx->time;
1991 bool simulate = false;
6751b71e 1992
cdd6c482 1993 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1994 return 0;
1995
fbbe0701 1996 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1997
9ffcfa6f 1998 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1999 pmu->cancel_txn(pmu);
272325c4 2000 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2001 return -EAGAIN;
90151c35 2002 }
6751b71e
PM
2003
2004 /*
2005 * Schedule in siblings as one group (if any):
2006 */
cdd6c482 2007 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2008 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2009 partial_group = event;
6751b71e
PM
2010 goto group_error;
2011 }
2012 }
2013
9ffcfa6f 2014 if (!pmu->commit_txn(pmu))
6e85158c 2015 return 0;
9ffcfa6f 2016
6751b71e
PM
2017group_error:
2018 /*
2019 * Groups can be scheduled in as one unit only, so undo any
2020 * partial group before returning:
d7842da4
SE
2021 * The events up to the failed event are scheduled out normally,
2022 * tstamp_stopped will be updated.
2023 *
2024 * The failed events and the remaining siblings need to have
2025 * their timings updated as if they had gone thru event_sched_in()
2026 * and event_sched_out(). This is required to get consistent timings
2027 * across the group. This also takes care of the case where the group
2028 * could never be scheduled by ensuring tstamp_stopped is set to mark
2029 * the time the event was actually stopped, such that time delta
2030 * calculation in update_event_times() is correct.
6751b71e 2031 */
cdd6c482
IM
2032 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2033 if (event == partial_group)
d7842da4
SE
2034 simulate = true;
2035
2036 if (simulate) {
2037 event->tstamp_running += now - event->tstamp_stopped;
2038 event->tstamp_stopped = now;
2039 } else {
2040 event_sched_out(event, cpuctx, ctx);
2041 }
6751b71e 2042 }
9ffcfa6f 2043 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2044
ad5133b7 2045 pmu->cancel_txn(pmu);
90151c35 2046
272325c4 2047 perf_mux_hrtimer_restart(cpuctx);
9e630205 2048
6751b71e
PM
2049 return -EAGAIN;
2050}
2051
3b6f9e5c 2052/*
cdd6c482 2053 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2054 */
cdd6c482 2055static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2056 struct perf_cpu_context *cpuctx,
2057 int can_add_hw)
2058{
2059 /*
cdd6c482 2060 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2061 */
d6f962b5 2062 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2063 return 1;
2064 /*
2065 * If an exclusive group is already on, no other hardware
cdd6c482 2066 * events can go on.
3b6f9e5c
PM
2067 */
2068 if (cpuctx->exclusive)
2069 return 0;
2070 /*
2071 * If this group is exclusive and there are already
cdd6c482 2072 * events on the CPU, it can't go on.
3b6f9e5c 2073 */
cdd6c482 2074 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2075 return 0;
2076 /*
2077 * Otherwise, try to add it if all previous groups were able
2078 * to go on.
2079 */
2080 return can_add_hw;
2081}
2082
cdd6c482
IM
2083static void add_event_to_ctx(struct perf_event *event,
2084 struct perf_event_context *ctx)
53cfbf59 2085{
4158755d
SE
2086 u64 tstamp = perf_event_time(event);
2087
cdd6c482 2088 list_add_event(event, ctx);
8a49542c 2089 perf_group_attach(event);
4158755d
SE
2090 event->tstamp_enabled = tstamp;
2091 event->tstamp_running = tstamp;
2092 event->tstamp_stopped = tstamp;
53cfbf59
PM
2093}
2094
bd2afa49
PZ
2095static void ctx_sched_out(struct perf_event_context *ctx,
2096 struct perf_cpu_context *cpuctx,
2097 enum event_type_t event_type);
2c29ef0f
PZ
2098static void
2099ctx_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx,
2101 enum event_type_t event_type,
2102 struct task_struct *task);
fe4b04fa 2103
bd2afa49
PZ
2104static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx)
2106{
2107 if (!cpuctx->task_ctx)
2108 return;
2109
2110 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2111 return;
2112
2113 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2114}
2115
dce5855b
PZ
2116static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2117 struct perf_event_context *ctx,
2118 struct task_struct *task)
2119{
2120 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2121 if (ctx)
2122 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2123 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2124 if (ctx)
2125 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2126}
2127
3e349507
PZ
2128static void ctx_resched(struct perf_cpu_context *cpuctx,
2129 struct perf_event_context *task_ctx)
0017960f 2130{
3e349507
PZ
2131 perf_pmu_disable(cpuctx->ctx.pmu);
2132 if (task_ctx)
2133 task_ctx_sched_out(cpuctx, task_ctx);
2134 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2135 perf_event_sched_in(cpuctx, task_ctx, current);
2136 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2137}
2138
0793a61d 2139/*
cdd6c482 2140 * Cross CPU call to install and enable a performance event
682076ae 2141 *
a096309b
PZ
2142 * Very similar to remote_function() + event_function() but cannot assume that
2143 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2144 */
fe4b04fa 2145static int __perf_install_in_context(void *info)
0793a61d 2146{
a096309b
PZ
2147 struct perf_event *event = info;
2148 struct perf_event_context *ctx = event->ctx;
108b02cf 2149 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2150 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2151 bool activate = true;
2152 int ret = 0;
0793a61d 2153
63b6da39 2154 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2155 if (ctx->task) {
b58f6b0d
PZ
2156 raw_spin_lock(&ctx->lock);
2157 task_ctx = ctx;
a096309b
PZ
2158
2159 /* If we're on the wrong CPU, try again */
2160 if (task_cpu(ctx->task) != smp_processor_id()) {
2161 ret = -ESRCH;
63b6da39 2162 goto unlock;
a096309b 2163 }
b58f6b0d 2164
39a43640 2165 /*
a096309b
PZ
2166 * If we're on the right CPU, see if the task we target is
2167 * current, if not we don't have to activate the ctx, a future
2168 * context switch will do that for us.
39a43640 2169 */
a096309b
PZ
2170 if (ctx->task != current)
2171 activate = false;
2172 else
2173 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2174
63b6da39
PZ
2175 } else if (task_ctx) {
2176 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2177 }
b58f6b0d 2178
a096309b
PZ
2179 if (activate) {
2180 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2181 add_event_to_ctx(event, ctx);
2182 ctx_resched(cpuctx, task_ctx);
2183 } else {
2184 add_event_to_ctx(event, ctx);
2185 }
2186
63b6da39 2187unlock:
2c29ef0f 2188 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2189
a096309b 2190 return ret;
0793a61d
TG
2191}
2192
2193/*
a096309b
PZ
2194 * Attach a performance event to a context.
2195 *
2196 * Very similar to event_function_call, see comment there.
0793a61d
TG
2197 */
2198static void
cdd6c482
IM
2199perf_install_in_context(struct perf_event_context *ctx,
2200 struct perf_event *event,
0793a61d
TG
2201 int cpu)
2202{
a096309b 2203 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2204
fe4b04fa
PZ
2205 lockdep_assert_held(&ctx->mutex);
2206
c3f00c70 2207 event->ctx = ctx;
0cda4c02
YZ
2208 if (event->cpu != -1)
2209 event->cpu = cpu;
c3f00c70 2210
a096309b
PZ
2211 if (!task) {
2212 cpu_function_call(cpu, __perf_install_in_context, event);
2213 return;
2214 }
2215
2216 /*
2217 * Should not happen, we validate the ctx is still alive before calling.
2218 */
2219 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2220 return;
2221
39a43640
PZ
2222 /*
2223 * Installing events is tricky because we cannot rely on ctx->is_active
2224 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2225 */
a096309b 2226again:
63b6da39 2227 /*
a096309b
PZ
2228 * Cannot use task_function_call() because we need to run on the task's
2229 * CPU regardless of whether its current or not.
63b6da39 2230 */
a096309b
PZ
2231 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2232 return;
2233
2234 raw_spin_lock_irq(&ctx->lock);
2235 task = ctx->task;
84c4e620 2236 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2237 /*
2238 * Cannot happen because we already checked above (which also
2239 * cannot happen), and we hold ctx->mutex, which serializes us
2240 * against perf_event_exit_task_context().
2241 */
63b6da39
PZ
2242 raw_spin_unlock_irq(&ctx->lock);
2243 return;
2244 }
39a43640 2245 raw_spin_unlock_irq(&ctx->lock);
39a43640 2246 /*
a096309b
PZ
2247 * Since !ctx->is_active doesn't mean anything, we must IPI
2248 * unconditionally.
39a43640 2249 */
a096309b 2250 goto again;
0793a61d
TG
2251}
2252
fa289bec 2253/*
cdd6c482 2254 * Put a event into inactive state and update time fields.
fa289bec
PM
2255 * Enabling the leader of a group effectively enables all
2256 * the group members that aren't explicitly disabled, so we
2257 * have to update their ->tstamp_enabled also.
2258 * Note: this works for group members as well as group leaders
2259 * since the non-leader members' sibling_lists will be empty.
2260 */
1d9b482e 2261static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2262{
cdd6c482 2263 struct perf_event *sub;
4158755d 2264 u64 tstamp = perf_event_time(event);
fa289bec 2265
cdd6c482 2266 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2267 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2268 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2269 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2270 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2271 }
fa289bec
PM
2272}
2273
d859e29f 2274/*
cdd6c482 2275 * Cross CPU call to enable a performance event
d859e29f 2276 */
fae3fde6
PZ
2277static void __perf_event_enable(struct perf_event *event,
2278 struct perf_cpu_context *cpuctx,
2279 struct perf_event_context *ctx,
2280 void *info)
04289bb9 2281{
cdd6c482 2282 struct perf_event *leader = event->group_leader;
fae3fde6 2283 struct perf_event_context *task_ctx;
04289bb9 2284
6e801e01
PZ
2285 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2286 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2287 return;
3cbed429 2288
bd2afa49
PZ
2289 if (ctx->is_active)
2290 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2291
1d9b482e 2292 __perf_event_mark_enabled(event);
04289bb9 2293
fae3fde6
PZ
2294 if (!ctx->is_active)
2295 return;
2296
e5d1367f 2297 if (!event_filter_match(event)) {
bd2afa49 2298 if (is_cgroup_event(event))
e5d1367f 2299 perf_cgroup_defer_enabled(event);
bd2afa49 2300 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2301 return;
e5d1367f 2302 }
f4c4176f 2303
04289bb9 2304 /*
cdd6c482 2305 * If the event is in a group and isn't the group leader,
d859e29f 2306 * then don't put it on unless the group is on.
04289bb9 2307 */
bd2afa49
PZ
2308 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2309 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2310 return;
bd2afa49 2311 }
fe4b04fa 2312
fae3fde6
PZ
2313 task_ctx = cpuctx->task_ctx;
2314 if (ctx->task)
2315 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2316
fae3fde6 2317 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2318}
2319
d859e29f 2320/*
cdd6c482 2321 * Enable a event.
c93f7669 2322 *
cdd6c482
IM
2323 * If event->ctx is a cloned context, callers must make sure that
2324 * every task struct that event->ctx->task could possibly point to
c93f7669 2325 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2326 * perf_event_for_each_child or perf_event_for_each as described
2327 * for perf_event_disable.
d859e29f 2328 */
f63a8daa 2329static void _perf_event_enable(struct perf_event *event)
d859e29f 2330{
cdd6c482 2331 struct perf_event_context *ctx = event->ctx;
d859e29f 2332
7b648018 2333 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2334 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2335 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2336 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2337 return;
2338 }
2339
d859e29f 2340 /*
cdd6c482 2341 * If the event is in error state, clear that first.
7b648018
PZ
2342 *
2343 * That way, if we see the event in error state below, we know that it
2344 * has gone back into error state, as distinct from the task having
2345 * been scheduled away before the cross-call arrived.
d859e29f 2346 */
cdd6c482
IM
2347 if (event->state == PERF_EVENT_STATE_ERROR)
2348 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2349 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2350
fae3fde6 2351 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2352}
f63a8daa
PZ
2353
2354/*
2355 * See perf_event_disable();
2356 */
2357void perf_event_enable(struct perf_event *event)
2358{
2359 struct perf_event_context *ctx;
2360
2361 ctx = perf_event_ctx_lock(event);
2362 _perf_event_enable(event);
2363 perf_event_ctx_unlock(event, ctx);
2364}
dcfce4a0 2365EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2366
95ff4ca2
AS
2367static int __perf_event_stop(void *info)
2368{
2369 struct perf_event *event = info;
2370
2371 /* for AUX events, our job is done if the event is already inactive */
2372 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2373 return 0;
2374
2375 /* matches smp_wmb() in event_sched_in() */
2376 smp_rmb();
2377
2378 /*
2379 * There is a window with interrupts enabled before we get here,
2380 * so we need to check again lest we try to stop another CPU's event.
2381 */
2382 if (READ_ONCE(event->oncpu) != smp_processor_id())
2383 return -EAGAIN;
2384
2385 event->pmu->stop(event, PERF_EF_UPDATE);
2386
2387 return 0;
2388}
2389
f63a8daa 2390static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2391{
2023b359 2392 /*
cdd6c482 2393 * not supported on inherited events
2023b359 2394 */
2e939d1d 2395 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2396 return -EINVAL;
2397
cdd6c482 2398 atomic_add(refresh, &event->event_limit);
f63a8daa 2399 _perf_event_enable(event);
2023b359
PZ
2400
2401 return 0;
79f14641 2402}
f63a8daa
PZ
2403
2404/*
2405 * See perf_event_disable()
2406 */
2407int perf_event_refresh(struct perf_event *event, int refresh)
2408{
2409 struct perf_event_context *ctx;
2410 int ret;
2411
2412 ctx = perf_event_ctx_lock(event);
2413 ret = _perf_event_refresh(event, refresh);
2414 perf_event_ctx_unlock(event, ctx);
2415
2416 return ret;
2417}
26ca5c11 2418EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2419
5b0311e1
FW
2420static void ctx_sched_out(struct perf_event_context *ctx,
2421 struct perf_cpu_context *cpuctx,
2422 enum event_type_t event_type)
235c7fc7 2423{
db24d33e 2424 int is_active = ctx->is_active;
c994d613 2425 struct perf_event *event;
235c7fc7 2426
c994d613 2427 lockdep_assert_held(&ctx->lock);
235c7fc7 2428
39a43640
PZ
2429 if (likely(!ctx->nr_events)) {
2430 /*
2431 * See __perf_remove_from_context().
2432 */
2433 WARN_ON_ONCE(ctx->is_active);
2434 if (ctx->task)
2435 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2436 return;
39a43640
PZ
2437 }
2438
db24d33e 2439 ctx->is_active &= ~event_type;
3cbaa590
PZ
2440 if (!(ctx->is_active & EVENT_ALL))
2441 ctx->is_active = 0;
2442
63e30d3e
PZ
2443 if (ctx->task) {
2444 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2445 if (!ctx->is_active)
2446 cpuctx->task_ctx = NULL;
2447 }
facc4307 2448
8fdc6539
PZ
2449 /*
2450 * Always update time if it was set; not only when it changes.
2451 * Otherwise we can 'forget' to update time for any but the last
2452 * context we sched out. For example:
2453 *
2454 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2455 * ctx_sched_out(.event_type = EVENT_PINNED)
2456 *
2457 * would only update time for the pinned events.
2458 */
3cbaa590
PZ
2459 if (is_active & EVENT_TIME) {
2460 /* update (and stop) ctx time */
2461 update_context_time(ctx);
2462 update_cgrp_time_from_cpuctx(cpuctx);
2463 }
2464
8fdc6539
PZ
2465 is_active ^= ctx->is_active; /* changed bits */
2466
3cbaa590 2467 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2468 return;
5b0311e1 2469
075e0b00 2470 perf_pmu_disable(ctx->pmu);
3cbaa590 2471 if (is_active & EVENT_PINNED) {
889ff015
FW
2472 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2473 group_sched_out(event, cpuctx, ctx);
9ed6060d 2474 }
889ff015 2475
3cbaa590 2476 if (is_active & EVENT_FLEXIBLE) {
889ff015 2477 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2478 group_sched_out(event, cpuctx, ctx);
9ed6060d 2479 }
1b9a644f 2480 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2481}
2482
564c2b21 2483/*
5a3126d4
PZ
2484 * Test whether two contexts are equivalent, i.e. whether they have both been
2485 * cloned from the same version of the same context.
2486 *
2487 * Equivalence is measured using a generation number in the context that is
2488 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2489 * and list_del_event().
564c2b21 2490 */
cdd6c482
IM
2491static int context_equiv(struct perf_event_context *ctx1,
2492 struct perf_event_context *ctx2)
564c2b21 2493{
211de6eb
PZ
2494 lockdep_assert_held(&ctx1->lock);
2495 lockdep_assert_held(&ctx2->lock);
2496
5a3126d4
PZ
2497 /* Pinning disables the swap optimization */
2498 if (ctx1->pin_count || ctx2->pin_count)
2499 return 0;
2500
2501 /* If ctx1 is the parent of ctx2 */
2502 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2503 return 1;
2504
2505 /* If ctx2 is the parent of ctx1 */
2506 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2507 return 1;
2508
2509 /*
2510 * If ctx1 and ctx2 have the same parent; we flatten the parent
2511 * hierarchy, see perf_event_init_context().
2512 */
2513 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2514 ctx1->parent_gen == ctx2->parent_gen)
2515 return 1;
2516
2517 /* Unmatched */
2518 return 0;
564c2b21
PM
2519}
2520
cdd6c482
IM
2521static void __perf_event_sync_stat(struct perf_event *event,
2522 struct perf_event *next_event)
bfbd3381
PZ
2523{
2524 u64 value;
2525
cdd6c482 2526 if (!event->attr.inherit_stat)
bfbd3381
PZ
2527 return;
2528
2529 /*
cdd6c482 2530 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2531 * because we're in the middle of a context switch and have IRQs
2532 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2533 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2534 * don't need to use it.
2535 */
cdd6c482
IM
2536 switch (event->state) {
2537 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2538 event->pmu->read(event);
2539 /* fall-through */
bfbd3381 2540
cdd6c482
IM
2541 case PERF_EVENT_STATE_INACTIVE:
2542 update_event_times(event);
bfbd3381
PZ
2543 break;
2544
2545 default:
2546 break;
2547 }
2548
2549 /*
cdd6c482 2550 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2551 * values when we flip the contexts.
2552 */
e7850595
PZ
2553 value = local64_read(&next_event->count);
2554 value = local64_xchg(&event->count, value);
2555 local64_set(&next_event->count, value);
bfbd3381 2556
cdd6c482
IM
2557 swap(event->total_time_enabled, next_event->total_time_enabled);
2558 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2559
bfbd3381 2560 /*
19d2e755 2561 * Since we swizzled the values, update the user visible data too.
bfbd3381 2562 */
cdd6c482
IM
2563 perf_event_update_userpage(event);
2564 perf_event_update_userpage(next_event);
bfbd3381
PZ
2565}
2566
cdd6c482
IM
2567static void perf_event_sync_stat(struct perf_event_context *ctx,
2568 struct perf_event_context *next_ctx)
bfbd3381 2569{
cdd6c482 2570 struct perf_event *event, *next_event;
bfbd3381
PZ
2571
2572 if (!ctx->nr_stat)
2573 return;
2574
02ffdbc8
PZ
2575 update_context_time(ctx);
2576
cdd6c482
IM
2577 event = list_first_entry(&ctx->event_list,
2578 struct perf_event, event_entry);
bfbd3381 2579
cdd6c482
IM
2580 next_event = list_first_entry(&next_ctx->event_list,
2581 struct perf_event, event_entry);
bfbd3381 2582
cdd6c482
IM
2583 while (&event->event_entry != &ctx->event_list &&
2584 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2585
cdd6c482 2586 __perf_event_sync_stat(event, next_event);
bfbd3381 2587
cdd6c482
IM
2588 event = list_next_entry(event, event_entry);
2589 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2590 }
2591}
2592
fe4b04fa
PZ
2593static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2594 struct task_struct *next)
0793a61d 2595{
8dc85d54 2596 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2597 struct perf_event_context *next_ctx;
5a3126d4 2598 struct perf_event_context *parent, *next_parent;
108b02cf 2599 struct perf_cpu_context *cpuctx;
c93f7669 2600 int do_switch = 1;
0793a61d 2601
108b02cf
PZ
2602 if (likely(!ctx))
2603 return;
10989fb2 2604
108b02cf
PZ
2605 cpuctx = __get_cpu_context(ctx);
2606 if (!cpuctx->task_ctx)
0793a61d
TG
2607 return;
2608
c93f7669 2609 rcu_read_lock();
8dc85d54 2610 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2611 if (!next_ctx)
2612 goto unlock;
2613
2614 parent = rcu_dereference(ctx->parent_ctx);
2615 next_parent = rcu_dereference(next_ctx->parent_ctx);
2616
2617 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2618 if (!parent && !next_parent)
5a3126d4
PZ
2619 goto unlock;
2620
2621 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2622 /*
2623 * Looks like the two contexts are clones, so we might be
2624 * able to optimize the context switch. We lock both
2625 * contexts and check that they are clones under the
2626 * lock (including re-checking that neither has been
2627 * uncloned in the meantime). It doesn't matter which
2628 * order we take the locks because no other cpu could
2629 * be trying to lock both of these tasks.
2630 */
e625cce1
TG
2631 raw_spin_lock(&ctx->lock);
2632 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2633 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2634 WRITE_ONCE(ctx->task, next);
2635 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2636
2637 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2638
63b6da39
PZ
2639 /*
2640 * RCU_INIT_POINTER here is safe because we've not
2641 * modified the ctx and the above modification of
2642 * ctx->task and ctx->task_ctx_data are immaterial
2643 * since those values are always verified under
2644 * ctx->lock which we're now holding.
2645 */
2646 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2647 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2648
c93f7669 2649 do_switch = 0;
bfbd3381 2650
cdd6c482 2651 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2652 }
e625cce1
TG
2653 raw_spin_unlock(&next_ctx->lock);
2654 raw_spin_unlock(&ctx->lock);
564c2b21 2655 }
5a3126d4 2656unlock:
c93f7669 2657 rcu_read_unlock();
564c2b21 2658
c93f7669 2659 if (do_switch) {
facc4307 2660 raw_spin_lock(&ctx->lock);
8833d0e2 2661 task_ctx_sched_out(cpuctx, ctx);
facc4307 2662 raw_spin_unlock(&ctx->lock);
c93f7669 2663 }
0793a61d
TG
2664}
2665
ba532500
YZ
2666void perf_sched_cb_dec(struct pmu *pmu)
2667{
2668 this_cpu_dec(perf_sched_cb_usages);
2669}
2670
2671void perf_sched_cb_inc(struct pmu *pmu)
2672{
2673 this_cpu_inc(perf_sched_cb_usages);
2674}
2675
2676/*
2677 * This function provides the context switch callback to the lower code
2678 * layer. It is invoked ONLY when the context switch callback is enabled.
2679 */
2680static void perf_pmu_sched_task(struct task_struct *prev,
2681 struct task_struct *next,
2682 bool sched_in)
2683{
2684 struct perf_cpu_context *cpuctx;
2685 struct pmu *pmu;
2686 unsigned long flags;
2687
2688 if (prev == next)
2689 return;
2690
2691 local_irq_save(flags);
2692
2693 rcu_read_lock();
2694
2695 list_for_each_entry_rcu(pmu, &pmus, entry) {
2696 if (pmu->sched_task) {
2697 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2698
2699 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2700
2701 perf_pmu_disable(pmu);
2702
2703 pmu->sched_task(cpuctx->task_ctx, sched_in);
2704
2705 perf_pmu_enable(pmu);
2706
2707 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2708 }
2709 }
2710
2711 rcu_read_unlock();
2712
2713 local_irq_restore(flags);
2714}
2715
45ac1403
AH
2716static void perf_event_switch(struct task_struct *task,
2717 struct task_struct *next_prev, bool sched_in);
2718
8dc85d54
PZ
2719#define for_each_task_context_nr(ctxn) \
2720 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2721
2722/*
2723 * Called from scheduler to remove the events of the current task,
2724 * with interrupts disabled.
2725 *
2726 * We stop each event and update the event value in event->count.
2727 *
2728 * This does not protect us against NMI, but disable()
2729 * sets the disabled bit in the control field of event _before_
2730 * accessing the event control register. If a NMI hits, then it will
2731 * not restart the event.
2732 */
ab0cce56
JO
2733void __perf_event_task_sched_out(struct task_struct *task,
2734 struct task_struct *next)
8dc85d54
PZ
2735{
2736 int ctxn;
2737
ba532500
YZ
2738 if (__this_cpu_read(perf_sched_cb_usages))
2739 perf_pmu_sched_task(task, next, false);
2740
45ac1403
AH
2741 if (atomic_read(&nr_switch_events))
2742 perf_event_switch(task, next, false);
2743
8dc85d54
PZ
2744 for_each_task_context_nr(ctxn)
2745 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2746
2747 /*
2748 * if cgroup events exist on this CPU, then we need
2749 * to check if we have to switch out PMU state.
2750 * cgroup event are system-wide mode only
2751 */
4a32fea9 2752 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2753 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2754}
2755
5b0311e1
FW
2756/*
2757 * Called with IRQs disabled
2758 */
2759static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2760 enum event_type_t event_type)
2761{
2762 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2763}
2764
235c7fc7 2765static void
5b0311e1 2766ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2767 struct perf_cpu_context *cpuctx)
0793a61d 2768{
cdd6c482 2769 struct perf_event *event;
0793a61d 2770
889ff015
FW
2771 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2772 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2773 continue;
5632ab12 2774 if (!event_filter_match(event))
3b6f9e5c
PM
2775 continue;
2776
e5d1367f
SE
2777 /* may need to reset tstamp_enabled */
2778 if (is_cgroup_event(event))
2779 perf_cgroup_mark_enabled(event, ctx);
2780
8c9ed8e1 2781 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2782 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2783
2784 /*
2785 * If this pinned group hasn't been scheduled,
2786 * put it in error state.
2787 */
cdd6c482
IM
2788 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2789 update_group_times(event);
2790 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2791 }
3b6f9e5c 2792 }
5b0311e1
FW
2793}
2794
2795static void
2796ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2797 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2798{
2799 struct perf_event *event;
2800 int can_add_hw = 1;
3b6f9e5c 2801
889ff015
FW
2802 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2803 /* Ignore events in OFF or ERROR state */
2804 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2805 continue;
04289bb9
IM
2806 /*
2807 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2808 * of events:
04289bb9 2809 */
5632ab12 2810 if (!event_filter_match(event))
0793a61d
TG
2811 continue;
2812
e5d1367f
SE
2813 /* may need to reset tstamp_enabled */
2814 if (is_cgroup_event(event))
2815 perf_cgroup_mark_enabled(event, ctx);
2816
9ed6060d 2817 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2818 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2819 can_add_hw = 0;
9ed6060d 2820 }
0793a61d 2821 }
5b0311e1
FW
2822}
2823
2824static void
2825ctx_sched_in(struct perf_event_context *ctx,
2826 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2827 enum event_type_t event_type,
2828 struct task_struct *task)
5b0311e1 2829{
db24d33e 2830 int is_active = ctx->is_active;
c994d613
PZ
2831 u64 now;
2832
2833 lockdep_assert_held(&ctx->lock);
e5d1367f 2834
5b0311e1 2835 if (likely(!ctx->nr_events))
facc4307 2836 return;
5b0311e1 2837
3cbaa590 2838 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2839 if (ctx->task) {
2840 if (!is_active)
2841 cpuctx->task_ctx = ctx;
2842 else
2843 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2844 }
2845
3cbaa590
PZ
2846 is_active ^= ctx->is_active; /* changed bits */
2847
2848 if (is_active & EVENT_TIME) {
2849 /* start ctx time */
2850 now = perf_clock();
2851 ctx->timestamp = now;
2852 perf_cgroup_set_timestamp(task, ctx);
2853 }
2854
5b0311e1
FW
2855 /*
2856 * First go through the list and put on any pinned groups
2857 * in order to give them the best chance of going on.
2858 */
3cbaa590 2859 if (is_active & EVENT_PINNED)
6e37738a 2860 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2861
2862 /* Then walk through the lower prio flexible groups */
3cbaa590 2863 if (is_active & EVENT_FLEXIBLE)
6e37738a 2864 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2865}
2866
329c0e01 2867static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2868 enum event_type_t event_type,
2869 struct task_struct *task)
329c0e01
FW
2870{
2871 struct perf_event_context *ctx = &cpuctx->ctx;
2872
e5d1367f 2873 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2874}
2875
e5d1367f
SE
2876static void perf_event_context_sched_in(struct perf_event_context *ctx,
2877 struct task_struct *task)
235c7fc7 2878{
108b02cf 2879 struct perf_cpu_context *cpuctx;
235c7fc7 2880
108b02cf 2881 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2882 if (cpuctx->task_ctx == ctx)
2883 return;
2884
facc4307 2885 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2886 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2887 /*
2888 * We want to keep the following priority order:
2889 * cpu pinned (that don't need to move), task pinned,
2890 * cpu flexible, task flexible.
2891 */
2892 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2893 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2894 perf_pmu_enable(ctx->pmu);
2895 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2896}
2897
8dc85d54
PZ
2898/*
2899 * Called from scheduler to add the events of the current task
2900 * with interrupts disabled.
2901 *
2902 * We restore the event value and then enable it.
2903 *
2904 * This does not protect us against NMI, but enable()
2905 * sets the enabled bit in the control field of event _before_
2906 * accessing the event control register. If a NMI hits, then it will
2907 * keep the event running.
2908 */
ab0cce56
JO
2909void __perf_event_task_sched_in(struct task_struct *prev,
2910 struct task_struct *task)
8dc85d54
PZ
2911{
2912 struct perf_event_context *ctx;
2913 int ctxn;
2914
7e41d177
PZ
2915 /*
2916 * If cgroup events exist on this CPU, then we need to check if we have
2917 * to switch in PMU state; cgroup event are system-wide mode only.
2918 *
2919 * Since cgroup events are CPU events, we must schedule these in before
2920 * we schedule in the task events.
2921 */
2922 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2923 perf_cgroup_sched_in(prev, task);
2924
8dc85d54
PZ
2925 for_each_task_context_nr(ctxn) {
2926 ctx = task->perf_event_ctxp[ctxn];
2927 if (likely(!ctx))
2928 continue;
2929
e5d1367f 2930 perf_event_context_sched_in(ctx, task);
8dc85d54 2931 }
d010b332 2932
45ac1403
AH
2933 if (atomic_read(&nr_switch_events))
2934 perf_event_switch(task, prev, true);
2935
ba532500
YZ
2936 if (__this_cpu_read(perf_sched_cb_usages))
2937 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2938}
2939
abd50713
PZ
2940static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2941{
2942 u64 frequency = event->attr.sample_freq;
2943 u64 sec = NSEC_PER_SEC;
2944 u64 divisor, dividend;
2945
2946 int count_fls, nsec_fls, frequency_fls, sec_fls;
2947
2948 count_fls = fls64(count);
2949 nsec_fls = fls64(nsec);
2950 frequency_fls = fls64(frequency);
2951 sec_fls = 30;
2952
2953 /*
2954 * We got @count in @nsec, with a target of sample_freq HZ
2955 * the target period becomes:
2956 *
2957 * @count * 10^9
2958 * period = -------------------
2959 * @nsec * sample_freq
2960 *
2961 */
2962
2963 /*
2964 * Reduce accuracy by one bit such that @a and @b converge
2965 * to a similar magnitude.
2966 */
fe4b04fa 2967#define REDUCE_FLS(a, b) \
abd50713
PZ
2968do { \
2969 if (a##_fls > b##_fls) { \
2970 a >>= 1; \
2971 a##_fls--; \
2972 } else { \
2973 b >>= 1; \
2974 b##_fls--; \
2975 } \
2976} while (0)
2977
2978 /*
2979 * Reduce accuracy until either term fits in a u64, then proceed with
2980 * the other, so that finally we can do a u64/u64 division.
2981 */
2982 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2983 REDUCE_FLS(nsec, frequency);
2984 REDUCE_FLS(sec, count);
2985 }
2986
2987 if (count_fls + sec_fls > 64) {
2988 divisor = nsec * frequency;
2989
2990 while (count_fls + sec_fls > 64) {
2991 REDUCE_FLS(count, sec);
2992 divisor >>= 1;
2993 }
2994
2995 dividend = count * sec;
2996 } else {
2997 dividend = count * sec;
2998
2999 while (nsec_fls + frequency_fls > 64) {
3000 REDUCE_FLS(nsec, frequency);
3001 dividend >>= 1;
3002 }
3003
3004 divisor = nsec * frequency;
3005 }
3006
f6ab91ad
PZ
3007 if (!divisor)
3008 return dividend;
3009
abd50713
PZ
3010 return div64_u64(dividend, divisor);
3011}
3012
e050e3f0
SE
3013static DEFINE_PER_CPU(int, perf_throttled_count);
3014static DEFINE_PER_CPU(u64, perf_throttled_seq);
3015
f39d47ff 3016static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3017{
cdd6c482 3018 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3019 s64 period, sample_period;
bd2b5b12
PZ
3020 s64 delta;
3021
abd50713 3022 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3023
3024 delta = (s64)(period - hwc->sample_period);
3025 delta = (delta + 7) / 8; /* low pass filter */
3026
3027 sample_period = hwc->sample_period + delta;
3028
3029 if (!sample_period)
3030 sample_period = 1;
3031
bd2b5b12 3032 hwc->sample_period = sample_period;
abd50713 3033
e7850595 3034 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3035 if (disable)
3036 event->pmu->stop(event, PERF_EF_UPDATE);
3037
e7850595 3038 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3039
3040 if (disable)
3041 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3042 }
bd2b5b12
PZ
3043}
3044
e050e3f0
SE
3045/*
3046 * combine freq adjustment with unthrottling to avoid two passes over the
3047 * events. At the same time, make sure, having freq events does not change
3048 * the rate of unthrottling as that would introduce bias.
3049 */
3050static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3051 int needs_unthr)
60db5e09 3052{
cdd6c482
IM
3053 struct perf_event *event;
3054 struct hw_perf_event *hwc;
e050e3f0 3055 u64 now, period = TICK_NSEC;
abd50713 3056 s64 delta;
60db5e09 3057
e050e3f0
SE
3058 /*
3059 * only need to iterate over all events iff:
3060 * - context have events in frequency mode (needs freq adjust)
3061 * - there are events to unthrottle on this cpu
3062 */
3063 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3064 return;
3065
e050e3f0 3066 raw_spin_lock(&ctx->lock);
f39d47ff 3067 perf_pmu_disable(ctx->pmu);
e050e3f0 3068
03541f8b 3069 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3070 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3071 continue;
3072
5632ab12 3073 if (!event_filter_match(event))
5d27c23d
PZ
3074 continue;
3075
44377277
AS
3076 perf_pmu_disable(event->pmu);
3077
cdd6c482 3078 hwc = &event->hw;
6a24ed6c 3079
ae23bff1 3080 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3081 hwc->interrupts = 0;
cdd6c482 3082 perf_log_throttle(event, 1);
a4eaf7f1 3083 event->pmu->start(event, 0);
a78ac325
PZ
3084 }
3085
cdd6c482 3086 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3087 goto next;
60db5e09 3088
e050e3f0
SE
3089 /*
3090 * stop the event and update event->count
3091 */
3092 event->pmu->stop(event, PERF_EF_UPDATE);
3093
e7850595 3094 now = local64_read(&event->count);
abd50713
PZ
3095 delta = now - hwc->freq_count_stamp;
3096 hwc->freq_count_stamp = now;
60db5e09 3097
e050e3f0
SE
3098 /*
3099 * restart the event
3100 * reload only if value has changed
f39d47ff
SE
3101 * we have stopped the event so tell that
3102 * to perf_adjust_period() to avoid stopping it
3103 * twice.
e050e3f0 3104 */
abd50713 3105 if (delta > 0)
f39d47ff 3106 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3107
3108 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3109 next:
3110 perf_pmu_enable(event->pmu);
60db5e09 3111 }
e050e3f0 3112
f39d47ff 3113 perf_pmu_enable(ctx->pmu);
e050e3f0 3114 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3115}
3116
235c7fc7 3117/*
cdd6c482 3118 * Round-robin a context's events:
235c7fc7 3119 */
cdd6c482 3120static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3121{
dddd3379
TG
3122 /*
3123 * Rotate the first entry last of non-pinned groups. Rotation might be
3124 * disabled by the inheritance code.
3125 */
3126 if (!ctx->rotate_disable)
3127 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3128}
3129
9e630205 3130static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3131{
8dc85d54 3132 struct perf_event_context *ctx = NULL;
2fde4f94 3133 int rotate = 0;
7fc23a53 3134
b5ab4cd5 3135 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3136 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3137 rotate = 1;
3138 }
235c7fc7 3139
8dc85d54 3140 ctx = cpuctx->task_ctx;
b5ab4cd5 3141 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3142 if (ctx->nr_events != ctx->nr_active)
3143 rotate = 1;
3144 }
9717e6cd 3145
e050e3f0 3146 if (!rotate)
0f5a2601
PZ
3147 goto done;
3148
facc4307 3149 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3150 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3151
e050e3f0
SE
3152 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3153 if (ctx)
3154 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3155
e050e3f0
SE
3156 rotate_ctx(&cpuctx->ctx);
3157 if (ctx)
3158 rotate_ctx(ctx);
235c7fc7 3159
e050e3f0 3160 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3161
0f5a2601
PZ
3162 perf_pmu_enable(cpuctx->ctx.pmu);
3163 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3164done:
9e630205
SE
3165
3166 return rotate;
e9d2b064
PZ
3167}
3168
3169void perf_event_task_tick(void)
3170{
2fde4f94
MR
3171 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3172 struct perf_event_context *ctx, *tmp;
e050e3f0 3173 int throttled;
b5ab4cd5 3174
e9d2b064
PZ
3175 WARN_ON(!irqs_disabled());
3176
e050e3f0
SE
3177 __this_cpu_inc(perf_throttled_seq);
3178 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3179 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3180
2fde4f94 3181 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3182 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3183}
3184
889ff015
FW
3185static int event_enable_on_exec(struct perf_event *event,
3186 struct perf_event_context *ctx)
3187{
3188 if (!event->attr.enable_on_exec)
3189 return 0;
3190
3191 event->attr.enable_on_exec = 0;
3192 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3193 return 0;
3194
1d9b482e 3195 __perf_event_mark_enabled(event);
889ff015
FW
3196
3197 return 1;
3198}
3199
57e7986e 3200/*
cdd6c482 3201 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3202 * This expects task == current.
3203 */
c1274499 3204static void perf_event_enable_on_exec(int ctxn)
57e7986e 3205{
c1274499 3206 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3207 struct perf_cpu_context *cpuctx;
cdd6c482 3208 struct perf_event *event;
57e7986e
PM
3209 unsigned long flags;
3210 int enabled = 0;
3211
3212 local_irq_save(flags);
c1274499 3213 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3214 if (!ctx || !ctx->nr_events)
57e7986e
PM
3215 goto out;
3216
3e349507
PZ
3217 cpuctx = __get_cpu_context(ctx);
3218 perf_ctx_lock(cpuctx, ctx);
7fce2509 3219 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3220 list_for_each_entry(event, &ctx->event_list, event_entry)
3221 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3222
3223 /*
3e349507 3224 * Unclone and reschedule this context if we enabled any event.
57e7986e 3225 */
3e349507 3226 if (enabled) {
211de6eb 3227 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3228 ctx_resched(cpuctx, ctx);
3229 }
3230 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3231
9ed6060d 3232out:
57e7986e 3233 local_irq_restore(flags);
211de6eb
PZ
3234
3235 if (clone_ctx)
3236 put_ctx(clone_ctx);
57e7986e
PM
3237}
3238
e041e328
PZ
3239void perf_event_exec(void)
3240{
e041e328
PZ
3241 int ctxn;
3242
3243 rcu_read_lock();
c1274499
PZ
3244 for_each_task_context_nr(ctxn)
3245 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3246 rcu_read_unlock();
3247}
3248
0492d4c5
PZ
3249struct perf_read_data {
3250 struct perf_event *event;
3251 bool group;
7d88962e 3252 int ret;
0492d4c5
PZ
3253};
3254
0793a61d 3255/*
cdd6c482 3256 * Cross CPU call to read the hardware event
0793a61d 3257 */
cdd6c482 3258static void __perf_event_read(void *info)
0793a61d 3259{
0492d4c5
PZ
3260 struct perf_read_data *data = info;
3261 struct perf_event *sub, *event = data->event;
cdd6c482 3262 struct perf_event_context *ctx = event->ctx;
108b02cf 3263 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3264 struct pmu *pmu = event->pmu;
621a01ea 3265
e1ac3614
PM
3266 /*
3267 * If this is a task context, we need to check whether it is
3268 * the current task context of this cpu. If not it has been
3269 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3270 * event->count would have been updated to a recent sample
3271 * when the event was scheduled out.
e1ac3614
PM
3272 */
3273 if (ctx->task && cpuctx->task_ctx != ctx)
3274 return;
3275
e625cce1 3276 raw_spin_lock(&ctx->lock);
e5d1367f 3277 if (ctx->is_active) {
542e72fc 3278 update_context_time(ctx);
e5d1367f
SE
3279 update_cgrp_time_from_event(event);
3280 }
0492d4c5 3281
cdd6c482 3282 update_event_times(event);
4a00c16e
SB
3283 if (event->state != PERF_EVENT_STATE_ACTIVE)
3284 goto unlock;
0492d4c5 3285
4a00c16e
SB
3286 if (!data->group) {
3287 pmu->read(event);
3288 data->ret = 0;
0492d4c5 3289 goto unlock;
4a00c16e
SB
3290 }
3291
3292 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3293
3294 pmu->read(event);
0492d4c5
PZ
3295
3296 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3297 update_event_times(sub);
4a00c16e
SB
3298 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3299 /*
3300 * Use sibling's PMU rather than @event's since
3301 * sibling could be on different (eg: software) PMU.
3302 */
0492d4c5 3303 sub->pmu->read(sub);
4a00c16e 3304 }
0492d4c5 3305 }
4a00c16e
SB
3306
3307 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3308
3309unlock:
e625cce1 3310 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3311}
3312
b5e58793
PZ
3313static inline u64 perf_event_count(struct perf_event *event)
3314{
eacd3ecc
MF
3315 if (event->pmu->count)
3316 return event->pmu->count(event);
3317
3318 return __perf_event_count(event);
b5e58793
PZ
3319}
3320
ffe8690c
KX
3321/*
3322 * NMI-safe method to read a local event, that is an event that
3323 * is:
3324 * - either for the current task, or for this CPU
3325 * - does not have inherit set, for inherited task events
3326 * will not be local and we cannot read them atomically
3327 * - must not have a pmu::count method
3328 */
3329u64 perf_event_read_local(struct perf_event *event)
3330{
3331 unsigned long flags;
3332 u64 val;
3333
3334 /*
3335 * Disabling interrupts avoids all counter scheduling (context
3336 * switches, timer based rotation and IPIs).
3337 */
3338 local_irq_save(flags);
3339
3340 /* If this is a per-task event, it must be for current */
3341 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3342 event->hw.target != current);
3343
3344 /* If this is a per-CPU event, it must be for this CPU */
3345 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3346 event->cpu != smp_processor_id());
3347
3348 /*
3349 * It must not be an event with inherit set, we cannot read
3350 * all child counters from atomic context.
3351 */
3352 WARN_ON_ONCE(event->attr.inherit);
3353
3354 /*
3355 * It must not have a pmu::count method, those are not
3356 * NMI safe.
3357 */
3358 WARN_ON_ONCE(event->pmu->count);
3359
3360 /*
3361 * If the event is currently on this CPU, its either a per-task event,
3362 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3363 * oncpu == -1).
3364 */
3365 if (event->oncpu == smp_processor_id())
3366 event->pmu->read(event);
3367
3368 val = local64_read(&event->count);
3369 local_irq_restore(flags);
3370
3371 return val;
3372}
3373
7d88962e 3374static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3375{
7d88962e
SB
3376 int ret = 0;
3377
0793a61d 3378 /*
cdd6c482
IM
3379 * If event is enabled and currently active on a CPU, update the
3380 * value in the event structure:
0793a61d 3381 */
cdd6c482 3382 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3383 struct perf_read_data data = {
3384 .event = event,
3385 .group = group,
7d88962e 3386 .ret = 0,
0492d4c5 3387 };
cdd6c482 3388 smp_call_function_single(event->oncpu,
0492d4c5 3389 __perf_event_read, &data, 1);
7d88962e 3390 ret = data.ret;
cdd6c482 3391 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3392 struct perf_event_context *ctx = event->ctx;
3393 unsigned long flags;
3394
e625cce1 3395 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3396 /*
3397 * may read while context is not active
3398 * (e.g., thread is blocked), in that case
3399 * we cannot update context time
3400 */
e5d1367f 3401 if (ctx->is_active) {
c530ccd9 3402 update_context_time(ctx);
e5d1367f
SE
3403 update_cgrp_time_from_event(event);
3404 }
0492d4c5
PZ
3405 if (group)
3406 update_group_times(event);
3407 else
3408 update_event_times(event);
e625cce1 3409 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3410 }
7d88962e
SB
3411
3412 return ret;
0793a61d
TG
3413}
3414
a63eaf34 3415/*
cdd6c482 3416 * Initialize the perf_event context in a task_struct:
a63eaf34 3417 */
eb184479 3418static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3419{
e625cce1 3420 raw_spin_lock_init(&ctx->lock);
a63eaf34 3421 mutex_init(&ctx->mutex);
2fde4f94 3422 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3423 INIT_LIST_HEAD(&ctx->pinned_groups);
3424 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3425 INIT_LIST_HEAD(&ctx->event_list);
3426 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3427}
3428
3429static struct perf_event_context *
3430alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3431{
3432 struct perf_event_context *ctx;
3433
3434 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3435 if (!ctx)
3436 return NULL;
3437
3438 __perf_event_init_context(ctx);
3439 if (task) {
3440 ctx->task = task;
3441 get_task_struct(task);
0793a61d 3442 }
eb184479
PZ
3443 ctx->pmu = pmu;
3444
3445 return ctx;
a63eaf34
PM
3446}
3447
2ebd4ffb
MH
3448static struct task_struct *
3449find_lively_task_by_vpid(pid_t vpid)
3450{
3451 struct task_struct *task;
3452 int err;
0793a61d
TG
3453
3454 rcu_read_lock();
2ebd4ffb 3455 if (!vpid)
0793a61d
TG
3456 task = current;
3457 else
2ebd4ffb 3458 task = find_task_by_vpid(vpid);
0793a61d
TG
3459 if (task)
3460 get_task_struct(task);
3461 rcu_read_unlock();
3462
3463 if (!task)
3464 return ERR_PTR(-ESRCH);
3465
0793a61d 3466 /* Reuse ptrace permission checks for now. */
c93f7669 3467 err = -EACCES;
caaee623 3468 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3469 goto errout;
3470
2ebd4ffb
MH
3471 return task;
3472errout:
3473 put_task_struct(task);
3474 return ERR_PTR(err);
3475
3476}
3477
fe4b04fa
PZ
3478/*
3479 * Returns a matching context with refcount and pincount.
3480 */
108b02cf 3481static struct perf_event_context *
4af57ef2
YZ
3482find_get_context(struct pmu *pmu, struct task_struct *task,
3483 struct perf_event *event)
0793a61d 3484{
211de6eb 3485 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3486 struct perf_cpu_context *cpuctx;
4af57ef2 3487 void *task_ctx_data = NULL;
25346b93 3488 unsigned long flags;
8dc85d54 3489 int ctxn, err;
4af57ef2 3490 int cpu = event->cpu;
0793a61d 3491
22a4ec72 3492 if (!task) {
cdd6c482 3493 /* Must be root to operate on a CPU event: */
0764771d 3494 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3495 return ERR_PTR(-EACCES);
3496
0793a61d 3497 /*
cdd6c482 3498 * We could be clever and allow to attach a event to an
0793a61d
TG
3499 * offline CPU and activate it when the CPU comes up, but
3500 * that's for later.
3501 */
f6325e30 3502 if (!cpu_online(cpu))
0793a61d
TG
3503 return ERR_PTR(-ENODEV);
3504
108b02cf 3505 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3506 ctx = &cpuctx->ctx;
c93f7669 3507 get_ctx(ctx);
fe4b04fa 3508 ++ctx->pin_count;
0793a61d 3509
0793a61d
TG
3510 return ctx;
3511 }
3512
8dc85d54
PZ
3513 err = -EINVAL;
3514 ctxn = pmu->task_ctx_nr;
3515 if (ctxn < 0)
3516 goto errout;
3517
4af57ef2
YZ
3518 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3519 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3520 if (!task_ctx_data) {
3521 err = -ENOMEM;
3522 goto errout;
3523 }
3524 }
3525
9ed6060d 3526retry:
8dc85d54 3527 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3528 if (ctx) {
211de6eb 3529 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3530 ++ctx->pin_count;
4af57ef2
YZ
3531
3532 if (task_ctx_data && !ctx->task_ctx_data) {
3533 ctx->task_ctx_data = task_ctx_data;
3534 task_ctx_data = NULL;
3535 }
e625cce1 3536 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3537
3538 if (clone_ctx)
3539 put_ctx(clone_ctx);
9137fb28 3540 } else {
eb184479 3541 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3542 err = -ENOMEM;
3543 if (!ctx)
3544 goto errout;
eb184479 3545
4af57ef2
YZ
3546 if (task_ctx_data) {
3547 ctx->task_ctx_data = task_ctx_data;
3548 task_ctx_data = NULL;
3549 }
3550
dbe08d82
ON
3551 err = 0;
3552 mutex_lock(&task->perf_event_mutex);
3553 /*
3554 * If it has already passed perf_event_exit_task().
3555 * we must see PF_EXITING, it takes this mutex too.
3556 */
3557 if (task->flags & PF_EXITING)
3558 err = -ESRCH;
3559 else if (task->perf_event_ctxp[ctxn])
3560 err = -EAGAIN;
fe4b04fa 3561 else {
9137fb28 3562 get_ctx(ctx);
fe4b04fa 3563 ++ctx->pin_count;
dbe08d82 3564 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3565 }
dbe08d82
ON
3566 mutex_unlock(&task->perf_event_mutex);
3567
3568 if (unlikely(err)) {
9137fb28 3569 put_ctx(ctx);
dbe08d82
ON
3570
3571 if (err == -EAGAIN)
3572 goto retry;
3573 goto errout;
a63eaf34
PM
3574 }
3575 }
3576
4af57ef2 3577 kfree(task_ctx_data);
0793a61d 3578 return ctx;
c93f7669 3579
9ed6060d 3580errout:
4af57ef2 3581 kfree(task_ctx_data);
c93f7669 3582 return ERR_PTR(err);
0793a61d
TG
3583}
3584
6fb2915d 3585static void perf_event_free_filter(struct perf_event *event);
2541517c 3586static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3587
cdd6c482 3588static void free_event_rcu(struct rcu_head *head)
592903cd 3589{
cdd6c482 3590 struct perf_event *event;
592903cd 3591
cdd6c482
IM
3592 event = container_of(head, struct perf_event, rcu_head);
3593 if (event->ns)
3594 put_pid_ns(event->ns);
6fb2915d 3595 perf_event_free_filter(event);
cdd6c482 3596 kfree(event);
592903cd
PZ
3597}
3598
b69cf536
PZ
3599static void ring_buffer_attach(struct perf_event *event,
3600 struct ring_buffer *rb);
925d519a 3601
4beb31f3 3602static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3603{
4beb31f3
FW
3604 if (event->parent)
3605 return;
3606
4beb31f3
FW
3607 if (is_cgroup_event(event))
3608 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3609}
925d519a 3610
555e0c1e
FW
3611#ifdef CONFIG_NO_HZ_FULL
3612static DEFINE_SPINLOCK(nr_freq_lock);
3613#endif
3614
3615static void unaccount_freq_event_nohz(void)
3616{
3617#ifdef CONFIG_NO_HZ_FULL
3618 spin_lock(&nr_freq_lock);
3619 if (atomic_dec_and_test(&nr_freq_events))
3620 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3621 spin_unlock(&nr_freq_lock);
3622#endif
3623}
3624
3625static void unaccount_freq_event(void)
3626{
3627 if (tick_nohz_full_enabled())
3628 unaccount_freq_event_nohz();
3629 else
3630 atomic_dec(&nr_freq_events);
3631}
3632
4beb31f3
FW
3633static void unaccount_event(struct perf_event *event)
3634{
25432ae9
PZ
3635 bool dec = false;
3636
4beb31f3
FW
3637 if (event->parent)
3638 return;
3639
3640 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3641 dec = true;
4beb31f3
FW
3642 if (event->attr.mmap || event->attr.mmap_data)
3643 atomic_dec(&nr_mmap_events);
3644 if (event->attr.comm)
3645 atomic_dec(&nr_comm_events);
3646 if (event->attr.task)
3647 atomic_dec(&nr_task_events);
948b26b6 3648 if (event->attr.freq)
555e0c1e 3649 unaccount_freq_event();
45ac1403 3650 if (event->attr.context_switch) {
25432ae9 3651 dec = true;
45ac1403
AH
3652 atomic_dec(&nr_switch_events);
3653 }
4beb31f3 3654 if (is_cgroup_event(event))
25432ae9 3655 dec = true;
4beb31f3 3656 if (has_branch_stack(event))
25432ae9
PZ
3657 dec = true;
3658
9107c89e
PZ
3659 if (dec) {
3660 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3661 schedule_delayed_work(&perf_sched_work, HZ);
3662 }
4beb31f3
FW
3663
3664 unaccount_event_cpu(event, event->cpu);
3665}
925d519a 3666
9107c89e
PZ
3667static void perf_sched_delayed(struct work_struct *work)
3668{
3669 mutex_lock(&perf_sched_mutex);
3670 if (atomic_dec_and_test(&perf_sched_count))
3671 static_branch_disable(&perf_sched_events);
3672 mutex_unlock(&perf_sched_mutex);
3673}
3674
bed5b25a
AS
3675/*
3676 * The following implement mutual exclusion of events on "exclusive" pmus
3677 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3678 * at a time, so we disallow creating events that might conflict, namely:
3679 *
3680 * 1) cpu-wide events in the presence of per-task events,
3681 * 2) per-task events in the presence of cpu-wide events,
3682 * 3) two matching events on the same context.
3683 *
3684 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3685 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3686 */
3687static int exclusive_event_init(struct perf_event *event)
3688{
3689 struct pmu *pmu = event->pmu;
3690
3691 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3692 return 0;
3693
3694 /*
3695 * Prevent co-existence of per-task and cpu-wide events on the
3696 * same exclusive pmu.
3697 *
3698 * Negative pmu::exclusive_cnt means there are cpu-wide
3699 * events on this "exclusive" pmu, positive means there are
3700 * per-task events.
3701 *
3702 * Since this is called in perf_event_alloc() path, event::ctx
3703 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3704 * to mean "per-task event", because unlike other attach states it
3705 * never gets cleared.
3706 */
3707 if (event->attach_state & PERF_ATTACH_TASK) {
3708 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3709 return -EBUSY;
3710 } else {
3711 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3712 return -EBUSY;
3713 }
3714
3715 return 0;
3716}
3717
3718static void exclusive_event_destroy(struct perf_event *event)
3719{
3720 struct pmu *pmu = event->pmu;
3721
3722 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3723 return;
3724
3725 /* see comment in exclusive_event_init() */
3726 if (event->attach_state & PERF_ATTACH_TASK)
3727 atomic_dec(&pmu->exclusive_cnt);
3728 else
3729 atomic_inc(&pmu->exclusive_cnt);
3730}
3731
3732static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3733{
3734 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3735 (e1->cpu == e2->cpu ||
3736 e1->cpu == -1 ||
3737 e2->cpu == -1))
3738 return true;
3739 return false;
3740}
3741
3742/* Called under the same ctx::mutex as perf_install_in_context() */
3743static bool exclusive_event_installable(struct perf_event *event,
3744 struct perf_event_context *ctx)
3745{
3746 struct perf_event *iter_event;
3747 struct pmu *pmu = event->pmu;
3748
3749 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3750 return true;
3751
3752 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3753 if (exclusive_event_match(iter_event, event))
3754 return false;
3755 }
3756
3757 return true;
3758}
3759
683ede43 3760static void _free_event(struct perf_event *event)
f1600952 3761{
e360adbe 3762 irq_work_sync(&event->pending);
925d519a 3763
4beb31f3 3764 unaccount_event(event);
9ee318a7 3765
76369139 3766 if (event->rb) {
9bb5d40c
PZ
3767 /*
3768 * Can happen when we close an event with re-directed output.
3769 *
3770 * Since we have a 0 refcount, perf_mmap_close() will skip
3771 * over us; possibly making our ring_buffer_put() the last.
3772 */
3773 mutex_lock(&event->mmap_mutex);
b69cf536 3774 ring_buffer_attach(event, NULL);
9bb5d40c 3775 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3776 }
3777
e5d1367f
SE
3778 if (is_cgroup_event(event))
3779 perf_detach_cgroup(event);
3780
a0733e69
PZ
3781 if (!event->parent) {
3782 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3783 put_callchain_buffers();
3784 }
3785
3786 perf_event_free_bpf_prog(event);
3787
3788 if (event->destroy)
3789 event->destroy(event);
3790
3791 if (event->ctx)
3792 put_ctx(event->ctx);
3793
3794 if (event->pmu) {
3795 exclusive_event_destroy(event);
3796 module_put(event->pmu->module);
3797 }
3798
3799 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3800}
3801
683ede43
PZ
3802/*
3803 * Used to free events which have a known refcount of 1, such as in error paths
3804 * where the event isn't exposed yet and inherited events.
3805 */
3806static void free_event(struct perf_event *event)
0793a61d 3807{
683ede43
PZ
3808 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3809 "unexpected event refcount: %ld; ptr=%p\n",
3810 atomic_long_read(&event->refcount), event)) {
3811 /* leak to avoid use-after-free */
3812 return;
3813 }
0793a61d 3814
683ede43 3815 _free_event(event);
0793a61d
TG
3816}
3817
a66a3052 3818/*
f8697762 3819 * Remove user event from the owner task.
a66a3052 3820 */
f8697762 3821static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3822{
8882135b 3823 struct task_struct *owner;
fb0459d7 3824
8882135b 3825 rcu_read_lock();
8882135b 3826 /*
f47c02c0
PZ
3827 * Matches the smp_store_release() in perf_event_exit_task(). If we
3828 * observe !owner it means the list deletion is complete and we can
3829 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3830 * owner->perf_event_mutex.
3831 */
f47c02c0 3832 owner = lockless_dereference(event->owner);
8882135b
PZ
3833 if (owner) {
3834 /*
3835 * Since delayed_put_task_struct() also drops the last
3836 * task reference we can safely take a new reference
3837 * while holding the rcu_read_lock().
3838 */
3839 get_task_struct(owner);
3840 }
3841 rcu_read_unlock();
3842
3843 if (owner) {
f63a8daa
PZ
3844 /*
3845 * If we're here through perf_event_exit_task() we're already
3846 * holding ctx->mutex which would be an inversion wrt. the
3847 * normal lock order.
3848 *
3849 * However we can safely take this lock because its the child
3850 * ctx->mutex.
3851 */
3852 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3853
8882135b
PZ
3854 /*
3855 * We have to re-check the event->owner field, if it is cleared
3856 * we raced with perf_event_exit_task(), acquiring the mutex
3857 * ensured they're done, and we can proceed with freeing the
3858 * event.
3859 */
f47c02c0 3860 if (event->owner) {
8882135b 3861 list_del_init(&event->owner_entry);
f47c02c0
PZ
3862 smp_store_release(&event->owner, NULL);
3863 }
8882135b
PZ
3864 mutex_unlock(&owner->perf_event_mutex);
3865 put_task_struct(owner);
3866 }
f8697762
JO
3867}
3868
f8697762
JO
3869static void put_event(struct perf_event *event)
3870{
f8697762
JO
3871 if (!atomic_long_dec_and_test(&event->refcount))
3872 return;
3873
c6e5b732
PZ
3874 _free_event(event);
3875}
3876
3877/*
3878 * Kill an event dead; while event:refcount will preserve the event
3879 * object, it will not preserve its functionality. Once the last 'user'
3880 * gives up the object, we'll destroy the thing.
3881 */
3882int perf_event_release_kernel(struct perf_event *event)
3883{
a4f4bb6d 3884 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3885 struct perf_event *child, *tmp;
3886
a4f4bb6d
PZ
3887 /*
3888 * If we got here through err_file: fput(event_file); we will not have
3889 * attached to a context yet.
3890 */
3891 if (!ctx) {
3892 WARN_ON_ONCE(event->attach_state &
3893 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3894 goto no_ctx;
3895 }
3896
f8697762
JO
3897 if (!is_kernel_event(event))
3898 perf_remove_from_owner(event);
8882135b 3899
5fa7c8ec 3900 ctx = perf_event_ctx_lock(event);
a83fe28e 3901 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3902 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3903
a69b0ca4 3904 raw_spin_lock_irq(&ctx->lock);
683ede43 3905 /*
a69b0ca4
PZ
3906 * Mark this even as STATE_DEAD, there is no external reference to it
3907 * anymore.
683ede43 3908 *
a69b0ca4
PZ
3909 * Anybody acquiring event->child_mutex after the below loop _must_
3910 * also see this, most importantly inherit_event() which will avoid
3911 * placing more children on the list.
683ede43 3912 *
c6e5b732
PZ
3913 * Thus this guarantees that we will in fact observe and kill _ALL_
3914 * child events.
683ede43 3915 */
a69b0ca4
PZ
3916 event->state = PERF_EVENT_STATE_DEAD;
3917 raw_spin_unlock_irq(&ctx->lock);
3918
3919 perf_event_ctx_unlock(event, ctx);
683ede43 3920
c6e5b732
PZ
3921again:
3922 mutex_lock(&event->child_mutex);
3923 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3924
c6e5b732
PZ
3925 /*
3926 * Cannot change, child events are not migrated, see the
3927 * comment with perf_event_ctx_lock_nested().
3928 */
3929 ctx = lockless_dereference(child->ctx);
3930 /*
3931 * Since child_mutex nests inside ctx::mutex, we must jump
3932 * through hoops. We start by grabbing a reference on the ctx.
3933 *
3934 * Since the event cannot get freed while we hold the
3935 * child_mutex, the context must also exist and have a !0
3936 * reference count.
3937 */
3938 get_ctx(ctx);
3939
3940 /*
3941 * Now that we have a ctx ref, we can drop child_mutex, and
3942 * acquire ctx::mutex without fear of it going away. Then we
3943 * can re-acquire child_mutex.
3944 */
3945 mutex_unlock(&event->child_mutex);
3946 mutex_lock(&ctx->mutex);
3947 mutex_lock(&event->child_mutex);
3948
3949 /*
3950 * Now that we hold ctx::mutex and child_mutex, revalidate our
3951 * state, if child is still the first entry, it didn't get freed
3952 * and we can continue doing so.
3953 */
3954 tmp = list_first_entry_or_null(&event->child_list,
3955 struct perf_event, child_list);
3956 if (tmp == child) {
3957 perf_remove_from_context(child, DETACH_GROUP);
3958 list_del(&child->child_list);
3959 free_event(child);
3960 /*
3961 * This matches the refcount bump in inherit_event();
3962 * this can't be the last reference.
3963 */
3964 put_event(event);
3965 }
3966
3967 mutex_unlock(&event->child_mutex);
3968 mutex_unlock(&ctx->mutex);
3969 put_ctx(ctx);
3970 goto again;
3971 }
3972 mutex_unlock(&event->child_mutex);
3973
a4f4bb6d
PZ
3974no_ctx:
3975 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3976 return 0;
3977}
3978EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3979
8b10c5e2
PZ
3980/*
3981 * Called when the last reference to the file is gone.
3982 */
a6fa941d
AV
3983static int perf_release(struct inode *inode, struct file *file)
3984{
c6e5b732 3985 perf_event_release_kernel(file->private_data);
a6fa941d 3986 return 0;
fb0459d7 3987}
fb0459d7 3988
59ed446f 3989u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3990{
cdd6c482 3991 struct perf_event *child;
e53c0994
PZ
3992 u64 total = 0;
3993
59ed446f
PZ
3994 *enabled = 0;
3995 *running = 0;
3996
6f10581a 3997 mutex_lock(&event->child_mutex);
01add3ea 3998
7d88962e 3999 (void)perf_event_read(event, false);
01add3ea
SB
4000 total += perf_event_count(event);
4001
59ed446f
PZ
4002 *enabled += event->total_time_enabled +
4003 atomic64_read(&event->child_total_time_enabled);
4004 *running += event->total_time_running +
4005 atomic64_read(&event->child_total_time_running);
4006
4007 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4008 (void)perf_event_read(child, false);
01add3ea 4009 total += perf_event_count(child);
59ed446f
PZ
4010 *enabled += child->total_time_enabled;
4011 *running += child->total_time_running;
4012 }
6f10581a 4013 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4014
4015 return total;
4016}
fb0459d7 4017EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4018
7d88962e 4019static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4020 u64 read_format, u64 *values)
3dab77fb 4021{
fa8c2693
PZ
4022 struct perf_event *sub;
4023 int n = 1; /* skip @nr */
7d88962e 4024 int ret;
f63a8daa 4025
7d88962e
SB
4026 ret = perf_event_read(leader, true);
4027 if (ret)
4028 return ret;
abf4868b 4029
fa8c2693
PZ
4030 /*
4031 * Since we co-schedule groups, {enabled,running} times of siblings
4032 * will be identical to those of the leader, so we only publish one
4033 * set.
4034 */
4035 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4036 values[n++] += leader->total_time_enabled +
4037 atomic64_read(&leader->child_total_time_enabled);
4038 }
3dab77fb 4039
fa8c2693
PZ
4040 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4041 values[n++] += leader->total_time_running +
4042 atomic64_read(&leader->child_total_time_running);
4043 }
4044
4045 /*
4046 * Write {count,id} tuples for every sibling.
4047 */
4048 values[n++] += perf_event_count(leader);
abf4868b
PZ
4049 if (read_format & PERF_FORMAT_ID)
4050 values[n++] = primary_event_id(leader);
3dab77fb 4051
fa8c2693
PZ
4052 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4053 values[n++] += perf_event_count(sub);
4054 if (read_format & PERF_FORMAT_ID)
4055 values[n++] = primary_event_id(sub);
4056 }
7d88962e
SB
4057
4058 return 0;
fa8c2693 4059}
3dab77fb 4060
fa8c2693
PZ
4061static int perf_read_group(struct perf_event *event,
4062 u64 read_format, char __user *buf)
4063{
4064 struct perf_event *leader = event->group_leader, *child;
4065 struct perf_event_context *ctx = leader->ctx;
7d88962e 4066 int ret;
fa8c2693 4067 u64 *values;
3dab77fb 4068
fa8c2693 4069 lockdep_assert_held(&ctx->mutex);
3dab77fb 4070
fa8c2693
PZ
4071 values = kzalloc(event->read_size, GFP_KERNEL);
4072 if (!values)
4073 return -ENOMEM;
3dab77fb 4074
fa8c2693
PZ
4075 values[0] = 1 + leader->nr_siblings;
4076
4077 /*
4078 * By locking the child_mutex of the leader we effectively
4079 * lock the child list of all siblings.. XXX explain how.
4080 */
4081 mutex_lock(&leader->child_mutex);
abf4868b 4082
7d88962e
SB
4083 ret = __perf_read_group_add(leader, read_format, values);
4084 if (ret)
4085 goto unlock;
4086
4087 list_for_each_entry(child, &leader->child_list, child_list) {
4088 ret = __perf_read_group_add(child, read_format, values);
4089 if (ret)
4090 goto unlock;
4091 }
abf4868b 4092
fa8c2693 4093 mutex_unlock(&leader->child_mutex);
abf4868b 4094
7d88962e 4095 ret = event->read_size;
fa8c2693
PZ
4096 if (copy_to_user(buf, values, event->read_size))
4097 ret = -EFAULT;
7d88962e 4098 goto out;
fa8c2693 4099
7d88962e
SB
4100unlock:
4101 mutex_unlock(&leader->child_mutex);
4102out:
fa8c2693 4103 kfree(values);
abf4868b 4104 return ret;
3dab77fb
PZ
4105}
4106
b15f495b 4107static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4108 u64 read_format, char __user *buf)
4109{
59ed446f 4110 u64 enabled, running;
3dab77fb
PZ
4111 u64 values[4];
4112 int n = 0;
4113
59ed446f
PZ
4114 values[n++] = perf_event_read_value(event, &enabled, &running);
4115 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4116 values[n++] = enabled;
4117 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4118 values[n++] = running;
3dab77fb 4119 if (read_format & PERF_FORMAT_ID)
cdd6c482 4120 values[n++] = primary_event_id(event);
3dab77fb
PZ
4121
4122 if (copy_to_user(buf, values, n * sizeof(u64)))
4123 return -EFAULT;
4124
4125 return n * sizeof(u64);
4126}
4127
dc633982
JO
4128static bool is_event_hup(struct perf_event *event)
4129{
4130 bool no_children;
4131
a69b0ca4 4132 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4133 return false;
4134
4135 mutex_lock(&event->child_mutex);
4136 no_children = list_empty(&event->child_list);
4137 mutex_unlock(&event->child_mutex);
4138 return no_children;
4139}
4140
0793a61d 4141/*
cdd6c482 4142 * Read the performance event - simple non blocking version for now
0793a61d
TG
4143 */
4144static ssize_t
b15f495b 4145__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4146{
cdd6c482 4147 u64 read_format = event->attr.read_format;
3dab77fb 4148 int ret;
0793a61d 4149
3b6f9e5c 4150 /*
cdd6c482 4151 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4152 * error state (i.e. because it was pinned but it couldn't be
4153 * scheduled on to the CPU at some point).
4154 */
cdd6c482 4155 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4156 return 0;
4157
c320c7b7 4158 if (count < event->read_size)
3dab77fb
PZ
4159 return -ENOSPC;
4160
cdd6c482 4161 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4162 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4163 ret = perf_read_group(event, read_format, buf);
3dab77fb 4164 else
b15f495b 4165 ret = perf_read_one(event, read_format, buf);
0793a61d 4166
3dab77fb 4167 return ret;
0793a61d
TG
4168}
4169
0793a61d
TG
4170static ssize_t
4171perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4172{
cdd6c482 4173 struct perf_event *event = file->private_data;
f63a8daa
PZ
4174 struct perf_event_context *ctx;
4175 int ret;
0793a61d 4176
f63a8daa 4177 ctx = perf_event_ctx_lock(event);
b15f495b 4178 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4179 perf_event_ctx_unlock(event, ctx);
4180
4181 return ret;
0793a61d
TG
4182}
4183
4184static unsigned int perf_poll(struct file *file, poll_table *wait)
4185{
cdd6c482 4186 struct perf_event *event = file->private_data;
76369139 4187 struct ring_buffer *rb;
61b67684 4188 unsigned int events = POLLHUP;
c7138f37 4189
e708d7ad 4190 poll_wait(file, &event->waitq, wait);
179033b3 4191
dc633982 4192 if (is_event_hup(event))
179033b3 4193 return events;
c7138f37 4194
10c6db11 4195 /*
9bb5d40c
PZ
4196 * Pin the event->rb by taking event->mmap_mutex; otherwise
4197 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4198 */
4199 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4200 rb = event->rb;
4201 if (rb)
76369139 4202 events = atomic_xchg(&rb->poll, 0);
10c6db11 4203 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4204 return events;
4205}
4206
f63a8daa 4207static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4208{
7d88962e 4209 (void)perf_event_read(event, false);
e7850595 4210 local64_set(&event->count, 0);
cdd6c482 4211 perf_event_update_userpage(event);
3df5edad
PZ
4212}
4213
c93f7669 4214/*
cdd6c482
IM
4215 * Holding the top-level event's child_mutex means that any
4216 * descendant process that has inherited this event will block
8ba289b8 4217 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4218 * task existence requirements of perf_event_enable/disable.
c93f7669 4219 */
cdd6c482
IM
4220static void perf_event_for_each_child(struct perf_event *event,
4221 void (*func)(struct perf_event *))
3df5edad 4222{
cdd6c482 4223 struct perf_event *child;
3df5edad 4224
cdd6c482 4225 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4226
cdd6c482
IM
4227 mutex_lock(&event->child_mutex);
4228 func(event);
4229 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4230 func(child);
cdd6c482 4231 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4232}
4233
cdd6c482
IM
4234static void perf_event_for_each(struct perf_event *event,
4235 void (*func)(struct perf_event *))
3df5edad 4236{
cdd6c482
IM
4237 struct perf_event_context *ctx = event->ctx;
4238 struct perf_event *sibling;
3df5edad 4239
f63a8daa
PZ
4240 lockdep_assert_held(&ctx->mutex);
4241
cdd6c482 4242 event = event->group_leader;
75f937f2 4243
cdd6c482 4244 perf_event_for_each_child(event, func);
cdd6c482 4245 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4246 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4247}
4248
fae3fde6
PZ
4249static void __perf_event_period(struct perf_event *event,
4250 struct perf_cpu_context *cpuctx,
4251 struct perf_event_context *ctx,
4252 void *info)
c7999c6f 4253{
fae3fde6 4254 u64 value = *((u64 *)info);
c7999c6f 4255 bool active;
08247e31 4256
cdd6c482 4257 if (event->attr.freq) {
cdd6c482 4258 event->attr.sample_freq = value;
08247e31 4259 } else {
cdd6c482
IM
4260 event->attr.sample_period = value;
4261 event->hw.sample_period = value;
08247e31 4262 }
bad7192b
PZ
4263
4264 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4265 if (active) {
4266 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4267 /*
4268 * We could be throttled; unthrottle now to avoid the tick
4269 * trying to unthrottle while we already re-started the event.
4270 */
4271 if (event->hw.interrupts == MAX_INTERRUPTS) {
4272 event->hw.interrupts = 0;
4273 perf_log_throttle(event, 1);
4274 }
bad7192b
PZ
4275 event->pmu->stop(event, PERF_EF_UPDATE);
4276 }
4277
4278 local64_set(&event->hw.period_left, 0);
4279
4280 if (active) {
4281 event->pmu->start(event, PERF_EF_RELOAD);
4282 perf_pmu_enable(ctx->pmu);
4283 }
c7999c6f
PZ
4284}
4285
4286static int perf_event_period(struct perf_event *event, u64 __user *arg)
4287{
c7999c6f
PZ
4288 u64 value;
4289
4290 if (!is_sampling_event(event))
4291 return -EINVAL;
4292
4293 if (copy_from_user(&value, arg, sizeof(value)))
4294 return -EFAULT;
4295
4296 if (!value)
4297 return -EINVAL;
4298
4299 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4300 return -EINVAL;
4301
fae3fde6 4302 event_function_call(event, __perf_event_period, &value);
08247e31 4303
c7999c6f 4304 return 0;
08247e31
PZ
4305}
4306
ac9721f3
PZ
4307static const struct file_operations perf_fops;
4308
2903ff01 4309static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4310{
2903ff01
AV
4311 struct fd f = fdget(fd);
4312 if (!f.file)
4313 return -EBADF;
ac9721f3 4314
2903ff01
AV
4315 if (f.file->f_op != &perf_fops) {
4316 fdput(f);
4317 return -EBADF;
ac9721f3 4318 }
2903ff01
AV
4319 *p = f;
4320 return 0;
ac9721f3
PZ
4321}
4322
4323static int perf_event_set_output(struct perf_event *event,
4324 struct perf_event *output_event);
6fb2915d 4325static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4326static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4327
f63a8daa 4328static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4329{
cdd6c482 4330 void (*func)(struct perf_event *);
3df5edad 4331 u32 flags = arg;
d859e29f
PM
4332
4333 switch (cmd) {
cdd6c482 4334 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4335 func = _perf_event_enable;
d859e29f 4336 break;
cdd6c482 4337 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4338 func = _perf_event_disable;
79f14641 4339 break;
cdd6c482 4340 case PERF_EVENT_IOC_RESET:
f63a8daa 4341 func = _perf_event_reset;
6de6a7b9 4342 break;
3df5edad 4343
cdd6c482 4344 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4345 return _perf_event_refresh(event, arg);
08247e31 4346
cdd6c482
IM
4347 case PERF_EVENT_IOC_PERIOD:
4348 return perf_event_period(event, (u64 __user *)arg);
08247e31 4349
cf4957f1
JO
4350 case PERF_EVENT_IOC_ID:
4351 {
4352 u64 id = primary_event_id(event);
4353
4354 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4355 return -EFAULT;
4356 return 0;
4357 }
4358
cdd6c482 4359 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4360 {
ac9721f3 4361 int ret;
ac9721f3 4362 if (arg != -1) {
2903ff01
AV
4363 struct perf_event *output_event;
4364 struct fd output;
4365 ret = perf_fget_light(arg, &output);
4366 if (ret)
4367 return ret;
4368 output_event = output.file->private_data;
4369 ret = perf_event_set_output(event, output_event);
4370 fdput(output);
4371 } else {
4372 ret = perf_event_set_output(event, NULL);
ac9721f3 4373 }
ac9721f3
PZ
4374 return ret;
4375 }
a4be7c27 4376
6fb2915d
LZ
4377 case PERF_EVENT_IOC_SET_FILTER:
4378 return perf_event_set_filter(event, (void __user *)arg);
4379
2541517c
AS
4380 case PERF_EVENT_IOC_SET_BPF:
4381 return perf_event_set_bpf_prog(event, arg);
4382
86e7972f
WN
4383 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4384 struct ring_buffer *rb;
4385
4386 rcu_read_lock();
4387 rb = rcu_dereference(event->rb);
4388 if (!rb || !rb->nr_pages) {
4389 rcu_read_unlock();
4390 return -EINVAL;
4391 }
4392 rb_toggle_paused(rb, !!arg);
4393 rcu_read_unlock();
4394 return 0;
4395 }
d859e29f 4396 default:
3df5edad 4397 return -ENOTTY;
d859e29f 4398 }
3df5edad
PZ
4399
4400 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4401 perf_event_for_each(event, func);
3df5edad 4402 else
cdd6c482 4403 perf_event_for_each_child(event, func);
3df5edad
PZ
4404
4405 return 0;
d859e29f
PM
4406}
4407
f63a8daa
PZ
4408static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4409{
4410 struct perf_event *event = file->private_data;
4411 struct perf_event_context *ctx;
4412 long ret;
4413
4414 ctx = perf_event_ctx_lock(event);
4415 ret = _perf_ioctl(event, cmd, arg);
4416 perf_event_ctx_unlock(event, ctx);
4417
4418 return ret;
4419}
4420
b3f20785
PM
4421#ifdef CONFIG_COMPAT
4422static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4423 unsigned long arg)
4424{
4425 switch (_IOC_NR(cmd)) {
4426 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4427 case _IOC_NR(PERF_EVENT_IOC_ID):
4428 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4429 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4430 cmd &= ~IOCSIZE_MASK;
4431 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4432 }
4433 break;
4434 }
4435 return perf_ioctl(file, cmd, arg);
4436}
4437#else
4438# define perf_compat_ioctl NULL
4439#endif
4440
cdd6c482 4441int perf_event_task_enable(void)
771d7cde 4442{
f63a8daa 4443 struct perf_event_context *ctx;
cdd6c482 4444 struct perf_event *event;
771d7cde 4445
cdd6c482 4446 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4447 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4448 ctx = perf_event_ctx_lock(event);
4449 perf_event_for_each_child(event, _perf_event_enable);
4450 perf_event_ctx_unlock(event, ctx);
4451 }
cdd6c482 4452 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4453
4454 return 0;
4455}
4456
cdd6c482 4457int perf_event_task_disable(void)
771d7cde 4458{
f63a8daa 4459 struct perf_event_context *ctx;
cdd6c482 4460 struct perf_event *event;
771d7cde 4461
cdd6c482 4462 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4463 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4464 ctx = perf_event_ctx_lock(event);
4465 perf_event_for_each_child(event, _perf_event_disable);
4466 perf_event_ctx_unlock(event, ctx);
4467 }
cdd6c482 4468 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4469
4470 return 0;
4471}
4472
cdd6c482 4473static int perf_event_index(struct perf_event *event)
194002b2 4474{
a4eaf7f1
PZ
4475 if (event->hw.state & PERF_HES_STOPPED)
4476 return 0;
4477
cdd6c482 4478 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4479 return 0;
4480
35edc2a5 4481 return event->pmu->event_idx(event);
194002b2
PZ
4482}
4483
c4794295 4484static void calc_timer_values(struct perf_event *event,
e3f3541c 4485 u64 *now,
7f310a5d
EM
4486 u64 *enabled,
4487 u64 *running)
c4794295 4488{
e3f3541c 4489 u64 ctx_time;
c4794295 4490
e3f3541c
PZ
4491 *now = perf_clock();
4492 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4493 *enabled = ctx_time - event->tstamp_enabled;
4494 *running = ctx_time - event->tstamp_running;
4495}
4496
fa731587
PZ
4497static void perf_event_init_userpage(struct perf_event *event)
4498{
4499 struct perf_event_mmap_page *userpg;
4500 struct ring_buffer *rb;
4501
4502 rcu_read_lock();
4503 rb = rcu_dereference(event->rb);
4504 if (!rb)
4505 goto unlock;
4506
4507 userpg = rb->user_page;
4508
4509 /* Allow new userspace to detect that bit 0 is deprecated */
4510 userpg->cap_bit0_is_deprecated = 1;
4511 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4512 userpg->data_offset = PAGE_SIZE;
4513 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4514
4515unlock:
4516 rcu_read_unlock();
4517}
4518
c1317ec2
AL
4519void __weak arch_perf_update_userpage(
4520 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4521{
4522}
4523
38ff667b
PZ
4524/*
4525 * Callers need to ensure there can be no nesting of this function, otherwise
4526 * the seqlock logic goes bad. We can not serialize this because the arch
4527 * code calls this from NMI context.
4528 */
cdd6c482 4529void perf_event_update_userpage(struct perf_event *event)
37d81828 4530{
cdd6c482 4531 struct perf_event_mmap_page *userpg;
76369139 4532 struct ring_buffer *rb;
e3f3541c 4533 u64 enabled, running, now;
38ff667b
PZ
4534
4535 rcu_read_lock();
5ec4c599
PZ
4536 rb = rcu_dereference(event->rb);
4537 if (!rb)
4538 goto unlock;
4539
0d641208
EM
4540 /*
4541 * compute total_time_enabled, total_time_running
4542 * based on snapshot values taken when the event
4543 * was last scheduled in.
4544 *
4545 * we cannot simply called update_context_time()
4546 * because of locking issue as we can be called in
4547 * NMI context
4548 */
e3f3541c 4549 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4550
76369139 4551 userpg = rb->user_page;
7b732a75
PZ
4552 /*
4553 * Disable preemption so as to not let the corresponding user-space
4554 * spin too long if we get preempted.
4555 */
4556 preempt_disable();
37d81828 4557 ++userpg->lock;
92f22a38 4558 barrier();
cdd6c482 4559 userpg->index = perf_event_index(event);
b5e58793 4560 userpg->offset = perf_event_count(event);
365a4038 4561 if (userpg->index)
e7850595 4562 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4563
0d641208 4564 userpg->time_enabled = enabled +
cdd6c482 4565 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4566
0d641208 4567 userpg->time_running = running +
cdd6c482 4568 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4569
c1317ec2 4570 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4571
92f22a38 4572 barrier();
37d81828 4573 ++userpg->lock;
7b732a75 4574 preempt_enable();
38ff667b 4575unlock:
7b732a75 4576 rcu_read_unlock();
37d81828
PM
4577}
4578
906010b2
PZ
4579static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4580{
4581 struct perf_event *event = vma->vm_file->private_data;
76369139 4582 struct ring_buffer *rb;
906010b2
PZ
4583 int ret = VM_FAULT_SIGBUS;
4584
4585 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4586 if (vmf->pgoff == 0)
4587 ret = 0;
4588 return ret;
4589 }
4590
4591 rcu_read_lock();
76369139
FW
4592 rb = rcu_dereference(event->rb);
4593 if (!rb)
906010b2
PZ
4594 goto unlock;
4595
4596 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4597 goto unlock;
4598
76369139 4599 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4600 if (!vmf->page)
4601 goto unlock;
4602
4603 get_page(vmf->page);
4604 vmf->page->mapping = vma->vm_file->f_mapping;
4605 vmf->page->index = vmf->pgoff;
4606
4607 ret = 0;
4608unlock:
4609 rcu_read_unlock();
4610
4611 return ret;
4612}
4613
10c6db11
PZ
4614static void ring_buffer_attach(struct perf_event *event,
4615 struct ring_buffer *rb)
4616{
b69cf536 4617 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4618 unsigned long flags;
4619
b69cf536
PZ
4620 if (event->rb) {
4621 /*
4622 * Should be impossible, we set this when removing
4623 * event->rb_entry and wait/clear when adding event->rb_entry.
4624 */
4625 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4626
b69cf536 4627 old_rb = event->rb;
b69cf536
PZ
4628 spin_lock_irqsave(&old_rb->event_lock, flags);
4629 list_del_rcu(&event->rb_entry);
4630 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4631
2f993cf0
ON
4632 event->rcu_batches = get_state_synchronize_rcu();
4633 event->rcu_pending = 1;
b69cf536 4634 }
10c6db11 4635
b69cf536 4636 if (rb) {
2f993cf0
ON
4637 if (event->rcu_pending) {
4638 cond_synchronize_rcu(event->rcu_batches);
4639 event->rcu_pending = 0;
4640 }
4641
b69cf536
PZ
4642 spin_lock_irqsave(&rb->event_lock, flags);
4643 list_add_rcu(&event->rb_entry, &rb->event_list);
4644 spin_unlock_irqrestore(&rb->event_lock, flags);
4645 }
4646
4647 rcu_assign_pointer(event->rb, rb);
4648
4649 if (old_rb) {
4650 ring_buffer_put(old_rb);
4651 /*
4652 * Since we detached before setting the new rb, so that we
4653 * could attach the new rb, we could have missed a wakeup.
4654 * Provide it now.
4655 */
4656 wake_up_all(&event->waitq);
4657 }
10c6db11
PZ
4658}
4659
4660static void ring_buffer_wakeup(struct perf_event *event)
4661{
4662 struct ring_buffer *rb;
4663
4664 rcu_read_lock();
4665 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4666 if (rb) {
4667 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4668 wake_up_all(&event->waitq);
4669 }
10c6db11
PZ
4670 rcu_read_unlock();
4671}
4672
fdc26706 4673struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4674{
76369139 4675 struct ring_buffer *rb;
7b732a75 4676
ac9721f3 4677 rcu_read_lock();
76369139
FW
4678 rb = rcu_dereference(event->rb);
4679 if (rb) {
4680 if (!atomic_inc_not_zero(&rb->refcount))
4681 rb = NULL;
ac9721f3
PZ
4682 }
4683 rcu_read_unlock();
4684
76369139 4685 return rb;
ac9721f3
PZ
4686}
4687
fdc26706 4688void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4689{
76369139 4690 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4691 return;
7b732a75 4692
9bb5d40c 4693 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4694
76369139 4695 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4696}
4697
4698static void perf_mmap_open(struct vm_area_struct *vma)
4699{
cdd6c482 4700 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4701
cdd6c482 4702 atomic_inc(&event->mmap_count);
9bb5d40c 4703 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4704
45bfb2e5
PZ
4705 if (vma->vm_pgoff)
4706 atomic_inc(&event->rb->aux_mmap_count);
4707
1e0fb9ec
AL
4708 if (event->pmu->event_mapped)
4709 event->pmu->event_mapped(event);
7b732a75
PZ
4710}
4711
95ff4ca2
AS
4712static void perf_pmu_output_stop(struct perf_event *event);
4713
9bb5d40c
PZ
4714/*
4715 * A buffer can be mmap()ed multiple times; either directly through the same
4716 * event, or through other events by use of perf_event_set_output().
4717 *
4718 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4719 * the buffer here, where we still have a VM context. This means we need
4720 * to detach all events redirecting to us.
4721 */
7b732a75
PZ
4722static void perf_mmap_close(struct vm_area_struct *vma)
4723{
cdd6c482 4724 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4725
b69cf536 4726 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4727 struct user_struct *mmap_user = rb->mmap_user;
4728 int mmap_locked = rb->mmap_locked;
4729 unsigned long size = perf_data_size(rb);
789f90fc 4730
1e0fb9ec
AL
4731 if (event->pmu->event_unmapped)
4732 event->pmu->event_unmapped(event);
4733
45bfb2e5
PZ
4734 /*
4735 * rb->aux_mmap_count will always drop before rb->mmap_count and
4736 * event->mmap_count, so it is ok to use event->mmap_mutex to
4737 * serialize with perf_mmap here.
4738 */
4739 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4740 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4741 /*
4742 * Stop all AUX events that are writing to this buffer,
4743 * so that we can free its AUX pages and corresponding PMU
4744 * data. Note that after rb::aux_mmap_count dropped to zero,
4745 * they won't start any more (see perf_aux_output_begin()).
4746 */
4747 perf_pmu_output_stop(event);
4748
4749 /* now it's safe to free the pages */
45bfb2e5
PZ
4750 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4751 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4752
95ff4ca2 4753 /* this has to be the last one */
45bfb2e5 4754 rb_free_aux(rb);
95ff4ca2
AS
4755 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4756
45bfb2e5
PZ
4757 mutex_unlock(&event->mmap_mutex);
4758 }
4759
9bb5d40c
PZ
4760 atomic_dec(&rb->mmap_count);
4761
4762 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4763 goto out_put;
9bb5d40c 4764
b69cf536 4765 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4766 mutex_unlock(&event->mmap_mutex);
4767
4768 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4769 if (atomic_read(&rb->mmap_count))
4770 goto out_put;
ac9721f3 4771
9bb5d40c
PZ
4772 /*
4773 * No other mmap()s, detach from all other events that might redirect
4774 * into the now unreachable buffer. Somewhat complicated by the
4775 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4776 */
4777again:
4778 rcu_read_lock();
4779 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4780 if (!atomic_long_inc_not_zero(&event->refcount)) {
4781 /*
4782 * This event is en-route to free_event() which will
4783 * detach it and remove it from the list.
4784 */
4785 continue;
4786 }
4787 rcu_read_unlock();
789f90fc 4788
9bb5d40c
PZ
4789 mutex_lock(&event->mmap_mutex);
4790 /*
4791 * Check we didn't race with perf_event_set_output() which can
4792 * swizzle the rb from under us while we were waiting to
4793 * acquire mmap_mutex.
4794 *
4795 * If we find a different rb; ignore this event, a next
4796 * iteration will no longer find it on the list. We have to
4797 * still restart the iteration to make sure we're not now
4798 * iterating the wrong list.
4799 */
b69cf536
PZ
4800 if (event->rb == rb)
4801 ring_buffer_attach(event, NULL);
4802
cdd6c482 4803 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4804 put_event(event);
ac9721f3 4805
9bb5d40c
PZ
4806 /*
4807 * Restart the iteration; either we're on the wrong list or
4808 * destroyed its integrity by doing a deletion.
4809 */
4810 goto again;
7b732a75 4811 }
9bb5d40c
PZ
4812 rcu_read_unlock();
4813
4814 /*
4815 * It could be there's still a few 0-ref events on the list; they'll
4816 * get cleaned up by free_event() -- they'll also still have their
4817 * ref on the rb and will free it whenever they are done with it.
4818 *
4819 * Aside from that, this buffer is 'fully' detached and unmapped,
4820 * undo the VM accounting.
4821 */
4822
4823 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4824 vma->vm_mm->pinned_vm -= mmap_locked;
4825 free_uid(mmap_user);
4826
b69cf536 4827out_put:
9bb5d40c 4828 ring_buffer_put(rb); /* could be last */
37d81828
PM
4829}
4830
f0f37e2f 4831static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4832 .open = perf_mmap_open,
45bfb2e5 4833 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4834 .fault = perf_mmap_fault,
4835 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4836};
4837
4838static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4839{
cdd6c482 4840 struct perf_event *event = file->private_data;
22a4f650 4841 unsigned long user_locked, user_lock_limit;
789f90fc 4842 struct user_struct *user = current_user();
22a4f650 4843 unsigned long locked, lock_limit;
45bfb2e5 4844 struct ring_buffer *rb = NULL;
7b732a75
PZ
4845 unsigned long vma_size;
4846 unsigned long nr_pages;
45bfb2e5 4847 long user_extra = 0, extra = 0;
d57e34fd 4848 int ret = 0, flags = 0;
37d81828 4849
c7920614
PZ
4850 /*
4851 * Don't allow mmap() of inherited per-task counters. This would
4852 * create a performance issue due to all children writing to the
76369139 4853 * same rb.
c7920614
PZ
4854 */
4855 if (event->cpu == -1 && event->attr.inherit)
4856 return -EINVAL;
4857
43a21ea8 4858 if (!(vma->vm_flags & VM_SHARED))
37d81828 4859 return -EINVAL;
7b732a75
PZ
4860
4861 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4862
4863 if (vma->vm_pgoff == 0) {
4864 nr_pages = (vma_size / PAGE_SIZE) - 1;
4865 } else {
4866 /*
4867 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4868 * mapped, all subsequent mappings should have the same size
4869 * and offset. Must be above the normal perf buffer.
4870 */
4871 u64 aux_offset, aux_size;
4872
4873 if (!event->rb)
4874 return -EINVAL;
4875
4876 nr_pages = vma_size / PAGE_SIZE;
4877
4878 mutex_lock(&event->mmap_mutex);
4879 ret = -EINVAL;
4880
4881 rb = event->rb;
4882 if (!rb)
4883 goto aux_unlock;
4884
4885 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4886 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4887
4888 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4889 goto aux_unlock;
4890
4891 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4892 goto aux_unlock;
4893
4894 /* already mapped with a different offset */
4895 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4896 goto aux_unlock;
4897
4898 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4899 goto aux_unlock;
4900
4901 /* already mapped with a different size */
4902 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4903 goto aux_unlock;
4904
4905 if (!is_power_of_2(nr_pages))
4906 goto aux_unlock;
4907
4908 if (!atomic_inc_not_zero(&rb->mmap_count))
4909 goto aux_unlock;
4910
4911 if (rb_has_aux(rb)) {
4912 atomic_inc(&rb->aux_mmap_count);
4913 ret = 0;
4914 goto unlock;
4915 }
4916
4917 atomic_set(&rb->aux_mmap_count, 1);
4918 user_extra = nr_pages;
4919
4920 goto accounting;
4921 }
7b732a75 4922
7730d865 4923 /*
76369139 4924 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4925 * can do bitmasks instead of modulo.
4926 */
2ed11312 4927 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4928 return -EINVAL;
4929
7b732a75 4930 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4931 return -EINVAL;
4932
cdd6c482 4933 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4934again:
cdd6c482 4935 mutex_lock(&event->mmap_mutex);
76369139 4936 if (event->rb) {
9bb5d40c 4937 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4938 ret = -EINVAL;
9bb5d40c
PZ
4939 goto unlock;
4940 }
4941
4942 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4943 /*
4944 * Raced against perf_mmap_close() through
4945 * perf_event_set_output(). Try again, hope for better
4946 * luck.
4947 */
4948 mutex_unlock(&event->mmap_mutex);
4949 goto again;
4950 }
4951
ebb3c4c4
PZ
4952 goto unlock;
4953 }
4954
789f90fc 4955 user_extra = nr_pages + 1;
45bfb2e5
PZ
4956
4957accounting:
cdd6c482 4958 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4959
4960 /*
4961 * Increase the limit linearly with more CPUs:
4962 */
4963 user_lock_limit *= num_online_cpus();
4964
789f90fc 4965 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4966
789f90fc
PZ
4967 if (user_locked > user_lock_limit)
4968 extra = user_locked - user_lock_limit;
7b732a75 4969
78d7d407 4970 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4971 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4972 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4973
459ec28a
IM
4974 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4975 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4976 ret = -EPERM;
4977 goto unlock;
4978 }
7b732a75 4979
45bfb2e5 4980 WARN_ON(!rb && event->rb);
906010b2 4981
d57e34fd 4982 if (vma->vm_flags & VM_WRITE)
76369139 4983 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4984
76369139 4985 if (!rb) {
45bfb2e5
PZ
4986 rb = rb_alloc(nr_pages,
4987 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4988 event->cpu, flags);
26cb63ad 4989
45bfb2e5
PZ
4990 if (!rb) {
4991 ret = -ENOMEM;
4992 goto unlock;
4993 }
43a21ea8 4994
45bfb2e5
PZ
4995 atomic_set(&rb->mmap_count, 1);
4996 rb->mmap_user = get_current_user();
4997 rb->mmap_locked = extra;
26cb63ad 4998
45bfb2e5 4999 ring_buffer_attach(event, rb);
ac9721f3 5000
45bfb2e5
PZ
5001 perf_event_init_userpage(event);
5002 perf_event_update_userpage(event);
5003 } else {
1a594131
AS
5004 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5005 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5006 if (!ret)
5007 rb->aux_mmap_locked = extra;
5008 }
9a0f05cb 5009
ebb3c4c4 5010unlock:
45bfb2e5
PZ
5011 if (!ret) {
5012 atomic_long_add(user_extra, &user->locked_vm);
5013 vma->vm_mm->pinned_vm += extra;
5014
ac9721f3 5015 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5016 } else if (rb) {
5017 atomic_dec(&rb->mmap_count);
5018 }
5019aux_unlock:
cdd6c482 5020 mutex_unlock(&event->mmap_mutex);
37d81828 5021
9bb5d40c
PZ
5022 /*
5023 * Since pinned accounting is per vm we cannot allow fork() to copy our
5024 * vma.
5025 */
26cb63ad 5026 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5027 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5028
1e0fb9ec
AL
5029 if (event->pmu->event_mapped)
5030 event->pmu->event_mapped(event);
5031
7b732a75 5032 return ret;
37d81828
PM
5033}
5034
3c446b3d
PZ
5035static int perf_fasync(int fd, struct file *filp, int on)
5036{
496ad9aa 5037 struct inode *inode = file_inode(filp);
cdd6c482 5038 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5039 int retval;
5040
5955102c 5041 inode_lock(inode);
cdd6c482 5042 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5043 inode_unlock(inode);
3c446b3d
PZ
5044
5045 if (retval < 0)
5046 return retval;
5047
5048 return 0;
5049}
5050
0793a61d 5051static const struct file_operations perf_fops = {
3326c1ce 5052 .llseek = no_llseek,
0793a61d
TG
5053 .release = perf_release,
5054 .read = perf_read,
5055 .poll = perf_poll,
d859e29f 5056 .unlocked_ioctl = perf_ioctl,
b3f20785 5057 .compat_ioctl = perf_compat_ioctl,
37d81828 5058 .mmap = perf_mmap,
3c446b3d 5059 .fasync = perf_fasync,
0793a61d
TG
5060};
5061
925d519a 5062/*
cdd6c482 5063 * Perf event wakeup
925d519a
PZ
5064 *
5065 * If there's data, ensure we set the poll() state and publish everything
5066 * to user-space before waking everybody up.
5067 */
5068
fed66e2c
PZ
5069static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5070{
5071 /* only the parent has fasync state */
5072 if (event->parent)
5073 event = event->parent;
5074 return &event->fasync;
5075}
5076
cdd6c482 5077void perf_event_wakeup(struct perf_event *event)
925d519a 5078{
10c6db11 5079 ring_buffer_wakeup(event);
4c9e2542 5080
cdd6c482 5081 if (event->pending_kill) {
fed66e2c 5082 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5083 event->pending_kill = 0;
4c9e2542 5084 }
925d519a
PZ
5085}
5086
e360adbe 5087static void perf_pending_event(struct irq_work *entry)
79f14641 5088{
cdd6c482
IM
5089 struct perf_event *event = container_of(entry,
5090 struct perf_event, pending);
d525211f
PZ
5091 int rctx;
5092
5093 rctx = perf_swevent_get_recursion_context();
5094 /*
5095 * If we 'fail' here, that's OK, it means recursion is already disabled
5096 * and we won't recurse 'further'.
5097 */
79f14641 5098
cdd6c482
IM
5099 if (event->pending_disable) {
5100 event->pending_disable = 0;
fae3fde6 5101 perf_event_disable_local(event);
79f14641
PZ
5102 }
5103
cdd6c482
IM
5104 if (event->pending_wakeup) {
5105 event->pending_wakeup = 0;
5106 perf_event_wakeup(event);
79f14641 5107 }
d525211f
PZ
5108
5109 if (rctx >= 0)
5110 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5111}
5112
39447b38
ZY
5113/*
5114 * We assume there is only KVM supporting the callbacks.
5115 * Later on, we might change it to a list if there is
5116 * another virtualization implementation supporting the callbacks.
5117 */
5118struct perf_guest_info_callbacks *perf_guest_cbs;
5119
5120int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5121{
5122 perf_guest_cbs = cbs;
5123 return 0;
5124}
5125EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5126
5127int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5128{
5129 perf_guest_cbs = NULL;
5130 return 0;
5131}
5132EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5133
4018994f
JO
5134static void
5135perf_output_sample_regs(struct perf_output_handle *handle,
5136 struct pt_regs *regs, u64 mask)
5137{
5138 int bit;
5139
5140 for_each_set_bit(bit, (const unsigned long *) &mask,
5141 sizeof(mask) * BITS_PER_BYTE) {
5142 u64 val;
5143
5144 val = perf_reg_value(regs, bit);
5145 perf_output_put(handle, val);
5146 }
5147}
5148
60e2364e 5149static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5150 struct pt_regs *regs,
5151 struct pt_regs *regs_user_copy)
4018994f 5152{
88a7c26a
AL
5153 if (user_mode(regs)) {
5154 regs_user->abi = perf_reg_abi(current);
2565711f 5155 regs_user->regs = regs;
88a7c26a
AL
5156 } else if (current->mm) {
5157 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5158 } else {
5159 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5160 regs_user->regs = NULL;
4018994f
JO
5161 }
5162}
5163
60e2364e
SE
5164static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5165 struct pt_regs *regs)
5166{
5167 regs_intr->regs = regs;
5168 regs_intr->abi = perf_reg_abi(current);
5169}
5170
5171
c5ebcedb
JO
5172/*
5173 * Get remaining task size from user stack pointer.
5174 *
5175 * It'd be better to take stack vma map and limit this more
5176 * precisly, but there's no way to get it safely under interrupt,
5177 * so using TASK_SIZE as limit.
5178 */
5179static u64 perf_ustack_task_size(struct pt_regs *regs)
5180{
5181 unsigned long addr = perf_user_stack_pointer(regs);
5182
5183 if (!addr || addr >= TASK_SIZE)
5184 return 0;
5185
5186 return TASK_SIZE - addr;
5187}
5188
5189static u16
5190perf_sample_ustack_size(u16 stack_size, u16 header_size,
5191 struct pt_regs *regs)
5192{
5193 u64 task_size;
5194
5195 /* No regs, no stack pointer, no dump. */
5196 if (!regs)
5197 return 0;
5198
5199 /*
5200 * Check if we fit in with the requested stack size into the:
5201 * - TASK_SIZE
5202 * If we don't, we limit the size to the TASK_SIZE.
5203 *
5204 * - remaining sample size
5205 * If we don't, we customize the stack size to
5206 * fit in to the remaining sample size.
5207 */
5208
5209 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5210 stack_size = min(stack_size, (u16) task_size);
5211
5212 /* Current header size plus static size and dynamic size. */
5213 header_size += 2 * sizeof(u64);
5214
5215 /* Do we fit in with the current stack dump size? */
5216 if ((u16) (header_size + stack_size) < header_size) {
5217 /*
5218 * If we overflow the maximum size for the sample,
5219 * we customize the stack dump size to fit in.
5220 */
5221 stack_size = USHRT_MAX - header_size - sizeof(u64);
5222 stack_size = round_up(stack_size, sizeof(u64));
5223 }
5224
5225 return stack_size;
5226}
5227
5228static void
5229perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5230 struct pt_regs *regs)
5231{
5232 /* Case of a kernel thread, nothing to dump */
5233 if (!regs) {
5234 u64 size = 0;
5235 perf_output_put(handle, size);
5236 } else {
5237 unsigned long sp;
5238 unsigned int rem;
5239 u64 dyn_size;
5240
5241 /*
5242 * We dump:
5243 * static size
5244 * - the size requested by user or the best one we can fit
5245 * in to the sample max size
5246 * data
5247 * - user stack dump data
5248 * dynamic size
5249 * - the actual dumped size
5250 */
5251
5252 /* Static size. */
5253 perf_output_put(handle, dump_size);
5254
5255 /* Data. */
5256 sp = perf_user_stack_pointer(regs);
5257 rem = __output_copy_user(handle, (void *) sp, dump_size);
5258 dyn_size = dump_size - rem;
5259
5260 perf_output_skip(handle, rem);
5261
5262 /* Dynamic size. */
5263 perf_output_put(handle, dyn_size);
5264 }
5265}
5266
c980d109
ACM
5267static void __perf_event_header__init_id(struct perf_event_header *header,
5268 struct perf_sample_data *data,
5269 struct perf_event *event)
6844c09d
ACM
5270{
5271 u64 sample_type = event->attr.sample_type;
5272
5273 data->type = sample_type;
5274 header->size += event->id_header_size;
5275
5276 if (sample_type & PERF_SAMPLE_TID) {
5277 /* namespace issues */
5278 data->tid_entry.pid = perf_event_pid(event, current);
5279 data->tid_entry.tid = perf_event_tid(event, current);
5280 }
5281
5282 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5283 data->time = perf_event_clock(event);
6844c09d 5284
ff3d527c 5285 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5286 data->id = primary_event_id(event);
5287
5288 if (sample_type & PERF_SAMPLE_STREAM_ID)
5289 data->stream_id = event->id;
5290
5291 if (sample_type & PERF_SAMPLE_CPU) {
5292 data->cpu_entry.cpu = raw_smp_processor_id();
5293 data->cpu_entry.reserved = 0;
5294 }
5295}
5296
76369139
FW
5297void perf_event_header__init_id(struct perf_event_header *header,
5298 struct perf_sample_data *data,
5299 struct perf_event *event)
c980d109
ACM
5300{
5301 if (event->attr.sample_id_all)
5302 __perf_event_header__init_id(header, data, event);
5303}
5304
5305static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5306 struct perf_sample_data *data)
5307{
5308 u64 sample_type = data->type;
5309
5310 if (sample_type & PERF_SAMPLE_TID)
5311 perf_output_put(handle, data->tid_entry);
5312
5313 if (sample_type & PERF_SAMPLE_TIME)
5314 perf_output_put(handle, data->time);
5315
5316 if (sample_type & PERF_SAMPLE_ID)
5317 perf_output_put(handle, data->id);
5318
5319 if (sample_type & PERF_SAMPLE_STREAM_ID)
5320 perf_output_put(handle, data->stream_id);
5321
5322 if (sample_type & PERF_SAMPLE_CPU)
5323 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5324
5325 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5326 perf_output_put(handle, data->id);
c980d109
ACM
5327}
5328
76369139
FW
5329void perf_event__output_id_sample(struct perf_event *event,
5330 struct perf_output_handle *handle,
5331 struct perf_sample_data *sample)
c980d109
ACM
5332{
5333 if (event->attr.sample_id_all)
5334 __perf_event__output_id_sample(handle, sample);
5335}
5336
3dab77fb 5337static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5338 struct perf_event *event,
5339 u64 enabled, u64 running)
3dab77fb 5340{
cdd6c482 5341 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5342 u64 values[4];
5343 int n = 0;
5344
b5e58793 5345 values[n++] = perf_event_count(event);
3dab77fb 5346 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5347 values[n++] = enabled +
cdd6c482 5348 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5349 }
5350 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5351 values[n++] = running +
cdd6c482 5352 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5353 }
5354 if (read_format & PERF_FORMAT_ID)
cdd6c482 5355 values[n++] = primary_event_id(event);
3dab77fb 5356
76369139 5357 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5358}
5359
5360/*
cdd6c482 5361 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5362 */
5363static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5364 struct perf_event *event,
5365 u64 enabled, u64 running)
3dab77fb 5366{
cdd6c482
IM
5367 struct perf_event *leader = event->group_leader, *sub;
5368 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5369 u64 values[5];
5370 int n = 0;
5371
5372 values[n++] = 1 + leader->nr_siblings;
5373
5374 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5375 values[n++] = enabled;
3dab77fb
PZ
5376
5377 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5378 values[n++] = running;
3dab77fb 5379
cdd6c482 5380 if (leader != event)
3dab77fb
PZ
5381 leader->pmu->read(leader);
5382
b5e58793 5383 values[n++] = perf_event_count(leader);
3dab77fb 5384 if (read_format & PERF_FORMAT_ID)
cdd6c482 5385 values[n++] = primary_event_id(leader);
3dab77fb 5386
76369139 5387 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5388
65abc865 5389 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5390 n = 0;
5391
6f5ab001
JO
5392 if ((sub != event) &&
5393 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5394 sub->pmu->read(sub);
5395
b5e58793 5396 values[n++] = perf_event_count(sub);
3dab77fb 5397 if (read_format & PERF_FORMAT_ID)
cdd6c482 5398 values[n++] = primary_event_id(sub);
3dab77fb 5399
76369139 5400 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5401 }
5402}
5403
eed01528
SE
5404#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5405 PERF_FORMAT_TOTAL_TIME_RUNNING)
5406
3dab77fb 5407static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5408 struct perf_event *event)
3dab77fb 5409{
e3f3541c 5410 u64 enabled = 0, running = 0, now;
eed01528
SE
5411 u64 read_format = event->attr.read_format;
5412
5413 /*
5414 * compute total_time_enabled, total_time_running
5415 * based on snapshot values taken when the event
5416 * was last scheduled in.
5417 *
5418 * we cannot simply called update_context_time()
5419 * because of locking issue as we are called in
5420 * NMI context
5421 */
c4794295 5422 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5423 calc_timer_values(event, &now, &enabled, &running);
eed01528 5424
cdd6c482 5425 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5426 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5427 else
eed01528 5428 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5429}
5430
5622f295
MM
5431void perf_output_sample(struct perf_output_handle *handle,
5432 struct perf_event_header *header,
5433 struct perf_sample_data *data,
cdd6c482 5434 struct perf_event *event)
5622f295
MM
5435{
5436 u64 sample_type = data->type;
5437
5438 perf_output_put(handle, *header);
5439
ff3d527c
AH
5440 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5441 perf_output_put(handle, data->id);
5442
5622f295
MM
5443 if (sample_type & PERF_SAMPLE_IP)
5444 perf_output_put(handle, data->ip);
5445
5446 if (sample_type & PERF_SAMPLE_TID)
5447 perf_output_put(handle, data->tid_entry);
5448
5449 if (sample_type & PERF_SAMPLE_TIME)
5450 perf_output_put(handle, data->time);
5451
5452 if (sample_type & PERF_SAMPLE_ADDR)
5453 perf_output_put(handle, data->addr);
5454
5455 if (sample_type & PERF_SAMPLE_ID)
5456 perf_output_put(handle, data->id);
5457
5458 if (sample_type & PERF_SAMPLE_STREAM_ID)
5459 perf_output_put(handle, data->stream_id);
5460
5461 if (sample_type & PERF_SAMPLE_CPU)
5462 perf_output_put(handle, data->cpu_entry);
5463
5464 if (sample_type & PERF_SAMPLE_PERIOD)
5465 perf_output_put(handle, data->period);
5466
5467 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5468 perf_output_read(handle, event);
5622f295
MM
5469
5470 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5471 if (data->callchain) {
5472 int size = 1;
5473
5474 if (data->callchain)
5475 size += data->callchain->nr;
5476
5477 size *= sizeof(u64);
5478
76369139 5479 __output_copy(handle, data->callchain, size);
5622f295
MM
5480 } else {
5481 u64 nr = 0;
5482 perf_output_put(handle, nr);
5483 }
5484 }
5485
5486 if (sample_type & PERF_SAMPLE_RAW) {
5487 if (data->raw) {
fa128e6a
AS
5488 u32 raw_size = data->raw->size;
5489 u32 real_size = round_up(raw_size + sizeof(u32),
5490 sizeof(u64)) - sizeof(u32);
5491 u64 zero = 0;
5492
5493 perf_output_put(handle, real_size);
5494 __output_copy(handle, data->raw->data, raw_size);
5495 if (real_size - raw_size)
5496 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5497 } else {
5498 struct {
5499 u32 size;
5500 u32 data;
5501 } raw = {
5502 .size = sizeof(u32),
5503 .data = 0,
5504 };
5505 perf_output_put(handle, raw);
5506 }
5507 }
a7ac67ea 5508
bce38cd5
SE
5509 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5510 if (data->br_stack) {
5511 size_t size;
5512
5513 size = data->br_stack->nr
5514 * sizeof(struct perf_branch_entry);
5515
5516 perf_output_put(handle, data->br_stack->nr);
5517 perf_output_copy(handle, data->br_stack->entries, size);
5518 } else {
5519 /*
5520 * we always store at least the value of nr
5521 */
5522 u64 nr = 0;
5523 perf_output_put(handle, nr);
5524 }
5525 }
4018994f
JO
5526
5527 if (sample_type & PERF_SAMPLE_REGS_USER) {
5528 u64 abi = data->regs_user.abi;
5529
5530 /*
5531 * If there are no regs to dump, notice it through
5532 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5533 */
5534 perf_output_put(handle, abi);
5535
5536 if (abi) {
5537 u64 mask = event->attr.sample_regs_user;
5538 perf_output_sample_regs(handle,
5539 data->regs_user.regs,
5540 mask);
5541 }
5542 }
c5ebcedb 5543
a5cdd40c 5544 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5545 perf_output_sample_ustack(handle,
5546 data->stack_user_size,
5547 data->regs_user.regs);
a5cdd40c 5548 }
c3feedf2
AK
5549
5550 if (sample_type & PERF_SAMPLE_WEIGHT)
5551 perf_output_put(handle, data->weight);
d6be9ad6
SE
5552
5553 if (sample_type & PERF_SAMPLE_DATA_SRC)
5554 perf_output_put(handle, data->data_src.val);
a5cdd40c 5555
fdfbbd07
AK
5556 if (sample_type & PERF_SAMPLE_TRANSACTION)
5557 perf_output_put(handle, data->txn);
5558
60e2364e
SE
5559 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5560 u64 abi = data->regs_intr.abi;
5561 /*
5562 * If there are no regs to dump, notice it through
5563 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5564 */
5565 perf_output_put(handle, abi);
5566
5567 if (abi) {
5568 u64 mask = event->attr.sample_regs_intr;
5569
5570 perf_output_sample_regs(handle,
5571 data->regs_intr.regs,
5572 mask);
5573 }
5574 }
5575
a5cdd40c
PZ
5576 if (!event->attr.watermark) {
5577 int wakeup_events = event->attr.wakeup_events;
5578
5579 if (wakeup_events) {
5580 struct ring_buffer *rb = handle->rb;
5581 int events = local_inc_return(&rb->events);
5582
5583 if (events >= wakeup_events) {
5584 local_sub(wakeup_events, &rb->events);
5585 local_inc(&rb->wakeup);
5586 }
5587 }
5588 }
5622f295
MM
5589}
5590
5591void perf_prepare_sample(struct perf_event_header *header,
5592 struct perf_sample_data *data,
cdd6c482 5593 struct perf_event *event,
5622f295 5594 struct pt_regs *regs)
7b732a75 5595{
cdd6c482 5596 u64 sample_type = event->attr.sample_type;
7b732a75 5597
cdd6c482 5598 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5599 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5600
5601 header->misc = 0;
5602 header->misc |= perf_misc_flags(regs);
6fab0192 5603
c980d109 5604 __perf_event_header__init_id(header, data, event);
6844c09d 5605
c320c7b7 5606 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5607 data->ip = perf_instruction_pointer(regs);
5608
b23f3325 5609 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5610 int size = 1;
394ee076 5611
e6dab5ff 5612 data->callchain = perf_callchain(event, regs);
5622f295
MM
5613
5614 if (data->callchain)
5615 size += data->callchain->nr;
5616
5617 header->size += size * sizeof(u64);
394ee076
PZ
5618 }
5619
3a43ce68 5620 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5621 int size = sizeof(u32);
5622
5623 if (data->raw)
5624 size += data->raw->size;
5625 else
5626 size += sizeof(u32);
5627
fa128e6a 5628 header->size += round_up(size, sizeof(u64));
7f453c24 5629 }
bce38cd5
SE
5630
5631 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5632 int size = sizeof(u64); /* nr */
5633 if (data->br_stack) {
5634 size += data->br_stack->nr
5635 * sizeof(struct perf_branch_entry);
5636 }
5637 header->size += size;
5638 }
4018994f 5639
2565711f 5640 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5641 perf_sample_regs_user(&data->regs_user, regs,
5642 &data->regs_user_copy);
2565711f 5643
4018994f
JO
5644 if (sample_type & PERF_SAMPLE_REGS_USER) {
5645 /* regs dump ABI info */
5646 int size = sizeof(u64);
5647
4018994f
JO
5648 if (data->regs_user.regs) {
5649 u64 mask = event->attr.sample_regs_user;
5650 size += hweight64(mask) * sizeof(u64);
5651 }
5652
5653 header->size += size;
5654 }
c5ebcedb
JO
5655
5656 if (sample_type & PERF_SAMPLE_STACK_USER) {
5657 /*
5658 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5659 * processed as the last one or have additional check added
5660 * in case new sample type is added, because we could eat
5661 * up the rest of the sample size.
5662 */
c5ebcedb
JO
5663 u16 stack_size = event->attr.sample_stack_user;
5664 u16 size = sizeof(u64);
5665
c5ebcedb 5666 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5667 data->regs_user.regs);
c5ebcedb
JO
5668
5669 /*
5670 * If there is something to dump, add space for the dump
5671 * itself and for the field that tells the dynamic size,
5672 * which is how many have been actually dumped.
5673 */
5674 if (stack_size)
5675 size += sizeof(u64) + stack_size;
5676
5677 data->stack_user_size = stack_size;
5678 header->size += size;
5679 }
60e2364e
SE
5680
5681 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5682 /* regs dump ABI info */
5683 int size = sizeof(u64);
5684
5685 perf_sample_regs_intr(&data->regs_intr, regs);
5686
5687 if (data->regs_intr.regs) {
5688 u64 mask = event->attr.sample_regs_intr;
5689
5690 size += hweight64(mask) * sizeof(u64);
5691 }
5692
5693 header->size += size;
5694 }
5622f295 5695}
7f453c24 5696
21509084
YZ
5697void perf_event_output(struct perf_event *event,
5698 struct perf_sample_data *data,
5699 struct pt_regs *regs)
5622f295
MM
5700{
5701 struct perf_output_handle handle;
5702 struct perf_event_header header;
689802b2 5703
927c7a9e
FW
5704 /* protect the callchain buffers */
5705 rcu_read_lock();
5706
cdd6c482 5707 perf_prepare_sample(&header, data, event, regs);
5c148194 5708
a7ac67ea 5709 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5710 goto exit;
0322cd6e 5711
cdd6c482 5712 perf_output_sample(&handle, &header, data, event);
f413cdb8 5713
8a057d84 5714 perf_output_end(&handle);
927c7a9e
FW
5715
5716exit:
5717 rcu_read_unlock();
0322cd6e
PZ
5718}
5719
38b200d6 5720/*
cdd6c482 5721 * read event_id
38b200d6
PZ
5722 */
5723
5724struct perf_read_event {
5725 struct perf_event_header header;
5726
5727 u32 pid;
5728 u32 tid;
38b200d6
PZ
5729};
5730
5731static void
cdd6c482 5732perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5733 struct task_struct *task)
5734{
5735 struct perf_output_handle handle;
c980d109 5736 struct perf_sample_data sample;
dfc65094 5737 struct perf_read_event read_event = {
38b200d6 5738 .header = {
cdd6c482 5739 .type = PERF_RECORD_READ,
38b200d6 5740 .misc = 0,
c320c7b7 5741 .size = sizeof(read_event) + event->read_size,
38b200d6 5742 },
cdd6c482
IM
5743 .pid = perf_event_pid(event, task),
5744 .tid = perf_event_tid(event, task),
38b200d6 5745 };
3dab77fb 5746 int ret;
38b200d6 5747
c980d109 5748 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5749 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5750 if (ret)
5751 return;
5752
dfc65094 5753 perf_output_put(&handle, read_event);
cdd6c482 5754 perf_output_read(&handle, event);
c980d109 5755 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5756
38b200d6
PZ
5757 perf_output_end(&handle);
5758}
5759
52d857a8
JO
5760typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5761
5762static void
5763perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5764 perf_event_aux_output_cb output,
5765 void *data)
5766{
5767 struct perf_event *event;
5768
5769 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5770 if (event->state < PERF_EVENT_STATE_INACTIVE)
5771 continue;
5772 if (!event_filter_match(event))
5773 continue;
67516844 5774 output(event, data);
52d857a8
JO
5775 }
5776}
5777
4e93ad60
JO
5778static void
5779perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5780 struct perf_event_context *task_ctx)
5781{
5782 rcu_read_lock();
5783 preempt_disable();
5784 perf_event_aux_ctx(task_ctx, output, data);
5785 preempt_enable();
5786 rcu_read_unlock();
5787}
5788
52d857a8 5789static void
67516844 5790perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5791 struct perf_event_context *task_ctx)
5792{
5793 struct perf_cpu_context *cpuctx;
5794 struct perf_event_context *ctx;
5795 struct pmu *pmu;
5796 int ctxn;
5797
4e93ad60
JO
5798 /*
5799 * If we have task_ctx != NULL we only notify
5800 * the task context itself. The task_ctx is set
5801 * only for EXIT events before releasing task
5802 * context.
5803 */
5804 if (task_ctx) {
5805 perf_event_aux_task_ctx(output, data, task_ctx);
5806 return;
5807 }
5808
52d857a8
JO
5809 rcu_read_lock();
5810 list_for_each_entry_rcu(pmu, &pmus, entry) {
5811 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5812 if (cpuctx->unique_pmu != pmu)
5813 goto next;
67516844 5814 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5815 ctxn = pmu->task_ctx_nr;
5816 if (ctxn < 0)
5817 goto next;
5818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5819 if (ctx)
67516844 5820 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5821next:
5822 put_cpu_ptr(pmu->pmu_cpu_context);
5823 }
52d857a8 5824 rcu_read_unlock();
95ff4ca2
AS
5825}
5826
5827struct remote_output {
5828 struct ring_buffer *rb;
5829 int err;
5830};
5831
5832static void __perf_event_output_stop(struct perf_event *event, void *data)
5833{
5834 struct perf_event *parent = event->parent;
5835 struct remote_output *ro = data;
5836 struct ring_buffer *rb = ro->rb;
5837
5838 if (!has_aux(event))
5839 return;
5840
5841 if (!parent)
5842 parent = event;
5843
5844 /*
5845 * In case of inheritance, it will be the parent that links to the
5846 * ring-buffer, but it will be the child that's actually using it:
5847 */
5848 if (rcu_dereference(parent->rb) == rb)
5849 ro->err = __perf_event_stop(event);
5850}
5851
5852static int __perf_pmu_output_stop(void *info)
5853{
5854 struct perf_event *event = info;
5855 struct pmu *pmu = event->pmu;
5856 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5857 struct remote_output ro = {
5858 .rb = event->rb,
5859 };
5860
5861 rcu_read_lock();
5862 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro);
5863 if (cpuctx->task_ctx)
5864 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
5865 &ro);
5866 rcu_read_unlock();
5867
5868 return ro.err;
5869}
5870
5871static void perf_pmu_output_stop(struct perf_event *event)
5872{
5873 struct perf_event *iter;
5874 int err, cpu;
5875
5876restart:
5877 rcu_read_lock();
5878 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
5879 /*
5880 * For per-CPU events, we need to make sure that neither they
5881 * nor their children are running; for cpu==-1 events it's
5882 * sufficient to stop the event itself if it's active, since
5883 * it can't have children.
5884 */
5885 cpu = iter->cpu;
5886 if (cpu == -1)
5887 cpu = READ_ONCE(iter->oncpu);
5888
5889 if (cpu == -1)
5890 continue;
5891
5892 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
5893 if (err == -EAGAIN) {
5894 rcu_read_unlock();
5895 goto restart;
5896 }
5897 }
5898 rcu_read_unlock();
52d857a8
JO
5899}
5900
60313ebe 5901/*
9f498cc5
PZ
5902 * task tracking -- fork/exit
5903 *
13d7a241 5904 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5905 */
5906
9f498cc5 5907struct perf_task_event {
3a80b4a3 5908 struct task_struct *task;
cdd6c482 5909 struct perf_event_context *task_ctx;
60313ebe
PZ
5910
5911 struct {
5912 struct perf_event_header header;
5913
5914 u32 pid;
5915 u32 ppid;
9f498cc5
PZ
5916 u32 tid;
5917 u32 ptid;
393b2ad8 5918 u64 time;
cdd6c482 5919 } event_id;
60313ebe
PZ
5920};
5921
67516844
JO
5922static int perf_event_task_match(struct perf_event *event)
5923{
13d7a241
SE
5924 return event->attr.comm || event->attr.mmap ||
5925 event->attr.mmap2 || event->attr.mmap_data ||
5926 event->attr.task;
67516844
JO
5927}
5928
cdd6c482 5929static void perf_event_task_output(struct perf_event *event,
52d857a8 5930 void *data)
60313ebe 5931{
52d857a8 5932 struct perf_task_event *task_event = data;
60313ebe 5933 struct perf_output_handle handle;
c980d109 5934 struct perf_sample_data sample;
9f498cc5 5935 struct task_struct *task = task_event->task;
c980d109 5936 int ret, size = task_event->event_id.header.size;
8bb39f9a 5937
67516844
JO
5938 if (!perf_event_task_match(event))
5939 return;
5940
c980d109 5941 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5942
c980d109 5943 ret = perf_output_begin(&handle, event,
a7ac67ea 5944 task_event->event_id.header.size);
ef60777c 5945 if (ret)
c980d109 5946 goto out;
60313ebe 5947
cdd6c482
IM
5948 task_event->event_id.pid = perf_event_pid(event, task);
5949 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5950
cdd6c482
IM
5951 task_event->event_id.tid = perf_event_tid(event, task);
5952 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5953
34f43927
PZ
5954 task_event->event_id.time = perf_event_clock(event);
5955
cdd6c482 5956 perf_output_put(&handle, task_event->event_id);
393b2ad8 5957
c980d109
ACM
5958 perf_event__output_id_sample(event, &handle, &sample);
5959
60313ebe 5960 perf_output_end(&handle);
c980d109
ACM
5961out:
5962 task_event->event_id.header.size = size;
60313ebe
PZ
5963}
5964
cdd6c482
IM
5965static void perf_event_task(struct task_struct *task,
5966 struct perf_event_context *task_ctx,
3a80b4a3 5967 int new)
60313ebe 5968{
9f498cc5 5969 struct perf_task_event task_event;
60313ebe 5970
cdd6c482
IM
5971 if (!atomic_read(&nr_comm_events) &&
5972 !atomic_read(&nr_mmap_events) &&
5973 !atomic_read(&nr_task_events))
60313ebe
PZ
5974 return;
5975
9f498cc5 5976 task_event = (struct perf_task_event){
3a80b4a3
PZ
5977 .task = task,
5978 .task_ctx = task_ctx,
cdd6c482 5979 .event_id = {
60313ebe 5980 .header = {
cdd6c482 5981 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5982 .misc = 0,
cdd6c482 5983 .size = sizeof(task_event.event_id),
60313ebe 5984 },
573402db
PZ
5985 /* .pid */
5986 /* .ppid */
9f498cc5
PZ
5987 /* .tid */
5988 /* .ptid */
34f43927 5989 /* .time */
60313ebe
PZ
5990 },
5991 };
5992
67516844 5993 perf_event_aux(perf_event_task_output,
52d857a8
JO
5994 &task_event,
5995 task_ctx);
9f498cc5
PZ
5996}
5997
cdd6c482 5998void perf_event_fork(struct task_struct *task)
9f498cc5 5999{
cdd6c482 6000 perf_event_task(task, NULL, 1);
60313ebe
PZ
6001}
6002
8d1b2d93
PZ
6003/*
6004 * comm tracking
6005 */
6006
6007struct perf_comm_event {
22a4f650
IM
6008 struct task_struct *task;
6009 char *comm;
8d1b2d93
PZ
6010 int comm_size;
6011
6012 struct {
6013 struct perf_event_header header;
6014
6015 u32 pid;
6016 u32 tid;
cdd6c482 6017 } event_id;
8d1b2d93
PZ
6018};
6019
67516844
JO
6020static int perf_event_comm_match(struct perf_event *event)
6021{
6022 return event->attr.comm;
6023}
6024
cdd6c482 6025static void perf_event_comm_output(struct perf_event *event,
52d857a8 6026 void *data)
8d1b2d93 6027{
52d857a8 6028 struct perf_comm_event *comm_event = data;
8d1b2d93 6029 struct perf_output_handle handle;
c980d109 6030 struct perf_sample_data sample;
cdd6c482 6031 int size = comm_event->event_id.header.size;
c980d109
ACM
6032 int ret;
6033
67516844
JO
6034 if (!perf_event_comm_match(event))
6035 return;
6036
c980d109
ACM
6037 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6038 ret = perf_output_begin(&handle, event,
a7ac67ea 6039 comm_event->event_id.header.size);
8d1b2d93
PZ
6040
6041 if (ret)
c980d109 6042 goto out;
8d1b2d93 6043
cdd6c482
IM
6044 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6045 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6046
cdd6c482 6047 perf_output_put(&handle, comm_event->event_id);
76369139 6048 __output_copy(&handle, comm_event->comm,
8d1b2d93 6049 comm_event->comm_size);
c980d109
ACM
6050
6051 perf_event__output_id_sample(event, &handle, &sample);
6052
8d1b2d93 6053 perf_output_end(&handle);
c980d109
ACM
6054out:
6055 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6056}
6057
cdd6c482 6058static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6059{
413ee3b4 6060 char comm[TASK_COMM_LEN];
8d1b2d93 6061 unsigned int size;
8d1b2d93 6062
413ee3b4 6063 memset(comm, 0, sizeof(comm));
96b02d78 6064 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6065 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6066
6067 comm_event->comm = comm;
6068 comm_event->comm_size = size;
6069
cdd6c482 6070 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6071
67516844 6072 perf_event_aux(perf_event_comm_output,
52d857a8
JO
6073 comm_event,
6074 NULL);
8d1b2d93
PZ
6075}
6076
82b89778 6077void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6078{
9ee318a7
PZ
6079 struct perf_comm_event comm_event;
6080
cdd6c482 6081 if (!atomic_read(&nr_comm_events))
9ee318a7 6082 return;
a63eaf34 6083
9ee318a7 6084 comm_event = (struct perf_comm_event){
8d1b2d93 6085 .task = task,
573402db
PZ
6086 /* .comm */
6087 /* .comm_size */
cdd6c482 6088 .event_id = {
573402db 6089 .header = {
cdd6c482 6090 .type = PERF_RECORD_COMM,
82b89778 6091 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6092 /* .size */
6093 },
6094 /* .pid */
6095 /* .tid */
8d1b2d93
PZ
6096 },
6097 };
6098
cdd6c482 6099 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6100}
6101
0a4a9391
PZ
6102/*
6103 * mmap tracking
6104 */
6105
6106struct perf_mmap_event {
089dd79d
PZ
6107 struct vm_area_struct *vma;
6108
6109 const char *file_name;
6110 int file_size;
13d7a241
SE
6111 int maj, min;
6112 u64 ino;
6113 u64 ino_generation;
f972eb63 6114 u32 prot, flags;
0a4a9391
PZ
6115
6116 struct {
6117 struct perf_event_header header;
6118
6119 u32 pid;
6120 u32 tid;
6121 u64 start;
6122 u64 len;
6123 u64 pgoff;
cdd6c482 6124 } event_id;
0a4a9391
PZ
6125};
6126
67516844
JO
6127static int perf_event_mmap_match(struct perf_event *event,
6128 void *data)
6129{
6130 struct perf_mmap_event *mmap_event = data;
6131 struct vm_area_struct *vma = mmap_event->vma;
6132 int executable = vma->vm_flags & VM_EXEC;
6133
6134 return (!executable && event->attr.mmap_data) ||
13d7a241 6135 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6136}
6137
cdd6c482 6138static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6139 void *data)
0a4a9391 6140{
52d857a8 6141 struct perf_mmap_event *mmap_event = data;
0a4a9391 6142 struct perf_output_handle handle;
c980d109 6143 struct perf_sample_data sample;
cdd6c482 6144 int size = mmap_event->event_id.header.size;
c980d109 6145 int ret;
0a4a9391 6146
67516844
JO
6147 if (!perf_event_mmap_match(event, data))
6148 return;
6149
13d7a241
SE
6150 if (event->attr.mmap2) {
6151 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6152 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6153 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6154 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6155 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6156 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6157 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6158 }
6159
c980d109
ACM
6160 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6161 ret = perf_output_begin(&handle, event,
a7ac67ea 6162 mmap_event->event_id.header.size);
0a4a9391 6163 if (ret)
c980d109 6164 goto out;
0a4a9391 6165
cdd6c482
IM
6166 mmap_event->event_id.pid = perf_event_pid(event, current);
6167 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6168
cdd6c482 6169 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6170
6171 if (event->attr.mmap2) {
6172 perf_output_put(&handle, mmap_event->maj);
6173 perf_output_put(&handle, mmap_event->min);
6174 perf_output_put(&handle, mmap_event->ino);
6175 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6176 perf_output_put(&handle, mmap_event->prot);
6177 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6178 }
6179
76369139 6180 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6181 mmap_event->file_size);
c980d109
ACM
6182
6183 perf_event__output_id_sample(event, &handle, &sample);
6184
78d613eb 6185 perf_output_end(&handle);
c980d109
ACM
6186out:
6187 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6188}
6189
cdd6c482 6190static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6191{
089dd79d
PZ
6192 struct vm_area_struct *vma = mmap_event->vma;
6193 struct file *file = vma->vm_file;
13d7a241
SE
6194 int maj = 0, min = 0;
6195 u64 ino = 0, gen = 0;
f972eb63 6196 u32 prot = 0, flags = 0;
0a4a9391
PZ
6197 unsigned int size;
6198 char tmp[16];
6199 char *buf = NULL;
2c42cfbf 6200 char *name;
413ee3b4 6201
0a4a9391 6202 if (file) {
13d7a241
SE
6203 struct inode *inode;
6204 dev_t dev;
3ea2f2b9 6205
2c42cfbf 6206 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6207 if (!buf) {
c7e548b4
ON
6208 name = "//enomem";
6209 goto cpy_name;
0a4a9391 6210 }
413ee3b4 6211 /*
3ea2f2b9 6212 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6213 * need to add enough zero bytes after the string to handle
6214 * the 64bit alignment we do later.
6215 */
9bf39ab2 6216 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6217 if (IS_ERR(name)) {
c7e548b4
ON
6218 name = "//toolong";
6219 goto cpy_name;
0a4a9391 6220 }
13d7a241
SE
6221 inode = file_inode(vma->vm_file);
6222 dev = inode->i_sb->s_dev;
6223 ino = inode->i_ino;
6224 gen = inode->i_generation;
6225 maj = MAJOR(dev);
6226 min = MINOR(dev);
f972eb63
PZ
6227
6228 if (vma->vm_flags & VM_READ)
6229 prot |= PROT_READ;
6230 if (vma->vm_flags & VM_WRITE)
6231 prot |= PROT_WRITE;
6232 if (vma->vm_flags & VM_EXEC)
6233 prot |= PROT_EXEC;
6234
6235 if (vma->vm_flags & VM_MAYSHARE)
6236 flags = MAP_SHARED;
6237 else
6238 flags = MAP_PRIVATE;
6239
6240 if (vma->vm_flags & VM_DENYWRITE)
6241 flags |= MAP_DENYWRITE;
6242 if (vma->vm_flags & VM_MAYEXEC)
6243 flags |= MAP_EXECUTABLE;
6244 if (vma->vm_flags & VM_LOCKED)
6245 flags |= MAP_LOCKED;
6246 if (vma->vm_flags & VM_HUGETLB)
6247 flags |= MAP_HUGETLB;
6248
c7e548b4 6249 goto got_name;
0a4a9391 6250 } else {
fbe26abe
JO
6251 if (vma->vm_ops && vma->vm_ops->name) {
6252 name = (char *) vma->vm_ops->name(vma);
6253 if (name)
6254 goto cpy_name;
6255 }
6256
2c42cfbf 6257 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6258 if (name)
6259 goto cpy_name;
089dd79d 6260
32c5fb7e 6261 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6262 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6263 name = "[heap]";
6264 goto cpy_name;
32c5fb7e
ON
6265 }
6266 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6267 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6268 name = "[stack]";
6269 goto cpy_name;
089dd79d
PZ
6270 }
6271
c7e548b4
ON
6272 name = "//anon";
6273 goto cpy_name;
0a4a9391
PZ
6274 }
6275
c7e548b4
ON
6276cpy_name:
6277 strlcpy(tmp, name, sizeof(tmp));
6278 name = tmp;
0a4a9391 6279got_name:
2c42cfbf
PZ
6280 /*
6281 * Since our buffer works in 8 byte units we need to align our string
6282 * size to a multiple of 8. However, we must guarantee the tail end is
6283 * zero'd out to avoid leaking random bits to userspace.
6284 */
6285 size = strlen(name)+1;
6286 while (!IS_ALIGNED(size, sizeof(u64)))
6287 name[size++] = '\0';
0a4a9391
PZ
6288
6289 mmap_event->file_name = name;
6290 mmap_event->file_size = size;
13d7a241
SE
6291 mmap_event->maj = maj;
6292 mmap_event->min = min;
6293 mmap_event->ino = ino;
6294 mmap_event->ino_generation = gen;
f972eb63
PZ
6295 mmap_event->prot = prot;
6296 mmap_event->flags = flags;
0a4a9391 6297
2fe85427
SE
6298 if (!(vma->vm_flags & VM_EXEC))
6299 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6300
cdd6c482 6301 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6302
67516844 6303 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6304 mmap_event,
6305 NULL);
665c2142 6306
0a4a9391
PZ
6307 kfree(buf);
6308}
6309
3af9e859 6310void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6311{
9ee318a7
PZ
6312 struct perf_mmap_event mmap_event;
6313
cdd6c482 6314 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6315 return;
6316
6317 mmap_event = (struct perf_mmap_event){
089dd79d 6318 .vma = vma,
573402db
PZ
6319 /* .file_name */
6320 /* .file_size */
cdd6c482 6321 .event_id = {
573402db 6322 .header = {
cdd6c482 6323 .type = PERF_RECORD_MMAP,
39447b38 6324 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6325 /* .size */
6326 },
6327 /* .pid */
6328 /* .tid */
089dd79d
PZ
6329 .start = vma->vm_start,
6330 .len = vma->vm_end - vma->vm_start,
3a0304e9 6331 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6332 },
13d7a241
SE
6333 /* .maj (attr_mmap2 only) */
6334 /* .min (attr_mmap2 only) */
6335 /* .ino (attr_mmap2 only) */
6336 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6337 /* .prot (attr_mmap2 only) */
6338 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6339 };
6340
cdd6c482 6341 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6342}
6343
68db7e98
AS
6344void perf_event_aux_event(struct perf_event *event, unsigned long head,
6345 unsigned long size, u64 flags)
6346{
6347 struct perf_output_handle handle;
6348 struct perf_sample_data sample;
6349 struct perf_aux_event {
6350 struct perf_event_header header;
6351 u64 offset;
6352 u64 size;
6353 u64 flags;
6354 } rec = {
6355 .header = {
6356 .type = PERF_RECORD_AUX,
6357 .misc = 0,
6358 .size = sizeof(rec),
6359 },
6360 .offset = head,
6361 .size = size,
6362 .flags = flags,
6363 };
6364 int ret;
6365
6366 perf_event_header__init_id(&rec.header, &sample, event);
6367 ret = perf_output_begin(&handle, event, rec.header.size);
6368
6369 if (ret)
6370 return;
6371
6372 perf_output_put(&handle, rec);
6373 perf_event__output_id_sample(event, &handle, &sample);
6374
6375 perf_output_end(&handle);
6376}
6377
f38b0dbb
KL
6378/*
6379 * Lost/dropped samples logging
6380 */
6381void perf_log_lost_samples(struct perf_event *event, u64 lost)
6382{
6383 struct perf_output_handle handle;
6384 struct perf_sample_data sample;
6385 int ret;
6386
6387 struct {
6388 struct perf_event_header header;
6389 u64 lost;
6390 } lost_samples_event = {
6391 .header = {
6392 .type = PERF_RECORD_LOST_SAMPLES,
6393 .misc = 0,
6394 .size = sizeof(lost_samples_event),
6395 },
6396 .lost = lost,
6397 };
6398
6399 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6400
6401 ret = perf_output_begin(&handle, event,
6402 lost_samples_event.header.size);
6403 if (ret)
6404 return;
6405
6406 perf_output_put(&handle, lost_samples_event);
6407 perf_event__output_id_sample(event, &handle, &sample);
6408 perf_output_end(&handle);
6409}
6410
45ac1403
AH
6411/*
6412 * context_switch tracking
6413 */
6414
6415struct perf_switch_event {
6416 struct task_struct *task;
6417 struct task_struct *next_prev;
6418
6419 struct {
6420 struct perf_event_header header;
6421 u32 next_prev_pid;
6422 u32 next_prev_tid;
6423 } event_id;
6424};
6425
6426static int perf_event_switch_match(struct perf_event *event)
6427{
6428 return event->attr.context_switch;
6429}
6430
6431static void perf_event_switch_output(struct perf_event *event, void *data)
6432{
6433 struct perf_switch_event *se = data;
6434 struct perf_output_handle handle;
6435 struct perf_sample_data sample;
6436 int ret;
6437
6438 if (!perf_event_switch_match(event))
6439 return;
6440
6441 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6442 if (event->ctx->task) {
6443 se->event_id.header.type = PERF_RECORD_SWITCH;
6444 se->event_id.header.size = sizeof(se->event_id.header);
6445 } else {
6446 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6447 se->event_id.header.size = sizeof(se->event_id);
6448 se->event_id.next_prev_pid =
6449 perf_event_pid(event, se->next_prev);
6450 se->event_id.next_prev_tid =
6451 perf_event_tid(event, se->next_prev);
6452 }
6453
6454 perf_event_header__init_id(&se->event_id.header, &sample, event);
6455
6456 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6457 if (ret)
6458 return;
6459
6460 if (event->ctx->task)
6461 perf_output_put(&handle, se->event_id.header);
6462 else
6463 perf_output_put(&handle, se->event_id);
6464
6465 perf_event__output_id_sample(event, &handle, &sample);
6466
6467 perf_output_end(&handle);
6468}
6469
6470static void perf_event_switch(struct task_struct *task,
6471 struct task_struct *next_prev, bool sched_in)
6472{
6473 struct perf_switch_event switch_event;
6474
6475 /* N.B. caller checks nr_switch_events != 0 */
6476
6477 switch_event = (struct perf_switch_event){
6478 .task = task,
6479 .next_prev = next_prev,
6480 .event_id = {
6481 .header = {
6482 /* .type */
6483 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6484 /* .size */
6485 },
6486 /* .next_prev_pid */
6487 /* .next_prev_tid */
6488 },
6489 };
6490
6491 perf_event_aux(perf_event_switch_output,
6492 &switch_event,
6493 NULL);
6494}
6495
a78ac325
PZ
6496/*
6497 * IRQ throttle logging
6498 */
6499
cdd6c482 6500static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6501{
6502 struct perf_output_handle handle;
c980d109 6503 struct perf_sample_data sample;
a78ac325
PZ
6504 int ret;
6505
6506 struct {
6507 struct perf_event_header header;
6508 u64 time;
cca3f454 6509 u64 id;
7f453c24 6510 u64 stream_id;
a78ac325
PZ
6511 } throttle_event = {
6512 .header = {
cdd6c482 6513 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6514 .misc = 0,
6515 .size = sizeof(throttle_event),
6516 },
34f43927 6517 .time = perf_event_clock(event),
cdd6c482
IM
6518 .id = primary_event_id(event),
6519 .stream_id = event->id,
a78ac325
PZ
6520 };
6521
966ee4d6 6522 if (enable)
cdd6c482 6523 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6524
c980d109
ACM
6525 perf_event_header__init_id(&throttle_event.header, &sample, event);
6526
6527 ret = perf_output_begin(&handle, event,
a7ac67ea 6528 throttle_event.header.size);
a78ac325
PZ
6529 if (ret)
6530 return;
6531
6532 perf_output_put(&handle, throttle_event);
c980d109 6533 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6534 perf_output_end(&handle);
6535}
6536
ec0d7729
AS
6537static void perf_log_itrace_start(struct perf_event *event)
6538{
6539 struct perf_output_handle handle;
6540 struct perf_sample_data sample;
6541 struct perf_aux_event {
6542 struct perf_event_header header;
6543 u32 pid;
6544 u32 tid;
6545 } rec;
6546 int ret;
6547
6548 if (event->parent)
6549 event = event->parent;
6550
6551 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6552 event->hw.itrace_started)
6553 return;
6554
ec0d7729
AS
6555 rec.header.type = PERF_RECORD_ITRACE_START;
6556 rec.header.misc = 0;
6557 rec.header.size = sizeof(rec);
6558 rec.pid = perf_event_pid(event, current);
6559 rec.tid = perf_event_tid(event, current);
6560
6561 perf_event_header__init_id(&rec.header, &sample, event);
6562 ret = perf_output_begin(&handle, event, rec.header.size);
6563
6564 if (ret)
6565 return;
6566
6567 perf_output_put(&handle, rec);
6568 perf_event__output_id_sample(event, &handle, &sample);
6569
6570 perf_output_end(&handle);
6571}
6572
f6c7d5fe 6573/*
cdd6c482 6574 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6575 */
6576
a8b0ca17 6577static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6578 int throttle, struct perf_sample_data *data,
6579 struct pt_regs *regs)
f6c7d5fe 6580{
cdd6c482
IM
6581 int events = atomic_read(&event->event_limit);
6582 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6583 u64 seq;
79f14641
PZ
6584 int ret = 0;
6585
96398826
PZ
6586 /*
6587 * Non-sampling counters might still use the PMI to fold short
6588 * hardware counters, ignore those.
6589 */
6590 if (unlikely(!is_sampling_event(event)))
6591 return 0;
6592
e050e3f0
SE
6593 seq = __this_cpu_read(perf_throttled_seq);
6594 if (seq != hwc->interrupts_seq) {
6595 hwc->interrupts_seq = seq;
6596 hwc->interrupts = 1;
6597 } else {
6598 hwc->interrupts++;
6599 if (unlikely(throttle
6600 && hwc->interrupts >= max_samples_per_tick)) {
6601 __this_cpu_inc(perf_throttled_count);
555e0c1e 6602 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6603 hwc->interrupts = MAX_INTERRUPTS;
6604 perf_log_throttle(event, 0);
a78ac325
PZ
6605 ret = 1;
6606 }
e050e3f0 6607 }
60db5e09 6608
cdd6c482 6609 if (event->attr.freq) {
def0a9b2 6610 u64 now = perf_clock();
abd50713 6611 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6612
abd50713 6613 hwc->freq_time_stamp = now;
bd2b5b12 6614
abd50713 6615 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6616 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6617 }
6618
2023b359
PZ
6619 /*
6620 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6621 * events
2023b359
PZ
6622 */
6623
cdd6c482
IM
6624 event->pending_kill = POLL_IN;
6625 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6626 ret = 1;
cdd6c482 6627 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6628 event->pending_disable = 1;
6629 irq_work_queue(&event->pending);
79f14641
PZ
6630 }
6631
1879445d 6632 event->overflow_handler(event, data, regs);
453f19ee 6633
fed66e2c 6634 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6635 event->pending_wakeup = 1;
6636 irq_work_queue(&event->pending);
f506b3dc
PZ
6637 }
6638
79f14641 6639 return ret;
f6c7d5fe
PZ
6640}
6641
a8b0ca17 6642int perf_event_overflow(struct perf_event *event,
5622f295
MM
6643 struct perf_sample_data *data,
6644 struct pt_regs *regs)
850bc73f 6645{
a8b0ca17 6646 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6647}
6648
15dbf27c 6649/*
cdd6c482 6650 * Generic software event infrastructure
15dbf27c
PZ
6651 */
6652
b28ab83c
PZ
6653struct swevent_htable {
6654 struct swevent_hlist *swevent_hlist;
6655 struct mutex hlist_mutex;
6656 int hlist_refcount;
6657
6658 /* Recursion avoidance in each contexts */
6659 int recursion[PERF_NR_CONTEXTS];
6660};
6661
6662static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6663
7b4b6658 6664/*
cdd6c482
IM
6665 * We directly increment event->count and keep a second value in
6666 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6667 * is kept in the range [-sample_period, 0] so that we can use the
6668 * sign as trigger.
6669 */
6670
ab573844 6671u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6672{
cdd6c482 6673 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6674 u64 period = hwc->last_period;
6675 u64 nr, offset;
6676 s64 old, val;
6677
6678 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6679
6680again:
e7850595 6681 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6682 if (val < 0)
6683 return 0;
15dbf27c 6684
7b4b6658
PZ
6685 nr = div64_u64(period + val, period);
6686 offset = nr * period;
6687 val -= offset;
e7850595 6688 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6689 goto again;
15dbf27c 6690
7b4b6658 6691 return nr;
15dbf27c
PZ
6692}
6693
0cff784a 6694static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6695 struct perf_sample_data *data,
5622f295 6696 struct pt_regs *regs)
15dbf27c 6697{
cdd6c482 6698 struct hw_perf_event *hwc = &event->hw;
850bc73f 6699 int throttle = 0;
15dbf27c 6700
0cff784a
PZ
6701 if (!overflow)
6702 overflow = perf_swevent_set_period(event);
15dbf27c 6703
7b4b6658
PZ
6704 if (hwc->interrupts == MAX_INTERRUPTS)
6705 return;
15dbf27c 6706
7b4b6658 6707 for (; overflow; overflow--) {
a8b0ca17 6708 if (__perf_event_overflow(event, throttle,
5622f295 6709 data, regs)) {
7b4b6658
PZ
6710 /*
6711 * We inhibit the overflow from happening when
6712 * hwc->interrupts == MAX_INTERRUPTS.
6713 */
6714 break;
6715 }
cf450a73 6716 throttle = 1;
7b4b6658 6717 }
15dbf27c
PZ
6718}
6719
a4eaf7f1 6720static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6721 struct perf_sample_data *data,
5622f295 6722 struct pt_regs *regs)
7b4b6658 6723{
cdd6c482 6724 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6725
e7850595 6726 local64_add(nr, &event->count);
d6d020e9 6727
0cff784a
PZ
6728 if (!regs)
6729 return;
6730
6c7e550f 6731 if (!is_sampling_event(event))
7b4b6658 6732 return;
d6d020e9 6733
5d81e5cf
AV
6734 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6735 data->period = nr;
6736 return perf_swevent_overflow(event, 1, data, regs);
6737 } else
6738 data->period = event->hw.last_period;
6739
0cff784a 6740 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6741 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6742
e7850595 6743 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6744 return;
df1a132b 6745
a8b0ca17 6746 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6747}
6748
f5ffe02e
FW
6749static int perf_exclude_event(struct perf_event *event,
6750 struct pt_regs *regs)
6751{
a4eaf7f1 6752 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6753 return 1;
a4eaf7f1 6754
f5ffe02e
FW
6755 if (regs) {
6756 if (event->attr.exclude_user && user_mode(regs))
6757 return 1;
6758
6759 if (event->attr.exclude_kernel && !user_mode(regs))
6760 return 1;
6761 }
6762
6763 return 0;
6764}
6765
cdd6c482 6766static int perf_swevent_match(struct perf_event *event,
1c432d89 6767 enum perf_type_id type,
6fb2915d
LZ
6768 u32 event_id,
6769 struct perf_sample_data *data,
6770 struct pt_regs *regs)
15dbf27c 6771{
cdd6c482 6772 if (event->attr.type != type)
a21ca2ca 6773 return 0;
f5ffe02e 6774
cdd6c482 6775 if (event->attr.config != event_id)
15dbf27c
PZ
6776 return 0;
6777
f5ffe02e
FW
6778 if (perf_exclude_event(event, regs))
6779 return 0;
15dbf27c
PZ
6780
6781 return 1;
6782}
6783
76e1d904
FW
6784static inline u64 swevent_hash(u64 type, u32 event_id)
6785{
6786 u64 val = event_id | (type << 32);
6787
6788 return hash_64(val, SWEVENT_HLIST_BITS);
6789}
6790
49f135ed
FW
6791static inline struct hlist_head *
6792__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6793{
49f135ed
FW
6794 u64 hash = swevent_hash(type, event_id);
6795
6796 return &hlist->heads[hash];
6797}
76e1d904 6798
49f135ed
FW
6799/* For the read side: events when they trigger */
6800static inline struct hlist_head *
b28ab83c 6801find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6802{
6803 struct swevent_hlist *hlist;
76e1d904 6804
b28ab83c 6805 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6806 if (!hlist)
6807 return NULL;
6808
49f135ed
FW
6809 return __find_swevent_head(hlist, type, event_id);
6810}
6811
6812/* For the event head insertion and removal in the hlist */
6813static inline struct hlist_head *
b28ab83c 6814find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6815{
6816 struct swevent_hlist *hlist;
6817 u32 event_id = event->attr.config;
6818 u64 type = event->attr.type;
6819
6820 /*
6821 * Event scheduling is always serialized against hlist allocation
6822 * and release. Which makes the protected version suitable here.
6823 * The context lock guarantees that.
6824 */
b28ab83c 6825 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6826 lockdep_is_held(&event->ctx->lock));
6827 if (!hlist)
6828 return NULL;
6829
6830 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6831}
6832
6833static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6834 u64 nr,
76e1d904
FW
6835 struct perf_sample_data *data,
6836 struct pt_regs *regs)
15dbf27c 6837{
4a32fea9 6838 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6839 struct perf_event *event;
76e1d904 6840 struct hlist_head *head;
15dbf27c 6841
76e1d904 6842 rcu_read_lock();
b28ab83c 6843 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6844 if (!head)
6845 goto end;
6846
b67bfe0d 6847 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6848 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6849 perf_swevent_event(event, nr, data, regs);
15dbf27c 6850 }
76e1d904
FW
6851end:
6852 rcu_read_unlock();
15dbf27c
PZ
6853}
6854
86038c5e
PZI
6855DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6856
4ed7c92d 6857int perf_swevent_get_recursion_context(void)
96f6d444 6858{
4a32fea9 6859 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6860
b28ab83c 6861 return get_recursion_context(swhash->recursion);
96f6d444 6862}
645e8cc0 6863EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6864
fa9f90be 6865inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6866{
4a32fea9 6867 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6868
b28ab83c 6869 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6870}
15dbf27c 6871
86038c5e 6872void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6873{
a4234bfc 6874 struct perf_sample_data data;
4ed7c92d 6875
86038c5e 6876 if (WARN_ON_ONCE(!regs))
4ed7c92d 6877 return;
a4234bfc 6878
fd0d000b 6879 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6880 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6881}
6882
6883void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6884{
6885 int rctx;
6886
6887 preempt_disable_notrace();
6888 rctx = perf_swevent_get_recursion_context();
6889 if (unlikely(rctx < 0))
6890 goto fail;
6891
6892 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6893
6894 perf_swevent_put_recursion_context(rctx);
86038c5e 6895fail:
1c024eca 6896 preempt_enable_notrace();
b8e83514
PZ
6897}
6898
cdd6c482 6899static void perf_swevent_read(struct perf_event *event)
15dbf27c 6900{
15dbf27c
PZ
6901}
6902
a4eaf7f1 6903static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6904{
4a32fea9 6905 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6906 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6907 struct hlist_head *head;
6908
6c7e550f 6909 if (is_sampling_event(event)) {
7b4b6658 6910 hwc->last_period = hwc->sample_period;
cdd6c482 6911 perf_swevent_set_period(event);
7b4b6658 6912 }
76e1d904 6913
a4eaf7f1
PZ
6914 hwc->state = !(flags & PERF_EF_START);
6915
b28ab83c 6916 head = find_swevent_head(swhash, event);
12ca6ad2 6917 if (WARN_ON_ONCE(!head))
76e1d904
FW
6918 return -EINVAL;
6919
6920 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6921 perf_event_update_userpage(event);
76e1d904 6922
15dbf27c
PZ
6923 return 0;
6924}
6925
a4eaf7f1 6926static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6927{
76e1d904 6928 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6929}
6930
a4eaf7f1 6931static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6932{
a4eaf7f1 6933 event->hw.state = 0;
d6d020e9 6934}
aa9c4c0f 6935
a4eaf7f1 6936static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6937{
a4eaf7f1 6938 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6939}
6940
49f135ed
FW
6941/* Deref the hlist from the update side */
6942static inline struct swevent_hlist *
b28ab83c 6943swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6944{
b28ab83c
PZ
6945 return rcu_dereference_protected(swhash->swevent_hlist,
6946 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6947}
6948
b28ab83c 6949static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6950{
b28ab83c 6951 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6952
49f135ed 6953 if (!hlist)
76e1d904
FW
6954 return;
6955
70691d4a 6956 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6957 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6958}
6959
3b364d7b 6960static void swevent_hlist_put_cpu(int cpu)
76e1d904 6961{
b28ab83c 6962 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6963
b28ab83c 6964 mutex_lock(&swhash->hlist_mutex);
76e1d904 6965
b28ab83c
PZ
6966 if (!--swhash->hlist_refcount)
6967 swevent_hlist_release(swhash);
76e1d904 6968
b28ab83c 6969 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6970}
6971
3b364d7b 6972static void swevent_hlist_put(void)
76e1d904
FW
6973{
6974 int cpu;
6975
76e1d904 6976 for_each_possible_cpu(cpu)
3b364d7b 6977 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6978}
6979
3b364d7b 6980static int swevent_hlist_get_cpu(int cpu)
76e1d904 6981{
b28ab83c 6982 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6983 int err = 0;
6984
b28ab83c 6985 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6986 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6987 struct swevent_hlist *hlist;
6988
6989 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6990 if (!hlist) {
6991 err = -ENOMEM;
6992 goto exit;
6993 }
b28ab83c 6994 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6995 }
b28ab83c 6996 swhash->hlist_refcount++;
9ed6060d 6997exit:
b28ab83c 6998 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6999
7000 return err;
7001}
7002
3b364d7b 7003static int swevent_hlist_get(void)
76e1d904 7004{
3b364d7b 7005 int err, cpu, failed_cpu;
76e1d904 7006
76e1d904
FW
7007 get_online_cpus();
7008 for_each_possible_cpu(cpu) {
3b364d7b 7009 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7010 if (err) {
7011 failed_cpu = cpu;
7012 goto fail;
7013 }
7014 }
7015 put_online_cpus();
7016
7017 return 0;
9ed6060d 7018fail:
76e1d904
FW
7019 for_each_possible_cpu(cpu) {
7020 if (cpu == failed_cpu)
7021 break;
3b364d7b 7022 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7023 }
7024
7025 put_online_cpus();
7026 return err;
7027}
7028
c5905afb 7029struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7030
b0a873eb
PZ
7031static void sw_perf_event_destroy(struct perf_event *event)
7032{
7033 u64 event_id = event->attr.config;
95476b64 7034
b0a873eb
PZ
7035 WARN_ON(event->parent);
7036
c5905afb 7037 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7038 swevent_hlist_put();
b0a873eb
PZ
7039}
7040
7041static int perf_swevent_init(struct perf_event *event)
7042{
8176cced 7043 u64 event_id = event->attr.config;
b0a873eb
PZ
7044
7045 if (event->attr.type != PERF_TYPE_SOFTWARE)
7046 return -ENOENT;
7047
2481c5fa
SE
7048 /*
7049 * no branch sampling for software events
7050 */
7051 if (has_branch_stack(event))
7052 return -EOPNOTSUPP;
7053
b0a873eb
PZ
7054 switch (event_id) {
7055 case PERF_COUNT_SW_CPU_CLOCK:
7056 case PERF_COUNT_SW_TASK_CLOCK:
7057 return -ENOENT;
7058
7059 default:
7060 break;
7061 }
7062
ce677831 7063 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7064 return -ENOENT;
7065
7066 if (!event->parent) {
7067 int err;
7068
3b364d7b 7069 err = swevent_hlist_get();
b0a873eb
PZ
7070 if (err)
7071 return err;
7072
c5905afb 7073 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7074 event->destroy = sw_perf_event_destroy;
7075 }
7076
7077 return 0;
7078}
7079
7080static struct pmu perf_swevent = {
89a1e187 7081 .task_ctx_nr = perf_sw_context,
95476b64 7082
34f43927
PZ
7083 .capabilities = PERF_PMU_CAP_NO_NMI,
7084
b0a873eb 7085 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7086 .add = perf_swevent_add,
7087 .del = perf_swevent_del,
7088 .start = perf_swevent_start,
7089 .stop = perf_swevent_stop,
1c024eca 7090 .read = perf_swevent_read,
1c024eca
PZ
7091};
7092
b0a873eb
PZ
7093#ifdef CONFIG_EVENT_TRACING
7094
1c024eca
PZ
7095static int perf_tp_filter_match(struct perf_event *event,
7096 struct perf_sample_data *data)
7097{
7098 void *record = data->raw->data;
7099
b71b437e
PZ
7100 /* only top level events have filters set */
7101 if (event->parent)
7102 event = event->parent;
7103
1c024eca
PZ
7104 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7105 return 1;
7106 return 0;
7107}
7108
7109static int perf_tp_event_match(struct perf_event *event,
7110 struct perf_sample_data *data,
7111 struct pt_regs *regs)
7112{
a0f7d0f7
FW
7113 if (event->hw.state & PERF_HES_STOPPED)
7114 return 0;
580d607c
PZ
7115 /*
7116 * All tracepoints are from kernel-space.
7117 */
7118 if (event->attr.exclude_kernel)
1c024eca
PZ
7119 return 0;
7120
7121 if (!perf_tp_filter_match(event, data))
7122 return 0;
7123
7124 return 1;
7125}
7126
7127void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7128 struct pt_regs *regs, struct hlist_head *head, int rctx,
7129 struct task_struct *task)
95476b64
FW
7130{
7131 struct perf_sample_data data;
1c024eca 7132 struct perf_event *event;
1c024eca 7133
95476b64
FW
7134 struct perf_raw_record raw = {
7135 .size = entry_size,
7136 .data = record,
7137 };
7138
fd0d000b 7139 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7140 data.raw = &raw;
7141
b67bfe0d 7142 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7143 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7144 perf_swevent_event(event, count, &data, regs);
4f41c013 7145 }
ecc55f84 7146
e6dab5ff
AV
7147 /*
7148 * If we got specified a target task, also iterate its context and
7149 * deliver this event there too.
7150 */
7151 if (task && task != current) {
7152 struct perf_event_context *ctx;
7153 struct trace_entry *entry = record;
7154
7155 rcu_read_lock();
7156 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7157 if (!ctx)
7158 goto unlock;
7159
7160 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7161 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7162 continue;
7163 if (event->attr.config != entry->type)
7164 continue;
7165 if (perf_tp_event_match(event, &data, regs))
7166 perf_swevent_event(event, count, &data, regs);
7167 }
7168unlock:
7169 rcu_read_unlock();
7170 }
7171
ecc55f84 7172 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7173}
7174EXPORT_SYMBOL_GPL(perf_tp_event);
7175
cdd6c482 7176static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7177{
1c024eca 7178 perf_trace_destroy(event);
e077df4f
PZ
7179}
7180
b0a873eb 7181static int perf_tp_event_init(struct perf_event *event)
e077df4f 7182{
76e1d904
FW
7183 int err;
7184
b0a873eb
PZ
7185 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7186 return -ENOENT;
7187
2481c5fa
SE
7188 /*
7189 * no branch sampling for tracepoint events
7190 */
7191 if (has_branch_stack(event))
7192 return -EOPNOTSUPP;
7193
1c024eca
PZ
7194 err = perf_trace_init(event);
7195 if (err)
b0a873eb 7196 return err;
e077df4f 7197
cdd6c482 7198 event->destroy = tp_perf_event_destroy;
e077df4f 7199
b0a873eb
PZ
7200 return 0;
7201}
7202
7203static struct pmu perf_tracepoint = {
89a1e187
PZ
7204 .task_ctx_nr = perf_sw_context,
7205
b0a873eb 7206 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7207 .add = perf_trace_add,
7208 .del = perf_trace_del,
7209 .start = perf_swevent_start,
7210 .stop = perf_swevent_stop,
b0a873eb 7211 .read = perf_swevent_read,
b0a873eb
PZ
7212};
7213
7214static inline void perf_tp_register(void)
7215{
2e80a82a 7216 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7217}
6fb2915d
LZ
7218
7219static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7220{
7221 char *filter_str;
7222 int ret;
7223
7224 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7225 return -EINVAL;
7226
7227 filter_str = strndup_user(arg, PAGE_SIZE);
7228 if (IS_ERR(filter_str))
7229 return PTR_ERR(filter_str);
7230
7231 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7232
7233 kfree(filter_str);
7234 return ret;
7235}
7236
7237static void perf_event_free_filter(struct perf_event *event)
7238{
7239 ftrace_profile_free_filter(event);
7240}
7241
2541517c
AS
7242static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7243{
7244 struct bpf_prog *prog;
7245
7246 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7247 return -EINVAL;
7248
7249 if (event->tp_event->prog)
7250 return -EEXIST;
7251
04a22fae
WN
7252 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7253 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7254 return -EINVAL;
7255
7256 prog = bpf_prog_get(prog_fd);
7257 if (IS_ERR(prog))
7258 return PTR_ERR(prog);
7259
6c373ca8 7260 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7261 /* valid fd, but invalid bpf program type */
7262 bpf_prog_put(prog);
7263 return -EINVAL;
7264 }
7265
7266 event->tp_event->prog = prog;
7267
7268 return 0;
7269}
7270
7271static void perf_event_free_bpf_prog(struct perf_event *event)
7272{
7273 struct bpf_prog *prog;
7274
7275 if (!event->tp_event)
7276 return;
7277
7278 prog = event->tp_event->prog;
7279 if (prog) {
7280 event->tp_event->prog = NULL;
7281 bpf_prog_put(prog);
7282 }
7283}
7284
e077df4f 7285#else
6fb2915d 7286
b0a873eb 7287static inline void perf_tp_register(void)
e077df4f 7288{
e077df4f 7289}
6fb2915d
LZ
7290
7291static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7292{
7293 return -ENOENT;
7294}
7295
7296static void perf_event_free_filter(struct perf_event *event)
7297{
7298}
7299
2541517c
AS
7300static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7301{
7302 return -ENOENT;
7303}
7304
7305static void perf_event_free_bpf_prog(struct perf_event *event)
7306{
7307}
07b139c8 7308#endif /* CONFIG_EVENT_TRACING */
e077df4f 7309
24f1e32c 7310#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7311void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7312{
f5ffe02e
FW
7313 struct perf_sample_data sample;
7314 struct pt_regs *regs = data;
7315
fd0d000b 7316 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7317
a4eaf7f1 7318 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7319 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7320}
7321#endif
7322
b0a873eb
PZ
7323/*
7324 * hrtimer based swevent callback
7325 */
f29ac756 7326
b0a873eb 7327static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7328{
b0a873eb
PZ
7329 enum hrtimer_restart ret = HRTIMER_RESTART;
7330 struct perf_sample_data data;
7331 struct pt_regs *regs;
7332 struct perf_event *event;
7333 u64 period;
f29ac756 7334
b0a873eb 7335 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7336
7337 if (event->state != PERF_EVENT_STATE_ACTIVE)
7338 return HRTIMER_NORESTART;
7339
b0a873eb 7340 event->pmu->read(event);
f344011c 7341
fd0d000b 7342 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7343 regs = get_irq_regs();
7344
7345 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7346 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7347 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7348 ret = HRTIMER_NORESTART;
7349 }
24f1e32c 7350
b0a873eb
PZ
7351 period = max_t(u64, 10000, event->hw.sample_period);
7352 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7353
b0a873eb 7354 return ret;
f29ac756
PZ
7355}
7356
b0a873eb 7357static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7358{
b0a873eb 7359 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7360 s64 period;
7361
7362 if (!is_sampling_event(event))
7363 return;
f5ffe02e 7364
5d508e82
FBH
7365 period = local64_read(&hwc->period_left);
7366 if (period) {
7367 if (period < 0)
7368 period = 10000;
fa407f35 7369
5d508e82
FBH
7370 local64_set(&hwc->period_left, 0);
7371 } else {
7372 period = max_t(u64, 10000, hwc->sample_period);
7373 }
3497d206
TG
7374 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7375 HRTIMER_MODE_REL_PINNED);
24f1e32c 7376}
b0a873eb
PZ
7377
7378static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7379{
b0a873eb
PZ
7380 struct hw_perf_event *hwc = &event->hw;
7381
6c7e550f 7382 if (is_sampling_event(event)) {
b0a873eb 7383 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7384 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7385
7386 hrtimer_cancel(&hwc->hrtimer);
7387 }
24f1e32c
FW
7388}
7389
ba3dd36c
PZ
7390static void perf_swevent_init_hrtimer(struct perf_event *event)
7391{
7392 struct hw_perf_event *hwc = &event->hw;
7393
7394 if (!is_sampling_event(event))
7395 return;
7396
7397 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7398 hwc->hrtimer.function = perf_swevent_hrtimer;
7399
7400 /*
7401 * Since hrtimers have a fixed rate, we can do a static freq->period
7402 * mapping and avoid the whole period adjust feedback stuff.
7403 */
7404 if (event->attr.freq) {
7405 long freq = event->attr.sample_freq;
7406
7407 event->attr.sample_period = NSEC_PER_SEC / freq;
7408 hwc->sample_period = event->attr.sample_period;
7409 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7410 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7411 event->attr.freq = 0;
7412 }
7413}
7414
b0a873eb
PZ
7415/*
7416 * Software event: cpu wall time clock
7417 */
7418
7419static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7420{
b0a873eb
PZ
7421 s64 prev;
7422 u64 now;
7423
a4eaf7f1 7424 now = local_clock();
b0a873eb
PZ
7425 prev = local64_xchg(&event->hw.prev_count, now);
7426 local64_add(now - prev, &event->count);
24f1e32c 7427}
24f1e32c 7428
a4eaf7f1 7429static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7430{
a4eaf7f1 7431 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7432 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7433}
7434
a4eaf7f1 7435static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7436{
b0a873eb
PZ
7437 perf_swevent_cancel_hrtimer(event);
7438 cpu_clock_event_update(event);
7439}
f29ac756 7440
a4eaf7f1
PZ
7441static int cpu_clock_event_add(struct perf_event *event, int flags)
7442{
7443 if (flags & PERF_EF_START)
7444 cpu_clock_event_start(event, flags);
6a694a60 7445 perf_event_update_userpage(event);
a4eaf7f1
PZ
7446
7447 return 0;
7448}
7449
7450static void cpu_clock_event_del(struct perf_event *event, int flags)
7451{
7452 cpu_clock_event_stop(event, flags);
7453}
7454
b0a873eb
PZ
7455static void cpu_clock_event_read(struct perf_event *event)
7456{
7457 cpu_clock_event_update(event);
7458}
f344011c 7459
b0a873eb
PZ
7460static int cpu_clock_event_init(struct perf_event *event)
7461{
7462 if (event->attr.type != PERF_TYPE_SOFTWARE)
7463 return -ENOENT;
7464
7465 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7466 return -ENOENT;
7467
2481c5fa
SE
7468 /*
7469 * no branch sampling for software events
7470 */
7471 if (has_branch_stack(event))
7472 return -EOPNOTSUPP;
7473
ba3dd36c
PZ
7474 perf_swevent_init_hrtimer(event);
7475
b0a873eb 7476 return 0;
f29ac756
PZ
7477}
7478
b0a873eb 7479static struct pmu perf_cpu_clock = {
89a1e187
PZ
7480 .task_ctx_nr = perf_sw_context,
7481
34f43927
PZ
7482 .capabilities = PERF_PMU_CAP_NO_NMI,
7483
b0a873eb 7484 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7485 .add = cpu_clock_event_add,
7486 .del = cpu_clock_event_del,
7487 .start = cpu_clock_event_start,
7488 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7489 .read = cpu_clock_event_read,
7490};
7491
7492/*
7493 * Software event: task time clock
7494 */
7495
7496static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7497{
b0a873eb
PZ
7498 u64 prev;
7499 s64 delta;
5c92d124 7500
b0a873eb
PZ
7501 prev = local64_xchg(&event->hw.prev_count, now);
7502 delta = now - prev;
7503 local64_add(delta, &event->count);
7504}
5c92d124 7505
a4eaf7f1 7506static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7507{
a4eaf7f1 7508 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7509 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7510}
7511
a4eaf7f1 7512static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7513{
7514 perf_swevent_cancel_hrtimer(event);
7515 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7516}
7517
7518static int task_clock_event_add(struct perf_event *event, int flags)
7519{
7520 if (flags & PERF_EF_START)
7521 task_clock_event_start(event, flags);
6a694a60 7522 perf_event_update_userpage(event);
b0a873eb 7523
a4eaf7f1
PZ
7524 return 0;
7525}
7526
7527static void task_clock_event_del(struct perf_event *event, int flags)
7528{
7529 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7530}
7531
7532static void task_clock_event_read(struct perf_event *event)
7533{
768a06e2
PZ
7534 u64 now = perf_clock();
7535 u64 delta = now - event->ctx->timestamp;
7536 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7537
7538 task_clock_event_update(event, time);
7539}
7540
7541static int task_clock_event_init(struct perf_event *event)
6fb2915d 7542{
b0a873eb
PZ
7543 if (event->attr.type != PERF_TYPE_SOFTWARE)
7544 return -ENOENT;
7545
7546 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7547 return -ENOENT;
7548
2481c5fa
SE
7549 /*
7550 * no branch sampling for software events
7551 */
7552 if (has_branch_stack(event))
7553 return -EOPNOTSUPP;
7554
ba3dd36c
PZ
7555 perf_swevent_init_hrtimer(event);
7556
b0a873eb 7557 return 0;
6fb2915d
LZ
7558}
7559
b0a873eb 7560static struct pmu perf_task_clock = {
89a1e187
PZ
7561 .task_ctx_nr = perf_sw_context,
7562
34f43927
PZ
7563 .capabilities = PERF_PMU_CAP_NO_NMI,
7564
b0a873eb 7565 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7566 .add = task_clock_event_add,
7567 .del = task_clock_event_del,
7568 .start = task_clock_event_start,
7569 .stop = task_clock_event_stop,
b0a873eb
PZ
7570 .read = task_clock_event_read,
7571};
6fb2915d 7572
ad5133b7 7573static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7574{
e077df4f 7575}
6fb2915d 7576
fbbe0701
SB
7577static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7578{
7579}
7580
ad5133b7 7581static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7582{
ad5133b7 7583 return 0;
6fb2915d
LZ
7584}
7585
18ab2cd3 7586static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7587
7588static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7589{
fbbe0701
SB
7590 __this_cpu_write(nop_txn_flags, flags);
7591
7592 if (flags & ~PERF_PMU_TXN_ADD)
7593 return;
7594
ad5133b7 7595 perf_pmu_disable(pmu);
6fb2915d
LZ
7596}
7597
ad5133b7
PZ
7598static int perf_pmu_commit_txn(struct pmu *pmu)
7599{
fbbe0701
SB
7600 unsigned int flags = __this_cpu_read(nop_txn_flags);
7601
7602 __this_cpu_write(nop_txn_flags, 0);
7603
7604 if (flags & ~PERF_PMU_TXN_ADD)
7605 return 0;
7606
ad5133b7
PZ
7607 perf_pmu_enable(pmu);
7608 return 0;
7609}
e077df4f 7610
ad5133b7 7611static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7612{
fbbe0701
SB
7613 unsigned int flags = __this_cpu_read(nop_txn_flags);
7614
7615 __this_cpu_write(nop_txn_flags, 0);
7616
7617 if (flags & ~PERF_PMU_TXN_ADD)
7618 return;
7619
ad5133b7 7620 perf_pmu_enable(pmu);
24f1e32c
FW
7621}
7622
35edc2a5
PZ
7623static int perf_event_idx_default(struct perf_event *event)
7624{
c719f560 7625 return 0;
35edc2a5
PZ
7626}
7627
8dc85d54
PZ
7628/*
7629 * Ensures all contexts with the same task_ctx_nr have the same
7630 * pmu_cpu_context too.
7631 */
9e317041 7632static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7633{
8dc85d54 7634 struct pmu *pmu;
b326e956 7635
8dc85d54
PZ
7636 if (ctxn < 0)
7637 return NULL;
24f1e32c 7638
8dc85d54
PZ
7639 list_for_each_entry(pmu, &pmus, entry) {
7640 if (pmu->task_ctx_nr == ctxn)
7641 return pmu->pmu_cpu_context;
7642 }
24f1e32c 7643
8dc85d54 7644 return NULL;
24f1e32c
FW
7645}
7646
51676957 7647static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7648{
51676957
PZ
7649 int cpu;
7650
7651 for_each_possible_cpu(cpu) {
7652 struct perf_cpu_context *cpuctx;
7653
7654 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7655
3f1f3320
PZ
7656 if (cpuctx->unique_pmu == old_pmu)
7657 cpuctx->unique_pmu = pmu;
51676957
PZ
7658 }
7659}
7660
7661static void free_pmu_context(struct pmu *pmu)
7662{
7663 struct pmu *i;
f5ffe02e 7664
8dc85d54 7665 mutex_lock(&pmus_lock);
0475f9ea 7666 /*
8dc85d54 7667 * Like a real lame refcount.
0475f9ea 7668 */
51676957
PZ
7669 list_for_each_entry(i, &pmus, entry) {
7670 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7671 update_pmu_context(i, pmu);
8dc85d54 7672 goto out;
51676957 7673 }
8dc85d54 7674 }
d6d020e9 7675
51676957 7676 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7677out:
7678 mutex_unlock(&pmus_lock);
24f1e32c 7679}
2e80a82a 7680static struct idr pmu_idr;
d6d020e9 7681
abe43400
PZ
7682static ssize_t
7683type_show(struct device *dev, struct device_attribute *attr, char *page)
7684{
7685 struct pmu *pmu = dev_get_drvdata(dev);
7686
7687 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7688}
90826ca7 7689static DEVICE_ATTR_RO(type);
abe43400 7690
62b85639
SE
7691static ssize_t
7692perf_event_mux_interval_ms_show(struct device *dev,
7693 struct device_attribute *attr,
7694 char *page)
7695{
7696 struct pmu *pmu = dev_get_drvdata(dev);
7697
7698 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7699}
7700
272325c4
PZ
7701static DEFINE_MUTEX(mux_interval_mutex);
7702
62b85639
SE
7703static ssize_t
7704perf_event_mux_interval_ms_store(struct device *dev,
7705 struct device_attribute *attr,
7706 const char *buf, size_t count)
7707{
7708 struct pmu *pmu = dev_get_drvdata(dev);
7709 int timer, cpu, ret;
7710
7711 ret = kstrtoint(buf, 0, &timer);
7712 if (ret)
7713 return ret;
7714
7715 if (timer < 1)
7716 return -EINVAL;
7717
7718 /* same value, noting to do */
7719 if (timer == pmu->hrtimer_interval_ms)
7720 return count;
7721
272325c4 7722 mutex_lock(&mux_interval_mutex);
62b85639
SE
7723 pmu->hrtimer_interval_ms = timer;
7724
7725 /* update all cpuctx for this PMU */
272325c4
PZ
7726 get_online_cpus();
7727 for_each_online_cpu(cpu) {
62b85639
SE
7728 struct perf_cpu_context *cpuctx;
7729 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7730 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7731
272325c4
PZ
7732 cpu_function_call(cpu,
7733 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7734 }
272325c4
PZ
7735 put_online_cpus();
7736 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7737
7738 return count;
7739}
90826ca7 7740static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7741
90826ca7
GKH
7742static struct attribute *pmu_dev_attrs[] = {
7743 &dev_attr_type.attr,
7744 &dev_attr_perf_event_mux_interval_ms.attr,
7745 NULL,
abe43400 7746};
90826ca7 7747ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7748
7749static int pmu_bus_running;
7750static struct bus_type pmu_bus = {
7751 .name = "event_source",
90826ca7 7752 .dev_groups = pmu_dev_groups,
abe43400
PZ
7753};
7754
7755static void pmu_dev_release(struct device *dev)
7756{
7757 kfree(dev);
7758}
7759
7760static int pmu_dev_alloc(struct pmu *pmu)
7761{
7762 int ret = -ENOMEM;
7763
7764 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7765 if (!pmu->dev)
7766 goto out;
7767
0c9d42ed 7768 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7769 device_initialize(pmu->dev);
7770 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7771 if (ret)
7772 goto free_dev;
7773
7774 dev_set_drvdata(pmu->dev, pmu);
7775 pmu->dev->bus = &pmu_bus;
7776 pmu->dev->release = pmu_dev_release;
7777 ret = device_add(pmu->dev);
7778 if (ret)
7779 goto free_dev;
7780
7781out:
7782 return ret;
7783
7784free_dev:
7785 put_device(pmu->dev);
7786 goto out;
7787}
7788
547e9fd7 7789static struct lock_class_key cpuctx_mutex;
facc4307 7790static struct lock_class_key cpuctx_lock;
547e9fd7 7791
03d8e80b 7792int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7793{
108b02cf 7794 int cpu, ret;
24f1e32c 7795
b0a873eb 7796 mutex_lock(&pmus_lock);
33696fc0
PZ
7797 ret = -ENOMEM;
7798 pmu->pmu_disable_count = alloc_percpu(int);
7799 if (!pmu->pmu_disable_count)
7800 goto unlock;
f29ac756 7801
2e80a82a
PZ
7802 pmu->type = -1;
7803 if (!name)
7804 goto skip_type;
7805 pmu->name = name;
7806
7807 if (type < 0) {
0e9c3be2
TH
7808 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7809 if (type < 0) {
7810 ret = type;
2e80a82a
PZ
7811 goto free_pdc;
7812 }
7813 }
7814 pmu->type = type;
7815
abe43400
PZ
7816 if (pmu_bus_running) {
7817 ret = pmu_dev_alloc(pmu);
7818 if (ret)
7819 goto free_idr;
7820 }
7821
2e80a82a 7822skip_type:
26657848
PZ
7823 if (pmu->task_ctx_nr == perf_hw_context) {
7824 static int hw_context_taken = 0;
7825
7826 if (WARN_ON_ONCE(hw_context_taken))
7827 pmu->task_ctx_nr = perf_invalid_context;
7828
7829 hw_context_taken = 1;
7830 }
7831
8dc85d54
PZ
7832 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7833 if (pmu->pmu_cpu_context)
7834 goto got_cpu_context;
f29ac756 7835
c4814202 7836 ret = -ENOMEM;
108b02cf
PZ
7837 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7838 if (!pmu->pmu_cpu_context)
abe43400 7839 goto free_dev;
f344011c 7840
108b02cf
PZ
7841 for_each_possible_cpu(cpu) {
7842 struct perf_cpu_context *cpuctx;
7843
7844 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7845 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7846 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7847 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7848 cpuctx->ctx.pmu = pmu;
9e630205 7849
272325c4 7850 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7851
3f1f3320 7852 cpuctx->unique_pmu = pmu;
108b02cf 7853 }
76e1d904 7854
8dc85d54 7855got_cpu_context:
ad5133b7
PZ
7856 if (!pmu->start_txn) {
7857 if (pmu->pmu_enable) {
7858 /*
7859 * If we have pmu_enable/pmu_disable calls, install
7860 * transaction stubs that use that to try and batch
7861 * hardware accesses.
7862 */
7863 pmu->start_txn = perf_pmu_start_txn;
7864 pmu->commit_txn = perf_pmu_commit_txn;
7865 pmu->cancel_txn = perf_pmu_cancel_txn;
7866 } else {
fbbe0701 7867 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7868 pmu->commit_txn = perf_pmu_nop_int;
7869 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7870 }
5c92d124 7871 }
15dbf27c 7872
ad5133b7
PZ
7873 if (!pmu->pmu_enable) {
7874 pmu->pmu_enable = perf_pmu_nop_void;
7875 pmu->pmu_disable = perf_pmu_nop_void;
7876 }
7877
35edc2a5
PZ
7878 if (!pmu->event_idx)
7879 pmu->event_idx = perf_event_idx_default;
7880
b0a873eb 7881 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7882 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7883 ret = 0;
7884unlock:
b0a873eb
PZ
7885 mutex_unlock(&pmus_lock);
7886
33696fc0 7887 return ret;
108b02cf 7888
abe43400
PZ
7889free_dev:
7890 device_del(pmu->dev);
7891 put_device(pmu->dev);
7892
2e80a82a
PZ
7893free_idr:
7894 if (pmu->type >= PERF_TYPE_MAX)
7895 idr_remove(&pmu_idr, pmu->type);
7896
108b02cf
PZ
7897free_pdc:
7898 free_percpu(pmu->pmu_disable_count);
7899 goto unlock;
f29ac756 7900}
c464c76e 7901EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7902
b0a873eb 7903void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7904{
b0a873eb
PZ
7905 mutex_lock(&pmus_lock);
7906 list_del_rcu(&pmu->entry);
7907 mutex_unlock(&pmus_lock);
5c92d124 7908
0475f9ea 7909 /*
cde8e884
PZ
7910 * We dereference the pmu list under both SRCU and regular RCU, so
7911 * synchronize against both of those.
0475f9ea 7912 */
b0a873eb 7913 synchronize_srcu(&pmus_srcu);
cde8e884 7914 synchronize_rcu();
d6d020e9 7915
33696fc0 7916 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7917 if (pmu->type >= PERF_TYPE_MAX)
7918 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7919 device_del(pmu->dev);
7920 put_device(pmu->dev);
51676957 7921 free_pmu_context(pmu);
b0a873eb 7922}
c464c76e 7923EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7924
cc34b98b
MR
7925static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7926{
ccd41c86 7927 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7928 int ret;
7929
7930 if (!try_module_get(pmu->module))
7931 return -ENODEV;
ccd41c86
PZ
7932
7933 if (event->group_leader != event) {
8b10c5e2
PZ
7934 /*
7935 * This ctx->mutex can nest when we're called through
7936 * inheritance. See the perf_event_ctx_lock_nested() comment.
7937 */
7938 ctx = perf_event_ctx_lock_nested(event->group_leader,
7939 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7940 BUG_ON(!ctx);
7941 }
7942
cc34b98b
MR
7943 event->pmu = pmu;
7944 ret = pmu->event_init(event);
ccd41c86
PZ
7945
7946 if (ctx)
7947 perf_event_ctx_unlock(event->group_leader, ctx);
7948
cc34b98b
MR
7949 if (ret)
7950 module_put(pmu->module);
7951
7952 return ret;
7953}
7954
18ab2cd3 7955static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7956{
7957 struct pmu *pmu = NULL;
7958 int idx;
940c5b29 7959 int ret;
b0a873eb
PZ
7960
7961 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7962
7963 rcu_read_lock();
7964 pmu = idr_find(&pmu_idr, event->attr.type);
7965 rcu_read_unlock();
940c5b29 7966 if (pmu) {
cc34b98b 7967 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7968 if (ret)
7969 pmu = ERR_PTR(ret);
2e80a82a 7970 goto unlock;
940c5b29 7971 }
2e80a82a 7972
b0a873eb 7973 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7974 ret = perf_try_init_event(pmu, event);
b0a873eb 7975 if (!ret)
e5f4d339 7976 goto unlock;
76e1d904 7977
b0a873eb
PZ
7978 if (ret != -ENOENT) {
7979 pmu = ERR_PTR(ret);
e5f4d339 7980 goto unlock;
f344011c 7981 }
5c92d124 7982 }
e5f4d339
PZ
7983 pmu = ERR_PTR(-ENOENT);
7984unlock:
b0a873eb 7985 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7986
4aeb0b42 7987 return pmu;
5c92d124
IM
7988}
7989
4beb31f3
FW
7990static void account_event_cpu(struct perf_event *event, int cpu)
7991{
7992 if (event->parent)
7993 return;
7994
4beb31f3
FW
7995 if (is_cgroup_event(event))
7996 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7997}
7998
555e0c1e
FW
7999/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8000static void account_freq_event_nohz(void)
8001{
8002#ifdef CONFIG_NO_HZ_FULL
8003 /* Lock so we don't race with concurrent unaccount */
8004 spin_lock(&nr_freq_lock);
8005 if (atomic_inc_return(&nr_freq_events) == 1)
8006 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8007 spin_unlock(&nr_freq_lock);
8008#endif
8009}
8010
8011static void account_freq_event(void)
8012{
8013 if (tick_nohz_full_enabled())
8014 account_freq_event_nohz();
8015 else
8016 atomic_inc(&nr_freq_events);
8017}
8018
8019
766d6c07
FW
8020static void account_event(struct perf_event *event)
8021{
25432ae9
PZ
8022 bool inc = false;
8023
4beb31f3
FW
8024 if (event->parent)
8025 return;
8026
766d6c07 8027 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8028 inc = true;
766d6c07
FW
8029 if (event->attr.mmap || event->attr.mmap_data)
8030 atomic_inc(&nr_mmap_events);
8031 if (event->attr.comm)
8032 atomic_inc(&nr_comm_events);
8033 if (event->attr.task)
8034 atomic_inc(&nr_task_events);
555e0c1e
FW
8035 if (event->attr.freq)
8036 account_freq_event();
45ac1403
AH
8037 if (event->attr.context_switch) {
8038 atomic_inc(&nr_switch_events);
25432ae9 8039 inc = true;
45ac1403 8040 }
4beb31f3 8041 if (has_branch_stack(event))
25432ae9 8042 inc = true;
4beb31f3 8043 if (is_cgroup_event(event))
25432ae9
PZ
8044 inc = true;
8045
9107c89e
PZ
8046 if (inc) {
8047 if (atomic_inc_not_zero(&perf_sched_count))
8048 goto enabled;
8049
8050 mutex_lock(&perf_sched_mutex);
8051 if (!atomic_read(&perf_sched_count)) {
8052 static_branch_enable(&perf_sched_events);
8053 /*
8054 * Guarantee that all CPUs observe they key change and
8055 * call the perf scheduling hooks before proceeding to
8056 * install events that need them.
8057 */
8058 synchronize_sched();
8059 }
8060 /*
8061 * Now that we have waited for the sync_sched(), allow further
8062 * increments to by-pass the mutex.
8063 */
8064 atomic_inc(&perf_sched_count);
8065 mutex_unlock(&perf_sched_mutex);
8066 }
8067enabled:
4beb31f3
FW
8068
8069 account_event_cpu(event, event->cpu);
766d6c07
FW
8070}
8071
0793a61d 8072/*
cdd6c482 8073 * Allocate and initialize a event structure
0793a61d 8074 */
cdd6c482 8075static struct perf_event *
c3f00c70 8076perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8077 struct task_struct *task,
8078 struct perf_event *group_leader,
8079 struct perf_event *parent_event,
4dc0da86 8080 perf_overflow_handler_t overflow_handler,
79dff51e 8081 void *context, int cgroup_fd)
0793a61d 8082{
51b0fe39 8083 struct pmu *pmu;
cdd6c482
IM
8084 struct perf_event *event;
8085 struct hw_perf_event *hwc;
90983b16 8086 long err = -EINVAL;
0793a61d 8087
66832eb4
ON
8088 if ((unsigned)cpu >= nr_cpu_ids) {
8089 if (!task || cpu != -1)
8090 return ERR_PTR(-EINVAL);
8091 }
8092
c3f00c70 8093 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8094 if (!event)
d5d2bc0d 8095 return ERR_PTR(-ENOMEM);
0793a61d 8096
04289bb9 8097 /*
cdd6c482 8098 * Single events are their own group leaders, with an
04289bb9
IM
8099 * empty sibling list:
8100 */
8101 if (!group_leader)
cdd6c482 8102 group_leader = event;
04289bb9 8103
cdd6c482
IM
8104 mutex_init(&event->child_mutex);
8105 INIT_LIST_HEAD(&event->child_list);
fccc714b 8106
cdd6c482
IM
8107 INIT_LIST_HEAD(&event->group_entry);
8108 INIT_LIST_HEAD(&event->event_entry);
8109 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8110 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8111 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
8112 INIT_HLIST_NODE(&event->hlist_entry);
8113
10c6db11 8114
cdd6c482 8115 init_waitqueue_head(&event->waitq);
e360adbe 8116 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8117
cdd6c482 8118 mutex_init(&event->mmap_mutex);
7b732a75 8119
a6fa941d 8120 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8121 event->cpu = cpu;
8122 event->attr = *attr;
8123 event->group_leader = group_leader;
8124 event->pmu = NULL;
cdd6c482 8125 event->oncpu = -1;
a96bbc16 8126
cdd6c482 8127 event->parent = parent_event;
b84fbc9f 8128
17cf22c3 8129 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8130 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8131
cdd6c482 8132 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8133
d580ff86
PZ
8134 if (task) {
8135 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8136 /*
50f16a8b
PZ
8137 * XXX pmu::event_init needs to know what task to account to
8138 * and we cannot use the ctx information because we need the
8139 * pmu before we get a ctx.
d580ff86 8140 */
50f16a8b 8141 event->hw.target = task;
d580ff86
PZ
8142 }
8143
34f43927
PZ
8144 event->clock = &local_clock;
8145 if (parent_event)
8146 event->clock = parent_event->clock;
8147
4dc0da86 8148 if (!overflow_handler && parent_event) {
b326e956 8149 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8150 context = parent_event->overflow_handler_context;
8151 }
66832eb4 8152
1879445d
WN
8153 if (overflow_handler) {
8154 event->overflow_handler = overflow_handler;
8155 event->overflow_handler_context = context;
8156 } else {
8157 event->overflow_handler = perf_event_output;
8158 event->overflow_handler_context = NULL;
8159 }
97eaf530 8160
0231bb53 8161 perf_event__state_init(event);
a86ed508 8162
4aeb0b42 8163 pmu = NULL;
b8e83514 8164
cdd6c482 8165 hwc = &event->hw;
bd2b5b12 8166 hwc->sample_period = attr->sample_period;
0d48696f 8167 if (attr->freq && attr->sample_freq)
bd2b5b12 8168 hwc->sample_period = 1;
eced1dfc 8169 hwc->last_period = hwc->sample_period;
bd2b5b12 8170
e7850595 8171 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8172
2023b359 8173 /*
cdd6c482 8174 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8175 */
3dab77fb 8176 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8177 goto err_ns;
a46a2300
YZ
8178
8179 if (!has_branch_stack(event))
8180 event->attr.branch_sample_type = 0;
2023b359 8181
79dff51e
MF
8182 if (cgroup_fd != -1) {
8183 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8184 if (err)
8185 goto err_ns;
8186 }
8187
b0a873eb 8188 pmu = perf_init_event(event);
4aeb0b42 8189 if (!pmu)
90983b16
FW
8190 goto err_ns;
8191 else if (IS_ERR(pmu)) {
4aeb0b42 8192 err = PTR_ERR(pmu);
90983b16 8193 goto err_ns;
621a01ea 8194 }
d5d2bc0d 8195
bed5b25a
AS
8196 err = exclusive_event_init(event);
8197 if (err)
8198 goto err_pmu;
8199
cdd6c482 8200 if (!event->parent) {
927c7a9e
FW
8201 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8202 err = get_callchain_buffers();
90983b16 8203 if (err)
bed5b25a 8204 goto err_per_task;
d010b332 8205 }
f344011c 8206 }
9ee318a7 8207
927a5570
AS
8208 /* symmetric to unaccount_event() in _free_event() */
8209 account_event(event);
8210
cdd6c482 8211 return event;
90983b16 8212
bed5b25a
AS
8213err_per_task:
8214 exclusive_event_destroy(event);
8215
90983b16
FW
8216err_pmu:
8217 if (event->destroy)
8218 event->destroy(event);
c464c76e 8219 module_put(pmu->module);
90983b16 8220err_ns:
79dff51e
MF
8221 if (is_cgroup_event(event))
8222 perf_detach_cgroup(event);
90983b16
FW
8223 if (event->ns)
8224 put_pid_ns(event->ns);
8225 kfree(event);
8226
8227 return ERR_PTR(err);
0793a61d
TG
8228}
8229
cdd6c482
IM
8230static int perf_copy_attr(struct perf_event_attr __user *uattr,
8231 struct perf_event_attr *attr)
974802ea 8232{
974802ea 8233 u32 size;
cdf8073d 8234 int ret;
974802ea
PZ
8235
8236 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8237 return -EFAULT;
8238
8239 /*
8240 * zero the full structure, so that a short copy will be nice.
8241 */
8242 memset(attr, 0, sizeof(*attr));
8243
8244 ret = get_user(size, &uattr->size);
8245 if (ret)
8246 return ret;
8247
8248 if (size > PAGE_SIZE) /* silly large */
8249 goto err_size;
8250
8251 if (!size) /* abi compat */
8252 size = PERF_ATTR_SIZE_VER0;
8253
8254 if (size < PERF_ATTR_SIZE_VER0)
8255 goto err_size;
8256
8257 /*
8258 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8259 * ensure all the unknown bits are 0 - i.e. new
8260 * user-space does not rely on any kernel feature
8261 * extensions we dont know about yet.
974802ea
PZ
8262 */
8263 if (size > sizeof(*attr)) {
cdf8073d
IS
8264 unsigned char __user *addr;
8265 unsigned char __user *end;
8266 unsigned char val;
974802ea 8267
cdf8073d
IS
8268 addr = (void __user *)uattr + sizeof(*attr);
8269 end = (void __user *)uattr + size;
974802ea 8270
cdf8073d 8271 for (; addr < end; addr++) {
974802ea
PZ
8272 ret = get_user(val, addr);
8273 if (ret)
8274 return ret;
8275 if (val)
8276 goto err_size;
8277 }
b3e62e35 8278 size = sizeof(*attr);
974802ea
PZ
8279 }
8280
8281 ret = copy_from_user(attr, uattr, size);
8282 if (ret)
8283 return -EFAULT;
8284
cd757645 8285 if (attr->__reserved_1)
974802ea
PZ
8286 return -EINVAL;
8287
8288 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8289 return -EINVAL;
8290
8291 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8292 return -EINVAL;
8293
bce38cd5
SE
8294 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8295 u64 mask = attr->branch_sample_type;
8296
8297 /* only using defined bits */
8298 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8299 return -EINVAL;
8300
8301 /* at least one branch bit must be set */
8302 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8303 return -EINVAL;
8304
bce38cd5
SE
8305 /* propagate priv level, when not set for branch */
8306 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8307
8308 /* exclude_kernel checked on syscall entry */
8309 if (!attr->exclude_kernel)
8310 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8311
8312 if (!attr->exclude_user)
8313 mask |= PERF_SAMPLE_BRANCH_USER;
8314
8315 if (!attr->exclude_hv)
8316 mask |= PERF_SAMPLE_BRANCH_HV;
8317 /*
8318 * adjust user setting (for HW filter setup)
8319 */
8320 attr->branch_sample_type = mask;
8321 }
e712209a
SE
8322 /* privileged levels capture (kernel, hv): check permissions */
8323 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8324 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8325 return -EACCES;
bce38cd5 8326 }
4018994f 8327
c5ebcedb 8328 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8329 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8330 if (ret)
8331 return ret;
8332 }
8333
8334 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8335 if (!arch_perf_have_user_stack_dump())
8336 return -ENOSYS;
8337
8338 /*
8339 * We have __u32 type for the size, but so far
8340 * we can only use __u16 as maximum due to the
8341 * __u16 sample size limit.
8342 */
8343 if (attr->sample_stack_user >= USHRT_MAX)
8344 ret = -EINVAL;
8345 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8346 ret = -EINVAL;
8347 }
4018994f 8348
60e2364e
SE
8349 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8350 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8351out:
8352 return ret;
8353
8354err_size:
8355 put_user(sizeof(*attr), &uattr->size);
8356 ret = -E2BIG;
8357 goto out;
8358}
8359
ac9721f3
PZ
8360static int
8361perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8362{
b69cf536 8363 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8364 int ret = -EINVAL;
8365
ac9721f3 8366 if (!output_event)
a4be7c27
PZ
8367 goto set;
8368
ac9721f3
PZ
8369 /* don't allow circular references */
8370 if (event == output_event)
a4be7c27
PZ
8371 goto out;
8372
0f139300
PZ
8373 /*
8374 * Don't allow cross-cpu buffers
8375 */
8376 if (output_event->cpu != event->cpu)
8377 goto out;
8378
8379 /*
76369139 8380 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8381 */
8382 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8383 goto out;
8384
34f43927
PZ
8385 /*
8386 * Mixing clocks in the same buffer is trouble you don't need.
8387 */
8388 if (output_event->clock != event->clock)
8389 goto out;
8390
45bfb2e5
PZ
8391 /*
8392 * If both events generate aux data, they must be on the same PMU
8393 */
8394 if (has_aux(event) && has_aux(output_event) &&
8395 event->pmu != output_event->pmu)
8396 goto out;
8397
a4be7c27 8398set:
cdd6c482 8399 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8400 /* Can't redirect output if we've got an active mmap() */
8401 if (atomic_read(&event->mmap_count))
8402 goto unlock;
a4be7c27 8403
ac9721f3 8404 if (output_event) {
76369139
FW
8405 /* get the rb we want to redirect to */
8406 rb = ring_buffer_get(output_event);
8407 if (!rb)
ac9721f3 8408 goto unlock;
a4be7c27
PZ
8409 }
8410
b69cf536 8411 ring_buffer_attach(event, rb);
9bb5d40c 8412
a4be7c27 8413 ret = 0;
ac9721f3
PZ
8414unlock:
8415 mutex_unlock(&event->mmap_mutex);
8416
a4be7c27 8417out:
a4be7c27
PZ
8418 return ret;
8419}
8420
f63a8daa
PZ
8421static void mutex_lock_double(struct mutex *a, struct mutex *b)
8422{
8423 if (b < a)
8424 swap(a, b);
8425
8426 mutex_lock(a);
8427 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8428}
8429
34f43927
PZ
8430static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8431{
8432 bool nmi_safe = false;
8433
8434 switch (clk_id) {
8435 case CLOCK_MONOTONIC:
8436 event->clock = &ktime_get_mono_fast_ns;
8437 nmi_safe = true;
8438 break;
8439
8440 case CLOCK_MONOTONIC_RAW:
8441 event->clock = &ktime_get_raw_fast_ns;
8442 nmi_safe = true;
8443 break;
8444
8445 case CLOCK_REALTIME:
8446 event->clock = &ktime_get_real_ns;
8447 break;
8448
8449 case CLOCK_BOOTTIME:
8450 event->clock = &ktime_get_boot_ns;
8451 break;
8452
8453 case CLOCK_TAI:
8454 event->clock = &ktime_get_tai_ns;
8455 break;
8456
8457 default:
8458 return -EINVAL;
8459 }
8460
8461 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8462 return -EINVAL;
8463
8464 return 0;
8465}
8466
0793a61d 8467/**
cdd6c482 8468 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8469 *
cdd6c482 8470 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8471 * @pid: target pid
9f66a381 8472 * @cpu: target cpu
cdd6c482 8473 * @group_fd: group leader event fd
0793a61d 8474 */
cdd6c482
IM
8475SYSCALL_DEFINE5(perf_event_open,
8476 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8477 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8478{
b04243ef
PZ
8479 struct perf_event *group_leader = NULL, *output_event = NULL;
8480 struct perf_event *event, *sibling;
cdd6c482 8481 struct perf_event_attr attr;
f63a8daa 8482 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8483 struct file *event_file = NULL;
2903ff01 8484 struct fd group = {NULL, 0};
38a81da2 8485 struct task_struct *task = NULL;
89a1e187 8486 struct pmu *pmu;
ea635c64 8487 int event_fd;
b04243ef 8488 int move_group = 0;
dc86cabe 8489 int err;
a21b0b35 8490 int f_flags = O_RDWR;
79dff51e 8491 int cgroup_fd = -1;
0793a61d 8492
2743a5b0 8493 /* for future expandability... */
e5d1367f 8494 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8495 return -EINVAL;
8496
dc86cabe
IM
8497 err = perf_copy_attr(attr_uptr, &attr);
8498 if (err)
8499 return err;
eab656ae 8500
0764771d
PZ
8501 if (!attr.exclude_kernel) {
8502 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8503 return -EACCES;
8504 }
8505
df58ab24 8506 if (attr.freq) {
cdd6c482 8507 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8508 return -EINVAL;
0819b2e3
PZ
8509 } else {
8510 if (attr.sample_period & (1ULL << 63))
8511 return -EINVAL;
df58ab24
PZ
8512 }
8513
e5d1367f
SE
8514 /*
8515 * In cgroup mode, the pid argument is used to pass the fd
8516 * opened to the cgroup directory in cgroupfs. The cpu argument
8517 * designates the cpu on which to monitor threads from that
8518 * cgroup.
8519 */
8520 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8521 return -EINVAL;
8522
a21b0b35
YD
8523 if (flags & PERF_FLAG_FD_CLOEXEC)
8524 f_flags |= O_CLOEXEC;
8525
8526 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8527 if (event_fd < 0)
8528 return event_fd;
8529
ac9721f3 8530 if (group_fd != -1) {
2903ff01
AV
8531 err = perf_fget_light(group_fd, &group);
8532 if (err)
d14b12d7 8533 goto err_fd;
2903ff01 8534 group_leader = group.file->private_data;
ac9721f3
PZ
8535 if (flags & PERF_FLAG_FD_OUTPUT)
8536 output_event = group_leader;
8537 if (flags & PERF_FLAG_FD_NO_GROUP)
8538 group_leader = NULL;
8539 }
8540
e5d1367f 8541 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8542 task = find_lively_task_by_vpid(pid);
8543 if (IS_ERR(task)) {
8544 err = PTR_ERR(task);
8545 goto err_group_fd;
8546 }
8547 }
8548
1f4ee503
PZ
8549 if (task && group_leader &&
8550 group_leader->attr.inherit != attr.inherit) {
8551 err = -EINVAL;
8552 goto err_task;
8553 }
8554
fbfc623f
YZ
8555 get_online_cpus();
8556
79dff51e
MF
8557 if (flags & PERF_FLAG_PID_CGROUP)
8558 cgroup_fd = pid;
8559
4dc0da86 8560 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8561 NULL, NULL, cgroup_fd);
d14b12d7
SE
8562 if (IS_ERR(event)) {
8563 err = PTR_ERR(event);
1f4ee503 8564 goto err_cpus;
d14b12d7
SE
8565 }
8566
53b25335
VW
8567 if (is_sampling_event(event)) {
8568 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8569 err = -ENOTSUPP;
8570 goto err_alloc;
8571 }
8572 }
8573
89a1e187
PZ
8574 /*
8575 * Special case software events and allow them to be part of
8576 * any hardware group.
8577 */
8578 pmu = event->pmu;
b04243ef 8579
34f43927
PZ
8580 if (attr.use_clockid) {
8581 err = perf_event_set_clock(event, attr.clockid);
8582 if (err)
8583 goto err_alloc;
8584 }
8585
b04243ef
PZ
8586 if (group_leader &&
8587 (is_software_event(event) != is_software_event(group_leader))) {
8588 if (is_software_event(event)) {
8589 /*
8590 * If event and group_leader are not both a software
8591 * event, and event is, then group leader is not.
8592 *
8593 * Allow the addition of software events to !software
8594 * groups, this is safe because software events never
8595 * fail to schedule.
8596 */
8597 pmu = group_leader->pmu;
8598 } else if (is_software_event(group_leader) &&
8599 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8600 /*
8601 * In case the group is a pure software group, and we
8602 * try to add a hardware event, move the whole group to
8603 * the hardware context.
8604 */
8605 move_group = 1;
8606 }
8607 }
89a1e187
PZ
8608
8609 /*
8610 * Get the target context (task or percpu):
8611 */
4af57ef2 8612 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8613 if (IS_ERR(ctx)) {
8614 err = PTR_ERR(ctx);
c6be5a5c 8615 goto err_alloc;
89a1e187
PZ
8616 }
8617
bed5b25a
AS
8618 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8619 err = -EBUSY;
8620 goto err_context;
8621 }
8622
fd1edb3a
PZ
8623 if (task) {
8624 put_task_struct(task);
8625 task = NULL;
8626 }
8627
ccff286d 8628 /*
cdd6c482 8629 * Look up the group leader (we will attach this event to it):
04289bb9 8630 */
ac9721f3 8631 if (group_leader) {
dc86cabe 8632 err = -EINVAL;
04289bb9 8633
04289bb9 8634 /*
ccff286d
IM
8635 * Do not allow a recursive hierarchy (this new sibling
8636 * becoming part of another group-sibling):
8637 */
8638 if (group_leader->group_leader != group_leader)
c3f00c70 8639 goto err_context;
34f43927
PZ
8640
8641 /* All events in a group should have the same clock */
8642 if (group_leader->clock != event->clock)
8643 goto err_context;
8644
ccff286d
IM
8645 /*
8646 * Do not allow to attach to a group in a different
8647 * task or CPU context:
04289bb9 8648 */
b04243ef 8649 if (move_group) {
c3c87e77
PZ
8650 /*
8651 * Make sure we're both on the same task, or both
8652 * per-cpu events.
8653 */
8654 if (group_leader->ctx->task != ctx->task)
8655 goto err_context;
8656
8657 /*
8658 * Make sure we're both events for the same CPU;
8659 * grouping events for different CPUs is broken; since
8660 * you can never concurrently schedule them anyhow.
8661 */
8662 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8663 goto err_context;
8664 } else {
8665 if (group_leader->ctx != ctx)
8666 goto err_context;
8667 }
8668
3b6f9e5c
PM
8669 /*
8670 * Only a group leader can be exclusive or pinned
8671 */
0d48696f 8672 if (attr.exclusive || attr.pinned)
c3f00c70 8673 goto err_context;
ac9721f3
PZ
8674 }
8675
8676 if (output_event) {
8677 err = perf_event_set_output(event, output_event);
8678 if (err)
c3f00c70 8679 goto err_context;
ac9721f3 8680 }
0793a61d 8681
a21b0b35
YD
8682 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8683 f_flags);
ea635c64
AV
8684 if (IS_ERR(event_file)) {
8685 err = PTR_ERR(event_file);
201c2f85 8686 event_file = NULL;
c3f00c70 8687 goto err_context;
ea635c64 8688 }
9b51f66d 8689
b04243ef 8690 if (move_group) {
f63a8daa 8691 gctx = group_leader->ctx;
f55fc2a5 8692 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8693 if (gctx->task == TASK_TOMBSTONE) {
8694 err = -ESRCH;
8695 goto err_locked;
8696 }
f55fc2a5
PZ
8697 } else {
8698 mutex_lock(&ctx->mutex);
8699 }
8700
84c4e620
PZ
8701 if (ctx->task == TASK_TOMBSTONE) {
8702 err = -ESRCH;
8703 goto err_locked;
8704 }
8705
a723968c
PZ
8706 if (!perf_event_validate_size(event)) {
8707 err = -E2BIG;
8708 goto err_locked;
8709 }
8710
f55fc2a5
PZ
8711 /*
8712 * Must be under the same ctx::mutex as perf_install_in_context(),
8713 * because we need to serialize with concurrent event creation.
8714 */
8715 if (!exclusive_event_installable(event, ctx)) {
8716 /* exclusive and group stuff are assumed mutually exclusive */
8717 WARN_ON_ONCE(move_group);
f63a8daa 8718
f55fc2a5
PZ
8719 err = -EBUSY;
8720 goto err_locked;
8721 }
f63a8daa 8722
f55fc2a5
PZ
8723 WARN_ON_ONCE(ctx->parent_ctx);
8724
8725 if (move_group) {
f63a8daa
PZ
8726 /*
8727 * See perf_event_ctx_lock() for comments on the details
8728 * of swizzling perf_event::ctx.
8729 */
45a0e07a 8730 perf_remove_from_context(group_leader, 0);
0231bb53 8731
b04243ef
PZ
8732 list_for_each_entry(sibling, &group_leader->sibling_list,
8733 group_entry) {
45a0e07a 8734 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8735 put_ctx(gctx);
8736 }
b04243ef 8737
f63a8daa
PZ
8738 /*
8739 * Wait for everybody to stop referencing the events through
8740 * the old lists, before installing it on new lists.
8741 */
0cda4c02 8742 synchronize_rcu();
f63a8daa 8743
8f95b435
PZI
8744 /*
8745 * Install the group siblings before the group leader.
8746 *
8747 * Because a group leader will try and install the entire group
8748 * (through the sibling list, which is still in-tact), we can
8749 * end up with siblings installed in the wrong context.
8750 *
8751 * By installing siblings first we NO-OP because they're not
8752 * reachable through the group lists.
8753 */
b04243ef
PZ
8754 list_for_each_entry(sibling, &group_leader->sibling_list,
8755 group_entry) {
8f95b435 8756 perf_event__state_init(sibling);
9fc81d87 8757 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8758 get_ctx(ctx);
8759 }
8f95b435
PZI
8760
8761 /*
8762 * Removing from the context ends up with disabled
8763 * event. What we want here is event in the initial
8764 * startup state, ready to be add into new context.
8765 */
8766 perf_event__state_init(group_leader);
8767 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8768 get_ctx(ctx);
b04243ef 8769
f55fc2a5
PZ
8770 /*
8771 * Now that all events are installed in @ctx, nothing
8772 * references @gctx anymore, so drop the last reference we have
8773 * on it.
8774 */
8775 put_ctx(gctx);
bed5b25a
AS
8776 }
8777
f73e22ab
PZ
8778 /*
8779 * Precalculate sample_data sizes; do while holding ctx::mutex such
8780 * that we're serialized against further additions and before
8781 * perf_install_in_context() which is the point the event is active and
8782 * can use these values.
8783 */
8784 perf_event__header_size(event);
8785 perf_event__id_header_size(event);
8786
78cd2c74
PZ
8787 event->owner = current;
8788
e2d37cd2 8789 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8790 perf_unpin_context(ctx);
f63a8daa 8791
f55fc2a5 8792 if (move_group)
f63a8daa 8793 mutex_unlock(&gctx->mutex);
d859e29f 8794 mutex_unlock(&ctx->mutex);
9b51f66d 8795
fbfc623f
YZ
8796 put_online_cpus();
8797
cdd6c482
IM
8798 mutex_lock(&current->perf_event_mutex);
8799 list_add_tail(&event->owner_entry, &current->perf_event_list);
8800 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8801
8a49542c
PZ
8802 /*
8803 * Drop the reference on the group_event after placing the
8804 * new event on the sibling_list. This ensures destruction
8805 * of the group leader will find the pointer to itself in
8806 * perf_group_detach().
8807 */
2903ff01 8808 fdput(group);
ea635c64
AV
8809 fd_install(event_fd, event_file);
8810 return event_fd;
0793a61d 8811
f55fc2a5
PZ
8812err_locked:
8813 if (move_group)
8814 mutex_unlock(&gctx->mutex);
8815 mutex_unlock(&ctx->mutex);
8816/* err_file: */
8817 fput(event_file);
c3f00c70 8818err_context:
fe4b04fa 8819 perf_unpin_context(ctx);
ea635c64 8820 put_ctx(ctx);
c6be5a5c 8821err_alloc:
13005627
PZ
8822 /*
8823 * If event_file is set, the fput() above will have called ->release()
8824 * and that will take care of freeing the event.
8825 */
8826 if (!event_file)
8827 free_event(event);
1f4ee503 8828err_cpus:
fbfc623f 8829 put_online_cpus();
1f4ee503 8830err_task:
e7d0bc04
PZ
8831 if (task)
8832 put_task_struct(task);
89a1e187 8833err_group_fd:
2903ff01 8834 fdput(group);
ea635c64
AV
8835err_fd:
8836 put_unused_fd(event_fd);
dc86cabe 8837 return err;
0793a61d
TG
8838}
8839
fb0459d7
AV
8840/**
8841 * perf_event_create_kernel_counter
8842 *
8843 * @attr: attributes of the counter to create
8844 * @cpu: cpu in which the counter is bound
38a81da2 8845 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8846 */
8847struct perf_event *
8848perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8849 struct task_struct *task,
4dc0da86
AK
8850 perf_overflow_handler_t overflow_handler,
8851 void *context)
fb0459d7 8852{
fb0459d7 8853 struct perf_event_context *ctx;
c3f00c70 8854 struct perf_event *event;
fb0459d7 8855 int err;
d859e29f 8856
fb0459d7
AV
8857 /*
8858 * Get the target context (task or percpu):
8859 */
d859e29f 8860
4dc0da86 8861 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8862 overflow_handler, context, -1);
c3f00c70
PZ
8863 if (IS_ERR(event)) {
8864 err = PTR_ERR(event);
8865 goto err;
8866 }
d859e29f 8867
f8697762 8868 /* Mark owner so we could distinguish it from user events. */
63b6da39 8869 event->owner = TASK_TOMBSTONE;
f8697762 8870
4af57ef2 8871 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8872 if (IS_ERR(ctx)) {
8873 err = PTR_ERR(ctx);
c3f00c70 8874 goto err_free;
d859e29f 8875 }
fb0459d7 8876
fb0459d7
AV
8877 WARN_ON_ONCE(ctx->parent_ctx);
8878 mutex_lock(&ctx->mutex);
84c4e620
PZ
8879 if (ctx->task == TASK_TOMBSTONE) {
8880 err = -ESRCH;
8881 goto err_unlock;
8882 }
8883
bed5b25a 8884 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8885 err = -EBUSY;
84c4e620 8886 goto err_unlock;
bed5b25a
AS
8887 }
8888
fb0459d7 8889 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8890 perf_unpin_context(ctx);
fb0459d7
AV
8891 mutex_unlock(&ctx->mutex);
8892
fb0459d7
AV
8893 return event;
8894
84c4e620
PZ
8895err_unlock:
8896 mutex_unlock(&ctx->mutex);
8897 perf_unpin_context(ctx);
8898 put_ctx(ctx);
c3f00c70
PZ
8899err_free:
8900 free_event(event);
8901err:
c6567f64 8902 return ERR_PTR(err);
9b51f66d 8903}
fb0459d7 8904EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8905
0cda4c02
YZ
8906void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8907{
8908 struct perf_event_context *src_ctx;
8909 struct perf_event_context *dst_ctx;
8910 struct perf_event *event, *tmp;
8911 LIST_HEAD(events);
8912
8913 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8914 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8915
f63a8daa
PZ
8916 /*
8917 * See perf_event_ctx_lock() for comments on the details
8918 * of swizzling perf_event::ctx.
8919 */
8920 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8921 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8922 event_entry) {
45a0e07a 8923 perf_remove_from_context(event, 0);
9a545de0 8924 unaccount_event_cpu(event, src_cpu);
0cda4c02 8925 put_ctx(src_ctx);
9886167d 8926 list_add(&event->migrate_entry, &events);
0cda4c02 8927 }
0cda4c02 8928
8f95b435
PZI
8929 /*
8930 * Wait for the events to quiesce before re-instating them.
8931 */
0cda4c02
YZ
8932 synchronize_rcu();
8933
8f95b435
PZI
8934 /*
8935 * Re-instate events in 2 passes.
8936 *
8937 * Skip over group leaders and only install siblings on this first
8938 * pass, siblings will not get enabled without a leader, however a
8939 * leader will enable its siblings, even if those are still on the old
8940 * context.
8941 */
8942 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8943 if (event->group_leader == event)
8944 continue;
8945
8946 list_del(&event->migrate_entry);
8947 if (event->state >= PERF_EVENT_STATE_OFF)
8948 event->state = PERF_EVENT_STATE_INACTIVE;
8949 account_event_cpu(event, dst_cpu);
8950 perf_install_in_context(dst_ctx, event, dst_cpu);
8951 get_ctx(dst_ctx);
8952 }
8953
8954 /*
8955 * Once all the siblings are setup properly, install the group leaders
8956 * to make it go.
8957 */
9886167d
PZ
8958 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8959 list_del(&event->migrate_entry);
0cda4c02
YZ
8960 if (event->state >= PERF_EVENT_STATE_OFF)
8961 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8962 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8963 perf_install_in_context(dst_ctx, event, dst_cpu);
8964 get_ctx(dst_ctx);
8965 }
8966 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8967 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8968}
8969EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8970
cdd6c482 8971static void sync_child_event(struct perf_event *child_event,
38b200d6 8972 struct task_struct *child)
d859e29f 8973{
cdd6c482 8974 struct perf_event *parent_event = child_event->parent;
8bc20959 8975 u64 child_val;
d859e29f 8976
cdd6c482
IM
8977 if (child_event->attr.inherit_stat)
8978 perf_event_read_event(child_event, child);
38b200d6 8979
b5e58793 8980 child_val = perf_event_count(child_event);
d859e29f
PM
8981
8982 /*
8983 * Add back the child's count to the parent's count:
8984 */
a6e6dea6 8985 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8986 atomic64_add(child_event->total_time_enabled,
8987 &parent_event->child_total_time_enabled);
8988 atomic64_add(child_event->total_time_running,
8989 &parent_event->child_total_time_running);
d859e29f
PM
8990}
8991
9b51f66d 8992static void
8ba289b8
PZ
8993perf_event_exit_event(struct perf_event *child_event,
8994 struct perf_event_context *child_ctx,
8995 struct task_struct *child)
9b51f66d 8996{
8ba289b8
PZ
8997 struct perf_event *parent_event = child_event->parent;
8998
1903d50c
PZ
8999 /*
9000 * Do not destroy the 'original' grouping; because of the context
9001 * switch optimization the original events could've ended up in a
9002 * random child task.
9003 *
9004 * If we were to destroy the original group, all group related
9005 * operations would cease to function properly after this random
9006 * child dies.
9007 *
9008 * Do destroy all inherited groups, we don't care about those
9009 * and being thorough is better.
9010 */
32132a3d
PZ
9011 raw_spin_lock_irq(&child_ctx->lock);
9012 WARN_ON_ONCE(child_ctx->is_active);
9013
8ba289b8 9014 if (parent_event)
32132a3d
PZ
9015 perf_group_detach(child_event);
9016 list_del_event(child_event, child_ctx);
a69b0ca4 9017 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9018 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9019
9b51f66d 9020 /*
8ba289b8 9021 * Parent events are governed by their filedesc, retain them.
9b51f66d 9022 */
8ba289b8 9023 if (!parent_event) {
179033b3 9024 perf_event_wakeup(child_event);
8ba289b8 9025 return;
4bcf349a 9026 }
8ba289b8
PZ
9027 /*
9028 * Child events can be cleaned up.
9029 */
9030
9031 sync_child_event(child_event, child);
9032
9033 /*
9034 * Remove this event from the parent's list
9035 */
9036 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9037 mutex_lock(&parent_event->child_mutex);
9038 list_del_init(&child_event->child_list);
9039 mutex_unlock(&parent_event->child_mutex);
9040
9041 /*
9042 * Kick perf_poll() for is_event_hup().
9043 */
9044 perf_event_wakeup(parent_event);
9045 free_event(child_event);
9046 put_event(parent_event);
9b51f66d
IM
9047}
9048
8dc85d54 9049static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9050{
211de6eb 9051 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9052 struct perf_event *child_event, *next;
63b6da39
PZ
9053
9054 WARN_ON_ONCE(child != current);
9b51f66d 9055
6a3351b6 9056 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9057 if (!child_ctx)
9b51f66d
IM
9058 return;
9059
ad3a37de 9060 /*
6a3351b6
PZ
9061 * In order to reduce the amount of tricky in ctx tear-down, we hold
9062 * ctx::mutex over the entire thing. This serializes against almost
9063 * everything that wants to access the ctx.
9064 *
9065 * The exception is sys_perf_event_open() /
9066 * perf_event_create_kernel_count() which does find_get_context()
9067 * without ctx::mutex (it cannot because of the move_group double mutex
9068 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9069 */
6a3351b6 9070 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9071
9072 /*
6a3351b6
PZ
9073 * In a single ctx::lock section, de-schedule the events and detach the
9074 * context from the task such that we cannot ever get it scheduled back
9075 * in.
c93f7669 9076 */
6a3351b6 9077 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9078 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9079
71a851b4 9080 /*
63b6da39
PZ
9081 * Now that the context is inactive, destroy the task <-> ctx relation
9082 * and mark the context dead.
71a851b4 9083 */
63b6da39
PZ
9084 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9085 put_ctx(child_ctx); /* cannot be last */
9086 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9087 put_task_struct(current); /* cannot be last */
4a1c0f26 9088
211de6eb 9089 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9090 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9091
211de6eb
PZ
9092 if (clone_ctx)
9093 put_ctx(clone_ctx);
4a1c0f26 9094
9f498cc5 9095 /*
cdd6c482
IM
9096 * Report the task dead after unscheduling the events so that we
9097 * won't get any samples after PERF_RECORD_EXIT. We can however still
9098 * get a few PERF_RECORD_READ events.
9f498cc5 9099 */
cdd6c482 9100 perf_event_task(child, child_ctx, 0);
a63eaf34 9101
ebf905fc 9102 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9103 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9104
a63eaf34
PM
9105 mutex_unlock(&child_ctx->mutex);
9106
9107 put_ctx(child_ctx);
9b51f66d
IM
9108}
9109
8dc85d54
PZ
9110/*
9111 * When a child task exits, feed back event values to parent events.
9112 */
9113void perf_event_exit_task(struct task_struct *child)
9114{
8882135b 9115 struct perf_event *event, *tmp;
8dc85d54
PZ
9116 int ctxn;
9117
8882135b
PZ
9118 mutex_lock(&child->perf_event_mutex);
9119 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9120 owner_entry) {
9121 list_del_init(&event->owner_entry);
9122
9123 /*
9124 * Ensure the list deletion is visible before we clear
9125 * the owner, closes a race against perf_release() where
9126 * we need to serialize on the owner->perf_event_mutex.
9127 */
f47c02c0 9128 smp_store_release(&event->owner, NULL);
8882135b
PZ
9129 }
9130 mutex_unlock(&child->perf_event_mutex);
9131
8dc85d54
PZ
9132 for_each_task_context_nr(ctxn)
9133 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9134
9135 /*
9136 * The perf_event_exit_task_context calls perf_event_task
9137 * with child's task_ctx, which generates EXIT events for
9138 * child contexts and sets child->perf_event_ctxp[] to NULL.
9139 * At this point we need to send EXIT events to cpu contexts.
9140 */
9141 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9142}
9143
889ff015
FW
9144static void perf_free_event(struct perf_event *event,
9145 struct perf_event_context *ctx)
9146{
9147 struct perf_event *parent = event->parent;
9148
9149 if (WARN_ON_ONCE(!parent))
9150 return;
9151
9152 mutex_lock(&parent->child_mutex);
9153 list_del_init(&event->child_list);
9154 mutex_unlock(&parent->child_mutex);
9155
a6fa941d 9156 put_event(parent);
889ff015 9157
652884fe 9158 raw_spin_lock_irq(&ctx->lock);
8a49542c 9159 perf_group_detach(event);
889ff015 9160 list_del_event(event, ctx);
652884fe 9161 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9162 free_event(event);
9163}
9164
bbbee908 9165/*
652884fe 9166 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9167 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9168 *
9169 * Not all locks are strictly required, but take them anyway to be nice and
9170 * help out with the lockdep assertions.
bbbee908 9171 */
cdd6c482 9172void perf_event_free_task(struct task_struct *task)
bbbee908 9173{
8dc85d54 9174 struct perf_event_context *ctx;
cdd6c482 9175 struct perf_event *event, *tmp;
8dc85d54 9176 int ctxn;
bbbee908 9177
8dc85d54
PZ
9178 for_each_task_context_nr(ctxn) {
9179 ctx = task->perf_event_ctxp[ctxn];
9180 if (!ctx)
9181 continue;
bbbee908 9182
8dc85d54 9183 mutex_lock(&ctx->mutex);
bbbee908 9184again:
8dc85d54
PZ
9185 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9186 group_entry)
9187 perf_free_event(event, ctx);
bbbee908 9188
8dc85d54
PZ
9189 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9190 group_entry)
9191 perf_free_event(event, ctx);
bbbee908 9192
8dc85d54
PZ
9193 if (!list_empty(&ctx->pinned_groups) ||
9194 !list_empty(&ctx->flexible_groups))
9195 goto again;
bbbee908 9196
8dc85d54 9197 mutex_unlock(&ctx->mutex);
bbbee908 9198
8dc85d54
PZ
9199 put_ctx(ctx);
9200 }
889ff015
FW
9201}
9202
4e231c79
PZ
9203void perf_event_delayed_put(struct task_struct *task)
9204{
9205 int ctxn;
9206
9207 for_each_task_context_nr(ctxn)
9208 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9209}
9210
e03e7ee3 9211struct file *perf_event_get(unsigned int fd)
ffe8690c 9212{
e03e7ee3 9213 struct file *file;
ffe8690c 9214
e03e7ee3
AS
9215 file = fget_raw(fd);
9216 if (!file)
9217 return ERR_PTR(-EBADF);
ffe8690c 9218
e03e7ee3
AS
9219 if (file->f_op != &perf_fops) {
9220 fput(file);
9221 return ERR_PTR(-EBADF);
9222 }
ffe8690c 9223
e03e7ee3 9224 return file;
ffe8690c
KX
9225}
9226
9227const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9228{
9229 if (!event)
9230 return ERR_PTR(-EINVAL);
9231
9232 return &event->attr;
9233}
9234
97dee4f3
PZ
9235/*
9236 * inherit a event from parent task to child task:
9237 */
9238static struct perf_event *
9239inherit_event(struct perf_event *parent_event,
9240 struct task_struct *parent,
9241 struct perf_event_context *parent_ctx,
9242 struct task_struct *child,
9243 struct perf_event *group_leader,
9244 struct perf_event_context *child_ctx)
9245{
1929def9 9246 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9247 struct perf_event *child_event;
cee010ec 9248 unsigned long flags;
97dee4f3
PZ
9249
9250 /*
9251 * Instead of creating recursive hierarchies of events,
9252 * we link inherited events back to the original parent,
9253 * which has a filp for sure, which we use as the reference
9254 * count:
9255 */
9256 if (parent_event->parent)
9257 parent_event = parent_event->parent;
9258
9259 child_event = perf_event_alloc(&parent_event->attr,
9260 parent_event->cpu,
d580ff86 9261 child,
97dee4f3 9262 group_leader, parent_event,
79dff51e 9263 NULL, NULL, -1);
97dee4f3
PZ
9264 if (IS_ERR(child_event))
9265 return child_event;
a6fa941d 9266
c6e5b732
PZ
9267 /*
9268 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9269 * must be under the same lock in order to serialize against
9270 * perf_event_release_kernel(), such that either we must observe
9271 * is_orphaned_event() or they will observe us on the child_list.
9272 */
9273 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9274 if (is_orphaned_event(parent_event) ||
9275 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9276 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9277 free_event(child_event);
9278 return NULL;
9279 }
9280
97dee4f3
PZ
9281 get_ctx(child_ctx);
9282
9283 /*
9284 * Make the child state follow the state of the parent event,
9285 * not its attr.disabled bit. We hold the parent's mutex,
9286 * so we won't race with perf_event_{en, dis}able_family.
9287 */
1929def9 9288 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9289 child_event->state = PERF_EVENT_STATE_INACTIVE;
9290 else
9291 child_event->state = PERF_EVENT_STATE_OFF;
9292
9293 if (parent_event->attr.freq) {
9294 u64 sample_period = parent_event->hw.sample_period;
9295 struct hw_perf_event *hwc = &child_event->hw;
9296
9297 hwc->sample_period = sample_period;
9298 hwc->last_period = sample_period;
9299
9300 local64_set(&hwc->period_left, sample_period);
9301 }
9302
9303 child_event->ctx = child_ctx;
9304 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9305 child_event->overflow_handler_context
9306 = parent_event->overflow_handler_context;
97dee4f3 9307
614b6780
TG
9308 /*
9309 * Precalculate sample_data sizes
9310 */
9311 perf_event__header_size(child_event);
6844c09d 9312 perf_event__id_header_size(child_event);
614b6780 9313
97dee4f3
PZ
9314 /*
9315 * Link it up in the child's context:
9316 */
cee010ec 9317 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9318 add_event_to_ctx(child_event, child_ctx);
cee010ec 9319 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9320
97dee4f3
PZ
9321 /*
9322 * Link this into the parent event's child list
9323 */
97dee4f3
PZ
9324 list_add_tail(&child_event->child_list, &parent_event->child_list);
9325 mutex_unlock(&parent_event->child_mutex);
9326
9327 return child_event;
9328}
9329
9330static int inherit_group(struct perf_event *parent_event,
9331 struct task_struct *parent,
9332 struct perf_event_context *parent_ctx,
9333 struct task_struct *child,
9334 struct perf_event_context *child_ctx)
9335{
9336 struct perf_event *leader;
9337 struct perf_event *sub;
9338 struct perf_event *child_ctr;
9339
9340 leader = inherit_event(parent_event, parent, parent_ctx,
9341 child, NULL, child_ctx);
9342 if (IS_ERR(leader))
9343 return PTR_ERR(leader);
9344 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9345 child_ctr = inherit_event(sub, parent, parent_ctx,
9346 child, leader, child_ctx);
9347 if (IS_ERR(child_ctr))
9348 return PTR_ERR(child_ctr);
9349 }
9350 return 0;
889ff015
FW
9351}
9352
9353static int
9354inherit_task_group(struct perf_event *event, struct task_struct *parent,
9355 struct perf_event_context *parent_ctx,
8dc85d54 9356 struct task_struct *child, int ctxn,
889ff015
FW
9357 int *inherited_all)
9358{
9359 int ret;
8dc85d54 9360 struct perf_event_context *child_ctx;
889ff015
FW
9361
9362 if (!event->attr.inherit) {
9363 *inherited_all = 0;
9364 return 0;
bbbee908
PZ
9365 }
9366
fe4b04fa 9367 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9368 if (!child_ctx) {
9369 /*
9370 * This is executed from the parent task context, so
9371 * inherit events that have been marked for cloning.
9372 * First allocate and initialize a context for the
9373 * child.
9374 */
bbbee908 9375
734df5ab 9376 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9377 if (!child_ctx)
9378 return -ENOMEM;
bbbee908 9379
8dc85d54 9380 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9381 }
9382
9383 ret = inherit_group(event, parent, parent_ctx,
9384 child, child_ctx);
9385
9386 if (ret)
9387 *inherited_all = 0;
9388
9389 return ret;
bbbee908
PZ
9390}
9391
9b51f66d 9392/*
cdd6c482 9393 * Initialize the perf_event context in task_struct
9b51f66d 9394 */
985c8dcb 9395static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9396{
889ff015 9397 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9398 struct perf_event_context *cloned_ctx;
9399 struct perf_event *event;
9b51f66d 9400 struct task_struct *parent = current;
564c2b21 9401 int inherited_all = 1;
dddd3379 9402 unsigned long flags;
6ab423e0 9403 int ret = 0;
9b51f66d 9404
8dc85d54 9405 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9406 return 0;
9407
ad3a37de 9408 /*
25346b93
PM
9409 * If the parent's context is a clone, pin it so it won't get
9410 * swapped under us.
ad3a37de 9411 */
8dc85d54 9412 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9413 if (!parent_ctx)
9414 return 0;
25346b93 9415
ad3a37de
PM
9416 /*
9417 * No need to check if parent_ctx != NULL here; since we saw
9418 * it non-NULL earlier, the only reason for it to become NULL
9419 * is if we exit, and since we're currently in the middle of
9420 * a fork we can't be exiting at the same time.
9421 */
ad3a37de 9422
9b51f66d
IM
9423 /*
9424 * Lock the parent list. No need to lock the child - not PID
9425 * hashed yet and not running, so nobody can access it.
9426 */
d859e29f 9427 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9428
9429 /*
9430 * We dont have to disable NMIs - we are only looking at
9431 * the list, not manipulating it:
9432 */
889ff015 9433 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9434 ret = inherit_task_group(event, parent, parent_ctx,
9435 child, ctxn, &inherited_all);
889ff015
FW
9436 if (ret)
9437 break;
9438 }
b93f7978 9439
dddd3379
TG
9440 /*
9441 * We can't hold ctx->lock when iterating the ->flexible_group list due
9442 * to allocations, but we need to prevent rotation because
9443 * rotate_ctx() will change the list from interrupt context.
9444 */
9445 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9446 parent_ctx->rotate_disable = 1;
9447 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9448
889ff015 9449 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9450 ret = inherit_task_group(event, parent, parent_ctx,
9451 child, ctxn, &inherited_all);
889ff015 9452 if (ret)
9b51f66d 9453 break;
564c2b21
PM
9454 }
9455
dddd3379
TG
9456 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9457 parent_ctx->rotate_disable = 0;
dddd3379 9458
8dc85d54 9459 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9460
05cbaa28 9461 if (child_ctx && inherited_all) {
564c2b21
PM
9462 /*
9463 * Mark the child context as a clone of the parent
9464 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9465 *
9466 * Note that if the parent is a clone, the holding of
9467 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9468 */
c5ed5145 9469 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9470 if (cloned_ctx) {
9471 child_ctx->parent_ctx = cloned_ctx;
25346b93 9472 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9473 } else {
9474 child_ctx->parent_ctx = parent_ctx;
9475 child_ctx->parent_gen = parent_ctx->generation;
9476 }
9477 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9478 }
9479
c5ed5145 9480 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9481 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9482
25346b93 9483 perf_unpin_context(parent_ctx);
fe4b04fa 9484 put_ctx(parent_ctx);
ad3a37de 9485
6ab423e0 9486 return ret;
9b51f66d
IM
9487}
9488
8dc85d54
PZ
9489/*
9490 * Initialize the perf_event context in task_struct
9491 */
9492int perf_event_init_task(struct task_struct *child)
9493{
9494 int ctxn, ret;
9495
8550d7cb
ON
9496 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9497 mutex_init(&child->perf_event_mutex);
9498 INIT_LIST_HEAD(&child->perf_event_list);
9499
8dc85d54
PZ
9500 for_each_task_context_nr(ctxn) {
9501 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9502 if (ret) {
9503 perf_event_free_task(child);
8dc85d54 9504 return ret;
6c72e350 9505 }
8dc85d54
PZ
9506 }
9507
9508 return 0;
9509}
9510
220b140b
PM
9511static void __init perf_event_init_all_cpus(void)
9512{
b28ab83c 9513 struct swevent_htable *swhash;
220b140b 9514 int cpu;
220b140b
PM
9515
9516 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9517 swhash = &per_cpu(swevent_htable, cpu);
9518 mutex_init(&swhash->hlist_mutex);
2fde4f94 9519 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9520 }
9521}
9522
0db0628d 9523static void perf_event_init_cpu(int cpu)
0793a61d 9524{
108b02cf 9525 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9526
b28ab83c 9527 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9528 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9529 struct swevent_hlist *hlist;
9530
b28ab83c
PZ
9531 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9532 WARN_ON(!hlist);
9533 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9534 }
b28ab83c 9535 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9536}
9537
2965faa5 9538#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9539static void __perf_event_exit_context(void *__info)
0793a61d 9540{
108b02cf 9541 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9542 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9543 struct perf_event *event;
0793a61d 9544
fae3fde6
PZ
9545 raw_spin_lock(&ctx->lock);
9546 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9547 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9548 raw_spin_unlock(&ctx->lock);
0793a61d 9549}
108b02cf
PZ
9550
9551static void perf_event_exit_cpu_context(int cpu)
9552{
9553 struct perf_event_context *ctx;
9554 struct pmu *pmu;
9555 int idx;
9556
9557 idx = srcu_read_lock(&pmus_srcu);
9558 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9559 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9560
9561 mutex_lock(&ctx->mutex);
9562 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9563 mutex_unlock(&ctx->mutex);
9564 }
9565 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9566}
9567
cdd6c482 9568static void perf_event_exit_cpu(int cpu)
0793a61d 9569{
e3703f8c 9570 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9571}
9572#else
cdd6c482 9573static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9574#endif
9575
c277443c
PZ
9576static int
9577perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9578{
9579 int cpu;
9580
9581 for_each_online_cpu(cpu)
9582 perf_event_exit_cpu(cpu);
9583
9584 return NOTIFY_OK;
9585}
9586
9587/*
9588 * Run the perf reboot notifier at the very last possible moment so that
9589 * the generic watchdog code runs as long as possible.
9590 */
9591static struct notifier_block perf_reboot_notifier = {
9592 .notifier_call = perf_reboot,
9593 .priority = INT_MIN,
9594};
9595
0db0628d 9596static int
0793a61d
TG
9597perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9598{
9599 unsigned int cpu = (long)hcpu;
9600
4536e4d1 9601 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9602
9603 case CPU_UP_PREPARE:
1dcaac1c
PZ
9604 /*
9605 * This must be done before the CPU comes alive, because the
9606 * moment we can run tasks we can encounter (software) events.
9607 *
9608 * Specifically, someone can have inherited events on kthreadd
9609 * or a pre-existing worker thread that gets re-bound.
9610 */
cdd6c482 9611 perf_event_init_cpu(cpu);
0793a61d
TG
9612 break;
9613
9614 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9615 /*
9616 * This must be done before the CPU dies because after that an
9617 * active event might want to IPI the CPU and that'll not work
9618 * so great for dead CPUs.
9619 *
9620 * XXX smp_call_function_single() return -ENXIO without a warn
9621 * so we could possibly deal with this.
9622 *
9623 * This is safe against new events arriving because
9624 * sys_perf_event_open() serializes against hotplug using
9625 * get_online_cpus().
9626 */
cdd6c482 9627 perf_event_exit_cpu(cpu);
0793a61d 9628 break;
0793a61d
TG
9629 default:
9630 break;
9631 }
9632
9633 return NOTIFY_OK;
9634}
9635
cdd6c482 9636void __init perf_event_init(void)
0793a61d 9637{
3c502e7a
JW
9638 int ret;
9639
2e80a82a
PZ
9640 idr_init(&pmu_idr);
9641
220b140b 9642 perf_event_init_all_cpus();
b0a873eb 9643 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9644 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9645 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9646 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9647 perf_tp_register();
9648 perf_cpu_notifier(perf_cpu_notify);
c277443c 9649 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9650
9651 ret = init_hw_breakpoint();
9652 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9653
b01c3a00
JO
9654 /*
9655 * Build time assertion that we keep the data_head at the intended
9656 * location. IOW, validation we got the __reserved[] size right.
9657 */
9658 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9659 != 1024);
0793a61d 9660}
abe43400 9661
fd979c01
CS
9662ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9663 char *page)
9664{
9665 struct perf_pmu_events_attr *pmu_attr =
9666 container_of(attr, struct perf_pmu_events_attr, attr);
9667
9668 if (pmu_attr->event_str)
9669 return sprintf(page, "%s\n", pmu_attr->event_str);
9670
9671 return 0;
9672}
675965b0 9673EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9674
abe43400
PZ
9675static int __init perf_event_sysfs_init(void)
9676{
9677 struct pmu *pmu;
9678 int ret;
9679
9680 mutex_lock(&pmus_lock);
9681
9682 ret = bus_register(&pmu_bus);
9683 if (ret)
9684 goto unlock;
9685
9686 list_for_each_entry(pmu, &pmus, entry) {
9687 if (!pmu->name || pmu->type < 0)
9688 continue;
9689
9690 ret = pmu_dev_alloc(pmu);
9691 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9692 }
9693 pmu_bus_running = 1;
9694 ret = 0;
9695
9696unlock:
9697 mutex_unlock(&pmus_lock);
9698
9699 return ret;
9700}
9701device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9702
9703#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9704static struct cgroup_subsys_state *
9705perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9706{
9707 struct perf_cgroup *jc;
e5d1367f 9708
1b15d055 9709 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9710 if (!jc)
9711 return ERR_PTR(-ENOMEM);
9712
e5d1367f
SE
9713 jc->info = alloc_percpu(struct perf_cgroup_info);
9714 if (!jc->info) {
9715 kfree(jc);
9716 return ERR_PTR(-ENOMEM);
9717 }
9718
e5d1367f
SE
9719 return &jc->css;
9720}
9721
eb95419b 9722static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9723{
eb95419b
TH
9724 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9725
e5d1367f
SE
9726 free_percpu(jc->info);
9727 kfree(jc);
9728}
9729
9730static int __perf_cgroup_move(void *info)
9731{
9732 struct task_struct *task = info;
ddaaf4e2 9733 rcu_read_lock();
e5d1367f 9734 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9735 rcu_read_unlock();
e5d1367f
SE
9736 return 0;
9737}
9738
1f7dd3e5 9739static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9740{
bb9d97b6 9741 struct task_struct *task;
1f7dd3e5 9742 struct cgroup_subsys_state *css;
bb9d97b6 9743
1f7dd3e5 9744 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9745 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9746}
9747
073219e9 9748struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9749 .css_alloc = perf_cgroup_css_alloc,
9750 .css_free = perf_cgroup_css_free,
bb9d97b6 9751 .attach = perf_cgroup_attach,
e5d1367f
SE
9752};
9753#endif /* CONFIG_CGROUP_PERF */