perf/core: Fix RCU problem with cgroup context switching code
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 198
18ab2cd3 199static void update_perf_cpu_limits(void)
14c63f17
DH
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
18ab2cd3 475static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
e5d1367f
SE
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
e5d1367f 497
e5d1367f
SE
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
e566b76e 519 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
e5d1367f
SE
524 */
525 cpuctx->cgrp = perf_cgroup_from_task(task);
526 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 }
facc4307
PZ
528 perf_pmu_enable(cpuctx->ctx.pmu);
529 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 530 }
e5d1367f
SE
531 }
532
e5d1367f
SE
533 local_irq_restore(flags);
534}
535
a8d757ef
SE
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
e5d1367f 538{
a8d757ef
SE
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
541
ddaaf4e2 542 rcu_read_lock();
a8d757ef
SE
543 /*
544 * we come here when we know perf_cgroup_events > 0
545 */
546 cgrp1 = perf_cgroup_from_task(task);
547
548 /*
549 * next is NULL when called from perf_event_enable_on_exec()
550 * that will systematically cause a cgroup_switch()
551 */
552 if (next)
553 cgrp2 = perf_cgroup_from_task(next);
554
555 /*
556 * only schedule out current cgroup events if we know
557 * that we are switching to a different cgroup. Otherwise,
558 * do no touch the cgroup events.
559 */
560 if (cgrp1 != cgrp2)
561 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
562
563 rcu_read_unlock();
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
ddaaf4e2 572 rcu_read_lock();
a8d757ef
SE
573 /*
574 * we come here when we know perf_cgroup_events > 0
575 */
576 cgrp1 = perf_cgroup_from_task(task);
577
578 /* prev can never be NULL */
579 cgrp2 = perf_cgroup_from_task(prev);
580
581 /*
582 * only need to schedule in cgroup events if we are changing
583 * cgroup during ctxsw. Cgroup events were not scheduled
584 * out of ctxsw out if that was not the case.
585 */
586 if (cgrp1 != cgrp2)
587 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
588
589 rcu_read_unlock();
e5d1367f
SE
590}
591
592static inline int perf_cgroup_connect(int fd, struct perf_event *event,
593 struct perf_event_attr *attr,
594 struct perf_event *group_leader)
595{
596 struct perf_cgroup *cgrp;
597 struct cgroup_subsys_state *css;
2903ff01
AV
598 struct fd f = fdget(fd);
599 int ret = 0;
e5d1367f 600
2903ff01 601 if (!f.file)
e5d1367f
SE
602 return -EBADF;
603
b583043e 604 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 605 &perf_event_cgrp_subsys);
3db272c0
LZ
606 if (IS_ERR(css)) {
607 ret = PTR_ERR(css);
608 goto out;
609 }
e5d1367f
SE
610
611 cgrp = container_of(css, struct perf_cgroup, css);
612 event->cgrp = cgrp;
613
614 /*
615 * all events in a group must monitor
616 * the same cgroup because a task belongs
617 * to only one perf cgroup at a time
618 */
619 if (group_leader && group_leader->cgrp != cgrp) {
620 perf_detach_cgroup(event);
621 ret = -EINVAL;
e5d1367f 622 }
3db272c0 623out:
2903ff01 624 fdput(f);
e5d1367f
SE
625 return ret;
626}
627
628static inline void
629perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630{
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634}
635
636static inline void
637perf_cgroup_defer_enabled(struct perf_event *event)
638{
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647}
648
649static inline void
650perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652{
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668}
669#else /* !CONFIG_CGROUP_PERF */
670
671static inline bool
672perf_cgroup_match(struct perf_event *event)
673{
674 return true;
675}
676
677static inline void perf_detach_cgroup(struct perf_event *event)
678{}
679
680static inline int is_cgroup_event(struct perf_event *event)
681{
682 return 0;
683}
684
685static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline void update_cgrp_time_from_event(struct perf_event *event)
691{
692}
693
694static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695{
696}
697
a8d757ef
SE
698static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
e5d1367f
SE
700{
701}
702
a8d757ef
SE
703static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
e5d1367f
SE
705{
706}
707
708static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711{
712 return -EINVAL;
713}
714
715static inline void
3f7cce3c
SE
716perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
e5d1367f
SE
718{
719}
720
721void
722perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723{
724}
725
726static inline void
727perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728{
729}
730
731static inline u64 perf_cgroup_event_time(struct perf_event *event)
732{
733 return 0;
734}
735
736static inline void
737perf_cgroup_defer_enabled(struct perf_event *event)
738{
739}
740
741static inline void
742perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744{
745}
746#endif
747
9e630205
SE
748/*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752#define PERF_CPU_HRTIMER (1000 / HZ)
753/*
754 * function must be called with interrupts disbled
755 */
272325c4 756static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
757{
758 struct perf_cpu_context *cpuctx;
9e630205
SE
759 int rotations = 0;
760
761 WARN_ON(!irqs_disabled());
762
763 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
764 rotations = perf_rotate_context(cpuctx);
765
4cfafd30
PZ
766 raw_spin_lock(&cpuctx->hrtimer_lock);
767 if (rotations)
9e630205 768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
769 else
770 cpuctx->hrtimer_active = 0;
771 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 772
4cfafd30 773 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
774}
775
272325c4 776static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 777{
272325c4 778 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 779 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 780 u64 interval;
9e630205
SE
781
782 /* no multiplexing needed for SW PMU */
783 if (pmu->task_ctx_nr == perf_sw_context)
784 return;
785
62b85639
SE
786 /*
787 * check default is sane, if not set then force to
788 * default interval (1/tick)
789 */
272325c4
PZ
790 interval = pmu->hrtimer_interval_ms;
791 if (interval < 1)
792 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 793
272325c4 794 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 795
4cfafd30
PZ
796 raw_spin_lock_init(&cpuctx->hrtimer_lock);
797 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 798 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
799}
800
272325c4 801static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 802{
272325c4 803 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 804 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 805 unsigned long flags;
9e630205
SE
806
807 /* not for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 809 return 0;
9e630205 810
4cfafd30
PZ
811 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
812 if (!cpuctx->hrtimer_active) {
813 cpuctx->hrtimer_active = 1;
814 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
815 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
816 }
817 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 818
272325c4 819 return 0;
9e630205
SE
820}
821
33696fc0 822void perf_pmu_disable(struct pmu *pmu)
9e35ad38 823{
33696fc0
PZ
824 int *count = this_cpu_ptr(pmu->pmu_disable_count);
825 if (!(*count)++)
826 pmu->pmu_disable(pmu);
9e35ad38 827}
9e35ad38 828
33696fc0 829void perf_pmu_enable(struct pmu *pmu)
9e35ad38 830{
33696fc0
PZ
831 int *count = this_cpu_ptr(pmu->pmu_disable_count);
832 if (!--(*count))
833 pmu->pmu_enable(pmu);
9e35ad38 834}
9e35ad38 835
2fde4f94 836static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
837
838/*
2fde4f94
MR
839 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
840 * perf_event_task_tick() are fully serialized because they're strictly cpu
841 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
842 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 843 */
2fde4f94 844static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 845{
2fde4f94 846 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 847
e9d2b064 848 WARN_ON(!irqs_disabled());
b5ab4cd5 849
2fde4f94
MR
850 WARN_ON(!list_empty(&ctx->active_ctx_list));
851
852 list_add(&ctx->active_ctx_list, head);
853}
854
855static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
856{
857 WARN_ON(!irqs_disabled());
858
859 WARN_ON(list_empty(&ctx->active_ctx_list));
860
861 list_del_init(&ctx->active_ctx_list);
9e35ad38 862}
9e35ad38 863
cdd6c482 864static void get_ctx(struct perf_event_context *ctx)
a63eaf34 865{
e5289d4a 866 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
867}
868
4af57ef2
YZ
869static void free_ctx(struct rcu_head *head)
870{
871 struct perf_event_context *ctx;
872
873 ctx = container_of(head, struct perf_event_context, rcu_head);
874 kfree(ctx->task_ctx_data);
875 kfree(ctx);
876}
877
cdd6c482 878static void put_ctx(struct perf_event_context *ctx)
a63eaf34 879{
564c2b21
PM
880 if (atomic_dec_and_test(&ctx->refcount)) {
881 if (ctx->parent_ctx)
882 put_ctx(ctx->parent_ctx);
c93f7669
PM
883 if (ctx->task)
884 put_task_struct(ctx->task);
4af57ef2 885 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 886 }
a63eaf34
PM
887}
888
f63a8daa
PZ
889/*
890 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
891 * perf_pmu_migrate_context() we need some magic.
892 *
893 * Those places that change perf_event::ctx will hold both
894 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
895 *
8b10c5e2
PZ
896 * Lock ordering is by mutex address. There are two other sites where
897 * perf_event_context::mutex nests and those are:
898 *
899 * - perf_event_exit_task_context() [ child , 0 ]
900 * __perf_event_exit_task()
901 * sync_child_event()
902 * put_event() [ parent, 1 ]
903 *
904 * - perf_event_init_context() [ parent, 0 ]
905 * inherit_task_group()
906 * inherit_group()
907 * inherit_event()
908 * perf_event_alloc()
909 * perf_init_event()
910 * perf_try_init_event() [ child , 1 ]
911 *
912 * While it appears there is an obvious deadlock here -- the parent and child
913 * nesting levels are inverted between the two. This is in fact safe because
914 * life-time rules separate them. That is an exiting task cannot fork, and a
915 * spawning task cannot (yet) exit.
916 *
917 * But remember that that these are parent<->child context relations, and
918 * migration does not affect children, therefore these two orderings should not
919 * interact.
f63a8daa
PZ
920 *
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
925 *
926 * The places that change perf_event::ctx will issue:
927 *
928 * perf_remove_from_context();
929 * synchronize_rcu();
930 * perf_install_in_context();
931 *
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
937 *
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940 * function.
941 *
942 * Lock order:
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
948 * mmap_sem
949 */
a83fe28e
PZ
950static struct perf_event_context *
951perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
952{
953 struct perf_event_context *ctx;
954
955again:
956 rcu_read_lock();
957 ctx = ACCESS_ONCE(event->ctx);
958 if (!atomic_inc_not_zero(&ctx->refcount)) {
959 rcu_read_unlock();
960 goto again;
961 }
962 rcu_read_unlock();
963
a83fe28e 964 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
965 if (event->ctx != ctx) {
966 mutex_unlock(&ctx->mutex);
967 put_ctx(ctx);
968 goto again;
969 }
970
971 return ctx;
972}
973
a83fe28e
PZ
974static inline struct perf_event_context *
975perf_event_ctx_lock(struct perf_event *event)
976{
977 return perf_event_ctx_lock_nested(event, 0);
978}
979
f63a8daa
PZ
980static void perf_event_ctx_unlock(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983 mutex_unlock(&ctx->mutex);
984 put_ctx(ctx);
985}
986
211de6eb
PZ
987/*
988 * This must be done under the ctx->lock, such as to serialize against
989 * context_equiv(), therefore we cannot call put_ctx() since that might end up
990 * calling scheduler related locks and ctx->lock nests inside those.
991 */
992static __must_check struct perf_event_context *
993unclone_ctx(struct perf_event_context *ctx)
71a851b4 994{
211de6eb
PZ
995 struct perf_event_context *parent_ctx = ctx->parent_ctx;
996
997 lockdep_assert_held(&ctx->lock);
998
999 if (parent_ctx)
71a851b4 1000 ctx->parent_ctx = NULL;
5a3126d4 1001 ctx->generation++;
211de6eb
PZ
1002
1003 return parent_ctx;
71a851b4
PZ
1004}
1005
6844c09d
ACM
1006static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1007{
1008 /*
1009 * only top level events have the pid namespace they were created in
1010 */
1011 if (event->parent)
1012 event = event->parent;
1013
1014 return task_tgid_nr_ns(p, event->ns);
1015}
1016
1017static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1018{
1019 /*
1020 * only top level events have the pid namespace they were created in
1021 */
1022 if (event->parent)
1023 event = event->parent;
1024
1025 return task_pid_nr_ns(p, event->ns);
1026}
1027
7f453c24 1028/*
cdd6c482 1029 * If we inherit events we want to return the parent event id
7f453c24
PZ
1030 * to userspace.
1031 */
cdd6c482 1032static u64 primary_event_id(struct perf_event *event)
7f453c24 1033{
cdd6c482 1034 u64 id = event->id;
7f453c24 1035
cdd6c482
IM
1036 if (event->parent)
1037 id = event->parent->id;
7f453c24
PZ
1038
1039 return id;
1040}
1041
25346b93 1042/*
cdd6c482 1043 * Get the perf_event_context for a task and lock it.
25346b93
PM
1044 * This has to cope with with the fact that until it is locked,
1045 * the context could get moved to another task.
1046 */
cdd6c482 1047static struct perf_event_context *
8dc85d54 1048perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1049{
cdd6c482 1050 struct perf_event_context *ctx;
25346b93 1051
9ed6060d 1052retry:
058ebd0e
PZ
1053 /*
1054 * One of the few rules of preemptible RCU is that one cannot do
1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1056 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1057 * rcu_read_unlock_special().
1058 *
1059 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1060 * side critical section has interrupts disabled.
058ebd0e 1061 */
2fd59077 1062 local_irq_save(*flags);
058ebd0e 1063 rcu_read_lock();
8dc85d54 1064 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1065 if (ctx) {
1066 /*
1067 * If this context is a clone of another, it might
1068 * get swapped for another underneath us by
cdd6c482 1069 * perf_event_task_sched_out, though the
25346b93
PM
1070 * rcu_read_lock() protects us from any context
1071 * getting freed. Lock the context and check if it
1072 * got swapped before we could get the lock, and retry
1073 * if so. If we locked the right context, then it
1074 * can't get swapped on us any more.
1075 */
2fd59077 1076 raw_spin_lock(&ctx->lock);
8dc85d54 1077 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1078 raw_spin_unlock(&ctx->lock);
058ebd0e 1079 rcu_read_unlock();
2fd59077 1080 local_irq_restore(*flags);
25346b93
PM
1081 goto retry;
1082 }
b49a9e7e
PZ
1083
1084 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1085 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1086 ctx = NULL;
1087 }
25346b93
PM
1088 }
1089 rcu_read_unlock();
2fd59077
PM
1090 if (!ctx)
1091 local_irq_restore(*flags);
25346b93
PM
1092 return ctx;
1093}
1094
1095/*
1096 * Get the context for a task and increment its pin_count so it
1097 * can't get swapped to another task. This also increments its
1098 * reference count so that the context can't get freed.
1099 */
8dc85d54
PZ
1100static struct perf_event_context *
1101perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1102{
cdd6c482 1103 struct perf_event_context *ctx;
25346b93
PM
1104 unsigned long flags;
1105
8dc85d54 1106 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1107 if (ctx) {
1108 ++ctx->pin_count;
e625cce1 1109 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1110 }
1111 return ctx;
1112}
1113
cdd6c482 1114static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1115{
1116 unsigned long flags;
1117
e625cce1 1118 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1119 --ctx->pin_count;
e625cce1 1120 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1121}
1122
f67218c3
PZ
1123/*
1124 * Update the record of the current time in a context.
1125 */
1126static void update_context_time(struct perf_event_context *ctx)
1127{
1128 u64 now = perf_clock();
1129
1130 ctx->time += now - ctx->timestamp;
1131 ctx->timestamp = now;
1132}
1133
4158755d
SE
1134static u64 perf_event_time(struct perf_event *event)
1135{
1136 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1137
1138 if (is_cgroup_event(event))
1139 return perf_cgroup_event_time(event);
1140
4158755d
SE
1141 return ctx ? ctx->time : 0;
1142}
1143
f67218c3
PZ
1144/*
1145 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1146 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1147 */
1148static void update_event_times(struct perf_event *event)
1149{
1150 struct perf_event_context *ctx = event->ctx;
1151 u64 run_end;
1152
1153 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1154 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1155 return;
e5d1367f
SE
1156 /*
1157 * in cgroup mode, time_enabled represents
1158 * the time the event was enabled AND active
1159 * tasks were in the monitored cgroup. This is
1160 * independent of the activity of the context as
1161 * there may be a mix of cgroup and non-cgroup events.
1162 *
1163 * That is why we treat cgroup events differently
1164 * here.
1165 */
1166 if (is_cgroup_event(event))
46cd6a7f 1167 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1168 else if (ctx->is_active)
1169 run_end = ctx->time;
acd1d7c1
PZ
1170 else
1171 run_end = event->tstamp_stopped;
1172
1173 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1174
1175 if (event->state == PERF_EVENT_STATE_INACTIVE)
1176 run_end = event->tstamp_stopped;
1177 else
4158755d 1178 run_end = perf_event_time(event);
f67218c3
PZ
1179
1180 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1181
f67218c3
PZ
1182}
1183
96c21a46
PZ
1184/*
1185 * Update total_time_enabled and total_time_running for all events in a group.
1186 */
1187static void update_group_times(struct perf_event *leader)
1188{
1189 struct perf_event *event;
1190
1191 update_event_times(leader);
1192 list_for_each_entry(event, &leader->sibling_list, group_entry)
1193 update_event_times(event);
1194}
1195
889ff015
FW
1196static struct list_head *
1197ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1198{
1199 if (event->attr.pinned)
1200 return &ctx->pinned_groups;
1201 else
1202 return &ctx->flexible_groups;
1203}
1204
fccc714b 1205/*
cdd6c482 1206 * Add a event from the lists for its context.
fccc714b
PZ
1207 * Must be called with ctx->mutex and ctx->lock held.
1208 */
04289bb9 1209static void
cdd6c482 1210list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1211{
8a49542c
PZ
1212 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1213 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1214
1215 /*
8a49542c
PZ
1216 * If we're a stand alone event or group leader, we go to the context
1217 * list, group events are kept attached to the group so that
1218 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1219 */
8a49542c 1220 if (event->group_leader == event) {
889ff015
FW
1221 struct list_head *list;
1222
d6f962b5
FW
1223 if (is_software_event(event))
1224 event->group_flags |= PERF_GROUP_SOFTWARE;
1225
889ff015
FW
1226 list = ctx_group_list(event, ctx);
1227 list_add_tail(&event->group_entry, list);
5c148194 1228 }
592903cd 1229
08309379 1230 if (is_cgroup_event(event))
e5d1367f 1231 ctx->nr_cgroups++;
e5d1367f 1232
cdd6c482
IM
1233 list_add_rcu(&event->event_entry, &ctx->event_list);
1234 ctx->nr_events++;
1235 if (event->attr.inherit_stat)
bfbd3381 1236 ctx->nr_stat++;
5a3126d4
PZ
1237
1238 ctx->generation++;
04289bb9
IM
1239}
1240
0231bb53
JO
1241/*
1242 * Initialize event state based on the perf_event_attr::disabled.
1243 */
1244static inline void perf_event__state_init(struct perf_event *event)
1245{
1246 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1247 PERF_EVENT_STATE_INACTIVE;
1248}
1249
a723968c 1250static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1266 nr += nr_siblings;
c320c7b7
ACM
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
a723968c 1274static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1275{
1276 struct perf_sample_data *data;
c320c7b7
ACM
1277 u16 size = 0;
1278
c320c7b7
ACM
1279 if (sample_type & PERF_SAMPLE_IP)
1280 size += sizeof(data->ip);
1281
6844c09d
ACM
1282 if (sample_type & PERF_SAMPLE_ADDR)
1283 size += sizeof(data->addr);
1284
1285 if (sample_type & PERF_SAMPLE_PERIOD)
1286 size += sizeof(data->period);
1287
c3feedf2
AK
1288 if (sample_type & PERF_SAMPLE_WEIGHT)
1289 size += sizeof(data->weight);
1290
6844c09d
ACM
1291 if (sample_type & PERF_SAMPLE_READ)
1292 size += event->read_size;
1293
d6be9ad6
SE
1294 if (sample_type & PERF_SAMPLE_DATA_SRC)
1295 size += sizeof(data->data_src.val);
1296
fdfbbd07
AK
1297 if (sample_type & PERF_SAMPLE_TRANSACTION)
1298 size += sizeof(data->txn);
1299
6844c09d
ACM
1300 event->header_size = size;
1301}
1302
a723968c
PZ
1303/*
1304 * Called at perf_event creation and when events are attached/detached from a
1305 * group.
1306 */
1307static void perf_event__header_size(struct perf_event *event)
1308{
1309 __perf_event_read_size(event,
1310 event->group_leader->nr_siblings);
1311 __perf_event_header_size(event, event->attr.sample_type);
1312}
1313
6844c09d
ACM
1314static void perf_event__id_header_size(struct perf_event *event)
1315{
1316 struct perf_sample_data *data;
1317 u64 sample_type = event->attr.sample_type;
1318 u16 size = 0;
1319
c320c7b7
ACM
1320 if (sample_type & PERF_SAMPLE_TID)
1321 size += sizeof(data->tid_entry);
1322
1323 if (sample_type & PERF_SAMPLE_TIME)
1324 size += sizeof(data->time);
1325
ff3d527c
AH
1326 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1327 size += sizeof(data->id);
1328
c320c7b7
ACM
1329 if (sample_type & PERF_SAMPLE_ID)
1330 size += sizeof(data->id);
1331
1332 if (sample_type & PERF_SAMPLE_STREAM_ID)
1333 size += sizeof(data->stream_id);
1334
1335 if (sample_type & PERF_SAMPLE_CPU)
1336 size += sizeof(data->cpu_entry);
1337
6844c09d 1338 event->id_header_size = size;
c320c7b7
ACM
1339}
1340
a723968c
PZ
1341static bool perf_event_validate_size(struct perf_event *event)
1342{
1343 /*
1344 * The values computed here will be over-written when we actually
1345 * attach the event.
1346 */
1347 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1348 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1349 perf_event__id_header_size(event);
1350
1351 /*
1352 * Sum the lot; should not exceed the 64k limit we have on records.
1353 * Conservative limit to allow for callchains and other variable fields.
1354 */
1355 if (event->read_size + event->header_size +
1356 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1357 return false;
1358
1359 return true;
1360}
1361
8a49542c
PZ
1362static void perf_group_attach(struct perf_event *event)
1363{
c320c7b7 1364 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1365
74c3337c
PZ
1366 /*
1367 * We can have double attach due to group movement in perf_event_open.
1368 */
1369 if (event->attach_state & PERF_ATTACH_GROUP)
1370 return;
1371
8a49542c
PZ
1372 event->attach_state |= PERF_ATTACH_GROUP;
1373
1374 if (group_leader == event)
1375 return;
1376
652884fe
PZ
1377 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1378
8a49542c
PZ
1379 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1380 !is_software_event(event))
1381 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1382
1383 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1384 group_leader->nr_siblings++;
c320c7b7
ACM
1385
1386 perf_event__header_size(group_leader);
1387
1388 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1389 perf_event__header_size(pos);
8a49542c
PZ
1390}
1391
a63eaf34 1392/*
cdd6c482 1393 * Remove a event from the lists for its context.
fccc714b 1394 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1395 */
04289bb9 1396static void
cdd6c482 1397list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1398{
68cacd29 1399 struct perf_cpu_context *cpuctx;
652884fe
PZ
1400
1401 WARN_ON_ONCE(event->ctx != ctx);
1402 lockdep_assert_held(&ctx->lock);
1403
8a49542c
PZ
1404 /*
1405 * We can have double detach due to exit/hot-unplug + close.
1406 */
1407 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1408 return;
8a49542c
PZ
1409
1410 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1411
68cacd29 1412 if (is_cgroup_event(event)) {
e5d1367f 1413 ctx->nr_cgroups--;
68cacd29
SE
1414 cpuctx = __get_cpu_context(ctx);
1415 /*
1416 * if there are no more cgroup events
1417 * then cler cgrp to avoid stale pointer
1418 * in update_cgrp_time_from_cpuctx()
1419 */
1420 if (!ctx->nr_cgroups)
1421 cpuctx->cgrp = NULL;
1422 }
e5d1367f 1423
cdd6c482
IM
1424 ctx->nr_events--;
1425 if (event->attr.inherit_stat)
bfbd3381 1426 ctx->nr_stat--;
8bc20959 1427
cdd6c482 1428 list_del_rcu(&event->event_entry);
04289bb9 1429
8a49542c
PZ
1430 if (event->group_leader == event)
1431 list_del_init(&event->group_entry);
5c148194 1432
96c21a46 1433 update_group_times(event);
b2e74a26
SE
1434
1435 /*
1436 * If event was in error state, then keep it
1437 * that way, otherwise bogus counts will be
1438 * returned on read(). The only way to get out
1439 * of error state is by explicit re-enabling
1440 * of the event
1441 */
1442 if (event->state > PERF_EVENT_STATE_OFF)
1443 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1444
1445 ctx->generation++;
050735b0
PZ
1446}
1447
8a49542c 1448static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1449{
1450 struct perf_event *sibling, *tmp;
8a49542c
PZ
1451 struct list_head *list = NULL;
1452
1453 /*
1454 * We can have double detach due to exit/hot-unplug + close.
1455 */
1456 if (!(event->attach_state & PERF_ATTACH_GROUP))
1457 return;
1458
1459 event->attach_state &= ~PERF_ATTACH_GROUP;
1460
1461 /*
1462 * If this is a sibling, remove it from its group.
1463 */
1464 if (event->group_leader != event) {
1465 list_del_init(&event->group_entry);
1466 event->group_leader->nr_siblings--;
c320c7b7 1467 goto out;
8a49542c
PZ
1468 }
1469
1470 if (!list_empty(&event->group_entry))
1471 list = &event->group_entry;
2e2af50b 1472
04289bb9 1473 /*
cdd6c482
IM
1474 * If this was a group event with sibling events then
1475 * upgrade the siblings to singleton events by adding them
8a49542c 1476 * to whatever list we are on.
04289bb9 1477 */
cdd6c482 1478 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1479 if (list)
1480 list_move_tail(&sibling->group_entry, list);
04289bb9 1481 sibling->group_leader = sibling;
d6f962b5
FW
1482
1483 /* Inherit group flags from the previous leader */
1484 sibling->group_flags = event->group_flags;
652884fe
PZ
1485
1486 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1487 }
c320c7b7
ACM
1488
1489out:
1490 perf_event__header_size(event->group_leader);
1491
1492 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1493 perf_event__header_size(tmp);
04289bb9
IM
1494}
1495
fadfe7be
JO
1496/*
1497 * User event without the task.
1498 */
1499static bool is_orphaned_event(struct perf_event *event)
1500{
1501 return event && !is_kernel_event(event) && !event->owner;
1502}
1503
1504/*
1505 * Event has a parent but parent's task finished and it's
1506 * alive only because of children holding refference.
1507 */
1508static bool is_orphaned_child(struct perf_event *event)
1509{
1510 return is_orphaned_event(event->parent);
1511}
1512
1513static void orphans_remove_work(struct work_struct *work);
1514
1515static void schedule_orphans_remove(struct perf_event_context *ctx)
1516{
1517 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1518 return;
1519
1520 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1521 get_ctx(ctx);
1522 ctx->orphans_remove_sched = true;
1523 }
1524}
1525
1526static int __init perf_workqueue_init(void)
1527{
1528 perf_wq = create_singlethread_workqueue("perf");
1529 WARN(!perf_wq, "failed to create perf workqueue\n");
1530 return perf_wq ? 0 : -1;
1531}
1532
1533core_initcall(perf_workqueue_init);
1534
66eb579e
MR
1535static inline int pmu_filter_match(struct perf_event *event)
1536{
1537 struct pmu *pmu = event->pmu;
1538 return pmu->filter_match ? pmu->filter_match(event) : 1;
1539}
1540
fa66f07a
SE
1541static inline int
1542event_filter_match(struct perf_event *event)
1543{
e5d1367f 1544 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1545 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1546}
1547
9ffcfa6f
SE
1548static void
1549event_sched_out(struct perf_event *event,
3b6f9e5c 1550 struct perf_cpu_context *cpuctx,
cdd6c482 1551 struct perf_event_context *ctx)
3b6f9e5c 1552{
4158755d 1553 u64 tstamp = perf_event_time(event);
fa66f07a 1554 u64 delta;
652884fe
PZ
1555
1556 WARN_ON_ONCE(event->ctx != ctx);
1557 lockdep_assert_held(&ctx->lock);
1558
fa66f07a
SE
1559 /*
1560 * An event which could not be activated because of
1561 * filter mismatch still needs to have its timings
1562 * maintained, otherwise bogus information is return
1563 * via read() for time_enabled, time_running:
1564 */
1565 if (event->state == PERF_EVENT_STATE_INACTIVE
1566 && !event_filter_match(event)) {
e5d1367f 1567 delta = tstamp - event->tstamp_stopped;
fa66f07a 1568 event->tstamp_running += delta;
4158755d 1569 event->tstamp_stopped = tstamp;
fa66f07a
SE
1570 }
1571
cdd6c482 1572 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1573 return;
3b6f9e5c 1574
44377277
AS
1575 perf_pmu_disable(event->pmu);
1576
cdd6c482
IM
1577 event->state = PERF_EVENT_STATE_INACTIVE;
1578 if (event->pending_disable) {
1579 event->pending_disable = 0;
1580 event->state = PERF_EVENT_STATE_OFF;
970892a9 1581 }
4158755d 1582 event->tstamp_stopped = tstamp;
a4eaf7f1 1583 event->pmu->del(event, 0);
cdd6c482 1584 event->oncpu = -1;
3b6f9e5c 1585
cdd6c482 1586 if (!is_software_event(event))
3b6f9e5c 1587 cpuctx->active_oncpu--;
2fde4f94
MR
1588 if (!--ctx->nr_active)
1589 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1590 if (event->attr.freq && event->attr.sample_freq)
1591 ctx->nr_freq--;
cdd6c482 1592 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1593 cpuctx->exclusive = 0;
44377277 1594
fadfe7be
JO
1595 if (is_orphaned_child(event))
1596 schedule_orphans_remove(ctx);
1597
44377277 1598 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1599}
1600
d859e29f 1601static void
cdd6c482 1602group_sched_out(struct perf_event *group_event,
d859e29f 1603 struct perf_cpu_context *cpuctx,
cdd6c482 1604 struct perf_event_context *ctx)
d859e29f 1605{
cdd6c482 1606 struct perf_event *event;
fa66f07a 1607 int state = group_event->state;
d859e29f 1608
cdd6c482 1609 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1610
1611 /*
1612 * Schedule out siblings (if any):
1613 */
cdd6c482
IM
1614 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1615 event_sched_out(event, cpuctx, ctx);
d859e29f 1616
fa66f07a 1617 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1618 cpuctx->exclusive = 0;
1619}
1620
46ce0fe9
PZ
1621struct remove_event {
1622 struct perf_event *event;
1623 bool detach_group;
1624};
1625
0793a61d 1626/*
cdd6c482 1627 * Cross CPU call to remove a performance event
0793a61d 1628 *
cdd6c482 1629 * We disable the event on the hardware level first. After that we
0793a61d
TG
1630 * remove it from the context list.
1631 */
fe4b04fa 1632static int __perf_remove_from_context(void *info)
0793a61d 1633{
46ce0fe9
PZ
1634 struct remove_event *re = info;
1635 struct perf_event *event = re->event;
cdd6c482 1636 struct perf_event_context *ctx = event->ctx;
108b02cf 1637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1638
e625cce1 1639 raw_spin_lock(&ctx->lock);
cdd6c482 1640 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1641 if (re->detach_group)
1642 perf_group_detach(event);
cdd6c482 1643 list_del_event(event, ctx);
64ce3126
PZ
1644 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1645 ctx->is_active = 0;
1646 cpuctx->task_ctx = NULL;
1647 }
e625cce1 1648 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1649
1650 return 0;
0793a61d
TG
1651}
1652
1653
1654/*
cdd6c482 1655 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1656 *
cdd6c482 1657 * CPU events are removed with a smp call. For task events we only
0793a61d 1658 * call when the task is on a CPU.
c93f7669 1659 *
cdd6c482
IM
1660 * If event->ctx is a cloned context, callers must make sure that
1661 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1662 * remains valid. This is OK when called from perf_release since
1663 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1664 * When called from perf_event_exit_task, it's OK because the
c93f7669 1665 * context has been detached from its task.
0793a61d 1666 */
46ce0fe9 1667static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1668{
cdd6c482 1669 struct perf_event_context *ctx = event->ctx;
0793a61d 1670 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1671 struct remove_event re = {
1672 .event = event,
1673 .detach_group = detach_group,
1674 };
0793a61d 1675
fe4b04fa
PZ
1676 lockdep_assert_held(&ctx->mutex);
1677
0793a61d
TG
1678 if (!task) {
1679 /*
226424ee
MR
1680 * Per cpu events are removed via an smp call. The removal can
1681 * fail if the CPU is currently offline, but in that case we
1682 * already called __perf_remove_from_context from
1683 * perf_event_exit_cpu.
0793a61d 1684 */
46ce0fe9 1685 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1686 return;
1687 }
1688
1689retry:
46ce0fe9 1690 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1691 return;
0793a61d 1692
e625cce1 1693 raw_spin_lock_irq(&ctx->lock);
0793a61d 1694 /*
fe4b04fa
PZ
1695 * If we failed to find a running task, but find the context active now
1696 * that we've acquired the ctx->lock, retry.
0793a61d 1697 */
fe4b04fa 1698 if (ctx->is_active) {
e625cce1 1699 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1700 /*
1701 * Reload the task pointer, it might have been changed by
1702 * a concurrent perf_event_context_sched_out().
1703 */
1704 task = ctx->task;
0793a61d
TG
1705 goto retry;
1706 }
1707
1708 /*
fe4b04fa
PZ
1709 * Since the task isn't running, its safe to remove the event, us
1710 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1711 */
46ce0fe9
PZ
1712 if (detach_group)
1713 perf_group_detach(event);
fe4b04fa 1714 list_del_event(event, ctx);
e625cce1 1715 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1716}
1717
d859e29f 1718/*
cdd6c482 1719 * Cross CPU call to disable a performance event
d859e29f 1720 */
500ad2d8 1721int __perf_event_disable(void *info)
d859e29f 1722{
cdd6c482 1723 struct perf_event *event = info;
cdd6c482 1724 struct perf_event_context *ctx = event->ctx;
108b02cf 1725 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1726
1727 /*
cdd6c482
IM
1728 * If this is a per-task event, need to check whether this
1729 * event's task is the current task on this cpu.
fe4b04fa
PZ
1730 *
1731 * Can trigger due to concurrent perf_event_context_sched_out()
1732 * flipping contexts around.
d859e29f 1733 */
665c2142 1734 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1735 return -EINVAL;
d859e29f 1736
e625cce1 1737 raw_spin_lock(&ctx->lock);
d859e29f
PM
1738
1739 /*
cdd6c482 1740 * If the event is on, turn it off.
d859e29f
PM
1741 * If it is in error state, leave it in error state.
1742 */
cdd6c482 1743 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1744 update_context_time(ctx);
e5d1367f 1745 update_cgrp_time_from_event(event);
cdd6c482
IM
1746 update_group_times(event);
1747 if (event == event->group_leader)
1748 group_sched_out(event, cpuctx, ctx);
d859e29f 1749 else
cdd6c482
IM
1750 event_sched_out(event, cpuctx, ctx);
1751 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1752 }
1753
e625cce1 1754 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1755
1756 return 0;
d859e29f
PM
1757}
1758
1759/*
cdd6c482 1760 * Disable a event.
c93f7669 1761 *
cdd6c482
IM
1762 * If event->ctx is a cloned context, callers must make sure that
1763 * every task struct that event->ctx->task could possibly point to
c93f7669 1764 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1765 * perf_event_for_each_child or perf_event_for_each because they
1766 * hold the top-level event's child_mutex, so any descendant that
1767 * goes to exit will block in sync_child_event.
1768 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1769 * is the current context on this CPU and preemption is disabled,
cdd6c482 1770 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1771 */
f63a8daa 1772static void _perf_event_disable(struct perf_event *event)
d859e29f 1773{
cdd6c482 1774 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1775 struct task_struct *task = ctx->task;
1776
1777 if (!task) {
1778 /*
cdd6c482 1779 * Disable the event on the cpu that it's on
d859e29f 1780 */
fe4b04fa 1781 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1782 return;
1783 }
1784
9ed6060d 1785retry:
fe4b04fa
PZ
1786 if (!task_function_call(task, __perf_event_disable, event))
1787 return;
d859e29f 1788
e625cce1 1789 raw_spin_lock_irq(&ctx->lock);
d859e29f 1790 /*
cdd6c482 1791 * If the event is still active, we need to retry the cross-call.
d859e29f 1792 */
cdd6c482 1793 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1794 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1795 /*
1796 * Reload the task pointer, it might have been changed by
1797 * a concurrent perf_event_context_sched_out().
1798 */
1799 task = ctx->task;
d859e29f
PM
1800 goto retry;
1801 }
1802
1803 /*
1804 * Since we have the lock this context can't be scheduled
1805 * in, so we can change the state safely.
1806 */
cdd6c482
IM
1807 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1808 update_group_times(event);
1809 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1810 }
e625cce1 1811 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1812}
f63a8daa
PZ
1813
1814/*
1815 * Strictly speaking kernel users cannot create groups and therefore this
1816 * interface does not need the perf_event_ctx_lock() magic.
1817 */
1818void perf_event_disable(struct perf_event *event)
1819{
1820 struct perf_event_context *ctx;
1821
1822 ctx = perf_event_ctx_lock(event);
1823 _perf_event_disable(event);
1824 perf_event_ctx_unlock(event, ctx);
1825}
dcfce4a0 1826EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1827
e5d1367f
SE
1828static void perf_set_shadow_time(struct perf_event *event,
1829 struct perf_event_context *ctx,
1830 u64 tstamp)
1831{
1832 /*
1833 * use the correct time source for the time snapshot
1834 *
1835 * We could get by without this by leveraging the
1836 * fact that to get to this function, the caller
1837 * has most likely already called update_context_time()
1838 * and update_cgrp_time_xx() and thus both timestamp
1839 * are identical (or very close). Given that tstamp is,
1840 * already adjusted for cgroup, we could say that:
1841 * tstamp - ctx->timestamp
1842 * is equivalent to
1843 * tstamp - cgrp->timestamp.
1844 *
1845 * Then, in perf_output_read(), the calculation would
1846 * work with no changes because:
1847 * - event is guaranteed scheduled in
1848 * - no scheduled out in between
1849 * - thus the timestamp would be the same
1850 *
1851 * But this is a bit hairy.
1852 *
1853 * So instead, we have an explicit cgroup call to remain
1854 * within the time time source all along. We believe it
1855 * is cleaner and simpler to understand.
1856 */
1857 if (is_cgroup_event(event))
1858 perf_cgroup_set_shadow_time(event, tstamp);
1859 else
1860 event->shadow_ctx_time = tstamp - ctx->timestamp;
1861}
1862
4fe757dd
PZ
1863#define MAX_INTERRUPTS (~0ULL)
1864
1865static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1866static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1867
235c7fc7 1868static int
9ffcfa6f 1869event_sched_in(struct perf_event *event,
235c7fc7 1870 struct perf_cpu_context *cpuctx,
6e37738a 1871 struct perf_event_context *ctx)
235c7fc7 1872{
4158755d 1873 u64 tstamp = perf_event_time(event);
44377277 1874 int ret = 0;
4158755d 1875
63342411
PZ
1876 lockdep_assert_held(&ctx->lock);
1877
cdd6c482 1878 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1879 return 0;
1880
cdd6c482 1881 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1882 event->oncpu = smp_processor_id();
4fe757dd
PZ
1883
1884 /*
1885 * Unthrottle events, since we scheduled we might have missed several
1886 * ticks already, also for a heavily scheduling task there is little
1887 * guarantee it'll get a tick in a timely manner.
1888 */
1889 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1890 perf_log_throttle(event, 1);
1891 event->hw.interrupts = 0;
1892 }
1893
235c7fc7
IM
1894 /*
1895 * The new state must be visible before we turn it on in the hardware:
1896 */
1897 smp_wmb();
1898
44377277
AS
1899 perf_pmu_disable(event->pmu);
1900
72f669c0
SL
1901 perf_set_shadow_time(event, ctx, tstamp);
1902
ec0d7729
AS
1903 perf_log_itrace_start(event);
1904
a4eaf7f1 1905 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1906 event->state = PERF_EVENT_STATE_INACTIVE;
1907 event->oncpu = -1;
44377277
AS
1908 ret = -EAGAIN;
1909 goto out;
235c7fc7
IM
1910 }
1911
00a2916f
PZ
1912 event->tstamp_running += tstamp - event->tstamp_stopped;
1913
cdd6c482 1914 if (!is_software_event(event))
3b6f9e5c 1915 cpuctx->active_oncpu++;
2fde4f94
MR
1916 if (!ctx->nr_active++)
1917 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1918 if (event->attr.freq && event->attr.sample_freq)
1919 ctx->nr_freq++;
235c7fc7 1920
cdd6c482 1921 if (event->attr.exclusive)
3b6f9e5c
PM
1922 cpuctx->exclusive = 1;
1923
fadfe7be
JO
1924 if (is_orphaned_child(event))
1925 schedule_orphans_remove(ctx);
1926
44377277
AS
1927out:
1928 perf_pmu_enable(event->pmu);
1929
1930 return ret;
235c7fc7
IM
1931}
1932
6751b71e 1933static int
cdd6c482 1934group_sched_in(struct perf_event *group_event,
6751b71e 1935 struct perf_cpu_context *cpuctx,
6e37738a 1936 struct perf_event_context *ctx)
6751b71e 1937{
6bde9b6c 1938 struct perf_event *event, *partial_group = NULL;
4a234593 1939 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1940 u64 now = ctx->time;
1941 bool simulate = false;
6751b71e 1942
cdd6c482 1943 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1944 return 0;
1945
fbbe0701 1946 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1947
9ffcfa6f 1948 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1949 pmu->cancel_txn(pmu);
272325c4 1950 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1951 return -EAGAIN;
90151c35 1952 }
6751b71e
PM
1953
1954 /*
1955 * Schedule in siblings as one group (if any):
1956 */
cdd6c482 1957 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1958 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1959 partial_group = event;
6751b71e
PM
1960 goto group_error;
1961 }
1962 }
1963
9ffcfa6f 1964 if (!pmu->commit_txn(pmu))
6e85158c 1965 return 0;
9ffcfa6f 1966
6751b71e
PM
1967group_error:
1968 /*
1969 * Groups can be scheduled in as one unit only, so undo any
1970 * partial group before returning:
d7842da4
SE
1971 * The events up to the failed event are scheduled out normally,
1972 * tstamp_stopped will be updated.
1973 *
1974 * The failed events and the remaining siblings need to have
1975 * their timings updated as if they had gone thru event_sched_in()
1976 * and event_sched_out(). This is required to get consistent timings
1977 * across the group. This also takes care of the case where the group
1978 * could never be scheduled by ensuring tstamp_stopped is set to mark
1979 * the time the event was actually stopped, such that time delta
1980 * calculation in update_event_times() is correct.
6751b71e 1981 */
cdd6c482
IM
1982 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1983 if (event == partial_group)
d7842da4
SE
1984 simulate = true;
1985
1986 if (simulate) {
1987 event->tstamp_running += now - event->tstamp_stopped;
1988 event->tstamp_stopped = now;
1989 } else {
1990 event_sched_out(event, cpuctx, ctx);
1991 }
6751b71e 1992 }
9ffcfa6f 1993 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1994
ad5133b7 1995 pmu->cancel_txn(pmu);
90151c35 1996
272325c4 1997 perf_mux_hrtimer_restart(cpuctx);
9e630205 1998
6751b71e
PM
1999 return -EAGAIN;
2000}
2001
3b6f9e5c 2002/*
cdd6c482 2003 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2004 */
cdd6c482 2005static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2006 struct perf_cpu_context *cpuctx,
2007 int can_add_hw)
2008{
2009 /*
cdd6c482 2010 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2011 */
d6f962b5 2012 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2013 return 1;
2014 /*
2015 * If an exclusive group is already on, no other hardware
cdd6c482 2016 * events can go on.
3b6f9e5c
PM
2017 */
2018 if (cpuctx->exclusive)
2019 return 0;
2020 /*
2021 * If this group is exclusive and there are already
cdd6c482 2022 * events on the CPU, it can't go on.
3b6f9e5c 2023 */
cdd6c482 2024 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2025 return 0;
2026 /*
2027 * Otherwise, try to add it if all previous groups were able
2028 * to go on.
2029 */
2030 return can_add_hw;
2031}
2032
cdd6c482
IM
2033static void add_event_to_ctx(struct perf_event *event,
2034 struct perf_event_context *ctx)
53cfbf59 2035{
4158755d
SE
2036 u64 tstamp = perf_event_time(event);
2037
cdd6c482 2038 list_add_event(event, ctx);
8a49542c 2039 perf_group_attach(event);
4158755d
SE
2040 event->tstamp_enabled = tstamp;
2041 event->tstamp_running = tstamp;
2042 event->tstamp_stopped = tstamp;
53cfbf59
PM
2043}
2044
2c29ef0f
PZ
2045static void task_ctx_sched_out(struct perf_event_context *ctx);
2046static void
2047ctx_sched_in(struct perf_event_context *ctx,
2048 struct perf_cpu_context *cpuctx,
2049 enum event_type_t event_type,
2050 struct task_struct *task);
fe4b04fa 2051
dce5855b
PZ
2052static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2053 struct perf_event_context *ctx,
2054 struct task_struct *task)
2055{
2056 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2057 if (ctx)
2058 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2059 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2060 if (ctx)
2061 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2062}
2063
0793a61d 2064/*
cdd6c482 2065 * Cross CPU call to install and enable a performance event
682076ae
PZ
2066 *
2067 * Must be called with ctx->mutex held
0793a61d 2068 */
fe4b04fa 2069static int __perf_install_in_context(void *info)
0793a61d 2070{
cdd6c482
IM
2071 struct perf_event *event = info;
2072 struct perf_event_context *ctx = event->ctx;
108b02cf 2073 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2074 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2075 struct task_struct *task = current;
2076
b58f6b0d 2077 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2078 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2079
2080 /*
2c29ef0f 2081 * If there was an active task_ctx schedule it out.
0793a61d 2082 */
b58f6b0d 2083 if (task_ctx)
2c29ef0f 2084 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2085
2086 /*
2087 * If the context we're installing events in is not the
2088 * active task_ctx, flip them.
2089 */
2090 if (ctx->task && task_ctx != ctx) {
2091 if (task_ctx)
2092 raw_spin_unlock(&task_ctx->lock);
2093 raw_spin_lock(&ctx->lock);
2094 task_ctx = ctx;
2095 }
2096
2097 if (task_ctx) {
2098 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2099 task = task_ctx->task;
2100 }
b58f6b0d 2101
2c29ef0f 2102 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2103
4af4998b 2104 update_context_time(ctx);
e5d1367f
SE
2105 /*
2106 * update cgrp time only if current cgrp
2107 * matches event->cgrp. Must be done before
2108 * calling add_event_to_ctx()
2109 */
2110 update_cgrp_time_from_event(event);
0793a61d 2111
cdd6c482 2112 add_event_to_ctx(event, ctx);
0793a61d 2113
d859e29f 2114 /*
2c29ef0f 2115 * Schedule everything back in
d859e29f 2116 */
dce5855b 2117 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2118
2119 perf_pmu_enable(cpuctx->ctx.pmu);
2120 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2121
2122 return 0;
0793a61d
TG
2123}
2124
2125/*
cdd6c482 2126 * Attach a performance event to a context
0793a61d 2127 *
cdd6c482
IM
2128 * First we add the event to the list with the hardware enable bit
2129 * in event->hw_config cleared.
0793a61d 2130 *
cdd6c482 2131 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2132 * call to enable it in the task context. The task might have been
2133 * scheduled away, but we check this in the smp call again.
2134 */
2135static void
cdd6c482
IM
2136perf_install_in_context(struct perf_event_context *ctx,
2137 struct perf_event *event,
0793a61d
TG
2138 int cpu)
2139{
2140 struct task_struct *task = ctx->task;
2141
fe4b04fa
PZ
2142 lockdep_assert_held(&ctx->mutex);
2143
c3f00c70 2144 event->ctx = ctx;
0cda4c02
YZ
2145 if (event->cpu != -1)
2146 event->cpu = cpu;
c3f00c70 2147
0793a61d
TG
2148 if (!task) {
2149 /*
cdd6c482 2150 * Per cpu events are installed via an smp call and
af901ca1 2151 * the install is always successful.
0793a61d 2152 */
fe4b04fa 2153 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2154 return;
2155 }
2156
0793a61d 2157retry:
fe4b04fa
PZ
2158 if (!task_function_call(task, __perf_install_in_context, event))
2159 return;
0793a61d 2160
e625cce1 2161 raw_spin_lock_irq(&ctx->lock);
0793a61d 2162 /*
fe4b04fa
PZ
2163 * If we failed to find a running task, but find the context active now
2164 * that we've acquired the ctx->lock, retry.
0793a61d 2165 */
fe4b04fa 2166 if (ctx->is_active) {
e625cce1 2167 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2168 /*
2169 * Reload the task pointer, it might have been changed by
2170 * a concurrent perf_event_context_sched_out().
2171 */
2172 task = ctx->task;
0793a61d
TG
2173 goto retry;
2174 }
2175
2176 /*
fe4b04fa
PZ
2177 * Since the task isn't running, its safe to add the event, us holding
2178 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2179 */
fe4b04fa 2180 add_event_to_ctx(event, ctx);
e625cce1 2181 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2182}
2183
fa289bec 2184/*
cdd6c482 2185 * Put a event into inactive state and update time fields.
fa289bec
PM
2186 * Enabling the leader of a group effectively enables all
2187 * the group members that aren't explicitly disabled, so we
2188 * have to update their ->tstamp_enabled also.
2189 * Note: this works for group members as well as group leaders
2190 * since the non-leader members' sibling_lists will be empty.
2191 */
1d9b482e 2192static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2193{
cdd6c482 2194 struct perf_event *sub;
4158755d 2195 u64 tstamp = perf_event_time(event);
fa289bec 2196
cdd6c482 2197 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2198 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2199 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2200 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2201 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2202 }
fa289bec
PM
2203}
2204
d859e29f 2205/*
cdd6c482 2206 * Cross CPU call to enable a performance event
d859e29f 2207 */
fe4b04fa 2208static int __perf_event_enable(void *info)
04289bb9 2209{
cdd6c482 2210 struct perf_event *event = info;
cdd6c482
IM
2211 struct perf_event_context *ctx = event->ctx;
2212 struct perf_event *leader = event->group_leader;
108b02cf 2213 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2214 int err;
04289bb9 2215
06f41796
JO
2216 /*
2217 * There's a time window between 'ctx->is_active' check
2218 * in perf_event_enable function and this place having:
2219 * - IRQs on
2220 * - ctx->lock unlocked
2221 *
2222 * where the task could be killed and 'ctx' deactivated
2223 * by perf_event_exit_task.
2224 */
2225 if (!ctx->is_active)
fe4b04fa 2226 return -EINVAL;
3cbed429 2227
e625cce1 2228 raw_spin_lock(&ctx->lock);
4af4998b 2229 update_context_time(ctx);
d859e29f 2230
cdd6c482 2231 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2232 goto unlock;
e5d1367f
SE
2233
2234 /*
2235 * set current task's cgroup time reference point
2236 */
3f7cce3c 2237 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2238
1d9b482e 2239 __perf_event_mark_enabled(event);
04289bb9 2240
e5d1367f
SE
2241 if (!event_filter_match(event)) {
2242 if (is_cgroup_event(event))
2243 perf_cgroup_defer_enabled(event);
f4c4176f 2244 goto unlock;
e5d1367f 2245 }
f4c4176f 2246
04289bb9 2247 /*
cdd6c482 2248 * If the event is in a group and isn't the group leader,
d859e29f 2249 * then don't put it on unless the group is on.
04289bb9 2250 */
cdd6c482 2251 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2252 goto unlock;
3b6f9e5c 2253
cdd6c482 2254 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2255 err = -EEXIST;
e758a33d 2256 } else {
cdd6c482 2257 if (event == leader)
6e37738a 2258 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2259 else
6e37738a 2260 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2261 }
d859e29f
PM
2262
2263 if (err) {
2264 /*
cdd6c482 2265 * If this event can't go on and it's part of a
d859e29f
PM
2266 * group, then the whole group has to come off.
2267 */
9e630205 2268 if (leader != event) {
d859e29f 2269 group_sched_out(leader, cpuctx, ctx);
272325c4 2270 perf_mux_hrtimer_restart(cpuctx);
9e630205 2271 }
0d48696f 2272 if (leader->attr.pinned) {
53cfbf59 2273 update_group_times(leader);
cdd6c482 2274 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2275 }
d859e29f
PM
2276 }
2277
9ed6060d 2278unlock:
e625cce1 2279 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2280
2281 return 0;
d859e29f
PM
2282}
2283
2284/*
cdd6c482 2285 * Enable a event.
c93f7669 2286 *
cdd6c482
IM
2287 * If event->ctx is a cloned context, callers must make sure that
2288 * every task struct that event->ctx->task could possibly point to
c93f7669 2289 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2290 * perf_event_for_each_child or perf_event_for_each as described
2291 * for perf_event_disable.
d859e29f 2292 */
f63a8daa 2293static void _perf_event_enable(struct perf_event *event)
d859e29f 2294{
cdd6c482 2295 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2296 struct task_struct *task = ctx->task;
2297
2298 if (!task) {
2299 /*
cdd6c482 2300 * Enable the event on the cpu that it's on
d859e29f 2301 */
fe4b04fa 2302 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2303 return;
2304 }
2305
e625cce1 2306 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2307 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2308 goto out;
2309
2310 /*
cdd6c482
IM
2311 * If the event is in error state, clear that first.
2312 * That way, if we see the event in error state below, we
d859e29f
PM
2313 * know that it has gone back into error state, as distinct
2314 * from the task having been scheduled away before the
2315 * cross-call arrived.
2316 */
cdd6c482
IM
2317 if (event->state == PERF_EVENT_STATE_ERROR)
2318 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2319
9ed6060d 2320retry:
fe4b04fa 2321 if (!ctx->is_active) {
1d9b482e 2322 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2323 goto out;
2324 }
2325
e625cce1 2326 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2327
2328 if (!task_function_call(task, __perf_event_enable, event))
2329 return;
d859e29f 2330
e625cce1 2331 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2332
2333 /*
cdd6c482 2334 * If the context is active and the event is still off,
d859e29f
PM
2335 * we need to retry the cross-call.
2336 */
fe4b04fa
PZ
2337 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2338 /*
2339 * task could have been flipped by a concurrent
2340 * perf_event_context_sched_out()
2341 */
2342 task = ctx->task;
d859e29f 2343 goto retry;
fe4b04fa 2344 }
fa289bec 2345
9ed6060d 2346out:
e625cce1 2347 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2348}
f63a8daa
PZ
2349
2350/*
2351 * See perf_event_disable();
2352 */
2353void perf_event_enable(struct perf_event *event)
2354{
2355 struct perf_event_context *ctx;
2356
2357 ctx = perf_event_ctx_lock(event);
2358 _perf_event_enable(event);
2359 perf_event_ctx_unlock(event, ctx);
2360}
dcfce4a0 2361EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2362
f63a8daa 2363static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2364{
2023b359 2365 /*
cdd6c482 2366 * not supported on inherited events
2023b359 2367 */
2e939d1d 2368 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2369 return -EINVAL;
2370
cdd6c482 2371 atomic_add(refresh, &event->event_limit);
f63a8daa 2372 _perf_event_enable(event);
2023b359
PZ
2373
2374 return 0;
79f14641 2375}
f63a8daa
PZ
2376
2377/*
2378 * See perf_event_disable()
2379 */
2380int perf_event_refresh(struct perf_event *event, int refresh)
2381{
2382 struct perf_event_context *ctx;
2383 int ret;
2384
2385 ctx = perf_event_ctx_lock(event);
2386 ret = _perf_event_refresh(event, refresh);
2387 perf_event_ctx_unlock(event, ctx);
2388
2389 return ret;
2390}
26ca5c11 2391EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2392
5b0311e1
FW
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type)
235c7fc7 2396{
cdd6c482 2397 struct perf_event *event;
db24d33e 2398 int is_active = ctx->is_active;
235c7fc7 2399
db24d33e 2400 ctx->is_active &= ~event_type;
cdd6c482 2401 if (likely(!ctx->nr_events))
facc4307
PZ
2402 return;
2403
4af4998b 2404 update_context_time(ctx);
e5d1367f 2405 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2406 if (!ctx->nr_active)
facc4307 2407 return;
5b0311e1 2408
075e0b00 2409 perf_pmu_disable(ctx->pmu);
db24d33e 2410 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2411 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2412 group_sched_out(event, cpuctx, ctx);
9ed6060d 2413 }
889ff015 2414
db24d33e 2415 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2416 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2417 group_sched_out(event, cpuctx, ctx);
9ed6060d 2418 }
1b9a644f 2419 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2420}
2421
564c2b21 2422/*
5a3126d4
PZ
2423 * Test whether two contexts are equivalent, i.e. whether they have both been
2424 * cloned from the same version of the same context.
2425 *
2426 * Equivalence is measured using a generation number in the context that is
2427 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2428 * and list_del_event().
564c2b21 2429 */
cdd6c482
IM
2430static int context_equiv(struct perf_event_context *ctx1,
2431 struct perf_event_context *ctx2)
564c2b21 2432{
211de6eb
PZ
2433 lockdep_assert_held(&ctx1->lock);
2434 lockdep_assert_held(&ctx2->lock);
2435
5a3126d4
PZ
2436 /* Pinning disables the swap optimization */
2437 if (ctx1->pin_count || ctx2->pin_count)
2438 return 0;
2439
2440 /* If ctx1 is the parent of ctx2 */
2441 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2442 return 1;
2443
2444 /* If ctx2 is the parent of ctx1 */
2445 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2446 return 1;
2447
2448 /*
2449 * If ctx1 and ctx2 have the same parent; we flatten the parent
2450 * hierarchy, see perf_event_init_context().
2451 */
2452 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2453 ctx1->parent_gen == ctx2->parent_gen)
2454 return 1;
2455
2456 /* Unmatched */
2457 return 0;
564c2b21
PM
2458}
2459
cdd6c482
IM
2460static void __perf_event_sync_stat(struct perf_event *event,
2461 struct perf_event *next_event)
bfbd3381
PZ
2462{
2463 u64 value;
2464
cdd6c482 2465 if (!event->attr.inherit_stat)
bfbd3381
PZ
2466 return;
2467
2468 /*
cdd6c482 2469 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2470 * because we're in the middle of a context switch and have IRQs
2471 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2472 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2473 * don't need to use it.
2474 */
cdd6c482
IM
2475 switch (event->state) {
2476 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2477 event->pmu->read(event);
2478 /* fall-through */
bfbd3381 2479
cdd6c482
IM
2480 case PERF_EVENT_STATE_INACTIVE:
2481 update_event_times(event);
bfbd3381
PZ
2482 break;
2483
2484 default:
2485 break;
2486 }
2487
2488 /*
cdd6c482 2489 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2490 * values when we flip the contexts.
2491 */
e7850595
PZ
2492 value = local64_read(&next_event->count);
2493 value = local64_xchg(&event->count, value);
2494 local64_set(&next_event->count, value);
bfbd3381 2495
cdd6c482
IM
2496 swap(event->total_time_enabled, next_event->total_time_enabled);
2497 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2498
bfbd3381 2499 /*
19d2e755 2500 * Since we swizzled the values, update the user visible data too.
bfbd3381 2501 */
cdd6c482
IM
2502 perf_event_update_userpage(event);
2503 perf_event_update_userpage(next_event);
bfbd3381
PZ
2504}
2505
cdd6c482
IM
2506static void perf_event_sync_stat(struct perf_event_context *ctx,
2507 struct perf_event_context *next_ctx)
bfbd3381 2508{
cdd6c482 2509 struct perf_event *event, *next_event;
bfbd3381
PZ
2510
2511 if (!ctx->nr_stat)
2512 return;
2513
02ffdbc8
PZ
2514 update_context_time(ctx);
2515
cdd6c482
IM
2516 event = list_first_entry(&ctx->event_list,
2517 struct perf_event, event_entry);
bfbd3381 2518
cdd6c482
IM
2519 next_event = list_first_entry(&next_ctx->event_list,
2520 struct perf_event, event_entry);
bfbd3381 2521
cdd6c482
IM
2522 while (&event->event_entry != &ctx->event_list &&
2523 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2524
cdd6c482 2525 __perf_event_sync_stat(event, next_event);
bfbd3381 2526
cdd6c482
IM
2527 event = list_next_entry(event, event_entry);
2528 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2529 }
2530}
2531
fe4b04fa
PZ
2532static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2533 struct task_struct *next)
0793a61d 2534{
8dc85d54 2535 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2536 struct perf_event_context *next_ctx;
5a3126d4 2537 struct perf_event_context *parent, *next_parent;
108b02cf 2538 struct perf_cpu_context *cpuctx;
c93f7669 2539 int do_switch = 1;
0793a61d 2540
108b02cf
PZ
2541 if (likely(!ctx))
2542 return;
10989fb2 2543
108b02cf
PZ
2544 cpuctx = __get_cpu_context(ctx);
2545 if (!cpuctx->task_ctx)
0793a61d
TG
2546 return;
2547
c93f7669 2548 rcu_read_lock();
8dc85d54 2549 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2550 if (!next_ctx)
2551 goto unlock;
2552
2553 parent = rcu_dereference(ctx->parent_ctx);
2554 next_parent = rcu_dereference(next_ctx->parent_ctx);
2555
2556 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2557 if (!parent && !next_parent)
5a3126d4
PZ
2558 goto unlock;
2559
2560 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2561 /*
2562 * Looks like the two contexts are clones, so we might be
2563 * able to optimize the context switch. We lock both
2564 * contexts and check that they are clones under the
2565 * lock (including re-checking that neither has been
2566 * uncloned in the meantime). It doesn't matter which
2567 * order we take the locks because no other cpu could
2568 * be trying to lock both of these tasks.
2569 */
e625cce1
TG
2570 raw_spin_lock(&ctx->lock);
2571 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2572 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2573 /*
2574 * XXX do we need a memory barrier of sorts
cdd6c482 2575 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2576 */
8dc85d54
PZ
2577 task->perf_event_ctxp[ctxn] = next_ctx;
2578 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2579 ctx->task = next;
2580 next_ctx->task = task;
5a158c3c
YZ
2581
2582 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2583
c93f7669 2584 do_switch = 0;
bfbd3381 2585
cdd6c482 2586 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2587 }
e625cce1
TG
2588 raw_spin_unlock(&next_ctx->lock);
2589 raw_spin_unlock(&ctx->lock);
564c2b21 2590 }
5a3126d4 2591unlock:
c93f7669 2592 rcu_read_unlock();
564c2b21 2593
c93f7669 2594 if (do_switch) {
facc4307 2595 raw_spin_lock(&ctx->lock);
5b0311e1 2596 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2597 cpuctx->task_ctx = NULL;
facc4307 2598 raw_spin_unlock(&ctx->lock);
c93f7669 2599 }
0793a61d
TG
2600}
2601
ba532500
YZ
2602void perf_sched_cb_dec(struct pmu *pmu)
2603{
2604 this_cpu_dec(perf_sched_cb_usages);
2605}
2606
2607void perf_sched_cb_inc(struct pmu *pmu)
2608{
2609 this_cpu_inc(perf_sched_cb_usages);
2610}
2611
2612/*
2613 * This function provides the context switch callback to the lower code
2614 * layer. It is invoked ONLY when the context switch callback is enabled.
2615 */
2616static void perf_pmu_sched_task(struct task_struct *prev,
2617 struct task_struct *next,
2618 bool sched_in)
2619{
2620 struct perf_cpu_context *cpuctx;
2621 struct pmu *pmu;
2622 unsigned long flags;
2623
2624 if (prev == next)
2625 return;
2626
2627 local_irq_save(flags);
2628
2629 rcu_read_lock();
2630
2631 list_for_each_entry_rcu(pmu, &pmus, entry) {
2632 if (pmu->sched_task) {
2633 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2634
2635 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2636
2637 perf_pmu_disable(pmu);
2638
2639 pmu->sched_task(cpuctx->task_ctx, sched_in);
2640
2641 perf_pmu_enable(pmu);
2642
2643 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2644 }
2645 }
2646
2647 rcu_read_unlock();
2648
2649 local_irq_restore(flags);
2650}
2651
45ac1403
AH
2652static void perf_event_switch(struct task_struct *task,
2653 struct task_struct *next_prev, bool sched_in);
2654
8dc85d54
PZ
2655#define for_each_task_context_nr(ctxn) \
2656 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2657
2658/*
2659 * Called from scheduler to remove the events of the current task,
2660 * with interrupts disabled.
2661 *
2662 * We stop each event and update the event value in event->count.
2663 *
2664 * This does not protect us against NMI, but disable()
2665 * sets the disabled bit in the control field of event _before_
2666 * accessing the event control register. If a NMI hits, then it will
2667 * not restart the event.
2668 */
ab0cce56
JO
2669void __perf_event_task_sched_out(struct task_struct *task,
2670 struct task_struct *next)
8dc85d54
PZ
2671{
2672 int ctxn;
2673
ba532500
YZ
2674 if (__this_cpu_read(perf_sched_cb_usages))
2675 perf_pmu_sched_task(task, next, false);
2676
45ac1403
AH
2677 if (atomic_read(&nr_switch_events))
2678 perf_event_switch(task, next, false);
2679
8dc85d54
PZ
2680 for_each_task_context_nr(ctxn)
2681 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2682
2683 /*
2684 * if cgroup events exist on this CPU, then we need
2685 * to check if we have to switch out PMU state.
2686 * cgroup event are system-wide mode only
2687 */
4a32fea9 2688 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2689 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2690}
2691
04dc2dbb 2692static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2693{
108b02cf 2694 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2695
a63eaf34
PM
2696 if (!cpuctx->task_ctx)
2697 return;
012b84da
IM
2698
2699 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2700 return;
2701
04dc2dbb 2702 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2703 cpuctx->task_ctx = NULL;
2704}
2705
5b0311e1
FW
2706/*
2707 * Called with IRQs disabled
2708 */
2709static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2710 enum event_type_t event_type)
2711{
2712 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2713}
2714
235c7fc7 2715static void
5b0311e1 2716ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2717 struct perf_cpu_context *cpuctx)
0793a61d 2718{
cdd6c482 2719 struct perf_event *event;
0793a61d 2720
889ff015
FW
2721 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2722 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2723 continue;
5632ab12 2724 if (!event_filter_match(event))
3b6f9e5c
PM
2725 continue;
2726
e5d1367f
SE
2727 /* may need to reset tstamp_enabled */
2728 if (is_cgroup_event(event))
2729 perf_cgroup_mark_enabled(event, ctx);
2730
8c9ed8e1 2731 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2732 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2733
2734 /*
2735 * If this pinned group hasn't been scheduled,
2736 * put it in error state.
2737 */
cdd6c482
IM
2738 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2739 update_group_times(event);
2740 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2741 }
3b6f9e5c 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2747 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2748{
2749 struct perf_event *event;
2750 int can_add_hw = 1;
3b6f9e5c 2751
889ff015
FW
2752 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2753 /* Ignore events in OFF or ERROR state */
2754 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2755 continue;
04289bb9
IM
2756 /*
2757 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2758 * of events:
04289bb9 2759 */
5632ab12 2760 if (!event_filter_match(event))
0793a61d
TG
2761 continue;
2762
e5d1367f
SE
2763 /* may need to reset tstamp_enabled */
2764 if (is_cgroup_event(event))
2765 perf_cgroup_mark_enabled(event, ctx);
2766
9ed6060d 2767 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2768 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2769 can_add_hw = 0;
9ed6060d 2770 }
0793a61d 2771 }
5b0311e1
FW
2772}
2773
2774static void
2775ctx_sched_in(struct perf_event_context *ctx,
2776 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2777 enum event_type_t event_type,
2778 struct task_struct *task)
5b0311e1 2779{
e5d1367f 2780 u64 now;
db24d33e 2781 int is_active = ctx->is_active;
e5d1367f 2782
db24d33e 2783 ctx->is_active |= event_type;
5b0311e1 2784 if (likely(!ctx->nr_events))
facc4307 2785 return;
5b0311e1 2786
e5d1367f
SE
2787 now = perf_clock();
2788 ctx->timestamp = now;
3f7cce3c 2789 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2790 /*
2791 * First go through the list and put on any pinned groups
2792 * in order to give them the best chance of going on.
2793 */
db24d33e 2794 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2795 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2796
2797 /* Then walk through the lower prio flexible groups */
db24d33e 2798 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2799 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2800}
2801
329c0e01 2802static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2803 enum event_type_t event_type,
2804 struct task_struct *task)
329c0e01
FW
2805{
2806 struct perf_event_context *ctx = &cpuctx->ctx;
2807
e5d1367f 2808 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2809}
2810
e5d1367f
SE
2811static void perf_event_context_sched_in(struct perf_event_context *ctx,
2812 struct task_struct *task)
235c7fc7 2813{
108b02cf 2814 struct perf_cpu_context *cpuctx;
235c7fc7 2815
108b02cf 2816 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2817 if (cpuctx->task_ctx == ctx)
2818 return;
2819
facc4307 2820 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2821 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2822 /*
2823 * We want to keep the following priority order:
2824 * cpu pinned (that don't need to move), task pinned,
2825 * cpu flexible, task flexible.
2826 */
2827 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2828
1d5f003f
GN
2829 if (ctx->nr_events)
2830 cpuctx->task_ctx = ctx;
9b33fa6b 2831
86b47c25
GN
2832 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2833
facc4307
PZ
2834 perf_pmu_enable(ctx->pmu);
2835 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2836}
2837
8dc85d54
PZ
2838/*
2839 * Called from scheduler to add the events of the current task
2840 * with interrupts disabled.
2841 *
2842 * We restore the event value and then enable it.
2843 *
2844 * This does not protect us against NMI, but enable()
2845 * sets the enabled bit in the control field of event _before_
2846 * accessing the event control register. If a NMI hits, then it will
2847 * keep the event running.
2848 */
ab0cce56
JO
2849void __perf_event_task_sched_in(struct task_struct *prev,
2850 struct task_struct *task)
8dc85d54
PZ
2851{
2852 struct perf_event_context *ctx;
2853 int ctxn;
2854
2855 for_each_task_context_nr(ctxn) {
2856 ctx = task->perf_event_ctxp[ctxn];
2857 if (likely(!ctx))
2858 continue;
2859
e5d1367f 2860 perf_event_context_sched_in(ctx, task);
8dc85d54 2861 }
e5d1367f
SE
2862 /*
2863 * if cgroup events exist on this CPU, then we need
2864 * to check if we have to switch in PMU state.
2865 * cgroup event are system-wide mode only
2866 */
4a32fea9 2867 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2868 perf_cgroup_sched_in(prev, task);
d010b332 2869
45ac1403
AH
2870 if (atomic_read(&nr_switch_events))
2871 perf_event_switch(task, prev, true);
2872
ba532500
YZ
2873 if (__this_cpu_read(perf_sched_cb_usages))
2874 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2875}
2876
abd50713
PZ
2877static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2878{
2879 u64 frequency = event->attr.sample_freq;
2880 u64 sec = NSEC_PER_SEC;
2881 u64 divisor, dividend;
2882
2883 int count_fls, nsec_fls, frequency_fls, sec_fls;
2884
2885 count_fls = fls64(count);
2886 nsec_fls = fls64(nsec);
2887 frequency_fls = fls64(frequency);
2888 sec_fls = 30;
2889
2890 /*
2891 * We got @count in @nsec, with a target of sample_freq HZ
2892 * the target period becomes:
2893 *
2894 * @count * 10^9
2895 * period = -------------------
2896 * @nsec * sample_freq
2897 *
2898 */
2899
2900 /*
2901 * Reduce accuracy by one bit such that @a and @b converge
2902 * to a similar magnitude.
2903 */
fe4b04fa 2904#define REDUCE_FLS(a, b) \
abd50713
PZ
2905do { \
2906 if (a##_fls > b##_fls) { \
2907 a >>= 1; \
2908 a##_fls--; \
2909 } else { \
2910 b >>= 1; \
2911 b##_fls--; \
2912 } \
2913} while (0)
2914
2915 /*
2916 * Reduce accuracy until either term fits in a u64, then proceed with
2917 * the other, so that finally we can do a u64/u64 division.
2918 */
2919 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2920 REDUCE_FLS(nsec, frequency);
2921 REDUCE_FLS(sec, count);
2922 }
2923
2924 if (count_fls + sec_fls > 64) {
2925 divisor = nsec * frequency;
2926
2927 while (count_fls + sec_fls > 64) {
2928 REDUCE_FLS(count, sec);
2929 divisor >>= 1;
2930 }
2931
2932 dividend = count * sec;
2933 } else {
2934 dividend = count * sec;
2935
2936 while (nsec_fls + frequency_fls > 64) {
2937 REDUCE_FLS(nsec, frequency);
2938 dividend >>= 1;
2939 }
2940
2941 divisor = nsec * frequency;
2942 }
2943
f6ab91ad
PZ
2944 if (!divisor)
2945 return dividend;
2946
abd50713
PZ
2947 return div64_u64(dividend, divisor);
2948}
2949
e050e3f0
SE
2950static DEFINE_PER_CPU(int, perf_throttled_count);
2951static DEFINE_PER_CPU(u64, perf_throttled_seq);
2952
f39d47ff 2953static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2954{
cdd6c482 2955 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2956 s64 period, sample_period;
bd2b5b12
PZ
2957 s64 delta;
2958
abd50713 2959 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2960
2961 delta = (s64)(period - hwc->sample_period);
2962 delta = (delta + 7) / 8; /* low pass filter */
2963
2964 sample_period = hwc->sample_period + delta;
2965
2966 if (!sample_period)
2967 sample_period = 1;
2968
bd2b5b12 2969 hwc->sample_period = sample_period;
abd50713 2970
e7850595 2971 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2972 if (disable)
2973 event->pmu->stop(event, PERF_EF_UPDATE);
2974
e7850595 2975 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2976
2977 if (disable)
2978 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2979 }
bd2b5b12
PZ
2980}
2981
e050e3f0
SE
2982/*
2983 * combine freq adjustment with unthrottling to avoid two passes over the
2984 * events. At the same time, make sure, having freq events does not change
2985 * the rate of unthrottling as that would introduce bias.
2986 */
2987static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2988 int needs_unthr)
60db5e09 2989{
cdd6c482
IM
2990 struct perf_event *event;
2991 struct hw_perf_event *hwc;
e050e3f0 2992 u64 now, period = TICK_NSEC;
abd50713 2993 s64 delta;
60db5e09 2994
e050e3f0
SE
2995 /*
2996 * only need to iterate over all events iff:
2997 * - context have events in frequency mode (needs freq adjust)
2998 * - there are events to unthrottle on this cpu
2999 */
3000 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3001 return;
3002
e050e3f0 3003 raw_spin_lock(&ctx->lock);
f39d47ff 3004 perf_pmu_disable(ctx->pmu);
e050e3f0 3005
03541f8b 3006 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3007 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3008 continue;
3009
5632ab12 3010 if (!event_filter_match(event))
5d27c23d
PZ
3011 continue;
3012
44377277
AS
3013 perf_pmu_disable(event->pmu);
3014
cdd6c482 3015 hwc = &event->hw;
6a24ed6c 3016
ae23bff1 3017 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3018 hwc->interrupts = 0;
cdd6c482 3019 perf_log_throttle(event, 1);
a4eaf7f1 3020 event->pmu->start(event, 0);
a78ac325
PZ
3021 }
3022
cdd6c482 3023 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3024 goto next;
60db5e09 3025
e050e3f0
SE
3026 /*
3027 * stop the event and update event->count
3028 */
3029 event->pmu->stop(event, PERF_EF_UPDATE);
3030
e7850595 3031 now = local64_read(&event->count);
abd50713
PZ
3032 delta = now - hwc->freq_count_stamp;
3033 hwc->freq_count_stamp = now;
60db5e09 3034
e050e3f0
SE
3035 /*
3036 * restart the event
3037 * reload only if value has changed
f39d47ff
SE
3038 * we have stopped the event so tell that
3039 * to perf_adjust_period() to avoid stopping it
3040 * twice.
e050e3f0 3041 */
abd50713 3042 if (delta > 0)
f39d47ff 3043 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3044
3045 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3046 next:
3047 perf_pmu_enable(event->pmu);
60db5e09 3048 }
e050e3f0 3049
f39d47ff 3050 perf_pmu_enable(ctx->pmu);
e050e3f0 3051 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3052}
3053
235c7fc7 3054/*
cdd6c482 3055 * Round-robin a context's events:
235c7fc7 3056 */
cdd6c482 3057static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3058{
dddd3379
TG
3059 /*
3060 * Rotate the first entry last of non-pinned groups. Rotation might be
3061 * disabled by the inheritance code.
3062 */
3063 if (!ctx->rotate_disable)
3064 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3065}
3066
9e630205 3067static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3068{
8dc85d54 3069 struct perf_event_context *ctx = NULL;
2fde4f94 3070 int rotate = 0;
7fc23a53 3071
b5ab4cd5 3072 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3073 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3074 rotate = 1;
3075 }
235c7fc7 3076
8dc85d54 3077 ctx = cpuctx->task_ctx;
b5ab4cd5 3078 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3079 if (ctx->nr_events != ctx->nr_active)
3080 rotate = 1;
3081 }
9717e6cd 3082
e050e3f0 3083 if (!rotate)
0f5a2601
PZ
3084 goto done;
3085
facc4307 3086 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3087 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3088
e050e3f0
SE
3089 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3090 if (ctx)
3091 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3092
e050e3f0
SE
3093 rotate_ctx(&cpuctx->ctx);
3094 if (ctx)
3095 rotate_ctx(ctx);
235c7fc7 3096
e050e3f0 3097 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3098
0f5a2601
PZ
3099 perf_pmu_enable(cpuctx->ctx.pmu);
3100 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3101done:
9e630205
SE
3102
3103 return rotate;
e9d2b064
PZ
3104}
3105
026249ef
FW
3106#ifdef CONFIG_NO_HZ_FULL
3107bool perf_event_can_stop_tick(void)
3108{
948b26b6 3109 if (atomic_read(&nr_freq_events) ||
d84153d6 3110 __this_cpu_read(perf_throttled_count))
026249ef 3111 return false;
d84153d6
FW
3112 else
3113 return true;
026249ef
FW
3114}
3115#endif
3116
e9d2b064
PZ
3117void perf_event_task_tick(void)
3118{
2fde4f94
MR
3119 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3120 struct perf_event_context *ctx, *tmp;
e050e3f0 3121 int throttled;
b5ab4cd5 3122
e9d2b064
PZ
3123 WARN_ON(!irqs_disabled());
3124
e050e3f0
SE
3125 __this_cpu_inc(perf_throttled_seq);
3126 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3127
2fde4f94 3128 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3129 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3130}
3131
889ff015
FW
3132static int event_enable_on_exec(struct perf_event *event,
3133 struct perf_event_context *ctx)
3134{
3135 if (!event->attr.enable_on_exec)
3136 return 0;
3137
3138 event->attr.enable_on_exec = 0;
3139 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3140 return 0;
3141
1d9b482e 3142 __perf_event_mark_enabled(event);
889ff015
FW
3143
3144 return 1;
3145}
3146
57e7986e 3147/*
cdd6c482 3148 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3149 * This expects task == current.
3150 */
8dc85d54 3151static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3152{
211de6eb 3153 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3154 struct perf_event *event;
57e7986e
PM
3155 unsigned long flags;
3156 int enabled = 0;
889ff015 3157 int ret;
57e7986e
PM
3158
3159 local_irq_save(flags);
cdd6c482 3160 if (!ctx || !ctx->nr_events)
57e7986e
PM
3161 goto out;
3162
e566b76e
SE
3163 /*
3164 * We must ctxsw out cgroup events to avoid conflict
3165 * when invoking perf_task_event_sched_in() later on
3166 * in this function. Otherwise we end up trying to
3167 * ctxswin cgroup events which are already scheduled
3168 * in.
3169 */
a8d757ef 3170 perf_cgroup_sched_out(current, NULL);
57e7986e 3171
e625cce1 3172 raw_spin_lock(&ctx->lock);
04dc2dbb 3173 task_ctx_sched_out(ctx);
57e7986e 3174
b79387ef 3175 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3176 ret = event_enable_on_exec(event, ctx);
3177 if (ret)
3178 enabled = 1;
57e7986e
PM
3179 }
3180
3181 /*
cdd6c482 3182 * Unclone this context if we enabled any event.
57e7986e 3183 */
71a851b4 3184 if (enabled)
211de6eb 3185 clone_ctx = unclone_ctx(ctx);
57e7986e 3186
e625cce1 3187 raw_spin_unlock(&ctx->lock);
57e7986e 3188
e566b76e
SE
3189 /*
3190 * Also calls ctxswin for cgroup events, if any:
3191 */
e5d1367f 3192 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3193out:
57e7986e 3194 local_irq_restore(flags);
211de6eb
PZ
3195
3196 if (clone_ctx)
3197 put_ctx(clone_ctx);
57e7986e
PM
3198}
3199
e041e328
PZ
3200void perf_event_exec(void)
3201{
3202 struct perf_event_context *ctx;
3203 int ctxn;
3204
3205 rcu_read_lock();
3206 for_each_task_context_nr(ctxn) {
3207 ctx = current->perf_event_ctxp[ctxn];
3208 if (!ctx)
3209 continue;
3210
3211 perf_event_enable_on_exec(ctx);
3212 }
3213 rcu_read_unlock();
3214}
3215
0492d4c5
PZ
3216struct perf_read_data {
3217 struct perf_event *event;
3218 bool group;
7d88962e 3219 int ret;
0492d4c5
PZ
3220};
3221
0793a61d 3222/*
cdd6c482 3223 * Cross CPU call to read the hardware event
0793a61d 3224 */
cdd6c482 3225static void __perf_event_read(void *info)
0793a61d 3226{
0492d4c5
PZ
3227 struct perf_read_data *data = info;
3228 struct perf_event *sub, *event = data->event;
cdd6c482 3229 struct perf_event_context *ctx = event->ctx;
108b02cf 3230 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3231 struct pmu *pmu = event->pmu;
621a01ea 3232
e1ac3614
PM
3233 /*
3234 * If this is a task context, we need to check whether it is
3235 * the current task context of this cpu. If not it has been
3236 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3237 * event->count would have been updated to a recent sample
3238 * when the event was scheduled out.
e1ac3614
PM
3239 */
3240 if (ctx->task && cpuctx->task_ctx != ctx)
3241 return;
3242
e625cce1 3243 raw_spin_lock(&ctx->lock);
e5d1367f 3244 if (ctx->is_active) {
542e72fc 3245 update_context_time(ctx);
e5d1367f
SE
3246 update_cgrp_time_from_event(event);
3247 }
0492d4c5 3248
cdd6c482 3249 update_event_times(event);
4a00c16e
SB
3250 if (event->state != PERF_EVENT_STATE_ACTIVE)
3251 goto unlock;
0492d4c5 3252
4a00c16e
SB
3253 if (!data->group) {
3254 pmu->read(event);
3255 data->ret = 0;
0492d4c5 3256 goto unlock;
4a00c16e
SB
3257 }
3258
3259 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3260
3261 pmu->read(event);
0492d4c5
PZ
3262
3263 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3264 update_event_times(sub);
4a00c16e
SB
3265 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3266 /*
3267 * Use sibling's PMU rather than @event's since
3268 * sibling could be on different (eg: software) PMU.
3269 */
0492d4c5 3270 sub->pmu->read(sub);
4a00c16e 3271 }
0492d4c5 3272 }
4a00c16e
SB
3273
3274 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3275
3276unlock:
e625cce1 3277 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3278}
3279
b5e58793
PZ
3280static inline u64 perf_event_count(struct perf_event *event)
3281{
eacd3ecc
MF
3282 if (event->pmu->count)
3283 return event->pmu->count(event);
3284
3285 return __perf_event_count(event);
b5e58793
PZ
3286}
3287
ffe8690c
KX
3288/*
3289 * NMI-safe method to read a local event, that is an event that
3290 * is:
3291 * - either for the current task, or for this CPU
3292 * - does not have inherit set, for inherited task events
3293 * will not be local and we cannot read them atomically
3294 * - must not have a pmu::count method
3295 */
3296u64 perf_event_read_local(struct perf_event *event)
3297{
3298 unsigned long flags;
3299 u64 val;
3300
3301 /*
3302 * Disabling interrupts avoids all counter scheduling (context
3303 * switches, timer based rotation and IPIs).
3304 */
3305 local_irq_save(flags);
3306
3307 /* If this is a per-task event, it must be for current */
3308 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3309 event->hw.target != current);
3310
3311 /* If this is a per-CPU event, it must be for this CPU */
3312 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3313 event->cpu != smp_processor_id());
3314
3315 /*
3316 * It must not be an event with inherit set, we cannot read
3317 * all child counters from atomic context.
3318 */
3319 WARN_ON_ONCE(event->attr.inherit);
3320
3321 /*
3322 * It must not have a pmu::count method, those are not
3323 * NMI safe.
3324 */
3325 WARN_ON_ONCE(event->pmu->count);
3326
3327 /*
3328 * If the event is currently on this CPU, its either a per-task event,
3329 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3330 * oncpu == -1).
3331 */
3332 if (event->oncpu == smp_processor_id())
3333 event->pmu->read(event);
3334
3335 val = local64_read(&event->count);
3336 local_irq_restore(flags);
3337
3338 return val;
3339}
3340
7d88962e 3341static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3342{
7d88962e
SB
3343 int ret = 0;
3344
0793a61d 3345 /*
cdd6c482
IM
3346 * If event is enabled and currently active on a CPU, update the
3347 * value in the event structure:
0793a61d 3348 */
cdd6c482 3349 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3350 struct perf_read_data data = {
3351 .event = event,
3352 .group = group,
7d88962e 3353 .ret = 0,
0492d4c5 3354 };
cdd6c482 3355 smp_call_function_single(event->oncpu,
0492d4c5 3356 __perf_event_read, &data, 1);
7d88962e 3357 ret = data.ret;
cdd6c482 3358 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3359 struct perf_event_context *ctx = event->ctx;
3360 unsigned long flags;
3361
e625cce1 3362 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3363 /*
3364 * may read while context is not active
3365 * (e.g., thread is blocked), in that case
3366 * we cannot update context time
3367 */
e5d1367f 3368 if (ctx->is_active) {
c530ccd9 3369 update_context_time(ctx);
e5d1367f
SE
3370 update_cgrp_time_from_event(event);
3371 }
0492d4c5
PZ
3372 if (group)
3373 update_group_times(event);
3374 else
3375 update_event_times(event);
e625cce1 3376 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3377 }
7d88962e
SB
3378
3379 return ret;
0793a61d
TG
3380}
3381
a63eaf34 3382/*
cdd6c482 3383 * Initialize the perf_event context in a task_struct:
a63eaf34 3384 */
eb184479 3385static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3386{
e625cce1 3387 raw_spin_lock_init(&ctx->lock);
a63eaf34 3388 mutex_init(&ctx->mutex);
2fde4f94 3389 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3390 INIT_LIST_HEAD(&ctx->pinned_groups);
3391 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3392 INIT_LIST_HEAD(&ctx->event_list);
3393 atomic_set(&ctx->refcount, 1);
fadfe7be 3394 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3395}
3396
3397static struct perf_event_context *
3398alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3399{
3400 struct perf_event_context *ctx;
3401
3402 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3403 if (!ctx)
3404 return NULL;
3405
3406 __perf_event_init_context(ctx);
3407 if (task) {
3408 ctx->task = task;
3409 get_task_struct(task);
0793a61d 3410 }
eb184479
PZ
3411 ctx->pmu = pmu;
3412
3413 return ctx;
a63eaf34
PM
3414}
3415
2ebd4ffb
MH
3416static struct task_struct *
3417find_lively_task_by_vpid(pid_t vpid)
3418{
3419 struct task_struct *task;
3420 int err;
0793a61d
TG
3421
3422 rcu_read_lock();
2ebd4ffb 3423 if (!vpid)
0793a61d
TG
3424 task = current;
3425 else
2ebd4ffb 3426 task = find_task_by_vpid(vpid);
0793a61d
TG
3427 if (task)
3428 get_task_struct(task);
3429 rcu_read_unlock();
3430
3431 if (!task)
3432 return ERR_PTR(-ESRCH);
3433
0793a61d 3434 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3435 err = -EACCES;
3436 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3437 goto errout;
3438
2ebd4ffb
MH
3439 return task;
3440errout:
3441 put_task_struct(task);
3442 return ERR_PTR(err);
3443
3444}
3445
fe4b04fa
PZ
3446/*
3447 * Returns a matching context with refcount and pincount.
3448 */
108b02cf 3449static struct perf_event_context *
4af57ef2
YZ
3450find_get_context(struct pmu *pmu, struct task_struct *task,
3451 struct perf_event *event)
0793a61d 3452{
211de6eb 3453 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3454 struct perf_cpu_context *cpuctx;
4af57ef2 3455 void *task_ctx_data = NULL;
25346b93 3456 unsigned long flags;
8dc85d54 3457 int ctxn, err;
4af57ef2 3458 int cpu = event->cpu;
0793a61d 3459
22a4ec72 3460 if (!task) {
cdd6c482 3461 /* Must be root to operate on a CPU event: */
0764771d 3462 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3463 return ERR_PTR(-EACCES);
3464
0793a61d 3465 /*
cdd6c482 3466 * We could be clever and allow to attach a event to an
0793a61d
TG
3467 * offline CPU and activate it when the CPU comes up, but
3468 * that's for later.
3469 */
f6325e30 3470 if (!cpu_online(cpu))
0793a61d
TG
3471 return ERR_PTR(-ENODEV);
3472
108b02cf 3473 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3474 ctx = &cpuctx->ctx;
c93f7669 3475 get_ctx(ctx);
fe4b04fa 3476 ++ctx->pin_count;
0793a61d 3477
0793a61d
TG
3478 return ctx;
3479 }
3480
8dc85d54
PZ
3481 err = -EINVAL;
3482 ctxn = pmu->task_ctx_nr;
3483 if (ctxn < 0)
3484 goto errout;
3485
4af57ef2
YZ
3486 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3487 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3488 if (!task_ctx_data) {
3489 err = -ENOMEM;
3490 goto errout;
3491 }
3492 }
3493
9ed6060d 3494retry:
8dc85d54 3495 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3496 if (ctx) {
211de6eb 3497 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3498 ++ctx->pin_count;
4af57ef2
YZ
3499
3500 if (task_ctx_data && !ctx->task_ctx_data) {
3501 ctx->task_ctx_data = task_ctx_data;
3502 task_ctx_data = NULL;
3503 }
e625cce1 3504 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3505
3506 if (clone_ctx)
3507 put_ctx(clone_ctx);
9137fb28 3508 } else {
eb184479 3509 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3510 err = -ENOMEM;
3511 if (!ctx)
3512 goto errout;
eb184479 3513
4af57ef2
YZ
3514 if (task_ctx_data) {
3515 ctx->task_ctx_data = task_ctx_data;
3516 task_ctx_data = NULL;
3517 }
3518
dbe08d82
ON
3519 err = 0;
3520 mutex_lock(&task->perf_event_mutex);
3521 /*
3522 * If it has already passed perf_event_exit_task().
3523 * we must see PF_EXITING, it takes this mutex too.
3524 */
3525 if (task->flags & PF_EXITING)
3526 err = -ESRCH;
3527 else if (task->perf_event_ctxp[ctxn])
3528 err = -EAGAIN;
fe4b04fa 3529 else {
9137fb28 3530 get_ctx(ctx);
fe4b04fa 3531 ++ctx->pin_count;
dbe08d82 3532 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3533 }
dbe08d82
ON
3534 mutex_unlock(&task->perf_event_mutex);
3535
3536 if (unlikely(err)) {
9137fb28 3537 put_ctx(ctx);
dbe08d82
ON
3538
3539 if (err == -EAGAIN)
3540 goto retry;
3541 goto errout;
a63eaf34
PM
3542 }
3543 }
3544
4af57ef2 3545 kfree(task_ctx_data);
0793a61d 3546 return ctx;
c93f7669 3547
9ed6060d 3548errout:
4af57ef2 3549 kfree(task_ctx_data);
c93f7669 3550 return ERR_PTR(err);
0793a61d
TG
3551}
3552
6fb2915d 3553static void perf_event_free_filter(struct perf_event *event);
2541517c 3554static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3555
cdd6c482 3556static void free_event_rcu(struct rcu_head *head)
592903cd 3557{
cdd6c482 3558 struct perf_event *event;
592903cd 3559
cdd6c482
IM
3560 event = container_of(head, struct perf_event, rcu_head);
3561 if (event->ns)
3562 put_pid_ns(event->ns);
6fb2915d 3563 perf_event_free_filter(event);
cdd6c482 3564 kfree(event);
592903cd
PZ
3565}
3566
b69cf536
PZ
3567static void ring_buffer_attach(struct perf_event *event,
3568 struct ring_buffer *rb);
925d519a 3569
4beb31f3 3570static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3571{
4beb31f3
FW
3572 if (event->parent)
3573 return;
3574
4beb31f3
FW
3575 if (is_cgroup_event(event))
3576 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3577}
925d519a 3578
4beb31f3
FW
3579static void unaccount_event(struct perf_event *event)
3580{
3581 if (event->parent)
3582 return;
3583
3584 if (event->attach_state & PERF_ATTACH_TASK)
3585 static_key_slow_dec_deferred(&perf_sched_events);
3586 if (event->attr.mmap || event->attr.mmap_data)
3587 atomic_dec(&nr_mmap_events);
3588 if (event->attr.comm)
3589 atomic_dec(&nr_comm_events);
3590 if (event->attr.task)
3591 atomic_dec(&nr_task_events);
948b26b6
FW
3592 if (event->attr.freq)
3593 atomic_dec(&nr_freq_events);
45ac1403
AH
3594 if (event->attr.context_switch) {
3595 static_key_slow_dec_deferred(&perf_sched_events);
3596 atomic_dec(&nr_switch_events);
3597 }
4beb31f3
FW
3598 if (is_cgroup_event(event))
3599 static_key_slow_dec_deferred(&perf_sched_events);
3600 if (has_branch_stack(event))
3601 static_key_slow_dec_deferred(&perf_sched_events);
3602
3603 unaccount_event_cpu(event, event->cpu);
3604}
925d519a 3605
bed5b25a
AS
3606/*
3607 * The following implement mutual exclusion of events on "exclusive" pmus
3608 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3609 * at a time, so we disallow creating events that might conflict, namely:
3610 *
3611 * 1) cpu-wide events in the presence of per-task events,
3612 * 2) per-task events in the presence of cpu-wide events,
3613 * 3) two matching events on the same context.
3614 *
3615 * The former two cases are handled in the allocation path (perf_event_alloc(),
3616 * __free_event()), the latter -- before the first perf_install_in_context().
3617 */
3618static int exclusive_event_init(struct perf_event *event)
3619{
3620 struct pmu *pmu = event->pmu;
3621
3622 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3623 return 0;
3624
3625 /*
3626 * Prevent co-existence of per-task and cpu-wide events on the
3627 * same exclusive pmu.
3628 *
3629 * Negative pmu::exclusive_cnt means there are cpu-wide
3630 * events on this "exclusive" pmu, positive means there are
3631 * per-task events.
3632 *
3633 * Since this is called in perf_event_alloc() path, event::ctx
3634 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3635 * to mean "per-task event", because unlike other attach states it
3636 * never gets cleared.
3637 */
3638 if (event->attach_state & PERF_ATTACH_TASK) {
3639 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3640 return -EBUSY;
3641 } else {
3642 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3643 return -EBUSY;
3644 }
3645
3646 return 0;
3647}
3648
3649static void exclusive_event_destroy(struct perf_event *event)
3650{
3651 struct pmu *pmu = event->pmu;
3652
3653 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3654 return;
3655
3656 /* see comment in exclusive_event_init() */
3657 if (event->attach_state & PERF_ATTACH_TASK)
3658 atomic_dec(&pmu->exclusive_cnt);
3659 else
3660 atomic_inc(&pmu->exclusive_cnt);
3661}
3662
3663static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3664{
3665 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3666 (e1->cpu == e2->cpu ||
3667 e1->cpu == -1 ||
3668 e2->cpu == -1))
3669 return true;
3670 return false;
3671}
3672
3673/* Called under the same ctx::mutex as perf_install_in_context() */
3674static bool exclusive_event_installable(struct perf_event *event,
3675 struct perf_event_context *ctx)
3676{
3677 struct perf_event *iter_event;
3678 struct pmu *pmu = event->pmu;
3679
3680 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3681 return true;
3682
3683 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3684 if (exclusive_event_match(iter_event, event))
3685 return false;
3686 }
3687
3688 return true;
3689}
3690
766d6c07
FW
3691static void __free_event(struct perf_event *event)
3692{
cdd6c482 3693 if (!event->parent) {
927c7a9e
FW
3694 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3695 put_callchain_buffers();
f344011c 3696 }
9ee318a7 3697
dead9f29
AS
3698 perf_event_free_bpf_prog(event);
3699
766d6c07
FW
3700 if (event->destroy)
3701 event->destroy(event);
3702
3703 if (event->ctx)
3704 put_ctx(event->ctx);
3705
bed5b25a
AS
3706 if (event->pmu) {
3707 exclusive_event_destroy(event);
c464c76e 3708 module_put(event->pmu->module);
bed5b25a 3709 }
c464c76e 3710
766d6c07
FW
3711 call_rcu(&event->rcu_head, free_event_rcu);
3712}
683ede43
PZ
3713
3714static void _free_event(struct perf_event *event)
f1600952 3715{
e360adbe 3716 irq_work_sync(&event->pending);
925d519a 3717
4beb31f3 3718 unaccount_event(event);
9ee318a7 3719
76369139 3720 if (event->rb) {
9bb5d40c
PZ
3721 /*
3722 * Can happen when we close an event with re-directed output.
3723 *
3724 * Since we have a 0 refcount, perf_mmap_close() will skip
3725 * over us; possibly making our ring_buffer_put() the last.
3726 */
3727 mutex_lock(&event->mmap_mutex);
b69cf536 3728 ring_buffer_attach(event, NULL);
9bb5d40c 3729 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3730 }
3731
e5d1367f
SE
3732 if (is_cgroup_event(event))
3733 perf_detach_cgroup(event);
3734
766d6c07 3735 __free_event(event);
f1600952
PZ
3736}
3737
683ede43
PZ
3738/*
3739 * Used to free events which have a known refcount of 1, such as in error paths
3740 * where the event isn't exposed yet and inherited events.
3741 */
3742static void free_event(struct perf_event *event)
0793a61d 3743{
683ede43
PZ
3744 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3745 "unexpected event refcount: %ld; ptr=%p\n",
3746 atomic_long_read(&event->refcount), event)) {
3747 /* leak to avoid use-after-free */
3748 return;
3749 }
0793a61d 3750
683ede43 3751 _free_event(event);
0793a61d
TG
3752}
3753
a66a3052 3754/*
f8697762 3755 * Remove user event from the owner task.
a66a3052 3756 */
f8697762 3757static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3758{
8882135b 3759 struct task_struct *owner;
fb0459d7 3760
8882135b
PZ
3761 rcu_read_lock();
3762 owner = ACCESS_ONCE(event->owner);
3763 /*
3764 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3765 * !owner it means the list deletion is complete and we can indeed
3766 * free this event, otherwise we need to serialize on
3767 * owner->perf_event_mutex.
3768 */
3769 smp_read_barrier_depends();
3770 if (owner) {
3771 /*
3772 * Since delayed_put_task_struct() also drops the last
3773 * task reference we can safely take a new reference
3774 * while holding the rcu_read_lock().
3775 */
3776 get_task_struct(owner);
3777 }
3778 rcu_read_unlock();
3779
3780 if (owner) {
f63a8daa
PZ
3781 /*
3782 * If we're here through perf_event_exit_task() we're already
3783 * holding ctx->mutex which would be an inversion wrt. the
3784 * normal lock order.
3785 *
3786 * However we can safely take this lock because its the child
3787 * ctx->mutex.
3788 */
3789 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3790
8882135b
PZ
3791 /*
3792 * We have to re-check the event->owner field, if it is cleared
3793 * we raced with perf_event_exit_task(), acquiring the mutex
3794 * ensured they're done, and we can proceed with freeing the
3795 * event.
3796 */
3797 if (event->owner)
3798 list_del_init(&event->owner_entry);
3799 mutex_unlock(&owner->perf_event_mutex);
3800 put_task_struct(owner);
3801 }
f8697762
JO
3802}
3803
f8697762
JO
3804static void put_event(struct perf_event *event)
3805{
a83fe28e 3806 struct perf_event_context *ctx;
f8697762
JO
3807
3808 if (!atomic_long_dec_and_test(&event->refcount))
3809 return;
3810
3811 if (!is_kernel_event(event))
3812 perf_remove_from_owner(event);
8882135b 3813
683ede43
PZ
3814 /*
3815 * There are two ways this annotation is useful:
3816 *
3817 * 1) there is a lock recursion from perf_event_exit_task
3818 * see the comment there.
3819 *
3820 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3821 * perf_read_group(), which takes faults while
683ede43
PZ
3822 * holding ctx->mutex, however this is called after
3823 * the last filedesc died, so there is no possibility
3824 * to trigger the AB-BA case.
3825 */
a83fe28e
PZ
3826 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3827 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3828 perf_remove_from_context(event, true);
d415a7f1 3829 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3830
3831 _free_event(event);
a6fa941d
AV
3832}
3833
683ede43
PZ
3834int perf_event_release_kernel(struct perf_event *event)
3835{
3836 put_event(event);
3837 return 0;
3838}
3839EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3840
8b10c5e2
PZ
3841/*
3842 * Called when the last reference to the file is gone.
3843 */
a6fa941d
AV
3844static int perf_release(struct inode *inode, struct file *file)
3845{
3846 put_event(file->private_data);
3847 return 0;
fb0459d7 3848}
fb0459d7 3849
fadfe7be
JO
3850/*
3851 * Remove all orphanes events from the context.
3852 */
3853static void orphans_remove_work(struct work_struct *work)
3854{
3855 struct perf_event_context *ctx;
3856 struct perf_event *event, *tmp;
3857
3858 ctx = container_of(work, struct perf_event_context,
3859 orphans_remove.work);
3860
3861 mutex_lock(&ctx->mutex);
3862 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3863 struct perf_event *parent_event = event->parent;
3864
3865 if (!is_orphaned_child(event))
3866 continue;
3867
3868 perf_remove_from_context(event, true);
3869
3870 mutex_lock(&parent_event->child_mutex);
3871 list_del_init(&event->child_list);
3872 mutex_unlock(&parent_event->child_mutex);
3873
3874 free_event(event);
3875 put_event(parent_event);
3876 }
3877
3878 raw_spin_lock_irq(&ctx->lock);
3879 ctx->orphans_remove_sched = false;
3880 raw_spin_unlock_irq(&ctx->lock);
3881 mutex_unlock(&ctx->mutex);
3882
3883 put_ctx(ctx);
3884}
3885
59ed446f 3886u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3887{
cdd6c482 3888 struct perf_event *child;
e53c0994
PZ
3889 u64 total = 0;
3890
59ed446f
PZ
3891 *enabled = 0;
3892 *running = 0;
3893
6f10581a 3894 mutex_lock(&event->child_mutex);
01add3ea 3895
7d88962e 3896 (void)perf_event_read(event, false);
01add3ea
SB
3897 total += perf_event_count(event);
3898
59ed446f
PZ
3899 *enabled += event->total_time_enabled +
3900 atomic64_read(&event->child_total_time_enabled);
3901 *running += event->total_time_running +
3902 atomic64_read(&event->child_total_time_running);
3903
3904 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3905 (void)perf_event_read(child, false);
01add3ea 3906 total += perf_event_count(child);
59ed446f
PZ
3907 *enabled += child->total_time_enabled;
3908 *running += child->total_time_running;
3909 }
6f10581a 3910 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3911
3912 return total;
3913}
fb0459d7 3914EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3915
7d88962e 3916static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3917 u64 read_format, u64 *values)
3dab77fb 3918{
fa8c2693
PZ
3919 struct perf_event *sub;
3920 int n = 1; /* skip @nr */
7d88962e 3921 int ret;
f63a8daa 3922
7d88962e
SB
3923 ret = perf_event_read(leader, true);
3924 if (ret)
3925 return ret;
abf4868b 3926
fa8c2693
PZ
3927 /*
3928 * Since we co-schedule groups, {enabled,running} times of siblings
3929 * will be identical to those of the leader, so we only publish one
3930 * set.
3931 */
3932 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3933 values[n++] += leader->total_time_enabled +
3934 atomic64_read(&leader->child_total_time_enabled);
3935 }
3dab77fb 3936
fa8c2693
PZ
3937 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3938 values[n++] += leader->total_time_running +
3939 atomic64_read(&leader->child_total_time_running);
3940 }
3941
3942 /*
3943 * Write {count,id} tuples for every sibling.
3944 */
3945 values[n++] += perf_event_count(leader);
abf4868b
PZ
3946 if (read_format & PERF_FORMAT_ID)
3947 values[n++] = primary_event_id(leader);
3dab77fb 3948
fa8c2693
PZ
3949 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3950 values[n++] += perf_event_count(sub);
3951 if (read_format & PERF_FORMAT_ID)
3952 values[n++] = primary_event_id(sub);
3953 }
7d88962e
SB
3954
3955 return 0;
fa8c2693 3956}
3dab77fb 3957
fa8c2693
PZ
3958static int perf_read_group(struct perf_event *event,
3959 u64 read_format, char __user *buf)
3960{
3961 struct perf_event *leader = event->group_leader, *child;
3962 struct perf_event_context *ctx = leader->ctx;
7d88962e 3963 int ret;
fa8c2693 3964 u64 *values;
3dab77fb 3965
fa8c2693 3966 lockdep_assert_held(&ctx->mutex);
3dab77fb 3967
fa8c2693
PZ
3968 values = kzalloc(event->read_size, GFP_KERNEL);
3969 if (!values)
3970 return -ENOMEM;
3dab77fb 3971
fa8c2693
PZ
3972 values[0] = 1 + leader->nr_siblings;
3973
3974 /*
3975 * By locking the child_mutex of the leader we effectively
3976 * lock the child list of all siblings.. XXX explain how.
3977 */
3978 mutex_lock(&leader->child_mutex);
abf4868b 3979
7d88962e
SB
3980 ret = __perf_read_group_add(leader, read_format, values);
3981 if (ret)
3982 goto unlock;
3983
3984 list_for_each_entry(child, &leader->child_list, child_list) {
3985 ret = __perf_read_group_add(child, read_format, values);
3986 if (ret)
3987 goto unlock;
3988 }
abf4868b 3989
fa8c2693 3990 mutex_unlock(&leader->child_mutex);
abf4868b 3991
7d88962e 3992 ret = event->read_size;
fa8c2693
PZ
3993 if (copy_to_user(buf, values, event->read_size))
3994 ret = -EFAULT;
7d88962e 3995 goto out;
fa8c2693 3996
7d88962e
SB
3997unlock:
3998 mutex_unlock(&leader->child_mutex);
3999out:
fa8c2693 4000 kfree(values);
abf4868b 4001 return ret;
3dab77fb
PZ
4002}
4003
b15f495b 4004static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4005 u64 read_format, char __user *buf)
4006{
59ed446f 4007 u64 enabled, running;
3dab77fb
PZ
4008 u64 values[4];
4009 int n = 0;
4010
59ed446f
PZ
4011 values[n++] = perf_event_read_value(event, &enabled, &running);
4012 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4013 values[n++] = enabled;
4014 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4015 values[n++] = running;
3dab77fb 4016 if (read_format & PERF_FORMAT_ID)
cdd6c482 4017 values[n++] = primary_event_id(event);
3dab77fb
PZ
4018
4019 if (copy_to_user(buf, values, n * sizeof(u64)))
4020 return -EFAULT;
4021
4022 return n * sizeof(u64);
4023}
4024
dc633982
JO
4025static bool is_event_hup(struct perf_event *event)
4026{
4027 bool no_children;
4028
4029 if (event->state != PERF_EVENT_STATE_EXIT)
4030 return false;
4031
4032 mutex_lock(&event->child_mutex);
4033 no_children = list_empty(&event->child_list);
4034 mutex_unlock(&event->child_mutex);
4035 return no_children;
4036}
4037
0793a61d 4038/*
cdd6c482 4039 * Read the performance event - simple non blocking version for now
0793a61d
TG
4040 */
4041static ssize_t
b15f495b 4042__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4043{
cdd6c482 4044 u64 read_format = event->attr.read_format;
3dab77fb 4045 int ret;
0793a61d 4046
3b6f9e5c 4047 /*
cdd6c482 4048 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4049 * error state (i.e. because it was pinned but it couldn't be
4050 * scheduled on to the CPU at some point).
4051 */
cdd6c482 4052 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4053 return 0;
4054
c320c7b7 4055 if (count < event->read_size)
3dab77fb
PZ
4056 return -ENOSPC;
4057
cdd6c482 4058 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4059 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4060 ret = perf_read_group(event, read_format, buf);
3dab77fb 4061 else
b15f495b 4062 ret = perf_read_one(event, read_format, buf);
0793a61d 4063
3dab77fb 4064 return ret;
0793a61d
TG
4065}
4066
0793a61d
TG
4067static ssize_t
4068perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4069{
cdd6c482 4070 struct perf_event *event = file->private_data;
f63a8daa
PZ
4071 struct perf_event_context *ctx;
4072 int ret;
0793a61d 4073
f63a8daa 4074 ctx = perf_event_ctx_lock(event);
b15f495b 4075 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4076 perf_event_ctx_unlock(event, ctx);
4077
4078 return ret;
0793a61d
TG
4079}
4080
4081static unsigned int perf_poll(struct file *file, poll_table *wait)
4082{
cdd6c482 4083 struct perf_event *event = file->private_data;
76369139 4084 struct ring_buffer *rb;
61b67684 4085 unsigned int events = POLLHUP;
c7138f37 4086
e708d7ad 4087 poll_wait(file, &event->waitq, wait);
179033b3 4088
dc633982 4089 if (is_event_hup(event))
179033b3 4090 return events;
c7138f37 4091
10c6db11 4092 /*
9bb5d40c
PZ
4093 * Pin the event->rb by taking event->mmap_mutex; otherwise
4094 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4095 */
4096 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4097 rb = event->rb;
4098 if (rb)
76369139 4099 events = atomic_xchg(&rb->poll, 0);
10c6db11 4100 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4101 return events;
4102}
4103
f63a8daa 4104static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4105{
7d88962e 4106 (void)perf_event_read(event, false);
e7850595 4107 local64_set(&event->count, 0);
cdd6c482 4108 perf_event_update_userpage(event);
3df5edad
PZ
4109}
4110
c93f7669 4111/*
cdd6c482
IM
4112 * Holding the top-level event's child_mutex means that any
4113 * descendant process that has inherited this event will block
4114 * in sync_child_event if it goes to exit, thus satisfying the
4115 * task existence requirements of perf_event_enable/disable.
c93f7669 4116 */
cdd6c482
IM
4117static void perf_event_for_each_child(struct perf_event *event,
4118 void (*func)(struct perf_event *))
3df5edad 4119{
cdd6c482 4120 struct perf_event *child;
3df5edad 4121
cdd6c482 4122 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4123
cdd6c482
IM
4124 mutex_lock(&event->child_mutex);
4125 func(event);
4126 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4127 func(child);
cdd6c482 4128 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4129}
4130
cdd6c482
IM
4131static void perf_event_for_each(struct perf_event *event,
4132 void (*func)(struct perf_event *))
3df5edad 4133{
cdd6c482
IM
4134 struct perf_event_context *ctx = event->ctx;
4135 struct perf_event *sibling;
3df5edad 4136
f63a8daa
PZ
4137 lockdep_assert_held(&ctx->mutex);
4138
cdd6c482 4139 event = event->group_leader;
75f937f2 4140
cdd6c482 4141 perf_event_for_each_child(event, func);
cdd6c482 4142 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4143 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4144}
4145
c7999c6f
PZ
4146struct period_event {
4147 struct perf_event *event;
08247e31 4148 u64 value;
c7999c6f 4149};
08247e31 4150
c7999c6f
PZ
4151static int __perf_event_period(void *info)
4152{
4153 struct period_event *pe = info;
4154 struct perf_event *event = pe->event;
4155 struct perf_event_context *ctx = event->ctx;
4156 u64 value = pe->value;
4157 bool active;
08247e31 4158
c7999c6f 4159 raw_spin_lock(&ctx->lock);
cdd6c482 4160 if (event->attr.freq) {
cdd6c482 4161 event->attr.sample_freq = value;
08247e31 4162 } else {
cdd6c482
IM
4163 event->attr.sample_period = value;
4164 event->hw.sample_period = value;
08247e31 4165 }
bad7192b
PZ
4166
4167 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4168 if (active) {
4169 perf_pmu_disable(ctx->pmu);
4170 event->pmu->stop(event, PERF_EF_UPDATE);
4171 }
4172
4173 local64_set(&event->hw.period_left, 0);
4174
4175 if (active) {
4176 event->pmu->start(event, PERF_EF_RELOAD);
4177 perf_pmu_enable(ctx->pmu);
4178 }
c7999c6f 4179 raw_spin_unlock(&ctx->lock);
bad7192b 4180
c7999c6f
PZ
4181 return 0;
4182}
4183
4184static int perf_event_period(struct perf_event *event, u64 __user *arg)
4185{
4186 struct period_event pe = { .event = event, };
4187 struct perf_event_context *ctx = event->ctx;
4188 struct task_struct *task;
4189 u64 value;
4190
4191 if (!is_sampling_event(event))
4192 return -EINVAL;
4193
4194 if (copy_from_user(&value, arg, sizeof(value)))
4195 return -EFAULT;
4196
4197 if (!value)
4198 return -EINVAL;
4199
4200 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4201 return -EINVAL;
4202
4203 task = ctx->task;
4204 pe.value = value;
4205
4206 if (!task) {
4207 cpu_function_call(event->cpu, __perf_event_period, &pe);
4208 return 0;
4209 }
4210
4211retry:
4212 if (!task_function_call(task, __perf_event_period, &pe))
4213 return 0;
4214
4215 raw_spin_lock_irq(&ctx->lock);
4216 if (ctx->is_active) {
4217 raw_spin_unlock_irq(&ctx->lock);
4218 task = ctx->task;
4219 goto retry;
4220 }
4221
4222 __perf_event_period(&pe);
e625cce1 4223 raw_spin_unlock_irq(&ctx->lock);
08247e31 4224
c7999c6f 4225 return 0;
08247e31
PZ
4226}
4227
ac9721f3
PZ
4228static const struct file_operations perf_fops;
4229
2903ff01 4230static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4231{
2903ff01
AV
4232 struct fd f = fdget(fd);
4233 if (!f.file)
4234 return -EBADF;
ac9721f3 4235
2903ff01
AV
4236 if (f.file->f_op != &perf_fops) {
4237 fdput(f);
4238 return -EBADF;
ac9721f3 4239 }
2903ff01
AV
4240 *p = f;
4241 return 0;
ac9721f3
PZ
4242}
4243
4244static int perf_event_set_output(struct perf_event *event,
4245 struct perf_event *output_event);
6fb2915d 4246static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4247static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4248
f63a8daa 4249static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4250{
cdd6c482 4251 void (*func)(struct perf_event *);
3df5edad 4252 u32 flags = arg;
d859e29f
PM
4253
4254 switch (cmd) {
cdd6c482 4255 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4256 func = _perf_event_enable;
d859e29f 4257 break;
cdd6c482 4258 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4259 func = _perf_event_disable;
79f14641 4260 break;
cdd6c482 4261 case PERF_EVENT_IOC_RESET:
f63a8daa 4262 func = _perf_event_reset;
6de6a7b9 4263 break;
3df5edad 4264
cdd6c482 4265 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4266 return _perf_event_refresh(event, arg);
08247e31 4267
cdd6c482
IM
4268 case PERF_EVENT_IOC_PERIOD:
4269 return perf_event_period(event, (u64 __user *)arg);
08247e31 4270
cf4957f1
JO
4271 case PERF_EVENT_IOC_ID:
4272 {
4273 u64 id = primary_event_id(event);
4274
4275 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4276 return -EFAULT;
4277 return 0;
4278 }
4279
cdd6c482 4280 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4281 {
ac9721f3 4282 int ret;
ac9721f3 4283 if (arg != -1) {
2903ff01
AV
4284 struct perf_event *output_event;
4285 struct fd output;
4286 ret = perf_fget_light(arg, &output);
4287 if (ret)
4288 return ret;
4289 output_event = output.file->private_data;
4290 ret = perf_event_set_output(event, output_event);
4291 fdput(output);
4292 } else {
4293 ret = perf_event_set_output(event, NULL);
ac9721f3 4294 }
ac9721f3
PZ
4295 return ret;
4296 }
a4be7c27 4297
6fb2915d
LZ
4298 case PERF_EVENT_IOC_SET_FILTER:
4299 return perf_event_set_filter(event, (void __user *)arg);
4300
2541517c
AS
4301 case PERF_EVENT_IOC_SET_BPF:
4302 return perf_event_set_bpf_prog(event, arg);
4303
d859e29f 4304 default:
3df5edad 4305 return -ENOTTY;
d859e29f 4306 }
3df5edad
PZ
4307
4308 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4309 perf_event_for_each(event, func);
3df5edad 4310 else
cdd6c482 4311 perf_event_for_each_child(event, func);
3df5edad
PZ
4312
4313 return 0;
d859e29f
PM
4314}
4315
f63a8daa
PZ
4316static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4317{
4318 struct perf_event *event = file->private_data;
4319 struct perf_event_context *ctx;
4320 long ret;
4321
4322 ctx = perf_event_ctx_lock(event);
4323 ret = _perf_ioctl(event, cmd, arg);
4324 perf_event_ctx_unlock(event, ctx);
4325
4326 return ret;
4327}
4328
b3f20785
PM
4329#ifdef CONFIG_COMPAT
4330static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4331 unsigned long arg)
4332{
4333 switch (_IOC_NR(cmd)) {
4334 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4335 case _IOC_NR(PERF_EVENT_IOC_ID):
4336 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4337 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4338 cmd &= ~IOCSIZE_MASK;
4339 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4340 }
4341 break;
4342 }
4343 return perf_ioctl(file, cmd, arg);
4344}
4345#else
4346# define perf_compat_ioctl NULL
4347#endif
4348
cdd6c482 4349int perf_event_task_enable(void)
771d7cde 4350{
f63a8daa 4351 struct perf_event_context *ctx;
cdd6c482 4352 struct perf_event *event;
771d7cde 4353
cdd6c482 4354 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4355 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4356 ctx = perf_event_ctx_lock(event);
4357 perf_event_for_each_child(event, _perf_event_enable);
4358 perf_event_ctx_unlock(event, ctx);
4359 }
cdd6c482 4360 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4361
4362 return 0;
4363}
4364
cdd6c482 4365int perf_event_task_disable(void)
771d7cde 4366{
f63a8daa 4367 struct perf_event_context *ctx;
cdd6c482 4368 struct perf_event *event;
771d7cde 4369
cdd6c482 4370 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4371 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4372 ctx = perf_event_ctx_lock(event);
4373 perf_event_for_each_child(event, _perf_event_disable);
4374 perf_event_ctx_unlock(event, ctx);
4375 }
cdd6c482 4376 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4377
4378 return 0;
4379}
4380
cdd6c482 4381static int perf_event_index(struct perf_event *event)
194002b2 4382{
a4eaf7f1
PZ
4383 if (event->hw.state & PERF_HES_STOPPED)
4384 return 0;
4385
cdd6c482 4386 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4387 return 0;
4388
35edc2a5 4389 return event->pmu->event_idx(event);
194002b2
PZ
4390}
4391
c4794295 4392static void calc_timer_values(struct perf_event *event,
e3f3541c 4393 u64 *now,
7f310a5d
EM
4394 u64 *enabled,
4395 u64 *running)
c4794295 4396{
e3f3541c 4397 u64 ctx_time;
c4794295 4398
e3f3541c
PZ
4399 *now = perf_clock();
4400 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4401 *enabled = ctx_time - event->tstamp_enabled;
4402 *running = ctx_time - event->tstamp_running;
4403}
4404
fa731587
PZ
4405static void perf_event_init_userpage(struct perf_event *event)
4406{
4407 struct perf_event_mmap_page *userpg;
4408 struct ring_buffer *rb;
4409
4410 rcu_read_lock();
4411 rb = rcu_dereference(event->rb);
4412 if (!rb)
4413 goto unlock;
4414
4415 userpg = rb->user_page;
4416
4417 /* Allow new userspace to detect that bit 0 is deprecated */
4418 userpg->cap_bit0_is_deprecated = 1;
4419 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4420 userpg->data_offset = PAGE_SIZE;
4421 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4422
4423unlock:
4424 rcu_read_unlock();
4425}
4426
c1317ec2
AL
4427void __weak arch_perf_update_userpage(
4428 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4429{
4430}
4431
38ff667b
PZ
4432/*
4433 * Callers need to ensure there can be no nesting of this function, otherwise
4434 * the seqlock logic goes bad. We can not serialize this because the arch
4435 * code calls this from NMI context.
4436 */
cdd6c482 4437void perf_event_update_userpage(struct perf_event *event)
37d81828 4438{
cdd6c482 4439 struct perf_event_mmap_page *userpg;
76369139 4440 struct ring_buffer *rb;
e3f3541c 4441 u64 enabled, running, now;
38ff667b
PZ
4442
4443 rcu_read_lock();
5ec4c599
PZ
4444 rb = rcu_dereference(event->rb);
4445 if (!rb)
4446 goto unlock;
4447
0d641208
EM
4448 /*
4449 * compute total_time_enabled, total_time_running
4450 * based on snapshot values taken when the event
4451 * was last scheduled in.
4452 *
4453 * we cannot simply called update_context_time()
4454 * because of locking issue as we can be called in
4455 * NMI context
4456 */
e3f3541c 4457 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4458
76369139 4459 userpg = rb->user_page;
7b732a75
PZ
4460 /*
4461 * Disable preemption so as to not let the corresponding user-space
4462 * spin too long if we get preempted.
4463 */
4464 preempt_disable();
37d81828 4465 ++userpg->lock;
92f22a38 4466 barrier();
cdd6c482 4467 userpg->index = perf_event_index(event);
b5e58793 4468 userpg->offset = perf_event_count(event);
365a4038 4469 if (userpg->index)
e7850595 4470 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4471
0d641208 4472 userpg->time_enabled = enabled +
cdd6c482 4473 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4474
0d641208 4475 userpg->time_running = running +
cdd6c482 4476 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4477
c1317ec2 4478 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4479
92f22a38 4480 barrier();
37d81828 4481 ++userpg->lock;
7b732a75 4482 preempt_enable();
38ff667b 4483unlock:
7b732a75 4484 rcu_read_unlock();
37d81828
PM
4485}
4486
906010b2
PZ
4487static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4488{
4489 struct perf_event *event = vma->vm_file->private_data;
76369139 4490 struct ring_buffer *rb;
906010b2
PZ
4491 int ret = VM_FAULT_SIGBUS;
4492
4493 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4494 if (vmf->pgoff == 0)
4495 ret = 0;
4496 return ret;
4497 }
4498
4499 rcu_read_lock();
76369139
FW
4500 rb = rcu_dereference(event->rb);
4501 if (!rb)
906010b2
PZ
4502 goto unlock;
4503
4504 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4505 goto unlock;
4506
76369139 4507 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4508 if (!vmf->page)
4509 goto unlock;
4510
4511 get_page(vmf->page);
4512 vmf->page->mapping = vma->vm_file->f_mapping;
4513 vmf->page->index = vmf->pgoff;
4514
4515 ret = 0;
4516unlock:
4517 rcu_read_unlock();
4518
4519 return ret;
4520}
4521
10c6db11
PZ
4522static void ring_buffer_attach(struct perf_event *event,
4523 struct ring_buffer *rb)
4524{
b69cf536 4525 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4526 unsigned long flags;
4527
b69cf536
PZ
4528 if (event->rb) {
4529 /*
4530 * Should be impossible, we set this when removing
4531 * event->rb_entry and wait/clear when adding event->rb_entry.
4532 */
4533 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4534
b69cf536 4535 old_rb = event->rb;
b69cf536
PZ
4536 spin_lock_irqsave(&old_rb->event_lock, flags);
4537 list_del_rcu(&event->rb_entry);
4538 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4539
2f993cf0
ON
4540 event->rcu_batches = get_state_synchronize_rcu();
4541 event->rcu_pending = 1;
b69cf536 4542 }
10c6db11 4543
b69cf536 4544 if (rb) {
2f993cf0
ON
4545 if (event->rcu_pending) {
4546 cond_synchronize_rcu(event->rcu_batches);
4547 event->rcu_pending = 0;
4548 }
4549
b69cf536
PZ
4550 spin_lock_irqsave(&rb->event_lock, flags);
4551 list_add_rcu(&event->rb_entry, &rb->event_list);
4552 spin_unlock_irqrestore(&rb->event_lock, flags);
4553 }
4554
4555 rcu_assign_pointer(event->rb, rb);
4556
4557 if (old_rb) {
4558 ring_buffer_put(old_rb);
4559 /*
4560 * Since we detached before setting the new rb, so that we
4561 * could attach the new rb, we could have missed a wakeup.
4562 * Provide it now.
4563 */
4564 wake_up_all(&event->waitq);
4565 }
10c6db11
PZ
4566}
4567
4568static void ring_buffer_wakeup(struct perf_event *event)
4569{
4570 struct ring_buffer *rb;
4571
4572 rcu_read_lock();
4573 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4574 if (rb) {
4575 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4576 wake_up_all(&event->waitq);
4577 }
10c6db11
PZ
4578 rcu_read_unlock();
4579}
4580
fdc26706 4581struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4582{
76369139 4583 struct ring_buffer *rb;
7b732a75 4584
ac9721f3 4585 rcu_read_lock();
76369139
FW
4586 rb = rcu_dereference(event->rb);
4587 if (rb) {
4588 if (!atomic_inc_not_zero(&rb->refcount))
4589 rb = NULL;
ac9721f3
PZ
4590 }
4591 rcu_read_unlock();
4592
76369139 4593 return rb;
ac9721f3
PZ
4594}
4595
fdc26706 4596void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4597{
76369139 4598 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4599 return;
7b732a75 4600
9bb5d40c 4601 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4602
76369139 4603 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4604}
4605
4606static void perf_mmap_open(struct vm_area_struct *vma)
4607{
cdd6c482 4608 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4609
cdd6c482 4610 atomic_inc(&event->mmap_count);
9bb5d40c 4611 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4612
45bfb2e5
PZ
4613 if (vma->vm_pgoff)
4614 atomic_inc(&event->rb->aux_mmap_count);
4615
1e0fb9ec
AL
4616 if (event->pmu->event_mapped)
4617 event->pmu->event_mapped(event);
7b732a75
PZ
4618}
4619
9bb5d40c
PZ
4620/*
4621 * A buffer can be mmap()ed multiple times; either directly through the same
4622 * event, or through other events by use of perf_event_set_output().
4623 *
4624 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4625 * the buffer here, where we still have a VM context. This means we need
4626 * to detach all events redirecting to us.
4627 */
7b732a75
PZ
4628static void perf_mmap_close(struct vm_area_struct *vma)
4629{
cdd6c482 4630 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4631
b69cf536 4632 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4633 struct user_struct *mmap_user = rb->mmap_user;
4634 int mmap_locked = rb->mmap_locked;
4635 unsigned long size = perf_data_size(rb);
789f90fc 4636
1e0fb9ec
AL
4637 if (event->pmu->event_unmapped)
4638 event->pmu->event_unmapped(event);
4639
45bfb2e5
PZ
4640 /*
4641 * rb->aux_mmap_count will always drop before rb->mmap_count and
4642 * event->mmap_count, so it is ok to use event->mmap_mutex to
4643 * serialize with perf_mmap here.
4644 */
4645 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4646 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4647 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4648 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4649
4650 rb_free_aux(rb);
4651 mutex_unlock(&event->mmap_mutex);
4652 }
4653
9bb5d40c
PZ
4654 atomic_dec(&rb->mmap_count);
4655
4656 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4657 goto out_put;
9bb5d40c 4658
b69cf536 4659 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4660 mutex_unlock(&event->mmap_mutex);
4661
4662 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4663 if (atomic_read(&rb->mmap_count))
4664 goto out_put;
ac9721f3 4665
9bb5d40c
PZ
4666 /*
4667 * No other mmap()s, detach from all other events that might redirect
4668 * into the now unreachable buffer. Somewhat complicated by the
4669 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4670 */
4671again:
4672 rcu_read_lock();
4673 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4674 if (!atomic_long_inc_not_zero(&event->refcount)) {
4675 /*
4676 * This event is en-route to free_event() which will
4677 * detach it and remove it from the list.
4678 */
4679 continue;
4680 }
4681 rcu_read_unlock();
789f90fc 4682
9bb5d40c
PZ
4683 mutex_lock(&event->mmap_mutex);
4684 /*
4685 * Check we didn't race with perf_event_set_output() which can
4686 * swizzle the rb from under us while we were waiting to
4687 * acquire mmap_mutex.
4688 *
4689 * If we find a different rb; ignore this event, a next
4690 * iteration will no longer find it on the list. We have to
4691 * still restart the iteration to make sure we're not now
4692 * iterating the wrong list.
4693 */
b69cf536
PZ
4694 if (event->rb == rb)
4695 ring_buffer_attach(event, NULL);
4696
cdd6c482 4697 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4698 put_event(event);
ac9721f3 4699
9bb5d40c
PZ
4700 /*
4701 * Restart the iteration; either we're on the wrong list or
4702 * destroyed its integrity by doing a deletion.
4703 */
4704 goto again;
7b732a75 4705 }
9bb5d40c
PZ
4706 rcu_read_unlock();
4707
4708 /*
4709 * It could be there's still a few 0-ref events on the list; they'll
4710 * get cleaned up by free_event() -- they'll also still have their
4711 * ref on the rb and will free it whenever they are done with it.
4712 *
4713 * Aside from that, this buffer is 'fully' detached and unmapped,
4714 * undo the VM accounting.
4715 */
4716
4717 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4718 vma->vm_mm->pinned_vm -= mmap_locked;
4719 free_uid(mmap_user);
4720
b69cf536 4721out_put:
9bb5d40c 4722 ring_buffer_put(rb); /* could be last */
37d81828
PM
4723}
4724
f0f37e2f 4725static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4726 .open = perf_mmap_open,
45bfb2e5 4727 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4728 .fault = perf_mmap_fault,
4729 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4730};
4731
4732static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4733{
cdd6c482 4734 struct perf_event *event = file->private_data;
22a4f650 4735 unsigned long user_locked, user_lock_limit;
789f90fc 4736 struct user_struct *user = current_user();
22a4f650 4737 unsigned long locked, lock_limit;
45bfb2e5 4738 struct ring_buffer *rb = NULL;
7b732a75
PZ
4739 unsigned long vma_size;
4740 unsigned long nr_pages;
45bfb2e5 4741 long user_extra = 0, extra = 0;
d57e34fd 4742 int ret = 0, flags = 0;
37d81828 4743
c7920614
PZ
4744 /*
4745 * Don't allow mmap() of inherited per-task counters. This would
4746 * create a performance issue due to all children writing to the
76369139 4747 * same rb.
c7920614
PZ
4748 */
4749 if (event->cpu == -1 && event->attr.inherit)
4750 return -EINVAL;
4751
43a21ea8 4752 if (!(vma->vm_flags & VM_SHARED))
37d81828 4753 return -EINVAL;
7b732a75
PZ
4754
4755 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4756
4757 if (vma->vm_pgoff == 0) {
4758 nr_pages = (vma_size / PAGE_SIZE) - 1;
4759 } else {
4760 /*
4761 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4762 * mapped, all subsequent mappings should have the same size
4763 * and offset. Must be above the normal perf buffer.
4764 */
4765 u64 aux_offset, aux_size;
4766
4767 if (!event->rb)
4768 return -EINVAL;
4769
4770 nr_pages = vma_size / PAGE_SIZE;
4771
4772 mutex_lock(&event->mmap_mutex);
4773 ret = -EINVAL;
4774
4775 rb = event->rb;
4776 if (!rb)
4777 goto aux_unlock;
4778
4779 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4780 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4781
4782 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4783 goto aux_unlock;
4784
4785 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4786 goto aux_unlock;
4787
4788 /* already mapped with a different offset */
4789 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4790 goto aux_unlock;
4791
4792 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4793 goto aux_unlock;
4794
4795 /* already mapped with a different size */
4796 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4797 goto aux_unlock;
4798
4799 if (!is_power_of_2(nr_pages))
4800 goto aux_unlock;
4801
4802 if (!atomic_inc_not_zero(&rb->mmap_count))
4803 goto aux_unlock;
4804
4805 if (rb_has_aux(rb)) {
4806 atomic_inc(&rb->aux_mmap_count);
4807 ret = 0;
4808 goto unlock;
4809 }
4810
4811 atomic_set(&rb->aux_mmap_count, 1);
4812 user_extra = nr_pages;
4813
4814 goto accounting;
4815 }
7b732a75 4816
7730d865 4817 /*
76369139 4818 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4819 * can do bitmasks instead of modulo.
4820 */
2ed11312 4821 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4822 return -EINVAL;
4823
7b732a75 4824 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4825 return -EINVAL;
4826
cdd6c482 4827 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4828again:
cdd6c482 4829 mutex_lock(&event->mmap_mutex);
76369139 4830 if (event->rb) {
9bb5d40c 4831 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4832 ret = -EINVAL;
9bb5d40c
PZ
4833 goto unlock;
4834 }
4835
4836 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4837 /*
4838 * Raced against perf_mmap_close() through
4839 * perf_event_set_output(). Try again, hope for better
4840 * luck.
4841 */
4842 mutex_unlock(&event->mmap_mutex);
4843 goto again;
4844 }
4845
ebb3c4c4
PZ
4846 goto unlock;
4847 }
4848
789f90fc 4849 user_extra = nr_pages + 1;
45bfb2e5
PZ
4850
4851accounting:
cdd6c482 4852 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4853
4854 /*
4855 * Increase the limit linearly with more CPUs:
4856 */
4857 user_lock_limit *= num_online_cpus();
4858
789f90fc 4859 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4860
789f90fc
PZ
4861 if (user_locked > user_lock_limit)
4862 extra = user_locked - user_lock_limit;
7b732a75 4863
78d7d407 4864 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4865 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4866 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4867
459ec28a
IM
4868 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4869 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4870 ret = -EPERM;
4871 goto unlock;
4872 }
7b732a75 4873
45bfb2e5 4874 WARN_ON(!rb && event->rb);
906010b2 4875
d57e34fd 4876 if (vma->vm_flags & VM_WRITE)
76369139 4877 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4878
76369139 4879 if (!rb) {
45bfb2e5
PZ
4880 rb = rb_alloc(nr_pages,
4881 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4882 event->cpu, flags);
26cb63ad 4883
45bfb2e5
PZ
4884 if (!rb) {
4885 ret = -ENOMEM;
4886 goto unlock;
4887 }
43a21ea8 4888
45bfb2e5
PZ
4889 atomic_set(&rb->mmap_count, 1);
4890 rb->mmap_user = get_current_user();
4891 rb->mmap_locked = extra;
26cb63ad 4892
45bfb2e5 4893 ring_buffer_attach(event, rb);
ac9721f3 4894
45bfb2e5
PZ
4895 perf_event_init_userpage(event);
4896 perf_event_update_userpage(event);
4897 } else {
1a594131
AS
4898 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4899 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4900 if (!ret)
4901 rb->aux_mmap_locked = extra;
4902 }
9a0f05cb 4903
ebb3c4c4 4904unlock:
45bfb2e5
PZ
4905 if (!ret) {
4906 atomic_long_add(user_extra, &user->locked_vm);
4907 vma->vm_mm->pinned_vm += extra;
4908
ac9721f3 4909 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4910 } else if (rb) {
4911 atomic_dec(&rb->mmap_count);
4912 }
4913aux_unlock:
cdd6c482 4914 mutex_unlock(&event->mmap_mutex);
37d81828 4915
9bb5d40c
PZ
4916 /*
4917 * Since pinned accounting is per vm we cannot allow fork() to copy our
4918 * vma.
4919 */
26cb63ad 4920 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4921 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4922
1e0fb9ec
AL
4923 if (event->pmu->event_mapped)
4924 event->pmu->event_mapped(event);
4925
7b732a75 4926 return ret;
37d81828
PM
4927}
4928
3c446b3d
PZ
4929static int perf_fasync(int fd, struct file *filp, int on)
4930{
496ad9aa 4931 struct inode *inode = file_inode(filp);
cdd6c482 4932 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4933 int retval;
4934
4935 mutex_lock(&inode->i_mutex);
cdd6c482 4936 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4937 mutex_unlock(&inode->i_mutex);
4938
4939 if (retval < 0)
4940 return retval;
4941
4942 return 0;
4943}
4944
0793a61d 4945static const struct file_operations perf_fops = {
3326c1ce 4946 .llseek = no_llseek,
0793a61d
TG
4947 .release = perf_release,
4948 .read = perf_read,
4949 .poll = perf_poll,
d859e29f 4950 .unlocked_ioctl = perf_ioctl,
b3f20785 4951 .compat_ioctl = perf_compat_ioctl,
37d81828 4952 .mmap = perf_mmap,
3c446b3d 4953 .fasync = perf_fasync,
0793a61d
TG
4954};
4955
925d519a 4956/*
cdd6c482 4957 * Perf event wakeup
925d519a
PZ
4958 *
4959 * If there's data, ensure we set the poll() state and publish everything
4960 * to user-space before waking everybody up.
4961 */
4962
fed66e2c
PZ
4963static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4964{
4965 /* only the parent has fasync state */
4966 if (event->parent)
4967 event = event->parent;
4968 return &event->fasync;
4969}
4970
cdd6c482 4971void perf_event_wakeup(struct perf_event *event)
925d519a 4972{
10c6db11 4973 ring_buffer_wakeup(event);
4c9e2542 4974
cdd6c482 4975 if (event->pending_kill) {
fed66e2c 4976 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4977 event->pending_kill = 0;
4c9e2542 4978 }
925d519a
PZ
4979}
4980
e360adbe 4981static void perf_pending_event(struct irq_work *entry)
79f14641 4982{
cdd6c482
IM
4983 struct perf_event *event = container_of(entry,
4984 struct perf_event, pending);
d525211f
PZ
4985 int rctx;
4986
4987 rctx = perf_swevent_get_recursion_context();
4988 /*
4989 * If we 'fail' here, that's OK, it means recursion is already disabled
4990 * and we won't recurse 'further'.
4991 */
79f14641 4992
cdd6c482
IM
4993 if (event->pending_disable) {
4994 event->pending_disable = 0;
4995 __perf_event_disable(event);
79f14641
PZ
4996 }
4997
cdd6c482
IM
4998 if (event->pending_wakeup) {
4999 event->pending_wakeup = 0;
5000 perf_event_wakeup(event);
79f14641 5001 }
d525211f
PZ
5002
5003 if (rctx >= 0)
5004 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5005}
5006
39447b38
ZY
5007/*
5008 * We assume there is only KVM supporting the callbacks.
5009 * Later on, we might change it to a list if there is
5010 * another virtualization implementation supporting the callbacks.
5011 */
5012struct perf_guest_info_callbacks *perf_guest_cbs;
5013
5014int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5015{
5016 perf_guest_cbs = cbs;
5017 return 0;
5018}
5019EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5020
5021int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5022{
5023 perf_guest_cbs = NULL;
5024 return 0;
5025}
5026EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5027
4018994f
JO
5028static void
5029perf_output_sample_regs(struct perf_output_handle *handle,
5030 struct pt_regs *regs, u64 mask)
5031{
5032 int bit;
5033
5034 for_each_set_bit(bit, (const unsigned long *) &mask,
5035 sizeof(mask) * BITS_PER_BYTE) {
5036 u64 val;
5037
5038 val = perf_reg_value(regs, bit);
5039 perf_output_put(handle, val);
5040 }
5041}
5042
60e2364e 5043static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5044 struct pt_regs *regs,
5045 struct pt_regs *regs_user_copy)
4018994f 5046{
88a7c26a
AL
5047 if (user_mode(regs)) {
5048 regs_user->abi = perf_reg_abi(current);
2565711f 5049 regs_user->regs = regs;
88a7c26a
AL
5050 } else if (current->mm) {
5051 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5052 } else {
5053 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5054 regs_user->regs = NULL;
4018994f
JO
5055 }
5056}
5057
60e2364e
SE
5058static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5059 struct pt_regs *regs)
5060{
5061 regs_intr->regs = regs;
5062 regs_intr->abi = perf_reg_abi(current);
5063}
5064
5065
c5ebcedb
JO
5066/*
5067 * Get remaining task size from user stack pointer.
5068 *
5069 * It'd be better to take stack vma map and limit this more
5070 * precisly, but there's no way to get it safely under interrupt,
5071 * so using TASK_SIZE as limit.
5072 */
5073static u64 perf_ustack_task_size(struct pt_regs *regs)
5074{
5075 unsigned long addr = perf_user_stack_pointer(regs);
5076
5077 if (!addr || addr >= TASK_SIZE)
5078 return 0;
5079
5080 return TASK_SIZE - addr;
5081}
5082
5083static u16
5084perf_sample_ustack_size(u16 stack_size, u16 header_size,
5085 struct pt_regs *regs)
5086{
5087 u64 task_size;
5088
5089 /* No regs, no stack pointer, no dump. */
5090 if (!regs)
5091 return 0;
5092
5093 /*
5094 * Check if we fit in with the requested stack size into the:
5095 * - TASK_SIZE
5096 * If we don't, we limit the size to the TASK_SIZE.
5097 *
5098 * - remaining sample size
5099 * If we don't, we customize the stack size to
5100 * fit in to the remaining sample size.
5101 */
5102
5103 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5104 stack_size = min(stack_size, (u16) task_size);
5105
5106 /* Current header size plus static size and dynamic size. */
5107 header_size += 2 * sizeof(u64);
5108
5109 /* Do we fit in with the current stack dump size? */
5110 if ((u16) (header_size + stack_size) < header_size) {
5111 /*
5112 * If we overflow the maximum size for the sample,
5113 * we customize the stack dump size to fit in.
5114 */
5115 stack_size = USHRT_MAX - header_size - sizeof(u64);
5116 stack_size = round_up(stack_size, sizeof(u64));
5117 }
5118
5119 return stack_size;
5120}
5121
5122static void
5123perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5124 struct pt_regs *regs)
5125{
5126 /* Case of a kernel thread, nothing to dump */
5127 if (!regs) {
5128 u64 size = 0;
5129 perf_output_put(handle, size);
5130 } else {
5131 unsigned long sp;
5132 unsigned int rem;
5133 u64 dyn_size;
5134
5135 /*
5136 * We dump:
5137 * static size
5138 * - the size requested by user or the best one we can fit
5139 * in to the sample max size
5140 * data
5141 * - user stack dump data
5142 * dynamic size
5143 * - the actual dumped size
5144 */
5145
5146 /* Static size. */
5147 perf_output_put(handle, dump_size);
5148
5149 /* Data. */
5150 sp = perf_user_stack_pointer(regs);
5151 rem = __output_copy_user(handle, (void *) sp, dump_size);
5152 dyn_size = dump_size - rem;
5153
5154 perf_output_skip(handle, rem);
5155
5156 /* Dynamic size. */
5157 perf_output_put(handle, dyn_size);
5158 }
5159}
5160
c980d109
ACM
5161static void __perf_event_header__init_id(struct perf_event_header *header,
5162 struct perf_sample_data *data,
5163 struct perf_event *event)
6844c09d
ACM
5164{
5165 u64 sample_type = event->attr.sample_type;
5166
5167 data->type = sample_type;
5168 header->size += event->id_header_size;
5169
5170 if (sample_type & PERF_SAMPLE_TID) {
5171 /* namespace issues */
5172 data->tid_entry.pid = perf_event_pid(event, current);
5173 data->tid_entry.tid = perf_event_tid(event, current);
5174 }
5175
5176 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5177 data->time = perf_event_clock(event);
6844c09d 5178
ff3d527c 5179 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5180 data->id = primary_event_id(event);
5181
5182 if (sample_type & PERF_SAMPLE_STREAM_ID)
5183 data->stream_id = event->id;
5184
5185 if (sample_type & PERF_SAMPLE_CPU) {
5186 data->cpu_entry.cpu = raw_smp_processor_id();
5187 data->cpu_entry.reserved = 0;
5188 }
5189}
5190
76369139
FW
5191void perf_event_header__init_id(struct perf_event_header *header,
5192 struct perf_sample_data *data,
5193 struct perf_event *event)
c980d109
ACM
5194{
5195 if (event->attr.sample_id_all)
5196 __perf_event_header__init_id(header, data, event);
5197}
5198
5199static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5200 struct perf_sample_data *data)
5201{
5202 u64 sample_type = data->type;
5203
5204 if (sample_type & PERF_SAMPLE_TID)
5205 perf_output_put(handle, data->tid_entry);
5206
5207 if (sample_type & PERF_SAMPLE_TIME)
5208 perf_output_put(handle, data->time);
5209
5210 if (sample_type & PERF_SAMPLE_ID)
5211 perf_output_put(handle, data->id);
5212
5213 if (sample_type & PERF_SAMPLE_STREAM_ID)
5214 perf_output_put(handle, data->stream_id);
5215
5216 if (sample_type & PERF_SAMPLE_CPU)
5217 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5218
5219 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5220 perf_output_put(handle, data->id);
c980d109
ACM
5221}
5222
76369139
FW
5223void perf_event__output_id_sample(struct perf_event *event,
5224 struct perf_output_handle *handle,
5225 struct perf_sample_data *sample)
c980d109
ACM
5226{
5227 if (event->attr.sample_id_all)
5228 __perf_event__output_id_sample(handle, sample);
5229}
5230
3dab77fb 5231static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5232 struct perf_event *event,
5233 u64 enabled, u64 running)
3dab77fb 5234{
cdd6c482 5235 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5236 u64 values[4];
5237 int n = 0;
5238
b5e58793 5239 values[n++] = perf_event_count(event);
3dab77fb 5240 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5241 values[n++] = enabled +
cdd6c482 5242 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5243 }
5244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5245 values[n++] = running +
cdd6c482 5246 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5247 }
5248 if (read_format & PERF_FORMAT_ID)
cdd6c482 5249 values[n++] = primary_event_id(event);
3dab77fb 5250
76369139 5251 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5252}
5253
5254/*
cdd6c482 5255 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5256 */
5257static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5258 struct perf_event *event,
5259 u64 enabled, u64 running)
3dab77fb 5260{
cdd6c482
IM
5261 struct perf_event *leader = event->group_leader, *sub;
5262 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5263 u64 values[5];
5264 int n = 0;
5265
5266 values[n++] = 1 + leader->nr_siblings;
5267
5268 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5269 values[n++] = enabled;
3dab77fb
PZ
5270
5271 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5272 values[n++] = running;
3dab77fb 5273
cdd6c482 5274 if (leader != event)
3dab77fb
PZ
5275 leader->pmu->read(leader);
5276
b5e58793 5277 values[n++] = perf_event_count(leader);
3dab77fb 5278 if (read_format & PERF_FORMAT_ID)
cdd6c482 5279 values[n++] = primary_event_id(leader);
3dab77fb 5280
76369139 5281 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5282
65abc865 5283 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5284 n = 0;
5285
6f5ab001
JO
5286 if ((sub != event) &&
5287 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5288 sub->pmu->read(sub);
5289
b5e58793 5290 values[n++] = perf_event_count(sub);
3dab77fb 5291 if (read_format & PERF_FORMAT_ID)
cdd6c482 5292 values[n++] = primary_event_id(sub);
3dab77fb 5293
76369139 5294 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5295 }
5296}
5297
eed01528
SE
5298#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5299 PERF_FORMAT_TOTAL_TIME_RUNNING)
5300
3dab77fb 5301static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5302 struct perf_event *event)
3dab77fb 5303{
e3f3541c 5304 u64 enabled = 0, running = 0, now;
eed01528
SE
5305 u64 read_format = event->attr.read_format;
5306
5307 /*
5308 * compute total_time_enabled, total_time_running
5309 * based on snapshot values taken when the event
5310 * was last scheduled in.
5311 *
5312 * we cannot simply called update_context_time()
5313 * because of locking issue as we are called in
5314 * NMI context
5315 */
c4794295 5316 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5317 calc_timer_values(event, &now, &enabled, &running);
eed01528 5318
cdd6c482 5319 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5320 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5321 else
eed01528 5322 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5323}
5324
5622f295
MM
5325void perf_output_sample(struct perf_output_handle *handle,
5326 struct perf_event_header *header,
5327 struct perf_sample_data *data,
cdd6c482 5328 struct perf_event *event)
5622f295
MM
5329{
5330 u64 sample_type = data->type;
5331
5332 perf_output_put(handle, *header);
5333
ff3d527c
AH
5334 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5335 perf_output_put(handle, data->id);
5336
5622f295
MM
5337 if (sample_type & PERF_SAMPLE_IP)
5338 perf_output_put(handle, data->ip);
5339
5340 if (sample_type & PERF_SAMPLE_TID)
5341 perf_output_put(handle, data->tid_entry);
5342
5343 if (sample_type & PERF_SAMPLE_TIME)
5344 perf_output_put(handle, data->time);
5345
5346 if (sample_type & PERF_SAMPLE_ADDR)
5347 perf_output_put(handle, data->addr);
5348
5349 if (sample_type & PERF_SAMPLE_ID)
5350 perf_output_put(handle, data->id);
5351
5352 if (sample_type & PERF_SAMPLE_STREAM_ID)
5353 perf_output_put(handle, data->stream_id);
5354
5355 if (sample_type & PERF_SAMPLE_CPU)
5356 perf_output_put(handle, data->cpu_entry);
5357
5358 if (sample_type & PERF_SAMPLE_PERIOD)
5359 perf_output_put(handle, data->period);
5360
5361 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5362 perf_output_read(handle, event);
5622f295
MM
5363
5364 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5365 if (data->callchain) {
5366 int size = 1;
5367
5368 if (data->callchain)
5369 size += data->callchain->nr;
5370
5371 size *= sizeof(u64);
5372
76369139 5373 __output_copy(handle, data->callchain, size);
5622f295
MM
5374 } else {
5375 u64 nr = 0;
5376 perf_output_put(handle, nr);
5377 }
5378 }
5379
5380 if (sample_type & PERF_SAMPLE_RAW) {
5381 if (data->raw) {
fa128e6a
AS
5382 u32 raw_size = data->raw->size;
5383 u32 real_size = round_up(raw_size + sizeof(u32),
5384 sizeof(u64)) - sizeof(u32);
5385 u64 zero = 0;
5386
5387 perf_output_put(handle, real_size);
5388 __output_copy(handle, data->raw->data, raw_size);
5389 if (real_size - raw_size)
5390 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5391 } else {
5392 struct {
5393 u32 size;
5394 u32 data;
5395 } raw = {
5396 .size = sizeof(u32),
5397 .data = 0,
5398 };
5399 perf_output_put(handle, raw);
5400 }
5401 }
a7ac67ea 5402
bce38cd5
SE
5403 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5404 if (data->br_stack) {
5405 size_t size;
5406
5407 size = data->br_stack->nr
5408 * sizeof(struct perf_branch_entry);
5409
5410 perf_output_put(handle, data->br_stack->nr);
5411 perf_output_copy(handle, data->br_stack->entries, size);
5412 } else {
5413 /*
5414 * we always store at least the value of nr
5415 */
5416 u64 nr = 0;
5417 perf_output_put(handle, nr);
5418 }
5419 }
4018994f
JO
5420
5421 if (sample_type & PERF_SAMPLE_REGS_USER) {
5422 u64 abi = data->regs_user.abi;
5423
5424 /*
5425 * If there are no regs to dump, notice it through
5426 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5427 */
5428 perf_output_put(handle, abi);
5429
5430 if (abi) {
5431 u64 mask = event->attr.sample_regs_user;
5432 perf_output_sample_regs(handle,
5433 data->regs_user.regs,
5434 mask);
5435 }
5436 }
c5ebcedb 5437
a5cdd40c 5438 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5439 perf_output_sample_ustack(handle,
5440 data->stack_user_size,
5441 data->regs_user.regs);
a5cdd40c 5442 }
c3feedf2
AK
5443
5444 if (sample_type & PERF_SAMPLE_WEIGHT)
5445 perf_output_put(handle, data->weight);
d6be9ad6
SE
5446
5447 if (sample_type & PERF_SAMPLE_DATA_SRC)
5448 perf_output_put(handle, data->data_src.val);
a5cdd40c 5449
fdfbbd07
AK
5450 if (sample_type & PERF_SAMPLE_TRANSACTION)
5451 perf_output_put(handle, data->txn);
5452
60e2364e
SE
5453 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5454 u64 abi = data->regs_intr.abi;
5455 /*
5456 * If there are no regs to dump, notice it through
5457 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5458 */
5459 perf_output_put(handle, abi);
5460
5461 if (abi) {
5462 u64 mask = event->attr.sample_regs_intr;
5463
5464 perf_output_sample_regs(handle,
5465 data->regs_intr.regs,
5466 mask);
5467 }
5468 }
5469
a5cdd40c
PZ
5470 if (!event->attr.watermark) {
5471 int wakeup_events = event->attr.wakeup_events;
5472
5473 if (wakeup_events) {
5474 struct ring_buffer *rb = handle->rb;
5475 int events = local_inc_return(&rb->events);
5476
5477 if (events >= wakeup_events) {
5478 local_sub(wakeup_events, &rb->events);
5479 local_inc(&rb->wakeup);
5480 }
5481 }
5482 }
5622f295
MM
5483}
5484
5485void perf_prepare_sample(struct perf_event_header *header,
5486 struct perf_sample_data *data,
cdd6c482 5487 struct perf_event *event,
5622f295 5488 struct pt_regs *regs)
7b732a75 5489{
cdd6c482 5490 u64 sample_type = event->attr.sample_type;
7b732a75 5491
cdd6c482 5492 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5493 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5494
5495 header->misc = 0;
5496 header->misc |= perf_misc_flags(regs);
6fab0192 5497
c980d109 5498 __perf_event_header__init_id(header, data, event);
6844c09d 5499
c320c7b7 5500 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5501 data->ip = perf_instruction_pointer(regs);
5502
b23f3325 5503 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5504 int size = 1;
394ee076 5505
e6dab5ff 5506 data->callchain = perf_callchain(event, regs);
5622f295
MM
5507
5508 if (data->callchain)
5509 size += data->callchain->nr;
5510
5511 header->size += size * sizeof(u64);
394ee076
PZ
5512 }
5513
3a43ce68 5514 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5515 int size = sizeof(u32);
5516
5517 if (data->raw)
5518 size += data->raw->size;
5519 else
5520 size += sizeof(u32);
5521
fa128e6a 5522 header->size += round_up(size, sizeof(u64));
7f453c24 5523 }
bce38cd5
SE
5524
5525 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5526 int size = sizeof(u64); /* nr */
5527 if (data->br_stack) {
5528 size += data->br_stack->nr
5529 * sizeof(struct perf_branch_entry);
5530 }
5531 header->size += size;
5532 }
4018994f 5533
2565711f 5534 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5535 perf_sample_regs_user(&data->regs_user, regs,
5536 &data->regs_user_copy);
2565711f 5537
4018994f
JO
5538 if (sample_type & PERF_SAMPLE_REGS_USER) {
5539 /* regs dump ABI info */
5540 int size = sizeof(u64);
5541
4018994f
JO
5542 if (data->regs_user.regs) {
5543 u64 mask = event->attr.sample_regs_user;
5544 size += hweight64(mask) * sizeof(u64);
5545 }
5546
5547 header->size += size;
5548 }
c5ebcedb
JO
5549
5550 if (sample_type & PERF_SAMPLE_STACK_USER) {
5551 /*
5552 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5553 * processed as the last one or have additional check added
5554 * in case new sample type is added, because we could eat
5555 * up the rest of the sample size.
5556 */
c5ebcedb
JO
5557 u16 stack_size = event->attr.sample_stack_user;
5558 u16 size = sizeof(u64);
5559
c5ebcedb 5560 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5561 data->regs_user.regs);
c5ebcedb
JO
5562
5563 /*
5564 * If there is something to dump, add space for the dump
5565 * itself and for the field that tells the dynamic size,
5566 * which is how many have been actually dumped.
5567 */
5568 if (stack_size)
5569 size += sizeof(u64) + stack_size;
5570
5571 data->stack_user_size = stack_size;
5572 header->size += size;
5573 }
60e2364e
SE
5574
5575 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5576 /* regs dump ABI info */
5577 int size = sizeof(u64);
5578
5579 perf_sample_regs_intr(&data->regs_intr, regs);
5580
5581 if (data->regs_intr.regs) {
5582 u64 mask = event->attr.sample_regs_intr;
5583
5584 size += hweight64(mask) * sizeof(u64);
5585 }
5586
5587 header->size += size;
5588 }
5622f295 5589}
7f453c24 5590
21509084
YZ
5591void perf_event_output(struct perf_event *event,
5592 struct perf_sample_data *data,
5593 struct pt_regs *regs)
5622f295
MM
5594{
5595 struct perf_output_handle handle;
5596 struct perf_event_header header;
689802b2 5597
927c7a9e
FW
5598 /* protect the callchain buffers */
5599 rcu_read_lock();
5600
cdd6c482 5601 perf_prepare_sample(&header, data, event, regs);
5c148194 5602
a7ac67ea 5603 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5604 goto exit;
0322cd6e 5605
cdd6c482 5606 perf_output_sample(&handle, &header, data, event);
f413cdb8 5607
8a057d84 5608 perf_output_end(&handle);
927c7a9e
FW
5609
5610exit:
5611 rcu_read_unlock();
0322cd6e
PZ
5612}
5613
38b200d6 5614/*
cdd6c482 5615 * read event_id
38b200d6
PZ
5616 */
5617
5618struct perf_read_event {
5619 struct perf_event_header header;
5620
5621 u32 pid;
5622 u32 tid;
38b200d6
PZ
5623};
5624
5625static void
cdd6c482 5626perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5627 struct task_struct *task)
5628{
5629 struct perf_output_handle handle;
c980d109 5630 struct perf_sample_data sample;
dfc65094 5631 struct perf_read_event read_event = {
38b200d6 5632 .header = {
cdd6c482 5633 .type = PERF_RECORD_READ,
38b200d6 5634 .misc = 0,
c320c7b7 5635 .size = sizeof(read_event) + event->read_size,
38b200d6 5636 },
cdd6c482
IM
5637 .pid = perf_event_pid(event, task),
5638 .tid = perf_event_tid(event, task),
38b200d6 5639 };
3dab77fb 5640 int ret;
38b200d6 5641
c980d109 5642 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5643 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5644 if (ret)
5645 return;
5646
dfc65094 5647 perf_output_put(&handle, read_event);
cdd6c482 5648 perf_output_read(&handle, event);
c980d109 5649 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5650
38b200d6
PZ
5651 perf_output_end(&handle);
5652}
5653
52d857a8
JO
5654typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5655
5656static void
5657perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5658 perf_event_aux_output_cb output,
5659 void *data)
5660{
5661 struct perf_event *event;
5662
5663 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5664 if (event->state < PERF_EVENT_STATE_INACTIVE)
5665 continue;
5666 if (!event_filter_match(event))
5667 continue;
67516844 5668 output(event, data);
52d857a8
JO
5669 }
5670}
5671
5672static void
67516844 5673perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5674 struct perf_event_context *task_ctx)
5675{
5676 struct perf_cpu_context *cpuctx;
5677 struct perf_event_context *ctx;
5678 struct pmu *pmu;
5679 int ctxn;
5680
5681 rcu_read_lock();
5682 list_for_each_entry_rcu(pmu, &pmus, entry) {
5683 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5684 if (cpuctx->unique_pmu != pmu)
5685 goto next;
67516844 5686 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5687 if (task_ctx)
5688 goto next;
5689 ctxn = pmu->task_ctx_nr;
5690 if (ctxn < 0)
5691 goto next;
5692 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5693 if (ctx)
67516844 5694 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5695next:
5696 put_cpu_ptr(pmu->pmu_cpu_context);
5697 }
5698
5699 if (task_ctx) {
5700 preempt_disable();
67516844 5701 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5702 preempt_enable();
5703 }
5704 rcu_read_unlock();
5705}
5706
60313ebe 5707/*
9f498cc5
PZ
5708 * task tracking -- fork/exit
5709 *
13d7a241 5710 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5711 */
5712
9f498cc5 5713struct perf_task_event {
3a80b4a3 5714 struct task_struct *task;
cdd6c482 5715 struct perf_event_context *task_ctx;
60313ebe
PZ
5716
5717 struct {
5718 struct perf_event_header header;
5719
5720 u32 pid;
5721 u32 ppid;
9f498cc5
PZ
5722 u32 tid;
5723 u32 ptid;
393b2ad8 5724 u64 time;
cdd6c482 5725 } event_id;
60313ebe
PZ
5726};
5727
67516844
JO
5728static int perf_event_task_match(struct perf_event *event)
5729{
13d7a241
SE
5730 return event->attr.comm || event->attr.mmap ||
5731 event->attr.mmap2 || event->attr.mmap_data ||
5732 event->attr.task;
67516844
JO
5733}
5734
cdd6c482 5735static void perf_event_task_output(struct perf_event *event,
52d857a8 5736 void *data)
60313ebe 5737{
52d857a8 5738 struct perf_task_event *task_event = data;
60313ebe 5739 struct perf_output_handle handle;
c980d109 5740 struct perf_sample_data sample;
9f498cc5 5741 struct task_struct *task = task_event->task;
c980d109 5742 int ret, size = task_event->event_id.header.size;
8bb39f9a 5743
67516844
JO
5744 if (!perf_event_task_match(event))
5745 return;
5746
c980d109 5747 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5748
c980d109 5749 ret = perf_output_begin(&handle, event,
a7ac67ea 5750 task_event->event_id.header.size);
ef60777c 5751 if (ret)
c980d109 5752 goto out;
60313ebe 5753
cdd6c482
IM
5754 task_event->event_id.pid = perf_event_pid(event, task);
5755 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5756
cdd6c482
IM
5757 task_event->event_id.tid = perf_event_tid(event, task);
5758 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5759
34f43927
PZ
5760 task_event->event_id.time = perf_event_clock(event);
5761
cdd6c482 5762 perf_output_put(&handle, task_event->event_id);
393b2ad8 5763
c980d109
ACM
5764 perf_event__output_id_sample(event, &handle, &sample);
5765
60313ebe 5766 perf_output_end(&handle);
c980d109
ACM
5767out:
5768 task_event->event_id.header.size = size;
60313ebe
PZ
5769}
5770
cdd6c482
IM
5771static void perf_event_task(struct task_struct *task,
5772 struct perf_event_context *task_ctx,
3a80b4a3 5773 int new)
60313ebe 5774{
9f498cc5 5775 struct perf_task_event task_event;
60313ebe 5776
cdd6c482
IM
5777 if (!atomic_read(&nr_comm_events) &&
5778 !atomic_read(&nr_mmap_events) &&
5779 !atomic_read(&nr_task_events))
60313ebe
PZ
5780 return;
5781
9f498cc5 5782 task_event = (struct perf_task_event){
3a80b4a3
PZ
5783 .task = task,
5784 .task_ctx = task_ctx,
cdd6c482 5785 .event_id = {
60313ebe 5786 .header = {
cdd6c482 5787 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5788 .misc = 0,
cdd6c482 5789 .size = sizeof(task_event.event_id),
60313ebe 5790 },
573402db
PZ
5791 /* .pid */
5792 /* .ppid */
9f498cc5
PZ
5793 /* .tid */
5794 /* .ptid */
34f43927 5795 /* .time */
60313ebe
PZ
5796 },
5797 };
5798
67516844 5799 perf_event_aux(perf_event_task_output,
52d857a8
JO
5800 &task_event,
5801 task_ctx);
9f498cc5
PZ
5802}
5803
cdd6c482 5804void perf_event_fork(struct task_struct *task)
9f498cc5 5805{
cdd6c482 5806 perf_event_task(task, NULL, 1);
60313ebe
PZ
5807}
5808
8d1b2d93
PZ
5809/*
5810 * comm tracking
5811 */
5812
5813struct perf_comm_event {
22a4f650
IM
5814 struct task_struct *task;
5815 char *comm;
8d1b2d93
PZ
5816 int comm_size;
5817
5818 struct {
5819 struct perf_event_header header;
5820
5821 u32 pid;
5822 u32 tid;
cdd6c482 5823 } event_id;
8d1b2d93
PZ
5824};
5825
67516844
JO
5826static int perf_event_comm_match(struct perf_event *event)
5827{
5828 return event->attr.comm;
5829}
5830
cdd6c482 5831static void perf_event_comm_output(struct perf_event *event,
52d857a8 5832 void *data)
8d1b2d93 5833{
52d857a8 5834 struct perf_comm_event *comm_event = data;
8d1b2d93 5835 struct perf_output_handle handle;
c980d109 5836 struct perf_sample_data sample;
cdd6c482 5837 int size = comm_event->event_id.header.size;
c980d109
ACM
5838 int ret;
5839
67516844
JO
5840 if (!perf_event_comm_match(event))
5841 return;
5842
c980d109
ACM
5843 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5844 ret = perf_output_begin(&handle, event,
a7ac67ea 5845 comm_event->event_id.header.size);
8d1b2d93
PZ
5846
5847 if (ret)
c980d109 5848 goto out;
8d1b2d93 5849
cdd6c482
IM
5850 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5851 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5852
cdd6c482 5853 perf_output_put(&handle, comm_event->event_id);
76369139 5854 __output_copy(&handle, comm_event->comm,
8d1b2d93 5855 comm_event->comm_size);
c980d109
ACM
5856
5857 perf_event__output_id_sample(event, &handle, &sample);
5858
8d1b2d93 5859 perf_output_end(&handle);
c980d109
ACM
5860out:
5861 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5862}
5863
cdd6c482 5864static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5865{
413ee3b4 5866 char comm[TASK_COMM_LEN];
8d1b2d93 5867 unsigned int size;
8d1b2d93 5868
413ee3b4 5869 memset(comm, 0, sizeof(comm));
96b02d78 5870 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5871 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5872
5873 comm_event->comm = comm;
5874 comm_event->comm_size = size;
5875
cdd6c482 5876 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5877
67516844 5878 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5879 comm_event,
5880 NULL);
8d1b2d93
PZ
5881}
5882
82b89778 5883void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5884{
9ee318a7
PZ
5885 struct perf_comm_event comm_event;
5886
cdd6c482 5887 if (!atomic_read(&nr_comm_events))
9ee318a7 5888 return;
a63eaf34 5889
9ee318a7 5890 comm_event = (struct perf_comm_event){
8d1b2d93 5891 .task = task,
573402db
PZ
5892 /* .comm */
5893 /* .comm_size */
cdd6c482 5894 .event_id = {
573402db 5895 .header = {
cdd6c482 5896 .type = PERF_RECORD_COMM,
82b89778 5897 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5898 /* .size */
5899 },
5900 /* .pid */
5901 /* .tid */
8d1b2d93
PZ
5902 },
5903 };
5904
cdd6c482 5905 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5906}
5907
0a4a9391
PZ
5908/*
5909 * mmap tracking
5910 */
5911
5912struct perf_mmap_event {
089dd79d
PZ
5913 struct vm_area_struct *vma;
5914
5915 const char *file_name;
5916 int file_size;
13d7a241
SE
5917 int maj, min;
5918 u64 ino;
5919 u64 ino_generation;
f972eb63 5920 u32 prot, flags;
0a4a9391
PZ
5921
5922 struct {
5923 struct perf_event_header header;
5924
5925 u32 pid;
5926 u32 tid;
5927 u64 start;
5928 u64 len;
5929 u64 pgoff;
cdd6c482 5930 } event_id;
0a4a9391
PZ
5931};
5932
67516844
JO
5933static int perf_event_mmap_match(struct perf_event *event,
5934 void *data)
5935{
5936 struct perf_mmap_event *mmap_event = data;
5937 struct vm_area_struct *vma = mmap_event->vma;
5938 int executable = vma->vm_flags & VM_EXEC;
5939
5940 return (!executable && event->attr.mmap_data) ||
13d7a241 5941 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5942}
5943
cdd6c482 5944static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5945 void *data)
0a4a9391 5946{
52d857a8 5947 struct perf_mmap_event *mmap_event = data;
0a4a9391 5948 struct perf_output_handle handle;
c980d109 5949 struct perf_sample_data sample;
cdd6c482 5950 int size = mmap_event->event_id.header.size;
c980d109 5951 int ret;
0a4a9391 5952
67516844
JO
5953 if (!perf_event_mmap_match(event, data))
5954 return;
5955
13d7a241
SE
5956 if (event->attr.mmap2) {
5957 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5958 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5959 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5960 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5961 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5962 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5963 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5964 }
5965
c980d109
ACM
5966 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5967 ret = perf_output_begin(&handle, event,
a7ac67ea 5968 mmap_event->event_id.header.size);
0a4a9391 5969 if (ret)
c980d109 5970 goto out;
0a4a9391 5971
cdd6c482
IM
5972 mmap_event->event_id.pid = perf_event_pid(event, current);
5973 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5974
cdd6c482 5975 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5976
5977 if (event->attr.mmap2) {
5978 perf_output_put(&handle, mmap_event->maj);
5979 perf_output_put(&handle, mmap_event->min);
5980 perf_output_put(&handle, mmap_event->ino);
5981 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5982 perf_output_put(&handle, mmap_event->prot);
5983 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5984 }
5985
76369139 5986 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5987 mmap_event->file_size);
c980d109
ACM
5988
5989 perf_event__output_id_sample(event, &handle, &sample);
5990
78d613eb 5991 perf_output_end(&handle);
c980d109
ACM
5992out:
5993 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5994}
5995
cdd6c482 5996static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5997{
089dd79d
PZ
5998 struct vm_area_struct *vma = mmap_event->vma;
5999 struct file *file = vma->vm_file;
13d7a241
SE
6000 int maj = 0, min = 0;
6001 u64 ino = 0, gen = 0;
f972eb63 6002 u32 prot = 0, flags = 0;
0a4a9391
PZ
6003 unsigned int size;
6004 char tmp[16];
6005 char *buf = NULL;
2c42cfbf 6006 char *name;
413ee3b4 6007
0a4a9391 6008 if (file) {
13d7a241
SE
6009 struct inode *inode;
6010 dev_t dev;
3ea2f2b9 6011
2c42cfbf 6012 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6013 if (!buf) {
c7e548b4
ON
6014 name = "//enomem";
6015 goto cpy_name;
0a4a9391 6016 }
413ee3b4 6017 /*
3ea2f2b9 6018 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6019 * need to add enough zero bytes after the string to handle
6020 * the 64bit alignment we do later.
6021 */
9bf39ab2 6022 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6023 if (IS_ERR(name)) {
c7e548b4
ON
6024 name = "//toolong";
6025 goto cpy_name;
0a4a9391 6026 }
13d7a241
SE
6027 inode = file_inode(vma->vm_file);
6028 dev = inode->i_sb->s_dev;
6029 ino = inode->i_ino;
6030 gen = inode->i_generation;
6031 maj = MAJOR(dev);
6032 min = MINOR(dev);
f972eb63
PZ
6033
6034 if (vma->vm_flags & VM_READ)
6035 prot |= PROT_READ;
6036 if (vma->vm_flags & VM_WRITE)
6037 prot |= PROT_WRITE;
6038 if (vma->vm_flags & VM_EXEC)
6039 prot |= PROT_EXEC;
6040
6041 if (vma->vm_flags & VM_MAYSHARE)
6042 flags = MAP_SHARED;
6043 else
6044 flags = MAP_PRIVATE;
6045
6046 if (vma->vm_flags & VM_DENYWRITE)
6047 flags |= MAP_DENYWRITE;
6048 if (vma->vm_flags & VM_MAYEXEC)
6049 flags |= MAP_EXECUTABLE;
6050 if (vma->vm_flags & VM_LOCKED)
6051 flags |= MAP_LOCKED;
6052 if (vma->vm_flags & VM_HUGETLB)
6053 flags |= MAP_HUGETLB;
6054
c7e548b4 6055 goto got_name;
0a4a9391 6056 } else {
fbe26abe
JO
6057 if (vma->vm_ops && vma->vm_ops->name) {
6058 name = (char *) vma->vm_ops->name(vma);
6059 if (name)
6060 goto cpy_name;
6061 }
6062
2c42cfbf 6063 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6064 if (name)
6065 goto cpy_name;
089dd79d 6066
32c5fb7e 6067 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6068 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6069 name = "[heap]";
6070 goto cpy_name;
32c5fb7e
ON
6071 }
6072 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6073 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6074 name = "[stack]";
6075 goto cpy_name;
089dd79d
PZ
6076 }
6077
c7e548b4
ON
6078 name = "//anon";
6079 goto cpy_name;
0a4a9391
PZ
6080 }
6081
c7e548b4
ON
6082cpy_name:
6083 strlcpy(tmp, name, sizeof(tmp));
6084 name = tmp;
0a4a9391 6085got_name:
2c42cfbf
PZ
6086 /*
6087 * Since our buffer works in 8 byte units we need to align our string
6088 * size to a multiple of 8. However, we must guarantee the tail end is
6089 * zero'd out to avoid leaking random bits to userspace.
6090 */
6091 size = strlen(name)+1;
6092 while (!IS_ALIGNED(size, sizeof(u64)))
6093 name[size++] = '\0';
0a4a9391
PZ
6094
6095 mmap_event->file_name = name;
6096 mmap_event->file_size = size;
13d7a241
SE
6097 mmap_event->maj = maj;
6098 mmap_event->min = min;
6099 mmap_event->ino = ino;
6100 mmap_event->ino_generation = gen;
f972eb63
PZ
6101 mmap_event->prot = prot;
6102 mmap_event->flags = flags;
0a4a9391 6103
2fe85427
SE
6104 if (!(vma->vm_flags & VM_EXEC))
6105 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6106
cdd6c482 6107 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6108
67516844 6109 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6110 mmap_event,
6111 NULL);
665c2142 6112
0a4a9391
PZ
6113 kfree(buf);
6114}
6115
3af9e859 6116void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6117{
9ee318a7
PZ
6118 struct perf_mmap_event mmap_event;
6119
cdd6c482 6120 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6121 return;
6122
6123 mmap_event = (struct perf_mmap_event){
089dd79d 6124 .vma = vma,
573402db
PZ
6125 /* .file_name */
6126 /* .file_size */
cdd6c482 6127 .event_id = {
573402db 6128 .header = {
cdd6c482 6129 .type = PERF_RECORD_MMAP,
39447b38 6130 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6131 /* .size */
6132 },
6133 /* .pid */
6134 /* .tid */
089dd79d
PZ
6135 .start = vma->vm_start,
6136 .len = vma->vm_end - vma->vm_start,
3a0304e9 6137 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6138 },
13d7a241
SE
6139 /* .maj (attr_mmap2 only) */
6140 /* .min (attr_mmap2 only) */
6141 /* .ino (attr_mmap2 only) */
6142 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6143 /* .prot (attr_mmap2 only) */
6144 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6145 };
6146
cdd6c482 6147 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6148}
6149
68db7e98
AS
6150void perf_event_aux_event(struct perf_event *event, unsigned long head,
6151 unsigned long size, u64 flags)
6152{
6153 struct perf_output_handle handle;
6154 struct perf_sample_data sample;
6155 struct perf_aux_event {
6156 struct perf_event_header header;
6157 u64 offset;
6158 u64 size;
6159 u64 flags;
6160 } rec = {
6161 .header = {
6162 .type = PERF_RECORD_AUX,
6163 .misc = 0,
6164 .size = sizeof(rec),
6165 },
6166 .offset = head,
6167 .size = size,
6168 .flags = flags,
6169 };
6170 int ret;
6171
6172 perf_event_header__init_id(&rec.header, &sample, event);
6173 ret = perf_output_begin(&handle, event, rec.header.size);
6174
6175 if (ret)
6176 return;
6177
6178 perf_output_put(&handle, rec);
6179 perf_event__output_id_sample(event, &handle, &sample);
6180
6181 perf_output_end(&handle);
6182}
6183
f38b0dbb
KL
6184/*
6185 * Lost/dropped samples logging
6186 */
6187void perf_log_lost_samples(struct perf_event *event, u64 lost)
6188{
6189 struct perf_output_handle handle;
6190 struct perf_sample_data sample;
6191 int ret;
6192
6193 struct {
6194 struct perf_event_header header;
6195 u64 lost;
6196 } lost_samples_event = {
6197 .header = {
6198 .type = PERF_RECORD_LOST_SAMPLES,
6199 .misc = 0,
6200 .size = sizeof(lost_samples_event),
6201 },
6202 .lost = lost,
6203 };
6204
6205 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6206
6207 ret = perf_output_begin(&handle, event,
6208 lost_samples_event.header.size);
6209 if (ret)
6210 return;
6211
6212 perf_output_put(&handle, lost_samples_event);
6213 perf_event__output_id_sample(event, &handle, &sample);
6214 perf_output_end(&handle);
6215}
6216
45ac1403
AH
6217/*
6218 * context_switch tracking
6219 */
6220
6221struct perf_switch_event {
6222 struct task_struct *task;
6223 struct task_struct *next_prev;
6224
6225 struct {
6226 struct perf_event_header header;
6227 u32 next_prev_pid;
6228 u32 next_prev_tid;
6229 } event_id;
6230};
6231
6232static int perf_event_switch_match(struct perf_event *event)
6233{
6234 return event->attr.context_switch;
6235}
6236
6237static void perf_event_switch_output(struct perf_event *event, void *data)
6238{
6239 struct perf_switch_event *se = data;
6240 struct perf_output_handle handle;
6241 struct perf_sample_data sample;
6242 int ret;
6243
6244 if (!perf_event_switch_match(event))
6245 return;
6246
6247 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6248 if (event->ctx->task) {
6249 se->event_id.header.type = PERF_RECORD_SWITCH;
6250 se->event_id.header.size = sizeof(se->event_id.header);
6251 } else {
6252 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6253 se->event_id.header.size = sizeof(se->event_id);
6254 se->event_id.next_prev_pid =
6255 perf_event_pid(event, se->next_prev);
6256 se->event_id.next_prev_tid =
6257 perf_event_tid(event, se->next_prev);
6258 }
6259
6260 perf_event_header__init_id(&se->event_id.header, &sample, event);
6261
6262 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6263 if (ret)
6264 return;
6265
6266 if (event->ctx->task)
6267 perf_output_put(&handle, se->event_id.header);
6268 else
6269 perf_output_put(&handle, se->event_id);
6270
6271 perf_event__output_id_sample(event, &handle, &sample);
6272
6273 perf_output_end(&handle);
6274}
6275
6276static void perf_event_switch(struct task_struct *task,
6277 struct task_struct *next_prev, bool sched_in)
6278{
6279 struct perf_switch_event switch_event;
6280
6281 /* N.B. caller checks nr_switch_events != 0 */
6282
6283 switch_event = (struct perf_switch_event){
6284 .task = task,
6285 .next_prev = next_prev,
6286 .event_id = {
6287 .header = {
6288 /* .type */
6289 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6290 /* .size */
6291 },
6292 /* .next_prev_pid */
6293 /* .next_prev_tid */
6294 },
6295 };
6296
6297 perf_event_aux(perf_event_switch_output,
6298 &switch_event,
6299 NULL);
6300}
6301
a78ac325
PZ
6302/*
6303 * IRQ throttle logging
6304 */
6305
cdd6c482 6306static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6307{
6308 struct perf_output_handle handle;
c980d109 6309 struct perf_sample_data sample;
a78ac325
PZ
6310 int ret;
6311
6312 struct {
6313 struct perf_event_header header;
6314 u64 time;
cca3f454 6315 u64 id;
7f453c24 6316 u64 stream_id;
a78ac325
PZ
6317 } throttle_event = {
6318 .header = {
cdd6c482 6319 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6320 .misc = 0,
6321 .size = sizeof(throttle_event),
6322 },
34f43927 6323 .time = perf_event_clock(event),
cdd6c482
IM
6324 .id = primary_event_id(event),
6325 .stream_id = event->id,
a78ac325
PZ
6326 };
6327
966ee4d6 6328 if (enable)
cdd6c482 6329 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6330
c980d109
ACM
6331 perf_event_header__init_id(&throttle_event.header, &sample, event);
6332
6333 ret = perf_output_begin(&handle, event,
a7ac67ea 6334 throttle_event.header.size);
a78ac325
PZ
6335 if (ret)
6336 return;
6337
6338 perf_output_put(&handle, throttle_event);
c980d109 6339 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6340 perf_output_end(&handle);
6341}
6342
ec0d7729
AS
6343static void perf_log_itrace_start(struct perf_event *event)
6344{
6345 struct perf_output_handle handle;
6346 struct perf_sample_data sample;
6347 struct perf_aux_event {
6348 struct perf_event_header header;
6349 u32 pid;
6350 u32 tid;
6351 } rec;
6352 int ret;
6353
6354 if (event->parent)
6355 event = event->parent;
6356
6357 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6358 event->hw.itrace_started)
6359 return;
6360
ec0d7729
AS
6361 rec.header.type = PERF_RECORD_ITRACE_START;
6362 rec.header.misc = 0;
6363 rec.header.size = sizeof(rec);
6364 rec.pid = perf_event_pid(event, current);
6365 rec.tid = perf_event_tid(event, current);
6366
6367 perf_event_header__init_id(&rec.header, &sample, event);
6368 ret = perf_output_begin(&handle, event, rec.header.size);
6369
6370 if (ret)
6371 return;
6372
6373 perf_output_put(&handle, rec);
6374 perf_event__output_id_sample(event, &handle, &sample);
6375
6376 perf_output_end(&handle);
6377}
6378
f6c7d5fe 6379/*
cdd6c482 6380 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6381 */
6382
a8b0ca17 6383static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6384 int throttle, struct perf_sample_data *data,
6385 struct pt_regs *regs)
f6c7d5fe 6386{
cdd6c482
IM
6387 int events = atomic_read(&event->event_limit);
6388 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6389 u64 seq;
79f14641
PZ
6390 int ret = 0;
6391
96398826
PZ
6392 /*
6393 * Non-sampling counters might still use the PMI to fold short
6394 * hardware counters, ignore those.
6395 */
6396 if (unlikely(!is_sampling_event(event)))
6397 return 0;
6398
e050e3f0
SE
6399 seq = __this_cpu_read(perf_throttled_seq);
6400 if (seq != hwc->interrupts_seq) {
6401 hwc->interrupts_seq = seq;
6402 hwc->interrupts = 1;
6403 } else {
6404 hwc->interrupts++;
6405 if (unlikely(throttle
6406 && hwc->interrupts >= max_samples_per_tick)) {
6407 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6408 hwc->interrupts = MAX_INTERRUPTS;
6409 perf_log_throttle(event, 0);
d84153d6 6410 tick_nohz_full_kick();
a78ac325
PZ
6411 ret = 1;
6412 }
e050e3f0 6413 }
60db5e09 6414
cdd6c482 6415 if (event->attr.freq) {
def0a9b2 6416 u64 now = perf_clock();
abd50713 6417 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6418
abd50713 6419 hwc->freq_time_stamp = now;
bd2b5b12 6420
abd50713 6421 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6422 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6423 }
6424
2023b359
PZ
6425 /*
6426 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6427 * events
2023b359
PZ
6428 */
6429
cdd6c482
IM
6430 event->pending_kill = POLL_IN;
6431 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6432 ret = 1;
cdd6c482 6433 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6434 event->pending_disable = 1;
6435 irq_work_queue(&event->pending);
79f14641
PZ
6436 }
6437
453f19ee 6438 if (event->overflow_handler)
a8b0ca17 6439 event->overflow_handler(event, data, regs);
453f19ee 6440 else
a8b0ca17 6441 perf_event_output(event, data, regs);
453f19ee 6442
fed66e2c 6443 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6444 event->pending_wakeup = 1;
6445 irq_work_queue(&event->pending);
f506b3dc
PZ
6446 }
6447
79f14641 6448 return ret;
f6c7d5fe
PZ
6449}
6450
a8b0ca17 6451int perf_event_overflow(struct perf_event *event,
5622f295
MM
6452 struct perf_sample_data *data,
6453 struct pt_regs *regs)
850bc73f 6454{
a8b0ca17 6455 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6456}
6457
15dbf27c 6458/*
cdd6c482 6459 * Generic software event infrastructure
15dbf27c
PZ
6460 */
6461
b28ab83c
PZ
6462struct swevent_htable {
6463 struct swevent_hlist *swevent_hlist;
6464 struct mutex hlist_mutex;
6465 int hlist_refcount;
6466
6467 /* Recursion avoidance in each contexts */
6468 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6469
6470 /* Keeps track of cpu being initialized/exited */
6471 bool online;
b28ab83c
PZ
6472};
6473
6474static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6475
7b4b6658 6476/*
cdd6c482
IM
6477 * We directly increment event->count and keep a second value in
6478 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6479 * is kept in the range [-sample_period, 0] so that we can use the
6480 * sign as trigger.
6481 */
6482
ab573844 6483u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6484{
cdd6c482 6485 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6486 u64 period = hwc->last_period;
6487 u64 nr, offset;
6488 s64 old, val;
6489
6490 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6491
6492again:
e7850595 6493 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6494 if (val < 0)
6495 return 0;
15dbf27c 6496
7b4b6658
PZ
6497 nr = div64_u64(period + val, period);
6498 offset = nr * period;
6499 val -= offset;
e7850595 6500 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6501 goto again;
15dbf27c 6502
7b4b6658 6503 return nr;
15dbf27c
PZ
6504}
6505
0cff784a 6506static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6507 struct perf_sample_data *data,
5622f295 6508 struct pt_regs *regs)
15dbf27c 6509{
cdd6c482 6510 struct hw_perf_event *hwc = &event->hw;
850bc73f 6511 int throttle = 0;
15dbf27c 6512
0cff784a
PZ
6513 if (!overflow)
6514 overflow = perf_swevent_set_period(event);
15dbf27c 6515
7b4b6658
PZ
6516 if (hwc->interrupts == MAX_INTERRUPTS)
6517 return;
15dbf27c 6518
7b4b6658 6519 for (; overflow; overflow--) {
a8b0ca17 6520 if (__perf_event_overflow(event, throttle,
5622f295 6521 data, regs)) {
7b4b6658
PZ
6522 /*
6523 * We inhibit the overflow from happening when
6524 * hwc->interrupts == MAX_INTERRUPTS.
6525 */
6526 break;
6527 }
cf450a73 6528 throttle = 1;
7b4b6658 6529 }
15dbf27c
PZ
6530}
6531
a4eaf7f1 6532static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6533 struct perf_sample_data *data,
5622f295 6534 struct pt_regs *regs)
7b4b6658 6535{
cdd6c482 6536 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6537
e7850595 6538 local64_add(nr, &event->count);
d6d020e9 6539
0cff784a
PZ
6540 if (!regs)
6541 return;
6542
6c7e550f 6543 if (!is_sampling_event(event))
7b4b6658 6544 return;
d6d020e9 6545
5d81e5cf
AV
6546 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6547 data->period = nr;
6548 return perf_swevent_overflow(event, 1, data, regs);
6549 } else
6550 data->period = event->hw.last_period;
6551
0cff784a 6552 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6553 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6554
e7850595 6555 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6556 return;
df1a132b 6557
a8b0ca17 6558 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6559}
6560
f5ffe02e
FW
6561static int perf_exclude_event(struct perf_event *event,
6562 struct pt_regs *regs)
6563{
a4eaf7f1 6564 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6565 return 1;
a4eaf7f1 6566
f5ffe02e
FW
6567 if (regs) {
6568 if (event->attr.exclude_user && user_mode(regs))
6569 return 1;
6570
6571 if (event->attr.exclude_kernel && !user_mode(regs))
6572 return 1;
6573 }
6574
6575 return 0;
6576}
6577
cdd6c482 6578static int perf_swevent_match(struct perf_event *event,
1c432d89 6579 enum perf_type_id type,
6fb2915d
LZ
6580 u32 event_id,
6581 struct perf_sample_data *data,
6582 struct pt_regs *regs)
15dbf27c 6583{
cdd6c482 6584 if (event->attr.type != type)
a21ca2ca 6585 return 0;
f5ffe02e 6586
cdd6c482 6587 if (event->attr.config != event_id)
15dbf27c
PZ
6588 return 0;
6589
f5ffe02e
FW
6590 if (perf_exclude_event(event, regs))
6591 return 0;
15dbf27c
PZ
6592
6593 return 1;
6594}
6595
76e1d904
FW
6596static inline u64 swevent_hash(u64 type, u32 event_id)
6597{
6598 u64 val = event_id | (type << 32);
6599
6600 return hash_64(val, SWEVENT_HLIST_BITS);
6601}
6602
49f135ed
FW
6603static inline struct hlist_head *
6604__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6605{
49f135ed
FW
6606 u64 hash = swevent_hash(type, event_id);
6607
6608 return &hlist->heads[hash];
6609}
76e1d904 6610
49f135ed
FW
6611/* For the read side: events when they trigger */
6612static inline struct hlist_head *
b28ab83c 6613find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6614{
6615 struct swevent_hlist *hlist;
76e1d904 6616
b28ab83c 6617 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6618 if (!hlist)
6619 return NULL;
6620
49f135ed
FW
6621 return __find_swevent_head(hlist, type, event_id);
6622}
6623
6624/* For the event head insertion and removal in the hlist */
6625static inline struct hlist_head *
b28ab83c 6626find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6627{
6628 struct swevent_hlist *hlist;
6629 u32 event_id = event->attr.config;
6630 u64 type = event->attr.type;
6631
6632 /*
6633 * Event scheduling is always serialized against hlist allocation
6634 * and release. Which makes the protected version suitable here.
6635 * The context lock guarantees that.
6636 */
b28ab83c 6637 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6638 lockdep_is_held(&event->ctx->lock));
6639 if (!hlist)
6640 return NULL;
6641
6642 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6643}
6644
6645static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6646 u64 nr,
76e1d904
FW
6647 struct perf_sample_data *data,
6648 struct pt_regs *regs)
15dbf27c 6649{
4a32fea9 6650 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6651 struct perf_event *event;
76e1d904 6652 struct hlist_head *head;
15dbf27c 6653
76e1d904 6654 rcu_read_lock();
b28ab83c 6655 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6656 if (!head)
6657 goto end;
6658
b67bfe0d 6659 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6660 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6661 perf_swevent_event(event, nr, data, regs);
15dbf27c 6662 }
76e1d904
FW
6663end:
6664 rcu_read_unlock();
15dbf27c
PZ
6665}
6666
86038c5e
PZI
6667DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6668
4ed7c92d 6669int perf_swevent_get_recursion_context(void)
96f6d444 6670{
4a32fea9 6671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6672
b28ab83c 6673 return get_recursion_context(swhash->recursion);
96f6d444 6674}
645e8cc0 6675EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6676
fa9f90be 6677inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6678{
4a32fea9 6679 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6680
b28ab83c 6681 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6682}
15dbf27c 6683
86038c5e 6684void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6685{
a4234bfc 6686 struct perf_sample_data data;
4ed7c92d 6687
86038c5e 6688 if (WARN_ON_ONCE(!regs))
4ed7c92d 6689 return;
a4234bfc 6690
fd0d000b 6691 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6692 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6693}
6694
6695void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6696{
6697 int rctx;
6698
6699 preempt_disable_notrace();
6700 rctx = perf_swevent_get_recursion_context();
6701 if (unlikely(rctx < 0))
6702 goto fail;
6703
6704 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6705
6706 perf_swevent_put_recursion_context(rctx);
86038c5e 6707fail:
1c024eca 6708 preempt_enable_notrace();
b8e83514
PZ
6709}
6710
cdd6c482 6711static void perf_swevent_read(struct perf_event *event)
15dbf27c 6712{
15dbf27c
PZ
6713}
6714
a4eaf7f1 6715static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6716{
4a32fea9 6717 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6718 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6719 struct hlist_head *head;
6720
6c7e550f 6721 if (is_sampling_event(event)) {
7b4b6658 6722 hwc->last_period = hwc->sample_period;
cdd6c482 6723 perf_swevent_set_period(event);
7b4b6658 6724 }
76e1d904 6725
a4eaf7f1
PZ
6726 hwc->state = !(flags & PERF_EF_START);
6727
b28ab83c 6728 head = find_swevent_head(swhash, event);
39af6b16
JO
6729 if (!head) {
6730 /*
6731 * We can race with cpu hotplug code. Do not
6732 * WARN if the cpu just got unplugged.
6733 */
6734 WARN_ON_ONCE(swhash->online);
76e1d904 6735 return -EINVAL;
39af6b16 6736 }
76e1d904
FW
6737
6738 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6739 perf_event_update_userpage(event);
76e1d904 6740
15dbf27c
PZ
6741 return 0;
6742}
6743
a4eaf7f1 6744static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6745{
76e1d904 6746 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6747}
6748
a4eaf7f1 6749static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6750{
a4eaf7f1 6751 event->hw.state = 0;
d6d020e9 6752}
aa9c4c0f 6753
a4eaf7f1 6754static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6755{
a4eaf7f1 6756 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6757}
6758
49f135ed
FW
6759/* Deref the hlist from the update side */
6760static inline struct swevent_hlist *
b28ab83c 6761swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6762{
b28ab83c
PZ
6763 return rcu_dereference_protected(swhash->swevent_hlist,
6764 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6765}
6766
b28ab83c 6767static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6768{
b28ab83c 6769 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6770
49f135ed 6771 if (!hlist)
76e1d904
FW
6772 return;
6773
70691d4a 6774 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6775 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6776}
6777
6778static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6779{
b28ab83c 6780 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6781
b28ab83c 6782 mutex_lock(&swhash->hlist_mutex);
76e1d904 6783
b28ab83c
PZ
6784 if (!--swhash->hlist_refcount)
6785 swevent_hlist_release(swhash);
76e1d904 6786
b28ab83c 6787 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6788}
6789
6790static void swevent_hlist_put(struct perf_event *event)
6791{
6792 int cpu;
6793
76e1d904
FW
6794 for_each_possible_cpu(cpu)
6795 swevent_hlist_put_cpu(event, cpu);
6796}
6797
6798static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6799{
b28ab83c 6800 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6801 int err = 0;
6802
b28ab83c 6803 mutex_lock(&swhash->hlist_mutex);
76e1d904 6804
b28ab83c 6805 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6806 struct swevent_hlist *hlist;
6807
6808 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6809 if (!hlist) {
6810 err = -ENOMEM;
6811 goto exit;
6812 }
b28ab83c 6813 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6814 }
b28ab83c 6815 swhash->hlist_refcount++;
9ed6060d 6816exit:
b28ab83c 6817 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6818
6819 return err;
6820}
6821
6822static int swevent_hlist_get(struct perf_event *event)
6823{
6824 int err;
6825 int cpu, failed_cpu;
6826
76e1d904
FW
6827 get_online_cpus();
6828 for_each_possible_cpu(cpu) {
6829 err = swevent_hlist_get_cpu(event, cpu);
6830 if (err) {
6831 failed_cpu = cpu;
6832 goto fail;
6833 }
6834 }
6835 put_online_cpus();
6836
6837 return 0;
9ed6060d 6838fail:
76e1d904
FW
6839 for_each_possible_cpu(cpu) {
6840 if (cpu == failed_cpu)
6841 break;
6842 swevent_hlist_put_cpu(event, cpu);
6843 }
6844
6845 put_online_cpus();
6846 return err;
6847}
6848
c5905afb 6849struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6850
b0a873eb
PZ
6851static void sw_perf_event_destroy(struct perf_event *event)
6852{
6853 u64 event_id = event->attr.config;
95476b64 6854
b0a873eb
PZ
6855 WARN_ON(event->parent);
6856
c5905afb 6857 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6858 swevent_hlist_put(event);
6859}
6860
6861static int perf_swevent_init(struct perf_event *event)
6862{
8176cced 6863 u64 event_id = event->attr.config;
b0a873eb
PZ
6864
6865 if (event->attr.type != PERF_TYPE_SOFTWARE)
6866 return -ENOENT;
6867
2481c5fa
SE
6868 /*
6869 * no branch sampling for software events
6870 */
6871 if (has_branch_stack(event))
6872 return -EOPNOTSUPP;
6873
b0a873eb
PZ
6874 switch (event_id) {
6875 case PERF_COUNT_SW_CPU_CLOCK:
6876 case PERF_COUNT_SW_TASK_CLOCK:
6877 return -ENOENT;
6878
6879 default:
6880 break;
6881 }
6882
ce677831 6883 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6884 return -ENOENT;
6885
6886 if (!event->parent) {
6887 int err;
6888
6889 err = swevent_hlist_get(event);
6890 if (err)
6891 return err;
6892
c5905afb 6893 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6894 event->destroy = sw_perf_event_destroy;
6895 }
6896
6897 return 0;
6898}
6899
6900static struct pmu perf_swevent = {
89a1e187 6901 .task_ctx_nr = perf_sw_context,
95476b64 6902
34f43927
PZ
6903 .capabilities = PERF_PMU_CAP_NO_NMI,
6904
b0a873eb 6905 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6906 .add = perf_swevent_add,
6907 .del = perf_swevent_del,
6908 .start = perf_swevent_start,
6909 .stop = perf_swevent_stop,
1c024eca 6910 .read = perf_swevent_read,
1c024eca
PZ
6911};
6912
b0a873eb
PZ
6913#ifdef CONFIG_EVENT_TRACING
6914
1c024eca
PZ
6915static int perf_tp_filter_match(struct perf_event *event,
6916 struct perf_sample_data *data)
6917{
6918 void *record = data->raw->data;
6919
b71b437e
PZ
6920 /* only top level events have filters set */
6921 if (event->parent)
6922 event = event->parent;
6923
1c024eca
PZ
6924 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6925 return 1;
6926 return 0;
6927}
6928
6929static int perf_tp_event_match(struct perf_event *event,
6930 struct perf_sample_data *data,
6931 struct pt_regs *regs)
6932{
a0f7d0f7
FW
6933 if (event->hw.state & PERF_HES_STOPPED)
6934 return 0;
580d607c
PZ
6935 /*
6936 * All tracepoints are from kernel-space.
6937 */
6938 if (event->attr.exclude_kernel)
1c024eca
PZ
6939 return 0;
6940
6941 if (!perf_tp_filter_match(event, data))
6942 return 0;
6943
6944 return 1;
6945}
6946
6947void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6948 struct pt_regs *regs, struct hlist_head *head, int rctx,
6949 struct task_struct *task)
95476b64
FW
6950{
6951 struct perf_sample_data data;
1c024eca 6952 struct perf_event *event;
1c024eca 6953
95476b64
FW
6954 struct perf_raw_record raw = {
6955 .size = entry_size,
6956 .data = record,
6957 };
6958
fd0d000b 6959 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6960 data.raw = &raw;
6961
b67bfe0d 6962 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6963 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6964 perf_swevent_event(event, count, &data, regs);
4f41c013 6965 }
ecc55f84 6966
e6dab5ff
AV
6967 /*
6968 * If we got specified a target task, also iterate its context and
6969 * deliver this event there too.
6970 */
6971 if (task && task != current) {
6972 struct perf_event_context *ctx;
6973 struct trace_entry *entry = record;
6974
6975 rcu_read_lock();
6976 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6977 if (!ctx)
6978 goto unlock;
6979
6980 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6981 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6982 continue;
6983 if (event->attr.config != entry->type)
6984 continue;
6985 if (perf_tp_event_match(event, &data, regs))
6986 perf_swevent_event(event, count, &data, regs);
6987 }
6988unlock:
6989 rcu_read_unlock();
6990 }
6991
ecc55f84 6992 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6993}
6994EXPORT_SYMBOL_GPL(perf_tp_event);
6995
cdd6c482 6996static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6997{
1c024eca 6998 perf_trace_destroy(event);
e077df4f
PZ
6999}
7000
b0a873eb 7001static int perf_tp_event_init(struct perf_event *event)
e077df4f 7002{
76e1d904
FW
7003 int err;
7004
b0a873eb
PZ
7005 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7006 return -ENOENT;
7007
2481c5fa
SE
7008 /*
7009 * no branch sampling for tracepoint events
7010 */
7011 if (has_branch_stack(event))
7012 return -EOPNOTSUPP;
7013
1c024eca
PZ
7014 err = perf_trace_init(event);
7015 if (err)
b0a873eb 7016 return err;
e077df4f 7017
cdd6c482 7018 event->destroy = tp_perf_event_destroy;
e077df4f 7019
b0a873eb
PZ
7020 return 0;
7021}
7022
7023static struct pmu perf_tracepoint = {
89a1e187
PZ
7024 .task_ctx_nr = perf_sw_context,
7025
b0a873eb 7026 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7027 .add = perf_trace_add,
7028 .del = perf_trace_del,
7029 .start = perf_swevent_start,
7030 .stop = perf_swevent_stop,
b0a873eb 7031 .read = perf_swevent_read,
b0a873eb
PZ
7032};
7033
7034static inline void perf_tp_register(void)
7035{
2e80a82a 7036 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7037}
6fb2915d
LZ
7038
7039static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7040{
7041 char *filter_str;
7042 int ret;
7043
7044 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7045 return -EINVAL;
7046
7047 filter_str = strndup_user(arg, PAGE_SIZE);
7048 if (IS_ERR(filter_str))
7049 return PTR_ERR(filter_str);
7050
7051 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7052
7053 kfree(filter_str);
7054 return ret;
7055}
7056
7057static void perf_event_free_filter(struct perf_event *event)
7058{
7059 ftrace_profile_free_filter(event);
7060}
7061
2541517c
AS
7062static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7063{
7064 struct bpf_prog *prog;
7065
7066 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7067 return -EINVAL;
7068
7069 if (event->tp_event->prog)
7070 return -EEXIST;
7071
04a22fae
WN
7072 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7073 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7074 return -EINVAL;
7075
7076 prog = bpf_prog_get(prog_fd);
7077 if (IS_ERR(prog))
7078 return PTR_ERR(prog);
7079
6c373ca8 7080 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7081 /* valid fd, but invalid bpf program type */
7082 bpf_prog_put(prog);
7083 return -EINVAL;
7084 }
7085
7086 event->tp_event->prog = prog;
7087
7088 return 0;
7089}
7090
7091static void perf_event_free_bpf_prog(struct perf_event *event)
7092{
7093 struct bpf_prog *prog;
7094
7095 if (!event->tp_event)
7096 return;
7097
7098 prog = event->tp_event->prog;
7099 if (prog) {
7100 event->tp_event->prog = NULL;
7101 bpf_prog_put(prog);
7102 }
7103}
7104
e077df4f 7105#else
6fb2915d 7106
b0a873eb 7107static inline void perf_tp_register(void)
e077df4f 7108{
e077df4f 7109}
6fb2915d
LZ
7110
7111static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7112{
7113 return -ENOENT;
7114}
7115
7116static void perf_event_free_filter(struct perf_event *event)
7117{
7118}
7119
2541517c
AS
7120static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7121{
7122 return -ENOENT;
7123}
7124
7125static void perf_event_free_bpf_prog(struct perf_event *event)
7126{
7127}
07b139c8 7128#endif /* CONFIG_EVENT_TRACING */
e077df4f 7129
24f1e32c 7130#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7131void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7132{
f5ffe02e
FW
7133 struct perf_sample_data sample;
7134 struct pt_regs *regs = data;
7135
fd0d000b 7136 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7137
a4eaf7f1 7138 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7139 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7140}
7141#endif
7142
b0a873eb
PZ
7143/*
7144 * hrtimer based swevent callback
7145 */
f29ac756 7146
b0a873eb 7147static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7148{
b0a873eb
PZ
7149 enum hrtimer_restart ret = HRTIMER_RESTART;
7150 struct perf_sample_data data;
7151 struct pt_regs *regs;
7152 struct perf_event *event;
7153 u64 period;
f29ac756 7154
b0a873eb 7155 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7156
7157 if (event->state != PERF_EVENT_STATE_ACTIVE)
7158 return HRTIMER_NORESTART;
7159
b0a873eb 7160 event->pmu->read(event);
f344011c 7161
fd0d000b 7162 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7163 regs = get_irq_regs();
7164
7165 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7166 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7167 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7168 ret = HRTIMER_NORESTART;
7169 }
24f1e32c 7170
b0a873eb
PZ
7171 period = max_t(u64, 10000, event->hw.sample_period);
7172 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7173
b0a873eb 7174 return ret;
f29ac756
PZ
7175}
7176
b0a873eb 7177static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7178{
b0a873eb 7179 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7180 s64 period;
7181
7182 if (!is_sampling_event(event))
7183 return;
f5ffe02e 7184
5d508e82
FBH
7185 period = local64_read(&hwc->period_left);
7186 if (period) {
7187 if (period < 0)
7188 period = 10000;
fa407f35 7189
5d508e82
FBH
7190 local64_set(&hwc->period_left, 0);
7191 } else {
7192 period = max_t(u64, 10000, hwc->sample_period);
7193 }
3497d206
TG
7194 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7195 HRTIMER_MODE_REL_PINNED);
24f1e32c 7196}
b0a873eb
PZ
7197
7198static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7199{
b0a873eb
PZ
7200 struct hw_perf_event *hwc = &event->hw;
7201
6c7e550f 7202 if (is_sampling_event(event)) {
b0a873eb 7203 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7204 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7205
7206 hrtimer_cancel(&hwc->hrtimer);
7207 }
24f1e32c
FW
7208}
7209
ba3dd36c
PZ
7210static void perf_swevent_init_hrtimer(struct perf_event *event)
7211{
7212 struct hw_perf_event *hwc = &event->hw;
7213
7214 if (!is_sampling_event(event))
7215 return;
7216
7217 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7218 hwc->hrtimer.function = perf_swevent_hrtimer;
7219
7220 /*
7221 * Since hrtimers have a fixed rate, we can do a static freq->period
7222 * mapping and avoid the whole period adjust feedback stuff.
7223 */
7224 if (event->attr.freq) {
7225 long freq = event->attr.sample_freq;
7226
7227 event->attr.sample_period = NSEC_PER_SEC / freq;
7228 hwc->sample_period = event->attr.sample_period;
7229 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7230 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7231 event->attr.freq = 0;
7232 }
7233}
7234
b0a873eb
PZ
7235/*
7236 * Software event: cpu wall time clock
7237 */
7238
7239static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7240{
b0a873eb
PZ
7241 s64 prev;
7242 u64 now;
7243
a4eaf7f1 7244 now = local_clock();
b0a873eb
PZ
7245 prev = local64_xchg(&event->hw.prev_count, now);
7246 local64_add(now - prev, &event->count);
24f1e32c 7247}
24f1e32c 7248
a4eaf7f1 7249static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7250{
a4eaf7f1 7251 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7252 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7253}
7254
a4eaf7f1 7255static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7256{
b0a873eb
PZ
7257 perf_swevent_cancel_hrtimer(event);
7258 cpu_clock_event_update(event);
7259}
f29ac756 7260
a4eaf7f1
PZ
7261static int cpu_clock_event_add(struct perf_event *event, int flags)
7262{
7263 if (flags & PERF_EF_START)
7264 cpu_clock_event_start(event, flags);
6a694a60 7265 perf_event_update_userpage(event);
a4eaf7f1
PZ
7266
7267 return 0;
7268}
7269
7270static void cpu_clock_event_del(struct perf_event *event, int flags)
7271{
7272 cpu_clock_event_stop(event, flags);
7273}
7274
b0a873eb
PZ
7275static void cpu_clock_event_read(struct perf_event *event)
7276{
7277 cpu_clock_event_update(event);
7278}
f344011c 7279
b0a873eb
PZ
7280static int cpu_clock_event_init(struct perf_event *event)
7281{
7282 if (event->attr.type != PERF_TYPE_SOFTWARE)
7283 return -ENOENT;
7284
7285 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7286 return -ENOENT;
7287
2481c5fa
SE
7288 /*
7289 * no branch sampling for software events
7290 */
7291 if (has_branch_stack(event))
7292 return -EOPNOTSUPP;
7293
ba3dd36c
PZ
7294 perf_swevent_init_hrtimer(event);
7295
b0a873eb 7296 return 0;
f29ac756
PZ
7297}
7298
b0a873eb 7299static struct pmu perf_cpu_clock = {
89a1e187
PZ
7300 .task_ctx_nr = perf_sw_context,
7301
34f43927
PZ
7302 .capabilities = PERF_PMU_CAP_NO_NMI,
7303
b0a873eb 7304 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7305 .add = cpu_clock_event_add,
7306 .del = cpu_clock_event_del,
7307 .start = cpu_clock_event_start,
7308 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7309 .read = cpu_clock_event_read,
7310};
7311
7312/*
7313 * Software event: task time clock
7314 */
7315
7316static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7317{
b0a873eb
PZ
7318 u64 prev;
7319 s64 delta;
5c92d124 7320
b0a873eb
PZ
7321 prev = local64_xchg(&event->hw.prev_count, now);
7322 delta = now - prev;
7323 local64_add(delta, &event->count);
7324}
5c92d124 7325
a4eaf7f1 7326static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7327{
a4eaf7f1 7328 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7329 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7330}
7331
a4eaf7f1 7332static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7333{
7334 perf_swevent_cancel_hrtimer(event);
7335 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7336}
7337
7338static int task_clock_event_add(struct perf_event *event, int flags)
7339{
7340 if (flags & PERF_EF_START)
7341 task_clock_event_start(event, flags);
6a694a60 7342 perf_event_update_userpage(event);
b0a873eb 7343
a4eaf7f1
PZ
7344 return 0;
7345}
7346
7347static void task_clock_event_del(struct perf_event *event, int flags)
7348{
7349 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7350}
7351
7352static void task_clock_event_read(struct perf_event *event)
7353{
768a06e2
PZ
7354 u64 now = perf_clock();
7355 u64 delta = now - event->ctx->timestamp;
7356 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7357
7358 task_clock_event_update(event, time);
7359}
7360
7361static int task_clock_event_init(struct perf_event *event)
6fb2915d 7362{
b0a873eb
PZ
7363 if (event->attr.type != PERF_TYPE_SOFTWARE)
7364 return -ENOENT;
7365
7366 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7367 return -ENOENT;
7368
2481c5fa
SE
7369 /*
7370 * no branch sampling for software events
7371 */
7372 if (has_branch_stack(event))
7373 return -EOPNOTSUPP;
7374
ba3dd36c
PZ
7375 perf_swevent_init_hrtimer(event);
7376
b0a873eb 7377 return 0;
6fb2915d
LZ
7378}
7379
b0a873eb 7380static struct pmu perf_task_clock = {
89a1e187
PZ
7381 .task_ctx_nr = perf_sw_context,
7382
34f43927
PZ
7383 .capabilities = PERF_PMU_CAP_NO_NMI,
7384
b0a873eb 7385 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7386 .add = task_clock_event_add,
7387 .del = task_clock_event_del,
7388 .start = task_clock_event_start,
7389 .stop = task_clock_event_stop,
b0a873eb
PZ
7390 .read = task_clock_event_read,
7391};
6fb2915d 7392
ad5133b7 7393static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7394{
e077df4f 7395}
6fb2915d 7396
fbbe0701
SB
7397static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7398{
7399}
7400
ad5133b7 7401static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7402{
ad5133b7 7403 return 0;
6fb2915d
LZ
7404}
7405
18ab2cd3 7406static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7407
7408static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7409{
fbbe0701
SB
7410 __this_cpu_write(nop_txn_flags, flags);
7411
7412 if (flags & ~PERF_PMU_TXN_ADD)
7413 return;
7414
ad5133b7 7415 perf_pmu_disable(pmu);
6fb2915d
LZ
7416}
7417
ad5133b7
PZ
7418static int perf_pmu_commit_txn(struct pmu *pmu)
7419{
fbbe0701
SB
7420 unsigned int flags = __this_cpu_read(nop_txn_flags);
7421
7422 __this_cpu_write(nop_txn_flags, 0);
7423
7424 if (flags & ~PERF_PMU_TXN_ADD)
7425 return 0;
7426
ad5133b7
PZ
7427 perf_pmu_enable(pmu);
7428 return 0;
7429}
e077df4f 7430
ad5133b7 7431static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7432{
fbbe0701
SB
7433 unsigned int flags = __this_cpu_read(nop_txn_flags);
7434
7435 __this_cpu_write(nop_txn_flags, 0);
7436
7437 if (flags & ~PERF_PMU_TXN_ADD)
7438 return;
7439
ad5133b7 7440 perf_pmu_enable(pmu);
24f1e32c
FW
7441}
7442
35edc2a5
PZ
7443static int perf_event_idx_default(struct perf_event *event)
7444{
c719f560 7445 return 0;
35edc2a5
PZ
7446}
7447
8dc85d54
PZ
7448/*
7449 * Ensures all contexts with the same task_ctx_nr have the same
7450 * pmu_cpu_context too.
7451 */
9e317041 7452static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7453{
8dc85d54 7454 struct pmu *pmu;
b326e956 7455
8dc85d54
PZ
7456 if (ctxn < 0)
7457 return NULL;
24f1e32c 7458
8dc85d54
PZ
7459 list_for_each_entry(pmu, &pmus, entry) {
7460 if (pmu->task_ctx_nr == ctxn)
7461 return pmu->pmu_cpu_context;
7462 }
24f1e32c 7463
8dc85d54 7464 return NULL;
24f1e32c
FW
7465}
7466
51676957 7467static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7468{
51676957
PZ
7469 int cpu;
7470
7471 for_each_possible_cpu(cpu) {
7472 struct perf_cpu_context *cpuctx;
7473
7474 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7475
3f1f3320
PZ
7476 if (cpuctx->unique_pmu == old_pmu)
7477 cpuctx->unique_pmu = pmu;
51676957
PZ
7478 }
7479}
7480
7481static void free_pmu_context(struct pmu *pmu)
7482{
7483 struct pmu *i;
f5ffe02e 7484
8dc85d54 7485 mutex_lock(&pmus_lock);
0475f9ea 7486 /*
8dc85d54 7487 * Like a real lame refcount.
0475f9ea 7488 */
51676957
PZ
7489 list_for_each_entry(i, &pmus, entry) {
7490 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7491 update_pmu_context(i, pmu);
8dc85d54 7492 goto out;
51676957 7493 }
8dc85d54 7494 }
d6d020e9 7495
51676957 7496 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7497out:
7498 mutex_unlock(&pmus_lock);
24f1e32c 7499}
2e80a82a 7500static struct idr pmu_idr;
d6d020e9 7501
abe43400
PZ
7502static ssize_t
7503type_show(struct device *dev, struct device_attribute *attr, char *page)
7504{
7505 struct pmu *pmu = dev_get_drvdata(dev);
7506
7507 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7508}
90826ca7 7509static DEVICE_ATTR_RO(type);
abe43400 7510
62b85639
SE
7511static ssize_t
7512perf_event_mux_interval_ms_show(struct device *dev,
7513 struct device_attribute *attr,
7514 char *page)
7515{
7516 struct pmu *pmu = dev_get_drvdata(dev);
7517
7518 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7519}
7520
272325c4
PZ
7521static DEFINE_MUTEX(mux_interval_mutex);
7522
62b85639
SE
7523static ssize_t
7524perf_event_mux_interval_ms_store(struct device *dev,
7525 struct device_attribute *attr,
7526 const char *buf, size_t count)
7527{
7528 struct pmu *pmu = dev_get_drvdata(dev);
7529 int timer, cpu, ret;
7530
7531 ret = kstrtoint(buf, 0, &timer);
7532 if (ret)
7533 return ret;
7534
7535 if (timer < 1)
7536 return -EINVAL;
7537
7538 /* same value, noting to do */
7539 if (timer == pmu->hrtimer_interval_ms)
7540 return count;
7541
272325c4 7542 mutex_lock(&mux_interval_mutex);
62b85639
SE
7543 pmu->hrtimer_interval_ms = timer;
7544
7545 /* update all cpuctx for this PMU */
272325c4
PZ
7546 get_online_cpus();
7547 for_each_online_cpu(cpu) {
62b85639
SE
7548 struct perf_cpu_context *cpuctx;
7549 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7550 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7551
272325c4
PZ
7552 cpu_function_call(cpu,
7553 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7554 }
272325c4
PZ
7555 put_online_cpus();
7556 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7557
7558 return count;
7559}
90826ca7 7560static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7561
90826ca7
GKH
7562static struct attribute *pmu_dev_attrs[] = {
7563 &dev_attr_type.attr,
7564 &dev_attr_perf_event_mux_interval_ms.attr,
7565 NULL,
abe43400 7566};
90826ca7 7567ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7568
7569static int pmu_bus_running;
7570static struct bus_type pmu_bus = {
7571 .name = "event_source",
90826ca7 7572 .dev_groups = pmu_dev_groups,
abe43400
PZ
7573};
7574
7575static void pmu_dev_release(struct device *dev)
7576{
7577 kfree(dev);
7578}
7579
7580static int pmu_dev_alloc(struct pmu *pmu)
7581{
7582 int ret = -ENOMEM;
7583
7584 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7585 if (!pmu->dev)
7586 goto out;
7587
0c9d42ed 7588 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7589 device_initialize(pmu->dev);
7590 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7591 if (ret)
7592 goto free_dev;
7593
7594 dev_set_drvdata(pmu->dev, pmu);
7595 pmu->dev->bus = &pmu_bus;
7596 pmu->dev->release = pmu_dev_release;
7597 ret = device_add(pmu->dev);
7598 if (ret)
7599 goto free_dev;
7600
7601out:
7602 return ret;
7603
7604free_dev:
7605 put_device(pmu->dev);
7606 goto out;
7607}
7608
547e9fd7 7609static struct lock_class_key cpuctx_mutex;
facc4307 7610static struct lock_class_key cpuctx_lock;
547e9fd7 7611
03d8e80b 7612int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7613{
108b02cf 7614 int cpu, ret;
24f1e32c 7615
b0a873eb 7616 mutex_lock(&pmus_lock);
33696fc0
PZ
7617 ret = -ENOMEM;
7618 pmu->pmu_disable_count = alloc_percpu(int);
7619 if (!pmu->pmu_disable_count)
7620 goto unlock;
f29ac756 7621
2e80a82a
PZ
7622 pmu->type = -1;
7623 if (!name)
7624 goto skip_type;
7625 pmu->name = name;
7626
7627 if (type < 0) {
0e9c3be2
TH
7628 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7629 if (type < 0) {
7630 ret = type;
2e80a82a
PZ
7631 goto free_pdc;
7632 }
7633 }
7634 pmu->type = type;
7635
abe43400
PZ
7636 if (pmu_bus_running) {
7637 ret = pmu_dev_alloc(pmu);
7638 if (ret)
7639 goto free_idr;
7640 }
7641
2e80a82a 7642skip_type:
8dc85d54
PZ
7643 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7644 if (pmu->pmu_cpu_context)
7645 goto got_cpu_context;
f29ac756 7646
c4814202 7647 ret = -ENOMEM;
108b02cf
PZ
7648 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7649 if (!pmu->pmu_cpu_context)
abe43400 7650 goto free_dev;
f344011c 7651
108b02cf
PZ
7652 for_each_possible_cpu(cpu) {
7653 struct perf_cpu_context *cpuctx;
7654
7655 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7656 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7657 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7658 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7659 cpuctx->ctx.pmu = pmu;
9e630205 7660
272325c4 7661 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7662
3f1f3320 7663 cpuctx->unique_pmu = pmu;
108b02cf 7664 }
76e1d904 7665
8dc85d54 7666got_cpu_context:
ad5133b7
PZ
7667 if (!pmu->start_txn) {
7668 if (pmu->pmu_enable) {
7669 /*
7670 * If we have pmu_enable/pmu_disable calls, install
7671 * transaction stubs that use that to try and batch
7672 * hardware accesses.
7673 */
7674 pmu->start_txn = perf_pmu_start_txn;
7675 pmu->commit_txn = perf_pmu_commit_txn;
7676 pmu->cancel_txn = perf_pmu_cancel_txn;
7677 } else {
fbbe0701 7678 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7679 pmu->commit_txn = perf_pmu_nop_int;
7680 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7681 }
5c92d124 7682 }
15dbf27c 7683
ad5133b7
PZ
7684 if (!pmu->pmu_enable) {
7685 pmu->pmu_enable = perf_pmu_nop_void;
7686 pmu->pmu_disable = perf_pmu_nop_void;
7687 }
7688
35edc2a5
PZ
7689 if (!pmu->event_idx)
7690 pmu->event_idx = perf_event_idx_default;
7691
b0a873eb 7692 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7693 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7694 ret = 0;
7695unlock:
b0a873eb
PZ
7696 mutex_unlock(&pmus_lock);
7697
33696fc0 7698 return ret;
108b02cf 7699
abe43400
PZ
7700free_dev:
7701 device_del(pmu->dev);
7702 put_device(pmu->dev);
7703
2e80a82a
PZ
7704free_idr:
7705 if (pmu->type >= PERF_TYPE_MAX)
7706 idr_remove(&pmu_idr, pmu->type);
7707
108b02cf
PZ
7708free_pdc:
7709 free_percpu(pmu->pmu_disable_count);
7710 goto unlock;
f29ac756 7711}
c464c76e 7712EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7713
b0a873eb 7714void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7715{
b0a873eb
PZ
7716 mutex_lock(&pmus_lock);
7717 list_del_rcu(&pmu->entry);
7718 mutex_unlock(&pmus_lock);
5c92d124 7719
0475f9ea 7720 /*
cde8e884
PZ
7721 * We dereference the pmu list under both SRCU and regular RCU, so
7722 * synchronize against both of those.
0475f9ea 7723 */
b0a873eb 7724 synchronize_srcu(&pmus_srcu);
cde8e884 7725 synchronize_rcu();
d6d020e9 7726
33696fc0 7727 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7728 if (pmu->type >= PERF_TYPE_MAX)
7729 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7730 device_del(pmu->dev);
7731 put_device(pmu->dev);
51676957 7732 free_pmu_context(pmu);
b0a873eb 7733}
c464c76e 7734EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7735
cc34b98b
MR
7736static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7737{
ccd41c86 7738 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7739 int ret;
7740
7741 if (!try_module_get(pmu->module))
7742 return -ENODEV;
ccd41c86
PZ
7743
7744 if (event->group_leader != event) {
8b10c5e2
PZ
7745 /*
7746 * This ctx->mutex can nest when we're called through
7747 * inheritance. See the perf_event_ctx_lock_nested() comment.
7748 */
7749 ctx = perf_event_ctx_lock_nested(event->group_leader,
7750 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7751 BUG_ON(!ctx);
7752 }
7753
cc34b98b
MR
7754 event->pmu = pmu;
7755 ret = pmu->event_init(event);
ccd41c86
PZ
7756
7757 if (ctx)
7758 perf_event_ctx_unlock(event->group_leader, ctx);
7759
cc34b98b
MR
7760 if (ret)
7761 module_put(pmu->module);
7762
7763 return ret;
7764}
7765
18ab2cd3 7766static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7767{
7768 struct pmu *pmu = NULL;
7769 int idx;
940c5b29 7770 int ret;
b0a873eb
PZ
7771
7772 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7773
7774 rcu_read_lock();
7775 pmu = idr_find(&pmu_idr, event->attr.type);
7776 rcu_read_unlock();
940c5b29 7777 if (pmu) {
cc34b98b 7778 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7779 if (ret)
7780 pmu = ERR_PTR(ret);
2e80a82a 7781 goto unlock;
940c5b29 7782 }
2e80a82a 7783
b0a873eb 7784 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7785 ret = perf_try_init_event(pmu, event);
b0a873eb 7786 if (!ret)
e5f4d339 7787 goto unlock;
76e1d904 7788
b0a873eb
PZ
7789 if (ret != -ENOENT) {
7790 pmu = ERR_PTR(ret);
e5f4d339 7791 goto unlock;
f344011c 7792 }
5c92d124 7793 }
e5f4d339
PZ
7794 pmu = ERR_PTR(-ENOENT);
7795unlock:
b0a873eb 7796 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7797
4aeb0b42 7798 return pmu;
5c92d124
IM
7799}
7800
4beb31f3
FW
7801static void account_event_cpu(struct perf_event *event, int cpu)
7802{
7803 if (event->parent)
7804 return;
7805
4beb31f3
FW
7806 if (is_cgroup_event(event))
7807 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7808}
7809
766d6c07
FW
7810static void account_event(struct perf_event *event)
7811{
4beb31f3
FW
7812 if (event->parent)
7813 return;
7814
766d6c07
FW
7815 if (event->attach_state & PERF_ATTACH_TASK)
7816 static_key_slow_inc(&perf_sched_events.key);
7817 if (event->attr.mmap || event->attr.mmap_data)
7818 atomic_inc(&nr_mmap_events);
7819 if (event->attr.comm)
7820 atomic_inc(&nr_comm_events);
7821 if (event->attr.task)
7822 atomic_inc(&nr_task_events);
948b26b6
FW
7823 if (event->attr.freq) {
7824 if (atomic_inc_return(&nr_freq_events) == 1)
7825 tick_nohz_full_kick_all();
7826 }
45ac1403
AH
7827 if (event->attr.context_switch) {
7828 atomic_inc(&nr_switch_events);
7829 static_key_slow_inc(&perf_sched_events.key);
7830 }
4beb31f3 7831 if (has_branch_stack(event))
766d6c07 7832 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7833 if (is_cgroup_event(event))
766d6c07 7834 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7835
7836 account_event_cpu(event, event->cpu);
766d6c07
FW
7837}
7838
0793a61d 7839/*
cdd6c482 7840 * Allocate and initialize a event structure
0793a61d 7841 */
cdd6c482 7842static struct perf_event *
c3f00c70 7843perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7844 struct task_struct *task,
7845 struct perf_event *group_leader,
7846 struct perf_event *parent_event,
4dc0da86 7847 perf_overflow_handler_t overflow_handler,
79dff51e 7848 void *context, int cgroup_fd)
0793a61d 7849{
51b0fe39 7850 struct pmu *pmu;
cdd6c482
IM
7851 struct perf_event *event;
7852 struct hw_perf_event *hwc;
90983b16 7853 long err = -EINVAL;
0793a61d 7854
66832eb4
ON
7855 if ((unsigned)cpu >= nr_cpu_ids) {
7856 if (!task || cpu != -1)
7857 return ERR_PTR(-EINVAL);
7858 }
7859
c3f00c70 7860 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7861 if (!event)
d5d2bc0d 7862 return ERR_PTR(-ENOMEM);
0793a61d 7863
04289bb9 7864 /*
cdd6c482 7865 * Single events are their own group leaders, with an
04289bb9
IM
7866 * empty sibling list:
7867 */
7868 if (!group_leader)
cdd6c482 7869 group_leader = event;
04289bb9 7870
cdd6c482
IM
7871 mutex_init(&event->child_mutex);
7872 INIT_LIST_HEAD(&event->child_list);
fccc714b 7873
cdd6c482
IM
7874 INIT_LIST_HEAD(&event->group_entry);
7875 INIT_LIST_HEAD(&event->event_entry);
7876 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7877 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7878 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7879 INIT_HLIST_NODE(&event->hlist_entry);
7880
10c6db11 7881
cdd6c482 7882 init_waitqueue_head(&event->waitq);
e360adbe 7883 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7884
cdd6c482 7885 mutex_init(&event->mmap_mutex);
7b732a75 7886
a6fa941d 7887 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7888 event->cpu = cpu;
7889 event->attr = *attr;
7890 event->group_leader = group_leader;
7891 event->pmu = NULL;
cdd6c482 7892 event->oncpu = -1;
a96bbc16 7893
cdd6c482 7894 event->parent = parent_event;
b84fbc9f 7895
17cf22c3 7896 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7897 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7898
cdd6c482 7899 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7900
d580ff86
PZ
7901 if (task) {
7902 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7903 /*
50f16a8b
PZ
7904 * XXX pmu::event_init needs to know what task to account to
7905 * and we cannot use the ctx information because we need the
7906 * pmu before we get a ctx.
d580ff86 7907 */
50f16a8b 7908 event->hw.target = task;
d580ff86
PZ
7909 }
7910
34f43927
PZ
7911 event->clock = &local_clock;
7912 if (parent_event)
7913 event->clock = parent_event->clock;
7914
4dc0da86 7915 if (!overflow_handler && parent_event) {
b326e956 7916 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7917 context = parent_event->overflow_handler_context;
7918 }
66832eb4 7919
b326e956 7920 event->overflow_handler = overflow_handler;
4dc0da86 7921 event->overflow_handler_context = context;
97eaf530 7922
0231bb53 7923 perf_event__state_init(event);
a86ed508 7924
4aeb0b42 7925 pmu = NULL;
b8e83514 7926
cdd6c482 7927 hwc = &event->hw;
bd2b5b12 7928 hwc->sample_period = attr->sample_period;
0d48696f 7929 if (attr->freq && attr->sample_freq)
bd2b5b12 7930 hwc->sample_period = 1;
eced1dfc 7931 hwc->last_period = hwc->sample_period;
bd2b5b12 7932
e7850595 7933 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7934
2023b359 7935 /*
cdd6c482 7936 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7937 */
3dab77fb 7938 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7939 goto err_ns;
a46a2300
YZ
7940
7941 if (!has_branch_stack(event))
7942 event->attr.branch_sample_type = 0;
2023b359 7943
79dff51e
MF
7944 if (cgroup_fd != -1) {
7945 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7946 if (err)
7947 goto err_ns;
7948 }
7949
b0a873eb 7950 pmu = perf_init_event(event);
4aeb0b42 7951 if (!pmu)
90983b16
FW
7952 goto err_ns;
7953 else if (IS_ERR(pmu)) {
4aeb0b42 7954 err = PTR_ERR(pmu);
90983b16 7955 goto err_ns;
621a01ea 7956 }
d5d2bc0d 7957
bed5b25a
AS
7958 err = exclusive_event_init(event);
7959 if (err)
7960 goto err_pmu;
7961
cdd6c482 7962 if (!event->parent) {
927c7a9e
FW
7963 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7964 err = get_callchain_buffers();
90983b16 7965 if (err)
bed5b25a 7966 goto err_per_task;
d010b332 7967 }
f344011c 7968 }
9ee318a7 7969
cdd6c482 7970 return event;
90983b16 7971
bed5b25a
AS
7972err_per_task:
7973 exclusive_event_destroy(event);
7974
90983b16
FW
7975err_pmu:
7976 if (event->destroy)
7977 event->destroy(event);
c464c76e 7978 module_put(pmu->module);
90983b16 7979err_ns:
79dff51e
MF
7980 if (is_cgroup_event(event))
7981 perf_detach_cgroup(event);
90983b16
FW
7982 if (event->ns)
7983 put_pid_ns(event->ns);
7984 kfree(event);
7985
7986 return ERR_PTR(err);
0793a61d
TG
7987}
7988
cdd6c482
IM
7989static int perf_copy_attr(struct perf_event_attr __user *uattr,
7990 struct perf_event_attr *attr)
974802ea 7991{
974802ea 7992 u32 size;
cdf8073d 7993 int ret;
974802ea
PZ
7994
7995 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7996 return -EFAULT;
7997
7998 /*
7999 * zero the full structure, so that a short copy will be nice.
8000 */
8001 memset(attr, 0, sizeof(*attr));
8002
8003 ret = get_user(size, &uattr->size);
8004 if (ret)
8005 return ret;
8006
8007 if (size > PAGE_SIZE) /* silly large */
8008 goto err_size;
8009
8010 if (!size) /* abi compat */
8011 size = PERF_ATTR_SIZE_VER0;
8012
8013 if (size < PERF_ATTR_SIZE_VER0)
8014 goto err_size;
8015
8016 /*
8017 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8018 * ensure all the unknown bits are 0 - i.e. new
8019 * user-space does not rely on any kernel feature
8020 * extensions we dont know about yet.
974802ea
PZ
8021 */
8022 if (size > sizeof(*attr)) {
cdf8073d
IS
8023 unsigned char __user *addr;
8024 unsigned char __user *end;
8025 unsigned char val;
974802ea 8026
cdf8073d
IS
8027 addr = (void __user *)uattr + sizeof(*attr);
8028 end = (void __user *)uattr + size;
974802ea 8029
cdf8073d 8030 for (; addr < end; addr++) {
974802ea
PZ
8031 ret = get_user(val, addr);
8032 if (ret)
8033 return ret;
8034 if (val)
8035 goto err_size;
8036 }
b3e62e35 8037 size = sizeof(*attr);
974802ea
PZ
8038 }
8039
8040 ret = copy_from_user(attr, uattr, size);
8041 if (ret)
8042 return -EFAULT;
8043
cd757645 8044 if (attr->__reserved_1)
974802ea
PZ
8045 return -EINVAL;
8046
8047 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8048 return -EINVAL;
8049
8050 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8051 return -EINVAL;
8052
bce38cd5
SE
8053 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8054 u64 mask = attr->branch_sample_type;
8055
8056 /* only using defined bits */
8057 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8058 return -EINVAL;
8059
8060 /* at least one branch bit must be set */
8061 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8062 return -EINVAL;
8063
bce38cd5
SE
8064 /* propagate priv level, when not set for branch */
8065 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8066
8067 /* exclude_kernel checked on syscall entry */
8068 if (!attr->exclude_kernel)
8069 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8070
8071 if (!attr->exclude_user)
8072 mask |= PERF_SAMPLE_BRANCH_USER;
8073
8074 if (!attr->exclude_hv)
8075 mask |= PERF_SAMPLE_BRANCH_HV;
8076 /*
8077 * adjust user setting (for HW filter setup)
8078 */
8079 attr->branch_sample_type = mask;
8080 }
e712209a
SE
8081 /* privileged levels capture (kernel, hv): check permissions */
8082 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8083 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8084 return -EACCES;
bce38cd5 8085 }
4018994f 8086
c5ebcedb 8087 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8088 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8089 if (ret)
8090 return ret;
8091 }
8092
8093 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8094 if (!arch_perf_have_user_stack_dump())
8095 return -ENOSYS;
8096
8097 /*
8098 * We have __u32 type for the size, but so far
8099 * we can only use __u16 as maximum due to the
8100 * __u16 sample size limit.
8101 */
8102 if (attr->sample_stack_user >= USHRT_MAX)
8103 ret = -EINVAL;
8104 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8105 ret = -EINVAL;
8106 }
4018994f 8107
60e2364e
SE
8108 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8109 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8110out:
8111 return ret;
8112
8113err_size:
8114 put_user(sizeof(*attr), &uattr->size);
8115 ret = -E2BIG;
8116 goto out;
8117}
8118
ac9721f3
PZ
8119static int
8120perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8121{
b69cf536 8122 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8123 int ret = -EINVAL;
8124
ac9721f3 8125 if (!output_event)
a4be7c27
PZ
8126 goto set;
8127
ac9721f3
PZ
8128 /* don't allow circular references */
8129 if (event == output_event)
a4be7c27
PZ
8130 goto out;
8131
0f139300
PZ
8132 /*
8133 * Don't allow cross-cpu buffers
8134 */
8135 if (output_event->cpu != event->cpu)
8136 goto out;
8137
8138 /*
76369139 8139 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8140 */
8141 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8142 goto out;
8143
34f43927
PZ
8144 /*
8145 * Mixing clocks in the same buffer is trouble you don't need.
8146 */
8147 if (output_event->clock != event->clock)
8148 goto out;
8149
45bfb2e5
PZ
8150 /*
8151 * If both events generate aux data, they must be on the same PMU
8152 */
8153 if (has_aux(event) && has_aux(output_event) &&
8154 event->pmu != output_event->pmu)
8155 goto out;
8156
a4be7c27 8157set:
cdd6c482 8158 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8159 /* Can't redirect output if we've got an active mmap() */
8160 if (atomic_read(&event->mmap_count))
8161 goto unlock;
a4be7c27 8162
ac9721f3 8163 if (output_event) {
76369139
FW
8164 /* get the rb we want to redirect to */
8165 rb = ring_buffer_get(output_event);
8166 if (!rb)
ac9721f3 8167 goto unlock;
a4be7c27
PZ
8168 }
8169
b69cf536 8170 ring_buffer_attach(event, rb);
9bb5d40c 8171
a4be7c27 8172 ret = 0;
ac9721f3
PZ
8173unlock:
8174 mutex_unlock(&event->mmap_mutex);
8175
a4be7c27 8176out:
a4be7c27
PZ
8177 return ret;
8178}
8179
f63a8daa
PZ
8180static void mutex_lock_double(struct mutex *a, struct mutex *b)
8181{
8182 if (b < a)
8183 swap(a, b);
8184
8185 mutex_lock(a);
8186 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8187}
8188
34f43927
PZ
8189static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8190{
8191 bool nmi_safe = false;
8192
8193 switch (clk_id) {
8194 case CLOCK_MONOTONIC:
8195 event->clock = &ktime_get_mono_fast_ns;
8196 nmi_safe = true;
8197 break;
8198
8199 case CLOCK_MONOTONIC_RAW:
8200 event->clock = &ktime_get_raw_fast_ns;
8201 nmi_safe = true;
8202 break;
8203
8204 case CLOCK_REALTIME:
8205 event->clock = &ktime_get_real_ns;
8206 break;
8207
8208 case CLOCK_BOOTTIME:
8209 event->clock = &ktime_get_boot_ns;
8210 break;
8211
8212 case CLOCK_TAI:
8213 event->clock = &ktime_get_tai_ns;
8214 break;
8215
8216 default:
8217 return -EINVAL;
8218 }
8219
8220 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8221 return -EINVAL;
8222
8223 return 0;
8224}
8225
0793a61d 8226/**
cdd6c482 8227 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8228 *
cdd6c482 8229 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8230 * @pid: target pid
9f66a381 8231 * @cpu: target cpu
cdd6c482 8232 * @group_fd: group leader event fd
0793a61d 8233 */
cdd6c482
IM
8234SYSCALL_DEFINE5(perf_event_open,
8235 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8236 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8237{
b04243ef
PZ
8238 struct perf_event *group_leader = NULL, *output_event = NULL;
8239 struct perf_event *event, *sibling;
cdd6c482 8240 struct perf_event_attr attr;
f63a8daa 8241 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8242 struct file *event_file = NULL;
2903ff01 8243 struct fd group = {NULL, 0};
38a81da2 8244 struct task_struct *task = NULL;
89a1e187 8245 struct pmu *pmu;
ea635c64 8246 int event_fd;
b04243ef 8247 int move_group = 0;
dc86cabe 8248 int err;
a21b0b35 8249 int f_flags = O_RDWR;
79dff51e 8250 int cgroup_fd = -1;
0793a61d 8251
2743a5b0 8252 /* for future expandability... */
e5d1367f 8253 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8254 return -EINVAL;
8255
dc86cabe
IM
8256 err = perf_copy_attr(attr_uptr, &attr);
8257 if (err)
8258 return err;
eab656ae 8259
0764771d
PZ
8260 if (!attr.exclude_kernel) {
8261 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8262 return -EACCES;
8263 }
8264
df58ab24 8265 if (attr.freq) {
cdd6c482 8266 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8267 return -EINVAL;
0819b2e3
PZ
8268 } else {
8269 if (attr.sample_period & (1ULL << 63))
8270 return -EINVAL;
df58ab24
PZ
8271 }
8272
e5d1367f
SE
8273 /*
8274 * In cgroup mode, the pid argument is used to pass the fd
8275 * opened to the cgroup directory in cgroupfs. The cpu argument
8276 * designates the cpu on which to monitor threads from that
8277 * cgroup.
8278 */
8279 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8280 return -EINVAL;
8281
a21b0b35
YD
8282 if (flags & PERF_FLAG_FD_CLOEXEC)
8283 f_flags |= O_CLOEXEC;
8284
8285 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8286 if (event_fd < 0)
8287 return event_fd;
8288
ac9721f3 8289 if (group_fd != -1) {
2903ff01
AV
8290 err = perf_fget_light(group_fd, &group);
8291 if (err)
d14b12d7 8292 goto err_fd;
2903ff01 8293 group_leader = group.file->private_data;
ac9721f3
PZ
8294 if (flags & PERF_FLAG_FD_OUTPUT)
8295 output_event = group_leader;
8296 if (flags & PERF_FLAG_FD_NO_GROUP)
8297 group_leader = NULL;
8298 }
8299
e5d1367f 8300 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8301 task = find_lively_task_by_vpid(pid);
8302 if (IS_ERR(task)) {
8303 err = PTR_ERR(task);
8304 goto err_group_fd;
8305 }
8306 }
8307
1f4ee503
PZ
8308 if (task && group_leader &&
8309 group_leader->attr.inherit != attr.inherit) {
8310 err = -EINVAL;
8311 goto err_task;
8312 }
8313
fbfc623f
YZ
8314 get_online_cpus();
8315
79dff51e
MF
8316 if (flags & PERF_FLAG_PID_CGROUP)
8317 cgroup_fd = pid;
8318
4dc0da86 8319 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8320 NULL, NULL, cgroup_fd);
d14b12d7
SE
8321 if (IS_ERR(event)) {
8322 err = PTR_ERR(event);
1f4ee503 8323 goto err_cpus;
d14b12d7
SE
8324 }
8325
53b25335
VW
8326 if (is_sampling_event(event)) {
8327 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8328 err = -ENOTSUPP;
8329 goto err_alloc;
8330 }
8331 }
8332
766d6c07
FW
8333 account_event(event);
8334
89a1e187
PZ
8335 /*
8336 * Special case software events and allow them to be part of
8337 * any hardware group.
8338 */
8339 pmu = event->pmu;
b04243ef 8340
34f43927
PZ
8341 if (attr.use_clockid) {
8342 err = perf_event_set_clock(event, attr.clockid);
8343 if (err)
8344 goto err_alloc;
8345 }
8346
b04243ef
PZ
8347 if (group_leader &&
8348 (is_software_event(event) != is_software_event(group_leader))) {
8349 if (is_software_event(event)) {
8350 /*
8351 * If event and group_leader are not both a software
8352 * event, and event is, then group leader is not.
8353 *
8354 * Allow the addition of software events to !software
8355 * groups, this is safe because software events never
8356 * fail to schedule.
8357 */
8358 pmu = group_leader->pmu;
8359 } else if (is_software_event(group_leader) &&
8360 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8361 /*
8362 * In case the group is a pure software group, and we
8363 * try to add a hardware event, move the whole group to
8364 * the hardware context.
8365 */
8366 move_group = 1;
8367 }
8368 }
89a1e187
PZ
8369
8370 /*
8371 * Get the target context (task or percpu):
8372 */
4af57ef2 8373 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8374 if (IS_ERR(ctx)) {
8375 err = PTR_ERR(ctx);
c6be5a5c 8376 goto err_alloc;
89a1e187
PZ
8377 }
8378
bed5b25a
AS
8379 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8380 err = -EBUSY;
8381 goto err_context;
8382 }
8383
fd1edb3a
PZ
8384 if (task) {
8385 put_task_struct(task);
8386 task = NULL;
8387 }
8388
ccff286d 8389 /*
cdd6c482 8390 * Look up the group leader (we will attach this event to it):
04289bb9 8391 */
ac9721f3 8392 if (group_leader) {
dc86cabe 8393 err = -EINVAL;
04289bb9 8394
04289bb9 8395 /*
ccff286d
IM
8396 * Do not allow a recursive hierarchy (this new sibling
8397 * becoming part of another group-sibling):
8398 */
8399 if (group_leader->group_leader != group_leader)
c3f00c70 8400 goto err_context;
34f43927
PZ
8401
8402 /* All events in a group should have the same clock */
8403 if (group_leader->clock != event->clock)
8404 goto err_context;
8405
ccff286d
IM
8406 /*
8407 * Do not allow to attach to a group in a different
8408 * task or CPU context:
04289bb9 8409 */
b04243ef 8410 if (move_group) {
c3c87e77
PZ
8411 /*
8412 * Make sure we're both on the same task, or both
8413 * per-cpu events.
8414 */
8415 if (group_leader->ctx->task != ctx->task)
8416 goto err_context;
8417
8418 /*
8419 * Make sure we're both events for the same CPU;
8420 * grouping events for different CPUs is broken; since
8421 * you can never concurrently schedule them anyhow.
8422 */
8423 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8424 goto err_context;
8425 } else {
8426 if (group_leader->ctx != ctx)
8427 goto err_context;
8428 }
8429
3b6f9e5c
PM
8430 /*
8431 * Only a group leader can be exclusive or pinned
8432 */
0d48696f 8433 if (attr.exclusive || attr.pinned)
c3f00c70 8434 goto err_context;
ac9721f3
PZ
8435 }
8436
8437 if (output_event) {
8438 err = perf_event_set_output(event, output_event);
8439 if (err)
c3f00c70 8440 goto err_context;
ac9721f3 8441 }
0793a61d 8442
a21b0b35
YD
8443 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8444 f_flags);
ea635c64
AV
8445 if (IS_ERR(event_file)) {
8446 err = PTR_ERR(event_file);
c3f00c70 8447 goto err_context;
ea635c64 8448 }
9b51f66d 8449
b04243ef 8450 if (move_group) {
f63a8daa 8451 gctx = group_leader->ctx;
f55fc2a5
PZ
8452 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8453 } else {
8454 mutex_lock(&ctx->mutex);
8455 }
8456
a723968c
PZ
8457 if (!perf_event_validate_size(event)) {
8458 err = -E2BIG;
8459 goto err_locked;
8460 }
8461
f55fc2a5
PZ
8462 /*
8463 * Must be under the same ctx::mutex as perf_install_in_context(),
8464 * because we need to serialize with concurrent event creation.
8465 */
8466 if (!exclusive_event_installable(event, ctx)) {
8467 /* exclusive and group stuff are assumed mutually exclusive */
8468 WARN_ON_ONCE(move_group);
f63a8daa 8469
f55fc2a5
PZ
8470 err = -EBUSY;
8471 goto err_locked;
8472 }
f63a8daa 8473
f55fc2a5
PZ
8474 WARN_ON_ONCE(ctx->parent_ctx);
8475
8476 if (move_group) {
f63a8daa
PZ
8477 /*
8478 * See perf_event_ctx_lock() for comments on the details
8479 * of swizzling perf_event::ctx.
8480 */
46ce0fe9 8481 perf_remove_from_context(group_leader, false);
0231bb53 8482
b04243ef
PZ
8483 list_for_each_entry(sibling, &group_leader->sibling_list,
8484 group_entry) {
46ce0fe9 8485 perf_remove_from_context(sibling, false);
b04243ef
PZ
8486 put_ctx(gctx);
8487 }
b04243ef 8488
f63a8daa
PZ
8489 /*
8490 * Wait for everybody to stop referencing the events through
8491 * the old lists, before installing it on new lists.
8492 */
0cda4c02 8493 synchronize_rcu();
f63a8daa 8494
8f95b435
PZI
8495 /*
8496 * Install the group siblings before the group leader.
8497 *
8498 * Because a group leader will try and install the entire group
8499 * (through the sibling list, which is still in-tact), we can
8500 * end up with siblings installed in the wrong context.
8501 *
8502 * By installing siblings first we NO-OP because they're not
8503 * reachable through the group lists.
8504 */
b04243ef
PZ
8505 list_for_each_entry(sibling, &group_leader->sibling_list,
8506 group_entry) {
8f95b435 8507 perf_event__state_init(sibling);
9fc81d87 8508 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8509 get_ctx(ctx);
8510 }
8f95b435
PZI
8511
8512 /*
8513 * Removing from the context ends up with disabled
8514 * event. What we want here is event in the initial
8515 * startup state, ready to be add into new context.
8516 */
8517 perf_event__state_init(group_leader);
8518 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8519 get_ctx(ctx);
b04243ef 8520
f55fc2a5
PZ
8521 /*
8522 * Now that all events are installed in @ctx, nothing
8523 * references @gctx anymore, so drop the last reference we have
8524 * on it.
8525 */
8526 put_ctx(gctx);
bed5b25a
AS
8527 }
8528
f73e22ab
PZ
8529 /*
8530 * Precalculate sample_data sizes; do while holding ctx::mutex such
8531 * that we're serialized against further additions and before
8532 * perf_install_in_context() which is the point the event is active and
8533 * can use these values.
8534 */
8535 perf_event__header_size(event);
8536 perf_event__id_header_size(event);
8537
e2d37cd2 8538 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8539 perf_unpin_context(ctx);
f63a8daa 8540
f55fc2a5 8541 if (move_group)
f63a8daa 8542 mutex_unlock(&gctx->mutex);
d859e29f 8543 mutex_unlock(&ctx->mutex);
9b51f66d 8544
fbfc623f
YZ
8545 put_online_cpus();
8546
cdd6c482 8547 event->owner = current;
8882135b 8548
cdd6c482
IM
8549 mutex_lock(&current->perf_event_mutex);
8550 list_add_tail(&event->owner_entry, &current->perf_event_list);
8551 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8552
8a49542c
PZ
8553 /*
8554 * Drop the reference on the group_event after placing the
8555 * new event on the sibling_list. This ensures destruction
8556 * of the group leader will find the pointer to itself in
8557 * perf_group_detach().
8558 */
2903ff01 8559 fdput(group);
ea635c64
AV
8560 fd_install(event_fd, event_file);
8561 return event_fd;
0793a61d 8562
f55fc2a5
PZ
8563err_locked:
8564 if (move_group)
8565 mutex_unlock(&gctx->mutex);
8566 mutex_unlock(&ctx->mutex);
8567/* err_file: */
8568 fput(event_file);
c3f00c70 8569err_context:
fe4b04fa 8570 perf_unpin_context(ctx);
ea635c64 8571 put_ctx(ctx);
c6be5a5c 8572err_alloc:
ea635c64 8573 free_event(event);
1f4ee503 8574err_cpus:
fbfc623f 8575 put_online_cpus();
1f4ee503 8576err_task:
e7d0bc04
PZ
8577 if (task)
8578 put_task_struct(task);
89a1e187 8579err_group_fd:
2903ff01 8580 fdput(group);
ea635c64
AV
8581err_fd:
8582 put_unused_fd(event_fd);
dc86cabe 8583 return err;
0793a61d
TG
8584}
8585
fb0459d7
AV
8586/**
8587 * perf_event_create_kernel_counter
8588 *
8589 * @attr: attributes of the counter to create
8590 * @cpu: cpu in which the counter is bound
38a81da2 8591 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8592 */
8593struct perf_event *
8594perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8595 struct task_struct *task,
4dc0da86
AK
8596 perf_overflow_handler_t overflow_handler,
8597 void *context)
fb0459d7 8598{
fb0459d7 8599 struct perf_event_context *ctx;
c3f00c70 8600 struct perf_event *event;
fb0459d7 8601 int err;
d859e29f 8602
fb0459d7
AV
8603 /*
8604 * Get the target context (task or percpu):
8605 */
d859e29f 8606
4dc0da86 8607 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8608 overflow_handler, context, -1);
c3f00c70
PZ
8609 if (IS_ERR(event)) {
8610 err = PTR_ERR(event);
8611 goto err;
8612 }
d859e29f 8613
f8697762
JO
8614 /* Mark owner so we could distinguish it from user events. */
8615 event->owner = EVENT_OWNER_KERNEL;
8616
766d6c07
FW
8617 account_event(event);
8618
4af57ef2 8619 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8620 if (IS_ERR(ctx)) {
8621 err = PTR_ERR(ctx);
c3f00c70 8622 goto err_free;
d859e29f 8623 }
fb0459d7 8624
fb0459d7
AV
8625 WARN_ON_ONCE(ctx->parent_ctx);
8626 mutex_lock(&ctx->mutex);
bed5b25a
AS
8627 if (!exclusive_event_installable(event, ctx)) {
8628 mutex_unlock(&ctx->mutex);
8629 perf_unpin_context(ctx);
8630 put_ctx(ctx);
8631 err = -EBUSY;
8632 goto err_free;
8633 }
8634
fb0459d7 8635 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8636 perf_unpin_context(ctx);
fb0459d7
AV
8637 mutex_unlock(&ctx->mutex);
8638
fb0459d7
AV
8639 return event;
8640
c3f00c70
PZ
8641err_free:
8642 free_event(event);
8643err:
c6567f64 8644 return ERR_PTR(err);
9b51f66d 8645}
fb0459d7 8646EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8647
0cda4c02
YZ
8648void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8649{
8650 struct perf_event_context *src_ctx;
8651 struct perf_event_context *dst_ctx;
8652 struct perf_event *event, *tmp;
8653 LIST_HEAD(events);
8654
8655 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8656 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8657
f63a8daa
PZ
8658 /*
8659 * See perf_event_ctx_lock() for comments on the details
8660 * of swizzling perf_event::ctx.
8661 */
8662 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8663 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8664 event_entry) {
46ce0fe9 8665 perf_remove_from_context(event, false);
9a545de0 8666 unaccount_event_cpu(event, src_cpu);
0cda4c02 8667 put_ctx(src_ctx);
9886167d 8668 list_add(&event->migrate_entry, &events);
0cda4c02 8669 }
0cda4c02 8670
8f95b435
PZI
8671 /*
8672 * Wait for the events to quiesce before re-instating them.
8673 */
0cda4c02
YZ
8674 synchronize_rcu();
8675
8f95b435
PZI
8676 /*
8677 * Re-instate events in 2 passes.
8678 *
8679 * Skip over group leaders and only install siblings on this first
8680 * pass, siblings will not get enabled without a leader, however a
8681 * leader will enable its siblings, even if those are still on the old
8682 * context.
8683 */
8684 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8685 if (event->group_leader == event)
8686 continue;
8687
8688 list_del(&event->migrate_entry);
8689 if (event->state >= PERF_EVENT_STATE_OFF)
8690 event->state = PERF_EVENT_STATE_INACTIVE;
8691 account_event_cpu(event, dst_cpu);
8692 perf_install_in_context(dst_ctx, event, dst_cpu);
8693 get_ctx(dst_ctx);
8694 }
8695
8696 /*
8697 * Once all the siblings are setup properly, install the group leaders
8698 * to make it go.
8699 */
9886167d
PZ
8700 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8701 list_del(&event->migrate_entry);
0cda4c02
YZ
8702 if (event->state >= PERF_EVENT_STATE_OFF)
8703 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8704 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8705 perf_install_in_context(dst_ctx, event, dst_cpu);
8706 get_ctx(dst_ctx);
8707 }
8708 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8709 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8710}
8711EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8712
cdd6c482 8713static void sync_child_event(struct perf_event *child_event,
38b200d6 8714 struct task_struct *child)
d859e29f 8715{
cdd6c482 8716 struct perf_event *parent_event = child_event->parent;
8bc20959 8717 u64 child_val;
d859e29f 8718
cdd6c482
IM
8719 if (child_event->attr.inherit_stat)
8720 perf_event_read_event(child_event, child);
38b200d6 8721
b5e58793 8722 child_val = perf_event_count(child_event);
d859e29f
PM
8723
8724 /*
8725 * Add back the child's count to the parent's count:
8726 */
a6e6dea6 8727 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8728 atomic64_add(child_event->total_time_enabled,
8729 &parent_event->child_total_time_enabled);
8730 atomic64_add(child_event->total_time_running,
8731 &parent_event->child_total_time_running);
d859e29f
PM
8732
8733 /*
cdd6c482 8734 * Remove this event from the parent's list
d859e29f 8735 */
cdd6c482
IM
8736 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8737 mutex_lock(&parent_event->child_mutex);
8738 list_del_init(&child_event->child_list);
8739 mutex_unlock(&parent_event->child_mutex);
d859e29f 8740
dc633982
JO
8741 /*
8742 * Make sure user/parent get notified, that we just
8743 * lost one event.
8744 */
8745 perf_event_wakeup(parent_event);
8746
d859e29f 8747 /*
cdd6c482 8748 * Release the parent event, if this was the last
d859e29f
PM
8749 * reference to it.
8750 */
a6fa941d 8751 put_event(parent_event);
d859e29f
PM
8752}
8753
9b51f66d 8754static void
cdd6c482
IM
8755__perf_event_exit_task(struct perf_event *child_event,
8756 struct perf_event_context *child_ctx,
38b200d6 8757 struct task_struct *child)
9b51f66d 8758{
1903d50c
PZ
8759 /*
8760 * Do not destroy the 'original' grouping; because of the context
8761 * switch optimization the original events could've ended up in a
8762 * random child task.
8763 *
8764 * If we were to destroy the original group, all group related
8765 * operations would cease to function properly after this random
8766 * child dies.
8767 *
8768 * Do destroy all inherited groups, we don't care about those
8769 * and being thorough is better.
8770 */
8771 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8772
9b51f66d 8773 /*
38b435b1 8774 * It can happen that the parent exits first, and has events
9b51f66d 8775 * that are still around due to the child reference. These
38b435b1 8776 * events need to be zapped.
9b51f66d 8777 */
38b435b1 8778 if (child_event->parent) {
cdd6c482
IM
8779 sync_child_event(child_event, child);
8780 free_event(child_event);
179033b3
JO
8781 } else {
8782 child_event->state = PERF_EVENT_STATE_EXIT;
8783 perf_event_wakeup(child_event);
4bcf349a 8784 }
9b51f66d
IM
8785}
8786
8dc85d54 8787static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8788{
ebf905fc 8789 struct perf_event *child_event, *next;
211de6eb 8790 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8791 unsigned long flags;
9b51f66d 8792
8dc85d54 8793 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8794 perf_event_task(child, NULL, 0);
9b51f66d 8795 return;
9f498cc5 8796 }
9b51f66d 8797
a63eaf34 8798 local_irq_save(flags);
ad3a37de
PM
8799 /*
8800 * We can't reschedule here because interrupts are disabled,
8801 * and either child is current or it is a task that can't be
8802 * scheduled, so we are now safe from rescheduling changing
8803 * our context.
8804 */
806839b2 8805 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8806
8807 /*
8808 * Take the context lock here so that if find_get_context is
cdd6c482 8809 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8810 * incremented the context's refcount before we do put_ctx below.
8811 */
e625cce1 8812 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8813 task_ctx_sched_out(child_ctx);
8dc85d54 8814 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8815
71a851b4
PZ
8816 /*
8817 * If this context is a clone; unclone it so it can't get
8818 * swapped to another process while we're removing all
cdd6c482 8819 * the events from it.
71a851b4 8820 */
211de6eb 8821 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8822 update_context_time(child_ctx);
e625cce1 8823 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8824
211de6eb
PZ
8825 if (clone_ctx)
8826 put_ctx(clone_ctx);
4a1c0f26 8827
9f498cc5 8828 /*
cdd6c482
IM
8829 * Report the task dead after unscheduling the events so that we
8830 * won't get any samples after PERF_RECORD_EXIT. We can however still
8831 * get a few PERF_RECORD_READ events.
9f498cc5 8832 */
cdd6c482 8833 perf_event_task(child, child_ctx, 0);
a63eaf34 8834
66fff224
PZ
8835 /*
8836 * We can recurse on the same lock type through:
8837 *
cdd6c482
IM
8838 * __perf_event_exit_task()
8839 * sync_child_event()
a6fa941d
AV
8840 * put_event()
8841 * mutex_lock(&ctx->mutex)
66fff224
PZ
8842 *
8843 * But since its the parent context it won't be the same instance.
8844 */
a0507c84 8845 mutex_lock(&child_ctx->mutex);
a63eaf34 8846
ebf905fc 8847 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8848 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8849
a63eaf34
PM
8850 mutex_unlock(&child_ctx->mutex);
8851
8852 put_ctx(child_ctx);
9b51f66d
IM
8853}
8854
8dc85d54
PZ
8855/*
8856 * When a child task exits, feed back event values to parent events.
8857 */
8858void perf_event_exit_task(struct task_struct *child)
8859{
8882135b 8860 struct perf_event *event, *tmp;
8dc85d54
PZ
8861 int ctxn;
8862
8882135b
PZ
8863 mutex_lock(&child->perf_event_mutex);
8864 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8865 owner_entry) {
8866 list_del_init(&event->owner_entry);
8867
8868 /*
8869 * Ensure the list deletion is visible before we clear
8870 * the owner, closes a race against perf_release() where
8871 * we need to serialize on the owner->perf_event_mutex.
8872 */
8873 smp_wmb();
8874 event->owner = NULL;
8875 }
8876 mutex_unlock(&child->perf_event_mutex);
8877
8dc85d54
PZ
8878 for_each_task_context_nr(ctxn)
8879 perf_event_exit_task_context(child, ctxn);
8880}
8881
889ff015
FW
8882static void perf_free_event(struct perf_event *event,
8883 struct perf_event_context *ctx)
8884{
8885 struct perf_event *parent = event->parent;
8886
8887 if (WARN_ON_ONCE(!parent))
8888 return;
8889
8890 mutex_lock(&parent->child_mutex);
8891 list_del_init(&event->child_list);
8892 mutex_unlock(&parent->child_mutex);
8893
a6fa941d 8894 put_event(parent);
889ff015 8895
652884fe 8896 raw_spin_lock_irq(&ctx->lock);
8a49542c 8897 perf_group_detach(event);
889ff015 8898 list_del_event(event, ctx);
652884fe 8899 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8900 free_event(event);
8901}
8902
bbbee908 8903/*
652884fe 8904 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8905 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8906 *
8907 * Not all locks are strictly required, but take them anyway to be nice and
8908 * help out with the lockdep assertions.
bbbee908 8909 */
cdd6c482 8910void perf_event_free_task(struct task_struct *task)
bbbee908 8911{
8dc85d54 8912 struct perf_event_context *ctx;
cdd6c482 8913 struct perf_event *event, *tmp;
8dc85d54 8914 int ctxn;
bbbee908 8915
8dc85d54
PZ
8916 for_each_task_context_nr(ctxn) {
8917 ctx = task->perf_event_ctxp[ctxn];
8918 if (!ctx)
8919 continue;
bbbee908 8920
8dc85d54 8921 mutex_lock(&ctx->mutex);
bbbee908 8922again:
8dc85d54
PZ
8923 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8924 group_entry)
8925 perf_free_event(event, ctx);
bbbee908 8926
8dc85d54
PZ
8927 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8928 group_entry)
8929 perf_free_event(event, ctx);
bbbee908 8930
8dc85d54
PZ
8931 if (!list_empty(&ctx->pinned_groups) ||
8932 !list_empty(&ctx->flexible_groups))
8933 goto again;
bbbee908 8934
8dc85d54 8935 mutex_unlock(&ctx->mutex);
bbbee908 8936
8dc85d54
PZ
8937 put_ctx(ctx);
8938 }
889ff015
FW
8939}
8940
4e231c79
PZ
8941void perf_event_delayed_put(struct task_struct *task)
8942{
8943 int ctxn;
8944
8945 for_each_task_context_nr(ctxn)
8946 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8947}
8948
ffe8690c
KX
8949struct perf_event *perf_event_get(unsigned int fd)
8950{
8951 int err;
8952 struct fd f;
8953 struct perf_event *event;
8954
8955 err = perf_fget_light(fd, &f);
8956 if (err)
8957 return ERR_PTR(err);
8958
8959 event = f.file->private_data;
8960 atomic_long_inc(&event->refcount);
8961 fdput(f);
8962
8963 return event;
8964}
8965
8966const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8967{
8968 if (!event)
8969 return ERR_PTR(-EINVAL);
8970
8971 return &event->attr;
8972}
8973
97dee4f3
PZ
8974/*
8975 * inherit a event from parent task to child task:
8976 */
8977static struct perf_event *
8978inherit_event(struct perf_event *parent_event,
8979 struct task_struct *parent,
8980 struct perf_event_context *parent_ctx,
8981 struct task_struct *child,
8982 struct perf_event *group_leader,
8983 struct perf_event_context *child_ctx)
8984{
1929def9 8985 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8986 struct perf_event *child_event;
cee010ec 8987 unsigned long flags;
97dee4f3
PZ
8988
8989 /*
8990 * Instead of creating recursive hierarchies of events,
8991 * we link inherited events back to the original parent,
8992 * which has a filp for sure, which we use as the reference
8993 * count:
8994 */
8995 if (parent_event->parent)
8996 parent_event = parent_event->parent;
8997
8998 child_event = perf_event_alloc(&parent_event->attr,
8999 parent_event->cpu,
d580ff86 9000 child,
97dee4f3 9001 group_leader, parent_event,
79dff51e 9002 NULL, NULL, -1);
97dee4f3
PZ
9003 if (IS_ERR(child_event))
9004 return child_event;
a6fa941d 9005
fadfe7be
JO
9006 if (is_orphaned_event(parent_event) ||
9007 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
9008 free_event(child_event);
9009 return NULL;
9010 }
9011
97dee4f3
PZ
9012 get_ctx(child_ctx);
9013
9014 /*
9015 * Make the child state follow the state of the parent event,
9016 * not its attr.disabled bit. We hold the parent's mutex,
9017 * so we won't race with perf_event_{en, dis}able_family.
9018 */
1929def9 9019 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9020 child_event->state = PERF_EVENT_STATE_INACTIVE;
9021 else
9022 child_event->state = PERF_EVENT_STATE_OFF;
9023
9024 if (parent_event->attr.freq) {
9025 u64 sample_period = parent_event->hw.sample_period;
9026 struct hw_perf_event *hwc = &child_event->hw;
9027
9028 hwc->sample_period = sample_period;
9029 hwc->last_period = sample_period;
9030
9031 local64_set(&hwc->period_left, sample_period);
9032 }
9033
9034 child_event->ctx = child_ctx;
9035 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9036 child_event->overflow_handler_context
9037 = parent_event->overflow_handler_context;
97dee4f3 9038
614b6780
TG
9039 /*
9040 * Precalculate sample_data sizes
9041 */
9042 perf_event__header_size(child_event);
6844c09d 9043 perf_event__id_header_size(child_event);
614b6780 9044
97dee4f3
PZ
9045 /*
9046 * Link it up in the child's context:
9047 */
cee010ec 9048 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9049 add_event_to_ctx(child_event, child_ctx);
cee010ec 9050 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9051
97dee4f3
PZ
9052 /*
9053 * Link this into the parent event's child list
9054 */
9055 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9056 mutex_lock(&parent_event->child_mutex);
9057 list_add_tail(&child_event->child_list, &parent_event->child_list);
9058 mutex_unlock(&parent_event->child_mutex);
9059
9060 return child_event;
9061}
9062
9063static int inherit_group(struct perf_event *parent_event,
9064 struct task_struct *parent,
9065 struct perf_event_context *parent_ctx,
9066 struct task_struct *child,
9067 struct perf_event_context *child_ctx)
9068{
9069 struct perf_event *leader;
9070 struct perf_event *sub;
9071 struct perf_event *child_ctr;
9072
9073 leader = inherit_event(parent_event, parent, parent_ctx,
9074 child, NULL, child_ctx);
9075 if (IS_ERR(leader))
9076 return PTR_ERR(leader);
9077 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9078 child_ctr = inherit_event(sub, parent, parent_ctx,
9079 child, leader, child_ctx);
9080 if (IS_ERR(child_ctr))
9081 return PTR_ERR(child_ctr);
9082 }
9083 return 0;
889ff015
FW
9084}
9085
9086static int
9087inherit_task_group(struct perf_event *event, struct task_struct *parent,
9088 struct perf_event_context *parent_ctx,
8dc85d54 9089 struct task_struct *child, int ctxn,
889ff015
FW
9090 int *inherited_all)
9091{
9092 int ret;
8dc85d54 9093 struct perf_event_context *child_ctx;
889ff015
FW
9094
9095 if (!event->attr.inherit) {
9096 *inherited_all = 0;
9097 return 0;
bbbee908
PZ
9098 }
9099
fe4b04fa 9100 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9101 if (!child_ctx) {
9102 /*
9103 * This is executed from the parent task context, so
9104 * inherit events that have been marked for cloning.
9105 * First allocate and initialize a context for the
9106 * child.
9107 */
bbbee908 9108
734df5ab 9109 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9110 if (!child_ctx)
9111 return -ENOMEM;
bbbee908 9112
8dc85d54 9113 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9114 }
9115
9116 ret = inherit_group(event, parent, parent_ctx,
9117 child, child_ctx);
9118
9119 if (ret)
9120 *inherited_all = 0;
9121
9122 return ret;
bbbee908
PZ
9123}
9124
9b51f66d 9125/*
cdd6c482 9126 * Initialize the perf_event context in task_struct
9b51f66d 9127 */
985c8dcb 9128static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9129{
889ff015 9130 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9131 struct perf_event_context *cloned_ctx;
9132 struct perf_event *event;
9b51f66d 9133 struct task_struct *parent = current;
564c2b21 9134 int inherited_all = 1;
dddd3379 9135 unsigned long flags;
6ab423e0 9136 int ret = 0;
9b51f66d 9137
8dc85d54 9138 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9139 return 0;
9140
ad3a37de 9141 /*
25346b93
PM
9142 * If the parent's context is a clone, pin it so it won't get
9143 * swapped under us.
ad3a37de 9144 */
8dc85d54 9145 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9146 if (!parent_ctx)
9147 return 0;
25346b93 9148
ad3a37de
PM
9149 /*
9150 * No need to check if parent_ctx != NULL here; since we saw
9151 * it non-NULL earlier, the only reason for it to become NULL
9152 * is if we exit, and since we're currently in the middle of
9153 * a fork we can't be exiting at the same time.
9154 */
ad3a37de 9155
9b51f66d
IM
9156 /*
9157 * Lock the parent list. No need to lock the child - not PID
9158 * hashed yet and not running, so nobody can access it.
9159 */
d859e29f 9160 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9161
9162 /*
9163 * We dont have to disable NMIs - we are only looking at
9164 * the list, not manipulating it:
9165 */
889ff015 9166 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9167 ret = inherit_task_group(event, parent, parent_ctx,
9168 child, ctxn, &inherited_all);
889ff015
FW
9169 if (ret)
9170 break;
9171 }
b93f7978 9172
dddd3379
TG
9173 /*
9174 * We can't hold ctx->lock when iterating the ->flexible_group list due
9175 * to allocations, but we need to prevent rotation because
9176 * rotate_ctx() will change the list from interrupt context.
9177 */
9178 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9179 parent_ctx->rotate_disable = 1;
9180 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9181
889ff015 9182 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9183 ret = inherit_task_group(event, parent, parent_ctx,
9184 child, ctxn, &inherited_all);
889ff015 9185 if (ret)
9b51f66d 9186 break;
564c2b21
PM
9187 }
9188
dddd3379
TG
9189 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9190 parent_ctx->rotate_disable = 0;
dddd3379 9191
8dc85d54 9192 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9193
05cbaa28 9194 if (child_ctx && inherited_all) {
564c2b21
PM
9195 /*
9196 * Mark the child context as a clone of the parent
9197 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9198 *
9199 * Note that if the parent is a clone, the holding of
9200 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9201 */
c5ed5145 9202 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9203 if (cloned_ctx) {
9204 child_ctx->parent_ctx = cloned_ctx;
25346b93 9205 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9206 } else {
9207 child_ctx->parent_ctx = parent_ctx;
9208 child_ctx->parent_gen = parent_ctx->generation;
9209 }
9210 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9211 }
9212
c5ed5145 9213 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9214 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9215
25346b93 9216 perf_unpin_context(parent_ctx);
fe4b04fa 9217 put_ctx(parent_ctx);
ad3a37de 9218
6ab423e0 9219 return ret;
9b51f66d
IM
9220}
9221
8dc85d54
PZ
9222/*
9223 * Initialize the perf_event context in task_struct
9224 */
9225int perf_event_init_task(struct task_struct *child)
9226{
9227 int ctxn, ret;
9228
8550d7cb
ON
9229 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9230 mutex_init(&child->perf_event_mutex);
9231 INIT_LIST_HEAD(&child->perf_event_list);
9232
8dc85d54
PZ
9233 for_each_task_context_nr(ctxn) {
9234 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9235 if (ret) {
9236 perf_event_free_task(child);
8dc85d54 9237 return ret;
6c72e350 9238 }
8dc85d54
PZ
9239 }
9240
9241 return 0;
9242}
9243
220b140b
PM
9244static void __init perf_event_init_all_cpus(void)
9245{
b28ab83c 9246 struct swevent_htable *swhash;
220b140b 9247 int cpu;
220b140b
PM
9248
9249 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9250 swhash = &per_cpu(swevent_htable, cpu);
9251 mutex_init(&swhash->hlist_mutex);
2fde4f94 9252 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9253 }
9254}
9255
0db0628d 9256static void perf_event_init_cpu(int cpu)
0793a61d 9257{
108b02cf 9258 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9259
b28ab83c 9260 mutex_lock(&swhash->hlist_mutex);
39af6b16 9261 swhash->online = true;
4536e4d1 9262 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9263 struct swevent_hlist *hlist;
9264
b28ab83c
PZ
9265 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9266 WARN_ON(!hlist);
9267 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9268 }
b28ab83c 9269 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9270}
9271
2965faa5 9272#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9273static void __perf_event_exit_context(void *__info)
0793a61d 9274{
226424ee 9275 struct remove_event re = { .detach_group = true };
108b02cf 9276 struct perf_event_context *ctx = __info;
0793a61d 9277
e3703f8c 9278 rcu_read_lock();
46ce0fe9
PZ
9279 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9280 __perf_remove_from_context(&re);
e3703f8c 9281 rcu_read_unlock();
0793a61d 9282}
108b02cf
PZ
9283
9284static void perf_event_exit_cpu_context(int cpu)
9285{
9286 struct perf_event_context *ctx;
9287 struct pmu *pmu;
9288 int idx;
9289
9290 idx = srcu_read_lock(&pmus_srcu);
9291 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9292 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9293
9294 mutex_lock(&ctx->mutex);
9295 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9296 mutex_unlock(&ctx->mutex);
9297 }
9298 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9299}
9300
cdd6c482 9301static void perf_event_exit_cpu(int cpu)
0793a61d 9302{
b28ab83c 9303 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9304
e3703f8c
PZ
9305 perf_event_exit_cpu_context(cpu);
9306
b28ab83c 9307 mutex_lock(&swhash->hlist_mutex);
39af6b16 9308 swhash->online = false;
b28ab83c
PZ
9309 swevent_hlist_release(swhash);
9310 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9311}
9312#else
cdd6c482 9313static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9314#endif
9315
c277443c
PZ
9316static int
9317perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9318{
9319 int cpu;
9320
9321 for_each_online_cpu(cpu)
9322 perf_event_exit_cpu(cpu);
9323
9324 return NOTIFY_OK;
9325}
9326
9327/*
9328 * Run the perf reboot notifier at the very last possible moment so that
9329 * the generic watchdog code runs as long as possible.
9330 */
9331static struct notifier_block perf_reboot_notifier = {
9332 .notifier_call = perf_reboot,
9333 .priority = INT_MIN,
9334};
9335
0db0628d 9336static int
0793a61d
TG
9337perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9338{
9339 unsigned int cpu = (long)hcpu;
9340
4536e4d1 9341 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9342
9343 case CPU_UP_PREPARE:
5e11637e 9344 case CPU_DOWN_FAILED:
cdd6c482 9345 perf_event_init_cpu(cpu);
0793a61d
TG
9346 break;
9347
5e11637e 9348 case CPU_UP_CANCELED:
0793a61d 9349 case CPU_DOWN_PREPARE:
cdd6c482 9350 perf_event_exit_cpu(cpu);
0793a61d 9351 break;
0793a61d
TG
9352 default:
9353 break;
9354 }
9355
9356 return NOTIFY_OK;
9357}
9358
cdd6c482 9359void __init perf_event_init(void)
0793a61d 9360{
3c502e7a
JW
9361 int ret;
9362
2e80a82a
PZ
9363 idr_init(&pmu_idr);
9364
220b140b 9365 perf_event_init_all_cpus();
b0a873eb 9366 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9367 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9368 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9369 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9370 perf_tp_register();
9371 perf_cpu_notifier(perf_cpu_notify);
c277443c 9372 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9373
9374 ret = init_hw_breakpoint();
9375 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9376
9377 /* do not patch jump label more than once per second */
9378 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9379
9380 /*
9381 * Build time assertion that we keep the data_head at the intended
9382 * location. IOW, validation we got the __reserved[] size right.
9383 */
9384 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9385 != 1024);
0793a61d 9386}
abe43400 9387
fd979c01
CS
9388ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9389 char *page)
9390{
9391 struct perf_pmu_events_attr *pmu_attr =
9392 container_of(attr, struct perf_pmu_events_attr, attr);
9393
9394 if (pmu_attr->event_str)
9395 return sprintf(page, "%s\n", pmu_attr->event_str);
9396
9397 return 0;
9398}
9399
abe43400
PZ
9400static int __init perf_event_sysfs_init(void)
9401{
9402 struct pmu *pmu;
9403 int ret;
9404
9405 mutex_lock(&pmus_lock);
9406
9407 ret = bus_register(&pmu_bus);
9408 if (ret)
9409 goto unlock;
9410
9411 list_for_each_entry(pmu, &pmus, entry) {
9412 if (!pmu->name || pmu->type < 0)
9413 continue;
9414
9415 ret = pmu_dev_alloc(pmu);
9416 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9417 }
9418 pmu_bus_running = 1;
9419 ret = 0;
9420
9421unlock:
9422 mutex_unlock(&pmus_lock);
9423
9424 return ret;
9425}
9426device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9427
9428#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9429static struct cgroup_subsys_state *
9430perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9431{
9432 struct perf_cgroup *jc;
e5d1367f 9433
1b15d055 9434 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9435 if (!jc)
9436 return ERR_PTR(-ENOMEM);
9437
e5d1367f
SE
9438 jc->info = alloc_percpu(struct perf_cgroup_info);
9439 if (!jc->info) {
9440 kfree(jc);
9441 return ERR_PTR(-ENOMEM);
9442 }
9443
e5d1367f
SE
9444 return &jc->css;
9445}
9446
eb95419b 9447static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9448{
eb95419b
TH
9449 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9450
e5d1367f
SE
9451 free_percpu(jc->info);
9452 kfree(jc);
9453}
9454
9455static int __perf_cgroup_move(void *info)
9456{
9457 struct task_struct *task = info;
ddaaf4e2 9458 rcu_read_lock();
e5d1367f 9459 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9460 rcu_read_unlock();
e5d1367f
SE
9461 return 0;
9462}
9463
eb95419b
TH
9464static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9465 struct cgroup_taskset *tset)
e5d1367f 9466{
bb9d97b6
TH
9467 struct task_struct *task;
9468
924f0d9a 9469 cgroup_taskset_for_each(task, tset)
bb9d97b6 9470 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9471}
9472
073219e9 9473struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9474 .css_alloc = perf_cgroup_css_alloc,
9475 .css_free = perf_cgroup_css_free,
bb9d97b6 9476 .attach = perf_cgroup_attach,
e5d1367f
SE
9477};
9478#endif /* CONFIG_CGROUP_PERF */