perf/x86: Further optimize copy_from_user_nmi()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
948b26b6 148static atomic_t nr_freq_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
d9494cb4
PZ
178static int perf_sample_allowed_ns __read_mostly =
179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
d9494cb4 187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
723478c8 196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 231static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17
DH
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
d9494cb4 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 238
d9494cb4 239 if (allowed_ns == 0)
14c63f17
DH
240 return;
241
242 /* decay the counter by 1 average sample */
243 local_samples_len = __get_cpu_var(running_sample_length);
244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 local_samples_len += sample_len_ns;
246 __get_cpu_var(running_sample_length) = local_samples_len;
247
248 /*
249 * note: this will be biased artifically low until we have
250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
251 * from having to maintain a count.
252 */
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
d9494cb4 255 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
256 return;
257
258 if (max_samples_per_tick <= 1)
259 return;
260
261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264
265 printk_ratelimited(KERN_WARNING
d9494cb4 266 "perf samples too long (%lld > %lld), lowering "
14c63f17 267 "kernel.perf_event_max_sample_rate to %d\n",
d9494cb4 268 avg_local_sample_len, allowed_ns,
14c63f17
DH
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
8af01f56
TH
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
e5d1367f
SE
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
b77d7b60
TH
595 rcu_read_lock();
596
35cf0836 597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
3db272c0
LZ
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
e5d1367f
SE
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
f75e18cb 606 /* must be done before we fput() the file */
9c5da09d
SQ
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
f75e18cb 612
e5d1367f
SE
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
e5d1367f 621 }
3db272c0 622out:
b77d7b60 623 rcu_read_unlock();
2903ff01 624 fdput(f);
e5d1367f
SE
625 return ret;
626}
627
628static inline void
629perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630{
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634}
635
636static inline void
637perf_cgroup_defer_enabled(struct perf_event *event)
638{
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647}
648
649static inline void
650perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652{
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668}
669#else /* !CONFIG_CGROUP_PERF */
670
671static inline bool
672perf_cgroup_match(struct perf_event *event)
673{
674 return true;
675}
676
677static inline void perf_detach_cgroup(struct perf_event *event)
678{}
679
680static inline int is_cgroup_event(struct perf_event *event)
681{
682 return 0;
683}
684
685static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline void update_cgrp_time_from_event(struct perf_event *event)
691{
692}
693
694static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695{
696}
697
a8d757ef
SE
698static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
e5d1367f
SE
700{
701}
702
a8d757ef
SE
703static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
e5d1367f
SE
705{
706}
707
708static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711{
712 return -EINVAL;
713}
714
715static inline void
3f7cce3c
SE
716perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
e5d1367f
SE
718{
719}
720
721void
722perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723{
724}
725
726static inline void
727perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728{
729}
730
731static inline u64 perf_cgroup_event_time(struct perf_event *event)
732{
733 return 0;
734}
735
736static inline void
737perf_cgroup_defer_enabled(struct perf_event *event)
738{
739}
740
741static inline void
742perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744{
745}
746#endif
747
9e630205
SE
748/*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752#define PERF_CPU_HRTIMER (1000 / HZ)
753/*
754 * function must be called with interrupts disbled
755 */
756static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757{
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777}
778
779/* CPU is going down */
780void perf_cpu_hrtimer_cancel(int cpu)
781{
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805}
806
807static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808{
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 811 int timer;
9e630205
SE
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
62b85639
SE
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829}
830
831static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832{
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846}
847
33696fc0 848void perf_pmu_disable(struct pmu *pmu)
9e35ad38 849{
33696fc0
PZ
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
9e35ad38 853}
9e35ad38 854
33696fc0 855void perf_pmu_enable(struct pmu *pmu)
9e35ad38 856{
33696fc0
PZ
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
9e35ad38 860}
9e35ad38 861
e9d2b064
PZ
862static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864/*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
108b02cf 869static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 870{
108b02cf 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 872 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 873
e9d2b064 874 WARN_ON(!irqs_disabled());
b5ab4cd5 875
d84153d6 876 if (list_empty(&cpuctx->rotation_list))
e9d2b064 877 list_add(&cpuctx->rotation_list, head);
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902}
903
6844c09d
ACM
904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905{
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913}
914
915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916{
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924}
925
7f453c24 926/*
cdd6c482 927 * If we inherit events we want to return the parent event id
7f453c24
PZ
928 * to userspace.
929 */
cdd6c482 930static u64 primary_event_id(struct perf_event *event)
7f453c24 931{
cdd6c482 932 u64 id = event->id;
7f453c24 933
cdd6c482
IM
934 if (event->parent)
935 id = event->parent->id;
7f453c24
PZ
936
937 return id;
938}
939
25346b93 940/*
cdd6c482 941 * Get the perf_event_context for a task and lock it.
25346b93
PM
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
cdd6c482 945static struct perf_event_context *
8dc85d54 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 947{
cdd6c482 948 struct perf_event_context *ctx;
25346b93 949
9ed6060d 950retry:
058ebd0e
PZ
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
8dc85d54 962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
cdd6c482 967 * perf_event_task_sched_out, though the
25346b93
PM
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
e625cce1 974 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
977 rcu_read_unlock();
978 preempt_enable();
25346b93
PM
979 goto retry;
980 }
b49a9e7e
PZ
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
984 ctx = NULL;
985 }
25346b93
PM
986 }
987 rcu_read_unlock();
058ebd0e 988 preempt_enable();
25346b93
PM
989 return ctx;
990}
991
992/*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
8dc85d54
PZ
997static struct perf_event_context *
998perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 999{
cdd6c482 1000 struct perf_event_context *ctx;
25346b93
PM
1001 unsigned long flags;
1002
8dc85d54 1003 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1004 if (ctx) {
1005 ++ctx->pin_count;
e625cce1 1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1007 }
1008 return ctx;
1009}
1010
cdd6c482 1011static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1012{
1013 unsigned long flags;
1014
e625cce1 1015 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1016 --ctx->pin_count;
e625cce1 1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1018}
1019
f67218c3
PZ
1020/*
1021 * Update the record of the current time in a context.
1022 */
1023static void update_context_time(struct perf_event_context *ctx)
1024{
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029}
1030
4158755d
SE
1031static u64 perf_event_time(struct perf_event *event)
1032{
1033 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
4158755d
SE
1038 return ctx ? ctx->time : 0;
1039}
1040
f67218c3
PZ
1041/*
1042 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1043 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1044 */
1045static void update_event_times(struct perf_event *event)
1046{
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
e5d1367f
SE
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
46cd6a7f 1064 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
acd1d7c1
PZ
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
4158755d 1075 run_end = perf_event_time(event);
f67218c3
PZ
1076
1077 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1078
f67218c3
PZ
1079}
1080
96c21a46
PZ
1081/*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084static void update_group_times(struct perf_event *leader)
1085{
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091}
1092
889ff015
FW
1093static struct list_head *
1094ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095{
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100}
1101
fccc714b 1102/*
cdd6c482 1103 * Add a event from the lists for its context.
fccc714b
PZ
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
04289bb9 1106static void
cdd6c482 1107list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1108{
8a49542c
PZ
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1111
1112 /*
8a49542c
PZ
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1116 */
8a49542c 1117 if (event->group_leader == event) {
889ff015
FW
1118 struct list_head *list;
1119
d6f962b5
FW
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
889ff015
FW
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
5c148194 1125 }
592903cd 1126
08309379 1127 if (is_cgroup_event(event))
e5d1367f 1128 ctx->nr_cgroups++;
e5d1367f 1129
d010b332
SE
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
cdd6c482 1133 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1134 if (!ctx->nr_events)
108b02cf 1135 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
bfbd3381 1138 ctx->nr_stat++;
04289bb9
IM
1139}
1140
0231bb53
JO
1141/*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144static inline void perf_event__state_init(struct perf_event *event)
1145{
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148}
1149
c320c7b7
ACM
1150/*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154static void perf_event__read_size(struct perf_event *event)
1155{
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176}
1177
1178static void perf_event__header_size(struct perf_event *event)
1179{
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
6844c09d
ACM
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
c3feedf2
AK
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
6844c09d
ACM
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
d6be9ad6
SE
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
fdfbbd07
AK
1204 if (sample_type & PERF_SAMPLE_TRANSACTION)
1205 size += sizeof(data->txn);
1206
6844c09d
ACM
1207 event->header_size = size;
1208}
1209
1210static void perf_event__id_header_size(struct perf_event *event)
1211{
1212 struct perf_sample_data *data;
1213 u64 sample_type = event->attr.sample_type;
1214 u16 size = 0;
1215
c320c7b7
ACM
1216 if (sample_type & PERF_SAMPLE_TID)
1217 size += sizeof(data->tid_entry);
1218
1219 if (sample_type & PERF_SAMPLE_TIME)
1220 size += sizeof(data->time);
1221
ff3d527c
AH
1222 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1223 size += sizeof(data->id);
1224
c320c7b7
ACM
1225 if (sample_type & PERF_SAMPLE_ID)
1226 size += sizeof(data->id);
1227
1228 if (sample_type & PERF_SAMPLE_STREAM_ID)
1229 size += sizeof(data->stream_id);
1230
1231 if (sample_type & PERF_SAMPLE_CPU)
1232 size += sizeof(data->cpu_entry);
1233
6844c09d 1234 event->id_header_size = size;
c320c7b7
ACM
1235}
1236
8a49542c
PZ
1237static void perf_group_attach(struct perf_event *event)
1238{
c320c7b7 1239 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1240
74c3337c
PZ
1241 /*
1242 * We can have double attach due to group movement in perf_event_open.
1243 */
1244 if (event->attach_state & PERF_ATTACH_GROUP)
1245 return;
1246
8a49542c
PZ
1247 event->attach_state |= PERF_ATTACH_GROUP;
1248
1249 if (group_leader == event)
1250 return;
1251
1252 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1253 !is_software_event(event))
1254 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1255
1256 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1257 group_leader->nr_siblings++;
c320c7b7
ACM
1258
1259 perf_event__header_size(group_leader);
1260
1261 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1262 perf_event__header_size(pos);
8a49542c
PZ
1263}
1264
a63eaf34 1265/*
cdd6c482 1266 * Remove a event from the lists for its context.
fccc714b 1267 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1268 */
04289bb9 1269static void
cdd6c482 1270list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1271{
68cacd29 1272 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1273 /*
1274 * We can have double detach due to exit/hot-unplug + close.
1275 */
1276 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1277 return;
8a49542c
PZ
1278
1279 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1280
68cacd29 1281 if (is_cgroup_event(event)) {
e5d1367f 1282 ctx->nr_cgroups--;
68cacd29
SE
1283 cpuctx = __get_cpu_context(ctx);
1284 /*
1285 * if there are no more cgroup events
1286 * then cler cgrp to avoid stale pointer
1287 * in update_cgrp_time_from_cpuctx()
1288 */
1289 if (!ctx->nr_cgroups)
1290 cpuctx->cgrp = NULL;
1291 }
e5d1367f 1292
d010b332
SE
1293 if (has_branch_stack(event))
1294 ctx->nr_branch_stack--;
1295
cdd6c482
IM
1296 ctx->nr_events--;
1297 if (event->attr.inherit_stat)
bfbd3381 1298 ctx->nr_stat--;
8bc20959 1299
cdd6c482 1300 list_del_rcu(&event->event_entry);
04289bb9 1301
8a49542c
PZ
1302 if (event->group_leader == event)
1303 list_del_init(&event->group_entry);
5c148194 1304
96c21a46 1305 update_group_times(event);
b2e74a26
SE
1306
1307 /*
1308 * If event was in error state, then keep it
1309 * that way, otherwise bogus counts will be
1310 * returned on read(). The only way to get out
1311 * of error state is by explicit re-enabling
1312 * of the event
1313 */
1314 if (event->state > PERF_EVENT_STATE_OFF)
1315 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1316}
1317
8a49542c 1318static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1319{
1320 struct perf_event *sibling, *tmp;
8a49542c
PZ
1321 struct list_head *list = NULL;
1322
1323 /*
1324 * We can have double detach due to exit/hot-unplug + close.
1325 */
1326 if (!(event->attach_state & PERF_ATTACH_GROUP))
1327 return;
1328
1329 event->attach_state &= ~PERF_ATTACH_GROUP;
1330
1331 /*
1332 * If this is a sibling, remove it from its group.
1333 */
1334 if (event->group_leader != event) {
1335 list_del_init(&event->group_entry);
1336 event->group_leader->nr_siblings--;
c320c7b7 1337 goto out;
8a49542c
PZ
1338 }
1339
1340 if (!list_empty(&event->group_entry))
1341 list = &event->group_entry;
2e2af50b 1342
04289bb9 1343 /*
cdd6c482
IM
1344 * If this was a group event with sibling events then
1345 * upgrade the siblings to singleton events by adding them
8a49542c 1346 * to whatever list we are on.
04289bb9 1347 */
cdd6c482 1348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1349 if (list)
1350 list_move_tail(&sibling->group_entry, list);
04289bb9 1351 sibling->group_leader = sibling;
d6f962b5
FW
1352
1353 /* Inherit group flags from the previous leader */
1354 sibling->group_flags = event->group_flags;
04289bb9 1355 }
c320c7b7
ACM
1356
1357out:
1358 perf_event__header_size(event->group_leader);
1359
1360 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1361 perf_event__header_size(tmp);
04289bb9
IM
1362}
1363
fa66f07a
SE
1364static inline int
1365event_filter_match(struct perf_event *event)
1366{
e5d1367f
SE
1367 return (event->cpu == -1 || event->cpu == smp_processor_id())
1368 && perf_cgroup_match(event);
fa66f07a
SE
1369}
1370
9ffcfa6f
SE
1371static void
1372event_sched_out(struct perf_event *event,
3b6f9e5c 1373 struct perf_cpu_context *cpuctx,
cdd6c482 1374 struct perf_event_context *ctx)
3b6f9e5c 1375{
4158755d 1376 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1377 u64 delta;
1378 /*
1379 * An event which could not be activated because of
1380 * filter mismatch still needs to have its timings
1381 * maintained, otherwise bogus information is return
1382 * via read() for time_enabled, time_running:
1383 */
1384 if (event->state == PERF_EVENT_STATE_INACTIVE
1385 && !event_filter_match(event)) {
e5d1367f 1386 delta = tstamp - event->tstamp_stopped;
fa66f07a 1387 event->tstamp_running += delta;
4158755d 1388 event->tstamp_stopped = tstamp;
fa66f07a
SE
1389 }
1390
cdd6c482 1391 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1392 return;
3b6f9e5c 1393
cdd6c482
IM
1394 event->state = PERF_EVENT_STATE_INACTIVE;
1395 if (event->pending_disable) {
1396 event->pending_disable = 0;
1397 event->state = PERF_EVENT_STATE_OFF;
970892a9 1398 }
4158755d 1399 event->tstamp_stopped = tstamp;
a4eaf7f1 1400 event->pmu->del(event, 0);
cdd6c482 1401 event->oncpu = -1;
3b6f9e5c 1402
cdd6c482 1403 if (!is_software_event(event))
3b6f9e5c
PM
1404 cpuctx->active_oncpu--;
1405 ctx->nr_active--;
0f5a2601
PZ
1406 if (event->attr.freq && event->attr.sample_freq)
1407 ctx->nr_freq--;
cdd6c482 1408 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1409 cpuctx->exclusive = 0;
1410}
1411
d859e29f 1412static void
cdd6c482 1413group_sched_out(struct perf_event *group_event,
d859e29f 1414 struct perf_cpu_context *cpuctx,
cdd6c482 1415 struct perf_event_context *ctx)
d859e29f 1416{
cdd6c482 1417 struct perf_event *event;
fa66f07a 1418 int state = group_event->state;
d859e29f 1419
cdd6c482 1420 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1421
1422 /*
1423 * Schedule out siblings (if any):
1424 */
cdd6c482
IM
1425 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1426 event_sched_out(event, cpuctx, ctx);
d859e29f 1427
fa66f07a 1428 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1429 cpuctx->exclusive = 0;
1430}
1431
0793a61d 1432/*
cdd6c482 1433 * Cross CPU call to remove a performance event
0793a61d 1434 *
cdd6c482 1435 * We disable the event on the hardware level first. After that we
0793a61d
TG
1436 * remove it from the context list.
1437 */
fe4b04fa 1438static int __perf_remove_from_context(void *info)
0793a61d 1439{
cdd6c482
IM
1440 struct perf_event *event = info;
1441 struct perf_event_context *ctx = event->ctx;
108b02cf 1442 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1443
e625cce1 1444 raw_spin_lock(&ctx->lock);
cdd6c482 1445 event_sched_out(event, cpuctx, ctx);
cdd6c482 1446 list_del_event(event, ctx);
64ce3126
PZ
1447 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1448 ctx->is_active = 0;
1449 cpuctx->task_ctx = NULL;
1450 }
e625cce1 1451 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1452
1453 return 0;
0793a61d
TG
1454}
1455
1456
1457/*
cdd6c482 1458 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1459 *
cdd6c482 1460 * CPU events are removed with a smp call. For task events we only
0793a61d 1461 * call when the task is on a CPU.
c93f7669 1462 *
cdd6c482
IM
1463 * If event->ctx is a cloned context, callers must make sure that
1464 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1465 * remains valid. This is OK when called from perf_release since
1466 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1467 * When called from perf_event_exit_task, it's OK because the
c93f7669 1468 * context has been detached from its task.
0793a61d 1469 */
fe4b04fa 1470static void perf_remove_from_context(struct perf_event *event)
0793a61d 1471{
cdd6c482 1472 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1473 struct task_struct *task = ctx->task;
1474
fe4b04fa
PZ
1475 lockdep_assert_held(&ctx->mutex);
1476
0793a61d
TG
1477 if (!task) {
1478 /*
cdd6c482 1479 * Per cpu events are removed via an smp call and
af901ca1 1480 * the removal is always successful.
0793a61d 1481 */
fe4b04fa 1482 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1483 return;
1484 }
1485
1486retry:
fe4b04fa
PZ
1487 if (!task_function_call(task, __perf_remove_from_context, event))
1488 return;
0793a61d 1489
e625cce1 1490 raw_spin_lock_irq(&ctx->lock);
0793a61d 1491 /*
fe4b04fa
PZ
1492 * If we failed to find a running task, but find the context active now
1493 * that we've acquired the ctx->lock, retry.
0793a61d 1494 */
fe4b04fa 1495 if (ctx->is_active) {
e625cce1 1496 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1497 goto retry;
1498 }
1499
1500 /*
fe4b04fa
PZ
1501 * Since the task isn't running, its safe to remove the event, us
1502 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1503 */
fe4b04fa 1504 list_del_event(event, ctx);
e625cce1 1505 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1506}
1507
d859e29f 1508/*
cdd6c482 1509 * Cross CPU call to disable a performance event
d859e29f 1510 */
500ad2d8 1511int __perf_event_disable(void *info)
d859e29f 1512{
cdd6c482 1513 struct perf_event *event = info;
cdd6c482 1514 struct perf_event_context *ctx = event->ctx;
108b02cf 1515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1516
1517 /*
cdd6c482
IM
1518 * If this is a per-task event, need to check whether this
1519 * event's task is the current task on this cpu.
fe4b04fa
PZ
1520 *
1521 * Can trigger due to concurrent perf_event_context_sched_out()
1522 * flipping contexts around.
d859e29f 1523 */
665c2142 1524 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1525 return -EINVAL;
d859e29f 1526
e625cce1 1527 raw_spin_lock(&ctx->lock);
d859e29f
PM
1528
1529 /*
cdd6c482 1530 * If the event is on, turn it off.
d859e29f
PM
1531 * If it is in error state, leave it in error state.
1532 */
cdd6c482 1533 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1534 update_context_time(ctx);
e5d1367f 1535 update_cgrp_time_from_event(event);
cdd6c482
IM
1536 update_group_times(event);
1537 if (event == event->group_leader)
1538 group_sched_out(event, cpuctx, ctx);
d859e29f 1539 else
cdd6c482
IM
1540 event_sched_out(event, cpuctx, ctx);
1541 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1542 }
1543
e625cce1 1544 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1545
1546 return 0;
d859e29f
PM
1547}
1548
1549/*
cdd6c482 1550 * Disable a event.
c93f7669 1551 *
cdd6c482
IM
1552 * If event->ctx is a cloned context, callers must make sure that
1553 * every task struct that event->ctx->task could possibly point to
c93f7669 1554 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1555 * perf_event_for_each_child or perf_event_for_each because they
1556 * hold the top-level event's child_mutex, so any descendant that
1557 * goes to exit will block in sync_child_event.
1558 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1559 * is the current context on this CPU and preemption is disabled,
cdd6c482 1560 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1561 */
44234adc 1562void perf_event_disable(struct perf_event *event)
d859e29f 1563{
cdd6c482 1564 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1565 struct task_struct *task = ctx->task;
1566
1567 if (!task) {
1568 /*
cdd6c482 1569 * Disable the event on the cpu that it's on
d859e29f 1570 */
fe4b04fa 1571 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1572 return;
1573 }
1574
9ed6060d 1575retry:
fe4b04fa
PZ
1576 if (!task_function_call(task, __perf_event_disable, event))
1577 return;
d859e29f 1578
e625cce1 1579 raw_spin_lock_irq(&ctx->lock);
d859e29f 1580 /*
cdd6c482 1581 * If the event is still active, we need to retry the cross-call.
d859e29f 1582 */
cdd6c482 1583 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1584 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1585 /*
1586 * Reload the task pointer, it might have been changed by
1587 * a concurrent perf_event_context_sched_out().
1588 */
1589 task = ctx->task;
d859e29f
PM
1590 goto retry;
1591 }
1592
1593 /*
1594 * Since we have the lock this context can't be scheduled
1595 * in, so we can change the state safely.
1596 */
cdd6c482
IM
1597 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1598 update_group_times(event);
1599 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1600 }
e625cce1 1601 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1602}
dcfce4a0 1603EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1604
e5d1367f
SE
1605static void perf_set_shadow_time(struct perf_event *event,
1606 struct perf_event_context *ctx,
1607 u64 tstamp)
1608{
1609 /*
1610 * use the correct time source for the time snapshot
1611 *
1612 * We could get by without this by leveraging the
1613 * fact that to get to this function, the caller
1614 * has most likely already called update_context_time()
1615 * and update_cgrp_time_xx() and thus both timestamp
1616 * are identical (or very close). Given that tstamp is,
1617 * already adjusted for cgroup, we could say that:
1618 * tstamp - ctx->timestamp
1619 * is equivalent to
1620 * tstamp - cgrp->timestamp.
1621 *
1622 * Then, in perf_output_read(), the calculation would
1623 * work with no changes because:
1624 * - event is guaranteed scheduled in
1625 * - no scheduled out in between
1626 * - thus the timestamp would be the same
1627 *
1628 * But this is a bit hairy.
1629 *
1630 * So instead, we have an explicit cgroup call to remain
1631 * within the time time source all along. We believe it
1632 * is cleaner and simpler to understand.
1633 */
1634 if (is_cgroup_event(event))
1635 perf_cgroup_set_shadow_time(event, tstamp);
1636 else
1637 event->shadow_ctx_time = tstamp - ctx->timestamp;
1638}
1639
4fe757dd
PZ
1640#define MAX_INTERRUPTS (~0ULL)
1641
1642static void perf_log_throttle(struct perf_event *event, int enable);
1643
235c7fc7 1644static int
9ffcfa6f 1645event_sched_in(struct perf_event *event,
235c7fc7 1646 struct perf_cpu_context *cpuctx,
6e37738a 1647 struct perf_event_context *ctx)
235c7fc7 1648{
4158755d
SE
1649 u64 tstamp = perf_event_time(event);
1650
cdd6c482 1651 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1652 return 0;
1653
cdd6c482 1654 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1655 event->oncpu = smp_processor_id();
4fe757dd
PZ
1656
1657 /*
1658 * Unthrottle events, since we scheduled we might have missed several
1659 * ticks already, also for a heavily scheduling task there is little
1660 * guarantee it'll get a tick in a timely manner.
1661 */
1662 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1663 perf_log_throttle(event, 1);
1664 event->hw.interrupts = 0;
1665 }
1666
235c7fc7
IM
1667 /*
1668 * The new state must be visible before we turn it on in the hardware:
1669 */
1670 smp_wmb();
1671
a4eaf7f1 1672 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1673 event->state = PERF_EVENT_STATE_INACTIVE;
1674 event->oncpu = -1;
235c7fc7
IM
1675 return -EAGAIN;
1676 }
1677
4158755d 1678 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1679
e5d1367f 1680 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1681
cdd6c482 1682 if (!is_software_event(event))
3b6f9e5c 1683 cpuctx->active_oncpu++;
235c7fc7 1684 ctx->nr_active++;
0f5a2601
PZ
1685 if (event->attr.freq && event->attr.sample_freq)
1686 ctx->nr_freq++;
235c7fc7 1687
cdd6c482 1688 if (event->attr.exclusive)
3b6f9e5c
PM
1689 cpuctx->exclusive = 1;
1690
235c7fc7
IM
1691 return 0;
1692}
1693
6751b71e 1694static int
cdd6c482 1695group_sched_in(struct perf_event *group_event,
6751b71e 1696 struct perf_cpu_context *cpuctx,
6e37738a 1697 struct perf_event_context *ctx)
6751b71e 1698{
6bde9b6c 1699 struct perf_event *event, *partial_group = NULL;
51b0fe39 1700 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1701 u64 now = ctx->time;
1702 bool simulate = false;
6751b71e 1703
cdd6c482 1704 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1705 return 0;
1706
ad5133b7 1707 pmu->start_txn(pmu);
6bde9b6c 1708
9ffcfa6f 1709 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1710 pmu->cancel_txn(pmu);
9e630205 1711 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1712 return -EAGAIN;
90151c35 1713 }
6751b71e
PM
1714
1715 /*
1716 * Schedule in siblings as one group (if any):
1717 */
cdd6c482 1718 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1719 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1720 partial_group = event;
6751b71e
PM
1721 goto group_error;
1722 }
1723 }
1724
9ffcfa6f 1725 if (!pmu->commit_txn(pmu))
6e85158c 1726 return 0;
9ffcfa6f 1727
6751b71e
PM
1728group_error:
1729 /*
1730 * Groups can be scheduled in as one unit only, so undo any
1731 * partial group before returning:
d7842da4
SE
1732 * The events up to the failed event are scheduled out normally,
1733 * tstamp_stopped will be updated.
1734 *
1735 * The failed events and the remaining siblings need to have
1736 * their timings updated as if they had gone thru event_sched_in()
1737 * and event_sched_out(). This is required to get consistent timings
1738 * across the group. This also takes care of the case where the group
1739 * could never be scheduled by ensuring tstamp_stopped is set to mark
1740 * the time the event was actually stopped, such that time delta
1741 * calculation in update_event_times() is correct.
6751b71e 1742 */
cdd6c482
IM
1743 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1744 if (event == partial_group)
d7842da4
SE
1745 simulate = true;
1746
1747 if (simulate) {
1748 event->tstamp_running += now - event->tstamp_stopped;
1749 event->tstamp_stopped = now;
1750 } else {
1751 event_sched_out(event, cpuctx, ctx);
1752 }
6751b71e 1753 }
9ffcfa6f 1754 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1755
ad5133b7 1756 pmu->cancel_txn(pmu);
90151c35 1757
9e630205
SE
1758 perf_cpu_hrtimer_restart(cpuctx);
1759
6751b71e
PM
1760 return -EAGAIN;
1761}
1762
3b6f9e5c 1763/*
cdd6c482 1764 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1765 */
cdd6c482 1766static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1767 struct perf_cpu_context *cpuctx,
1768 int can_add_hw)
1769{
1770 /*
cdd6c482 1771 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1772 */
d6f962b5 1773 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1774 return 1;
1775 /*
1776 * If an exclusive group is already on, no other hardware
cdd6c482 1777 * events can go on.
3b6f9e5c
PM
1778 */
1779 if (cpuctx->exclusive)
1780 return 0;
1781 /*
1782 * If this group is exclusive and there are already
cdd6c482 1783 * events on the CPU, it can't go on.
3b6f9e5c 1784 */
cdd6c482 1785 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1786 return 0;
1787 /*
1788 * Otherwise, try to add it if all previous groups were able
1789 * to go on.
1790 */
1791 return can_add_hw;
1792}
1793
cdd6c482
IM
1794static void add_event_to_ctx(struct perf_event *event,
1795 struct perf_event_context *ctx)
53cfbf59 1796{
4158755d
SE
1797 u64 tstamp = perf_event_time(event);
1798
cdd6c482 1799 list_add_event(event, ctx);
8a49542c 1800 perf_group_attach(event);
4158755d
SE
1801 event->tstamp_enabled = tstamp;
1802 event->tstamp_running = tstamp;
1803 event->tstamp_stopped = tstamp;
53cfbf59
PM
1804}
1805
2c29ef0f
PZ
1806static void task_ctx_sched_out(struct perf_event_context *ctx);
1807static void
1808ctx_sched_in(struct perf_event_context *ctx,
1809 struct perf_cpu_context *cpuctx,
1810 enum event_type_t event_type,
1811 struct task_struct *task);
fe4b04fa 1812
dce5855b
PZ
1813static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1814 struct perf_event_context *ctx,
1815 struct task_struct *task)
1816{
1817 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1818 if (ctx)
1819 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1820 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1821 if (ctx)
1822 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1823}
1824
0793a61d 1825/*
cdd6c482 1826 * Cross CPU call to install and enable a performance event
682076ae
PZ
1827 *
1828 * Must be called with ctx->mutex held
0793a61d 1829 */
fe4b04fa 1830static int __perf_install_in_context(void *info)
0793a61d 1831{
cdd6c482
IM
1832 struct perf_event *event = info;
1833 struct perf_event_context *ctx = event->ctx;
108b02cf 1834 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1835 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1836 struct task_struct *task = current;
1837
b58f6b0d 1838 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1839 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1840
1841 /*
2c29ef0f 1842 * If there was an active task_ctx schedule it out.
0793a61d 1843 */
b58f6b0d 1844 if (task_ctx)
2c29ef0f 1845 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1846
1847 /*
1848 * If the context we're installing events in is not the
1849 * active task_ctx, flip them.
1850 */
1851 if (ctx->task && task_ctx != ctx) {
1852 if (task_ctx)
1853 raw_spin_unlock(&task_ctx->lock);
1854 raw_spin_lock(&ctx->lock);
1855 task_ctx = ctx;
1856 }
1857
1858 if (task_ctx) {
1859 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1860 task = task_ctx->task;
1861 }
b58f6b0d 1862
2c29ef0f 1863 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1864
4af4998b 1865 update_context_time(ctx);
e5d1367f
SE
1866 /*
1867 * update cgrp time only if current cgrp
1868 * matches event->cgrp. Must be done before
1869 * calling add_event_to_ctx()
1870 */
1871 update_cgrp_time_from_event(event);
0793a61d 1872
cdd6c482 1873 add_event_to_ctx(event, ctx);
0793a61d 1874
d859e29f 1875 /*
2c29ef0f 1876 * Schedule everything back in
d859e29f 1877 */
dce5855b 1878 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1879
1880 perf_pmu_enable(cpuctx->ctx.pmu);
1881 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1882
1883 return 0;
0793a61d
TG
1884}
1885
1886/*
cdd6c482 1887 * Attach a performance event to a context
0793a61d 1888 *
cdd6c482
IM
1889 * First we add the event to the list with the hardware enable bit
1890 * in event->hw_config cleared.
0793a61d 1891 *
cdd6c482 1892 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1893 * call to enable it in the task context. The task might have been
1894 * scheduled away, but we check this in the smp call again.
1895 */
1896static void
cdd6c482
IM
1897perf_install_in_context(struct perf_event_context *ctx,
1898 struct perf_event *event,
0793a61d
TG
1899 int cpu)
1900{
1901 struct task_struct *task = ctx->task;
1902
fe4b04fa
PZ
1903 lockdep_assert_held(&ctx->mutex);
1904
c3f00c70 1905 event->ctx = ctx;
0cda4c02
YZ
1906 if (event->cpu != -1)
1907 event->cpu = cpu;
c3f00c70 1908
0793a61d
TG
1909 if (!task) {
1910 /*
cdd6c482 1911 * Per cpu events are installed via an smp call and
af901ca1 1912 * the install is always successful.
0793a61d 1913 */
fe4b04fa 1914 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1915 return;
1916 }
1917
0793a61d 1918retry:
fe4b04fa
PZ
1919 if (!task_function_call(task, __perf_install_in_context, event))
1920 return;
0793a61d 1921
e625cce1 1922 raw_spin_lock_irq(&ctx->lock);
0793a61d 1923 /*
fe4b04fa
PZ
1924 * If we failed to find a running task, but find the context active now
1925 * that we've acquired the ctx->lock, retry.
0793a61d 1926 */
fe4b04fa 1927 if (ctx->is_active) {
e625cce1 1928 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1929 goto retry;
1930 }
1931
1932 /*
fe4b04fa
PZ
1933 * Since the task isn't running, its safe to add the event, us holding
1934 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1935 */
fe4b04fa 1936 add_event_to_ctx(event, ctx);
e625cce1 1937 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1938}
1939
fa289bec 1940/*
cdd6c482 1941 * Put a event into inactive state and update time fields.
fa289bec
PM
1942 * Enabling the leader of a group effectively enables all
1943 * the group members that aren't explicitly disabled, so we
1944 * have to update their ->tstamp_enabled also.
1945 * Note: this works for group members as well as group leaders
1946 * since the non-leader members' sibling_lists will be empty.
1947 */
1d9b482e 1948static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1949{
cdd6c482 1950 struct perf_event *sub;
4158755d 1951 u64 tstamp = perf_event_time(event);
fa289bec 1952
cdd6c482 1953 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1954 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1955 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1956 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1957 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1958 }
fa289bec
PM
1959}
1960
d859e29f 1961/*
cdd6c482 1962 * Cross CPU call to enable a performance event
d859e29f 1963 */
fe4b04fa 1964static int __perf_event_enable(void *info)
04289bb9 1965{
cdd6c482 1966 struct perf_event *event = info;
cdd6c482
IM
1967 struct perf_event_context *ctx = event->ctx;
1968 struct perf_event *leader = event->group_leader;
108b02cf 1969 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1970 int err;
04289bb9 1971
06f41796
JO
1972 /*
1973 * There's a time window between 'ctx->is_active' check
1974 * in perf_event_enable function and this place having:
1975 * - IRQs on
1976 * - ctx->lock unlocked
1977 *
1978 * where the task could be killed and 'ctx' deactivated
1979 * by perf_event_exit_task.
1980 */
1981 if (!ctx->is_active)
fe4b04fa 1982 return -EINVAL;
3cbed429 1983
e625cce1 1984 raw_spin_lock(&ctx->lock);
4af4998b 1985 update_context_time(ctx);
d859e29f 1986
cdd6c482 1987 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1988 goto unlock;
e5d1367f
SE
1989
1990 /*
1991 * set current task's cgroup time reference point
1992 */
3f7cce3c 1993 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1994
1d9b482e 1995 __perf_event_mark_enabled(event);
04289bb9 1996
e5d1367f
SE
1997 if (!event_filter_match(event)) {
1998 if (is_cgroup_event(event))
1999 perf_cgroup_defer_enabled(event);
f4c4176f 2000 goto unlock;
e5d1367f 2001 }
f4c4176f 2002
04289bb9 2003 /*
cdd6c482 2004 * If the event is in a group and isn't the group leader,
d859e29f 2005 * then don't put it on unless the group is on.
04289bb9 2006 */
cdd6c482 2007 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2008 goto unlock;
3b6f9e5c 2009
cdd6c482 2010 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2011 err = -EEXIST;
e758a33d 2012 } else {
cdd6c482 2013 if (event == leader)
6e37738a 2014 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2015 else
6e37738a 2016 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2017 }
d859e29f
PM
2018
2019 if (err) {
2020 /*
cdd6c482 2021 * If this event can't go on and it's part of a
d859e29f
PM
2022 * group, then the whole group has to come off.
2023 */
9e630205 2024 if (leader != event) {
d859e29f 2025 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2026 perf_cpu_hrtimer_restart(cpuctx);
2027 }
0d48696f 2028 if (leader->attr.pinned) {
53cfbf59 2029 update_group_times(leader);
cdd6c482 2030 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2031 }
d859e29f
PM
2032 }
2033
9ed6060d 2034unlock:
e625cce1 2035 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2036
2037 return 0;
d859e29f
PM
2038}
2039
2040/*
cdd6c482 2041 * Enable a event.
c93f7669 2042 *
cdd6c482
IM
2043 * If event->ctx is a cloned context, callers must make sure that
2044 * every task struct that event->ctx->task could possibly point to
c93f7669 2045 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2046 * perf_event_for_each_child or perf_event_for_each as described
2047 * for perf_event_disable.
d859e29f 2048 */
44234adc 2049void perf_event_enable(struct perf_event *event)
d859e29f 2050{
cdd6c482 2051 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2052 struct task_struct *task = ctx->task;
2053
2054 if (!task) {
2055 /*
cdd6c482 2056 * Enable the event on the cpu that it's on
d859e29f 2057 */
fe4b04fa 2058 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2059 return;
2060 }
2061
e625cce1 2062 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2063 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2064 goto out;
2065
2066 /*
cdd6c482
IM
2067 * If the event is in error state, clear that first.
2068 * That way, if we see the event in error state below, we
d859e29f
PM
2069 * know that it has gone back into error state, as distinct
2070 * from the task having been scheduled away before the
2071 * cross-call arrived.
2072 */
cdd6c482
IM
2073 if (event->state == PERF_EVENT_STATE_ERROR)
2074 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2075
9ed6060d 2076retry:
fe4b04fa 2077 if (!ctx->is_active) {
1d9b482e 2078 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2079 goto out;
2080 }
2081
e625cce1 2082 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2083
2084 if (!task_function_call(task, __perf_event_enable, event))
2085 return;
d859e29f 2086
e625cce1 2087 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2088
2089 /*
cdd6c482 2090 * If the context is active and the event is still off,
d859e29f
PM
2091 * we need to retry the cross-call.
2092 */
fe4b04fa
PZ
2093 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2094 /*
2095 * task could have been flipped by a concurrent
2096 * perf_event_context_sched_out()
2097 */
2098 task = ctx->task;
d859e29f 2099 goto retry;
fe4b04fa 2100 }
fa289bec 2101
9ed6060d 2102out:
e625cce1 2103 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2104}
dcfce4a0 2105EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2106
26ca5c11 2107int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2108{
2023b359 2109 /*
cdd6c482 2110 * not supported on inherited events
2023b359 2111 */
2e939d1d 2112 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2113 return -EINVAL;
2114
cdd6c482
IM
2115 atomic_add(refresh, &event->event_limit);
2116 perf_event_enable(event);
2023b359
PZ
2117
2118 return 0;
79f14641 2119}
26ca5c11 2120EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2121
5b0311e1
FW
2122static void ctx_sched_out(struct perf_event_context *ctx,
2123 struct perf_cpu_context *cpuctx,
2124 enum event_type_t event_type)
235c7fc7 2125{
cdd6c482 2126 struct perf_event *event;
db24d33e 2127 int is_active = ctx->is_active;
235c7fc7 2128
db24d33e 2129 ctx->is_active &= ~event_type;
cdd6c482 2130 if (likely(!ctx->nr_events))
facc4307
PZ
2131 return;
2132
4af4998b 2133 update_context_time(ctx);
e5d1367f 2134 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2135 if (!ctx->nr_active)
facc4307 2136 return;
5b0311e1 2137
075e0b00 2138 perf_pmu_disable(ctx->pmu);
db24d33e 2139 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2140 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2141 group_sched_out(event, cpuctx, ctx);
9ed6060d 2142 }
889ff015 2143
db24d33e 2144 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2145 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2146 group_sched_out(event, cpuctx, ctx);
9ed6060d 2147 }
1b9a644f 2148 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2149}
2150
564c2b21
PM
2151/*
2152 * Test whether two contexts are equivalent, i.e. whether they
2153 * have both been cloned from the same version of the same context
cdd6c482
IM
2154 * and they both have the same number of enabled events.
2155 * If the number of enabled events is the same, then the set
2156 * of enabled events should be the same, because these are both
2157 * inherited contexts, therefore we can't access individual events
564c2b21 2158 * in them directly with an fd; we can only enable/disable all
cdd6c482 2159 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2160 * via ioctl, which will have the same effect on both contexts.
2161 */
cdd6c482
IM
2162static int context_equiv(struct perf_event_context *ctx1,
2163 struct perf_event_context *ctx2)
564c2b21
PM
2164{
2165 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2166 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2167 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2168}
2169
cdd6c482
IM
2170static void __perf_event_sync_stat(struct perf_event *event,
2171 struct perf_event *next_event)
bfbd3381
PZ
2172{
2173 u64 value;
2174
cdd6c482 2175 if (!event->attr.inherit_stat)
bfbd3381
PZ
2176 return;
2177
2178 /*
cdd6c482 2179 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2180 * because we're in the middle of a context switch and have IRQs
2181 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2182 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2183 * don't need to use it.
2184 */
cdd6c482
IM
2185 switch (event->state) {
2186 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2187 event->pmu->read(event);
2188 /* fall-through */
bfbd3381 2189
cdd6c482
IM
2190 case PERF_EVENT_STATE_INACTIVE:
2191 update_event_times(event);
bfbd3381
PZ
2192 break;
2193
2194 default:
2195 break;
2196 }
2197
2198 /*
cdd6c482 2199 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2200 * values when we flip the contexts.
2201 */
e7850595
PZ
2202 value = local64_read(&next_event->count);
2203 value = local64_xchg(&event->count, value);
2204 local64_set(&next_event->count, value);
bfbd3381 2205
cdd6c482
IM
2206 swap(event->total_time_enabled, next_event->total_time_enabled);
2207 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2208
bfbd3381 2209 /*
19d2e755 2210 * Since we swizzled the values, update the user visible data too.
bfbd3381 2211 */
cdd6c482
IM
2212 perf_event_update_userpage(event);
2213 perf_event_update_userpage(next_event);
bfbd3381
PZ
2214}
2215
2216#define list_next_entry(pos, member) \
2217 list_entry(pos->member.next, typeof(*pos), member)
2218
cdd6c482
IM
2219static void perf_event_sync_stat(struct perf_event_context *ctx,
2220 struct perf_event_context *next_ctx)
bfbd3381 2221{
cdd6c482 2222 struct perf_event *event, *next_event;
bfbd3381
PZ
2223
2224 if (!ctx->nr_stat)
2225 return;
2226
02ffdbc8
PZ
2227 update_context_time(ctx);
2228
cdd6c482
IM
2229 event = list_first_entry(&ctx->event_list,
2230 struct perf_event, event_entry);
bfbd3381 2231
cdd6c482
IM
2232 next_event = list_first_entry(&next_ctx->event_list,
2233 struct perf_event, event_entry);
bfbd3381 2234
cdd6c482
IM
2235 while (&event->event_entry != &ctx->event_list &&
2236 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2237
cdd6c482 2238 __perf_event_sync_stat(event, next_event);
bfbd3381 2239
cdd6c482
IM
2240 event = list_next_entry(event, event_entry);
2241 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2242 }
2243}
2244
fe4b04fa
PZ
2245static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2246 struct task_struct *next)
0793a61d 2247{
8dc85d54 2248 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2249 struct perf_event_context *next_ctx;
2250 struct perf_event_context *parent;
108b02cf 2251 struct perf_cpu_context *cpuctx;
c93f7669 2252 int do_switch = 1;
0793a61d 2253
108b02cf
PZ
2254 if (likely(!ctx))
2255 return;
10989fb2 2256
108b02cf
PZ
2257 cpuctx = __get_cpu_context(ctx);
2258 if (!cpuctx->task_ctx)
0793a61d
TG
2259 return;
2260
c93f7669
PM
2261 rcu_read_lock();
2262 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2263 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2264 if (parent && next_ctx &&
2265 rcu_dereference(next_ctx->parent_ctx) == parent) {
2266 /*
2267 * Looks like the two contexts are clones, so we might be
2268 * able to optimize the context switch. We lock both
2269 * contexts and check that they are clones under the
2270 * lock (including re-checking that neither has been
2271 * uncloned in the meantime). It doesn't matter which
2272 * order we take the locks because no other cpu could
2273 * be trying to lock both of these tasks.
2274 */
e625cce1
TG
2275 raw_spin_lock(&ctx->lock);
2276 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2277 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2278 /*
2279 * XXX do we need a memory barrier of sorts
cdd6c482 2280 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2281 */
8dc85d54
PZ
2282 task->perf_event_ctxp[ctxn] = next_ctx;
2283 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2284 ctx->task = next;
2285 next_ctx->task = task;
2286 do_switch = 0;
bfbd3381 2287
cdd6c482 2288 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2289 }
e625cce1
TG
2290 raw_spin_unlock(&next_ctx->lock);
2291 raw_spin_unlock(&ctx->lock);
564c2b21 2292 }
c93f7669 2293 rcu_read_unlock();
564c2b21 2294
c93f7669 2295 if (do_switch) {
facc4307 2296 raw_spin_lock(&ctx->lock);
5b0311e1 2297 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2298 cpuctx->task_ctx = NULL;
facc4307 2299 raw_spin_unlock(&ctx->lock);
c93f7669 2300 }
0793a61d
TG
2301}
2302
8dc85d54
PZ
2303#define for_each_task_context_nr(ctxn) \
2304 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2305
2306/*
2307 * Called from scheduler to remove the events of the current task,
2308 * with interrupts disabled.
2309 *
2310 * We stop each event and update the event value in event->count.
2311 *
2312 * This does not protect us against NMI, but disable()
2313 * sets the disabled bit in the control field of event _before_
2314 * accessing the event control register. If a NMI hits, then it will
2315 * not restart the event.
2316 */
ab0cce56
JO
2317void __perf_event_task_sched_out(struct task_struct *task,
2318 struct task_struct *next)
8dc85d54
PZ
2319{
2320 int ctxn;
2321
8dc85d54
PZ
2322 for_each_task_context_nr(ctxn)
2323 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2324
2325 /*
2326 * if cgroup events exist on this CPU, then we need
2327 * to check if we have to switch out PMU state.
2328 * cgroup event are system-wide mode only
2329 */
2330 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2331 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2332}
2333
04dc2dbb 2334static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2335{
108b02cf 2336 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2337
a63eaf34
PM
2338 if (!cpuctx->task_ctx)
2339 return;
012b84da
IM
2340
2341 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2342 return;
2343
04dc2dbb 2344 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2345 cpuctx->task_ctx = NULL;
2346}
2347
5b0311e1
FW
2348/*
2349 * Called with IRQs disabled
2350 */
2351static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2352 enum event_type_t event_type)
2353{
2354 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2355}
2356
235c7fc7 2357static void
5b0311e1 2358ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2359 struct perf_cpu_context *cpuctx)
0793a61d 2360{
cdd6c482 2361 struct perf_event *event;
0793a61d 2362
889ff015
FW
2363 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2364 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2365 continue;
5632ab12 2366 if (!event_filter_match(event))
3b6f9e5c
PM
2367 continue;
2368
e5d1367f
SE
2369 /* may need to reset tstamp_enabled */
2370 if (is_cgroup_event(event))
2371 perf_cgroup_mark_enabled(event, ctx);
2372
8c9ed8e1 2373 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2374 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2375
2376 /*
2377 * If this pinned group hasn't been scheduled,
2378 * put it in error state.
2379 */
cdd6c482
IM
2380 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2381 update_group_times(event);
2382 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2383 }
3b6f9e5c 2384 }
5b0311e1
FW
2385}
2386
2387static void
2388ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2389 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2390{
2391 struct perf_event *event;
2392 int can_add_hw = 1;
3b6f9e5c 2393
889ff015
FW
2394 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2395 /* Ignore events in OFF or ERROR state */
2396 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2397 continue;
04289bb9
IM
2398 /*
2399 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2400 * of events:
04289bb9 2401 */
5632ab12 2402 if (!event_filter_match(event))
0793a61d
TG
2403 continue;
2404
e5d1367f
SE
2405 /* may need to reset tstamp_enabled */
2406 if (is_cgroup_event(event))
2407 perf_cgroup_mark_enabled(event, ctx);
2408
9ed6060d 2409 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2410 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2411 can_add_hw = 0;
9ed6060d 2412 }
0793a61d 2413 }
5b0311e1
FW
2414}
2415
2416static void
2417ctx_sched_in(struct perf_event_context *ctx,
2418 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2419 enum event_type_t event_type,
2420 struct task_struct *task)
5b0311e1 2421{
e5d1367f 2422 u64 now;
db24d33e 2423 int is_active = ctx->is_active;
e5d1367f 2424
db24d33e 2425 ctx->is_active |= event_type;
5b0311e1 2426 if (likely(!ctx->nr_events))
facc4307 2427 return;
5b0311e1 2428
e5d1367f
SE
2429 now = perf_clock();
2430 ctx->timestamp = now;
3f7cce3c 2431 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2432 /*
2433 * First go through the list and put on any pinned groups
2434 * in order to give them the best chance of going on.
2435 */
db24d33e 2436 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2437 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2438
2439 /* Then walk through the lower prio flexible groups */
db24d33e 2440 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2441 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2442}
2443
329c0e01 2444static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2445 enum event_type_t event_type,
2446 struct task_struct *task)
329c0e01
FW
2447{
2448 struct perf_event_context *ctx = &cpuctx->ctx;
2449
e5d1367f 2450 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2451}
2452
e5d1367f
SE
2453static void perf_event_context_sched_in(struct perf_event_context *ctx,
2454 struct task_struct *task)
235c7fc7 2455{
108b02cf 2456 struct perf_cpu_context *cpuctx;
235c7fc7 2457
108b02cf 2458 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2459 if (cpuctx->task_ctx == ctx)
2460 return;
2461
facc4307 2462 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2463 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2464 /*
2465 * We want to keep the following priority order:
2466 * cpu pinned (that don't need to move), task pinned,
2467 * cpu flexible, task flexible.
2468 */
2469 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2470
1d5f003f
GN
2471 if (ctx->nr_events)
2472 cpuctx->task_ctx = ctx;
9b33fa6b 2473
86b47c25
GN
2474 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2475
facc4307
PZ
2476 perf_pmu_enable(ctx->pmu);
2477 perf_ctx_unlock(cpuctx, ctx);
2478
b5ab4cd5
PZ
2479 /*
2480 * Since these rotations are per-cpu, we need to ensure the
2481 * cpu-context we got scheduled on is actually rotating.
2482 */
108b02cf 2483 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2484}
2485
d010b332
SE
2486/*
2487 * When sampling the branck stack in system-wide, it may be necessary
2488 * to flush the stack on context switch. This happens when the branch
2489 * stack does not tag its entries with the pid of the current task.
2490 * Otherwise it becomes impossible to associate a branch entry with a
2491 * task. This ambiguity is more likely to appear when the branch stack
2492 * supports priv level filtering and the user sets it to monitor only
2493 * at the user level (which could be a useful measurement in system-wide
2494 * mode). In that case, the risk is high of having a branch stack with
2495 * branch from multiple tasks. Flushing may mean dropping the existing
2496 * entries or stashing them somewhere in the PMU specific code layer.
2497 *
2498 * This function provides the context switch callback to the lower code
2499 * layer. It is invoked ONLY when there is at least one system-wide context
2500 * with at least one active event using taken branch sampling.
2501 */
2502static void perf_branch_stack_sched_in(struct task_struct *prev,
2503 struct task_struct *task)
2504{
2505 struct perf_cpu_context *cpuctx;
2506 struct pmu *pmu;
2507 unsigned long flags;
2508
2509 /* no need to flush branch stack if not changing task */
2510 if (prev == task)
2511 return;
2512
2513 local_irq_save(flags);
2514
2515 rcu_read_lock();
2516
2517 list_for_each_entry_rcu(pmu, &pmus, entry) {
2518 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2519
2520 /*
2521 * check if the context has at least one
2522 * event using PERF_SAMPLE_BRANCH_STACK
2523 */
2524 if (cpuctx->ctx.nr_branch_stack > 0
2525 && pmu->flush_branch_stack) {
2526
2527 pmu = cpuctx->ctx.pmu;
2528
2529 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2530
2531 perf_pmu_disable(pmu);
2532
2533 pmu->flush_branch_stack();
2534
2535 perf_pmu_enable(pmu);
2536
2537 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2538 }
2539 }
2540
2541 rcu_read_unlock();
2542
2543 local_irq_restore(flags);
2544}
2545
8dc85d54
PZ
2546/*
2547 * Called from scheduler to add the events of the current task
2548 * with interrupts disabled.
2549 *
2550 * We restore the event value and then enable it.
2551 *
2552 * This does not protect us against NMI, but enable()
2553 * sets the enabled bit in the control field of event _before_
2554 * accessing the event control register. If a NMI hits, then it will
2555 * keep the event running.
2556 */
ab0cce56
JO
2557void __perf_event_task_sched_in(struct task_struct *prev,
2558 struct task_struct *task)
8dc85d54
PZ
2559{
2560 struct perf_event_context *ctx;
2561 int ctxn;
2562
2563 for_each_task_context_nr(ctxn) {
2564 ctx = task->perf_event_ctxp[ctxn];
2565 if (likely(!ctx))
2566 continue;
2567
e5d1367f 2568 perf_event_context_sched_in(ctx, task);
8dc85d54 2569 }
e5d1367f
SE
2570 /*
2571 * if cgroup events exist on this CPU, then we need
2572 * to check if we have to switch in PMU state.
2573 * cgroup event are system-wide mode only
2574 */
2575 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2576 perf_cgroup_sched_in(prev, task);
d010b332
SE
2577
2578 /* check for system-wide branch_stack events */
2579 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2580 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2581}
2582
abd50713
PZ
2583static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2584{
2585 u64 frequency = event->attr.sample_freq;
2586 u64 sec = NSEC_PER_SEC;
2587 u64 divisor, dividend;
2588
2589 int count_fls, nsec_fls, frequency_fls, sec_fls;
2590
2591 count_fls = fls64(count);
2592 nsec_fls = fls64(nsec);
2593 frequency_fls = fls64(frequency);
2594 sec_fls = 30;
2595
2596 /*
2597 * We got @count in @nsec, with a target of sample_freq HZ
2598 * the target period becomes:
2599 *
2600 * @count * 10^9
2601 * period = -------------------
2602 * @nsec * sample_freq
2603 *
2604 */
2605
2606 /*
2607 * Reduce accuracy by one bit such that @a and @b converge
2608 * to a similar magnitude.
2609 */
fe4b04fa 2610#define REDUCE_FLS(a, b) \
abd50713
PZ
2611do { \
2612 if (a##_fls > b##_fls) { \
2613 a >>= 1; \
2614 a##_fls--; \
2615 } else { \
2616 b >>= 1; \
2617 b##_fls--; \
2618 } \
2619} while (0)
2620
2621 /*
2622 * Reduce accuracy until either term fits in a u64, then proceed with
2623 * the other, so that finally we can do a u64/u64 division.
2624 */
2625 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2626 REDUCE_FLS(nsec, frequency);
2627 REDUCE_FLS(sec, count);
2628 }
2629
2630 if (count_fls + sec_fls > 64) {
2631 divisor = nsec * frequency;
2632
2633 while (count_fls + sec_fls > 64) {
2634 REDUCE_FLS(count, sec);
2635 divisor >>= 1;
2636 }
2637
2638 dividend = count * sec;
2639 } else {
2640 dividend = count * sec;
2641
2642 while (nsec_fls + frequency_fls > 64) {
2643 REDUCE_FLS(nsec, frequency);
2644 dividend >>= 1;
2645 }
2646
2647 divisor = nsec * frequency;
2648 }
2649
f6ab91ad
PZ
2650 if (!divisor)
2651 return dividend;
2652
abd50713
PZ
2653 return div64_u64(dividend, divisor);
2654}
2655
e050e3f0
SE
2656static DEFINE_PER_CPU(int, perf_throttled_count);
2657static DEFINE_PER_CPU(u64, perf_throttled_seq);
2658
f39d47ff 2659static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2660{
cdd6c482 2661 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2662 s64 period, sample_period;
bd2b5b12
PZ
2663 s64 delta;
2664
abd50713 2665 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2666
2667 delta = (s64)(period - hwc->sample_period);
2668 delta = (delta + 7) / 8; /* low pass filter */
2669
2670 sample_period = hwc->sample_period + delta;
2671
2672 if (!sample_period)
2673 sample_period = 1;
2674
bd2b5b12 2675 hwc->sample_period = sample_period;
abd50713 2676
e7850595 2677 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2678 if (disable)
2679 event->pmu->stop(event, PERF_EF_UPDATE);
2680
e7850595 2681 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2682
2683 if (disable)
2684 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2685 }
bd2b5b12
PZ
2686}
2687
e050e3f0
SE
2688/*
2689 * combine freq adjustment with unthrottling to avoid two passes over the
2690 * events. At the same time, make sure, having freq events does not change
2691 * the rate of unthrottling as that would introduce bias.
2692 */
2693static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2694 int needs_unthr)
60db5e09 2695{
cdd6c482
IM
2696 struct perf_event *event;
2697 struct hw_perf_event *hwc;
e050e3f0 2698 u64 now, period = TICK_NSEC;
abd50713 2699 s64 delta;
60db5e09 2700
e050e3f0
SE
2701 /*
2702 * only need to iterate over all events iff:
2703 * - context have events in frequency mode (needs freq adjust)
2704 * - there are events to unthrottle on this cpu
2705 */
2706 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2707 return;
2708
e050e3f0 2709 raw_spin_lock(&ctx->lock);
f39d47ff 2710 perf_pmu_disable(ctx->pmu);
e050e3f0 2711
03541f8b 2712 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2713 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2714 continue;
2715
5632ab12 2716 if (!event_filter_match(event))
5d27c23d
PZ
2717 continue;
2718
cdd6c482 2719 hwc = &event->hw;
6a24ed6c 2720
ae23bff1 2721 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2722 hwc->interrupts = 0;
cdd6c482 2723 perf_log_throttle(event, 1);
a4eaf7f1 2724 event->pmu->start(event, 0);
a78ac325
PZ
2725 }
2726
cdd6c482 2727 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2728 continue;
2729
e050e3f0
SE
2730 /*
2731 * stop the event and update event->count
2732 */
2733 event->pmu->stop(event, PERF_EF_UPDATE);
2734
e7850595 2735 now = local64_read(&event->count);
abd50713
PZ
2736 delta = now - hwc->freq_count_stamp;
2737 hwc->freq_count_stamp = now;
60db5e09 2738
e050e3f0
SE
2739 /*
2740 * restart the event
2741 * reload only if value has changed
f39d47ff
SE
2742 * we have stopped the event so tell that
2743 * to perf_adjust_period() to avoid stopping it
2744 * twice.
e050e3f0 2745 */
abd50713 2746 if (delta > 0)
f39d47ff 2747 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2748
2749 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2750 }
e050e3f0 2751
f39d47ff 2752 perf_pmu_enable(ctx->pmu);
e050e3f0 2753 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2754}
2755
235c7fc7 2756/*
cdd6c482 2757 * Round-robin a context's events:
235c7fc7 2758 */
cdd6c482 2759static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2760{
dddd3379
TG
2761 /*
2762 * Rotate the first entry last of non-pinned groups. Rotation might be
2763 * disabled by the inheritance code.
2764 */
2765 if (!ctx->rotate_disable)
2766 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2767}
2768
b5ab4cd5 2769/*
e9d2b064
PZ
2770 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2771 * because they're strictly cpu affine and rotate_start is called with IRQs
2772 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2773 */
9e630205 2774static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2775{
8dc85d54 2776 struct perf_event_context *ctx = NULL;
e050e3f0 2777 int rotate = 0, remove = 1;
7fc23a53 2778
b5ab4cd5 2779 if (cpuctx->ctx.nr_events) {
e9d2b064 2780 remove = 0;
b5ab4cd5
PZ
2781 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2782 rotate = 1;
2783 }
235c7fc7 2784
8dc85d54 2785 ctx = cpuctx->task_ctx;
b5ab4cd5 2786 if (ctx && ctx->nr_events) {
e9d2b064 2787 remove = 0;
b5ab4cd5
PZ
2788 if (ctx->nr_events != ctx->nr_active)
2789 rotate = 1;
2790 }
9717e6cd 2791
e050e3f0 2792 if (!rotate)
0f5a2601
PZ
2793 goto done;
2794
facc4307 2795 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2796 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2797
e050e3f0
SE
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799 if (ctx)
2800 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2801
e050e3f0
SE
2802 rotate_ctx(&cpuctx->ctx);
2803 if (ctx)
2804 rotate_ctx(ctx);
235c7fc7 2805
e050e3f0 2806 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2807
0f5a2601
PZ
2808 perf_pmu_enable(cpuctx->ctx.pmu);
2809 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2810done:
e9d2b064
PZ
2811 if (remove)
2812 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2813
2814 return rotate;
e9d2b064
PZ
2815}
2816
026249ef
FW
2817#ifdef CONFIG_NO_HZ_FULL
2818bool perf_event_can_stop_tick(void)
2819{
948b26b6 2820 if (atomic_read(&nr_freq_events) ||
d84153d6 2821 __this_cpu_read(perf_throttled_count))
026249ef 2822 return false;
d84153d6
FW
2823 else
2824 return true;
026249ef
FW
2825}
2826#endif
2827
e9d2b064
PZ
2828void perf_event_task_tick(void)
2829{
2830 struct list_head *head = &__get_cpu_var(rotation_list);
2831 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2832 struct perf_event_context *ctx;
2833 int throttled;
b5ab4cd5 2834
e9d2b064
PZ
2835 WARN_ON(!irqs_disabled());
2836
e050e3f0
SE
2837 __this_cpu_inc(perf_throttled_seq);
2838 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2839
e9d2b064 2840 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2841 ctx = &cpuctx->ctx;
2842 perf_adjust_freq_unthr_context(ctx, throttled);
2843
2844 ctx = cpuctx->task_ctx;
2845 if (ctx)
2846 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2847 }
0793a61d
TG
2848}
2849
889ff015
FW
2850static int event_enable_on_exec(struct perf_event *event,
2851 struct perf_event_context *ctx)
2852{
2853 if (!event->attr.enable_on_exec)
2854 return 0;
2855
2856 event->attr.enable_on_exec = 0;
2857 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2858 return 0;
2859
1d9b482e 2860 __perf_event_mark_enabled(event);
889ff015
FW
2861
2862 return 1;
2863}
2864
57e7986e 2865/*
cdd6c482 2866 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2867 * This expects task == current.
2868 */
8dc85d54 2869static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2870{
cdd6c482 2871 struct perf_event *event;
57e7986e
PM
2872 unsigned long flags;
2873 int enabled = 0;
889ff015 2874 int ret;
57e7986e
PM
2875
2876 local_irq_save(flags);
cdd6c482 2877 if (!ctx || !ctx->nr_events)
57e7986e
PM
2878 goto out;
2879
e566b76e
SE
2880 /*
2881 * We must ctxsw out cgroup events to avoid conflict
2882 * when invoking perf_task_event_sched_in() later on
2883 * in this function. Otherwise we end up trying to
2884 * ctxswin cgroup events which are already scheduled
2885 * in.
2886 */
a8d757ef 2887 perf_cgroup_sched_out(current, NULL);
57e7986e 2888
e625cce1 2889 raw_spin_lock(&ctx->lock);
04dc2dbb 2890 task_ctx_sched_out(ctx);
57e7986e 2891
b79387ef 2892 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2893 ret = event_enable_on_exec(event, ctx);
2894 if (ret)
2895 enabled = 1;
57e7986e
PM
2896 }
2897
2898 /*
cdd6c482 2899 * Unclone this context if we enabled any event.
57e7986e 2900 */
71a851b4
PZ
2901 if (enabled)
2902 unclone_ctx(ctx);
57e7986e 2903
e625cce1 2904 raw_spin_unlock(&ctx->lock);
57e7986e 2905
e566b76e
SE
2906 /*
2907 * Also calls ctxswin for cgroup events, if any:
2908 */
e5d1367f 2909 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2910out:
57e7986e
PM
2911 local_irq_restore(flags);
2912}
2913
0793a61d 2914/*
cdd6c482 2915 * Cross CPU call to read the hardware event
0793a61d 2916 */
cdd6c482 2917static void __perf_event_read(void *info)
0793a61d 2918{
cdd6c482
IM
2919 struct perf_event *event = info;
2920 struct perf_event_context *ctx = event->ctx;
108b02cf 2921 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2922
e1ac3614
PM
2923 /*
2924 * If this is a task context, we need to check whether it is
2925 * the current task context of this cpu. If not it has been
2926 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2927 * event->count would have been updated to a recent sample
2928 * when the event was scheduled out.
e1ac3614
PM
2929 */
2930 if (ctx->task && cpuctx->task_ctx != ctx)
2931 return;
2932
e625cce1 2933 raw_spin_lock(&ctx->lock);
e5d1367f 2934 if (ctx->is_active) {
542e72fc 2935 update_context_time(ctx);
e5d1367f
SE
2936 update_cgrp_time_from_event(event);
2937 }
cdd6c482 2938 update_event_times(event);
542e72fc
PZ
2939 if (event->state == PERF_EVENT_STATE_ACTIVE)
2940 event->pmu->read(event);
e625cce1 2941 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2942}
2943
b5e58793
PZ
2944static inline u64 perf_event_count(struct perf_event *event)
2945{
e7850595 2946 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2947}
2948
cdd6c482 2949static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2950{
2951 /*
cdd6c482
IM
2952 * If event is enabled and currently active on a CPU, update the
2953 * value in the event structure:
0793a61d 2954 */
cdd6c482
IM
2955 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2956 smp_call_function_single(event->oncpu,
2957 __perf_event_read, event, 1);
2958 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2959 struct perf_event_context *ctx = event->ctx;
2960 unsigned long flags;
2961
e625cce1 2962 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2963 /*
2964 * may read while context is not active
2965 * (e.g., thread is blocked), in that case
2966 * we cannot update context time
2967 */
e5d1367f 2968 if (ctx->is_active) {
c530ccd9 2969 update_context_time(ctx);
e5d1367f
SE
2970 update_cgrp_time_from_event(event);
2971 }
cdd6c482 2972 update_event_times(event);
e625cce1 2973 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2974 }
2975
b5e58793 2976 return perf_event_count(event);
0793a61d
TG
2977}
2978
a63eaf34 2979/*
cdd6c482 2980 * Initialize the perf_event context in a task_struct:
a63eaf34 2981 */
eb184479 2982static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2983{
e625cce1 2984 raw_spin_lock_init(&ctx->lock);
a63eaf34 2985 mutex_init(&ctx->mutex);
889ff015
FW
2986 INIT_LIST_HEAD(&ctx->pinned_groups);
2987 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2988 INIT_LIST_HEAD(&ctx->event_list);
2989 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2990}
2991
2992static struct perf_event_context *
2993alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2994{
2995 struct perf_event_context *ctx;
2996
2997 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2998 if (!ctx)
2999 return NULL;
3000
3001 __perf_event_init_context(ctx);
3002 if (task) {
3003 ctx->task = task;
3004 get_task_struct(task);
0793a61d 3005 }
eb184479
PZ
3006 ctx->pmu = pmu;
3007
3008 return ctx;
a63eaf34
PM
3009}
3010
2ebd4ffb
MH
3011static struct task_struct *
3012find_lively_task_by_vpid(pid_t vpid)
3013{
3014 struct task_struct *task;
3015 int err;
0793a61d
TG
3016
3017 rcu_read_lock();
2ebd4ffb 3018 if (!vpid)
0793a61d
TG
3019 task = current;
3020 else
2ebd4ffb 3021 task = find_task_by_vpid(vpid);
0793a61d
TG
3022 if (task)
3023 get_task_struct(task);
3024 rcu_read_unlock();
3025
3026 if (!task)
3027 return ERR_PTR(-ESRCH);
3028
0793a61d 3029 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3030 err = -EACCES;
3031 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3032 goto errout;
3033
2ebd4ffb
MH
3034 return task;
3035errout:
3036 put_task_struct(task);
3037 return ERR_PTR(err);
3038
3039}
3040
fe4b04fa
PZ
3041/*
3042 * Returns a matching context with refcount and pincount.
3043 */
108b02cf 3044static struct perf_event_context *
38a81da2 3045find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3046{
cdd6c482 3047 struct perf_event_context *ctx;
22a4f650 3048 struct perf_cpu_context *cpuctx;
25346b93 3049 unsigned long flags;
8dc85d54 3050 int ctxn, err;
0793a61d 3051
22a4ec72 3052 if (!task) {
cdd6c482 3053 /* Must be root to operate on a CPU event: */
0764771d 3054 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3055 return ERR_PTR(-EACCES);
3056
0793a61d 3057 /*
cdd6c482 3058 * We could be clever and allow to attach a event to an
0793a61d
TG
3059 * offline CPU and activate it when the CPU comes up, but
3060 * that's for later.
3061 */
f6325e30 3062 if (!cpu_online(cpu))
0793a61d
TG
3063 return ERR_PTR(-ENODEV);
3064
108b02cf 3065 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3066 ctx = &cpuctx->ctx;
c93f7669 3067 get_ctx(ctx);
fe4b04fa 3068 ++ctx->pin_count;
0793a61d 3069
0793a61d
TG
3070 return ctx;
3071 }
3072
8dc85d54
PZ
3073 err = -EINVAL;
3074 ctxn = pmu->task_ctx_nr;
3075 if (ctxn < 0)
3076 goto errout;
3077
9ed6060d 3078retry:
8dc85d54 3079 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3080 if (ctx) {
71a851b4 3081 unclone_ctx(ctx);
fe4b04fa 3082 ++ctx->pin_count;
e625cce1 3083 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3084 } else {
eb184479 3085 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3086 err = -ENOMEM;
3087 if (!ctx)
3088 goto errout;
eb184479 3089
dbe08d82
ON
3090 err = 0;
3091 mutex_lock(&task->perf_event_mutex);
3092 /*
3093 * If it has already passed perf_event_exit_task().
3094 * we must see PF_EXITING, it takes this mutex too.
3095 */
3096 if (task->flags & PF_EXITING)
3097 err = -ESRCH;
3098 else if (task->perf_event_ctxp[ctxn])
3099 err = -EAGAIN;
fe4b04fa 3100 else {
9137fb28 3101 get_ctx(ctx);
fe4b04fa 3102 ++ctx->pin_count;
dbe08d82 3103 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3104 }
dbe08d82
ON
3105 mutex_unlock(&task->perf_event_mutex);
3106
3107 if (unlikely(err)) {
9137fb28 3108 put_ctx(ctx);
dbe08d82
ON
3109
3110 if (err == -EAGAIN)
3111 goto retry;
3112 goto errout;
a63eaf34
PM
3113 }
3114 }
3115
0793a61d 3116 return ctx;
c93f7669 3117
9ed6060d 3118errout:
c93f7669 3119 return ERR_PTR(err);
0793a61d
TG
3120}
3121
6fb2915d
LZ
3122static void perf_event_free_filter(struct perf_event *event);
3123
cdd6c482 3124static void free_event_rcu(struct rcu_head *head)
592903cd 3125{
cdd6c482 3126 struct perf_event *event;
592903cd 3127
cdd6c482
IM
3128 event = container_of(head, struct perf_event, rcu_head);
3129 if (event->ns)
3130 put_pid_ns(event->ns);
6fb2915d 3131 perf_event_free_filter(event);
cdd6c482 3132 kfree(event);
592903cd
PZ
3133}
3134
76369139 3135static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3136static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3137
4beb31f3 3138static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3139{
4beb31f3
FW
3140 if (event->parent)
3141 return;
3142
3143 if (has_branch_stack(event)) {
3144 if (!(event->attach_state & PERF_ATTACH_TASK))
3145 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3146 }
3147 if (is_cgroup_event(event))
3148 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3149}
925d519a 3150
4beb31f3
FW
3151static void unaccount_event(struct perf_event *event)
3152{
3153 if (event->parent)
3154 return;
3155
3156 if (event->attach_state & PERF_ATTACH_TASK)
3157 static_key_slow_dec_deferred(&perf_sched_events);
3158 if (event->attr.mmap || event->attr.mmap_data)
3159 atomic_dec(&nr_mmap_events);
3160 if (event->attr.comm)
3161 atomic_dec(&nr_comm_events);
3162 if (event->attr.task)
3163 atomic_dec(&nr_task_events);
948b26b6
FW
3164 if (event->attr.freq)
3165 atomic_dec(&nr_freq_events);
4beb31f3
FW
3166 if (is_cgroup_event(event))
3167 static_key_slow_dec_deferred(&perf_sched_events);
3168 if (has_branch_stack(event))
3169 static_key_slow_dec_deferred(&perf_sched_events);
3170
3171 unaccount_event_cpu(event, event->cpu);
3172}
925d519a 3173
766d6c07
FW
3174static void __free_event(struct perf_event *event)
3175{
cdd6c482 3176 if (!event->parent) {
927c7a9e
FW
3177 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3178 put_callchain_buffers();
f344011c 3179 }
9ee318a7 3180
766d6c07
FW
3181 if (event->destroy)
3182 event->destroy(event);
3183
3184 if (event->ctx)
3185 put_ctx(event->ctx);
3186
3187 call_rcu(&event->rcu_head, free_event_rcu);
3188}
cdd6c482 3189static void free_event(struct perf_event *event)
f1600952 3190{
e360adbe 3191 irq_work_sync(&event->pending);
925d519a 3192
4beb31f3 3193 unaccount_event(event);
9ee318a7 3194
76369139 3195 if (event->rb) {
9bb5d40c
PZ
3196 struct ring_buffer *rb;
3197
3198 /*
3199 * Can happen when we close an event with re-directed output.
3200 *
3201 * Since we have a 0 refcount, perf_mmap_close() will skip
3202 * over us; possibly making our ring_buffer_put() the last.
3203 */
3204 mutex_lock(&event->mmap_mutex);
3205 rb = event->rb;
3206 if (rb) {
3207 rcu_assign_pointer(event->rb, NULL);
3208 ring_buffer_detach(event, rb);
3209 ring_buffer_put(rb); /* could be last */
3210 }
3211 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3212 }
3213
e5d1367f
SE
3214 if (is_cgroup_event(event))
3215 perf_detach_cgroup(event);
3216
0c67b408 3217
766d6c07 3218 __free_event(event);
f1600952
PZ
3219}
3220
a66a3052 3221int perf_event_release_kernel(struct perf_event *event)
0793a61d 3222{
cdd6c482 3223 struct perf_event_context *ctx = event->ctx;
0793a61d 3224
ad3a37de 3225 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3226 /*
3227 * There are two ways this annotation is useful:
3228 *
3229 * 1) there is a lock recursion from perf_event_exit_task
3230 * see the comment there.
3231 *
3232 * 2) there is a lock-inversion with mmap_sem through
3233 * perf_event_read_group(), which takes faults while
3234 * holding ctx->mutex, however this is called after
3235 * the last filedesc died, so there is no possibility
3236 * to trigger the AB-BA case.
3237 */
3238 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3239 raw_spin_lock_irq(&ctx->lock);
8a49542c 3240 perf_group_detach(event);
050735b0 3241 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3242 perf_remove_from_context(event);
d859e29f 3243 mutex_unlock(&ctx->mutex);
0793a61d 3244
cdd6c482 3245 free_event(event);
0793a61d
TG
3246
3247 return 0;
3248}
a66a3052 3249EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3250
a66a3052
PZ
3251/*
3252 * Called when the last reference to the file is gone.
3253 */
a6fa941d 3254static void put_event(struct perf_event *event)
fb0459d7 3255{
8882135b 3256 struct task_struct *owner;
fb0459d7 3257
a6fa941d
AV
3258 if (!atomic_long_dec_and_test(&event->refcount))
3259 return;
fb0459d7 3260
8882135b
PZ
3261 rcu_read_lock();
3262 owner = ACCESS_ONCE(event->owner);
3263 /*
3264 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3265 * !owner it means the list deletion is complete and we can indeed
3266 * free this event, otherwise we need to serialize on
3267 * owner->perf_event_mutex.
3268 */
3269 smp_read_barrier_depends();
3270 if (owner) {
3271 /*
3272 * Since delayed_put_task_struct() also drops the last
3273 * task reference we can safely take a new reference
3274 * while holding the rcu_read_lock().
3275 */
3276 get_task_struct(owner);
3277 }
3278 rcu_read_unlock();
3279
3280 if (owner) {
3281 mutex_lock(&owner->perf_event_mutex);
3282 /*
3283 * We have to re-check the event->owner field, if it is cleared
3284 * we raced with perf_event_exit_task(), acquiring the mutex
3285 * ensured they're done, and we can proceed with freeing the
3286 * event.
3287 */
3288 if (event->owner)
3289 list_del_init(&event->owner_entry);
3290 mutex_unlock(&owner->perf_event_mutex);
3291 put_task_struct(owner);
3292 }
3293
a6fa941d
AV
3294 perf_event_release_kernel(event);
3295}
3296
3297static int perf_release(struct inode *inode, struct file *file)
3298{
3299 put_event(file->private_data);
3300 return 0;
fb0459d7 3301}
fb0459d7 3302
59ed446f 3303u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3304{
cdd6c482 3305 struct perf_event *child;
e53c0994
PZ
3306 u64 total = 0;
3307
59ed446f
PZ
3308 *enabled = 0;
3309 *running = 0;
3310
6f10581a 3311 mutex_lock(&event->child_mutex);
cdd6c482 3312 total += perf_event_read(event);
59ed446f
PZ
3313 *enabled += event->total_time_enabled +
3314 atomic64_read(&event->child_total_time_enabled);
3315 *running += event->total_time_running +
3316 atomic64_read(&event->child_total_time_running);
3317
3318 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3319 total += perf_event_read(child);
59ed446f
PZ
3320 *enabled += child->total_time_enabled;
3321 *running += child->total_time_running;
3322 }
6f10581a 3323 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3324
3325 return total;
3326}
fb0459d7 3327EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3328
cdd6c482 3329static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3330 u64 read_format, char __user *buf)
3331{
cdd6c482 3332 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3333 int n = 0, size = 0, ret = -EFAULT;
3334 struct perf_event_context *ctx = leader->ctx;
abf4868b 3335 u64 values[5];
59ed446f 3336 u64 count, enabled, running;
abf4868b 3337
6f10581a 3338 mutex_lock(&ctx->mutex);
59ed446f 3339 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3340
3341 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3342 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3343 values[n++] = enabled;
3344 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3345 values[n++] = running;
abf4868b
PZ
3346 values[n++] = count;
3347 if (read_format & PERF_FORMAT_ID)
3348 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3349
3350 size = n * sizeof(u64);
3351
3352 if (copy_to_user(buf, values, size))
6f10581a 3353 goto unlock;
3dab77fb 3354
6f10581a 3355 ret = size;
3dab77fb 3356
65abc865 3357 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3358 n = 0;
3dab77fb 3359
59ed446f 3360 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3361 if (read_format & PERF_FORMAT_ID)
3362 values[n++] = primary_event_id(sub);
3363
3364 size = n * sizeof(u64);
3365
184d3da8 3366 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3367 ret = -EFAULT;
3368 goto unlock;
3369 }
abf4868b
PZ
3370
3371 ret += size;
3dab77fb 3372 }
6f10581a
PZ
3373unlock:
3374 mutex_unlock(&ctx->mutex);
3dab77fb 3375
abf4868b 3376 return ret;
3dab77fb
PZ
3377}
3378
cdd6c482 3379static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3380 u64 read_format, char __user *buf)
3381{
59ed446f 3382 u64 enabled, running;
3dab77fb
PZ
3383 u64 values[4];
3384 int n = 0;
3385
59ed446f
PZ
3386 values[n++] = perf_event_read_value(event, &enabled, &running);
3387 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3388 values[n++] = enabled;
3389 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3390 values[n++] = running;
3dab77fb 3391 if (read_format & PERF_FORMAT_ID)
cdd6c482 3392 values[n++] = primary_event_id(event);
3dab77fb
PZ
3393
3394 if (copy_to_user(buf, values, n * sizeof(u64)))
3395 return -EFAULT;
3396
3397 return n * sizeof(u64);
3398}
3399
0793a61d 3400/*
cdd6c482 3401 * Read the performance event - simple non blocking version for now
0793a61d
TG
3402 */
3403static ssize_t
cdd6c482 3404perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3405{
cdd6c482 3406 u64 read_format = event->attr.read_format;
3dab77fb 3407 int ret;
0793a61d 3408
3b6f9e5c 3409 /*
cdd6c482 3410 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3411 * error state (i.e. because it was pinned but it couldn't be
3412 * scheduled on to the CPU at some point).
3413 */
cdd6c482 3414 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3415 return 0;
3416
c320c7b7 3417 if (count < event->read_size)
3dab77fb
PZ
3418 return -ENOSPC;
3419
cdd6c482 3420 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3421 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3422 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3423 else
cdd6c482 3424 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3425
3dab77fb 3426 return ret;
0793a61d
TG
3427}
3428
0793a61d
TG
3429static ssize_t
3430perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3431{
cdd6c482 3432 struct perf_event *event = file->private_data;
0793a61d 3433
cdd6c482 3434 return perf_read_hw(event, buf, count);
0793a61d
TG
3435}
3436
3437static unsigned int perf_poll(struct file *file, poll_table *wait)
3438{
cdd6c482 3439 struct perf_event *event = file->private_data;
76369139 3440 struct ring_buffer *rb;
c33a0bc4 3441 unsigned int events = POLL_HUP;
c7138f37 3442
10c6db11 3443 /*
9bb5d40c
PZ
3444 * Pin the event->rb by taking event->mmap_mutex; otherwise
3445 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3446 */
3447 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3448 rb = event->rb;
3449 if (rb)
76369139 3450 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3451 mutex_unlock(&event->mmap_mutex);
3452
cdd6c482 3453 poll_wait(file, &event->waitq, wait);
0793a61d 3454
0793a61d
TG
3455 return events;
3456}
3457
cdd6c482 3458static void perf_event_reset(struct perf_event *event)
6de6a7b9 3459{
cdd6c482 3460 (void)perf_event_read(event);
e7850595 3461 local64_set(&event->count, 0);
cdd6c482 3462 perf_event_update_userpage(event);
3df5edad
PZ
3463}
3464
c93f7669 3465/*
cdd6c482
IM
3466 * Holding the top-level event's child_mutex means that any
3467 * descendant process that has inherited this event will block
3468 * in sync_child_event if it goes to exit, thus satisfying the
3469 * task existence requirements of perf_event_enable/disable.
c93f7669 3470 */
cdd6c482
IM
3471static void perf_event_for_each_child(struct perf_event *event,
3472 void (*func)(struct perf_event *))
3df5edad 3473{
cdd6c482 3474 struct perf_event *child;
3df5edad 3475
cdd6c482
IM
3476 WARN_ON_ONCE(event->ctx->parent_ctx);
3477 mutex_lock(&event->child_mutex);
3478 func(event);
3479 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3480 func(child);
cdd6c482 3481 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3482}
3483
cdd6c482
IM
3484static void perf_event_for_each(struct perf_event *event,
3485 void (*func)(struct perf_event *))
3df5edad 3486{
cdd6c482
IM
3487 struct perf_event_context *ctx = event->ctx;
3488 struct perf_event *sibling;
3df5edad 3489
75f937f2
PZ
3490 WARN_ON_ONCE(ctx->parent_ctx);
3491 mutex_lock(&ctx->mutex);
cdd6c482 3492 event = event->group_leader;
75f937f2 3493
cdd6c482 3494 perf_event_for_each_child(event, func);
cdd6c482 3495 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3496 perf_event_for_each_child(sibling, func);
75f937f2 3497 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3498}
3499
cdd6c482 3500static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3501{
cdd6c482 3502 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3503 int ret = 0;
3504 u64 value;
3505
6c7e550f 3506 if (!is_sampling_event(event))
08247e31
PZ
3507 return -EINVAL;
3508
ad0cf347 3509 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3510 return -EFAULT;
3511
3512 if (!value)
3513 return -EINVAL;
3514
e625cce1 3515 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3516 if (event->attr.freq) {
3517 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3518 ret = -EINVAL;
3519 goto unlock;
3520 }
3521
cdd6c482 3522 event->attr.sample_freq = value;
08247e31 3523 } else {
cdd6c482
IM
3524 event->attr.sample_period = value;
3525 event->hw.sample_period = value;
08247e31
PZ
3526 }
3527unlock:
e625cce1 3528 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3529
3530 return ret;
3531}
3532
ac9721f3
PZ
3533static const struct file_operations perf_fops;
3534
2903ff01 3535static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3536{
2903ff01
AV
3537 struct fd f = fdget(fd);
3538 if (!f.file)
3539 return -EBADF;
ac9721f3 3540
2903ff01
AV
3541 if (f.file->f_op != &perf_fops) {
3542 fdput(f);
3543 return -EBADF;
ac9721f3 3544 }
2903ff01
AV
3545 *p = f;
3546 return 0;
ac9721f3
PZ
3547}
3548
3549static int perf_event_set_output(struct perf_event *event,
3550 struct perf_event *output_event);
6fb2915d 3551static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3552
d859e29f
PM
3553static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3554{
cdd6c482
IM
3555 struct perf_event *event = file->private_data;
3556 void (*func)(struct perf_event *);
3df5edad 3557 u32 flags = arg;
d859e29f
PM
3558
3559 switch (cmd) {
cdd6c482
IM
3560 case PERF_EVENT_IOC_ENABLE:
3561 func = perf_event_enable;
d859e29f 3562 break;
cdd6c482
IM
3563 case PERF_EVENT_IOC_DISABLE:
3564 func = perf_event_disable;
79f14641 3565 break;
cdd6c482
IM
3566 case PERF_EVENT_IOC_RESET:
3567 func = perf_event_reset;
6de6a7b9 3568 break;
3df5edad 3569
cdd6c482
IM
3570 case PERF_EVENT_IOC_REFRESH:
3571 return perf_event_refresh(event, arg);
08247e31 3572
cdd6c482
IM
3573 case PERF_EVENT_IOC_PERIOD:
3574 return perf_event_period(event, (u64 __user *)arg);
08247e31 3575
cf4957f1
JO
3576 case PERF_EVENT_IOC_ID:
3577 {
3578 u64 id = primary_event_id(event);
3579
3580 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3581 return -EFAULT;
3582 return 0;
3583 }
3584
cdd6c482 3585 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3586 {
ac9721f3 3587 int ret;
ac9721f3 3588 if (arg != -1) {
2903ff01
AV
3589 struct perf_event *output_event;
3590 struct fd output;
3591 ret = perf_fget_light(arg, &output);
3592 if (ret)
3593 return ret;
3594 output_event = output.file->private_data;
3595 ret = perf_event_set_output(event, output_event);
3596 fdput(output);
3597 } else {
3598 ret = perf_event_set_output(event, NULL);
ac9721f3 3599 }
ac9721f3
PZ
3600 return ret;
3601 }
a4be7c27 3602
6fb2915d
LZ
3603 case PERF_EVENT_IOC_SET_FILTER:
3604 return perf_event_set_filter(event, (void __user *)arg);
3605
d859e29f 3606 default:
3df5edad 3607 return -ENOTTY;
d859e29f 3608 }
3df5edad
PZ
3609
3610 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3611 perf_event_for_each(event, func);
3df5edad 3612 else
cdd6c482 3613 perf_event_for_each_child(event, func);
3df5edad
PZ
3614
3615 return 0;
d859e29f
PM
3616}
3617
cdd6c482 3618int perf_event_task_enable(void)
771d7cde 3619{
cdd6c482 3620 struct perf_event *event;
771d7cde 3621
cdd6c482
IM
3622 mutex_lock(&current->perf_event_mutex);
3623 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3624 perf_event_for_each_child(event, perf_event_enable);
3625 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3626
3627 return 0;
3628}
3629
cdd6c482 3630int perf_event_task_disable(void)
771d7cde 3631{
cdd6c482 3632 struct perf_event *event;
771d7cde 3633
cdd6c482
IM
3634 mutex_lock(&current->perf_event_mutex);
3635 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3636 perf_event_for_each_child(event, perf_event_disable);
3637 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3638
3639 return 0;
3640}
3641
cdd6c482 3642static int perf_event_index(struct perf_event *event)
194002b2 3643{
a4eaf7f1
PZ
3644 if (event->hw.state & PERF_HES_STOPPED)
3645 return 0;
3646
cdd6c482 3647 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3648 return 0;
3649
35edc2a5 3650 return event->pmu->event_idx(event);
194002b2
PZ
3651}
3652
c4794295 3653static void calc_timer_values(struct perf_event *event,
e3f3541c 3654 u64 *now,
7f310a5d
EM
3655 u64 *enabled,
3656 u64 *running)
c4794295 3657{
e3f3541c 3658 u64 ctx_time;
c4794295 3659
e3f3541c
PZ
3660 *now = perf_clock();
3661 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3662 *enabled = ctx_time - event->tstamp_enabled;
3663 *running = ctx_time - event->tstamp_running;
3664}
3665
fa731587
PZ
3666static void perf_event_init_userpage(struct perf_event *event)
3667{
3668 struct perf_event_mmap_page *userpg;
3669 struct ring_buffer *rb;
3670
3671 rcu_read_lock();
3672 rb = rcu_dereference(event->rb);
3673 if (!rb)
3674 goto unlock;
3675
3676 userpg = rb->user_page;
3677
3678 /* Allow new userspace to detect that bit 0 is deprecated */
3679 userpg->cap_bit0_is_deprecated = 1;
3680 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3681
3682unlock:
3683 rcu_read_unlock();
3684}
3685
c7206205 3686void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3687{
3688}
3689
38ff667b
PZ
3690/*
3691 * Callers need to ensure there can be no nesting of this function, otherwise
3692 * the seqlock logic goes bad. We can not serialize this because the arch
3693 * code calls this from NMI context.
3694 */
cdd6c482 3695void perf_event_update_userpage(struct perf_event *event)
37d81828 3696{
cdd6c482 3697 struct perf_event_mmap_page *userpg;
76369139 3698 struct ring_buffer *rb;
e3f3541c 3699 u64 enabled, running, now;
38ff667b
PZ
3700
3701 rcu_read_lock();
5ec4c599
PZ
3702 rb = rcu_dereference(event->rb);
3703 if (!rb)
3704 goto unlock;
3705
0d641208
EM
3706 /*
3707 * compute total_time_enabled, total_time_running
3708 * based on snapshot values taken when the event
3709 * was last scheduled in.
3710 *
3711 * we cannot simply called update_context_time()
3712 * because of locking issue as we can be called in
3713 * NMI context
3714 */
e3f3541c 3715 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3716
76369139 3717 userpg = rb->user_page;
7b732a75
PZ
3718 /*
3719 * Disable preemption so as to not let the corresponding user-space
3720 * spin too long if we get preempted.
3721 */
3722 preempt_disable();
37d81828 3723 ++userpg->lock;
92f22a38 3724 barrier();
cdd6c482 3725 userpg->index = perf_event_index(event);
b5e58793 3726 userpg->offset = perf_event_count(event);
365a4038 3727 if (userpg->index)
e7850595 3728 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3729
0d641208 3730 userpg->time_enabled = enabled +
cdd6c482 3731 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3732
0d641208 3733 userpg->time_running = running +
cdd6c482 3734 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3735
c7206205 3736 arch_perf_update_userpage(userpg, now);
e3f3541c 3737
92f22a38 3738 barrier();
37d81828 3739 ++userpg->lock;
7b732a75 3740 preempt_enable();
38ff667b 3741unlock:
7b732a75 3742 rcu_read_unlock();
37d81828
PM
3743}
3744
906010b2
PZ
3745static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3746{
3747 struct perf_event *event = vma->vm_file->private_data;
76369139 3748 struct ring_buffer *rb;
906010b2
PZ
3749 int ret = VM_FAULT_SIGBUS;
3750
3751 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3752 if (vmf->pgoff == 0)
3753 ret = 0;
3754 return ret;
3755 }
3756
3757 rcu_read_lock();
76369139
FW
3758 rb = rcu_dereference(event->rb);
3759 if (!rb)
906010b2
PZ
3760 goto unlock;
3761
3762 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3763 goto unlock;
3764
76369139 3765 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3766 if (!vmf->page)
3767 goto unlock;
3768
3769 get_page(vmf->page);
3770 vmf->page->mapping = vma->vm_file->f_mapping;
3771 vmf->page->index = vmf->pgoff;
3772
3773 ret = 0;
3774unlock:
3775 rcu_read_unlock();
3776
3777 return ret;
3778}
3779
10c6db11
PZ
3780static void ring_buffer_attach(struct perf_event *event,
3781 struct ring_buffer *rb)
3782{
3783 unsigned long flags;
3784
3785 if (!list_empty(&event->rb_entry))
3786 return;
3787
3788 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3789 if (list_empty(&event->rb_entry))
3790 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3791 spin_unlock_irqrestore(&rb->event_lock, flags);
3792}
3793
9bb5d40c 3794static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3795{
3796 unsigned long flags;
3797
3798 if (list_empty(&event->rb_entry))
3799 return;
3800
3801 spin_lock_irqsave(&rb->event_lock, flags);
3802 list_del_init(&event->rb_entry);
3803 wake_up_all(&event->waitq);
3804 spin_unlock_irqrestore(&rb->event_lock, flags);
3805}
3806
3807static void ring_buffer_wakeup(struct perf_event *event)
3808{
3809 struct ring_buffer *rb;
3810
3811 rcu_read_lock();
3812 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3813 if (rb) {
3814 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3815 wake_up_all(&event->waitq);
3816 }
10c6db11
PZ
3817 rcu_read_unlock();
3818}
3819
76369139 3820static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3821{
76369139 3822 struct ring_buffer *rb;
906010b2 3823
76369139
FW
3824 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3825 rb_free(rb);
7b732a75
PZ
3826}
3827
76369139 3828static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3829{
76369139 3830 struct ring_buffer *rb;
7b732a75 3831
ac9721f3 3832 rcu_read_lock();
76369139
FW
3833 rb = rcu_dereference(event->rb);
3834 if (rb) {
3835 if (!atomic_inc_not_zero(&rb->refcount))
3836 rb = NULL;
ac9721f3
PZ
3837 }
3838 rcu_read_unlock();
3839
76369139 3840 return rb;
ac9721f3
PZ
3841}
3842
76369139 3843static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3844{
76369139 3845 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3846 return;
7b732a75 3847
9bb5d40c 3848 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3849
76369139 3850 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3851}
3852
3853static void perf_mmap_open(struct vm_area_struct *vma)
3854{
cdd6c482 3855 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3856
cdd6c482 3857 atomic_inc(&event->mmap_count);
9bb5d40c 3858 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3859}
3860
9bb5d40c
PZ
3861/*
3862 * A buffer can be mmap()ed multiple times; either directly through the same
3863 * event, or through other events by use of perf_event_set_output().
3864 *
3865 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3866 * the buffer here, where we still have a VM context. This means we need
3867 * to detach all events redirecting to us.
3868 */
7b732a75
PZ
3869static void perf_mmap_close(struct vm_area_struct *vma)
3870{
cdd6c482 3871 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3872
9bb5d40c
PZ
3873 struct ring_buffer *rb = event->rb;
3874 struct user_struct *mmap_user = rb->mmap_user;
3875 int mmap_locked = rb->mmap_locked;
3876 unsigned long size = perf_data_size(rb);
789f90fc 3877
9bb5d40c
PZ
3878 atomic_dec(&rb->mmap_count);
3879
3880 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3881 return;
3882
3883 /* Detach current event from the buffer. */
3884 rcu_assign_pointer(event->rb, NULL);
3885 ring_buffer_detach(event, rb);
3886 mutex_unlock(&event->mmap_mutex);
3887
3888 /* If there's still other mmap()s of this buffer, we're done. */
3889 if (atomic_read(&rb->mmap_count)) {
3890 ring_buffer_put(rb); /* can't be last */
3891 return;
3892 }
ac9721f3 3893
9bb5d40c
PZ
3894 /*
3895 * No other mmap()s, detach from all other events that might redirect
3896 * into the now unreachable buffer. Somewhat complicated by the
3897 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3898 */
3899again:
3900 rcu_read_lock();
3901 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3902 if (!atomic_long_inc_not_zero(&event->refcount)) {
3903 /*
3904 * This event is en-route to free_event() which will
3905 * detach it and remove it from the list.
3906 */
3907 continue;
3908 }
3909 rcu_read_unlock();
789f90fc 3910
9bb5d40c
PZ
3911 mutex_lock(&event->mmap_mutex);
3912 /*
3913 * Check we didn't race with perf_event_set_output() which can
3914 * swizzle the rb from under us while we were waiting to
3915 * acquire mmap_mutex.
3916 *
3917 * If we find a different rb; ignore this event, a next
3918 * iteration will no longer find it on the list. We have to
3919 * still restart the iteration to make sure we're not now
3920 * iterating the wrong list.
3921 */
3922 if (event->rb == rb) {
3923 rcu_assign_pointer(event->rb, NULL);
3924 ring_buffer_detach(event, rb);
3925 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3926 }
cdd6c482 3927 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3928 put_event(event);
ac9721f3 3929
9bb5d40c
PZ
3930 /*
3931 * Restart the iteration; either we're on the wrong list or
3932 * destroyed its integrity by doing a deletion.
3933 */
3934 goto again;
7b732a75 3935 }
9bb5d40c
PZ
3936 rcu_read_unlock();
3937
3938 /*
3939 * It could be there's still a few 0-ref events on the list; they'll
3940 * get cleaned up by free_event() -- they'll also still have their
3941 * ref on the rb and will free it whenever they are done with it.
3942 *
3943 * Aside from that, this buffer is 'fully' detached and unmapped,
3944 * undo the VM accounting.
3945 */
3946
3947 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3948 vma->vm_mm->pinned_vm -= mmap_locked;
3949 free_uid(mmap_user);
3950
3951 ring_buffer_put(rb); /* could be last */
37d81828
PM
3952}
3953
f0f37e2f 3954static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3955 .open = perf_mmap_open,
3956 .close = perf_mmap_close,
3957 .fault = perf_mmap_fault,
3958 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3959};
3960
3961static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3962{
cdd6c482 3963 struct perf_event *event = file->private_data;
22a4f650 3964 unsigned long user_locked, user_lock_limit;
789f90fc 3965 struct user_struct *user = current_user();
22a4f650 3966 unsigned long locked, lock_limit;
76369139 3967 struct ring_buffer *rb;
7b732a75
PZ
3968 unsigned long vma_size;
3969 unsigned long nr_pages;
789f90fc 3970 long user_extra, extra;
d57e34fd 3971 int ret = 0, flags = 0;
37d81828 3972
c7920614
PZ
3973 /*
3974 * Don't allow mmap() of inherited per-task counters. This would
3975 * create a performance issue due to all children writing to the
76369139 3976 * same rb.
c7920614
PZ
3977 */
3978 if (event->cpu == -1 && event->attr.inherit)
3979 return -EINVAL;
3980
43a21ea8 3981 if (!(vma->vm_flags & VM_SHARED))
37d81828 3982 return -EINVAL;
7b732a75
PZ
3983
3984 vma_size = vma->vm_end - vma->vm_start;
3985 nr_pages = (vma_size / PAGE_SIZE) - 1;
3986
7730d865 3987 /*
76369139 3988 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3989 * can do bitmasks instead of modulo.
3990 */
3991 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3992 return -EINVAL;
3993
7b732a75 3994 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3995 return -EINVAL;
3996
7b732a75
PZ
3997 if (vma->vm_pgoff != 0)
3998 return -EINVAL;
37d81828 3999
cdd6c482 4000 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4001again:
cdd6c482 4002 mutex_lock(&event->mmap_mutex);
76369139 4003 if (event->rb) {
9bb5d40c 4004 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4005 ret = -EINVAL;
9bb5d40c
PZ
4006 goto unlock;
4007 }
4008
4009 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4010 /*
4011 * Raced against perf_mmap_close() through
4012 * perf_event_set_output(). Try again, hope for better
4013 * luck.
4014 */
4015 mutex_unlock(&event->mmap_mutex);
4016 goto again;
4017 }
4018
ebb3c4c4
PZ
4019 goto unlock;
4020 }
4021
789f90fc 4022 user_extra = nr_pages + 1;
cdd6c482 4023 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4024
4025 /*
4026 * Increase the limit linearly with more CPUs:
4027 */
4028 user_lock_limit *= num_online_cpus();
4029
789f90fc 4030 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4031
789f90fc
PZ
4032 extra = 0;
4033 if (user_locked > user_lock_limit)
4034 extra = user_locked - user_lock_limit;
7b732a75 4035
78d7d407 4036 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4037 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4038 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4039
459ec28a
IM
4040 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4041 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4042 ret = -EPERM;
4043 goto unlock;
4044 }
7b732a75 4045
76369139 4046 WARN_ON(event->rb);
906010b2 4047
d57e34fd 4048 if (vma->vm_flags & VM_WRITE)
76369139 4049 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4050
4ec8363d
VW
4051 rb = rb_alloc(nr_pages,
4052 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4053 event->cpu, flags);
4054
76369139 4055 if (!rb) {
ac9721f3 4056 ret = -ENOMEM;
ebb3c4c4 4057 goto unlock;
ac9721f3 4058 }
26cb63ad 4059
9bb5d40c 4060 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4061 rb->mmap_locked = extra;
4062 rb->mmap_user = get_current_user();
43a21ea8 4063
ac9721f3 4064 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4065 vma->vm_mm->pinned_vm += extra;
4066
9bb5d40c 4067 ring_buffer_attach(event, rb);
26cb63ad 4068 rcu_assign_pointer(event->rb, rb);
ac9721f3 4069
fa731587 4070 perf_event_init_userpage(event);
9a0f05cb
PZ
4071 perf_event_update_userpage(event);
4072
ebb3c4c4 4073unlock:
ac9721f3
PZ
4074 if (!ret)
4075 atomic_inc(&event->mmap_count);
cdd6c482 4076 mutex_unlock(&event->mmap_mutex);
37d81828 4077
9bb5d40c
PZ
4078 /*
4079 * Since pinned accounting is per vm we cannot allow fork() to copy our
4080 * vma.
4081 */
26cb63ad 4082 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4083 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4084
4085 return ret;
37d81828
PM
4086}
4087
3c446b3d
PZ
4088static int perf_fasync(int fd, struct file *filp, int on)
4089{
496ad9aa 4090 struct inode *inode = file_inode(filp);
cdd6c482 4091 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4092 int retval;
4093
4094 mutex_lock(&inode->i_mutex);
cdd6c482 4095 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4096 mutex_unlock(&inode->i_mutex);
4097
4098 if (retval < 0)
4099 return retval;
4100
4101 return 0;
4102}
4103
0793a61d 4104static const struct file_operations perf_fops = {
3326c1ce 4105 .llseek = no_llseek,
0793a61d
TG
4106 .release = perf_release,
4107 .read = perf_read,
4108 .poll = perf_poll,
d859e29f
PM
4109 .unlocked_ioctl = perf_ioctl,
4110 .compat_ioctl = perf_ioctl,
37d81828 4111 .mmap = perf_mmap,
3c446b3d 4112 .fasync = perf_fasync,
0793a61d
TG
4113};
4114
925d519a 4115/*
cdd6c482 4116 * Perf event wakeup
925d519a
PZ
4117 *
4118 * If there's data, ensure we set the poll() state and publish everything
4119 * to user-space before waking everybody up.
4120 */
4121
cdd6c482 4122void perf_event_wakeup(struct perf_event *event)
925d519a 4123{
10c6db11 4124 ring_buffer_wakeup(event);
4c9e2542 4125
cdd6c482
IM
4126 if (event->pending_kill) {
4127 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4128 event->pending_kill = 0;
4c9e2542 4129 }
925d519a
PZ
4130}
4131
e360adbe 4132static void perf_pending_event(struct irq_work *entry)
79f14641 4133{
cdd6c482
IM
4134 struct perf_event *event = container_of(entry,
4135 struct perf_event, pending);
79f14641 4136
cdd6c482
IM
4137 if (event->pending_disable) {
4138 event->pending_disable = 0;
4139 __perf_event_disable(event);
79f14641
PZ
4140 }
4141
cdd6c482
IM
4142 if (event->pending_wakeup) {
4143 event->pending_wakeup = 0;
4144 perf_event_wakeup(event);
79f14641
PZ
4145 }
4146}
4147
39447b38
ZY
4148/*
4149 * We assume there is only KVM supporting the callbacks.
4150 * Later on, we might change it to a list if there is
4151 * another virtualization implementation supporting the callbacks.
4152 */
4153struct perf_guest_info_callbacks *perf_guest_cbs;
4154
4155int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4156{
4157 perf_guest_cbs = cbs;
4158 return 0;
4159}
4160EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4161
4162int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4163{
4164 perf_guest_cbs = NULL;
4165 return 0;
4166}
4167EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4168
4018994f
JO
4169static void
4170perf_output_sample_regs(struct perf_output_handle *handle,
4171 struct pt_regs *regs, u64 mask)
4172{
4173 int bit;
4174
4175 for_each_set_bit(bit, (const unsigned long *) &mask,
4176 sizeof(mask) * BITS_PER_BYTE) {
4177 u64 val;
4178
4179 val = perf_reg_value(regs, bit);
4180 perf_output_put(handle, val);
4181 }
4182}
4183
4184static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4185 struct pt_regs *regs)
4186{
4187 if (!user_mode(regs)) {
4188 if (current->mm)
4189 regs = task_pt_regs(current);
4190 else
4191 regs = NULL;
4192 }
4193
4194 if (regs) {
4195 regs_user->regs = regs;
4196 regs_user->abi = perf_reg_abi(current);
4197 }
4198}
4199
c5ebcedb
JO
4200/*
4201 * Get remaining task size from user stack pointer.
4202 *
4203 * It'd be better to take stack vma map and limit this more
4204 * precisly, but there's no way to get it safely under interrupt,
4205 * so using TASK_SIZE as limit.
4206 */
4207static u64 perf_ustack_task_size(struct pt_regs *regs)
4208{
4209 unsigned long addr = perf_user_stack_pointer(regs);
4210
4211 if (!addr || addr >= TASK_SIZE)
4212 return 0;
4213
4214 return TASK_SIZE - addr;
4215}
4216
4217static u16
4218perf_sample_ustack_size(u16 stack_size, u16 header_size,
4219 struct pt_regs *regs)
4220{
4221 u64 task_size;
4222
4223 /* No regs, no stack pointer, no dump. */
4224 if (!regs)
4225 return 0;
4226
4227 /*
4228 * Check if we fit in with the requested stack size into the:
4229 * - TASK_SIZE
4230 * If we don't, we limit the size to the TASK_SIZE.
4231 *
4232 * - remaining sample size
4233 * If we don't, we customize the stack size to
4234 * fit in to the remaining sample size.
4235 */
4236
4237 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4238 stack_size = min(stack_size, (u16) task_size);
4239
4240 /* Current header size plus static size and dynamic size. */
4241 header_size += 2 * sizeof(u64);
4242
4243 /* Do we fit in with the current stack dump size? */
4244 if ((u16) (header_size + stack_size) < header_size) {
4245 /*
4246 * If we overflow the maximum size for the sample,
4247 * we customize the stack dump size to fit in.
4248 */
4249 stack_size = USHRT_MAX - header_size - sizeof(u64);
4250 stack_size = round_up(stack_size, sizeof(u64));
4251 }
4252
4253 return stack_size;
4254}
4255
4256static void
4257perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4258 struct pt_regs *regs)
4259{
4260 /* Case of a kernel thread, nothing to dump */
4261 if (!regs) {
4262 u64 size = 0;
4263 perf_output_put(handle, size);
4264 } else {
4265 unsigned long sp;
4266 unsigned int rem;
4267 u64 dyn_size;
4268
4269 /*
4270 * We dump:
4271 * static size
4272 * - the size requested by user or the best one we can fit
4273 * in to the sample max size
4274 * data
4275 * - user stack dump data
4276 * dynamic size
4277 * - the actual dumped size
4278 */
4279
4280 /* Static size. */
4281 perf_output_put(handle, dump_size);
4282
4283 /* Data. */
4284 sp = perf_user_stack_pointer(regs);
4285 rem = __output_copy_user(handle, (void *) sp, dump_size);
4286 dyn_size = dump_size - rem;
4287
4288 perf_output_skip(handle, rem);
4289
4290 /* Dynamic size. */
4291 perf_output_put(handle, dyn_size);
4292 }
4293}
4294
c980d109
ACM
4295static void __perf_event_header__init_id(struct perf_event_header *header,
4296 struct perf_sample_data *data,
4297 struct perf_event *event)
6844c09d
ACM
4298{
4299 u64 sample_type = event->attr.sample_type;
4300
4301 data->type = sample_type;
4302 header->size += event->id_header_size;
4303
4304 if (sample_type & PERF_SAMPLE_TID) {
4305 /* namespace issues */
4306 data->tid_entry.pid = perf_event_pid(event, current);
4307 data->tid_entry.tid = perf_event_tid(event, current);
4308 }
4309
4310 if (sample_type & PERF_SAMPLE_TIME)
4311 data->time = perf_clock();
4312
ff3d527c 4313 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4314 data->id = primary_event_id(event);
4315
4316 if (sample_type & PERF_SAMPLE_STREAM_ID)
4317 data->stream_id = event->id;
4318
4319 if (sample_type & PERF_SAMPLE_CPU) {
4320 data->cpu_entry.cpu = raw_smp_processor_id();
4321 data->cpu_entry.reserved = 0;
4322 }
4323}
4324
76369139
FW
4325void perf_event_header__init_id(struct perf_event_header *header,
4326 struct perf_sample_data *data,
4327 struct perf_event *event)
c980d109
ACM
4328{
4329 if (event->attr.sample_id_all)
4330 __perf_event_header__init_id(header, data, event);
4331}
4332
4333static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4334 struct perf_sample_data *data)
4335{
4336 u64 sample_type = data->type;
4337
4338 if (sample_type & PERF_SAMPLE_TID)
4339 perf_output_put(handle, data->tid_entry);
4340
4341 if (sample_type & PERF_SAMPLE_TIME)
4342 perf_output_put(handle, data->time);
4343
4344 if (sample_type & PERF_SAMPLE_ID)
4345 perf_output_put(handle, data->id);
4346
4347 if (sample_type & PERF_SAMPLE_STREAM_ID)
4348 perf_output_put(handle, data->stream_id);
4349
4350 if (sample_type & PERF_SAMPLE_CPU)
4351 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4352
4353 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4354 perf_output_put(handle, data->id);
c980d109
ACM
4355}
4356
76369139
FW
4357void perf_event__output_id_sample(struct perf_event *event,
4358 struct perf_output_handle *handle,
4359 struct perf_sample_data *sample)
c980d109
ACM
4360{
4361 if (event->attr.sample_id_all)
4362 __perf_event__output_id_sample(handle, sample);
4363}
4364
3dab77fb 4365static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4366 struct perf_event *event,
4367 u64 enabled, u64 running)
3dab77fb 4368{
cdd6c482 4369 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4370 u64 values[4];
4371 int n = 0;
4372
b5e58793 4373 values[n++] = perf_event_count(event);
3dab77fb 4374 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4375 values[n++] = enabled +
cdd6c482 4376 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4377 }
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4379 values[n++] = running +
cdd6c482 4380 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4381 }
4382 if (read_format & PERF_FORMAT_ID)
cdd6c482 4383 values[n++] = primary_event_id(event);
3dab77fb 4384
76369139 4385 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4386}
4387
4388/*
cdd6c482 4389 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4390 */
4391static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4392 struct perf_event *event,
4393 u64 enabled, u64 running)
3dab77fb 4394{
cdd6c482
IM
4395 struct perf_event *leader = event->group_leader, *sub;
4396 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4397 u64 values[5];
4398 int n = 0;
4399
4400 values[n++] = 1 + leader->nr_siblings;
4401
4402 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4403 values[n++] = enabled;
3dab77fb
PZ
4404
4405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4406 values[n++] = running;
3dab77fb 4407
cdd6c482 4408 if (leader != event)
3dab77fb
PZ
4409 leader->pmu->read(leader);
4410
b5e58793 4411 values[n++] = perf_event_count(leader);
3dab77fb 4412 if (read_format & PERF_FORMAT_ID)
cdd6c482 4413 values[n++] = primary_event_id(leader);
3dab77fb 4414
76369139 4415 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4416
65abc865 4417 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4418 n = 0;
4419
6f5ab001
JO
4420 if ((sub != event) &&
4421 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4422 sub->pmu->read(sub);
4423
b5e58793 4424 values[n++] = perf_event_count(sub);
3dab77fb 4425 if (read_format & PERF_FORMAT_ID)
cdd6c482 4426 values[n++] = primary_event_id(sub);
3dab77fb 4427
76369139 4428 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4429 }
4430}
4431
eed01528
SE
4432#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4433 PERF_FORMAT_TOTAL_TIME_RUNNING)
4434
3dab77fb 4435static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4436 struct perf_event *event)
3dab77fb 4437{
e3f3541c 4438 u64 enabled = 0, running = 0, now;
eed01528
SE
4439 u64 read_format = event->attr.read_format;
4440
4441 /*
4442 * compute total_time_enabled, total_time_running
4443 * based on snapshot values taken when the event
4444 * was last scheduled in.
4445 *
4446 * we cannot simply called update_context_time()
4447 * because of locking issue as we are called in
4448 * NMI context
4449 */
c4794295 4450 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4451 calc_timer_values(event, &now, &enabled, &running);
eed01528 4452
cdd6c482 4453 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4454 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4455 else
eed01528 4456 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4457}
4458
5622f295
MM
4459void perf_output_sample(struct perf_output_handle *handle,
4460 struct perf_event_header *header,
4461 struct perf_sample_data *data,
cdd6c482 4462 struct perf_event *event)
5622f295
MM
4463{
4464 u64 sample_type = data->type;
4465
4466 perf_output_put(handle, *header);
4467
ff3d527c
AH
4468 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4469 perf_output_put(handle, data->id);
4470
5622f295
MM
4471 if (sample_type & PERF_SAMPLE_IP)
4472 perf_output_put(handle, data->ip);
4473
4474 if (sample_type & PERF_SAMPLE_TID)
4475 perf_output_put(handle, data->tid_entry);
4476
4477 if (sample_type & PERF_SAMPLE_TIME)
4478 perf_output_put(handle, data->time);
4479
4480 if (sample_type & PERF_SAMPLE_ADDR)
4481 perf_output_put(handle, data->addr);
4482
4483 if (sample_type & PERF_SAMPLE_ID)
4484 perf_output_put(handle, data->id);
4485
4486 if (sample_type & PERF_SAMPLE_STREAM_ID)
4487 perf_output_put(handle, data->stream_id);
4488
4489 if (sample_type & PERF_SAMPLE_CPU)
4490 perf_output_put(handle, data->cpu_entry);
4491
4492 if (sample_type & PERF_SAMPLE_PERIOD)
4493 perf_output_put(handle, data->period);
4494
4495 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4496 perf_output_read(handle, event);
5622f295
MM
4497
4498 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4499 if (data->callchain) {
4500 int size = 1;
4501
4502 if (data->callchain)
4503 size += data->callchain->nr;
4504
4505 size *= sizeof(u64);
4506
76369139 4507 __output_copy(handle, data->callchain, size);
5622f295
MM
4508 } else {
4509 u64 nr = 0;
4510 perf_output_put(handle, nr);
4511 }
4512 }
4513
4514 if (sample_type & PERF_SAMPLE_RAW) {
4515 if (data->raw) {
4516 perf_output_put(handle, data->raw->size);
76369139
FW
4517 __output_copy(handle, data->raw->data,
4518 data->raw->size);
5622f295
MM
4519 } else {
4520 struct {
4521 u32 size;
4522 u32 data;
4523 } raw = {
4524 .size = sizeof(u32),
4525 .data = 0,
4526 };
4527 perf_output_put(handle, raw);
4528 }
4529 }
a7ac67ea 4530
bce38cd5
SE
4531 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4532 if (data->br_stack) {
4533 size_t size;
4534
4535 size = data->br_stack->nr
4536 * sizeof(struct perf_branch_entry);
4537
4538 perf_output_put(handle, data->br_stack->nr);
4539 perf_output_copy(handle, data->br_stack->entries, size);
4540 } else {
4541 /*
4542 * we always store at least the value of nr
4543 */
4544 u64 nr = 0;
4545 perf_output_put(handle, nr);
4546 }
4547 }
4018994f
JO
4548
4549 if (sample_type & PERF_SAMPLE_REGS_USER) {
4550 u64 abi = data->regs_user.abi;
4551
4552 /*
4553 * If there are no regs to dump, notice it through
4554 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4555 */
4556 perf_output_put(handle, abi);
4557
4558 if (abi) {
4559 u64 mask = event->attr.sample_regs_user;
4560 perf_output_sample_regs(handle,
4561 data->regs_user.regs,
4562 mask);
4563 }
4564 }
c5ebcedb 4565
a5cdd40c 4566 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4567 perf_output_sample_ustack(handle,
4568 data->stack_user_size,
4569 data->regs_user.regs);
a5cdd40c 4570 }
c3feedf2
AK
4571
4572 if (sample_type & PERF_SAMPLE_WEIGHT)
4573 perf_output_put(handle, data->weight);
d6be9ad6
SE
4574
4575 if (sample_type & PERF_SAMPLE_DATA_SRC)
4576 perf_output_put(handle, data->data_src.val);
a5cdd40c 4577
fdfbbd07
AK
4578 if (sample_type & PERF_SAMPLE_TRANSACTION)
4579 perf_output_put(handle, data->txn);
4580
a5cdd40c
PZ
4581 if (!event->attr.watermark) {
4582 int wakeup_events = event->attr.wakeup_events;
4583
4584 if (wakeup_events) {
4585 struct ring_buffer *rb = handle->rb;
4586 int events = local_inc_return(&rb->events);
4587
4588 if (events >= wakeup_events) {
4589 local_sub(wakeup_events, &rb->events);
4590 local_inc(&rb->wakeup);
4591 }
4592 }
4593 }
5622f295
MM
4594}
4595
4596void perf_prepare_sample(struct perf_event_header *header,
4597 struct perf_sample_data *data,
cdd6c482 4598 struct perf_event *event,
5622f295 4599 struct pt_regs *regs)
7b732a75 4600{
cdd6c482 4601 u64 sample_type = event->attr.sample_type;
7b732a75 4602
cdd6c482 4603 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4604 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4605
4606 header->misc = 0;
4607 header->misc |= perf_misc_flags(regs);
6fab0192 4608
c980d109 4609 __perf_event_header__init_id(header, data, event);
6844c09d 4610
c320c7b7 4611 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4612 data->ip = perf_instruction_pointer(regs);
4613
b23f3325 4614 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4615 int size = 1;
394ee076 4616
e6dab5ff 4617 data->callchain = perf_callchain(event, regs);
5622f295
MM
4618
4619 if (data->callchain)
4620 size += data->callchain->nr;
4621
4622 header->size += size * sizeof(u64);
394ee076
PZ
4623 }
4624
3a43ce68 4625 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4626 int size = sizeof(u32);
4627
4628 if (data->raw)
4629 size += data->raw->size;
4630 else
4631 size += sizeof(u32);
4632
4633 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4634 header->size += size;
7f453c24 4635 }
bce38cd5
SE
4636
4637 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4638 int size = sizeof(u64); /* nr */
4639 if (data->br_stack) {
4640 size += data->br_stack->nr
4641 * sizeof(struct perf_branch_entry);
4642 }
4643 header->size += size;
4644 }
4018994f
JO
4645
4646 if (sample_type & PERF_SAMPLE_REGS_USER) {
4647 /* regs dump ABI info */
4648 int size = sizeof(u64);
4649
4650 perf_sample_regs_user(&data->regs_user, regs);
4651
4652 if (data->regs_user.regs) {
4653 u64 mask = event->attr.sample_regs_user;
4654 size += hweight64(mask) * sizeof(u64);
4655 }
4656
4657 header->size += size;
4658 }
c5ebcedb
JO
4659
4660 if (sample_type & PERF_SAMPLE_STACK_USER) {
4661 /*
4662 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4663 * processed as the last one or have additional check added
4664 * in case new sample type is added, because we could eat
4665 * up the rest of the sample size.
4666 */
4667 struct perf_regs_user *uregs = &data->regs_user;
4668 u16 stack_size = event->attr.sample_stack_user;
4669 u16 size = sizeof(u64);
4670
4671 if (!uregs->abi)
4672 perf_sample_regs_user(uregs, regs);
4673
4674 stack_size = perf_sample_ustack_size(stack_size, header->size,
4675 uregs->regs);
4676
4677 /*
4678 * If there is something to dump, add space for the dump
4679 * itself and for the field that tells the dynamic size,
4680 * which is how many have been actually dumped.
4681 */
4682 if (stack_size)
4683 size += sizeof(u64) + stack_size;
4684
4685 data->stack_user_size = stack_size;
4686 header->size += size;
4687 }
5622f295 4688}
7f453c24 4689
a8b0ca17 4690static void perf_event_output(struct perf_event *event,
5622f295
MM
4691 struct perf_sample_data *data,
4692 struct pt_regs *regs)
4693{
4694 struct perf_output_handle handle;
4695 struct perf_event_header header;
689802b2 4696
927c7a9e
FW
4697 /* protect the callchain buffers */
4698 rcu_read_lock();
4699
cdd6c482 4700 perf_prepare_sample(&header, data, event, regs);
5c148194 4701
a7ac67ea 4702 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4703 goto exit;
0322cd6e 4704
cdd6c482 4705 perf_output_sample(&handle, &header, data, event);
f413cdb8 4706
8a057d84 4707 perf_output_end(&handle);
927c7a9e
FW
4708
4709exit:
4710 rcu_read_unlock();
0322cd6e
PZ
4711}
4712
38b200d6 4713/*
cdd6c482 4714 * read event_id
38b200d6
PZ
4715 */
4716
4717struct perf_read_event {
4718 struct perf_event_header header;
4719
4720 u32 pid;
4721 u32 tid;
38b200d6
PZ
4722};
4723
4724static void
cdd6c482 4725perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4726 struct task_struct *task)
4727{
4728 struct perf_output_handle handle;
c980d109 4729 struct perf_sample_data sample;
dfc65094 4730 struct perf_read_event read_event = {
38b200d6 4731 .header = {
cdd6c482 4732 .type = PERF_RECORD_READ,
38b200d6 4733 .misc = 0,
c320c7b7 4734 .size = sizeof(read_event) + event->read_size,
38b200d6 4735 },
cdd6c482
IM
4736 .pid = perf_event_pid(event, task),
4737 .tid = perf_event_tid(event, task),
38b200d6 4738 };
3dab77fb 4739 int ret;
38b200d6 4740
c980d109 4741 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4742 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4743 if (ret)
4744 return;
4745
dfc65094 4746 perf_output_put(&handle, read_event);
cdd6c482 4747 perf_output_read(&handle, event);
c980d109 4748 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4749
38b200d6
PZ
4750 perf_output_end(&handle);
4751}
4752
52d857a8
JO
4753typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4754
4755static void
4756perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4757 perf_event_aux_output_cb output,
4758 void *data)
4759{
4760 struct perf_event *event;
4761
4762 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4763 if (event->state < PERF_EVENT_STATE_INACTIVE)
4764 continue;
4765 if (!event_filter_match(event))
4766 continue;
67516844 4767 output(event, data);
52d857a8
JO
4768 }
4769}
4770
4771static void
67516844 4772perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4773 struct perf_event_context *task_ctx)
4774{
4775 struct perf_cpu_context *cpuctx;
4776 struct perf_event_context *ctx;
4777 struct pmu *pmu;
4778 int ctxn;
4779
4780 rcu_read_lock();
4781 list_for_each_entry_rcu(pmu, &pmus, entry) {
4782 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4783 if (cpuctx->unique_pmu != pmu)
4784 goto next;
67516844 4785 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4786 if (task_ctx)
4787 goto next;
4788 ctxn = pmu->task_ctx_nr;
4789 if (ctxn < 0)
4790 goto next;
4791 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4792 if (ctx)
67516844 4793 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4794next:
4795 put_cpu_ptr(pmu->pmu_cpu_context);
4796 }
4797
4798 if (task_ctx) {
4799 preempt_disable();
67516844 4800 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4801 preempt_enable();
4802 }
4803 rcu_read_unlock();
4804}
4805
60313ebe 4806/*
9f498cc5
PZ
4807 * task tracking -- fork/exit
4808 *
13d7a241 4809 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4810 */
4811
9f498cc5 4812struct perf_task_event {
3a80b4a3 4813 struct task_struct *task;
cdd6c482 4814 struct perf_event_context *task_ctx;
60313ebe
PZ
4815
4816 struct {
4817 struct perf_event_header header;
4818
4819 u32 pid;
4820 u32 ppid;
9f498cc5
PZ
4821 u32 tid;
4822 u32 ptid;
393b2ad8 4823 u64 time;
cdd6c482 4824 } event_id;
60313ebe
PZ
4825};
4826
67516844
JO
4827static int perf_event_task_match(struct perf_event *event)
4828{
13d7a241
SE
4829 return event->attr.comm || event->attr.mmap ||
4830 event->attr.mmap2 || event->attr.mmap_data ||
4831 event->attr.task;
67516844
JO
4832}
4833
cdd6c482 4834static void perf_event_task_output(struct perf_event *event,
52d857a8 4835 void *data)
60313ebe 4836{
52d857a8 4837 struct perf_task_event *task_event = data;
60313ebe 4838 struct perf_output_handle handle;
c980d109 4839 struct perf_sample_data sample;
9f498cc5 4840 struct task_struct *task = task_event->task;
c980d109 4841 int ret, size = task_event->event_id.header.size;
8bb39f9a 4842
67516844
JO
4843 if (!perf_event_task_match(event))
4844 return;
4845
c980d109 4846 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4847
c980d109 4848 ret = perf_output_begin(&handle, event,
a7ac67ea 4849 task_event->event_id.header.size);
ef60777c 4850 if (ret)
c980d109 4851 goto out;
60313ebe 4852
cdd6c482
IM
4853 task_event->event_id.pid = perf_event_pid(event, task);
4854 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4855
cdd6c482
IM
4856 task_event->event_id.tid = perf_event_tid(event, task);
4857 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4858
cdd6c482 4859 perf_output_put(&handle, task_event->event_id);
393b2ad8 4860
c980d109
ACM
4861 perf_event__output_id_sample(event, &handle, &sample);
4862
60313ebe 4863 perf_output_end(&handle);
c980d109
ACM
4864out:
4865 task_event->event_id.header.size = size;
60313ebe
PZ
4866}
4867
cdd6c482
IM
4868static void perf_event_task(struct task_struct *task,
4869 struct perf_event_context *task_ctx,
3a80b4a3 4870 int new)
60313ebe 4871{
9f498cc5 4872 struct perf_task_event task_event;
60313ebe 4873
cdd6c482
IM
4874 if (!atomic_read(&nr_comm_events) &&
4875 !atomic_read(&nr_mmap_events) &&
4876 !atomic_read(&nr_task_events))
60313ebe
PZ
4877 return;
4878
9f498cc5 4879 task_event = (struct perf_task_event){
3a80b4a3
PZ
4880 .task = task,
4881 .task_ctx = task_ctx,
cdd6c482 4882 .event_id = {
60313ebe 4883 .header = {
cdd6c482 4884 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4885 .misc = 0,
cdd6c482 4886 .size = sizeof(task_event.event_id),
60313ebe 4887 },
573402db
PZ
4888 /* .pid */
4889 /* .ppid */
9f498cc5
PZ
4890 /* .tid */
4891 /* .ptid */
6f93d0a7 4892 .time = perf_clock(),
60313ebe
PZ
4893 },
4894 };
4895
67516844 4896 perf_event_aux(perf_event_task_output,
52d857a8
JO
4897 &task_event,
4898 task_ctx);
9f498cc5
PZ
4899}
4900
cdd6c482 4901void perf_event_fork(struct task_struct *task)
9f498cc5 4902{
cdd6c482 4903 perf_event_task(task, NULL, 1);
60313ebe
PZ
4904}
4905
8d1b2d93
PZ
4906/*
4907 * comm tracking
4908 */
4909
4910struct perf_comm_event {
22a4f650
IM
4911 struct task_struct *task;
4912 char *comm;
8d1b2d93
PZ
4913 int comm_size;
4914
4915 struct {
4916 struct perf_event_header header;
4917
4918 u32 pid;
4919 u32 tid;
cdd6c482 4920 } event_id;
8d1b2d93
PZ
4921};
4922
67516844
JO
4923static int perf_event_comm_match(struct perf_event *event)
4924{
4925 return event->attr.comm;
4926}
4927
cdd6c482 4928static void perf_event_comm_output(struct perf_event *event,
52d857a8 4929 void *data)
8d1b2d93 4930{
52d857a8 4931 struct perf_comm_event *comm_event = data;
8d1b2d93 4932 struct perf_output_handle handle;
c980d109 4933 struct perf_sample_data sample;
cdd6c482 4934 int size = comm_event->event_id.header.size;
c980d109
ACM
4935 int ret;
4936
67516844
JO
4937 if (!perf_event_comm_match(event))
4938 return;
4939
c980d109
ACM
4940 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4941 ret = perf_output_begin(&handle, event,
a7ac67ea 4942 comm_event->event_id.header.size);
8d1b2d93
PZ
4943
4944 if (ret)
c980d109 4945 goto out;
8d1b2d93 4946
cdd6c482
IM
4947 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4948 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4949
cdd6c482 4950 perf_output_put(&handle, comm_event->event_id);
76369139 4951 __output_copy(&handle, comm_event->comm,
8d1b2d93 4952 comm_event->comm_size);
c980d109
ACM
4953
4954 perf_event__output_id_sample(event, &handle, &sample);
4955
8d1b2d93 4956 perf_output_end(&handle);
c980d109
ACM
4957out:
4958 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4959}
4960
cdd6c482 4961static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4962{
413ee3b4 4963 char comm[TASK_COMM_LEN];
8d1b2d93 4964 unsigned int size;
8d1b2d93 4965
413ee3b4 4966 memset(comm, 0, sizeof(comm));
96b02d78 4967 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4968 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4969
4970 comm_event->comm = comm;
4971 comm_event->comm_size = size;
4972
cdd6c482 4973 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4974
67516844 4975 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4976 comm_event,
4977 NULL);
8d1b2d93
PZ
4978}
4979
cdd6c482 4980void perf_event_comm(struct task_struct *task)
8d1b2d93 4981{
9ee318a7 4982 struct perf_comm_event comm_event;
8dc85d54
PZ
4983 struct perf_event_context *ctx;
4984 int ctxn;
9ee318a7 4985
c79aa0d9 4986 rcu_read_lock();
8dc85d54
PZ
4987 for_each_task_context_nr(ctxn) {
4988 ctx = task->perf_event_ctxp[ctxn];
4989 if (!ctx)
4990 continue;
9ee318a7 4991
8dc85d54
PZ
4992 perf_event_enable_on_exec(ctx);
4993 }
c79aa0d9 4994 rcu_read_unlock();
9ee318a7 4995
cdd6c482 4996 if (!atomic_read(&nr_comm_events))
9ee318a7 4997 return;
a63eaf34 4998
9ee318a7 4999 comm_event = (struct perf_comm_event){
8d1b2d93 5000 .task = task,
573402db
PZ
5001 /* .comm */
5002 /* .comm_size */
cdd6c482 5003 .event_id = {
573402db 5004 .header = {
cdd6c482 5005 .type = PERF_RECORD_COMM,
573402db
PZ
5006 .misc = 0,
5007 /* .size */
5008 },
5009 /* .pid */
5010 /* .tid */
8d1b2d93
PZ
5011 },
5012 };
5013
cdd6c482 5014 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5015}
5016
0a4a9391
PZ
5017/*
5018 * mmap tracking
5019 */
5020
5021struct perf_mmap_event {
089dd79d
PZ
5022 struct vm_area_struct *vma;
5023
5024 const char *file_name;
5025 int file_size;
13d7a241
SE
5026 int maj, min;
5027 u64 ino;
5028 u64 ino_generation;
0a4a9391
PZ
5029
5030 struct {
5031 struct perf_event_header header;
5032
5033 u32 pid;
5034 u32 tid;
5035 u64 start;
5036 u64 len;
5037 u64 pgoff;
cdd6c482 5038 } event_id;
0a4a9391
PZ
5039};
5040
67516844
JO
5041static int perf_event_mmap_match(struct perf_event *event,
5042 void *data)
5043{
5044 struct perf_mmap_event *mmap_event = data;
5045 struct vm_area_struct *vma = mmap_event->vma;
5046 int executable = vma->vm_flags & VM_EXEC;
5047
5048 return (!executable && event->attr.mmap_data) ||
13d7a241 5049 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5050}
5051
cdd6c482 5052static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5053 void *data)
0a4a9391 5054{
52d857a8 5055 struct perf_mmap_event *mmap_event = data;
0a4a9391 5056 struct perf_output_handle handle;
c980d109 5057 struct perf_sample_data sample;
cdd6c482 5058 int size = mmap_event->event_id.header.size;
c980d109 5059 int ret;
0a4a9391 5060
67516844
JO
5061 if (!perf_event_mmap_match(event, data))
5062 return;
5063
13d7a241
SE
5064 if (event->attr.mmap2) {
5065 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5066 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5067 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5068 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5069 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5070 }
5071
c980d109
ACM
5072 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5073 ret = perf_output_begin(&handle, event,
a7ac67ea 5074 mmap_event->event_id.header.size);
0a4a9391 5075 if (ret)
c980d109 5076 goto out;
0a4a9391 5077
cdd6c482
IM
5078 mmap_event->event_id.pid = perf_event_pid(event, current);
5079 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5080
cdd6c482 5081 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5082
5083 if (event->attr.mmap2) {
5084 perf_output_put(&handle, mmap_event->maj);
5085 perf_output_put(&handle, mmap_event->min);
5086 perf_output_put(&handle, mmap_event->ino);
5087 perf_output_put(&handle, mmap_event->ino_generation);
5088 }
5089
76369139 5090 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5091 mmap_event->file_size);
c980d109
ACM
5092
5093 perf_event__output_id_sample(event, &handle, &sample);
5094
78d613eb 5095 perf_output_end(&handle);
c980d109
ACM
5096out:
5097 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5098}
5099
cdd6c482 5100static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5101{
089dd79d
PZ
5102 struct vm_area_struct *vma = mmap_event->vma;
5103 struct file *file = vma->vm_file;
13d7a241
SE
5104 int maj = 0, min = 0;
5105 u64 ino = 0, gen = 0;
0a4a9391
PZ
5106 unsigned int size;
5107 char tmp[16];
5108 char *buf = NULL;
2c42cfbf 5109 char *name;
413ee3b4 5110
0a4a9391 5111 if (file) {
13d7a241
SE
5112 struct inode *inode;
5113 dev_t dev;
3ea2f2b9 5114
2c42cfbf 5115 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391
PZ
5116 if (!buf) {
5117 name = strncpy(tmp, "//enomem", sizeof(tmp));
5118 goto got_name;
5119 }
3ea2f2b9
ON
5120 /*
5121 * d_path() works from the end of the rb backwards, so we
5122 * need to add enough zero bytes after the string to handle
5123 * the 64bit alignment we do later.
5124 */
5125 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391
PZ
5126 if (IS_ERR(name)) {
5127 name = strncpy(tmp, "//toolong", sizeof(tmp));
5128 goto got_name;
5129 }
13d7a241
SE
5130 inode = file_inode(vma->vm_file);
5131 dev = inode->i_sb->s_dev;
5132 ino = inode->i_ino;
5133 gen = inode->i_generation;
5134 maj = MAJOR(dev);
5135 min = MINOR(dev);
5136
0a4a9391 5137 } else {
2c42cfbf 5138 name = (char *)arch_vma_name(vma);
32c5fb7e
ON
5139 if (name) {
5140 name = strncpy(tmp, name, sizeof(tmp) - 1);
c97847d2 5141 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5142 goto got_name;
413ee3b4 5143 }
089dd79d 5144
32c5fb7e 5145 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859
EM
5146 vma->vm_end >= vma->vm_mm->brk) {
5147 name = strncpy(tmp, "[heap]", sizeof(tmp));
5148 goto got_name;
32c5fb7e
ON
5149 }
5150 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859
EM
5151 vma->vm_end >= vma->vm_mm->start_stack) {
5152 name = strncpy(tmp, "[stack]", sizeof(tmp));
5153 goto got_name;
089dd79d
PZ
5154 }
5155
0a4a9391
PZ
5156 name = strncpy(tmp, "//anon", sizeof(tmp));
5157 goto got_name;
5158 }
5159
5160got_name:
2c42cfbf
PZ
5161 /*
5162 * Since our buffer works in 8 byte units we need to align our string
5163 * size to a multiple of 8. However, we must guarantee the tail end is
5164 * zero'd out to avoid leaking random bits to userspace.
5165 */
5166 size = strlen(name)+1;
5167 while (!IS_ALIGNED(size, sizeof(u64)))
5168 name[size++] = '\0';
0a4a9391
PZ
5169
5170 mmap_event->file_name = name;
5171 mmap_event->file_size = size;
13d7a241
SE
5172 mmap_event->maj = maj;
5173 mmap_event->min = min;
5174 mmap_event->ino = ino;
5175 mmap_event->ino_generation = gen;
0a4a9391 5176
2fe85427
SE
5177 if (!(vma->vm_flags & VM_EXEC))
5178 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5179
cdd6c482 5180 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5181
67516844 5182 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5183 mmap_event,
5184 NULL);
665c2142 5185
0a4a9391
PZ
5186 kfree(buf);
5187}
5188
3af9e859 5189void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5190{
9ee318a7
PZ
5191 struct perf_mmap_event mmap_event;
5192
cdd6c482 5193 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5194 return;
5195
5196 mmap_event = (struct perf_mmap_event){
089dd79d 5197 .vma = vma,
573402db
PZ
5198 /* .file_name */
5199 /* .file_size */
cdd6c482 5200 .event_id = {
573402db 5201 .header = {
cdd6c482 5202 .type = PERF_RECORD_MMAP,
39447b38 5203 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5204 /* .size */
5205 },
5206 /* .pid */
5207 /* .tid */
089dd79d
PZ
5208 .start = vma->vm_start,
5209 .len = vma->vm_end - vma->vm_start,
3a0304e9 5210 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5211 },
13d7a241
SE
5212 /* .maj (attr_mmap2 only) */
5213 /* .min (attr_mmap2 only) */
5214 /* .ino (attr_mmap2 only) */
5215 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5216 };
5217
cdd6c482 5218 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5219}
5220
a78ac325
PZ
5221/*
5222 * IRQ throttle logging
5223 */
5224
cdd6c482 5225static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5226{
5227 struct perf_output_handle handle;
c980d109 5228 struct perf_sample_data sample;
a78ac325
PZ
5229 int ret;
5230
5231 struct {
5232 struct perf_event_header header;
5233 u64 time;
cca3f454 5234 u64 id;
7f453c24 5235 u64 stream_id;
a78ac325
PZ
5236 } throttle_event = {
5237 .header = {
cdd6c482 5238 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5239 .misc = 0,
5240 .size = sizeof(throttle_event),
5241 },
def0a9b2 5242 .time = perf_clock(),
cdd6c482
IM
5243 .id = primary_event_id(event),
5244 .stream_id = event->id,
a78ac325
PZ
5245 };
5246
966ee4d6 5247 if (enable)
cdd6c482 5248 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5249
c980d109
ACM
5250 perf_event_header__init_id(&throttle_event.header, &sample, event);
5251
5252 ret = perf_output_begin(&handle, event,
a7ac67ea 5253 throttle_event.header.size);
a78ac325
PZ
5254 if (ret)
5255 return;
5256
5257 perf_output_put(&handle, throttle_event);
c980d109 5258 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5259 perf_output_end(&handle);
5260}
5261
f6c7d5fe 5262/*
cdd6c482 5263 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5264 */
5265
a8b0ca17 5266static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5267 int throttle, struct perf_sample_data *data,
5268 struct pt_regs *regs)
f6c7d5fe 5269{
cdd6c482
IM
5270 int events = atomic_read(&event->event_limit);
5271 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5272 u64 seq;
79f14641
PZ
5273 int ret = 0;
5274
96398826
PZ
5275 /*
5276 * Non-sampling counters might still use the PMI to fold short
5277 * hardware counters, ignore those.
5278 */
5279 if (unlikely(!is_sampling_event(event)))
5280 return 0;
5281
e050e3f0
SE
5282 seq = __this_cpu_read(perf_throttled_seq);
5283 if (seq != hwc->interrupts_seq) {
5284 hwc->interrupts_seq = seq;
5285 hwc->interrupts = 1;
5286 } else {
5287 hwc->interrupts++;
5288 if (unlikely(throttle
5289 && hwc->interrupts >= max_samples_per_tick)) {
5290 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5291 hwc->interrupts = MAX_INTERRUPTS;
5292 perf_log_throttle(event, 0);
d84153d6 5293 tick_nohz_full_kick();
a78ac325
PZ
5294 ret = 1;
5295 }
e050e3f0 5296 }
60db5e09 5297
cdd6c482 5298 if (event->attr.freq) {
def0a9b2 5299 u64 now = perf_clock();
abd50713 5300 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5301
abd50713 5302 hwc->freq_time_stamp = now;
bd2b5b12 5303
abd50713 5304 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5305 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5306 }
5307
2023b359
PZ
5308 /*
5309 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5310 * events
2023b359
PZ
5311 */
5312
cdd6c482
IM
5313 event->pending_kill = POLL_IN;
5314 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5315 ret = 1;
cdd6c482 5316 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5317 event->pending_disable = 1;
5318 irq_work_queue(&event->pending);
79f14641
PZ
5319 }
5320
453f19ee 5321 if (event->overflow_handler)
a8b0ca17 5322 event->overflow_handler(event, data, regs);
453f19ee 5323 else
a8b0ca17 5324 perf_event_output(event, data, regs);
453f19ee 5325
f506b3dc 5326 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5327 event->pending_wakeup = 1;
5328 irq_work_queue(&event->pending);
f506b3dc
PZ
5329 }
5330
79f14641 5331 return ret;
f6c7d5fe
PZ
5332}
5333
a8b0ca17 5334int perf_event_overflow(struct perf_event *event,
5622f295
MM
5335 struct perf_sample_data *data,
5336 struct pt_regs *regs)
850bc73f 5337{
a8b0ca17 5338 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5339}
5340
15dbf27c 5341/*
cdd6c482 5342 * Generic software event infrastructure
15dbf27c
PZ
5343 */
5344
b28ab83c
PZ
5345struct swevent_htable {
5346 struct swevent_hlist *swevent_hlist;
5347 struct mutex hlist_mutex;
5348 int hlist_refcount;
5349
5350 /* Recursion avoidance in each contexts */
5351 int recursion[PERF_NR_CONTEXTS];
5352};
5353
5354static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5355
7b4b6658 5356/*
cdd6c482
IM
5357 * We directly increment event->count and keep a second value in
5358 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5359 * is kept in the range [-sample_period, 0] so that we can use the
5360 * sign as trigger.
5361 */
5362
ab573844 5363u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5364{
cdd6c482 5365 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5366 u64 period = hwc->last_period;
5367 u64 nr, offset;
5368 s64 old, val;
5369
5370 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5371
5372again:
e7850595 5373 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5374 if (val < 0)
5375 return 0;
15dbf27c 5376
7b4b6658
PZ
5377 nr = div64_u64(period + val, period);
5378 offset = nr * period;
5379 val -= offset;
e7850595 5380 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5381 goto again;
15dbf27c 5382
7b4b6658 5383 return nr;
15dbf27c
PZ
5384}
5385
0cff784a 5386static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5387 struct perf_sample_data *data,
5622f295 5388 struct pt_regs *regs)
15dbf27c 5389{
cdd6c482 5390 struct hw_perf_event *hwc = &event->hw;
850bc73f 5391 int throttle = 0;
15dbf27c 5392
0cff784a
PZ
5393 if (!overflow)
5394 overflow = perf_swevent_set_period(event);
15dbf27c 5395
7b4b6658
PZ
5396 if (hwc->interrupts == MAX_INTERRUPTS)
5397 return;
15dbf27c 5398
7b4b6658 5399 for (; overflow; overflow--) {
a8b0ca17 5400 if (__perf_event_overflow(event, throttle,
5622f295 5401 data, regs)) {
7b4b6658
PZ
5402 /*
5403 * We inhibit the overflow from happening when
5404 * hwc->interrupts == MAX_INTERRUPTS.
5405 */
5406 break;
5407 }
cf450a73 5408 throttle = 1;
7b4b6658 5409 }
15dbf27c
PZ
5410}
5411
a4eaf7f1 5412static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5413 struct perf_sample_data *data,
5622f295 5414 struct pt_regs *regs)
7b4b6658 5415{
cdd6c482 5416 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5417
e7850595 5418 local64_add(nr, &event->count);
d6d020e9 5419
0cff784a
PZ
5420 if (!regs)
5421 return;
5422
6c7e550f 5423 if (!is_sampling_event(event))
7b4b6658 5424 return;
d6d020e9 5425
5d81e5cf
AV
5426 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5427 data->period = nr;
5428 return perf_swevent_overflow(event, 1, data, regs);
5429 } else
5430 data->period = event->hw.last_period;
5431
0cff784a 5432 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5433 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5434
e7850595 5435 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5436 return;
df1a132b 5437
a8b0ca17 5438 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5439}
5440
f5ffe02e
FW
5441static int perf_exclude_event(struct perf_event *event,
5442 struct pt_regs *regs)
5443{
a4eaf7f1 5444 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5445 return 1;
a4eaf7f1 5446
f5ffe02e
FW
5447 if (regs) {
5448 if (event->attr.exclude_user && user_mode(regs))
5449 return 1;
5450
5451 if (event->attr.exclude_kernel && !user_mode(regs))
5452 return 1;
5453 }
5454
5455 return 0;
5456}
5457
cdd6c482 5458static int perf_swevent_match(struct perf_event *event,
1c432d89 5459 enum perf_type_id type,
6fb2915d
LZ
5460 u32 event_id,
5461 struct perf_sample_data *data,
5462 struct pt_regs *regs)
15dbf27c 5463{
cdd6c482 5464 if (event->attr.type != type)
a21ca2ca 5465 return 0;
f5ffe02e 5466
cdd6c482 5467 if (event->attr.config != event_id)
15dbf27c
PZ
5468 return 0;
5469
f5ffe02e
FW
5470 if (perf_exclude_event(event, regs))
5471 return 0;
15dbf27c
PZ
5472
5473 return 1;
5474}
5475
76e1d904
FW
5476static inline u64 swevent_hash(u64 type, u32 event_id)
5477{
5478 u64 val = event_id | (type << 32);
5479
5480 return hash_64(val, SWEVENT_HLIST_BITS);
5481}
5482
49f135ed
FW
5483static inline struct hlist_head *
5484__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5485{
49f135ed
FW
5486 u64 hash = swevent_hash(type, event_id);
5487
5488 return &hlist->heads[hash];
5489}
76e1d904 5490
49f135ed
FW
5491/* For the read side: events when they trigger */
5492static inline struct hlist_head *
b28ab83c 5493find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5494{
5495 struct swevent_hlist *hlist;
76e1d904 5496
b28ab83c 5497 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5498 if (!hlist)
5499 return NULL;
5500
49f135ed
FW
5501 return __find_swevent_head(hlist, type, event_id);
5502}
5503
5504/* For the event head insertion and removal in the hlist */
5505static inline struct hlist_head *
b28ab83c 5506find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5507{
5508 struct swevent_hlist *hlist;
5509 u32 event_id = event->attr.config;
5510 u64 type = event->attr.type;
5511
5512 /*
5513 * Event scheduling is always serialized against hlist allocation
5514 * and release. Which makes the protected version suitable here.
5515 * The context lock guarantees that.
5516 */
b28ab83c 5517 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5518 lockdep_is_held(&event->ctx->lock));
5519 if (!hlist)
5520 return NULL;
5521
5522 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5523}
5524
5525static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5526 u64 nr,
76e1d904
FW
5527 struct perf_sample_data *data,
5528 struct pt_regs *regs)
15dbf27c 5529{
b28ab83c 5530 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5531 struct perf_event *event;
76e1d904 5532 struct hlist_head *head;
15dbf27c 5533
76e1d904 5534 rcu_read_lock();
b28ab83c 5535 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5536 if (!head)
5537 goto end;
5538
b67bfe0d 5539 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5540 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5541 perf_swevent_event(event, nr, data, regs);
15dbf27c 5542 }
76e1d904
FW
5543end:
5544 rcu_read_unlock();
15dbf27c
PZ
5545}
5546
4ed7c92d 5547int perf_swevent_get_recursion_context(void)
96f6d444 5548{
b28ab83c 5549 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5550
b28ab83c 5551 return get_recursion_context(swhash->recursion);
96f6d444 5552}
645e8cc0 5553EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5554
fa9f90be 5555inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5556{
b28ab83c 5557 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5558
b28ab83c 5559 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5560}
15dbf27c 5561
a8b0ca17 5562void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5563{
a4234bfc 5564 struct perf_sample_data data;
4ed7c92d
PZ
5565 int rctx;
5566
1c024eca 5567 preempt_disable_notrace();
4ed7c92d
PZ
5568 rctx = perf_swevent_get_recursion_context();
5569 if (rctx < 0)
5570 return;
a4234bfc 5571
fd0d000b 5572 perf_sample_data_init(&data, addr, 0);
92bf309a 5573
a8b0ca17 5574 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5575
5576 perf_swevent_put_recursion_context(rctx);
1c024eca 5577 preempt_enable_notrace();
b8e83514
PZ
5578}
5579
cdd6c482 5580static void perf_swevent_read(struct perf_event *event)
15dbf27c 5581{
15dbf27c
PZ
5582}
5583
a4eaf7f1 5584static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5585{
b28ab83c 5586 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5587 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5588 struct hlist_head *head;
5589
6c7e550f 5590 if (is_sampling_event(event)) {
7b4b6658 5591 hwc->last_period = hwc->sample_period;
cdd6c482 5592 perf_swevent_set_period(event);
7b4b6658 5593 }
76e1d904 5594
a4eaf7f1
PZ
5595 hwc->state = !(flags & PERF_EF_START);
5596
b28ab83c 5597 head = find_swevent_head(swhash, event);
76e1d904
FW
5598 if (WARN_ON_ONCE(!head))
5599 return -EINVAL;
5600
5601 hlist_add_head_rcu(&event->hlist_entry, head);
5602
15dbf27c
PZ
5603 return 0;
5604}
5605
a4eaf7f1 5606static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5607{
76e1d904 5608 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5609}
5610
a4eaf7f1 5611static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5612{
a4eaf7f1 5613 event->hw.state = 0;
d6d020e9 5614}
aa9c4c0f 5615
a4eaf7f1 5616static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5617{
a4eaf7f1 5618 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5619}
5620
49f135ed
FW
5621/* Deref the hlist from the update side */
5622static inline struct swevent_hlist *
b28ab83c 5623swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5624{
b28ab83c
PZ
5625 return rcu_dereference_protected(swhash->swevent_hlist,
5626 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5627}
5628
b28ab83c 5629static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5630{
b28ab83c 5631 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5632
49f135ed 5633 if (!hlist)
76e1d904
FW
5634 return;
5635
b28ab83c 5636 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5637 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5638}
5639
5640static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5641{
b28ab83c 5642 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5643
b28ab83c 5644 mutex_lock(&swhash->hlist_mutex);
76e1d904 5645
b28ab83c
PZ
5646 if (!--swhash->hlist_refcount)
5647 swevent_hlist_release(swhash);
76e1d904 5648
b28ab83c 5649 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5650}
5651
5652static void swevent_hlist_put(struct perf_event *event)
5653{
5654 int cpu;
5655
5656 if (event->cpu != -1) {
5657 swevent_hlist_put_cpu(event, event->cpu);
5658 return;
5659 }
5660
5661 for_each_possible_cpu(cpu)
5662 swevent_hlist_put_cpu(event, cpu);
5663}
5664
5665static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5666{
b28ab83c 5667 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5668 int err = 0;
5669
b28ab83c 5670 mutex_lock(&swhash->hlist_mutex);
76e1d904 5671
b28ab83c 5672 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5673 struct swevent_hlist *hlist;
5674
5675 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5676 if (!hlist) {
5677 err = -ENOMEM;
5678 goto exit;
5679 }
b28ab83c 5680 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5681 }
b28ab83c 5682 swhash->hlist_refcount++;
9ed6060d 5683exit:
b28ab83c 5684 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5685
5686 return err;
5687}
5688
5689static int swevent_hlist_get(struct perf_event *event)
5690{
5691 int err;
5692 int cpu, failed_cpu;
5693
5694 if (event->cpu != -1)
5695 return swevent_hlist_get_cpu(event, event->cpu);
5696
5697 get_online_cpus();
5698 for_each_possible_cpu(cpu) {
5699 err = swevent_hlist_get_cpu(event, cpu);
5700 if (err) {
5701 failed_cpu = cpu;
5702 goto fail;
5703 }
5704 }
5705 put_online_cpus();
5706
5707 return 0;
9ed6060d 5708fail:
76e1d904
FW
5709 for_each_possible_cpu(cpu) {
5710 if (cpu == failed_cpu)
5711 break;
5712 swevent_hlist_put_cpu(event, cpu);
5713 }
5714
5715 put_online_cpus();
5716 return err;
5717}
5718
c5905afb 5719struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5720
b0a873eb
PZ
5721static void sw_perf_event_destroy(struct perf_event *event)
5722{
5723 u64 event_id = event->attr.config;
95476b64 5724
b0a873eb
PZ
5725 WARN_ON(event->parent);
5726
c5905afb 5727 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5728 swevent_hlist_put(event);
5729}
5730
5731static int perf_swevent_init(struct perf_event *event)
5732{
8176cced 5733 u64 event_id = event->attr.config;
b0a873eb
PZ
5734
5735 if (event->attr.type != PERF_TYPE_SOFTWARE)
5736 return -ENOENT;
5737
2481c5fa
SE
5738 /*
5739 * no branch sampling for software events
5740 */
5741 if (has_branch_stack(event))
5742 return -EOPNOTSUPP;
5743
b0a873eb
PZ
5744 switch (event_id) {
5745 case PERF_COUNT_SW_CPU_CLOCK:
5746 case PERF_COUNT_SW_TASK_CLOCK:
5747 return -ENOENT;
5748
5749 default:
5750 break;
5751 }
5752
ce677831 5753 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5754 return -ENOENT;
5755
5756 if (!event->parent) {
5757 int err;
5758
5759 err = swevent_hlist_get(event);
5760 if (err)
5761 return err;
5762
c5905afb 5763 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5764 event->destroy = sw_perf_event_destroy;
5765 }
5766
5767 return 0;
5768}
5769
35edc2a5
PZ
5770static int perf_swevent_event_idx(struct perf_event *event)
5771{
5772 return 0;
5773}
5774
b0a873eb 5775static struct pmu perf_swevent = {
89a1e187 5776 .task_ctx_nr = perf_sw_context,
95476b64 5777
b0a873eb 5778 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5779 .add = perf_swevent_add,
5780 .del = perf_swevent_del,
5781 .start = perf_swevent_start,
5782 .stop = perf_swevent_stop,
1c024eca 5783 .read = perf_swevent_read,
35edc2a5
PZ
5784
5785 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5786};
5787
b0a873eb
PZ
5788#ifdef CONFIG_EVENT_TRACING
5789
1c024eca
PZ
5790static int perf_tp_filter_match(struct perf_event *event,
5791 struct perf_sample_data *data)
5792{
5793 void *record = data->raw->data;
5794
5795 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5796 return 1;
5797 return 0;
5798}
5799
5800static int perf_tp_event_match(struct perf_event *event,
5801 struct perf_sample_data *data,
5802 struct pt_regs *regs)
5803{
a0f7d0f7
FW
5804 if (event->hw.state & PERF_HES_STOPPED)
5805 return 0;
580d607c
PZ
5806 /*
5807 * All tracepoints are from kernel-space.
5808 */
5809 if (event->attr.exclude_kernel)
1c024eca
PZ
5810 return 0;
5811
5812 if (!perf_tp_filter_match(event, data))
5813 return 0;
5814
5815 return 1;
5816}
5817
5818void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5819 struct pt_regs *regs, struct hlist_head *head, int rctx,
5820 struct task_struct *task)
95476b64
FW
5821{
5822 struct perf_sample_data data;
1c024eca 5823 struct perf_event *event;
1c024eca 5824
95476b64
FW
5825 struct perf_raw_record raw = {
5826 .size = entry_size,
5827 .data = record,
5828 };
5829
fd0d000b 5830 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5831 data.raw = &raw;
5832
b67bfe0d 5833 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5834 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5835 perf_swevent_event(event, count, &data, regs);
4f41c013 5836 }
ecc55f84 5837
e6dab5ff
AV
5838 /*
5839 * If we got specified a target task, also iterate its context and
5840 * deliver this event there too.
5841 */
5842 if (task && task != current) {
5843 struct perf_event_context *ctx;
5844 struct trace_entry *entry = record;
5845
5846 rcu_read_lock();
5847 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5848 if (!ctx)
5849 goto unlock;
5850
5851 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5852 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5853 continue;
5854 if (event->attr.config != entry->type)
5855 continue;
5856 if (perf_tp_event_match(event, &data, regs))
5857 perf_swevent_event(event, count, &data, regs);
5858 }
5859unlock:
5860 rcu_read_unlock();
5861 }
5862
ecc55f84 5863 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5864}
5865EXPORT_SYMBOL_GPL(perf_tp_event);
5866
cdd6c482 5867static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5868{
1c024eca 5869 perf_trace_destroy(event);
e077df4f
PZ
5870}
5871
b0a873eb 5872static int perf_tp_event_init(struct perf_event *event)
e077df4f 5873{
76e1d904
FW
5874 int err;
5875
b0a873eb
PZ
5876 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5877 return -ENOENT;
5878
2481c5fa
SE
5879 /*
5880 * no branch sampling for tracepoint events
5881 */
5882 if (has_branch_stack(event))
5883 return -EOPNOTSUPP;
5884
1c024eca
PZ
5885 err = perf_trace_init(event);
5886 if (err)
b0a873eb 5887 return err;
e077df4f 5888
cdd6c482 5889 event->destroy = tp_perf_event_destroy;
e077df4f 5890
b0a873eb
PZ
5891 return 0;
5892}
5893
5894static struct pmu perf_tracepoint = {
89a1e187
PZ
5895 .task_ctx_nr = perf_sw_context,
5896
b0a873eb 5897 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5898 .add = perf_trace_add,
5899 .del = perf_trace_del,
5900 .start = perf_swevent_start,
5901 .stop = perf_swevent_stop,
b0a873eb 5902 .read = perf_swevent_read,
35edc2a5
PZ
5903
5904 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5905};
5906
5907static inline void perf_tp_register(void)
5908{
2e80a82a 5909 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5910}
6fb2915d
LZ
5911
5912static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5913{
5914 char *filter_str;
5915 int ret;
5916
5917 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5918 return -EINVAL;
5919
5920 filter_str = strndup_user(arg, PAGE_SIZE);
5921 if (IS_ERR(filter_str))
5922 return PTR_ERR(filter_str);
5923
5924 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5925
5926 kfree(filter_str);
5927 return ret;
5928}
5929
5930static void perf_event_free_filter(struct perf_event *event)
5931{
5932 ftrace_profile_free_filter(event);
5933}
5934
e077df4f 5935#else
6fb2915d 5936
b0a873eb 5937static inline void perf_tp_register(void)
e077df4f 5938{
e077df4f 5939}
6fb2915d
LZ
5940
5941static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5942{
5943 return -ENOENT;
5944}
5945
5946static void perf_event_free_filter(struct perf_event *event)
5947{
5948}
5949
07b139c8 5950#endif /* CONFIG_EVENT_TRACING */
e077df4f 5951
24f1e32c 5952#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5953void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5954{
f5ffe02e
FW
5955 struct perf_sample_data sample;
5956 struct pt_regs *regs = data;
5957
fd0d000b 5958 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5959
a4eaf7f1 5960 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5961 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5962}
5963#endif
5964
b0a873eb
PZ
5965/*
5966 * hrtimer based swevent callback
5967 */
f29ac756 5968
b0a873eb 5969static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5970{
b0a873eb
PZ
5971 enum hrtimer_restart ret = HRTIMER_RESTART;
5972 struct perf_sample_data data;
5973 struct pt_regs *regs;
5974 struct perf_event *event;
5975 u64 period;
f29ac756 5976
b0a873eb 5977 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5978
5979 if (event->state != PERF_EVENT_STATE_ACTIVE)
5980 return HRTIMER_NORESTART;
5981
b0a873eb 5982 event->pmu->read(event);
f344011c 5983
fd0d000b 5984 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5985 regs = get_irq_regs();
5986
5987 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5988 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5989 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5990 ret = HRTIMER_NORESTART;
5991 }
24f1e32c 5992
b0a873eb
PZ
5993 period = max_t(u64, 10000, event->hw.sample_period);
5994 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5995
b0a873eb 5996 return ret;
f29ac756
PZ
5997}
5998
b0a873eb 5999static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6000{
b0a873eb 6001 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6002 s64 period;
6003
6004 if (!is_sampling_event(event))
6005 return;
f5ffe02e 6006
5d508e82
FBH
6007 period = local64_read(&hwc->period_left);
6008 if (period) {
6009 if (period < 0)
6010 period = 10000;
fa407f35 6011
5d508e82
FBH
6012 local64_set(&hwc->period_left, 0);
6013 } else {
6014 period = max_t(u64, 10000, hwc->sample_period);
6015 }
6016 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6017 ns_to_ktime(period), 0,
b5ab4cd5 6018 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6019}
b0a873eb
PZ
6020
6021static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6022{
b0a873eb
PZ
6023 struct hw_perf_event *hwc = &event->hw;
6024
6c7e550f 6025 if (is_sampling_event(event)) {
b0a873eb 6026 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6027 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6028
6029 hrtimer_cancel(&hwc->hrtimer);
6030 }
24f1e32c
FW
6031}
6032
ba3dd36c
PZ
6033static void perf_swevent_init_hrtimer(struct perf_event *event)
6034{
6035 struct hw_perf_event *hwc = &event->hw;
6036
6037 if (!is_sampling_event(event))
6038 return;
6039
6040 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6041 hwc->hrtimer.function = perf_swevent_hrtimer;
6042
6043 /*
6044 * Since hrtimers have a fixed rate, we can do a static freq->period
6045 * mapping and avoid the whole period adjust feedback stuff.
6046 */
6047 if (event->attr.freq) {
6048 long freq = event->attr.sample_freq;
6049
6050 event->attr.sample_period = NSEC_PER_SEC / freq;
6051 hwc->sample_period = event->attr.sample_period;
6052 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6053 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6054 event->attr.freq = 0;
6055 }
6056}
6057
b0a873eb
PZ
6058/*
6059 * Software event: cpu wall time clock
6060 */
6061
6062static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6063{
b0a873eb
PZ
6064 s64 prev;
6065 u64 now;
6066
a4eaf7f1 6067 now = local_clock();
b0a873eb
PZ
6068 prev = local64_xchg(&event->hw.prev_count, now);
6069 local64_add(now - prev, &event->count);
24f1e32c 6070}
24f1e32c 6071
a4eaf7f1 6072static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6073{
a4eaf7f1 6074 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6075 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6076}
6077
a4eaf7f1 6078static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6079{
b0a873eb
PZ
6080 perf_swevent_cancel_hrtimer(event);
6081 cpu_clock_event_update(event);
6082}
f29ac756 6083
a4eaf7f1
PZ
6084static int cpu_clock_event_add(struct perf_event *event, int flags)
6085{
6086 if (flags & PERF_EF_START)
6087 cpu_clock_event_start(event, flags);
6088
6089 return 0;
6090}
6091
6092static void cpu_clock_event_del(struct perf_event *event, int flags)
6093{
6094 cpu_clock_event_stop(event, flags);
6095}
6096
b0a873eb
PZ
6097static void cpu_clock_event_read(struct perf_event *event)
6098{
6099 cpu_clock_event_update(event);
6100}
f344011c 6101
b0a873eb
PZ
6102static int cpu_clock_event_init(struct perf_event *event)
6103{
6104 if (event->attr.type != PERF_TYPE_SOFTWARE)
6105 return -ENOENT;
6106
6107 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6108 return -ENOENT;
6109
2481c5fa
SE
6110 /*
6111 * no branch sampling for software events
6112 */
6113 if (has_branch_stack(event))
6114 return -EOPNOTSUPP;
6115
ba3dd36c
PZ
6116 perf_swevent_init_hrtimer(event);
6117
b0a873eb 6118 return 0;
f29ac756
PZ
6119}
6120
b0a873eb 6121static struct pmu perf_cpu_clock = {
89a1e187
PZ
6122 .task_ctx_nr = perf_sw_context,
6123
b0a873eb 6124 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6125 .add = cpu_clock_event_add,
6126 .del = cpu_clock_event_del,
6127 .start = cpu_clock_event_start,
6128 .stop = cpu_clock_event_stop,
b0a873eb 6129 .read = cpu_clock_event_read,
35edc2a5
PZ
6130
6131 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6132};
6133
6134/*
6135 * Software event: task time clock
6136 */
6137
6138static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6139{
b0a873eb
PZ
6140 u64 prev;
6141 s64 delta;
5c92d124 6142
b0a873eb
PZ
6143 prev = local64_xchg(&event->hw.prev_count, now);
6144 delta = now - prev;
6145 local64_add(delta, &event->count);
6146}
5c92d124 6147
a4eaf7f1 6148static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6149{
a4eaf7f1 6150 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6151 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6152}
6153
a4eaf7f1 6154static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6155{
6156 perf_swevent_cancel_hrtimer(event);
6157 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6158}
6159
6160static int task_clock_event_add(struct perf_event *event, int flags)
6161{
6162 if (flags & PERF_EF_START)
6163 task_clock_event_start(event, flags);
b0a873eb 6164
a4eaf7f1
PZ
6165 return 0;
6166}
6167
6168static void task_clock_event_del(struct perf_event *event, int flags)
6169{
6170 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6171}
6172
6173static void task_clock_event_read(struct perf_event *event)
6174{
768a06e2
PZ
6175 u64 now = perf_clock();
6176 u64 delta = now - event->ctx->timestamp;
6177 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6178
6179 task_clock_event_update(event, time);
6180}
6181
6182static int task_clock_event_init(struct perf_event *event)
6fb2915d 6183{
b0a873eb
PZ
6184 if (event->attr.type != PERF_TYPE_SOFTWARE)
6185 return -ENOENT;
6186
6187 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6188 return -ENOENT;
6189
2481c5fa
SE
6190 /*
6191 * no branch sampling for software events
6192 */
6193 if (has_branch_stack(event))
6194 return -EOPNOTSUPP;
6195
ba3dd36c
PZ
6196 perf_swevent_init_hrtimer(event);
6197
b0a873eb 6198 return 0;
6fb2915d
LZ
6199}
6200
b0a873eb 6201static struct pmu perf_task_clock = {
89a1e187
PZ
6202 .task_ctx_nr = perf_sw_context,
6203
b0a873eb 6204 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6205 .add = task_clock_event_add,
6206 .del = task_clock_event_del,
6207 .start = task_clock_event_start,
6208 .stop = task_clock_event_stop,
b0a873eb 6209 .read = task_clock_event_read,
35edc2a5
PZ
6210
6211 .event_idx = perf_swevent_event_idx,
b0a873eb 6212};
6fb2915d 6213
ad5133b7 6214static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6215{
e077df4f 6216}
6fb2915d 6217
ad5133b7 6218static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6219{
ad5133b7 6220 return 0;
6fb2915d
LZ
6221}
6222
ad5133b7 6223static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6224{
ad5133b7 6225 perf_pmu_disable(pmu);
6fb2915d
LZ
6226}
6227
ad5133b7
PZ
6228static int perf_pmu_commit_txn(struct pmu *pmu)
6229{
6230 perf_pmu_enable(pmu);
6231 return 0;
6232}
e077df4f 6233
ad5133b7 6234static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6235{
ad5133b7 6236 perf_pmu_enable(pmu);
24f1e32c
FW
6237}
6238
35edc2a5
PZ
6239static int perf_event_idx_default(struct perf_event *event)
6240{
6241 return event->hw.idx + 1;
6242}
6243
8dc85d54
PZ
6244/*
6245 * Ensures all contexts with the same task_ctx_nr have the same
6246 * pmu_cpu_context too.
6247 */
6248static void *find_pmu_context(int ctxn)
24f1e32c 6249{
8dc85d54 6250 struct pmu *pmu;
b326e956 6251
8dc85d54
PZ
6252 if (ctxn < 0)
6253 return NULL;
24f1e32c 6254
8dc85d54
PZ
6255 list_for_each_entry(pmu, &pmus, entry) {
6256 if (pmu->task_ctx_nr == ctxn)
6257 return pmu->pmu_cpu_context;
6258 }
24f1e32c 6259
8dc85d54 6260 return NULL;
24f1e32c
FW
6261}
6262
51676957 6263static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6264{
51676957
PZ
6265 int cpu;
6266
6267 for_each_possible_cpu(cpu) {
6268 struct perf_cpu_context *cpuctx;
6269
6270 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6271
3f1f3320
PZ
6272 if (cpuctx->unique_pmu == old_pmu)
6273 cpuctx->unique_pmu = pmu;
51676957
PZ
6274 }
6275}
6276
6277static void free_pmu_context(struct pmu *pmu)
6278{
6279 struct pmu *i;
f5ffe02e 6280
8dc85d54 6281 mutex_lock(&pmus_lock);
0475f9ea 6282 /*
8dc85d54 6283 * Like a real lame refcount.
0475f9ea 6284 */
51676957
PZ
6285 list_for_each_entry(i, &pmus, entry) {
6286 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6287 update_pmu_context(i, pmu);
8dc85d54 6288 goto out;
51676957 6289 }
8dc85d54 6290 }
d6d020e9 6291
51676957 6292 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6293out:
6294 mutex_unlock(&pmus_lock);
24f1e32c 6295}
2e80a82a 6296static struct idr pmu_idr;
d6d020e9 6297
abe43400
PZ
6298static ssize_t
6299type_show(struct device *dev, struct device_attribute *attr, char *page)
6300{
6301 struct pmu *pmu = dev_get_drvdata(dev);
6302
6303 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6304}
6305
62b85639
SE
6306static ssize_t
6307perf_event_mux_interval_ms_show(struct device *dev,
6308 struct device_attribute *attr,
6309 char *page)
6310{
6311 struct pmu *pmu = dev_get_drvdata(dev);
6312
6313 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6314}
6315
6316static ssize_t
6317perf_event_mux_interval_ms_store(struct device *dev,
6318 struct device_attribute *attr,
6319 const char *buf, size_t count)
6320{
6321 struct pmu *pmu = dev_get_drvdata(dev);
6322 int timer, cpu, ret;
6323
6324 ret = kstrtoint(buf, 0, &timer);
6325 if (ret)
6326 return ret;
6327
6328 if (timer < 1)
6329 return -EINVAL;
6330
6331 /* same value, noting to do */
6332 if (timer == pmu->hrtimer_interval_ms)
6333 return count;
6334
6335 pmu->hrtimer_interval_ms = timer;
6336
6337 /* update all cpuctx for this PMU */
6338 for_each_possible_cpu(cpu) {
6339 struct perf_cpu_context *cpuctx;
6340 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6341 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6342
6343 if (hrtimer_active(&cpuctx->hrtimer))
6344 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6345 }
6346
6347 return count;
6348}
6349
abe43400 6350static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6351 __ATTR_RO(type),
6352 __ATTR_RW(perf_event_mux_interval_ms),
6353 __ATTR_NULL,
abe43400
PZ
6354};
6355
6356static int pmu_bus_running;
6357static struct bus_type pmu_bus = {
6358 .name = "event_source",
6359 .dev_attrs = pmu_dev_attrs,
6360};
6361
6362static void pmu_dev_release(struct device *dev)
6363{
6364 kfree(dev);
6365}
6366
6367static int pmu_dev_alloc(struct pmu *pmu)
6368{
6369 int ret = -ENOMEM;
6370
6371 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6372 if (!pmu->dev)
6373 goto out;
6374
0c9d42ed 6375 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6376 device_initialize(pmu->dev);
6377 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6378 if (ret)
6379 goto free_dev;
6380
6381 dev_set_drvdata(pmu->dev, pmu);
6382 pmu->dev->bus = &pmu_bus;
6383 pmu->dev->release = pmu_dev_release;
6384 ret = device_add(pmu->dev);
6385 if (ret)
6386 goto free_dev;
6387
6388out:
6389 return ret;
6390
6391free_dev:
6392 put_device(pmu->dev);
6393 goto out;
6394}
6395
547e9fd7 6396static struct lock_class_key cpuctx_mutex;
facc4307 6397static struct lock_class_key cpuctx_lock;
547e9fd7 6398
03d8e80b 6399int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6400{
108b02cf 6401 int cpu, ret;
24f1e32c 6402
b0a873eb 6403 mutex_lock(&pmus_lock);
33696fc0
PZ
6404 ret = -ENOMEM;
6405 pmu->pmu_disable_count = alloc_percpu(int);
6406 if (!pmu->pmu_disable_count)
6407 goto unlock;
f29ac756 6408
2e80a82a
PZ
6409 pmu->type = -1;
6410 if (!name)
6411 goto skip_type;
6412 pmu->name = name;
6413
6414 if (type < 0) {
0e9c3be2
TH
6415 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6416 if (type < 0) {
6417 ret = type;
2e80a82a
PZ
6418 goto free_pdc;
6419 }
6420 }
6421 pmu->type = type;
6422
abe43400
PZ
6423 if (pmu_bus_running) {
6424 ret = pmu_dev_alloc(pmu);
6425 if (ret)
6426 goto free_idr;
6427 }
6428
2e80a82a 6429skip_type:
8dc85d54
PZ
6430 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6431 if (pmu->pmu_cpu_context)
6432 goto got_cpu_context;
f29ac756 6433
c4814202 6434 ret = -ENOMEM;
108b02cf
PZ
6435 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6436 if (!pmu->pmu_cpu_context)
abe43400 6437 goto free_dev;
f344011c 6438
108b02cf
PZ
6439 for_each_possible_cpu(cpu) {
6440 struct perf_cpu_context *cpuctx;
6441
6442 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6443 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6444 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6445 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6446 cpuctx->ctx.type = cpu_context;
108b02cf 6447 cpuctx->ctx.pmu = pmu;
9e630205
SE
6448
6449 __perf_cpu_hrtimer_init(cpuctx, cpu);
6450
e9d2b064 6451 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6452 cpuctx->unique_pmu = pmu;
108b02cf 6453 }
76e1d904 6454
8dc85d54 6455got_cpu_context:
ad5133b7
PZ
6456 if (!pmu->start_txn) {
6457 if (pmu->pmu_enable) {
6458 /*
6459 * If we have pmu_enable/pmu_disable calls, install
6460 * transaction stubs that use that to try and batch
6461 * hardware accesses.
6462 */
6463 pmu->start_txn = perf_pmu_start_txn;
6464 pmu->commit_txn = perf_pmu_commit_txn;
6465 pmu->cancel_txn = perf_pmu_cancel_txn;
6466 } else {
6467 pmu->start_txn = perf_pmu_nop_void;
6468 pmu->commit_txn = perf_pmu_nop_int;
6469 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6470 }
5c92d124 6471 }
15dbf27c 6472
ad5133b7
PZ
6473 if (!pmu->pmu_enable) {
6474 pmu->pmu_enable = perf_pmu_nop_void;
6475 pmu->pmu_disable = perf_pmu_nop_void;
6476 }
6477
35edc2a5
PZ
6478 if (!pmu->event_idx)
6479 pmu->event_idx = perf_event_idx_default;
6480
b0a873eb 6481 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6482 ret = 0;
6483unlock:
b0a873eb
PZ
6484 mutex_unlock(&pmus_lock);
6485
33696fc0 6486 return ret;
108b02cf 6487
abe43400
PZ
6488free_dev:
6489 device_del(pmu->dev);
6490 put_device(pmu->dev);
6491
2e80a82a
PZ
6492free_idr:
6493 if (pmu->type >= PERF_TYPE_MAX)
6494 idr_remove(&pmu_idr, pmu->type);
6495
108b02cf
PZ
6496free_pdc:
6497 free_percpu(pmu->pmu_disable_count);
6498 goto unlock;
f29ac756
PZ
6499}
6500
b0a873eb 6501void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6502{
b0a873eb
PZ
6503 mutex_lock(&pmus_lock);
6504 list_del_rcu(&pmu->entry);
6505 mutex_unlock(&pmus_lock);
5c92d124 6506
0475f9ea 6507 /*
cde8e884
PZ
6508 * We dereference the pmu list under both SRCU and regular RCU, so
6509 * synchronize against both of those.
0475f9ea 6510 */
b0a873eb 6511 synchronize_srcu(&pmus_srcu);
cde8e884 6512 synchronize_rcu();
d6d020e9 6513
33696fc0 6514 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6515 if (pmu->type >= PERF_TYPE_MAX)
6516 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6517 device_del(pmu->dev);
6518 put_device(pmu->dev);
51676957 6519 free_pmu_context(pmu);
b0a873eb 6520}
d6d020e9 6521
b0a873eb
PZ
6522struct pmu *perf_init_event(struct perf_event *event)
6523{
6524 struct pmu *pmu = NULL;
6525 int idx;
940c5b29 6526 int ret;
b0a873eb
PZ
6527
6528 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6529
6530 rcu_read_lock();
6531 pmu = idr_find(&pmu_idr, event->attr.type);
6532 rcu_read_unlock();
940c5b29 6533 if (pmu) {
7e5b2a01 6534 event->pmu = pmu;
940c5b29
LM
6535 ret = pmu->event_init(event);
6536 if (ret)
6537 pmu = ERR_PTR(ret);
2e80a82a 6538 goto unlock;
940c5b29 6539 }
2e80a82a 6540
b0a873eb 6541 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6542 event->pmu = pmu;
940c5b29 6543 ret = pmu->event_init(event);
b0a873eb 6544 if (!ret)
e5f4d339 6545 goto unlock;
76e1d904 6546
b0a873eb
PZ
6547 if (ret != -ENOENT) {
6548 pmu = ERR_PTR(ret);
e5f4d339 6549 goto unlock;
f344011c 6550 }
5c92d124 6551 }
e5f4d339
PZ
6552 pmu = ERR_PTR(-ENOENT);
6553unlock:
b0a873eb 6554 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6555
4aeb0b42 6556 return pmu;
5c92d124
IM
6557}
6558
4beb31f3
FW
6559static void account_event_cpu(struct perf_event *event, int cpu)
6560{
6561 if (event->parent)
6562 return;
6563
6564 if (has_branch_stack(event)) {
6565 if (!(event->attach_state & PERF_ATTACH_TASK))
6566 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6567 }
6568 if (is_cgroup_event(event))
6569 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6570}
6571
766d6c07
FW
6572static void account_event(struct perf_event *event)
6573{
4beb31f3
FW
6574 if (event->parent)
6575 return;
6576
766d6c07
FW
6577 if (event->attach_state & PERF_ATTACH_TASK)
6578 static_key_slow_inc(&perf_sched_events.key);
6579 if (event->attr.mmap || event->attr.mmap_data)
6580 atomic_inc(&nr_mmap_events);
6581 if (event->attr.comm)
6582 atomic_inc(&nr_comm_events);
6583 if (event->attr.task)
6584 atomic_inc(&nr_task_events);
948b26b6
FW
6585 if (event->attr.freq) {
6586 if (atomic_inc_return(&nr_freq_events) == 1)
6587 tick_nohz_full_kick_all();
6588 }
4beb31f3 6589 if (has_branch_stack(event))
766d6c07 6590 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6591 if (is_cgroup_event(event))
766d6c07 6592 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6593
6594 account_event_cpu(event, event->cpu);
766d6c07
FW
6595}
6596
0793a61d 6597/*
cdd6c482 6598 * Allocate and initialize a event structure
0793a61d 6599 */
cdd6c482 6600static struct perf_event *
c3f00c70 6601perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6602 struct task_struct *task,
6603 struct perf_event *group_leader,
6604 struct perf_event *parent_event,
4dc0da86
AK
6605 perf_overflow_handler_t overflow_handler,
6606 void *context)
0793a61d 6607{
51b0fe39 6608 struct pmu *pmu;
cdd6c482
IM
6609 struct perf_event *event;
6610 struct hw_perf_event *hwc;
90983b16 6611 long err = -EINVAL;
0793a61d 6612
66832eb4
ON
6613 if ((unsigned)cpu >= nr_cpu_ids) {
6614 if (!task || cpu != -1)
6615 return ERR_PTR(-EINVAL);
6616 }
6617
c3f00c70 6618 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6619 if (!event)
d5d2bc0d 6620 return ERR_PTR(-ENOMEM);
0793a61d 6621
04289bb9 6622 /*
cdd6c482 6623 * Single events are their own group leaders, with an
04289bb9
IM
6624 * empty sibling list:
6625 */
6626 if (!group_leader)
cdd6c482 6627 group_leader = event;
04289bb9 6628
cdd6c482
IM
6629 mutex_init(&event->child_mutex);
6630 INIT_LIST_HEAD(&event->child_list);
fccc714b 6631
cdd6c482
IM
6632 INIT_LIST_HEAD(&event->group_entry);
6633 INIT_LIST_HEAD(&event->event_entry);
6634 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6635 INIT_LIST_HEAD(&event->rb_entry);
6636
cdd6c482 6637 init_waitqueue_head(&event->waitq);
e360adbe 6638 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6639
cdd6c482 6640 mutex_init(&event->mmap_mutex);
7b732a75 6641
a6fa941d 6642 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6643 event->cpu = cpu;
6644 event->attr = *attr;
6645 event->group_leader = group_leader;
6646 event->pmu = NULL;
cdd6c482 6647 event->oncpu = -1;
a96bbc16 6648
cdd6c482 6649 event->parent = parent_event;
b84fbc9f 6650
17cf22c3 6651 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6652 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6653
cdd6c482 6654 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6655
d580ff86
PZ
6656 if (task) {
6657 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6658
6659 if (attr->type == PERF_TYPE_TRACEPOINT)
6660 event->hw.tp_target = task;
d580ff86
PZ
6661#ifdef CONFIG_HAVE_HW_BREAKPOINT
6662 /*
6663 * hw_breakpoint is a bit difficult here..
6664 */
f22c1bb6 6665 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6666 event->hw.bp_target = task;
6667#endif
6668 }
6669
4dc0da86 6670 if (!overflow_handler && parent_event) {
b326e956 6671 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6672 context = parent_event->overflow_handler_context;
6673 }
66832eb4 6674
b326e956 6675 event->overflow_handler = overflow_handler;
4dc0da86 6676 event->overflow_handler_context = context;
97eaf530 6677
0231bb53 6678 perf_event__state_init(event);
a86ed508 6679
4aeb0b42 6680 pmu = NULL;
b8e83514 6681
cdd6c482 6682 hwc = &event->hw;
bd2b5b12 6683 hwc->sample_period = attr->sample_period;
0d48696f 6684 if (attr->freq && attr->sample_freq)
bd2b5b12 6685 hwc->sample_period = 1;
eced1dfc 6686 hwc->last_period = hwc->sample_period;
bd2b5b12 6687
e7850595 6688 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6689
2023b359 6690 /*
cdd6c482 6691 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6692 */
3dab77fb 6693 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6694 goto err_ns;
2023b359 6695
b0a873eb 6696 pmu = perf_init_event(event);
4aeb0b42 6697 if (!pmu)
90983b16
FW
6698 goto err_ns;
6699 else if (IS_ERR(pmu)) {
4aeb0b42 6700 err = PTR_ERR(pmu);
90983b16 6701 goto err_ns;
621a01ea 6702 }
d5d2bc0d 6703
cdd6c482 6704 if (!event->parent) {
927c7a9e
FW
6705 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6706 err = get_callchain_buffers();
90983b16
FW
6707 if (err)
6708 goto err_pmu;
d010b332 6709 }
f344011c 6710 }
9ee318a7 6711
cdd6c482 6712 return event;
90983b16
FW
6713
6714err_pmu:
6715 if (event->destroy)
6716 event->destroy(event);
6717err_ns:
6718 if (event->ns)
6719 put_pid_ns(event->ns);
6720 kfree(event);
6721
6722 return ERR_PTR(err);
0793a61d
TG
6723}
6724
cdd6c482
IM
6725static int perf_copy_attr(struct perf_event_attr __user *uattr,
6726 struct perf_event_attr *attr)
974802ea 6727{
974802ea 6728 u32 size;
cdf8073d 6729 int ret;
974802ea
PZ
6730
6731 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6732 return -EFAULT;
6733
6734 /*
6735 * zero the full structure, so that a short copy will be nice.
6736 */
6737 memset(attr, 0, sizeof(*attr));
6738
6739 ret = get_user(size, &uattr->size);
6740 if (ret)
6741 return ret;
6742
6743 if (size > PAGE_SIZE) /* silly large */
6744 goto err_size;
6745
6746 if (!size) /* abi compat */
6747 size = PERF_ATTR_SIZE_VER0;
6748
6749 if (size < PERF_ATTR_SIZE_VER0)
6750 goto err_size;
6751
6752 /*
6753 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6754 * ensure all the unknown bits are 0 - i.e. new
6755 * user-space does not rely on any kernel feature
6756 * extensions we dont know about yet.
974802ea
PZ
6757 */
6758 if (size > sizeof(*attr)) {
cdf8073d
IS
6759 unsigned char __user *addr;
6760 unsigned char __user *end;
6761 unsigned char val;
974802ea 6762
cdf8073d
IS
6763 addr = (void __user *)uattr + sizeof(*attr);
6764 end = (void __user *)uattr + size;
974802ea 6765
cdf8073d 6766 for (; addr < end; addr++) {
974802ea
PZ
6767 ret = get_user(val, addr);
6768 if (ret)
6769 return ret;
6770 if (val)
6771 goto err_size;
6772 }
b3e62e35 6773 size = sizeof(*attr);
974802ea
PZ
6774 }
6775
6776 ret = copy_from_user(attr, uattr, size);
6777 if (ret)
6778 return -EFAULT;
6779
3090ffb5
SE
6780 /* disabled for now */
6781 if (attr->mmap2)
6782 return -EINVAL;
6783
cd757645 6784 if (attr->__reserved_1)
974802ea
PZ
6785 return -EINVAL;
6786
6787 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6788 return -EINVAL;
6789
6790 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6791 return -EINVAL;
6792
bce38cd5
SE
6793 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6794 u64 mask = attr->branch_sample_type;
6795
6796 /* only using defined bits */
6797 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6798 return -EINVAL;
6799
6800 /* at least one branch bit must be set */
6801 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6802 return -EINVAL;
6803
bce38cd5
SE
6804 /* propagate priv level, when not set for branch */
6805 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6806
6807 /* exclude_kernel checked on syscall entry */
6808 if (!attr->exclude_kernel)
6809 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6810
6811 if (!attr->exclude_user)
6812 mask |= PERF_SAMPLE_BRANCH_USER;
6813
6814 if (!attr->exclude_hv)
6815 mask |= PERF_SAMPLE_BRANCH_HV;
6816 /*
6817 * adjust user setting (for HW filter setup)
6818 */
6819 attr->branch_sample_type = mask;
6820 }
e712209a
SE
6821 /* privileged levels capture (kernel, hv): check permissions */
6822 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6823 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6824 return -EACCES;
bce38cd5 6825 }
4018994f 6826
c5ebcedb 6827 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6828 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6829 if (ret)
6830 return ret;
6831 }
6832
6833 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6834 if (!arch_perf_have_user_stack_dump())
6835 return -ENOSYS;
6836
6837 /*
6838 * We have __u32 type for the size, but so far
6839 * we can only use __u16 as maximum due to the
6840 * __u16 sample size limit.
6841 */
6842 if (attr->sample_stack_user >= USHRT_MAX)
6843 ret = -EINVAL;
6844 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6845 ret = -EINVAL;
6846 }
4018994f 6847
974802ea
PZ
6848out:
6849 return ret;
6850
6851err_size:
6852 put_user(sizeof(*attr), &uattr->size);
6853 ret = -E2BIG;
6854 goto out;
6855}
6856
ac9721f3
PZ
6857static int
6858perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6859{
76369139 6860 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6861 int ret = -EINVAL;
6862
ac9721f3 6863 if (!output_event)
a4be7c27
PZ
6864 goto set;
6865
ac9721f3
PZ
6866 /* don't allow circular references */
6867 if (event == output_event)
a4be7c27
PZ
6868 goto out;
6869
0f139300
PZ
6870 /*
6871 * Don't allow cross-cpu buffers
6872 */
6873 if (output_event->cpu != event->cpu)
6874 goto out;
6875
6876 /*
76369139 6877 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6878 */
6879 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6880 goto out;
6881
a4be7c27 6882set:
cdd6c482 6883 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6884 /* Can't redirect output if we've got an active mmap() */
6885 if (atomic_read(&event->mmap_count))
6886 goto unlock;
a4be7c27 6887
9bb5d40c
PZ
6888 old_rb = event->rb;
6889
ac9721f3 6890 if (output_event) {
76369139
FW
6891 /* get the rb we want to redirect to */
6892 rb = ring_buffer_get(output_event);
6893 if (!rb)
ac9721f3 6894 goto unlock;
a4be7c27
PZ
6895 }
6896
10c6db11
PZ
6897 if (old_rb)
6898 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6899
6900 if (rb)
6901 ring_buffer_attach(event, rb);
6902
6903 rcu_assign_pointer(event->rb, rb);
6904
6905 if (old_rb) {
6906 ring_buffer_put(old_rb);
6907 /*
6908 * Since we detached before setting the new rb, so that we
6909 * could attach the new rb, we could have missed a wakeup.
6910 * Provide it now.
6911 */
6912 wake_up_all(&event->waitq);
6913 }
6914
a4be7c27 6915 ret = 0;
ac9721f3
PZ
6916unlock:
6917 mutex_unlock(&event->mmap_mutex);
6918
a4be7c27 6919out:
a4be7c27
PZ
6920 return ret;
6921}
6922
0793a61d 6923/**
cdd6c482 6924 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6925 *
cdd6c482 6926 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6927 * @pid: target pid
9f66a381 6928 * @cpu: target cpu
cdd6c482 6929 * @group_fd: group leader event fd
0793a61d 6930 */
cdd6c482
IM
6931SYSCALL_DEFINE5(perf_event_open,
6932 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6933 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6934{
b04243ef
PZ
6935 struct perf_event *group_leader = NULL, *output_event = NULL;
6936 struct perf_event *event, *sibling;
cdd6c482
IM
6937 struct perf_event_attr attr;
6938 struct perf_event_context *ctx;
6939 struct file *event_file = NULL;
2903ff01 6940 struct fd group = {NULL, 0};
38a81da2 6941 struct task_struct *task = NULL;
89a1e187 6942 struct pmu *pmu;
ea635c64 6943 int event_fd;
b04243ef 6944 int move_group = 0;
dc86cabe 6945 int err;
0793a61d 6946
2743a5b0 6947 /* for future expandability... */
e5d1367f 6948 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6949 return -EINVAL;
6950
dc86cabe
IM
6951 err = perf_copy_attr(attr_uptr, &attr);
6952 if (err)
6953 return err;
eab656ae 6954
0764771d
PZ
6955 if (!attr.exclude_kernel) {
6956 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6957 return -EACCES;
6958 }
6959
df58ab24 6960 if (attr.freq) {
cdd6c482 6961 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6962 return -EINVAL;
6963 }
6964
e5d1367f
SE
6965 /*
6966 * In cgroup mode, the pid argument is used to pass the fd
6967 * opened to the cgroup directory in cgroupfs. The cpu argument
6968 * designates the cpu on which to monitor threads from that
6969 * cgroup.
6970 */
6971 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6972 return -EINVAL;
6973
ab72a702 6974 event_fd = get_unused_fd();
ea635c64
AV
6975 if (event_fd < 0)
6976 return event_fd;
6977
ac9721f3 6978 if (group_fd != -1) {
2903ff01
AV
6979 err = perf_fget_light(group_fd, &group);
6980 if (err)
d14b12d7 6981 goto err_fd;
2903ff01 6982 group_leader = group.file->private_data;
ac9721f3
PZ
6983 if (flags & PERF_FLAG_FD_OUTPUT)
6984 output_event = group_leader;
6985 if (flags & PERF_FLAG_FD_NO_GROUP)
6986 group_leader = NULL;
6987 }
6988
e5d1367f 6989 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6990 task = find_lively_task_by_vpid(pid);
6991 if (IS_ERR(task)) {
6992 err = PTR_ERR(task);
6993 goto err_group_fd;
6994 }
6995 }
6996
fbfc623f
YZ
6997 get_online_cpus();
6998
4dc0da86
AK
6999 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7000 NULL, NULL);
d14b12d7
SE
7001 if (IS_ERR(event)) {
7002 err = PTR_ERR(event);
c6be5a5c 7003 goto err_task;
d14b12d7
SE
7004 }
7005
e5d1367f
SE
7006 if (flags & PERF_FLAG_PID_CGROUP) {
7007 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7008 if (err) {
7009 __free_event(event);
7010 goto err_task;
7011 }
e5d1367f
SE
7012 }
7013
766d6c07
FW
7014 account_event(event);
7015
89a1e187
PZ
7016 /*
7017 * Special case software events and allow them to be part of
7018 * any hardware group.
7019 */
7020 pmu = event->pmu;
b04243ef
PZ
7021
7022 if (group_leader &&
7023 (is_software_event(event) != is_software_event(group_leader))) {
7024 if (is_software_event(event)) {
7025 /*
7026 * If event and group_leader are not both a software
7027 * event, and event is, then group leader is not.
7028 *
7029 * Allow the addition of software events to !software
7030 * groups, this is safe because software events never
7031 * fail to schedule.
7032 */
7033 pmu = group_leader->pmu;
7034 } else if (is_software_event(group_leader) &&
7035 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7036 /*
7037 * In case the group is a pure software group, and we
7038 * try to add a hardware event, move the whole group to
7039 * the hardware context.
7040 */
7041 move_group = 1;
7042 }
7043 }
89a1e187
PZ
7044
7045 /*
7046 * Get the target context (task or percpu):
7047 */
e2d37cd2 7048 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7049 if (IS_ERR(ctx)) {
7050 err = PTR_ERR(ctx);
c6be5a5c 7051 goto err_alloc;
89a1e187
PZ
7052 }
7053
fd1edb3a
PZ
7054 if (task) {
7055 put_task_struct(task);
7056 task = NULL;
7057 }
7058
ccff286d 7059 /*
cdd6c482 7060 * Look up the group leader (we will attach this event to it):
04289bb9 7061 */
ac9721f3 7062 if (group_leader) {
dc86cabe 7063 err = -EINVAL;
04289bb9 7064
04289bb9 7065 /*
ccff286d
IM
7066 * Do not allow a recursive hierarchy (this new sibling
7067 * becoming part of another group-sibling):
7068 */
7069 if (group_leader->group_leader != group_leader)
c3f00c70 7070 goto err_context;
ccff286d
IM
7071 /*
7072 * Do not allow to attach to a group in a different
7073 * task or CPU context:
04289bb9 7074 */
b04243ef
PZ
7075 if (move_group) {
7076 if (group_leader->ctx->type != ctx->type)
7077 goto err_context;
7078 } else {
7079 if (group_leader->ctx != ctx)
7080 goto err_context;
7081 }
7082
3b6f9e5c
PM
7083 /*
7084 * Only a group leader can be exclusive or pinned
7085 */
0d48696f 7086 if (attr.exclusive || attr.pinned)
c3f00c70 7087 goto err_context;
ac9721f3
PZ
7088 }
7089
7090 if (output_event) {
7091 err = perf_event_set_output(event, output_event);
7092 if (err)
c3f00c70 7093 goto err_context;
ac9721f3 7094 }
0793a61d 7095
ea635c64
AV
7096 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7097 if (IS_ERR(event_file)) {
7098 err = PTR_ERR(event_file);
c3f00c70 7099 goto err_context;
ea635c64 7100 }
9b51f66d 7101
b04243ef
PZ
7102 if (move_group) {
7103 struct perf_event_context *gctx = group_leader->ctx;
7104
7105 mutex_lock(&gctx->mutex);
fe4b04fa 7106 perf_remove_from_context(group_leader);
0231bb53
JO
7107
7108 /*
7109 * Removing from the context ends up with disabled
7110 * event. What we want here is event in the initial
7111 * startup state, ready to be add into new context.
7112 */
7113 perf_event__state_init(group_leader);
b04243ef
PZ
7114 list_for_each_entry(sibling, &group_leader->sibling_list,
7115 group_entry) {
fe4b04fa 7116 perf_remove_from_context(sibling);
0231bb53 7117 perf_event__state_init(sibling);
b04243ef
PZ
7118 put_ctx(gctx);
7119 }
7120 mutex_unlock(&gctx->mutex);
7121 put_ctx(gctx);
ea635c64 7122 }
9b51f66d 7123
ad3a37de 7124 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7125 mutex_lock(&ctx->mutex);
b04243ef
PZ
7126
7127 if (move_group) {
0cda4c02 7128 synchronize_rcu();
e2d37cd2 7129 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7130 get_ctx(ctx);
7131 list_for_each_entry(sibling, &group_leader->sibling_list,
7132 group_entry) {
e2d37cd2 7133 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7134 get_ctx(ctx);
7135 }
7136 }
7137
e2d37cd2 7138 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7139 ++ctx->generation;
fe4b04fa 7140 perf_unpin_context(ctx);
d859e29f 7141 mutex_unlock(&ctx->mutex);
9b51f66d 7142
fbfc623f
YZ
7143 put_online_cpus();
7144
cdd6c482 7145 event->owner = current;
8882135b 7146
cdd6c482
IM
7147 mutex_lock(&current->perf_event_mutex);
7148 list_add_tail(&event->owner_entry, &current->perf_event_list);
7149 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7150
c320c7b7
ACM
7151 /*
7152 * Precalculate sample_data sizes
7153 */
7154 perf_event__header_size(event);
6844c09d 7155 perf_event__id_header_size(event);
c320c7b7 7156
8a49542c
PZ
7157 /*
7158 * Drop the reference on the group_event after placing the
7159 * new event on the sibling_list. This ensures destruction
7160 * of the group leader will find the pointer to itself in
7161 * perf_group_detach().
7162 */
2903ff01 7163 fdput(group);
ea635c64
AV
7164 fd_install(event_fd, event_file);
7165 return event_fd;
0793a61d 7166
c3f00c70 7167err_context:
fe4b04fa 7168 perf_unpin_context(ctx);
ea635c64 7169 put_ctx(ctx);
c6be5a5c 7170err_alloc:
ea635c64 7171 free_event(event);
e7d0bc04 7172err_task:
fbfc623f 7173 put_online_cpus();
e7d0bc04
PZ
7174 if (task)
7175 put_task_struct(task);
89a1e187 7176err_group_fd:
2903ff01 7177 fdput(group);
ea635c64
AV
7178err_fd:
7179 put_unused_fd(event_fd);
dc86cabe 7180 return err;
0793a61d
TG
7181}
7182
fb0459d7
AV
7183/**
7184 * perf_event_create_kernel_counter
7185 *
7186 * @attr: attributes of the counter to create
7187 * @cpu: cpu in which the counter is bound
38a81da2 7188 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7189 */
7190struct perf_event *
7191perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7192 struct task_struct *task,
4dc0da86
AK
7193 perf_overflow_handler_t overflow_handler,
7194 void *context)
fb0459d7 7195{
fb0459d7 7196 struct perf_event_context *ctx;
c3f00c70 7197 struct perf_event *event;
fb0459d7 7198 int err;
d859e29f 7199
fb0459d7
AV
7200 /*
7201 * Get the target context (task or percpu):
7202 */
d859e29f 7203
4dc0da86
AK
7204 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7205 overflow_handler, context);
c3f00c70
PZ
7206 if (IS_ERR(event)) {
7207 err = PTR_ERR(event);
7208 goto err;
7209 }
d859e29f 7210
766d6c07
FW
7211 account_event(event);
7212
38a81da2 7213 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7214 if (IS_ERR(ctx)) {
7215 err = PTR_ERR(ctx);
c3f00c70 7216 goto err_free;
d859e29f 7217 }
fb0459d7 7218
fb0459d7
AV
7219 WARN_ON_ONCE(ctx->parent_ctx);
7220 mutex_lock(&ctx->mutex);
7221 perf_install_in_context(ctx, event, cpu);
7222 ++ctx->generation;
fe4b04fa 7223 perf_unpin_context(ctx);
fb0459d7
AV
7224 mutex_unlock(&ctx->mutex);
7225
fb0459d7
AV
7226 return event;
7227
c3f00c70
PZ
7228err_free:
7229 free_event(event);
7230err:
c6567f64 7231 return ERR_PTR(err);
9b51f66d 7232}
fb0459d7 7233EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7234
0cda4c02
YZ
7235void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7236{
7237 struct perf_event_context *src_ctx;
7238 struct perf_event_context *dst_ctx;
7239 struct perf_event *event, *tmp;
7240 LIST_HEAD(events);
7241
7242 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7243 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7244
7245 mutex_lock(&src_ctx->mutex);
7246 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7247 event_entry) {
7248 perf_remove_from_context(event);
9a545de0 7249 unaccount_event_cpu(event, src_cpu);
0cda4c02 7250 put_ctx(src_ctx);
9886167d 7251 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7252 }
7253 mutex_unlock(&src_ctx->mutex);
7254
7255 synchronize_rcu();
7256
7257 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7258 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7259 list_del(&event->migrate_entry);
0cda4c02
YZ
7260 if (event->state >= PERF_EVENT_STATE_OFF)
7261 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7262 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7263 perf_install_in_context(dst_ctx, event, dst_cpu);
7264 get_ctx(dst_ctx);
7265 }
7266 mutex_unlock(&dst_ctx->mutex);
7267}
7268EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7269
cdd6c482 7270static void sync_child_event(struct perf_event *child_event,
38b200d6 7271 struct task_struct *child)
d859e29f 7272{
cdd6c482 7273 struct perf_event *parent_event = child_event->parent;
8bc20959 7274 u64 child_val;
d859e29f 7275
cdd6c482
IM
7276 if (child_event->attr.inherit_stat)
7277 perf_event_read_event(child_event, child);
38b200d6 7278
b5e58793 7279 child_val = perf_event_count(child_event);
d859e29f
PM
7280
7281 /*
7282 * Add back the child's count to the parent's count:
7283 */
a6e6dea6 7284 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7285 atomic64_add(child_event->total_time_enabled,
7286 &parent_event->child_total_time_enabled);
7287 atomic64_add(child_event->total_time_running,
7288 &parent_event->child_total_time_running);
d859e29f
PM
7289
7290 /*
cdd6c482 7291 * Remove this event from the parent's list
d859e29f 7292 */
cdd6c482
IM
7293 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7294 mutex_lock(&parent_event->child_mutex);
7295 list_del_init(&child_event->child_list);
7296 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7297
7298 /*
cdd6c482 7299 * Release the parent event, if this was the last
d859e29f
PM
7300 * reference to it.
7301 */
a6fa941d 7302 put_event(parent_event);
d859e29f
PM
7303}
7304
9b51f66d 7305static void
cdd6c482
IM
7306__perf_event_exit_task(struct perf_event *child_event,
7307 struct perf_event_context *child_ctx,
38b200d6 7308 struct task_struct *child)
9b51f66d 7309{
38b435b1
PZ
7310 if (child_event->parent) {
7311 raw_spin_lock_irq(&child_ctx->lock);
7312 perf_group_detach(child_event);
7313 raw_spin_unlock_irq(&child_ctx->lock);
7314 }
9b51f66d 7315
fe4b04fa 7316 perf_remove_from_context(child_event);
0cc0c027 7317
9b51f66d 7318 /*
38b435b1 7319 * It can happen that the parent exits first, and has events
9b51f66d 7320 * that are still around due to the child reference. These
38b435b1 7321 * events need to be zapped.
9b51f66d 7322 */
38b435b1 7323 if (child_event->parent) {
cdd6c482
IM
7324 sync_child_event(child_event, child);
7325 free_event(child_event);
4bcf349a 7326 }
9b51f66d
IM
7327}
7328
8dc85d54 7329static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7330{
cdd6c482
IM
7331 struct perf_event *child_event, *tmp;
7332 struct perf_event_context *child_ctx;
a63eaf34 7333 unsigned long flags;
9b51f66d 7334
8dc85d54 7335 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7336 perf_event_task(child, NULL, 0);
9b51f66d 7337 return;
9f498cc5 7338 }
9b51f66d 7339
a63eaf34 7340 local_irq_save(flags);
ad3a37de
PM
7341 /*
7342 * We can't reschedule here because interrupts are disabled,
7343 * and either child is current or it is a task that can't be
7344 * scheduled, so we are now safe from rescheduling changing
7345 * our context.
7346 */
806839b2 7347 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7348
7349 /*
7350 * Take the context lock here so that if find_get_context is
cdd6c482 7351 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7352 * incremented the context's refcount before we do put_ctx below.
7353 */
e625cce1 7354 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7355 task_ctx_sched_out(child_ctx);
8dc85d54 7356 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7357 /*
7358 * If this context is a clone; unclone it so it can't get
7359 * swapped to another process while we're removing all
cdd6c482 7360 * the events from it.
71a851b4
PZ
7361 */
7362 unclone_ctx(child_ctx);
5e942bb3 7363 update_context_time(child_ctx);
e625cce1 7364 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7365
7366 /*
cdd6c482
IM
7367 * Report the task dead after unscheduling the events so that we
7368 * won't get any samples after PERF_RECORD_EXIT. We can however still
7369 * get a few PERF_RECORD_READ events.
9f498cc5 7370 */
cdd6c482 7371 perf_event_task(child, child_ctx, 0);
a63eaf34 7372
66fff224
PZ
7373 /*
7374 * We can recurse on the same lock type through:
7375 *
cdd6c482
IM
7376 * __perf_event_exit_task()
7377 * sync_child_event()
a6fa941d
AV
7378 * put_event()
7379 * mutex_lock(&ctx->mutex)
66fff224
PZ
7380 *
7381 * But since its the parent context it won't be the same instance.
7382 */
a0507c84 7383 mutex_lock(&child_ctx->mutex);
a63eaf34 7384
8bc20959 7385again:
889ff015
FW
7386 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7387 group_entry)
7388 __perf_event_exit_task(child_event, child_ctx, child);
7389
7390 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7391 group_entry)
cdd6c482 7392 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7393
7394 /*
cdd6c482 7395 * If the last event was a group event, it will have appended all
8bc20959
PZ
7396 * its siblings to the list, but we obtained 'tmp' before that which
7397 * will still point to the list head terminating the iteration.
7398 */
889ff015
FW
7399 if (!list_empty(&child_ctx->pinned_groups) ||
7400 !list_empty(&child_ctx->flexible_groups))
8bc20959 7401 goto again;
a63eaf34
PM
7402
7403 mutex_unlock(&child_ctx->mutex);
7404
7405 put_ctx(child_ctx);
9b51f66d
IM
7406}
7407
8dc85d54
PZ
7408/*
7409 * When a child task exits, feed back event values to parent events.
7410 */
7411void perf_event_exit_task(struct task_struct *child)
7412{
8882135b 7413 struct perf_event *event, *tmp;
8dc85d54
PZ
7414 int ctxn;
7415
8882135b
PZ
7416 mutex_lock(&child->perf_event_mutex);
7417 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7418 owner_entry) {
7419 list_del_init(&event->owner_entry);
7420
7421 /*
7422 * Ensure the list deletion is visible before we clear
7423 * the owner, closes a race against perf_release() where
7424 * we need to serialize on the owner->perf_event_mutex.
7425 */
7426 smp_wmb();
7427 event->owner = NULL;
7428 }
7429 mutex_unlock(&child->perf_event_mutex);
7430
8dc85d54
PZ
7431 for_each_task_context_nr(ctxn)
7432 perf_event_exit_task_context(child, ctxn);
7433}
7434
889ff015
FW
7435static void perf_free_event(struct perf_event *event,
7436 struct perf_event_context *ctx)
7437{
7438 struct perf_event *parent = event->parent;
7439
7440 if (WARN_ON_ONCE(!parent))
7441 return;
7442
7443 mutex_lock(&parent->child_mutex);
7444 list_del_init(&event->child_list);
7445 mutex_unlock(&parent->child_mutex);
7446
a6fa941d 7447 put_event(parent);
889ff015 7448
8a49542c 7449 perf_group_detach(event);
889ff015
FW
7450 list_del_event(event, ctx);
7451 free_event(event);
7452}
7453
bbbee908
PZ
7454/*
7455 * free an unexposed, unused context as created by inheritance by
8dc85d54 7456 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7457 */
cdd6c482 7458void perf_event_free_task(struct task_struct *task)
bbbee908 7459{
8dc85d54 7460 struct perf_event_context *ctx;
cdd6c482 7461 struct perf_event *event, *tmp;
8dc85d54 7462 int ctxn;
bbbee908 7463
8dc85d54
PZ
7464 for_each_task_context_nr(ctxn) {
7465 ctx = task->perf_event_ctxp[ctxn];
7466 if (!ctx)
7467 continue;
bbbee908 7468
8dc85d54 7469 mutex_lock(&ctx->mutex);
bbbee908 7470again:
8dc85d54
PZ
7471 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7472 group_entry)
7473 perf_free_event(event, ctx);
bbbee908 7474
8dc85d54
PZ
7475 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7476 group_entry)
7477 perf_free_event(event, ctx);
bbbee908 7478
8dc85d54
PZ
7479 if (!list_empty(&ctx->pinned_groups) ||
7480 !list_empty(&ctx->flexible_groups))
7481 goto again;
bbbee908 7482
8dc85d54 7483 mutex_unlock(&ctx->mutex);
bbbee908 7484
8dc85d54
PZ
7485 put_ctx(ctx);
7486 }
889ff015
FW
7487}
7488
4e231c79
PZ
7489void perf_event_delayed_put(struct task_struct *task)
7490{
7491 int ctxn;
7492
7493 for_each_task_context_nr(ctxn)
7494 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7495}
7496
97dee4f3
PZ
7497/*
7498 * inherit a event from parent task to child task:
7499 */
7500static struct perf_event *
7501inherit_event(struct perf_event *parent_event,
7502 struct task_struct *parent,
7503 struct perf_event_context *parent_ctx,
7504 struct task_struct *child,
7505 struct perf_event *group_leader,
7506 struct perf_event_context *child_ctx)
7507{
7508 struct perf_event *child_event;
cee010ec 7509 unsigned long flags;
97dee4f3
PZ
7510
7511 /*
7512 * Instead of creating recursive hierarchies of events,
7513 * we link inherited events back to the original parent,
7514 * which has a filp for sure, which we use as the reference
7515 * count:
7516 */
7517 if (parent_event->parent)
7518 parent_event = parent_event->parent;
7519
7520 child_event = perf_event_alloc(&parent_event->attr,
7521 parent_event->cpu,
d580ff86 7522 child,
97dee4f3 7523 group_leader, parent_event,
4dc0da86 7524 NULL, NULL);
97dee4f3
PZ
7525 if (IS_ERR(child_event))
7526 return child_event;
a6fa941d
AV
7527
7528 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7529 free_event(child_event);
7530 return NULL;
7531 }
7532
97dee4f3
PZ
7533 get_ctx(child_ctx);
7534
7535 /*
7536 * Make the child state follow the state of the parent event,
7537 * not its attr.disabled bit. We hold the parent's mutex,
7538 * so we won't race with perf_event_{en, dis}able_family.
7539 */
7540 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7541 child_event->state = PERF_EVENT_STATE_INACTIVE;
7542 else
7543 child_event->state = PERF_EVENT_STATE_OFF;
7544
7545 if (parent_event->attr.freq) {
7546 u64 sample_period = parent_event->hw.sample_period;
7547 struct hw_perf_event *hwc = &child_event->hw;
7548
7549 hwc->sample_period = sample_period;
7550 hwc->last_period = sample_period;
7551
7552 local64_set(&hwc->period_left, sample_period);
7553 }
7554
7555 child_event->ctx = child_ctx;
7556 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7557 child_event->overflow_handler_context
7558 = parent_event->overflow_handler_context;
97dee4f3 7559
614b6780
TG
7560 /*
7561 * Precalculate sample_data sizes
7562 */
7563 perf_event__header_size(child_event);
6844c09d 7564 perf_event__id_header_size(child_event);
614b6780 7565
97dee4f3
PZ
7566 /*
7567 * Link it up in the child's context:
7568 */
cee010ec 7569 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7570 add_event_to_ctx(child_event, child_ctx);
cee010ec 7571 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7572
97dee4f3
PZ
7573 /*
7574 * Link this into the parent event's child list
7575 */
7576 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7577 mutex_lock(&parent_event->child_mutex);
7578 list_add_tail(&child_event->child_list, &parent_event->child_list);
7579 mutex_unlock(&parent_event->child_mutex);
7580
7581 return child_event;
7582}
7583
7584static int inherit_group(struct perf_event *parent_event,
7585 struct task_struct *parent,
7586 struct perf_event_context *parent_ctx,
7587 struct task_struct *child,
7588 struct perf_event_context *child_ctx)
7589{
7590 struct perf_event *leader;
7591 struct perf_event *sub;
7592 struct perf_event *child_ctr;
7593
7594 leader = inherit_event(parent_event, parent, parent_ctx,
7595 child, NULL, child_ctx);
7596 if (IS_ERR(leader))
7597 return PTR_ERR(leader);
7598 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7599 child_ctr = inherit_event(sub, parent, parent_ctx,
7600 child, leader, child_ctx);
7601 if (IS_ERR(child_ctr))
7602 return PTR_ERR(child_ctr);
7603 }
7604 return 0;
889ff015
FW
7605}
7606
7607static int
7608inherit_task_group(struct perf_event *event, struct task_struct *parent,
7609 struct perf_event_context *parent_ctx,
8dc85d54 7610 struct task_struct *child, int ctxn,
889ff015
FW
7611 int *inherited_all)
7612{
7613 int ret;
8dc85d54 7614 struct perf_event_context *child_ctx;
889ff015
FW
7615
7616 if (!event->attr.inherit) {
7617 *inherited_all = 0;
7618 return 0;
bbbee908
PZ
7619 }
7620
fe4b04fa 7621 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7622 if (!child_ctx) {
7623 /*
7624 * This is executed from the parent task context, so
7625 * inherit events that have been marked for cloning.
7626 * First allocate and initialize a context for the
7627 * child.
7628 */
bbbee908 7629
734df5ab 7630 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7631 if (!child_ctx)
7632 return -ENOMEM;
bbbee908 7633
8dc85d54 7634 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7635 }
7636
7637 ret = inherit_group(event, parent, parent_ctx,
7638 child, child_ctx);
7639
7640 if (ret)
7641 *inherited_all = 0;
7642
7643 return ret;
bbbee908
PZ
7644}
7645
9b51f66d 7646/*
cdd6c482 7647 * Initialize the perf_event context in task_struct
9b51f66d 7648 */
8dc85d54 7649int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7650{
889ff015 7651 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7652 struct perf_event_context *cloned_ctx;
7653 struct perf_event *event;
9b51f66d 7654 struct task_struct *parent = current;
564c2b21 7655 int inherited_all = 1;
dddd3379 7656 unsigned long flags;
6ab423e0 7657 int ret = 0;
9b51f66d 7658
8dc85d54 7659 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7660 return 0;
7661
ad3a37de 7662 /*
25346b93
PM
7663 * If the parent's context is a clone, pin it so it won't get
7664 * swapped under us.
ad3a37de 7665 */
8dc85d54 7666 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7667
ad3a37de
PM
7668 /*
7669 * No need to check if parent_ctx != NULL here; since we saw
7670 * it non-NULL earlier, the only reason for it to become NULL
7671 * is if we exit, and since we're currently in the middle of
7672 * a fork we can't be exiting at the same time.
7673 */
ad3a37de 7674
9b51f66d
IM
7675 /*
7676 * Lock the parent list. No need to lock the child - not PID
7677 * hashed yet and not running, so nobody can access it.
7678 */
d859e29f 7679 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7680
7681 /*
7682 * We dont have to disable NMIs - we are only looking at
7683 * the list, not manipulating it:
7684 */
889ff015 7685 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7686 ret = inherit_task_group(event, parent, parent_ctx,
7687 child, ctxn, &inherited_all);
889ff015
FW
7688 if (ret)
7689 break;
7690 }
b93f7978 7691
dddd3379
TG
7692 /*
7693 * We can't hold ctx->lock when iterating the ->flexible_group list due
7694 * to allocations, but we need to prevent rotation because
7695 * rotate_ctx() will change the list from interrupt context.
7696 */
7697 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7698 parent_ctx->rotate_disable = 1;
7699 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7700
889ff015 7701 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7702 ret = inherit_task_group(event, parent, parent_ctx,
7703 child, ctxn, &inherited_all);
889ff015 7704 if (ret)
9b51f66d 7705 break;
564c2b21
PM
7706 }
7707
dddd3379
TG
7708 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7709 parent_ctx->rotate_disable = 0;
dddd3379 7710
8dc85d54 7711 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7712
05cbaa28 7713 if (child_ctx && inherited_all) {
564c2b21
PM
7714 /*
7715 * Mark the child context as a clone of the parent
7716 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7717 *
7718 * Note that if the parent is a clone, the holding of
7719 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7720 */
c5ed5145 7721 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7722 if (cloned_ctx) {
7723 child_ctx->parent_ctx = cloned_ctx;
25346b93 7724 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7725 } else {
7726 child_ctx->parent_ctx = parent_ctx;
7727 child_ctx->parent_gen = parent_ctx->generation;
7728 }
7729 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7730 }
7731
c5ed5145 7732 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7733 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7734
25346b93 7735 perf_unpin_context(parent_ctx);
fe4b04fa 7736 put_ctx(parent_ctx);
ad3a37de 7737
6ab423e0 7738 return ret;
9b51f66d
IM
7739}
7740
8dc85d54
PZ
7741/*
7742 * Initialize the perf_event context in task_struct
7743 */
7744int perf_event_init_task(struct task_struct *child)
7745{
7746 int ctxn, ret;
7747
8550d7cb
ON
7748 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7749 mutex_init(&child->perf_event_mutex);
7750 INIT_LIST_HEAD(&child->perf_event_list);
7751
8dc85d54
PZ
7752 for_each_task_context_nr(ctxn) {
7753 ret = perf_event_init_context(child, ctxn);
7754 if (ret)
7755 return ret;
7756 }
7757
7758 return 0;
7759}
7760
220b140b
PM
7761static void __init perf_event_init_all_cpus(void)
7762{
b28ab83c 7763 struct swevent_htable *swhash;
220b140b 7764 int cpu;
220b140b
PM
7765
7766 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7767 swhash = &per_cpu(swevent_htable, cpu);
7768 mutex_init(&swhash->hlist_mutex);
e9d2b064 7769 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7770 }
7771}
7772
0db0628d 7773static void perf_event_init_cpu(int cpu)
0793a61d 7774{
108b02cf 7775 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7776
b28ab83c 7777 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7778 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7779 struct swevent_hlist *hlist;
7780
b28ab83c
PZ
7781 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7782 WARN_ON(!hlist);
7783 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7784 }
b28ab83c 7785 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7786}
7787
c277443c 7788#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7789static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7790{
e9d2b064
PZ
7791 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7792
7793 WARN_ON(!irqs_disabled());
7794
7795 list_del_init(&cpuctx->rotation_list);
7796}
7797
108b02cf 7798static void __perf_event_exit_context(void *__info)
0793a61d 7799{
108b02cf 7800 struct perf_event_context *ctx = __info;
cdd6c482 7801 struct perf_event *event, *tmp;
0793a61d 7802
108b02cf 7803 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7804
889ff015 7805 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7806 __perf_remove_from_context(event);
889ff015 7807 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7808 __perf_remove_from_context(event);
0793a61d 7809}
108b02cf
PZ
7810
7811static void perf_event_exit_cpu_context(int cpu)
7812{
7813 struct perf_event_context *ctx;
7814 struct pmu *pmu;
7815 int idx;
7816
7817 idx = srcu_read_lock(&pmus_srcu);
7818 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7819 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7820
7821 mutex_lock(&ctx->mutex);
7822 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7823 mutex_unlock(&ctx->mutex);
7824 }
7825 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7826}
7827
cdd6c482 7828static void perf_event_exit_cpu(int cpu)
0793a61d 7829{
b28ab83c 7830 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7831
b28ab83c
PZ
7832 mutex_lock(&swhash->hlist_mutex);
7833 swevent_hlist_release(swhash);
7834 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7835
108b02cf 7836 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7837}
7838#else
cdd6c482 7839static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7840#endif
7841
c277443c
PZ
7842static int
7843perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7844{
7845 int cpu;
7846
7847 for_each_online_cpu(cpu)
7848 perf_event_exit_cpu(cpu);
7849
7850 return NOTIFY_OK;
7851}
7852
7853/*
7854 * Run the perf reboot notifier at the very last possible moment so that
7855 * the generic watchdog code runs as long as possible.
7856 */
7857static struct notifier_block perf_reboot_notifier = {
7858 .notifier_call = perf_reboot,
7859 .priority = INT_MIN,
7860};
7861
0db0628d 7862static int
0793a61d
TG
7863perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7864{
7865 unsigned int cpu = (long)hcpu;
7866
4536e4d1 7867 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7868
7869 case CPU_UP_PREPARE:
5e11637e 7870 case CPU_DOWN_FAILED:
cdd6c482 7871 perf_event_init_cpu(cpu);
0793a61d
TG
7872 break;
7873
5e11637e 7874 case CPU_UP_CANCELED:
0793a61d 7875 case CPU_DOWN_PREPARE:
cdd6c482 7876 perf_event_exit_cpu(cpu);
0793a61d 7877 break;
0793a61d
TG
7878 default:
7879 break;
7880 }
7881
7882 return NOTIFY_OK;
7883}
7884
cdd6c482 7885void __init perf_event_init(void)
0793a61d 7886{
3c502e7a
JW
7887 int ret;
7888
2e80a82a
PZ
7889 idr_init(&pmu_idr);
7890
220b140b 7891 perf_event_init_all_cpus();
b0a873eb 7892 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7893 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7894 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7895 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7896 perf_tp_register();
7897 perf_cpu_notifier(perf_cpu_notify);
c277443c 7898 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7899
7900 ret = init_hw_breakpoint();
7901 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7902
7903 /* do not patch jump label more than once per second */
7904 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7905
7906 /*
7907 * Build time assertion that we keep the data_head at the intended
7908 * location. IOW, validation we got the __reserved[] size right.
7909 */
7910 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7911 != 1024);
0793a61d 7912}
abe43400
PZ
7913
7914static int __init perf_event_sysfs_init(void)
7915{
7916 struct pmu *pmu;
7917 int ret;
7918
7919 mutex_lock(&pmus_lock);
7920
7921 ret = bus_register(&pmu_bus);
7922 if (ret)
7923 goto unlock;
7924
7925 list_for_each_entry(pmu, &pmus, entry) {
7926 if (!pmu->name || pmu->type < 0)
7927 continue;
7928
7929 ret = pmu_dev_alloc(pmu);
7930 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7931 }
7932 pmu_bus_running = 1;
7933 ret = 0;
7934
7935unlock:
7936 mutex_unlock(&pmus_lock);
7937
7938 return ret;
7939}
7940device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7941
7942#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
7943static struct cgroup_subsys_state *
7944perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
7945{
7946 struct perf_cgroup *jc;
e5d1367f 7947
1b15d055 7948 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7949 if (!jc)
7950 return ERR_PTR(-ENOMEM);
7951
e5d1367f
SE
7952 jc->info = alloc_percpu(struct perf_cgroup_info);
7953 if (!jc->info) {
7954 kfree(jc);
7955 return ERR_PTR(-ENOMEM);
7956 }
7957
e5d1367f
SE
7958 return &jc->css;
7959}
7960
eb95419b 7961static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 7962{
eb95419b
TH
7963 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7964
e5d1367f
SE
7965 free_percpu(jc->info);
7966 kfree(jc);
7967}
7968
7969static int __perf_cgroup_move(void *info)
7970{
7971 struct task_struct *task = info;
7972 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7973 return 0;
7974}
7975
eb95419b
TH
7976static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7977 struct cgroup_taskset *tset)
e5d1367f 7978{
bb9d97b6
TH
7979 struct task_struct *task;
7980
d99c8727 7981 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7982 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7983}
7984
eb95419b
TH
7985static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7986 struct cgroup_subsys_state *old_css,
761b3ef5 7987 struct task_struct *task)
e5d1367f
SE
7988{
7989 /*
7990 * cgroup_exit() is called in the copy_process() failure path.
7991 * Ignore this case since the task hasn't ran yet, this avoids
7992 * trying to poke a half freed task state from generic code.
7993 */
7994 if (!(task->flags & PF_EXITING))
7995 return;
7996
bb9d97b6 7997 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7998}
7999
8000struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
8001 .name = "perf_event",
8002 .subsys_id = perf_subsys_id,
92fb9748
TH
8003 .css_alloc = perf_cgroup_css_alloc,
8004 .css_free = perf_cgroup_css_free,
e7e7ee2e 8005 .exit = perf_cgroup_exit,
bb9d97b6 8006 .attach = perf_cgroup_attach,
e5d1367f
SE
8007};
8008#endif /* CONFIG_CGROUP_PERF */