perf/x86: Fix microcode revision check for SNB-PEBS
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 141
cdd6c482
IM
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
9ee318a7 145
108b02cf
PZ
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
0764771d 150/*
cdd6c482 151 * perf event paranoia level:
0fbdea19
IM
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 154 * 1 - disallow cpu events for unpriv
0fbdea19 155 * 2 - disallow kernel profiling for unpriv
0764771d 156 */
cdd6c482 157int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 158
20443384
FW
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
161
162/*
cdd6c482 163 * max perf event sample rate
df58ab24 164 */
163ec435
PZ
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
1ccd1549 183
cdd6c482 184static atomic64_t perf_event_id;
a96bbc16 185
0b3fcf17
SE
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
0b3fcf17 195
10c6db11
PZ
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
cdd6c482 199void __weak perf_event_print_debug(void) { }
0793a61d 200
84c79910 201extern __weak const char *perf_pmu_name(void)
0793a61d 202{
84c79910 203 return "pmu";
0793a61d
TG
204}
205
0b3fcf17
SE
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
e5d1367f
SE
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
facc4307
PZ
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
e5d1367f
SE
233#ifdef CONFIG_CGROUP_PERF
234
3f7cce3c
SE
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
e5d1367f
SE
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
9c5da09d 256static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 257{
9c5da09d 258 return css_tryget(&event->cgrp->css);
e5d1367f
SE
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
3f7cce3c
SE
307 struct perf_cgroup *cgrp;
308
e5d1367f 309 /*
3f7cce3c
SE
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
e5d1367f 312 */
3f7cce3c 313 if (!is_cgroup_event(event))
e5d1367f
SE
314 return;
315
3f7cce3c
SE
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
e5d1367f
SE
322}
323
324static inline void
3f7cce3c
SE
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
e5d1367f
SE
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
3f7cce3c
SE
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
3f7cce3c 341 info->timestamp = ctx->timestamp;
e5d1367f
SE
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
e5d1367f
SE
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
e566b76e 396 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
facc4307
PZ
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 406 }
e5d1367f
SE
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
a8d757ef
SE
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
e5d1367f 416{
a8d757ef
SE
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
439}
440
a8d757ef
SE
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
e5d1367f 443{
a8d757ef
SE
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
e5d1367f
SE
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
f75e18cb 486 /* must be done before we fput() the file */
9c5da09d
SQ
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
f75e18cb 492
e5d1367f
SE
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
e5d1367f 501 }
3db272c0 502out:
e5d1367f
SE
503 fput_light(file, fput_needed);
504 return ret;
505}
506
507static inline void
508perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509{
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513}
514
515static inline void
516perf_cgroup_defer_enabled(struct perf_event *event)
517{
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526}
527
528static inline void
529perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531{
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547}
548#else /* !CONFIG_CGROUP_PERF */
549
550static inline bool
551perf_cgroup_match(struct perf_event *event)
552{
553 return true;
554}
555
556static inline void perf_detach_cgroup(struct perf_event *event)
557{}
558
559static inline int is_cgroup_event(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565{
566 return 0;
567}
568
569static inline void update_cgrp_time_from_event(struct perf_event *event)
570{
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
e5d1367f
SE
579{
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f
SE
584{
585}
586
587static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590{
591 return -EINVAL;
592}
593
594static inline void
3f7cce3c
SE
595perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
e5d1367f
SE
597{
598}
599
600void
601perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602{
603}
604
605static inline void
606perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607{
608}
609
610static inline u64 perf_cgroup_event_time(struct perf_event *event)
611{
612 return 0;
613}
614
615static inline void
616perf_cgroup_defer_enabled(struct perf_event *event)
617{
618}
619
620static inline void
621perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623{
624}
625#endif
626
33696fc0 627void perf_pmu_disable(struct pmu *pmu)
9e35ad38 628{
33696fc0
PZ
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
9e35ad38 632}
9e35ad38 633
33696fc0 634void perf_pmu_enable(struct pmu *pmu)
9e35ad38 635{
33696fc0
PZ
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
9e35ad38 639}
9e35ad38 640
e9d2b064
PZ
641static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643/*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
108b02cf 648static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 649{
108b02cf 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 651 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 652
e9d2b064 653 WARN_ON(!irqs_disabled());
b5ab4cd5 654
e9d2b064
PZ
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
9e35ad38 657}
9e35ad38 658
cdd6c482 659static void get_ctx(struct perf_event_context *ctx)
a63eaf34 660{
e5289d4a 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
662}
663
cdd6c482 664static void put_ctx(struct perf_event_context *ctx)
a63eaf34 665{
564c2b21
PM
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
c93f7669
PM
669 if (ctx->task)
670 put_task_struct(ctx->task);
cb796ff3 671 kfree_rcu(ctx, rcu_head);
564c2b21 672 }
a63eaf34
PM
673}
674
cdd6c482 675static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
676{
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681}
682
6844c09d
ACM
683static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684{
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692}
693
694static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695{
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703}
704
7f453c24 705/*
cdd6c482 706 * If we inherit events we want to return the parent event id
7f453c24
PZ
707 * to userspace.
708 */
cdd6c482 709static u64 primary_event_id(struct perf_event *event)
7f453c24 710{
cdd6c482 711 u64 id = event->id;
7f453c24 712
cdd6c482
IM
713 if (event->parent)
714 id = event->parent->id;
7f453c24
PZ
715
716 return id;
717}
718
25346b93 719/*
cdd6c482 720 * Get the perf_event_context for a task and lock it.
25346b93
PM
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
cdd6c482 724static struct perf_event_context *
8dc85d54 725perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 726{
cdd6c482 727 struct perf_event_context *ctx;
25346b93
PM
728
729 rcu_read_lock();
9ed6060d 730retry:
8dc85d54 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
cdd6c482 736 * perf_event_task_sched_out, though the
25346b93
PM
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
e625cce1 743 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
746 goto retry;
747 }
b49a9e7e
PZ
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
751 ctx = NULL;
752 }
25346b93
PM
753 }
754 rcu_read_unlock();
755 return ctx;
756}
757
758/*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
8dc85d54
PZ
763static struct perf_event_context *
764perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 765{
cdd6c482 766 struct perf_event_context *ctx;
25346b93
PM
767 unsigned long flags;
768
8dc85d54 769 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
770 if (ctx) {
771 ++ctx->pin_count;
e625cce1 772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
773 }
774 return ctx;
775}
776
cdd6c482 777static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
778{
779 unsigned long flags;
780
e625cce1 781 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 782 --ctx->pin_count;
e625cce1 783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
784}
785
f67218c3
PZ
786/*
787 * Update the record of the current time in a context.
788 */
789static void update_context_time(struct perf_event_context *ctx)
790{
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795}
796
4158755d
SE
797static u64 perf_event_time(struct perf_event *event)
798{
799 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
4158755d
SE
804 return ctx ? ctx->time : 0;
805}
806
f67218c3
PZ
807/*
808 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 809 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
810 */
811static void update_event_times(struct perf_event *event)
812{
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
e5d1367f
SE
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
46cd6a7f 830 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
831 else if (ctx->is_active)
832 run_end = ctx->time;
acd1d7c1
PZ
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
4158755d 841 run_end = perf_event_time(event);
f67218c3
PZ
842
843 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 844
f67218c3
PZ
845}
846
96c21a46
PZ
847/*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850static void update_group_times(struct perf_event *leader)
851{
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857}
858
889ff015
FW
859static struct list_head *
860ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861{
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866}
867
fccc714b 868/*
cdd6c482 869 * Add a event from the lists for its context.
fccc714b
PZ
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
04289bb9 872static void
cdd6c482 873list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 874{
8a49542c
PZ
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
877
878 /*
8a49542c
PZ
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
04289bb9 882 */
8a49542c 883 if (event->group_leader == event) {
889ff015
FW
884 struct list_head *list;
885
d6f962b5
FW
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889ff015
FW
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
5c148194 891 }
592903cd 892
08309379 893 if (is_cgroup_event(event))
e5d1367f 894 ctx->nr_cgroups++;
e5d1367f 895
d010b332
SE
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
cdd6c482 899 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 900 if (!ctx->nr_events)
108b02cf 901 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
bfbd3381 904 ctx->nr_stat++;
04289bb9
IM
905}
906
c320c7b7
ACM
907/*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911static void perf_event__read_size(struct perf_event *event)
912{
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933}
934
935static void perf_event__header_size(struct perf_event *event)
936{
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
6844c09d
ACM
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956}
957
958static void perf_event__id_header_size(struct perf_event *event)
959{
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
c320c7b7
ACM
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
c320c7b7
ACM
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
6844c09d 979 event->id_header_size = size;
c320c7b7
ACM
980}
981
8a49542c
PZ
982static void perf_group_attach(struct perf_event *event)
983{
c320c7b7 984 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 985
74c3337c
PZ
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
8a49542c
PZ
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
c320c7b7
ACM
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
8a49542c
PZ
1008}
1009
a63eaf34 1010/*
cdd6c482 1011 * Remove a event from the lists for its context.
fccc714b 1012 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1013 */
04289bb9 1014static void
cdd6c482 1015list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1016{
68cacd29 1017 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1022 return;
8a49542c
PZ
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
68cacd29 1026 if (is_cgroup_event(event)) {
e5d1367f 1027 ctx->nr_cgroups--;
68cacd29
SE
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
e5d1367f 1037
d010b332
SE
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
cdd6c482
IM
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
bfbd3381 1043 ctx->nr_stat--;
8bc20959 1044
cdd6c482 1045 list_del_rcu(&event->event_entry);
04289bb9 1046
8a49542c
PZ
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
5c148194 1049
96c21a46 1050 update_group_times(event);
b2e74a26
SE
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1061}
1062
8a49542c 1063static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1064{
1065 struct perf_event *sibling, *tmp;
8a49542c
PZ
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
c320c7b7 1082 goto out;
8a49542c
PZ
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
2e2af50b 1087
04289bb9 1088 /*
cdd6c482
IM
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
8a49542c 1091 * to whatever list we are on.
04289bb9 1092 */
cdd6c482 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
04289bb9 1096 sibling->group_leader = sibling;
d6f962b5
FW
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
04289bb9 1100 }
c320c7b7
ACM
1101
1102out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
04289bb9
IM
1107}
1108
fa66f07a
SE
1109static inline int
1110event_filter_match(struct perf_event *event)
1111{
e5d1367f
SE
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
fa66f07a
SE
1114}
1115
9ffcfa6f
SE
1116static void
1117event_sched_out(struct perf_event *event,
3b6f9e5c 1118 struct perf_cpu_context *cpuctx,
cdd6c482 1119 struct perf_event_context *ctx)
3b6f9e5c 1120{
4158755d 1121 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
e5d1367f 1131 delta = tstamp - event->tstamp_stopped;
fa66f07a 1132 event->tstamp_running += delta;
4158755d 1133 event->tstamp_stopped = tstamp;
fa66f07a
SE
1134 }
1135
cdd6c482 1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1137 return;
3b6f9e5c 1138
cdd6c482
IM
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
970892a9 1143 }
4158755d 1144 event->tstamp_stopped = tstamp;
a4eaf7f1 1145 event->pmu->del(event, 0);
cdd6c482 1146 event->oncpu = -1;
3b6f9e5c 1147
cdd6c482 1148 if (!is_software_event(event))
3b6f9e5c
PM
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
0f5a2601
PZ
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
cdd6c482 1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1154 cpuctx->exclusive = 0;
1155}
1156
d859e29f 1157static void
cdd6c482 1158group_sched_out(struct perf_event *group_event,
d859e29f 1159 struct perf_cpu_context *cpuctx,
cdd6c482 1160 struct perf_event_context *ctx)
d859e29f 1161{
cdd6c482 1162 struct perf_event *event;
fa66f07a 1163 int state = group_event->state;
d859e29f 1164
cdd6c482 1165 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
cdd6c482
IM
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
d859e29f 1172
fa66f07a 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1174 cpuctx->exclusive = 0;
1175}
1176
0793a61d 1177/*
cdd6c482 1178 * Cross CPU call to remove a performance event
0793a61d 1179 *
cdd6c482 1180 * We disable the event on the hardware level first. After that we
0793a61d
TG
1181 * remove it from the context list.
1182 */
fe4b04fa 1183static int __perf_remove_from_context(void *info)
0793a61d 1184{
cdd6c482
IM
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
108b02cf 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1188
e625cce1 1189 raw_spin_lock(&ctx->lock);
cdd6c482 1190 event_sched_out(event, cpuctx, ctx);
cdd6c482 1191 list_del_event(event, ctx);
64ce3126
PZ
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
e625cce1 1196 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1197
1198 return 0;
0793a61d
TG
1199}
1200
1201
1202/*
cdd6c482 1203 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1204 *
cdd6c482 1205 * CPU events are removed with a smp call. For task events we only
0793a61d 1206 * call when the task is on a CPU.
c93f7669 1207 *
cdd6c482
IM
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1212 * When called from perf_event_exit_task, it's OK because the
c93f7669 1213 * context has been detached from its task.
0793a61d 1214 */
fe4b04fa 1215static void perf_remove_from_context(struct perf_event *event)
0793a61d 1216{
cdd6c482 1217 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1218 struct task_struct *task = ctx->task;
1219
fe4b04fa
PZ
1220 lockdep_assert_held(&ctx->mutex);
1221
0793a61d
TG
1222 if (!task) {
1223 /*
cdd6c482 1224 * Per cpu events are removed via an smp call and
af901ca1 1225 * the removal is always successful.
0793a61d 1226 */
fe4b04fa 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1228 return;
1229 }
1230
1231retry:
fe4b04fa
PZ
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
0793a61d 1234
e625cce1 1235 raw_spin_lock_irq(&ctx->lock);
0793a61d 1236 /*
fe4b04fa
PZ
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
0793a61d 1239 */
fe4b04fa 1240 if (ctx->is_active) {
e625cce1 1241 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1242 goto retry;
1243 }
1244
1245 /*
fe4b04fa
PZ
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1248 */
fe4b04fa 1249 list_del_event(event, ctx);
e625cce1 1250 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1251}
1252
d859e29f 1253/*
cdd6c482 1254 * Cross CPU call to disable a performance event
d859e29f 1255 */
fe4b04fa 1256static int __perf_event_disable(void *info)
d859e29f 1257{
cdd6c482 1258 struct perf_event *event = info;
cdd6c482 1259 struct perf_event_context *ctx = event->ctx;
108b02cf 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1261
1262 /*
cdd6c482
IM
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
fe4b04fa
PZ
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
d859e29f 1268 */
665c2142 1269 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1270 return -EINVAL;
d859e29f 1271
e625cce1 1272 raw_spin_lock(&ctx->lock);
d859e29f
PM
1273
1274 /*
cdd6c482 1275 * If the event is on, turn it off.
d859e29f
PM
1276 * If it is in error state, leave it in error state.
1277 */
cdd6c482 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1279 update_context_time(ctx);
e5d1367f 1280 update_cgrp_time_from_event(event);
cdd6c482
IM
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
d859e29f 1284 else
cdd6c482
IM
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1287 }
1288
e625cce1 1289 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1290
1291 return 0;
d859e29f
PM
1292}
1293
1294/*
cdd6c482 1295 * Disable a event.
c93f7669 1296 *
cdd6c482
IM
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
c93f7669 1299 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1304 * is the current context on this CPU and preemption is disabled,
cdd6c482 1305 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1306 */
44234adc 1307void perf_event_disable(struct perf_event *event)
d859e29f 1308{
cdd6c482 1309 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
cdd6c482 1314 * Disable the event on the cpu that it's on
d859e29f 1315 */
fe4b04fa 1316 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1317 return;
1318 }
1319
9ed6060d 1320retry:
fe4b04fa
PZ
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
d859e29f 1323
e625cce1 1324 raw_spin_lock_irq(&ctx->lock);
d859e29f 1325 /*
cdd6c482 1326 * If the event is still active, we need to retry the cross-call.
d859e29f 1327 */
cdd6c482 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1329 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
d859e29f
PM
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
cdd6c482
IM
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1345 }
e625cce1 1346 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1347}
dcfce4a0 1348EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1349
e5d1367f
SE
1350static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353{
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383}
1384
4fe757dd
PZ
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
235c7fc7 1389static int
9ffcfa6f 1390event_sched_in(struct perf_event *event,
235c7fc7 1391 struct perf_cpu_context *cpuctx,
6e37738a 1392 struct perf_event_context *ctx)
235c7fc7 1393{
4158755d
SE
1394 u64 tstamp = perf_event_time(event);
1395
cdd6c482 1396 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1397 return 0;
1398
cdd6c482 1399 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1400 event->oncpu = smp_processor_id();
4fe757dd
PZ
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
235c7fc7
IM
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
a4eaf7f1 1417 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
235c7fc7
IM
1420 return -EAGAIN;
1421 }
1422
4158755d 1423 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1424
e5d1367f 1425 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1426
cdd6c482 1427 if (!is_software_event(event))
3b6f9e5c 1428 cpuctx->active_oncpu++;
235c7fc7 1429 ctx->nr_active++;
0f5a2601
PZ
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
235c7fc7 1432
cdd6c482 1433 if (event->attr.exclusive)
3b6f9e5c
PM
1434 cpuctx->exclusive = 1;
1435
235c7fc7
IM
1436 return 0;
1437}
1438
6751b71e 1439static int
cdd6c482 1440group_sched_in(struct perf_event *group_event,
6751b71e 1441 struct perf_cpu_context *cpuctx,
6e37738a 1442 struct perf_event_context *ctx)
6751b71e 1443{
6bde9b6c 1444 struct perf_event *event, *partial_group = NULL;
51b0fe39 1445 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1446 u64 now = ctx->time;
1447 bool simulate = false;
6751b71e 1448
cdd6c482 1449 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1450 return 0;
1451
ad5133b7 1452 pmu->start_txn(pmu);
6bde9b6c 1453
9ffcfa6f 1454 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1455 pmu->cancel_txn(pmu);
6751b71e 1456 return -EAGAIN;
90151c35 1457 }
6751b71e
PM
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
cdd6c482 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1463 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1464 partial_group = event;
6751b71e
PM
1465 goto group_error;
1466 }
1467 }
1468
9ffcfa6f 1469 if (!pmu->commit_txn(pmu))
6e85158c 1470 return 0;
9ffcfa6f 1471
6751b71e
PM
1472group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
d7842da4
SE
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
6751b71e 1486 */
cdd6c482
IM
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
d7842da4
SE
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
6751b71e 1497 }
9ffcfa6f 1498 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1499
ad5133b7 1500 pmu->cancel_txn(pmu);
90151c35 1501
6751b71e
PM
1502 return -EAGAIN;
1503}
1504
3b6f9e5c 1505/*
cdd6c482 1506 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1507 */
cdd6c482 1508static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511{
1512 /*
cdd6c482 1513 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1514 */
d6f962b5 1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
cdd6c482 1519 * events can go on.
3b6f9e5c
PM
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
cdd6c482 1525 * events on the CPU, it can't go on.
3b6f9e5c 1526 */
cdd6c482 1527 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534}
1535
cdd6c482
IM
1536static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
53cfbf59 1538{
4158755d
SE
1539 u64 tstamp = perf_event_time(event);
1540
cdd6c482 1541 list_add_event(event, ctx);
8a49542c 1542 perf_group_attach(event);
4158755d
SE
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
53cfbf59
PM
1546}
1547
2c29ef0f
PZ
1548static void task_ctx_sched_out(struct perf_event_context *ctx);
1549static void
1550ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
fe4b04fa 1554
dce5855b
PZ
1555static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558{
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565}
1566
0793a61d 1567/*
cdd6c482 1568 * Cross CPU call to install and enable a performance event
682076ae
PZ
1569 *
1570 * Must be called with ctx->mutex held
0793a61d 1571 */
fe4b04fa 1572static int __perf_install_in_context(void *info)
0793a61d 1573{
cdd6c482
IM
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
108b02cf 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
b58f6b0d 1580 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1581 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1582
1583 /*
2c29ef0f 1584 * If there was an active task_ctx schedule it out.
0793a61d 1585 */
b58f6b0d 1586 if (task_ctx)
2c29ef0f 1587 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1602 task = task_ctx->task;
1603 }
b58f6b0d 1604
2c29ef0f 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1606
4af4998b 1607 update_context_time(ctx);
e5d1367f
SE
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
0793a61d 1614
cdd6c482 1615 add_event_to_ctx(event, ctx);
0793a61d 1616
d859e29f 1617 /*
2c29ef0f 1618 * Schedule everything back in
d859e29f 1619 */
dce5855b 1620 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1624
1625 return 0;
0793a61d
TG
1626}
1627
1628/*
cdd6c482 1629 * Attach a performance event to a context
0793a61d 1630 *
cdd6c482
IM
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
0793a61d 1633 *
cdd6c482 1634 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638static void
cdd6c482
IM
1639perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
0793a61d
TG
1641 int cpu)
1642{
1643 struct task_struct *task = ctx->task;
1644
fe4b04fa
PZ
1645 lockdep_assert_held(&ctx->mutex);
1646
c3f00c70 1647 event->ctx = ctx;
0cda4c02
YZ
1648 if (event->cpu != -1)
1649 event->cpu = cpu;
c3f00c70 1650
0793a61d
TG
1651 if (!task) {
1652 /*
cdd6c482 1653 * Per cpu events are installed via an smp call and
af901ca1 1654 * the install is always successful.
0793a61d 1655 */
fe4b04fa 1656 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1657 return;
1658 }
1659
0793a61d 1660retry:
fe4b04fa
PZ
1661 if (!task_function_call(task, __perf_install_in_context, event))
1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1671 goto retry;
1672 }
1673
1674 /*
fe4b04fa
PZ
1675 * Since the task isn't running, its safe to add the event, us holding
1676 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1677 */
fe4b04fa 1678 add_event_to_ctx(event, ctx);
e625cce1 1679 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1680}
1681
fa289bec 1682/*
cdd6c482 1683 * Put a event into inactive state and update time fields.
fa289bec
PM
1684 * Enabling the leader of a group effectively enables all
1685 * the group members that aren't explicitly disabled, so we
1686 * have to update their ->tstamp_enabled also.
1687 * Note: this works for group members as well as group leaders
1688 * since the non-leader members' sibling_lists will be empty.
1689 */
1d9b482e 1690static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1691{
cdd6c482 1692 struct perf_event *sub;
4158755d 1693 u64 tstamp = perf_event_time(event);
fa289bec 1694
cdd6c482 1695 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1696 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1697 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1700 }
fa289bec
PM
1701}
1702
d859e29f 1703/*
cdd6c482 1704 * Cross CPU call to enable a performance event
d859e29f 1705 */
fe4b04fa 1706static int __perf_event_enable(void *info)
04289bb9 1707{
cdd6c482 1708 struct perf_event *event = info;
cdd6c482
IM
1709 struct perf_event_context *ctx = event->ctx;
1710 struct perf_event *leader = event->group_leader;
108b02cf 1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1712 int err;
04289bb9 1713
fe4b04fa
PZ
1714 if (WARN_ON_ONCE(!ctx->is_active))
1715 return -EINVAL;
3cbed429 1716
e625cce1 1717 raw_spin_lock(&ctx->lock);
4af4998b 1718 update_context_time(ctx);
d859e29f 1719
cdd6c482 1720 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1721 goto unlock;
e5d1367f
SE
1722
1723 /*
1724 * set current task's cgroup time reference point
1725 */
3f7cce3c 1726 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1727
1d9b482e 1728 __perf_event_mark_enabled(event);
04289bb9 1729
e5d1367f
SE
1730 if (!event_filter_match(event)) {
1731 if (is_cgroup_event(event))
1732 perf_cgroup_defer_enabled(event);
f4c4176f 1733 goto unlock;
e5d1367f 1734 }
f4c4176f 1735
04289bb9 1736 /*
cdd6c482 1737 * If the event is in a group and isn't the group leader,
d859e29f 1738 * then don't put it on unless the group is on.
04289bb9 1739 */
cdd6c482 1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1741 goto unlock;
3b6f9e5c 1742
cdd6c482 1743 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1744 err = -EEXIST;
e758a33d 1745 } else {
cdd6c482 1746 if (event == leader)
6e37738a 1747 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1748 else
6e37738a 1749 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1750 }
d859e29f
PM
1751
1752 if (err) {
1753 /*
cdd6c482 1754 * If this event can't go on and it's part of a
d859e29f
PM
1755 * group, then the whole group has to come off.
1756 */
cdd6c482 1757 if (leader != event)
d859e29f 1758 group_sched_out(leader, cpuctx, ctx);
0d48696f 1759 if (leader->attr.pinned) {
53cfbf59 1760 update_group_times(leader);
cdd6c482 1761 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1762 }
d859e29f
PM
1763 }
1764
9ed6060d 1765unlock:
e625cce1 1766 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1767
1768 return 0;
d859e29f
PM
1769}
1770
1771/*
cdd6c482 1772 * Enable a event.
c93f7669 1773 *
cdd6c482
IM
1774 * If event->ctx is a cloned context, callers must make sure that
1775 * every task struct that event->ctx->task could possibly point to
c93f7669 1776 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1777 * perf_event_for_each_child or perf_event_for_each as described
1778 * for perf_event_disable.
d859e29f 1779 */
44234adc 1780void perf_event_enable(struct perf_event *event)
d859e29f 1781{
cdd6c482 1782 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1783 struct task_struct *task = ctx->task;
1784
1785 if (!task) {
1786 /*
cdd6c482 1787 * Enable the event on the cpu that it's on
d859e29f 1788 */
fe4b04fa 1789 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1790 return;
1791 }
1792
e625cce1 1793 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1794 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1795 goto out;
1796
1797 /*
cdd6c482
IM
1798 * If the event is in error state, clear that first.
1799 * That way, if we see the event in error state below, we
d859e29f
PM
1800 * know that it has gone back into error state, as distinct
1801 * from the task having been scheduled away before the
1802 * cross-call arrived.
1803 */
cdd6c482
IM
1804 if (event->state == PERF_EVENT_STATE_ERROR)
1805 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1806
9ed6060d 1807retry:
fe4b04fa 1808 if (!ctx->is_active) {
1d9b482e 1809 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1810 goto out;
1811 }
1812
e625cce1 1813 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1814
1815 if (!task_function_call(task, __perf_event_enable, event))
1816 return;
d859e29f 1817
e625cce1 1818 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1819
1820 /*
cdd6c482 1821 * If the context is active and the event is still off,
d859e29f
PM
1822 * we need to retry the cross-call.
1823 */
fe4b04fa
PZ
1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 /*
1826 * task could have been flipped by a concurrent
1827 * perf_event_context_sched_out()
1828 */
1829 task = ctx->task;
d859e29f 1830 goto retry;
fe4b04fa 1831 }
fa289bec 1832
9ed6060d 1833out:
e625cce1 1834 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1835}
dcfce4a0 1836EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1837
26ca5c11 1838int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1839{
2023b359 1840 /*
cdd6c482 1841 * not supported on inherited events
2023b359 1842 */
2e939d1d 1843 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1844 return -EINVAL;
1845
cdd6c482
IM
1846 atomic_add(refresh, &event->event_limit);
1847 perf_event_enable(event);
2023b359
PZ
1848
1849 return 0;
79f14641 1850}
26ca5c11 1851EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1852
5b0311e1
FW
1853static void ctx_sched_out(struct perf_event_context *ctx,
1854 struct perf_cpu_context *cpuctx,
1855 enum event_type_t event_type)
235c7fc7 1856{
cdd6c482 1857 struct perf_event *event;
db24d33e 1858 int is_active = ctx->is_active;
235c7fc7 1859
db24d33e 1860 ctx->is_active &= ~event_type;
cdd6c482 1861 if (likely(!ctx->nr_events))
facc4307
PZ
1862 return;
1863
4af4998b 1864 update_context_time(ctx);
e5d1367f 1865 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1866 if (!ctx->nr_active)
facc4307 1867 return;
5b0311e1 1868
075e0b00 1869 perf_pmu_disable(ctx->pmu);
db24d33e 1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 group_sched_out(event, cpuctx, ctx);
9ed6060d 1873 }
889ff015 1874
db24d33e 1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1877 group_sched_out(event, cpuctx, ctx);
9ed6060d 1878 }
1b9a644f 1879 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1880}
1881
564c2b21
PM
1882/*
1883 * Test whether two contexts are equivalent, i.e. whether they
1884 * have both been cloned from the same version of the same context
cdd6c482
IM
1885 * and they both have the same number of enabled events.
1886 * If the number of enabled events is the same, then the set
1887 * of enabled events should be the same, because these are both
1888 * inherited contexts, therefore we can't access individual events
564c2b21 1889 * in them directly with an fd; we can only enable/disable all
cdd6c482 1890 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1891 * via ioctl, which will have the same effect on both contexts.
1892 */
cdd6c482
IM
1893static int context_equiv(struct perf_event_context *ctx1,
1894 struct perf_event_context *ctx2)
564c2b21
PM
1895{
1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1897 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1898 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1899}
1900
cdd6c482
IM
1901static void __perf_event_sync_stat(struct perf_event *event,
1902 struct perf_event *next_event)
bfbd3381
PZ
1903{
1904 u64 value;
1905
cdd6c482 1906 if (!event->attr.inherit_stat)
bfbd3381
PZ
1907 return;
1908
1909 /*
cdd6c482 1910 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1911 * because we're in the middle of a context switch and have IRQs
1912 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1913 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1914 * don't need to use it.
1915 */
cdd6c482
IM
1916 switch (event->state) {
1917 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1918 event->pmu->read(event);
1919 /* fall-through */
bfbd3381 1920
cdd6c482
IM
1921 case PERF_EVENT_STATE_INACTIVE:
1922 update_event_times(event);
bfbd3381
PZ
1923 break;
1924
1925 default:
1926 break;
1927 }
1928
1929 /*
cdd6c482 1930 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1931 * values when we flip the contexts.
1932 */
e7850595
PZ
1933 value = local64_read(&next_event->count);
1934 value = local64_xchg(&event->count, value);
1935 local64_set(&next_event->count, value);
bfbd3381 1936
cdd6c482
IM
1937 swap(event->total_time_enabled, next_event->total_time_enabled);
1938 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1939
bfbd3381 1940 /*
19d2e755 1941 * Since we swizzled the values, update the user visible data too.
bfbd3381 1942 */
cdd6c482
IM
1943 perf_event_update_userpage(event);
1944 perf_event_update_userpage(next_event);
bfbd3381
PZ
1945}
1946
1947#define list_next_entry(pos, member) \
1948 list_entry(pos->member.next, typeof(*pos), member)
1949
cdd6c482
IM
1950static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 struct perf_event_context *next_ctx)
bfbd3381 1952{
cdd6c482 1953 struct perf_event *event, *next_event;
bfbd3381
PZ
1954
1955 if (!ctx->nr_stat)
1956 return;
1957
02ffdbc8
PZ
1958 update_context_time(ctx);
1959
cdd6c482
IM
1960 event = list_first_entry(&ctx->event_list,
1961 struct perf_event, event_entry);
bfbd3381 1962
cdd6c482
IM
1963 next_event = list_first_entry(&next_ctx->event_list,
1964 struct perf_event, event_entry);
bfbd3381 1965
cdd6c482
IM
1966 while (&event->event_entry != &ctx->event_list &&
1967 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1968
cdd6c482 1969 __perf_event_sync_stat(event, next_event);
bfbd3381 1970
cdd6c482
IM
1971 event = list_next_entry(event, event_entry);
1972 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1973 }
1974}
1975
fe4b04fa
PZ
1976static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 struct task_struct *next)
0793a61d 1978{
8dc85d54 1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1980 struct perf_event_context *next_ctx;
1981 struct perf_event_context *parent;
108b02cf 1982 struct perf_cpu_context *cpuctx;
c93f7669 1983 int do_switch = 1;
0793a61d 1984
108b02cf
PZ
1985 if (likely(!ctx))
1986 return;
10989fb2 1987
108b02cf
PZ
1988 cpuctx = __get_cpu_context(ctx);
1989 if (!cpuctx->task_ctx)
0793a61d
TG
1990 return;
1991
c93f7669
PM
1992 rcu_read_lock();
1993 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1994 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1995 if (parent && next_ctx &&
1996 rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 /*
1998 * Looks like the two contexts are clones, so we might be
1999 * able to optimize the context switch. We lock both
2000 * contexts and check that they are clones under the
2001 * lock (including re-checking that neither has been
2002 * uncloned in the meantime). It doesn't matter which
2003 * order we take the locks because no other cpu could
2004 * be trying to lock both of these tasks.
2005 */
e625cce1
TG
2006 raw_spin_lock(&ctx->lock);
2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2008 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2009 /*
2010 * XXX do we need a memory barrier of sorts
cdd6c482 2011 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2012 */
8dc85d54
PZ
2013 task->perf_event_ctxp[ctxn] = next_ctx;
2014 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2015 ctx->task = next;
2016 next_ctx->task = task;
2017 do_switch = 0;
bfbd3381 2018
cdd6c482 2019 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2020 }
e625cce1
TG
2021 raw_spin_unlock(&next_ctx->lock);
2022 raw_spin_unlock(&ctx->lock);
564c2b21 2023 }
c93f7669 2024 rcu_read_unlock();
564c2b21 2025
c93f7669 2026 if (do_switch) {
facc4307 2027 raw_spin_lock(&ctx->lock);
5b0311e1 2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2029 cpuctx->task_ctx = NULL;
facc4307 2030 raw_spin_unlock(&ctx->lock);
c93f7669 2031 }
0793a61d
TG
2032}
2033
8dc85d54
PZ
2034#define for_each_task_context_nr(ctxn) \
2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036
2037/*
2038 * Called from scheduler to remove the events of the current task,
2039 * with interrupts disabled.
2040 *
2041 * We stop each event and update the event value in event->count.
2042 *
2043 * This does not protect us against NMI, but disable()
2044 * sets the disabled bit in the control field of event _before_
2045 * accessing the event control register. If a NMI hits, then it will
2046 * not restart the event.
2047 */
ab0cce56
JO
2048void __perf_event_task_sched_out(struct task_struct *task,
2049 struct task_struct *next)
8dc85d54
PZ
2050{
2051 int ctxn;
2052
8dc85d54
PZ
2053 for_each_task_context_nr(ctxn)
2054 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2055
2056 /*
2057 * if cgroup events exist on this CPU, then we need
2058 * to check if we have to switch out PMU state.
2059 * cgroup event are system-wide mode only
2060 */
2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2062 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2063}
2064
04dc2dbb 2065static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2066{
108b02cf 2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2068
a63eaf34
PM
2069 if (!cpuctx->task_ctx)
2070 return;
012b84da
IM
2071
2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 return;
2074
04dc2dbb 2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2076 cpuctx->task_ctx = NULL;
2077}
2078
5b0311e1
FW
2079/*
2080 * Called with IRQs disabled
2081 */
2082static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type)
2084{
2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2086}
2087
235c7fc7 2088static void
5b0311e1 2089ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2090 struct perf_cpu_context *cpuctx)
0793a61d 2091{
cdd6c482 2092 struct perf_event *event;
0793a61d 2093
889ff015
FW
2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2096 continue;
5632ab12 2097 if (!event_filter_match(event))
3b6f9e5c
PM
2098 continue;
2099
e5d1367f
SE
2100 /* may need to reset tstamp_enabled */
2101 if (is_cgroup_event(event))
2102 perf_cgroup_mark_enabled(event, ctx);
2103
8c9ed8e1 2104 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2105 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2106
2107 /*
2108 * If this pinned group hasn't been scheduled,
2109 * put it in error state.
2110 */
cdd6c482
IM
2111 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 update_group_times(event);
2113 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2114 }
3b6f9e5c 2115 }
5b0311e1
FW
2116}
2117
2118static void
2119ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2120 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2121{
2122 struct perf_event *event;
2123 int can_add_hw = 1;
3b6f9e5c 2124
889ff015
FW
2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 /* Ignore events in OFF or ERROR state */
2127 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2128 continue;
04289bb9
IM
2129 /*
2130 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2131 * of events:
04289bb9 2132 */
5632ab12 2133 if (!event_filter_match(event))
0793a61d
TG
2134 continue;
2135
e5d1367f
SE
2136 /* may need to reset tstamp_enabled */
2137 if (is_cgroup_event(event))
2138 perf_cgroup_mark_enabled(event, ctx);
2139
9ed6060d 2140 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2141 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2142 can_add_hw = 0;
9ed6060d 2143 }
0793a61d 2144 }
5b0311e1
FW
2145}
2146
2147static void
2148ctx_sched_in(struct perf_event_context *ctx,
2149 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2150 enum event_type_t event_type,
2151 struct task_struct *task)
5b0311e1 2152{
e5d1367f 2153 u64 now;
db24d33e 2154 int is_active = ctx->is_active;
e5d1367f 2155
db24d33e 2156 ctx->is_active |= event_type;
5b0311e1 2157 if (likely(!ctx->nr_events))
facc4307 2158 return;
5b0311e1 2159
e5d1367f
SE
2160 now = perf_clock();
2161 ctx->timestamp = now;
3f7cce3c 2162 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2163 /*
2164 * First go through the list and put on any pinned groups
2165 * in order to give them the best chance of going on.
2166 */
db24d33e 2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2168 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2169
2170 /* Then walk through the lower prio flexible groups */
db24d33e 2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2172 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2173}
2174
329c0e01 2175static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2176 enum event_type_t event_type,
2177 struct task_struct *task)
329c0e01
FW
2178{
2179 struct perf_event_context *ctx = &cpuctx->ctx;
2180
e5d1367f 2181 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2182}
2183
e5d1367f
SE
2184static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 struct task_struct *task)
235c7fc7 2186{
108b02cf 2187 struct perf_cpu_context *cpuctx;
235c7fc7 2188
108b02cf 2189 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2190 if (cpuctx->task_ctx == ctx)
2191 return;
2192
facc4307 2193 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2194 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2195 /*
2196 * We want to keep the following priority order:
2197 * cpu pinned (that don't need to move), task pinned,
2198 * cpu flexible, task flexible.
2199 */
2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201
1d5f003f
GN
2202 if (ctx->nr_events)
2203 cpuctx->task_ctx = ctx;
9b33fa6b 2204
86b47c25
GN
2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206
facc4307
PZ
2207 perf_pmu_enable(ctx->pmu);
2208 perf_ctx_unlock(cpuctx, ctx);
2209
b5ab4cd5
PZ
2210 /*
2211 * Since these rotations are per-cpu, we need to ensure the
2212 * cpu-context we got scheduled on is actually rotating.
2213 */
108b02cf 2214 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2215}
2216
d010b332
SE
2217/*
2218 * When sampling the branck stack in system-wide, it may be necessary
2219 * to flush the stack on context switch. This happens when the branch
2220 * stack does not tag its entries with the pid of the current task.
2221 * Otherwise it becomes impossible to associate a branch entry with a
2222 * task. This ambiguity is more likely to appear when the branch stack
2223 * supports priv level filtering and the user sets it to monitor only
2224 * at the user level (which could be a useful measurement in system-wide
2225 * mode). In that case, the risk is high of having a branch stack with
2226 * branch from multiple tasks. Flushing may mean dropping the existing
2227 * entries or stashing them somewhere in the PMU specific code layer.
2228 *
2229 * This function provides the context switch callback to the lower code
2230 * layer. It is invoked ONLY when there is at least one system-wide context
2231 * with at least one active event using taken branch sampling.
2232 */
2233static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 struct task_struct *task)
2235{
2236 struct perf_cpu_context *cpuctx;
2237 struct pmu *pmu;
2238 unsigned long flags;
2239
2240 /* no need to flush branch stack if not changing task */
2241 if (prev == task)
2242 return;
2243
2244 local_irq_save(flags);
2245
2246 rcu_read_lock();
2247
2248 list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250
2251 /*
2252 * check if the context has at least one
2253 * event using PERF_SAMPLE_BRANCH_STACK
2254 */
2255 if (cpuctx->ctx.nr_branch_stack > 0
2256 && pmu->flush_branch_stack) {
2257
2258 pmu = cpuctx->ctx.pmu;
2259
2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261
2262 perf_pmu_disable(pmu);
2263
2264 pmu->flush_branch_stack();
2265
2266 perf_pmu_enable(pmu);
2267
2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 }
2270 }
2271
2272 rcu_read_unlock();
2273
2274 local_irq_restore(flags);
2275}
2276
8dc85d54
PZ
2277/*
2278 * Called from scheduler to add the events of the current task
2279 * with interrupts disabled.
2280 *
2281 * We restore the event value and then enable it.
2282 *
2283 * This does not protect us against NMI, but enable()
2284 * sets the enabled bit in the control field of event _before_
2285 * accessing the event control register. If a NMI hits, then it will
2286 * keep the event running.
2287 */
ab0cce56
JO
2288void __perf_event_task_sched_in(struct task_struct *prev,
2289 struct task_struct *task)
8dc85d54
PZ
2290{
2291 struct perf_event_context *ctx;
2292 int ctxn;
2293
2294 for_each_task_context_nr(ctxn) {
2295 ctx = task->perf_event_ctxp[ctxn];
2296 if (likely(!ctx))
2297 continue;
2298
e5d1367f 2299 perf_event_context_sched_in(ctx, task);
8dc85d54 2300 }
e5d1367f
SE
2301 /*
2302 * if cgroup events exist on this CPU, then we need
2303 * to check if we have to switch in PMU state.
2304 * cgroup event are system-wide mode only
2305 */
2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2307 perf_cgroup_sched_in(prev, task);
d010b332
SE
2308
2309 /* check for system-wide branch_stack events */
2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2312}
2313
abd50713
PZ
2314static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315{
2316 u64 frequency = event->attr.sample_freq;
2317 u64 sec = NSEC_PER_SEC;
2318 u64 divisor, dividend;
2319
2320 int count_fls, nsec_fls, frequency_fls, sec_fls;
2321
2322 count_fls = fls64(count);
2323 nsec_fls = fls64(nsec);
2324 frequency_fls = fls64(frequency);
2325 sec_fls = 30;
2326
2327 /*
2328 * We got @count in @nsec, with a target of sample_freq HZ
2329 * the target period becomes:
2330 *
2331 * @count * 10^9
2332 * period = -------------------
2333 * @nsec * sample_freq
2334 *
2335 */
2336
2337 /*
2338 * Reduce accuracy by one bit such that @a and @b converge
2339 * to a similar magnitude.
2340 */
fe4b04fa 2341#define REDUCE_FLS(a, b) \
abd50713
PZ
2342do { \
2343 if (a##_fls > b##_fls) { \
2344 a >>= 1; \
2345 a##_fls--; \
2346 } else { \
2347 b >>= 1; \
2348 b##_fls--; \
2349 } \
2350} while (0)
2351
2352 /*
2353 * Reduce accuracy until either term fits in a u64, then proceed with
2354 * the other, so that finally we can do a u64/u64 division.
2355 */
2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 REDUCE_FLS(nsec, frequency);
2358 REDUCE_FLS(sec, count);
2359 }
2360
2361 if (count_fls + sec_fls > 64) {
2362 divisor = nsec * frequency;
2363
2364 while (count_fls + sec_fls > 64) {
2365 REDUCE_FLS(count, sec);
2366 divisor >>= 1;
2367 }
2368
2369 dividend = count * sec;
2370 } else {
2371 dividend = count * sec;
2372
2373 while (nsec_fls + frequency_fls > 64) {
2374 REDUCE_FLS(nsec, frequency);
2375 dividend >>= 1;
2376 }
2377
2378 divisor = nsec * frequency;
2379 }
2380
f6ab91ad
PZ
2381 if (!divisor)
2382 return dividend;
2383
abd50713
PZ
2384 return div64_u64(dividend, divisor);
2385}
2386
e050e3f0
SE
2387static DEFINE_PER_CPU(int, perf_throttled_count);
2388static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389
f39d47ff 2390static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2391{
cdd6c482 2392 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2393 s64 period, sample_period;
bd2b5b12
PZ
2394 s64 delta;
2395
abd50713 2396 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2397
2398 delta = (s64)(period - hwc->sample_period);
2399 delta = (delta + 7) / 8; /* low pass filter */
2400
2401 sample_period = hwc->sample_period + delta;
2402
2403 if (!sample_period)
2404 sample_period = 1;
2405
bd2b5b12 2406 hwc->sample_period = sample_period;
abd50713 2407
e7850595 2408 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2409 if (disable)
2410 event->pmu->stop(event, PERF_EF_UPDATE);
2411
e7850595 2412 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2413
2414 if (disable)
2415 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2416 }
bd2b5b12
PZ
2417}
2418
e050e3f0
SE
2419/*
2420 * combine freq adjustment with unthrottling to avoid two passes over the
2421 * events. At the same time, make sure, having freq events does not change
2422 * the rate of unthrottling as that would introduce bias.
2423 */
2424static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 int needs_unthr)
60db5e09 2426{
cdd6c482
IM
2427 struct perf_event *event;
2428 struct hw_perf_event *hwc;
e050e3f0 2429 u64 now, period = TICK_NSEC;
abd50713 2430 s64 delta;
60db5e09 2431
e050e3f0
SE
2432 /*
2433 * only need to iterate over all events iff:
2434 * - context have events in frequency mode (needs freq adjust)
2435 * - there are events to unthrottle on this cpu
2436 */
2437 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2438 return;
2439
e050e3f0 2440 raw_spin_lock(&ctx->lock);
f39d47ff 2441 perf_pmu_disable(ctx->pmu);
e050e3f0 2442
03541f8b 2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2444 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2445 continue;
2446
5632ab12 2447 if (!event_filter_match(event))
5d27c23d
PZ
2448 continue;
2449
cdd6c482 2450 hwc = &event->hw;
6a24ed6c 2451
e050e3f0
SE
2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 hwc->interrupts = 0;
cdd6c482 2454 perf_log_throttle(event, 1);
a4eaf7f1 2455 event->pmu->start(event, 0);
a78ac325
PZ
2456 }
2457
cdd6c482 2458 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2459 continue;
2460
e050e3f0
SE
2461 /*
2462 * stop the event and update event->count
2463 */
2464 event->pmu->stop(event, PERF_EF_UPDATE);
2465
e7850595 2466 now = local64_read(&event->count);
abd50713
PZ
2467 delta = now - hwc->freq_count_stamp;
2468 hwc->freq_count_stamp = now;
60db5e09 2469
e050e3f0
SE
2470 /*
2471 * restart the event
2472 * reload only if value has changed
f39d47ff
SE
2473 * we have stopped the event so tell that
2474 * to perf_adjust_period() to avoid stopping it
2475 * twice.
e050e3f0 2476 */
abd50713 2477 if (delta > 0)
f39d47ff 2478 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2479
2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2481 }
e050e3f0 2482
f39d47ff 2483 perf_pmu_enable(ctx->pmu);
e050e3f0 2484 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2485}
2486
235c7fc7 2487/*
cdd6c482 2488 * Round-robin a context's events:
235c7fc7 2489 */
cdd6c482 2490static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2491{
dddd3379
TG
2492 /*
2493 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 * disabled by the inheritance code.
2495 */
2496 if (!ctx->rotate_disable)
2497 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2498}
2499
b5ab4cd5 2500/*
e9d2b064
PZ
2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502 * because they're strictly cpu affine and rotate_start is called with IRQs
2503 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2504 */
e9d2b064 2505static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2506{
8dc85d54 2507 struct perf_event_context *ctx = NULL;
e050e3f0 2508 int rotate = 0, remove = 1;
7fc23a53 2509
b5ab4cd5 2510 if (cpuctx->ctx.nr_events) {
e9d2b064 2511 remove = 0;
b5ab4cd5
PZ
2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 rotate = 1;
2514 }
235c7fc7 2515
8dc85d54 2516 ctx = cpuctx->task_ctx;
b5ab4cd5 2517 if (ctx && ctx->nr_events) {
e9d2b064 2518 remove = 0;
b5ab4cd5
PZ
2519 if (ctx->nr_events != ctx->nr_active)
2520 rotate = 1;
2521 }
9717e6cd 2522
e050e3f0 2523 if (!rotate)
0f5a2601
PZ
2524 goto done;
2525
facc4307 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2527 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2528
e050e3f0
SE
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 if (ctx)
2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2532
e050e3f0
SE
2533 rotate_ctx(&cpuctx->ctx);
2534 if (ctx)
2535 rotate_ctx(ctx);
235c7fc7 2536
e050e3f0 2537 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2538
0f5a2601
PZ
2539 perf_pmu_enable(cpuctx->ctx.pmu);
2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2541done:
e9d2b064
PZ
2542 if (remove)
2543 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2544}
2545
2546void perf_event_task_tick(void)
2547{
2548 struct list_head *head = &__get_cpu_var(rotation_list);
2549 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2550 struct perf_event_context *ctx;
2551 int throttled;
b5ab4cd5 2552
e9d2b064
PZ
2553 WARN_ON(!irqs_disabled());
2554
e050e3f0
SE
2555 __this_cpu_inc(perf_throttled_seq);
2556 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557
e9d2b064 2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2559 ctx = &cpuctx->ctx;
2560 perf_adjust_freq_unthr_context(ctx, throttled);
2561
2562 ctx = cpuctx->task_ctx;
2563 if (ctx)
2564 perf_adjust_freq_unthr_context(ctx, throttled);
2565
e9d2b064
PZ
2566 if (cpuctx->jiffies_interval == 1 ||
2567 !(jiffies % cpuctx->jiffies_interval))
2568 perf_rotate_context(cpuctx);
2569 }
0793a61d
TG
2570}
2571
889ff015
FW
2572static int event_enable_on_exec(struct perf_event *event,
2573 struct perf_event_context *ctx)
2574{
2575 if (!event->attr.enable_on_exec)
2576 return 0;
2577
2578 event->attr.enable_on_exec = 0;
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 return 0;
2581
1d9b482e 2582 __perf_event_mark_enabled(event);
889ff015
FW
2583
2584 return 1;
2585}
2586
57e7986e 2587/*
cdd6c482 2588 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2589 * This expects task == current.
2590 */
8dc85d54 2591static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2592{
cdd6c482 2593 struct perf_event *event;
57e7986e
PM
2594 unsigned long flags;
2595 int enabled = 0;
889ff015 2596 int ret;
57e7986e
PM
2597
2598 local_irq_save(flags);
cdd6c482 2599 if (!ctx || !ctx->nr_events)
57e7986e
PM
2600 goto out;
2601
e566b76e
SE
2602 /*
2603 * We must ctxsw out cgroup events to avoid conflict
2604 * when invoking perf_task_event_sched_in() later on
2605 * in this function. Otherwise we end up trying to
2606 * ctxswin cgroup events which are already scheduled
2607 * in.
2608 */
a8d757ef 2609 perf_cgroup_sched_out(current, NULL);
57e7986e 2610
e625cce1 2611 raw_spin_lock(&ctx->lock);
04dc2dbb 2612 task_ctx_sched_out(ctx);
57e7986e 2613
b79387ef 2614 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2615 ret = event_enable_on_exec(event, ctx);
2616 if (ret)
2617 enabled = 1;
57e7986e
PM
2618 }
2619
2620 /*
cdd6c482 2621 * Unclone this context if we enabled any event.
57e7986e 2622 */
71a851b4
PZ
2623 if (enabled)
2624 unclone_ctx(ctx);
57e7986e 2625
e625cce1 2626 raw_spin_unlock(&ctx->lock);
57e7986e 2627
e566b76e
SE
2628 /*
2629 * Also calls ctxswin for cgroup events, if any:
2630 */
e5d1367f 2631 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2632out:
57e7986e
PM
2633 local_irq_restore(flags);
2634}
2635
0793a61d 2636/*
cdd6c482 2637 * Cross CPU call to read the hardware event
0793a61d 2638 */
cdd6c482 2639static void __perf_event_read(void *info)
0793a61d 2640{
cdd6c482
IM
2641 struct perf_event *event = info;
2642 struct perf_event_context *ctx = event->ctx;
108b02cf 2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2644
e1ac3614
PM
2645 /*
2646 * If this is a task context, we need to check whether it is
2647 * the current task context of this cpu. If not it has been
2648 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2649 * event->count would have been updated to a recent sample
2650 * when the event was scheduled out.
e1ac3614
PM
2651 */
2652 if (ctx->task && cpuctx->task_ctx != ctx)
2653 return;
2654
e625cce1 2655 raw_spin_lock(&ctx->lock);
e5d1367f 2656 if (ctx->is_active) {
542e72fc 2657 update_context_time(ctx);
e5d1367f
SE
2658 update_cgrp_time_from_event(event);
2659 }
cdd6c482 2660 update_event_times(event);
542e72fc
PZ
2661 if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 event->pmu->read(event);
e625cce1 2663 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2664}
2665
b5e58793
PZ
2666static inline u64 perf_event_count(struct perf_event *event)
2667{
e7850595 2668 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2669}
2670
cdd6c482 2671static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2672{
2673 /*
cdd6c482
IM
2674 * If event is enabled and currently active on a CPU, update the
2675 * value in the event structure:
0793a61d 2676 */
cdd6c482
IM
2677 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 smp_call_function_single(event->oncpu,
2679 __perf_event_read, event, 1);
2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2681 struct perf_event_context *ctx = event->ctx;
2682 unsigned long flags;
2683
e625cce1 2684 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2685 /*
2686 * may read while context is not active
2687 * (e.g., thread is blocked), in that case
2688 * we cannot update context time
2689 */
e5d1367f 2690 if (ctx->is_active) {
c530ccd9 2691 update_context_time(ctx);
e5d1367f
SE
2692 update_cgrp_time_from_event(event);
2693 }
cdd6c482 2694 update_event_times(event);
e625cce1 2695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2696 }
2697
b5e58793 2698 return perf_event_count(event);
0793a61d
TG
2699}
2700
a63eaf34 2701/*
cdd6c482 2702 * Initialize the perf_event context in a task_struct:
a63eaf34 2703 */
eb184479 2704static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2705{
e625cce1 2706 raw_spin_lock_init(&ctx->lock);
a63eaf34 2707 mutex_init(&ctx->mutex);
889ff015
FW
2708 INIT_LIST_HEAD(&ctx->pinned_groups);
2709 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2710 INIT_LIST_HEAD(&ctx->event_list);
2711 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2712}
2713
2714static struct perf_event_context *
2715alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716{
2717 struct perf_event_context *ctx;
2718
2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 if (!ctx)
2721 return NULL;
2722
2723 __perf_event_init_context(ctx);
2724 if (task) {
2725 ctx->task = task;
2726 get_task_struct(task);
0793a61d 2727 }
eb184479
PZ
2728 ctx->pmu = pmu;
2729
2730 return ctx;
a63eaf34
PM
2731}
2732
2ebd4ffb
MH
2733static struct task_struct *
2734find_lively_task_by_vpid(pid_t vpid)
2735{
2736 struct task_struct *task;
2737 int err;
0793a61d
TG
2738
2739 rcu_read_lock();
2ebd4ffb 2740 if (!vpid)
0793a61d
TG
2741 task = current;
2742 else
2ebd4ffb 2743 task = find_task_by_vpid(vpid);
0793a61d
TG
2744 if (task)
2745 get_task_struct(task);
2746 rcu_read_unlock();
2747
2748 if (!task)
2749 return ERR_PTR(-ESRCH);
2750
0793a61d 2751 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2752 err = -EACCES;
2753 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 goto errout;
2755
2ebd4ffb
MH
2756 return task;
2757errout:
2758 put_task_struct(task);
2759 return ERR_PTR(err);
2760
2761}
2762
fe4b04fa
PZ
2763/*
2764 * Returns a matching context with refcount and pincount.
2765 */
108b02cf 2766static struct perf_event_context *
38a81da2 2767find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2768{
cdd6c482 2769 struct perf_event_context *ctx;
22a4f650 2770 struct perf_cpu_context *cpuctx;
25346b93 2771 unsigned long flags;
8dc85d54 2772 int ctxn, err;
0793a61d 2773
22a4ec72 2774 if (!task) {
cdd6c482 2775 /* Must be root to operate on a CPU event: */
0764771d 2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2777 return ERR_PTR(-EACCES);
2778
0793a61d 2779 /*
cdd6c482 2780 * We could be clever and allow to attach a event to an
0793a61d
TG
2781 * offline CPU and activate it when the CPU comes up, but
2782 * that's for later.
2783 */
f6325e30 2784 if (!cpu_online(cpu))
0793a61d
TG
2785 return ERR_PTR(-ENODEV);
2786
108b02cf 2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2788 ctx = &cpuctx->ctx;
c93f7669 2789 get_ctx(ctx);
fe4b04fa 2790 ++ctx->pin_count;
0793a61d 2791
0793a61d
TG
2792 return ctx;
2793 }
2794
8dc85d54
PZ
2795 err = -EINVAL;
2796 ctxn = pmu->task_ctx_nr;
2797 if (ctxn < 0)
2798 goto errout;
2799
9ed6060d 2800retry:
8dc85d54 2801 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2802 if (ctx) {
71a851b4 2803 unclone_ctx(ctx);
fe4b04fa 2804 ++ctx->pin_count;
e625cce1 2805 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2806 } else {
eb184479 2807 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2808 err = -ENOMEM;
2809 if (!ctx)
2810 goto errout;
eb184479 2811
dbe08d82
ON
2812 err = 0;
2813 mutex_lock(&task->perf_event_mutex);
2814 /*
2815 * If it has already passed perf_event_exit_task().
2816 * we must see PF_EXITING, it takes this mutex too.
2817 */
2818 if (task->flags & PF_EXITING)
2819 err = -ESRCH;
2820 else if (task->perf_event_ctxp[ctxn])
2821 err = -EAGAIN;
fe4b04fa 2822 else {
9137fb28 2823 get_ctx(ctx);
fe4b04fa 2824 ++ctx->pin_count;
dbe08d82 2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2826 }
dbe08d82
ON
2827 mutex_unlock(&task->perf_event_mutex);
2828
2829 if (unlikely(err)) {
9137fb28 2830 put_ctx(ctx);
dbe08d82
ON
2831
2832 if (err == -EAGAIN)
2833 goto retry;
2834 goto errout;
a63eaf34
PM
2835 }
2836 }
2837
0793a61d 2838 return ctx;
c93f7669 2839
9ed6060d 2840errout:
c93f7669 2841 return ERR_PTR(err);
0793a61d
TG
2842}
2843
6fb2915d
LZ
2844static void perf_event_free_filter(struct perf_event *event);
2845
cdd6c482 2846static void free_event_rcu(struct rcu_head *head)
592903cd 2847{
cdd6c482 2848 struct perf_event *event;
592903cd 2849
cdd6c482
IM
2850 event = container_of(head, struct perf_event, rcu_head);
2851 if (event->ns)
2852 put_pid_ns(event->ns);
6fb2915d 2853 perf_event_free_filter(event);
cdd6c482 2854 kfree(event);
592903cd
PZ
2855}
2856
76369139 2857static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2858
cdd6c482 2859static void free_event(struct perf_event *event)
f1600952 2860{
e360adbe 2861 irq_work_sync(&event->pending);
925d519a 2862
cdd6c482 2863 if (!event->parent) {
82cd6def 2864 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2865 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2866 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2867 atomic_dec(&nr_mmap_events);
2868 if (event->attr.comm)
2869 atomic_dec(&nr_comm_events);
2870 if (event->attr.task)
2871 atomic_dec(&nr_task_events);
927c7a9e
FW
2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 put_callchain_buffers();
08309379
PZ
2874 if (is_cgroup_event(event)) {
2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2876 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2877 }
d010b332
SE
2878
2879 if (has_branch_stack(event)) {
2880 static_key_slow_dec_deferred(&perf_sched_events);
2881 /* is system-wide event */
2882 if (!(event->attach_state & PERF_ATTACH_TASK))
2883 atomic_dec(&per_cpu(perf_branch_stack_events,
2884 event->cpu));
2885 }
f344011c 2886 }
9ee318a7 2887
76369139
FW
2888 if (event->rb) {
2889 ring_buffer_put(event->rb);
2890 event->rb = NULL;
a4be7c27
PZ
2891 }
2892
e5d1367f
SE
2893 if (is_cgroup_event(event))
2894 perf_detach_cgroup(event);
2895
cdd6c482
IM
2896 if (event->destroy)
2897 event->destroy(event);
e077df4f 2898
0c67b408
PZ
2899 if (event->ctx)
2900 put_ctx(event->ctx);
2901
cdd6c482 2902 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2903}
2904
a66a3052 2905int perf_event_release_kernel(struct perf_event *event)
0793a61d 2906{
cdd6c482 2907 struct perf_event_context *ctx = event->ctx;
0793a61d 2908
ad3a37de 2909 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2910 /*
2911 * There are two ways this annotation is useful:
2912 *
2913 * 1) there is a lock recursion from perf_event_exit_task
2914 * see the comment there.
2915 *
2916 * 2) there is a lock-inversion with mmap_sem through
2917 * perf_event_read_group(), which takes faults while
2918 * holding ctx->mutex, however this is called after
2919 * the last filedesc died, so there is no possibility
2920 * to trigger the AB-BA case.
2921 */
2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2923 raw_spin_lock_irq(&ctx->lock);
8a49542c 2924 perf_group_detach(event);
050735b0 2925 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2926 perf_remove_from_context(event);
d859e29f 2927 mutex_unlock(&ctx->mutex);
0793a61d 2928
cdd6c482 2929 free_event(event);
0793a61d
TG
2930
2931 return 0;
2932}
a66a3052 2933EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2934
a66a3052
PZ
2935/*
2936 * Called when the last reference to the file is gone.
2937 */
2938static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2939{
a66a3052 2940 struct perf_event *event = file->private_data;
8882135b 2941 struct task_struct *owner;
fb0459d7 2942
a66a3052 2943 file->private_data = NULL;
fb0459d7 2944
8882135b
PZ
2945 rcu_read_lock();
2946 owner = ACCESS_ONCE(event->owner);
2947 /*
2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 * !owner it means the list deletion is complete and we can indeed
2950 * free this event, otherwise we need to serialize on
2951 * owner->perf_event_mutex.
2952 */
2953 smp_read_barrier_depends();
2954 if (owner) {
2955 /*
2956 * Since delayed_put_task_struct() also drops the last
2957 * task reference we can safely take a new reference
2958 * while holding the rcu_read_lock().
2959 */
2960 get_task_struct(owner);
2961 }
2962 rcu_read_unlock();
2963
2964 if (owner) {
2965 mutex_lock(&owner->perf_event_mutex);
2966 /*
2967 * We have to re-check the event->owner field, if it is cleared
2968 * we raced with perf_event_exit_task(), acquiring the mutex
2969 * ensured they're done, and we can proceed with freeing the
2970 * event.
2971 */
2972 if (event->owner)
2973 list_del_init(&event->owner_entry);
2974 mutex_unlock(&owner->perf_event_mutex);
2975 put_task_struct(owner);
2976 }
2977
a66a3052 2978 return perf_event_release_kernel(event);
fb0459d7 2979}
fb0459d7 2980
59ed446f 2981u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2982{
cdd6c482 2983 struct perf_event *child;
e53c0994
PZ
2984 u64 total = 0;
2985
59ed446f
PZ
2986 *enabled = 0;
2987 *running = 0;
2988
6f10581a 2989 mutex_lock(&event->child_mutex);
cdd6c482 2990 total += perf_event_read(event);
59ed446f
PZ
2991 *enabled += event->total_time_enabled +
2992 atomic64_read(&event->child_total_time_enabled);
2993 *running += event->total_time_running +
2994 atomic64_read(&event->child_total_time_running);
2995
2996 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2997 total += perf_event_read(child);
59ed446f
PZ
2998 *enabled += child->total_time_enabled;
2999 *running += child->total_time_running;
3000 }
6f10581a 3001 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3002
3003 return total;
3004}
fb0459d7 3005EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3006
cdd6c482 3007static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3008 u64 read_format, char __user *buf)
3009{
cdd6c482 3010 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3011 int n = 0, size = 0, ret = -EFAULT;
3012 struct perf_event_context *ctx = leader->ctx;
abf4868b 3013 u64 values[5];
59ed446f 3014 u64 count, enabled, running;
abf4868b 3015
6f10581a 3016 mutex_lock(&ctx->mutex);
59ed446f 3017 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3018
3019 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3020 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3021 values[n++] = enabled;
3022 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3023 values[n++] = running;
abf4868b
PZ
3024 values[n++] = count;
3025 if (read_format & PERF_FORMAT_ID)
3026 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3027
3028 size = n * sizeof(u64);
3029
3030 if (copy_to_user(buf, values, size))
6f10581a 3031 goto unlock;
3dab77fb 3032
6f10581a 3033 ret = size;
3dab77fb 3034
65abc865 3035 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3036 n = 0;
3dab77fb 3037
59ed446f 3038 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3039 if (read_format & PERF_FORMAT_ID)
3040 values[n++] = primary_event_id(sub);
3041
3042 size = n * sizeof(u64);
3043
184d3da8 3044 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3045 ret = -EFAULT;
3046 goto unlock;
3047 }
abf4868b
PZ
3048
3049 ret += size;
3dab77fb 3050 }
6f10581a
PZ
3051unlock:
3052 mutex_unlock(&ctx->mutex);
3dab77fb 3053
abf4868b 3054 return ret;
3dab77fb
PZ
3055}
3056
cdd6c482 3057static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3058 u64 read_format, char __user *buf)
3059{
59ed446f 3060 u64 enabled, running;
3dab77fb
PZ
3061 u64 values[4];
3062 int n = 0;
3063
59ed446f
PZ
3064 values[n++] = perf_event_read_value(event, &enabled, &running);
3065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3066 values[n++] = enabled;
3067 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3068 values[n++] = running;
3dab77fb 3069 if (read_format & PERF_FORMAT_ID)
cdd6c482 3070 values[n++] = primary_event_id(event);
3dab77fb
PZ
3071
3072 if (copy_to_user(buf, values, n * sizeof(u64)))
3073 return -EFAULT;
3074
3075 return n * sizeof(u64);
3076}
3077
0793a61d 3078/*
cdd6c482 3079 * Read the performance event - simple non blocking version for now
0793a61d
TG
3080 */
3081static ssize_t
cdd6c482 3082perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3083{
cdd6c482 3084 u64 read_format = event->attr.read_format;
3dab77fb 3085 int ret;
0793a61d 3086
3b6f9e5c 3087 /*
cdd6c482 3088 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3089 * error state (i.e. because it was pinned but it couldn't be
3090 * scheduled on to the CPU at some point).
3091 */
cdd6c482 3092 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3093 return 0;
3094
c320c7b7 3095 if (count < event->read_size)
3dab77fb
PZ
3096 return -ENOSPC;
3097
cdd6c482 3098 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3099 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3100 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3101 else
cdd6c482 3102 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3103
3dab77fb 3104 return ret;
0793a61d
TG
3105}
3106
0793a61d
TG
3107static ssize_t
3108perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3109{
cdd6c482 3110 struct perf_event *event = file->private_data;
0793a61d 3111
cdd6c482 3112 return perf_read_hw(event, buf, count);
0793a61d
TG
3113}
3114
3115static unsigned int perf_poll(struct file *file, poll_table *wait)
3116{
cdd6c482 3117 struct perf_event *event = file->private_data;
76369139 3118 struct ring_buffer *rb;
c33a0bc4 3119 unsigned int events = POLL_HUP;
c7138f37 3120
10c6db11
PZ
3121 /*
3122 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3123 * grabs the rb reference but perf_event_set_output() overrides it.
3124 * Here is the timeline for two threads T1, T2:
3125 * t0: T1, rb = rcu_dereference(event->rb)
3126 * t1: T2, old_rb = event->rb
3127 * t2: T2, event->rb = new rb
3128 * t3: T2, ring_buffer_detach(old_rb)
3129 * t4: T1, ring_buffer_attach(rb1)
3130 * t5: T1, poll_wait(event->waitq)
3131 *
3132 * To avoid this problem, we grab mmap_mutex in perf_poll()
3133 * thereby ensuring that the assignment of the new ring buffer
3134 * and the detachment of the old buffer appear atomic to perf_poll()
3135 */
3136 mutex_lock(&event->mmap_mutex);
3137
c7138f37 3138 rcu_read_lock();
76369139 3139 rb = rcu_dereference(event->rb);
10c6db11
PZ
3140 if (rb) {
3141 ring_buffer_attach(event, rb);
76369139 3142 events = atomic_xchg(&rb->poll, 0);
10c6db11 3143 }
c7138f37 3144 rcu_read_unlock();
0793a61d 3145
10c6db11
PZ
3146 mutex_unlock(&event->mmap_mutex);
3147
cdd6c482 3148 poll_wait(file, &event->waitq, wait);
0793a61d 3149
0793a61d
TG
3150 return events;
3151}
3152
cdd6c482 3153static void perf_event_reset(struct perf_event *event)
6de6a7b9 3154{
cdd6c482 3155 (void)perf_event_read(event);
e7850595 3156 local64_set(&event->count, 0);
cdd6c482 3157 perf_event_update_userpage(event);
3df5edad
PZ
3158}
3159
c93f7669 3160/*
cdd6c482
IM
3161 * Holding the top-level event's child_mutex means that any
3162 * descendant process that has inherited this event will block
3163 * in sync_child_event if it goes to exit, thus satisfying the
3164 * task existence requirements of perf_event_enable/disable.
c93f7669 3165 */
cdd6c482
IM
3166static void perf_event_for_each_child(struct perf_event *event,
3167 void (*func)(struct perf_event *))
3df5edad 3168{
cdd6c482 3169 struct perf_event *child;
3df5edad 3170
cdd6c482
IM
3171 WARN_ON_ONCE(event->ctx->parent_ctx);
3172 mutex_lock(&event->child_mutex);
3173 func(event);
3174 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3175 func(child);
cdd6c482 3176 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3177}
3178
cdd6c482
IM
3179static void perf_event_for_each(struct perf_event *event,
3180 void (*func)(struct perf_event *))
3df5edad 3181{
cdd6c482
IM
3182 struct perf_event_context *ctx = event->ctx;
3183 struct perf_event *sibling;
3df5edad 3184
75f937f2
PZ
3185 WARN_ON_ONCE(ctx->parent_ctx);
3186 mutex_lock(&ctx->mutex);
cdd6c482 3187 event = event->group_leader;
75f937f2 3188
cdd6c482 3189 perf_event_for_each_child(event, func);
cdd6c482 3190 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3191 perf_event_for_each_child(sibling, func);
75f937f2 3192 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3193}
3194
cdd6c482 3195static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3196{
cdd6c482 3197 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3198 int ret = 0;
3199 u64 value;
3200
6c7e550f 3201 if (!is_sampling_event(event))
08247e31
PZ
3202 return -EINVAL;
3203
ad0cf347 3204 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3205 return -EFAULT;
3206
3207 if (!value)
3208 return -EINVAL;
3209
e625cce1 3210 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3211 if (event->attr.freq) {
3212 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3213 ret = -EINVAL;
3214 goto unlock;
3215 }
3216
cdd6c482 3217 event->attr.sample_freq = value;
08247e31 3218 } else {
cdd6c482
IM
3219 event->attr.sample_period = value;
3220 event->hw.sample_period = value;
08247e31
PZ
3221 }
3222unlock:
e625cce1 3223 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3224
3225 return ret;
3226}
3227
ac9721f3
PZ
3228static const struct file_operations perf_fops;
3229
3230static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3231{
3232 struct file *file;
3233
3234 file = fget_light(fd, fput_needed);
3235 if (!file)
3236 return ERR_PTR(-EBADF);
3237
3238 if (file->f_op != &perf_fops) {
3239 fput_light(file, *fput_needed);
3240 *fput_needed = 0;
3241 return ERR_PTR(-EBADF);
3242 }
3243
3244 return file->private_data;
3245}
3246
3247static int perf_event_set_output(struct perf_event *event,
3248 struct perf_event *output_event);
6fb2915d 3249static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3250
d859e29f
PM
3251static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3252{
cdd6c482
IM
3253 struct perf_event *event = file->private_data;
3254 void (*func)(struct perf_event *);
3df5edad 3255 u32 flags = arg;
d859e29f
PM
3256
3257 switch (cmd) {
cdd6c482
IM
3258 case PERF_EVENT_IOC_ENABLE:
3259 func = perf_event_enable;
d859e29f 3260 break;
cdd6c482
IM
3261 case PERF_EVENT_IOC_DISABLE:
3262 func = perf_event_disable;
79f14641 3263 break;
cdd6c482
IM
3264 case PERF_EVENT_IOC_RESET:
3265 func = perf_event_reset;
6de6a7b9 3266 break;
3df5edad 3267
cdd6c482
IM
3268 case PERF_EVENT_IOC_REFRESH:
3269 return perf_event_refresh(event, arg);
08247e31 3270
cdd6c482
IM
3271 case PERF_EVENT_IOC_PERIOD:
3272 return perf_event_period(event, (u64 __user *)arg);
08247e31 3273
cdd6c482 3274 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3275 {
3276 struct perf_event *output_event = NULL;
3277 int fput_needed = 0;
3278 int ret;
3279
3280 if (arg != -1) {
3281 output_event = perf_fget_light(arg, &fput_needed);
3282 if (IS_ERR(output_event))
3283 return PTR_ERR(output_event);
3284 }
3285
3286 ret = perf_event_set_output(event, output_event);
3287 if (output_event)
3288 fput_light(output_event->filp, fput_needed);
3289
3290 return ret;
3291 }
a4be7c27 3292
6fb2915d
LZ
3293 case PERF_EVENT_IOC_SET_FILTER:
3294 return perf_event_set_filter(event, (void __user *)arg);
3295
d859e29f 3296 default:
3df5edad 3297 return -ENOTTY;
d859e29f 3298 }
3df5edad
PZ
3299
3300 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3301 perf_event_for_each(event, func);
3df5edad 3302 else
cdd6c482 3303 perf_event_for_each_child(event, func);
3df5edad
PZ
3304
3305 return 0;
d859e29f
PM
3306}
3307
cdd6c482 3308int perf_event_task_enable(void)
771d7cde 3309{
cdd6c482 3310 struct perf_event *event;
771d7cde 3311
cdd6c482
IM
3312 mutex_lock(&current->perf_event_mutex);
3313 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3314 perf_event_for_each_child(event, perf_event_enable);
3315 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3316
3317 return 0;
3318}
3319
cdd6c482 3320int perf_event_task_disable(void)
771d7cde 3321{
cdd6c482 3322 struct perf_event *event;
771d7cde 3323
cdd6c482
IM
3324 mutex_lock(&current->perf_event_mutex);
3325 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3326 perf_event_for_each_child(event, perf_event_disable);
3327 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3328
3329 return 0;
3330}
3331
cdd6c482 3332static int perf_event_index(struct perf_event *event)
194002b2 3333{
a4eaf7f1
PZ
3334 if (event->hw.state & PERF_HES_STOPPED)
3335 return 0;
3336
cdd6c482 3337 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3338 return 0;
3339
35edc2a5 3340 return event->pmu->event_idx(event);
194002b2
PZ
3341}
3342
c4794295 3343static void calc_timer_values(struct perf_event *event,
e3f3541c 3344 u64 *now,
7f310a5d
EM
3345 u64 *enabled,
3346 u64 *running)
c4794295 3347{
e3f3541c 3348 u64 ctx_time;
c4794295 3349
e3f3541c
PZ
3350 *now = perf_clock();
3351 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3352 *enabled = ctx_time - event->tstamp_enabled;
3353 *running = ctx_time - event->tstamp_running;
3354}
3355
c7206205 3356void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3357{
3358}
3359
38ff667b
PZ
3360/*
3361 * Callers need to ensure there can be no nesting of this function, otherwise
3362 * the seqlock logic goes bad. We can not serialize this because the arch
3363 * code calls this from NMI context.
3364 */
cdd6c482 3365void perf_event_update_userpage(struct perf_event *event)
37d81828 3366{
cdd6c482 3367 struct perf_event_mmap_page *userpg;
76369139 3368 struct ring_buffer *rb;
e3f3541c 3369 u64 enabled, running, now;
38ff667b
PZ
3370
3371 rcu_read_lock();
0d641208
EM
3372 /*
3373 * compute total_time_enabled, total_time_running
3374 * based on snapshot values taken when the event
3375 * was last scheduled in.
3376 *
3377 * we cannot simply called update_context_time()
3378 * because of locking issue as we can be called in
3379 * NMI context
3380 */
e3f3541c 3381 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3382 rb = rcu_dereference(event->rb);
3383 if (!rb)
38ff667b
PZ
3384 goto unlock;
3385
76369139 3386 userpg = rb->user_page;
37d81828 3387
7b732a75
PZ
3388 /*
3389 * Disable preemption so as to not let the corresponding user-space
3390 * spin too long if we get preempted.
3391 */
3392 preempt_disable();
37d81828 3393 ++userpg->lock;
92f22a38 3394 barrier();
cdd6c482 3395 userpg->index = perf_event_index(event);
b5e58793 3396 userpg->offset = perf_event_count(event);
365a4038 3397 if (userpg->index)
e7850595 3398 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3399
0d641208 3400 userpg->time_enabled = enabled +
cdd6c482 3401 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3402
0d641208 3403 userpg->time_running = running +
cdd6c482 3404 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3405
c7206205 3406 arch_perf_update_userpage(userpg, now);
e3f3541c 3407
92f22a38 3408 barrier();
37d81828 3409 ++userpg->lock;
7b732a75 3410 preempt_enable();
38ff667b 3411unlock:
7b732a75 3412 rcu_read_unlock();
37d81828
PM
3413}
3414
906010b2
PZ
3415static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3416{
3417 struct perf_event *event = vma->vm_file->private_data;
76369139 3418 struct ring_buffer *rb;
906010b2
PZ
3419 int ret = VM_FAULT_SIGBUS;
3420
3421 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3422 if (vmf->pgoff == 0)
3423 ret = 0;
3424 return ret;
3425 }
3426
3427 rcu_read_lock();
76369139
FW
3428 rb = rcu_dereference(event->rb);
3429 if (!rb)
906010b2
PZ
3430 goto unlock;
3431
3432 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3433 goto unlock;
3434
76369139 3435 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3436 if (!vmf->page)
3437 goto unlock;
3438
3439 get_page(vmf->page);
3440 vmf->page->mapping = vma->vm_file->f_mapping;
3441 vmf->page->index = vmf->pgoff;
3442
3443 ret = 0;
3444unlock:
3445 rcu_read_unlock();
3446
3447 return ret;
3448}
3449
10c6db11
PZ
3450static void ring_buffer_attach(struct perf_event *event,
3451 struct ring_buffer *rb)
3452{
3453 unsigned long flags;
3454
3455 if (!list_empty(&event->rb_entry))
3456 return;
3457
3458 spin_lock_irqsave(&rb->event_lock, flags);
3459 if (!list_empty(&event->rb_entry))
3460 goto unlock;
3461
3462 list_add(&event->rb_entry, &rb->event_list);
3463unlock:
3464 spin_unlock_irqrestore(&rb->event_lock, flags);
3465}
3466
3467static void ring_buffer_detach(struct perf_event *event,
3468 struct ring_buffer *rb)
3469{
3470 unsigned long flags;
3471
3472 if (list_empty(&event->rb_entry))
3473 return;
3474
3475 spin_lock_irqsave(&rb->event_lock, flags);
3476 list_del_init(&event->rb_entry);
3477 wake_up_all(&event->waitq);
3478 spin_unlock_irqrestore(&rb->event_lock, flags);
3479}
3480
3481static void ring_buffer_wakeup(struct perf_event *event)
3482{
3483 struct ring_buffer *rb;
3484
3485 rcu_read_lock();
3486 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3487 if (!rb)
3488 goto unlock;
3489
3490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3491 wake_up_all(&event->waitq);
44b7f4b9
WD
3492
3493unlock:
10c6db11
PZ
3494 rcu_read_unlock();
3495}
3496
76369139 3497static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3498{
76369139 3499 struct ring_buffer *rb;
906010b2 3500
76369139
FW
3501 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3502 rb_free(rb);
7b732a75
PZ
3503}
3504
76369139 3505static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3506{
76369139 3507 struct ring_buffer *rb;
7b732a75 3508
ac9721f3 3509 rcu_read_lock();
76369139
FW
3510 rb = rcu_dereference(event->rb);
3511 if (rb) {
3512 if (!atomic_inc_not_zero(&rb->refcount))
3513 rb = NULL;
ac9721f3
PZ
3514 }
3515 rcu_read_unlock();
3516
76369139 3517 return rb;
ac9721f3
PZ
3518}
3519
76369139 3520static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3521{
10c6db11
PZ
3522 struct perf_event *event, *n;
3523 unsigned long flags;
3524
76369139 3525 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3526 return;
7b732a75 3527
10c6db11
PZ
3528 spin_lock_irqsave(&rb->event_lock, flags);
3529 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3530 list_del_init(&event->rb_entry);
3531 wake_up_all(&event->waitq);
3532 }
3533 spin_unlock_irqrestore(&rb->event_lock, flags);
3534
76369139 3535 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3536}
3537
3538static void perf_mmap_open(struct vm_area_struct *vma)
3539{
cdd6c482 3540 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3541
cdd6c482 3542 atomic_inc(&event->mmap_count);
7b732a75
PZ
3543}
3544
3545static void perf_mmap_close(struct vm_area_struct *vma)
3546{
cdd6c482 3547 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3548
cdd6c482 3549 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3550 unsigned long size = perf_data_size(event->rb);
ac9721f3 3551 struct user_struct *user = event->mmap_user;
76369139 3552 struct ring_buffer *rb = event->rb;
789f90fc 3553
906010b2 3554 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3555 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3556 rcu_assign_pointer(event->rb, NULL);
10c6db11 3557 ring_buffer_detach(event, rb);
cdd6c482 3558 mutex_unlock(&event->mmap_mutex);
ac9721f3 3559
76369139 3560 ring_buffer_put(rb);
ac9721f3 3561 free_uid(user);
7b732a75 3562 }
37d81828
PM
3563}
3564
f0f37e2f 3565static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3566 .open = perf_mmap_open,
3567 .close = perf_mmap_close,
3568 .fault = perf_mmap_fault,
3569 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3570};
3571
3572static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3573{
cdd6c482 3574 struct perf_event *event = file->private_data;
22a4f650 3575 unsigned long user_locked, user_lock_limit;
789f90fc 3576 struct user_struct *user = current_user();
22a4f650 3577 unsigned long locked, lock_limit;
76369139 3578 struct ring_buffer *rb;
7b732a75
PZ
3579 unsigned long vma_size;
3580 unsigned long nr_pages;
789f90fc 3581 long user_extra, extra;
d57e34fd 3582 int ret = 0, flags = 0;
37d81828 3583
c7920614
PZ
3584 /*
3585 * Don't allow mmap() of inherited per-task counters. This would
3586 * create a performance issue due to all children writing to the
76369139 3587 * same rb.
c7920614
PZ
3588 */
3589 if (event->cpu == -1 && event->attr.inherit)
3590 return -EINVAL;
3591
43a21ea8 3592 if (!(vma->vm_flags & VM_SHARED))
37d81828 3593 return -EINVAL;
7b732a75
PZ
3594
3595 vma_size = vma->vm_end - vma->vm_start;
3596 nr_pages = (vma_size / PAGE_SIZE) - 1;
3597
7730d865 3598 /*
76369139 3599 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3600 * can do bitmasks instead of modulo.
3601 */
3602 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3603 return -EINVAL;
3604
7b732a75 3605 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3606 return -EINVAL;
3607
7b732a75
PZ
3608 if (vma->vm_pgoff != 0)
3609 return -EINVAL;
37d81828 3610
cdd6c482
IM
3611 WARN_ON_ONCE(event->ctx->parent_ctx);
3612 mutex_lock(&event->mmap_mutex);
76369139
FW
3613 if (event->rb) {
3614 if (event->rb->nr_pages == nr_pages)
3615 atomic_inc(&event->rb->refcount);
ac9721f3 3616 else
ebb3c4c4
PZ
3617 ret = -EINVAL;
3618 goto unlock;
3619 }
3620
789f90fc 3621 user_extra = nr_pages + 1;
cdd6c482 3622 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3623
3624 /*
3625 * Increase the limit linearly with more CPUs:
3626 */
3627 user_lock_limit *= num_online_cpus();
3628
789f90fc 3629 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3630
789f90fc
PZ
3631 extra = 0;
3632 if (user_locked > user_lock_limit)
3633 extra = user_locked - user_lock_limit;
7b732a75 3634
78d7d407 3635 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3636 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3637 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3638
459ec28a
IM
3639 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3640 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3641 ret = -EPERM;
3642 goto unlock;
3643 }
7b732a75 3644
76369139 3645 WARN_ON(event->rb);
906010b2 3646
d57e34fd 3647 if (vma->vm_flags & VM_WRITE)
76369139 3648 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3649
4ec8363d
VW
3650 rb = rb_alloc(nr_pages,
3651 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3652 event->cpu, flags);
3653
76369139 3654 if (!rb) {
ac9721f3 3655 ret = -ENOMEM;
ebb3c4c4 3656 goto unlock;
ac9721f3 3657 }
76369139 3658 rcu_assign_pointer(event->rb, rb);
43a21ea8 3659
ac9721f3
PZ
3660 atomic_long_add(user_extra, &user->locked_vm);
3661 event->mmap_locked = extra;
3662 event->mmap_user = get_current_user();
bc3e53f6 3663 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3664
9a0f05cb
PZ
3665 perf_event_update_userpage(event);
3666
ebb3c4c4 3667unlock:
ac9721f3
PZ
3668 if (!ret)
3669 atomic_inc(&event->mmap_count);
cdd6c482 3670 mutex_unlock(&event->mmap_mutex);
37d81828 3671
37d81828
PM
3672 vma->vm_flags |= VM_RESERVED;
3673 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3674
3675 return ret;
37d81828
PM
3676}
3677
3c446b3d
PZ
3678static int perf_fasync(int fd, struct file *filp, int on)
3679{
3c446b3d 3680 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3681 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3682 int retval;
3683
3684 mutex_lock(&inode->i_mutex);
cdd6c482 3685 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3686 mutex_unlock(&inode->i_mutex);
3687
3688 if (retval < 0)
3689 return retval;
3690
3691 return 0;
3692}
3693
0793a61d 3694static const struct file_operations perf_fops = {
3326c1ce 3695 .llseek = no_llseek,
0793a61d
TG
3696 .release = perf_release,
3697 .read = perf_read,
3698 .poll = perf_poll,
d859e29f
PM
3699 .unlocked_ioctl = perf_ioctl,
3700 .compat_ioctl = perf_ioctl,
37d81828 3701 .mmap = perf_mmap,
3c446b3d 3702 .fasync = perf_fasync,
0793a61d
TG
3703};
3704
925d519a 3705/*
cdd6c482 3706 * Perf event wakeup
925d519a
PZ
3707 *
3708 * If there's data, ensure we set the poll() state and publish everything
3709 * to user-space before waking everybody up.
3710 */
3711
cdd6c482 3712void perf_event_wakeup(struct perf_event *event)
925d519a 3713{
10c6db11 3714 ring_buffer_wakeup(event);
4c9e2542 3715
cdd6c482
IM
3716 if (event->pending_kill) {
3717 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3718 event->pending_kill = 0;
4c9e2542 3719 }
925d519a
PZ
3720}
3721
e360adbe 3722static void perf_pending_event(struct irq_work *entry)
79f14641 3723{
cdd6c482
IM
3724 struct perf_event *event = container_of(entry,
3725 struct perf_event, pending);
79f14641 3726
cdd6c482
IM
3727 if (event->pending_disable) {
3728 event->pending_disable = 0;
3729 __perf_event_disable(event);
79f14641
PZ
3730 }
3731
cdd6c482
IM
3732 if (event->pending_wakeup) {
3733 event->pending_wakeup = 0;
3734 perf_event_wakeup(event);
79f14641
PZ
3735 }
3736}
3737
39447b38
ZY
3738/*
3739 * We assume there is only KVM supporting the callbacks.
3740 * Later on, we might change it to a list if there is
3741 * another virtualization implementation supporting the callbacks.
3742 */
3743struct perf_guest_info_callbacks *perf_guest_cbs;
3744
3745int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3746{
3747 perf_guest_cbs = cbs;
3748 return 0;
3749}
3750EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3751
3752int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3753{
3754 perf_guest_cbs = NULL;
3755 return 0;
3756}
3757EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3758
c980d109
ACM
3759static void __perf_event_header__init_id(struct perf_event_header *header,
3760 struct perf_sample_data *data,
3761 struct perf_event *event)
6844c09d
ACM
3762{
3763 u64 sample_type = event->attr.sample_type;
3764
3765 data->type = sample_type;
3766 header->size += event->id_header_size;
3767
3768 if (sample_type & PERF_SAMPLE_TID) {
3769 /* namespace issues */
3770 data->tid_entry.pid = perf_event_pid(event, current);
3771 data->tid_entry.tid = perf_event_tid(event, current);
3772 }
3773
3774 if (sample_type & PERF_SAMPLE_TIME)
3775 data->time = perf_clock();
3776
3777 if (sample_type & PERF_SAMPLE_ID)
3778 data->id = primary_event_id(event);
3779
3780 if (sample_type & PERF_SAMPLE_STREAM_ID)
3781 data->stream_id = event->id;
3782
3783 if (sample_type & PERF_SAMPLE_CPU) {
3784 data->cpu_entry.cpu = raw_smp_processor_id();
3785 data->cpu_entry.reserved = 0;
3786 }
3787}
3788
76369139
FW
3789void perf_event_header__init_id(struct perf_event_header *header,
3790 struct perf_sample_data *data,
3791 struct perf_event *event)
c980d109
ACM
3792{
3793 if (event->attr.sample_id_all)
3794 __perf_event_header__init_id(header, data, event);
3795}
3796
3797static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3798 struct perf_sample_data *data)
3799{
3800 u64 sample_type = data->type;
3801
3802 if (sample_type & PERF_SAMPLE_TID)
3803 perf_output_put(handle, data->tid_entry);
3804
3805 if (sample_type & PERF_SAMPLE_TIME)
3806 perf_output_put(handle, data->time);
3807
3808 if (sample_type & PERF_SAMPLE_ID)
3809 perf_output_put(handle, data->id);
3810
3811 if (sample_type & PERF_SAMPLE_STREAM_ID)
3812 perf_output_put(handle, data->stream_id);
3813
3814 if (sample_type & PERF_SAMPLE_CPU)
3815 perf_output_put(handle, data->cpu_entry);
3816}
3817
76369139
FW
3818void perf_event__output_id_sample(struct perf_event *event,
3819 struct perf_output_handle *handle,
3820 struct perf_sample_data *sample)
c980d109
ACM
3821{
3822 if (event->attr.sample_id_all)
3823 __perf_event__output_id_sample(handle, sample);
3824}
3825
3dab77fb 3826static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3827 struct perf_event *event,
3828 u64 enabled, u64 running)
3dab77fb 3829{
cdd6c482 3830 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3831 u64 values[4];
3832 int n = 0;
3833
b5e58793 3834 values[n++] = perf_event_count(event);
3dab77fb 3835 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3836 values[n++] = enabled +
cdd6c482 3837 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3838 }
3839 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3840 values[n++] = running +
cdd6c482 3841 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3842 }
3843 if (read_format & PERF_FORMAT_ID)
cdd6c482 3844 values[n++] = primary_event_id(event);
3dab77fb 3845
76369139 3846 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3847}
3848
3849/*
cdd6c482 3850 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3851 */
3852static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3853 struct perf_event *event,
3854 u64 enabled, u64 running)
3dab77fb 3855{
cdd6c482
IM
3856 struct perf_event *leader = event->group_leader, *sub;
3857 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3858 u64 values[5];
3859 int n = 0;
3860
3861 values[n++] = 1 + leader->nr_siblings;
3862
3863 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3864 values[n++] = enabled;
3dab77fb
PZ
3865
3866 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3867 values[n++] = running;
3dab77fb 3868
cdd6c482 3869 if (leader != event)
3dab77fb
PZ
3870 leader->pmu->read(leader);
3871
b5e58793 3872 values[n++] = perf_event_count(leader);
3dab77fb 3873 if (read_format & PERF_FORMAT_ID)
cdd6c482 3874 values[n++] = primary_event_id(leader);
3dab77fb 3875
76369139 3876 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3877
65abc865 3878 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3879 n = 0;
3880
cdd6c482 3881 if (sub != event)
3dab77fb
PZ
3882 sub->pmu->read(sub);
3883
b5e58793 3884 values[n++] = perf_event_count(sub);
3dab77fb 3885 if (read_format & PERF_FORMAT_ID)
cdd6c482 3886 values[n++] = primary_event_id(sub);
3dab77fb 3887
76369139 3888 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3889 }
3890}
3891
eed01528
SE
3892#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3893 PERF_FORMAT_TOTAL_TIME_RUNNING)
3894
3dab77fb 3895static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3896 struct perf_event *event)
3dab77fb 3897{
e3f3541c 3898 u64 enabled = 0, running = 0, now;
eed01528
SE
3899 u64 read_format = event->attr.read_format;
3900
3901 /*
3902 * compute total_time_enabled, total_time_running
3903 * based on snapshot values taken when the event
3904 * was last scheduled in.
3905 *
3906 * we cannot simply called update_context_time()
3907 * because of locking issue as we are called in
3908 * NMI context
3909 */
c4794295 3910 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3911 calc_timer_values(event, &now, &enabled, &running);
eed01528 3912
cdd6c482 3913 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3914 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3915 else
eed01528 3916 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3917}
3918
5622f295
MM
3919void perf_output_sample(struct perf_output_handle *handle,
3920 struct perf_event_header *header,
3921 struct perf_sample_data *data,
cdd6c482 3922 struct perf_event *event)
5622f295
MM
3923{
3924 u64 sample_type = data->type;
3925
3926 perf_output_put(handle, *header);
3927
3928 if (sample_type & PERF_SAMPLE_IP)
3929 perf_output_put(handle, data->ip);
3930
3931 if (sample_type & PERF_SAMPLE_TID)
3932 perf_output_put(handle, data->tid_entry);
3933
3934 if (sample_type & PERF_SAMPLE_TIME)
3935 perf_output_put(handle, data->time);
3936
3937 if (sample_type & PERF_SAMPLE_ADDR)
3938 perf_output_put(handle, data->addr);
3939
3940 if (sample_type & PERF_SAMPLE_ID)
3941 perf_output_put(handle, data->id);
3942
3943 if (sample_type & PERF_SAMPLE_STREAM_ID)
3944 perf_output_put(handle, data->stream_id);
3945
3946 if (sample_type & PERF_SAMPLE_CPU)
3947 perf_output_put(handle, data->cpu_entry);
3948
3949 if (sample_type & PERF_SAMPLE_PERIOD)
3950 perf_output_put(handle, data->period);
3951
3952 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3953 perf_output_read(handle, event);
5622f295
MM
3954
3955 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3956 if (data->callchain) {
3957 int size = 1;
3958
3959 if (data->callchain)
3960 size += data->callchain->nr;
3961
3962 size *= sizeof(u64);
3963
76369139 3964 __output_copy(handle, data->callchain, size);
5622f295
MM
3965 } else {
3966 u64 nr = 0;
3967 perf_output_put(handle, nr);
3968 }
3969 }
3970
3971 if (sample_type & PERF_SAMPLE_RAW) {
3972 if (data->raw) {
3973 perf_output_put(handle, data->raw->size);
76369139
FW
3974 __output_copy(handle, data->raw->data,
3975 data->raw->size);
5622f295
MM
3976 } else {
3977 struct {
3978 u32 size;
3979 u32 data;
3980 } raw = {
3981 .size = sizeof(u32),
3982 .data = 0,
3983 };
3984 perf_output_put(handle, raw);
3985 }
3986 }
a7ac67ea
PZ
3987
3988 if (!event->attr.watermark) {
3989 int wakeup_events = event->attr.wakeup_events;
3990
3991 if (wakeup_events) {
3992 struct ring_buffer *rb = handle->rb;
3993 int events = local_inc_return(&rb->events);
3994
3995 if (events >= wakeup_events) {
3996 local_sub(wakeup_events, &rb->events);
3997 local_inc(&rb->wakeup);
3998 }
3999 }
4000 }
bce38cd5
SE
4001
4002 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4003 if (data->br_stack) {
4004 size_t size;
4005
4006 size = data->br_stack->nr
4007 * sizeof(struct perf_branch_entry);
4008
4009 perf_output_put(handle, data->br_stack->nr);
4010 perf_output_copy(handle, data->br_stack->entries, size);
4011 } else {
4012 /*
4013 * we always store at least the value of nr
4014 */
4015 u64 nr = 0;
4016 perf_output_put(handle, nr);
4017 }
4018 }
5622f295
MM
4019}
4020
4021void perf_prepare_sample(struct perf_event_header *header,
4022 struct perf_sample_data *data,
cdd6c482 4023 struct perf_event *event,
5622f295 4024 struct pt_regs *regs)
7b732a75 4025{
cdd6c482 4026 u64 sample_type = event->attr.sample_type;
7b732a75 4027
cdd6c482 4028 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4029 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4030
4031 header->misc = 0;
4032 header->misc |= perf_misc_flags(regs);
6fab0192 4033
c980d109 4034 __perf_event_header__init_id(header, data, event);
6844c09d 4035
c320c7b7 4036 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4037 data->ip = perf_instruction_pointer(regs);
4038
b23f3325 4039 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4040 int size = 1;
394ee076 4041
e6dab5ff 4042 data->callchain = perf_callchain(event, regs);
5622f295
MM
4043
4044 if (data->callchain)
4045 size += data->callchain->nr;
4046
4047 header->size += size * sizeof(u64);
394ee076
PZ
4048 }
4049
3a43ce68 4050 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4051 int size = sizeof(u32);
4052
4053 if (data->raw)
4054 size += data->raw->size;
4055 else
4056 size += sizeof(u32);
4057
4058 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4059 header->size += size;
7f453c24 4060 }
bce38cd5
SE
4061
4062 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4063 int size = sizeof(u64); /* nr */
4064 if (data->br_stack) {
4065 size += data->br_stack->nr
4066 * sizeof(struct perf_branch_entry);
4067 }
4068 header->size += size;
4069 }
5622f295 4070}
7f453c24 4071
a8b0ca17 4072static void perf_event_output(struct perf_event *event,
5622f295
MM
4073 struct perf_sample_data *data,
4074 struct pt_regs *regs)
4075{
4076 struct perf_output_handle handle;
4077 struct perf_event_header header;
689802b2 4078
927c7a9e
FW
4079 /* protect the callchain buffers */
4080 rcu_read_lock();
4081
cdd6c482 4082 perf_prepare_sample(&header, data, event, regs);
5c148194 4083
a7ac67ea 4084 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4085 goto exit;
0322cd6e 4086
cdd6c482 4087 perf_output_sample(&handle, &header, data, event);
f413cdb8 4088
8a057d84 4089 perf_output_end(&handle);
927c7a9e
FW
4090
4091exit:
4092 rcu_read_unlock();
0322cd6e
PZ
4093}
4094
38b200d6 4095/*
cdd6c482 4096 * read event_id
38b200d6
PZ
4097 */
4098
4099struct perf_read_event {
4100 struct perf_event_header header;
4101
4102 u32 pid;
4103 u32 tid;
38b200d6
PZ
4104};
4105
4106static void
cdd6c482 4107perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4108 struct task_struct *task)
4109{
4110 struct perf_output_handle handle;
c980d109 4111 struct perf_sample_data sample;
dfc65094 4112 struct perf_read_event read_event = {
38b200d6 4113 .header = {
cdd6c482 4114 .type = PERF_RECORD_READ,
38b200d6 4115 .misc = 0,
c320c7b7 4116 .size = sizeof(read_event) + event->read_size,
38b200d6 4117 },
cdd6c482
IM
4118 .pid = perf_event_pid(event, task),
4119 .tid = perf_event_tid(event, task),
38b200d6 4120 };
3dab77fb 4121 int ret;
38b200d6 4122
c980d109 4123 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4124 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4125 if (ret)
4126 return;
4127
dfc65094 4128 perf_output_put(&handle, read_event);
cdd6c482 4129 perf_output_read(&handle, event);
c980d109 4130 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4131
38b200d6
PZ
4132 perf_output_end(&handle);
4133}
4134
60313ebe 4135/*
9f498cc5
PZ
4136 * task tracking -- fork/exit
4137 *
3af9e859 4138 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4139 */
4140
9f498cc5 4141struct perf_task_event {
3a80b4a3 4142 struct task_struct *task;
cdd6c482 4143 struct perf_event_context *task_ctx;
60313ebe
PZ
4144
4145 struct {
4146 struct perf_event_header header;
4147
4148 u32 pid;
4149 u32 ppid;
9f498cc5
PZ
4150 u32 tid;
4151 u32 ptid;
393b2ad8 4152 u64 time;
cdd6c482 4153 } event_id;
60313ebe
PZ
4154};
4155
cdd6c482 4156static void perf_event_task_output(struct perf_event *event,
9f498cc5 4157 struct perf_task_event *task_event)
60313ebe
PZ
4158{
4159 struct perf_output_handle handle;
c980d109 4160 struct perf_sample_data sample;
9f498cc5 4161 struct task_struct *task = task_event->task;
c980d109 4162 int ret, size = task_event->event_id.header.size;
8bb39f9a 4163
c980d109 4164 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4165
c980d109 4166 ret = perf_output_begin(&handle, event,
a7ac67ea 4167 task_event->event_id.header.size);
ef60777c 4168 if (ret)
c980d109 4169 goto out;
60313ebe 4170
cdd6c482
IM
4171 task_event->event_id.pid = perf_event_pid(event, task);
4172 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4173
cdd6c482
IM
4174 task_event->event_id.tid = perf_event_tid(event, task);
4175 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4176
cdd6c482 4177 perf_output_put(&handle, task_event->event_id);
393b2ad8 4178
c980d109
ACM
4179 perf_event__output_id_sample(event, &handle, &sample);
4180
60313ebe 4181 perf_output_end(&handle);
c980d109
ACM
4182out:
4183 task_event->event_id.header.size = size;
60313ebe
PZ
4184}
4185
cdd6c482 4186static int perf_event_task_match(struct perf_event *event)
60313ebe 4187{
6f93d0a7 4188 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4189 return 0;
4190
5632ab12 4191 if (!event_filter_match(event))
5d27c23d
PZ
4192 return 0;
4193
3af9e859
EM
4194 if (event->attr.comm || event->attr.mmap ||
4195 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4196 return 1;
4197
4198 return 0;
4199}
4200
cdd6c482 4201static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4202 struct perf_task_event *task_event)
60313ebe 4203{
cdd6c482 4204 struct perf_event *event;
60313ebe 4205
cdd6c482
IM
4206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4207 if (perf_event_task_match(event))
4208 perf_event_task_output(event, task_event);
60313ebe 4209 }
60313ebe
PZ
4210}
4211
cdd6c482 4212static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4213{
4214 struct perf_cpu_context *cpuctx;
8dc85d54 4215 struct perf_event_context *ctx;
108b02cf 4216 struct pmu *pmu;
8dc85d54 4217 int ctxn;
60313ebe 4218
d6ff86cf 4219 rcu_read_lock();
108b02cf 4220 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4221 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4222 if (cpuctx->active_pmu != pmu)
4223 goto next;
108b02cf 4224 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4225
4226 ctx = task_event->task_ctx;
4227 if (!ctx) {
4228 ctxn = pmu->task_ctx_nr;
4229 if (ctxn < 0)
41945f6c 4230 goto next;
8dc85d54
PZ
4231 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4232 }
4233 if (ctx)
4234 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4235next:
4236 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4237 }
60313ebe
PZ
4238 rcu_read_unlock();
4239}
4240
cdd6c482
IM
4241static void perf_event_task(struct task_struct *task,
4242 struct perf_event_context *task_ctx,
3a80b4a3 4243 int new)
60313ebe 4244{
9f498cc5 4245 struct perf_task_event task_event;
60313ebe 4246
cdd6c482
IM
4247 if (!atomic_read(&nr_comm_events) &&
4248 !atomic_read(&nr_mmap_events) &&
4249 !atomic_read(&nr_task_events))
60313ebe
PZ
4250 return;
4251
9f498cc5 4252 task_event = (struct perf_task_event){
3a80b4a3
PZ
4253 .task = task,
4254 .task_ctx = task_ctx,
cdd6c482 4255 .event_id = {
60313ebe 4256 .header = {
cdd6c482 4257 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4258 .misc = 0,
cdd6c482 4259 .size = sizeof(task_event.event_id),
60313ebe 4260 },
573402db
PZ
4261 /* .pid */
4262 /* .ppid */
9f498cc5
PZ
4263 /* .tid */
4264 /* .ptid */
6f93d0a7 4265 .time = perf_clock(),
60313ebe
PZ
4266 },
4267 };
4268
cdd6c482 4269 perf_event_task_event(&task_event);
9f498cc5
PZ
4270}
4271
cdd6c482 4272void perf_event_fork(struct task_struct *task)
9f498cc5 4273{
cdd6c482 4274 perf_event_task(task, NULL, 1);
60313ebe
PZ
4275}
4276
8d1b2d93
PZ
4277/*
4278 * comm tracking
4279 */
4280
4281struct perf_comm_event {
22a4f650
IM
4282 struct task_struct *task;
4283 char *comm;
8d1b2d93
PZ
4284 int comm_size;
4285
4286 struct {
4287 struct perf_event_header header;
4288
4289 u32 pid;
4290 u32 tid;
cdd6c482 4291 } event_id;
8d1b2d93
PZ
4292};
4293
cdd6c482 4294static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4295 struct perf_comm_event *comm_event)
4296{
4297 struct perf_output_handle handle;
c980d109 4298 struct perf_sample_data sample;
cdd6c482 4299 int size = comm_event->event_id.header.size;
c980d109
ACM
4300 int ret;
4301
4302 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4303 ret = perf_output_begin(&handle, event,
a7ac67ea 4304 comm_event->event_id.header.size);
8d1b2d93
PZ
4305
4306 if (ret)
c980d109 4307 goto out;
8d1b2d93 4308
cdd6c482
IM
4309 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4310 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4311
cdd6c482 4312 perf_output_put(&handle, comm_event->event_id);
76369139 4313 __output_copy(&handle, comm_event->comm,
8d1b2d93 4314 comm_event->comm_size);
c980d109
ACM
4315
4316 perf_event__output_id_sample(event, &handle, &sample);
4317
8d1b2d93 4318 perf_output_end(&handle);
c980d109
ACM
4319out:
4320 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4321}
4322
cdd6c482 4323static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4324{
6f93d0a7 4325 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4326 return 0;
4327
5632ab12 4328 if (!event_filter_match(event))
5d27c23d
PZ
4329 return 0;
4330
cdd6c482 4331 if (event->attr.comm)
8d1b2d93
PZ
4332 return 1;
4333
4334 return 0;
4335}
4336
cdd6c482 4337static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4338 struct perf_comm_event *comm_event)
4339{
cdd6c482 4340 struct perf_event *event;
8d1b2d93 4341
cdd6c482
IM
4342 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4343 if (perf_event_comm_match(event))
4344 perf_event_comm_output(event, comm_event);
8d1b2d93 4345 }
8d1b2d93
PZ
4346}
4347
cdd6c482 4348static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4349{
4350 struct perf_cpu_context *cpuctx;
cdd6c482 4351 struct perf_event_context *ctx;
413ee3b4 4352 char comm[TASK_COMM_LEN];
8d1b2d93 4353 unsigned int size;
108b02cf 4354 struct pmu *pmu;
8dc85d54 4355 int ctxn;
8d1b2d93 4356
413ee3b4 4357 memset(comm, 0, sizeof(comm));
96b02d78 4358 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4359 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4360
4361 comm_event->comm = comm;
4362 comm_event->comm_size = size;
4363
cdd6c482 4364 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4365 rcu_read_lock();
108b02cf 4366 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4367 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4368 if (cpuctx->active_pmu != pmu)
4369 goto next;
108b02cf 4370 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4371
4372 ctxn = pmu->task_ctx_nr;
4373 if (ctxn < 0)
41945f6c 4374 goto next;
8dc85d54
PZ
4375
4376 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4377 if (ctx)
4378 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4379next:
4380 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4381 }
665c2142 4382 rcu_read_unlock();
8d1b2d93
PZ
4383}
4384
cdd6c482 4385void perf_event_comm(struct task_struct *task)
8d1b2d93 4386{
9ee318a7 4387 struct perf_comm_event comm_event;
8dc85d54
PZ
4388 struct perf_event_context *ctx;
4389 int ctxn;
9ee318a7 4390
8dc85d54
PZ
4391 for_each_task_context_nr(ctxn) {
4392 ctx = task->perf_event_ctxp[ctxn];
4393 if (!ctx)
4394 continue;
9ee318a7 4395
8dc85d54
PZ
4396 perf_event_enable_on_exec(ctx);
4397 }
9ee318a7 4398
cdd6c482 4399 if (!atomic_read(&nr_comm_events))
9ee318a7 4400 return;
a63eaf34 4401
9ee318a7 4402 comm_event = (struct perf_comm_event){
8d1b2d93 4403 .task = task,
573402db
PZ
4404 /* .comm */
4405 /* .comm_size */
cdd6c482 4406 .event_id = {
573402db 4407 .header = {
cdd6c482 4408 .type = PERF_RECORD_COMM,
573402db
PZ
4409 .misc = 0,
4410 /* .size */
4411 },
4412 /* .pid */
4413 /* .tid */
8d1b2d93
PZ
4414 },
4415 };
4416
cdd6c482 4417 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4418}
4419
0a4a9391
PZ
4420/*
4421 * mmap tracking
4422 */
4423
4424struct perf_mmap_event {
089dd79d
PZ
4425 struct vm_area_struct *vma;
4426
4427 const char *file_name;
4428 int file_size;
0a4a9391
PZ
4429
4430 struct {
4431 struct perf_event_header header;
4432
4433 u32 pid;
4434 u32 tid;
4435 u64 start;
4436 u64 len;
4437 u64 pgoff;
cdd6c482 4438 } event_id;
0a4a9391
PZ
4439};
4440
cdd6c482 4441static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4442 struct perf_mmap_event *mmap_event)
4443{
4444 struct perf_output_handle handle;
c980d109 4445 struct perf_sample_data sample;
cdd6c482 4446 int size = mmap_event->event_id.header.size;
c980d109 4447 int ret;
0a4a9391 4448
c980d109
ACM
4449 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4450 ret = perf_output_begin(&handle, event,
a7ac67ea 4451 mmap_event->event_id.header.size);
0a4a9391 4452 if (ret)
c980d109 4453 goto out;
0a4a9391 4454
cdd6c482
IM
4455 mmap_event->event_id.pid = perf_event_pid(event, current);
4456 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4457
cdd6c482 4458 perf_output_put(&handle, mmap_event->event_id);
76369139 4459 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4460 mmap_event->file_size);
c980d109
ACM
4461
4462 perf_event__output_id_sample(event, &handle, &sample);
4463
78d613eb 4464 perf_output_end(&handle);
c980d109
ACM
4465out:
4466 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4467}
4468
cdd6c482 4469static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4470 struct perf_mmap_event *mmap_event,
4471 int executable)
0a4a9391 4472{
6f93d0a7 4473 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4474 return 0;
4475
5632ab12 4476 if (!event_filter_match(event))
5d27c23d
PZ
4477 return 0;
4478
3af9e859
EM
4479 if ((!executable && event->attr.mmap_data) ||
4480 (executable && event->attr.mmap))
0a4a9391
PZ
4481 return 1;
4482
4483 return 0;
4484}
4485
cdd6c482 4486static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4487 struct perf_mmap_event *mmap_event,
4488 int executable)
0a4a9391 4489{
cdd6c482 4490 struct perf_event *event;
0a4a9391 4491
cdd6c482 4492 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4493 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4494 perf_event_mmap_output(event, mmap_event);
0a4a9391 4495 }
0a4a9391
PZ
4496}
4497
cdd6c482 4498static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4499{
4500 struct perf_cpu_context *cpuctx;
cdd6c482 4501 struct perf_event_context *ctx;
089dd79d
PZ
4502 struct vm_area_struct *vma = mmap_event->vma;
4503 struct file *file = vma->vm_file;
0a4a9391
PZ
4504 unsigned int size;
4505 char tmp[16];
4506 char *buf = NULL;
089dd79d 4507 const char *name;
108b02cf 4508 struct pmu *pmu;
8dc85d54 4509 int ctxn;
0a4a9391 4510
413ee3b4
AB
4511 memset(tmp, 0, sizeof(tmp));
4512
0a4a9391 4513 if (file) {
413ee3b4 4514 /*
76369139 4515 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4516 * need to add enough zero bytes after the string to handle
4517 * the 64bit alignment we do later.
4518 */
4519 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4520 if (!buf) {
4521 name = strncpy(tmp, "//enomem", sizeof(tmp));
4522 goto got_name;
4523 }
d3d21c41 4524 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4525 if (IS_ERR(name)) {
4526 name = strncpy(tmp, "//toolong", sizeof(tmp));
4527 goto got_name;
4528 }
4529 } else {
413ee3b4
AB
4530 if (arch_vma_name(mmap_event->vma)) {
4531 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4532 sizeof(tmp));
089dd79d 4533 goto got_name;
413ee3b4 4534 }
089dd79d
PZ
4535
4536 if (!vma->vm_mm) {
4537 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4538 goto got_name;
3af9e859
EM
4539 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4540 vma->vm_end >= vma->vm_mm->brk) {
4541 name = strncpy(tmp, "[heap]", sizeof(tmp));
4542 goto got_name;
4543 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4544 vma->vm_end >= vma->vm_mm->start_stack) {
4545 name = strncpy(tmp, "[stack]", sizeof(tmp));
4546 goto got_name;
089dd79d
PZ
4547 }
4548
0a4a9391
PZ
4549 name = strncpy(tmp, "//anon", sizeof(tmp));
4550 goto got_name;
4551 }
4552
4553got_name:
888fcee0 4554 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4555
4556 mmap_event->file_name = name;
4557 mmap_event->file_size = size;
4558
cdd6c482 4559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4560
f6d9dd23 4561 rcu_read_lock();
108b02cf 4562 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4563 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4564 if (cpuctx->active_pmu != pmu)
4565 goto next;
108b02cf
PZ
4566 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4567 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4568
4569 ctxn = pmu->task_ctx_nr;
4570 if (ctxn < 0)
41945f6c 4571 goto next;
8dc85d54
PZ
4572
4573 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4574 if (ctx) {
4575 perf_event_mmap_ctx(ctx, mmap_event,
4576 vma->vm_flags & VM_EXEC);
4577 }
41945f6c
PZ
4578next:
4579 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4580 }
665c2142
PZ
4581 rcu_read_unlock();
4582
0a4a9391
PZ
4583 kfree(buf);
4584}
4585
3af9e859 4586void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4587{
9ee318a7
PZ
4588 struct perf_mmap_event mmap_event;
4589
cdd6c482 4590 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4591 return;
4592
4593 mmap_event = (struct perf_mmap_event){
089dd79d 4594 .vma = vma,
573402db
PZ
4595 /* .file_name */
4596 /* .file_size */
cdd6c482 4597 .event_id = {
573402db 4598 .header = {
cdd6c482 4599 .type = PERF_RECORD_MMAP,
39447b38 4600 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4601 /* .size */
4602 },
4603 /* .pid */
4604 /* .tid */
089dd79d
PZ
4605 .start = vma->vm_start,
4606 .len = vma->vm_end - vma->vm_start,
3a0304e9 4607 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4608 },
4609 };
4610
cdd6c482 4611 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4612}
4613
a78ac325
PZ
4614/*
4615 * IRQ throttle logging
4616 */
4617
cdd6c482 4618static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4619{
4620 struct perf_output_handle handle;
c980d109 4621 struct perf_sample_data sample;
a78ac325
PZ
4622 int ret;
4623
4624 struct {
4625 struct perf_event_header header;
4626 u64 time;
cca3f454 4627 u64 id;
7f453c24 4628 u64 stream_id;
a78ac325
PZ
4629 } throttle_event = {
4630 .header = {
cdd6c482 4631 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4632 .misc = 0,
4633 .size = sizeof(throttle_event),
4634 },
def0a9b2 4635 .time = perf_clock(),
cdd6c482
IM
4636 .id = primary_event_id(event),
4637 .stream_id = event->id,
a78ac325
PZ
4638 };
4639
966ee4d6 4640 if (enable)
cdd6c482 4641 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4642
c980d109
ACM
4643 perf_event_header__init_id(&throttle_event.header, &sample, event);
4644
4645 ret = perf_output_begin(&handle, event,
a7ac67ea 4646 throttle_event.header.size);
a78ac325
PZ
4647 if (ret)
4648 return;
4649
4650 perf_output_put(&handle, throttle_event);
c980d109 4651 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4652 perf_output_end(&handle);
4653}
4654
f6c7d5fe 4655/*
cdd6c482 4656 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4657 */
4658
a8b0ca17 4659static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4660 int throttle, struct perf_sample_data *data,
4661 struct pt_regs *regs)
f6c7d5fe 4662{
cdd6c482
IM
4663 int events = atomic_read(&event->event_limit);
4664 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4665 u64 seq;
79f14641
PZ
4666 int ret = 0;
4667
96398826
PZ
4668 /*
4669 * Non-sampling counters might still use the PMI to fold short
4670 * hardware counters, ignore those.
4671 */
4672 if (unlikely(!is_sampling_event(event)))
4673 return 0;
4674
e050e3f0
SE
4675 seq = __this_cpu_read(perf_throttled_seq);
4676 if (seq != hwc->interrupts_seq) {
4677 hwc->interrupts_seq = seq;
4678 hwc->interrupts = 1;
4679 } else {
4680 hwc->interrupts++;
4681 if (unlikely(throttle
4682 && hwc->interrupts >= max_samples_per_tick)) {
4683 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4684 hwc->interrupts = MAX_INTERRUPTS;
4685 perf_log_throttle(event, 0);
a78ac325
PZ
4686 ret = 1;
4687 }
e050e3f0 4688 }
60db5e09 4689
cdd6c482 4690 if (event->attr.freq) {
def0a9b2 4691 u64 now = perf_clock();
abd50713 4692 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4693
abd50713 4694 hwc->freq_time_stamp = now;
bd2b5b12 4695
abd50713 4696 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4697 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4698 }
4699
2023b359
PZ
4700 /*
4701 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4702 * events
2023b359
PZ
4703 */
4704
cdd6c482
IM
4705 event->pending_kill = POLL_IN;
4706 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4707 ret = 1;
cdd6c482 4708 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4709 event->pending_disable = 1;
4710 irq_work_queue(&event->pending);
79f14641
PZ
4711 }
4712
453f19ee 4713 if (event->overflow_handler)
a8b0ca17 4714 event->overflow_handler(event, data, regs);
453f19ee 4715 else
a8b0ca17 4716 perf_event_output(event, data, regs);
453f19ee 4717
f506b3dc 4718 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4719 event->pending_wakeup = 1;
4720 irq_work_queue(&event->pending);
f506b3dc
PZ
4721 }
4722
79f14641 4723 return ret;
f6c7d5fe
PZ
4724}
4725
a8b0ca17 4726int perf_event_overflow(struct perf_event *event,
5622f295
MM
4727 struct perf_sample_data *data,
4728 struct pt_regs *regs)
850bc73f 4729{
a8b0ca17 4730 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4731}
4732
15dbf27c 4733/*
cdd6c482 4734 * Generic software event infrastructure
15dbf27c
PZ
4735 */
4736
b28ab83c
PZ
4737struct swevent_htable {
4738 struct swevent_hlist *swevent_hlist;
4739 struct mutex hlist_mutex;
4740 int hlist_refcount;
4741
4742 /* Recursion avoidance in each contexts */
4743 int recursion[PERF_NR_CONTEXTS];
4744};
4745
4746static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4747
7b4b6658 4748/*
cdd6c482
IM
4749 * We directly increment event->count and keep a second value in
4750 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4751 * is kept in the range [-sample_period, 0] so that we can use the
4752 * sign as trigger.
4753 */
4754
cdd6c482 4755static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4756{
cdd6c482 4757 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4758 u64 period = hwc->last_period;
4759 u64 nr, offset;
4760 s64 old, val;
4761
4762 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4763
4764again:
e7850595 4765 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4766 if (val < 0)
4767 return 0;
15dbf27c 4768
7b4b6658
PZ
4769 nr = div64_u64(period + val, period);
4770 offset = nr * period;
4771 val -= offset;
e7850595 4772 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4773 goto again;
15dbf27c 4774
7b4b6658 4775 return nr;
15dbf27c
PZ
4776}
4777
0cff784a 4778static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4779 struct perf_sample_data *data,
5622f295 4780 struct pt_regs *regs)
15dbf27c 4781{
cdd6c482 4782 struct hw_perf_event *hwc = &event->hw;
850bc73f 4783 int throttle = 0;
15dbf27c 4784
0cff784a
PZ
4785 if (!overflow)
4786 overflow = perf_swevent_set_period(event);
15dbf27c 4787
7b4b6658
PZ
4788 if (hwc->interrupts == MAX_INTERRUPTS)
4789 return;
15dbf27c 4790
7b4b6658 4791 for (; overflow; overflow--) {
a8b0ca17 4792 if (__perf_event_overflow(event, throttle,
5622f295 4793 data, regs)) {
7b4b6658
PZ
4794 /*
4795 * We inhibit the overflow from happening when
4796 * hwc->interrupts == MAX_INTERRUPTS.
4797 */
4798 break;
4799 }
cf450a73 4800 throttle = 1;
7b4b6658 4801 }
15dbf27c
PZ
4802}
4803
a4eaf7f1 4804static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4805 struct perf_sample_data *data,
5622f295 4806 struct pt_regs *regs)
7b4b6658 4807{
cdd6c482 4808 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4809
e7850595 4810 local64_add(nr, &event->count);
d6d020e9 4811
0cff784a
PZ
4812 if (!regs)
4813 return;
4814
6c7e550f 4815 if (!is_sampling_event(event))
7b4b6658 4816 return;
d6d020e9 4817
5d81e5cf
AV
4818 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4819 data->period = nr;
4820 return perf_swevent_overflow(event, 1, data, regs);
4821 } else
4822 data->period = event->hw.last_period;
4823
0cff784a 4824 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4825 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4826
e7850595 4827 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4828 return;
df1a132b 4829
a8b0ca17 4830 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4831}
4832
f5ffe02e
FW
4833static int perf_exclude_event(struct perf_event *event,
4834 struct pt_regs *regs)
4835{
a4eaf7f1 4836 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4837 return 1;
a4eaf7f1 4838
f5ffe02e
FW
4839 if (regs) {
4840 if (event->attr.exclude_user && user_mode(regs))
4841 return 1;
4842
4843 if (event->attr.exclude_kernel && !user_mode(regs))
4844 return 1;
4845 }
4846
4847 return 0;
4848}
4849
cdd6c482 4850static int perf_swevent_match(struct perf_event *event,
1c432d89 4851 enum perf_type_id type,
6fb2915d
LZ
4852 u32 event_id,
4853 struct perf_sample_data *data,
4854 struct pt_regs *regs)
15dbf27c 4855{
cdd6c482 4856 if (event->attr.type != type)
a21ca2ca 4857 return 0;
f5ffe02e 4858
cdd6c482 4859 if (event->attr.config != event_id)
15dbf27c
PZ
4860 return 0;
4861
f5ffe02e
FW
4862 if (perf_exclude_event(event, regs))
4863 return 0;
15dbf27c
PZ
4864
4865 return 1;
4866}
4867
76e1d904
FW
4868static inline u64 swevent_hash(u64 type, u32 event_id)
4869{
4870 u64 val = event_id | (type << 32);
4871
4872 return hash_64(val, SWEVENT_HLIST_BITS);
4873}
4874
49f135ed
FW
4875static inline struct hlist_head *
4876__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4877{
49f135ed
FW
4878 u64 hash = swevent_hash(type, event_id);
4879
4880 return &hlist->heads[hash];
4881}
76e1d904 4882
49f135ed
FW
4883/* For the read side: events when they trigger */
4884static inline struct hlist_head *
b28ab83c 4885find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4886{
4887 struct swevent_hlist *hlist;
76e1d904 4888
b28ab83c 4889 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4890 if (!hlist)
4891 return NULL;
4892
49f135ed
FW
4893 return __find_swevent_head(hlist, type, event_id);
4894}
4895
4896/* For the event head insertion and removal in the hlist */
4897static inline struct hlist_head *
b28ab83c 4898find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4899{
4900 struct swevent_hlist *hlist;
4901 u32 event_id = event->attr.config;
4902 u64 type = event->attr.type;
4903
4904 /*
4905 * Event scheduling is always serialized against hlist allocation
4906 * and release. Which makes the protected version suitable here.
4907 * The context lock guarantees that.
4908 */
b28ab83c 4909 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4910 lockdep_is_held(&event->ctx->lock));
4911 if (!hlist)
4912 return NULL;
4913
4914 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4915}
4916
4917static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4918 u64 nr,
76e1d904
FW
4919 struct perf_sample_data *data,
4920 struct pt_regs *regs)
15dbf27c 4921{
b28ab83c 4922 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4923 struct perf_event *event;
76e1d904
FW
4924 struct hlist_node *node;
4925 struct hlist_head *head;
15dbf27c 4926
76e1d904 4927 rcu_read_lock();
b28ab83c 4928 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4929 if (!head)
4930 goto end;
4931
4932 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4933 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4934 perf_swevent_event(event, nr, data, regs);
15dbf27c 4935 }
76e1d904
FW
4936end:
4937 rcu_read_unlock();
15dbf27c
PZ
4938}
4939
4ed7c92d 4940int perf_swevent_get_recursion_context(void)
96f6d444 4941{
b28ab83c 4942 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4943
b28ab83c 4944 return get_recursion_context(swhash->recursion);
96f6d444 4945}
645e8cc0 4946EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4947
fa9f90be 4948inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4949{
b28ab83c 4950 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4951
b28ab83c 4952 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4953}
15dbf27c 4954
a8b0ca17 4955void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4956{
a4234bfc 4957 struct perf_sample_data data;
4ed7c92d
PZ
4958 int rctx;
4959
1c024eca 4960 preempt_disable_notrace();
4ed7c92d
PZ
4961 rctx = perf_swevent_get_recursion_context();
4962 if (rctx < 0)
4963 return;
a4234bfc 4964
fd0d000b 4965 perf_sample_data_init(&data, addr, 0);
92bf309a 4966
a8b0ca17 4967 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4968
4969 perf_swevent_put_recursion_context(rctx);
1c024eca 4970 preempt_enable_notrace();
b8e83514
PZ
4971}
4972
cdd6c482 4973static void perf_swevent_read(struct perf_event *event)
15dbf27c 4974{
15dbf27c
PZ
4975}
4976
a4eaf7f1 4977static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4978{
b28ab83c 4979 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4980 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4981 struct hlist_head *head;
4982
6c7e550f 4983 if (is_sampling_event(event)) {
7b4b6658 4984 hwc->last_period = hwc->sample_period;
cdd6c482 4985 perf_swevent_set_period(event);
7b4b6658 4986 }
76e1d904 4987
a4eaf7f1
PZ
4988 hwc->state = !(flags & PERF_EF_START);
4989
b28ab83c 4990 head = find_swevent_head(swhash, event);
76e1d904
FW
4991 if (WARN_ON_ONCE(!head))
4992 return -EINVAL;
4993
4994 hlist_add_head_rcu(&event->hlist_entry, head);
4995
15dbf27c
PZ
4996 return 0;
4997}
4998
a4eaf7f1 4999static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5000{
76e1d904 5001 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5002}
5003
a4eaf7f1 5004static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5005{
a4eaf7f1 5006 event->hw.state = 0;
d6d020e9 5007}
aa9c4c0f 5008
a4eaf7f1 5009static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5010{
a4eaf7f1 5011 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5012}
5013
49f135ed
FW
5014/* Deref the hlist from the update side */
5015static inline struct swevent_hlist *
b28ab83c 5016swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5017{
b28ab83c
PZ
5018 return rcu_dereference_protected(swhash->swevent_hlist,
5019 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5020}
5021
b28ab83c 5022static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5023{
b28ab83c 5024 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5025
49f135ed 5026 if (!hlist)
76e1d904
FW
5027 return;
5028
b28ab83c 5029 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5030 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5031}
5032
5033static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5034{
b28ab83c 5035 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5036
b28ab83c 5037 mutex_lock(&swhash->hlist_mutex);
76e1d904 5038
b28ab83c
PZ
5039 if (!--swhash->hlist_refcount)
5040 swevent_hlist_release(swhash);
76e1d904 5041
b28ab83c 5042 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5043}
5044
5045static void swevent_hlist_put(struct perf_event *event)
5046{
5047 int cpu;
5048
5049 if (event->cpu != -1) {
5050 swevent_hlist_put_cpu(event, event->cpu);
5051 return;
5052 }
5053
5054 for_each_possible_cpu(cpu)
5055 swevent_hlist_put_cpu(event, cpu);
5056}
5057
5058static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5059{
b28ab83c 5060 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5061 int err = 0;
5062
b28ab83c 5063 mutex_lock(&swhash->hlist_mutex);
76e1d904 5064
b28ab83c 5065 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5066 struct swevent_hlist *hlist;
5067
5068 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5069 if (!hlist) {
5070 err = -ENOMEM;
5071 goto exit;
5072 }
b28ab83c 5073 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5074 }
b28ab83c 5075 swhash->hlist_refcount++;
9ed6060d 5076exit:
b28ab83c 5077 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5078
5079 return err;
5080}
5081
5082static int swevent_hlist_get(struct perf_event *event)
5083{
5084 int err;
5085 int cpu, failed_cpu;
5086
5087 if (event->cpu != -1)
5088 return swevent_hlist_get_cpu(event, event->cpu);
5089
5090 get_online_cpus();
5091 for_each_possible_cpu(cpu) {
5092 err = swevent_hlist_get_cpu(event, cpu);
5093 if (err) {
5094 failed_cpu = cpu;
5095 goto fail;
5096 }
5097 }
5098 put_online_cpus();
5099
5100 return 0;
9ed6060d 5101fail:
76e1d904
FW
5102 for_each_possible_cpu(cpu) {
5103 if (cpu == failed_cpu)
5104 break;
5105 swevent_hlist_put_cpu(event, cpu);
5106 }
5107
5108 put_online_cpus();
5109 return err;
5110}
5111
c5905afb 5112struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5113
b0a873eb
PZ
5114static void sw_perf_event_destroy(struct perf_event *event)
5115{
5116 u64 event_id = event->attr.config;
95476b64 5117
b0a873eb
PZ
5118 WARN_ON(event->parent);
5119
c5905afb 5120 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5121 swevent_hlist_put(event);
5122}
5123
5124static int perf_swevent_init(struct perf_event *event)
5125{
5126 int event_id = event->attr.config;
5127
5128 if (event->attr.type != PERF_TYPE_SOFTWARE)
5129 return -ENOENT;
5130
2481c5fa
SE
5131 /*
5132 * no branch sampling for software events
5133 */
5134 if (has_branch_stack(event))
5135 return -EOPNOTSUPP;
5136
b0a873eb
PZ
5137 switch (event_id) {
5138 case PERF_COUNT_SW_CPU_CLOCK:
5139 case PERF_COUNT_SW_TASK_CLOCK:
5140 return -ENOENT;
5141
5142 default:
5143 break;
5144 }
5145
ce677831 5146 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5147 return -ENOENT;
5148
5149 if (!event->parent) {
5150 int err;
5151
5152 err = swevent_hlist_get(event);
5153 if (err)
5154 return err;
5155
c5905afb 5156 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5157 event->destroy = sw_perf_event_destroy;
5158 }
5159
5160 return 0;
5161}
5162
35edc2a5
PZ
5163static int perf_swevent_event_idx(struct perf_event *event)
5164{
5165 return 0;
5166}
5167
b0a873eb 5168static struct pmu perf_swevent = {
89a1e187 5169 .task_ctx_nr = perf_sw_context,
95476b64 5170
b0a873eb 5171 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5172 .add = perf_swevent_add,
5173 .del = perf_swevent_del,
5174 .start = perf_swevent_start,
5175 .stop = perf_swevent_stop,
1c024eca 5176 .read = perf_swevent_read,
35edc2a5
PZ
5177
5178 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5179};
5180
b0a873eb
PZ
5181#ifdef CONFIG_EVENT_TRACING
5182
1c024eca
PZ
5183static int perf_tp_filter_match(struct perf_event *event,
5184 struct perf_sample_data *data)
5185{
5186 void *record = data->raw->data;
5187
5188 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5189 return 1;
5190 return 0;
5191}
5192
5193static int perf_tp_event_match(struct perf_event *event,
5194 struct perf_sample_data *data,
5195 struct pt_regs *regs)
5196{
a0f7d0f7
FW
5197 if (event->hw.state & PERF_HES_STOPPED)
5198 return 0;
580d607c
PZ
5199 /*
5200 * All tracepoints are from kernel-space.
5201 */
5202 if (event->attr.exclude_kernel)
1c024eca
PZ
5203 return 0;
5204
5205 if (!perf_tp_filter_match(event, data))
5206 return 0;
5207
5208 return 1;
5209}
5210
5211void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5212 struct pt_regs *regs, struct hlist_head *head, int rctx,
5213 struct task_struct *task)
95476b64
FW
5214{
5215 struct perf_sample_data data;
1c024eca
PZ
5216 struct perf_event *event;
5217 struct hlist_node *node;
5218
95476b64
FW
5219 struct perf_raw_record raw = {
5220 .size = entry_size,
5221 .data = record,
5222 };
5223
fd0d000b 5224 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5225 data.raw = &raw;
5226
1c024eca
PZ
5227 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5228 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5229 perf_swevent_event(event, count, &data, regs);
4f41c013 5230 }
ecc55f84 5231
e6dab5ff
AV
5232 /*
5233 * If we got specified a target task, also iterate its context and
5234 * deliver this event there too.
5235 */
5236 if (task && task != current) {
5237 struct perf_event_context *ctx;
5238 struct trace_entry *entry = record;
5239
5240 rcu_read_lock();
5241 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5242 if (!ctx)
5243 goto unlock;
5244
5245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5246 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5247 continue;
5248 if (event->attr.config != entry->type)
5249 continue;
5250 if (perf_tp_event_match(event, &data, regs))
5251 perf_swevent_event(event, count, &data, regs);
5252 }
5253unlock:
5254 rcu_read_unlock();
5255 }
5256
ecc55f84 5257 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5258}
5259EXPORT_SYMBOL_GPL(perf_tp_event);
5260
cdd6c482 5261static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5262{
1c024eca 5263 perf_trace_destroy(event);
e077df4f
PZ
5264}
5265
b0a873eb 5266static int perf_tp_event_init(struct perf_event *event)
e077df4f 5267{
76e1d904
FW
5268 int err;
5269
b0a873eb
PZ
5270 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5271 return -ENOENT;
5272
2481c5fa
SE
5273 /*
5274 * no branch sampling for tracepoint events
5275 */
5276 if (has_branch_stack(event))
5277 return -EOPNOTSUPP;
5278
1c024eca
PZ
5279 err = perf_trace_init(event);
5280 if (err)
b0a873eb 5281 return err;
e077df4f 5282
cdd6c482 5283 event->destroy = tp_perf_event_destroy;
e077df4f 5284
b0a873eb
PZ
5285 return 0;
5286}
5287
5288static struct pmu perf_tracepoint = {
89a1e187
PZ
5289 .task_ctx_nr = perf_sw_context,
5290
b0a873eb 5291 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5292 .add = perf_trace_add,
5293 .del = perf_trace_del,
5294 .start = perf_swevent_start,
5295 .stop = perf_swevent_stop,
b0a873eb 5296 .read = perf_swevent_read,
35edc2a5
PZ
5297
5298 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5299};
5300
5301static inline void perf_tp_register(void)
5302{
2e80a82a 5303 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5304}
6fb2915d
LZ
5305
5306static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5307{
5308 char *filter_str;
5309 int ret;
5310
5311 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5312 return -EINVAL;
5313
5314 filter_str = strndup_user(arg, PAGE_SIZE);
5315 if (IS_ERR(filter_str))
5316 return PTR_ERR(filter_str);
5317
5318 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5319
5320 kfree(filter_str);
5321 return ret;
5322}
5323
5324static void perf_event_free_filter(struct perf_event *event)
5325{
5326 ftrace_profile_free_filter(event);
5327}
5328
e077df4f 5329#else
6fb2915d 5330
b0a873eb 5331static inline void perf_tp_register(void)
e077df4f 5332{
e077df4f 5333}
6fb2915d
LZ
5334
5335static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5336{
5337 return -ENOENT;
5338}
5339
5340static void perf_event_free_filter(struct perf_event *event)
5341{
5342}
5343
07b139c8 5344#endif /* CONFIG_EVENT_TRACING */
e077df4f 5345
24f1e32c 5346#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5347void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5348{
f5ffe02e
FW
5349 struct perf_sample_data sample;
5350 struct pt_regs *regs = data;
5351
fd0d000b 5352 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5353
a4eaf7f1 5354 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5355 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5356}
5357#endif
5358
b0a873eb
PZ
5359/*
5360 * hrtimer based swevent callback
5361 */
f29ac756 5362
b0a873eb 5363static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5364{
b0a873eb
PZ
5365 enum hrtimer_restart ret = HRTIMER_RESTART;
5366 struct perf_sample_data data;
5367 struct pt_regs *regs;
5368 struct perf_event *event;
5369 u64 period;
f29ac756 5370
b0a873eb 5371 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5372
5373 if (event->state != PERF_EVENT_STATE_ACTIVE)
5374 return HRTIMER_NORESTART;
5375
b0a873eb 5376 event->pmu->read(event);
f344011c 5377
fd0d000b 5378 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5379 regs = get_irq_regs();
5380
5381 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5382 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5383 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5384 ret = HRTIMER_NORESTART;
5385 }
24f1e32c 5386
b0a873eb
PZ
5387 period = max_t(u64, 10000, event->hw.sample_period);
5388 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5389
b0a873eb 5390 return ret;
f29ac756
PZ
5391}
5392
b0a873eb 5393static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5394{
b0a873eb 5395 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5396 s64 period;
5397
5398 if (!is_sampling_event(event))
5399 return;
f5ffe02e 5400
5d508e82
FBH
5401 period = local64_read(&hwc->period_left);
5402 if (period) {
5403 if (period < 0)
5404 period = 10000;
fa407f35 5405
5d508e82
FBH
5406 local64_set(&hwc->period_left, 0);
5407 } else {
5408 period = max_t(u64, 10000, hwc->sample_period);
5409 }
5410 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5411 ns_to_ktime(period), 0,
b5ab4cd5 5412 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5413}
b0a873eb
PZ
5414
5415static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5416{
b0a873eb
PZ
5417 struct hw_perf_event *hwc = &event->hw;
5418
6c7e550f 5419 if (is_sampling_event(event)) {
b0a873eb 5420 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5421 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5422
5423 hrtimer_cancel(&hwc->hrtimer);
5424 }
24f1e32c
FW
5425}
5426
ba3dd36c
PZ
5427static void perf_swevent_init_hrtimer(struct perf_event *event)
5428{
5429 struct hw_perf_event *hwc = &event->hw;
5430
5431 if (!is_sampling_event(event))
5432 return;
5433
5434 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5435 hwc->hrtimer.function = perf_swevent_hrtimer;
5436
5437 /*
5438 * Since hrtimers have a fixed rate, we can do a static freq->period
5439 * mapping and avoid the whole period adjust feedback stuff.
5440 */
5441 if (event->attr.freq) {
5442 long freq = event->attr.sample_freq;
5443
5444 event->attr.sample_period = NSEC_PER_SEC / freq;
5445 hwc->sample_period = event->attr.sample_period;
5446 local64_set(&hwc->period_left, hwc->sample_period);
5447 event->attr.freq = 0;
5448 }
5449}
5450
b0a873eb
PZ
5451/*
5452 * Software event: cpu wall time clock
5453 */
5454
5455static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5456{
b0a873eb
PZ
5457 s64 prev;
5458 u64 now;
5459
a4eaf7f1 5460 now = local_clock();
b0a873eb
PZ
5461 prev = local64_xchg(&event->hw.prev_count, now);
5462 local64_add(now - prev, &event->count);
24f1e32c 5463}
24f1e32c 5464
a4eaf7f1 5465static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5466{
a4eaf7f1 5467 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5468 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5469}
5470
a4eaf7f1 5471static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5472{
b0a873eb
PZ
5473 perf_swevent_cancel_hrtimer(event);
5474 cpu_clock_event_update(event);
5475}
f29ac756 5476
a4eaf7f1
PZ
5477static int cpu_clock_event_add(struct perf_event *event, int flags)
5478{
5479 if (flags & PERF_EF_START)
5480 cpu_clock_event_start(event, flags);
5481
5482 return 0;
5483}
5484
5485static void cpu_clock_event_del(struct perf_event *event, int flags)
5486{
5487 cpu_clock_event_stop(event, flags);
5488}
5489
b0a873eb
PZ
5490static void cpu_clock_event_read(struct perf_event *event)
5491{
5492 cpu_clock_event_update(event);
5493}
f344011c 5494
b0a873eb
PZ
5495static int cpu_clock_event_init(struct perf_event *event)
5496{
5497 if (event->attr.type != PERF_TYPE_SOFTWARE)
5498 return -ENOENT;
5499
5500 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5501 return -ENOENT;
5502
2481c5fa
SE
5503 /*
5504 * no branch sampling for software events
5505 */
5506 if (has_branch_stack(event))
5507 return -EOPNOTSUPP;
5508
ba3dd36c
PZ
5509 perf_swevent_init_hrtimer(event);
5510
b0a873eb 5511 return 0;
f29ac756
PZ
5512}
5513
b0a873eb 5514static struct pmu perf_cpu_clock = {
89a1e187
PZ
5515 .task_ctx_nr = perf_sw_context,
5516
b0a873eb 5517 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5518 .add = cpu_clock_event_add,
5519 .del = cpu_clock_event_del,
5520 .start = cpu_clock_event_start,
5521 .stop = cpu_clock_event_stop,
b0a873eb 5522 .read = cpu_clock_event_read,
35edc2a5
PZ
5523
5524 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5525};
5526
5527/*
5528 * Software event: task time clock
5529 */
5530
5531static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5532{
b0a873eb
PZ
5533 u64 prev;
5534 s64 delta;
5c92d124 5535
b0a873eb
PZ
5536 prev = local64_xchg(&event->hw.prev_count, now);
5537 delta = now - prev;
5538 local64_add(delta, &event->count);
5539}
5c92d124 5540
a4eaf7f1 5541static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5542{
a4eaf7f1 5543 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5544 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5545}
5546
a4eaf7f1 5547static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5548{
5549 perf_swevent_cancel_hrtimer(event);
5550 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5551}
5552
5553static int task_clock_event_add(struct perf_event *event, int flags)
5554{
5555 if (flags & PERF_EF_START)
5556 task_clock_event_start(event, flags);
b0a873eb 5557
a4eaf7f1
PZ
5558 return 0;
5559}
5560
5561static void task_clock_event_del(struct perf_event *event, int flags)
5562{
5563 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5564}
5565
5566static void task_clock_event_read(struct perf_event *event)
5567{
768a06e2
PZ
5568 u64 now = perf_clock();
5569 u64 delta = now - event->ctx->timestamp;
5570 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5571
5572 task_clock_event_update(event, time);
5573}
5574
5575static int task_clock_event_init(struct perf_event *event)
6fb2915d 5576{
b0a873eb
PZ
5577 if (event->attr.type != PERF_TYPE_SOFTWARE)
5578 return -ENOENT;
5579
5580 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5581 return -ENOENT;
5582
2481c5fa
SE
5583 /*
5584 * no branch sampling for software events
5585 */
5586 if (has_branch_stack(event))
5587 return -EOPNOTSUPP;
5588
ba3dd36c
PZ
5589 perf_swevent_init_hrtimer(event);
5590
b0a873eb 5591 return 0;
6fb2915d
LZ
5592}
5593
b0a873eb 5594static struct pmu perf_task_clock = {
89a1e187
PZ
5595 .task_ctx_nr = perf_sw_context,
5596
b0a873eb 5597 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5598 .add = task_clock_event_add,
5599 .del = task_clock_event_del,
5600 .start = task_clock_event_start,
5601 .stop = task_clock_event_stop,
b0a873eb 5602 .read = task_clock_event_read,
35edc2a5
PZ
5603
5604 .event_idx = perf_swevent_event_idx,
b0a873eb 5605};
6fb2915d 5606
ad5133b7 5607static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5608{
e077df4f 5609}
6fb2915d 5610
ad5133b7 5611static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5612{
ad5133b7 5613 return 0;
6fb2915d
LZ
5614}
5615
ad5133b7 5616static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5617{
ad5133b7 5618 perf_pmu_disable(pmu);
6fb2915d
LZ
5619}
5620
ad5133b7
PZ
5621static int perf_pmu_commit_txn(struct pmu *pmu)
5622{
5623 perf_pmu_enable(pmu);
5624 return 0;
5625}
e077df4f 5626
ad5133b7 5627static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5628{
ad5133b7 5629 perf_pmu_enable(pmu);
24f1e32c
FW
5630}
5631
35edc2a5
PZ
5632static int perf_event_idx_default(struct perf_event *event)
5633{
5634 return event->hw.idx + 1;
5635}
5636
8dc85d54
PZ
5637/*
5638 * Ensures all contexts with the same task_ctx_nr have the same
5639 * pmu_cpu_context too.
5640 */
5641static void *find_pmu_context(int ctxn)
24f1e32c 5642{
8dc85d54 5643 struct pmu *pmu;
b326e956 5644
8dc85d54
PZ
5645 if (ctxn < 0)
5646 return NULL;
24f1e32c 5647
8dc85d54
PZ
5648 list_for_each_entry(pmu, &pmus, entry) {
5649 if (pmu->task_ctx_nr == ctxn)
5650 return pmu->pmu_cpu_context;
5651 }
24f1e32c 5652
8dc85d54 5653 return NULL;
24f1e32c
FW
5654}
5655
51676957 5656static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5657{
51676957
PZ
5658 int cpu;
5659
5660 for_each_possible_cpu(cpu) {
5661 struct perf_cpu_context *cpuctx;
5662
5663 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5664
5665 if (cpuctx->active_pmu == old_pmu)
5666 cpuctx->active_pmu = pmu;
5667 }
5668}
5669
5670static void free_pmu_context(struct pmu *pmu)
5671{
5672 struct pmu *i;
f5ffe02e 5673
8dc85d54 5674 mutex_lock(&pmus_lock);
0475f9ea 5675 /*
8dc85d54 5676 * Like a real lame refcount.
0475f9ea 5677 */
51676957
PZ
5678 list_for_each_entry(i, &pmus, entry) {
5679 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5680 update_pmu_context(i, pmu);
8dc85d54 5681 goto out;
51676957 5682 }
8dc85d54 5683 }
d6d020e9 5684
51676957 5685 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5686out:
5687 mutex_unlock(&pmus_lock);
24f1e32c 5688}
2e80a82a 5689static struct idr pmu_idr;
d6d020e9 5690
abe43400
PZ
5691static ssize_t
5692type_show(struct device *dev, struct device_attribute *attr, char *page)
5693{
5694 struct pmu *pmu = dev_get_drvdata(dev);
5695
5696 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5697}
5698
5699static struct device_attribute pmu_dev_attrs[] = {
5700 __ATTR_RO(type),
5701 __ATTR_NULL,
5702};
5703
5704static int pmu_bus_running;
5705static struct bus_type pmu_bus = {
5706 .name = "event_source",
5707 .dev_attrs = pmu_dev_attrs,
5708};
5709
5710static void pmu_dev_release(struct device *dev)
5711{
5712 kfree(dev);
5713}
5714
5715static int pmu_dev_alloc(struct pmu *pmu)
5716{
5717 int ret = -ENOMEM;
5718
5719 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5720 if (!pmu->dev)
5721 goto out;
5722
0c9d42ed 5723 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5724 device_initialize(pmu->dev);
5725 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5726 if (ret)
5727 goto free_dev;
5728
5729 dev_set_drvdata(pmu->dev, pmu);
5730 pmu->dev->bus = &pmu_bus;
5731 pmu->dev->release = pmu_dev_release;
5732 ret = device_add(pmu->dev);
5733 if (ret)
5734 goto free_dev;
5735
5736out:
5737 return ret;
5738
5739free_dev:
5740 put_device(pmu->dev);
5741 goto out;
5742}
5743
547e9fd7 5744static struct lock_class_key cpuctx_mutex;
facc4307 5745static struct lock_class_key cpuctx_lock;
547e9fd7 5746
2e80a82a 5747int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5748{
108b02cf 5749 int cpu, ret;
24f1e32c 5750
b0a873eb 5751 mutex_lock(&pmus_lock);
33696fc0
PZ
5752 ret = -ENOMEM;
5753 pmu->pmu_disable_count = alloc_percpu(int);
5754 if (!pmu->pmu_disable_count)
5755 goto unlock;
f29ac756 5756
2e80a82a
PZ
5757 pmu->type = -1;
5758 if (!name)
5759 goto skip_type;
5760 pmu->name = name;
5761
5762 if (type < 0) {
5763 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5764 if (!err)
5765 goto free_pdc;
5766
5767 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5768 if (err) {
5769 ret = err;
5770 goto free_pdc;
5771 }
5772 }
5773 pmu->type = type;
5774
abe43400
PZ
5775 if (pmu_bus_running) {
5776 ret = pmu_dev_alloc(pmu);
5777 if (ret)
5778 goto free_idr;
5779 }
5780
2e80a82a 5781skip_type:
8dc85d54
PZ
5782 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5783 if (pmu->pmu_cpu_context)
5784 goto got_cpu_context;
f29ac756 5785
108b02cf
PZ
5786 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5787 if (!pmu->pmu_cpu_context)
abe43400 5788 goto free_dev;
f344011c 5789
108b02cf
PZ
5790 for_each_possible_cpu(cpu) {
5791 struct perf_cpu_context *cpuctx;
5792
5793 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5794 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5795 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5796 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5797 cpuctx->ctx.type = cpu_context;
108b02cf 5798 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5799 cpuctx->jiffies_interval = 1;
5800 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5801 cpuctx->active_pmu = pmu;
108b02cf 5802 }
76e1d904 5803
8dc85d54 5804got_cpu_context:
ad5133b7
PZ
5805 if (!pmu->start_txn) {
5806 if (pmu->pmu_enable) {
5807 /*
5808 * If we have pmu_enable/pmu_disable calls, install
5809 * transaction stubs that use that to try and batch
5810 * hardware accesses.
5811 */
5812 pmu->start_txn = perf_pmu_start_txn;
5813 pmu->commit_txn = perf_pmu_commit_txn;
5814 pmu->cancel_txn = perf_pmu_cancel_txn;
5815 } else {
5816 pmu->start_txn = perf_pmu_nop_void;
5817 pmu->commit_txn = perf_pmu_nop_int;
5818 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5819 }
5c92d124 5820 }
15dbf27c 5821
ad5133b7
PZ
5822 if (!pmu->pmu_enable) {
5823 pmu->pmu_enable = perf_pmu_nop_void;
5824 pmu->pmu_disable = perf_pmu_nop_void;
5825 }
5826
35edc2a5
PZ
5827 if (!pmu->event_idx)
5828 pmu->event_idx = perf_event_idx_default;
5829
b0a873eb 5830 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5831 ret = 0;
5832unlock:
b0a873eb
PZ
5833 mutex_unlock(&pmus_lock);
5834
33696fc0 5835 return ret;
108b02cf 5836
abe43400
PZ
5837free_dev:
5838 device_del(pmu->dev);
5839 put_device(pmu->dev);
5840
2e80a82a
PZ
5841free_idr:
5842 if (pmu->type >= PERF_TYPE_MAX)
5843 idr_remove(&pmu_idr, pmu->type);
5844
108b02cf
PZ
5845free_pdc:
5846 free_percpu(pmu->pmu_disable_count);
5847 goto unlock;
f29ac756
PZ
5848}
5849
b0a873eb 5850void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5851{
b0a873eb
PZ
5852 mutex_lock(&pmus_lock);
5853 list_del_rcu(&pmu->entry);
5854 mutex_unlock(&pmus_lock);
5c92d124 5855
0475f9ea 5856 /*
cde8e884
PZ
5857 * We dereference the pmu list under both SRCU and regular RCU, so
5858 * synchronize against both of those.
0475f9ea 5859 */
b0a873eb 5860 synchronize_srcu(&pmus_srcu);
cde8e884 5861 synchronize_rcu();
d6d020e9 5862
33696fc0 5863 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5864 if (pmu->type >= PERF_TYPE_MAX)
5865 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5866 device_del(pmu->dev);
5867 put_device(pmu->dev);
51676957 5868 free_pmu_context(pmu);
b0a873eb 5869}
d6d020e9 5870
b0a873eb
PZ
5871struct pmu *perf_init_event(struct perf_event *event)
5872{
5873 struct pmu *pmu = NULL;
5874 int idx;
940c5b29 5875 int ret;
b0a873eb
PZ
5876
5877 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5878
5879 rcu_read_lock();
5880 pmu = idr_find(&pmu_idr, event->attr.type);
5881 rcu_read_unlock();
940c5b29 5882 if (pmu) {
7e5b2a01 5883 event->pmu = pmu;
940c5b29
LM
5884 ret = pmu->event_init(event);
5885 if (ret)
5886 pmu = ERR_PTR(ret);
2e80a82a 5887 goto unlock;
940c5b29 5888 }
2e80a82a 5889
b0a873eb 5890 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5891 event->pmu = pmu;
940c5b29 5892 ret = pmu->event_init(event);
b0a873eb 5893 if (!ret)
e5f4d339 5894 goto unlock;
76e1d904 5895
b0a873eb
PZ
5896 if (ret != -ENOENT) {
5897 pmu = ERR_PTR(ret);
e5f4d339 5898 goto unlock;
f344011c 5899 }
5c92d124 5900 }
e5f4d339
PZ
5901 pmu = ERR_PTR(-ENOENT);
5902unlock:
b0a873eb 5903 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5904
4aeb0b42 5905 return pmu;
5c92d124
IM
5906}
5907
0793a61d 5908/*
cdd6c482 5909 * Allocate and initialize a event structure
0793a61d 5910 */
cdd6c482 5911static struct perf_event *
c3f00c70 5912perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5913 struct task_struct *task,
5914 struct perf_event *group_leader,
5915 struct perf_event *parent_event,
4dc0da86
AK
5916 perf_overflow_handler_t overflow_handler,
5917 void *context)
0793a61d 5918{
51b0fe39 5919 struct pmu *pmu;
cdd6c482
IM
5920 struct perf_event *event;
5921 struct hw_perf_event *hwc;
d5d2bc0d 5922 long err;
0793a61d 5923
66832eb4
ON
5924 if ((unsigned)cpu >= nr_cpu_ids) {
5925 if (!task || cpu != -1)
5926 return ERR_PTR(-EINVAL);
5927 }
5928
c3f00c70 5929 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5930 if (!event)
d5d2bc0d 5931 return ERR_PTR(-ENOMEM);
0793a61d 5932
04289bb9 5933 /*
cdd6c482 5934 * Single events are their own group leaders, with an
04289bb9
IM
5935 * empty sibling list:
5936 */
5937 if (!group_leader)
cdd6c482 5938 group_leader = event;
04289bb9 5939
cdd6c482
IM
5940 mutex_init(&event->child_mutex);
5941 INIT_LIST_HEAD(&event->child_list);
fccc714b 5942
cdd6c482
IM
5943 INIT_LIST_HEAD(&event->group_entry);
5944 INIT_LIST_HEAD(&event->event_entry);
5945 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5946 INIT_LIST_HEAD(&event->rb_entry);
5947
cdd6c482 5948 init_waitqueue_head(&event->waitq);
e360adbe 5949 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5950
cdd6c482 5951 mutex_init(&event->mmap_mutex);
7b732a75 5952
cdd6c482
IM
5953 event->cpu = cpu;
5954 event->attr = *attr;
5955 event->group_leader = group_leader;
5956 event->pmu = NULL;
cdd6c482 5957 event->oncpu = -1;
a96bbc16 5958
cdd6c482 5959 event->parent = parent_event;
b84fbc9f 5960
cdd6c482
IM
5961 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5962 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5963
cdd6c482 5964 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5965
d580ff86
PZ
5966 if (task) {
5967 event->attach_state = PERF_ATTACH_TASK;
5968#ifdef CONFIG_HAVE_HW_BREAKPOINT
5969 /*
5970 * hw_breakpoint is a bit difficult here..
5971 */
5972 if (attr->type == PERF_TYPE_BREAKPOINT)
5973 event->hw.bp_target = task;
5974#endif
5975 }
5976
4dc0da86 5977 if (!overflow_handler && parent_event) {
b326e956 5978 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5979 context = parent_event->overflow_handler_context;
5980 }
66832eb4 5981
b326e956 5982 event->overflow_handler = overflow_handler;
4dc0da86 5983 event->overflow_handler_context = context;
97eaf530 5984
0d48696f 5985 if (attr->disabled)
cdd6c482 5986 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5987
4aeb0b42 5988 pmu = NULL;
b8e83514 5989
cdd6c482 5990 hwc = &event->hw;
bd2b5b12 5991 hwc->sample_period = attr->sample_period;
0d48696f 5992 if (attr->freq && attr->sample_freq)
bd2b5b12 5993 hwc->sample_period = 1;
eced1dfc 5994 hwc->last_period = hwc->sample_period;
bd2b5b12 5995
e7850595 5996 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5997
2023b359 5998 /*
cdd6c482 5999 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6000 */
3dab77fb 6001 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6002 goto done;
6003
b0a873eb 6004 pmu = perf_init_event(event);
974802ea 6005
d5d2bc0d
PM
6006done:
6007 err = 0;
4aeb0b42 6008 if (!pmu)
d5d2bc0d 6009 err = -EINVAL;
4aeb0b42
RR
6010 else if (IS_ERR(pmu))
6011 err = PTR_ERR(pmu);
5c92d124 6012
d5d2bc0d 6013 if (err) {
cdd6c482
IM
6014 if (event->ns)
6015 put_pid_ns(event->ns);
6016 kfree(event);
d5d2bc0d 6017 return ERR_PTR(err);
621a01ea 6018 }
d5d2bc0d 6019
cdd6c482 6020 if (!event->parent) {
82cd6def 6021 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6022 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6023 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6024 atomic_inc(&nr_mmap_events);
6025 if (event->attr.comm)
6026 atomic_inc(&nr_comm_events);
6027 if (event->attr.task)
6028 atomic_inc(&nr_task_events);
927c7a9e
FW
6029 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6030 err = get_callchain_buffers();
6031 if (err) {
6032 free_event(event);
6033 return ERR_PTR(err);
6034 }
6035 }
d010b332
SE
6036 if (has_branch_stack(event)) {
6037 static_key_slow_inc(&perf_sched_events.key);
6038 if (!(event->attach_state & PERF_ATTACH_TASK))
6039 atomic_inc(&per_cpu(perf_branch_stack_events,
6040 event->cpu));
6041 }
f344011c 6042 }
9ee318a7 6043
cdd6c482 6044 return event;
0793a61d
TG
6045}
6046
cdd6c482
IM
6047static int perf_copy_attr(struct perf_event_attr __user *uattr,
6048 struct perf_event_attr *attr)
974802ea 6049{
974802ea 6050 u32 size;
cdf8073d 6051 int ret;
974802ea
PZ
6052
6053 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6054 return -EFAULT;
6055
6056 /*
6057 * zero the full structure, so that a short copy will be nice.
6058 */
6059 memset(attr, 0, sizeof(*attr));
6060
6061 ret = get_user(size, &uattr->size);
6062 if (ret)
6063 return ret;
6064
6065 if (size > PAGE_SIZE) /* silly large */
6066 goto err_size;
6067
6068 if (!size) /* abi compat */
6069 size = PERF_ATTR_SIZE_VER0;
6070
6071 if (size < PERF_ATTR_SIZE_VER0)
6072 goto err_size;
6073
6074 /*
6075 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6076 * ensure all the unknown bits are 0 - i.e. new
6077 * user-space does not rely on any kernel feature
6078 * extensions we dont know about yet.
974802ea
PZ
6079 */
6080 if (size > sizeof(*attr)) {
cdf8073d
IS
6081 unsigned char __user *addr;
6082 unsigned char __user *end;
6083 unsigned char val;
974802ea 6084
cdf8073d
IS
6085 addr = (void __user *)uattr + sizeof(*attr);
6086 end = (void __user *)uattr + size;
974802ea 6087
cdf8073d 6088 for (; addr < end; addr++) {
974802ea
PZ
6089 ret = get_user(val, addr);
6090 if (ret)
6091 return ret;
6092 if (val)
6093 goto err_size;
6094 }
b3e62e35 6095 size = sizeof(*attr);
974802ea
PZ
6096 }
6097
6098 ret = copy_from_user(attr, uattr, size);
6099 if (ret)
6100 return -EFAULT;
6101
cd757645 6102 if (attr->__reserved_1)
974802ea
PZ
6103 return -EINVAL;
6104
6105 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6106 return -EINVAL;
6107
6108 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6109 return -EINVAL;
6110
bce38cd5
SE
6111 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6112 u64 mask = attr->branch_sample_type;
6113
6114 /* only using defined bits */
6115 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6116 return -EINVAL;
6117
6118 /* at least one branch bit must be set */
6119 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6120 return -EINVAL;
6121
6122 /* kernel level capture: check permissions */
6123 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6124 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6125 return -EACCES;
6126
6127 /* propagate priv level, when not set for branch */
6128 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6129
6130 /* exclude_kernel checked on syscall entry */
6131 if (!attr->exclude_kernel)
6132 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6133
6134 if (!attr->exclude_user)
6135 mask |= PERF_SAMPLE_BRANCH_USER;
6136
6137 if (!attr->exclude_hv)
6138 mask |= PERF_SAMPLE_BRANCH_HV;
6139 /*
6140 * adjust user setting (for HW filter setup)
6141 */
6142 attr->branch_sample_type = mask;
6143 }
6144 }
974802ea
PZ
6145out:
6146 return ret;
6147
6148err_size:
6149 put_user(sizeof(*attr), &uattr->size);
6150 ret = -E2BIG;
6151 goto out;
6152}
6153
ac9721f3
PZ
6154static int
6155perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6156{
76369139 6157 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6158 int ret = -EINVAL;
6159
ac9721f3 6160 if (!output_event)
a4be7c27
PZ
6161 goto set;
6162
ac9721f3
PZ
6163 /* don't allow circular references */
6164 if (event == output_event)
a4be7c27
PZ
6165 goto out;
6166
0f139300
PZ
6167 /*
6168 * Don't allow cross-cpu buffers
6169 */
6170 if (output_event->cpu != event->cpu)
6171 goto out;
6172
6173 /*
76369139 6174 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6175 */
6176 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6177 goto out;
6178
a4be7c27 6179set:
cdd6c482 6180 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6181 /* Can't redirect output if we've got an active mmap() */
6182 if (atomic_read(&event->mmap_count))
6183 goto unlock;
a4be7c27 6184
ac9721f3 6185 if (output_event) {
76369139
FW
6186 /* get the rb we want to redirect to */
6187 rb = ring_buffer_get(output_event);
6188 if (!rb)
ac9721f3 6189 goto unlock;
a4be7c27
PZ
6190 }
6191
76369139
FW
6192 old_rb = event->rb;
6193 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6194 if (old_rb)
6195 ring_buffer_detach(event, old_rb);
a4be7c27 6196 ret = 0;
ac9721f3
PZ
6197unlock:
6198 mutex_unlock(&event->mmap_mutex);
6199
76369139
FW
6200 if (old_rb)
6201 ring_buffer_put(old_rb);
a4be7c27 6202out:
a4be7c27
PZ
6203 return ret;
6204}
6205
0793a61d 6206/**
cdd6c482 6207 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6208 *
cdd6c482 6209 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6210 * @pid: target pid
9f66a381 6211 * @cpu: target cpu
cdd6c482 6212 * @group_fd: group leader event fd
0793a61d 6213 */
cdd6c482
IM
6214SYSCALL_DEFINE5(perf_event_open,
6215 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6216 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6217{
b04243ef
PZ
6218 struct perf_event *group_leader = NULL, *output_event = NULL;
6219 struct perf_event *event, *sibling;
cdd6c482
IM
6220 struct perf_event_attr attr;
6221 struct perf_event_context *ctx;
6222 struct file *event_file = NULL;
04289bb9 6223 struct file *group_file = NULL;
38a81da2 6224 struct task_struct *task = NULL;
89a1e187 6225 struct pmu *pmu;
ea635c64 6226 int event_fd;
b04243ef 6227 int move_group = 0;
04289bb9 6228 int fput_needed = 0;
dc86cabe 6229 int err;
0793a61d 6230
2743a5b0 6231 /* for future expandability... */
e5d1367f 6232 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6233 return -EINVAL;
6234
dc86cabe
IM
6235 err = perf_copy_attr(attr_uptr, &attr);
6236 if (err)
6237 return err;
eab656ae 6238
0764771d
PZ
6239 if (!attr.exclude_kernel) {
6240 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6241 return -EACCES;
6242 }
6243
df58ab24 6244 if (attr.freq) {
cdd6c482 6245 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6246 return -EINVAL;
6247 }
6248
e5d1367f
SE
6249 /*
6250 * In cgroup mode, the pid argument is used to pass the fd
6251 * opened to the cgroup directory in cgroupfs. The cpu argument
6252 * designates the cpu on which to monitor threads from that
6253 * cgroup.
6254 */
6255 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6256 return -EINVAL;
6257
ea635c64
AV
6258 event_fd = get_unused_fd_flags(O_RDWR);
6259 if (event_fd < 0)
6260 return event_fd;
6261
ac9721f3
PZ
6262 if (group_fd != -1) {
6263 group_leader = perf_fget_light(group_fd, &fput_needed);
6264 if (IS_ERR(group_leader)) {
6265 err = PTR_ERR(group_leader);
d14b12d7 6266 goto err_fd;
ac9721f3
PZ
6267 }
6268 group_file = group_leader->filp;
6269 if (flags & PERF_FLAG_FD_OUTPUT)
6270 output_event = group_leader;
6271 if (flags & PERF_FLAG_FD_NO_GROUP)
6272 group_leader = NULL;
6273 }
6274
e5d1367f 6275 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6276 task = find_lively_task_by_vpid(pid);
6277 if (IS_ERR(task)) {
6278 err = PTR_ERR(task);
6279 goto err_group_fd;
6280 }
6281 }
6282
fbfc623f
YZ
6283 get_online_cpus();
6284
4dc0da86
AK
6285 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6286 NULL, NULL);
d14b12d7
SE
6287 if (IS_ERR(event)) {
6288 err = PTR_ERR(event);
c6be5a5c 6289 goto err_task;
d14b12d7
SE
6290 }
6291
e5d1367f
SE
6292 if (flags & PERF_FLAG_PID_CGROUP) {
6293 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6294 if (err)
6295 goto err_alloc;
08309379
PZ
6296 /*
6297 * one more event:
6298 * - that has cgroup constraint on event->cpu
6299 * - that may need work on context switch
6300 */
6301 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6302 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6303 }
6304
89a1e187
PZ
6305 /*
6306 * Special case software events and allow them to be part of
6307 * any hardware group.
6308 */
6309 pmu = event->pmu;
b04243ef
PZ
6310
6311 if (group_leader &&
6312 (is_software_event(event) != is_software_event(group_leader))) {
6313 if (is_software_event(event)) {
6314 /*
6315 * If event and group_leader are not both a software
6316 * event, and event is, then group leader is not.
6317 *
6318 * Allow the addition of software events to !software
6319 * groups, this is safe because software events never
6320 * fail to schedule.
6321 */
6322 pmu = group_leader->pmu;
6323 } else if (is_software_event(group_leader) &&
6324 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6325 /*
6326 * In case the group is a pure software group, and we
6327 * try to add a hardware event, move the whole group to
6328 * the hardware context.
6329 */
6330 move_group = 1;
6331 }
6332 }
89a1e187
PZ
6333
6334 /*
6335 * Get the target context (task or percpu):
6336 */
e2d37cd2 6337 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6338 if (IS_ERR(ctx)) {
6339 err = PTR_ERR(ctx);
c6be5a5c 6340 goto err_alloc;
89a1e187
PZ
6341 }
6342
fd1edb3a
PZ
6343 if (task) {
6344 put_task_struct(task);
6345 task = NULL;
6346 }
6347
ccff286d 6348 /*
cdd6c482 6349 * Look up the group leader (we will attach this event to it):
04289bb9 6350 */
ac9721f3 6351 if (group_leader) {
dc86cabe 6352 err = -EINVAL;
04289bb9 6353
04289bb9 6354 /*
ccff286d
IM
6355 * Do not allow a recursive hierarchy (this new sibling
6356 * becoming part of another group-sibling):
6357 */
6358 if (group_leader->group_leader != group_leader)
c3f00c70 6359 goto err_context;
ccff286d
IM
6360 /*
6361 * Do not allow to attach to a group in a different
6362 * task or CPU context:
04289bb9 6363 */
b04243ef
PZ
6364 if (move_group) {
6365 if (group_leader->ctx->type != ctx->type)
6366 goto err_context;
6367 } else {
6368 if (group_leader->ctx != ctx)
6369 goto err_context;
6370 }
6371
3b6f9e5c
PM
6372 /*
6373 * Only a group leader can be exclusive or pinned
6374 */
0d48696f 6375 if (attr.exclusive || attr.pinned)
c3f00c70 6376 goto err_context;
ac9721f3
PZ
6377 }
6378
6379 if (output_event) {
6380 err = perf_event_set_output(event, output_event);
6381 if (err)
c3f00c70 6382 goto err_context;
ac9721f3 6383 }
0793a61d 6384
ea635c64
AV
6385 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6386 if (IS_ERR(event_file)) {
6387 err = PTR_ERR(event_file);
c3f00c70 6388 goto err_context;
ea635c64 6389 }
9b51f66d 6390
b04243ef
PZ
6391 if (move_group) {
6392 struct perf_event_context *gctx = group_leader->ctx;
6393
6394 mutex_lock(&gctx->mutex);
fe4b04fa 6395 perf_remove_from_context(group_leader);
b04243ef
PZ
6396 list_for_each_entry(sibling, &group_leader->sibling_list,
6397 group_entry) {
fe4b04fa 6398 perf_remove_from_context(sibling);
b04243ef
PZ
6399 put_ctx(gctx);
6400 }
6401 mutex_unlock(&gctx->mutex);
6402 put_ctx(gctx);
ea635c64 6403 }
9b51f66d 6404
cdd6c482 6405 event->filp = event_file;
ad3a37de 6406 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6407 mutex_lock(&ctx->mutex);
b04243ef
PZ
6408
6409 if (move_group) {
0cda4c02 6410 synchronize_rcu();
e2d37cd2 6411 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6412 get_ctx(ctx);
6413 list_for_each_entry(sibling, &group_leader->sibling_list,
6414 group_entry) {
e2d37cd2 6415 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6416 get_ctx(ctx);
6417 }
6418 }
6419
e2d37cd2 6420 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6421 ++ctx->generation;
fe4b04fa 6422 perf_unpin_context(ctx);
d859e29f 6423 mutex_unlock(&ctx->mutex);
9b51f66d 6424
fbfc623f
YZ
6425 put_online_cpus();
6426
cdd6c482 6427 event->owner = current;
8882135b 6428
cdd6c482
IM
6429 mutex_lock(&current->perf_event_mutex);
6430 list_add_tail(&event->owner_entry, &current->perf_event_list);
6431 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6432
c320c7b7
ACM
6433 /*
6434 * Precalculate sample_data sizes
6435 */
6436 perf_event__header_size(event);
6844c09d 6437 perf_event__id_header_size(event);
c320c7b7 6438
8a49542c
PZ
6439 /*
6440 * Drop the reference on the group_event after placing the
6441 * new event on the sibling_list. This ensures destruction
6442 * of the group leader will find the pointer to itself in
6443 * perf_group_detach().
6444 */
ea635c64
AV
6445 fput_light(group_file, fput_needed);
6446 fd_install(event_fd, event_file);
6447 return event_fd;
0793a61d 6448
c3f00c70 6449err_context:
fe4b04fa 6450 perf_unpin_context(ctx);
ea635c64 6451 put_ctx(ctx);
c6be5a5c 6452err_alloc:
ea635c64 6453 free_event(event);
e7d0bc04 6454err_task:
fbfc623f 6455 put_online_cpus();
e7d0bc04
PZ
6456 if (task)
6457 put_task_struct(task);
89a1e187 6458err_group_fd:
dc86cabe 6459 fput_light(group_file, fput_needed);
ea635c64
AV
6460err_fd:
6461 put_unused_fd(event_fd);
dc86cabe 6462 return err;
0793a61d
TG
6463}
6464
fb0459d7
AV
6465/**
6466 * perf_event_create_kernel_counter
6467 *
6468 * @attr: attributes of the counter to create
6469 * @cpu: cpu in which the counter is bound
38a81da2 6470 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6471 */
6472struct perf_event *
6473perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6474 struct task_struct *task,
4dc0da86
AK
6475 perf_overflow_handler_t overflow_handler,
6476 void *context)
fb0459d7 6477{
fb0459d7 6478 struct perf_event_context *ctx;
c3f00c70 6479 struct perf_event *event;
fb0459d7 6480 int err;
d859e29f 6481
fb0459d7
AV
6482 /*
6483 * Get the target context (task or percpu):
6484 */
d859e29f 6485
4dc0da86
AK
6486 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6487 overflow_handler, context);
c3f00c70
PZ
6488 if (IS_ERR(event)) {
6489 err = PTR_ERR(event);
6490 goto err;
6491 }
d859e29f 6492
38a81da2 6493 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6494 if (IS_ERR(ctx)) {
6495 err = PTR_ERR(ctx);
c3f00c70 6496 goto err_free;
d859e29f 6497 }
fb0459d7
AV
6498
6499 event->filp = NULL;
6500 WARN_ON_ONCE(ctx->parent_ctx);
6501 mutex_lock(&ctx->mutex);
6502 perf_install_in_context(ctx, event, cpu);
6503 ++ctx->generation;
fe4b04fa 6504 perf_unpin_context(ctx);
fb0459d7
AV
6505 mutex_unlock(&ctx->mutex);
6506
fb0459d7
AV
6507 return event;
6508
c3f00c70
PZ
6509err_free:
6510 free_event(event);
6511err:
c6567f64 6512 return ERR_PTR(err);
9b51f66d 6513}
fb0459d7 6514EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6515
0cda4c02
YZ
6516void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6517{
6518 struct perf_event_context *src_ctx;
6519 struct perf_event_context *dst_ctx;
6520 struct perf_event *event, *tmp;
6521 LIST_HEAD(events);
6522
6523 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6524 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6525
6526 mutex_lock(&src_ctx->mutex);
6527 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6528 event_entry) {
6529 perf_remove_from_context(event);
6530 put_ctx(src_ctx);
6531 list_add(&event->event_entry, &events);
6532 }
6533 mutex_unlock(&src_ctx->mutex);
6534
6535 synchronize_rcu();
6536
6537 mutex_lock(&dst_ctx->mutex);
6538 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6539 list_del(&event->event_entry);
6540 if (event->state >= PERF_EVENT_STATE_OFF)
6541 event->state = PERF_EVENT_STATE_INACTIVE;
6542 perf_install_in_context(dst_ctx, event, dst_cpu);
6543 get_ctx(dst_ctx);
6544 }
6545 mutex_unlock(&dst_ctx->mutex);
6546}
6547EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6548
cdd6c482 6549static void sync_child_event(struct perf_event *child_event,
38b200d6 6550 struct task_struct *child)
d859e29f 6551{
cdd6c482 6552 struct perf_event *parent_event = child_event->parent;
8bc20959 6553 u64 child_val;
d859e29f 6554
cdd6c482
IM
6555 if (child_event->attr.inherit_stat)
6556 perf_event_read_event(child_event, child);
38b200d6 6557
b5e58793 6558 child_val = perf_event_count(child_event);
d859e29f
PM
6559
6560 /*
6561 * Add back the child's count to the parent's count:
6562 */
a6e6dea6 6563 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6564 atomic64_add(child_event->total_time_enabled,
6565 &parent_event->child_total_time_enabled);
6566 atomic64_add(child_event->total_time_running,
6567 &parent_event->child_total_time_running);
d859e29f
PM
6568
6569 /*
cdd6c482 6570 * Remove this event from the parent's list
d859e29f 6571 */
cdd6c482
IM
6572 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6573 mutex_lock(&parent_event->child_mutex);
6574 list_del_init(&child_event->child_list);
6575 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6576
6577 /*
cdd6c482 6578 * Release the parent event, if this was the last
d859e29f
PM
6579 * reference to it.
6580 */
cdd6c482 6581 fput(parent_event->filp);
d859e29f
PM
6582}
6583
9b51f66d 6584static void
cdd6c482
IM
6585__perf_event_exit_task(struct perf_event *child_event,
6586 struct perf_event_context *child_ctx,
38b200d6 6587 struct task_struct *child)
9b51f66d 6588{
38b435b1
PZ
6589 if (child_event->parent) {
6590 raw_spin_lock_irq(&child_ctx->lock);
6591 perf_group_detach(child_event);
6592 raw_spin_unlock_irq(&child_ctx->lock);
6593 }
9b51f66d 6594
fe4b04fa 6595 perf_remove_from_context(child_event);
0cc0c027 6596
9b51f66d 6597 /*
38b435b1 6598 * It can happen that the parent exits first, and has events
9b51f66d 6599 * that are still around due to the child reference. These
38b435b1 6600 * events need to be zapped.
9b51f66d 6601 */
38b435b1 6602 if (child_event->parent) {
cdd6c482
IM
6603 sync_child_event(child_event, child);
6604 free_event(child_event);
4bcf349a 6605 }
9b51f66d
IM
6606}
6607
8dc85d54 6608static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6609{
cdd6c482
IM
6610 struct perf_event *child_event, *tmp;
6611 struct perf_event_context *child_ctx;
a63eaf34 6612 unsigned long flags;
9b51f66d 6613
8dc85d54 6614 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6615 perf_event_task(child, NULL, 0);
9b51f66d 6616 return;
9f498cc5 6617 }
9b51f66d 6618
a63eaf34 6619 local_irq_save(flags);
ad3a37de
PM
6620 /*
6621 * We can't reschedule here because interrupts are disabled,
6622 * and either child is current or it is a task that can't be
6623 * scheduled, so we are now safe from rescheduling changing
6624 * our context.
6625 */
806839b2 6626 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6627
6628 /*
6629 * Take the context lock here so that if find_get_context is
cdd6c482 6630 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6631 * incremented the context's refcount before we do put_ctx below.
6632 */
e625cce1 6633 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6634 task_ctx_sched_out(child_ctx);
8dc85d54 6635 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6636 /*
6637 * If this context is a clone; unclone it so it can't get
6638 * swapped to another process while we're removing all
cdd6c482 6639 * the events from it.
71a851b4
PZ
6640 */
6641 unclone_ctx(child_ctx);
5e942bb3 6642 update_context_time(child_ctx);
e625cce1 6643 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6644
6645 /*
cdd6c482
IM
6646 * Report the task dead after unscheduling the events so that we
6647 * won't get any samples after PERF_RECORD_EXIT. We can however still
6648 * get a few PERF_RECORD_READ events.
9f498cc5 6649 */
cdd6c482 6650 perf_event_task(child, child_ctx, 0);
a63eaf34 6651
66fff224
PZ
6652 /*
6653 * We can recurse on the same lock type through:
6654 *
cdd6c482
IM
6655 * __perf_event_exit_task()
6656 * sync_child_event()
6657 * fput(parent_event->filp)
66fff224
PZ
6658 * perf_release()
6659 * mutex_lock(&ctx->mutex)
6660 *
6661 * But since its the parent context it won't be the same instance.
6662 */
a0507c84 6663 mutex_lock(&child_ctx->mutex);
a63eaf34 6664
8bc20959 6665again:
889ff015
FW
6666 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6667 group_entry)
6668 __perf_event_exit_task(child_event, child_ctx, child);
6669
6670 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6671 group_entry)
cdd6c482 6672 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6673
6674 /*
cdd6c482 6675 * If the last event was a group event, it will have appended all
8bc20959
PZ
6676 * its siblings to the list, but we obtained 'tmp' before that which
6677 * will still point to the list head terminating the iteration.
6678 */
889ff015
FW
6679 if (!list_empty(&child_ctx->pinned_groups) ||
6680 !list_empty(&child_ctx->flexible_groups))
8bc20959 6681 goto again;
a63eaf34
PM
6682
6683 mutex_unlock(&child_ctx->mutex);
6684
6685 put_ctx(child_ctx);
9b51f66d
IM
6686}
6687
8dc85d54
PZ
6688/*
6689 * When a child task exits, feed back event values to parent events.
6690 */
6691void perf_event_exit_task(struct task_struct *child)
6692{
8882135b 6693 struct perf_event *event, *tmp;
8dc85d54
PZ
6694 int ctxn;
6695
8882135b
PZ
6696 mutex_lock(&child->perf_event_mutex);
6697 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6698 owner_entry) {
6699 list_del_init(&event->owner_entry);
6700
6701 /*
6702 * Ensure the list deletion is visible before we clear
6703 * the owner, closes a race against perf_release() where
6704 * we need to serialize on the owner->perf_event_mutex.
6705 */
6706 smp_wmb();
6707 event->owner = NULL;
6708 }
6709 mutex_unlock(&child->perf_event_mutex);
6710
8dc85d54
PZ
6711 for_each_task_context_nr(ctxn)
6712 perf_event_exit_task_context(child, ctxn);
6713}
6714
889ff015
FW
6715static void perf_free_event(struct perf_event *event,
6716 struct perf_event_context *ctx)
6717{
6718 struct perf_event *parent = event->parent;
6719
6720 if (WARN_ON_ONCE(!parent))
6721 return;
6722
6723 mutex_lock(&parent->child_mutex);
6724 list_del_init(&event->child_list);
6725 mutex_unlock(&parent->child_mutex);
6726
6727 fput(parent->filp);
6728
8a49542c 6729 perf_group_detach(event);
889ff015
FW
6730 list_del_event(event, ctx);
6731 free_event(event);
6732}
6733
bbbee908
PZ
6734/*
6735 * free an unexposed, unused context as created by inheritance by
8dc85d54 6736 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6737 */
cdd6c482 6738void perf_event_free_task(struct task_struct *task)
bbbee908 6739{
8dc85d54 6740 struct perf_event_context *ctx;
cdd6c482 6741 struct perf_event *event, *tmp;
8dc85d54 6742 int ctxn;
bbbee908 6743
8dc85d54
PZ
6744 for_each_task_context_nr(ctxn) {
6745 ctx = task->perf_event_ctxp[ctxn];
6746 if (!ctx)
6747 continue;
bbbee908 6748
8dc85d54 6749 mutex_lock(&ctx->mutex);
bbbee908 6750again:
8dc85d54
PZ
6751 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6752 group_entry)
6753 perf_free_event(event, ctx);
bbbee908 6754
8dc85d54
PZ
6755 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6756 group_entry)
6757 perf_free_event(event, ctx);
bbbee908 6758
8dc85d54
PZ
6759 if (!list_empty(&ctx->pinned_groups) ||
6760 !list_empty(&ctx->flexible_groups))
6761 goto again;
bbbee908 6762
8dc85d54 6763 mutex_unlock(&ctx->mutex);
bbbee908 6764
8dc85d54
PZ
6765 put_ctx(ctx);
6766 }
889ff015
FW
6767}
6768
4e231c79
PZ
6769void perf_event_delayed_put(struct task_struct *task)
6770{
6771 int ctxn;
6772
6773 for_each_task_context_nr(ctxn)
6774 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6775}
6776
97dee4f3
PZ
6777/*
6778 * inherit a event from parent task to child task:
6779 */
6780static struct perf_event *
6781inherit_event(struct perf_event *parent_event,
6782 struct task_struct *parent,
6783 struct perf_event_context *parent_ctx,
6784 struct task_struct *child,
6785 struct perf_event *group_leader,
6786 struct perf_event_context *child_ctx)
6787{
6788 struct perf_event *child_event;
cee010ec 6789 unsigned long flags;
97dee4f3
PZ
6790
6791 /*
6792 * Instead of creating recursive hierarchies of events,
6793 * we link inherited events back to the original parent,
6794 * which has a filp for sure, which we use as the reference
6795 * count:
6796 */
6797 if (parent_event->parent)
6798 parent_event = parent_event->parent;
6799
6800 child_event = perf_event_alloc(&parent_event->attr,
6801 parent_event->cpu,
d580ff86 6802 child,
97dee4f3 6803 group_leader, parent_event,
4dc0da86 6804 NULL, NULL);
97dee4f3
PZ
6805 if (IS_ERR(child_event))
6806 return child_event;
6807 get_ctx(child_ctx);
6808
6809 /*
6810 * Make the child state follow the state of the parent event,
6811 * not its attr.disabled bit. We hold the parent's mutex,
6812 * so we won't race with perf_event_{en, dis}able_family.
6813 */
6814 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6815 child_event->state = PERF_EVENT_STATE_INACTIVE;
6816 else
6817 child_event->state = PERF_EVENT_STATE_OFF;
6818
6819 if (parent_event->attr.freq) {
6820 u64 sample_period = parent_event->hw.sample_period;
6821 struct hw_perf_event *hwc = &child_event->hw;
6822
6823 hwc->sample_period = sample_period;
6824 hwc->last_period = sample_period;
6825
6826 local64_set(&hwc->period_left, sample_period);
6827 }
6828
6829 child_event->ctx = child_ctx;
6830 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6831 child_event->overflow_handler_context
6832 = parent_event->overflow_handler_context;
97dee4f3 6833
614b6780
TG
6834 /*
6835 * Precalculate sample_data sizes
6836 */
6837 perf_event__header_size(child_event);
6844c09d 6838 perf_event__id_header_size(child_event);
614b6780 6839
97dee4f3
PZ
6840 /*
6841 * Link it up in the child's context:
6842 */
cee010ec 6843 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6844 add_event_to_ctx(child_event, child_ctx);
cee010ec 6845 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6846
6847 /*
6848 * Get a reference to the parent filp - we will fput it
6849 * when the child event exits. This is safe to do because
6850 * we are in the parent and we know that the filp still
6851 * exists and has a nonzero count:
6852 */
6853 atomic_long_inc(&parent_event->filp->f_count);
6854
6855 /*
6856 * Link this into the parent event's child list
6857 */
6858 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6859 mutex_lock(&parent_event->child_mutex);
6860 list_add_tail(&child_event->child_list, &parent_event->child_list);
6861 mutex_unlock(&parent_event->child_mutex);
6862
6863 return child_event;
6864}
6865
6866static int inherit_group(struct perf_event *parent_event,
6867 struct task_struct *parent,
6868 struct perf_event_context *parent_ctx,
6869 struct task_struct *child,
6870 struct perf_event_context *child_ctx)
6871{
6872 struct perf_event *leader;
6873 struct perf_event *sub;
6874 struct perf_event *child_ctr;
6875
6876 leader = inherit_event(parent_event, parent, parent_ctx,
6877 child, NULL, child_ctx);
6878 if (IS_ERR(leader))
6879 return PTR_ERR(leader);
6880 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6881 child_ctr = inherit_event(sub, parent, parent_ctx,
6882 child, leader, child_ctx);
6883 if (IS_ERR(child_ctr))
6884 return PTR_ERR(child_ctr);
6885 }
6886 return 0;
889ff015
FW
6887}
6888
6889static int
6890inherit_task_group(struct perf_event *event, struct task_struct *parent,
6891 struct perf_event_context *parent_ctx,
8dc85d54 6892 struct task_struct *child, int ctxn,
889ff015
FW
6893 int *inherited_all)
6894{
6895 int ret;
8dc85d54 6896 struct perf_event_context *child_ctx;
889ff015
FW
6897
6898 if (!event->attr.inherit) {
6899 *inherited_all = 0;
6900 return 0;
bbbee908
PZ
6901 }
6902
fe4b04fa 6903 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6904 if (!child_ctx) {
6905 /*
6906 * This is executed from the parent task context, so
6907 * inherit events that have been marked for cloning.
6908 * First allocate and initialize a context for the
6909 * child.
6910 */
bbbee908 6911
eb184479 6912 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6913 if (!child_ctx)
6914 return -ENOMEM;
bbbee908 6915
8dc85d54 6916 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6917 }
6918
6919 ret = inherit_group(event, parent, parent_ctx,
6920 child, child_ctx);
6921
6922 if (ret)
6923 *inherited_all = 0;
6924
6925 return ret;
bbbee908
PZ
6926}
6927
9b51f66d 6928/*
cdd6c482 6929 * Initialize the perf_event context in task_struct
9b51f66d 6930 */
8dc85d54 6931int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6932{
889ff015 6933 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6934 struct perf_event_context *cloned_ctx;
6935 struct perf_event *event;
9b51f66d 6936 struct task_struct *parent = current;
564c2b21 6937 int inherited_all = 1;
dddd3379 6938 unsigned long flags;
6ab423e0 6939 int ret = 0;
9b51f66d 6940
8dc85d54 6941 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6942 return 0;
6943
ad3a37de 6944 /*
25346b93
PM
6945 * If the parent's context is a clone, pin it so it won't get
6946 * swapped under us.
ad3a37de 6947 */
8dc85d54 6948 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6949
ad3a37de
PM
6950 /*
6951 * No need to check if parent_ctx != NULL here; since we saw
6952 * it non-NULL earlier, the only reason for it to become NULL
6953 * is if we exit, and since we're currently in the middle of
6954 * a fork we can't be exiting at the same time.
6955 */
ad3a37de 6956
9b51f66d
IM
6957 /*
6958 * Lock the parent list. No need to lock the child - not PID
6959 * hashed yet and not running, so nobody can access it.
6960 */
d859e29f 6961 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6962
6963 /*
6964 * We dont have to disable NMIs - we are only looking at
6965 * the list, not manipulating it:
6966 */
889ff015 6967 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6968 ret = inherit_task_group(event, parent, parent_ctx,
6969 child, ctxn, &inherited_all);
889ff015
FW
6970 if (ret)
6971 break;
6972 }
b93f7978 6973
dddd3379
TG
6974 /*
6975 * We can't hold ctx->lock when iterating the ->flexible_group list due
6976 * to allocations, but we need to prevent rotation because
6977 * rotate_ctx() will change the list from interrupt context.
6978 */
6979 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6980 parent_ctx->rotate_disable = 1;
6981 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6982
889ff015 6983 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6984 ret = inherit_task_group(event, parent, parent_ctx,
6985 child, ctxn, &inherited_all);
889ff015 6986 if (ret)
9b51f66d 6987 break;
564c2b21
PM
6988 }
6989
dddd3379
TG
6990 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6991 parent_ctx->rotate_disable = 0;
dddd3379 6992
8dc85d54 6993 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6994
05cbaa28 6995 if (child_ctx && inherited_all) {
564c2b21
PM
6996 /*
6997 * Mark the child context as a clone of the parent
6998 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6999 *
7000 * Note that if the parent is a clone, the holding of
7001 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7002 */
c5ed5145 7003 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7004 if (cloned_ctx) {
7005 child_ctx->parent_ctx = cloned_ctx;
25346b93 7006 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7007 } else {
7008 child_ctx->parent_ctx = parent_ctx;
7009 child_ctx->parent_gen = parent_ctx->generation;
7010 }
7011 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7012 }
7013
c5ed5145 7014 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7015 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7016
25346b93 7017 perf_unpin_context(parent_ctx);
fe4b04fa 7018 put_ctx(parent_ctx);
ad3a37de 7019
6ab423e0 7020 return ret;
9b51f66d
IM
7021}
7022
8dc85d54
PZ
7023/*
7024 * Initialize the perf_event context in task_struct
7025 */
7026int perf_event_init_task(struct task_struct *child)
7027{
7028 int ctxn, ret;
7029
8550d7cb
ON
7030 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7031 mutex_init(&child->perf_event_mutex);
7032 INIT_LIST_HEAD(&child->perf_event_list);
7033
8dc85d54
PZ
7034 for_each_task_context_nr(ctxn) {
7035 ret = perf_event_init_context(child, ctxn);
7036 if (ret)
7037 return ret;
7038 }
7039
7040 return 0;
7041}
7042
220b140b
PM
7043static void __init perf_event_init_all_cpus(void)
7044{
b28ab83c 7045 struct swevent_htable *swhash;
220b140b 7046 int cpu;
220b140b
PM
7047
7048 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7049 swhash = &per_cpu(swevent_htable, cpu);
7050 mutex_init(&swhash->hlist_mutex);
e9d2b064 7051 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7052 }
7053}
7054
cdd6c482 7055static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7056{
108b02cf 7057 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7058
b28ab83c 7059 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7060 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7061 struct swevent_hlist *hlist;
7062
b28ab83c
PZ
7063 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7064 WARN_ON(!hlist);
7065 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7066 }
b28ab83c 7067 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7068}
7069
c277443c 7070#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7071static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7072{
e9d2b064
PZ
7073 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7074
7075 WARN_ON(!irqs_disabled());
7076
7077 list_del_init(&cpuctx->rotation_list);
7078}
7079
108b02cf 7080static void __perf_event_exit_context(void *__info)
0793a61d 7081{
108b02cf 7082 struct perf_event_context *ctx = __info;
cdd6c482 7083 struct perf_event *event, *tmp;
0793a61d 7084
108b02cf 7085 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7086
889ff015 7087 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7088 __perf_remove_from_context(event);
889ff015 7089 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7090 __perf_remove_from_context(event);
0793a61d 7091}
108b02cf
PZ
7092
7093static void perf_event_exit_cpu_context(int cpu)
7094{
7095 struct perf_event_context *ctx;
7096 struct pmu *pmu;
7097 int idx;
7098
7099 idx = srcu_read_lock(&pmus_srcu);
7100 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7101 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7102
7103 mutex_lock(&ctx->mutex);
7104 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7105 mutex_unlock(&ctx->mutex);
7106 }
7107 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7108}
7109
cdd6c482 7110static void perf_event_exit_cpu(int cpu)
0793a61d 7111{
b28ab83c 7112 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7113
b28ab83c
PZ
7114 mutex_lock(&swhash->hlist_mutex);
7115 swevent_hlist_release(swhash);
7116 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7117
108b02cf 7118 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7119}
7120#else
cdd6c482 7121static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7122#endif
7123
c277443c
PZ
7124static int
7125perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7126{
7127 int cpu;
7128
7129 for_each_online_cpu(cpu)
7130 perf_event_exit_cpu(cpu);
7131
7132 return NOTIFY_OK;
7133}
7134
7135/*
7136 * Run the perf reboot notifier at the very last possible moment so that
7137 * the generic watchdog code runs as long as possible.
7138 */
7139static struct notifier_block perf_reboot_notifier = {
7140 .notifier_call = perf_reboot,
7141 .priority = INT_MIN,
7142};
7143
0793a61d
TG
7144static int __cpuinit
7145perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7146{
7147 unsigned int cpu = (long)hcpu;
7148
4536e4d1 7149 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7150
7151 case CPU_UP_PREPARE:
5e11637e 7152 case CPU_DOWN_FAILED:
cdd6c482 7153 perf_event_init_cpu(cpu);
0793a61d
TG
7154 break;
7155
5e11637e 7156 case CPU_UP_CANCELED:
0793a61d 7157 case CPU_DOWN_PREPARE:
cdd6c482 7158 perf_event_exit_cpu(cpu);
0793a61d
TG
7159 break;
7160
7161 default:
7162 break;
7163 }
7164
7165 return NOTIFY_OK;
7166}
7167
cdd6c482 7168void __init perf_event_init(void)
0793a61d 7169{
3c502e7a
JW
7170 int ret;
7171
2e80a82a
PZ
7172 idr_init(&pmu_idr);
7173
220b140b 7174 perf_event_init_all_cpus();
b0a873eb 7175 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7176 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7177 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7178 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7179 perf_tp_register();
7180 perf_cpu_notifier(perf_cpu_notify);
c277443c 7181 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7182
7183 ret = init_hw_breakpoint();
7184 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7185
7186 /* do not patch jump label more than once per second */
7187 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7188
7189 /*
7190 * Build time assertion that we keep the data_head at the intended
7191 * location. IOW, validation we got the __reserved[] size right.
7192 */
7193 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7194 != 1024);
0793a61d 7195}
abe43400
PZ
7196
7197static int __init perf_event_sysfs_init(void)
7198{
7199 struct pmu *pmu;
7200 int ret;
7201
7202 mutex_lock(&pmus_lock);
7203
7204 ret = bus_register(&pmu_bus);
7205 if (ret)
7206 goto unlock;
7207
7208 list_for_each_entry(pmu, &pmus, entry) {
7209 if (!pmu->name || pmu->type < 0)
7210 continue;
7211
7212 ret = pmu_dev_alloc(pmu);
7213 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7214 }
7215 pmu_bus_running = 1;
7216 ret = 0;
7217
7218unlock:
7219 mutex_unlock(&pmus_lock);
7220
7221 return ret;
7222}
7223device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7224
7225#ifdef CONFIG_CGROUP_PERF
761b3ef5 7226static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7227{
7228 struct perf_cgroup *jc;
e5d1367f 7229
1b15d055 7230 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7231 if (!jc)
7232 return ERR_PTR(-ENOMEM);
7233
e5d1367f
SE
7234 jc->info = alloc_percpu(struct perf_cgroup_info);
7235 if (!jc->info) {
7236 kfree(jc);
7237 return ERR_PTR(-ENOMEM);
7238 }
7239
e5d1367f
SE
7240 return &jc->css;
7241}
7242
761b3ef5 7243static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7244{
7245 struct perf_cgroup *jc;
7246 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7247 struct perf_cgroup, css);
7248 free_percpu(jc->info);
7249 kfree(jc);
7250}
7251
7252static int __perf_cgroup_move(void *info)
7253{
7254 struct task_struct *task = info;
7255 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7256 return 0;
7257}
7258
761b3ef5 7259static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7260{
bb9d97b6
TH
7261 struct task_struct *task;
7262
7263 cgroup_taskset_for_each(task, cgrp, tset)
7264 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7265}
7266
761b3ef5
LZ
7267static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7268 struct task_struct *task)
e5d1367f
SE
7269{
7270 /*
7271 * cgroup_exit() is called in the copy_process() failure path.
7272 * Ignore this case since the task hasn't ran yet, this avoids
7273 * trying to poke a half freed task state from generic code.
7274 */
7275 if (!(task->flags & PF_EXITING))
7276 return;
7277
bb9d97b6 7278 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7279}
7280
7281struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7282 .name = "perf_event",
7283 .subsys_id = perf_subsys_id,
7284 .create = perf_cgroup_create,
7285 .destroy = perf_cgroup_destroy,
7286 .exit = perf_cgroup_exit,
bb9d97b6 7287 .attach = perf_cgroup_attach,
e5d1367f
SE
7288};
7289#endif /* CONFIG_CGROUP_PERF */