Merge branch 'perf/urgent' into perf/core, to resolve conflict and to prepare for...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
0793a61d 43
76369139
FW
44#include "internal.h"
45
4e193bd4
TB
46#include <asm/irq_regs.h>
47
fe4b04fa 48struct remote_function_call {
e7e7ee2e
IM
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
fe4b04fa
PZ
53};
54
55static void remote_function(void *data)
56{
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67}
68
69/**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82static int
83task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84{
85 struct remote_function_call data = {
e7e7ee2e
IM
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96}
97
98/**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108{
109 struct remote_function_call data = {
e7e7ee2e
IM
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119}
120
e5d1367f
SE
121#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
123 PERF_FLAG_PID_CGROUP |\
124 PERF_FLAG_FD_CLOEXEC)
e5d1367f 125
bce38cd5
SE
126/*
127 * branch priv levels that need permission checks
128 */
129#define PERF_SAMPLE_BRANCH_PERM_PLM \
130 (PERF_SAMPLE_BRANCH_KERNEL |\
131 PERF_SAMPLE_BRANCH_HV)
132
0b3fcf17
SE
133enum event_type_t {
134 EVENT_FLEXIBLE = 0x1,
135 EVENT_PINNED = 0x2,
136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
137};
138
e5d1367f
SE
139/*
140 * perf_sched_events : >0 events exist
141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
142 */
c5905afb 143struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 144static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 145static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 146
cdd6c482
IM
147static atomic_t nr_mmap_events __read_mostly;
148static atomic_t nr_comm_events __read_mostly;
149static atomic_t nr_task_events __read_mostly;
948b26b6 150static atomic_t nr_freq_events __read_mostly;
9ee318a7 151
108b02cf
PZ
152static LIST_HEAD(pmus);
153static DEFINE_MUTEX(pmus_lock);
154static struct srcu_struct pmus_srcu;
155
0764771d 156/*
cdd6c482 157 * perf event paranoia level:
0fbdea19
IM
158 * -1 - not paranoid at all
159 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 160 * 1 - disallow cpu events for unpriv
0fbdea19 161 * 2 - disallow kernel profiling for unpriv
0764771d 162 */
cdd6c482 163int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 164
20443384
FW
165/* Minimum for 512 kiB + 1 user control page */
166int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
167
168/*
cdd6c482 169 * max perf event sample rate
df58ab24 170 */
14c63f17
DH
171#define DEFAULT_MAX_SAMPLE_RATE 100000
172#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
173#define DEFAULT_CPU_TIME_MAX_PERCENT 25
174
175int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
176
177static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
178static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
179
d9494cb4
PZ
180static int perf_sample_allowed_ns __read_mostly =
181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
182
183void update_perf_cpu_limits(void)
184{
185 u64 tmp = perf_sample_period_ns;
186
187 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 188 do_div(tmp, 100);
d9494cb4 189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 190}
163ec435 191
9e630205
SE
192static int perf_rotate_context(struct perf_cpu_context *cpuctx);
193
163ec435
PZ
194int perf_proc_update_handler(struct ctl_table *table, int write,
195 void __user *buffer, size_t *lenp,
196 loff_t *ppos)
197{
723478c8 198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
199
200 if (ret || !write)
201 return ret;
202
203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
205 update_perf_cpu_limits();
206
207 return 0;
208}
209
210int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
211
212int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
213 void __user *buffer, size_t *lenp,
214 loff_t *ppos)
215{
216 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
217
218 if (ret || !write)
219 return ret;
220
221 update_perf_cpu_limits();
163ec435
PZ
222
223 return 0;
224}
1ccd1549 225
14c63f17
DH
226/*
227 * perf samples are done in some very critical code paths (NMIs).
228 * If they take too much CPU time, the system can lock up and not
229 * get any real work done. This will drop the sample rate when
230 * we detect that events are taking too long.
231 */
232#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 233static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 234
6a02ad66 235static void perf_duration_warn(struct irq_work *w)
14c63f17 236{
6a02ad66 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 238 u64 avg_local_sample_len;
e5302920 239 u64 local_samples_len;
6a02ad66
PZ
240
241 local_samples_len = __get_cpu_var(running_sample_length);
242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
243
244 printk_ratelimited(KERN_WARNING
245 "perf interrupt took too long (%lld > %lld), lowering "
246 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 247 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
248 sysctl_perf_event_sample_rate);
249}
250
251static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
252
253void perf_sample_event_took(u64 sample_len_ns)
254{
d9494cb4 255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
256 u64 avg_local_sample_len;
257 u64 local_samples_len;
14c63f17 258
d9494cb4 259 if (allowed_ns == 0)
14c63f17
DH
260 return;
261
262 /* decay the counter by 1 average sample */
263 local_samples_len = __get_cpu_var(running_sample_length);
264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
265 local_samples_len += sample_len_ns;
266 __get_cpu_var(running_sample_length) = local_samples_len;
267
268 /*
269 * note: this will be biased artifically low until we have
270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
271 * from having to maintain a count.
272 */
273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
274
d9494cb4 275 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
276 return;
277
278 if (max_samples_per_tick <= 1)
279 return;
280
281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
284
14c63f17 285 update_perf_cpu_limits();
6a02ad66 286
cd578abb
PZ
287 if (!irq_work_queue(&perf_duration_work)) {
288 early_printk("perf interrupt took too long (%lld > %lld), lowering "
289 "kernel.perf_event_max_sample_rate to %d\n",
290 avg_local_sample_len, allowed_ns >> 1,
291 sysctl_perf_event_sample_rate);
292 }
14c63f17
DH
293}
294
cdd6c482 295static atomic64_t perf_event_id;
a96bbc16 296
0b3fcf17
SE
297static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
298 enum event_type_t event_type);
299
300static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
301 enum event_type_t event_type,
302 struct task_struct *task);
303
304static void update_context_time(struct perf_event_context *ctx);
305static u64 perf_event_time(struct perf_event *event);
0b3fcf17 306
cdd6c482 307void __weak perf_event_print_debug(void) { }
0793a61d 308
84c79910 309extern __weak const char *perf_pmu_name(void)
0793a61d 310{
84c79910 311 return "pmu";
0793a61d
TG
312}
313
0b3fcf17
SE
314static inline u64 perf_clock(void)
315{
316 return local_clock();
317}
318
e5d1367f
SE
319static inline struct perf_cpu_context *
320__get_cpu_context(struct perf_event_context *ctx)
321{
322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
323}
324
facc4307
PZ
325static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
326 struct perf_event_context *ctx)
327{
328 raw_spin_lock(&cpuctx->ctx.lock);
329 if (ctx)
330 raw_spin_lock(&ctx->lock);
331}
332
333static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
335{
336 if (ctx)
337 raw_spin_unlock(&ctx->lock);
338 raw_spin_unlock(&cpuctx->ctx.lock);
339}
340
e5d1367f
SE
341#ifdef CONFIG_CGROUP_PERF
342
877c6856
LZ
343/*
344 * perf_cgroup_info keeps track of time_enabled for a cgroup.
345 * This is a per-cpu dynamically allocated data structure.
346 */
347struct perf_cgroup_info {
348 u64 time;
349 u64 timestamp;
350};
351
352struct perf_cgroup {
353 struct cgroup_subsys_state css;
86e213e1 354 struct perf_cgroup_info __percpu *info;
877c6856
LZ
355};
356
3f7cce3c
SE
357/*
358 * Must ensure cgroup is pinned (css_get) before calling
359 * this function. In other words, we cannot call this function
360 * if there is no cgroup event for the current CPU context.
361 */
e5d1367f
SE
362static inline struct perf_cgroup *
363perf_cgroup_from_task(struct task_struct *task)
364{
073219e9 365 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 366 struct perf_cgroup, css);
e5d1367f
SE
367}
368
369static inline bool
370perf_cgroup_match(struct perf_event *event)
371{
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
374
ef824fa1
TH
375 /* @event doesn't care about cgroup */
376 if (!event->cgrp)
377 return true;
378
379 /* wants specific cgroup scope but @cpuctx isn't associated with any */
380 if (!cpuctx->cgrp)
381 return false;
382
383 /*
384 * Cgroup scoping is recursive. An event enabled for a cgroup is
385 * also enabled for all its descendant cgroups. If @cpuctx's
386 * cgroup is a descendant of @event's (the test covers identity
387 * case), it's a match.
388 */
389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
390 event->cgrp->css.cgroup);
e5d1367f
SE
391}
392
e5d1367f
SE
393static inline void perf_put_cgroup(struct perf_event *event)
394{
395 css_put(&event->cgrp->css);
396}
397
398static inline void perf_detach_cgroup(struct perf_event *event)
399{
400 perf_put_cgroup(event);
401 event->cgrp = NULL;
402}
403
404static inline int is_cgroup_event(struct perf_event *event)
405{
406 return event->cgrp != NULL;
407}
408
409static inline u64 perf_cgroup_event_time(struct perf_event *event)
410{
411 struct perf_cgroup_info *t;
412
413 t = per_cpu_ptr(event->cgrp->info, event->cpu);
414 return t->time;
415}
416
417static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
418{
419 struct perf_cgroup_info *info;
420 u64 now;
421
422 now = perf_clock();
423
424 info = this_cpu_ptr(cgrp->info);
425
426 info->time += now - info->timestamp;
427 info->timestamp = now;
428}
429
430static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
431{
432 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
433 if (cgrp_out)
434 __update_cgrp_time(cgrp_out);
435}
436
437static inline void update_cgrp_time_from_event(struct perf_event *event)
438{
3f7cce3c
SE
439 struct perf_cgroup *cgrp;
440
e5d1367f 441 /*
3f7cce3c
SE
442 * ensure we access cgroup data only when needed and
443 * when we know the cgroup is pinned (css_get)
e5d1367f 444 */
3f7cce3c 445 if (!is_cgroup_event(event))
e5d1367f
SE
446 return;
447
3f7cce3c
SE
448 cgrp = perf_cgroup_from_task(current);
449 /*
450 * Do not update time when cgroup is not active
451 */
452 if (cgrp == event->cgrp)
453 __update_cgrp_time(event->cgrp);
e5d1367f
SE
454}
455
456static inline void
3f7cce3c
SE
457perf_cgroup_set_timestamp(struct task_struct *task,
458 struct perf_event_context *ctx)
e5d1367f
SE
459{
460 struct perf_cgroup *cgrp;
461 struct perf_cgroup_info *info;
462
3f7cce3c
SE
463 /*
464 * ctx->lock held by caller
465 * ensure we do not access cgroup data
466 * unless we have the cgroup pinned (css_get)
467 */
468 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
469 return;
470
471 cgrp = perf_cgroup_from_task(task);
472 info = this_cpu_ptr(cgrp->info);
3f7cce3c 473 info->timestamp = ctx->timestamp;
e5d1367f
SE
474}
475
476#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
477#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
478
479/*
480 * reschedule events based on the cgroup constraint of task.
481 *
482 * mode SWOUT : schedule out everything
483 * mode SWIN : schedule in based on cgroup for next
484 */
485void perf_cgroup_switch(struct task_struct *task, int mode)
486{
487 struct perf_cpu_context *cpuctx;
488 struct pmu *pmu;
489 unsigned long flags;
490
491 /*
492 * disable interrupts to avoid geting nr_cgroup
493 * changes via __perf_event_disable(). Also
494 * avoids preemption.
495 */
496 local_irq_save(flags);
497
498 /*
499 * we reschedule only in the presence of cgroup
500 * constrained events.
501 */
502 rcu_read_lock();
503
504 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
506 if (cpuctx->unique_pmu != pmu)
507 continue; /* ensure we process each cpuctx once */
e5d1367f 508
e5d1367f
SE
509 /*
510 * perf_cgroup_events says at least one
511 * context on this CPU has cgroup events.
512 *
513 * ctx->nr_cgroups reports the number of cgroup
514 * events for a context.
515 */
516 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
517 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
518 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
519
520 if (mode & PERF_CGROUP_SWOUT) {
521 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
522 /*
523 * must not be done before ctxswout due
524 * to event_filter_match() in event_sched_out()
525 */
526 cpuctx->cgrp = NULL;
527 }
528
529 if (mode & PERF_CGROUP_SWIN) {
e566b76e 530 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
531 /*
532 * set cgrp before ctxsw in to allow
533 * event_filter_match() to not have to pass
534 * task around
e5d1367f
SE
535 */
536 cpuctx->cgrp = perf_cgroup_from_task(task);
537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
538 }
facc4307
PZ
539 perf_pmu_enable(cpuctx->ctx.pmu);
540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 541 }
e5d1367f
SE
542 }
543
544 rcu_read_unlock();
545
546 local_irq_restore(flags);
547}
548
a8d757ef
SE
549static inline void perf_cgroup_sched_out(struct task_struct *task,
550 struct task_struct *next)
e5d1367f 551{
a8d757ef
SE
552 struct perf_cgroup *cgrp1;
553 struct perf_cgroup *cgrp2 = NULL;
554
555 /*
556 * we come here when we know perf_cgroup_events > 0
557 */
558 cgrp1 = perf_cgroup_from_task(task);
559
560 /*
561 * next is NULL when called from perf_event_enable_on_exec()
562 * that will systematically cause a cgroup_switch()
563 */
564 if (next)
565 cgrp2 = perf_cgroup_from_task(next);
566
567 /*
568 * only schedule out current cgroup events if we know
569 * that we are switching to a different cgroup. Otherwise,
570 * do no touch the cgroup events.
571 */
572 if (cgrp1 != cgrp2)
573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
574}
575
a8d757ef
SE
576static inline void perf_cgroup_sched_in(struct task_struct *prev,
577 struct task_struct *task)
e5d1367f 578{
a8d757ef
SE
579 struct perf_cgroup *cgrp1;
580 struct perf_cgroup *cgrp2 = NULL;
581
582 /*
583 * we come here when we know perf_cgroup_events > 0
584 */
585 cgrp1 = perf_cgroup_from_task(task);
586
587 /* prev can never be NULL */
588 cgrp2 = perf_cgroup_from_task(prev);
589
590 /*
591 * only need to schedule in cgroup events if we are changing
592 * cgroup during ctxsw. Cgroup events were not scheduled
593 * out of ctxsw out if that was not the case.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
597}
598
599static inline int perf_cgroup_connect(int fd, struct perf_event *event,
600 struct perf_event_attr *attr,
601 struct perf_event *group_leader)
602{
603 struct perf_cgroup *cgrp;
604 struct cgroup_subsys_state *css;
2903ff01
AV
605 struct fd f = fdget(fd);
606 int ret = 0;
e5d1367f 607
2903ff01 608 if (!f.file)
e5d1367f
SE
609 return -EBADF;
610
5a17f543 611 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
3db272c0
LZ
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
e5d1367f
SE
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
e5d1367f 628 }
3db272c0 629out:
2903ff01 630 fdput(f);
e5d1367f
SE
631 return ret;
632}
633
634static inline void
635perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636{
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640}
641
642static inline void
643perf_cgroup_defer_enabled(struct perf_event *event)
644{
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653}
654
655static inline void
656perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658{
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674}
675#else /* !CONFIG_CGROUP_PERF */
676
677static inline bool
678perf_cgroup_match(struct perf_event *event)
679{
680 return true;
681}
682
683static inline void perf_detach_cgroup(struct perf_event *event)
684{}
685
686static inline int is_cgroup_event(struct perf_event *event)
687{
688 return 0;
689}
690
691static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692{
693 return 0;
694}
695
696static inline void update_cgrp_time_from_event(struct perf_event *event)
697{
698}
699
700static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701{
702}
703
a8d757ef
SE
704static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
e5d1367f
SE
706{
707}
708
a8d757ef
SE
709static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
e5d1367f
SE
711{
712}
713
714static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717{
718 return -EINVAL;
719}
720
721static inline void
3f7cce3c
SE
722perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
e5d1367f
SE
724{
725}
726
727void
728perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729{
730}
731
732static inline void
733perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734{
735}
736
737static inline u64 perf_cgroup_event_time(struct perf_event *event)
738{
739 return 0;
740}
741
742static inline void
743perf_cgroup_defer_enabled(struct perf_event *event)
744{
745}
746
747static inline void
748perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750{
751}
752#endif
753
9e630205
SE
754/*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758#define PERF_CPU_HRTIMER (1000 / HZ)
759/*
760 * function must be called with interrupts disbled
761 */
762static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
763{
764 struct perf_cpu_context *cpuctx;
765 enum hrtimer_restart ret = HRTIMER_NORESTART;
766 int rotations = 0;
767
768 WARN_ON(!irqs_disabled());
769
770 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
771
772 rotations = perf_rotate_context(cpuctx);
773
774 /*
775 * arm timer if needed
776 */
777 if (rotations) {
778 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
779 ret = HRTIMER_RESTART;
780 }
781
782 return ret;
783}
784
785/* CPU is going down */
786void perf_cpu_hrtimer_cancel(int cpu)
787{
788 struct perf_cpu_context *cpuctx;
789 struct pmu *pmu;
790 unsigned long flags;
791
792 if (WARN_ON(cpu != smp_processor_id()))
793 return;
794
795 local_irq_save(flags);
796
797 rcu_read_lock();
798
799 list_for_each_entry_rcu(pmu, &pmus, entry) {
800 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
801
802 if (pmu->task_ctx_nr == perf_sw_context)
803 continue;
804
805 hrtimer_cancel(&cpuctx->hrtimer);
806 }
807
808 rcu_read_unlock();
809
810 local_irq_restore(flags);
811}
812
813static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814{
815 struct hrtimer *hr = &cpuctx->hrtimer;
816 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 817 int timer;
9e630205
SE
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
62b85639
SE
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
827 timer = pmu->hrtimer_interval_ms;
828 if (timer < 1)
829 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830
831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
832
833 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
834 hr->function = perf_cpu_hrtimer_handler;
835}
836
837static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
838{
839 struct hrtimer *hr = &cpuctx->hrtimer;
840 struct pmu *pmu = cpuctx->ctx.pmu;
841
842 /* not for SW PMU */
843 if (pmu->task_ctx_nr == perf_sw_context)
844 return;
845
846 if (hrtimer_active(hr))
847 return;
848
849 if (!hrtimer_callback_running(hr))
850 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
851 0, HRTIMER_MODE_REL_PINNED, 0);
852}
853
33696fc0 854void perf_pmu_disable(struct pmu *pmu)
9e35ad38 855{
33696fc0
PZ
856 int *count = this_cpu_ptr(pmu->pmu_disable_count);
857 if (!(*count)++)
858 pmu->pmu_disable(pmu);
9e35ad38 859}
9e35ad38 860
33696fc0 861void perf_pmu_enable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!--(*count))
865 pmu->pmu_enable(pmu);
9e35ad38 866}
9e35ad38 867
e9d2b064
PZ
868static DEFINE_PER_CPU(struct list_head, rotation_list);
869
870/*
871 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
872 * because they're strictly cpu affine and rotate_start is called with IRQs
873 * disabled, while rotate_context is called from IRQ context.
874 */
108b02cf 875static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 876{
108b02cf 877 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 878 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 879
e9d2b064 880 WARN_ON(!irqs_disabled());
b5ab4cd5 881
d84153d6 882 if (list_empty(&cpuctx->rotation_list))
e9d2b064 883 list_add(&cpuctx->rotation_list, head);
9e35ad38 884}
9e35ad38 885
cdd6c482 886static void get_ctx(struct perf_event_context *ctx)
a63eaf34 887{
e5289d4a 888 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
889}
890
cdd6c482 891static void put_ctx(struct perf_event_context *ctx)
a63eaf34 892{
564c2b21
PM
893 if (atomic_dec_and_test(&ctx->refcount)) {
894 if (ctx->parent_ctx)
895 put_ctx(ctx->parent_ctx);
c93f7669
PM
896 if (ctx->task)
897 put_task_struct(ctx->task);
cb796ff3 898 kfree_rcu(ctx, rcu_head);
564c2b21 899 }
a63eaf34
PM
900}
901
cdd6c482 902static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
903{
904 if (ctx->parent_ctx) {
905 put_ctx(ctx->parent_ctx);
906 ctx->parent_ctx = NULL;
907 }
5a3126d4 908 ctx->generation++;
71a851b4
PZ
909}
910
6844c09d
ACM
911static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
912{
913 /*
914 * only top level events have the pid namespace they were created in
915 */
916 if (event->parent)
917 event = event->parent;
918
919 return task_tgid_nr_ns(p, event->ns);
920}
921
922static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
923{
924 /*
925 * only top level events have the pid namespace they were created in
926 */
927 if (event->parent)
928 event = event->parent;
929
930 return task_pid_nr_ns(p, event->ns);
931}
932
7f453c24 933/*
cdd6c482 934 * If we inherit events we want to return the parent event id
7f453c24
PZ
935 * to userspace.
936 */
cdd6c482 937static u64 primary_event_id(struct perf_event *event)
7f453c24 938{
cdd6c482 939 u64 id = event->id;
7f453c24 940
cdd6c482
IM
941 if (event->parent)
942 id = event->parent->id;
7f453c24
PZ
943
944 return id;
945}
946
25346b93 947/*
cdd6c482 948 * Get the perf_event_context for a task and lock it.
25346b93
PM
949 * This has to cope with with the fact that until it is locked,
950 * the context could get moved to another task.
951 */
cdd6c482 952static struct perf_event_context *
8dc85d54 953perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 954{
cdd6c482 955 struct perf_event_context *ctx;
25346b93 956
9ed6060d 957retry:
058ebd0e
PZ
958 /*
959 * One of the few rules of preemptible RCU is that one cannot do
960 * rcu_read_unlock() while holding a scheduler (or nested) lock when
961 * part of the read side critical section was preemptible -- see
962 * rcu_read_unlock_special().
963 *
964 * Since ctx->lock nests under rq->lock we must ensure the entire read
965 * side critical section is non-preemptible.
966 */
967 preempt_disable();
968 rcu_read_lock();
8dc85d54 969 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
970 if (ctx) {
971 /*
972 * If this context is a clone of another, it might
973 * get swapped for another underneath us by
cdd6c482 974 * perf_event_task_sched_out, though the
25346b93
PM
975 * rcu_read_lock() protects us from any context
976 * getting freed. Lock the context and check if it
977 * got swapped before we could get the lock, and retry
978 * if so. If we locked the right context, then it
979 * can't get swapped on us any more.
980 */
e625cce1 981 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 982 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
984 rcu_read_unlock();
985 preempt_enable();
25346b93
PM
986 goto retry;
987 }
b49a9e7e
PZ
988
989 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 990 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
991 ctx = NULL;
992 }
25346b93
PM
993 }
994 rcu_read_unlock();
058ebd0e 995 preempt_enable();
25346b93
PM
996 return ctx;
997}
998
999/*
1000 * Get the context for a task and increment its pin_count so it
1001 * can't get swapped to another task. This also increments its
1002 * reference count so that the context can't get freed.
1003 */
8dc85d54
PZ
1004static struct perf_event_context *
1005perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1006{
cdd6c482 1007 struct perf_event_context *ctx;
25346b93
PM
1008 unsigned long flags;
1009
8dc85d54 1010 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1011 if (ctx) {
1012 ++ctx->pin_count;
e625cce1 1013 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1014 }
1015 return ctx;
1016}
1017
cdd6c482 1018static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1019{
1020 unsigned long flags;
1021
e625cce1 1022 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1023 --ctx->pin_count;
e625cce1 1024 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1025}
1026
f67218c3
PZ
1027/*
1028 * Update the record of the current time in a context.
1029 */
1030static void update_context_time(struct perf_event_context *ctx)
1031{
1032 u64 now = perf_clock();
1033
1034 ctx->time += now - ctx->timestamp;
1035 ctx->timestamp = now;
1036}
1037
4158755d
SE
1038static u64 perf_event_time(struct perf_event *event)
1039{
1040 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1041
1042 if (is_cgroup_event(event))
1043 return perf_cgroup_event_time(event);
1044
4158755d
SE
1045 return ctx ? ctx->time : 0;
1046}
1047
f67218c3
PZ
1048/*
1049 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1050 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1051 */
1052static void update_event_times(struct perf_event *event)
1053{
1054 struct perf_event_context *ctx = event->ctx;
1055 u64 run_end;
1056
1057 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1058 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1059 return;
e5d1367f
SE
1060 /*
1061 * in cgroup mode, time_enabled represents
1062 * the time the event was enabled AND active
1063 * tasks were in the monitored cgroup. This is
1064 * independent of the activity of the context as
1065 * there may be a mix of cgroup and non-cgroup events.
1066 *
1067 * That is why we treat cgroup events differently
1068 * here.
1069 */
1070 if (is_cgroup_event(event))
46cd6a7f 1071 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1072 else if (ctx->is_active)
1073 run_end = ctx->time;
acd1d7c1
PZ
1074 else
1075 run_end = event->tstamp_stopped;
1076
1077 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1078
1079 if (event->state == PERF_EVENT_STATE_INACTIVE)
1080 run_end = event->tstamp_stopped;
1081 else
4158755d 1082 run_end = perf_event_time(event);
f67218c3
PZ
1083
1084 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1085
f67218c3
PZ
1086}
1087
96c21a46
PZ
1088/*
1089 * Update total_time_enabled and total_time_running for all events in a group.
1090 */
1091static void update_group_times(struct perf_event *leader)
1092{
1093 struct perf_event *event;
1094
1095 update_event_times(leader);
1096 list_for_each_entry(event, &leader->sibling_list, group_entry)
1097 update_event_times(event);
1098}
1099
889ff015
FW
1100static struct list_head *
1101ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1102{
1103 if (event->attr.pinned)
1104 return &ctx->pinned_groups;
1105 else
1106 return &ctx->flexible_groups;
1107}
1108
fccc714b 1109/*
cdd6c482 1110 * Add a event from the lists for its context.
fccc714b
PZ
1111 * Must be called with ctx->mutex and ctx->lock held.
1112 */
04289bb9 1113static void
cdd6c482 1114list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1115{
8a49542c
PZ
1116 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1117 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1118
1119 /*
8a49542c
PZ
1120 * If we're a stand alone event or group leader, we go to the context
1121 * list, group events are kept attached to the group so that
1122 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1123 */
8a49542c 1124 if (event->group_leader == event) {
889ff015
FW
1125 struct list_head *list;
1126
d6f962b5
FW
1127 if (is_software_event(event))
1128 event->group_flags |= PERF_GROUP_SOFTWARE;
1129
889ff015
FW
1130 list = ctx_group_list(event, ctx);
1131 list_add_tail(&event->group_entry, list);
5c148194 1132 }
592903cd 1133
08309379 1134 if (is_cgroup_event(event))
e5d1367f 1135 ctx->nr_cgroups++;
e5d1367f 1136
d010b332
SE
1137 if (has_branch_stack(event))
1138 ctx->nr_branch_stack++;
1139
cdd6c482 1140 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1141 if (!ctx->nr_events)
108b02cf 1142 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1143 ctx->nr_events++;
1144 if (event->attr.inherit_stat)
bfbd3381 1145 ctx->nr_stat++;
5a3126d4
PZ
1146
1147 ctx->generation++;
04289bb9
IM
1148}
1149
0231bb53
JO
1150/*
1151 * Initialize event state based on the perf_event_attr::disabled.
1152 */
1153static inline void perf_event__state_init(struct perf_event *event)
1154{
1155 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1156 PERF_EVENT_STATE_INACTIVE;
1157}
1158
c320c7b7
ACM
1159/*
1160 * Called at perf_event creation and when events are attached/detached from a
1161 * group.
1162 */
1163static void perf_event__read_size(struct perf_event *event)
1164{
1165 int entry = sizeof(u64); /* value */
1166 int size = 0;
1167 int nr = 1;
1168
1169 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1170 size += sizeof(u64);
1171
1172 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1173 size += sizeof(u64);
1174
1175 if (event->attr.read_format & PERF_FORMAT_ID)
1176 entry += sizeof(u64);
1177
1178 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1179 nr += event->group_leader->nr_siblings;
1180 size += sizeof(u64);
1181 }
1182
1183 size += entry * nr;
1184 event->read_size = size;
1185}
1186
1187static void perf_event__header_size(struct perf_event *event)
1188{
1189 struct perf_sample_data *data;
1190 u64 sample_type = event->attr.sample_type;
1191 u16 size = 0;
1192
1193 perf_event__read_size(event);
1194
1195 if (sample_type & PERF_SAMPLE_IP)
1196 size += sizeof(data->ip);
1197
6844c09d
ACM
1198 if (sample_type & PERF_SAMPLE_ADDR)
1199 size += sizeof(data->addr);
1200
1201 if (sample_type & PERF_SAMPLE_PERIOD)
1202 size += sizeof(data->period);
1203
c3feedf2
AK
1204 if (sample_type & PERF_SAMPLE_WEIGHT)
1205 size += sizeof(data->weight);
1206
6844c09d
ACM
1207 if (sample_type & PERF_SAMPLE_READ)
1208 size += event->read_size;
1209
d6be9ad6
SE
1210 if (sample_type & PERF_SAMPLE_DATA_SRC)
1211 size += sizeof(data->data_src.val);
1212
fdfbbd07
AK
1213 if (sample_type & PERF_SAMPLE_TRANSACTION)
1214 size += sizeof(data->txn);
1215
6844c09d
ACM
1216 event->header_size = size;
1217}
1218
1219static void perf_event__id_header_size(struct perf_event *event)
1220{
1221 struct perf_sample_data *data;
1222 u64 sample_type = event->attr.sample_type;
1223 u16 size = 0;
1224
c320c7b7
ACM
1225 if (sample_type & PERF_SAMPLE_TID)
1226 size += sizeof(data->tid_entry);
1227
1228 if (sample_type & PERF_SAMPLE_TIME)
1229 size += sizeof(data->time);
1230
ff3d527c
AH
1231 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1232 size += sizeof(data->id);
1233
c320c7b7
ACM
1234 if (sample_type & PERF_SAMPLE_ID)
1235 size += sizeof(data->id);
1236
1237 if (sample_type & PERF_SAMPLE_STREAM_ID)
1238 size += sizeof(data->stream_id);
1239
1240 if (sample_type & PERF_SAMPLE_CPU)
1241 size += sizeof(data->cpu_entry);
1242
6844c09d 1243 event->id_header_size = size;
c320c7b7
ACM
1244}
1245
8a49542c
PZ
1246static void perf_group_attach(struct perf_event *event)
1247{
c320c7b7 1248 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1249
74c3337c
PZ
1250 /*
1251 * We can have double attach due to group movement in perf_event_open.
1252 */
1253 if (event->attach_state & PERF_ATTACH_GROUP)
1254 return;
1255
8a49542c
PZ
1256 event->attach_state |= PERF_ATTACH_GROUP;
1257
1258 if (group_leader == event)
1259 return;
1260
1261 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1262 !is_software_event(event))
1263 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1264
1265 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1266 group_leader->nr_siblings++;
c320c7b7
ACM
1267
1268 perf_event__header_size(group_leader);
1269
1270 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1271 perf_event__header_size(pos);
8a49542c
PZ
1272}
1273
a63eaf34 1274/*
cdd6c482 1275 * Remove a event from the lists for its context.
fccc714b 1276 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1277 */
04289bb9 1278static void
cdd6c482 1279list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1280{
68cacd29 1281 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1282 /*
1283 * We can have double detach due to exit/hot-unplug + close.
1284 */
1285 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1286 return;
8a49542c
PZ
1287
1288 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1289
68cacd29 1290 if (is_cgroup_event(event)) {
e5d1367f 1291 ctx->nr_cgroups--;
68cacd29
SE
1292 cpuctx = __get_cpu_context(ctx);
1293 /*
1294 * if there are no more cgroup events
1295 * then cler cgrp to avoid stale pointer
1296 * in update_cgrp_time_from_cpuctx()
1297 */
1298 if (!ctx->nr_cgroups)
1299 cpuctx->cgrp = NULL;
1300 }
e5d1367f 1301
d010b332
SE
1302 if (has_branch_stack(event))
1303 ctx->nr_branch_stack--;
1304
cdd6c482
IM
1305 ctx->nr_events--;
1306 if (event->attr.inherit_stat)
bfbd3381 1307 ctx->nr_stat--;
8bc20959 1308
cdd6c482 1309 list_del_rcu(&event->event_entry);
04289bb9 1310
8a49542c
PZ
1311 if (event->group_leader == event)
1312 list_del_init(&event->group_entry);
5c148194 1313
96c21a46 1314 update_group_times(event);
b2e74a26
SE
1315
1316 /*
1317 * If event was in error state, then keep it
1318 * that way, otherwise bogus counts will be
1319 * returned on read(). The only way to get out
1320 * of error state is by explicit re-enabling
1321 * of the event
1322 */
1323 if (event->state > PERF_EVENT_STATE_OFF)
1324 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1325
1326 ctx->generation++;
050735b0
PZ
1327}
1328
8a49542c 1329static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1330{
1331 struct perf_event *sibling, *tmp;
8a49542c
PZ
1332 struct list_head *list = NULL;
1333
1334 /*
1335 * We can have double detach due to exit/hot-unplug + close.
1336 */
1337 if (!(event->attach_state & PERF_ATTACH_GROUP))
1338 return;
1339
1340 event->attach_state &= ~PERF_ATTACH_GROUP;
1341
1342 /*
1343 * If this is a sibling, remove it from its group.
1344 */
1345 if (event->group_leader != event) {
1346 list_del_init(&event->group_entry);
1347 event->group_leader->nr_siblings--;
c320c7b7 1348 goto out;
8a49542c
PZ
1349 }
1350
1351 if (!list_empty(&event->group_entry))
1352 list = &event->group_entry;
2e2af50b 1353
04289bb9 1354 /*
cdd6c482
IM
1355 * If this was a group event with sibling events then
1356 * upgrade the siblings to singleton events by adding them
8a49542c 1357 * to whatever list we are on.
04289bb9 1358 */
cdd6c482 1359 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1360 if (list)
1361 list_move_tail(&sibling->group_entry, list);
04289bb9 1362 sibling->group_leader = sibling;
d6f962b5
FW
1363
1364 /* Inherit group flags from the previous leader */
1365 sibling->group_flags = event->group_flags;
04289bb9 1366 }
c320c7b7
ACM
1367
1368out:
1369 perf_event__header_size(event->group_leader);
1370
1371 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1372 perf_event__header_size(tmp);
04289bb9
IM
1373}
1374
fa66f07a
SE
1375static inline int
1376event_filter_match(struct perf_event *event)
1377{
e5d1367f
SE
1378 return (event->cpu == -1 || event->cpu == smp_processor_id())
1379 && perf_cgroup_match(event);
fa66f07a
SE
1380}
1381
9ffcfa6f
SE
1382static void
1383event_sched_out(struct perf_event *event,
3b6f9e5c 1384 struct perf_cpu_context *cpuctx,
cdd6c482 1385 struct perf_event_context *ctx)
3b6f9e5c 1386{
4158755d 1387 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1388 u64 delta;
1389 /*
1390 * An event which could not be activated because of
1391 * filter mismatch still needs to have its timings
1392 * maintained, otherwise bogus information is return
1393 * via read() for time_enabled, time_running:
1394 */
1395 if (event->state == PERF_EVENT_STATE_INACTIVE
1396 && !event_filter_match(event)) {
e5d1367f 1397 delta = tstamp - event->tstamp_stopped;
fa66f07a 1398 event->tstamp_running += delta;
4158755d 1399 event->tstamp_stopped = tstamp;
fa66f07a
SE
1400 }
1401
cdd6c482 1402 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1403 return;
3b6f9e5c 1404
44377277
AS
1405 perf_pmu_disable(event->pmu);
1406
cdd6c482
IM
1407 event->state = PERF_EVENT_STATE_INACTIVE;
1408 if (event->pending_disable) {
1409 event->pending_disable = 0;
1410 event->state = PERF_EVENT_STATE_OFF;
970892a9 1411 }
4158755d 1412 event->tstamp_stopped = tstamp;
a4eaf7f1 1413 event->pmu->del(event, 0);
cdd6c482 1414 event->oncpu = -1;
3b6f9e5c 1415
cdd6c482 1416 if (!is_software_event(event))
3b6f9e5c
PM
1417 cpuctx->active_oncpu--;
1418 ctx->nr_active--;
0f5a2601
PZ
1419 if (event->attr.freq && event->attr.sample_freq)
1420 ctx->nr_freq--;
cdd6c482 1421 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1422 cpuctx->exclusive = 0;
44377277
AS
1423
1424 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1425}
1426
d859e29f 1427static void
cdd6c482 1428group_sched_out(struct perf_event *group_event,
d859e29f 1429 struct perf_cpu_context *cpuctx,
cdd6c482 1430 struct perf_event_context *ctx)
d859e29f 1431{
cdd6c482 1432 struct perf_event *event;
fa66f07a 1433 int state = group_event->state;
d859e29f 1434
cdd6c482 1435 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1436
1437 /*
1438 * Schedule out siblings (if any):
1439 */
cdd6c482
IM
1440 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1441 event_sched_out(event, cpuctx, ctx);
d859e29f 1442
fa66f07a 1443 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1444 cpuctx->exclusive = 0;
1445}
1446
46ce0fe9
PZ
1447struct remove_event {
1448 struct perf_event *event;
1449 bool detach_group;
1450};
1451
0793a61d 1452/*
cdd6c482 1453 * Cross CPU call to remove a performance event
0793a61d 1454 *
cdd6c482 1455 * We disable the event on the hardware level first. After that we
0793a61d
TG
1456 * remove it from the context list.
1457 */
fe4b04fa 1458static int __perf_remove_from_context(void *info)
0793a61d 1459{
46ce0fe9
PZ
1460 struct remove_event *re = info;
1461 struct perf_event *event = re->event;
cdd6c482 1462 struct perf_event_context *ctx = event->ctx;
108b02cf 1463 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1464
e625cce1 1465 raw_spin_lock(&ctx->lock);
cdd6c482 1466 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1467 if (re->detach_group)
1468 perf_group_detach(event);
cdd6c482 1469 list_del_event(event, ctx);
64ce3126
PZ
1470 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1471 ctx->is_active = 0;
1472 cpuctx->task_ctx = NULL;
1473 }
e625cce1 1474 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1475
1476 return 0;
0793a61d
TG
1477}
1478
1479
1480/*
cdd6c482 1481 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1482 *
cdd6c482 1483 * CPU events are removed with a smp call. For task events we only
0793a61d 1484 * call when the task is on a CPU.
c93f7669 1485 *
cdd6c482
IM
1486 * If event->ctx is a cloned context, callers must make sure that
1487 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1488 * remains valid. This is OK when called from perf_release since
1489 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1490 * When called from perf_event_exit_task, it's OK because the
c93f7669 1491 * context has been detached from its task.
0793a61d 1492 */
46ce0fe9 1493static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1494{
cdd6c482 1495 struct perf_event_context *ctx = event->ctx;
0793a61d 1496 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1497 struct remove_event re = {
1498 .event = event,
1499 .detach_group = detach_group,
1500 };
0793a61d 1501
fe4b04fa
PZ
1502 lockdep_assert_held(&ctx->mutex);
1503
0793a61d
TG
1504 if (!task) {
1505 /*
cdd6c482 1506 * Per cpu events are removed via an smp call and
af901ca1 1507 * the removal is always successful.
0793a61d 1508 */
46ce0fe9 1509 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1510 return;
1511 }
1512
1513retry:
46ce0fe9 1514 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1515 return;
0793a61d 1516
e625cce1 1517 raw_spin_lock_irq(&ctx->lock);
0793a61d 1518 /*
fe4b04fa
PZ
1519 * If we failed to find a running task, but find the context active now
1520 * that we've acquired the ctx->lock, retry.
0793a61d 1521 */
fe4b04fa 1522 if (ctx->is_active) {
e625cce1 1523 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1524 goto retry;
1525 }
1526
1527 /*
fe4b04fa
PZ
1528 * Since the task isn't running, its safe to remove the event, us
1529 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1530 */
46ce0fe9
PZ
1531 if (detach_group)
1532 perf_group_detach(event);
fe4b04fa 1533 list_del_event(event, ctx);
e625cce1 1534 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1535}
1536
d859e29f 1537/*
cdd6c482 1538 * Cross CPU call to disable a performance event
d859e29f 1539 */
500ad2d8 1540int __perf_event_disable(void *info)
d859e29f 1541{
cdd6c482 1542 struct perf_event *event = info;
cdd6c482 1543 struct perf_event_context *ctx = event->ctx;
108b02cf 1544 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1545
1546 /*
cdd6c482
IM
1547 * If this is a per-task event, need to check whether this
1548 * event's task is the current task on this cpu.
fe4b04fa
PZ
1549 *
1550 * Can trigger due to concurrent perf_event_context_sched_out()
1551 * flipping contexts around.
d859e29f 1552 */
665c2142 1553 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1554 return -EINVAL;
d859e29f 1555
e625cce1 1556 raw_spin_lock(&ctx->lock);
d859e29f
PM
1557
1558 /*
cdd6c482 1559 * If the event is on, turn it off.
d859e29f
PM
1560 * If it is in error state, leave it in error state.
1561 */
cdd6c482 1562 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1563 update_context_time(ctx);
e5d1367f 1564 update_cgrp_time_from_event(event);
cdd6c482
IM
1565 update_group_times(event);
1566 if (event == event->group_leader)
1567 group_sched_out(event, cpuctx, ctx);
d859e29f 1568 else
cdd6c482
IM
1569 event_sched_out(event, cpuctx, ctx);
1570 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1571 }
1572
e625cce1 1573 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1574
1575 return 0;
d859e29f
PM
1576}
1577
1578/*
cdd6c482 1579 * Disable a event.
c93f7669 1580 *
cdd6c482
IM
1581 * If event->ctx is a cloned context, callers must make sure that
1582 * every task struct that event->ctx->task could possibly point to
c93f7669 1583 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1584 * perf_event_for_each_child or perf_event_for_each because they
1585 * hold the top-level event's child_mutex, so any descendant that
1586 * goes to exit will block in sync_child_event.
1587 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1588 * is the current context on this CPU and preemption is disabled,
cdd6c482 1589 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1590 */
44234adc 1591void perf_event_disable(struct perf_event *event)
d859e29f 1592{
cdd6c482 1593 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1594 struct task_struct *task = ctx->task;
1595
1596 if (!task) {
1597 /*
cdd6c482 1598 * Disable the event on the cpu that it's on
d859e29f 1599 */
fe4b04fa 1600 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1601 return;
1602 }
1603
9ed6060d 1604retry:
fe4b04fa
PZ
1605 if (!task_function_call(task, __perf_event_disable, event))
1606 return;
d859e29f 1607
e625cce1 1608 raw_spin_lock_irq(&ctx->lock);
d859e29f 1609 /*
cdd6c482 1610 * If the event is still active, we need to retry the cross-call.
d859e29f 1611 */
cdd6c482 1612 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1613 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1614 /*
1615 * Reload the task pointer, it might have been changed by
1616 * a concurrent perf_event_context_sched_out().
1617 */
1618 task = ctx->task;
d859e29f
PM
1619 goto retry;
1620 }
1621
1622 /*
1623 * Since we have the lock this context can't be scheduled
1624 * in, so we can change the state safely.
1625 */
cdd6c482
IM
1626 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1627 update_group_times(event);
1628 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1629 }
e625cce1 1630 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1631}
dcfce4a0 1632EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1633
e5d1367f
SE
1634static void perf_set_shadow_time(struct perf_event *event,
1635 struct perf_event_context *ctx,
1636 u64 tstamp)
1637{
1638 /*
1639 * use the correct time source for the time snapshot
1640 *
1641 * We could get by without this by leveraging the
1642 * fact that to get to this function, the caller
1643 * has most likely already called update_context_time()
1644 * and update_cgrp_time_xx() and thus both timestamp
1645 * are identical (or very close). Given that tstamp is,
1646 * already adjusted for cgroup, we could say that:
1647 * tstamp - ctx->timestamp
1648 * is equivalent to
1649 * tstamp - cgrp->timestamp.
1650 *
1651 * Then, in perf_output_read(), the calculation would
1652 * work with no changes because:
1653 * - event is guaranteed scheduled in
1654 * - no scheduled out in between
1655 * - thus the timestamp would be the same
1656 *
1657 * But this is a bit hairy.
1658 *
1659 * So instead, we have an explicit cgroup call to remain
1660 * within the time time source all along. We believe it
1661 * is cleaner and simpler to understand.
1662 */
1663 if (is_cgroup_event(event))
1664 perf_cgroup_set_shadow_time(event, tstamp);
1665 else
1666 event->shadow_ctx_time = tstamp - ctx->timestamp;
1667}
1668
4fe757dd
PZ
1669#define MAX_INTERRUPTS (~0ULL)
1670
1671static void perf_log_throttle(struct perf_event *event, int enable);
1672
235c7fc7 1673static int
9ffcfa6f 1674event_sched_in(struct perf_event *event,
235c7fc7 1675 struct perf_cpu_context *cpuctx,
6e37738a 1676 struct perf_event_context *ctx)
235c7fc7 1677{
4158755d 1678 u64 tstamp = perf_event_time(event);
44377277 1679 int ret = 0;
4158755d 1680
63342411
PZ
1681 lockdep_assert_held(&ctx->lock);
1682
cdd6c482 1683 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1684 return 0;
1685
cdd6c482 1686 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1687 event->oncpu = smp_processor_id();
4fe757dd
PZ
1688
1689 /*
1690 * Unthrottle events, since we scheduled we might have missed several
1691 * ticks already, also for a heavily scheduling task there is little
1692 * guarantee it'll get a tick in a timely manner.
1693 */
1694 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1695 perf_log_throttle(event, 1);
1696 event->hw.interrupts = 0;
1697 }
1698
235c7fc7
IM
1699 /*
1700 * The new state must be visible before we turn it on in the hardware:
1701 */
1702 smp_wmb();
1703
44377277
AS
1704 perf_pmu_disable(event->pmu);
1705
a4eaf7f1 1706 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1707 event->state = PERF_EVENT_STATE_INACTIVE;
1708 event->oncpu = -1;
44377277
AS
1709 ret = -EAGAIN;
1710 goto out;
235c7fc7
IM
1711 }
1712
4158755d 1713 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1714
e5d1367f 1715 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1716
cdd6c482 1717 if (!is_software_event(event))
3b6f9e5c 1718 cpuctx->active_oncpu++;
235c7fc7 1719 ctx->nr_active++;
0f5a2601
PZ
1720 if (event->attr.freq && event->attr.sample_freq)
1721 ctx->nr_freq++;
235c7fc7 1722
cdd6c482 1723 if (event->attr.exclusive)
3b6f9e5c
PM
1724 cpuctx->exclusive = 1;
1725
44377277
AS
1726out:
1727 perf_pmu_enable(event->pmu);
1728
1729 return ret;
235c7fc7
IM
1730}
1731
6751b71e 1732static int
cdd6c482 1733group_sched_in(struct perf_event *group_event,
6751b71e 1734 struct perf_cpu_context *cpuctx,
6e37738a 1735 struct perf_event_context *ctx)
6751b71e 1736{
6bde9b6c 1737 struct perf_event *event, *partial_group = NULL;
4a234593 1738 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1739 u64 now = ctx->time;
1740 bool simulate = false;
6751b71e 1741
cdd6c482 1742 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1743 return 0;
1744
ad5133b7 1745 pmu->start_txn(pmu);
6bde9b6c 1746
9ffcfa6f 1747 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1748 pmu->cancel_txn(pmu);
9e630205 1749 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1750 return -EAGAIN;
90151c35 1751 }
6751b71e
PM
1752
1753 /*
1754 * Schedule in siblings as one group (if any):
1755 */
cdd6c482 1756 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1757 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1758 partial_group = event;
6751b71e
PM
1759 goto group_error;
1760 }
1761 }
1762
9ffcfa6f 1763 if (!pmu->commit_txn(pmu))
6e85158c 1764 return 0;
9ffcfa6f 1765
6751b71e
PM
1766group_error:
1767 /*
1768 * Groups can be scheduled in as one unit only, so undo any
1769 * partial group before returning:
d7842da4
SE
1770 * The events up to the failed event are scheduled out normally,
1771 * tstamp_stopped will be updated.
1772 *
1773 * The failed events and the remaining siblings need to have
1774 * their timings updated as if they had gone thru event_sched_in()
1775 * and event_sched_out(). This is required to get consistent timings
1776 * across the group. This also takes care of the case where the group
1777 * could never be scheduled by ensuring tstamp_stopped is set to mark
1778 * the time the event was actually stopped, such that time delta
1779 * calculation in update_event_times() is correct.
6751b71e 1780 */
cdd6c482
IM
1781 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1782 if (event == partial_group)
d7842da4
SE
1783 simulate = true;
1784
1785 if (simulate) {
1786 event->tstamp_running += now - event->tstamp_stopped;
1787 event->tstamp_stopped = now;
1788 } else {
1789 event_sched_out(event, cpuctx, ctx);
1790 }
6751b71e 1791 }
9ffcfa6f 1792 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1793
ad5133b7 1794 pmu->cancel_txn(pmu);
90151c35 1795
9e630205
SE
1796 perf_cpu_hrtimer_restart(cpuctx);
1797
6751b71e
PM
1798 return -EAGAIN;
1799}
1800
3b6f9e5c 1801/*
cdd6c482 1802 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1803 */
cdd6c482 1804static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1805 struct perf_cpu_context *cpuctx,
1806 int can_add_hw)
1807{
1808 /*
cdd6c482 1809 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1810 */
d6f962b5 1811 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1812 return 1;
1813 /*
1814 * If an exclusive group is already on, no other hardware
cdd6c482 1815 * events can go on.
3b6f9e5c
PM
1816 */
1817 if (cpuctx->exclusive)
1818 return 0;
1819 /*
1820 * If this group is exclusive and there are already
cdd6c482 1821 * events on the CPU, it can't go on.
3b6f9e5c 1822 */
cdd6c482 1823 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1824 return 0;
1825 /*
1826 * Otherwise, try to add it if all previous groups were able
1827 * to go on.
1828 */
1829 return can_add_hw;
1830}
1831
cdd6c482
IM
1832static void add_event_to_ctx(struct perf_event *event,
1833 struct perf_event_context *ctx)
53cfbf59 1834{
4158755d
SE
1835 u64 tstamp = perf_event_time(event);
1836
cdd6c482 1837 list_add_event(event, ctx);
8a49542c 1838 perf_group_attach(event);
4158755d
SE
1839 event->tstamp_enabled = tstamp;
1840 event->tstamp_running = tstamp;
1841 event->tstamp_stopped = tstamp;
53cfbf59
PM
1842}
1843
2c29ef0f
PZ
1844static void task_ctx_sched_out(struct perf_event_context *ctx);
1845static void
1846ctx_sched_in(struct perf_event_context *ctx,
1847 struct perf_cpu_context *cpuctx,
1848 enum event_type_t event_type,
1849 struct task_struct *task);
fe4b04fa 1850
dce5855b
PZ
1851static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1852 struct perf_event_context *ctx,
1853 struct task_struct *task)
1854{
1855 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1856 if (ctx)
1857 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1858 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1859 if (ctx)
1860 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1861}
1862
0793a61d 1863/*
cdd6c482 1864 * Cross CPU call to install and enable a performance event
682076ae
PZ
1865 *
1866 * Must be called with ctx->mutex held
0793a61d 1867 */
fe4b04fa 1868static int __perf_install_in_context(void *info)
0793a61d 1869{
cdd6c482
IM
1870 struct perf_event *event = info;
1871 struct perf_event_context *ctx = event->ctx;
108b02cf 1872 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1873 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1874 struct task_struct *task = current;
1875
b58f6b0d 1876 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1877 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1878
1879 /*
2c29ef0f 1880 * If there was an active task_ctx schedule it out.
0793a61d 1881 */
b58f6b0d 1882 if (task_ctx)
2c29ef0f 1883 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1884
1885 /*
1886 * If the context we're installing events in is not the
1887 * active task_ctx, flip them.
1888 */
1889 if (ctx->task && task_ctx != ctx) {
1890 if (task_ctx)
1891 raw_spin_unlock(&task_ctx->lock);
1892 raw_spin_lock(&ctx->lock);
1893 task_ctx = ctx;
1894 }
1895
1896 if (task_ctx) {
1897 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1898 task = task_ctx->task;
1899 }
b58f6b0d 1900
2c29ef0f 1901 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1902
4af4998b 1903 update_context_time(ctx);
e5d1367f
SE
1904 /*
1905 * update cgrp time only if current cgrp
1906 * matches event->cgrp. Must be done before
1907 * calling add_event_to_ctx()
1908 */
1909 update_cgrp_time_from_event(event);
0793a61d 1910
cdd6c482 1911 add_event_to_ctx(event, ctx);
0793a61d 1912
d859e29f 1913 /*
2c29ef0f 1914 * Schedule everything back in
d859e29f 1915 */
dce5855b 1916 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1917
1918 perf_pmu_enable(cpuctx->ctx.pmu);
1919 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1920
1921 return 0;
0793a61d
TG
1922}
1923
1924/*
cdd6c482 1925 * Attach a performance event to a context
0793a61d 1926 *
cdd6c482
IM
1927 * First we add the event to the list with the hardware enable bit
1928 * in event->hw_config cleared.
0793a61d 1929 *
cdd6c482 1930 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1931 * call to enable it in the task context. The task might have been
1932 * scheduled away, but we check this in the smp call again.
1933 */
1934static void
cdd6c482
IM
1935perf_install_in_context(struct perf_event_context *ctx,
1936 struct perf_event *event,
0793a61d
TG
1937 int cpu)
1938{
1939 struct task_struct *task = ctx->task;
1940
fe4b04fa
PZ
1941 lockdep_assert_held(&ctx->mutex);
1942
c3f00c70 1943 event->ctx = ctx;
0cda4c02
YZ
1944 if (event->cpu != -1)
1945 event->cpu = cpu;
c3f00c70 1946
0793a61d
TG
1947 if (!task) {
1948 /*
cdd6c482 1949 * Per cpu events are installed via an smp call and
af901ca1 1950 * the install is always successful.
0793a61d 1951 */
fe4b04fa 1952 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1953 return;
1954 }
1955
0793a61d 1956retry:
fe4b04fa
PZ
1957 if (!task_function_call(task, __perf_install_in_context, event))
1958 return;
0793a61d 1959
e625cce1 1960 raw_spin_lock_irq(&ctx->lock);
0793a61d 1961 /*
fe4b04fa
PZ
1962 * If we failed to find a running task, but find the context active now
1963 * that we've acquired the ctx->lock, retry.
0793a61d 1964 */
fe4b04fa 1965 if (ctx->is_active) {
e625cce1 1966 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1967 goto retry;
1968 }
1969
1970 /*
fe4b04fa
PZ
1971 * Since the task isn't running, its safe to add the event, us holding
1972 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1973 */
fe4b04fa 1974 add_event_to_ctx(event, ctx);
e625cce1 1975 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1976}
1977
fa289bec 1978/*
cdd6c482 1979 * Put a event into inactive state and update time fields.
fa289bec
PM
1980 * Enabling the leader of a group effectively enables all
1981 * the group members that aren't explicitly disabled, so we
1982 * have to update their ->tstamp_enabled also.
1983 * Note: this works for group members as well as group leaders
1984 * since the non-leader members' sibling_lists will be empty.
1985 */
1d9b482e 1986static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1987{
cdd6c482 1988 struct perf_event *sub;
4158755d 1989 u64 tstamp = perf_event_time(event);
fa289bec 1990
cdd6c482 1991 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1992 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1993 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1994 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1995 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1996 }
fa289bec
PM
1997}
1998
d859e29f 1999/*
cdd6c482 2000 * Cross CPU call to enable a performance event
d859e29f 2001 */
fe4b04fa 2002static int __perf_event_enable(void *info)
04289bb9 2003{
cdd6c482 2004 struct perf_event *event = info;
cdd6c482
IM
2005 struct perf_event_context *ctx = event->ctx;
2006 struct perf_event *leader = event->group_leader;
108b02cf 2007 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2008 int err;
04289bb9 2009
06f41796
JO
2010 /*
2011 * There's a time window between 'ctx->is_active' check
2012 * in perf_event_enable function and this place having:
2013 * - IRQs on
2014 * - ctx->lock unlocked
2015 *
2016 * where the task could be killed and 'ctx' deactivated
2017 * by perf_event_exit_task.
2018 */
2019 if (!ctx->is_active)
fe4b04fa 2020 return -EINVAL;
3cbed429 2021
e625cce1 2022 raw_spin_lock(&ctx->lock);
4af4998b 2023 update_context_time(ctx);
d859e29f 2024
cdd6c482 2025 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2026 goto unlock;
e5d1367f
SE
2027
2028 /*
2029 * set current task's cgroup time reference point
2030 */
3f7cce3c 2031 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2032
1d9b482e 2033 __perf_event_mark_enabled(event);
04289bb9 2034
e5d1367f
SE
2035 if (!event_filter_match(event)) {
2036 if (is_cgroup_event(event))
2037 perf_cgroup_defer_enabled(event);
f4c4176f 2038 goto unlock;
e5d1367f 2039 }
f4c4176f 2040
04289bb9 2041 /*
cdd6c482 2042 * If the event is in a group and isn't the group leader,
d859e29f 2043 * then don't put it on unless the group is on.
04289bb9 2044 */
cdd6c482 2045 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2046 goto unlock;
3b6f9e5c 2047
cdd6c482 2048 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2049 err = -EEXIST;
e758a33d 2050 } else {
cdd6c482 2051 if (event == leader)
6e37738a 2052 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2053 else
6e37738a 2054 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2055 }
d859e29f
PM
2056
2057 if (err) {
2058 /*
cdd6c482 2059 * If this event can't go on and it's part of a
d859e29f
PM
2060 * group, then the whole group has to come off.
2061 */
9e630205 2062 if (leader != event) {
d859e29f 2063 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2064 perf_cpu_hrtimer_restart(cpuctx);
2065 }
0d48696f 2066 if (leader->attr.pinned) {
53cfbf59 2067 update_group_times(leader);
cdd6c482 2068 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2069 }
d859e29f
PM
2070 }
2071
9ed6060d 2072unlock:
e625cce1 2073 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2074
2075 return 0;
d859e29f
PM
2076}
2077
2078/*
cdd6c482 2079 * Enable a event.
c93f7669 2080 *
cdd6c482
IM
2081 * If event->ctx is a cloned context, callers must make sure that
2082 * every task struct that event->ctx->task could possibly point to
c93f7669 2083 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2084 * perf_event_for_each_child or perf_event_for_each as described
2085 * for perf_event_disable.
d859e29f 2086 */
44234adc 2087void perf_event_enable(struct perf_event *event)
d859e29f 2088{
cdd6c482 2089 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2090 struct task_struct *task = ctx->task;
2091
2092 if (!task) {
2093 /*
cdd6c482 2094 * Enable the event on the cpu that it's on
d859e29f 2095 */
fe4b04fa 2096 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2097 return;
2098 }
2099
e625cce1 2100 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2101 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2102 goto out;
2103
2104 /*
cdd6c482
IM
2105 * If the event is in error state, clear that first.
2106 * That way, if we see the event in error state below, we
d859e29f
PM
2107 * know that it has gone back into error state, as distinct
2108 * from the task having been scheduled away before the
2109 * cross-call arrived.
2110 */
cdd6c482
IM
2111 if (event->state == PERF_EVENT_STATE_ERROR)
2112 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2113
9ed6060d 2114retry:
fe4b04fa 2115 if (!ctx->is_active) {
1d9b482e 2116 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2117 goto out;
2118 }
2119
e625cce1 2120 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2121
2122 if (!task_function_call(task, __perf_event_enable, event))
2123 return;
d859e29f 2124
e625cce1 2125 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2126
2127 /*
cdd6c482 2128 * If the context is active and the event is still off,
d859e29f
PM
2129 * we need to retry the cross-call.
2130 */
fe4b04fa
PZ
2131 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2132 /*
2133 * task could have been flipped by a concurrent
2134 * perf_event_context_sched_out()
2135 */
2136 task = ctx->task;
d859e29f 2137 goto retry;
fe4b04fa 2138 }
fa289bec 2139
9ed6060d 2140out:
e625cce1 2141 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2142}
dcfce4a0 2143EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2144
26ca5c11 2145int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2146{
2023b359 2147 /*
cdd6c482 2148 * not supported on inherited events
2023b359 2149 */
2e939d1d 2150 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2151 return -EINVAL;
2152
cdd6c482
IM
2153 atomic_add(refresh, &event->event_limit);
2154 perf_event_enable(event);
2023b359
PZ
2155
2156 return 0;
79f14641 2157}
26ca5c11 2158EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2159
5b0311e1
FW
2160static void ctx_sched_out(struct perf_event_context *ctx,
2161 struct perf_cpu_context *cpuctx,
2162 enum event_type_t event_type)
235c7fc7 2163{
cdd6c482 2164 struct perf_event *event;
db24d33e 2165 int is_active = ctx->is_active;
235c7fc7 2166
db24d33e 2167 ctx->is_active &= ~event_type;
cdd6c482 2168 if (likely(!ctx->nr_events))
facc4307
PZ
2169 return;
2170
4af4998b 2171 update_context_time(ctx);
e5d1367f 2172 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2173 if (!ctx->nr_active)
facc4307 2174 return;
5b0311e1 2175
075e0b00 2176 perf_pmu_disable(ctx->pmu);
db24d33e 2177 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2178 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2179 group_sched_out(event, cpuctx, ctx);
9ed6060d 2180 }
889ff015 2181
db24d33e 2182 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2183 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2184 group_sched_out(event, cpuctx, ctx);
9ed6060d 2185 }
1b9a644f 2186 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2187}
2188
564c2b21 2189/*
5a3126d4
PZ
2190 * Test whether two contexts are equivalent, i.e. whether they have both been
2191 * cloned from the same version of the same context.
2192 *
2193 * Equivalence is measured using a generation number in the context that is
2194 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2195 * and list_del_event().
564c2b21 2196 */
cdd6c482
IM
2197static int context_equiv(struct perf_event_context *ctx1,
2198 struct perf_event_context *ctx2)
564c2b21 2199{
5a3126d4
PZ
2200 /* Pinning disables the swap optimization */
2201 if (ctx1->pin_count || ctx2->pin_count)
2202 return 0;
2203
2204 /* If ctx1 is the parent of ctx2 */
2205 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2206 return 1;
2207
2208 /* If ctx2 is the parent of ctx1 */
2209 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2210 return 1;
2211
2212 /*
2213 * If ctx1 and ctx2 have the same parent; we flatten the parent
2214 * hierarchy, see perf_event_init_context().
2215 */
2216 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2217 ctx1->parent_gen == ctx2->parent_gen)
2218 return 1;
2219
2220 /* Unmatched */
2221 return 0;
564c2b21
PM
2222}
2223
cdd6c482
IM
2224static void __perf_event_sync_stat(struct perf_event *event,
2225 struct perf_event *next_event)
bfbd3381
PZ
2226{
2227 u64 value;
2228
cdd6c482 2229 if (!event->attr.inherit_stat)
bfbd3381
PZ
2230 return;
2231
2232 /*
cdd6c482 2233 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2234 * because we're in the middle of a context switch and have IRQs
2235 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2236 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2237 * don't need to use it.
2238 */
cdd6c482
IM
2239 switch (event->state) {
2240 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2241 event->pmu->read(event);
2242 /* fall-through */
bfbd3381 2243
cdd6c482
IM
2244 case PERF_EVENT_STATE_INACTIVE:
2245 update_event_times(event);
bfbd3381
PZ
2246 break;
2247
2248 default:
2249 break;
2250 }
2251
2252 /*
cdd6c482 2253 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2254 * values when we flip the contexts.
2255 */
e7850595
PZ
2256 value = local64_read(&next_event->count);
2257 value = local64_xchg(&event->count, value);
2258 local64_set(&next_event->count, value);
bfbd3381 2259
cdd6c482
IM
2260 swap(event->total_time_enabled, next_event->total_time_enabled);
2261 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2262
bfbd3381 2263 /*
19d2e755 2264 * Since we swizzled the values, update the user visible data too.
bfbd3381 2265 */
cdd6c482
IM
2266 perf_event_update_userpage(event);
2267 perf_event_update_userpage(next_event);
bfbd3381
PZ
2268}
2269
cdd6c482
IM
2270static void perf_event_sync_stat(struct perf_event_context *ctx,
2271 struct perf_event_context *next_ctx)
bfbd3381 2272{
cdd6c482 2273 struct perf_event *event, *next_event;
bfbd3381
PZ
2274
2275 if (!ctx->nr_stat)
2276 return;
2277
02ffdbc8
PZ
2278 update_context_time(ctx);
2279
cdd6c482
IM
2280 event = list_first_entry(&ctx->event_list,
2281 struct perf_event, event_entry);
bfbd3381 2282
cdd6c482
IM
2283 next_event = list_first_entry(&next_ctx->event_list,
2284 struct perf_event, event_entry);
bfbd3381 2285
cdd6c482
IM
2286 while (&event->event_entry != &ctx->event_list &&
2287 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2288
cdd6c482 2289 __perf_event_sync_stat(event, next_event);
bfbd3381 2290
cdd6c482
IM
2291 event = list_next_entry(event, event_entry);
2292 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2293 }
2294}
2295
fe4b04fa
PZ
2296static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2297 struct task_struct *next)
0793a61d 2298{
8dc85d54 2299 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2300 struct perf_event_context *next_ctx;
5a3126d4 2301 struct perf_event_context *parent, *next_parent;
108b02cf 2302 struct perf_cpu_context *cpuctx;
c93f7669 2303 int do_switch = 1;
0793a61d 2304
108b02cf
PZ
2305 if (likely(!ctx))
2306 return;
10989fb2 2307
108b02cf
PZ
2308 cpuctx = __get_cpu_context(ctx);
2309 if (!cpuctx->task_ctx)
0793a61d
TG
2310 return;
2311
c93f7669 2312 rcu_read_lock();
8dc85d54 2313 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2314 if (!next_ctx)
2315 goto unlock;
2316
2317 parent = rcu_dereference(ctx->parent_ctx);
2318 next_parent = rcu_dereference(next_ctx->parent_ctx);
2319
2320 /* If neither context have a parent context; they cannot be clones. */
2321 if (!parent && !next_parent)
2322 goto unlock;
2323
2324 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2325 /*
2326 * Looks like the two contexts are clones, so we might be
2327 * able to optimize the context switch. We lock both
2328 * contexts and check that they are clones under the
2329 * lock (including re-checking that neither has been
2330 * uncloned in the meantime). It doesn't matter which
2331 * order we take the locks because no other cpu could
2332 * be trying to lock both of these tasks.
2333 */
e625cce1
TG
2334 raw_spin_lock(&ctx->lock);
2335 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2336 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2337 /*
2338 * XXX do we need a memory barrier of sorts
cdd6c482 2339 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2340 */
8dc85d54
PZ
2341 task->perf_event_ctxp[ctxn] = next_ctx;
2342 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2343 ctx->task = next;
2344 next_ctx->task = task;
2345 do_switch = 0;
bfbd3381 2346
cdd6c482 2347 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2348 }
e625cce1
TG
2349 raw_spin_unlock(&next_ctx->lock);
2350 raw_spin_unlock(&ctx->lock);
564c2b21 2351 }
5a3126d4 2352unlock:
c93f7669 2353 rcu_read_unlock();
564c2b21 2354
c93f7669 2355 if (do_switch) {
facc4307 2356 raw_spin_lock(&ctx->lock);
5b0311e1 2357 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2358 cpuctx->task_ctx = NULL;
facc4307 2359 raw_spin_unlock(&ctx->lock);
c93f7669 2360 }
0793a61d
TG
2361}
2362
8dc85d54
PZ
2363#define for_each_task_context_nr(ctxn) \
2364 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2365
2366/*
2367 * Called from scheduler to remove the events of the current task,
2368 * with interrupts disabled.
2369 *
2370 * We stop each event and update the event value in event->count.
2371 *
2372 * This does not protect us against NMI, but disable()
2373 * sets the disabled bit in the control field of event _before_
2374 * accessing the event control register. If a NMI hits, then it will
2375 * not restart the event.
2376 */
ab0cce56
JO
2377void __perf_event_task_sched_out(struct task_struct *task,
2378 struct task_struct *next)
8dc85d54
PZ
2379{
2380 int ctxn;
2381
8dc85d54
PZ
2382 for_each_task_context_nr(ctxn)
2383 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2384
2385 /*
2386 * if cgroup events exist on this CPU, then we need
2387 * to check if we have to switch out PMU state.
2388 * cgroup event are system-wide mode only
2389 */
2390 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2391 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2392}
2393
04dc2dbb 2394static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2395{
108b02cf 2396 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2397
a63eaf34
PM
2398 if (!cpuctx->task_ctx)
2399 return;
012b84da
IM
2400
2401 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2402 return;
2403
04dc2dbb 2404 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2405 cpuctx->task_ctx = NULL;
2406}
2407
5b0311e1
FW
2408/*
2409 * Called with IRQs disabled
2410 */
2411static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2412 enum event_type_t event_type)
2413{
2414 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2415}
2416
235c7fc7 2417static void
5b0311e1 2418ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2419 struct perf_cpu_context *cpuctx)
0793a61d 2420{
cdd6c482 2421 struct perf_event *event;
0793a61d 2422
889ff015
FW
2423 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2424 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2425 continue;
5632ab12 2426 if (!event_filter_match(event))
3b6f9e5c
PM
2427 continue;
2428
e5d1367f
SE
2429 /* may need to reset tstamp_enabled */
2430 if (is_cgroup_event(event))
2431 perf_cgroup_mark_enabled(event, ctx);
2432
8c9ed8e1 2433 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2434 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2435
2436 /*
2437 * If this pinned group hasn't been scheduled,
2438 * put it in error state.
2439 */
cdd6c482
IM
2440 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2441 update_group_times(event);
2442 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2443 }
3b6f9e5c 2444 }
5b0311e1
FW
2445}
2446
2447static void
2448ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2449 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2450{
2451 struct perf_event *event;
2452 int can_add_hw = 1;
3b6f9e5c 2453
889ff015
FW
2454 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2455 /* Ignore events in OFF or ERROR state */
2456 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2457 continue;
04289bb9
IM
2458 /*
2459 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2460 * of events:
04289bb9 2461 */
5632ab12 2462 if (!event_filter_match(event))
0793a61d
TG
2463 continue;
2464
e5d1367f
SE
2465 /* may need to reset tstamp_enabled */
2466 if (is_cgroup_event(event))
2467 perf_cgroup_mark_enabled(event, ctx);
2468
9ed6060d 2469 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2470 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2471 can_add_hw = 0;
9ed6060d 2472 }
0793a61d 2473 }
5b0311e1
FW
2474}
2475
2476static void
2477ctx_sched_in(struct perf_event_context *ctx,
2478 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2479 enum event_type_t event_type,
2480 struct task_struct *task)
5b0311e1 2481{
e5d1367f 2482 u64 now;
db24d33e 2483 int is_active = ctx->is_active;
e5d1367f 2484
db24d33e 2485 ctx->is_active |= event_type;
5b0311e1 2486 if (likely(!ctx->nr_events))
facc4307 2487 return;
5b0311e1 2488
e5d1367f
SE
2489 now = perf_clock();
2490 ctx->timestamp = now;
3f7cce3c 2491 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2492 /*
2493 * First go through the list and put on any pinned groups
2494 * in order to give them the best chance of going on.
2495 */
db24d33e 2496 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2497 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2498
2499 /* Then walk through the lower prio flexible groups */
db24d33e 2500 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2501 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2502}
2503
329c0e01 2504static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2505 enum event_type_t event_type,
2506 struct task_struct *task)
329c0e01
FW
2507{
2508 struct perf_event_context *ctx = &cpuctx->ctx;
2509
e5d1367f 2510 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2511}
2512
e5d1367f
SE
2513static void perf_event_context_sched_in(struct perf_event_context *ctx,
2514 struct task_struct *task)
235c7fc7 2515{
108b02cf 2516 struct perf_cpu_context *cpuctx;
235c7fc7 2517
108b02cf 2518 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2519 if (cpuctx->task_ctx == ctx)
2520 return;
2521
facc4307 2522 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2523 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2524 /*
2525 * We want to keep the following priority order:
2526 * cpu pinned (that don't need to move), task pinned,
2527 * cpu flexible, task flexible.
2528 */
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530
1d5f003f
GN
2531 if (ctx->nr_events)
2532 cpuctx->task_ctx = ctx;
9b33fa6b 2533
86b47c25
GN
2534 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2535
facc4307
PZ
2536 perf_pmu_enable(ctx->pmu);
2537 perf_ctx_unlock(cpuctx, ctx);
2538
b5ab4cd5
PZ
2539 /*
2540 * Since these rotations are per-cpu, we need to ensure the
2541 * cpu-context we got scheduled on is actually rotating.
2542 */
108b02cf 2543 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2544}
2545
d010b332
SE
2546/*
2547 * When sampling the branck stack in system-wide, it may be necessary
2548 * to flush the stack on context switch. This happens when the branch
2549 * stack does not tag its entries with the pid of the current task.
2550 * Otherwise it becomes impossible to associate a branch entry with a
2551 * task. This ambiguity is more likely to appear when the branch stack
2552 * supports priv level filtering and the user sets it to monitor only
2553 * at the user level (which could be a useful measurement in system-wide
2554 * mode). In that case, the risk is high of having a branch stack with
2555 * branch from multiple tasks. Flushing may mean dropping the existing
2556 * entries or stashing them somewhere in the PMU specific code layer.
2557 *
2558 * This function provides the context switch callback to the lower code
2559 * layer. It is invoked ONLY when there is at least one system-wide context
2560 * with at least one active event using taken branch sampling.
2561 */
2562static void perf_branch_stack_sched_in(struct task_struct *prev,
2563 struct task_struct *task)
2564{
2565 struct perf_cpu_context *cpuctx;
2566 struct pmu *pmu;
2567 unsigned long flags;
2568
2569 /* no need to flush branch stack if not changing task */
2570 if (prev == task)
2571 return;
2572
2573 local_irq_save(flags);
2574
2575 rcu_read_lock();
2576
2577 list_for_each_entry_rcu(pmu, &pmus, entry) {
2578 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2579
2580 /*
2581 * check if the context has at least one
2582 * event using PERF_SAMPLE_BRANCH_STACK
2583 */
2584 if (cpuctx->ctx.nr_branch_stack > 0
2585 && pmu->flush_branch_stack) {
2586
d010b332
SE
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->flush_branch_stack();
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602}
2603
8dc85d54
PZ
2604/*
2605 * Called from scheduler to add the events of the current task
2606 * with interrupts disabled.
2607 *
2608 * We restore the event value and then enable it.
2609 *
2610 * This does not protect us against NMI, but enable()
2611 * sets the enabled bit in the control field of event _before_
2612 * accessing the event control register. If a NMI hits, then it will
2613 * keep the event running.
2614 */
ab0cce56
JO
2615void __perf_event_task_sched_in(struct task_struct *prev,
2616 struct task_struct *task)
8dc85d54
PZ
2617{
2618 struct perf_event_context *ctx;
2619 int ctxn;
2620
2621 for_each_task_context_nr(ctxn) {
2622 ctx = task->perf_event_ctxp[ctxn];
2623 if (likely(!ctx))
2624 continue;
2625
e5d1367f 2626 perf_event_context_sched_in(ctx, task);
8dc85d54 2627 }
e5d1367f
SE
2628 /*
2629 * if cgroup events exist on this CPU, then we need
2630 * to check if we have to switch in PMU state.
2631 * cgroup event are system-wide mode only
2632 */
2633 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2634 perf_cgroup_sched_in(prev, task);
d010b332
SE
2635
2636 /* check for system-wide branch_stack events */
2637 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2638 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2639}
2640
abd50713
PZ
2641static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2642{
2643 u64 frequency = event->attr.sample_freq;
2644 u64 sec = NSEC_PER_SEC;
2645 u64 divisor, dividend;
2646
2647 int count_fls, nsec_fls, frequency_fls, sec_fls;
2648
2649 count_fls = fls64(count);
2650 nsec_fls = fls64(nsec);
2651 frequency_fls = fls64(frequency);
2652 sec_fls = 30;
2653
2654 /*
2655 * We got @count in @nsec, with a target of sample_freq HZ
2656 * the target period becomes:
2657 *
2658 * @count * 10^9
2659 * period = -------------------
2660 * @nsec * sample_freq
2661 *
2662 */
2663
2664 /*
2665 * Reduce accuracy by one bit such that @a and @b converge
2666 * to a similar magnitude.
2667 */
fe4b04fa 2668#define REDUCE_FLS(a, b) \
abd50713
PZ
2669do { \
2670 if (a##_fls > b##_fls) { \
2671 a >>= 1; \
2672 a##_fls--; \
2673 } else { \
2674 b >>= 1; \
2675 b##_fls--; \
2676 } \
2677} while (0)
2678
2679 /*
2680 * Reduce accuracy until either term fits in a u64, then proceed with
2681 * the other, so that finally we can do a u64/u64 division.
2682 */
2683 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2684 REDUCE_FLS(nsec, frequency);
2685 REDUCE_FLS(sec, count);
2686 }
2687
2688 if (count_fls + sec_fls > 64) {
2689 divisor = nsec * frequency;
2690
2691 while (count_fls + sec_fls > 64) {
2692 REDUCE_FLS(count, sec);
2693 divisor >>= 1;
2694 }
2695
2696 dividend = count * sec;
2697 } else {
2698 dividend = count * sec;
2699
2700 while (nsec_fls + frequency_fls > 64) {
2701 REDUCE_FLS(nsec, frequency);
2702 dividend >>= 1;
2703 }
2704
2705 divisor = nsec * frequency;
2706 }
2707
f6ab91ad
PZ
2708 if (!divisor)
2709 return dividend;
2710
abd50713
PZ
2711 return div64_u64(dividend, divisor);
2712}
2713
e050e3f0
SE
2714static DEFINE_PER_CPU(int, perf_throttled_count);
2715static DEFINE_PER_CPU(u64, perf_throttled_seq);
2716
f39d47ff 2717static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2718{
cdd6c482 2719 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2720 s64 period, sample_period;
bd2b5b12
PZ
2721 s64 delta;
2722
abd50713 2723 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2724
2725 delta = (s64)(period - hwc->sample_period);
2726 delta = (delta + 7) / 8; /* low pass filter */
2727
2728 sample_period = hwc->sample_period + delta;
2729
2730 if (!sample_period)
2731 sample_period = 1;
2732
bd2b5b12 2733 hwc->sample_period = sample_period;
abd50713 2734
e7850595 2735 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2736 if (disable)
2737 event->pmu->stop(event, PERF_EF_UPDATE);
2738
e7850595 2739 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2740
2741 if (disable)
2742 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2743 }
bd2b5b12
PZ
2744}
2745
e050e3f0
SE
2746/*
2747 * combine freq adjustment with unthrottling to avoid two passes over the
2748 * events. At the same time, make sure, having freq events does not change
2749 * the rate of unthrottling as that would introduce bias.
2750 */
2751static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2752 int needs_unthr)
60db5e09 2753{
cdd6c482
IM
2754 struct perf_event *event;
2755 struct hw_perf_event *hwc;
e050e3f0 2756 u64 now, period = TICK_NSEC;
abd50713 2757 s64 delta;
60db5e09 2758
e050e3f0
SE
2759 /*
2760 * only need to iterate over all events iff:
2761 * - context have events in frequency mode (needs freq adjust)
2762 * - there are events to unthrottle on this cpu
2763 */
2764 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2765 return;
2766
e050e3f0 2767 raw_spin_lock(&ctx->lock);
f39d47ff 2768 perf_pmu_disable(ctx->pmu);
e050e3f0 2769
03541f8b 2770 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2771 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2772 continue;
2773
5632ab12 2774 if (!event_filter_match(event))
5d27c23d
PZ
2775 continue;
2776
44377277
AS
2777 perf_pmu_disable(event->pmu);
2778
cdd6c482 2779 hwc = &event->hw;
6a24ed6c 2780
ae23bff1 2781 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2782 hwc->interrupts = 0;
cdd6c482 2783 perf_log_throttle(event, 1);
a4eaf7f1 2784 event->pmu->start(event, 0);
a78ac325
PZ
2785 }
2786
cdd6c482 2787 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2788 goto next;
60db5e09 2789
e050e3f0
SE
2790 /*
2791 * stop the event and update event->count
2792 */
2793 event->pmu->stop(event, PERF_EF_UPDATE);
2794
e7850595 2795 now = local64_read(&event->count);
abd50713
PZ
2796 delta = now - hwc->freq_count_stamp;
2797 hwc->freq_count_stamp = now;
60db5e09 2798
e050e3f0
SE
2799 /*
2800 * restart the event
2801 * reload only if value has changed
f39d47ff
SE
2802 * we have stopped the event so tell that
2803 * to perf_adjust_period() to avoid stopping it
2804 * twice.
e050e3f0 2805 */
abd50713 2806 if (delta > 0)
f39d47ff 2807 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2808
2809 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2810 next:
2811 perf_pmu_enable(event->pmu);
60db5e09 2812 }
e050e3f0 2813
f39d47ff 2814 perf_pmu_enable(ctx->pmu);
e050e3f0 2815 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2816}
2817
235c7fc7 2818/*
cdd6c482 2819 * Round-robin a context's events:
235c7fc7 2820 */
cdd6c482 2821static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2822{
dddd3379
TG
2823 /*
2824 * Rotate the first entry last of non-pinned groups. Rotation might be
2825 * disabled by the inheritance code.
2826 */
2827 if (!ctx->rotate_disable)
2828 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2829}
2830
b5ab4cd5 2831/*
e9d2b064
PZ
2832 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2833 * because they're strictly cpu affine and rotate_start is called with IRQs
2834 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2835 */
9e630205 2836static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2837{
8dc85d54 2838 struct perf_event_context *ctx = NULL;
e050e3f0 2839 int rotate = 0, remove = 1;
7fc23a53 2840
b5ab4cd5 2841 if (cpuctx->ctx.nr_events) {
e9d2b064 2842 remove = 0;
b5ab4cd5
PZ
2843 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2844 rotate = 1;
2845 }
235c7fc7 2846
8dc85d54 2847 ctx = cpuctx->task_ctx;
b5ab4cd5 2848 if (ctx && ctx->nr_events) {
e9d2b064 2849 remove = 0;
b5ab4cd5
PZ
2850 if (ctx->nr_events != ctx->nr_active)
2851 rotate = 1;
2852 }
9717e6cd 2853
e050e3f0 2854 if (!rotate)
0f5a2601
PZ
2855 goto done;
2856
facc4307 2857 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2858 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2859
e050e3f0
SE
2860 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2861 if (ctx)
2862 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2863
e050e3f0
SE
2864 rotate_ctx(&cpuctx->ctx);
2865 if (ctx)
2866 rotate_ctx(ctx);
235c7fc7 2867
e050e3f0 2868 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2869
0f5a2601
PZ
2870 perf_pmu_enable(cpuctx->ctx.pmu);
2871 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2872done:
e9d2b064
PZ
2873 if (remove)
2874 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2875
2876 return rotate;
e9d2b064
PZ
2877}
2878
026249ef
FW
2879#ifdef CONFIG_NO_HZ_FULL
2880bool perf_event_can_stop_tick(void)
2881{
948b26b6 2882 if (atomic_read(&nr_freq_events) ||
d84153d6 2883 __this_cpu_read(perf_throttled_count))
026249ef 2884 return false;
d84153d6
FW
2885 else
2886 return true;
026249ef
FW
2887}
2888#endif
2889
e9d2b064
PZ
2890void perf_event_task_tick(void)
2891{
2892 struct list_head *head = &__get_cpu_var(rotation_list);
2893 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2894 struct perf_event_context *ctx;
2895 int throttled;
b5ab4cd5 2896
e9d2b064
PZ
2897 WARN_ON(!irqs_disabled());
2898
e050e3f0
SE
2899 __this_cpu_inc(perf_throttled_seq);
2900 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2901
e9d2b064 2902 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2903 ctx = &cpuctx->ctx;
2904 perf_adjust_freq_unthr_context(ctx, throttled);
2905
2906 ctx = cpuctx->task_ctx;
2907 if (ctx)
2908 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2909 }
0793a61d
TG
2910}
2911
889ff015
FW
2912static int event_enable_on_exec(struct perf_event *event,
2913 struct perf_event_context *ctx)
2914{
2915 if (!event->attr.enable_on_exec)
2916 return 0;
2917
2918 event->attr.enable_on_exec = 0;
2919 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2920 return 0;
2921
1d9b482e 2922 __perf_event_mark_enabled(event);
889ff015
FW
2923
2924 return 1;
2925}
2926
57e7986e 2927/*
cdd6c482 2928 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2929 * This expects task == current.
2930 */
8dc85d54 2931static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2932{
cdd6c482 2933 struct perf_event *event;
57e7986e
PM
2934 unsigned long flags;
2935 int enabled = 0;
889ff015 2936 int ret;
57e7986e
PM
2937
2938 local_irq_save(flags);
cdd6c482 2939 if (!ctx || !ctx->nr_events)
57e7986e
PM
2940 goto out;
2941
e566b76e
SE
2942 /*
2943 * We must ctxsw out cgroup events to avoid conflict
2944 * when invoking perf_task_event_sched_in() later on
2945 * in this function. Otherwise we end up trying to
2946 * ctxswin cgroup events which are already scheduled
2947 * in.
2948 */
a8d757ef 2949 perf_cgroup_sched_out(current, NULL);
57e7986e 2950
e625cce1 2951 raw_spin_lock(&ctx->lock);
04dc2dbb 2952 task_ctx_sched_out(ctx);
57e7986e 2953
b79387ef 2954 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2955 ret = event_enable_on_exec(event, ctx);
2956 if (ret)
2957 enabled = 1;
57e7986e
PM
2958 }
2959
2960 /*
cdd6c482 2961 * Unclone this context if we enabled any event.
57e7986e 2962 */
71a851b4
PZ
2963 if (enabled)
2964 unclone_ctx(ctx);
57e7986e 2965
e625cce1 2966 raw_spin_unlock(&ctx->lock);
57e7986e 2967
e566b76e
SE
2968 /*
2969 * Also calls ctxswin for cgroup events, if any:
2970 */
e5d1367f 2971 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2972out:
57e7986e
PM
2973 local_irq_restore(flags);
2974}
2975
e041e328
PZ
2976void perf_event_exec(void)
2977{
2978 struct perf_event_context *ctx;
2979 int ctxn;
2980
2981 rcu_read_lock();
2982 for_each_task_context_nr(ctxn) {
2983 ctx = current->perf_event_ctxp[ctxn];
2984 if (!ctx)
2985 continue;
2986
2987 perf_event_enable_on_exec(ctx);
2988 }
2989 rcu_read_unlock();
2990}
2991
0793a61d 2992/*
cdd6c482 2993 * Cross CPU call to read the hardware event
0793a61d 2994 */
cdd6c482 2995static void __perf_event_read(void *info)
0793a61d 2996{
cdd6c482
IM
2997 struct perf_event *event = info;
2998 struct perf_event_context *ctx = event->ctx;
108b02cf 2999 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3000
e1ac3614
PM
3001 /*
3002 * If this is a task context, we need to check whether it is
3003 * the current task context of this cpu. If not it has been
3004 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3005 * event->count would have been updated to a recent sample
3006 * when the event was scheduled out.
e1ac3614
PM
3007 */
3008 if (ctx->task && cpuctx->task_ctx != ctx)
3009 return;
3010
e625cce1 3011 raw_spin_lock(&ctx->lock);
e5d1367f 3012 if (ctx->is_active) {
542e72fc 3013 update_context_time(ctx);
e5d1367f
SE
3014 update_cgrp_time_from_event(event);
3015 }
cdd6c482 3016 update_event_times(event);
542e72fc
PZ
3017 if (event->state == PERF_EVENT_STATE_ACTIVE)
3018 event->pmu->read(event);
e625cce1 3019 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3020}
3021
b5e58793
PZ
3022static inline u64 perf_event_count(struct perf_event *event)
3023{
e7850595 3024 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3025}
3026
cdd6c482 3027static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3028{
3029 /*
cdd6c482
IM
3030 * If event is enabled and currently active on a CPU, update the
3031 * value in the event structure:
0793a61d 3032 */
cdd6c482
IM
3033 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3034 smp_call_function_single(event->oncpu,
3035 __perf_event_read, event, 1);
3036 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3037 struct perf_event_context *ctx = event->ctx;
3038 unsigned long flags;
3039
e625cce1 3040 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3041 /*
3042 * may read while context is not active
3043 * (e.g., thread is blocked), in that case
3044 * we cannot update context time
3045 */
e5d1367f 3046 if (ctx->is_active) {
c530ccd9 3047 update_context_time(ctx);
e5d1367f
SE
3048 update_cgrp_time_from_event(event);
3049 }
cdd6c482 3050 update_event_times(event);
e625cce1 3051 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3052 }
3053
b5e58793 3054 return perf_event_count(event);
0793a61d
TG
3055}
3056
a63eaf34 3057/*
cdd6c482 3058 * Initialize the perf_event context in a task_struct:
a63eaf34 3059 */
eb184479 3060static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3061{
e625cce1 3062 raw_spin_lock_init(&ctx->lock);
a63eaf34 3063 mutex_init(&ctx->mutex);
889ff015
FW
3064 INIT_LIST_HEAD(&ctx->pinned_groups);
3065 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3066 INIT_LIST_HEAD(&ctx->event_list);
3067 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3068}
3069
3070static struct perf_event_context *
3071alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3072{
3073 struct perf_event_context *ctx;
3074
3075 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3076 if (!ctx)
3077 return NULL;
3078
3079 __perf_event_init_context(ctx);
3080 if (task) {
3081 ctx->task = task;
3082 get_task_struct(task);
0793a61d 3083 }
eb184479
PZ
3084 ctx->pmu = pmu;
3085
3086 return ctx;
a63eaf34
PM
3087}
3088
2ebd4ffb
MH
3089static struct task_struct *
3090find_lively_task_by_vpid(pid_t vpid)
3091{
3092 struct task_struct *task;
3093 int err;
0793a61d
TG
3094
3095 rcu_read_lock();
2ebd4ffb 3096 if (!vpid)
0793a61d
TG
3097 task = current;
3098 else
2ebd4ffb 3099 task = find_task_by_vpid(vpid);
0793a61d
TG
3100 if (task)
3101 get_task_struct(task);
3102 rcu_read_unlock();
3103
3104 if (!task)
3105 return ERR_PTR(-ESRCH);
3106
0793a61d 3107 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3108 err = -EACCES;
3109 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3110 goto errout;
3111
2ebd4ffb
MH
3112 return task;
3113errout:
3114 put_task_struct(task);
3115 return ERR_PTR(err);
3116
3117}
3118
fe4b04fa
PZ
3119/*
3120 * Returns a matching context with refcount and pincount.
3121 */
108b02cf 3122static struct perf_event_context *
38a81da2 3123find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3124{
cdd6c482 3125 struct perf_event_context *ctx;
22a4f650 3126 struct perf_cpu_context *cpuctx;
25346b93 3127 unsigned long flags;
8dc85d54 3128 int ctxn, err;
0793a61d 3129
22a4ec72 3130 if (!task) {
cdd6c482 3131 /* Must be root to operate on a CPU event: */
0764771d 3132 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3133 return ERR_PTR(-EACCES);
3134
0793a61d 3135 /*
cdd6c482 3136 * We could be clever and allow to attach a event to an
0793a61d
TG
3137 * offline CPU and activate it when the CPU comes up, but
3138 * that's for later.
3139 */
f6325e30 3140 if (!cpu_online(cpu))
0793a61d
TG
3141 return ERR_PTR(-ENODEV);
3142
108b02cf 3143 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3144 ctx = &cpuctx->ctx;
c93f7669 3145 get_ctx(ctx);
fe4b04fa 3146 ++ctx->pin_count;
0793a61d 3147
0793a61d
TG
3148 return ctx;
3149 }
3150
8dc85d54
PZ
3151 err = -EINVAL;
3152 ctxn = pmu->task_ctx_nr;
3153 if (ctxn < 0)
3154 goto errout;
3155
9ed6060d 3156retry:
8dc85d54 3157 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3158 if (ctx) {
71a851b4 3159 unclone_ctx(ctx);
fe4b04fa 3160 ++ctx->pin_count;
e625cce1 3161 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3162 } else {
eb184479 3163 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3164 err = -ENOMEM;
3165 if (!ctx)
3166 goto errout;
eb184479 3167
dbe08d82
ON
3168 err = 0;
3169 mutex_lock(&task->perf_event_mutex);
3170 /*
3171 * If it has already passed perf_event_exit_task().
3172 * we must see PF_EXITING, it takes this mutex too.
3173 */
3174 if (task->flags & PF_EXITING)
3175 err = -ESRCH;
3176 else if (task->perf_event_ctxp[ctxn])
3177 err = -EAGAIN;
fe4b04fa 3178 else {
9137fb28 3179 get_ctx(ctx);
fe4b04fa 3180 ++ctx->pin_count;
dbe08d82 3181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3182 }
dbe08d82
ON
3183 mutex_unlock(&task->perf_event_mutex);
3184
3185 if (unlikely(err)) {
9137fb28 3186 put_ctx(ctx);
dbe08d82
ON
3187
3188 if (err == -EAGAIN)
3189 goto retry;
3190 goto errout;
a63eaf34
PM
3191 }
3192 }
3193
0793a61d 3194 return ctx;
c93f7669 3195
9ed6060d 3196errout:
c93f7669 3197 return ERR_PTR(err);
0793a61d
TG
3198}
3199
6fb2915d
LZ
3200static void perf_event_free_filter(struct perf_event *event);
3201
cdd6c482 3202static void free_event_rcu(struct rcu_head *head)
592903cd 3203{
cdd6c482 3204 struct perf_event *event;
592903cd 3205
cdd6c482
IM
3206 event = container_of(head, struct perf_event, rcu_head);
3207 if (event->ns)
3208 put_pid_ns(event->ns);
6fb2915d 3209 perf_event_free_filter(event);
cdd6c482 3210 kfree(event);
592903cd
PZ
3211}
3212
76369139 3213static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3214static void ring_buffer_attach(struct perf_event *event,
3215 struct ring_buffer *rb);
925d519a 3216
4beb31f3 3217static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3218{
4beb31f3
FW
3219 if (event->parent)
3220 return;
3221
3222 if (has_branch_stack(event)) {
3223 if (!(event->attach_state & PERF_ATTACH_TASK))
3224 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3225 }
3226 if (is_cgroup_event(event))
3227 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3228}
925d519a 3229
4beb31f3
FW
3230static void unaccount_event(struct perf_event *event)
3231{
3232 if (event->parent)
3233 return;
3234
3235 if (event->attach_state & PERF_ATTACH_TASK)
3236 static_key_slow_dec_deferred(&perf_sched_events);
3237 if (event->attr.mmap || event->attr.mmap_data)
3238 atomic_dec(&nr_mmap_events);
3239 if (event->attr.comm)
3240 atomic_dec(&nr_comm_events);
3241 if (event->attr.task)
3242 atomic_dec(&nr_task_events);
948b26b6
FW
3243 if (event->attr.freq)
3244 atomic_dec(&nr_freq_events);
4beb31f3
FW
3245 if (is_cgroup_event(event))
3246 static_key_slow_dec_deferred(&perf_sched_events);
3247 if (has_branch_stack(event))
3248 static_key_slow_dec_deferred(&perf_sched_events);
3249
3250 unaccount_event_cpu(event, event->cpu);
3251}
925d519a 3252
766d6c07
FW
3253static void __free_event(struct perf_event *event)
3254{
cdd6c482 3255 if (!event->parent) {
927c7a9e
FW
3256 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3257 put_callchain_buffers();
f344011c 3258 }
9ee318a7 3259
766d6c07
FW
3260 if (event->destroy)
3261 event->destroy(event);
3262
3263 if (event->ctx)
3264 put_ctx(event->ctx);
3265
c464c76e
YZ
3266 if (event->pmu)
3267 module_put(event->pmu->module);
3268
766d6c07
FW
3269 call_rcu(&event->rcu_head, free_event_rcu);
3270}
683ede43
PZ
3271
3272static void _free_event(struct perf_event *event)
f1600952 3273{
e360adbe 3274 irq_work_sync(&event->pending);
925d519a 3275
4beb31f3 3276 unaccount_event(event);
9ee318a7 3277
76369139 3278 if (event->rb) {
9bb5d40c
PZ
3279 /*
3280 * Can happen when we close an event with re-directed output.
3281 *
3282 * Since we have a 0 refcount, perf_mmap_close() will skip
3283 * over us; possibly making our ring_buffer_put() the last.
3284 */
3285 mutex_lock(&event->mmap_mutex);
b69cf536 3286 ring_buffer_attach(event, NULL);
9bb5d40c 3287 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3288 }
3289
e5d1367f
SE
3290 if (is_cgroup_event(event))
3291 perf_detach_cgroup(event);
3292
766d6c07 3293 __free_event(event);
f1600952
PZ
3294}
3295
683ede43
PZ
3296/*
3297 * Used to free events which have a known refcount of 1, such as in error paths
3298 * where the event isn't exposed yet and inherited events.
3299 */
3300static void free_event(struct perf_event *event)
0793a61d 3301{
683ede43
PZ
3302 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3303 "unexpected event refcount: %ld; ptr=%p\n",
3304 atomic_long_read(&event->refcount), event)) {
3305 /* leak to avoid use-after-free */
3306 return;
3307 }
0793a61d 3308
683ede43 3309 _free_event(event);
0793a61d
TG
3310}
3311
a66a3052
PZ
3312/*
3313 * Called when the last reference to the file is gone.
3314 */
a6fa941d 3315static void put_event(struct perf_event *event)
fb0459d7 3316{
683ede43 3317 struct perf_event_context *ctx = event->ctx;
8882135b 3318 struct task_struct *owner;
fb0459d7 3319
a6fa941d
AV
3320 if (!atomic_long_dec_and_test(&event->refcount))
3321 return;
fb0459d7 3322
8882135b
PZ
3323 rcu_read_lock();
3324 owner = ACCESS_ONCE(event->owner);
3325 /*
3326 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3327 * !owner it means the list deletion is complete and we can indeed
3328 * free this event, otherwise we need to serialize on
3329 * owner->perf_event_mutex.
3330 */
3331 smp_read_barrier_depends();
3332 if (owner) {
3333 /*
3334 * Since delayed_put_task_struct() also drops the last
3335 * task reference we can safely take a new reference
3336 * while holding the rcu_read_lock().
3337 */
3338 get_task_struct(owner);
3339 }
3340 rcu_read_unlock();
3341
3342 if (owner) {
3343 mutex_lock(&owner->perf_event_mutex);
3344 /*
3345 * We have to re-check the event->owner field, if it is cleared
3346 * we raced with perf_event_exit_task(), acquiring the mutex
3347 * ensured they're done, and we can proceed with freeing the
3348 * event.
3349 */
3350 if (event->owner)
3351 list_del_init(&event->owner_entry);
3352 mutex_unlock(&owner->perf_event_mutex);
3353 put_task_struct(owner);
3354 }
3355
683ede43
PZ
3356 WARN_ON_ONCE(ctx->parent_ctx);
3357 /*
3358 * There are two ways this annotation is useful:
3359 *
3360 * 1) there is a lock recursion from perf_event_exit_task
3361 * see the comment there.
3362 *
3363 * 2) there is a lock-inversion with mmap_sem through
3364 * perf_event_read_group(), which takes faults while
3365 * holding ctx->mutex, however this is called after
3366 * the last filedesc died, so there is no possibility
3367 * to trigger the AB-BA case.
3368 */
3369 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3370 perf_remove_from_context(event, true);
3371 mutex_unlock(&ctx->mutex);
3372
3373 _free_event(event);
a6fa941d
AV
3374}
3375
683ede43
PZ
3376int perf_event_release_kernel(struct perf_event *event)
3377{
3378 put_event(event);
3379 return 0;
3380}
3381EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3382
a6fa941d
AV
3383static int perf_release(struct inode *inode, struct file *file)
3384{
3385 put_event(file->private_data);
3386 return 0;
fb0459d7 3387}
fb0459d7 3388
59ed446f 3389u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3390{
cdd6c482 3391 struct perf_event *child;
e53c0994
PZ
3392 u64 total = 0;
3393
59ed446f
PZ
3394 *enabled = 0;
3395 *running = 0;
3396
6f10581a 3397 mutex_lock(&event->child_mutex);
cdd6c482 3398 total += perf_event_read(event);
59ed446f
PZ
3399 *enabled += event->total_time_enabled +
3400 atomic64_read(&event->child_total_time_enabled);
3401 *running += event->total_time_running +
3402 atomic64_read(&event->child_total_time_running);
3403
3404 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3405 total += perf_event_read(child);
59ed446f
PZ
3406 *enabled += child->total_time_enabled;
3407 *running += child->total_time_running;
3408 }
6f10581a 3409 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3410
3411 return total;
3412}
fb0459d7 3413EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3414
cdd6c482 3415static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3416 u64 read_format, char __user *buf)
3417{
cdd6c482 3418 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3419 int n = 0, size = 0, ret = -EFAULT;
3420 struct perf_event_context *ctx = leader->ctx;
abf4868b 3421 u64 values[5];
59ed446f 3422 u64 count, enabled, running;
abf4868b 3423
6f10581a 3424 mutex_lock(&ctx->mutex);
59ed446f 3425 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3426
3427 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3428 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3429 values[n++] = enabled;
3430 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3431 values[n++] = running;
abf4868b
PZ
3432 values[n++] = count;
3433 if (read_format & PERF_FORMAT_ID)
3434 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3435
3436 size = n * sizeof(u64);
3437
3438 if (copy_to_user(buf, values, size))
6f10581a 3439 goto unlock;
3dab77fb 3440
6f10581a 3441 ret = size;
3dab77fb 3442
65abc865 3443 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3444 n = 0;
3dab77fb 3445
59ed446f 3446 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3447 if (read_format & PERF_FORMAT_ID)
3448 values[n++] = primary_event_id(sub);
3449
3450 size = n * sizeof(u64);
3451
184d3da8 3452 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3453 ret = -EFAULT;
3454 goto unlock;
3455 }
abf4868b
PZ
3456
3457 ret += size;
3dab77fb 3458 }
6f10581a
PZ
3459unlock:
3460 mutex_unlock(&ctx->mutex);
3dab77fb 3461
abf4868b 3462 return ret;
3dab77fb
PZ
3463}
3464
cdd6c482 3465static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3466 u64 read_format, char __user *buf)
3467{
59ed446f 3468 u64 enabled, running;
3dab77fb
PZ
3469 u64 values[4];
3470 int n = 0;
3471
59ed446f
PZ
3472 values[n++] = perf_event_read_value(event, &enabled, &running);
3473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3474 values[n++] = enabled;
3475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3476 values[n++] = running;
3dab77fb 3477 if (read_format & PERF_FORMAT_ID)
cdd6c482 3478 values[n++] = primary_event_id(event);
3dab77fb
PZ
3479
3480 if (copy_to_user(buf, values, n * sizeof(u64)))
3481 return -EFAULT;
3482
3483 return n * sizeof(u64);
3484}
3485
0793a61d 3486/*
cdd6c482 3487 * Read the performance event - simple non blocking version for now
0793a61d
TG
3488 */
3489static ssize_t
cdd6c482 3490perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3491{
cdd6c482 3492 u64 read_format = event->attr.read_format;
3dab77fb 3493 int ret;
0793a61d 3494
3b6f9e5c 3495 /*
cdd6c482 3496 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3497 * error state (i.e. because it was pinned but it couldn't be
3498 * scheduled on to the CPU at some point).
3499 */
cdd6c482 3500 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3501 return 0;
3502
c320c7b7 3503 if (count < event->read_size)
3dab77fb
PZ
3504 return -ENOSPC;
3505
cdd6c482 3506 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3507 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3508 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3509 else
cdd6c482 3510 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3511
3dab77fb 3512 return ret;
0793a61d
TG
3513}
3514
0793a61d
TG
3515static ssize_t
3516perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3517{
cdd6c482 3518 struct perf_event *event = file->private_data;
0793a61d 3519
cdd6c482 3520 return perf_read_hw(event, buf, count);
0793a61d
TG
3521}
3522
3523static unsigned int perf_poll(struct file *file, poll_table *wait)
3524{
cdd6c482 3525 struct perf_event *event = file->private_data;
76369139 3526 struct ring_buffer *rb;
c33a0bc4 3527 unsigned int events = POLL_HUP;
c7138f37 3528
10c6db11 3529 /*
9bb5d40c
PZ
3530 * Pin the event->rb by taking event->mmap_mutex; otherwise
3531 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3532 */
3533 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3534 rb = event->rb;
3535 if (rb)
76369139 3536 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3537 mutex_unlock(&event->mmap_mutex);
3538
cdd6c482 3539 poll_wait(file, &event->waitq, wait);
0793a61d 3540
0793a61d
TG
3541 return events;
3542}
3543
cdd6c482 3544static void perf_event_reset(struct perf_event *event)
6de6a7b9 3545{
cdd6c482 3546 (void)perf_event_read(event);
e7850595 3547 local64_set(&event->count, 0);
cdd6c482 3548 perf_event_update_userpage(event);
3df5edad
PZ
3549}
3550
c93f7669 3551/*
cdd6c482
IM
3552 * Holding the top-level event's child_mutex means that any
3553 * descendant process that has inherited this event will block
3554 * in sync_child_event if it goes to exit, thus satisfying the
3555 * task existence requirements of perf_event_enable/disable.
c93f7669 3556 */
cdd6c482
IM
3557static void perf_event_for_each_child(struct perf_event *event,
3558 void (*func)(struct perf_event *))
3df5edad 3559{
cdd6c482 3560 struct perf_event *child;
3df5edad 3561
cdd6c482
IM
3562 WARN_ON_ONCE(event->ctx->parent_ctx);
3563 mutex_lock(&event->child_mutex);
3564 func(event);
3565 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3566 func(child);
cdd6c482 3567 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3568}
3569
cdd6c482
IM
3570static void perf_event_for_each(struct perf_event *event,
3571 void (*func)(struct perf_event *))
3df5edad 3572{
cdd6c482
IM
3573 struct perf_event_context *ctx = event->ctx;
3574 struct perf_event *sibling;
3df5edad 3575
75f937f2
PZ
3576 WARN_ON_ONCE(ctx->parent_ctx);
3577 mutex_lock(&ctx->mutex);
cdd6c482 3578 event = event->group_leader;
75f937f2 3579
cdd6c482 3580 perf_event_for_each_child(event, func);
cdd6c482 3581 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3582 perf_event_for_each_child(sibling, func);
75f937f2 3583 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3584}
3585
cdd6c482 3586static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3587{
cdd6c482 3588 struct perf_event_context *ctx = event->ctx;
bad7192b 3589 int ret = 0, active;
08247e31
PZ
3590 u64 value;
3591
6c7e550f 3592 if (!is_sampling_event(event))
08247e31
PZ
3593 return -EINVAL;
3594
ad0cf347 3595 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3596 return -EFAULT;
3597
3598 if (!value)
3599 return -EINVAL;
3600
e625cce1 3601 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3602 if (event->attr.freq) {
3603 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3604 ret = -EINVAL;
3605 goto unlock;
3606 }
3607
cdd6c482 3608 event->attr.sample_freq = value;
08247e31 3609 } else {
cdd6c482
IM
3610 event->attr.sample_period = value;
3611 event->hw.sample_period = value;
08247e31 3612 }
bad7192b
PZ
3613
3614 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3615 if (active) {
3616 perf_pmu_disable(ctx->pmu);
3617 event->pmu->stop(event, PERF_EF_UPDATE);
3618 }
3619
3620 local64_set(&event->hw.period_left, 0);
3621
3622 if (active) {
3623 event->pmu->start(event, PERF_EF_RELOAD);
3624 perf_pmu_enable(ctx->pmu);
3625 }
3626
08247e31 3627unlock:
e625cce1 3628 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3629
3630 return ret;
3631}
3632
ac9721f3
PZ
3633static const struct file_operations perf_fops;
3634
2903ff01 3635static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3636{
2903ff01
AV
3637 struct fd f = fdget(fd);
3638 if (!f.file)
3639 return -EBADF;
ac9721f3 3640
2903ff01
AV
3641 if (f.file->f_op != &perf_fops) {
3642 fdput(f);
3643 return -EBADF;
ac9721f3 3644 }
2903ff01
AV
3645 *p = f;
3646 return 0;
ac9721f3
PZ
3647}
3648
3649static int perf_event_set_output(struct perf_event *event,
3650 struct perf_event *output_event);
6fb2915d 3651static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3652
d859e29f
PM
3653static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3654{
cdd6c482
IM
3655 struct perf_event *event = file->private_data;
3656 void (*func)(struct perf_event *);
3df5edad 3657 u32 flags = arg;
d859e29f
PM
3658
3659 switch (cmd) {
cdd6c482
IM
3660 case PERF_EVENT_IOC_ENABLE:
3661 func = perf_event_enable;
d859e29f 3662 break;
cdd6c482
IM
3663 case PERF_EVENT_IOC_DISABLE:
3664 func = perf_event_disable;
79f14641 3665 break;
cdd6c482
IM
3666 case PERF_EVENT_IOC_RESET:
3667 func = perf_event_reset;
6de6a7b9 3668 break;
3df5edad 3669
cdd6c482
IM
3670 case PERF_EVENT_IOC_REFRESH:
3671 return perf_event_refresh(event, arg);
08247e31 3672
cdd6c482
IM
3673 case PERF_EVENT_IOC_PERIOD:
3674 return perf_event_period(event, (u64 __user *)arg);
08247e31 3675
cf4957f1
JO
3676 case PERF_EVENT_IOC_ID:
3677 {
3678 u64 id = primary_event_id(event);
3679
3680 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3681 return -EFAULT;
3682 return 0;
3683 }
3684
cdd6c482 3685 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3686 {
ac9721f3 3687 int ret;
ac9721f3 3688 if (arg != -1) {
2903ff01
AV
3689 struct perf_event *output_event;
3690 struct fd output;
3691 ret = perf_fget_light(arg, &output);
3692 if (ret)
3693 return ret;
3694 output_event = output.file->private_data;
3695 ret = perf_event_set_output(event, output_event);
3696 fdput(output);
3697 } else {
3698 ret = perf_event_set_output(event, NULL);
ac9721f3 3699 }
ac9721f3
PZ
3700 return ret;
3701 }
a4be7c27 3702
6fb2915d
LZ
3703 case PERF_EVENT_IOC_SET_FILTER:
3704 return perf_event_set_filter(event, (void __user *)arg);
3705
d859e29f 3706 default:
3df5edad 3707 return -ENOTTY;
d859e29f 3708 }
3df5edad
PZ
3709
3710 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3711 perf_event_for_each(event, func);
3df5edad 3712 else
cdd6c482 3713 perf_event_for_each_child(event, func);
3df5edad
PZ
3714
3715 return 0;
d859e29f
PM
3716}
3717
cdd6c482 3718int perf_event_task_enable(void)
771d7cde 3719{
cdd6c482 3720 struct perf_event *event;
771d7cde 3721
cdd6c482
IM
3722 mutex_lock(&current->perf_event_mutex);
3723 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3724 perf_event_for_each_child(event, perf_event_enable);
3725 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3726
3727 return 0;
3728}
3729
cdd6c482 3730int perf_event_task_disable(void)
771d7cde 3731{
cdd6c482 3732 struct perf_event *event;
771d7cde 3733
cdd6c482
IM
3734 mutex_lock(&current->perf_event_mutex);
3735 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3736 perf_event_for_each_child(event, perf_event_disable);
3737 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3738
3739 return 0;
3740}
3741
cdd6c482 3742static int perf_event_index(struct perf_event *event)
194002b2 3743{
a4eaf7f1
PZ
3744 if (event->hw.state & PERF_HES_STOPPED)
3745 return 0;
3746
cdd6c482 3747 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3748 return 0;
3749
35edc2a5 3750 return event->pmu->event_idx(event);
194002b2
PZ
3751}
3752
c4794295 3753static void calc_timer_values(struct perf_event *event,
e3f3541c 3754 u64 *now,
7f310a5d
EM
3755 u64 *enabled,
3756 u64 *running)
c4794295 3757{
e3f3541c 3758 u64 ctx_time;
c4794295 3759
e3f3541c
PZ
3760 *now = perf_clock();
3761 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3762 *enabled = ctx_time - event->tstamp_enabled;
3763 *running = ctx_time - event->tstamp_running;
3764}
3765
fa731587
PZ
3766static void perf_event_init_userpage(struct perf_event *event)
3767{
3768 struct perf_event_mmap_page *userpg;
3769 struct ring_buffer *rb;
3770
3771 rcu_read_lock();
3772 rb = rcu_dereference(event->rb);
3773 if (!rb)
3774 goto unlock;
3775
3776 userpg = rb->user_page;
3777
3778 /* Allow new userspace to detect that bit 0 is deprecated */
3779 userpg->cap_bit0_is_deprecated = 1;
3780 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3781
3782unlock:
3783 rcu_read_unlock();
3784}
3785
c7206205 3786void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3787{
3788}
3789
38ff667b
PZ
3790/*
3791 * Callers need to ensure there can be no nesting of this function, otherwise
3792 * the seqlock logic goes bad. We can not serialize this because the arch
3793 * code calls this from NMI context.
3794 */
cdd6c482 3795void perf_event_update_userpage(struct perf_event *event)
37d81828 3796{
cdd6c482 3797 struct perf_event_mmap_page *userpg;
76369139 3798 struct ring_buffer *rb;
e3f3541c 3799 u64 enabled, running, now;
38ff667b
PZ
3800
3801 rcu_read_lock();
5ec4c599
PZ
3802 rb = rcu_dereference(event->rb);
3803 if (!rb)
3804 goto unlock;
3805
0d641208
EM
3806 /*
3807 * compute total_time_enabled, total_time_running
3808 * based on snapshot values taken when the event
3809 * was last scheduled in.
3810 *
3811 * we cannot simply called update_context_time()
3812 * because of locking issue as we can be called in
3813 * NMI context
3814 */
e3f3541c 3815 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3816
76369139 3817 userpg = rb->user_page;
7b732a75
PZ
3818 /*
3819 * Disable preemption so as to not let the corresponding user-space
3820 * spin too long if we get preempted.
3821 */
3822 preempt_disable();
37d81828 3823 ++userpg->lock;
92f22a38 3824 barrier();
cdd6c482 3825 userpg->index = perf_event_index(event);
b5e58793 3826 userpg->offset = perf_event_count(event);
365a4038 3827 if (userpg->index)
e7850595 3828 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3829
0d641208 3830 userpg->time_enabled = enabled +
cdd6c482 3831 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3832
0d641208 3833 userpg->time_running = running +
cdd6c482 3834 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3835
c7206205 3836 arch_perf_update_userpage(userpg, now);
e3f3541c 3837
92f22a38 3838 barrier();
37d81828 3839 ++userpg->lock;
7b732a75 3840 preempt_enable();
38ff667b 3841unlock:
7b732a75 3842 rcu_read_unlock();
37d81828
PM
3843}
3844
906010b2
PZ
3845static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3846{
3847 struct perf_event *event = vma->vm_file->private_data;
76369139 3848 struct ring_buffer *rb;
906010b2
PZ
3849 int ret = VM_FAULT_SIGBUS;
3850
3851 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3852 if (vmf->pgoff == 0)
3853 ret = 0;
3854 return ret;
3855 }
3856
3857 rcu_read_lock();
76369139
FW
3858 rb = rcu_dereference(event->rb);
3859 if (!rb)
906010b2
PZ
3860 goto unlock;
3861
3862 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3863 goto unlock;
3864
76369139 3865 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3866 if (!vmf->page)
3867 goto unlock;
3868
3869 get_page(vmf->page);
3870 vmf->page->mapping = vma->vm_file->f_mapping;
3871 vmf->page->index = vmf->pgoff;
3872
3873 ret = 0;
3874unlock:
3875 rcu_read_unlock();
3876
3877 return ret;
3878}
3879
10c6db11
PZ
3880static void ring_buffer_attach(struct perf_event *event,
3881 struct ring_buffer *rb)
3882{
b69cf536 3883 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
3884 unsigned long flags;
3885
b69cf536
PZ
3886 if (event->rb) {
3887 /*
3888 * Should be impossible, we set this when removing
3889 * event->rb_entry and wait/clear when adding event->rb_entry.
3890 */
3891 WARN_ON_ONCE(event->rcu_pending);
10c6db11 3892
b69cf536
PZ
3893 old_rb = event->rb;
3894 event->rcu_batches = get_state_synchronize_rcu();
3895 event->rcu_pending = 1;
10c6db11 3896
b69cf536
PZ
3897 spin_lock_irqsave(&old_rb->event_lock, flags);
3898 list_del_rcu(&event->rb_entry);
3899 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3900 }
10c6db11 3901
b69cf536
PZ
3902 if (event->rcu_pending && rb) {
3903 cond_synchronize_rcu(event->rcu_batches);
3904 event->rcu_pending = 0;
3905 }
10c6db11 3906
b69cf536
PZ
3907 if (rb) {
3908 spin_lock_irqsave(&rb->event_lock, flags);
3909 list_add_rcu(&event->rb_entry, &rb->event_list);
3910 spin_unlock_irqrestore(&rb->event_lock, flags);
3911 }
3912
3913 rcu_assign_pointer(event->rb, rb);
10c6db11 3914
b69cf536
PZ
3915 if (old_rb) {
3916 ring_buffer_put(old_rb);
3917 /*
3918 * Since we detached before setting the new rb, so that we
3919 * could attach the new rb, we could have missed a wakeup.
3920 * Provide it now.
3921 */
3922 wake_up_all(&event->waitq);
3923 }
10c6db11
PZ
3924}
3925
3926static void ring_buffer_wakeup(struct perf_event *event)
3927{
3928 struct ring_buffer *rb;
3929
3930 rcu_read_lock();
3931 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3932 if (rb) {
3933 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3934 wake_up_all(&event->waitq);
3935 }
10c6db11
PZ
3936 rcu_read_unlock();
3937}
3938
76369139 3939static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3940{
76369139 3941 struct ring_buffer *rb;
906010b2 3942
76369139
FW
3943 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3944 rb_free(rb);
7b732a75
PZ
3945}
3946
76369139 3947static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3948{
76369139 3949 struct ring_buffer *rb;
7b732a75 3950
ac9721f3 3951 rcu_read_lock();
76369139
FW
3952 rb = rcu_dereference(event->rb);
3953 if (rb) {
3954 if (!atomic_inc_not_zero(&rb->refcount))
3955 rb = NULL;
ac9721f3
PZ
3956 }
3957 rcu_read_unlock();
3958
76369139 3959 return rb;
ac9721f3
PZ
3960}
3961
76369139 3962static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3963{
76369139 3964 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3965 return;
7b732a75 3966
9bb5d40c 3967 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3968
76369139 3969 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3970}
3971
3972static void perf_mmap_open(struct vm_area_struct *vma)
3973{
cdd6c482 3974 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3975
cdd6c482 3976 atomic_inc(&event->mmap_count);
9bb5d40c 3977 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3978}
3979
9bb5d40c
PZ
3980/*
3981 * A buffer can be mmap()ed multiple times; either directly through the same
3982 * event, or through other events by use of perf_event_set_output().
3983 *
3984 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3985 * the buffer here, where we still have a VM context. This means we need
3986 * to detach all events redirecting to us.
3987 */
7b732a75
PZ
3988static void perf_mmap_close(struct vm_area_struct *vma)
3989{
cdd6c482 3990 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3991
b69cf536 3992 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
3993 struct user_struct *mmap_user = rb->mmap_user;
3994 int mmap_locked = rb->mmap_locked;
3995 unsigned long size = perf_data_size(rb);
789f90fc 3996
9bb5d40c
PZ
3997 atomic_dec(&rb->mmap_count);
3998
3999 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4000 goto out_put;
9bb5d40c 4001
b69cf536 4002 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4003 mutex_unlock(&event->mmap_mutex);
4004
4005 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4006 if (atomic_read(&rb->mmap_count))
4007 goto out_put;
ac9721f3 4008
9bb5d40c
PZ
4009 /*
4010 * No other mmap()s, detach from all other events that might redirect
4011 * into the now unreachable buffer. Somewhat complicated by the
4012 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4013 */
4014again:
4015 rcu_read_lock();
4016 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4017 if (!atomic_long_inc_not_zero(&event->refcount)) {
4018 /*
4019 * This event is en-route to free_event() which will
4020 * detach it and remove it from the list.
4021 */
4022 continue;
4023 }
4024 rcu_read_unlock();
789f90fc 4025
9bb5d40c
PZ
4026 mutex_lock(&event->mmap_mutex);
4027 /*
4028 * Check we didn't race with perf_event_set_output() which can
4029 * swizzle the rb from under us while we were waiting to
4030 * acquire mmap_mutex.
4031 *
4032 * If we find a different rb; ignore this event, a next
4033 * iteration will no longer find it on the list. We have to
4034 * still restart the iteration to make sure we're not now
4035 * iterating the wrong list.
4036 */
b69cf536
PZ
4037 if (event->rb == rb)
4038 ring_buffer_attach(event, NULL);
4039
cdd6c482 4040 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4041 put_event(event);
ac9721f3 4042
9bb5d40c
PZ
4043 /*
4044 * Restart the iteration; either we're on the wrong list or
4045 * destroyed its integrity by doing a deletion.
4046 */
4047 goto again;
7b732a75 4048 }
9bb5d40c
PZ
4049 rcu_read_unlock();
4050
4051 /*
4052 * It could be there's still a few 0-ref events on the list; they'll
4053 * get cleaned up by free_event() -- they'll also still have their
4054 * ref on the rb and will free it whenever they are done with it.
4055 *
4056 * Aside from that, this buffer is 'fully' detached and unmapped,
4057 * undo the VM accounting.
4058 */
4059
4060 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4061 vma->vm_mm->pinned_vm -= mmap_locked;
4062 free_uid(mmap_user);
4063
b69cf536 4064out_put:
9bb5d40c 4065 ring_buffer_put(rb); /* could be last */
37d81828
PM
4066}
4067
f0f37e2f 4068static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4069 .open = perf_mmap_open,
4070 .close = perf_mmap_close,
4071 .fault = perf_mmap_fault,
4072 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4073};
4074
4075static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4076{
cdd6c482 4077 struct perf_event *event = file->private_data;
22a4f650 4078 unsigned long user_locked, user_lock_limit;
789f90fc 4079 struct user_struct *user = current_user();
22a4f650 4080 unsigned long locked, lock_limit;
76369139 4081 struct ring_buffer *rb;
7b732a75
PZ
4082 unsigned long vma_size;
4083 unsigned long nr_pages;
789f90fc 4084 long user_extra, extra;
d57e34fd 4085 int ret = 0, flags = 0;
37d81828 4086
c7920614
PZ
4087 /*
4088 * Don't allow mmap() of inherited per-task counters. This would
4089 * create a performance issue due to all children writing to the
76369139 4090 * same rb.
c7920614
PZ
4091 */
4092 if (event->cpu == -1 && event->attr.inherit)
4093 return -EINVAL;
4094
43a21ea8 4095 if (!(vma->vm_flags & VM_SHARED))
37d81828 4096 return -EINVAL;
7b732a75
PZ
4097
4098 vma_size = vma->vm_end - vma->vm_start;
4099 nr_pages = (vma_size / PAGE_SIZE) - 1;
4100
7730d865 4101 /*
76369139 4102 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4103 * can do bitmasks instead of modulo.
4104 */
4105 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4106 return -EINVAL;
4107
7b732a75 4108 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4109 return -EINVAL;
4110
7b732a75
PZ
4111 if (vma->vm_pgoff != 0)
4112 return -EINVAL;
37d81828 4113
cdd6c482 4114 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4115again:
cdd6c482 4116 mutex_lock(&event->mmap_mutex);
76369139 4117 if (event->rb) {
9bb5d40c 4118 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4119 ret = -EINVAL;
9bb5d40c
PZ
4120 goto unlock;
4121 }
4122
4123 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4124 /*
4125 * Raced against perf_mmap_close() through
4126 * perf_event_set_output(). Try again, hope for better
4127 * luck.
4128 */
4129 mutex_unlock(&event->mmap_mutex);
4130 goto again;
4131 }
4132
ebb3c4c4
PZ
4133 goto unlock;
4134 }
4135
789f90fc 4136 user_extra = nr_pages + 1;
cdd6c482 4137 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4138
4139 /*
4140 * Increase the limit linearly with more CPUs:
4141 */
4142 user_lock_limit *= num_online_cpus();
4143
789f90fc 4144 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4145
789f90fc
PZ
4146 extra = 0;
4147 if (user_locked > user_lock_limit)
4148 extra = user_locked - user_lock_limit;
7b732a75 4149
78d7d407 4150 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4151 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4152 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4153
459ec28a
IM
4154 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4155 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4156 ret = -EPERM;
4157 goto unlock;
4158 }
7b732a75 4159
76369139 4160 WARN_ON(event->rb);
906010b2 4161
d57e34fd 4162 if (vma->vm_flags & VM_WRITE)
76369139 4163 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4164
4ec8363d
VW
4165 rb = rb_alloc(nr_pages,
4166 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4167 event->cpu, flags);
4168
76369139 4169 if (!rb) {
ac9721f3 4170 ret = -ENOMEM;
ebb3c4c4 4171 goto unlock;
ac9721f3 4172 }
26cb63ad 4173
9bb5d40c 4174 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4175 rb->mmap_locked = extra;
4176 rb->mmap_user = get_current_user();
43a21ea8 4177
ac9721f3 4178 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4179 vma->vm_mm->pinned_vm += extra;
4180
9bb5d40c 4181 ring_buffer_attach(event, rb);
ac9721f3 4182
fa731587 4183 perf_event_init_userpage(event);
9a0f05cb
PZ
4184 perf_event_update_userpage(event);
4185
ebb3c4c4 4186unlock:
ac9721f3
PZ
4187 if (!ret)
4188 atomic_inc(&event->mmap_count);
cdd6c482 4189 mutex_unlock(&event->mmap_mutex);
37d81828 4190
9bb5d40c
PZ
4191 /*
4192 * Since pinned accounting is per vm we cannot allow fork() to copy our
4193 * vma.
4194 */
26cb63ad 4195 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4196 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4197
4198 return ret;
37d81828
PM
4199}
4200
3c446b3d
PZ
4201static int perf_fasync(int fd, struct file *filp, int on)
4202{
496ad9aa 4203 struct inode *inode = file_inode(filp);
cdd6c482 4204 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4205 int retval;
4206
4207 mutex_lock(&inode->i_mutex);
cdd6c482 4208 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4209 mutex_unlock(&inode->i_mutex);
4210
4211 if (retval < 0)
4212 return retval;
4213
4214 return 0;
4215}
4216
0793a61d 4217static const struct file_operations perf_fops = {
3326c1ce 4218 .llseek = no_llseek,
0793a61d
TG
4219 .release = perf_release,
4220 .read = perf_read,
4221 .poll = perf_poll,
d859e29f
PM
4222 .unlocked_ioctl = perf_ioctl,
4223 .compat_ioctl = perf_ioctl,
37d81828 4224 .mmap = perf_mmap,
3c446b3d 4225 .fasync = perf_fasync,
0793a61d
TG
4226};
4227
925d519a 4228/*
cdd6c482 4229 * Perf event wakeup
925d519a
PZ
4230 *
4231 * If there's data, ensure we set the poll() state and publish everything
4232 * to user-space before waking everybody up.
4233 */
4234
cdd6c482 4235void perf_event_wakeup(struct perf_event *event)
925d519a 4236{
10c6db11 4237 ring_buffer_wakeup(event);
4c9e2542 4238
cdd6c482
IM
4239 if (event->pending_kill) {
4240 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4241 event->pending_kill = 0;
4c9e2542 4242 }
925d519a
PZ
4243}
4244
e360adbe 4245static void perf_pending_event(struct irq_work *entry)
79f14641 4246{
cdd6c482
IM
4247 struct perf_event *event = container_of(entry,
4248 struct perf_event, pending);
79f14641 4249
cdd6c482
IM
4250 if (event->pending_disable) {
4251 event->pending_disable = 0;
4252 __perf_event_disable(event);
79f14641
PZ
4253 }
4254
cdd6c482
IM
4255 if (event->pending_wakeup) {
4256 event->pending_wakeup = 0;
4257 perf_event_wakeup(event);
79f14641
PZ
4258 }
4259}
4260
39447b38
ZY
4261/*
4262 * We assume there is only KVM supporting the callbacks.
4263 * Later on, we might change it to a list if there is
4264 * another virtualization implementation supporting the callbacks.
4265 */
4266struct perf_guest_info_callbacks *perf_guest_cbs;
4267
4268int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4269{
4270 perf_guest_cbs = cbs;
4271 return 0;
4272}
4273EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4274
4275int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4276{
4277 perf_guest_cbs = NULL;
4278 return 0;
4279}
4280EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4281
4018994f
JO
4282static void
4283perf_output_sample_regs(struct perf_output_handle *handle,
4284 struct pt_regs *regs, u64 mask)
4285{
4286 int bit;
4287
4288 for_each_set_bit(bit, (const unsigned long *) &mask,
4289 sizeof(mask) * BITS_PER_BYTE) {
4290 u64 val;
4291
4292 val = perf_reg_value(regs, bit);
4293 perf_output_put(handle, val);
4294 }
4295}
4296
4297static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4298 struct pt_regs *regs)
4299{
4300 if (!user_mode(regs)) {
4301 if (current->mm)
4302 regs = task_pt_regs(current);
4303 else
4304 regs = NULL;
4305 }
4306
4307 if (regs) {
4308 regs_user->regs = regs;
4309 regs_user->abi = perf_reg_abi(current);
4310 }
4311}
4312
c5ebcedb
JO
4313/*
4314 * Get remaining task size from user stack pointer.
4315 *
4316 * It'd be better to take stack vma map and limit this more
4317 * precisly, but there's no way to get it safely under interrupt,
4318 * so using TASK_SIZE as limit.
4319 */
4320static u64 perf_ustack_task_size(struct pt_regs *regs)
4321{
4322 unsigned long addr = perf_user_stack_pointer(regs);
4323
4324 if (!addr || addr >= TASK_SIZE)
4325 return 0;
4326
4327 return TASK_SIZE - addr;
4328}
4329
4330static u16
4331perf_sample_ustack_size(u16 stack_size, u16 header_size,
4332 struct pt_regs *regs)
4333{
4334 u64 task_size;
4335
4336 /* No regs, no stack pointer, no dump. */
4337 if (!regs)
4338 return 0;
4339
4340 /*
4341 * Check if we fit in with the requested stack size into the:
4342 * - TASK_SIZE
4343 * If we don't, we limit the size to the TASK_SIZE.
4344 *
4345 * - remaining sample size
4346 * If we don't, we customize the stack size to
4347 * fit in to the remaining sample size.
4348 */
4349
4350 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4351 stack_size = min(stack_size, (u16) task_size);
4352
4353 /* Current header size plus static size and dynamic size. */
4354 header_size += 2 * sizeof(u64);
4355
4356 /* Do we fit in with the current stack dump size? */
4357 if ((u16) (header_size + stack_size) < header_size) {
4358 /*
4359 * If we overflow the maximum size for the sample,
4360 * we customize the stack dump size to fit in.
4361 */
4362 stack_size = USHRT_MAX - header_size - sizeof(u64);
4363 stack_size = round_up(stack_size, sizeof(u64));
4364 }
4365
4366 return stack_size;
4367}
4368
4369static void
4370perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4371 struct pt_regs *regs)
4372{
4373 /* Case of a kernel thread, nothing to dump */
4374 if (!regs) {
4375 u64 size = 0;
4376 perf_output_put(handle, size);
4377 } else {
4378 unsigned long sp;
4379 unsigned int rem;
4380 u64 dyn_size;
4381
4382 /*
4383 * We dump:
4384 * static size
4385 * - the size requested by user or the best one we can fit
4386 * in to the sample max size
4387 * data
4388 * - user stack dump data
4389 * dynamic size
4390 * - the actual dumped size
4391 */
4392
4393 /* Static size. */
4394 perf_output_put(handle, dump_size);
4395
4396 /* Data. */
4397 sp = perf_user_stack_pointer(regs);
4398 rem = __output_copy_user(handle, (void *) sp, dump_size);
4399 dyn_size = dump_size - rem;
4400
4401 perf_output_skip(handle, rem);
4402
4403 /* Dynamic size. */
4404 perf_output_put(handle, dyn_size);
4405 }
4406}
4407
c980d109
ACM
4408static void __perf_event_header__init_id(struct perf_event_header *header,
4409 struct perf_sample_data *data,
4410 struct perf_event *event)
6844c09d
ACM
4411{
4412 u64 sample_type = event->attr.sample_type;
4413
4414 data->type = sample_type;
4415 header->size += event->id_header_size;
4416
4417 if (sample_type & PERF_SAMPLE_TID) {
4418 /* namespace issues */
4419 data->tid_entry.pid = perf_event_pid(event, current);
4420 data->tid_entry.tid = perf_event_tid(event, current);
4421 }
4422
4423 if (sample_type & PERF_SAMPLE_TIME)
4424 data->time = perf_clock();
4425
ff3d527c 4426 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4427 data->id = primary_event_id(event);
4428
4429 if (sample_type & PERF_SAMPLE_STREAM_ID)
4430 data->stream_id = event->id;
4431
4432 if (sample_type & PERF_SAMPLE_CPU) {
4433 data->cpu_entry.cpu = raw_smp_processor_id();
4434 data->cpu_entry.reserved = 0;
4435 }
4436}
4437
76369139
FW
4438void perf_event_header__init_id(struct perf_event_header *header,
4439 struct perf_sample_data *data,
4440 struct perf_event *event)
c980d109
ACM
4441{
4442 if (event->attr.sample_id_all)
4443 __perf_event_header__init_id(header, data, event);
4444}
4445
4446static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4447 struct perf_sample_data *data)
4448{
4449 u64 sample_type = data->type;
4450
4451 if (sample_type & PERF_SAMPLE_TID)
4452 perf_output_put(handle, data->tid_entry);
4453
4454 if (sample_type & PERF_SAMPLE_TIME)
4455 perf_output_put(handle, data->time);
4456
4457 if (sample_type & PERF_SAMPLE_ID)
4458 perf_output_put(handle, data->id);
4459
4460 if (sample_type & PERF_SAMPLE_STREAM_ID)
4461 perf_output_put(handle, data->stream_id);
4462
4463 if (sample_type & PERF_SAMPLE_CPU)
4464 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4465
4466 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4467 perf_output_put(handle, data->id);
c980d109
ACM
4468}
4469
76369139
FW
4470void perf_event__output_id_sample(struct perf_event *event,
4471 struct perf_output_handle *handle,
4472 struct perf_sample_data *sample)
c980d109
ACM
4473{
4474 if (event->attr.sample_id_all)
4475 __perf_event__output_id_sample(handle, sample);
4476}
4477
3dab77fb 4478static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4479 struct perf_event *event,
4480 u64 enabled, u64 running)
3dab77fb 4481{
cdd6c482 4482 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4483 u64 values[4];
4484 int n = 0;
4485
b5e58793 4486 values[n++] = perf_event_count(event);
3dab77fb 4487 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4488 values[n++] = enabled +
cdd6c482 4489 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4490 }
4491 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4492 values[n++] = running +
cdd6c482 4493 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4494 }
4495 if (read_format & PERF_FORMAT_ID)
cdd6c482 4496 values[n++] = primary_event_id(event);
3dab77fb 4497
76369139 4498 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4499}
4500
4501/*
cdd6c482 4502 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4503 */
4504static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4505 struct perf_event *event,
4506 u64 enabled, u64 running)
3dab77fb 4507{
cdd6c482
IM
4508 struct perf_event *leader = event->group_leader, *sub;
4509 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4510 u64 values[5];
4511 int n = 0;
4512
4513 values[n++] = 1 + leader->nr_siblings;
4514
4515 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4516 values[n++] = enabled;
3dab77fb
PZ
4517
4518 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4519 values[n++] = running;
3dab77fb 4520
cdd6c482 4521 if (leader != event)
3dab77fb
PZ
4522 leader->pmu->read(leader);
4523
b5e58793 4524 values[n++] = perf_event_count(leader);
3dab77fb 4525 if (read_format & PERF_FORMAT_ID)
cdd6c482 4526 values[n++] = primary_event_id(leader);
3dab77fb 4527
76369139 4528 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4529
65abc865 4530 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4531 n = 0;
4532
6f5ab001
JO
4533 if ((sub != event) &&
4534 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4535 sub->pmu->read(sub);
4536
b5e58793 4537 values[n++] = perf_event_count(sub);
3dab77fb 4538 if (read_format & PERF_FORMAT_ID)
cdd6c482 4539 values[n++] = primary_event_id(sub);
3dab77fb 4540
76369139 4541 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4542 }
4543}
4544
eed01528
SE
4545#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4546 PERF_FORMAT_TOTAL_TIME_RUNNING)
4547
3dab77fb 4548static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4549 struct perf_event *event)
3dab77fb 4550{
e3f3541c 4551 u64 enabled = 0, running = 0, now;
eed01528
SE
4552 u64 read_format = event->attr.read_format;
4553
4554 /*
4555 * compute total_time_enabled, total_time_running
4556 * based on snapshot values taken when the event
4557 * was last scheduled in.
4558 *
4559 * we cannot simply called update_context_time()
4560 * because of locking issue as we are called in
4561 * NMI context
4562 */
c4794295 4563 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4564 calc_timer_values(event, &now, &enabled, &running);
eed01528 4565
cdd6c482 4566 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4567 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4568 else
eed01528 4569 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4570}
4571
5622f295
MM
4572void perf_output_sample(struct perf_output_handle *handle,
4573 struct perf_event_header *header,
4574 struct perf_sample_data *data,
cdd6c482 4575 struct perf_event *event)
5622f295
MM
4576{
4577 u64 sample_type = data->type;
4578
4579 perf_output_put(handle, *header);
4580
ff3d527c
AH
4581 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4582 perf_output_put(handle, data->id);
4583
5622f295
MM
4584 if (sample_type & PERF_SAMPLE_IP)
4585 perf_output_put(handle, data->ip);
4586
4587 if (sample_type & PERF_SAMPLE_TID)
4588 perf_output_put(handle, data->tid_entry);
4589
4590 if (sample_type & PERF_SAMPLE_TIME)
4591 perf_output_put(handle, data->time);
4592
4593 if (sample_type & PERF_SAMPLE_ADDR)
4594 perf_output_put(handle, data->addr);
4595
4596 if (sample_type & PERF_SAMPLE_ID)
4597 perf_output_put(handle, data->id);
4598
4599 if (sample_type & PERF_SAMPLE_STREAM_ID)
4600 perf_output_put(handle, data->stream_id);
4601
4602 if (sample_type & PERF_SAMPLE_CPU)
4603 perf_output_put(handle, data->cpu_entry);
4604
4605 if (sample_type & PERF_SAMPLE_PERIOD)
4606 perf_output_put(handle, data->period);
4607
4608 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4609 perf_output_read(handle, event);
5622f295
MM
4610
4611 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4612 if (data->callchain) {
4613 int size = 1;
4614
4615 if (data->callchain)
4616 size += data->callchain->nr;
4617
4618 size *= sizeof(u64);
4619
76369139 4620 __output_copy(handle, data->callchain, size);
5622f295
MM
4621 } else {
4622 u64 nr = 0;
4623 perf_output_put(handle, nr);
4624 }
4625 }
4626
4627 if (sample_type & PERF_SAMPLE_RAW) {
4628 if (data->raw) {
4629 perf_output_put(handle, data->raw->size);
76369139
FW
4630 __output_copy(handle, data->raw->data,
4631 data->raw->size);
5622f295
MM
4632 } else {
4633 struct {
4634 u32 size;
4635 u32 data;
4636 } raw = {
4637 .size = sizeof(u32),
4638 .data = 0,
4639 };
4640 perf_output_put(handle, raw);
4641 }
4642 }
a7ac67ea 4643
bce38cd5
SE
4644 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4645 if (data->br_stack) {
4646 size_t size;
4647
4648 size = data->br_stack->nr
4649 * sizeof(struct perf_branch_entry);
4650
4651 perf_output_put(handle, data->br_stack->nr);
4652 perf_output_copy(handle, data->br_stack->entries, size);
4653 } else {
4654 /*
4655 * we always store at least the value of nr
4656 */
4657 u64 nr = 0;
4658 perf_output_put(handle, nr);
4659 }
4660 }
4018994f
JO
4661
4662 if (sample_type & PERF_SAMPLE_REGS_USER) {
4663 u64 abi = data->regs_user.abi;
4664
4665 /*
4666 * If there are no regs to dump, notice it through
4667 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4668 */
4669 perf_output_put(handle, abi);
4670
4671 if (abi) {
4672 u64 mask = event->attr.sample_regs_user;
4673 perf_output_sample_regs(handle,
4674 data->regs_user.regs,
4675 mask);
4676 }
4677 }
c5ebcedb 4678
a5cdd40c 4679 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4680 perf_output_sample_ustack(handle,
4681 data->stack_user_size,
4682 data->regs_user.regs);
a5cdd40c 4683 }
c3feedf2
AK
4684
4685 if (sample_type & PERF_SAMPLE_WEIGHT)
4686 perf_output_put(handle, data->weight);
d6be9ad6
SE
4687
4688 if (sample_type & PERF_SAMPLE_DATA_SRC)
4689 perf_output_put(handle, data->data_src.val);
a5cdd40c 4690
fdfbbd07
AK
4691 if (sample_type & PERF_SAMPLE_TRANSACTION)
4692 perf_output_put(handle, data->txn);
4693
a5cdd40c
PZ
4694 if (!event->attr.watermark) {
4695 int wakeup_events = event->attr.wakeup_events;
4696
4697 if (wakeup_events) {
4698 struct ring_buffer *rb = handle->rb;
4699 int events = local_inc_return(&rb->events);
4700
4701 if (events >= wakeup_events) {
4702 local_sub(wakeup_events, &rb->events);
4703 local_inc(&rb->wakeup);
4704 }
4705 }
4706 }
5622f295
MM
4707}
4708
4709void perf_prepare_sample(struct perf_event_header *header,
4710 struct perf_sample_data *data,
cdd6c482 4711 struct perf_event *event,
5622f295 4712 struct pt_regs *regs)
7b732a75 4713{
cdd6c482 4714 u64 sample_type = event->attr.sample_type;
7b732a75 4715
cdd6c482 4716 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4717 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4718
4719 header->misc = 0;
4720 header->misc |= perf_misc_flags(regs);
6fab0192 4721
c980d109 4722 __perf_event_header__init_id(header, data, event);
6844c09d 4723
c320c7b7 4724 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4725 data->ip = perf_instruction_pointer(regs);
4726
b23f3325 4727 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4728 int size = 1;
394ee076 4729
e6dab5ff 4730 data->callchain = perf_callchain(event, regs);
5622f295
MM
4731
4732 if (data->callchain)
4733 size += data->callchain->nr;
4734
4735 header->size += size * sizeof(u64);
394ee076
PZ
4736 }
4737
3a43ce68 4738 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4739 int size = sizeof(u32);
4740
4741 if (data->raw)
4742 size += data->raw->size;
4743 else
4744 size += sizeof(u32);
4745
4746 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4747 header->size += size;
7f453c24 4748 }
bce38cd5
SE
4749
4750 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4751 int size = sizeof(u64); /* nr */
4752 if (data->br_stack) {
4753 size += data->br_stack->nr
4754 * sizeof(struct perf_branch_entry);
4755 }
4756 header->size += size;
4757 }
4018994f
JO
4758
4759 if (sample_type & PERF_SAMPLE_REGS_USER) {
4760 /* regs dump ABI info */
4761 int size = sizeof(u64);
4762
4763 perf_sample_regs_user(&data->regs_user, regs);
4764
4765 if (data->regs_user.regs) {
4766 u64 mask = event->attr.sample_regs_user;
4767 size += hweight64(mask) * sizeof(u64);
4768 }
4769
4770 header->size += size;
4771 }
c5ebcedb
JO
4772
4773 if (sample_type & PERF_SAMPLE_STACK_USER) {
4774 /*
4775 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4776 * processed as the last one or have additional check added
4777 * in case new sample type is added, because we could eat
4778 * up the rest of the sample size.
4779 */
4780 struct perf_regs_user *uregs = &data->regs_user;
4781 u16 stack_size = event->attr.sample_stack_user;
4782 u16 size = sizeof(u64);
4783
4784 if (!uregs->abi)
4785 perf_sample_regs_user(uregs, regs);
4786
4787 stack_size = perf_sample_ustack_size(stack_size, header->size,
4788 uregs->regs);
4789
4790 /*
4791 * If there is something to dump, add space for the dump
4792 * itself and for the field that tells the dynamic size,
4793 * which is how many have been actually dumped.
4794 */
4795 if (stack_size)
4796 size += sizeof(u64) + stack_size;
4797
4798 data->stack_user_size = stack_size;
4799 header->size += size;
4800 }
5622f295 4801}
7f453c24 4802
a8b0ca17 4803static void perf_event_output(struct perf_event *event,
5622f295
MM
4804 struct perf_sample_data *data,
4805 struct pt_regs *regs)
4806{
4807 struct perf_output_handle handle;
4808 struct perf_event_header header;
689802b2 4809
927c7a9e
FW
4810 /* protect the callchain buffers */
4811 rcu_read_lock();
4812
cdd6c482 4813 perf_prepare_sample(&header, data, event, regs);
5c148194 4814
a7ac67ea 4815 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4816 goto exit;
0322cd6e 4817
cdd6c482 4818 perf_output_sample(&handle, &header, data, event);
f413cdb8 4819
8a057d84 4820 perf_output_end(&handle);
927c7a9e
FW
4821
4822exit:
4823 rcu_read_unlock();
0322cd6e
PZ
4824}
4825
38b200d6 4826/*
cdd6c482 4827 * read event_id
38b200d6
PZ
4828 */
4829
4830struct perf_read_event {
4831 struct perf_event_header header;
4832
4833 u32 pid;
4834 u32 tid;
38b200d6
PZ
4835};
4836
4837static void
cdd6c482 4838perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4839 struct task_struct *task)
4840{
4841 struct perf_output_handle handle;
c980d109 4842 struct perf_sample_data sample;
dfc65094 4843 struct perf_read_event read_event = {
38b200d6 4844 .header = {
cdd6c482 4845 .type = PERF_RECORD_READ,
38b200d6 4846 .misc = 0,
c320c7b7 4847 .size = sizeof(read_event) + event->read_size,
38b200d6 4848 },
cdd6c482
IM
4849 .pid = perf_event_pid(event, task),
4850 .tid = perf_event_tid(event, task),
38b200d6 4851 };
3dab77fb 4852 int ret;
38b200d6 4853
c980d109 4854 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4855 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4856 if (ret)
4857 return;
4858
dfc65094 4859 perf_output_put(&handle, read_event);
cdd6c482 4860 perf_output_read(&handle, event);
c980d109 4861 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4862
38b200d6
PZ
4863 perf_output_end(&handle);
4864}
4865
52d857a8
JO
4866typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4867
4868static void
4869perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4870 perf_event_aux_output_cb output,
4871 void *data)
4872{
4873 struct perf_event *event;
4874
4875 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4876 if (event->state < PERF_EVENT_STATE_INACTIVE)
4877 continue;
4878 if (!event_filter_match(event))
4879 continue;
67516844 4880 output(event, data);
52d857a8
JO
4881 }
4882}
4883
4884static void
67516844 4885perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4886 struct perf_event_context *task_ctx)
4887{
4888 struct perf_cpu_context *cpuctx;
4889 struct perf_event_context *ctx;
4890 struct pmu *pmu;
4891 int ctxn;
4892
4893 rcu_read_lock();
4894 list_for_each_entry_rcu(pmu, &pmus, entry) {
4895 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4896 if (cpuctx->unique_pmu != pmu)
4897 goto next;
67516844 4898 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4899 if (task_ctx)
4900 goto next;
4901 ctxn = pmu->task_ctx_nr;
4902 if (ctxn < 0)
4903 goto next;
4904 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4905 if (ctx)
67516844 4906 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4907next:
4908 put_cpu_ptr(pmu->pmu_cpu_context);
4909 }
4910
4911 if (task_ctx) {
4912 preempt_disable();
67516844 4913 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4914 preempt_enable();
4915 }
4916 rcu_read_unlock();
4917}
4918
60313ebe 4919/*
9f498cc5
PZ
4920 * task tracking -- fork/exit
4921 *
13d7a241 4922 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4923 */
4924
9f498cc5 4925struct perf_task_event {
3a80b4a3 4926 struct task_struct *task;
cdd6c482 4927 struct perf_event_context *task_ctx;
60313ebe
PZ
4928
4929 struct {
4930 struct perf_event_header header;
4931
4932 u32 pid;
4933 u32 ppid;
9f498cc5
PZ
4934 u32 tid;
4935 u32 ptid;
393b2ad8 4936 u64 time;
cdd6c482 4937 } event_id;
60313ebe
PZ
4938};
4939
67516844
JO
4940static int perf_event_task_match(struct perf_event *event)
4941{
13d7a241
SE
4942 return event->attr.comm || event->attr.mmap ||
4943 event->attr.mmap2 || event->attr.mmap_data ||
4944 event->attr.task;
67516844
JO
4945}
4946
cdd6c482 4947static void perf_event_task_output(struct perf_event *event,
52d857a8 4948 void *data)
60313ebe 4949{
52d857a8 4950 struct perf_task_event *task_event = data;
60313ebe 4951 struct perf_output_handle handle;
c980d109 4952 struct perf_sample_data sample;
9f498cc5 4953 struct task_struct *task = task_event->task;
c980d109 4954 int ret, size = task_event->event_id.header.size;
8bb39f9a 4955
67516844
JO
4956 if (!perf_event_task_match(event))
4957 return;
4958
c980d109 4959 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4960
c980d109 4961 ret = perf_output_begin(&handle, event,
a7ac67ea 4962 task_event->event_id.header.size);
ef60777c 4963 if (ret)
c980d109 4964 goto out;
60313ebe 4965
cdd6c482
IM
4966 task_event->event_id.pid = perf_event_pid(event, task);
4967 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4968
cdd6c482
IM
4969 task_event->event_id.tid = perf_event_tid(event, task);
4970 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4971
cdd6c482 4972 perf_output_put(&handle, task_event->event_id);
393b2ad8 4973
c980d109
ACM
4974 perf_event__output_id_sample(event, &handle, &sample);
4975
60313ebe 4976 perf_output_end(&handle);
c980d109
ACM
4977out:
4978 task_event->event_id.header.size = size;
60313ebe
PZ
4979}
4980
cdd6c482
IM
4981static void perf_event_task(struct task_struct *task,
4982 struct perf_event_context *task_ctx,
3a80b4a3 4983 int new)
60313ebe 4984{
9f498cc5 4985 struct perf_task_event task_event;
60313ebe 4986
cdd6c482
IM
4987 if (!atomic_read(&nr_comm_events) &&
4988 !atomic_read(&nr_mmap_events) &&
4989 !atomic_read(&nr_task_events))
60313ebe
PZ
4990 return;
4991
9f498cc5 4992 task_event = (struct perf_task_event){
3a80b4a3
PZ
4993 .task = task,
4994 .task_ctx = task_ctx,
cdd6c482 4995 .event_id = {
60313ebe 4996 .header = {
cdd6c482 4997 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4998 .misc = 0,
cdd6c482 4999 .size = sizeof(task_event.event_id),
60313ebe 5000 },
573402db
PZ
5001 /* .pid */
5002 /* .ppid */
9f498cc5
PZ
5003 /* .tid */
5004 /* .ptid */
6f93d0a7 5005 .time = perf_clock(),
60313ebe
PZ
5006 },
5007 };
5008
67516844 5009 perf_event_aux(perf_event_task_output,
52d857a8
JO
5010 &task_event,
5011 task_ctx);
9f498cc5
PZ
5012}
5013
cdd6c482 5014void perf_event_fork(struct task_struct *task)
9f498cc5 5015{
cdd6c482 5016 perf_event_task(task, NULL, 1);
60313ebe
PZ
5017}
5018
8d1b2d93
PZ
5019/*
5020 * comm tracking
5021 */
5022
5023struct perf_comm_event {
22a4f650
IM
5024 struct task_struct *task;
5025 char *comm;
8d1b2d93
PZ
5026 int comm_size;
5027
5028 struct {
5029 struct perf_event_header header;
5030
5031 u32 pid;
5032 u32 tid;
cdd6c482 5033 } event_id;
8d1b2d93
PZ
5034};
5035
67516844
JO
5036static int perf_event_comm_match(struct perf_event *event)
5037{
5038 return event->attr.comm;
5039}
5040
cdd6c482 5041static void perf_event_comm_output(struct perf_event *event,
52d857a8 5042 void *data)
8d1b2d93 5043{
52d857a8 5044 struct perf_comm_event *comm_event = data;
8d1b2d93 5045 struct perf_output_handle handle;
c980d109 5046 struct perf_sample_data sample;
cdd6c482 5047 int size = comm_event->event_id.header.size;
c980d109
ACM
5048 int ret;
5049
67516844
JO
5050 if (!perf_event_comm_match(event))
5051 return;
5052
c980d109
ACM
5053 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5054 ret = perf_output_begin(&handle, event,
a7ac67ea 5055 comm_event->event_id.header.size);
8d1b2d93
PZ
5056
5057 if (ret)
c980d109 5058 goto out;
8d1b2d93 5059
cdd6c482
IM
5060 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5061 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5062
cdd6c482 5063 perf_output_put(&handle, comm_event->event_id);
76369139 5064 __output_copy(&handle, comm_event->comm,
8d1b2d93 5065 comm_event->comm_size);
c980d109
ACM
5066
5067 perf_event__output_id_sample(event, &handle, &sample);
5068
8d1b2d93 5069 perf_output_end(&handle);
c980d109
ACM
5070out:
5071 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5072}
5073
cdd6c482 5074static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5075{
413ee3b4 5076 char comm[TASK_COMM_LEN];
8d1b2d93 5077 unsigned int size;
8d1b2d93 5078
413ee3b4 5079 memset(comm, 0, sizeof(comm));
96b02d78 5080 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5081 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5082
5083 comm_event->comm = comm;
5084 comm_event->comm_size = size;
5085
cdd6c482 5086 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5087
67516844 5088 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5089 comm_event,
5090 NULL);
8d1b2d93
PZ
5091}
5092
cdd6c482 5093void perf_event_comm(struct task_struct *task)
8d1b2d93 5094{
9ee318a7
PZ
5095 struct perf_comm_event comm_event;
5096
cdd6c482 5097 if (!atomic_read(&nr_comm_events))
9ee318a7 5098 return;
a63eaf34 5099
9ee318a7 5100 comm_event = (struct perf_comm_event){
8d1b2d93 5101 .task = task,
573402db
PZ
5102 /* .comm */
5103 /* .comm_size */
cdd6c482 5104 .event_id = {
573402db 5105 .header = {
cdd6c482 5106 .type = PERF_RECORD_COMM,
573402db
PZ
5107 .misc = 0,
5108 /* .size */
5109 },
5110 /* .pid */
5111 /* .tid */
8d1b2d93
PZ
5112 },
5113 };
5114
cdd6c482 5115 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5116}
5117
0a4a9391
PZ
5118/*
5119 * mmap tracking
5120 */
5121
5122struct perf_mmap_event {
089dd79d
PZ
5123 struct vm_area_struct *vma;
5124
5125 const char *file_name;
5126 int file_size;
13d7a241
SE
5127 int maj, min;
5128 u64 ino;
5129 u64 ino_generation;
0a4a9391
PZ
5130
5131 struct {
5132 struct perf_event_header header;
5133
5134 u32 pid;
5135 u32 tid;
5136 u64 start;
5137 u64 len;
5138 u64 pgoff;
cdd6c482 5139 } event_id;
0a4a9391
PZ
5140};
5141
67516844
JO
5142static int perf_event_mmap_match(struct perf_event *event,
5143 void *data)
5144{
5145 struct perf_mmap_event *mmap_event = data;
5146 struct vm_area_struct *vma = mmap_event->vma;
5147 int executable = vma->vm_flags & VM_EXEC;
5148
5149 return (!executable && event->attr.mmap_data) ||
13d7a241 5150 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5151}
5152
cdd6c482 5153static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5154 void *data)
0a4a9391 5155{
52d857a8 5156 struct perf_mmap_event *mmap_event = data;
0a4a9391 5157 struct perf_output_handle handle;
c980d109 5158 struct perf_sample_data sample;
cdd6c482 5159 int size = mmap_event->event_id.header.size;
c980d109 5160 int ret;
0a4a9391 5161
67516844
JO
5162 if (!perf_event_mmap_match(event, data))
5163 return;
5164
13d7a241
SE
5165 if (event->attr.mmap2) {
5166 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5167 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5168 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5169 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5170 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5171 }
5172
c980d109
ACM
5173 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5174 ret = perf_output_begin(&handle, event,
a7ac67ea 5175 mmap_event->event_id.header.size);
0a4a9391 5176 if (ret)
c980d109 5177 goto out;
0a4a9391 5178
cdd6c482
IM
5179 mmap_event->event_id.pid = perf_event_pid(event, current);
5180 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5181
cdd6c482 5182 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5183
5184 if (event->attr.mmap2) {
5185 perf_output_put(&handle, mmap_event->maj);
5186 perf_output_put(&handle, mmap_event->min);
5187 perf_output_put(&handle, mmap_event->ino);
5188 perf_output_put(&handle, mmap_event->ino_generation);
5189 }
5190
76369139 5191 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5192 mmap_event->file_size);
c980d109
ACM
5193
5194 perf_event__output_id_sample(event, &handle, &sample);
5195
78d613eb 5196 perf_output_end(&handle);
c980d109
ACM
5197out:
5198 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5199}
5200
cdd6c482 5201static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5202{
089dd79d
PZ
5203 struct vm_area_struct *vma = mmap_event->vma;
5204 struct file *file = vma->vm_file;
13d7a241
SE
5205 int maj = 0, min = 0;
5206 u64 ino = 0, gen = 0;
0a4a9391
PZ
5207 unsigned int size;
5208 char tmp[16];
5209 char *buf = NULL;
2c42cfbf 5210 char *name;
413ee3b4 5211
0a4a9391 5212 if (file) {
13d7a241
SE
5213 struct inode *inode;
5214 dev_t dev;
3ea2f2b9 5215
2c42cfbf 5216 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5217 if (!buf) {
c7e548b4
ON
5218 name = "//enomem";
5219 goto cpy_name;
0a4a9391 5220 }
413ee3b4 5221 /*
3ea2f2b9 5222 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5223 * need to add enough zero bytes after the string to handle
5224 * the 64bit alignment we do later.
5225 */
3ea2f2b9 5226 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5227 if (IS_ERR(name)) {
c7e548b4
ON
5228 name = "//toolong";
5229 goto cpy_name;
0a4a9391 5230 }
13d7a241
SE
5231 inode = file_inode(vma->vm_file);
5232 dev = inode->i_sb->s_dev;
5233 ino = inode->i_ino;
5234 gen = inode->i_generation;
5235 maj = MAJOR(dev);
5236 min = MINOR(dev);
c7e548b4 5237 goto got_name;
0a4a9391 5238 } else {
2c42cfbf 5239 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5240 if (name)
5241 goto cpy_name;
089dd79d 5242
32c5fb7e 5243 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5244 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5245 name = "[heap]";
5246 goto cpy_name;
32c5fb7e
ON
5247 }
5248 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5249 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5250 name = "[stack]";
5251 goto cpy_name;
089dd79d
PZ
5252 }
5253
c7e548b4
ON
5254 name = "//anon";
5255 goto cpy_name;
0a4a9391
PZ
5256 }
5257
c7e548b4
ON
5258cpy_name:
5259 strlcpy(tmp, name, sizeof(tmp));
5260 name = tmp;
0a4a9391 5261got_name:
2c42cfbf
PZ
5262 /*
5263 * Since our buffer works in 8 byte units we need to align our string
5264 * size to a multiple of 8. However, we must guarantee the tail end is
5265 * zero'd out to avoid leaking random bits to userspace.
5266 */
5267 size = strlen(name)+1;
5268 while (!IS_ALIGNED(size, sizeof(u64)))
5269 name[size++] = '\0';
0a4a9391
PZ
5270
5271 mmap_event->file_name = name;
5272 mmap_event->file_size = size;
13d7a241
SE
5273 mmap_event->maj = maj;
5274 mmap_event->min = min;
5275 mmap_event->ino = ino;
5276 mmap_event->ino_generation = gen;
0a4a9391 5277
2fe85427
SE
5278 if (!(vma->vm_flags & VM_EXEC))
5279 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5280
cdd6c482 5281 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5282
67516844 5283 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5284 mmap_event,
5285 NULL);
665c2142 5286
0a4a9391
PZ
5287 kfree(buf);
5288}
5289
3af9e859 5290void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5291{
9ee318a7
PZ
5292 struct perf_mmap_event mmap_event;
5293
cdd6c482 5294 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5295 return;
5296
5297 mmap_event = (struct perf_mmap_event){
089dd79d 5298 .vma = vma,
573402db
PZ
5299 /* .file_name */
5300 /* .file_size */
cdd6c482 5301 .event_id = {
573402db 5302 .header = {
cdd6c482 5303 .type = PERF_RECORD_MMAP,
39447b38 5304 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5305 /* .size */
5306 },
5307 /* .pid */
5308 /* .tid */
089dd79d
PZ
5309 .start = vma->vm_start,
5310 .len = vma->vm_end - vma->vm_start,
3a0304e9 5311 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5312 },
13d7a241
SE
5313 /* .maj (attr_mmap2 only) */
5314 /* .min (attr_mmap2 only) */
5315 /* .ino (attr_mmap2 only) */
5316 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5317 };
5318
cdd6c482 5319 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5320}
5321
a78ac325
PZ
5322/*
5323 * IRQ throttle logging
5324 */
5325
cdd6c482 5326static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5327{
5328 struct perf_output_handle handle;
c980d109 5329 struct perf_sample_data sample;
a78ac325
PZ
5330 int ret;
5331
5332 struct {
5333 struct perf_event_header header;
5334 u64 time;
cca3f454 5335 u64 id;
7f453c24 5336 u64 stream_id;
a78ac325
PZ
5337 } throttle_event = {
5338 .header = {
cdd6c482 5339 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5340 .misc = 0,
5341 .size = sizeof(throttle_event),
5342 },
def0a9b2 5343 .time = perf_clock(),
cdd6c482
IM
5344 .id = primary_event_id(event),
5345 .stream_id = event->id,
a78ac325
PZ
5346 };
5347
966ee4d6 5348 if (enable)
cdd6c482 5349 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5350
c980d109
ACM
5351 perf_event_header__init_id(&throttle_event.header, &sample, event);
5352
5353 ret = perf_output_begin(&handle, event,
a7ac67ea 5354 throttle_event.header.size);
a78ac325
PZ
5355 if (ret)
5356 return;
5357
5358 perf_output_put(&handle, throttle_event);
c980d109 5359 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5360 perf_output_end(&handle);
5361}
5362
f6c7d5fe 5363/*
cdd6c482 5364 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5365 */
5366
a8b0ca17 5367static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5368 int throttle, struct perf_sample_data *data,
5369 struct pt_regs *regs)
f6c7d5fe 5370{
cdd6c482
IM
5371 int events = atomic_read(&event->event_limit);
5372 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5373 u64 seq;
79f14641
PZ
5374 int ret = 0;
5375
96398826
PZ
5376 /*
5377 * Non-sampling counters might still use the PMI to fold short
5378 * hardware counters, ignore those.
5379 */
5380 if (unlikely(!is_sampling_event(event)))
5381 return 0;
5382
e050e3f0
SE
5383 seq = __this_cpu_read(perf_throttled_seq);
5384 if (seq != hwc->interrupts_seq) {
5385 hwc->interrupts_seq = seq;
5386 hwc->interrupts = 1;
5387 } else {
5388 hwc->interrupts++;
5389 if (unlikely(throttle
5390 && hwc->interrupts >= max_samples_per_tick)) {
5391 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5392 hwc->interrupts = MAX_INTERRUPTS;
5393 perf_log_throttle(event, 0);
d84153d6 5394 tick_nohz_full_kick();
a78ac325
PZ
5395 ret = 1;
5396 }
e050e3f0 5397 }
60db5e09 5398
cdd6c482 5399 if (event->attr.freq) {
def0a9b2 5400 u64 now = perf_clock();
abd50713 5401 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5402
abd50713 5403 hwc->freq_time_stamp = now;
bd2b5b12 5404
abd50713 5405 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5406 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5407 }
5408
2023b359
PZ
5409 /*
5410 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5411 * events
2023b359
PZ
5412 */
5413
cdd6c482
IM
5414 event->pending_kill = POLL_IN;
5415 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5416 ret = 1;
cdd6c482 5417 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5418 event->pending_disable = 1;
5419 irq_work_queue(&event->pending);
79f14641
PZ
5420 }
5421
453f19ee 5422 if (event->overflow_handler)
a8b0ca17 5423 event->overflow_handler(event, data, regs);
453f19ee 5424 else
a8b0ca17 5425 perf_event_output(event, data, regs);
453f19ee 5426
f506b3dc 5427 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5428 event->pending_wakeup = 1;
5429 irq_work_queue(&event->pending);
f506b3dc
PZ
5430 }
5431
79f14641 5432 return ret;
f6c7d5fe
PZ
5433}
5434
a8b0ca17 5435int perf_event_overflow(struct perf_event *event,
5622f295
MM
5436 struct perf_sample_data *data,
5437 struct pt_regs *regs)
850bc73f 5438{
a8b0ca17 5439 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5440}
5441
15dbf27c 5442/*
cdd6c482 5443 * Generic software event infrastructure
15dbf27c
PZ
5444 */
5445
b28ab83c
PZ
5446struct swevent_htable {
5447 struct swevent_hlist *swevent_hlist;
5448 struct mutex hlist_mutex;
5449 int hlist_refcount;
5450
5451 /* Recursion avoidance in each contexts */
5452 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5453
5454 /* Keeps track of cpu being initialized/exited */
5455 bool online;
b28ab83c
PZ
5456};
5457
5458static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5459
7b4b6658 5460/*
cdd6c482
IM
5461 * We directly increment event->count and keep a second value in
5462 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5463 * is kept in the range [-sample_period, 0] so that we can use the
5464 * sign as trigger.
5465 */
5466
ab573844 5467u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5468{
cdd6c482 5469 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5470 u64 period = hwc->last_period;
5471 u64 nr, offset;
5472 s64 old, val;
5473
5474 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5475
5476again:
e7850595 5477 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5478 if (val < 0)
5479 return 0;
15dbf27c 5480
7b4b6658
PZ
5481 nr = div64_u64(period + val, period);
5482 offset = nr * period;
5483 val -= offset;
e7850595 5484 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5485 goto again;
15dbf27c 5486
7b4b6658 5487 return nr;
15dbf27c
PZ
5488}
5489
0cff784a 5490static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5491 struct perf_sample_data *data,
5622f295 5492 struct pt_regs *regs)
15dbf27c 5493{
cdd6c482 5494 struct hw_perf_event *hwc = &event->hw;
850bc73f 5495 int throttle = 0;
15dbf27c 5496
0cff784a
PZ
5497 if (!overflow)
5498 overflow = perf_swevent_set_period(event);
15dbf27c 5499
7b4b6658
PZ
5500 if (hwc->interrupts == MAX_INTERRUPTS)
5501 return;
15dbf27c 5502
7b4b6658 5503 for (; overflow; overflow--) {
a8b0ca17 5504 if (__perf_event_overflow(event, throttle,
5622f295 5505 data, regs)) {
7b4b6658
PZ
5506 /*
5507 * We inhibit the overflow from happening when
5508 * hwc->interrupts == MAX_INTERRUPTS.
5509 */
5510 break;
5511 }
cf450a73 5512 throttle = 1;
7b4b6658 5513 }
15dbf27c
PZ
5514}
5515
a4eaf7f1 5516static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5517 struct perf_sample_data *data,
5622f295 5518 struct pt_regs *regs)
7b4b6658 5519{
cdd6c482 5520 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5521
e7850595 5522 local64_add(nr, &event->count);
d6d020e9 5523
0cff784a
PZ
5524 if (!regs)
5525 return;
5526
6c7e550f 5527 if (!is_sampling_event(event))
7b4b6658 5528 return;
d6d020e9 5529
5d81e5cf
AV
5530 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5531 data->period = nr;
5532 return perf_swevent_overflow(event, 1, data, regs);
5533 } else
5534 data->period = event->hw.last_period;
5535
0cff784a 5536 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5537 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5538
e7850595 5539 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5540 return;
df1a132b 5541
a8b0ca17 5542 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5543}
5544
f5ffe02e
FW
5545static int perf_exclude_event(struct perf_event *event,
5546 struct pt_regs *regs)
5547{
a4eaf7f1 5548 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5549 return 1;
a4eaf7f1 5550
f5ffe02e
FW
5551 if (regs) {
5552 if (event->attr.exclude_user && user_mode(regs))
5553 return 1;
5554
5555 if (event->attr.exclude_kernel && !user_mode(regs))
5556 return 1;
5557 }
5558
5559 return 0;
5560}
5561
cdd6c482 5562static int perf_swevent_match(struct perf_event *event,
1c432d89 5563 enum perf_type_id type,
6fb2915d
LZ
5564 u32 event_id,
5565 struct perf_sample_data *data,
5566 struct pt_regs *regs)
15dbf27c 5567{
cdd6c482 5568 if (event->attr.type != type)
a21ca2ca 5569 return 0;
f5ffe02e 5570
cdd6c482 5571 if (event->attr.config != event_id)
15dbf27c
PZ
5572 return 0;
5573
f5ffe02e
FW
5574 if (perf_exclude_event(event, regs))
5575 return 0;
15dbf27c
PZ
5576
5577 return 1;
5578}
5579
76e1d904
FW
5580static inline u64 swevent_hash(u64 type, u32 event_id)
5581{
5582 u64 val = event_id | (type << 32);
5583
5584 return hash_64(val, SWEVENT_HLIST_BITS);
5585}
5586
49f135ed
FW
5587static inline struct hlist_head *
5588__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5589{
49f135ed
FW
5590 u64 hash = swevent_hash(type, event_id);
5591
5592 return &hlist->heads[hash];
5593}
76e1d904 5594
49f135ed
FW
5595/* For the read side: events when they trigger */
5596static inline struct hlist_head *
b28ab83c 5597find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5598{
5599 struct swevent_hlist *hlist;
76e1d904 5600
b28ab83c 5601 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5602 if (!hlist)
5603 return NULL;
5604
49f135ed
FW
5605 return __find_swevent_head(hlist, type, event_id);
5606}
5607
5608/* For the event head insertion and removal in the hlist */
5609static inline struct hlist_head *
b28ab83c 5610find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5611{
5612 struct swevent_hlist *hlist;
5613 u32 event_id = event->attr.config;
5614 u64 type = event->attr.type;
5615
5616 /*
5617 * Event scheduling is always serialized against hlist allocation
5618 * and release. Which makes the protected version suitable here.
5619 * The context lock guarantees that.
5620 */
b28ab83c 5621 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5622 lockdep_is_held(&event->ctx->lock));
5623 if (!hlist)
5624 return NULL;
5625
5626 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5627}
5628
5629static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5630 u64 nr,
76e1d904
FW
5631 struct perf_sample_data *data,
5632 struct pt_regs *regs)
15dbf27c 5633{
b28ab83c 5634 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5635 struct perf_event *event;
76e1d904 5636 struct hlist_head *head;
15dbf27c 5637
76e1d904 5638 rcu_read_lock();
b28ab83c 5639 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5640 if (!head)
5641 goto end;
5642
b67bfe0d 5643 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5644 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5645 perf_swevent_event(event, nr, data, regs);
15dbf27c 5646 }
76e1d904
FW
5647end:
5648 rcu_read_unlock();
15dbf27c
PZ
5649}
5650
4ed7c92d 5651int perf_swevent_get_recursion_context(void)
96f6d444 5652{
b28ab83c 5653 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5654
b28ab83c 5655 return get_recursion_context(swhash->recursion);
96f6d444 5656}
645e8cc0 5657EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5658
fa9f90be 5659inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5660{
b28ab83c 5661 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5662
b28ab83c 5663 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5664}
15dbf27c 5665
a8b0ca17 5666void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5667{
a4234bfc 5668 struct perf_sample_data data;
4ed7c92d
PZ
5669 int rctx;
5670
1c024eca 5671 preempt_disable_notrace();
4ed7c92d
PZ
5672 rctx = perf_swevent_get_recursion_context();
5673 if (rctx < 0)
5674 return;
a4234bfc 5675
fd0d000b 5676 perf_sample_data_init(&data, addr, 0);
92bf309a 5677
a8b0ca17 5678 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5679
5680 perf_swevent_put_recursion_context(rctx);
1c024eca 5681 preempt_enable_notrace();
b8e83514
PZ
5682}
5683
cdd6c482 5684static void perf_swevent_read(struct perf_event *event)
15dbf27c 5685{
15dbf27c
PZ
5686}
5687
a4eaf7f1 5688static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5689{
b28ab83c 5690 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5691 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5692 struct hlist_head *head;
5693
6c7e550f 5694 if (is_sampling_event(event)) {
7b4b6658 5695 hwc->last_period = hwc->sample_period;
cdd6c482 5696 perf_swevent_set_period(event);
7b4b6658 5697 }
76e1d904 5698
a4eaf7f1
PZ
5699 hwc->state = !(flags & PERF_EF_START);
5700
b28ab83c 5701 head = find_swevent_head(swhash, event);
39af6b16
JO
5702 if (!head) {
5703 /*
5704 * We can race with cpu hotplug code. Do not
5705 * WARN if the cpu just got unplugged.
5706 */
5707 WARN_ON_ONCE(swhash->online);
76e1d904 5708 return -EINVAL;
39af6b16 5709 }
76e1d904
FW
5710
5711 hlist_add_head_rcu(&event->hlist_entry, head);
5712
15dbf27c
PZ
5713 return 0;
5714}
5715
a4eaf7f1 5716static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5717{
76e1d904 5718 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5719}
5720
a4eaf7f1 5721static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5722{
a4eaf7f1 5723 event->hw.state = 0;
d6d020e9 5724}
aa9c4c0f 5725
a4eaf7f1 5726static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5727{
a4eaf7f1 5728 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5729}
5730
49f135ed
FW
5731/* Deref the hlist from the update side */
5732static inline struct swevent_hlist *
b28ab83c 5733swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5734{
b28ab83c
PZ
5735 return rcu_dereference_protected(swhash->swevent_hlist,
5736 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5737}
5738
b28ab83c 5739static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5740{
b28ab83c 5741 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5742
49f135ed 5743 if (!hlist)
76e1d904
FW
5744 return;
5745
b28ab83c 5746 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5747 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5748}
5749
5750static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5751{
b28ab83c 5752 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5753
b28ab83c 5754 mutex_lock(&swhash->hlist_mutex);
76e1d904 5755
b28ab83c
PZ
5756 if (!--swhash->hlist_refcount)
5757 swevent_hlist_release(swhash);
76e1d904 5758
b28ab83c 5759 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5760}
5761
5762static void swevent_hlist_put(struct perf_event *event)
5763{
5764 int cpu;
5765
76e1d904
FW
5766 for_each_possible_cpu(cpu)
5767 swevent_hlist_put_cpu(event, cpu);
5768}
5769
5770static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5771{
b28ab83c 5772 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5773 int err = 0;
5774
b28ab83c 5775 mutex_lock(&swhash->hlist_mutex);
76e1d904 5776
b28ab83c 5777 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5778 struct swevent_hlist *hlist;
5779
5780 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5781 if (!hlist) {
5782 err = -ENOMEM;
5783 goto exit;
5784 }
b28ab83c 5785 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5786 }
b28ab83c 5787 swhash->hlist_refcount++;
9ed6060d 5788exit:
b28ab83c 5789 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5790
5791 return err;
5792}
5793
5794static int swevent_hlist_get(struct perf_event *event)
5795{
5796 int err;
5797 int cpu, failed_cpu;
5798
76e1d904
FW
5799 get_online_cpus();
5800 for_each_possible_cpu(cpu) {
5801 err = swevent_hlist_get_cpu(event, cpu);
5802 if (err) {
5803 failed_cpu = cpu;
5804 goto fail;
5805 }
5806 }
5807 put_online_cpus();
5808
5809 return 0;
9ed6060d 5810fail:
76e1d904
FW
5811 for_each_possible_cpu(cpu) {
5812 if (cpu == failed_cpu)
5813 break;
5814 swevent_hlist_put_cpu(event, cpu);
5815 }
5816
5817 put_online_cpus();
5818 return err;
5819}
5820
c5905afb 5821struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5822
b0a873eb
PZ
5823static void sw_perf_event_destroy(struct perf_event *event)
5824{
5825 u64 event_id = event->attr.config;
95476b64 5826
b0a873eb
PZ
5827 WARN_ON(event->parent);
5828
c5905afb 5829 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5830 swevent_hlist_put(event);
5831}
5832
5833static int perf_swevent_init(struct perf_event *event)
5834{
8176cced 5835 u64 event_id = event->attr.config;
b0a873eb
PZ
5836
5837 if (event->attr.type != PERF_TYPE_SOFTWARE)
5838 return -ENOENT;
5839
2481c5fa
SE
5840 /*
5841 * no branch sampling for software events
5842 */
5843 if (has_branch_stack(event))
5844 return -EOPNOTSUPP;
5845
b0a873eb
PZ
5846 switch (event_id) {
5847 case PERF_COUNT_SW_CPU_CLOCK:
5848 case PERF_COUNT_SW_TASK_CLOCK:
5849 return -ENOENT;
5850
5851 default:
5852 break;
5853 }
5854
ce677831 5855 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5856 return -ENOENT;
5857
5858 if (!event->parent) {
5859 int err;
5860
5861 err = swevent_hlist_get(event);
5862 if (err)
5863 return err;
5864
c5905afb 5865 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5866 event->destroy = sw_perf_event_destroy;
5867 }
5868
5869 return 0;
5870}
5871
35edc2a5
PZ
5872static int perf_swevent_event_idx(struct perf_event *event)
5873{
5874 return 0;
5875}
5876
b0a873eb 5877static struct pmu perf_swevent = {
89a1e187 5878 .task_ctx_nr = perf_sw_context,
95476b64 5879
b0a873eb 5880 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5881 .add = perf_swevent_add,
5882 .del = perf_swevent_del,
5883 .start = perf_swevent_start,
5884 .stop = perf_swevent_stop,
1c024eca 5885 .read = perf_swevent_read,
35edc2a5
PZ
5886
5887 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5888};
5889
b0a873eb
PZ
5890#ifdef CONFIG_EVENT_TRACING
5891
1c024eca
PZ
5892static int perf_tp_filter_match(struct perf_event *event,
5893 struct perf_sample_data *data)
5894{
5895 void *record = data->raw->data;
5896
5897 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5898 return 1;
5899 return 0;
5900}
5901
5902static int perf_tp_event_match(struct perf_event *event,
5903 struct perf_sample_data *data,
5904 struct pt_regs *regs)
5905{
a0f7d0f7
FW
5906 if (event->hw.state & PERF_HES_STOPPED)
5907 return 0;
580d607c
PZ
5908 /*
5909 * All tracepoints are from kernel-space.
5910 */
5911 if (event->attr.exclude_kernel)
1c024eca
PZ
5912 return 0;
5913
5914 if (!perf_tp_filter_match(event, data))
5915 return 0;
5916
5917 return 1;
5918}
5919
5920void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5921 struct pt_regs *regs, struct hlist_head *head, int rctx,
5922 struct task_struct *task)
95476b64
FW
5923{
5924 struct perf_sample_data data;
1c024eca 5925 struct perf_event *event;
1c024eca 5926
95476b64
FW
5927 struct perf_raw_record raw = {
5928 .size = entry_size,
5929 .data = record,
5930 };
5931
fd0d000b 5932 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5933 data.raw = &raw;
5934
b67bfe0d 5935 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5936 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5937 perf_swevent_event(event, count, &data, regs);
4f41c013 5938 }
ecc55f84 5939
e6dab5ff
AV
5940 /*
5941 * If we got specified a target task, also iterate its context and
5942 * deliver this event there too.
5943 */
5944 if (task && task != current) {
5945 struct perf_event_context *ctx;
5946 struct trace_entry *entry = record;
5947
5948 rcu_read_lock();
5949 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5950 if (!ctx)
5951 goto unlock;
5952
5953 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5954 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5955 continue;
5956 if (event->attr.config != entry->type)
5957 continue;
5958 if (perf_tp_event_match(event, &data, regs))
5959 perf_swevent_event(event, count, &data, regs);
5960 }
5961unlock:
5962 rcu_read_unlock();
5963 }
5964
ecc55f84 5965 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5966}
5967EXPORT_SYMBOL_GPL(perf_tp_event);
5968
cdd6c482 5969static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5970{
1c024eca 5971 perf_trace_destroy(event);
e077df4f
PZ
5972}
5973
b0a873eb 5974static int perf_tp_event_init(struct perf_event *event)
e077df4f 5975{
76e1d904
FW
5976 int err;
5977
b0a873eb
PZ
5978 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5979 return -ENOENT;
5980
2481c5fa
SE
5981 /*
5982 * no branch sampling for tracepoint events
5983 */
5984 if (has_branch_stack(event))
5985 return -EOPNOTSUPP;
5986
1c024eca
PZ
5987 err = perf_trace_init(event);
5988 if (err)
b0a873eb 5989 return err;
e077df4f 5990
cdd6c482 5991 event->destroy = tp_perf_event_destroy;
e077df4f 5992
b0a873eb
PZ
5993 return 0;
5994}
5995
5996static struct pmu perf_tracepoint = {
89a1e187
PZ
5997 .task_ctx_nr = perf_sw_context,
5998
b0a873eb 5999 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6000 .add = perf_trace_add,
6001 .del = perf_trace_del,
6002 .start = perf_swevent_start,
6003 .stop = perf_swevent_stop,
b0a873eb 6004 .read = perf_swevent_read,
35edc2a5
PZ
6005
6006 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6007};
6008
6009static inline void perf_tp_register(void)
6010{
2e80a82a 6011 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6012}
6fb2915d
LZ
6013
6014static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6015{
6016 char *filter_str;
6017 int ret;
6018
6019 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6020 return -EINVAL;
6021
6022 filter_str = strndup_user(arg, PAGE_SIZE);
6023 if (IS_ERR(filter_str))
6024 return PTR_ERR(filter_str);
6025
6026 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6027
6028 kfree(filter_str);
6029 return ret;
6030}
6031
6032static void perf_event_free_filter(struct perf_event *event)
6033{
6034 ftrace_profile_free_filter(event);
6035}
6036
e077df4f 6037#else
6fb2915d 6038
b0a873eb 6039static inline void perf_tp_register(void)
e077df4f 6040{
e077df4f 6041}
6fb2915d
LZ
6042
6043static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6044{
6045 return -ENOENT;
6046}
6047
6048static void perf_event_free_filter(struct perf_event *event)
6049{
6050}
6051
07b139c8 6052#endif /* CONFIG_EVENT_TRACING */
e077df4f 6053
24f1e32c 6054#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6055void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6056{
f5ffe02e
FW
6057 struct perf_sample_data sample;
6058 struct pt_regs *regs = data;
6059
fd0d000b 6060 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6061
a4eaf7f1 6062 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6063 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6064}
6065#endif
6066
b0a873eb
PZ
6067/*
6068 * hrtimer based swevent callback
6069 */
f29ac756 6070
b0a873eb 6071static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6072{
b0a873eb
PZ
6073 enum hrtimer_restart ret = HRTIMER_RESTART;
6074 struct perf_sample_data data;
6075 struct pt_regs *regs;
6076 struct perf_event *event;
6077 u64 period;
f29ac756 6078
b0a873eb 6079 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6080
6081 if (event->state != PERF_EVENT_STATE_ACTIVE)
6082 return HRTIMER_NORESTART;
6083
b0a873eb 6084 event->pmu->read(event);
f344011c 6085
fd0d000b 6086 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6087 regs = get_irq_regs();
6088
6089 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6090 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6091 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6092 ret = HRTIMER_NORESTART;
6093 }
24f1e32c 6094
b0a873eb
PZ
6095 period = max_t(u64, 10000, event->hw.sample_period);
6096 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6097
b0a873eb 6098 return ret;
f29ac756
PZ
6099}
6100
b0a873eb 6101static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6102{
b0a873eb 6103 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6104 s64 period;
6105
6106 if (!is_sampling_event(event))
6107 return;
f5ffe02e 6108
5d508e82
FBH
6109 period = local64_read(&hwc->period_left);
6110 if (period) {
6111 if (period < 0)
6112 period = 10000;
fa407f35 6113
5d508e82
FBH
6114 local64_set(&hwc->period_left, 0);
6115 } else {
6116 period = max_t(u64, 10000, hwc->sample_period);
6117 }
6118 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6119 ns_to_ktime(period), 0,
b5ab4cd5 6120 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6121}
b0a873eb
PZ
6122
6123static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6124{
b0a873eb
PZ
6125 struct hw_perf_event *hwc = &event->hw;
6126
6c7e550f 6127 if (is_sampling_event(event)) {
b0a873eb 6128 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6129 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6130
6131 hrtimer_cancel(&hwc->hrtimer);
6132 }
24f1e32c
FW
6133}
6134
ba3dd36c
PZ
6135static void perf_swevent_init_hrtimer(struct perf_event *event)
6136{
6137 struct hw_perf_event *hwc = &event->hw;
6138
6139 if (!is_sampling_event(event))
6140 return;
6141
6142 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6143 hwc->hrtimer.function = perf_swevent_hrtimer;
6144
6145 /*
6146 * Since hrtimers have a fixed rate, we can do a static freq->period
6147 * mapping and avoid the whole period adjust feedback stuff.
6148 */
6149 if (event->attr.freq) {
6150 long freq = event->attr.sample_freq;
6151
6152 event->attr.sample_period = NSEC_PER_SEC / freq;
6153 hwc->sample_period = event->attr.sample_period;
6154 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6155 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6156 event->attr.freq = 0;
6157 }
6158}
6159
b0a873eb
PZ
6160/*
6161 * Software event: cpu wall time clock
6162 */
6163
6164static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6165{
b0a873eb
PZ
6166 s64 prev;
6167 u64 now;
6168
a4eaf7f1 6169 now = local_clock();
b0a873eb
PZ
6170 prev = local64_xchg(&event->hw.prev_count, now);
6171 local64_add(now - prev, &event->count);
24f1e32c 6172}
24f1e32c 6173
a4eaf7f1 6174static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6175{
a4eaf7f1 6176 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6177 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6178}
6179
a4eaf7f1 6180static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6181{
b0a873eb
PZ
6182 perf_swevent_cancel_hrtimer(event);
6183 cpu_clock_event_update(event);
6184}
f29ac756 6185
a4eaf7f1
PZ
6186static int cpu_clock_event_add(struct perf_event *event, int flags)
6187{
6188 if (flags & PERF_EF_START)
6189 cpu_clock_event_start(event, flags);
6190
6191 return 0;
6192}
6193
6194static void cpu_clock_event_del(struct perf_event *event, int flags)
6195{
6196 cpu_clock_event_stop(event, flags);
6197}
6198
b0a873eb
PZ
6199static void cpu_clock_event_read(struct perf_event *event)
6200{
6201 cpu_clock_event_update(event);
6202}
f344011c 6203
b0a873eb
PZ
6204static int cpu_clock_event_init(struct perf_event *event)
6205{
6206 if (event->attr.type != PERF_TYPE_SOFTWARE)
6207 return -ENOENT;
6208
6209 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6210 return -ENOENT;
6211
2481c5fa
SE
6212 /*
6213 * no branch sampling for software events
6214 */
6215 if (has_branch_stack(event))
6216 return -EOPNOTSUPP;
6217
ba3dd36c
PZ
6218 perf_swevent_init_hrtimer(event);
6219
b0a873eb 6220 return 0;
f29ac756
PZ
6221}
6222
b0a873eb 6223static struct pmu perf_cpu_clock = {
89a1e187
PZ
6224 .task_ctx_nr = perf_sw_context,
6225
b0a873eb 6226 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6227 .add = cpu_clock_event_add,
6228 .del = cpu_clock_event_del,
6229 .start = cpu_clock_event_start,
6230 .stop = cpu_clock_event_stop,
b0a873eb 6231 .read = cpu_clock_event_read,
35edc2a5
PZ
6232
6233 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6234};
6235
6236/*
6237 * Software event: task time clock
6238 */
6239
6240static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6241{
b0a873eb
PZ
6242 u64 prev;
6243 s64 delta;
5c92d124 6244
b0a873eb
PZ
6245 prev = local64_xchg(&event->hw.prev_count, now);
6246 delta = now - prev;
6247 local64_add(delta, &event->count);
6248}
5c92d124 6249
a4eaf7f1 6250static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6251{
a4eaf7f1 6252 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6253 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6254}
6255
a4eaf7f1 6256static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6257{
6258 perf_swevent_cancel_hrtimer(event);
6259 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6260}
6261
6262static int task_clock_event_add(struct perf_event *event, int flags)
6263{
6264 if (flags & PERF_EF_START)
6265 task_clock_event_start(event, flags);
b0a873eb 6266
a4eaf7f1
PZ
6267 return 0;
6268}
6269
6270static void task_clock_event_del(struct perf_event *event, int flags)
6271{
6272 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6273}
6274
6275static void task_clock_event_read(struct perf_event *event)
6276{
768a06e2
PZ
6277 u64 now = perf_clock();
6278 u64 delta = now - event->ctx->timestamp;
6279 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6280
6281 task_clock_event_update(event, time);
6282}
6283
6284static int task_clock_event_init(struct perf_event *event)
6fb2915d 6285{
b0a873eb
PZ
6286 if (event->attr.type != PERF_TYPE_SOFTWARE)
6287 return -ENOENT;
6288
6289 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6290 return -ENOENT;
6291
2481c5fa
SE
6292 /*
6293 * no branch sampling for software events
6294 */
6295 if (has_branch_stack(event))
6296 return -EOPNOTSUPP;
6297
ba3dd36c
PZ
6298 perf_swevent_init_hrtimer(event);
6299
b0a873eb 6300 return 0;
6fb2915d
LZ
6301}
6302
b0a873eb 6303static struct pmu perf_task_clock = {
89a1e187
PZ
6304 .task_ctx_nr = perf_sw_context,
6305
b0a873eb 6306 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6307 .add = task_clock_event_add,
6308 .del = task_clock_event_del,
6309 .start = task_clock_event_start,
6310 .stop = task_clock_event_stop,
b0a873eb 6311 .read = task_clock_event_read,
35edc2a5
PZ
6312
6313 .event_idx = perf_swevent_event_idx,
b0a873eb 6314};
6fb2915d 6315
ad5133b7 6316static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6317{
e077df4f 6318}
6fb2915d 6319
ad5133b7 6320static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6321{
ad5133b7 6322 return 0;
6fb2915d
LZ
6323}
6324
ad5133b7 6325static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6326{
ad5133b7 6327 perf_pmu_disable(pmu);
6fb2915d
LZ
6328}
6329
ad5133b7
PZ
6330static int perf_pmu_commit_txn(struct pmu *pmu)
6331{
6332 perf_pmu_enable(pmu);
6333 return 0;
6334}
e077df4f 6335
ad5133b7 6336static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6337{
ad5133b7 6338 perf_pmu_enable(pmu);
24f1e32c
FW
6339}
6340
35edc2a5
PZ
6341static int perf_event_idx_default(struct perf_event *event)
6342{
6343 return event->hw.idx + 1;
6344}
6345
8dc85d54
PZ
6346/*
6347 * Ensures all contexts with the same task_ctx_nr have the same
6348 * pmu_cpu_context too.
6349 */
9e317041 6350static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6351{
8dc85d54 6352 struct pmu *pmu;
b326e956 6353
8dc85d54
PZ
6354 if (ctxn < 0)
6355 return NULL;
24f1e32c 6356
8dc85d54
PZ
6357 list_for_each_entry(pmu, &pmus, entry) {
6358 if (pmu->task_ctx_nr == ctxn)
6359 return pmu->pmu_cpu_context;
6360 }
24f1e32c 6361
8dc85d54 6362 return NULL;
24f1e32c
FW
6363}
6364
51676957 6365static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6366{
51676957
PZ
6367 int cpu;
6368
6369 for_each_possible_cpu(cpu) {
6370 struct perf_cpu_context *cpuctx;
6371
6372 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6373
3f1f3320
PZ
6374 if (cpuctx->unique_pmu == old_pmu)
6375 cpuctx->unique_pmu = pmu;
51676957
PZ
6376 }
6377}
6378
6379static void free_pmu_context(struct pmu *pmu)
6380{
6381 struct pmu *i;
f5ffe02e 6382
8dc85d54 6383 mutex_lock(&pmus_lock);
0475f9ea 6384 /*
8dc85d54 6385 * Like a real lame refcount.
0475f9ea 6386 */
51676957
PZ
6387 list_for_each_entry(i, &pmus, entry) {
6388 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6389 update_pmu_context(i, pmu);
8dc85d54 6390 goto out;
51676957 6391 }
8dc85d54 6392 }
d6d020e9 6393
51676957 6394 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6395out:
6396 mutex_unlock(&pmus_lock);
24f1e32c 6397}
2e80a82a 6398static struct idr pmu_idr;
d6d020e9 6399
abe43400
PZ
6400static ssize_t
6401type_show(struct device *dev, struct device_attribute *attr, char *page)
6402{
6403 struct pmu *pmu = dev_get_drvdata(dev);
6404
6405 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6406}
90826ca7 6407static DEVICE_ATTR_RO(type);
abe43400 6408
62b85639
SE
6409static ssize_t
6410perf_event_mux_interval_ms_show(struct device *dev,
6411 struct device_attribute *attr,
6412 char *page)
6413{
6414 struct pmu *pmu = dev_get_drvdata(dev);
6415
6416 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6417}
6418
6419static ssize_t
6420perf_event_mux_interval_ms_store(struct device *dev,
6421 struct device_attribute *attr,
6422 const char *buf, size_t count)
6423{
6424 struct pmu *pmu = dev_get_drvdata(dev);
6425 int timer, cpu, ret;
6426
6427 ret = kstrtoint(buf, 0, &timer);
6428 if (ret)
6429 return ret;
6430
6431 if (timer < 1)
6432 return -EINVAL;
6433
6434 /* same value, noting to do */
6435 if (timer == pmu->hrtimer_interval_ms)
6436 return count;
6437
6438 pmu->hrtimer_interval_ms = timer;
6439
6440 /* update all cpuctx for this PMU */
6441 for_each_possible_cpu(cpu) {
6442 struct perf_cpu_context *cpuctx;
6443 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6444 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6445
6446 if (hrtimer_active(&cpuctx->hrtimer))
6447 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6448 }
6449
6450 return count;
6451}
90826ca7 6452static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6453
90826ca7
GKH
6454static struct attribute *pmu_dev_attrs[] = {
6455 &dev_attr_type.attr,
6456 &dev_attr_perf_event_mux_interval_ms.attr,
6457 NULL,
abe43400 6458};
90826ca7 6459ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6460
6461static int pmu_bus_running;
6462static struct bus_type pmu_bus = {
6463 .name = "event_source",
90826ca7 6464 .dev_groups = pmu_dev_groups,
abe43400
PZ
6465};
6466
6467static void pmu_dev_release(struct device *dev)
6468{
6469 kfree(dev);
6470}
6471
6472static int pmu_dev_alloc(struct pmu *pmu)
6473{
6474 int ret = -ENOMEM;
6475
6476 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6477 if (!pmu->dev)
6478 goto out;
6479
0c9d42ed 6480 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6481 device_initialize(pmu->dev);
6482 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6483 if (ret)
6484 goto free_dev;
6485
6486 dev_set_drvdata(pmu->dev, pmu);
6487 pmu->dev->bus = &pmu_bus;
6488 pmu->dev->release = pmu_dev_release;
6489 ret = device_add(pmu->dev);
6490 if (ret)
6491 goto free_dev;
6492
6493out:
6494 return ret;
6495
6496free_dev:
6497 put_device(pmu->dev);
6498 goto out;
6499}
6500
547e9fd7 6501static struct lock_class_key cpuctx_mutex;
facc4307 6502static struct lock_class_key cpuctx_lock;
547e9fd7 6503
03d8e80b 6504int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6505{
108b02cf 6506 int cpu, ret;
24f1e32c 6507
b0a873eb 6508 mutex_lock(&pmus_lock);
33696fc0
PZ
6509 ret = -ENOMEM;
6510 pmu->pmu_disable_count = alloc_percpu(int);
6511 if (!pmu->pmu_disable_count)
6512 goto unlock;
f29ac756 6513
2e80a82a
PZ
6514 pmu->type = -1;
6515 if (!name)
6516 goto skip_type;
6517 pmu->name = name;
6518
6519 if (type < 0) {
0e9c3be2
TH
6520 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6521 if (type < 0) {
6522 ret = type;
2e80a82a
PZ
6523 goto free_pdc;
6524 }
6525 }
6526 pmu->type = type;
6527
abe43400
PZ
6528 if (pmu_bus_running) {
6529 ret = pmu_dev_alloc(pmu);
6530 if (ret)
6531 goto free_idr;
6532 }
6533
2e80a82a 6534skip_type:
8dc85d54
PZ
6535 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6536 if (pmu->pmu_cpu_context)
6537 goto got_cpu_context;
f29ac756 6538
c4814202 6539 ret = -ENOMEM;
108b02cf
PZ
6540 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6541 if (!pmu->pmu_cpu_context)
abe43400 6542 goto free_dev;
f344011c 6543
108b02cf
PZ
6544 for_each_possible_cpu(cpu) {
6545 struct perf_cpu_context *cpuctx;
6546
6547 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6548 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6549 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6550 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6551 cpuctx->ctx.type = cpu_context;
108b02cf 6552 cpuctx->ctx.pmu = pmu;
9e630205
SE
6553
6554 __perf_cpu_hrtimer_init(cpuctx, cpu);
6555
e9d2b064 6556 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6557 cpuctx->unique_pmu = pmu;
108b02cf 6558 }
76e1d904 6559
8dc85d54 6560got_cpu_context:
ad5133b7
PZ
6561 if (!pmu->start_txn) {
6562 if (pmu->pmu_enable) {
6563 /*
6564 * If we have pmu_enable/pmu_disable calls, install
6565 * transaction stubs that use that to try and batch
6566 * hardware accesses.
6567 */
6568 pmu->start_txn = perf_pmu_start_txn;
6569 pmu->commit_txn = perf_pmu_commit_txn;
6570 pmu->cancel_txn = perf_pmu_cancel_txn;
6571 } else {
6572 pmu->start_txn = perf_pmu_nop_void;
6573 pmu->commit_txn = perf_pmu_nop_int;
6574 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6575 }
5c92d124 6576 }
15dbf27c 6577
ad5133b7
PZ
6578 if (!pmu->pmu_enable) {
6579 pmu->pmu_enable = perf_pmu_nop_void;
6580 pmu->pmu_disable = perf_pmu_nop_void;
6581 }
6582
35edc2a5
PZ
6583 if (!pmu->event_idx)
6584 pmu->event_idx = perf_event_idx_default;
6585
b0a873eb 6586 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6587 ret = 0;
6588unlock:
b0a873eb
PZ
6589 mutex_unlock(&pmus_lock);
6590
33696fc0 6591 return ret;
108b02cf 6592
abe43400
PZ
6593free_dev:
6594 device_del(pmu->dev);
6595 put_device(pmu->dev);
6596
2e80a82a
PZ
6597free_idr:
6598 if (pmu->type >= PERF_TYPE_MAX)
6599 idr_remove(&pmu_idr, pmu->type);
6600
108b02cf
PZ
6601free_pdc:
6602 free_percpu(pmu->pmu_disable_count);
6603 goto unlock;
f29ac756 6604}
c464c76e 6605EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6606
b0a873eb 6607void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6608{
b0a873eb
PZ
6609 mutex_lock(&pmus_lock);
6610 list_del_rcu(&pmu->entry);
6611 mutex_unlock(&pmus_lock);
5c92d124 6612
0475f9ea 6613 /*
cde8e884
PZ
6614 * We dereference the pmu list under both SRCU and regular RCU, so
6615 * synchronize against both of those.
0475f9ea 6616 */
b0a873eb 6617 synchronize_srcu(&pmus_srcu);
cde8e884 6618 synchronize_rcu();
d6d020e9 6619
33696fc0 6620 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6621 if (pmu->type >= PERF_TYPE_MAX)
6622 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6623 device_del(pmu->dev);
6624 put_device(pmu->dev);
51676957 6625 free_pmu_context(pmu);
b0a873eb 6626}
c464c76e 6627EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6628
b0a873eb
PZ
6629struct pmu *perf_init_event(struct perf_event *event)
6630{
6631 struct pmu *pmu = NULL;
6632 int idx;
940c5b29 6633 int ret;
b0a873eb
PZ
6634
6635 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6636
6637 rcu_read_lock();
6638 pmu = idr_find(&pmu_idr, event->attr.type);
6639 rcu_read_unlock();
940c5b29 6640 if (pmu) {
c464c76e
YZ
6641 if (!try_module_get(pmu->module)) {
6642 pmu = ERR_PTR(-ENODEV);
6643 goto unlock;
6644 }
7e5b2a01 6645 event->pmu = pmu;
940c5b29
LM
6646 ret = pmu->event_init(event);
6647 if (ret)
6648 pmu = ERR_PTR(ret);
2e80a82a 6649 goto unlock;
940c5b29 6650 }
2e80a82a 6651
b0a873eb 6652 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6653 if (!try_module_get(pmu->module)) {
6654 pmu = ERR_PTR(-ENODEV);
6655 goto unlock;
6656 }
7e5b2a01 6657 event->pmu = pmu;
940c5b29 6658 ret = pmu->event_init(event);
b0a873eb 6659 if (!ret)
e5f4d339 6660 goto unlock;
76e1d904 6661
b0a873eb
PZ
6662 if (ret != -ENOENT) {
6663 pmu = ERR_PTR(ret);
e5f4d339 6664 goto unlock;
f344011c 6665 }
5c92d124 6666 }
e5f4d339
PZ
6667 pmu = ERR_PTR(-ENOENT);
6668unlock:
b0a873eb 6669 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6670
4aeb0b42 6671 return pmu;
5c92d124
IM
6672}
6673
4beb31f3
FW
6674static void account_event_cpu(struct perf_event *event, int cpu)
6675{
6676 if (event->parent)
6677 return;
6678
6679 if (has_branch_stack(event)) {
6680 if (!(event->attach_state & PERF_ATTACH_TASK))
6681 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6682 }
6683 if (is_cgroup_event(event))
6684 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6685}
6686
766d6c07
FW
6687static void account_event(struct perf_event *event)
6688{
4beb31f3
FW
6689 if (event->parent)
6690 return;
6691
766d6c07
FW
6692 if (event->attach_state & PERF_ATTACH_TASK)
6693 static_key_slow_inc(&perf_sched_events.key);
6694 if (event->attr.mmap || event->attr.mmap_data)
6695 atomic_inc(&nr_mmap_events);
6696 if (event->attr.comm)
6697 atomic_inc(&nr_comm_events);
6698 if (event->attr.task)
6699 atomic_inc(&nr_task_events);
948b26b6
FW
6700 if (event->attr.freq) {
6701 if (atomic_inc_return(&nr_freq_events) == 1)
6702 tick_nohz_full_kick_all();
6703 }
4beb31f3 6704 if (has_branch_stack(event))
766d6c07 6705 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6706 if (is_cgroup_event(event))
766d6c07 6707 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6708
6709 account_event_cpu(event, event->cpu);
766d6c07
FW
6710}
6711
0793a61d 6712/*
cdd6c482 6713 * Allocate and initialize a event structure
0793a61d 6714 */
cdd6c482 6715static struct perf_event *
c3f00c70 6716perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6717 struct task_struct *task,
6718 struct perf_event *group_leader,
6719 struct perf_event *parent_event,
4dc0da86
AK
6720 perf_overflow_handler_t overflow_handler,
6721 void *context)
0793a61d 6722{
51b0fe39 6723 struct pmu *pmu;
cdd6c482
IM
6724 struct perf_event *event;
6725 struct hw_perf_event *hwc;
90983b16 6726 long err = -EINVAL;
0793a61d 6727
66832eb4
ON
6728 if ((unsigned)cpu >= nr_cpu_ids) {
6729 if (!task || cpu != -1)
6730 return ERR_PTR(-EINVAL);
6731 }
6732
c3f00c70 6733 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6734 if (!event)
d5d2bc0d 6735 return ERR_PTR(-ENOMEM);
0793a61d 6736
04289bb9 6737 /*
cdd6c482 6738 * Single events are their own group leaders, with an
04289bb9
IM
6739 * empty sibling list:
6740 */
6741 if (!group_leader)
cdd6c482 6742 group_leader = event;
04289bb9 6743
cdd6c482
IM
6744 mutex_init(&event->child_mutex);
6745 INIT_LIST_HEAD(&event->child_list);
fccc714b 6746
cdd6c482
IM
6747 INIT_LIST_HEAD(&event->group_entry);
6748 INIT_LIST_HEAD(&event->event_entry);
6749 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6750 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6751 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6752 INIT_HLIST_NODE(&event->hlist_entry);
6753
10c6db11 6754
cdd6c482 6755 init_waitqueue_head(&event->waitq);
e360adbe 6756 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6757
cdd6c482 6758 mutex_init(&event->mmap_mutex);
7b732a75 6759
a6fa941d 6760 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6761 event->cpu = cpu;
6762 event->attr = *attr;
6763 event->group_leader = group_leader;
6764 event->pmu = NULL;
cdd6c482 6765 event->oncpu = -1;
a96bbc16 6766
cdd6c482 6767 event->parent = parent_event;
b84fbc9f 6768
17cf22c3 6769 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6770 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6771
cdd6c482 6772 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6773
d580ff86
PZ
6774 if (task) {
6775 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6776
6777 if (attr->type == PERF_TYPE_TRACEPOINT)
6778 event->hw.tp_target = task;
d580ff86
PZ
6779#ifdef CONFIG_HAVE_HW_BREAKPOINT
6780 /*
6781 * hw_breakpoint is a bit difficult here..
6782 */
f22c1bb6 6783 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6784 event->hw.bp_target = task;
6785#endif
6786 }
6787
4dc0da86 6788 if (!overflow_handler && parent_event) {
b326e956 6789 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6790 context = parent_event->overflow_handler_context;
6791 }
66832eb4 6792
b326e956 6793 event->overflow_handler = overflow_handler;
4dc0da86 6794 event->overflow_handler_context = context;
97eaf530 6795
0231bb53 6796 perf_event__state_init(event);
a86ed508 6797
4aeb0b42 6798 pmu = NULL;
b8e83514 6799
cdd6c482 6800 hwc = &event->hw;
bd2b5b12 6801 hwc->sample_period = attr->sample_period;
0d48696f 6802 if (attr->freq && attr->sample_freq)
bd2b5b12 6803 hwc->sample_period = 1;
eced1dfc 6804 hwc->last_period = hwc->sample_period;
bd2b5b12 6805
e7850595 6806 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6807
2023b359 6808 /*
cdd6c482 6809 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6810 */
3dab77fb 6811 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6812 goto err_ns;
2023b359 6813
b0a873eb 6814 pmu = perf_init_event(event);
4aeb0b42 6815 if (!pmu)
90983b16
FW
6816 goto err_ns;
6817 else if (IS_ERR(pmu)) {
4aeb0b42 6818 err = PTR_ERR(pmu);
90983b16 6819 goto err_ns;
621a01ea 6820 }
d5d2bc0d 6821
cdd6c482 6822 if (!event->parent) {
927c7a9e
FW
6823 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6824 err = get_callchain_buffers();
90983b16
FW
6825 if (err)
6826 goto err_pmu;
d010b332 6827 }
f344011c 6828 }
9ee318a7 6829
cdd6c482 6830 return event;
90983b16
FW
6831
6832err_pmu:
6833 if (event->destroy)
6834 event->destroy(event);
c464c76e 6835 module_put(pmu->module);
90983b16
FW
6836err_ns:
6837 if (event->ns)
6838 put_pid_ns(event->ns);
6839 kfree(event);
6840
6841 return ERR_PTR(err);
0793a61d
TG
6842}
6843
cdd6c482
IM
6844static int perf_copy_attr(struct perf_event_attr __user *uattr,
6845 struct perf_event_attr *attr)
974802ea 6846{
974802ea 6847 u32 size;
cdf8073d 6848 int ret;
974802ea
PZ
6849
6850 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6851 return -EFAULT;
6852
6853 /*
6854 * zero the full structure, so that a short copy will be nice.
6855 */
6856 memset(attr, 0, sizeof(*attr));
6857
6858 ret = get_user(size, &uattr->size);
6859 if (ret)
6860 return ret;
6861
6862 if (size > PAGE_SIZE) /* silly large */
6863 goto err_size;
6864
6865 if (!size) /* abi compat */
6866 size = PERF_ATTR_SIZE_VER0;
6867
6868 if (size < PERF_ATTR_SIZE_VER0)
6869 goto err_size;
6870
6871 /*
6872 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6873 * ensure all the unknown bits are 0 - i.e. new
6874 * user-space does not rely on any kernel feature
6875 * extensions we dont know about yet.
974802ea
PZ
6876 */
6877 if (size > sizeof(*attr)) {
cdf8073d
IS
6878 unsigned char __user *addr;
6879 unsigned char __user *end;
6880 unsigned char val;
974802ea 6881
cdf8073d
IS
6882 addr = (void __user *)uattr + sizeof(*attr);
6883 end = (void __user *)uattr + size;
974802ea 6884
cdf8073d 6885 for (; addr < end; addr++) {
974802ea
PZ
6886 ret = get_user(val, addr);
6887 if (ret)
6888 return ret;
6889 if (val)
6890 goto err_size;
6891 }
b3e62e35 6892 size = sizeof(*attr);
974802ea
PZ
6893 }
6894
6895 ret = copy_from_user(attr, uattr, size);
6896 if (ret)
6897 return -EFAULT;
6898
3090ffb5
SE
6899 /* disabled for now */
6900 if (attr->mmap2)
6901 return -EINVAL;
6902
cd757645 6903 if (attr->__reserved_1)
974802ea
PZ
6904 return -EINVAL;
6905
6906 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6907 return -EINVAL;
6908
6909 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6910 return -EINVAL;
6911
bce38cd5
SE
6912 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6913 u64 mask = attr->branch_sample_type;
6914
6915 /* only using defined bits */
6916 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6917 return -EINVAL;
6918
6919 /* at least one branch bit must be set */
6920 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6921 return -EINVAL;
6922
bce38cd5
SE
6923 /* propagate priv level, when not set for branch */
6924 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6925
6926 /* exclude_kernel checked on syscall entry */
6927 if (!attr->exclude_kernel)
6928 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6929
6930 if (!attr->exclude_user)
6931 mask |= PERF_SAMPLE_BRANCH_USER;
6932
6933 if (!attr->exclude_hv)
6934 mask |= PERF_SAMPLE_BRANCH_HV;
6935 /*
6936 * adjust user setting (for HW filter setup)
6937 */
6938 attr->branch_sample_type = mask;
6939 }
e712209a
SE
6940 /* privileged levels capture (kernel, hv): check permissions */
6941 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6942 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6943 return -EACCES;
bce38cd5 6944 }
4018994f 6945
c5ebcedb 6946 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6947 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6948 if (ret)
6949 return ret;
6950 }
6951
6952 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6953 if (!arch_perf_have_user_stack_dump())
6954 return -ENOSYS;
6955
6956 /*
6957 * We have __u32 type for the size, but so far
6958 * we can only use __u16 as maximum due to the
6959 * __u16 sample size limit.
6960 */
6961 if (attr->sample_stack_user >= USHRT_MAX)
6962 ret = -EINVAL;
6963 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6964 ret = -EINVAL;
6965 }
4018994f 6966
974802ea
PZ
6967out:
6968 return ret;
6969
6970err_size:
6971 put_user(sizeof(*attr), &uattr->size);
6972 ret = -E2BIG;
6973 goto out;
6974}
6975
ac9721f3
PZ
6976static int
6977perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6978{
b69cf536 6979 struct ring_buffer *rb = NULL;
a4be7c27
PZ
6980 int ret = -EINVAL;
6981
ac9721f3 6982 if (!output_event)
a4be7c27
PZ
6983 goto set;
6984
ac9721f3
PZ
6985 /* don't allow circular references */
6986 if (event == output_event)
a4be7c27
PZ
6987 goto out;
6988
0f139300
PZ
6989 /*
6990 * Don't allow cross-cpu buffers
6991 */
6992 if (output_event->cpu != event->cpu)
6993 goto out;
6994
6995 /*
76369139 6996 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6997 */
6998 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6999 goto out;
7000
a4be7c27 7001set:
cdd6c482 7002 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7003 /* Can't redirect output if we've got an active mmap() */
7004 if (atomic_read(&event->mmap_count))
7005 goto unlock;
a4be7c27 7006
ac9721f3 7007 if (output_event) {
76369139
FW
7008 /* get the rb we want to redirect to */
7009 rb = ring_buffer_get(output_event);
7010 if (!rb)
ac9721f3 7011 goto unlock;
a4be7c27
PZ
7012 }
7013
b69cf536 7014 ring_buffer_attach(event, rb);
9bb5d40c 7015
a4be7c27 7016 ret = 0;
ac9721f3
PZ
7017unlock:
7018 mutex_unlock(&event->mmap_mutex);
7019
a4be7c27 7020out:
a4be7c27
PZ
7021 return ret;
7022}
7023
0793a61d 7024/**
cdd6c482 7025 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7026 *
cdd6c482 7027 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7028 * @pid: target pid
9f66a381 7029 * @cpu: target cpu
cdd6c482 7030 * @group_fd: group leader event fd
0793a61d 7031 */
cdd6c482
IM
7032SYSCALL_DEFINE5(perf_event_open,
7033 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7034 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7035{
b04243ef
PZ
7036 struct perf_event *group_leader = NULL, *output_event = NULL;
7037 struct perf_event *event, *sibling;
cdd6c482
IM
7038 struct perf_event_attr attr;
7039 struct perf_event_context *ctx;
7040 struct file *event_file = NULL;
2903ff01 7041 struct fd group = {NULL, 0};
38a81da2 7042 struct task_struct *task = NULL;
89a1e187 7043 struct pmu *pmu;
ea635c64 7044 int event_fd;
b04243ef 7045 int move_group = 0;
dc86cabe 7046 int err;
a21b0b35 7047 int f_flags = O_RDWR;
0793a61d 7048
2743a5b0 7049 /* for future expandability... */
e5d1367f 7050 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7051 return -EINVAL;
7052
dc86cabe
IM
7053 err = perf_copy_attr(attr_uptr, &attr);
7054 if (err)
7055 return err;
eab656ae 7056
0764771d
PZ
7057 if (!attr.exclude_kernel) {
7058 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7059 return -EACCES;
7060 }
7061
df58ab24 7062 if (attr.freq) {
cdd6c482 7063 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7064 return -EINVAL;
0819b2e3
PZ
7065 } else {
7066 if (attr.sample_period & (1ULL << 63))
7067 return -EINVAL;
df58ab24
PZ
7068 }
7069
e5d1367f
SE
7070 /*
7071 * In cgroup mode, the pid argument is used to pass the fd
7072 * opened to the cgroup directory in cgroupfs. The cpu argument
7073 * designates the cpu on which to monitor threads from that
7074 * cgroup.
7075 */
7076 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7077 return -EINVAL;
7078
a21b0b35
YD
7079 if (flags & PERF_FLAG_FD_CLOEXEC)
7080 f_flags |= O_CLOEXEC;
7081
7082 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7083 if (event_fd < 0)
7084 return event_fd;
7085
ac9721f3 7086 if (group_fd != -1) {
2903ff01
AV
7087 err = perf_fget_light(group_fd, &group);
7088 if (err)
d14b12d7 7089 goto err_fd;
2903ff01 7090 group_leader = group.file->private_data;
ac9721f3
PZ
7091 if (flags & PERF_FLAG_FD_OUTPUT)
7092 output_event = group_leader;
7093 if (flags & PERF_FLAG_FD_NO_GROUP)
7094 group_leader = NULL;
7095 }
7096
e5d1367f 7097 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7098 task = find_lively_task_by_vpid(pid);
7099 if (IS_ERR(task)) {
7100 err = PTR_ERR(task);
7101 goto err_group_fd;
7102 }
7103 }
7104
1f4ee503
PZ
7105 if (task && group_leader &&
7106 group_leader->attr.inherit != attr.inherit) {
7107 err = -EINVAL;
7108 goto err_task;
7109 }
7110
fbfc623f
YZ
7111 get_online_cpus();
7112
4dc0da86
AK
7113 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7114 NULL, NULL);
d14b12d7
SE
7115 if (IS_ERR(event)) {
7116 err = PTR_ERR(event);
1f4ee503 7117 goto err_cpus;
d14b12d7
SE
7118 }
7119
e5d1367f
SE
7120 if (flags & PERF_FLAG_PID_CGROUP) {
7121 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7122 if (err) {
7123 __free_event(event);
1f4ee503 7124 goto err_cpus;
766d6c07 7125 }
e5d1367f
SE
7126 }
7127
53b25335
VW
7128 if (is_sampling_event(event)) {
7129 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7130 err = -ENOTSUPP;
7131 goto err_alloc;
7132 }
7133 }
7134
766d6c07
FW
7135 account_event(event);
7136
89a1e187
PZ
7137 /*
7138 * Special case software events and allow them to be part of
7139 * any hardware group.
7140 */
7141 pmu = event->pmu;
b04243ef
PZ
7142
7143 if (group_leader &&
7144 (is_software_event(event) != is_software_event(group_leader))) {
7145 if (is_software_event(event)) {
7146 /*
7147 * If event and group_leader are not both a software
7148 * event, and event is, then group leader is not.
7149 *
7150 * Allow the addition of software events to !software
7151 * groups, this is safe because software events never
7152 * fail to schedule.
7153 */
7154 pmu = group_leader->pmu;
7155 } else if (is_software_event(group_leader) &&
7156 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7157 /*
7158 * In case the group is a pure software group, and we
7159 * try to add a hardware event, move the whole group to
7160 * the hardware context.
7161 */
7162 move_group = 1;
7163 }
7164 }
89a1e187
PZ
7165
7166 /*
7167 * Get the target context (task or percpu):
7168 */
e2d37cd2 7169 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7170 if (IS_ERR(ctx)) {
7171 err = PTR_ERR(ctx);
c6be5a5c 7172 goto err_alloc;
89a1e187
PZ
7173 }
7174
fd1edb3a
PZ
7175 if (task) {
7176 put_task_struct(task);
7177 task = NULL;
7178 }
7179
ccff286d 7180 /*
cdd6c482 7181 * Look up the group leader (we will attach this event to it):
04289bb9 7182 */
ac9721f3 7183 if (group_leader) {
dc86cabe 7184 err = -EINVAL;
04289bb9 7185
04289bb9 7186 /*
ccff286d
IM
7187 * Do not allow a recursive hierarchy (this new sibling
7188 * becoming part of another group-sibling):
7189 */
7190 if (group_leader->group_leader != group_leader)
c3f00c70 7191 goto err_context;
ccff286d
IM
7192 /*
7193 * Do not allow to attach to a group in a different
7194 * task or CPU context:
04289bb9 7195 */
b04243ef
PZ
7196 if (move_group) {
7197 if (group_leader->ctx->type != ctx->type)
7198 goto err_context;
7199 } else {
7200 if (group_leader->ctx != ctx)
7201 goto err_context;
7202 }
7203
3b6f9e5c
PM
7204 /*
7205 * Only a group leader can be exclusive or pinned
7206 */
0d48696f 7207 if (attr.exclusive || attr.pinned)
c3f00c70 7208 goto err_context;
ac9721f3
PZ
7209 }
7210
7211 if (output_event) {
7212 err = perf_event_set_output(event, output_event);
7213 if (err)
c3f00c70 7214 goto err_context;
ac9721f3 7215 }
0793a61d 7216
a21b0b35
YD
7217 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7218 f_flags);
ea635c64
AV
7219 if (IS_ERR(event_file)) {
7220 err = PTR_ERR(event_file);
c3f00c70 7221 goto err_context;
ea635c64 7222 }
9b51f66d 7223
b04243ef
PZ
7224 if (move_group) {
7225 struct perf_event_context *gctx = group_leader->ctx;
7226
7227 mutex_lock(&gctx->mutex);
46ce0fe9 7228 perf_remove_from_context(group_leader, false);
0231bb53
JO
7229
7230 /*
7231 * Removing from the context ends up with disabled
7232 * event. What we want here is event in the initial
7233 * startup state, ready to be add into new context.
7234 */
7235 perf_event__state_init(group_leader);
b04243ef
PZ
7236 list_for_each_entry(sibling, &group_leader->sibling_list,
7237 group_entry) {
46ce0fe9 7238 perf_remove_from_context(sibling, false);
0231bb53 7239 perf_event__state_init(sibling);
b04243ef
PZ
7240 put_ctx(gctx);
7241 }
7242 mutex_unlock(&gctx->mutex);
7243 put_ctx(gctx);
ea635c64 7244 }
9b51f66d 7245
ad3a37de 7246 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7247 mutex_lock(&ctx->mutex);
b04243ef
PZ
7248
7249 if (move_group) {
0cda4c02 7250 synchronize_rcu();
e2d37cd2 7251 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7252 get_ctx(ctx);
7253 list_for_each_entry(sibling, &group_leader->sibling_list,
7254 group_entry) {
e2d37cd2 7255 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7256 get_ctx(ctx);
7257 }
7258 }
7259
e2d37cd2 7260 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7261 perf_unpin_context(ctx);
d859e29f 7262 mutex_unlock(&ctx->mutex);
9b51f66d 7263
fbfc623f
YZ
7264 put_online_cpus();
7265
cdd6c482 7266 event->owner = current;
8882135b 7267
cdd6c482
IM
7268 mutex_lock(&current->perf_event_mutex);
7269 list_add_tail(&event->owner_entry, &current->perf_event_list);
7270 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7271
c320c7b7
ACM
7272 /*
7273 * Precalculate sample_data sizes
7274 */
7275 perf_event__header_size(event);
6844c09d 7276 perf_event__id_header_size(event);
c320c7b7 7277
8a49542c
PZ
7278 /*
7279 * Drop the reference on the group_event after placing the
7280 * new event on the sibling_list. This ensures destruction
7281 * of the group leader will find the pointer to itself in
7282 * perf_group_detach().
7283 */
2903ff01 7284 fdput(group);
ea635c64
AV
7285 fd_install(event_fd, event_file);
7286 return event_fd;
0793a61d 7287
c3f00c70 7288err_context:
fe4b04fa 7289 perf_unpin_context(ctx);
ea635c64 7290 put_ctx(ctx);
c6be5a5c 7291err_alloc:
ea635c64 7292 free_event(event);
1f4ee503 7293err_cpus:
fbfc623f 7294 put_online_cpus();
1f4ee503 7295err_task:
e7d0bc04
PZ
7296 if (task)
7297 put_task_struct(task);
89a1e187 7298err_group_fd:
2903ff01 7299 fdput(group);
ea635c64
AV
7300err_fd:
7301 put_unused_fd(event_fd);
dc86cabe 7302 return err;
0793a61d
TG
7303}
7304
fb0459d7
AV
7305/**
7306 * perf_event_create_kernel_counter
7307 *
7308 * @attr: attributes of the counter to create
7309 * @cpu: cpu in which the counter is bound
38a81da2 7310 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7311 */
7312struct perf_event *
7313perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7314 struct task_struct *task,
4dc0da86
AK
7315 perf_overflow_handler_t overflow_handler,
7316 void *context)
fb0459d7 7317{
fb0459d7 7318 struct perf_event_context *ctx;
c3f00c70 7319 struct perf_event *event;
fb0459d7 7320 int err;
d859e29f 7321
fb0459d7
AV
7322 /*
7323 * Get the target context (task or percpu):
7324 */
d859e29f 7325
4dc0da86
AK
7326 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7327 overflow_handler, context);
c3f00c70
PZ
7328 if (IS_ERR(event)) {
7329 err = PTR_ERR(event);
7330 goto err;
7331 }
d859e29f 7332
766d6c07
FW
7333 account_event(event);
7334
38a81da2 7335 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7336 if (IS_ERR(ctx)) {
7337 err = PTR_ERR(ctx);
c3f00c70 7338 goto err_free;
d859e29f 7339 }
fb0459d7 7340
fb0459d7
AV
7341 WARN_ON_ONCE(ctx->parent_ctx);
7342 mutex_lock(&ctx->mutex);
7343 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7344 perf_unpin_context(ctx);
fb0459d7
AV
7345 mutex_unlock(&ctx->mutex);
7346
fb0459d7
AV
7347 return event;
7348
c3f00c70
PZ
7349err_free:
7350 free_event(event);
7351err:
c6567f64 7352 return ERR_PTR(err);
9b51f66d 7353}
fb0459d7 7354EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7355
0cda4c02
YZ
7356void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7357{
7358 struct perf_event_context *src_ctx;
7359 struct perf_event_context *dst_ctx;
7360 struct perf_event *event, *tmp;
7361 LIST_HEAD(events);
7362
7363 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7364 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7365
7366 mutex_lock(&src_ctx->mutex);
7367 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7368 event_entry) {
46ce0fe9 7369 perf_remove_from_context(event, false);
9a545de0 7370 unaccount_event_cpu(event, src_cpu);
0cda4c02 7371 put_ctx(src_ctx);
9886167d 7372 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7373 }
7374 mutex_unlock(&src_ctx->mutex);
7375
7376 synchronize_rcu();
7377
7378 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7379 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7380 list_del(&event->migrate_entry);
0cda4c02
YZ
7381 if (event->state >= PERF_EVENT_STATE_OFF)
7382 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7383 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7384 perf_install_in_context(dst_ctx, event, dst_cpu);
7385 get_ctx(dst_ctx);
7386 }
7387 mutex_unlock(&dst_ctx->mutex);
7388}
7389EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7390
cdd6c482 7391static void sync_child_event(struct perf_event *child_event,
38b200d6 7392 struct task_struct *child)
d859e29f 7393{
cdd6c482 7394 struct perf_event *parent_event = child_event->parent;
8bc20959 7395 u64 child_val;
d859e29f 7396
cdd6c482
IM
7397 if (child_event->attr.inherit_stat)
7398 perf_event_read_event(child_event, child);
38b200d6 7399
b5e58793 7400 child_val = perf_event_count(child_event);
d859e29f
PM
7401
7402 /*
7403 * Add back the child's count to the parent's count:
7404 */
a6e6dea6 7405 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7406 atomic64_add(child_event->total_time_enabled,
7407 &parent_event->child_total_time_enabled);
7408 atomic64_add(child_event->total_time_running,
7409 &parent_event->child_total_time_running);
d859e29f
PM
7410
7411 /*
cdd6c482 7412 * Remove this event from the parent's list
d859e29f 7413 */
cdd6c482
IM
7414 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7415 mutex_lock(&parent_event->child_mutex);
7416 list_del_init(&child_event->child_list);
7417 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7418
7419 /*
cdd6c482 7420 * Release the parent event, if this was the last
d859e29f
PM
7421 * reference to it.
7422 */
a6fa941d 7423 put_event(parent_event);
d859e29f
PM
7424}
7425
9b51f66d 7426static void
cdd6c482
IM
7427__perf_event_exit_task(struct perf_event *child_event,
7428 struct perf_event_context *child_ctx,
38b200d6 7429 struct task_struct *child)
9b51f66d 7430{
15a2d4de 7431 perf_remove_from_context(child_event, true);
0cc0c027 7432
9b51f66d 7433 /*
38b435b1 7434 * It can happen that the parent exits first, and has events
9b51f66d 7435 * that are still around due to the child reference. These
38b435b1 7436 * events need to be zapped.
9b51f66d 7437 */
38b435b1 7438 if (child_event->parent) {
cdd6c482
IM
7439 sync_child_event(child_event, child);
7440 free_event(child_event);
4bcf349a 7441 }
9b51f66d
IM
7442}
7443
8dc85d54 7444static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7445{
ebf905fc 7446 struct perf_event *child_event, *next;
cdd6c482 7447 struct perf_event_context *child_ctx;
a63eaf34 7448 unsigned long flags;
9b51f66d 7449
8dc85d54 7450 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7451 perf_event_task(child, NULL, 0);
9b51f66d 7452 return;
9f498cc5 7453 }
9b51f66d 7454
a63eaf34 7455 local_irq_save(flags);
ad3a37de
PM
7456 /*
7457 * We can't reschedule here because interrupts are disabled,
7458 * and either child is current or it is a task that can't be
7459 * scheduled, so we are now safe from rescheduling changing
7460 * our context.
7461 */
806839b2 7462 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7463
7464 /*
7465 * Take the context lock here so that if find_get_context is
cdd6c482 7466 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7467 * incremented the context's refcount before we do put_ctx below.
7468 */
e625cce1 7469 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7470 task_ctx_sched_out(child_ctx);
8dc85d54 7471 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7472 /*
7473 * If this context is a clone; unclone it so it can't get
7474 * swapped to another process while we're removing all
cdd6c482 7475 * the events from it.
71a851b4
PZ
7476 */
7477 unclone_ctx(child_ctx);
5e942bb3 7478 update_context_time(child_ctx);
e625cce1 7479 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7480
7481 /*
cdd6c482
IM
7482 * Report the task dead after unscheduling the events so that we
7483 * won't get any samples after PERF_RECORD_EXIT. We can however still
7484 * get a few PERF_RECORD_READ events.
9f498cc5 7485 */
cdd6c482 7486 perf_event_task(child, child_ctx, 0);
a63eaf34 7487
66fff224
PZ
7488 /*
7489 * We can recurse on the same lock type through:
7490 *
cdd6c482
IM
7491 * __perf_event_exit_task()
7492 * sync_child_event()
a6fa941d
AV
7493 * put_event()
7494 * mutex_lock(&ctx->mutex)
66fff224
PZ
7495 *
7496 * But since its the parent context it won't be the same instance.
7497 */
a0507c84 7498 mutex_lock(&child_ctx->mutex);
a63eaf34 7499
ebf905fc 7500 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7501 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7502
a63eaf34
PM
7503 mutex_unlock(&child_ctx->mutex);
7504
7505 put_ctx(child_ctx);
9b51f66d
IM
7506}
7507
8dc85d54
PZ
7508/*
7509 * When a child task exits, feed back event values to parent events.
7510 */
7511void perf_event_exit_task(struct task_struct *child)
7512{
8882135b 7513 struct perf_event *event, *tmp;
8dc85d54
PZ
7514 int ctxn;
7515
8882135b
PZ
7516 mutex_lock(&child->perf_event_mutex);
7517 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7518 owner_entry) {
7519 list_del_init(&event->owner_entry);
7520
7521 /*
7522 * Ensure the list deletion is visible before we clear
7523 * the owner, closes a race against perf_release() where
7524 * we need to serialize on the owner->perf_event_mutex.
7525 */
7526 smp_wmb();
7527 event->owner = NULL;
7528 }
7529 mutex_unlock(&child->perf_event_mutex);
7530
8dc85d54
PZ
7531 for_each_task_context_nr(ctxn)
7532 perf_event_exit_task_context(child, ctxn);
7533}
7534
889ff015
FW
7535static void perf_free_event(struct perf_event *event,
7536 struct perf_event_context *ctx)
7537{
7538 struct perf_event *parent = event->parent;
7539
7540 if (WARN_ON_ONCE(!parent))
7541 return;
7542
7543 mutex_lock(&parent->child_mutex);
7544 list_del_init(&event->child_list);
7545 mutex_unlock(&parent->child_mutex);
7546
a6fa941d 7547 put_event(parent);
889ff015 7548
8a49542c 7549 perf_group_detach(event);
889ff015
FW
7550 list_del_event(event, ctx);
7551 free_event(event);
7552}
7553
bbbee908
PZ
7554/*
7555 * free an unexposed, unused context as created by inheritance by
8dc85d54 7556 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7557 */
cdd6c482 7558void perf_event_free_task(struct task_struct *task)
bbbee908 7559{
8dc85d54 7560 struct perf_event_context *ctx;
cdd6c482 7561 struct perf_event *event, *tmp;
8dc85d54 7562 int ctxn;
bbbee908 7563
8dc85d54
PZ
7564 for_each_task_context_nr(ctxn) {
7565 ctx = task->perf_event_ctxp[ctxn];
7566 if (!ctx)
7567 continue;
bbbee908 7568
8dc85d54 7569 mutex_lock(&ctx->mutex);
bbbee908 7570again:
8dc85d54
PZ
7571 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7572 group_entry)
7573 perf_free_event(event, ctx);
bbbee908 7574
8dc85d54
PZ
7575 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7576 group_entry)
7577 perf_free_event(event, ctx);
bbbee908 7578
8dc85d54
PZ
7579 if (!list_empty(&ctx->pinned_groups) ||
7580 !list_empty(&ctx->flexible_groups))
7581 goto again;
bbbee908 7582
8dc85d54 7583 mutex_unlock(&ctx->mutex);
bbbee908 7584
8dc85d54
PZ
7585 put_ctx(ctx);
7586 }
889ff015
FW
7587}
7588
4e231c79
PZ
7589void perf_event_delayed_put(struct task_struct *task)
7590{
7591 int ctxn;
7592
7593 for_each_task_context_nr(ctxn)
7594 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7595}
7596
97dee4f3
PZ
7597/*
7598 * inherit a event from parent task to child task:
7599 */
7600static struct perf_event *
7601inherit_event(struct perf_event *parent_event,
7602 struct task_struct *parent,
7603 struct perf_event_context *parent_ctx,
7604 struct task_struct *child,
7605 struct perf_event *group_leader,
7606 struct perf_event_context *child_ctx)
7607{
7608 struct perf_event *child_event;
cee010ec 7609 unsigned long flags;
97dee4f3
PZ
7610
7611 /*
7612 * Instead of creating recursive hierarchies of events,
7613 * we link inherited events back to the original parent,
7614 * which has a filp for sure, which we use as the reference
7615 * count:
7616 */
7617 if (parent_event->parent)
7618 parent_event = parent_event->parent;
7619
7620 child_event = perf_event_alloc(&parent_event->attr,
7621 parent_event->cpu,
d580ff86 7622 child,
97dee4f3 7623 group_leader, parent_event,
4dc0da86 7624 NULL, NULL);
97dee4f3
PZ
7625 if (IS_ERR(child_event))
7626 return child_event;
a6fa941d
AV
7627
7628 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7629 free_event(child_event);
7630 return NULL;
7631 }
7632
97dee4f3
PZ
7633 get_ctx(child_ctx);
7634
7635 /*
7636 * Make the child state follow the state of the parent event,
7637 * not its attr.disabled bit. We hold the parent's mutex,
7638 * so we won't race with perf_event_{en, dis}able_family.
7639 */
7640 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7641 child_event->state = PERF_EVENT_STATE_INACTIVE;
7642 else
7643 child_event->state = PERF_EVENT_STATE_OFF;
7644
7645 if (parent_event->attr.freq) {
7646 u64 sample_period = parent_event->hw.sample_period;
7647 struct hw_perf_event *hwc = &child_event->hw;
7648
7649 hwc->sample_period = sample_period;
7650 hwc->last_period = sample_period;
7651
7652 local64_set(&hwc->period_left, sample_period);
7653 }
7654
7655 child_event->ctx = child_ctx;
7656 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7657 child_event->overflow_handler_context
7658 = parent_event->overflow_handler_context;
97dee4f3 7659
614b6780
TG
7660 /*
7661 * Precalculate sample_data sizes
7662 */
7663 perf_event__header_size(child_event);
6844c09d 7664 perf_event__id_header_size(child_event);
614b6780 7665
97dee4f3
PZ
7666 /*
7667 * Link it up in the child's context:
7668 */
cee010ec 7669 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7670 add_event_to_ctx(child_event, child_ctx);
cee010ec 7671 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7672
97dee4f3
PZ
7673 /*
7674 * Link this into the parent event's child list
7675 */
7676 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7677 mutex_lock(&parent_event->child_mutex);
7678 list_add_tail(&child_event->child_list, &parent_event->child_list);
7679 mutex_unlock(&parent_event->child_mutex);
7680
7681 return child_event;
7682}
7683
7684static int inherit_group(struct perf_event *parent_event,
7685 struct task_struct *parent,
7686 struct perf_event_context *parent_ctx,
7687 struct task_struct *child,
7688 struct perf_event_context *child_ctx)
7689{
7690 struct perf_event *leader;
7691 struct perf_event *sub;
7692 struct perf_event *child_ctr;
7693
7694 leader = inherit_event(parent_event, parent, parent_ctx,
7695 child, NULL, child_ctx);
7696 if (IS_ERR(leader))
7697 return PTR_ERR(leader);
7698 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7699 child_ctr = inherit_event(sub, parent, parent_ctx,
7700 child, leader, child_ctx);
7701 if (IS_ERR(child_ctr))
7702 return PTR_ERR(child_ctr);
7703 }
7704 return 0;
889ff015
FW
7705}
7706
7707static int
7708inherit_task_group(struct perf_event *event, struct task_struct *parent,
7709 struct perf_event_context *parent_ctx,
8dc85d54 7710 struct task_struct *child, int ctxn,
889ff015
FW
7711 int *inherited_all)
7712{
7713 int ret;
8dc85d54 7714 struct perf_event_context *child_ctx;
889ff015
FW
7715
7716 if (!event->attr.inherit) {
7717 *inherited_all = 0;
7718 return 0;
bbbee908
PZ
7719 }
7720
fe4b04fa 7721 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7722 if (!child_ctx) {
7723 /*
7724 * This is executed from the parent task context, so
7725 * inherit events that have been marked for cloning.
7726 * First allocate and initialize a context for the
7727 * child.
7728 */
bbbee908 7729
734df5ab 7730 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7731 if (!child_ctx)
7732 return -ENOMEM;
bbbee908 7733
8dc85d54 7734 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7735 }
7736
7737 ret = inherit_group(event, parent, parent_ctx,
7738 child, child_ctx);
7739
7740 if (ret)
7741 *inherited_all = 0;
7742
7743 return ret;
bbbee908
PZ
7744}
7745
9b51f66d 7746/*
cdd6c482 7747 * Initialize the perf_event context in task_struct
9b51f66d 7748 */
8dc85d54 7749int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7750{
889ff015 7751 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7752 struct perf_event_context *cloned_ctx;
7753 struct perf_event *event;
9b51f66d 7754 struct task_struct *parent = current;
564c2b21 7755 int inherited_all = 1;
dddd3379 7756 unsigned long flags;
6ab423e0 7757 int ret = 0;
9b51f66d 7758
8dc85d54 7759 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7760 return 0;
7761
ad3a37de 7762 /*
25346b93
PM
7763 * If the parent's context is a clone, pin it so it won't get
7764 * swapped under us.
ad3a37de 7765 */
8dc85d54 7766 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7767 if (!parent_ctx)
7768 return 0;
25346b93 7769
ad3a37de
PM
7770 /*
7771 * No need to check if parent_ctx != NULL here; since we saw
7772 * it non-NULL earlier, the only reason for it to become NULL
7773 * is if we exit, and since we're currently in the middle of
7774 * a fork we can't be exiting at the same time.
7775 */
ad3a37de 7776
9b51f66d
IM
7777 /*
7778 * Lock the parent list. No need to lock the child - not PID
7779 * hashed yet and not running, so nobody can access it.
7780 */
d859e29f 7781 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7782
7783 /*
7784 * We dont have to disable NMIs - we are only looking at
7785 * the list, not manipulating it:
7786 */
889ff015 7787 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7788 ret = inherit_task_group(event, parent, parent_ctx,
7789 child, ctxn, &inherited_all);
889ff015
FW
7790 if (ret)
7791 break;
7792 }
b93f7978 7793
dddd3379
TG
7794 /*
7795 * We can't hold ctx->lock when iterating the ->flexible_group list due
7796 * to allocations, but we need to prevent rotation because
7797 * rotate_ctx() will change the list from interrupt context.
7798 */
7799 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7800 parent_ctx->rotate_disable = 1;
7801 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7802
889ff015 7803 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7804 ret = inherit_task_group(event, parent, parent_ctx,
7805 child, ctxn, &inherited_all);
889ff015 7806 if (ret)
9b51f66d 7807 break;
564c2b21
PM
7808 }
7809
dddd3379
TG
7810 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7811 parent_ctx->rotate_disable = 0;
dddd3379 7812
8dc85d54 7813 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7814
05cbaa28 7815 if (child_ctx && inherited_all) {
564c2b21
PM
7816 /*
7817 * Mark the child context as a clone of the parent
7818 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7819 *
7820 * Note that if the parent is a clone, the holding of
7821 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7822 */
c5ed5145 7823 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7824 if (cloned_ctx) {
7825 child_ctx->parent_ctx = cloned_ctx;
25346b93 7826 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7827 } else {
7828 child_ctx->parent_ctx = parent_ctx;
7829 child_ctx->parent_gen = parent_ctx->generation;
7830 }
7831 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7832 }
7833
c5ed5145 7834 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7835 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7836
25346b93 7837 perf_unpin_context(parent_ctx);
fe4b04fa 7838 put_ctx(parent_ctx);
ad3a37de 7839
6ab423e0 7840 return ret;
9b51f66d
IM
7841}
7842
8dc85d54
PZ
7843/*
7844 * Initialize the perf_event context in task_struct
7845 */
7846int perf_event_init_task(struct task_struct *child)
7847{
7848 int ctxn, ret;
7849
8550d7cb
ON
7850 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7851 mutex_init(&child->perf_event_mutex);
7852 INIT_LIST_HEAD(&child->perf_event_list);
7853
8dc85d54
PZ
7854 for_each_task_context_nr(ctxn) {
7855 ret = perf_event_init_context(child, ctxn);
7856 if (ret)
7857 return ret;
7858 }
7859
7860 return 0;
7861}
7862
220b140b
PM
7863static void __init perf_event_init_all_cpus(void)
7864{
b28ab83c 7865 struct swevent_htable *swhash;
220b140b 7866 int cpu;
220b140b
PM
7867
7868 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7869 swhash = &per_cpu(swevent_htable, cpu);
7870 mutex_init(&swhash->hlist_mutex);
e9d2b064 7871 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7872 }
7873}
7874
0db0628d 7875static void perf_event_init_cpu(int cpu)
0793a61d 7876{
108b02cf 7877 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7878
b28ab83c 7879 mutex_lock(&swhash->hlist_mutex);
39af6b16 7880 swhash->online = true;
4536e4d1 7881 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7882 struct swevent_hlist *hlist;
7883
b28ab83c
PZ
7884 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7885 WARN_ON(!hlist);
7886 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7887 }
b28ab83c 7888 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7889}
7890
c277443c 7891#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7892static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7893{
e9d2b064
PZ
7894 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7895
7896 WARN_ON(!irqs_disabled());
7897
7898 list_del_init(&cpuctx->rotation_list);
7899}
7900
108b02cf 7901static void __perf_event_exit_context(void *__info)
0793a61d 7902{
46ce0fe9 7903 struct remove_event re = { .detach_group = false };
108b02cf 7904 struct perf_event_context *ctx = __info;
0793a61d 7905
108b02cf 7906 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7907
e3703f8c 7908 rcu_read_lock();
46ce0fe9
PZ
7909 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7910 __perf_remove_from_context(&re);
e3703f8c 7911 rcu_read_unlock();
0793a61d 7912}
108b02cf
PZ
7913
7914static void perf_event_exit_cpu_context(int cpu)
7915{
7916 struct perf_event_context *ctx;
7917 struct pmu *pmu;
7918 int idx;
7919
7920 idx = srcu_read_lock(&pmus_srcu);
7921 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7922 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7923
7924 mutex_lock(&ctx->mutex);
7925 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7926 mutex_unlock(&ctx->mutex);
7927 }
7928 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7929}
7930
cdd6c482 7931static void perf_event_exit_cpu(int cpu)
0793a61d 7932{
b28ab83c 7933 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7934
e3703f8c
PZ
7935 perf_event_exit_cpu_context(cpu);
7936
b28ab83c 7937 mutex_lock(&swhash->hlist_mutex);
39af6b16 7938 swhash->online = false;
b28ab83c
PZ
7939 swevent_hlist_release(swhash);
7940 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7941}
7942#else
cdd6c482 7943static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7944#endif
7945
c277443c
PZ
7946static int
7947perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7948{
7949 int cpu;
7950
7951 for_each_online_cpu(cpu)
7952 perf_event_exit_cpu(cpu);
7953
7954 return NOTIFY_OK;
7955}
7956
7957/*
7958 * Run the perf reboot notifier at the very last possible moment so that
7959 * the generic watchdog code runs as long as possible.
7960 */
7961static struct notifier_block perf_reboot_notifier = {
7962 .notifier_call = perf_reboot,
7963 .priority = INT_MIN,
7964};
7965
0db0628d 7966static int
0793a61d
TG
7967perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7968{
7969 unsigned int cpu = (long)hcpu;
7970
4536e4d1 7971 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7972
7973 case CPU_UP_PREPARE:
5e11637e 7974 case CPU_DOWN_FAILED:
cdd6c482 7975 perf_event_init_cpu(cpu);
0793a61d
TG
7976 break;
7977
5e11637e 7978 case CPU_UP_CANCELED:
0793a61d 7979 case CPU_DOWN_PREPARE:
cdd6c482 7980 perf_event_exit_cpu(cpu);
0793a61d 7981 break;
0793a61d
TG
7982 default:
7983 break;
7984 }
7985
7986 return NOTIFY_OK;
7987}
7988
cdd6c482 7989void __init perf_event_init(void)
0793a61d 7990{
3c502e7a
JW
7991 int ret;
7992
2e80a82a
PZ
7993 idr_init(&pmu_idr);
7994
220b140b 7995 perf_event_init_all_cpus();
b0a873eb 7996 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7997 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7998 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7999 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8000 perf_tp_register();
8001 perf_cpu_notifier(perf_cpu_notify);
c277443c 8002 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8003
8004 ret = init_hw_breakpoint();
8005 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8006
8007 /* do not patch jump label more than once per second */
8008 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8009
8010 /*
8011 * Build time assertion that we keep the data_head at the intended
8012 * location. IOW, validation we got the __reserved[] size right.
8013 */
8014 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8015 != 1024);
0793a61d 8016}
abe43400
PZ
8017
8018static int __init perf_event_sysfs_init(void)
8019{
8020 struct pmu *pmu;
8021 int ret;
8022
8023 mutex_lock(&pmus_lock);
8024
8025 ret = bus_register(&pmu_bus);
8026 if (ret)
8027 goto unlock;
8028
8029 list_for_each_entry(pmu, &pmus, entry) {
8030 if (!pmu->name || pmu->type < 0)
8031 continue;
8032
8033 ret = pmu_dev_alloc(pmu);
8034 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8035 }
8036 pmu_bus_running = 1;
8037 ret = 0;
8038
8039unlock:
8040 mutex_unlock(&pmus_lock);
8041
8042 return ret;
8043}
8044device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8045
8046#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8047static struct cgroup_subsys_state *
8048perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8049{
8050 struct perf_cgroup *jc;
e5d1367f 8051
1b15d055 8052 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8053 if (!jc)
8054 return ERR_PTR(-ENOMEM);
8055
e5d1367f
SE
8056 jc->info = alloc_percpu(struct perf_cgroup_info);
8057 if (!jc->info) {
8058 kfree(jc);
8059 return ERR_PTR(-ENOMEM);
8060 }
8061
e5d1367f
SE
8062 return &jc->css;
8063}
8064
eb95419b 8065static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8066{
eb95419b
TH
8067 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8068
e5d1367f
SE
8069 free_percpu(jc->info);
8070 kfree(jc);
8071}
8072
8073static int __perf_cgroup_move(void *info)
8074{
8075 struct task_struct *task = info;
8076 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8077 return 0;
8078}
8079
eb95419b
TH
8080static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8081 struct cgroup_taskset *tset)
e5d1367f 8082{
bb9d97b6
TH
8083 struct task_struct *task;
8084
924f0d9a 8085 cgroup_taskset_for_each(task, tset)
bb9d97b6 8086 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8087}
8088
eb95419b
TH
8089static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8090 struct cgroup_subsys_state *old_css,
761b3ef5 8091 struct task_struct *task)
e5d1367f
SE
8092{
8093 /*
8094 * cgroup_exit() is called in the copy_process() failure path.
8095 * Ignore this case since the task hasn't ran yet, this avoids
8096 * trying to poke a half freed task state from generic code.
8097 */
8098 if (!(task->flags & PF_EXITING))
8099 return;
8100
bb9d97b6 8101 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8102}
8103
073219e9 8104struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8105 .css_alloc = perf_cgroup_css_alloc,
8106 .css_free = perf_cgroup_css_free,
e7e7ee2e 8107 .exit = perf_cgroup_exit,
bb9d97b6 8108 .attach = perf_cgroup_attach,
e5d1367f
SE
8109};
8110#endif /* CONFIG_CGROUP_PERF */