perf/x86/intel: Fix Skylake FRONTEND MSR extrareg mask
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
ad5133b7 1917 pmu->start_txn(pmu);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0793a61d 3187/*
cdd6c482 3188 * Cross CPU call to read the hardware event
0793a61d 3189 */
cdd6c482 3190static void __perf_event_read(void *info)
0793a61d 3191{
cdd6c482
IM
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
108b02cf 3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3195
e1ac3614
PM
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
e1ac3614
PM
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
e625cce1 3206 raw_spin_lock(&ctx->lock);
e5d1367f 3207 if (ctx->is_active) {
542e72fc 3208 update_context_time(ctx);
e5d1367f
SE
3209 update_cgrp_time_from_event(event);
3210 }
cdd6c482 3211 update_event_times(event);
542e72fc
PZ
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
e625cce1 3214 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3215}
3216
b5e58793
PZ
3217static inline u64 perf_event_count(struct perf_event *event)
3218{
eacd3ecc
MF
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
b5e58793
PZ
3223}
3224
ffe8690c
KX
3225/*
3226 * NMI-safe method to read a local event, that is an event that
3227 * is:
3228 * - either for the current task, or for this CPU
3229 * - does not have inherit set, for inherited task events
3230 * will not be local and we cannot read them atomically
3231 * - must not have a pmu::count method
3232 */
3233u64 perf_event_read_local(struct perf_event *event)
3234{
3235 unsigned long flags;
3236 u64 val;
3237
3238 /*
3239 * Disabling interrupts avoids all counter scheduling (context
3240 * switches, timer based rotation and IPIs).
3241 */
3242 local_irq_save(flags);
3243
3244 /* If this is a per-task event, it must be for current */
3245 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3246 event->hw.target != current);
3247
3248 /* If this is a per-CPU event, it must be for this CPU */
3249 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3250 event->cpu != smp_processor_id());
3251
3252 /*
3253 * It must not be an event with inherit set, we cannot read
3254 * all child counters from atomic context.
3255 */
3256 WARN_ON_ONCE(event->attr.inherit);
3257
3258 /*
3259 * It must not have a pmu::count method, those are not
3260 * NMI safe.
3261 */
3262 WARN_ON_ONCE(event->pmu->count);
3263
3264 /*
3265 * If the event is currently on this CPU, its either a per-task event,
3266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3267 * oncpu == -1).
3268 */
3269 if (event->oncpu == smp_processor_id())
3270 event->pmu->read(event);
3271
3272 val = local64_read(&event->count);
3273 local_irq_restore(flags);
3274
3275 return val;
3276}
3277
cdd6c482 3278static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3279{
3280 /*
cdd6c482
IM
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
0793a61d 3283 */
cdd6c482
IM
3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 smp_call_function_single(event->oncpu,
3286 __perf_event_read, event, 1);
3287 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3288 struct perf_event_context *ctx = event->ctx;
3289 unsigned long flags;
3290
e625cce1 3291 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3292 /*
3293 * may read while context is not active
3294 * (e.g., thread is blocked), in that case
3295 * we cannot update context time
3296 */
e5d1367f 3297 if (ctx->is_active) {
c530ccd9 3298 update_context_time(ctx);
e5d1367f
SE
3299 update_cgrp_time_from_event(event);
3300 }
cdd6c482 3301 update_event_times(event);
e625cce1 3302 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3303 }
3304
b5e58793 3305 return perf_event_count(event);
0793a61d
TG
3306}
3307
a63eaf34 3308/*
cdd6c482 3309 * Initialize the perf_event context in a task_struct:
a63eaf34 3310 */
eb184479 3311static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3312{
e625cce1 3313 raw_spin_lock_init(&ctx->lock);
a63eaf34 3314 mutex_init(&ctx->mutex);
2fde4f94 3315 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3316 INIT_LIST_HEAD(&ctx->pinned_groups);
3317 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3318 INIT_LIST_HEAD(&ctx->event_list);
3319 atomic_set(&ctx->refcount, 1);
fadfe7be 3320 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3321}
3322
3323static struct perf_event_context *
3324alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3325{
3326 struct perf_event_context *ctx;
3327
3328 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3329 if (!ctx)
3330 return NULL;
3331
3332 __perf_event_init_context(ctx);
3333 if (task) {
3334 ctx->task = task;
3335 get_task_struct(task);
0793a61d 3336 }
eb184479
PZ
3337 ctx->pmu = pmu;
3338
3339 return ctx;
a63eaf34
PM
3340}
3341
2ebd4ffb
MH
3342static struct task_struct *
3343find_lively_task_by_vpid(pid_t vpid)
3344{
3345 struct task_struct *task;
3346 int err;
0793a61d
TG
3347
3348 rcu_read_lock();
2ebd4ffb 3349 if (!vpid)
0793a61d
TG
3350 task = current;
3351 else
2ebd4ffb 3352 task = find_task_by_vpid(vpid);
0793a61d
TG
3353 if (task)
3354 get_task_struct(task);
3355 rcu_read_unlock();
3356
3357 if (!task)
3358 return ERR_PTR(-ESRCH);
3359
0793a61d 3360 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3361 err = -EACCES;
3362 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3363 goto errout;
3364
2ebd4ffb
MH
3365 return task;
3366errout:
3367 put_task_struct(task);
3368 return ERR_PTR(err);
3369
3370}
3371
fe4b04fa
PZ
3372/*
3373 * Returns a matching context with refcount and pincount.
3374 */
108b02cf 3375static struct perf_event_context *
4af57ef2
YZ
3376find_get_context(struct pmu *pmu, struct task_struct *task,
3377 struct perf_event *event)
0793a61d 3378{
211de6eb 3379 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3380 struct perf_cpu_context *cpuctx;
4af57ef2 3381 void *task_ctx_data = NULL;
25346b93 3382 unsigned long flags;
8dc85d54 3383 int ctxn, err;
4af57ef2 3384 int cpu = event->cpu;
0793a61d 3385
22a4ec72 3386 if (!task) {
cdd6c482 3387 /* Must be root to operate on a CPU event: */
0764771d 3388 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3389 return ERR_PTR(-EACCES);
3390
0793a61d 3391 /*
cdd6c482 3392 * We could be clever and allow to attach a event to an
0793a61d
TG
3393 * offline CPU and activate it when the CPU comes up, but
3394 * that's for later.
3395 */
f6325e30 3396 if (!cpu_online(cpu))
0793a61d
TG
3397 return ERR_PTR(-ENODEV);
3398
108b02cf 3399 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3400 ctx = &cpuctx->ctx;
c93f7669 3401 get_ctx(ctx);
fe4b04fa 3402 ++ctx->pin_count;
0793a61d 3403
0793a61d
TG
3404 return ctx;
3405 }
3406
8dc85d54
PZ
3407 err = -EINVAL;
3408 ctxn = pmu->task_ctx_nr;
3409 if (ctxn < 0)
3410 goto errout;
3411
4af57ef2
YZ
3412 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3413 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3414 if (!task_ctx_data) {
3415 err = -ENOMEM;
3416 goto errout;
3417 }
3418 }
3419
9ed6060d 3420retry:
8dc85d54 3421 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3422 if (ctx) {
211de6eb 3423 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3424 ++ctx->pin_count;
4af57ef2
YZ
3425
3426 if (task_ctx_data && !ctx->task_ctx_data) {
3427 ctx->task_ctx_data = task_ctx_data;
3428 task_ctx_data = NULL;
3429 }
e625cce1 3430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3431
3432 if (clone_ctx)
3433 put_ctx(clone_ctx);
9137fb28 3434 } else {
eb184479 3435 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3436 err = -ENOMEM;
3437 if (!ctx)
3438 goto errout;
eb184479 3439
4af57ef2
YZ
3440 if (task_ctx_data) {
3441 ctx->task_ctx_data = task_ctx_data;
3442 task_ctx_data = NULL;
3443 }
3444
dbe08d82
ON
3445 err = 0;
3446 mutex_lock(&task->perf_event_mutex);
3447 /*
3448 * If it has already passed perf_event_exit_task().
3449 * we must see PF_EXITING, it takes this mutex too.
3450 */
3451 if (task->flags & PF_EXITING)
3452 err = -ESRCH;
3453 else if (task->perf_event_ctxp[ctxn])
3454 err = -EAGAIN;
fe4b04fa 3455 else {
9137fb28 3456 get_ctx(ctx);
fe4b04fa 3457 ++ctx->pin_count;
dbe08d82 3458 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3459 }
dbe08d82
ON
3460 mutex_unlock(&task->perf_event_mutex);
3461
3462 if (unlikely(err)) {
9137fb28 3463 put_ctx(ctx);
dbe08d82
ON
3464
3465 if (err == -EAGAIN)
3466 goto retry;
3467 goto errout;
a63eaf34
PM
3468 }
3469 }
3470
4af57ef2 3471 kfree(task_ctx_data);
0793a61d 3472 return ctx;
c93f7669 3473
9ed6060d 3474errout:
4af57ef2 3475 kfree(task_ctx_data);
c93f7669 3476 return ERR_PTR(err);
0793a61d
TG
3477}
3478
6fb2915d 3479static void perf_event_free_filter(struct perf_event *event);
2541517c 3480static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3481
cdd6c482 3482static void free_event_rcu(struct rcu_head *head)
592903cd 3483{
cdd6c482 3484 struct perf_event *event;
592903cd 3485
cdd6c482
IM
3486 event = container_of(head, struct perf_event, rcu_head);
3487 if (event->ns)
3488 put_pid_ns(event->ns);
6fb2915d 3489 perf_event_free_filter(event);
cdd6c482 3490 kfree(event);
592903cd
PZ
3491}
3492
b69cf536
PZ
3493static void ring_buffer_attach(struct perf_event *event,
3494 struct ring_buffer *rb);
925d519a 3495
4beb31f3 3496static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3497{
4beb31f3
FW
3498 if (event->parent)
3499 return;
3500
4beb31f3
FW
3501 if (is_cgroup_event(event))
3502 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3503}
925d519a 3504
4beb31f3
FW
3505static void unaccount_event(struct perf_event *event)
3506{
3507 if (event->parent)
3508 return;
3509
3510 if (event->attach_state & PERF_ATTACH_TASK)
3511 static_key_slow_dec_deferred(&perf_sched_events);
3512 if (event->attr.mmap || event->attr.mmap_data)
3513 atomic_dec(&nr_mmap_events);
3514 if (event->attr.comm)
3515 atomic_dec(&nr_comm_events);
3516 if (event->attr.task)
3517 atomic_dec(&nr_task_events);
948b26b6
FW
3518 if (event->attr.freq)
3519 atomic_dec(&nr_freq_events);
45ac1403
AH
3520 if (event->attr.context_switch) {
3521 static_key_slow_dec_deferred(&perf_sched_events);
3522 atomic_dec(&nr_switch_events);
3523 }
4beb31f3
FW
3524 if (is_cgroup_event(event))
3525 static_key_slow_dec_deferred(&perf_sched_events);
3526 if (has_branch_stack(event))
3527 static_key_slow_dec_deferred(&perf_sched_events);
3528
3529 unaccount_event_cpu(event, event->cpu);
3530}
925d519a 3531
bed5b25a
AS
3532/*
3533 * The following implement mutual exclusion of events on "exclusive" pmus
3534 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3535 * at a time, so we disallow creating events that might conflict, namely:
3536 *
3537 * 1) cpu-wide events in the presence of per-task events,
3538 * 2) per-task events in the presence of cpu-wide events,
3539 * 3) two matching events on the same context.
3540 *
3541 * The former two cases are handled in the allocation path (perf_event_alloc(),
3542 * __free_event()), the latter -- before the first perf_install_in_context().
3543 */
3544static int exclusive_event_init(struct perf_event *event)
3545{
3546 struct pmu *pmu = event->pmu;
3547
3548 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3549 return 0;
3550
3551 /*
3552 * Prevent co-existence of per-task and cpu-wide events on the
3553 * same exclusive pmu.
3554 *
3555 * Negative pmu::exclusive_cnt means there are cpu-wide
3556 * events on this "exclusive" pmu, positive means there are
3557 * per-task events.
3558 *
3559 * Since this is called in perf_event_alloc() path, event::ctx
3560 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3561 * to mean "per-task event", because unlike other attach states it
3562 * never gets cleared.
3563 */
3564 if (event->attach_state & PERF_ATTACH_TASK) {
3565 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3566 return -EBUSY;
3567 } else {
3568 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3569 return -EBUSY;
3570 }
3571
3572 return 0;
3573}
3574
3575static void exclusive_event_destroy(struct perf_event *event)
3576{
3577 struct pmu *pmu = event->pmu;
3578
3579 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3580 return;
3581
3582 /* see comment in exclusive_event_init() */
3583 if (event->attach_state & PERF_ATTACH_TASK)
3584 atomic_dec(&pmu->exclusive_cnt);
3585 else
3586 atomic_inc(&pmu->exclusive_cnt);
3587}
3588
3589static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3590{
3591 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3592 (e1->cpu == e2->cpu ||
3593 e1->cpu == -1 ||
3594 e2->cpu == -1))
3595 return true;
3596 return false;
3597}
3598
3599/* Called under the same ctx::mutex as perf_install_in_context() */
3600static bool exclusive_event_installable(struct perf_event *event,
3601 struct perf_event_context *ctx)
3602{
3603 struct perf_event *iter_event;
3604 struct pmu *pmu = event->pmu;
3605
3606 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3607 return true;
3608
3609 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3610 if (exclusive_event_match(iter_event, event))
3611 return false;
3612 }
3613
3614 return true;
3615}
3616
766d6c07
FW
3617static void __free_event(struct perf_event *event)
3618{
cdd6c482 3619 if (!event->parent) {
927c7a9e
FW
3620 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3621 put_callchain_buffers();
f344011c 3622 }
9ee318a7 3623
dead9f29
AS
3624 perf_event_free_bpf_prog(event);
3625
766d6c07
FW
3626 if (event->destroy)
3627 event->destroy(event);
3628
3629 if (event->ctx)
3630 put_ctx(event->ctx);
3631
bed5b25a
AS
3632 if (event->pmu) {
3633 exclusive_event_destroy(event);
c464c76e 3634 module_put(event->pmu->module);
bed5b25a 3635 }
c464c76e 3636
766d6c07
FW
3637 call_rcu(&event->rcu_head, free_event_rcu);
3638}
683ede43
PZ
3639
3640static void _free_event(struct perf_event *event)
f1600952 3641{
e360adbe 3642 irq_work_sync(&event->pending);
925d519a 3643
4beb31f3 3644 unaccount_event(event);
9ee318a7 3645
76369139 3646 if (event->rb) {
9bb5d40c
PZ
3647 /*
3648 * Can happen when we close an event with re-directed output.
3649 *
3650 * Since we have a 0 refcount, perf_mmap_close() will skip
3651 * over us; possibly making our ring_buffer_put() the last.
3652 */
3653 mutex_lock(&event->mmap_mutex);
b69cf536 3654 ring_buffer_attach(event, NULL);
9bb5d40c 3655 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3656 }
3657
e5d1367f
SE
3658 if (is_cgroup_event(event))
3659 perf_detach_cgroup(event);
3660
766d6c07 3661 __free_event(event);
f1600952
PZ
3662}
3663
683ede43
PZ
3664/*
3665 * Used to free events which have a known refcount of 1, such as in error paths
3666 * where the event isn't exposed yet and inherited events.
3667 */
3668static void free_event(struct perf_event *event)
0793a61d 3669{
683ede43
PZ
3670 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3671 "unexpected event refcount: %ld; ptr=%p\n",
3672 atomic_long_read(&event->refcount), event)) {
3673 /* leak to avoid use-after-free */
3674 return;
3675 }
0793a61d 3676
683ede43 3677 _free_event(event);
0793a61d
TG
3678}
3679
a66a3052 3680/*
f8697762 3681 * Remove user event from the owner task.
a66a3052 3682 */
f8697762 3683static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3684{
8882135b 3685 struct task_struct *owner;
fb0459d7 3686
8882135b
PZ
3687 rcu_read_lock();
3688 owner = ACCESS_ONCE(event->owner);
3689 /*
3690 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3691 * !owner it means the list deletion is complete and we can indeed
3692 * free this event, otherwise we need to serialize on
3693 * owner->perf_event_mutex.
3694 */
3695 smp_read_barrier_depends();
3696 if (owner) {
3697 /*
3698 * Since delayed_put_task_struct() also drops the last
3699 * task reference we can safely take a new reference
3700 * while holding the rcu_read_lock().
3701 */
3702 get_task_struct(owner);
3703 }
3704 rcu_read_unlock();
3705
3706 if (owner) {
f63a8daa
PZ
3707 /*
3708 * If we're here through perf_event_exit_task() we're already
3709 * holding ctx->mutex which would be an inversion wrt. the
3710 * normal lock order.
3711 *
3712 * However we can safely take this lock because its the child
3713 * ctx->mutex.
3714 */
3715 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3716
8882135b
PZ
3717 /*
3718 * We have to re-check the event->owner field, if it is cleared
3719 * we raced with perf_event_exit_task(), acquiring the mutex
3720 * ensured they're done, and we can proceed with freeing the
3721 * event.
3722 */
3723 if (event->owner)
3724 list_del_init(&event->owner_entry);
3725 mutex_unlock(&owner->perf_event_mutex);
3726 put_task_struct(owner);
3727 }
f8697762
JO
3728}
3729
f8697762
JO
3730static void put_event(struct perf_event *event)
3731{
a83fe28e 3732 struct perf_event_context *ctx;
f8697762
JO
3733
3734 if (!atomic_long_dec_and_test(&event->refcount))
3735 return;
3736
3737 if (!is_kernel_event(event))
3738 perf_remove_from_owner(event);
8882135b 3739
683ede43
PZ
3740 /*
3741 * There are two ways this annotation is useful:
3742 *
3743 * 1) there is a lock recursion from perf_event_exit_task
3744 * see the comment there.
3745 *
3746 * 2) there is a lock-inversion with mmap_sem through
3747 * perf_event_read_group(), which takes faults while
3748 * holding ctx->mutex, however this is called after
3749 * the last filedesc died, so there is no possibility
3750 * to trigger the AB-BA case.
3751 */
a83fe28e
PZ
3752 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3753 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3754 perf_remove_from_context(event, true);
d415a7f1 3755 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3756
3757 _free_event(event);
a6fa941d
AV
3758}
3759
683ede43
PZ
3760int perf_event_release_kernel(struct perf_event *event)
3761{
3762 put_event(event);
3763 return 0;
3764}
3765EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3766
8b10c5e2
PZ
3767/*
3768 * Called when the last reference to the file is gone.
3769 */
a6fa941d
AV
3770static int perf_release(struct inode *inode, struct file *file)
3771{
3772 put_event(file->private_data);
3773 return 0;
fb0459d7 3774}
fb0459d7 3775
fadfe7be
JO
3776/*
3777 * Remove all orphanes events from the context.
3778 */
3779static void orphans_remove_work(struct work_struct *work)
3780{
3781 struct perf_event_context *ctx;
3782 struct perf_event *event, *tmp;
3783
3784 ctx = container_of(work, struct perf_event_context,
3785 orphans_remove.work);
3786
3787 mutex_lock(&ctx->mutex);
3788 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3789 struct perf_event *parent_event = event->parent;
3790
3791 if (!is_orphaned_child(event))
3792 continue;
3793
3794 perf_remove_from_context(event, true);
3795
3796 mutex_lock(&parent_event->child_mutex);
3797 list_del_init(&event->child_list);
3798 mutex_unlock(&parent_event->child_mutex);
3799
3800 free_event(event);
3801 put_event(parent_event);
3802 }
3803
3804 raw_spin_lock_irq(&ctx->lock);
3805 ctx->orphans_remove_sched = false;
3806 raw_spin_unlock_irq(&ctx->lock);
3807 mutex_unlock(&ctx->mutex);
3808
3809 put_ctx(ctx);
3810}
3811
59ed446f 3812u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3813{
cdd6c482 3814 struct perf_event *child;
e53c0994
PZ
3815 u64 total = 0;
3816
59ed446f
PZ
3817 *enabled = 0;
3818 *running = 0;
3819
6f10581a 3820 mutex_lock(&event->child_mutex);
cdd6c482 3821 total += perf_event_read(event);
59ed446f
PZ
3822 *enabled += event->total_time_enabled +
3823 atomic64_read(&event->child_total_time_enabled);
3824 *running += event->total_time_running +
3825 atomic64_read(&event->child_total_time_running);
3826
3827 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3828 total += perf_event_read(child);
59ed446f
PZ
3829 *enabled += child->total_time_enabled;
3830 *running += child->total_time_running;
3831 }
6f10581a 3832 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3833
3834 return total;
3835}
fb0459d7 3836EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3837
cdd6c482 3838static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3839 u64 read_format, char __user *buf)
3840{
cdd6c482 3841 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3842 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3843 int n = 0, size = 0, ret;
59ed446f 3844 u64 count, enabled, running;
f63a8daa
PZ
3845 u64 values[5];
3846
3847 lockdep_assert_held(&ctx->mutex);
abf4868b 3848
59ed446f 3849 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3850
3851 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853 values[n++] = enabled;
3854 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855 values[n++] = running;
abf4868b
PZ
3856 values[n++] = count;
3857 if (read_format & PERF_FORMAT_ID)
3858 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3859
3860 size = n * sizeof(u64);
3861
3862 if (copy_to_user(buf, values, size))
f63a8daa 3863 return -EFAULT;
3dab77fb 3864
6f10581a 3865 ret = size;
3dab77fb 3866
65abc865 3867 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3868 n = 0;
3dab77fb 3869
59ed446f 3870 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3871 if (read_format & PERF_FORMAT_ID)
3872 values[n++] = primary_event_id(sub);
3873
3874 size = n * sizeof(u64);
3875
184d3da8 3876 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3877 return -EFAULT;
6f10581a 3878 }
abf4868b
PZ
3879
3880 ret += size;
3dab77fb
PZ
3881 }
3882
abf4868b 3883 return ret;
3dab77fb
PZ
3884}
3885
cdd6c482 3886static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3887 u64 read_format, char __user *buf)
3888{
59ed446f 3889 u64 enabled, running;
3dab77fb
PZ
3890 u64 values[4];
3891 int n = 0;
3892
59ed446f
PZ
3893 values[n++] = perf_event_read_value(event, &enabled, &running);
3894 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3895 values[n++] = enabled;
3896 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3897 values[n++] = running;
3dab77fb 3898 if (read_format & PERF_FORMAT_ID)
cdd6c482 3899 values[n++] = primary_event_id(event);
3dab77fb
PZ
3900
3901 if (copy_to_user(buf, values, n * sizeof(u64)))
3902 return -EFAULT;
3903
3904 return n * sizeof(u64);
3905}
3906
dc633982
JO
3907static bool is_event_hup(struct perf_event *event)
3908{
3909 bool no_children;
3910
3911 if (event->state != PERF_EVENT_STATE_EXIT)
3912 return false;
3913
3914 mutex_lock(&event->child_mutex);
3915 no_children = list_empty(&event->child_list);
3916 mutex_unlock(&event->child_mutex);
3917 return no_children;
3918}
3919
0793a61d 3920/*
cdd6c482 3921 * Read the performance event - simple non blocking version for now
0793a61d
TG
3922 */
3923static ssize_t
cdd6c482 3924perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3925{
cdd6c482 3926 u64 read_format = event->attr.read_format;
3dab77fb 3927 int ret;
0793a61d 3928
3b6f9e5c 3929 /*
cdd6c482 3930 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3931 * error state (i.e. because it was pinned but it couldn't be
3932 * scheduled on to the CPU at some point).
3933 */
cdd6c482 3934 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3935 return 0;
3936
c320c7b7 3937 if (count < event->read_size)
3dab77fb
PZ
3938 return -ENOSPC;
3939
cdd6c482 3940 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3941 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3942 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3943 else
cdd6c482 3944 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3945
3dab77fb 3946 return ret;
0793a61d
TG
3947}
3948
0793a61d
TG
3949static ssize_t
3950perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3951{
cdd6c482 3952 struct perf_event *event = file->private_data;
f63a8daa
PZ
3953 struct perf_event_context *ctx;
3954 int ret;
0793a61d 3955
f63a8daa
PZ
3956 ctx = perf_event_ctx_lock(event);
3957 ret = perf_read_hw(event, buf, count);
3958 perf_event_ctx_unlock(event, ctx);
3959
3960 return ret;
0793a61d
TG
3961}
3962
3963static unsigned int perf_poll(struct file *file, poll_table *wait)
3964{
cdd6c482 3965 struct perf_event *event = file->private_data;
76369139 3966 struct ring_buffer *rb;
61b67684 3967 unsigned int events = POLLHUP;
c7138f37 3968
e708d7ad 3969 poll_wait(file, &event->waitq, wait);
179033b3 3970
dc633982 3971 if (is_event_hup(event))
179033b3 3972 return events;
c7138f37 3973
10c6db11 3974 /*
9bb5d40c
PZ
3975 * Pin the event->rb by taking event->mmap_mutex; otherwise
3976 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3977 */
3978 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3979 rb = event->rb;
3980 if (rb)
76369139 3981 events = atomic_xchg(&rb->poll, 0);
10c6db11 3982 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3983 return events;
3984}
3985
f63a8daa 3986static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3987{
cdd6c482 3988 (void)perf_event_read(event);
e7850595 3989 local64_set(&event->count, 0);
cdd6c482 3990 perf_event_update_userpage(event);
3df5edad
PZ
3991}
3992
c93f7669 3993/*
cdd6c482
IM
3994 * Holding the top-level event's child_mutex means that any
3995 * descendant process that has inherited this event will block
3996 * in sync_child_event if it goes to exit, thus satisfying the
3997 * task existence requirements of perf_event_enable/disable.
c93f7669 3998 */
cdd6c482
IM
3999static void perf_event_for_each_child(struct perf_event *event,
4000 void (*func)(struct perf_event *))
3df5edad 4001{
cdd6c482 4002 struct perf_event *child;
3df5edad 4003
cdd6c482 4004 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4005
cdd6c482
IM
4006 mutex_lock(&event->child_mutex);
4007 func(event);
4008 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4009 func(child);
cdd6c482 4010 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4011}
4012
cdd6c482
IM
4013static void perf_event_for_each(struct perf_event *event,
4014 void (*func)(struct perf_event *))
3df5edad 4015{
cdd6c482
IM
4016 struct perf_event_context *ctx = event->ctx;
4017 struct perf_event *sibling;
3df5edad 4018
f63a8daa
PZ
4019 lockdep_assert_held(&ctx->mutex);
4020
cdd6c482 4021 event = event->group_leader;
75f937f2 4022
cdd6c482 4023 perf_event_for_each_child(event, func);
cdd6c482 4024 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4025 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4026}
4027
c7999c6f
PZ
4028struct period_event {
4029 struct perf_event *event;
08247e31 4030 u64 value;
c7999c6f 4031};
08247e31 4032
c7999c6f
PZ
4033static int __perf_event_period(void *info)
4034{
4035 struct period_event *pe = info;
4036 struct perf_event *event = pe->event;
4037 struct perf_event_context *ctx = event->ctx;
4038 u64 value = pe->value;
4039 bool active;
08247e31 4040
c7999c6f 4041 raw_spin_lock(&ctx->lock);
cdd6c482 4042 if (event->attr.freq) {
cdd6c482 4043 event->attr.sample_freq = value;
08247e31 4044 } else {
cdd6c482
IM
4045 event->attr.sample_period = value;
4046 event->hw.sample_period = value;
08247e31 4047 }
bad7192b
PZ
4048
4049 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4050 if (active) {
4051 perf_pmu_disable(ctx->pmu);
4052 event->pmu->stop(event, PERF_EF_UPDATE);
4053 }
4054
4055 local64_set(&event->hw.period_left, 0);
4056
4057 if (active) {
4058 event->pmu->start(event, PERF_EF_RELOAD);
4059 perf_pmu_enable(ctx->pmu);
4060 }
c7999c6f 4061 raw_spin_unlock(&ctx->lock);
bad7192b 4062
c7999c6f
PZ
4063 return 0;
4064}
4065
4066static int perf_event_period(struct perf_event *event, u64 __user *arg)
4067{
4068 struct period_event pe = { .event = event, };
4069 struct perf_event_context *ctx = event->ctx;
4070 struct task_struct *task;
4071 u64 value;
4072
4073 if (!is_sampling_event(event))
4074 return -EINVAL;
4075
4076 if (copy_from_user(&value, arg, sizeof(value)))
4077 return -EFAULT;
4078
4079 if (!value)
4080 return -EINVAL;
4081
4082 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4083 return -EINVAL;
4084
4085 task = ctx->task;
4086 pe.value = value;
4087
4088 if (!task) {
4089 cpu_function_call(event->cpu, __perf_event_period, &pe);
4090 return 0;
4091 }
4092
4093retry:
4094 if (!task_function_call(task, __perf_event_period, &pe))
4095 return 0;
4096
4097 raw_spin_lock_irq(&ctx->lock);
4098 if (ctx->is_active) {
4099 raw_spin_unlock_irq(&ctx->lock);
4100 task = ctx->task;
4101 goto retry;
4102 }
4103
4104 __perf_event_period(&pe);
e625cce1 4105 raw_spin_unlock_irq(&ctx->lock);
08247e31 4106
c7999c6f 4107 return 0;
08247e31
PZ
4108}
4109
ac9721f3
PZ
4110static const struct file_operations perf_fops;
4111
2903ff01 4112static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4113{
2903ff01
AV
4114 struct fd f = fdget(fd);
4115 if (!f.file)
4116 return -EBADF;
ac9721f3 4117
2903ff01
AV
4118 if (f.file->f_op != &perf_fops) {
4119 fdput(f);
4120 return -EBADF;
ac9721f3 4121 }
2903ff01
AV
4122 *p = f;
4123 return 0;
ac9721f3
PZ
4124}
4125
4126static int perf_event_set_output(struct perf_event *event,
4127 struct perf_event *output_event);
6fb2915d 4128static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4129static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4130
f63a8daa 4131static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4132{
cdd6c482 4133 void (*func)(struct perf_event *);
3df5edad 4134 u32 flags = arg;
d859e29f
PM
4135
4136 switch (cmd) {
cdd6c482 4137 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4138 func = _perf_event_enable;
d859e29f 4139 break;
cdd6c482 4140 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4141 func = _perf_event_disable;
79f14641 4142 break;
cdd6c482 4143 case PERF_EVENT_IOC_RESET:
f63a8daa 4144 func = _perf_event_reset;
6de6a7b9 4145 break;
3df5edad 4146
cdd6c482 4147 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4148 return _perf_event_refresh(event, arg);
08247e31 4149
cdd6c482
IM
4150 case PERF_EVENT_IOC_PERIOD:
4151 return perf_event_period(event, (u64 __user *)arg);
08247e31 4152
cf4957f1
JO
4153 case PERF_EVENT_IOC_ID:
4154 {
4155 u64 id = primary_event_id(event);
4156
4157 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4158 return -EFAULT;
4159 return 0;
4160 }
4161
cdd6c482 4162 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4163 {
ac9721f3 4164 int ret;
ac9721f3 4165 if (arg != -1) {
2903ff01
AV
4166 struct perf_event *output_event;
4167 struct fd output;
4168 ret = perf_fget_light(arg, &output);
4169 if (ret)
4170 return ret;
4171 output_event = output.file->private_data;
4172 ret = perf_event_set_output(event, output_event);
4173 fdput(output);
4174 } else {
4175 ret = perf_event_set_output(event, NULL);
ac9721f3 4176 }
ac9721f3
PZ
4177 return ret;
4178 }
a4be7c27 4179
6fb2915d
LZ
4180 case PERF_EVENT_IOC_SET_FILTER:
4181 return perf_event_set_filter(event, (void __user *)arg);
4182
2541517c
AS
4183 case PERF_EVENT_IOC_SET_BPF:
4184 return perf_event_set_bpf_prog(event, arg);
4185
d859e29f 4186 default:
3df5edad 4187 return -ENOTTY;
d859e29f 4188 }
3df5edad
PZ
4189
4190 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4191 perf_event_for_each(event, func);
3df5edad 4192 else
cdd6c482 4193 perf_event_for_each_child(event, func);
3df5edad
PZ
4194
4195 return 0;
d859e29f
PM
4196}
4197
f63a8daa
PZ
4198static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4199{
4200 struct perf_event *event = file->private_data;
4201 struct perf_event_context *ctx;
4202 long ret;
4203
4204 ctx = perf_event_ctx_lock(event);
4205 ret = _perf_ioctl(event, cmd, arg);
4206 perf_event_ctx_unlock(event, ctx);
4207
4208 return ret;
4209}
4210
b3f20785
PM
4211#ifdef CONFIG_COMPAT
4212static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4213 unsigned long arg)
4214{
4215 switch (_IOC_NR(cmd)) {
4216 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4217 case _IOC_NR(PERF_EVENT_IOC_ID):
4218 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4219 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4220 cmd &= ~IOCSIZE_MASK;
4221 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4222 }
4223 break;
4224 }
4225 return perf_ioctl(file, cmd, arg);
4226}
4227#else
4228# define perf_compat_ioctl NULL
4229#endif
4230
cdd6c482 4231int perf_event_task_enable(void)
771d7cde 4232{
f63a8daa 4233 struct perf_event_context *ctx;
cdd6c482 4234 struct perf_event *event;
771d7cde 4235
cdd6c482 4236 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4237 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4238 ctx = perf_event_ctx_lock(event);
4239 perf_event_for_each_child(event, _perf_event_enable);
4240 perf_event_ctx_unlock(event, ctx);
4241 }
cdd6c482 4242 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4243
4244 return 0;
4245}
4246
cdd6c482 4247int perf_event_task_disable(void)
771d7cde 4248{
f63a8daa 4249 struct perf_event_context *ctx;
cdd6c482 4250 struct perf_event *event;
771d7cde 4251
cdd6c482 4252 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4253 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4254 ctx = perf_event_ctx_lock(event);
4255 perf_event_for_each_child(event, _perf_event_disable);
4256 perf_event_ctx_unlock(event, ctx);
4257 }
cdd6c482 4258 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4259
4260 return 0;
4261}
4262
cdd6c482 4263static int perf_event_index(struct perf_event *event)
194002b2 4264{
a4eaf7f1
PZ
4265 if (event->hw.state & PERF_HES_STOPPED)
4266 return 0;
4267
cdd6c482 4268 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4269 return 0;
4270
35edc2a5 4271 return event->pmu->event_idx(event);
194002b2
PZ
4272}
4273
c4794295 4274static void calc_timer_values(struct perf_event *event,
e3f3541c 4275 u64 *now,
7f310a5d
EM
4276 u64 *enabled,
4277 u64 *running)
c4794295 4278{
e3f3541c 4279 u64 ctx_time;
c4794295 4280
e3f3541c
PZ
4281 *now = perf_clock();
4282 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4283 *enabled = ctx_time - event->tstamp_enabled;
4284 *running = ctx_time - event->tstamp_running;
4285}
4286
fa731587
PZ
4287static void perf_event_init_userpage(struct perf_event *event)
4288{
4289 struct perf_event_mmap_page *userpg;
4290 struct ring_buffer *rb;
4291
4292 rcu_read_lock();
4293 rb = rcu_dereference(event->rb);
4294 if (!rb)
4295 goto unlock;
4296
4297 userpg = rb->user_page;
4298
4299 /* Allow new userspace to detect that bit 0 is deprecated */
4300 userpg->cap_bit0_is_deprecated = 1;
4301 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4302 userpg->data_offset = PAGE_SIZE;
4303 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4304
4305unlock:
4306 rcu_read_unlock();
4307}
4308
c1317ec2
AL
4309void __weak arch_perf_update_userpage(
4310 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4311{
4312}
4313
38ff667b
PZ
4314/*
4315 * Callers need to ensure there can be no nesting of this function, otherwise
4316 * the seqlock logic goes bad. We can not serialize this because the arch
4317 * code calls this from NMI context.
4318 */
cdd6c482 4319void perf_event_update_userpage(struct perf_event *event)
37d81828 4320{
cdd6c482 4321 struct perf_event_mmap_page *userpg;
76369139 4322 struct ring_buffer *rb;
e3f3541c 4323 u64 enabled, running, now;
38ff667b
PZ
4324
4325 rcu_read_lock();
5ec4c599
PZ
4326 rb = rcu_dereference(event->rb);
4327 if (!rb)
4328 goto unlock;
4329
0d641208
EM
4330 /*
4331 * compute total_time_enabled, total_time_running
4332 * based on snapshot values taken when the event
4333 * was last scheduled in.
4334 *
4335 * we cannot simply called update_context_time()
4336 * because of locking issue as we can be called in
4337 * NMI context
4338 */
e3f3541c 4339 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4340
76369139 4341 userpg = rb->user_page;
7b732a75
PZ
4342 /*
4343 * Disable preemption so as to not let the corresponding user-space
4344 * spin too long if we get preempted.
4345 */
4346 preempt_disable();
37d81828 4347 ++userpg->lock;
92f22a38 4348 barrier();
cdd6c482 4349 userpg->index = perf_event_index(event);
b5e58793 4350 userpg->offset = perf_event_count(event);
365a4038 4351 if (userpg->index)
e7850595 4352 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4353
0d641208 4354 userpg->time_enabled = enabled +
cdd6c482 4355 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4356
0d641208 4357 userpg->time_running = running +
cdd6c482 4358 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4359
c1317ec2 4360 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4361
92f22a38 4362 barrier();
37d81828 4363 ++userpg->lock;
7b732a75 4364 preempt_enable();
38ff667b 4365unlock:
7b732a75 4366 rcu_read_unlock();
37d81828
PM
4367}
4368
906010b2
PZ
4369static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4370{
4371 struct perf_event *event = vma->vm_file->private_data;
76369139 4372 struct ring_buffer *rb;
906010b2
PZ
4373 int ret = VM_FAULT_SIGBUS;
4374
4375 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4376 if (vmf->pgoff == 0)
4377 ret = 0;
4378 return ret;
4379 }
4380
4381 rcu_read_lock();
76369139
FW
4382 rb = rcu_dereference(event->rb);
4383 if (!rb)
906010b2
PZ
4384 goto unlock;
4385
4386 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4387 goto unlock;
4388
76369139 4389 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4390 if (!vmf->page)
4391 goto unlock;
4392
4393 get_page(vmf->page);
4394 vmf->page->mapping = vma->vm_file->f_mapping;
4395 vmf->page->index = vmf->pgoff;
4396
4397 ret = 0;
4398unlock:
4399 rcu_read_unlock();
4400
4401 return ret;
4402}
4403
10c6db11
PZ
4404static void ring_buffer_attach(struct perf_event *event,
4405 struct ring_buffer *rb)
4406{
b69cf536 4407 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4408 unsigned long flags;
4409
b69cf536
PZ
4410 if (event->rb) {
4411 /*
4412 * Should be impossible, we set this when removing
4413 * event->rb_entry and wait/clear when adding event->rb_entry.
4414 */
4415 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4416
b69cf536 4417 old_rb = event->rb;
b69cf536
PZ
4418 spin_lock_irqsave(&old_rb->event_lock, flags);
4419 list_del_rcu(&event->rb_entry);
4420 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4421
2f993cf0
ON
4422 event->rcu_batches = get_state_synchronize_rcu();
4423 event->rcu_pending = 1;
b69cf536 4424 }
10c6db11 4425
b69cf536 4426 if (rb) {
2f993cf0
ON
4427 if (event->rcu_pending) {
4428 cond_synchronize_rcu(event->rcu_batches);
4429 event->rcu_pending = 0;
4430 }
4431
b69cf536
PZ
4432 spin_lock_irqsave(&rb->event_lock, flags);
4433 list_add_rcu(&event->rb_entry, &rb->event_list);
4434 spin_unlock_irqrestore(&rb->event_lock, flags);
4435 }
4436
4437 rcu_assign_pointer(event->rb, rb);
4438
4439 if (old_rb) {
4440 ring_buffer_put(old_rb);
4441 /*
4442 * Since we detached before setting the new rb, so that we
4443 * could attach the new rb, we could have missed a wakeup.
4444 * Provide it now.
4445 */
4446 wake_up_all(&event->waitq);
4447 }
10c6db11
PZ
4448}
4449
4450static void ring_buffer_wakeup(struct perf_event *event)
4451{
4452 struct ring_buffer *rb;
4453
4454 rcu_read_lock();
4455 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4456 if (rb) {
4457 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4458 wake_up_all(&event->waitq);
4459 }
10c6db11
PZ
4460 rcu_read_unlock();
4461}
4462
fdc26706 4463struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4464{
76369139 4465 struct ring_buffer *rb;
7b732a75 4466
ac9721f3 4467 rcu_read_lock();
76369139
FW
4468 rb = rcu_dereference(event->rb);
4469 if (rb) {
4470 if (!atomic_inc_not_zero(&rb->refcount))
4471 rb = NULL;
ac9721f3
PZ
4472 }
4473 rcu_read_unlock();
4474
76369139 4475 return rb;
ac9721f3
PZ
4476}
4477
fdc26706 4478void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4479{
76369139 4480 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4481 return;
7b732a75 4482
9bb5d40c 4483 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4484
76369139 4485 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4486}
4487
4488static void perf_mmap_open(struct vm_area_struct *vma)
4489{
cdd6c482 4490 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4491
cdd6c482 4492 atomic_inc(&event->mmap_count);
9bb5d40c 4493 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4494
45bfb2e5
PZ
4495 if (vma->vm_pgoff)
4496 atomic_inc(&event->rb->aux_mmap_count);
4497
1e0fb9ec
AL
4498 if (event->pmu->event_mapped)
4499 event->pmu->event_mapped(event);
7b732a75
PZ
4500}
4501
9bb5d40c
PZ
4502/*
4503 * A buffer can be mmap()ed multiple times; either directly through the same
4504 * event, or through other events by use of perf_event_set_output().
4505 *
4506 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4507 * the buffer here, where we still have a VM context. This means we need
4508 * to detach all events redirecting to us.
4509 */
7b732a75
PZ
4510static void perf_mmap_close(struct vm_area_struct *vma)
4511{
cdd6c482 4512 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4513
b69cf536 4514 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4515 struct user_struct *mmap_user = rb->mmap_user;
4516 int mmap_locked = rb->mmap_locked;
4517 unsigned long size = perf_data_size(rb);
789f90fc 4518
1e0fb9ec
AL
4519 if (event->pmu->event_unmapped)
4520 event->pmu->event_unmapped(event);
4521
45bfb2e5
PZ
4522 /*
4523 * rb->aux_mmap_count will always drop before rb->mmap_count and
4524 * event->mmap_count, so it is ok to use event->mmap_mutex to
4525 * serialize with perf_mmap here.
4526 */
4527 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4528 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4529 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4530 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4531
4532 rb_free_aux(rb);
4533 mutex_unlock(&event->mmap_mutex);
4534 }
4535
9bb5d40c
PZ
4536 atomic_dec(&rb->mmap_count);
4537
4538 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4539 goto out_put;
9bb5d40c 4540
b69cf536 4541 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4542 mutex_unlock(&event->mmap_mutex);
4543
4544 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4545 if (atomic_read(&rb->mmap_count))
4546 goto out_put;
ac9721f3 4547
9bb5d40c
PZ
4548 /*
4549 * No other mmap()s, detach from all other events that might redirect
4550 * into the now unreachable buffer. Somewhat complicated by the
4551 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4552 */
4553again:
4554 rcu_read_lock();
4555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4556 if (!atomic_long_inc_not_zero(&event->refcount)) {
4557 /*
4558 * This event is en-route to free_event() which will
4559 * detach it and remove it from the list.
4560 */
4561 continue;
4562 }
4563 rcu_read_unlock();
789f90fc 4564
9bb5d40c
PZ
4565 mutex_lock(&event->mmap_mutex);
4566 /*
4567 * Check we didn't race with perf_event_set_output() which can
4568 * swizzle the rb from under us while we were waiting to
4569 * acquire mmap_mutex.
4570 *
4571 * If we find a different rb; ignore this event, a next
4572 * iteration will no longer find it on the list. We have to
4573 * still restart the iteration to make sure we're not now
4574 * iterating the wrong list.
4575 */
b69cf536
PZ
4576 if (event->rb == rb)
4577 ring_buffer_attach(event, NULL);
4578
cdd6c482 4579 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4580 put_event(event);
ac9721f3 4581
9bb5d40c
PZ
4582 /*
4583 * Restart the iteration; either we're on the wrong list or
4584 * destroyed its integrity by doing a deletion.
4585 */
4586 goto again;
7b732a75 4587 }
9bb5d40c
PZ
4588 rcu_read_unlock();
4589
4590 /*
4591 * It could be there's still a few 0-ref events on the list; they'll
4592 * get cleaned up by free_event() -- they'll also still have their
4593 * ref on the rb and will free it whenever they are done with it.
4594 *
4595 * Aside from that, this buffer is 'fully' detached and unmapped,
4596 * undo the VM accounting.
4597 */
4598
4599 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4600 vma->vm_mm->pinned_vm -= mmap_locked;
4601 free_uid(mmap_user);
4602
b69cf536 4603out_put:
9bb5d40c 4604 ring_buffer_put(rb); /* could be last */
37d81828
PM
4605}
4606
f0f37e2f 4607static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4608 .open = perf_mmap_open,
45bfb2e5 4609 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4610 .fault = perf_mmap_fault,
4611 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4612};
4613
4614static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4615{
cdd6c482 4616 struct perf_event *event = file->private_data;
22a4f650 4617 unsigned long user_locked, user_lock_limit;
789f90fc 4618 struct user_struct *user = current_user();
22a4f650 4619 unsigned long locked, lock_limit;
45bfb2e5 4620 struct ring_buffer *rb = NULL;
7b732a75
PZ
4621 unsigned long vma_size;
4622 unsigned long nr_pages;
45bfb2e5 4623 long user_extra = 0, extra = 0;
d57e34fd 4624 int ret = 0, flags = 0;
37d81828 4625
c7920614
PZ
4626 /*
4627 * Don't allow mmap() of inherited per-task counters. This would
4628 * create a performance issue due to all children writing to the
76369139 4629 * same rb.
c7920614
PZ
4630 */
4631 if (event->cpu == -1 && event->attr.inherit)
4632 return -EINVAL;
4633
43a21ea8 4634 if (!(vma->vm_flags & VM_SHARED))
37d81828 4635 return -EINVAL;
7b732a75
PZ
4636
4637 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4638
4639 if (vma->vm_pgoff == 0) {
4640 nr_pages = (vma_size / PAGE_SIZE) - 1;
4641 } else {
4642 /*
4643 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4644 * mapped, all subsequent mappings should have the same size
4645 * and offset. Must be above the normal perf buffer.
4646 */
4647 u64 aux_offset, aux_size;
4648
4649 if (!event->rb)
4650 return -EINVAL;
4651
4652 nr_pages = vma_size / PAGE_SIZE;
4653
4654 mutex_lock(&event->mmap_mutex);
4655 ret = -EINVAL;
4656
4657 rb = event->rb;
4658 if (!rb)
4659 goto aux_unlock;
4660
4661 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4662 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4663
4664 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4665 goto aux_unlock;
4666
4667 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4668 goto aux_unlock;
4669
4670 /* already mapped with a different offset */
4671 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4672 goto aux_unlock;
4673
4674 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4675 goto aux_unlock;
4676
4677 /* already mapped with a different size */
4678 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4679 goto aux_unlock;
4680
4681 if (!is_power_of_2(nr_pages))
4682 goto aux_unlock;
4683
4684 if (!atomic_inc_not_zero(&rb->mmap_count))
4685 goto aux_unlock;
4686
4687 if (rb_has_aux(rb)) {
4688 atomic_inc(&rb->aux_mmap_count);
4689 ret = 0;
4690 goto unlock;
4691 }
4692
4693 atomic_set(&rb->aux_mmap_count, 1);
4694 user_extra = nr_pages;
4695
4696 goto accounting;
4697 }
7b732a75 4698
7730d865 4699 /*
76369139 4700 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4701 * can do bitmasks instead of modulo.
4702 */
2ed11312 4703 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4704 return -EINVAL;
4705
7b732a75 4706 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4707 return -EINVAL;
4708
cdd6c482 4709 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4710again:
cdd6c482 4711 mutex_lock(&event->mmap_mutex);
76369139 4712 if (event->rb) {
9bb5d40c 4713 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4714 ret = -EINVAL;
9bb5d40c
PZ
4715 goto unlock;
4716 }
4717
4718 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4719 /*
4720 * Raced against perf_mmap_close() through
4721 * perf_event_set_output(). Try again, hope for better
4722 * luck.
4723 */
4724 mutex_unlock(&event->mmap_mutex);
4725 goto again;
4726 }
4727
ebb3c4c4
PZ
4728 goto unlock;
4729 }
4730
789f90fc 4731 user_extra = nr_pages + 1;
45bfb2e5
PZ
4732
4733accounting:
cdd6c482 4734 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4735
4736 /*
4737 * Increase the limit linearly with more CPUs:
4738 */
4739 user_lock_limit *= num_online_cpus();
4740
789f90fc 4741 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4742
789f90fc
PZ
4743 if (user_locked > user_lock_limit)
4744 extra = user_locked - user_lock_limit;
7b732a75 4745
78d7d407 4746 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4747 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4748 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4749
459ec28a
IM
4750 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4751 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4752 ret = -EPERM;
4753 goto unlock;
4754 }
7b732a75 4755
45bfb2e5 4756 WARN_ON(!rb && event->rb);
906010b2 4757
d57e34fd 4758 if (vma->vm_flags & VM_WRITE)
76369139 4759 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4760
76369139 4761 if (!rb) {
45bfb2e5
PZ
4762 rb = rb_alloc(nr_pages,
4763 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4764 event->cpu, flags);
26cb63ad 4765
45bfb2e5
PZ
4766 if (!rb) {
4767 ret = -ENOMEM;
4768 goto unlock;
4769 }
43a21ea8 4770
45bfb2e5
PZ
4771 atomic_set(&rb->mmap_count, 1);
4772 rb->mmap_user = get_current_user();
4773 rb->mmap_locked = extra;
26cb63ad 4774
45bfb2e5 4775 ring_buffer_attach(event, rb);
ac9721f3 4776
45bfb2e5
PZ
4777 perf_event_init_userpage(event);
4778 perf_event_update_userpage(event);
4779 } else {
1a594131
AS
4780 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4781 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4782 if (!ret)
4783 rb->aux_mmap_locked = extra;
4784 }
9a0f05cb 4785
ebb3c4c4 4786unlock:
45bfb2e5
PZ
4787 if (!ret) {
4788 atomic_long_add(user_extra, &user->locked_vm);
4789 vma->vm_mm->pinned_vm += extra;
4790
ac9721f3 4791 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4792 } else if (rb) {
4793 atomic_dec(&rb->mmap_count);
4794 }
4795aux_unlock:
cdd6c482 4796 mutex_unlock(&event->mmap_mutex);
37d81828 4797
9bb5d40c
PZ
4798 /*
4799 * Since pinned accounting is per vm we cannot allow fork() to copy our
4800 * vma.
4801 */
26cb63ad 4802 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4803 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4804
1e0fb9ec
AL
4805 if (event->pmu->event_mapped)
4806 event->pmu->event_mapped(event);
4807
7b732a75 4808 return ret;
37d81828
PM
4809}
4810
3c446b3d
PZ
4811static int perf_fasync(int fd, struct file *filp, int on)
4812{
496ad9aa 4813 struct inode *inode = file_inode(filp);
cdd6c482 4814 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4815 int retval;
4816
4817 mutex_lock(&inode->i_mutex);
cdd6c482 4818 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4819 mutex_unlock(&inode->i_mutex);
4820
4821 if (retval < 0)
4822 return retval;
4823
4824 return 0;
4825}
4826
0793a61d 4827static const struct file_operations perf_fops = {
3326c1ce 4828 .llseek = no_llseek,
0793a61d
TG
4829 .release = perf_release,
4830 .read = perf_read,
4831 .poll = perf_poll,
d859e29f 4832 .unlocked_ioctl = perf_ioctl,
b3f20785 4833 .compat_ioctl = perf_compat_ioctl,
37d81828 4834 .mmap = perf_mmap,
3c446b3d 4835 .fasync = perf_fasync,
0793a61d
TG
4836};
4837
925d519a 4838/*
cdd6c482 4839 * Perf event wakeup
925d519a
PZ
4840 *
4841 * If there's data, ensure we set the poll() state and publish everything
4842 * to user-space before waking everybody up.
4843 */
4844
fed66e2c
PZ
4845static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4846{
4847 /* only the parent has fasync state */
4848 if (event->parent)
4849 event = event->parent;
4850 return &event->fasync;
4851}
4852
cdd6c482 4853void perf_event_wakeup(struct perf_event *event)
925d519a 4854{
10c6db11 4855 ring_buffer_wakeup(event);
4c9e2542 4856
cdd6c482 4857 if (event->pending_kill) {
fed66e2c 4858 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4859 event->pending_kill = 0;
4c9e2542 4860 }
925d519a
PZ
4861}
4862
e360adbe 4863static void perf_pending_event(struct irq_work *entry)
79f14641 4864{
cdd6c482
IM
4865 struct perf_event *event = container_of(entry,
4866 struct perf_event, pending);
d525211f
PZ
4867 int rctx;
4868
4869 rctx = perf_swevent_get_recursion_context();
4870 /*
4871 * If we 'fail' here, that's OK, it means recursion is already disabled
4872 * and we won't recurse 'further'.
4873 */
79f14641 4874
cdd6c482
IM
4875 if (event->pending_disable) {
4876 event->pending_disable = 0;
4877 __perf_event_disable(event);
79f14641
PZ
4878 }
4879
cdd6c482
IM
4880 if (event->pending_wakeup) {
4881 event->pending_wakeup = 0;
4882 perf_event_wakeup(event);
79f14641 4883 }
d525211f
PZ
4884
4885 if (rctx >= 0)
4886 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4887}
4888
39447b38
ZY
4889/*
4890 * We assume there is only KVM supporting the callbacks.
4891 * Later on, we might change it to a list if there is
4892 * another virtualization implementation supporting the callbacks.
4893 */
4894struct perf_guest_info_callbacks *perf_guest_cbs;
4895
4896int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4897{
4898 perf_guest_cbs = cbs;
4899 return 0;
4900}
4901EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4902
4903int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4904{
4905 perf_guest_cbs = NULL;
4906 return 0;
4907}
4908EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4909
4018994f
JO
4910static void
4911perf_output_sample_regs(struct perf_output_handle *handle,
4912 struct pt_regs *regs, u64 mask)
4913{
4914 int bit;
4915
4916 for_each_set_bit(bit, (const unsigned long *) &mask,
4917 sizeof(mask) * BITS_PER_BYTE) {
4918 u64 val;
4919
4920 val = perf_reg_value(regs, bit);
4921 perf_output_put(handle, val);
4922 }
4923}
4924
60e2364e 4925static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4926 struct pt_regs *regs,
4927 struct pt_regs *regs_user_copy)
4018994f 4928{
88a7c26a
AL
4929 if (user_mode(regs)) {
4930 regs_user->abi = perf_reg_abi(current);
2565711f 4931 regs_user->regs = regs;
88a7c26a
AL
4932 } else if (current->mm) {
4933 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4934 } else {
4935 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4936 regs_user->regs = NULL;
4018994f
JO
4937 }
4938}
4939
60e2364e
SE
4940static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4941 struct pt_regs *regs)
4942{
4943 regs_intr->regs = regs;
4944 regs_intr->abi = perf_reg_abi(current);
4945}
4946
4947
c5ebcedb
JO
4948/*
4949 * Get remaining task size from user stack pointer.
4950 *
4951 * It'd be better to take stack vma map and limit this more
4952 * precisly, but there's no way to get it safely under interrupt,
4953 * so using TASK_SIZE as limit.
4954 */
4955static u64 perf_ustack_task_size(struct pt_regs *regs)
4956{
4957 unsigned long addr = perf_user_stack_pointer(regs);
4958
4959 if (!addr || addr >= TASK_SIZE)
4960 return 0;
4961
4962 return TASK_SIZE - addr;
4963}
4964
4965static u16
4966perf_sample_ustack_size(u16 stack_size, u16 header_size,
4967 struct pt_regs *regs)
4968{
4969 u64 task_size;
4970
4971 /* No regs, no stack pointer, no dump. */
4972 if (!regs)
4973 return 0;
4974
4975 /*
4976 * Check if we fit in with the requested stack size into the:
4977 * - TASK_SIZE
4978 * If we don't, we limit the size to the TASK_SIZE.
4979 *
4980 * - remaining sample size
4981 * If we don't, we customize the stack size to
4982 * fit in to the remaining sample size.
4983 */
4984
4985 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4986 stack_size = min(stack_size, (u16) task_size);
4987
4988 /* Current header size plus static size and dynamic size. */
4989 header_size += 2 * sizeof(u64);
4990
4991 /* Do we fit in with the current stack dump size? */
4992 if ((u16) (header_size + stack_size) < header_size) {
4993 /*
4994 * If we overflow the maximum size for the sample,
4995 * we customize the stack dump size to fit in.
4996 */
4997 stack_size = USHRT_MAX - header_size - sizeof(u64);
4998 stack_size = round_up(stack_size, sizeof(u64));
4999 }
5000
5001 return stack_size;
5002}
5003
5004static void
5005perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5006 struct pt_regs *regs)
5007{
5008 /* Case of a kernel thread, nothing to dump */
5009 if (!regs) {
5010 u64 size = 0;
5011 perf_output_put(handle, size);
5012 } else {
5013 unsigned long sp;
5014 unsigned int rem;
5015 u64 dyn_size;
5016
5017 /*
5018 * We dump:
5019 * static size
5020 * - the size requested by user or the best one we can fit
5021 * in to the sample max size
5022 * data
5023 * - user stack dump data
5024 * dynamic size
5025 * - the actual dumped size
5026 */
5027
5028 /* Static size. */
5029 perf_output_put(handle, dump_size);
5030
5031 /* Data. */
5032 sp = perf_user_stack_pointer(regs);
5033 rem = __output_copy_user(handle, (void *) sp, dump_size);
5034 dyn_size = dump_size - rem;
5035
5036 perf_output_skip(handle, rem);
5037
5038 /* Dynamic size. */
5039 perf_output_put(handle, dyn_size);
5040 }
5041}
5042
c980d109
ACM
5043static void __perf_event_header__init_id(struct perf_event_header *header,
5044 struct perf_sample_data *data,
5045 struct perf_event *event)
6844c09d
ACM
5046{
5047 u64 sample_type = event->attr.sample_type;
5048
5049 data->type = sample_type;
5050 header->size += event->id_header_size;
5051
5052 if (sample_type & PERF_SAMPLE_TID) {
5053 /* namespace issues */
5054 data->tid_entry.pid = perf_event_pid(event, current);
5055 data->tid_entry.tid = perf_event_tid(event, current);
5056 }
5057
5058 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5059 data->time = perf_event_clock(event);
6844c09d 5060
ff3d527c 5061 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5062 data->id = primary_event_id(event);
5063
5064 if (sample_type & PERF_SAMPLE_STREAM_ID)
5065 data->stream_id = event->id;
5066
5067 if (sample_type & PERF_SAMPLE_CPU) {
5068 data->cpu_entry.cpu = raw_smp_processor_id();
5069 data->cpu_entry.reserved = 0;
5070 }
5071}
5072
76369139
FW
5073void perf_event_header__init_id(struct perf_event_header *header,
5074 struct perf_sample_data *data,
5075 struct perf_event *event)
c980d109
ACM
5076{
5077 if (event->attr.sample_id_all)
5078 __perf_event_header__init_id(header, data, event);
5079}
5080
5081static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5082 struct perf_sample_data *data)
5083{
5084 u64 sample_type = data->type;
5085
5086 if (sample_type & PERF_SAMPLE_TID)
5087 perf_output_put(handle, data->tid_entry);
5088
5089 if (sample_type & PERF_SAMPLE_TIME)
5090 perf_output_put(handle, data->time);
5091
5092 if (sample_type & PERF_SAMPLE_ID)
5093 perf_output_put(handle, data->id);
5094
5095 if (sample_type & PERF_SAMPLE_STREAM_ID)
5096 perf_output_put(handle, data->stream_id);
5097
5098 if (sample_type & PERF_SAMPLE_CPU)
5099 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5100
5101 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5102 perf_output_put(handle, data->id);
c980d109
ACM
5103}
5104
76369139
FW
5105void perf_event__output_id_sample(struct perf_event *event,
5106 struct perf_output_handle *handle,
5107 struct perf_sample_data *sample)
c980d109
ACM
5108{
5109 if (event->attr.sample_id_all)
5110 __perf_event__output_id_sample(handle, sample);
5111}
5112
3dab77fb 5113static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5114 struct perf_event *event,
5115 u64 enabled, u64 running)
3dab77fb 5116{
cdd6c482 5117 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5118 u64 values[4];
5119 int n = 0;
5120
b5e58793 5121 values[n++] = perf_event_count(event);
3dab77fb 5122 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5123 values[n++] = enabled +
cdd6c482 5124 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5125 }
5126 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5127 values[n++] = running +
cdd6c482 5128 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5129 }
5130 if (read_format & PERF_FORMAT_ID)
cdd6c482 5131 values[n++] = primary_event_id(event);
3dab77fb 5132
76369139 5133 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5134}
5135
5136/*
cdd6c482 5137 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5138 */
5139static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5140 struct perf_event *event,
5141 u64 enabled, u64 running)
3dab77fb 5142{
cdd6c482
IM
5143 struct perf_event *leader = event->group_leader, *sub;
5144 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5145 u64 values[5];
5146 int n = 0;
5147
5148 values[n++] = 1 + leader->nr_siblings;
5149
5150 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5151 values[n++] = enabled;
3dab77fb
PZ
5152
5153 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5154 values[n++] = running;
3dab77fb 5155
cdd6c482 5156 if (leader != event)
3dab77fb
PZ
5157 leader->pmu->read(leader);
5158
b5e58793 5159 values[n++] = perf_event_count(leader);
3dab77fb 5160 if (read_format & PERF_FORMAT_ID)
cdd6c482 5161 values[n++] = primary_event_id(leader);
3dab77fb 5162
76369139 5163 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5164
65abc865 5165 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5166 n = 0;
5167
6f5ab001
JO
5168 if ((sub != event) &&
5169 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5170 sub->pmu->read(sub);
5171
b5e58793 5172 values[n++] = perf_event_count(sub);
3dab77fb 5173 if (read_format & PERF_FORMAT_ID)
cdd6c482 5174 values[n++] = primary_event_id(sub);
3dab77fb 5175
76369139 5176 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5177 }
5178}
5179
eed01528
SE
5180#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5181 PERF_FORMAT_TOTAL_TIME_RUNNING)
5182
3dab77fb 5183static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5184 struct perf_event *event)
3dab77fb 5185{
e3f3541c 5186 u64 enabled = 0, running = 0, now;
eed01528
SE
5187 u64 read_format = event->attr.read_format;
5188
5189 /*
5190 * compute total_time_enabled, total_time_running
5191 * based on snapshot values taken when the event
5192 * was last scheduled in.
5193 *
5194 * we cannot simply called update_context_time()
5195 * because of locking issue as we are called in
5196 * NMI context
5197 */
c4794295 5198 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5199 calc_timer_values(event, &now, &enabled, &running);
eed01528 5200
cdd6c482 5201 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5202 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5203 else
eed01528 5204 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5205}
5206
5622f295
MM
5207void perf_output_sample(struct perf_output_handle *handle,
5208 struct perf_event_header *header,
5209 struct perf_sample_data *data,
cdd6c482 5210 struct perf_event *event)
5622f295
MM
5211{
5212 u64 sample_type = data->type;
5213
5214 perf_output_put(handle, *header);
5215
ff3d527c
AH
5216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 perf_output_put(handle, data->id);
5218
5622f295
MM
5219 if (sample_type & PERF_SAMPLE_IP)
5220 perf_output_put(handle, data->ip);
5221
5222 if (sample_type & PERF_SAMPLE_TID)
5223 perf_output_put(handle, data->tid_entry);
5224
5225 if (sample_type & PERF_SAMPLE_TIME)
5226 perf_output_put(handle, data->time);
5227
5228 if (sample_type & PERF_SAMPLE_ADDR)
5229 perf_output_put(handle, data->addr);
5230
5231 if (sample_type & PERF_SAMPLE_ID)
5232 perf_output_put(handle, data->id);
5233
5234 if (sample_type & PERF_SAMPLE_STREAM_ID)
5235 perf_output_put(handle, data->stream_id);
5236
5237 if (sample_type & PERF_SAMPLE_CPU)
5238 perf_output_put(handle, data->cpu_entry);
5239
5240 if (sample_type & PERF_SAMPLE_PERIOD)
5241 perf_output_put(handle, data->period);
5242
5243 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5244 perf_output_read(handle, event);
5622f295
MM
5245
5246 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5247 if (data->callchain) {
5248 int size = 1;
5249
5250 if (data->callchain)
5251 size += data->callchain->nr;
5252
5253 size *= sizeof(u64);
5254
76369139 5255 __output_copy(handle, data->callchain, size);
5622f295
MM
5256 } else {
5257 u64 nr = 0;
5258 perf_output_put(handle, nr);
5259 }
5260 }
5261
5262 if (sample_type & PERF_SAMPLE_RAW) {
5263 if (data->raw) {
5264 perf_output_put(handle, data->raw->size);
76369139
FW
5265 __output_copy(handle, data->raw->data,
5266 data->raw->size);
5622f295
MM
5267 } else {
5268 struct {
5269 u32 size;
5270 u32 data;
5271 } raw = {
5272 .size = sizeof(u32),
5273 .data = 0,
5274 };
5275 perf_output_put(handle, raw);
5276 }
5277 }
a7ac67ea 5278
bce38cd5
SE
5279 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5280 if (data->br_stack) {
5281 size_t size;
5282
5283 size = data->br_stack->nr
5284 * sizeof(struct perf_branch_entry);
5285
5286 perf_output_put(handle, data->br_stack->nr);
5287 perf_output_copy(handle, data->br_stack->entries, size);
5288 } else {
5289 /*
5290 * we always store at least the value of nr
5291 */
5292 u64 nr = 0;
5293 perf_output_put(handle, nr);
5294 }
5295 }
4018994f
JO
5296
5297 if (sample_type & PERF_SAMPLE_REGS_USER) {
5298 u64 abi = data->regs_user.abi;
5299
5300 /*
5301 * If there are no regs to dump, notice it through
5302 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5303 */
5304 perf_output_put(handle, abi);
5305
5306 if (abi) {
5307 u64 mask = event->attr.sample_regs_user;
5308 perf_output_sample_regs(handle,
5309 data->regs_user.regs,
5310 mask);
5311 }
5312 }
c5ebcedb 5313
a5cdd40c 5314 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5315 perf_output_sample_ustack(handle,
5316 data->stack_user_size,
5317 data->regs_user.regs);
a5cdd40c 5318 }
c3feedf2
AK
5319
5320 if (sample_type & PERF_SAMPLE_WEIGHT)
5321 perf_output_put(handle, data->weight);
d6be9ad6
SE
5322
5323 if (sample_type & PERF_SAMPLE_DATA_SRC)
5324 perf_output_put(handle, data->data_src.val);
a5cdd40c 5325
fdfbbd07
AK
5326 if (sample_type & PERF_SAMPLE_TRANSACTION)
5327 perf_output_put(handle, data->txn);
5328
60e2364e
SE
5329 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5330 u64 abi = data->regs_intr.abi;
5331 /*
5332 * If there are no regs to dump, notice it through
5333 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5334 */
5335 perf_output_put(handle, abi);
5336
5337 if (abi) {
5338 u64 mask = event->attr.sample_regs_intr;
5339
5340 perf_output_sample_regs(handle,
5341 data->regs_intr.regs,
5342 mask);
5343 }
5344 }
5345
a5cdd40c
PZ
5346 if (!event->attr.watermark) {
5347 int wakeup_events = event->attr.wakeup_events;
5348
5349 if (wakeup_events) {
5350 struct ring_buffer *rb = handle->rb;
5351 int events = local_inc_return(&rb->events);
5352
5353 if (events >= wakeup_events) {
5354 local_sub(wakeup_events, &rb->events);
5355 local_inc(&rb->wakeup);
5356 }
5357 }
5358 }
5622f295
MM
5359}
5360
5361void perf_prepare_sample(struct perf_event_header *header,
5362 struct perf_sample_data *data,
cdd6c482 5363 struct perf_event *event,
5622f295 5364 struct pt_regs *regs)
7b732a75 5365{
cdd6c482 5366 u64 sample_type = event->attr.sample_type;
7b732a75 5367
cdd6c482 5368 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5369 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5370
5371 header->misc = 0;
5372 header->misc |= perf_misc_flags(regs);
6fab0192 5373
c980d109 5374 __perf_event_header__init_id(header, data, event);
6844c09d 5375
c320c7b7 5376 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5377 data->ip = perf_instruction_pointer(regs);
5378
b23f3325 5379 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5380 int size = 1;
394ee076 5381
e6dab5ff 5382 data->callchain = perf_callchain(event, regs);
5622f295
MM
5383
5384 if (data->callchain)
5385 size += data->callchain->nr;
5386
5387 header->size += size * sizeof(u64);
394ee076
PZ
5388 }
5389
3a43ce68 5390 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5391 int size = sizeof(u32);
5392
5393 if (data->raw)
5394 size += data->raw->size;
5395 else
5396 size += sizeof(u32);
5397
5398 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5399 header->size += size;
7f453c24 5400 }
bce38cd5
SE
5401
5402 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5403 int size = sizeof(u64); /* nr */
5404 if (data->br_stack) {
5405 size += data->br_stack->nr
5406 * sizeof(struct perf_branch_entry);
5407 }
5408 header->size += size;
5409 }
4018994f 5410
2565711f 5411 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5412 perf_sample_regs_user(&data->regs_user, regs,
5413 &data->regs_user_copy);
2565711f 5414
4018994f
JO
5415 if (sample_type & PERF_SAMPLE_REGS_USER) {
5416 /* regs dump ABI info */
5417 int size = sizeof(u64);
5418
4018994f
JO
5419 if (data->regs_user.regs) {
5420 u64 mask = event->attr.sample_regs_user;
5421 size += hweight64(mask) * sizeof(u64);
5422 }
5423
5424 header->size += size;
5425 }
c5ebcedb
JO
5426
5427 if (sample_type & PERF_SAMPLE_STACK_USER) {
5428 /*
5429 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5430 * processed as the last one or have additional check added
5431 * in case new sample type is added, because we could eat
5432 * up the rest of the sample size.
5433 */
c5ebcedb
JO
5434 u16 stack_size = event->attr.sample_stack_user;
5435 u16 size = sizeof(u64);
5436
c5ebcedb 5437 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5438 data->regs_user.regs);
c5ebcedb
JO
5439
5440 /*
5441 * If there is something to dump, add space for the dump
5442 * itself and for the field that tells the dynamic size,
5443 * which is how many have been actually dumped.
5444 */
5445 if (stack_size)
5446 size += sizeof(u64) + stack_size;
5447
5448 data->stack_user_size = stack_size;
5449 header->size += size;
5450 }
60e2364e
SE
5451
5452 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5453 /* regs dump ABI info */
5454 int size = sizeof(u64);
5455
5456 perf_sample_regs_intr(&data->regs_intr, regs);
5457
5458 if (data->regs_intr.regs) {
5459 u64 mask = event->attr.sample_regs_intr;
5460
5461 size += hweight64(mask) * sizeof(u64);
5462 }
5463
5464 header->size += size;
5465 }
5622f295 5466}
7f453c24 5467
21509084
YZ
5468void perf_event_output(struct perf_event *event,
5469 struct perf_sample_data *data,
5470 struct pt_regs *regs)
5622f295
MM
5471{
5472 struct perf_output_handle handle;
5473 struct perf_event_header header;
689802b2 5474
927c7a9e
FW
5475 /* protect the callchain buffers */
5476 rcu_read_lock();
5477
cdd6c482 5478 perf_prepare_sample(&header, data, event, regs);
5c148194 5479
a7ac67ea 5480 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5481 goto exit;
0322cd6e 5482
cdd6c482 5483 perf_output_sample(&handle, &header, data, event);
f413cdb8 5484
8a057d84 5485 perf_output_end(&handle);
927c7a9e
FW
5486
5487exit:
5488 rcu_read_unlock();
0322cd6e
PZ
5489}
5490
38b200d6 5491/*
cdd6c482 5492 * read event_id
38b200d6
PZ
5493 */
5494
5495struct perf_read_event {
5496 struct perf_event_header header;
5497
5498 u32 pid;
5499 u32 tid;
38b200d6
PZ
5500};
5501
5502static void
cdd6c482 5503perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5504 struct task_struct *task)
5505{
5506 struct perf_output_handle handle;
c980d109 5507 struct perf_sample_data sample;
dfc65094 5508 struct perf_read_event read_event = {
38b200d6 5509 .header = {
cdd6c482 5510 .type = PERF_RECORD_READ,
38b200d6 5511 .misc = 0,
c320c7b7 5512 .size = sizeof(read_event) + event->read_size,
38b200d6 5513 },
cdd6c482
IM
5514 .pid = perf_event_pid(event, task),
5515 .tid = perf_event_tid(event, task),
38b200d6 5516 };
3dab77fb 5517 int ret;
38b200d6 5518
c980d109 5519 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5520 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5521 if (ret)
5522 return;
5523
dfc65094 5524 perf_output_put(&handle, read_event);
cdd6c482 5525 perf_output_read(&handle, event);
c980d109 5526 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5527
38b200d6
PZ
5528 perf_output_end(&handle);
5529}
5530
52d857a8
JO
5531typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5532
5533static void
5534perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5535 perf_event_aux_output_cb output,
5536 void *data)
5537{
5538 struct perf_event *event;
5539
5540 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5541 if (event->state < PERF_EVENT_STATE_INACTIVE)
5542 continue;
5543 if (!event_filter_match(event))
5544 continue;
67516844 5545 output(event, data);
52d857a8
JO
5546 }
5547}
5548
5549static void
67516844 5550perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5551 struct perf_event_context *task_ctx)
5552{
5553 struct perf_cpu_context *cpuctx;
5554 struct perf_event_context *ctx;
5555 struct pmu *pmu;
5556 int ctxn;
5557
5558 rcu_read_lock();
5559 list_for_each_entry_rcu(pmu, &pmus, entry) {
5560 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5561 if (cpuctx->unique_pmu != pmu)
5562 goto next;
67516844 5563 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5564 if (task_ctx)
5565 goto next;
5566 ctxn = pmu->task_ctx_nr;
5567 if (ctxn < 0)
5568 goto next;
5569 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5570 if (ctx)
67516844 5571 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5572next:
5573 put_cpu_ptr(pmu->pmu_cpu_context);
5574 }
5575
5576 if (task_ctx) {
5577 preempt_disable();
67516844 5578 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5579 preempt_enable();
5580 }
5581 rcu_read_unlock();
5582}
5583
60313ebe 5584/*
9f498cc5
PZ
5585 * task tracking -- fork/exit
5586 *
13d7a241 5587 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5588 */
5589
9f498cc5 5590struct perf_task_event {
3a80b4a3 5591 struct task_struct *task;
cdd6c482 5592 struct perf_event_context *task_ctx;
60313ebe
PZ
5593
5594 struct {
5595 struct perf_event_header header;
5596
5597 u32 pid;
5598 u32 ppid;
9f498cc5
PZ
5599 u32 tid;
5600 u32 ptid;
393b2ad8 5601 u64 time;
cdd6c482 5602 } event_id;
60313ebe
PZ
5603};
5604
67516844
JO
5605static int perf_event_task_match(struct perf_event *event)
5606{
13d7a241
SE
5607 return event->attr.comm || event->attr.mmap ||
5608 event->attr.mmap2 || event->attr.mmap_data ||
5609 event->attr.task;
67516844
JO
5610}
5611
cdd6c482 5612static void perf_event_task_output(struct perf_event *event,
52d857a8 5613 void *data)
60313ebe 5614{
52d857a8 5615 struct perf_task_event *task_event = data;
60313ebe 5616 struct perf_output_handle handle;
c980d109 5617 struct perf_sample_data sample;
9f498cc5 5618 struct task_struct *task = task_event->task;
c980d109 5619 int ret, size = task_event->event_id.header.size;
8bb39f9a 5620
67516844
JO
5621 if (!perf_event_task_match(event))
5622 return;
5623
c980d109 5624 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5625
c980d109 5626 ret = perf_output_begin(&handle, event,
a7ac67ea 5627 task_event->event_id.header.size);
ef60777c 5628 if (ret)
c980d109 5629 goto out;
60313ebe 5630
cdd6c482
IM
5631 task_event->event_id.pid = perf_event_pid(event, task);
5632 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5633
cdd6c482
IM
5634 task_event->event_id.tid = perf_event_tid(event, task);
5635 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5636
34f43927
PZ
5637 task_event->event_id.time = perf_event_clock(event);
5638
cdd6c482 5639 perf_output_put(&handle, task_event->event_id);
393b2ad8 5640
c980d109
ACM
5641 perf_event__output_id_sample(event, &handle, &sample);
5642
60313ebe 5643 perf_output_end(&handle);
c980d109
ACM
5644out:
5645 task_event->event_id.header.size = size;
60313ebe
PZ
5646}
5647
cdd6c482
IM
5648static void perf_event_task(struct task_struct *task,
5649 struct perf_event_context *task_ctx,
3a80b4a3 5650 int new)
60313ebe 5651{
9f498cc5 5652 struct perf_task_event task_event;
60313ebe 5653
cdd6c482
IM
5654 if (!atomic_read(&nr_comm_events) &&
5655 !atomic_read(&nr_mmap_events) &&
5656 !atomic_read(&nr_task_events))
60313ebe
PZ
5657 return;
5658
9f498cc5 5659 task_event = (struct perf_task_event){
3a80b4a3
PZ
5660 .task = task,
5661 .task_ctx = task_ctx,
cdd6c482 5662 .event_id = {
60313ebe 5663 .header = {
cdd6c482 5664 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5665 .misc = 0,
cdd6c482 5666 .size = sizeof(task_event.event_id),
60313ebe 5667 },
573402db
PZ
5668 /* .pid */
5669 /* .ppid */
9f498cc5
PZ
5670 /* .tid */
5671 /* .ptid */
34f43927 5672 /* .time */
60313ebe
PZ
5673 },
5674 };
5675
67516844 5676 perf_event_aux(perf_event_task_output,
52d857a8
JO
5677 &task_event,
5678 task_ctx);
9f498cc5
PZ
5679}
5680
cdd6c482 5681void perf_event_fork(struct task_struct *task)
9f498cc5 5682{
cdd6c482 5683 perf_event_task(task, NULL, 1);
60313ebe
PZ
5684}
5685
8d1b2d93
PZ
5686/*
5687 * comm tracking
5688 */
5689
5690struct perf_comm_event {
22a4f650
IM
5691 struct task_struct *task;
5692 char *comm;
8d1b2d93
PZ
5693 int comm_size;
5694
5695 struct {
5696 struct perf_event_header header;
5697
5698 u32 pid;
5699 u32 tid;
cdd6c482 5700 } event_id;
8d1b2d93
PZ
5701};
5702
67516844
JO
5703static int perf_event_comm_match(struct perf_event *event)
5704{
5705 return event->attr.comm;
5706}
5707
cdd6c482 5708static void perf_event_comm_output(struct perf_event *event,
52d857a8 5709 void *data)
8d1b2d93 5710{
52d857a8 5711 struct perf_comm_event *comm_event = data;
8d1b2d93 5712 struct perf_output_handle handle;
c980d109 5713 struct perf_sample_data sample;
cdd6c482 5714 int size = comm_event->event_id.header.size;
c980d109
ACM
5715 int ret;
5716
67516844
JO
5717 if (!perf_event_comm_match(event))
5718 return;
5719
c980d109
ACM
5720 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5721 ret = perf_output_begin(&handle, event,
a7ac67ea 5722 comm_event->event_id.header.size);
8d1b2d93
PZ
5723
5724 if (ret)
c980d109 5725 goto out;
8d1b2d93 5726
cdd6c482
IM
5727 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5728 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5729
cdd6c482 5730 perf_output_put(&handle, comm_event->event_id);
76369139 5731 __output_copy(&handle, comm_event->comm,
8d1b2d93 5732 comm_event->comm_size);
c980d109
ACM
5733
5734 perf_event__output_id_sample(event, &handle, &sample);
5735
8d1b2d93 5736 perf_output_end(&handle);
c980d109
ACM
5737out:
5738 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5739}
5740
cdd6c482 5741static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5742{
413ee3b4 5743 char comm[TASK_COMM_LEN];
8d1b2d93 5744 unsigned int size;
8d1b2d93 5745
413ee3b4 5746 memset(comm, 0, sizeof(comm));
96b02d78 5747 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5748 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5749
5750 comm_event->comm = comm;
5751 comm_event->comm_size = size;
5752
cdd6c482 5753 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5754
67516844 5755 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5756 comm_event,
5757 NULL);
8d1b2d93
PZ
5758}
5759
82b89778 5760void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5761{
9ee318a7
PZ
5762 struct perf_comm_event comm_event;
5763
cdd6c482 5764 if (!atomic_read(&nr_comm_events))
9ee318a7 5765 return;
a63eaf34 5766
9ee318a7 5767 comm_event = (struct perf_comm_event){
8d1b2d93 5768 .task = task,
573402db
PZ
5769 /* .comm */
5770 /* .comm_size */
cdd6c482 5771 .event_id = {
573402db 5772 .header = {
cdd6c482 5773 .type = PERF_RECORD_COMM,
82b89778 5774 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5775 /* .size */
5776 },
5777 /* .pid */
5778 /* .tid */
8d1b2d93
PZ
5779 },
5780 };
5781
cdd6c482 5782 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5783}
5784
0a4a9391
PZ
5785/*
5786 * mmap tracking
5787 */
5788
5789struct perf_mmap_event {
089dd79d
PZ
5790 struct vm_area_struct *vma;
5791
5792 const char *file_name;
5793 int file_size;
13d7a241
SE
5794 int maj, min;
5795 u64 ino;
5796 u64 ino_generation;
f972eb63 5797 u32 prot, flags;
0a4a9391
PZ
5798
5799 struct {
5800 struct perf_event_header header;
5801
5802 u32 pid;
5803 u32 tid;
5804 u64 start;
5805 u64 len;
5806 u64 pgoff;
cdd6c482 5807 } event_id;
0a4a9391
PZ
5808};
5809
67516844
JO
5810static int perf_event_mmap_match(struct perf_event *event,
5811 void *data)
5812{
5813 struct perf_mmap_event *mmap_event = data;
5814 struct vm_area_struct *vma = mmap_event->vma;
5815 int executable = vma->vm_flags & VM_EXEC;
5816
5817 return (!executable && event->attr.mmap_data) ||
13d7a241 5818 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5819}
5820
cdd6c482 5821static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5822 void *data)
0a4a9391 5823{
52d857a8 5824 struct perf_mmap_event *mmap_event = data;
0a4a9391 5825 struct perf_output_handle handle;
c980d109 5826 struct perf_sample_data sample;
cdd6c482 5827 int size = mmap_event->event_id.header.size;
c980d109 5828 int ret;
0a4a9391 5829
67516844
JO
5830 if (!perf_event_mmap_match(event, data))
5831 return;
5832
13d7a241
SE
5833 if (event->attr.mmap2) {
5834 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5835 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5836 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5837 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5838 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5839 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5840 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5841 }
5842
c980d109
ACM
5843 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5844 ret = perf_output_begin(&handle, event,
a7ac67ea 5845 mmap_event->event_id.header.size);
0a4a9391 5846 if (ret)
c980d109 5847 goto out;
0a4a9391 5848
cdd6c482
IM
5849 mmap_event->event_id.pid = perf_event_pid(event, current);
5850 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5851
cdd6c482 5852 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5853
5854 if (event->attr.mmap2) {
5855 perf_output_put(&handle, mmap_event->maj);
5856 perf_output_put(&handle, mmap_event->min);
5857 perf_output_put(&handle, mmap_event->ino);
5858 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5859 perf_output_put(&handle, mmap_event->prot);
5860 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5861 }
5862
76369139 5863 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5864 mmap_event->file_size);
c980d109
ACM
5865
5866 perf_event__output_id_sample(event, &handle, &sample);
5867
78d613eb 5868 perf_output_end(&handle);
c980d109
ACM
5869out:
5870 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5871}
5872
cdd6c482 5873static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5874{
089dd79d
PZ
5875 struct vm_area_struct *vma = mmap_event->vma;
5876 struct file *file = vma->vm_file;
13d7a241
SE
5877 int maj = 0, min = 0;
5878 u64 ino = 0, gen = 0;
f972eb63 5879 u32 prot = 0, flags = 0;
0a4a9391
PZ
5880 unsigned int size;
5881 char tmp[16];
5882 char *buf = NULL;
2c42cfbf 5883 char *name;
413ee3b4 5884
0a4a9391 5885 if (file) {
13d7a241
SE
5886 struct inode *inode;
5887 dev_t dev;
3ea2f2b9 5888
2c42cfbf 5889 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5890 if (!buf) {
c7e548b4
ON
5891 name = "//enomem";
5892 goto cpy_name;
0a4a9391 5893 }
413ee3b4 5894 /*
3ea2f2b9 5895 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5896 * need to add enough zero bytes after the string to handle
5897 * the 64bit alignment we do later.
5898 */
9bf39ab2 5899 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5900 if (IS_ERR(name)) {
c7e548b4
ON
5901 name = "//toolong";
5902 goto cpy_name;
0a4a9391 5903 }
13d7a241
SE
5904 inode = file_inode(vma->vm_file);
5905 dev = inode->i_sb->s_dev;
5906 ino = inode->i_ino;
5907 gen = inode->i_generation;
5908 maj = MAJOR(dev);
5909 min = MINOR(dev);
f972eb63
PZ
5910
5911 if (vma->vm_flags & VM_READ)
5912 prot |= PROT_READ;
5913 if (vma->vm_flags & VM_WRITE)
5914 prot |= PROT_WRITE;
5915 if (vma->vm_flags & VM_EXEC)
5916 prot |= PROT_EXEC;
5917
5918 if (vma->vm_flags & VM_MAYSHARE)
5919 flags = MAP_SHARED;
5920 else
5921 flags = MAP_PRIVATE;
5922
5923 if (vma->vm_flags & VM_DENYWRITE)
5924 flags |= MAP_DENYWRITE;
5925 if (vma->vm_flags & VM_MAYEXEC)
5926 flags |= MAP_EXECUTABLE;
5927 if (vma->vm_flags & VM_LOCKED)
5928 flags |= MAP_LOCKED;
5929 if (vma->vm_flags & VM_HUGETLB)
5930 flags |= MAP_HUGETLB;
5931
c7e548b4 5932 goto got_name;
0a4a9391 5933 } else {
fbe26abe
JO
5934 if (vma->vm_ops && vma->vm_ops->name) {
5935 name = (char *) vma->vm_ops->name(vma);
5936 if (name)
5937 goto cpy_name;
5938 }
5939
2c42cfbf 5940 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5941 if (name)
5942 goto cpy_name;
089dd79d 5943
32c5fb7e 5944 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5945 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5946 name = "[heap]";
5947 goto cpy_name;
32c5fb7e
ON
5948 }
5949 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5950 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5951 name = "[stack]";
5952 goto cpy_name;
089dd79d
PZ
5953 }
5954
c7e548b4
ON
5955 name = "//anon";
5956 goto cpy_name;
0a4a9391
PZ
5957 }
5958
c7e548b4
ON
5959cpy_name:
5960 strlcpy(tmp, name, sizeof(tmp));
5961 name = tmp;
0a4a9391 5962got_name:
2c42cfbf
PZ
5963 /*
5964 * Since our buffer works in 8 byte units we need to align our string
5965 * size to a multiple of 8. However, we must guarantee the tail end is
5966 * zero'd out to avoid leaking random bits to userspace.
5967 */
5968 size = strlen(name)+1;
5969 while (!IS_ALIGNED(size, sizeof(u64)))
5970 name[size++] = '\0';
0a4a9391
PZ
5971
5972 mmap_event->file_name = name;
5973 mmap_event->file_size = size;
13d7a241
SE
5974 mmap_event->maj = maj;
5975 mmap_event->min = min;
5976 mmap_event->ino = ino;
5977 mmap_event->ino_generation = gen;
f972eb63
PZ
5978 mmap_event->prot = prot;
5979 mmap_event->flags = flags;
0a4a9391 5980
2fe85427
SE
5981 if (!(vma->vm_flags & VM_EXEC))
5982 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5983
cdd6c482 5984 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5985
67516844 5986 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5987 mmap_event,
5988 NULL);
665c2142 5989
0a4a9391
PZ
5990 kfree(buf);
5991}
5992
3af9e859 5993void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5994{
9ee318a7
PZ
5995 struct perf_mmap_event mmap_event;
5996
cdd6c482 5997 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5998 return;
5999
6000 mmap_event = (struct perf_mmap_event){
089dd79d 6001 .vma = vma,
573402db
PZ
6002 /* .file_name */
6003 /* .file_size */
cdd6c482 6004 .event_id = {
573402db 6005 .header = {
cdd6c482 6006 .type = PERF_RECORD_MMAP,
39447b38 6007 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6008 /* .size */
6009 },
6010 /* .pid */
6011 /* .tid */
089dd79d
PZ
6012 .start = vma->vm_start,
6013 .len = vma->vm_end - vma->vm_start,
3a0304e9 6014 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6015 },
13d7a241
SE
6016 /* .maj (attr_mmap2 only) */
6017 /* .min (attr_mmap2 only) */
6018 /* .ino (attr_mmap2 only) */
6019 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6020 /* .prot (attr_mmap2 only) */
6021 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6022 };
6023
cdd6c482 6024 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6025}
6026
68db7e98
AS
6027void perf_event_aux_event(struct perf_event *event, unsigned long head,
6028 unsigned long size, u64 flags)
6029{
6030 struct perf_output_handle handle;
6031 struct perf_sample_data sample;
6032 struct perf_aux_event {
6033 struct perf_event_header header;
6034 u64 offset;
6035 u64 size;
6036 u64 flags;
6037 } rec = {
6038 .header = {
6039 .type = PERF_RECORD_AUX,
6040 .misc = 0,
6041 .size = sizeof(rec),
6042 },
6043 .offset = head,
6044 .size = size,
6045 .flags = flags,
6046 };
6047 int ret;
6048
6049 perf_event_header__init_id(&rec.header, &sample, event);
6050 ret = perf_output_begin(&handle, event, rec.header.size);
6051
6052 if (ret)
6053 return;
6054
6055 perf_output_put(&handle, rec);
6056 perf_event__output_id_sample(event, &handle, &sample);
6057
6058 perf_output_end(&handle);
6059}
6060
f38b0dbb
KL
6061/*
6062 * Lost/dropped samples logging
6063 */
6064void perf_log_lost_samples(struct perf_event *event, u64 lost)
6065{
6066 struct perf_output_handle handle;
6067 struct perf_sample_data sample;
6068 int ret;
6069
6070 struct {
6071 struct perf_event_header header;
6072 u64 lost;
6073 } lost_samples_event = {
6074 .header = {
6075 .type = PERF_RECORD_LOST_SAMPLES,
6076 .misc = 0,
6077 .size = sizeof(lost_samples_event),
6078 },
6079 .lost = lost,
6080 };
6081
6082 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6083
6084 ret = perf_output_begin(&handle, event,
6085 lost_samples_event.header.size);
6086 if (ret)
6087 return;
6088
6089 perf_output_put(&handle, lost_samples_event);
6090 perf_event__output_id_sample(event, &handle, &sample);
6091 perf_output_end(&handle);
6092}
6093
45ac1403
AH
6094/*
6095 * context_switch tracking
6096 */
6097
6098struct perf_switch_event {
6099 struct task_struct *task;
6100 struct task_struct *next_prev;
6101
6102 struct {
6103 struct perf_event_header header;
6104 u32 next_prev_pid;
6105 u32 next_prev_tid;
6106 } event_id;
6107};
6108
6109static int perf_event_switch_match(struct perf_event *event)
6110{
6111 return event->attr.context_switch;
6112}
6113
6114static void perf_event_switch_output(struct perf_event *event, void *data)
6115{
6116 struct perf_switch_event *se = data;
6117 struct perf_output_handle handle;
6118 struct perf_sample_data sample;
6119 int ret;
6120
6121 if (!perf_event_switch_match(event))
6122 return;
6123
6124 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6125 if (event->ctx->task) {
6126 se->event_id.header.type = PERF_RECORD_SWITCH;
6127 se->event_id.header.size = sizeof(se->event_id.header);
6128 } else {
6129 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6130 se->event_id.header.size = sizeof(se->event_id);
6131 se->event_id.next_prev_pid =
6132 perf_event_pid(event, se->next_prev);
6133 se->event_id.next_prev_tid =
6134 perf_event_tid(event, se->next_prev);
6135 }
6136
6137 perf_event_header__init_id(&se->event_id.header, &sample, event);
6138
6139 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6140 if (ret)
6141 return;
6142
6143 if (event->ctx->task)
6144 perf_output_put(&handle, se->event_id.header);
6145 else
6146 perf_output_put(&handle, se->event_id);
6147
6148 perf_event__output_id_sample(event, &handle, &sample);
6149
6150 perf_output_end(&handle);
6151}
6152
6153static void perf_event_switch(struct task_struct *task,
6154 struct task_struct *next_prev, bool sched_in)
6155{
6156 struct perf_switch_event switch_event;
6157
6158 /* N.B. caller checks nr_switch_events != 0 */
6159
6160 switch_event = (struct perf_switch_event){
6161 .task = task,
6162 .next_prev = next_prev,
6163 .event_id = {
6164 .header = {
6165 /* .type */
6166 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6167 /* .size */
6168 },
6169 /* .next_prev_pid */
6170 /* .next_prev_tid */
6171 },
6172 };
6173
6174 perf_event_aux(perf_event_switch_output,
6175 &switch_event,
6176 NULL);
6177}
6178
a78ac325
PZ
6179/*
6180 * IRQ throttle logging
6181 */
6182
cdd6c482 6183static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6184{
6185 struct perf_output_handle handle;
c980d109 6186 struct perf_sample_data sample;
a78ac325
PZ
6187 int ret;
6188
6189 struct {
6190 struct perf_event_header header;
6191 u64 time;
cca3f454 6192 u64 id;
7f453c24 6193 u64 stream_id;
a78ac325
PZ
6194 } throttle_event = {
6195 .header = {
cdd6c482 6196 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6197 .misc = 0,
6198 .size = sizeof(throttle_event),
6199 },
34f43927 6200 .time = perf_event_clock(event),
cdd6c482
IM
6201 .id = primary_event_id(event),
6202 .stream_id = event->id,
a78ac325
PZ
6203 };
6204
966ee4d6 6205 if (enable)
cdd6c482 6206 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6207
c980d109
ACM
6208 perf_event_header__init_id(&throttle_event.header, &sample, event);
6209
6210 ret = perf_output_begin(&handle, event,
a7ac67ea 6211 throttle_event.header.size);
a78ac325
PZ
6212 if (ret)
6213 return;
6214
6215 perf_output_put(&handle, throttle_event);
c980d109 6216 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6217 perf_output_end(&handle);
6218}
6219
ec0d7729
AS
6220static void perf_log_itrace_start(struct perf_event *event)
6221{
6222 struct perf_output_handle handle;
6223 struct perf_sample_data sample;
6224 struct perf_aux_event {
6225 struct perf_event_header header;
6226 u32 pid;
6227 u32 tid;
6228 } rec;
6229 int ret;
6230
6231 if (event->parent)
6232 event = event->parent;
6233
6234 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6235 event->hw.itrace_started)
6236 return;
6237
ec0d7729
AS
6238 rec.header.type = PERF_RECORD_ITRACE_START;
6239 rec.header.misc = 0;
6240 rec.header.size = sizeof(rec);
6241 rec.pid = perf_event_pid(event, current);
6242 rec.tid = perf_event_tid(event, current);
6243
6244 perf_event_header__init_id(&rec.header, &sample, event);
6245 ret = perf_output_begin(&handle, event, rec.header.size);
6246
6247 if (ret)
6248 return;
6249
6250 perf_output_put(&handle, rec);
6251 perf_event__output_id_sample(event, &handle, &sample);
6252
6253 perf_output_end(&handle);
6254}
6255
f6c7d5fe 6256/*
cdd6c482 6257 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6258 */
6259
a8b0ca17 6260static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6261 int throttle, struct perf_sample_data *data,
6262 struct pt_regs *regs)
f6c7d5fe 6263{
cdd6c482
IM
6264 int events = atomic_read(&event->event_limit);
6265 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6266 u64 seq;
79f14641
PZ
6267 int ret = 0;
6268
96398826
PZ
6269 /*
6270 * Non-sampling counters might still use the PMI to fold short
6271 * hardware counters, ignore those.
6272 */
6273 if (unlikely(!is_sampling_event(event)))
6274 return 0;
6275
e050e3f0
SE
6276 seq = __this_cpu_read(perf_throttled_seq);
6277 if (seq != hwc->interrupts_seq) {
6278 hwc->interrupts_seq = seq;
6279 hwc->interrupts = 1;
6280 } else {
6281 hwc->interrupts++;
6282 if (unlikely(throttle
6283 && hwc->interrupts >= max_samples_per_tick)) {
6284 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6285 hwc->interrupts = MAX_INTERRUPTS;
6286 perf_log_throttle(event, 0);
d84153d6 6287 tick_nohz_full_kick();
a78ac325
PZ
6288 ret = 1;
6289 }
e050e3f0 6290 }
60db5e09 6291
cdd6c482 6292 if (event->attr.freq) {
def0a9b2 6293 u64 now = perf_clock();
abd50713 6294 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6295
abd50713 6296 hwc->freq_time_stamp = now;
bd2b5b12 6297
abd50713 6298 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6299 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6300 }
6301
2023b359
PZ
6302 /*
6303 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6304 * events
2023b359
PZ
6305 */
6306
cdd6c482
IM
6307 event->pending_kill = POLL_IN;
6308 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6309 ret = 1;
cdd6c482 6310 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6311 event->pending_disable = 1;
6312 irq_work_queue(&event->pending);
79f14641
PZ
6313 }
6314
453f19ee 6315 if (event->overflow_handler)
a8b0ca17 6316 event->overflow_handler(event, data, regs);
453f19ee 6317 else
a8b0ca17 6318 perf_event_output(event, data, regs);
453f19ee 6319
fed66e2c 6320 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6321 event->pending_wakeup = 1;
6322 irq_work_queue(&event->pending);
f506b3dc
PZ
6323 }
6324
79f14641 6325 return ret;
f6c7d5fe
PZ
6326}
6327
a8b0ca17 6328int perf_event_overflow(struct perf_event *event,
5622f295
MM
6329 struct perf_sample_data *data,
6330 struct pt_regs *regs)
850bc73f 6331{
a8b0ca17 6332 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6333}
6334
15dbf27c 6335/*
cdd6c482 6336 * Generic software event infrastructure
15dbf27c
PZ
6337 */
6338
b28ab83c
PZ
6339struct swevent_htable {
6340 struct swevent_hlist *swevent_hlist;
6341 struct mutex hlist_mutex;
6342 int hlist_refcount;
6343
6344 /* Recursion avoidance in each contexts */
6345 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6346
6347 /* Keeps track of cpu being initialized/exited */
6348 bool online;
b28ab83c
PZ
6349};
6350
6351static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6352
7b4b6658 6353/*
cdd6c482
IM
6354 * We directly increment event->count and keep a second value in
6355 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6356 * is kept in the range [-sample_period, 0] so that we can use the
6357 * sign as trigger.
6358 */
6359
ab573844 6360u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6361{
cdd6c482 6362 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6363 u64 period = hwc->last_period;
6364 u64 nr, offset;
6365 s64 old, val;
6366
6367 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6368
6369again:
e7850595 6370 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6371 if (val < 0)
6372 return 0;
15dbf27c 6373
7b4b6658
PZ
6374 nr = div64_u64(period + val, period);
6375 offset = nr * period;
6376 val -= offset;
e7850595 6377 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6378 goto again;
15dbf27c 6379
7b4b6658 6380 return nr;
15dbf27c
PZ
6381}
6382
0cff784a 6383static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6384 struct perf_sample_data *data,
5622f295 6385 struct pt_regs *regs)
15dbf27c 6386{
cdd6c482 6387 struct hw_perf_event *hwc = &event->hw;
850bc73f 6388 int throttle = 0;
15dbf27c 6389
0cff784a
PZ
6390 if (!overflow)
6391 overflow = perf_swevent_set_period(event);
15dbf27c 6392
7b4b6658
PZ
6393 if (hwc->interrupts == MAX_INTERRUPTS)
6394 return;
15dbf27c 6395
7b4b6658 6396 for (; overflow; overflow--) {
a8b0ca17 6397 if (__perf_event_overflow(event, throttle,
5622f295 6398 data, regs)) {
7b4b6658
PZ
6399 /*
6400 * We inhibit the overflow from happening when
6401 * hwc->interrupts == MAX_INTERRUPTS.
6402 */
6403 break;
6404 }
cf450a73 6405 throttle = 1;
7b4b6658 6406 }
15dbf27c
PZ
6407}
6408
a4eaf7f1 6409static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6410 struct perf_sample_data *data,
5622f295 6411 struct pt_regs *regs)
7b4b6658 6412{
cdd6c482 6413 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6414
e7850595 6415 local64_add(nr, &event->count);
d6d020e9 6416
0cff784a
PZ
6417 if (!regs)
6418 return;
6419
6c7e550f 6420 if (!is_sampling_event(event))
7b4b6658 6421 return;
d6d020e9 6422
5d81e5cf
AV
6423 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6424 data->period = nr;
6425 return perf_swevent_overflow(event, 1, data, regs);
6426 } else
6427 data->period = event->hw.last_period;
6428
0cff784a 6429 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6430 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6431
e7850595 6432 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6433 return;
df1a132b 6434
a8b0ca17 6435 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6436}
6437
f5ffe02e
FW
6438static int perf_exclude_event(struct perf_event *event,
6439 struct pt_regs *regs)
6440{
a4eaf7f1 6441 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6442 return 1;
a4eaf7f1 6443
f5ffe02e
FW
6444 if (regs) {
6445 if (event->attr.exclude_user && user_mode(regs))
6446 return 1;
6447
6448 if (event->attr.exclude_kernel && !user_mode(regs))
6449 return 1;
6450 }
6451
6452 return 0;
6453}
6454
cdd6c482 6455static int perf_swevent_match(struct perf_event *event,
1c432d89 6456 enum perf_type_id type,
6fb2915d
LZ
6457 u32 event_id,
6458 struct perf_sample_data *data,
6459 struct pt_regs *regs)
15dbf27c 6460{
cdd6c482 6461 if (event->attr.type != type)
a21ca2ca 6462 return 0;
f5ffe02e 6463
cdd6c482 6464 if (event->attr.config != event_id)
15dbf27c
PZ
6465 return 0;
6466
f5ffe02e
FW
6467 if (perf_exclude_event(event, regs))
6468 return 0;
15dbf27c
PZ
6469
6470 return 1;
6471}
6472
76e1d904
FW
6473static inline u64 swevent_hash(u64 type, u32 event_id)
6474{
6475 u64 val = event_id | (type << 32);
6476
6477 return hash_64(val, SWEVENT_HLIST_BITS);
6478}
6479
49f135ed
FW
6480static inline struct hlist_head *
6481__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6482{
49f135ed
FW
6483 u64 hash = swevent_hash(type, event_id);
6484
6485 return &hlist->heads[hash];
6486}
76e1d904 6487
49f135ed
FW
6488/* For the read side: events when they trigger */
6489static inline struct hlist_head *
b28ab83c 6490find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6491{
6492 struct swevent_hlist *hlist;
76e1d904 6493
b28ab83c 6494 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6495 if (!hlist)
6496 return NULL;
6497
49f135ed
FW
6498 return __find_swevent_head(hlist, type, event_id);
6499}
6500
6501/* For the event head insertion and removal in the hlist */
6502static inline struct hlist_head *
b28ab83c 6503find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6504{
6505 struct swevent_hlist *hlist;
6506 u32 event_id = event->attr.config;
6507 u64 type = event->attr.type;
6508
6509 /*
6510 * Event scheduling is always serialized against hlist allocation
6511 * and release. Which makes the protected version suitable here.
6512 * The context lock guarantees that.
6513 */
b28ab83c 6514 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6515 lockdep_is_held(&event->ctx->lock));
6516 if (!hlist)
6517 return NULL;
6518
6519 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6520}
6521
6522static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6523 u64 nr,
76e1d904
FW
6524 struct perf_sample_data *data,
6525 struct pt_regs *regs)
15dbf27c 6526{
4a32fea9 6527 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6528 struct perf_event *event;
76e1d904 6529 struct hlist_head *head;
15dbf27c 6530
76e1d904 6531 rcu_read_lock();
b28ab83c 6532 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6533 if (!head)
6534 goto end;
6535
b67bfe0d 6536 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6537 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6538 perf_swevent_event(event, nr, data, regs);
15dbf27c 6539 }
76e1d904
FW
6540end:
6541 rcu_read_unlock();
15dbf27c
PZ
6542}
6543
86038c5e
PZI
6544DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6545
4ed7c92d 6546int perf_swevent_get_recursion_context(void)
96f6d444 6547{
4a32fea9 6548 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6549
b28ab83c 6550 return get_recursion_context(swhash->recursion);
96f6d444 6551}
645e8cc0 6552EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6553
fa9f90be 6554inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6555{
4a32fea9 6556 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6557
b28ab83c 6558 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6559}
15dbf27c 6560
86038c5e 6561void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6562{
a4234bfc 6563 struct perf_sample_data data;
4ed7c92d 6564
86038c5e 6565 if (WARN_ON_ONCE(!regs))
4ed7c92d 6566 return;
a4234bfc 6567
fd0d000b 6568 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6569 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6570}
6571
6572void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6573{
6574 int rctx;
6575
6576 preempt_disable_notrace();
6577 rctx = perf_swevent_get_recursion_context();
6578 if (unlikely(rctx < 0))
6579 goto fail;
6580
6581 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6582
6583 perf_swevent_put_recursion_context(rctx);
86038c5e 6584fail:
1c024eca 6585 preempt_enable_notrace();
b8e83514
PZ
6586}
6587
cdd6c482 6588static void perf_swevent_read(struct perf_event *event)
15dbf27c 6589{
15dbf27c
PZ
6590}
6591
a4eaf7f1 6592static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6593{
4a32fea9 6594 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6595 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6596 struct hlist_head *head;
6597
6c7e550f 6598 if (is_sampling_event(event)) {
7b4b6658 6599 hwc->last_period = hwc->sample_period;
cdd6c482 6600 perf_swevent_set_period(event);
7b4b6658 6601 }
76e1d904 6602
a4eaf7f1
PZ
6603 hwc->state = !(flags & PERF_EF_START);
6604
b28ab83c 6605 head = find_swevent_head(swhash, event);
39af6b16
JO
6606 if (!head) {
6607 /*
6608 * We can race with cpu hotplug code. Do not
6609 * WARN if the cpu just got unplugged.
6610 */
6611 WARN_ON_ONCE(swhash->online);
76e1d904 6612 return -EINVAL;
39af6b16 6613 }
76e1d904
FW
6614
6615 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6616 perf_event_update_userpage(event);
76e1d904 6617
15dbf27c
PZ
6618 return 0;
6619}
6620
a4eaf7f1 6621static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6622{
76e1d904 6623 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6624}
6625
a4eaf7f1 6626static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6627{
a4eaf7f1 6628 event->hw.state = 0;
d6d020e9 6629}
aa9c4c0f 6630
a4eaf7f1 6631static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6632{
a4eaf7f1 6633 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6634}
6635
49f135ed
FW
6636/* Deref the hlist from the update side */
6637static inline struct swevent_hlist *
b28ab83c 6638swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6639{
b28ab83c
PZ
6640 return rcu_dereference_protected(swhash->swevent_hlist,
6641 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6642}
6643
b28ab83c 6644static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6645{
b28ab83c 6646 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6647
49f135ed 6648 if (!hlist)
76e1d904
FW
6649 return;
6650
70691d4a 6651 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6652 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6653}
6654
6655static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6656{
b28ab83c 6657 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6658
b28ab83c 6659 mutex_lock(&swhash->hlist_mutex);
76e1d904 6660
b28ab83c
PZ
6661 if (!--swhash->hlist_refcount)
6662 swevent_hlist_release(swhash);
76e1d904 6663
b28ab83c 6664 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6665}
6666
6667static void swevent_hlist_put(struct perf_event *event)
6668{
6669 int cpu;
6670
76e1d904
FW
6671 for_each_possible_cpu(cpu)
6672 swevent_hlist_put_cpu(event, cpu);
6673}
6674
6675static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6676{
b28ab83c 6677 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6678 int err = 0;
6679
b28ab83c 6680 mutex_lock(&swhash->hlist_mutex);
76e1d904 6681
b28ab83c 6682 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6683 struct swevent_hlist *hlist;
6684
6685 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6686 if (!hlist) {
6687 err = -ENOMEM;
6688 goto exit;
6689 }
b28ab83c 6690 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6691 }
b28ab83c 6692 swhash->hlist_refcount++;
9ed6060d 6693exit:
b28ab83c 6694 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6695
6696 return err;
6697}
6698
6699static int swevent_hlist_get(struct perf_event *event)
6700{
6701 int err;
6702 int cpu, failed_cpu;
6703
76e1d904
FW
6704 get_online_cpus();
6705 for_each_possible_cpu(cpu) {
6706 err = swevent_hlist_get_cpu(event, cpu);
6707 if (err) {
6708 failed_cpu = cpu;
6709 goto fail;
6710 }
6711 }
6712 put_online_cpus();
6713
6714 return 0;
9ed6060d 6715fail:
76e1d904
FW
6716 for_each_possible_cpu(cpu) {
6717 if (cpu == failed_cpu)
6718 break;
6719 swevent_hlist_put_cpu(event, cpu);
6720 }
6721
6722 put_online_cpus();
6723 return err;
6724}
6725
c5905afb 6726struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6727
b0a873eb
PZ
6728static void sw_perf_event_destroy(struct perf_event *event)
6729{
6730 u64 event_id = event->attr.config;
95476b64 6731
b0a873eb
PZ
6732 WARN_ON(event->parent);
6733
c5905afb 6734 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6735 swevent_hlist_put(event);
6736}
6737
6738static int perf_swevent_init(struct perf_event *event)
6739{
8176cced 6740 u64 event_id = event->attr.config;
b0a873eb
PZ
6741
6742 if (event->attr.type != PERF_TYPE_SOFTWARE)
6743 return -ENOENT;
6744
2481c5fa
SE
6745 /*
6746 * no branch sampling for software events
6747 */
6748 if (has_branch_stack(event))
6749 return -EOPNOTSUPP;
6750
b0a873eb
PZ
6751 switch (event_id) {
6752 case PERF_COUNT_SW_CPU_CLOCK:
6753 case PERF_COUNT_SW_TASK_CLOCK:
6754 return -ENOENT;
6755
6756 default:
6757 break;
6758 }
6759
ce677831 6760 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6761 return -ENOENT;
6762
6763 if (!event->parent) {
6764 int err;
6765
6766 err = swevent_hlist_get(event);
6767 if (err)
6768 return err;
6769
c5905afb 6770 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6771 event->destroy = sw_perf_event_destroy;
6772 }
6773
6774 return 0;
6775}
6776
6777static struct pmu perf_swevent = {
89a1e187 6778 .task_ctx_nr = perf_sw_context,
95476b64 6779
34f43927
PZ
6780 .capabilities = PERF_PMU_CAP_NO_NMI,
6781
b0a873eb 6782 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6783 .add = perf_swevent_add,
6784 .del = perf_swevent_del,
6785 .start = perf_swevent_start,
6786 .stop = perf_swevent_stop,
1c024eca 6787 .read = perf_swevent_read,
1c024eca
PZ
6788};
6789
b0a873eb
PZ
6790#ifdef CONFIG_EVENT_TRACING
6791
1c024eca
PZ
6792static int perf_tp_filter_match(struct perf_event *event,
6793 struct perf_sample_data *data)
6794{
6795 void *record = data->raw->data;
6796
6797 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6798 return 1;
6799 return 0;
6800}
6801
6802static int perf_tp_event_match(struct perf_event *event,
6803 struct perf_sample_data *data,
6804 struct pt_regs *regs)
6805{
a0f7d0f7
FW
6806 if (event->hw.state & PERF_HES_STOPPED)
6807 return 0;
580d607c
PZ
6808 /*
6809 * All tracepoints are from kernel-space.
6810 */
6811 if (event->attr.exclude_kernel)
1c024eca
PZ
6812 return 0;
6813
6814 if (!perf_tp_filter_match(event, data))
6815 return 0;
6816
6817 return 1;
6818}
6819
6820void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6821 struct pt_regs *regs, struct hlist_head *head, int rctx,
6822 struct task_struct *task)
95476b64
FW
6823{
6824 struct perf_sample_data data;
1c024eca 6825 struct perf_event *event;
1c024eca 6826
95476b64
FW
6827 struct perf_raw_record raw = {
6828 .size = entry_size,
6829 .data = record,
6830 };
6831
fd0d000b 6832 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6833 data.raw = &raw;
6834
b67bfe0d 6835 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6836 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6837 perf_swevent_event(event, count, &data, regs);
4f41c013 6838 }
ecc55f84 6839
e6dab5ff
AV
6840 /*
6841 * If we got specified a target task, also iterate its context and
6842 * deliver this event there too.
6843 */
6844 if (task && task != current) {
6845 struct perf_event_context *ctx;
6846 struct trace_entry *entry = record;
6847
6848 rcu_read_lock();
6849 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6850 if (!ctx)
6851 goto unlock;
6852
6853 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6854 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6855 continue;
6856 if (event->attr.config != entry->type)
6857 continue;
6858 if (perf_tp_event_match(event, &data, regs))
6859 perf_swevent_event(event, count, &data, regs);
6860 }
6861unlock:
6862 rcu_read_unlock();
6863 }
6864
ecc55f84 6865 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6866}
6867EXPORT_SYMBOL_GPL(perf_tp_event);
6868
cdd6c482 6869static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6870{
1c024eca 6871 perf_trace_destroy(event);
e077df4f
PZ
6872}
6873
b0a873eb 6874static int perf_tp_event_init(struct perf_event *event)
e077df4f 6875{
76e1d904
FW
6876 int err;
6877
b0a873eb
PZ
6878 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6879 return -ENOENT;
6880
2481c5fa
SE
6881 /*
6882 * no branch sampling for tracepoint events
6883 */
6884 if (has_branch_stack(event))
6885 return -EOPNOTSUPP;
6886
1c024eca
PZ
6887 err = perf_trace_init(event);
6888 if (err)
b0a873eb 6889 return err;
e077df4f 6890
cdd6c482 6891 event->destroy = tp_perf_event_destroy;
e077df4f 6892
b0a873eb
PZ
6893 return 0;
6894}
6895
6896static struct pmu perf_tracepoint = {
89a1e187
PZ
6897 .task_ctx_nr = perf_sw_context,
6898
b0a873eb 6899 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6900 .add = perf_trace_add,
6901 .del = perf_trace_del,
6902 .start = perf_swevent_start,
6903 .stop = perf_swevent_stop,
b0a873eb 6904 .read = perf_swevent_read,
b0a873eb
PZ
6905};
6906
6907static inline void perf_tp_register(void)
6908{
2e80a82a 6909 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6910}
6fb2915d
LZ
6911
6912static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6913{
6914 char *filter_str;
6915 int ret;
6916
6917 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6918 return -EINVAL;
6919
6920 filter_str = strndup_user(arg, PAGE_SIZE);
6921 if (IS_ERR(filter_str))
6922 return PTR_ERR(filter_str);
6923
6924 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6925
6926 kfree(filter_str);
6927 return ret;
6928}
6929
6930static void perf_event_free_filter(struct perf_event *event)
6931{
6932 ftrace_profile_free_filter(event);
6933}
6934
2541517c
AS
6935static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6936{
6937 struct bpf_prog *prog;
6938
6939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6940 return -EINVAL;
6941
6942 if (event->tp_event->prog)
6943 return -EEXIST;
6944
04a22fae
WN
6945 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6946 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
6947 return -EINVAL;
6948
6949 prog = bpf_prog_get(prog_fd);
6950 if (IS_ERR(prog))
6951 return PTR_ERR(prog);
6952
6c373ca8 6953 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6954 /* valid fd, but invalid bpf program type */
6955 bpf_prog_put(prog);
6956 return -EINVAL;
6957 }
6958
6959 event->tp_event->prog = prog;
6960
6961 return 0;
6962}
6963
6964static void perf_event_free_bpf_prog(struct perf_event *event)
6965{
6966 struct bpf_prog *prog;
6967
6968 if (!event->tp_event)
6969 return;
6970
6971 prog = event->tp_event->prog;
6972 if (prog) {
6973 event->tp_event->prog = NULL;
6974 bpf_prog_put(prog);
6975 }
6976}
6977
e077df4f 6978#else
6fb2915d 6979
b0a873eb 6980static inline void perf_tp_register(void)
e077df4f 6981{
e077df4f 6982}
6fb2915d
LZ
6983
6984static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6985{
6986 return -ENOENT;
6987}
6988
6989static void perf_event_free_filter(struct perf_event *event)
6990{
6991}
6992
2541517c
AS
6993static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6994{
6995 return -ENOENT;
6996}
6997
6998static void perf_event_free_bpf_prog(struct perf_event *event)
6999{
7000}
07b139c8 7001#endif /* CONFIG_EVENT_TRACING */
e077df4f 7002
24f1e32c 7003#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7004void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7005{
f5ffe02e
FW
7006 struct perf_sample_data sample;
7007 struct pt_regs *regs = data;
7008
fd0d000b 7009 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7010
a4eaf7f1 7011 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7012 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7013}
7014#endif
7015
b0a873eb
PZ
7016/*
7017 * hrtimer based swevent callback
7018 */
f29ac756 7019
b0a873eb 7020static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7021{
b0a873eb
PZ
7022 enum hrtimer_restart ret = HRTIMER_RESTART;
7023 struct perf_sample_data data;
7024 struct pt_regs *regs;
7025 struct perf_event *event;
7026 u64 period;
f29ac756 7027
b0a873eb 7028 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7029
7030 if (event->state != PERF_EVENT_STATE_ACTIVE)
7031 return HRTIMER_NORESTART;
7032
b0a873eb 7033 event->pmu->read(event);
f344011c 7034
fd0d000b 7035 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7036 regs = get_irq_regs();
7037
7038 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7039 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7040 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7041 ret = HRTIMER_NORESTART;
7042 }
24f1e32c 7043
b0a873eb
PZ
7044 period = max_t(u64, 10000, event->hw.sample_period);
7045 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7046
b0a873eb 7047 return ret;
f29ac756
PZ
7048}
7049
b0a873eb 7050static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7051{
b0a873eb 7052 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7053 s64 period;
7054
7055 if (!is_sampling_event(event))
7056 return;
f5ffe02e 7057
5d508e82
FBH
7058 period = local64_read(&hwc->period_left);
7059 if (period) {
7060 if (period < 0)
7061 period = 10000;
fa407f35 7062
5d508e82
FBH
7063 local64_set(&hwc->period_left, 0);
7064 } else {
7065 period = max_t(u64, 10000, hwc->sample_period);
7066 }
3497d206
TG
7067 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7068 HRTIMER_MODE_REL_PINNED);
24f1e32c 7069}
b0a873eb
PZ
7070
7071static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7072{
b0a873eb
PZ
7073 struct hw_perf_event *hwc = &event->hw;
7074
6c7e550f 7075 if (is_sampling_event(event)) {
b0a873eb 7076 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7077 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7078
7079 hrtimer_cancel(&hwc->hrtimer);
7080 }
24f1e32c
FW
7081}
7082
ba3dd36c
PZ
7083static void perf_swevent_init_hrtimer(struct perf_event *event)
7084{
7085 struct hw_perf_event *hwc = &event->hw;
7086
7087 if (!is_sampling_event(event))
7088 return;
7089
7090 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7091 hwc->hrtimer.function = perf_swevent_hrtimer;
7092
7093 /*
7094 * Since hrtimers have a fixed rate, we can do a static freq->period
7095 * mapping and avoid the whole period adjust feedback stuff.
7096 */
7097 if (event->attr.freq) {
7098 long freq = event->attr.sample_freq;
7099
7100 event->attr.sample_period = NSEC_PER_SEC / freq;
7101 hwc->sample_period = event->attr.sample_period;
7102 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7103 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7104 event->attr.freq = 0;
7105 }
7106}
7107
b0a873eb
PZ
7108/*
7109 * Software event: cpu wall time clock
7110 */
7111
7112static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7113{
b0a873eb
PZ
7114 s64 prev;
7115 u64 now;
7116
a4eaf7f1 7117 now = local_clock();
b0a873eb
PZ
7118 prev = local64_xchg(&event->hw.prev_count, now);
7119 local64_add(now - prev, &event->count);
24f1e32c 7120}
24f1e32c 7121
a4eaf7f1 7122static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7123{
a4eaf7f1 7124 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7125 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7126}
7127
a4eaf7f1 7128static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7129{
b0a873eb
PZ
7130 perf_swevent_cancel_hrtimer(event);
7131 cpu_clock_event_update(event);
7132}
f29ac756 7133
a4eaf7f1
PZ
7134static int cpu_clock_event_add(struct perf_event *event, int flags)
7135{
7136 if (flags & PERF_EF_START)
7137 cpu_clock_event_start(event, flags);
6a694a60 7138 perf_event_update_userpage(event);
a4eaf7f1
PZ
7139
7140 return 0;
7141}
7142
7143static void cpu_clock_event_del(struct perf_event *event, int flags)
7144{
7145 cpu_clock_event_stop(event, flags);
7146}
7147
b0a873eb
PZ
7148static void cpu_clock_event_read(struct perf_event *event)
7149{
7150 cpu_clock_event_update(event);
7151}
f344011c 7152
b0a873eb
PZ
7153static int cpu_clock_event_init(struct perf_event *event)
7154{
7155 if (event->attr.type != PERF_TYPE_SOFTWARE)
7156 return -ENOENT;
7157
7158 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7159 return -ENOENT;
7160
2481c5fa
SE
7161 /*
7162 * no branch sampling for software events
7163 */
7164 if (has_branch_stack(event))
7165 return -EOPNOTSUPP;
7166
ba3dd36c
PZ
7167 perf_swevent_init_hrtimer(event);
7168
b0a873eb 7169 return 0;
f29ac756
PZ
7170}
7171
b0a873eb 7172static struct pmu perf_cpu_clock = {
89a1e187
PZ
7173 .task_ctx_nr = perf_sw_context,
7174
34f43927
PZ
7175 .capabilities = PERF_PMU_CAP_NO_NMI,
7176
b0a873eb 7177 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7178 .add = cpu_clock_event_add,
7179 .del = cpu_clock_event_del,
7180 .start = cpu_clock_event_start,
7181 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7182 .read = cpu_clock_event_read,
7183};
7184
7185/*
7186 * Software event: task time clock
7187 */
7188
7189static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7190{
b0a873eb
PZ
7191 u64 prev;
7192 s64 delta;
5c92d124 7193
b0a873eb
PZ
7194 prev = local64_xchg(&event->hw.prev_count, now);
7195 delta = now - prev;
7196 local64_add(delta, &event->count);
7197}
5c92d124 7198
a4eaf7f1 7199static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7200{
a4eaf7f1 7201 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7202 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7203}
7204
a4eaf7f1 7205static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7206{
7207 perf_swevent_cancel_hrtimer(event);
7208 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7209}
7210
7211static int task_clock_event_add(struct perf_event *event, int flags)
7212{
7213 if (flags & PERF_EF_START)
7214 task_clock_event_start(event, flags);
6a694a60 7215 perf_event_update_userpage(event);
b0a873eb 7216
a4eaf7f1
PZ
7217 return 0;
7218}
7219
7220static void task_clock_event_del(struct perf_event *event, int flags)
7221{
7222 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7223}
7224
7225static void task_clock_event_read(struct perf_event *event)
7226{
768a06e2
PZ
7227 u64 now = perf_clock();
7228 u64 delta = now - event->ctx->timestamp;
7229 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7230
7231 task_clock_event_update(event, time);
7232}
7233
7234static int task_clock_event_init(struct perf_event *event)
6fb2915d 7235{
b0a873eb
PZ
7236 if (event->attr.type != PERF_TYPE_SOFTWARE)
7237 return -ENOENT;
7238
7239 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7240 return -ENOENT;
7241
2481c5fa
SE
7242 /*
7243 * no branch sampling for software events
7244 */
7245 if (has_branch_stack(event))
7246 return -EOPNOTSUPP;
7247
ba3dd36c
PZ
7248 perf_swevent_init_hrtimer(event);
7249
b0a873eb 7250 return 0;
6fb2915d
LZ
7251}
7252
b0a873eb 7253static struct pmu perf_task_clock = {
89a1e187
PZ
7254 .task_ctx_nr = perf_sw_context,
7255
34f43927
PZ
7256 .capabilities = PERF_PMU_CAP_NO_NMI,
7257
b0a873eb 7258 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7259 .add = task_clock_event_add,
7260 .del = task_clock_event_del,
7261 .start = task_clock_event_start,
7262 .stop = task_clock_event_stop,
b0a873eb
PZ
7263 .read = task_clock_event_read,
7264};
6fb2915d 7265
ad5133b7 7266static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7267{
e077df4f 7268}
6fb2915d 7269
ad5133b7 7270static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7271{
ad5133b7 7272 return 0;
6fb2915d
LZ
7273}
7274
ad5133b7 7275static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7276{
ad5133b7 7277 perf_pmu_disable(pmu);
6fb2915d
LZ
7278}
7279
ad5133b7
PZ
7280static int perf_pmu_commit_txn(struct pmu *pmu)
7281{
7282 perf_pmu_enable(pmu);
7283 return 0;
7284}
e077df4f 7285
ad5133b7 7286static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7287{
ad5133b7 7288 perf_pmu_enable(pmu);
24f1e32c
FW
7289}
7290
35edc2a5
PZ
7291static int perf_event_idx_default(struct perf_event *event)
7292{
c719f560 7293 return 0;
35edc2a5
PZ
7294}
7295
8dc85d54
PZ
7296/*
7297 * Ensures all contexts with the same task_ctx_nr have the same
7298 * pmu_cpu_context too.
7299 */
9e317041 7300static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7301{
8dc85d54 7302 struct pmu *pmu;
b326e956 7303
8dc85d54
PZ
7304 if (ctxn < 0)
7305 return NULL;
24f1e32c 7306
8dc85d54
PZ
7307 list_for_each_entry(pmu, &pmus, entry) {
7308 if (pmu->task_ctx_nr == ctxn)
7309 return pmu->pmu_cpu_context;
7310 }
24f1e32c 7311
8dc85d54 7312 return NULL;
24f1e32c
FW
7313}
7314
51676957 7315static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7316{
51676957
PZ
7317 int cpu;
7318
7319 for_each_possible_cpu(cpu) {
7320 struct perf_cpu_context *cpuctx;
7321
7322 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7323
3f1f3320
PZ
7324 if (cpuctx->unique_pmu == old_pmu)
7325 cpuctx->unique_pmu = pmu;
51676957
PZ
7326 }
7327}
7328
7329static void free_pmu_context(struct pmu *pmu)
7330{
7331 struct pmu *i;
f5ffe02e 7332
8dc85d54 7333 mutex_lock(&pmus_lock);
0475f9ea 7334 /*
8dc85d54 7335 * Like a real lame refcount.
0475f9ea 7336 */
51676957
PZ
7337 list_for_each_entry(i, &pmus, entry) {
7338 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7339 update_pmu_context(i, pmu);
8dc85d54 7340 goto out;
51676957 7341 }
8dc85d54 7342 }
d6d020e9 7343
51676957 7344 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7345out:
7346 mutex_unlock(&pmus_lock);
24f1e32c 7347}
2e80a82a 7348static struct idr pmu_idr;
d6d020e9 7349
abe43400
PZ
7350static ssize_t
7351type_show(struct device *dev, struct device_attribute *attr, char *page)
7352{
7353 struct pmu *pmu = dev_get_drvdata(dev);
7354
7355 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7356}
90826ca7 7357static DEVICE_ATTR_RO(type);
abe43400 7358
62b85639
SE
7359static ssize_t
7360perf_event_mux_interval_ms_show(struct device *dev,
7361 struct device_attribute *attr,
7362 char *page)
7363{
7364 struct pmu *pmu = dev_get_drvdata(dev);
7365
7366 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7367}
7368
272325c4
PZ
7369static DEFINE_MUTEX(mux_interval_mutex);
7370
62b85639
SE
7371static ssize_t
7372perf_event_mux_interval_ms_store(struct device *dev,
7373 struct device_attribute *attr,
7374 const char *buf, size_t count)
7375{
7376 struct pmu *pmu = dev_get_drvdata(dev);
7377 int timer, cpu, ret;
7378
7379 ret = kstrtoint(buf, 0, &timer);
7380 if (ret)
7381 return ret;
7382
7383 if (timer < 1)
7384 return -EINVAL;
7385
7386 /* same value, noting to do */
7387 if (timer == pmu->hrtimer_interval_ms)
7388 return count;
7389
272325c4 7390 mutex_lock(&mux_interval_mutex);
62b85639
SE
7391 pmu->hrtimer_interval_ms = timer;
7392
7393 /* update all cpuctx for this PMU */
272325c4
PZ
7394 get_online_cpus();
7395 for_each_online_cpu(cpu) {
62b85639
SE
7396 struct perf_cpu_context *cpuctx;
7397 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7398 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7399
272325c4
PZ
7400 cpu_function_call(cpu,
7401 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7402 }
272325c4
PZ
7403 put_online_cpus();
7404 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7405
7406 return count;
7407}
90826ca7 7408static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7409
90826ca7
GKH
7410static struct attribute *pmu_dev_attrs[] = {
7411 &dev_attr_type.attr,
7412 &dev_attr_perf_event_mux_interval_ms.attr,
7413 NULL,
abe43400 7414};
90826ca7 7415ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7416
7417static int pmu_bus_running;
7418static struct bus_type pmu_bus = {
7419 .name = "event_source",
90826ca7 7420 .dev_groups = pmu_dev_groups,
abe43400
PZ
7421};
7422
7423static void pmu_dev_release(struct device *dev)
7424{
7425 kfree(dev);
7426}
7427
7428static int pmu_dev_alloc(struct pmu *pmu)
7429{
7430 int ret = -ENOMEM;
7431
7432 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7433 if (!pmu->dev)
7434 goto out;
7435
0c9d42ed 7436 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7437 device_initialize(pmu->dev);
7438 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7439 if (ret)
7440 goto free_dev;
7441
7442 dev_set_drvdata(pmu->dev, pmu);
7443 pmu->dev->bus = &pmu_bus;
7444 pmu->dev->release = pmu_dev_release;
7445 ret = device_add(pmu->dev);
7446 if (ret)
7447 goto free_dev;
7448
7449out:
7450 return ret;
7451
7452free_dev:
7453 put_device(pmu->dev);
7454 goto out;
7455}
7456
547e9fd7 7457static struct lock_class_key cpuctx_mutex;
facc4307 7458static struct lock_class_key cpuctx_lock;
547e9fd7 7459
03d8e80b 7460int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7461{
108b02cf 7462 int cpu, ret;
24f1e32c 7463
b0a873eb 7464 mutex_lock(&pmus_lock);
33696fc0
PZ
7465 ret = -ENOMEM;
7466 pmu->pmu_disable_count = alloc_percpu(int);
7467 if (!pmu->pmu_disable_count)
7468 goto unlock;
f29ac756 7469
2e80a82a
PZ
7470 pmu->type = -1;
7471 if (!name)
7472 goto skip_type;
7473 pmu->name = name;
7474
7475 if (type < 0) {
0e9c3be2
TH
7476 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7477 if (type < 0) {
7478 ret = type;
2e80a82a
PZ
7479 goto free_pdc;
7480 }
7481 }
7482 pmu->type = type;
7483
abe43400
PZ
7484 if (pmu_bus_running) {
7485 ret = pmu_dev_alloc(pmu);
7486 if (ret)
7487 goto free_idr;
7488 }
7489
2e80a82a 7490skip_type:
8dc85d54
PZ
7491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7492 if (pmu->pmu_cpu_context)
7493 goto got_cpu_context;
f29ac756 7494
c4814202 7495 ret = -ENOMEM;
108b02cf
PZ
7496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7497 if (!pmu->pmu_cpu_context)
abe43400 7498 goto free_dev;
f344011c 7499
108b02cf
PZ
7500 for_each_possible_cpu(cpu) {
7501 struct perf_cpu_context *cpuctx;
7502
7503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7504 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7507 cpuctx->ctx.pmu = pmu;
9e630205 7508
272325c4 7509 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7510
3f1f3320 7511 cpuctx->unique_pmu = pmu;
108b02cf 7512 }
76e1d904 7513
8dc85d54 7514got_cpu_context:
ad5133b7
PZ
7515 if (!pmu->start_txn) {
7516 if (pmu->pmu_enable) {
7517 /*
7518 * If we have pmu_enable/pmu_disable calls, install
7519 * transaction stubs that use that to try and batch
7520 * hardware accesses.
7521 */
7522 pmu->start_txn = perf_pmu_start_txn;
7523 pmu->commit_txn = perf_pmu_commit_txn;
7524 pmu->cancel_txn = perf_pmu_cancel_txn;
7525 } else {
7526 pmu->start_txn = perf_pmu_nop_void;
7527 pmu->commit_txn = perf_pmu_nop_int;
7528 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7529 }
5c92d124 7530 }
15dbf27c 7531
ad5133b7
PZ
7532 if (!pmu->pmu_enable) {
7533 pmu->pmu_enable = perf_pmu_nop_void;
7534 pmu->pmu_disable = perf_pmu_nop_void;
7535 }
7536
35edc2a5
PZ
7537 if (!pmu->event_idx)
7538 pmu->event_idx = perf_event_idx_default;
7539
b0a873eb 7540 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7541 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7542 ret = 0;
7543unlock:
b0a873eb
PZ
7544 mutex_unlock(&pmus_lock);
7545
33696fc0 7546 return ret;
108b02cf 7547
abe43400
PZ
7548free_dev:
7549 device_del(pmu->dev);
7550 put_device(pmu->dev);
7551
2e80a82a
PZ
7552free_idr:
7553 if (pmu->type >= PERF_TYPE_MAX)
7554 idr_remove(&pmu_idr, pmu->type);
7555
108b02cf
PZ
7556free_pdc:
7557 free_percpu(pmu->pmu_disable_count);
7558 goto unlock;
f29ac756 7559}
c464c76e 7560EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7561
b0a873eb 7562void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7563{
b0a873eb
PZ
7564 mutex_lock(&pmus_lock);
7565 list_del_rcu(&pmu->entry);
7566 mutex_unlock(&pmus_lock);
5c92d124 7567
0475f9ea 7568 /*
cde8e884
PZ
7569 * We dereference the pmu list under both SRCU and regular RCU, so
7570 * synchronize against both of those.
0475f9ea 7571 */
b0a873eb 7572 synchronize_srcu(&pmus_srcu);
cde8e884 7573 synchronize_rcu();
d6d020e9 7574
33696fc0 7575 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7576 if (pmu->type >= PERF_TYPE_MAX)
7577 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7578 device_del(pmu->dev);
7579 put_device(pmu->dev);
51676957 7580 free_pmu_context(pmu);
b0a873eb 7581}
c464c76e 7582EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7583
cc34b98b
MR
7584static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7585{
ccd41c86 7586 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7587 int ret;
7588
7589 if (!try_module_get(pmu->module))
7590 return -ENODEV;
ccd41c86
PZ
7591
7592 if (event->group_leader != event) {
8b10c5e2
PZ
7593 /*
7594 * This ctx->mutex can nest when we're called through
7595 * inheritance. See the perf_event_ctx_lock_nested() comment.
7596 */
7597 ctx = perf_event_ctx_lock_nested(event->group_leader,
7598 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7599 BUG_ON(!ctx);
7600 }
7601
cc34b98b
MR
7602 event->pmu = pmu;
7603 ret = pmu->event_init(event);
ccd41c86
PZ
7604
7605 if (ctx)
7606 perf_event_ctx_unlock(event->group_leader, ctx);
7607
cc34b98b
MR
7608 if (ret)
7609 module_put(pmu->module);
7610
7611 return ret;
7612}
7613
b0a873eb
PZ
7614struct pmu *perf_init_event(struct perf_event *event)
7615{
7616 struct pmu *pmu = NULL;
7617 int idx;
940c5b29 7618 int ret;
b0a873eb
PZ
7619
7620 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7621
7622 rcu_read_lock();
7623 pmu = idr_find(&pmu_idr, event->attr.type);
7624 rcu_read_unlock();
940c5b29 7625 if (pmu) {
cc34b98b 7626 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7627 if (ret)
7628 pmu = ERR_PTR(ret);
2e80a82a 7629 goto unlock;
940c5b29 7630 }
2e80a82a 7631
b0a873eb 7632 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7633 ret = perf_try_init_event(pmu, event);
b0a873eb 7634 if (!ret)
e5f4d339 7635 goto unlock;
76e1d904 7636
b0a873eb
PZ
7637 if (ret != -ENOENT) {
7638 pmu = ERR_PTR(ret);
e5f4d339 7639 goto unlock;
f344011c 7640 }
5c92d124 7641 }
e5f4d339
PZ
7642 pmu = ERR_PTR(-ENOENT);
7643unlock:
b0a873eb 7644 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7645
4aeb0b42 7646 return pmu;
5c92d124
IM
7647}
7648
4beb31f3
FW
7649static void account_event_cpu(struct perf_event *event, int cpu)
7650{
7651 if (event->parent)
7652 return;
7653
4beb31f3
FW
7654 if (is_cgroup_event(event))
7655 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7656}
7657
766d6c07
FW
7658static void account_event(struct perf_event *event)
7659{
4beb31f3
FW
7660 if (event->parent)
7661 return;
7662
766d6c07
FW
7663 if (event->attach_state & PERF_ATTACH_TASK)
7664 static_key_slow_inc(&perf_sched_events.key);
7665 if (event->attr.mmap || event->attr.mmap_data)
7666 atomic_inc(&nr_mmap_events);
7667 if (event->attr.comm)
7668 atomic_inc(&nr_comm_events);
7669 if (event->attr.task)
7670 atomic_inc(&nr_task_events);
948b26b6
FW
7671 if (event->attr.freq) {
7672 if (atomic_inc_return(&nr_freq_events) == 1)
7673 tick_nohz_full_kick_all();
7674 }
45ac1403
AH
7675 if (event->attr.context_switch) {
7676 atomic_inc(&nr_switch_events);
7677 static_key_slow_inc(&perf_sched_events.key);
7678 }
4beb31f3 7679 if (has_branch_stack(event))
766d6c07 7680 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7681 if (is_cgroup_event(event))
766d6c07 7682 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7683
7684 account_event_cpu(event, event->cpu);
766d6c07
FW
7685}
7686
0793a61d 7687/*
cdd6c482 7688 * Allocate and initialize a event structure
0793a61d 7689 */
cdd6c482 7690static struct perf_event *
c3f00c70 7691perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7692 struct task_struct *task,
7693 struct perf_event *group_leader,
7694 struct perf_event *parent_event,
4dc0da86 7695 perf_overflow_handler_t overflow_handler,
79dff51e 7696 void *context, int cgroup_fd)
0793a61d 7697{
51b0fe39 7698 struct pmu *pmu;
cdd6c482
IM
7699 struct perf_event *event;
7700 struct hw_perf_event *hwc;
90983b16 7701 long err = -EINVAL;
0793a61d 7702
66832eb4
ON
7703 if ((unsigned)cpu >= nr_cpu_ids) {
7704 if (!task || cpu != -1)
7705 return ERR_PTR(-EINVAL);
7706 }
7707
c3f00c70 7708 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7709 if (!event)
d5d2bc0d 7710 return ERR_PTR(-ENOMEM);
0793a61d 7711
04289bb9 7712 /*
cdd6c482 7713 * Single events are their own group leaders, with an
04289bb9
IM
7714 * empty sibling list:
7715 */
7716 if (!group_leader)
cdd6c482 7717 group_leader = event;
04289bb9 7718
cdd6c482
IM
7719 mutex_init(&event->child_mutex);
7720 INIT_LIST_HEAD(&event->child_list);
fccc714b 7721
cdd6c482
IM
7722 INIT_LIST_HEAD(&event->group_entry);
7723 INIT_LIST_HEAD(&event->event_entry);
7724 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7725 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7726 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7727 INIT_HLIST_NODE(&event->hlist_entry);
7728
10c6db11 7729
cdd6c482 7730 init_waitqueue_head(&event->waitq);
e360adbe 7731 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7732
cdd6c482 7733 mutex_init(&event->mmap_mutex);
7b732a75 7734
a6fa941d 7735 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7736 event->cpu = cpu;
7737 event->attr = *attr;
7738 event->group_leader = group_leader;
7739 event->pmu = NULL;
cdd6c482 7740 event->oncpu = -1;
a96bbc16 7741
cdd6c482 7742 event->parent = parent_event;
b84fbc9f 7743
17cf22c3 7744 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7745 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7746
cdd6c482 7747 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7748
d580ff86
PZ
7749 if (task) {
7750 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7751 /*
50f16a8b
PZ
7752 * XXX pmu::event_init needs to know what task to account to
7753 * and we cannot use the ctx information because we need the
7754 * pmu before we get a ctx.
d580ff86 7755 */
50f16a8b 7756 event->hw.target = task;
d580ff86
PZ
7757 }
7758
34f43927
PZ
7759 event->clock = &local_clock;
7760 if (parent_event)
7761 event->clock = parent_event->clock;
7762
4dc0da86 7763 if (!overflow_handler && parent_event) {
b326e956 7764 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7765 context = parent_event->overflow_handler_context;
7766 }
66832eb4 7767
b326e956 7768 event->overflow_handler = overflow_handler;
4dc0da86 7769 event->overflow_handler_context = context;
97eaf530 7770
0231bb53 7771 perf_event__state_init(event);
a86ed508 7772
4aeb0b42 7773 pmu = NULL;
b8e83514 7774
cdd6c482 7775 hwc = &event->hw;
bd2b5b12 7776 hwc->sample_period = attr->sample_period;
0d48696f 7777 if (attr->freq && attr->sample_freq)
bd2b5b12 7778 hwc->sample_period = 1;
eced1dfc 7779 hwc->last_period = hwc->sample_period;
bd2b5b12 7780
e7850595 7781 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7782
2023b359 7783 /*
cdd6c482 7784 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7785 */
3dab77fb 7786 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7787 goto err_ns;
a46a2300
YZ
7788
7789 if (!has_branch_stack(event))
7790 event->attr.branch_sample_type = 0;
2023b359 7791
79dff51e
MF
7792 if (cgroup_fd != -1) {
7793 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7794 if (err)
7795 goto err_ns;
7796 }
7797
b0a873eb 7798 pmu = perf_init_event(event);
4aeb0b42 7799 if (!pmu)
90983b16
FW
7800 goto err_ns;
7801 else if (IS_ERR(pmu)) {
4aeb0b42 7802 err = PTR_ERR(pmu);
90983b16 7803 goto err_ns;
621a01ea 7804 }
d5d2bc0d 7805
bed5b25a
AS
7806 err = exclusive_event_init(event);
7807 if (err)
7808 goto err_pmu;
7809
cdd6c482 7810 if (!event->parent) {
927c7a9e
FW
7811 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7812 err = get_callchain_buffers();
90983b16 7813 if (err)
bed5b25a 7814 goto err_per_task;
d010b332 7815 }
f344011c 7816 }
9ee318a7 7817
cdd6c482 7818 return event;
90983b16 7819
bed5b25a
AS
7820err_per_task:
7821 exclusive_event_destroy(event);
7822
90983b16
FW
7823err_pmu:
7824 if (event->destroy)
7825 event->destroy(event);
c464c76e 7826 module_put(pmu->module);
90983b16 7827err_ns:
79dff51e
MF
7828 if (is_cgroup_event(event))
7829 perf_detach_cgroup(event);
90983b16
FW
7830 if (event->ns)
7831 put_pid_ns(event->ns);
7832 kfree(event);
7833
7834 return ERR_PTR(err);
0793a61d
TG
7835}
7836
cdd6c482
IM
7837static int perf_copy_attr(struct perf_event_attr __user *uattr,
7838 struct perf_event_attr *attr)
974802ea 7839{
974802ea 7840 u32 size;
cdf8073d 7841 int ret;
974802ea
PZ
7842
7843 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7844 return -EFAULT;
7845
7846 /*
7847 * zero the full structure, so that a short copy will be nice.
7848 */
7849 memset(attr, 0, sizeof(*attr));
7850
7851 ret = get_user(size, &uattr->size);
7852 if (ret)
7853 return ret;
7854
7855 if (size > PAGE_SIZE) /* silly large */
7856 goto err_size;
7857
7858 if (!size) /* abi compat */
7859 size = PERF_ATTR_SIZE_VER0;
7860
7861 if (size < PERF_ATTR_SIZE_VER0)
7862 goto err_size;
7863
7864 /*
7865 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7866 * ensure all the unknown bits are 0 - i.e. new
7867 * user-space does not rely on any kernel feature
7868 * extensions we dont know about yet.
974802ea
PZ
7869 */
7870 if (size > sizeof(*attr)) {
cdf8073d
IS
7871 unsigned char __user *addr;
7872 unsigned char __user *end;
7873 unsigned char val;
974802ea 7874
cdf8073d
IS
7875 addr = (void __user *)uattr + sizeof(*attr);
7876 end = (void __user *)uattr + size;
974802ea 7877
cdf8073d 7878 for (; addr < end; addr++) {
974802ea
PZ
7879 ret = get_user(val, addr);
7880 if (ret)
7881 return ret;
7882 if (val)
7883 goto err_size;
7884 }
b3e62e35 7885 size = sizeof(*attr);
974802ea
PZ
7886 }
7887
7888 ret = copy_from_user(attr, uattr, size);
7889 if (ret)
7890 return -EFAULT;
7891
cd757645 7892 if (attr->__reserved_1)
974802ea
PZ
7893 return -EINVAL;
7894
7895 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7896 return -EINVAL;
7897
7898 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7899 return -EINVAL;
7900
bce38cd5
SE
7901 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7902 u64 mask = attr->branch_sample_type;
7903
7904 /* only using defined bits */
7905 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7906 return -EINVAL;
7907
7908 /* at least one branch bit must be set */
7909 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7910 return -EINVAL;
7911
bce38cd5
SE
7912 /* propagate priv level, when not set for branch */
7913 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7914
7915 /* exclude_kernel checked on syscall entry */
7916 if (!attr->exclude_kernel)
7917 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7918
7919 if (!attr->exclude_user)
7920 mask |= PERF_SAMPLE_BRANCH_USER;
7921
7922 if (!attr->exclude_hv)
7923 mask |= PERF_SAMPLE_BRANCH_HV;
7924 /*
7925 * adjust user setting (for HW filter setup)
7926 */
7927 attr->branch_sample_type = mask;
7928 }
e712209a
SE
7929 /* privileged levels capture (kernel, hv): check permissions */
7930 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7931 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7932 return -EACCES;
bce38cd5 7933 }
4018994f 7934
c5ebcedb 7935 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7936 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7937 if (ret)
7938 return ret;
7939 }
7940
7941 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7942 if (!arch_perf_have_user_stack_dump())
7943 return -ENOSYS;
7944
7945 /*
7946 * We have __u32 type for the size, but so far
7947 * we can only use __u16 as maximum due to the
7948 * __u16 sample size limit.
7949 */
7950 if (attr->sample_stack_user >= USHRT_MAX)
7951 ret = -EINVAL;
7952 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7953 ret = -EINVAL;
7954 }
4018994f 7955
60e2364e
SE
7956 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7957 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7958out:
7959 return ret;
7960
7961err_size:
7962 put_user(sizeof(*attr), &uattr->size);
7963 ret = -E2BIG;
7964 goto out;
7965}
7966
ac9721f3
PZ
7967static int
7968perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7969{
b69cf536 7970 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7971 int ret = -EINVAL;
7972
ac9721f3 7973 if (!output_event)
a4be7c27
PZ
7974 goto set;
7975
ac9721f3
PZ
7976 /* don't allow circular references */
7977 if (event == output_event)
a4be7c27
PZ
7978 goto out;
7979
0f139300
PZ
7980 /*
7981 * Don't allow cross-cpu buffers
7982 */
7983 if (output_event->cpu != event->cpu)
7984 goto out;
7985
7986 /*
76369139 7987 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7988 */
7989 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7990 goto out;
7991
34f43927
PZ
7992 /*
7993 * Mixing clocks in the same buffer is trouble you don't need.
7994 */
7995 if (output_event->clock != event->clock)
7996 goto out;
7997
45bfb2e5
PZ
7998 /*
7999 * If both events generate aux data, they must be on the same PMU
8000 */
8001 if (has_aux(event) && has_aux(output_event) &&
8002 event->pmu != output_event->pmu)
8003 goto out;
8004
a4be7c27 8005set:
cdd6c482 8006 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8007 /* Can't redirect output if we've got an active mmap() */
8008 if (atomic_read(&event->mmap_count))
8009 goto unlock;
a4be7c27 8010
ac9721f3 8011 if (output_event) {
76369139
FW
8012 /* get the rb we want to redirect to */
8013 rb = ring_buffer_get(output_event);
8014 if (!rb)
ac9721f3 8015 goto unlock;
a4be7c27
PZ
8016 }
8017
b69cf536 8018 ring_buffer_attach(event, rb);
9bb5d40c 8019
a4be7c27 8020 ret = 0;
ac9721f3
PZ
8021unlock:
8022 mutex_unlock(&event->mmap_mutex);
8023
a4be7c27 8024out:
a4be7c27
PZ
8025 return ret;
8026}
8027
f63a8daa
PZ
8028static void mutex_lock_double(struct mutex *a, struct mutex *b)
8029{
8030 if (b < a)
8031 swap(a, b);
8032
8033 mutex_lock(a);
8034 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8035}
8036
34f43927
PZ
8037static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8038{
8039 bool nmi_safe = false;
8040
8041 switch (clk_id) {
8042 case CLOCK_MONOTONIC:
8043 event->clock = &ktime_get_mono_fast_ns;
8044 nmi_safe = true;
8045 break;
8046
8047 case CLOCK_MONOTONIC_RAW:
8048 event->clock = &ktime_get_raw_fast_ns;
8049 nmi_safe = true;
8050 break;
8051
8052 case CLOCK_REALTIME:
8053 event->clock = &ktime_get_real_ns;
8054 break;
8055
8056 case CLOCK_BOOTTIME:
8057 event->clock = &ktime_get_boot_ns;
8058 break;
8059
8060 case CLOCK_TAI:
8061 event->clock = &ktime_get_tai_ns;
8062 break;
8063
8064 default:
8065 return -EINVAL;
8066 }
8067
8068 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8069 return -EINVAL;
8070
8071 return 0;
8072}
8073
0793a61d 8074/**
cdd6c482 8075 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8076 *
cdd6c482 8077 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8078 * @pid: target pid
9f66a381 8079 * @cpu: target cpu
cdd6c482 8080 * @group_fd: group leader event fd
0793a61d 8081 */
cdd6c482
IM
8082SYSCALL_DEFINE5(perf_event_open,
8083 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8084 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8085{
b04243ef
PZ
8086 struct perf_event *group_leader = NULL, *output_event = NULL;
8087 struct perf_event *event, *sibling;
cdd6c482 8088 struct perf_event_attr attr;
f63a8daa 8089 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8090 struct file *event_file = NULL;
2903ff01 8091 struct fd group = {NULL, 0};
38a81da2 8092 struct task_struct *task = NULL;
89a1e187 8093 struct pmu *pmu;
ea635c64 8094 int event_fd;
b04243ef 8095 int move_group = 0;
dc86cabe 8096 int err;
a21b0b35 8097 int f_flags = O_RDWR;
79dff51e 8098 int cgroup_fd = -1;
0793a61d 8099
2743a5b0 8100 /* for future expandability... */
e5d1367f 8101 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8102 return -EINVAL;
8103
dc86cabe
IM
8104 err = perf_copy_attr(attr_uptr, &attr);
8105 if (err)
8106 return err;
eab656ae 8107
0764771d
PZ
8108 if (!attr.exclude_kernel) {
8109 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8110 return -EACCES;
8111 }
8112
df58ab24 8113 if (attr.freq) {
cdd6c482 8114 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8115 return -EINVAL;
0819b2e3
PZ
8116 } else {
8117 if (attr.sample_period & (1ULL << 63))
8118 return -EINVAL;
df58ab24
PZ
8119 }
8120
e5d1367f
SE
8121 /*
8122 * In cgroup mode, the pid argument is used to pass the fd
8123 * opened to the cgroup directory in cgroupfs. The cpu argument
8124 * designates the cpu on which to monitor threads from that
8125 * cgroup.
8126 */
8127 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8128 return -EINVAL;
8129
a21b0b35
YD
8130 if (flags & PERF_FLAG_FD_CLOEXEC)
8131 f_flags |= O_CLOEXEC;
8132
8133 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8134 if (event_fd < 0)
8135 return event_fd;
8136
ac9721f3 8137 if (group_fd != -1) {
2903ff01
AV
8138 err = perf_fget_light(group_fd, &group);
8139 if (err)
d14b12d7 8140 goto err_fd;
2903ff01 8141 group_leader = group.file->private_data;
ac9721f3
PZ
8142 if (flags & PERF_FLAG_FD_OUTPUT)
8143 output_event = group_leader;
8144 if (flags & PERF_FLAG_FD_NO_GROUP)
8145 group_leader = NULL;
8146 }
8147
e5d1367f 8148 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8149 task = find_lively_task_by_vpid(pid);
8150 if (IS_ERR(task)) {
8151 err = PTR_ERR(task);
8152 goto err_group_fd;
8153 }
8154 }
8155
1f4ee503
PZ
8156 if (task && group_leader &&
8157 group_leader->attr.inherit != attr.inherit) {
8158 err = -EINVAL;
8159 goto err_task;
8160 }
8161
fbfc623f
YZ
8162 get_online_cpus();
8163
79dff51e
MF
8164 if (flags & PERF_FLAG_PID_CGROUP)
8165 cgroup_fd = pid;
8166
4dc0da86 8167 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8168 NULL, NULL, cgroup_fd);
d14b12d7
SE
8169 if (IS_ERR(event)) {
8170 err = PTR_ERR(event);
1f4ee503 8171 goto err_cpus;
d14b12d7
SE
8172 }
8173
53b25335
VW
8174 if (is_sampling_event(event)) {
8175 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8176 err = -ENOTSUPP;
8177 goto err_alloc;
8178 }
8179 }
8180
766d6c07
FW
8181 account_event(event);
8182
89a1e187
PZ
8183 /*
8184 * Special case software events and allow them to be part of
8185 * any hardware group.
8186 */
8187 pmu = event->pmu;
b04243ef 8188
34f43927
PZ
8189 if (attr.use_clockid) {
8190 err = perf_event_set_clock(event, attr.clockid);
8191 if (err)
8192 goto err_alloc;
8193 }
8194
b04243ef
PZ
8195 if (group_leader &&
8196 (is_software_event(event) != is_software_event(group_leader))) {
8197 if (is_software_event(event)) {
8198 /*
8199 * If event and group_leader are not both a software
8200 * event, and event is, then group leader is not.
8201 *
8202 * Allow the addition of software events to !software
8203 * groups, this is safe because software events never
8204 * fail to schedule.
8205 */
8206 pmu = group_leader->pmu;
8207 } else if (is_software_event(group_leader) &&
8208 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8209 /*
8210 * In case the group is a pure software group, and we
8211 * try to add a hardware event, move the whole group to
8212 * the hardware context.
8213 */
8214 move_group = 1;
8215 }
8216 }
89a1e187
PZ
8217
8218 /*
8219 * Get the target context (task or percpu):
8220 */
4af57ef2 8221 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8222 if (IS_ERR(ctx)) {
8223 err = PTR_ERR(ctx);
c6be5a5c 8224 goto err_alloc;
89a1e187
PZ
8225 }
8226
bed5b25a
AS
8227 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8228 err = -EBUSY;
8229 goto err_context;
8230 }
8231
fd1edb3a
PZ
8232 if (task) {
8233 put_task_struct(task);
8234 task = NULL;
8235 }
8236
ccff286d 8237 /*
cdd6c482 8238 * Look up the group leader (we will attach this event to it):
04289bb9 8239 */
ac9721f3 8240 if (group_leader) {
dc86cabe 8241 err = -EINVAL;
04289bb9 8242
04289bb9 8243 /*
ccff286d
IM
8244 * Do not allow a recursive hierarchy (this new sibling
8245 * becoming part of another group-sibling):
8246 */
8247 if (group_leader->group_leader != group_leader)
c3f00c70 8248 goto err_context;
34f43927
PZ
8249
8250 /* All events in a group should have the same clock */
8251 if (group_leader->clock != event->clock)
8252 goto err_context;
8253
ccff286d
IM
8254 /*
8255 * Do not allow to attach to a group in a different
8256 * task or CPU context:
04289bb9 8257 */
b04243ef 8258 if (move_group) {
c3c87e77
PZ
8259 /*
8260 * Make sure we're both on the same task, or both
8261 * per-cpu events.
8262 */
8263 if (group_leader->ctx->task != ctx->task)
8264 goto err_context;
8265
8266 /*
8267 * Make sure we're both events for the same CPU;
8268 * grouping events for different CPUs is broken; since
8269 * you can never concurrently schedule them anyhow.
8270 */
8271 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8272 goto err_context;
8273 } else {
8274 if (group_leader->ctx != ctx)
8275 goto err_context;
8276 }
8277
3b6f9e5c
PM
8278 /*
8279 * Only a group leader can be exclusive or pinned
8280 */
0d48696f 8281 if (attr.exclusive || attr.pinned)
c3f00c70 8282 goto err_context;
ac9721f3
PZ
8283 }
8284
8285 if (output_event) {
8286 err = perf_event_set_output(event, output_event);
8287 if (err)
c3f00c70 8288 goto err_context;
ac9721f3 8289 }
0793a61d 8290
a21b0b35
YD
8291 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8292 f_flags);
ea635c64
AV
8293 if (IS_ERR(event_file)) {
8294 err = PTR_ERR(event_file);
c3f00c70 8295 goto err_context;
ea635c64 8296 }
9b51f66d 8297
b04243ef 8298 if (move_group) {
f63a8daa
PZ
8299 gctx = group_leader->ctx;
8300
8301 /*
8302 * See perf_event_ctx_lock() for comments on the details
8303 * of swizzling perf_event::ctx.
8304 */
8305 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8306
46ce0fe9 8307 perf_remove_from_context(group_leader, false);
0231bb53 8308
b04243ef
PZ
8309 list_for_each_entry(sibling, &group_leader->sibling_list,
8310 group_entry) {
46ce0fe9 8311 perf_remove_from_context(sibling, false);
b04243ef
PZ
8312 put_ctx(gctx);
8313 }
f63a8daa
PZ
8314 } else {
8315 mutex_lock(&ctx->mutex);
ea635c64 8316 }
9b51f66d 8317
ad3a37de 8318 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8319
8320 if (move_group) {
f63a8daa
PZ
8321 /*
8322 * Wait for everybody to stop referencing the events through
8323 * the old lists, before installing it on new lists.
8324 */
0cda4c02 8325 synchronize_rcu();
f63a8daa 8326
8f95b435
PZI
8327 /*
8328 * Install the group siblings before the group leader.
8329 *
8330 * Because a group leader will try and install the entire group
8331 * (through the sibling list, which is still in-tact), we can
8332 * end up with siblings installed in the wrong context.
8333 *
8334 * By installing siblings first we NO-OP because they're not
8335 * reachable through the group lists.
8336 */
b04243ef
PZ
8337 list_for_each_entry(sibling, &group_leader->sibling_list,
8338 group_entry) {
8f95b435 8339 perf_event__state_init(sibling);
9fc81d87 8340 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8341 get_ctx(ctx);
8342 }
8f95b435
PZI
8343
8344 /*
8345 * Removing from the context ends up with disabled
8346 * event. What we want here is event in the initial
8347 * startup state, ready to be add into new context.
8348 */
8349 perf_event__state_init(group_leader);
8350 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8351 get_ctx(ctx);
b04243ef
PZ
8352 }
8353
bed5b25a
AS
8354 if (!exclusive_event_installable(event, ctx)) {
8355 err = -EBUSY;
8356 mutex_unlock(&ctx->mutex);
8357 fput(event_file);
8358 goto err_context;
8359 }
8360
e2d37cd2 8361 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8362 perf_unpin_context(ctx);
f63a8daa
PZ
8363
8364 if (move_group) {
8365 mutex_unlock(&gctx->mutex);
8366 put_ctx(gctx);
8367 }
d859e29f 8368 mutex_unlock(&ctx->mutex);
9b51f66d 8369
fbfc623f
YZ
8370 put_online_cpus();
8371
cdd6c482 8372 event->owner = current;
8882135b 8373
cdd6c482
IM
8374 mutex_lock(&current->perf_event_mutex);
8375 list_add_tail(&event->owner_entry, &current->perf_event_list);
8376 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8377
c320c7b7
ACM
8378 /*
8379 * Precalculate sample_data sizes
8380 */
8381 perf_event__header_size(event);
6844c09d 8382 perf_event__id_header_size(event);
c320c7b7 8383
8a49542c
PZ
8384 /*
8385 * Drop the reference on the group_event after placing the
8386 * new event on the sibling_list. This ensures destruction
8387 * of the group leader will find the pointer to itself in
8388 * perf_group_detach().
8389 */
2903ff01 8390 fdput(group);
ea635c64
AV
8391 fd_install(event_fd, event_file);
8392 return event_fd;
0793a61d 8393
c3f00c70 8394err_context:
fe4b04fa 8395 perf_unpin_context(ctx);
ea635c64 8396 put_ctx(ctx);
c6be5a5c 8397err_alloc:
ea635c64 8398 free_event(event);
1f4ee503 8399err_cpus:
fbfc623f 8400 put_online_cpus();
1f4ee503 8401err_task:
e7d0bc04
PZ
8402 if (task)
8403 put_task_struct(task);
89a1e187 8404err_group_fd:
2903ff01 8405 fdput(group);
ea635c64
AV
8406err_fd:
8407 put_unused_fd(event_fd);
dc86cabe 8408 return err;
0793a61d
TG
8409}
8410
fb0459d7
AV
8411/**
8412 * perf_event_create_kernel_counter
8413 *
8414 * @attr: attributes of the counter to create
8415 * @cpu: cpu in which the counter is bound
38a81da2 8416 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8417 */
8418struct perf_event *
8419perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8420 struct task_struct *task,
4dc0da86
AK
8421 perf_overflow_handler_t overflow_handler,
8422 void *context)
fb0459d7 8423{
fb0459d7 8424 struct perf_event_context *ctx;
c3f00c70 8425 struct perf_event *event;
fb0459d7 8426 int err;
d859e29f 8427
fb0459d7
AV
8428 /*
8429 * Get the target context (task or percpu):
8430 */
d859e29f 8431
4dc0da86 8432 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8433 overflow_handler, context, -1);
c3f00c70
PZ
8434 if (IS_ERR(event)) {
8435 err = PTR_ERR(event);
8436 goto err;
8437 }
d859e29f 8438
f8697762
JO
8439 /* Mark owner so we could distinguish it from user events. */
8440 event->owner = EVENT_OWNER_KERNEL;
8441
766d6c07
FW
8442 account_event(event);
8443
4af57ef2 8444 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8445 if (IS_ERR(ctx)) {
8446 err = PTR_ERR(ctx);
c3f00c70 8447 goto err_free;
d859e29f 8448 }
fb0459d7 8449
fb0459d7
AV
8450 WARN_ON_ONCE(ctx->parent_ctx);
8451 mutex_lock(&ctx->mutex);
bed5b25a
AS
8452 if (!exclusive_event_installable(event, ctx)) {
8453 mutex_unlock(&ctx->mutex);
8454 perf_unpin_context(ctx);
8455 put_ctx(ctx);
8456 err = -EBUSY;
8457 goto err_free;
8458 }
8459
fb0459d7 8460 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8461 perf_unpin_context(ctx);
fb0459d7
AV
8462 mutex_unlock(&ctx->mutex);
8463
fb0459d7
AV
8464 return event;
8465
c3f00c70
PZ
8466err_free:
8467 free_event(event);
8468err:
c6567f64 8469 return ERR_PTR(err);
9b51f66d 8470}
fb0459d7 8471EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8472
0cda4c02
YZ
8473void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8474{
8475 struct perf_event_context *src_ctx;
8476 struct perf_event_context *dst_ctx;
8477 struct perf_event *event, *tmp;
8478 LIST_HEAD(events);
8479
8480 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8481 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8482
f63a8daa
PZ
8483 /*
8484 * See perf_event_ctx_lock() for comments on the details
8485 * of swizzling perf_event::ctx.
8486 */
8487 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8488 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8489 event_entry) {
46ce0fe9 8490 perf_remove_from_context(event, false);
9a545de0 8491 unaccount_event_cpu(event, src_cpu);
0cda4c02 8492 put_ctx(src_ctx);
9886167d 8493 list_add(&event->migrate_entry, &events);
0cda4c02 8494 }
0cda4c02 8495
8f95b435
PZI
8496 /*
8497 * Wait for the events to quiesce before re-instating them.
8498 */
0cda4c02
YZ
8499 synchronize_rcu();
8500
8f95b435
PZI
8501 /*
8502 * Re-instate events in 2 passes.
8503 *
8504 * Skip over group leaders and only install siblings on this first
8505 * pass, siblings will not get enabled without a leader, however a
8506 * leader will enable its siblings, even if those are still on the old
8507 * context.
8508 */
8509 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8510 if (event->group_leader == event)
8511 continue;
8512
8513 list_del(&event->migrate_entry);
8514 if (event->state >= PERF_EVENT_STATE_OFF)
8515 event->state = PERF_EVENT_STATE_INACTIVE;
8516 account_event_cpu(event, dst_cpu);
8517 perf_install_in_context(dst_ctx, event, dst_cpu);
8518 get_ctx(dst_ctx);
8519 }
8520
8521 /*
8522 * Once all the siblings are setup properly, install the group leaders
8523 * to make it go.
8524 */
9886167d
PZ
8525 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8526 list_del(&event->migrate_entry);
0cda4c02
YZ
8527 if (event->state >= PERF_EVENT_STATE_OFF)
8528 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8529 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8530 perf_install_in_context(dst_ctx, event, dst_cpu);
8531 get_ctx(dst_ctx);
8532 }
8533 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8534 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8535}
8536EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8537
cdd6c482 8538static void sync_child_event(struct perf_event *child_event,
38b200d6 8539 struct task_struct *child)
d859e29f 8540{
cdd6c482 8541 struct perf_event *parent_event = child_event->parent;
8bc20959 8542 u64 child_val;
d859e29f 8543
cdd6c482
IM
8544 if (child_event->attr.inherit_stat)
8545 perf_event_read_event(child_event, child);
38b200d6 8546
b5e58793 8547 child_val = perf_event_count(child_event);
d859e29f
PM
8548
8549 /*
8550 * Add back the child's count to the parent's count:
8551 */
a6e6dea6 8552 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8553 atomic64_add(child_event->total_time_enabled,
8554 &parent_event->child_total_time_enabled);
8555 atomic64_add(child_event->total_time_running,
8556 &parent_event->child_total_time_running);
d859e29f
PM
8557
8558 /*
cdd6c482 8559 * Remove this event from the parent's list
d859e29f 8560 */
cdd6c482
IM
8561 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8562 mutex_lock(&parent_event->child_mutex);
8563 list_del_init(&child_event->child_list);
8564 mutex_unlock(&parent_event->child_mutex);
d859e29f 8565
dc633982
JO
8566 /*
8567 * Make sure user/parent get notified, that we just
8568 * lost one event.
8569 */
8570 perf_event_wakeup(parent_event);
8571
d859e29f 8572 /*
cdd6c482 8573 * Release the parent event, if this was the last
d859e29f
PM
8574 * reference to it.
8575 */
a6fa941d 8576 put_event(parent_event);
d859e29f
PM
8577}
8578
9b51f66d 8579static void
cdd6c482
IM
8580__perf_event_exit_task(struct perf_event *child_event,
8581 struct perf_event_context *child_ctx,
38b200d6 8582 struct task_struct *child)
9b51f66d 8583{
1903d50c
PZ
8584 /*
8585 * Do not destroy the 'original' grouping; because of the context
8586 * switch optimization the original events could've ended up in a
8587 * random child task.
8588 *
8589 * If we were to destroy the original group, all group related
8590 * operations would cease to function properly after this random
8591 * child dies.
8592 *
8593 * Do destroy all inherited groups, we don't care about those
8594 * and being thorough is better.
8595 */
8596 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8597
9b51f66d 8598 /*
38b435b1 8599 * It can happen that the parent exits first, and has events
9b51f66d 8600 * that are still around due to the child reference. These
38b435b1 8601 * events need to be zapped.
9b51f66d 8602 */
38b435b1 8603 if (child_event->parent) {
cdd6c482
IM
8604 sync_child_event(child_event, child);
8605 free_event(child_event);
179033b3
JO
8606 } else {
8607 child_event->state = PERF_EVENT_STATE_EXIT;
8608 perf_event_wakeup(child_event);
4bcf349a 8609 }
9b51f66d
IM
8610}
8611
8dc85d54 8612static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8613{
ebf905fc 8614 struct perf_event *child_event, *next;
211de6eb 8615 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8616 unsigned long flags;
9b51f66d 8617
8dc85d54 8618 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8619 perf_event_task(child, NULL, 0);
9b51f66d 8620 return;
9f498cc5 8621 }
9b51f66d 8622
a63eaf34 8623 local_irq_save(flags);
ad3a37de
PM
8624 /*
8625 * We can't reschedule here because interrupts are disabled,
8626 * and either child is current or it is a task that can't be
8627 * scheduled, so we are now safe from rescheduling changing
8628 * our context.
8629 */
806839b2 8630 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8631
8632 /*
8633 * Take the context lock here so that if find_get_context is
cdd6c482 8634 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8635 * incremented the context's refcount before we do put_ctx below.
8636 */
e625cce1 8637 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8638 task_ctx_sched_out(child_ctx);
8dc85d54 8639 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8640
71a851b4
PZ
8641 /*
8642 * If this context is a clone; unclone it so it can't get
8643 * swapped to another process while we're removing all
cdd6c482 8644 * the events from it.
71a851b4 8645 */
211de6eb 8646 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8647 update_context_time(child_ctx);
e625cce1 8648 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8649
211de6eb
PZ
8650 if (clone_ctx)
8651 put_ctx(clone_ctx);
4a1c0f26 8652
9f498cc5 8653 /*
cdd6c482
IM
8654 * Report the task dead after unscheduling the events so that we
8655 * won't get any samples after PERF_RECORD_EXIT. We can however still
8656 * get a few PERF_RECORD_READ events.
9f498cc5 8657 */
cdd6c482 8658 perf_event_task(child, child_ctx, 0);
a63eaf34 8659
66fff224
PZ
8660 /*
8661 * We can recurse on the same lock type through:
8662 *
cdd6c482
IM
8663 * __perf_event_exit_task()
8664 * sync_child_event()
a6fa941d
AV
8665 * put_event()
8666 * mutex_lock(&ctx->mutex)
66fff224
PZ
8667 *
8668 * But since its the parent context it won't be the same instance.
8669 */
a0507c84 8670 mutex_lock(&child_ctx->mutex);
a63eaf34 8671
ebf905fc 8672 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8673 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8674
a63eaf34
PM
8675 mutex_unlock(&child_ctx->mutex);
8676
8677 put_ctx(child_ctx);
9b51f66d
IM
8678}
8679
8dc85d54
PZ
8680/*
8681 * When a child task exits, feed back event values to parent events.
8682 */
8683void perf_event_exit_task(struct task_struct *child)
8684{
8882135b 8685 struct perf_event *event, *tmp;
8dc85d54
PZ
8686 int ctxn;
8687
8882135b
PZ
8688 mutex_lock(&child->perf_event_mutex);
8689 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8690 owner_entry) {
8691 list_del_init(&event->owner_entry);
8692
8693 /*
8694 * Ensure the list deletion is visible before we clear
8695 * the owner, closes a race against perf_release() where
8696 * we need to serialize on the owner->perf_event_mutex.
8697 */
8698 smp_wmb();
8699 event->owner = NULL;
8700 }
8701 mutex_unlock(&child->perf_event_mutex);
8702
8dc85d54
PZ
8703 for_each_task_context_nr(ctxn)
8704 perf_event_exit_task_context(child, ctxn);
8705}
8706
889ff015
FW
8707static void perf_free_event(struct perf_event *event,
8708 struct perf_event_context *ctx)
8709{
8710 struct perf_event *parent = event->parent;
8711
8712 if (WARN_ON_ONCE(!parent))
8713 return;
8714
8715 mutex_lock(&parent->child_mutex);
8716 list_del_init(&event->child_list);
8717 mutex_unlock(&parent->child_mutex);
8718
a6fa941d 8719 put_event(parent);
889ff015 8720
652884fe 8721 raw_spin_lock_irq(&ctx->lock);
8a49542c 8722 perf_group_detach(event);
889ff015 8723 list_del_event(event, ctx);
652884fe 8724 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8725 free_event(event);
8726}
8727
bbbee908 8728/*
652884fe 8729 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8730 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8731 *
8732 * Not all locks are strictly required, but take them anyway to be nice and
8733 * help out with the lockdep assertions.
bbbee908 8734 */
cdd6c482 8735void perf_event_free_task(struct task_struct *task)
bbbee908 8736{
8dc85d54 8737 struct perf_event_context *ctx;
cdd6c482 8738 struct perf_event *event, *tmp;
8dc85d54 8739 int ctxn;
bbbee908 8740
8dc85d54
PZ
8741 for_each_task_context_nr(ctxn) {
8742 ctx = task->perf_event_ctxp[ctxn];
8743 if (!ctx)
8744 continue;
bbbee908 8745
8dc85d54 8746 mutex_lock(&ctx->mutex);
bbbee908 8747again:
8dc85d54
PZ
8748 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8749 group_entry)
8750 perf_free_event(event, ctx);
bbbee908 8751
8dc85d54
PZ
8752 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8753 group_entry)
8754 perf_free_event(event, ctx);
bbbee908 8755
8dc85d54
PZ
8756 if (!list_empty(&ctx->pinned_groups) ||
8757 !list_empty(&ctx->flexible_groups))
8758 goto again;
bbbee908 8759
8dc85d54 8760 mutex_unlock(&ctx->mutex);
bbbee908 8761
8dc85d54
PZ
8762 put_ctx(ctx);
8763 }
889ff015
FW
8764}
8765
4e231c79
PZ
8766void perf_event_delayed_put(struct task_struct *task)
8767{
8768 int ctxn;
8769
8770 for_each_task_context_nr(ctxn)
8771 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8772}
8773
ffe8690c
KX
8774struct perf_event *perf_event_get(unsigned int fd)
8775{
8776 int err;
8777 struct fd f;
8778 struct perf_event *event;
8779
8780 err = perf_fget_light(fd, &f);
8781 if (err)
8782 return ERR_PTR(err);
8783
8784 event = f.file->private_data;
8785 atomic_long_inc(&event->refcount);
8786 fdput(f);
8787
8788 return event;
8789}
8790
8791const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8792{
8793 if (!event)
8794 return ERR_PTR(-EINVAL);
8795
8796 return &event->attr;
8797}
8798
97dee4f3
PZ
8799/*
8800 * inherit a event from parent task to child task:
8801 */
8802static struct perf_event *
8803inherit_event(struct perf_event *parent_event,
8804 struct task_struct *parent,
8805 struct perf_event_context *parent_ctx,
8806 struct task_struct *child,
8807 struct perf_event *group_leader,
8808 struct perf_event_context *child_ctx)
8809{
1929def9 8810 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8811 struct perf_event *child_event;
cee010ec 8812 unsigned long flags;
97dee4f3
PZ
8813
8814 /*
8815 * Instead of creating recursive hierarchies of events,
8816 * we link inherited events back to the original parent,
8817 * which has a filp for sure, which we use as the reference
8818 * count:
8819 */
8820 if (parent_event->parent)
8821 parent_event = parent_event->parent;
8822
8823 child_event = perf_event_alloc(&parent_event->attr,
8824 parent_event->cpu,
d580ff86 8825 child,
97dee4f3 8826 group_leader, parent_event,
79dff51e 8827 NULL, NULL, -1);
97dee4f3
PZ
8828 if (IS_ERR(child_event))
8829 return child_event;
a6fa941d 8830
fadfe7be
JO
8831 if (is_orphaned_event(parent_event) ||
8832 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8833 free_event(child_event);
8834 return NULL;
8835 }
8836
97dee4f3
PZ
8837 get_ctx(child_ctx);
8838
8839 /*
8840 * Make the child state follow the state of the parent event,
8841 * not its attr.disabled bit. We hold the parent's mutex,
8842 * so we won't race with perf_event_{en, dis}able_family.
8843 */
1929def9 8844 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8845 child_event->state = PERF_EVENT_STATE_INACTIVE;
8846 else
8847 child_event->state = PERF_EVENT_STATE_OFF;
8848
8849 if (parent_event->attr.freq) {
8850 u64 sample_period = parent_event->hw.sample_period;
8851 struct hw_perf_event *hwc = &child_event->hw;
8852
8853 hwc->sample_period = sample_period;
8854 hwc->last_period = sample_period;
8855
8856 local64_set(&hwc->period_left, sample_period);
8857 }
8858
8859 child_event->ctx = child_ctx;
8860 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8861 child_event->overflow_handler_context
8862 = parent_event->overflow_handler_context;
97dee4f3 8863
614b6780
TG
8864 /*
8865 * Precalculate sample_data sizes
8866 */
8867 perf_event__header_size(child_event);
6844c09d 8868 perf_event__id_header_size(child_event);
614b6780 8869
97dee4f3
PZ
8870 /*
8871 * Link it up in the child's context:
8872 */
cee010ec 8873 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8874 add_event_to_ctx(child_event, child_ctx);
cee010ec 8875 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8876
97dee4f3
PZ
8877 /*
8878 * Link this into the parent event's child list
8879 */
8880 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8881 mutex_lock(&parent_event->child_mutex);
8882 list_add_tail(&child_event->child_list, &parent_event->child_list);
8883 mutex_unlock(&parent_event->child_mutex);
8884
8885 return child_event;
8886}
8887
8888static int inherit_group(struct perf_event *parent_event,
8889 struct task_struct *parent,
8890 struct perf_event_context *parent_ctx,
8891 struct task_struct *child,
8892 struct perf_event_context *child_ctx)
8893{
8894 struct perf_event *leader;
8895 struct perf_event *sub;
8896 struct perf_event *child_ctr;
8897
8898 leader = inherit_event(parent_event, parent, parent_ctx,
8899 child, NULL, child_ctx);
8900 if (IS_ERR(leader))
8901 return PTR_ERR(leader);
8902 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8903 child_ctr = inherit_event(sub, parent, parent_ctx,
8904 child, leader, child_ctx);
8905 if (IS_ERR(child_ctr))
8906 return PTR_ERR(child_ctr);
8907 }
8908 return 0;
889ff015
FW
8909}
8910
8911static int
8912inherit_task_group(struct perf_event *event, struct task_struct *parent,
8913 struct perf_event_context *parent_ctx,
8dc85d54 8914 struct task_struct *child, int ctxn,
889ff015
FW
8915 int *inherited_all)
8916{
8917 int ret;
8dc85d54 8918 struct perf_event_context *child_ctx;
889ff015
FW
8919
8920 if (!event->attr.inherit) {
8921 *inherited_all = 0;
8922 return 0;
bbbee908
PZ
8923 }
8924
fe4b04fa 8925 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8926 if (!child_ctx) {
8927 /*
8928 * This is executed from the parent task context, so
8929 * inherit events that have been marked for cloning.
8930 * First allocate and initialize a context for the
8931 * child.
8932 */
bbbee908 8933
734df5ab 8934 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8935 if (!child_ctx)
8936 return -ENOMEM;
bbbee908 8937
8dc85d54 8938 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8939 }
8940
8941 ret = inherit_group(event, parent, parent_ctx,
8942 child, child_ctx);
8943
8944 if (ret)
8945 *inherited_all = 0;
8946
8947 return ret;
bbbee908
PZ
8948}
8949
9b51f66d 8950/*
cdd6c482 8951 * Initialize the perf_event context in task_struct
9b51f66d 8952 */
985c8dcb 8953static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8954{
889ff015 8955 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8956 struct perf_event_context *cloned_ctx;
8957 struct perf_event *event;
9b51f66d 8958 struct task_struct *parent = current;
564c2b21 8959 int inherited_all = 1;
dddd3379 8960 unsigned long flags;
6ab423e0 8961 int ret = 0;
9b51f66d 8962
8dc85d54 8963 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8964 return 0;
8965
ad3a37de 8966 /*
25346b93
PM
8967 * If the parent's context is a clone, pin it so it won't get
8968 * swapped under us.
ad3a37de 8969 */
8dc85d54 8970 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8971 if (!parent_ctx)
8972 return 0;
25346b93 8973
ad3a37de
PM
8974 /*
8975 * No need to check if parent_ctx != NULL here; since we saw
8976 * it non-NULL earlier, the only reason for it to become NULL
8977 * is if we exit, and since we're currently in the middle of
8978 * a fork we can't be exiting at the same time.
8979 */
ad3a37de 8980
9b51f66d
IM
8981 /*
8982 * Lock the parent list. No need to lock the child - not PID
8983 * hashed yet and not running, so nobody can access it.
8984 */
d859e29f 8985 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8986
8987 /*
8988 * We dont have to disable NMIs - we are only looking at
8989 * the list, not manipulating it:
8990 */
889ff015 8991 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8992 ret = inherit_task_group(event, parent, parent_ctx,
8993 child, ctxn, &inherited_all);
889ff015
FW
8994 if (ret)
8995 break;
8996 }
b93f7978 8997
dddd3379
TG
8998 /*
8999 * We can't hold ctx->lock when iterating the ->flexible_group list due
9000 * to allocations, but we need to prevent rotation because
9001 * rotate_ctx() will change the list from interrupt context.
9002 */
9003 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9004 parent_ctx->rotate_disable = 1;
9005 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9006
889ff015 9007 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9008 ret = inherit_task_group(event, parent, parent_ctx,
9009 child, ctxn, &inherited_all);
889ff015 9010 if (ret)
9b51f66d 9011 break;
564c2b21
PM
9012 }
9013
dddd3379
TG
9014 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9015 parent_ctx->rotate_disable = 0;
dddd3379 9016
8dc85d54 9017 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9018
05cbaa28 9019 if (child_ctx && inherited_all) {
564c2b21
PM
9020 /*
9021 * Mark the child context as a clone of the parent
9022 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9023 *
9024 * Note that if the parent is a clone, the holding of
9025 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9026 */
c5ed5145 9027 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9028 if (cloned_ctx) {
9029 child_ctx->parent_ctx = cloned_ctx;
25346b93 9030 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9031 } else {
9032 child_ctx->parent_ctx = parent_ctx;
9033 child_ctx->parent_gen = parent_ctx->generation;
9034 }
9035 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9036 }
9037
c5ed5145 9038 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9039 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9040
25346b93 9041 perf_unpin_context(parent_ctx);
fe4b04fa 9042 put_ctx(parent_ctx);
ad3a37de 9043
6ab423e0 9044 return ret;
9b51f66d
IM
9045}
9046
8dc85d54
PZ
9047/*
9048 * Initialize the perf_event context in task_struct
9049 */
9050int perf_event_init_task(struct task_struct *child)
9051{
9052 int ctxn, ret;
9053
8550d7cb
ON
9054 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9055 mutex_init(&child->perf_event_mutex);
9056 INIT_LIST_HEAD(&child->perf_event_list);
9057
8dc85d54
PZ
9058 for_each_task_context_nr(ctxn) {
9059 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9060 if (ret) {
9061 perf_event_free_task(child);
8dc85d54 9062 return ret;
6c72e350 9063 }
8dc85d54
PZ
9064 }
9065
9066 return 0;
9067}
9068
220b140b
PM
9069static void __init perf_event_init_all_cpus(void)
9070{
b28ab83c 9071 struct swevent_htable *swhash;
220b140b 9072 int cpu;
220b140b
PM
9073
9074 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9075 swhash = &per_cpu(swevent_htable, cpu);
9076 mutex_init(&swhash->hlist_mutex);
2fde4f94 9077 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9078 }
9079}
9080
0db0628d 9081static void perf_event_init_cpu(int cpu)
0793a61d 9082{
108b02cf 9083 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9084
b28ab83c 9085 mutex_lock(&swhash->hlist_mutex);
39af6b16 9086 swhash->online = true;
4536e4d1 9087 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9088 struct swevent_hlist *hlist;
9089
b28ab83c
PZ
9090 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9091 WARN_ON(!hlist);
9092 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9093 }
b28ab83c 9094 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9095}
9096
2965faa5 9097#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9098static void __perf_event_exit_context(void *__info)
0793a61d 9099{
226424ee 9100 struct remove_event re = { .detach_group = true };
108b02cf 9101 struct perf_event_context *ctx = __info;
0793a61d 9102
e3703f8c 9103 rcu_read_lock();
46ce0fe9
PZ
9104 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9105 __perf_remove_from_context(&re);
e3703f8c 9106 rcu_read_unlock();
0793a61d 9107}
108b02cf
PZ
9108
9109static void perf_event_exit_cpu_context(int cpu)
9110{
9111 struct perf_event_context *ctx;
9112 struct pmu *pmu;
9113 int idx;
9114
9115 idx = srcu_read_lock(&pmus_srcu);
9116 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9117 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9118
9119 mutex_lock(&ctx->mutex);
9120 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9121 mutex_unlock(&ctx->mutex);
9122 }
9123 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9124}
9125
cdd6c482 9126static void perf_event_exit_cpu(int cpu)
0793a61d 9127{
b28ab83c 9128 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9129
e3703f8c
PZ
9130 perf_event_exit_cpu_context(cpu);
9131
b28ab83c 9132 mutex_lock(&swhash->hlist_mutex);
39af6b16 9133 swhash->online = false;
b28ab83c
PZ
9134 swevent_hlist_release(swhash);
9135 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9136}
9137#else
cdd6c482 9138static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9139#endif
9140
c277443c
PZ
9141static int
9142perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9143{
9144 int cpu;
9145
9146 for_each_online_cpu(cpu)
9147 perf_event_exit_cpu(cpu);
9148
9149 return NOTIFY_OK;
9150}
9151
9152/*
9153 * Run the perf reboot notifier at the very last possible moment so that
9154 * the generic watchdog code runs as long as possible.
9155 */
9156static struct notifier_block perf_reboot_notifier = {
9157 .notifier_call = perf_reboot,
9158 .priority = INT_MIN,
9159};
9160
0db0628d 9161static int
0793a61d
TG
9162perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9163{
9164 unsigned int cpu = (long)hcpu;
9165
4536e4d1 9166 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9167
9168 case CPU_UP_PREPARE:
5e11637e 9169 case CPU_DOWN_FAILED:
cdd6c482 9170 perf_event_init_cpu(cpu);
0793a61d
TG
9171 break;
9172
5e11637e 9173 case CPU_UP_CANCELED:
0793a61d 9174 case CPU_DOWN_PREPARE:
cdd6c482 9175 perf_event_exit_cpu(cpu);
0793a61d 9176 break;
0793a61d
TG
9177 default:
9178 break;
9179 }
9180
9181 return NOTIFY_OK;
9182}
9183
cdd6c482 9184void __init perf_event_init(void)
0793a61d 9185{
3c502e7a
JW
9186 int ret;
9187
2e80a82a
PZ
9188 idr_init(&pmu_idr);
9189
220b140b 9190 perf_event_init_all_cpus();
b0a873eb 9191 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9192 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9193 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9194 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9195 perf_tp_register();
9196 perf_cpu_notifier(perf_cpu_notify);
c277443c 9197 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9198
9199 ret = init_hw_breakpoint();
9200 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9201
9202 /* do not patch jump label more than once per second */
9203 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9204
9205 /*
9206 * Build time assertion that we keep the data_head at the intended
9207 * location. IOW, validation we got the __reserved[] size right.
9208 */
9209 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9210 != 1024);
0793a61d 9211}
abe43400 9212
fd979c01
CS
9213ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9214 char *page)
9215{
9216 struct perf_pmu_events_attr *pmu_attr =
9217 container_of(attr, struct perf_pmu_events_attr, attr);
9218
9219 if (pmu_attr->event_str)
9220 return sprintf(page, "%s\n", pmu_attr->event_str);
9221
9222 return 0;
9223}
9224
abe43400
PZ
9225static int __init perf_event_sysfs_init(void)
9226{
9227 struct pmu *pmu;
9228 int ret;
9229
9230 mutex_lock(&pmus_lock);
9231
9232 ret = bus_register(&pmu_bus);
9233 if (ret)
9234 goto unlock;
9235
9236 list_for_each_entry(pmu, &pmus, entry) {
9237 if (!pmu->name || pmu->type < 0)
9238 continue;
9239
9240 ret = pmu_dev_alloc(pmu);
9241 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9242 }
9243 pmu_bus_running = 1;
9244 ret = 0;
9245
9246unlock:
9247 mutex_unlock(&pmus_lock);
9248
9249 return ret;
9250}
9251device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9252
9253#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9254static struct cgroup_subsys_state *
9255perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9256{
9257 struct perf_cgroup *jc;
e5d1367f 9258
1b15d055 9259 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9260 if (!jc)
9261 return ERR_PTR(-ENOMEM);
9262
e5d1367f
SE
9263 jc->info = alloc_percpu(struct perf_cgroup_info);
9264 if (!jc->info) {
9265 kfree(jc);
9266 return ERR_PTR(-ENOMEM);
9267 }
9268
e5d1367f
SE
9269 return &jc->css;
9270}
9271
eb95419b 9272static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9273{
eb95419b
TH
9274 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9275
e5d1367f
SE
9276 free_percpu(jc->info);
9277 kfree(jc);
9278}
9279
9280static int __perf_cgroup_move(void *info)
9281{
9282 struct task_struct *task = info;
9283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9284 return 0;
9285}
9286
eb95419b
TH
9287static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9288 struct cgroup_taskset *tset)
e5d1367f 9289{
bb9d97b6
TH
9290 struct task_struct *task;
9291
924f0d9a 9292 cgroup_taskset_for_each(task, tset)
bb9d97b6 9293 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9294}
9295
eb95419b
TH
9296static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9297 struct cgroup_subsys_state *old_css,
761b3ef5 9298 struct task_struct *task)
e5d1367f
SE
9299{
9300 /*
9301 * cgroup_exit() is called in the copy_process() failure path.
9302 * Ignore this case since the task hasn't ran yet, this avoids
9303 * trying to poke a half freed task state from generic code.
9304 */
9305 if (!(task->flags & PF_EXITING))
9306 return;
9307
bb9d97b6 9308 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9309}
9310
073219e9 9311struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9312 .css_alloc = perf_cgroup_css_alloc,
9313 .css_free = perf_cgroup_css_free,
e7e7ee2e 9314 .exit = perf_cgroup_exit,
bb9d97b6 9315 .attach = perf_cgroup_attach,
e5d1367f
SE
9316};
9317#endif /* CONFIG_CGROUP_PERF */