perf/x86: Fix constraint table end marker bug
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
948b26b6 148static atomic_t nr_freq_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
d9494cb4
PZ
178static int perf_sample_allowed_ns __read_mostly =
179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
d9494cb4 187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
723478c8 196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 231static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17
DH
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
d9494cb4 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 238
d9494cb4 239 if (allowed_ns == 0)
14c63f17
DH
240 return;
241
242 /* decay the counter by 1 average sample */
243 local_samples_len = __get_cpu_var(running_sample_length);
244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 local_samples_len += sample_len_ns;
246 __get_cpu_var(running_sample_length) = local_samples_len;
247
248 /*
249 * note: this will be biased artifically low until we have
250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
251 * from having to maintain a count.
252 */
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
d9494cb4 255 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
256 return;
257
258 if (max_samples_per_tick <= 1)
259 return;
260
261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264
265 printk_ratelimited(KERN_WARNING
d9494cb4 266 "perf samples too long (%lld > %lld), lowering "
14c63f17 267 "kernel.perf_event_max_sample_rate to %d\n",
d9494cb4 268 avg_local_sample_len, allowed_ns,
14c63f17
DH
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
8af01f56
TH
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
e5d1367f
SE
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
b77d7b60
TH
595 rcu_read_lock();
596
35cf0836 597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
3db272c0
LZ
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
e5d1367f
SE
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
f75e18cb 606 /* must be done before we fput() the file */
9c5da09d
SQ
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
f75e18cb 612
e5d1367f
SE
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
e5d1367f 621 }
3db272c0 622out:
b77d7b60 623 rcu_read_unlock();
2903ff01 624 fdput(f);
e5d1367f
SE
625 return ret;
626}
627
628static inline void
629perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630{
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634}
635
636static inline void
637perf_cgroup_defer_enabled(struct perf_event *event)
638{
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647}
648
649static inline void
650perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652{
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668}
669#else /* !CONFIG_CGROUP_PERF */
670
671static inline bool
672perf_cgroup_match(struct perf_event *event)
673{
674 return true;
675}
676
677static inline void perf_detach_cgroup(struct perf_event *event)
678{}
679
680static inline int is_cgroup_event(struct perf_event *event)
681{
682 return 0;
683}
684
685static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline void update_cgrp_time_from_event(struct perf_event *event)
691{
692}
693
694static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695{
696}
697
a8d757ef
SE
698static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
e5d1367f
SE
700{
701}
702
a8d757ef
SE
703static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
e5d1367f
SE
705{
706}
707
708static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711{
712 return -EINVAL;
713}
714
715static inline void
3f7cce3c
SE
716perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
e5d1367f
SE
718{
719}
720
721void
722perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723{
724}
725
726static inline void
727perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728{
729}
730
731static inline u64 perf_cgroup_event_time(struct perf_event *event)
732{
733 return 0;
734}
735
736static inline void
737perf_cgroup_defer_enabled(struct perf_event *event)
738{
739}
740
741static inline void
742perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744{
745}
746#endif
747
9e630205
SE
748/*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752#define PERF_CPU_HRTIMER (1000 / HZ)
753/*
754 * function must be called with interrupts disbled
755 */
756static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757{
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777}
778
779/* CPU is going down */
780void perf_cpu_hrtimer_cancel(int cpu)
781{
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805}
806
807static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808{
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 811 int timer;
9e630205
SE
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
62b85639
SE
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829}
830
831static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832{
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846}
847
33696fc0 848void perf_pmu_disable(struct pmu *pmu)
9e35ad38 849{
33696fc0
PZ
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
9e35ad38 853}
9e35ad38 854
33696fc0 855void perf_pmu_enable(struct pmu *pmu)
9e35ad38 856{
33696fc0
PZ
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
9e35ad38 860}
9e35ad38 861
e9d2b064
PZ
862static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864/*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
108b02cf 869static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 870{
108b02cf 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 872 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 873
e9d2b064 874 WARN_ON(!irqs_disabled());
b5ab4cd5 875
d84153d6 876 if (list_empty(&cpuctx->rotation_list))
e9d2b064 877 list_add(&cpuctx->rotation_list, head);
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
5a3126d4 902 ctx->generation++;
71a851b4
PZ
903}
904
6844c09d
ACM
905static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
906{
907 /*
908 * only top level events have the pid namespace they were created in
909 */
910 if (event->parent)
911 event = event->parent;
912
913 return task_tgid_nr_ns(p, event->ns);
914}
915
916static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
917{
918 /*
919 * only top level events have the pid namespace they were created in
920 */
921 if (event->parent)
922 event = event->parent;
923
924 return task_pid_nr_ns(p, event->ns);
925}
926
7f453c24 927/*
cdd6c482 928 * If we inherit events we want to return the parent event id
7f453c24
PZ
929 * to userspace.
930 */
cdd6c482 931static u64 primary_event_id(struct perf_event *event)
7f453c24 932{
cdd6c482 933 u64 id = event->id;
7f453c24 934
cdd6c482
IM
935 if (event->parent)
936 id = event->parent->id;
7f453c24
PZ
937
938 return id;
939}
940
25346b93 941/*
cdd6c482 942 * Get the perf_event_context for a task and lock it.
25346b93
PM
943 * This has to cope with with the fact that until it is locked,
944 * the context could get moved to another task.
945 */
cdd6c482 946static struct perf_event_context *
8dc85d54 947perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 948{
cdd6c482 949 struct perf_event_context *ctx;
25346b93 950
9ed6060d 951retry:
058ebd0e
PZ
952 /*
953 * One of the few rules of preemptible RCU is that one cannot do
954 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 * part of the read side critical section was preemptible -- see
956 * rcu_read_unlock_special().
957 *
958 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 * side critical section is non-preemptible.
960 */
961 preempt_disable();
962 rcu_read_lock();
8dc85d54 963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
964 if (ctx) {
965 /*
966 * If this context is a clone of another, it might
967 * get swapped for another underneath us by
cdd6c482 968 * perf_event_task_sched_out, though the
25346b93
PM
969 * rcu_read_lock() protects us from any context
970 * getting freed. Lock the context and check if it
971 * got swapped before we could get the lock, and retry
972 * if so. If we locked the right context, then it
973 * can't get swapped on us any more.
974 */
e625cce1 975 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 977 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
978 rcu_read_unlock();
979 preempt_enable();
25346b93
PM
980 goto retry;
981 }
b49a9e7e
PZ
982
983 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 984 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
985 ctx = NULL;
986 }
25346b93
PM
987 }
988 rcu_read_unlock();
058ebd0e 989 preempt_enable();
25346b93
PM
990 return ctx;
991}
992
993/*
994 * Get the context for a task and increment its pin_count so it
995 * can't get swapped to another task. This also increments its
996 * reference count so that the context can't get freed.
997 */
8dc85d54
PZ
998static struct perf_event_context *
999perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1000{
cdd6c482 1001 struct perf_event_context *ctx;
25346b93
PM
1002 unsigned long flags;
1003
8dc85d54 1004 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1005 if (ctx) {
1006 ++ctx->pin_count;
e625cce1 1007 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1008 }
1009 return ctx;
1010}
1011
cdd6c482 1012static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1013{
1014 unsigned long flags;
1015
e625cce1 1016 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1017 --ctx->pin_count;
e625cce1 1018 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1019}
1020
f67218c3
PZ
1021/*
1022 * Update the record of the current time in a context.
1023 */
1024static void update_context_time(struct perf_event_context *ctx)
1025{
1026 u64 now = perf_clock();
1027
1028 ctx->time += now - ctx->timestamp;
1029 ctx->timestamp = now;
1030}
1031
4158755d
SE
1032static u64 perf_event_time(struct perf_event *event)
1033{
1034 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1035
1036 if (is_cgroup_event(event))
1037 return perf_cgroup_event_time(event);
1038
4158755d
SE
1039 return ctx ? ctx->time : 0;
1040}
1041
f67218c3
PZ
1042/*
1043 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1044 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1045 */
1046static void update_event_times(struct perf_event *event)
1047{
1048 struct perf_event_context *ctx = event->ctx;
1049 u64 run_end;
1050
1051 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 return;
e5d1367f
SE
1054 /*
1055 * in cgroup mode, time_enabled represents
1056 * the time the event was enabled AND active
1057 * tasks were in the monitored cgroup. This is
1058 * independent of the activity of the context as
1059 * there may be a mix of cgroup and non-cgroup events.
1060 *
1061 * That is why we treat cgroup events differently
1062 * here.
1063 */
1064 if (is_cgroup_event(event))
46cd6a7f 1065 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1066 else if (ctx->is_active)
1067 run_end = ctx->time;
acd1d7c1
PZ
1068 else
1069 run_end = event->tstamp_stopped;
1070
1071 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1072
1073 if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 run_end = event->tstamp_stopped;
1075 else
4158755d 1076 run_end = perf_event_time(event);
f67218c3
PZ
1077
1078 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1079
f67218c3
PZ
1080}
1081
96c21a46
PZ
1082/*
1083 * Update total_time_enabled and total_time_running for all events in a group.
1084 */
1085static void update_group_times(struct perf_event *leader)
1086{
1087 struct perf_event *event;
1088
1089 update_event_times(leader);
1090 list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 update_event_times(event);
1092}
1093
889ff015
FW
1094static struct list_head *
1095ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096{
1097 if (event->attr.pinned)
1098 return &ctx->pinned_groups;
1099 else
1100 return &ctx->flexible_groups;
1101}
1102
fccc714b 1103/*
cdd6c482 1104 * Add a event from the lists for its context.
fccc714b
PZ
1105 * Must be called with ctx->mutex and ctx->lock held.
1106 */
04289bb9 1107static void
cdd6c482 1108list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1109{
8a49542c
PZ
1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1112
1113 /*
8a49542c
PZ
1114 * If we're a stand alone event or group leader, we go to the context
1115 * list, group events are kept attached to the group so that
1116 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1117 */
8a49542c 1118 if (event->group_leader == event) {
889ff015
FW
1119 struct list_head *list;
1120
d6f962b5
FW
1121 if (is_software_event(event))
1122 event->group_flags |= PERF_GROUP_SOFTWARE;
1123
889ff015
FW
1124 list = ctx_group_list(event, ctx);
1125 list_add_tail(&event->group_entry, list);
5c148194 1126 }
592903cd 1127
08309379 1128 if (is_cgroup_event(event))
e5d1367f 1129 ctx->nr_cgroups++;
e5d1367f 1130
d010b332
SE
1131 if (has_branch_stack(event))
1132 ctx->nr_branch_stack++;
1133
cdd6c482 1134 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1135 if (!ctx->nr_events)
108b02cf 1136 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1137 ctx->nr_events++;
1138 if (event->attr.inherit_stat)
bfbd3381 1139 ctx->nr_stat++;
5a3126d4
PZ
1140
1141 ctx->generation++;
04289bb9
IM
1142}
1143
0231bb53
JO
1144/*
1145 * Initialize event state based on the perf_event_attr::disabled.
1146 */
1147static inline void perf_event__state_init(struct perf_event *event)
1148{
1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 PERF_EVENT_STATE_INACTIVE;
1151}
1152
c320c7b7
ACM
1153/*
1154 * Called at perf_event creation and when events are attached/detached from a
1155 * group.
1156 */
1157static void perf_event__read_size(struct perf_event *event)
1158{
1159 int entry = sizeof(u64); /* value */
1160 int size = 0;
1161 int nr = 1;
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 size += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_ID)
1170 entry += sizeof(u64);
1171
1172 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 nr += event->group_leader->nr_siblings;
1174 size += sizeof(u64);
1175 }
1176
1177 size += entry * nr;
1178 event->read_size = size;
1179}
1180
1181static void perf_event__header_size(struct perf_event *event)
1182{
1183 struct perf_sample_data *data;
1184 u64 sample_type = event->attr.sample_type;
1185 u16 size = 0;
1186
1187 perf_event__read_size(event);
1188
1189 if (sample_type & PERF_SAMPLE_IP)
1190 size += sizeof(data->ip);
1191
6844c09d
ACM
1192 if (sample_type & PERF_SAMPLE_ADDR)
1193 size += sizeof(data->addr);
1194
1195 if (sample_type & PERF_SAMPLE_PERIOD)
1196 size += sizeof(data->period);
1197
c3feedf2
AK
1198 if (sample_type & PERF_SAMPLE_WEIGHT)
1199 size += sizeof(data->weight);
1200
6844c09d
ACM
1201 if (sample_type & PERF_SAMPLE_READ)
1202 size += event->read_size;
1203
d6be9ad6
SE
1204 if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 size += sizeof(data->data_src.val);
1206
fdfbbd07
AK
1207 if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 size += sizeof(data->txn);
1209
6844c09d
ACM
1210 event->header_size = size;
1211}
1212
1213static void perf_event__id_header_size(struct perf_event *event)
1214{
1215 struct perf_sample_data *data;
1216 u64 sample_type = event->attr.sample_type;
1217 u16 size = 0;
1218
c320c7b7
ACM
1219 if (sample_type & PERF_SAMPLE_TID)
1220 size += sizeof(data->tid_entry);
1221
1222 if (sample_type & PERF_SAMPLE_TIME)
1223 size += sizeof(data->time);
1224
ff3d527c
AH
1225 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 size += sizeof(data->id);
1227
c320c7b7
ACM
1228 if (sample_type & PERF_SAMPLE_ID)
1229 size += sizeof(data->id);
1230
1231 if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 size += sizeof(data->stream_id);
1233
1234 if (sample_type & PERF_SAMPLE_CPU)
1235 size += sizeof(data->cpu_entry);
1236
6844c09d 1237 event->id_header_size = size;
c320c7b7
ACM
1238}
1239
8a49542c
PZ
1240static void perf_group_attach(struct perf_event *event)
1241{
c320c7b7 1242 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1243
74c3337c
PZ
1244 /*
1245 * We can have double attach due to group movement in perf_event_open.
1246 */
1247 if (event->attach_state & PERF_ATTACH_GROUP)
1248 return;
1249
8a49542c
PZ
1250 event->attach_state |= PERF_ATTACH_GROUP;
1251
1252 if (group_leader == event)
1253 return;
1254
1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 !is_software_event(event))
1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1258
1259 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 group_leader->nr_siblings++;
c320c7b7
ACM
1261
1262 perf_event__header_size(group_leader);
1263
1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 perf_event__header_size(pos);
8a49542c
PZ
1266}
1267
a63eaf34 1268/*
cdd6c482 1269 * Remove a event from the lists for its context.
fccc714b 1270 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1271 */
04289bb9 1272static void
cdd6c482 1273list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1274{
68cacd29 1275 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1276 /*
1277 * We can have double detach due to exit/hot-unplug + close.
1278 */
1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1280 return;
8a49542c
PZ
1281
1282 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1283
68cacd29 1284 if (is_cgroup_event(event)) {
e5d1367f 1285 ctx->nr_cgroups--;
68cacd29
SE
1286 cpuctx = __get_cpu_context(ctx);
1287 /*
1288 * if there are no more cgroup events
1289 * then cler cgrp to avoid stale pointer
1290 * in update_cgrp_time_from_cpuctx()
1291 */
1292 if (!ctx->nr_cgroups)
1293 cpuctx->cgrp = NULL;
1294 }
e5d1367f 1295
d010b332
SE
1296 if (has_branch_stack(event))
1297 ctx->nr_branch_stack--;
1298
cdd6c482
IM
1299 ctx->nr_events--;
1300 if (event->attr.inherit_stat)
bfbd3381 1301 ctx->nr_stat--;
8bc20959 1302
cdd6c482 1303 list_del_rcu(&event->event_entry);
04289bb9 1304
8a49542c
PZ
1305 if (event->group_leader == event)
1306 list_del_init(&event->group_entry);
5c148194 1307
96c21a46 1308 update_group_times(event);
b2e74a26
SE
1309
1310 /*
1311 * If event was in error state, then keep it
1312 * that way, otherwise bogus counts will be
1313 * returned on read(). The only way to get out
1314 * of error state is by explicit re-enabling
1315 * of the event
1316 */
1317 if (event->state > PERF_EVENT_STATE_OFF)
1318 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1319
1320 ctx->generation++;
050735b0
PZ
1321}
1322
8a49542c 1323static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1324{
1325 struct perf_event *sibling, *tmp;
8a49542c
PZ
1326 struct list_head *list = NULL;
1327
1328 /*
1329 * We can have double detach due to exit/hot-unplug + close.
1330 */
1331 if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 return;
1333
1334 event->attach_state &= ~PERF_ATTACH_GROUP;
1335
1336 /*
1337 * If this is a sibling, remove it from its group.
1338 */
1339 if (event->group_leader != event) {
1340 list_del_init(&event->group_entry);
1341 event->group_leader->nr_siblings--;
c320c7b7 1342 goto out;
8a49542c
PZ
1343 }
1344
1345 if (!list_empty(&event->group_entry))
1346 list = &event->group_entry;
2e2af50b 1347
04289bb9 1348 /*
cdd6c482
IM
1349 * If this was a group event with sibling events then
1350 * upgrade the siblings to singleton events by adding them
8a49542c 1351 * to whatever list we are on.
04289bb9 1352 */
cdd6c482 1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1354 if (list)
1355 list_move_tail(&sibling->group_entry, list);
04289bb9 1356 sibling->group_leader = sibling;
d6f962b5
FW
1357
1358 /* Inherit group flags from the previous leader */
1359 sibling->group_flags = event->group_flags;
04289bb9 1360 }
c320c7b7
ACM
1361
1362out:
1363 perf_event__header_size(event->group_leader);
1364
1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 perf_event__header_size(tmp);
04289bb9
IM
1367}
1368
fa66f07a
SE
1369static inline int
1370event_filter_match(struct perf_event *event)
1371{
e5d1367f
SE
1372 return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 && perf_cgroup_match(event);
fa66f07a
SE
1374}
1375
9ffcfa6f
SE
1376static void
1377event_sched_out(struct perf_event *event,
3b6f9e5c 1378 struct perf_cpu_context *cpuctx,
cdd6c482 1379 struct perf_event_context *ctx)
3b6f9e5c 1380{
4158755d 1381 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1382 u64 delta;
1383 /*
1384 * An event which could not be activated because of
1385 * filter mismatch still needs to have its timings
1386 * maintained, otherwise bogus information is return
1387 * via read() for time_enabled, time_running:
1388 */
1389 if (event->state == PERF_EVENT_STATE_INACTIVE
1390 && !event_filter_match(event)) {
e5d1367f 1391 delta = tstamp - event->tstamp_stopped;
fa66f07a 1392 event->tstamp_running += delta;
4158755d 1393 event->tstamp_stopped = tstamp;
fa66f07a
SE
1394 }
1395
cdd6c482 1396 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1397 return;
3b6f9e5c 1398
cdd6c482
IM
1399 event->state = PERF_EVENT_STATE_INACTIVE;
1400 if (event->pending_disable) {
1401 event->pending_disable = 0;
1402 event->state = PERF_EVENT_STATE_OFF;
970892a9 1403 }
4158755d 1404 event->tstamp_stopped = tstamp;
a4eaf7f1 1405 event->pmu->del(event, 0);
cdd6c482 1406 event->oncpu = -1;
3b6f9e5c 1407
cdd6c482 1408 if (!is_software_event(event))
3b6f9e5c
PM
1409 cpuctx->active_oncpu--;
1410 ctx->nr_active--;
0f5a2601
PZ
1411 if (event->attr.freq && event->attr.sample_freq)
1412 ctx->nr_freq--;
cdd6c482 1413 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1414 cpuctx->exclusive = 0;
1415}
1416
d859e29f 1417static void
cdd6c482 1418group_sched_out(struct perf_event *group_event,
d859e29f 1419 struct perf_cpu_context *cpuctx,
cdd6c482 1420 struct perf_event_context *ctx)
d859e29f 1421{
cdd6c482 1422 struct perf_event *event;
fa66f07a 1423 int state = group_event->state;
d859e29f 1424
cdd6c482 1425 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1426
1427 /*
1428 * Schedule out siblings (if any):
1429 */
cdd6c482
IM
1430 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1431 event_sched_out(event, cpuctx, ctx);
d859e29f 1432
fa66f07a 1433 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1434 cpuctx->exclusive = 0;
1435}
1436
0793a61d 1437/*
cdd6c482 1438 * Cross CPU call to remove a performance event
0793a61d 1439 *
cdd6c482 1440 * We disable the event on the hardware level first. After that we
0793a61d
TG
1441 * remove it from the context list.
1442 */
fe4b04fa 1443static int __perf_remove_from_context(void *info)
0793a61d 1444{
cdd6c482
IM
1445 struct perf_event *event = info;
1446 struct perf_event_context *ctx = event->ctx;
108b02cf 1447 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1448
e625cce1 1449 raw_spin_lock(&ctx->lock);
cdd6c482 1450 event_sched_out(event, cpuctx, ctx);
cdd6c482 1451 list_del_event(event, ctx);
64ce3126
PZ
1452 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1453 ctx->is_active = 0;
1454 cpuctx->task_ctx = NULL;
1455 }
e625cce1 1456 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1457
1458 return 0;
0793a61d
TG
1459}
1460
1461
1462/*
cdd6c482 1463 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1464 *
cdd6c482 1465 * CPU events are removed with a smp call. For task events we only
0793a61d 1466 * call when the task is on a CPU.
c93f7669 1467 *
cdd6c482
IM
1468 * If event->ctx is a cloned context, callers must make sure that
1469 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1470 * remains valid. This is OK when called from perf_release since
1471 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1472 * When called from perf_event_exit_task, it's OK because the
c93f7669 1473 * context has been detached from its task.
0793a61d 1474 */
fe4b04fa 1475static void perf_remove_from_context(struct perf_event *event)
0793a61d 1476{
cdd6c482 1477 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1478 struct task_struct *task = ctx->task;
1479
fe4b04fa
PZ
1480 lockdep_assert_held(&ctx->mutex);
1481
0793a61d
TG
1482 if (!task) {
1483 /*
cdd6c482 1484 * Per cpu events are removed via an smp call and
af901ca1 1485 * the removal is always successful.
0793a61d 1486 */
fe4b04fa 1487 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1488 return;
1489 }
1490
1491retry:
fe4b04fa
PZ
1492 if (!task_function_call(task, __perf_remove_from_context, event))
1493 return;
0793a61d 1494
e625cce1 1495 raw_spin_lock_irq(&ctx->lock);
0793a61d 1496 /*
fe4b04fa
PZ
1497 * If we failed to find a running task, but find the context active now
1498 * that we've acquired the ctx->lock, retry.
0793a61d 1499 */
fe4b04fa 1500 if (ctx->is_active) {
e625cce1 1501 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1502 goto retry;
1503 }
1504
1505 /*
fe4b04fa
PZ
1506 * Since the task isn't running, its safe to remove the event, us
1507 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1508 */
fe4b04fa 1509 list_del_event(event, ctx);
e625cce1 1510 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1511}
1512
d859e29f 1513/*
cdd6c482 1514 * Cross CPU call to disable a performance event
d859e29f 1515 */
500ad2d8 1516int __perf_event_disable(void *info)
d859e29f 1517{
cdd6c482 1518 struct perf_event *event = info;
cdd6c482 1519 struct perf_event_context *ctx = event->ctx;
108b02cf 1520 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1521
1522 /*
cdd6c482
IM
1523 * If this is a per-task event, need to check whether this
1524 * event's task is the current task on this cpu.
fe4b04fa
PZ
1525 *
1526 * Can trigger due to concurrent perf_event_context_sched_out()
1527 * flipping contexts around.
d859e29f 1528 */
665c2142 1529 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1530 return -EINVAL;
d859e29f 1531
e625cce1 1532 raw_spin_lock(&ctx->lock);
d859e29f
PM
1533
1534 /*
cdd6c482 1535 * If the event is on, turn it off.
d859e29f
PM
1536 * If it is in error state, leave it in error state.
1537 */
cdd6c482 1538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1539 update_context_time(ctx);
e5d1367f 1540 update_cgrp_time_from_event(event);
cdd6c482
IM
1541 update_group_times(event);
1542 if (event == event->group_leader)
1543 group_sched_out(event, cpuctx, ctx);
d859e29f 1544 else
cdd6c482
IM
1545 event_sched_out(event, cpuctx, ctx);
1546 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1547 }
1548
e625cce1 1549 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1550
1551 return 0;
d859e29f
PM
1552}
1553
1554/*
cdd6c482 1555 * Disable a event.
c93f7669 1556 *
cdd6c482
IM
1557 * If event->ctx is a cloned context, callers must make sure that
1558 * every task struct that event->ctx->task could possibly point to
c93f7669 1559 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1560 * perf_event_for_each_child or perf_event_for_each because they
1561 * hold the top-level event's child_mutex, so any descendant that
1562 * goes to exit will block in sync_child_event.
1563 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1564 * is the current context on this CPU and preemption is disabled,
cdd6c482 1565 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1566 */
44234adc 1567void perf_event_disable(struct perf_event *event)
d859e29f 1568{
cdd6c482 1569 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1570 struct task_struct *task = ctx->task;
1571
1572 if (!task) {
1573 /*
cdd6c482 1574 * Disable the event on the cpu that it's on
d859e29f 1575 */
fe4b04fa 1576 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1577 return;
1578 }
1579
9ed6060d 1580retry:
fe4b04fa
PZ
1581 if (!task_function_call(task, __perf_event_disable, event))
1582 return;
d859e29f 1583
e625cce1 1584 raw_spin_lock_irq(&ctx->lock);
d859e29f 1585 /*
cdd6c482 1586 * If the event is still active, we need to retry the cross-call.
d859e29f 1587 */
cdd6c482 1588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1589 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1590 /*
1591 * Reload the task pointer, it might have been changed by
1592 * a concurrent perf_event_context_sched_out().
1593 */
1594 task = ctx->task;
d859e29f
PM
1595 goto retry;
1596 }
1597
1598 /*
1599 * Since we have the lock this context can't be scheduled
1600 * in, so we can change the state safely.
1601 */
cdd6c482
IM
1602 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1603 update_group_times(event);
1604 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1605 }
e625cce1 1606 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1607}
dcfce4a0 1608EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1609
e5d1367f
SE
1610static void perf_set_shadow_time(struct perf_event *event,
1611 struct perf_event_context *ctx,
1612 u64 tstamp)
1613{
1614 /*
1615 * use the correct time source for the time snapshot
1616 *
1617 * We could get by without this by leveraging the
1618 * fact that to get to this function, the caller
1619 * has most likely already called update_context_time()
1620 * and update_cgrp_time_xx() and thus both timestamp
1621 * are identical (or very close). Given that tstamp is,
1622 * already adjusted for cgroup, we could say that:
1623 * tstamp - ctx->timestamp
1624 * is equivalent to
1625 * tstamp - cgrp->timestamp.
1626 *
1627 * Then, in perf_output_read(), the calculation would
1628 * work with no changes because:
1629 * - event is guaranteed scheduled in
1630 * - no scheduled out in between
1631 * - thus the timestamp would be the same
1632 *
1633 * But this is a bit hairy.
1634 *
1635 * So instead, we have an explicit cgroup call to remain
1636 * within the time time source all along. We believe it
1637 * is cleaner and simpler to understand.
1638 */
1639 if (is_cgroup_event(event))
1640 perf_cgroup_set_shadow_time(event, tstamp);
1641 else
1642 event->shadow_ctx_time = tstamp - ctx->timestamp;
1643}
1644
4fe757dd
PZ
1645#define MAX_INTERRUPTS (~0ULL)
1646
1647static void perf_log_throttle(struct perf_event *event, int enable);
1648
235c7fc7 1649static int
9ffcfa6f 1650event_sched_in(struct perf_event *event,
235c7fc7 1651 struct perf_cpu_context *cpuctx,
6e37738a 1652 struct perf_event_context *ctx)
235c7fc7 1653{
4158755d
SE
1654 u64 tstamp = perf_event_time(event);
1655
cdd6c482 1656 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1657 return 0;
1658
cdd6c482 1659 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1660 event->oncpu = smp_processor_id();
4fe757dd
PZ
1661
1662 /*
1663 * Unthrottle events, since we scheduled we might have missed several
1664 * ticks already, also for a heavily scheduling task there is little
1665 * guarantee it'll get a tick in a timely manner.
1666 */
1667 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1668 perf_log_throttle(event, 1);
1669 event->hw.interrupts = 0;
1670 }
1671
235c7fc7
IM
1672 /*
1673 * The new state must be visible before we turn it on in the hardware:
1674 */
1675 smp_wmb();
1676
a4eaf7f1 1677 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1678 event->state = PERF_EVENT_STATE_INACTIVE;
1679 event->oncpu = -1;
235c7fc7
IM
1680 return -EAGAIN;
1681 }
1682
4158755d 1683 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1684
e5d1367f 1685 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1686
cdd6c482 1687 if (!is_software_event(event))
3b6f9e5c 1688 cpuctx->active_oncpu++;
235c7fc7 1689 ctx->nr_active++;
0f5a2601
PZ
1690 if (event->attr.freq && event->attr.sample_freq)
1691 ctx->nr_freq++;
235c7fc7 1692
cdd6c482 1693 if (event->attr.exclusive)
3b6f9e5c
PM
1694 cpuctx->exclusive = 1;
1695
235c7fc7
IM
1696 return 0;
1697}
1698
6751b71e 1699static int
cdd6c482 1700group_sched_in(struct perf_event *group_event,
6751b71e 1701 struct perf_cpu_context *cpuctx,
6e37738a 1702 struct perf_event_context *ctx)
6751b71e 1703{
6bde9b6c 1704 struct perf_event *event, *partial_group = NULL;
51b0fe39 1705 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1706 u64 now = ctx->time;
1707 bool simulate = false;
6751b71e 1708
cdd6c482 1709 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1710 return 0;
1711
ad5133b7 1712 pmu->start_txn(pmu);
6bde9b6c 1713
9ffcfa6f 1714 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1715 pmu->cancel_txn(pmu);
9e630205 1716 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1717 return -EAGAIN;
90151c35 1718 }
6751b71e
PM
1719
1720 /*
1721 * Schedule in siblings as one group (if any):
1722 */
cdd6c482 1723 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1724 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1725 partial_group = event;
6751b71e
PM
1726 goto group_error;
1727 }
1728 }
1729
9ffcfa6f 1730 if (!pmu->commit_txn(pmu))
6e85158c 1731 return 0;
9ffcfa6f 1732
6751b71e
PM
1733group_error:
1734 /*
1735 * Groups can be scheduled in as one unit only, so undo any
1736 * partial group before returning:
d7842da4
SE
1737 * The events up to the failed event are scheduled out normally,
1738 * tstamp_stopped will be updated.
1739 *
1740 * The failed events and the remaining siblings need to have
1741 * their timings updated as if they had gone thru event_sched_in()
1742 * and event_sched_out(). This is required to get consistent timings
1743 * across the group. This also takes care of the case where the group
1744 * could never be scheduled by ensuring tstamp_stopped is set to mark
1745 * the time the event was actually stopped, such that time delta
1746 * calculation in update_event_times() is correct.
6751b71e 1747 */
cdd6c482
IM
1748 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1749 if (event == partial_group)
d7842da4
SE
1750 simulate = true;
1751
1752 if (simulate) {
1753 event->tstamp_running += now - event->tstamp_stopped;
1754 event->tstamp_stopped = now;
1755 } else {
1756 event_sched_out(event, cpuctx, ctx);
1757 }
6751b71e 1758 }
9ffcfa6f 1759 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1760
ad5133b7 1761 pmu->cancel_txn(pmu);
90151c35 1762
9e630205
SE
1763 perf_cpu_hrtimer_restart(cpuctx);
1764
6751b71e
PM
1765 return -EAGAIN;
1766}
1767
3b6f9e5c 1768/*
cdd6c482 1769 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1770 */
cdd6c482 1771static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1772 struct perf_cpu_context *cpuctx,
1773 int can_add_hw)
1774{
1775 /*
cdd6c482 1776 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1777 */
d6f962b5 1778 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1779 return 1;
1780 /*
1781 * If an exclusive group is already on, no other hardware
cdd6c482 1782 * events can go on.
3b6f9e5c
PM
1783 */
1784 if (cpuctx->exclusive)
1785 return 0;
1786 /*
1787 * If this group is exclusive and there are already
cdd6c482 1788 * events on the CPU, it can't go on.
3b6f9e5c 1789 */
cdd6c482 1790 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1791 return 0;
1792 /*
1793 * Otherwise, try to add it if all previous groups were able
1794 * to go on.
1795 */
1796 return can_add_hw;
1797}
1798
cdd6c482
IM
1799static void add_event_to_ctx(struct perf_event *event,
1800 struct perf_event_context *ctx)
53cfbf59 1801{
4158755d
SE
1802 u64 tstamp = perf_event_time(event);
1803
cdd6c482 1804 list_add_event(event, ctx);
8a49542c 1805 perf_group_attach(event);
4158755d
SE
1806 event->tstamp_enabled = tstamp;
1807 event->tstamp_running = tstamp;
1808 event->tstamp_stopped = tstamp;
53cfbf59
PM
1809}
1810
2c29ef0f
PZ
1811static void task_ctx_sched_out(struct perf_event_context *ctx);
1812static void
1813ctx_sched_in(struct perf_event_context *ctx,
1814 struct perf_cpu_context *cpuctx,
1815 enum event_type_t event_type,
1816 struct task_struct *task);
fe4b04fa 1817
dce5855b
PZ
1818static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1819 struct perf_event_context *ctx,
1820 struct task_struct *task)
1821{
1822 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1823 if (ctx)
1824 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1825 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1826 if (ctx)
1827 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1828}
1829
0793a61d 1830/*
cdd6c482 1831 * Cross CPU call to install and enable a performance event
682076ae
PZ
1832 *
1833 * Must be called with ctx->mutex held
0793a61d 1834 */
fe4b04fa 1835static int __perf_install_in_context(void *info)
0793a61d 1836{
cdd6c482
IM
1837 struct perf_event *event = info;
1838 struct perf_event_context *ctx = event->ctx;
108b02cf 1839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1840 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1841 struct task_struct *task = current;
1842
b58f6b0d 1843 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1844 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1845
1846 /*
2c29ef0f 1847 * If there was an active task_ctx schedule it out.
0793a61d 1848 */
b58f6b0d 1849 if (task_ctx)
2c29ef0f 1850 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1851
1852 /*
1853 * If the context we're installing events in is not the
1854 * active task_ctx, flip them.
1855 */
1856 if (ctx->task && task_ctx != ctx) {
1857 if (task_ctx)
1858 raw_spin_unlock(&task_ctx->lock);
1859 raw_spin_lock(&ctx->lock);
1860 task_ctx = ctx;
1861 }
1862
1863 if (task_ctx) {
1864 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1865 task = task_ctx->task;
1866 }
b58f6b0d 1867
2c29ef0f 1868 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1869
4af4998b 1870 update_context_time(ctx);
e5d1367f
SE
1871 /*
1872 * update cgrp time only if current cgrp
1873 * matches event->cgrp. Must be done before
1874 * calling add_event_to_ctx()
1875 */
1876 update_cgrp_time_from_event(event);
0793a61d 1877
cdd6c482 1878 add_event_to_ctx(event, ctx);
0793a61d 1879
d859e29f 1880 /*
2c29ef0f 1881 * Schedule everything back in
d859e29f 1882 */
dce5855b 1883 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1884
1885 perf_pmu_enable(cpuctx->ctx.pmu);
1886 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1887
1888 return 0;
0793a61d
TG
1889}
1890
1891/*
cdd6c482 1892 * Attach a performance event to a context
0793a61d 1893 *
cdd6c482
IM
1894 * First we add the event to the list with the hardware enable bit
1895 * in event->hw_config cleared.
0793a61d 1896 *
cdd6c482 1897 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1898 * call to enable it in the task context. The task might have been
1899 * scheduled away, but we check this in the smp call again.
1900 */
1901static void
cdd6c482
IM
1902perf_install_in_context(struct perf_event_context *ctx,
1903 struct perf_event *event,
0793a61d
TG
1904 int cpu)
1905{
1906 struct task_struct *task = ctx->task;
1907
fe4b04fa
PZ
1908 lockdep_assert_held(&ctx->mutex);
1909
c3f00c70 1910 event->ctx = ctx;
0cda4c02
YZ
1911 if (event->cpu != -1)
1912 event->cpu = cpu;
c3f00c70 1913
0793a61d
TG
1914 if (!task) {
1915 /*
cdd6c482 1916 * Per cpu events are installed via an smp call and
af901ca1 1917 * the install is always successful.
0793a61d 1918 */
fe4b04fa 1919 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1920 return;
1921 }
1922
0793a61d 1923retry:
fe4b04fa
PZ
1924 if (!task_function_call(task, __perf_install_in_context, event))
1925 return;
0793a61d 1926
e625cce1 1927 raw_spin_lock_irq(&ctx->lock);
0793a61d 1928 /*
fe4b04fa
PZ
1929 * If we failed to find a running task, but find the context active now
1930 * that we've acquired the ctx->lock, retry.
0793a61d 1931 */
fe4b04fa 1932 if (ctx->is_active) {
e625cce1 1933 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1934 goto retry;
1935 }
1936
1937 /*
fe4b04fa
PZ
1938 * Since the task isn't running, its safe to add the event, us holding
1939 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1940 */
fe4b04fa 1941 add_event_to_ctx(event, ctx);
e625cce1 1942 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1943}
1944
fa289bec 1945/*
cdd6c482 1946 * Put a event into inactive state and update time fields.
fa289bec
PM
1947 * Enabling the leader of a group effectively enables all
1948 * the group members that aren't explicitly disabled, so we
1949 * have to update their ->tstamp_enabled also.
1950 * Note: this works for group members as well as group leaders
1951 * since the non-leader members' sibling_lists will be empty.
1952 */
1d9b482e 1953static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1954{
cdd6c482 1955 struct perf_event *sub;
4158755d 1956 u64 tstamp = perf_event_time(event);
fa289bec 1957
cdd6c482 1958 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1959 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1960 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1961 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1962 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1963 }
fa289bec
PM
1964}
1965
d859e29f 1966/*
cdd6c482 1967 * Cross CPU call to enable a performance event
d859e29f 1968 */
fe4b04fa 1969static int __perf_event_enable(void *info)
04289bb9 1970{
cdd6c482 1971 struct perf_event *event = info;
cdd6c482
IM
1972 struct perf_event_context *ctx = event->ctx;
1973 struct perf_event *leader = event->group_leader;
108b02cf 1974 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1975 int err;
04289bb9 1976
06f41796
JO
1977 /*
1978 * There's a time window between 'ctx->is_active' check
1979 * in perf_event_enable function and this place having:
1980 * - IRQs on
1981 * - ctx->lock unlocked
1982 *
1983 * where the task could be killed and 'ctx' deactivated
1984 * by perf_event_exit_task.
1985 */
1986 if (!ctx->is_active)
fe4b04fa 1987 return -EINVAL;
3cbed429 1988
e625cce1 1989 raw_spin_lock(&ctx->lock);
4af4998b 1990 update_context_time(ctx);
d859e29f 1991
cdd6c482 1992 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1993 goto unlock;
e5d1367f
SE
1994
1995 /*
1996 * set current task's cgroup time reference point
1997 */
3f7cce3c 1998 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1999
1d9b482e 2000 __perf_event_mark_enabled(event);
04289bb9 2001
e5d1367f
SE
2002 if (!event_filter_match(event)) {
2003 if (is_cgroup_event(event))
2004 perf_cgroup_defer_enabled(event);
f4c4176f 2005 goto unlock;
e5d1367f 2006 }
f4c4176f 2007
04289bb9 2008 /*
cdd6c482 2009 * If the event is in a group and isn't the group leader,
d859e29f 2010 * then don't put it on unless the group is on.
04289bb9 2011 */
cdd6c482 2012 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2013 goto unlock;
3b6f9e5c 2014
cdd6c482 2015 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2016 err = -EEXIST;
e758a33d 2017 } else {
cdd6c482 2018 if (event == leader)
6e37738a 2019 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2020 else
6e37738a 2021 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2022 }
d859e29f
PM
2023
2024 if (err) {
2025 /*
cdd6c482 2026 * If this event can't go on and it's part of a
d859e29f
PM
2027 * group, then the whole group has to come off.
2028 */
9e630205 2029 if (leader != event) {
d859e29f 2030 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2031 perf_cpu_hrtimer_restart(cpuctx);
2032 }
0d48696f 2033 if (leader->attr.pinned) {
53cfbf59 2034 update_group_times(leader);
cdd6c482 2035 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2036 }
d859e29f
PM
2037 }
2038
9ed6060d 2039unlock:
e625cce1 2040 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2041
2042 return 0;
d859e29f
PM
2043}
2044
2045/*
cdd6c482 2046 * Enable a event.
c93f7669 2047 *
cdd6c482
IM
2048 * If event->ctx is a cloned context, callers must make sure that
2049 * every task struct that event->ctx->task could possibly point to
c93f7669 2050 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2051 * perf_event_for_each_child or perf_event_for_each as described
2052 * for perf_event_disable.
d859e29f 2053 */
44234adc 2054void perf_event_enable(struct perf_event *event)
d859e29f 2055{
cdd6c482 2056 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2057 struct task_struct *task = ctx->task;
2058
2059 if (!task) {
2060 /*
cdd6c482 2061 * Enable the event on the cpu that it's on
d859e29f 2062 */
fe4b04fa 2063 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2064 return;
2065 }
2066
e625cce1 2067 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2068 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2069 goto out;
2070
2071 /*
cdd6c482
IM
2072 * If the event is in error state, clear that first.
2073 * That way, if we see the event in error state below, we
d859e29f
PM
2074 * know that it has gone back into error state, as distinct
2075 * from the task having been scheduled away before the
2076 * cross-call arrived.
2077 */
cdd6c482
IM
2078 if (event->state == PERF_EVENT_STATE_ERROR)
2079 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2080
9ed6060d 2081retry:
fe4b04fa 2082 if (!ctx->is_active) {
1d9b482e 2083 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2084 goto out;
2085 }
2086
e625cce1 2087 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2088
2089 if (!task_function_call(task, __perf_event_enable, event))
2090 return;
d859e29f 2091
e625cce1 2092 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2093
2094 /*
cdd6c482 2095 * If the context is active and the event is still off,
d859e29f
PM
2096 * we need to retry the cross-call.
2097 */
fe4b04fa
PZ
2098 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2099 /*
2100 * task could have been flipped by a concurrent
2101 * perf_event_context_sched_out()
2102 */
2103 task = ctx->task;
d859e29f 2104 goto retry;
fe4b04fa 2105 }
fa289bec 2106
9ed6060d 2107out:
e625cce1 2108 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2109}
dcfce4a0 2110EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2111
26ca5c11 2112int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2113{
2023b359 2114 /*
cdd6c482 2115 * not supported on inherited events
2023b359 2116 */
2e939d1d 2117 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2118 return -EINVAL;
2119
cdd6c482
IM
2120 atomic_add(refresh, &event->event_limit);
2121 perf_event_enable(event);
2023b359
PZ
2122
2123 return 0;
79f14641 2124}
26ca5c11 2125EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2126
5b0311e1
FW
2127static void ctx_sched_out(struct perf_event_context *ctx,
2128 struct perf_cpu_context *cpuctx,
2129 enum event_type_t event_type)
235c7fc7 2130{
cdd6c482 2131 struct perf_event *event;
db24d33e 2132 int is_active = ctx->is_active;
235c7fc7 2133
db24d33e 2134 ctx->is_active &= ~event_type;
cdd6c482 2135 if (likely(!ctx->nr_events))
facc4307
PZ
2136 return;
2137
4af4998b 2138 update_context_time(ctx);
e5d1367f 2139 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2140 if (!ctx->nr_active)
facc4307 2141 return;
5b0311e1 2142
075e0b00 2143 perf_pmu_disable(ctx->pmu);
db24d33e 2144 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2145 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2146 group_sched_out(event, cpuctx, ctx);
9ed6060d 2147 }
889ff015 2148
db24d33e 2149 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2150 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2151 group_sched_out(event, cpuctx, ctx);
9ed6060d 2152 }
1b9a644f 2153 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2154}
2155
564c2b21 2156/*
5a3126d4
PZ
2157 * Test whether two contexts are equivalent, i.e. whether they have both been
2158 * cloned from the same version of the same context.
2159 *
2160 * Equivalence is measured using a generation number in the context that is
2161 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2162 * and list_del_event().
564c2b21 2163 */
cdd6c482
IM
2164static int context_equiv(struct perf_event_context *ctx1,
2165 struct perf_event_context *ctx2)
564c2b21 2166{
5a3126d4
PZ
2167 /* Pinning disables the swap optimization */
2168 if (ctx1->pin_count || ctx2->pin_count)
2169 return 0;
2170
2171 /* If ctx1 is the parent of ctx2 */
2172 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2173 return 1;
2174
2175 /* If ctx2 is the parent of ctx1 */
2176 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2177 return 1;
2178
2179 /*
2180 * If ctx1 and ctx2 have the same parent; we flatten the parent
2181 * hierarchy, see perf_event_init_context().
2182 */
2183 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2184 ctx1->parent_gen == ctx2->parent_gen)
2185 return 1;
2186
2187 /* Unmatched */
2188 return 0;
564c2b21
PM
2189}
2190
cdd6c482
IM
2191static void __perf_event_sync_stat(struct perf_event *event,
2192 struct perf_event *next_event)
bfbd3381
PZ
2193{
2194 u64 value;
2195
cdd6c482 2196 if (!event->attr.inherit_stat)
bfbd3381
PZ
2197 return;
2198
2199 /*
cdd6c482 2200 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2201 * because we're in the middle of a context switch and have IRQs
2202 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2203 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2204 * don't need to use it.
2205 */
cdd6c482
IM
2206 switch (event->state) {
2207 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2208 event->pmu->read(event);
2209 /* fall-through */
bfbd3381 2210
cdd6c482
IM
2211 case PERF_EVENT_STATE_INACTIVE:
2212 update_event_times(event);
bfbd3381
PZ
2213 break;
2214
2215 default:
2216 break;
2217 }
2218
2219 /*
cdd6c482 2220 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2221 * values when we flip the contexts.
2222 */
e7850595
PZ
2223 value = local64_read(&next_event->count);
2224 value = local64_xchg(&event->count, value);
2225 local64_set(&next_event->count, value);
bfbd3381 2226
cdd6c482
IM
2227 swap(event->total_time_enabled, next_event->total_time_enabled);
2228 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2229
bfbd3381 2230 /*
19d2e755 2231 * Since we swizzled the values, update the user visible data too.
bfbd3381 2232 */
cdd6c482
IM
2233 perf_event_update_userpage(event);
2234 perf_event_update_userpage(next_event);
bfbd3381
PZ
2235}
2236
cdd6c482
IM
2237static void perf_event_sync_stat(struct perf_event_context *ctx,
2238 struct perf_event_context *next_ctx)
bfbd3381 2239{
cdd6c482 2240 struct perf_event *event, *next_event;
bfbd3381
PZ
2241
2242 if (!ctx->nr_stat)
2243 return;
2244
02ffdbc8
PZ
2245 update_context_time(ctx);
2246
cdd6c482
IM
2247 event = list_first_entry(&ctx->event_list,
2248 struct perf_event, event_entry);
bfbd3381 2249
cdd6c482
IM
2250 next_event = list_first_entry(&next_ctx->event_list,
2251 struct perf_event, event_entry);
bfbd3381 2252
cdd6c482
IM
2253 while (&event->event_entry != &ctx->event_list &&
2254 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2255
cdd6c482 2256 __perf_event_sync_stat(event, next_event);
bfbd3381 2257
cdd6c482
IM
2258 event = list_next_entry(event, event_entry);
2259 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2260 }
2261}
2262
fe4b04fa
PZ
2263static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2264 struct task_struct *next)
0793a61d 2265{
8dc85d54 2266 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2267 struct perf_event_context *next_ctx;
5a3126d4 2268 struct perf_event_context *parent, *next_parent;
108b02cf 2269 struct perf_cpu_context *cpuctx;
c93f7669 2270 int do_switch = 1;
0793a61d 2271
108b02cf
PZ
2272 if (likely(!ctx))
2273 return;
10989fb2 2274
108b02cf
PZ
2275 cpuctx = __get_cpu_context(ctx);
2276 if (!cpuctx->task_ctx)
0793a61d
TG
2277 return;
2278
c93f7669 2279 rcu_read_lock();
8dc85d54 2280 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2281 if (!next_ctx)
2282 goto unlock;
2283
2284 parent = rcu_dereference(ctx->parent_ctx);
2285 next_parent = rcu_dereference(next_ctx->parent_ctx);
2286
2287 /* If neither context have a parent context; they cannot be clones. */
2288 if (!parent && !next_parent)
2289 goto unlock;
2290
2291 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2292 /*
2293 * Looks like the two contexts are clones, so we might be
2294 * able to optimize the context switch. We lock both
2295 * contexts and check that they are clones under the
2296 * lock (including re-checking that neither has been
2297 * uncloned in the meantime). It doesn't matter which
2298 * order we take the locks because no other cpu could
2299 * be trying to lock both of these tasks.
2300 */
e625cce1
TG
2301 raw_spin_lock(&ctx->lock);
2302 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2303 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2304 /*
2305 * XXX do we need a memory barrier of sorts
cdd6c482 2306 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2307 */
8dc85d54
PZ
2308 task->perf_event_ctxp[ctxn] = next_ctx;
2309 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2310 ctx->task = next;
2311 next_ctx->task = task;
2312 do_switch = 0;
bfbd3381 2313
cdd6c482 2314 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2315 }
e625cce1
TG
2316 raw_spin_unlock(&next_ctx->lock);
2317 raw_spin_unlock(&ctx->lock);
564c2b21 2318 }
5a3126d4 2319unlock:
c93f7669 2320 rcu_read_unlock();
564c2b21 2321
c93f7669 2322 if (do_switch) {
facc4307 2323 raw_spin_lock(&ctx->lock);
5b0311e1 2324 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2325 cpuctx->task_ctx = NULL;
facc4307 2326 raw_spin_unlock(&ctx->lock);
c93f7669 2327 }
0793a61d
TG
2328}
2329
8dc85d54
PZ
2330#define for_each_task_context_nr(ctxn) \
2331 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2332
2333/*
2334 * Called from scheduler to remove the events of the current task,
2335 * with interrupts disabled.
2336 *
2337 * We stop each event and update the event value in event->count.
2338 *
2339 * This does not protect us against NMI, but disable()
2340 * sets the disabled bit in the control field of event _before_
2341 * accessing the event control register. If a NMI hits, then it will
2342 * not restart the event.
2343 */
ab0cce56
JO
2344void __perf_event_task_sched_out(struct task_struct *task,
2345 struct task_struct *next)
8dc85d54
PZ
2346{
2347 int ctxn;
2348
8dc85d54
PZ
2349 for_each_task_context_nr(ctxn)
2350 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2351
2352 /*
2353 * if cgroup events exist on this CPU, then we need
2354 * to check if we have to switch out PMU state.
2355 * cgroup event are system-wide mode only
2356 */
2357 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2358 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2359}
2360
04dc2dbb 2361static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2362{
108b02cf 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2364
a63eaf34
PM
2365 if (!cpuctx->task_ctx)
2366 return;
012b84da
IM
2367
2368 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2369 return;
2370
04dc2dbb 2371 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2372 cpuctx->task_ctx = NULL;
2373}
2374
5b0311e1
FW
2375/*
2376 * Called with IRQs disabled
2377 */
2378static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2379 enum event_type_t event_type)
2380{
2381 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2382}
2383
235c7fc7 2384static void
5b0311e1 2385ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2386 struct perf_cpu_context *cpuctx)
0793a61d 2387{
cdd6c482 2388 struct perf_event *event;
0793a61d 2389
889ff015
FW
2390 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2391 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2392 continue;
5632ab12 2393 if (!event_filter_match(event))
3b6f9e5c
PM
2394 continue;
2395
e5d1367f
SE
2396 /* may need to reset tstamp_enabled */
2397 if (is_cgroup_event(event))
2398 perf_cgroup_mark_enabled(event, ctx);
2399
8c9ed8e1 2400 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2401 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2402
2403 /*
2404 * If this pinned group hasn't been scheduled,
2405 * put it in error state.
2406 */
cdd6c482
IM
2407 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2408 update_group_times(event);
2409 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2410 }
3b6f9e5c 2411 }
5b0311e1
FW
2412}
2413
2414static void
2415ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2416 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2417{
2418 struct perf_event *event;
2419 int can_add_hw = 1;
3b6f9e5c 2420
889ff015
FW
2421 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2422 /* Ignore events in OFF or ERROR state */
2423 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2424 continue;
04289bb9
IM
2425 /*
2426 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2427 * of events:
04289bb9 2428 */
5632ab12 2429 if (!event_filter_match(event))
0793a61d
TG
2430 continue;
2431
e5d1367f
SE
2432 /* may need to reset tstamp_enabled */
2433 if (is_cgroup_event(event))
2434 perf_cgroup_mark_enabled(event, ctx);
2435
9ed6060d 2436 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2437 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2438 can_add_hw = 0;
9ed6060d 2439 }
0793a61d 2440 }
5b0311e1
FW
2441}
2442
2443static void
2444ctx_sched_in(struct perf_event_context *ctx,
2445 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2446 enum event_type_t event_type,
2447 struct task_struct *task)
5b0311e1 2448{
e5d1367f 2449 u64 now;
db24d33e 2450 int is_active = ctx->is_active;
e5d1367f 2451
db24d33e 2452 ctx->is_active |= event_type;
5b0311e1 2453 if (likely(!ctx->nr_events))
facc4307 2454 return;
5b0311e1 2455
e5d1367f
SE
2456 now = perf_clock();
2457 ctx->timestamp = now;
3f7cce3c 2458 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2459 /*
2460 * First go through the list and put on any pinned groups
2461 * in order to give them the best chance of going on.
2462 */
db24d33e 2463 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2464 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2465
2466 /* Then walk through the lower prio flexible groups */
db24d33e 2467 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2468 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2469}
2470
329c0e01 2471static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2472 enum event_type_t event_type,
2473 struct task_struct *task)
329c0e01
FW
2474{
2475 struct perf_event_context *ctx = &cpuctx->ctx;
2476
e5d1367f 2477 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2478}
2479
e5d1367f
SE
2480static void perf_event_context_sched_in(struct perf_event_context *ctx,
2481 struct task_struct *task)
235c7fc7 2482{
108b02cf 2483 struct perf_cpu_context *cpuctx;
235c7fc7 2484
108b02cf 2485 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2486 if (cpuctx->task_ctx == ctx)
2487 return;
2488
facc4307 2489 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2490 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2491 /*
2492 * We want to keep the following priority order:
2493 * cpu pinned (that don't need to move), task pinned,
2494 * cpu flexible, task flexible.
2495 */
2496 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2497
1d5f003f
GN
2498 if (ctx->nr_events)
2499 cpuctx->task_ctx = ctx;
9b33fa6b 2500
86b47c25
GN
2501 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2502
facc4307
PZ
2503 perf_pmu_enable(ctx->pmu);
2504 perf_ctx_unlock(cpuctx, ctx);
2505
b5ab4cd5
PZ
2506 /*
2507 * Since these rotations are per-cpu, we need to ensure the
2508 * cpu-context we got scheduled on is actually rotating.
2509 */
108b02cf 2510 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2511}
2512
d010b332
SE
2513/*
2514 * When sampling the branck stack in system-wide, it may be necessary
2515 * to flush the stack on context switch. This happens when the branch
2516 * stack does not tag its entries with the pid of the current task.
2517 * Otherwise it becomes impossible to associate a branch entry with a
2518 * task. This ambiguity is more likely to appear when the branch stack
2519 * supports priv level filtering and the user sets it to monitor only
2520 * at the user level (which could be a useful measurement in system-wide
2521 * mode). In that case, the risk is high of having a branch stack with
2522 * branch from multiple tasks. Flushing may mean dropping the existing
2523 * entries or stashing them somewhere in the PMU specific code layer.
2524 *
2525 * This function provides the context switch callback to the lower code
2526 * layer. It is invoked ONLY when there is at least one system-wide context
2527 * with at least one active event using taken branch sampling.
2528 */
2529static void perf_branch_stack_sched_in(struct task_struct *prev,
2530 struct task_struct *task)
2531{
2532 struct perf_cpu_context *cpuctx;
2533 struct pmu *pmu;
2534 unsigned long flags;
2535
2536 /* no need to flush branch stack if not changing task */
2537 if (prev == task)
2538 return;
2539
2540 local_irq_save(flags);
2541
2542 rcu_read_lock();
2543
2544 list_for_each_entry_rcu(pmu, &pmus, entry) {
2545 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2546
2547 /*
2548 * check if the context has at least one
2549 * event using PERF_SAMPLE_BRANCH_STACK
2550 */
2551 if (cpuctx->ctx.nr_branch_stack > 0
2552 && pmu->flush_branch_stack) {
2553
2554 pmu = cpuctx->ctx.pmu;
2555
2556 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2557
2558 perf_pmu_disable(pmu);
2559
2560 pmu->flush_branch_stack();
2561
2562 perf_pmu_enable(pmu);
2563
2564 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2565 }
2566 }
2567
2568 rcu_read_unlock();
2569
2570 local_irq_restore(flags);
2571}
2572
8dc85d54
PZ
2573/*
2574 * Called from scheduler to add the events of the current task
2575 * with interrupts disabled.
2576 *
2577 * We restore the event value and then enable it.
2578 *
2579 * This does not protect us against NMI, but enable()
2580 * sets the enabled bit in the control field of event _before_
2581 * accessing the event control register. If a NMI hits, then it will
2582 * keep the event running.
2583 */
ab0cce56
JO
2584void __perf_event_task_sched_in(struct task_struct *prev,
2585 struct task_struct *task)
8dc85d54
PZ
2586{
2587 struct perf_event_context *ctx;
2588 int ctxn;
2589
2590 for_each_task_context_nr(ctxn) {
2591 ctx = task->perf_event_ctxp[ctxn];
2592 if (likely(!ctx))
2593 continue;
2594
e5d1367f 2595 perf_event_context_sched_in(ctx, task);
8dc85d54 2596 }
e5d1367f
SE
2597 /*
2598 * if cgroup events exist on this CPU, then we need
2599 * to check if we have to switch in PMU state.
2600 * cgroup event are system-wide mode only
2601 */
2602 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2603 perf_cgroup_sched_in(prev, task);
d010b332
SE
2604
2605 /* check for system-wide branch_stack events */
2606 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2607 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2608}
2609
abd50713
PZ
2610static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2611{
2612 u64 frequency = event->attr.sample_freq;
2613 u64 sec = NSEC_PER_SEC;
2614 u64 divisor, dividend;
2615
2616 int count_fls, nsec_fls, frequency_fls, sec_fls;
2617
2618 count_fls = fls64(count);
2619 nsec_fls = fls64(nsec);
2620 frequency_fls = fls64(frequency);
2621 sec_fls = 30;
2622
2623 /*
2624 * We got @count in @nsec, with a target of sample_freq HZ
2625 * the target period becomes:
2626 *
2627 * @count * 10^9
2628 * period = -------------------
2629 * @nsec * sample_freq
2630 *
2631 */
2632
2633 /*
2634 * Reduce accuracy by one bit such that @a and @b converge
2635 * to a similar magnitude.
2636 */
fe4b04fa 2637#define REDUCE_FLS(a, b) \
abd50713
PZ
2638do { \
2639 if (a##_fls > b##_fls) { \
2640 a >>= 1; \
2641 a##_fls--; \
2642 } else { \
2643 b >>= 1; \
2644 b##_fls--; \
2645 } \
2646} while (0)
2647
2648 /*
2649 * Reduce accuracy until either term fits in a u64, then proceed with
2650 * the other, so that finally we can do a u64/u64 division.
2651 */
2652 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2653 REDUCE_FLS(nsec, frequency);
2654 REDUCE_FLS(sec, count);
2655 }
2656
2657 if (count_fls + sec_fls > 64) {
2658 divisor = nsec * frequency;
2659
2660 while (count_fls + sec_fls > 64) {
2661 REDUCE_FLS(count, sec);
2662 divisor >>= 1;
2663 }
2664
2665 dividend = count * sec;
2666 } else {
2667 dividend = count * sec;
2668
2669 while (nsec_fls + frequency_fls > 64) {
2670 REDUCE_FLS(nsec, frequency);
2671 dividend >>= 1;
2672 }
2673
2674 divisor = nsec * frequency;
2675 }
2676
f6ab91ad
PZ
2677 if (!divisor)
2678 return dividend;
2679
abd50713
PZ
2680 return div64_u64(dividend, divisor);
2681}
2682
e050e3f0
SE
2683static DEFINE_PER_CPU(int, perf_throttled_count);
2684static DEFINE_PER_CPU(u64, perf_throttled_seq);
2685
f39d47ff 2686static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2687{
cdd6c482 2688 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2689 s64 period, sample_period;
bd2b5b12
PZ
2690 s64 delta;
2691
abd50713 2692 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2693
2694 delta = (s64)(period - hwc->sample_period);
2695 delta = (delta + 7) / 8; /* low pass filter */
2696
2697 sample_period = hwc->sample_period + delta;
2698
2699 if (!sample_period)
2700 sample_period = 1;
2701
bd2b5b12 2702 hwc->sample_period = sample_period;
abd50713 2703
e7850595 2704 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2705 if (disable)
2706 event->pmu->stop(event, PERF_EF_UPDATE);
2707
e7850595 2708 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2709
2710 if (disable)
2711 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2712 }
bd2b5b12
PZ
2713}
2714
e050e3f0
SE
2715/*
2716 * combine freq adjustment with unthrottling to avoid two passes over the
2717 * events. At the same time, make sure, having freq events does not change
2718 * the rate of unthrottling as that would introduce bias.
2719 */
2720static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2721 int needs_unthr)
60db5e09 2722{
cdd6c482
IM
2723 struct perf_event *event;
2724 struct hw_perf_event *hwc;
e050e3f0 2725 u64 now, period = TICK_NSEC;
abd50713 2726 s64 delta;
60db5e09 2727
e050e3f0
SE
2728 /*
2729 * only need to iterate over all events iff:
2730 * - context have events in frequency mode (needs freq adjust)
2731 * - there are events to unthrottle on this cpu
2732 */
2733 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2734 return;
2735
e050e3f0 2736 raw_spin_lock(&ctx->lock);
f39d47ff 2737 perf_pmu_disable(ctx->pmu);
e050e3f0 2738
03541f8b 2739 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2740 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2741 continue;
2742
5632ab12 2743 if (!event_filter_match(event))
5d27c23d
PZ
2744 continue;
2745
cdd6c482 2746 hwc = &event->hw;
6a24ed6c 2747
ae23bff1 2748 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2749 hwc->interrupts = 0;
cdd6c482 2750 perf_log_throttle(event, 1);
a4eaf7f1 2751 event->pmu->start(event, 0);
a78ac325
PZ
2752 }
2753
cdd6c482 2754 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2755 continue;
2756
e050e3f0
SE
2757 /*
2758 * stop the event and update event->count
2759 */
2760 event->pmu->stop(event, PERF_EF_UPDATE);
2761
e7850595 2762 now = local64_read(&event->count);
abd50713
PZ
2763 delta = now - hwc->freq_count_stamp;
2764 hwc->freq_count_stamp = now;
60db5e09 2765
e050e3f0
SE
2766 /*
2767 * restart the event
2768 * reload only if value has changed
f39d47ff
SE
2769 * we have stopped the event so tell that
2770 * to perf_adjust_period() to avoid stopping it
2771 * twice.
e050e3f0 2772 */
abd50713 2773 if (delta > 0)
f39d47ff 2774 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2775
2776 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2777 }
e050e3f0 2778
f39d47ff 2779 perf_pmu_enable(ctx->pmu);
e050e3f0 2780 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2781}
2782
235c7fc7 2783/*
cdd6c482 2784 * Round-robin a context's events:
235c7fc7 2785 */
cdd6c482 2786static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2787{
dddd3379
TG
2788 /*
2789 * Rotate the first entry last of non-pinned groups. Rotation might be
2790 * disabled by the inheritance code.
2791 */
2792 if (!ctx->rotate_disable)
2793 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2794}
2795
b5ab4cd5 2796/*
e9d2b064
PZ
2797 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2798 * because they're strictly cpu affine and rotate_start is called with IRQs
2799 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2800 */
9e630205 2801static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2802{
8dc85d54 2803 struct perf_event_context *ctx = NULL;
e050e3f0 2804 int rotate = 0, remove = 1;
7fc23a53 2805
b5ab4cd5 2806 if (cpuctx->ctx.nr_events) {
e9d2b064 2807 remove = 0;
b5ab4cd5
PZ
2808 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2809 rotate = 1;
2810 }
235c7fc7 2811
8dc85d54 2812 ctx = cpuctx->task_ctx;
b5ab4cd5 2813 if (ctx && ctx->nr_events) {
e9d2b064 2814 remove = 0;
b5ab4cd5
PZ
2815 if (ctx->nr_events != ctx->nr_active)
2816 rotate = 1;
2817 }
9717e6cd 2818
e050e3f0 2819 if (!rotate)
0f5a2601
PZ
2820 goto done;
2821
facc4307 2822 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2823 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2824
e050e3f0
SE
2825 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2826 if (ctx)
2827 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2828
e050e3f0
SE
2829 rotate_ctx(&cpuctx->ctx);
2830 if (ctx)
2831 rotate_ctx(ctx);
235c7fc7 2832
e050e3f0 2833 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2834
0f5a2601
PZ
2835 perf_pmu_enable(cpuctx->ctx.pmu);
2836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2837done:
e9d2b064
PZ
2838 if (remove)
2839 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2840
2841 return rotate;
e9d2b064
PZ
2842}
2843
026249ef
FW
2844#ifdef CONFIG_NO_HZ_FULL
2845bool perf_event_can_stop_tick(void)
2846{
948b26b6 2847 if (atomic_read(&nr_freq_events) ||
d84153d6 2848 __this_cpu_read(perf_throttled_count))
026249ef 2849 return false;
d84153d6
FW
2850 else
2851 return true;
026249ef
FW
2852}
2853#endif
2854
e9d2b064
PZ
2855void perf_event_task_tick(void)
2856{
2857 struct list_head *head = &__get_cpu_var(rotation_list);
2858 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2859 struct perf_event_context *ctx;
2860 int throttled;
b5ab4cd5 2861
e9d2b064
PZ
2862 WARN_ON(!irqs_disabled());
2863
e050e3f0
SE
2864 __this_cpu_inc(perf_throttled_seq);
2865 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2866
e9d2b064 2867 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2868 ctx = &cpuctx->ctx;
2869 perf_adjust_freq_unthr_context(ctx, throttled);
2870
2871 ctx = cpuctx->task_ctx;
2872 if (ctx)
2873 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2874 }
0793a61d
TG
2875}
2876
889ff015
FW
2877static int event_enable_on_exec(struct perf_event *event,
2878 struct perf_event_context *ctx)
2879{
2880 if (!event->attr.enable_on_exec)
2881 return 0;
2882
2883 event->attr.enable_on_exec = 0;
2884 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2885 return 0;
2886
1d9b482e 2887 __perf_event_mark_enabled(event);
889ff015
FW
2888
2889 return 1;
2890}
2891
57e7986e 2892/*
cdd6c482 2893 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2894 * This expects task == current.
2895 */
8dc85d54 2896static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2897{
cdd6c482 2898 struct perf_event *event;
57e7986e
PM
2899 unsigned long flags;
2900 int enabled = 0;
889ff015 2901 int ret;
57e7986e
PM
2902
2903 local_irq_save(flags);
cdd6c482 2904 if (!ctx || !ctx->nr_events)
57e7986e
PM
2905 goto out;
2906
e566b76e
SE
2907 /*
2908 * We must ctxsw out cgroup events to avoid conflict
2909 * when invoking perf_task_event_sched_in() later on
2910 * in this function. Otherwise we end up trying to
2911 * ctxswin cgroup events which are already scheduled
2912 * in.
2913 */
a8d757ef 2914 perf_cgroup_sched_out(current, NULL);
57e7986e 2915
e625cce1 2916 raw_spin_lock(&ctx->lock);
04dc2dbb 2917 task_ctx_sched_out(ctx);
57e7986e 2918
b79387ef 2919 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2920 ret = event_enable_on_exec(event, ctx);
2921 if (ret)
2922 enabled = 1;
57e7986e
PM
2923 }
2924
2925 /*
cdd6c482 2926 * Unclone this context if we enabled any event.
57e7986e 2927 */
71a851b4
PZ
2928 if (enabled)
2929 unclone_ctx(ctx);
57e7986e 2930
e625cce1 2931 raw_spin_unlock(&ctx->lock);
57e7986e 2932
e566b76e
SE
2933 /*
2934 * Also calls ctxswin for cgroup events, if any:
2935 */
e5d1367f 2936 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2937out:
57e7986e
PM
2938 local_irq_restore(flags);
2939}
2940
0793a61d 2941/*
cdd6c482 2942 * Cross CPU call to read the hardware event
0793a61d 2943 */
cdd6c482 2944static void __perf_event_read(void *info)
0793a61d 2945{
cdd6c482
IM
2946 struct perf_event *event = info;
2947 struct perf_event_context *ctx = event->ctx;
108b02cf 2948 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2949
e1ac3614
PM
2950 /*
2951 * If this is a task context, we need to check whether it is
2952 * the current task context of this cpu. If not it has been
2953 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2954 * event->count would have been updated to a recent sample
2955 * when the event was scheduled out.
e1ac3614
PM
2956 */
2957 if (ctx->task && cpuctx->task_ctx != ctx)
2958 return;
2959
e625cce1 2960 raw_spin_lock(&ctx->lock);
e5d1367f 2961 if (ctx->is_active) {
542e72fc 2962 update_context_time(ctx);
e5d1367f
SE
2963 update_cgrp_time_from_event(event);
2964 }
cdd6c482 2965 update_event_times(event);
542e72fc
PZ
2966 if (event->state == PERF_EVENT_STATE_ACTIVE)
2967 event->pmu->read(event);
e625cce1 2968 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2969}
2970
b5e58793
PZ
2971static inline u64 perf_event_count(struct perf_event *event)
2972{
e7850595 2973 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2974}
2975
cdd6c482 2976static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2977{
2978 /*
cdd6c482
IM
2979 * If event is enabled and currently active on a CPU, update the
2980 * value in the event structure:
0793a61d 2981 */
cdd6c482
IM
2982 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2983 smp_call_function_single(event->oncpu,
2984 __perf_event_read, event, 1);
2985 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2986 struct perf_event_context *ctx = event->ctx;
2987 unsigned long flags;
2988
e625cce1 2989 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2990 /*
2991 * may read while context is not active
2992 * (e.g., thread is blocked), in that case
2993 * we cannot update context time
2994 */
e5d1367f 2995 if (ctx->is_active) {
c530ccd9 2996 update_context_time(ctx);
e5d1367f
SE
2997 update_cgrp_time_from_event(event);
2998 }
cdd6c482 2999 update_event_times(event);
e625cce1 3000 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3001 }
3002
b5e58793 3003 return perf_event_count(event);
0793a61d
TG
3004}
3005
a63eaf34 3006/*
cdd6c482 3007 * Initialize the perf_event context in a task_struct:
a63eaf34 3008 */
eb184479 3009static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3010{
e625cce1 3011 raw_spin_lock_init(&ctx->lock);
a63eaf34 3012 mutex_init(&ctx->mutex);
889ff015
FW
3013 INIT_LIST_HEAD(&ctx->pinned_groups);
3014 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3015 INIT_LIST_HEAD(&ctx->event_list);
3016 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3017}
3018
3019static struct perf_event_context *
3020alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3021{
3022 struct perf_event_context *ctx;
3023
3024 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3025 if (!ctx)
3026 return NULL;
3027
3028 __perf_event_init_context(ctx);
3029 if (task) {
3030 ctx->task = task;
3031 get_task_struct(task);
0793a61d 3032 }
eb184479
PZ
3033 ctx->pmu = pmu;
3034
3035 return ctx;
a63eaf34
PM
3036}
3037
2ebd4ffb
MH
3038static struct task_struct *
3039find_lively_task_by_vpid(pid_t vpid)
3040{
3041 struct task_struct *task;
3042 int err;
0793a61d
TG
3043
3044 rcu_read_lock();
2ebd4ffb 3045 if (!vpid)
0793a61d
TG
3046 task = current;
3047 else
2ebd4ffb 3048 task = find_task_by_vpid(vpid);
0793a61d
TG
3049 if (task)
3050 get_task_struct(task);
3051 rcu_read_unlock();
3052
3053 if (!task)
3054 return ERR_PTR(-ESRCH);
3055
0793a61d 3056 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3057 err = -EACCES;
3058 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3059 goto errout;
3060
2ebd4ffb
MH
3061 return task;
3062errout:
3063 put_task_struct(task);
3064 return ERR_PTR(err);
3065
3066}
3067
fe4b04fa
PZ
3068/*
3069 * Returns a matching context with refcount and pincount.
3070 */
108b02cf 3071static struct perf_event_context *
38a81da2 3072find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3073{
cdd6c482 3074 struct perf_event_context *ctx;
22a4f650 3075 struct perf_cpu_context *cpuctx;
25346b93 3076 unsigned long flags;
8dc85d54 3077 int ctxn, err;
0793a61d 3078
22a4ec72 3079 if (!task) {
cdd6c482 3080 /* Must be root to operate on a CPU event: */
0764771d 3081 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3082 return ERR_PTR(-EACCES);
3083
0793a61d 3084 /*
cdd6c482 3085 * We could be clever and allow to attach a event to an
0793a61d
TG
3086 * offline CPU and activate it when the CPU comes up, but
3087 * that's for later.
3088 */
f6325e30 3089 if (!cpu_online(cpu))
0793a61d
TG
3090 return ERR_PTR(-ENODEV);
3091
108b02cf 3092 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3093 ctx = &cpuctx->ctx;
c93f7669 3094 get_ctx(ctx);
fe4b04fa 3095 ++ctx->pin_count;
0793a61d 3096
0793a61d
TG
3097 return ctx;
3098 }
3099
8dc85d54
PZ
3100 err = -EINVAL;
3101 ctxn = pmu->task_ctx_nr;
3102 if (ctxn < 0)
3103 goto errout;
3104
9ed6060d 3105retry:
8dc85d54 3106 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3107 if (ctx) {
71a851b4 3108 unclone_ctx(ctx);
fe4b04fa 3109 ++ctx->pin_count;
e625cce1 3110 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3111 } else {
eb184479 3112 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3113 err = -ENOMEM;
3114 if (!ctx)
3115 goto errout;
eb184479 3116
dbe08d82
ON
3117 err = 0;
3118 mutex_lock(&task->perf_event_mutex);
3119 /*
3120 * If it has already passed perf_event_exit_task().
3121 * we must see PF_EXITING, it takes this mutex too.
3122 */
3123 if (task->flags & PF_EXITING)
3124 err = -ESRCH;
3125 else if (task->perf_event_ctxp[ctxn])
3126 err = -EAGAIN;
fe4b04fa 3127 else {
9137fb28 3128 get_ctx(ctx);
fe4b04fa 3129 ++ctx->pin_count;
dbe08d82 3130 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3131 }
dbe08d82
ON
3132 mutex_unlock(&task->perf_event_mutex);
3133
3134 if (unlikely(err)) {
9137fb28 3135 put_ctx(ctx);
dbe08d82
ON
3136
3137 if (err == -EAGAIN)
3138 goto retry;
3139 goto errout;
a63eaf34
PM
3140 }
3141 }
3142
0793a61d 3143 return ctx;
c93f7669 3144
9ed6060d 3145errout:
c93f7669 3146 return ERR_PTR(err);
0793a61d
TG
3147}
3148
6fb2915d
LZ
3149static void perf_event_free_filter(struct perf_event *event);
3150
cdd6c482 3151static void free_event_rcu(struct rcu_head *head)
592903cd 3152{
cdd6c482 3153 struct perf_event *event;
592903cd 3154
cdd6c482
IM
3155 event = container_of(head, struct perf_event, rcu_head);
3156 if (event->ns)
3157 put_pid_ns(event->ns);
6fb2915d 3158 perf_event_free_filter(event);
cdd6c482 3159 kfree(event);
592903cd
PZ
3160}
3161
76369139 3162static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3163static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3164
4beb31f3 3165static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3166{
4beb31f3
FW
3167 if (event->parent)
3168 return;
3169
3170 if (has_branch_stack(event)) {
3171 if (!(event->attach_state & PERF_ATTACH_TASK))
3172 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3173 }
3174 if (is_cgroup_event(event))
3175 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3176}
925d519a 3177
4beb31f3
FW
3178static void unaccount_event(struct perf_event *event)
3179{
3180 if (event->parent)
3181 return;
3182
3183 if (event->attach_state & PERF_ATTACH_TASK)
3184 static_key_slow_dec_deferred(&perf_sched_events);
3185 if (event->attr.mmap || event->attr.mmap_data)
3186 atomic_dec(&nr_mmap_events);
3187 if (event->attr.comm)
3188 atomic_dec(&nr_comm_events);
3189 if (event->attr.task)
3190 atomic_dec(&nr_task_events);
948b26b6
FW
3191 if (event->attr.freq)
3192 atomic_dec(&nr_freq_events);
4beb31f3
FW
3193 if (is_cgroup_event(event))
3194 static_key_slow_dec_deferred(&perf_sched_events);
3195 if (has_branch_stack(event))
3196 static_key_slow_dec_deferred(&perf_sched_events);
3197
3198 unaccount_event_cpu(event, event->cpu);
3199}
925d519a 3200
766d6c07
FW
3201static void __free_event(struct perf_event *event)
3202{
cdd6c482 3203 if (!event->parent) {
927c7a9e
FW
3204 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3205 put_callchain_buffers();
f344011c 3206 }
9ee318a7 3207
766d6c07
FW
3208 if (event->destroy)
3209 event->destroy(event);
3210
3211 if (event->ctx)
3212 put_ctx(event->ctx);
3213
3214 call_rcu(&event->rcu_head, free_event_rcu);
3215}
cdd6c482 3216static void free_event(struct perf_event *event)
f1600952 3217{
e360adbe 3218 irq_work_sync(&event->pending);
925d519a 3219
4beb31f3 3220 unaccount_event(event);
9ee318a7 3221
76369139 3222 if (event->rb) {
9bb5d40c
PZ
3223 struct ring_buffer *rb;
3224
3225 /*
3226 * Can happen when we close an event with re-directed output.
3227 *
3228 * Since we have a 0 refcount, perf_mmap_close() will skip
3229 * over us; possibly making our ring_buffer_put() the last.
3230 */
3231 mutex_lock(&event->mmap_mutex);
3232 rb = event->rb;
3233 if (rb) {
3234 rcu_assign_pointer(event->rb, NULL);
3235 ring_buffer_detach(event, rb);
3236 ring_buffer_put(rb); /* could be last */
3237 }
3238 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3239 }
3240
e5d1367f
SE
3241 if (is_cgroup_event(event))
3242 perf_detach_cgroup(event);
3243
0c67b408 3244
766d6c07 3245 __free_event(event);
f1600952
PZ
3246}
3247
a66a3052 3248int perf_event_release_kernel(struct perf_event *event)
0793a61d 3249{
cdd6c482 3250 struct perf_event_context *ctx = event->ctx;
0793a61d 3251
ad3a37de 3252 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3253 /*
3254 * There are two ways this annotation is useful:
3255 *
3256 * 1) there is a lock recursion from perf_event_exit_task
3257 * see the comment there.
3258 *
3259 * 2) there is a lock-inversion with mmap_sem through
3260 * perf_event_read_group(), which takes faults while
3261 * holding ctx->mutex, however this is called after
3262 * the last filedesc died, so there is no possibility
3263 * to trigger the AB-BA case.
3264 */
3265 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3266 raw_spin_lock_irq(&ctx->lock);
8a49542c 3267 perf_group_detach(event);
050735b0 3268 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3269 perf_remove_from_context(event);
d859e29f 3270 mutex_unlock(&ctx->mutex);
0793a61d 3271
cdd6c482 3272 free_event(event);
0793a61d
TG
3273
3274 return 0;
3275}
a66a3052 3276EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3277
a66a3052
PZ
3278/*
3279 * Called when the last reference to the file is gone.
3280 */
a6fa941d 3281static void put_event(struct perf_event *event)
fb0459d7 3282{
8882135b 3283 struct task_struct *owner;
fb0459d7 3284
a6fa941d
AV
3285 if (!atomic_long_dec_and_test(&event->refcount))
3286 return;
fb0459d7 3287
8882135b
PZ
3288 rcu_read_lock();
3289 owner = ACCESS_ONCE(event->owner);
3290 /*
3291 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3292 * !owner it means the list deletion is complete and we can indeed
3293 * free this event, otherwise we need to serialize on
3294 * owner->perf_event_mutex.
3295 */
3296 smp_read_barrier_depends();
3297 if (owner) {
3298 /*
3299 * Since delayed_put_task_struct() also drops the last
3300 * task reference we can safely take a new reference
3301 * while holding the rcu_read_lock().
3302 */
3303 get_task_struct(owner);
3304 }
3305 rcu_read_unlock();
3306
3307 if (owner) {
3308 mutex_lock(&owner->perf_event_mutex);
3309 /*
3310 * We have to re-check the event->owner field, if it is cleared
3311 * we raced with perf_event_exit_task(), acquiring the mutex
3312 * ensured they're done, and we can proceed with freeing the
3313 * event.
3314 */
3315 if (event->owner)
3316 list_del_init(&event->owner_entry);
3317 mutex_unlock(&owner->perf_event_mutex);
3318 put_task_struct(owner);
3319 }
3320
a6fa941d
AV
3321 perf_event_release_kernel(event);
3322}
3323
3324static int perf_release(struct inode *inode, struct file *file)
3325{
3326 put_event(file->private_data);
3327 return 0;
fb0459d7 3328}
fb0459d7 3329
59ed446f 3330u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3331{
cdd6c482 3332 struct perf_event *child;
e53c0994
PZ
3333 u64 total = 0;
3334
59ed446f
PZ
3335 *enabled = 0;
3336 *running = 0;
3337
6f10581a 3338 mutex_lock(&event->child_mutex);
cdd6c482 3339 total += perf_event_read(event);
59ed446f
PZ
3340 *enabled += event->total_time_enabled +
3341 atomic64_read(&event->child_total_time_enabled);
3342 *running += event->total_time_running +
3343 atomic64_read(&event->child_total_time_running);
3344
3345 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3346 total += perf_event_read(child);
59ed446f
PZ
3347 *enabled += child->total_time_enabled;
3348 *running += child->total_time_running;
3349 }
6f10581a 3350 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3351
3352 return total;
3353}
fb0459d7 3354EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3355
cdd6c482 3356static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3357 u64 read_format, char __user *buf)
3358{
cdd6c482 3359 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3360 int n = 0, size = 0, ret = -EFAULT;
3361 struct perf_event_context *ctx = leader->ctx;
abf4868b 3362 u64 values[5];
59ed446f 3363 u64 count, enabled, running;
abf4868b 3364
6f10581a 3365 mutex_lock(&ctx->mutex);
59ed446f 3366 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3367
3368 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3370 values[n++] = enabled;
3371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3372 values[n++] = running;
abf4868b
PZ
3373 values[n++] = count;
3374 if (read_format & PERF_FORMAT_ID)
3375 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3376
3377 size = n * sizeof(u64);
3378
3379 if (copy_to_user(buf, values, size))
6f10581a 3380 goto unlock;
3dab77fb 3381
6f10581a 3382 ret = size;
3dab77fb 3383
65abc865 3384 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3385 n = 0;
3dab77fb 3386
59ed446f 3387 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3388 if (read_format & PERF_FORMAT_ID)
3389 values[n++] = primary_event_id(sub);
3390
3391 size = n * sizeof(u64);
3392
184d3da8 3393 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3394 ret = -EFAULT;
3395 goto unlock;
3396 }
abf4868b
PZ
3397
3398 ret += size;
3dab77fb 3399 }
6f10581a
PZ
3400unlock:
3401 mutex_unlock(&ctx->mutex);
3dab77fb 3402
abf4868b 3403 return ret;
3dab77fb
PZ
3404}
3405
cdd6c482 3406static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3407 u64 read_format, char __user *buf)
3408{
59ed446f 3409 u64 enabled, running;
3dab77fb
PZ
3410 u64 values[4];
3411 int n = 0;
3412
59ed446f
PZ
3413 values[n++] = perf_event_read_value(event, &enabled, &running);
3414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3415 values[n++] = enabled;
3416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3417 values[n++] = running;
3dab77fb 3418 if (read_format & PERF_FORMAT_ID)
cdd6c482 3419 values[n++] = primary_event_id(event);
3dab77fb
PZ
3420
3421 if (copy_to_user(buf, values, n * sizeof(u64)))
3422 return -EFAULT;
3423
3424 return n * sizeof(u64);
3425}
3426
0793a61d 3427/*
cdd6c482 3428 * Read the performance event - simple non blocking version for now
0793a61d
TG
3429 */
3430static ssize_t
cdd6c482 3431perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3432{
cdd6c482 3433 u64 read_format = event->attr.read_format;
3dab77fb 3434 int ret;
0793a61d 3435
3b6f9e5c 3436 /*
cdd6c482 3437 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3438 * error state (i.e. because it was pinned but it couldn't be
3439 * scheduled on to the CPU at some point).
3440 */
cdd6c482 3441 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3442 return 0;
3443
c320c7b7 3444 if (count < event->read_size)
3dab77fb
PZ
3445 return -ENOSPC;
3446
cdd6c482 3447 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3448 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3449 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3450 else
cdd6c482 3451 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3452
3dab77fb 3453 return ret;
0793a61d
TG
3454}
3455
0793a61d
TG
3456static ssize_t
3457perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3458{
cdd6c482 3459 struct perf_event *event = file->private_data;
0793a61d 3460
cdd6c482 3461 return perf_read_hw(event, buf, count);
0793a61d
TG
3462}
3463
3464static unsigned int perf_poll(struct file *file, poll_table *wait)
3465{
cdd6c482 3466 struct perf_event *event = file->private_data;
76369139 3467 struct ring_buffer *rb;
c33a0bc4 3468 unsigned int events = POLL_HUP;
c7138f37 3469
10c6db11 3470 /*
9bb5d40c
PZ
3471 * Pin the event->rb by taking event->mmap_mutex; otherwise
3472 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3473 */
3474 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3475 rb = event->rb;
3476 if (rb)
76369139 3477 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3478 mutex_unlock(&event->mmap_mutex);
3479
cdd6c482 3480 poll_wait(file, &event->waitq, wait);
0793a61d 3481
0793a61d
TG
3482 return events;
3483}
3484
cdd6c482 3485static void perf_event_reset(struct perf_event *event)
6de6a7b9 3486{
cdd6c482 3487 (void)perf_event_read(event);
e7850595 3488 local64_set(&event->count, 0);
cdd6c482 3489 perf_event_update_userpage(event);
3df5edad
PZ
3490}
3491
c93f7669 3492/*
cdd6c482
IM
3493 * Holding the top-level event's child_mutex means that any
3494 * descendant process that has inherited this event will block
3495 * in sync_child_event if it goes to exit, thus satisfying the
3496 * task existence requirements of perf_event_enable/disable.
c93f7669 3497 */
cdd6c482
IM
3498static void perf_event_for_each_child(struct perf_event *event,
3499 void (*func)(struct perf_event *))
3df5edad 3500{
cdd6c482 3501 struct perf_event *child;
3df5edad 3502
cdd6c482
IM
3503 WARN_ON_ONCE(event->ctx->parent_ctx);
3504 mutex_lock(&event->child_mutex);
3505 func(event);
3506 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3507 func(child);
cdd6c482 3508 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3509}
3510
cdd6c482
IM
3511static void perf_event_for_each(struct perf_event *event,
3512 void (*func)(struct perf_event *))
3df5edad 3513{
cdd6c482
IM
3514 struct perf_event_context *ctx = event->ctx;
3515 struct perf_event *sibling;
3df5edad 3516
75f937f2
PZ
3517 WARN_ON_ONCE(ctx->parent_ctx);
3518 mutex_lock(&ctx->mutex);
cdd6c482 3519 event = event->group_leader;
75f937f2 3520
cdd6c482 3521 perf_event_for_each_child(event, func);
cdd6c482 3522 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3523 perf_event_for_each_child(sibling, func);
75f937f2 3524 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3525}
3526
cdd6c482 3527static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3528{
cdd6c482 3529 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3530 int ret = 0;
3531 u64 value;
3532
6c7e550f 3533 if (!is_sampling_event(event))
08247e31
PZ
3534 return -EINVAL;
3535
ad0cf347 3536 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3537 return -EFAULT;
3538
3539 if (!value)
3540 return -EINVAL;
3541
e625cce1 3542 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3543 if (event->attr.freq) {
3544 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3545 ret = -EINVAL;
3546 goto unlock;
3547 }
3548
cdd6c482 3549 event->attr.sample_freq = value;
08247e31 3550 } else {
cdd6c482
IM
3551 event->attr.sample_period = value;
3552 event->hw.sample_period = value;
08247e31
PZ
3553 }
3554unlock:
e625cce1 3555 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3556
3557 return ret;
3558}
3559
ac9721f3
PZ
3560static const struct file_operations perf_fops;
3561
2903ff01 3562static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3563{
2903ff01
AV
3564 struct fd f = fdget(fd);
3565 if (!f.file)
3566 return -EBADF;
ac9721f3 3567
2903ff01
AV
3568 if (f.file->f_op != &perf_fops) {
3569 fdput(f);
3570 return -EBADF;
ac9721f3 3571 }
2903ff01
AV
3572 *p = f;
3573 return 0;
ac9721f3
PZ
3574}
3575
3576static int perf_event_set_output(struct perf_event *event,
3577 struct perf_event *output_event);
6fb2915d 3578static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3579
d859e29f
PM
3580static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3581{
cdd6c482
IM
3582 struct perf_event *event = file->private_data;
3583 void (*func)(struct perf_event *);
3df5edad 3584 u32 flags = arg;
d859e29f
PM
3585
3586 switch (cmd) {
cdd6c482
IM
3587 case PERF_EVENT_IOC_ENABLE:
3588 func = perf_event_enable;
d859e29f 3589 break;
cdd6c482
IM
3590 case PERF_EVENT_IOC_DISABLE:
3591 func = perf_event_disable;
79f14641 3592 break;
cdd6c482
IM
3593 case PERF_EVENT_IOC_RESET:
3594 func = perf_event_reset;
6de6a7b9 3595 break;
3df5edad 3596
cdd6c482
IM
3597 case PERF_EVENT_IOC_REFRESH:
3598 return perf_event_refresh(event, arg);
08247e31 3599
cdd6c482
IM
3600 case PERF_EVENT_IOC_PERIOD:
3601 return perf_event_period(event, (u64 __user *)arg);
08247e31 3602
cf4957f1
JO
3603 case PERF_EVENT_IOC_ID:
3604 {
3605 u64 id = primary_event_id(event);
3606
3607 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3608 return -EFAULT;
3609 return 0;
3610 }
3611
cdd6c482 3612 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3613 {
ac9721f3 3614 int ret;
ac9721f3 3615 if (arg != -1) {
2903ff01
AV
3616 struct perf_event *output_event;
3617 struct fd output;
3618 ret = perf_fget_light(arg, &output);
3619 if (ret)
3620 return ret;
3621 output_event = output.file->private_data;
3622 ret = perf_event_set_output(event, output_event);
3623 fdput(output);
3624 } else {
3625 ret = perf_event_set_output(event, NULL);
ac9721f3 3626 }
ac9721f3
PZ
3627 return ret;
3628 }
a4be7c27 3629
6fb2915d
LZ
3630 case PERF_EVENT_IOC_SET_FILTER:
3631 return perf_event_set_filter(event, (void __user *)arg);
3632
d859e29f 3633 default:
3df5edad 3634 return -ENOTTY;
d859e29f 3635 }
3df5edad
PZ
3636
3637 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3638 perf_event_for_each(event, func);
3df5edad 3639 else
cdd6c482 3640 perf_event_for_each_child(event, func);
3df5edad
PZ
3641
3642 return 0;
d859e29f
PM
3643}
3644
cdd6c482 3645int perf_event_task_enable(void)
771d7cde 3646{
cdd6c482 3647 struct perf_event *event;
771d7cde 3648
cdd6c482
IM
3649 mutex_lock(&current->perf_event_mutex);
3650 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3651 perf_event_for_each_child(event, perf_event_enable);
3652 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3653
3654 return 0;
3655}
3656
cdd6c482 3657int perf_event_task_disable(void)
771d7cde 3658{
cdd6c482 3659 struct perf_event *event;
771d7cde 3660
cdd6c482
IM
3661 mutex_lock(&current->perf_event_mutex);
3662 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3663 perf_event_for_each_child(event, perf_event_disable);
3664 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3665
3666 return 0;
3667}
3668
cdd6c482 3669static int perf_event_index(struct perf_event *event)
194002b2 3670{
a4eaf7f1
PZ
3671 if (event->hw.state & PERF_HES_STOPPED)
3672 return 0;
3673
cdd6c482 3674 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3675 return 0;
3676
35edc2a5 3677 return event->pmu->event_idx(event);
194002b2
PZ
3678}
3679
c4794295 3680static void calc_timer_values(struct perf_event *event,
e3f3541c 3681 u64 *now,
7f310a5d
EM
3682 u64 *enabled,
3683 u64 *running)
c4794295 3684{
e3f3541c 3685 u64 ctx_time;
c4794295 3686
e3f3541c
PZ
3687 *now = perf_clock();
3688 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3689 *enabled = ctx_time - event->tstamp_enabled;
3690 *running = ctx_time - event->tstamp_running;
3691}
3692
fa731587
PZ
3693static void perf_event_init_userpage(struct perf_event *event)
3694{
3695 struct perf_event_mmap_page *userpg;
3696 struct ring_buffer *rb;
3697
3698 rcu_read_lock();
3699 rb = rcu_dereference(event->rb);
3700 if (!rb)
3701 goto unlock;
3702
3703 userpg = rb->user_page;
3704
3705 /* Allow new userspace to detect that bit 0 is deprecated */
3706 userpg->cap_bit0_is_deprecated = 1;
3707 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3708
3709unlock:
3710 rcu_read_unlock();
3711}
3712
c7206205 3713void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3714{
3715}
3716
38ff667b
PZ
3717/*
3718 * Callers need to ensure there can be no nesting of this function, otherwise
3719 * the seqlock logic goes bad. We can not serialize this because the arch
3720 * code calls this from NMI context.
3721 */
cdd6c482 3722void perf_event_update_userpage(struct perf_event *event)
37d81828 3723{
cdd6c482 3724 struct perf_event_mmap_page *userpg;
76369139 3725 struct ring_buffer *rb;
e3f3541c 3726 u64 enabled, running, now;
38ff667b
PZ
3727
3728 rcu_read_lock();
5ec4c599
PZ
3729 rb = rcu_dereference(event->rb);
3730 if (!rb)
3731 goto unlock;
3732
0d641208
EM
3733 /*
3734 * compute total_time_enabled, total_time_running
3735 * based on snapshot values taken when the event
3736 * was last scheduled in.
3737 *
3738 * we cannot simply called update_context_time()
3739 * because of locking issue as we can be called in
3740 * NMI context
3741 */
e3f3541c 3742 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3743
76369139 3744 userpg = rb->user_page;
7b732a75
PZ
3745 /*
3746 * Disable preemption so as to not let the corresponding user-space
3747 * spin too long if we get preempted.
3748 */
3749 preempt_disable();
37d81828 3750 ++userpg->lock;
92f22a38 3751 barrier();
cdd6c482 3752 userpg->index = perf_event_index(event);
b5e58793 3753 userpg->offset = perf_event_count(event);
365a4038 3754 if (userpg->index)
e7850595 3755 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3756
0d641208 3757 userpg->time_enabled = enabled +
cdd6c482 3758 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3759
0d641208 3760 userpg->time_running = running +
cdd6c482 3761 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3762
c7206205 3763 arch_perf_update_userpage(userpg, now);
e3f3541c 3764
92f22a38 3765 barrier();
37d81828 3766 ++userpg->lock;
7b732a75 3767 preempt_enable();
38ff667b 3768unlock:
7b732a75 3769 rcu_read_unlock();
37d81828
PM
3770}
3771
906010b2
PZ
3772static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3773{
3774 struct perf_event *event = vma->vm_file->private_data;
76369139 3775 struct ring_buffer *rb;
906010b2
PZ
3776 int ret = VM_FAULT_SIGBUS;
3777
3778 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3779 if (vmf->pgoff == 0)
3780 ret = 0;
3781 return ret;
3782 }
3783
3784 rcu_read_lock();
76369139
FW
3785 rb = rcu_dereference(event->rb);
3786 if (!rb)
906010b2
PZ
3787 goto unlock;
3788
3789 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3790 goto unlock;
3791
76369139 3792 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3793 if (!vmf->page)
3794 goto unlock;
3795
3796 get_page(vmf->page);
3797 vmf->page->mapping = vma->vm_file->f_mapping;
3798 vmf->page->index = vmf->pgoff;
3799
3800 ret = 0;
3801unlock:
3802 rcu_read_unlock();
3803
3804 return ret;
3805}
3806
10c6db11
PZ
3807static void ring_buffer_attach(struct perf_event *event,
3808 struct ring_buffer *rb)
3809{
3810 unsigned long flags;
3811
3812 if (!list_empty(&event->rb_entry))
3813 return;
3814
3815 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3816 if (list_empty(&event->rb_entry))
3817 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3818 spin_unlock_irqrestore(&rb->event_lock, flags);
3819}
3820
9bb5d40c 3821static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3822{
3823 unsigned long flags;
3824
3825 if (list_empty(&event->rb_entry))
3826 return;
3827
3828 spin_lock_irqsave(&rb->event_lock, flags);
3829 list_del_init(&event->rb_entry);
3830 wake_up_all(&event->waitq);
3831 spin_unlock_irqrestore(&rb->event_lock, flags);
3832}
3833
3834static void ring_buffer_wakeup(struct perf_event *event)
3835{
3836 struct ring_buffer *rb;
3837
3838 rcu_read_lock();
3839 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3840 if (rb) {
3841 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3842 wake_up_all(&event->waitq);
3843 }
10c6db11
PZ
3844 rcu_read_unlock();
3845}
3846
76369139 3847static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3848{
76369139 3849 struct ring_buffer *rb;
906010b2 3850
76369139
FW
3851 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3852 rb_free(rb);
7b732a75
PZ
3853}
3854
76369139 3855static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3856{
76369139 3857 struct ring_buffer *rb;
7b732a75 3858
ac9721f3 3859 rcu_read_lock();
76369139
FW
3860 rb = rcu_dereference(event->rb);
3861 if (rb) {
3862 if (!atomic_inc_not_zero(&rb->refcount))
3863 rb = NULL;
ac9721f3
PZ
3864 }
3865 rcu_read_unlock();
3866
76369139 3867 return rb;
ac9721f3
PZ
3868}
3869
76369139 3870static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3871{
76369139 3872 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3873 return;
7b732a75 3874
9bb5d40c 3875 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3876
76369139 3877 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3878}
3879
3880static void perf_mmap_open(struct vm_area_struct *vma)
3881{
cdd6c482 3882 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3883
cdd6c482 3884 atomic_inc(&event->mmap_count);
9bb5d40c 3885 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3886}
3887
9bb5d40c
PZ
3888/*
3889 * A buffer can be mmap()ed multiple times; either directly through the same
3890 * event, or through other events by use of perf_event_set_output().
3891 *
3892 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3893 * the buffer here, where we still have a VM context. This means we need
3894 * to detach all events redirecting to us.
3895 */
7b732a75
PZ
3896static void perf_mmap_close(struct vm_area_struct *vma)
3897{
cdd6c482 3898 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3899
9bb5d40c
PZ
3900 struct ring_buffer *rb = event->rb;
3901 struct user_struct *mmap_user = rb->mmap_user;
3902 int mmap_locked = rb->mmap_locked;
3903 unsigned long size = perf_data_size(rb);
789f90fc 3904
9bb5d40c
PZ
3905 atomic_dec(&rb->mmap_count);
3906
3907 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3908 return;
3909
3910 /* Detach current event from the buffer. */
3911 rcu_assign_pointer(event->rb, NULL);
3912 ring_buffer_detach(event, rb);
3913 mutex_unlock(&event->mmap_mutex);
3914
3915 /* If there's still other mmap()s of this buffer, we're done. */
3916 if (atomic_read(&rb->mmap_count)) {
3917 ring_buffer_put(rb); /* can't be last */
3918 return;
3919 }
ac9721f3 3920
9bb5d40c
PZ
3921 /*
3922 * No other mmap()s, detach from all other events that might redirect
3923 * into the now unreachable buffer. Somewhat complicated by the
3924 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3925 */
3926again:
3927 rcu_read_lock();
3928 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3929 if (!atomic_long_inc_not_zero(&event->refcount)) {
3930 /*
3931 * This event is en-route to free_event() which will
3932 * detach it and remove it from the list.
3933 */
3934 continue;
3935 }
3936 rcu_read_unlock();
789f90fc 3937
9bb5d40c
PZ
3938 mutex_lock(&event->mmap_mutex);
3939 /*
3940 * Check we didn't race with perf_event_set_output() which can
3941 * swizzle the rb from under us while we were waiting to
3942 * acquire mmap_mutex.
3943 *
3944 * If we find a different rb; ignore this event, a next
3945 * iteration will no longer find it on the list. We have to
3946 * still restart the iteration to make sure we're not now
3947 * iterating the wrong list.
3948 */
3949 if (event->rb == rb) {
3950 rcu_assign_pointer(event->rb, NULL);
3951 ring_buffer_detach(event, rb);
3952 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3953 }
cdd6c482 3954 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3955 put_event(event);
ac9721f3 3956
9bb5d40c
PZ
3957 /*
3958 * Restart the iteration; either we're on the wrong list or
3959 * destroyed its integrity by doing a deletion.
3960 */
3961 goto again;
7b732a75 3962 }
9bb5d40c
PZ
3963 rcu_read_unlock();
3964
3965 /*
3966 * It could be there's still a few 0-ref events on the list; they'll
3967 * get cleaned up by free_event() -- they'll also still have their
3968 * ref on the rb and will free it whenever they are done with it.
3969 *
3970 * Aside from that, this buffer is 'fully' detached and unmapped,
3971 * undo the VM accounting.
3972 */
3973
3974 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3975 vma->vm_mm->pinned_vm -= mmap_locked;
3976 free_uid(mmap_user);
3977
3978 ring_buffer_put(rb); /* could be last */
37d81828
PM
3979}
3980
f0f37e2f 3981static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3982 .open = perf_mmap_open,
3983 .close = perf_mmap_close,
3984 .fault = perf_mmap_fault,
3985 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3986};
3987
3988static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3989{
cdd6c482 3990 struct perf_event *event = file->private_data;
22a4f650 3991 unsigned long user_locked, user_lock_limit;
789f90fc 3992 struct user_struct *user = current_user();
22a4f650 3993 unsigned long locked, lock_limit;
76369139 3994 struct ring_buffer *rb;
7b732a75
PZ
3995 unsigned long vma_size;
3996 unsigned long nr_pages;
789f90fc 3997 long user_extra, extra;
d57e34fd 3998 int ret = 0, flags = 0;
37d81828 3999
c7920614
PZ
4000 /*
4001 * Don't allow mmap() of inherited per-task counters. This would
4002 * create a performance issue due to all children writing to the
76369139 4003 * same rb.
c7920614
PZ
4004 */
4005 if (event->cpu == -1 && event->attr.inherit)
4006 return -EINVAL;
4007
43a21ea8 4008 if (!(vma->vm_flags & VM_SHARED))
37d81828 4009 return -EINVAL;
7b732a75
PZ
4010
4011 vma_size = vma->vm_end - vma->vm_start;
4012 nr_pages = (vma_size / PAGE_SIZE) - 1;
4013
7730d865 4014 /*
76369139 4015 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4016 * can do bitmasks instead of modulo.
4017 */
4018 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4019 return -EINVAL;
4020
7b732a75 4021 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4022 return -EINVAL;
4023
7b732a75
PZ
4024 if (vma->vm_pgoff != 0)
4025 return -EINVAL;
37d81828 4026
cdd6c482 4027 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4028again:
cdd6c482 4029 mutex_lock(&event->mmap_mutex);
76369139 4030 if (event->rb) {
9bb5d40c 4031 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4032 ret = -EINVAL;
9bb5d40c
PZ
4033 goto unlock;
4034 }
4035
4036 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4037 /*
4038 * Raced against perf_mmap_close() through
4039 * perf_event_set_output(). Try again, hope for better
4040 * luck.
4041 */
4042 mutex_unlock(&event->mmap_mutex);
4043 goto again;
4044 }
4045
ebb3c4c4
PZ
4046 goto unlock;
4047 }
4048
789f90fc 4049 user_extra = nr_pages + 1;
cdd6c482 4050 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4051
4052 /*
4053 * Increase the limit linearly with more CPUs:
4054 */
4055 user_lock_limit *= num_online_cpus();
4056
789f90fc 4057 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4058
789f90fc
PZ
4059 extra = 0;
4060 if (user_locked > user_lock_limit)
4061 extra = user_locked - user_lock_limit;
7b732a75 4062
78d7d407 4063 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4064 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4065 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4066
459ec28a
IM
4067 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4068 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4069 ret = -EPERM;
4070 goto unlock;
4071 }
7b732a75 4072
76369139 4073 WARN_ON(event->rb);
906010b2 4074
d57e34fd 4075 if (vma->vm_flags & VM_WRITE)
76369139 4076 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4077
4ec8363d
VW
4078 rb = rb_alloc(nr_pages,
4079 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4080 event->cpu, flags);
4081
76369139 4082 if (!rb) {
ac9721f3 4083 ret = -ENOMEM;
ebb3c4c4 4084 goto unlock;
ac9721f3 4085 }
26cb63ad 4086
9bb5d40c 4087 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4088 rb->mmap_locked = extra;
4089 rb->mmap_user = get_current_user();
43a21ea8 4090
ac9721f3 4091 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4092 vma->vm_mm->pinned_vm += extra;
4093
9bb5d40c 4094 ring_buffer_attach(event, rb);
26cb63ad 4095 rcu_assign_pointer(event->rb, rb);
ac9721f3 4096
fa731587 4097 perf_event_init_userpage(event);
9a0f05cb
PZ
4098 perf_event_update_userpage(event);
4099
ebb3c4c4 4100unlock:
ac9721f3
PZ
4101 if (!ret)
4102 atomic_inc(&event->mmap_count);
cdd6c482 4103 mutex_unlock(&event->mmap_mutex);
37d81828 4104
9bb5d40c
PZ
4105 /*
4106 * Since pinned accounting is per vm we cannot allow fork() to copy our
4107 * vma.
4108 */
26cb63ad 4109 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4110 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4111
4112 return ret;
37d81828
PM
4113}
4114
3c446b3d
PZ
4115static int perf_fasync(int fd, struct file *filp, int on)
4116{
496ad9aa 4117 struct inode *inode = file_inode(filp);
cdd6c482 4118 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4119 int retval;
4120
4121 mutex_lock(&inode->i_mutex);
cdd6c482 4122 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4123 mutex_unlock(&inode->i_mutex);
4124
4125 if (retval < 0)
4126 return retval;
4127
4128 return 0;
4129}
4130
0793a61d 4131static const struct file_operations perf_fops = {
3326c1ce 4132 .llseek = no_llseek,
0793a61d
TG
4133 .release = perf_release,
4134 .read = perf_read,
4135 .poll = perf_poll,
d859e29f
PM
4136 .unlocked_ioctl = perf_ioctl,
4137 .compat_ioctl = perf_ioctl,
37d81828 4138 .mmap = perf_mmap,
3c446b3d 4139 .fasync = perf_fasync,
0793a61d
TG
4140};
4141
925d519a 4142/*
cdd6c482 4143 * Perf event wakeup
925d519a
PZ
4144 *
4145 * If there's data, ensure we set the poll() state and publish everything
4146 * to user-space before waking everybody up.
4147 */
4148
cdd6c482 4149void perf_event_wakeup(struct perf_event *event)
925d519a 4150{
10c6db11 4151 ring_buffer_wakeup(event);
4c9e2542 4152
cdd6c482
IM
4153 if (event->pending_kill) {
4154 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4155 event->pending_kill = 0;
4c9e2542 4156 }
925d519a
PZ
4157}
4158
e360adbe 4159static void perf_pending_event(struct irq_work *entry)
79f14641 4160{
cdd6c482
IM
4161 struct perf_event *event = container_of(entry,
4162 struct perf_event, pending);
79f14641 4163
cdd6c482
IM
4164 if (event->pending_disable) {
4165 event->pending_disable = 0;
4166 __perf_event_disable(event);
79f14641
PZ
4167 }
4168
cdd6c482
IM
4169 if (event->pending_wakeup) {
4170 event->pending_wakeup = 0;
4171 perf_event_wakeup(event);
79f14641
PZ
4172 }
4173}
4174
39447b38
ZY
4175/*
4176 * We assume there is only KVM supporting the callbacks.
4177 * Later on, we might change it to a list if there is
4178 * another virtualization implementation supporting the callbacks.
4179 */
4180struct perf_guest_info_callbacks *perf_guest_cbs;
4181
4182int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4183{
4184 perf_guest_cbs = cbs;
4185 return 0;
4186}
4187EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4188
4189int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4190{
4191 perf_guest_cbs = NULL;
4192 return 0;
4193}
4194EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4195
4018994f
JO
4196static void
4197perf_output_sample_regs(struct perf_output_handle *handle,
4198 struct pt_regs *regs, u64 mask)
4199{
4200 int bit;
4201
4202 for_each_set_bit(bit, (const unsigned long *) &mask,
4203 sizeof(mask) * BITS_PER_BYTE) {
4204 u64 val;
4205
4206 val = perf_reg_value(regs, bit);
4207 perf_output_put(handle, val);
4208 }
4209}
4210
4211static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4212 struct pt_regs *regs)
4213{
4214 if (!user_mode(regs)) {
4215 if (current->mm)
4216 regs = task_pt_regs(current);
4217 else
4218 regs = NULL;
4219 }
4220
4221 if (regs) {
4222 regs_user->regs = regs;
4223 regs_user->abi = perf_reg_abi(current);
4224 }
4225}
4226
c5ebcedb
JO
4227/*
4228 * Get remaining task size from user stack pointer.
4229 *
4230 * It'd be better to take stack vma map and limit this more
4231 * precisly, but there's no way to get it safely under interrupt,
4232 * so using TASK_SIZE as limit.
4233 */
4234static u64 perf_ustack_task_size(struct pt_regs *regs)
4235{
4236 unsigned long addr = perf_user_stack_pointer(regs);
4237
4238 if (!addr || addr >= TASK_SIZE)
4239 return 0;
4240
4241 return TASK_SIZE - addr;
4242}
4243
4244static u16
4245perf_sample_ustack_size(u16 stack_size, u16 header_size,
4246 struct pt_regs *regs)
4247{
4248 u64 task_size;
4249
4250 /* No regs, no stack pointer, no dump. */
4251 if (!regs)
4252 return 0;
4253
4254 /*
4255 * Check if we fit in with the requested stack size into the:
4256 * - TASK_SIZE
4257 * If we don't, we limit the size to the TASK_SIZE.
4258 *
4259 * - remaining sample size
4260 * If we don't, we customize the stack size to
4261 * fit in to the remaining sample size.
4262 */
4263
4264 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4265 stack_size = min(stack_size, (u16) task_size);
4266
4267 /* Current header size plus static size and dynamic size. */
4268 header_size += 2 * sizeof(u64);
4269
4270 /* Do we fit in with the current stack dump size? */
4271 if ((u16) (header_size + stack_size) < header_size) {
4272 /*
4273 * If we overflow the maximum size for the sample,
4274 * we customize the stack dump size to fit in.
4275 */
4276 stack_size = USHRT_MAX - header_size - sizeof(u64);
4277 stack_size = round_up(stack_size, sizeof(u64));
4278 }
4279
4280 return stack_size;
4281}
4282
4283static void
4284perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4285 struct pt_regs *regs)
4286{
4287 /* Case of a kernel thread, nothing to dump */
4288 if (!regs) {
4289 u64 size = 0;
4290 perf_output_put(handle, size);
4291 } else {
4292 unsigned long sp;
4293 unsigned int rem;
4294 u64 dyn_size;
4295
4296 /*
4297 * We dump:
4298 * static size
4299 * - the size requested by user or the best one we can fit
4300 * in to the sample max size
4301 * data
4302 * - user stack dump data
4303 * dynamic size
4304 * - the actual dumped size
4305 */
4306
4307 /* Static size. */
4308 perf_output_put(handle, dump_size);
4309
4310 /* Data. */
4311 sp = perf_user_stack_pointer(regs);
4312 rem = __output_copy_user(handle, (void *) sp, dump_size);
4313 dyn_size = dump_size - rem;
4314
4315 perf_output_skip(handle, rem);
4316
4317 /* Dynamic size. */
4318 perf_output_put(handle, dyn_size);
4319 }
4320}
4321
c980d109
ACM
4322static void __perf_event_header__init_id(struct perf_event_header *header,
4323 struct perf_sample_data *data,
4324 struct perf_event *event)
6844c09d
ACM
4325{
4326 u64 sample_type = event->attr.sample_type;
4327
4328 data->type = sample_type;
4329 header->size += event->id_header_size;
4330
4331 if (sample_type & PERF_SAMPLE_TID) {
4332 /* namespace issues */
4333 data->tid_entry.pid = perf_event_pid(event, current);
4334 data->tid_entry.tid = perf_event_tid(event, current);
4335 }
4336
4337 if (sample_type & PERF_SAMPLE_TIME)
4338 data->time = perf_clock();
4339
ff3d527c 4340 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4341 data->id = primary_event_id(event);
4342
4343 if (sample_type & PERF_SAMPLE_STREAM_ID)
4344 data->stream_id = event->id;
4345
4346 if (sample_type & PERF_SAMPLE_CPU) {
4347 data->cpu_entry.cpu = raw_smp_processor_id();
4348 data->cpu_entry.reserved = 0;
4349 }
4350}
4351
76369139
FW
4352void perf_event_header__init_id(struct perf_event_header *header,
4353 struct perf_sample_data *data,
4354 struct perf_event *event)
c980d109
ACM
4355{
4356 if (event->attr.sample_id_all)
4357 __perf_event_header__init_id(header, data, event);
4358}
4359
4360static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4361 struct perf_sample_data *data)
4362{
4363 u64 sample_type = data->type;
4364
4365 if (sample_type & PERF_SAMPLE_TID)
4366 perf_output_put(handle, data->tid_entry);
4367
4368 if (sample_type & PERF_SAMPLE_TIME)
4369 perf_output_put(handle, data->time);
4370
4371 if (sample_type & PERF_SAMPLE_ID)
4372 perf_output_put(handle, data->id);
4373
4374 if (sample_type & PERF_SAMPLE_STREAM_ID)
4375 perf_output_put(handle, data->stream_id);
4376
4377 if (sample_type & PERF_SAMPLE_CPU)
4378 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4379
4380 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4381 perf_output_put(handle, data->id);
c980d109
ACM
4382}
4383
76369139
FW
4384void perf_event__output_id_sample(struct perf_event *event,
4385 struct perf_output_handle *handle,
4386 struct perf_sample_data *sample)
c980d109
ACM
4387{
4388 if (event->attr.sample_id_all)
4389 __perf_event__output_id_sample(handle, sample);
4390}
4391
3dab77fb 4392static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4393 struct perf_event *event,
4394 u64 enabled, u64 running)
3dab77fb 4395{
cdd6c482 4396 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4397 u64 values[4];
4398 int n = 0;
4399
b5e58793 4400 values[n++] = perf_event_count(event);
3dab77fb 4401 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4402 values[n++] = enabled +
cdd6c482 4403 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4404 }
4405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4406 values[n++] = running +
cdd6c482 4407 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4408 }
4409 if (read_format & PERF_FORMAT_ID)
cdd6c482 4410 values[n++] = primary_event_id(event);
3dab77fb 4411
76369139 4412 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4413}
4414
4415/*
cdd6c482 4416 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4417 */
4418static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4419 struct perf_event *event,
4420 u64 enabled, u64 running)
3dab77fb 4421{
cdd6c482
IM
4422 struct perf_event *leader = event->group_leader, *sub;
4423 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4424 u64 values[5];
4425 int n = 0;
4426
4427 values[n++] = 1 + leader->nr_siblings;
4428
4429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4430 values[n++] = enabled;
3dab77fb
PZ
4431
4432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4433 values[n++] = running;
3dab77fb 4434
cdd6c482 4435 if (leader != event)
3dab77fb
PZ
4436 leader->pmu->read(leader);
4437
b5e58793 4438 values[n++] = perf_event_count(leader);
3dab77fb 4439 if (read_format & PERF_FORMAT_ID)
cdd6c482 4440 values[n++] = primary_event_id(leader);
3dab77fb 4441
76369139 4442 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4443
65abc865 4444 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4445 n = 0;
4446
6f5ab001
JO
4447 if ((sub != event) &&
4448 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4449 sub->pmu->read(sub);
4450
b5e58793 4451 values[n++] = perf_event_count(sub);
3dab77fb 4452 if (read_format & PERF_FORMAT_ID)
cdd6c482 4453 values[n++] = primary_event_id(sub);
3dab77fb 4454
76369139 4455 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4456 }
4457}
4458
eed01528
SE
4459#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4460 PERF_FORMAT_TOTAL_TIME_RUNNING)
4461
3dab77fb 4462static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4463 struct perf_event *event)
3dab77fb 4464{
e3f3541c 4465 u64 enabled = 0, running = 0, now;
eed01528
SE
4466 u64 read_format = event->attr.read_format;
4467
4468 /*
4469 * compute total_time_enabled, total_time_running
4470 * based on snapshot values taken when the event
4471 * was last scheduled in.
4472 *
4473 * we cannot simply called update_context_time()
4474 * because of locking issue as we are called in
4475 * NMI context
4476 */
c4794295 4477 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4478 calc_timer_values(event, &now, &enabled, &running);
eed01528 4479
cdd6c482 4480 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4481 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4482 else
eed01528 4483 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4484}
4485
5622f295
MM
4486void perf_output_sample(struct perf_output_handle *handle,
4487 struct perf_event_header *header,
4488 struct perf_sample_data *data,
cdd6c482 4489 struct perf_event *event)
5622f295
MM
4490{
4491 u64 sample_type = data->type;
4492
4493 perf_output_put(handle, *header);
4494
ff3d527c
AH
4495 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4496 perf_output_put(handle, data->id);
4497
5622f295
MM
4498 if (sample_type & PERF_SAMPLE_IP)
4499 perf_output_put(handle, data->ip);
4500
4501 if (sample_type & PERF_SAMPLE_TID)
4502 perf_output_put(handle, data->tid_entry);
4503
4504 if (sample_type & PERF_SAMPLE_TIME)
4505 perf_output_put(handle, data->time);
4506
4507 if (sample_type & PERF_SAMPLE_ADDR)
4508 perf_output_put(handle, data->addr);
4509
4510 if (sample_type & PERF_SAMPLE_ID)
4511 perf_output_put(handle, data->id);
4512
4513 if (sample_type & PERF_SAMPLE_STREAM_ID)
4514 perf_output_put(handle, data->stream_id);
4515
4516 if (sample_type & PERF_SAMPLE_CPU)
4517 perf_output_put(handle, data->cpu_entry);
4518
4519 if (sample_type & PERF_SAMPLE_PERIOD)
4520 perf_output_put(handle, data->period);
4521
4522 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4523 perf_output_read(handle, event);
5622f295
MM
4524
4525 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4526 if (data->callchain) {
4527 int size = 1;
4528
4529 if (data->callchain)
4530 size += data->callchain->nr;
4531
4532 size *= sizeof(u64);
4533
76369139 4534 __output_copy(handle, data->callchain, size);
5622f295
MM
4535 } else {
4536 u64 nr = 0;
4537 perf_output_put(handle, nr);
4538 }
4539 }
4540
4541 if (sample_type & PERF_SAMPLE_RAW) {
4542 if (data->raw) {
4543 perf_output_put(handle, data->raw->size);
76369139
FW
4544 __output_copy(handle, data->raw->data,
4545 data->raw->size);
5622f295
MM
4546 } else {
4547 struct {
4548 u32 size;
4549 u32 data;
4550 } raw = {
4551 .size = sizeof(u32),
4552 .data = 0,
4553 };
4554 perf_output_put(handle, raw);
4555 }
4556 }
a7ac67ea 4557
bce38cd5
SE
4558 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4559 if (data->br_stack) {
4560 size_t size;
4561
4562 size = data->br_stack->nr
4563 * sizeof(struct perf_branch_entry);
4564
4565 perf_output_put(handle, data->br_stack->nr);
4566 perf_output_copy(handle, data->br_stack->entries, size);
4567 } else {
4568 /*
4569 * we always store at least the value of nr
4570 */
4571 u64 nr = 0;
4572 perf_output_put(handle, nr);
4573 }
4574 }
4018994f
JO
4575
4576 if (sample_type & PERF_SAMPLE_REGS_USER) {
4577 u64 abi = data->regs_user.abi;
4578
4579 /*
4580 * If there are no regs to dump, notice it through
4581 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4582 */
4583 perf_output_put(handle, abi);
4584
4585 if (abi) {
4586 u64 mask = event->attr.sample_regs_user;
4587 perf_output_sample_regs(handle,
4588 data->regs_user.regs,
4589 mask);
4590 }
4591 }
c5ebcedb 4592
a5cdd40c 4593 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4594 perf_output_sample_ustack(handle,
4595 data->stack_user_size,
4596 data->regs_user.regs);
a5cdd40c 4597 }
c3feedf2
AK
4598
4599 if (sample_type & PERF_SAMPLE_WEIGHT)
4600 perf_output_put(handle, data->weight);
d6be9ad6
SE
4601
4602 if (sample_type & PERF_SAMPLE_DATA_SRC)
4603 perf_output_put(handle, data->data_src.val);
a5cdd40c 4604
fdfbbd07
AK
4605 if (sample_type & PERF_SAMPLE_TRANSACTION)
4606 perf_output_put(handle, data->txn);
4607
a5cdd40c
PZ
4608 if (!event->attr.watermark) {
4609 int wakeup_events = event->attr.wakeup_events;
4610
4611 if (wakeup_events) {
4612 struct ring_buffer *rb = handle->rb;
4613 int events = local_inc_return(&rb->events);
4614
4615 if (events >= wakeup_events) {
4616 local_sub(wakeup_events, &rb->events);
4617 local_inc(&rb->wakeup);
4618 }
4619 }
4620 }
5622f295
MM
4621}
4622
4623void perf_prepare_sample(struct perf_event_header *header,
4624 struct perf_sample_data *data,
cdd6c482 4625 struct perf_event *event,
5622f295 4626 struct pt_regs *regs)
7b732a75 4627{
cdd6c482 4628 u64 sample_type = event->attr.sample_type;
7b732a75 4629
cdd6c482 4630 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4631 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4632
4633 header->misc = 0;
4634 header->misc |= perf_misc_flags(regs);
6fab0192 4635
c980d109 4636 __perf_event_header__init_id(header, data, event);
6844c09d 4637
c320c7b7 4638 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4639 data->ip = perf_instruction_pointer(regs);
4640
b23f3325 4641 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4642 int size = 1;
394ee076 4643
e6dab5ff 4644 data->callchain = perf_callchain(event, regs);
5622f295
MM
4645
4646 if (data->callchain)
4647 size += data->callchain->nr;
4648
4649 header->size += size * sizeof(u64);
394ee076
PZ
4650 }
4651
3a43ce68 4652 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4653 int size = sizeof(u32);
4654
4655 if (data->raw)
4656 size += data->raw->size;
4657 else
4658 size += sizeof(u32);
4659
4660 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4661 header->size += size;
7f453c24 4662 }
bce38cd5
SE
4663
4664 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4665 int size = sizeof(u64); /* nr */
4666 if (data->br_stack) {
4667 size += data->br_stack->nr
4668 * sizeof(struct perf_branch_entry);
4669 }
4670 header->size += size;
4671 }
4018994f
JO
4672
4673 if (sample_type & PERF_SAMPLE_REGS_USER) {
4674 /* regs dump ABI info */
4675 int size = sizeof(u64);
4676
4677 perf_sample_regs_user(&data->regs_user, regs);
4678
4679 if (data->regs_user.regs) {
4680 u64 mask = event->attr.sample_regs_user;
4681 size += hweight64(mask) * sizeof(u64);
4682 }
4683
4684 header->size += size;
4685 }
c5ebcedb
JO
4686
4687 if (sample_type & PERF_SAMPLE_STACK_USER) {
4688 /*
4689 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4690 * processed as the last one or have additional check added
4691 * in case new sample type is added, because we could eat
4692 * up the rest of the sample size.
4693 */
4694 struct perf_regs_user *uregs = &data->regs_user;
4695 u16 stack_size = event->attr.sample_stack_user;
4696 u16 size = sizeof(u64);
4697
4698 if (!uregs->abi)
4699 perf_sample_regs_user(uregs, regs);
4700
4701 stack_size = perf_sample_ustack_size(stack_size, header->size,
4702 uregs->regs);
4703
4704 /*
4705 * If there is something to dump, add space for the dump
4706 * itself and for the field that tells the dynamic size,
4707 * which is how many have been actually dumped.
4708 */
4709 if (stack_size)
4710 size += sizeof(u64) + stack_size;
4711
4712 data->stack_user_size = stack_size;
4713 header->size += size;
4714 }
5622f295 4715}
7f453c24 4716
a8b0ca17 4717static void perf_event_output(struct perf_event *event,
5622f295
MM
4718 struct perf_sample_data *data,
4719 struct pt_regs *regs)
4720{
4721 struct perf_output_handle handle;
4722 struct perf_event_header header;
689802b2 4723
927c7a9e
FW
4724 /* protect the callchain buffers */
4725 rcu_read_lock();
4726
cdd6c482 4727 perf_prepare_sample(&header, data, event, regs);
5c148194 4728
a7ac67ea 4729 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4730 goto exit;
0322cd6e 4731
cdd6c482 4732 perf_output_sample(&handle, &header, data, event);
f413cdb8 4733
8a057d84 4734 perf_output_end(&handle);
927c7a9e
FW
4735
4736exit:
4737 rcu_read_unlock();
0322cd6e
PZ
4738}
4739
38b200d6 4740/*
cdd6c482 4741 * read event_id
38b200d6
PZ
4742 */
4743
4744struct perf_read_event {
4745 struct perf_event_header header;
4746
4747 u32 pid;
4748 u32 tid;
38b200d6
PZ
4749};
4750
4751static void
cdd6c482 4752perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4753 struct task_struct *task)
4754{
4755 struct perf_output_handle handle;
c980d109 4756 struct perf_sample_data sample;
dfc65094 4757 struct perf_read_event read_event = {
38b200d6 4758 .header = {
cdd6c482 4759 .type = PERF_RECORD_READ,
38b200d6 4760 .misc = 0,
c320c7b7 4761 .size = sizeof(read_event) + event->read_size,
38b200d6 4762 },
cdd6c482
IM
4763 .pid = perf_event_pid(event, task),
4764 .tid = perf_event_tid(event, task),
38b200d6 4765 };
3dab77fb 4766 int ret;
38b200d6 4767
c980d109 4768 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4769 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4770 if (ret)
4771 return;
4772
dfc65094 4773 perf_output_put(&handle, read_event);
cdd6c482 4774 perf_output_read(&handle, event);
c980d109 4775 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4776
38b200d6
PZ
4777 perf_output_end(&handle);
4778}
4779
52d857a8
JO
4780typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4781
4782static void
4783perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4784 perf_event_aux_output_cb output,
4785 void *data)
4786{
4787 struct perf_event *event;
4788
4789 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4790 if (event->state < PERF_EVENT_STATE_INACTIVE)
4791 continue;
4792 if (!event_filter_match(event))
4793 continue;
67516844 4794 output(event, data);
52d857a8
JO
4795 }
4796}
4797
4798static void
67516844 4799perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4800 struct perf_event_context *task_ctx)
4801{
4802 struct perf_cpu_context *cpuctx;
4803 struct perf_event_context *ctx;
4804 struct pmu *pmu;
4805 int ctxn;
4806
4807 rcu_read_lock();
4808 list_for_each_entry_rcu(pmu, &pmus, entry) {
4809 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4810 if (cpuctx->unique_pmu != pmu)
4811 goto next;
67516844 4812 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4813 if (task_ctx)
4814 goto next;
4815 ctxn = pmu->task_ctx_nr;
4816 if (ctxn < 0)
4817 goto next;
4818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4819 if (ctx)
67516844 4820 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4821next:
4822 put_cpu_ptr(pmu->pmu_cpu_context);
4823 }
4824
4825 if (task_ctx) {
4826 preempt_disable();
67516844 4827 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4828 preempt_enable();
4829 }
4830 rcu_read_unlock();
4831}
4832
60313ebe 4833/*
9f498cc5
PZ
4834 * task tracking -- fork/exit
4835 *
13d7a241 4836 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4837 */
4838
9f498cc5 4839struct perf_task_event {
3a80b4a3 4840 struct task_struct *task;
cdd6c482 4841 struct perf_event_context *task_ctx;
60313ebe
PZ
4842
4843 struct {
4844 struct perf_event_header header;
4845
4846 u32 pid;
4847 u32 ppid;
9f498cc5
PZ
4848 u32 tid;
4849 u32 ptid;
393b2ad8 4850 u64 time;
cdd6c482 4851 } event_id;
60313ebe
PZ
4852};
4853
67516844
JO
4854static int perf_event_task_match(struct perf_event *event)
4855{
13d7a241
SE
4856 return event->attr.comm || event->attr.mmap ||
4857 event->attr.mmap2 || event->attr.mmap_data ||
4858 event->attr.task;
67516844
JO
4859}
4860
cdd6c482 4861static void perf_event_task_output(struct perf_event *event,
52d857a8 4862 void *data)
60313ebe 4863{
52d857a8 4864 struct perf_task_event *task_event = data;
60313ebe 4865 struct perf_output_handle handle;
c980d109 4866 struct perf_sample_data sample;
9f498cc5 4867 struct task_struct *task = task_event->task;
c980d109 4868 int ret, size = task_event->event_id.header.size;
8bb39f9a 4869
67516844
JO
4870 if (!perf_event_task_match(event))
4871 return;
4872
c980d109 4873 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4874
c980d109 4875 ret = perf_output_begin(&handle, event,
a7ac67ea 4876 task_event->event_id.header.size);
ef60777c 4877 if (ret)
c980d109 4878 goto out;
60313ebe 4879
cdd6c482
IM
4880 task_event->event_id.pid = perf_event_pid(event, task);
4881 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4882
cdd6c482
IM
4883 task_event->event_id.tid = perf_event_tid(event, task);
4884 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4885
cdd6c482 4886 perf_output_put(&handle, task_event->event_id);
393b2ad8 4887
c980d109
ACM
4888 perf_event__output_id_sample(event, &handle, &sample);
4889
60313ebe 4890 perf_output_end(&handle);
c980d109
ACM
4891out:
4892 task_event->event_id.header.size = size;
60313ebe
PZ
4893}
4894
cdd6c482
IM
4895static void perf_event_task(struct task_struct *task,
4896 struct perf_event_context *task_ctx,
3a80b4a3 4897 int new)
60313ebe 4898{
9f498cc5 4899 struct perf_task_event task_event;
60313ebe 4900
cdd6c482
IM
4901 if (!atomic_read(&nr_comm_events) &&
4902 !atomic_read(&nr_mmap_events) &&
4903 !atomic_read(&nr_task_events))
60313ebe
PZ
4904 return;
4905
9f498cc5 4906 task_event = (struct perf_task_event){
3a80b4a3
PZ
4907 .task = task,
4908 .task_ctx = task_ctx,
cdd6c482 4909 .event_id = {
60313ebe 4910 .header = {
cdd6c482 4911 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4912 .misc = 0,
cdd6c482 4913 .size = sizeof(task_event.event_id),
60313ebe 4914 },
573402db
PZ
4915 /* .pid */
4916 /* .ppid */
9f498cc5
PZ
4917 /* .tid */
4918 /* .ptid */
6f93d0a7 4919 .time = perf_clock(),
60313ebe
PZ
4920 },
4921 };
4922
67516844 4923 perf_event_aux(perf_event_task_output,
52d857a8
JO
4924 &task_event,
4925 task_ctx);
9f498cc5
PZ
4926}
4927
cdd6c482 4928void perf_event_fork(struct task_struct *task)
9f498cc5 4929{
cdd6c482 4930 perf_event_task(task, NULL, 1);
60313ebe
PZ
4931}
4932
8d1b2d93
PZ
4933/*
4934 * comm tracking
4935 */
4936
4937struct perf_comm_event {
22a4f650
IM
4938 struct task_struct *task;
4939 char *comm;
8d1b2d93
PZ
4940 int comm_size;
4941
4942 struct {
4943 struct perf_event_header header;
4944
4945 u32 pid;
4946 u32 tid;
cdd6c482 4947 } event_id;
8d1b2d93
PZ
4948};
4949
67516844
JO
4950static int perf_event_comm_match(struct perf_event *event)
4951{
4952 return event->attr.comm;
4953}
4954
cdd6c482 4955static void perf_event_comm_output(struct perf_event *event,
52d857a8 4956 void *data)
8d1b2d93 4957{
52d857a8 4958 struct perf_comm_event *comm_event = data;
8d1b2d93 4959 struct perf_output_handle handle;
c980d109 4960 struct perf_sample_data sample;
cdd6c482 4961 int size = comm_event->event_id.header.size;
c980d109
ACM
4962 int ret;
4963
67516844
JO
4964 if (!perf_event_comm_match(event))
4965 return;
4966
c980d109
ACM
4967 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4968 ret = perf_output_begin(&handle, event,
a7ac67ea 4969 comm_event->event_id.header.size);
8d1b2d93
PZ
4970
4971 if (ret)
c980d109 4972 goto out;
8d1b2d93 4973
cdd6c482
IM
4974 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4975 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4976
cdd6c482 4977 perf_output_put(&handle, comm_event->event_id);
76369139 4978 __output_copy(&handle, comm_event->comm,
8d1b2d93 4979 comm_event->comm_size);
c980d109
ACM
4980
4981 perf_event__output_id_sample(event, &handle, &sample);
4982
8d1b2d93 4983 perf_output_end(&handle);
c980d109
ACM
4984out:
4985 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4986}
4987
cdd6c482 4988static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4989{
413ee3b4 4990 char comm[TASK_COMM_LEN];
8d1b2d93 4991 unsigned int size;
8d1b2d93 4992
413ee3b4 4993 memset(comm, 0, sizeof(comm));
96b02d78 4994 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4995 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4996
4997 comm_event->comm = comm;
4998 comm_event->comm_size = size;
4999
cdd6c482 5000 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5001
67516844 5002 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5003 comm_event,
5004 NULL);
8d1b2d93
PZ
5005}
5006
cdd6c482 5007void perf_event_comm(struct task_struct *task)
8d1b2d93 5008{
9ee318a7 5009 struct perf_comm_event comm_event;
8dc85d54
PZ
5010 struct perf_event_context *ctx;
5011 int ctxn;
9ee318a7 5012
c79aa0d9 5013 rcu_read_lock();
8dc85d54
PZ
5014 for_each_task_context_nr(ctxn) {
5015 ctx = task->perf_event_ctxp[ctxn];
5016 if (!ctx)
5017 continue;
9ee318a7 5018
8dc85d54
PZ
5019 perf_event_enable_on_exec(ctx);
5020 }
c79aa0d9 5021 rcu_read_unlock();
9ee318a7 5022
cdd6c482 5023 if (!atomic_read(&nr_comm_events))
9ee318a7 5024 return;
a63eaf34 5025
9ee318a7 5026 comm_event = (struct perf_comm_event){
8d1b2d93 5027 .task = task,
573402db
PZ
5028 /* .comm */
5029 /* .comm_size */
cdd6c482 5030 .event_id = {
573402db 5031 .header = {
cdd6c482 5032 .type = PERF_RECORD_COMM,
573402db
PZ
5033 .misc = 0,
5034 /* .size */
5035 },
5036 /* .pid */
5037 /* .tid */
8d1b2d93
PZ
5038 },
5039 };
5040
cdd6c482 5041 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5042}
5043
0a4a9391
PZ
5044/*
5045 * mmap tracking
5046 */
5047
5048struct perf_mmap_event {
089dd79d
PZ
5049 struct vm_area_struct *vma;
5050
5051 const char *file_name;
5052 int file_size;
13d7a241
SE
5053 int maj, min;
5054 u64 ino;
5055 u64 ino_generation;
0a4a9391
PZ
5056
5057 struct {
5058 struct perf_event_header header;
5059
5060 u32 pid;
5061 u32 tid;
5062 u64 start;
5063 u64 len;
5064 u64 pgoff;
cdd6c482 5065 } event_id;
0a4a9391
PZ
5066};
5067
67516844
JO
5068static int perf_event_mmap_match(struct perf_event *event,
5069 void *data)
5070{
5071 struct perf_mmap_event *mmap_event = data;
5072 struct vm_area_struct *vma = mmap_event->vma;
5073 int executable = vma->vm_flags & VM_EXEC;
5074
5075 return (!executable && event->attr.mmap_data) ||
13d7a241 5076 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5077}
5078
cdd6c482 5079static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5080 void *data)
0a4a9391 5081{
52d857a8 5082 struct perf_mmap_event *mmap_event = data;
0a4a9391 5083 struct perf_output_handle handle;
c980d109 5084 struct perf_sample_data sample;
cdd6c482 5085 int size = mmap_event->event_id.header.size;
c980d109 5086 int ret;
0a4a9391 5087
67516844
JO
5088 if (!perf_event_mmap_match(event, data))
5089 return;
5090
13d7a241
SE
5091 if (event->attr.mmap2) {
5092 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5093 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5094 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5095 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5096 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5097 }
5098
c980d109
ACM
5099 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5100 ret = perf_output_begin(&handle, event,
a7ac67ea 5101 mmap_event->event_id.header.size);
0a4a9391 5102 if (ret)
c980d109 5103 goto out;
0a4a9391 5104
cdd6c482
IM
5105 mmap_event->event_id.pid = perf_event_pid(event, current);
5106 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5107
cdd6c482 5108 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5109
5110 if (event->attr.mmap2) {
5111 perf_output_put(&handle, mmap_event->maj);
5112 perf_output_put(&handle, mmap_event->min);
5113 perf_output_put(&handle, mmap_event->ino);
5114 perf_output_put(&handle, mmap_event->ino_generation);
5115 }
5116
76369139 5117 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5118 mmap_event->file_size);
c980d109
ACM
5119
5120 perf_event__output_id_sample(event, &handle, &sample);
5121
78d613eb 5122 perf_output_end(&handle);
c980d109
ACM
5123out:
5124 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5125}
5126
cdd6c482 5127static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5128{
089dd79d
PZ
5129 struct vm_area_struct *vma = mmap_event->vma;
5130 struct file *file = vma->vm_file;
13d7a241
SE
5131 int maj = 0, min = 0;
5132 u64 ino = 0, gen = 0;
0a4a9391
PZ
5133 unsigned int size;
5134 char tmp[16];
5135 char *buf = NULL;
2c42cfbf 5136 char *name;
413ee3b4 5137
0a4a9391 5138 if (file) {
13d7a241
SE
5139 struct inode *inode;
5140 dev_t dev;
3ea2f2b9 5141
2c42cfbf 5142 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5143 if (!buf) {
c7e548b4
ON
5144 name = "//enomem";
5145 goto cpy_name;
0a4a9391 5146 }
413ee3b4 5147 /*
3ea2f2b9 5148 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5149 * need to add enough zero bytes after the string to handle
5150 * the 64bit alignment we do later.
5151 */
3ea2f2b9 5152 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5153 if (IS_ERR(name)) {
c7e548b4
ON
5154 name = "//toolong";
5155 goto cpy_name;
0a4a9391 5156 }
13d7a241
SE
5157 inode = file_inode(vma->vm_file);
5158 dev = inode->i_sb->s_dev;
5159 ino = inode->i_ino;
5160 gen = inode->i_generation;
5161 maj = MAJOR(dev);
5162 min = MINOR(dev);
c7e548b4 5163 goto got_name;
0a4a9391 5164 } else {
2c42cfbf 5165 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5166 if (name)
5167 goto cpy_name;
089dd79d 5168
32c5fb7e 5169 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5170 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5171 name = "[heap]";
5172 goto cpy_name;
32c5fb7e
ON
5173 }
5174 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5175 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5176 name = "[stack]";
5177 goto cpy_name;
089dd79d
PZ
5178 }
5179
c7e548b4
ON
5180 name = "//anon";
5181 goto cpy_name;
0a4a9391
PZ
5182 }
5183
c7e548b4
ON
5184cpy_name:
5185 strlcpy(tmp, name, sizeof(tmp));
5186 name = tmp;
0a4a9391 5187got_name:
2c42cfbf
PZ
5188 /*
5189 * Since our buffer works in 8 byte units we need to align our string
5190 * size to a multiple of 8. However, we must guarantee the tail end is
5191 * zero'd out to avoid leaking random bits to userspace.
5192 */
5193 size = strlen(name)+1;
5194 while (!IS_ALIGNED(size, sizeof(u64)))
5195 name[size++] = '\0';
0a4a9391
PZ
5196
5197 mmap_event->file_name = name;
5198 mmap_event->file_size = size;
13d7a241
SE
5199 mmap_event->maj = maj;
5200 mmap_event->min = min;
5201 mmap_event->ino = ino;
5202 mmap_event->ino_generation = gen;
0a4a9391 5203
2fe85427
SE
5204 if (!(vma->vm_flags & VM_EXEC))
5205 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5206
cdd6c482 5207 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5208
67516844 5209 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5210 mmap_event,
5211 NULL);
665c2142 5212
0a4a9391
PZ
5213 kfree(buf);
5214}
5215
3af9e859 5216void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5217{
9ee318a7
PZ
5218 struct perf_mmap_event mmap_event;
5219
cdd6c482 5220 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5221 return;
5222
5223 mmap_event = (struct perf_mmap_event){
089dd79d 5224 .vma = vma,
573402db
PZ
5225 /* .file_name */
5226 /* .file_size */
cdd6c482 5227 .event_id = {
573402db 5228 .header = {
cdd6c482 5229 .type = PERF_RECORD_MMAP,
39447b38 5230 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5231 /* .size */
5232 },
5233 /* .pid */
5234 /* .tid */
089dd79d
PZ
5235 .start = vma->vm_start,
5236 .len = vma->vm_end - vma->vm_start,
3a0304e9 5237 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5238 },
13d7a241
SE
5239 /* .maj (attr_mmap2 only) */
5240 /* .min (attr_mmap2 only) */
5241 /* .ino (attr_mmap2 only) */
5242 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5243 };
5244
cdd6c482 5245 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5246}
5247
a78ac325
PZ
5248/*
5249 * IRQ throttle logging
5250 */
5251
cdd6c482 5252static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5253{
5254 struct perf_output_handle handle;
c980d109 5255 struct perf_sample_data sample;
a78ac325
PZ
5256 int ret;
5257
5258 struct {
5259 struct perf_event_header header;
5260 u64 time;
cca3f454 5261 u64 id;
7f453c24 5262 u64 stream_id;
a78ac325
PZ
5263 } throttle_event = {
5264 .header = {
cdd6c482 5265 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5266 .misc = 0,
5267 .size = sizeof(throttle_event),
5268 },
def0a9b2 5269 .time = perf_clock(),
cdd6c482
IM
5270 .id = primary_event_id(event),
5271 .stream_id = event->id,
a78ac325
PZ
5272 };
5273
966ee4d6 5274 if (enable)
cdd6c482 5275 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5276
c980d109
ACM
5277 perf_event_header__init_id(&throttle_event.header, &sample, event);
5278
5279 ret = perf_output_begin(&handle, event,
a7ac67ea 5280 throttle_event.header.size);
a78ac325
PZ
5281 if (ret)
5282 return;
5283
5284 perf_output_put(&handle, throttle_event);
c980d109 5285 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5286 perf_output_end(&handle);
5287}
5288
f6c7d5fe 5289/*
cdd6c482 5290 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5291 */
5292
a8b0ca17 5293static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5294 int throttle, struct perf_sample_data *data,
5295 struct pt_regs *regs)
f6c7d5fe 5296{
cdd6c482
IM
5297 int events = atomic_read(&event->event_limit);
5298 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5299 u64 seq;
79f14641
PZ
5300 int ret = 0;
5301
96398826
PZ
5302 /*
5303 * Non-sampling counters might still use the PMI to fold short
5304 * hardware counters, ignore those.
5305 */
5306 if (unlikely(!is_sampling_event(event)))
5307 return 0;
5308
e050e3f0
SE
5309 seq = __this_cpu_read(perf_throttled_seq);
5310 if (seq != hwc->interrupts_seq) {
5311 hwc->interrupts_seq = seq;
5312 hwc->interrupts = 1;
5313 } else {
5314 hwc->interrupts++;
5315 if (unlikely(throttle
5316 && hwc->interrupts >= max_samples_per_tick)) {
5317 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5318 hwc->interrupts = MAX_INTERRUPTS;
5319 perf_log_throttle(event, 0);
d84153d6 5320 tick_nohz_full_kick();
a78ac325
PZ
5321 ret = 1;
5322 }
e050e3f0 5323 }
60db5e09 5324
cdd6c482 5325 if (event->attr.freq) {
def0a9b2 5326 u64 now = perf_clock();
abd50713 5327 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5328
abd50713 5329 hwc->freq_time_stamp = now;
bd2b5b12 5330
abd50713 5331 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5332 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5333 }
5334
2023b359
PZ
5335 /*
5336 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5337 * events
2023b359
PZ
5338 */
5339
cdd6c482
IM
5340 event->pending_kill = POLL_IN;
5341 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5342 ret = 1;
cdd6c482 5343 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5344 event->pending_disable = 1;
5345 irq_work_queue(&event->pending);
79f14641
PZ
5346 }
5347
453f19ee 5348 if (event->overflow_handler)
a8b0ca17 5349 event->overflow_handler(event, data, regs);
453f19ee 5350 else
a8b0ca17 5351 perf_event_output(event, data, regs);
453f19ee 5352
f506b3dc 5353 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5354 event->pending_wakeup = 1;
5355 irq_work_queue(&event->pending);
f506b3dc
PZ
5356 }
5357
79f14641 5358 return ret;
f6c7d5fe
PZ
5359}
5360
a8b0ca17 5361int perf_event_overflow(struct perf_event *event,
5622f295
MM
5362 struct perf_sample_data *data,
5363 struct pt_regs *regs)
850bc73f 5364{
a8b0ca17 5365 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5366}
5367
15dbf27c 5368/*
cdd6c482 5369 * Generic software event infrastructure
15dbf27c
PZ
5370 */
5371
b28ab83c
PZ
5372struct swevent_htable {
5373 struct swevent_hlist *swevent_hlist;
5374 struct mutex hlist_mutex;
5375 int hlist_refcount;
5376
5377 /* Recursion avoidance in each contexts */
5378 int recursion[PERF_NR_CONTEXTS];
5379};
5380
5381static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5382
7b4b6658 5383/*
cdd6c482
IM
5384 * We directly increment event->count and keep a second value in
5385 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5386 * is kept in the range [-sample_period, 0] so that we can use the
5387 * sign as trigger.
5388 */
5389
ab573844 5390u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5391{
cdd6c482 5392 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5393 u64 period = hwc->last_period;
5394 u64 nr, offset;
5395 s64 old, val;
5396
5397 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5398
5399again:
e7850595 5400 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5401 if (val < 0)
5402 return 0;
15dbf27c 5403
7b4b6658
PZ
5404 nr = div64_u64(period + val, period);
5405 offset = nr * period;
5406 val -= offset;
e7850595 5407 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5408 goto again;
15dbf27c 5409
7b4b6658 5410 return nr;
15dbf27c
PZ
5411}
5412
0cff784a 5413static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5414 struct perf_sample_data *data,
5622f295 5415 struct pt_regs *regs)
15dbf27c 5416{
cdd6c482 5417 struct hw_perf_event *hwc = &event->hw;
850bc73f 5418 int throttle = 0;
15dbf27c 5419
0cff784a
PZ
5420 if (!overflow)
5421 overflow = perf_swevent_set_period(event);
15dbf27c 5422
7b4b6658
PZ
5423 if (hwc->interrupts == MAX_INTERRUPTS)
5424 return;
15dbf27c 5425
7b4b6658 5426 for (; overflow; overflow--) {
a8b0ca17 5427 if (__perf_event_overflow(event, throttle,
5622f295 5428 data, regs)) {
7b4b6658
PZ
5429 /*
5430 * We inhibit the overflow from happening when
5431 * hwc->interrupts == MAX_INTERRUPTS.
5432 */
5433 break;
5434 }
cf450a73 5435 throttle = 1;
7b4b6658 5436 }
15dbf27c
PZ
5437}
5438
a4eaf7f1 5439static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5440 struct perf_sample_data *data,
5622f295 5441 struct pt_regs *regs)
7b4b6658 5442{
cdd6c482 5443 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5444
e7850595 5445 local64_add(nr, &event->count);
d6d020e9 5446
0cff784a
PZ
5447 if (!regs)
5448 return;
5449
6c7e550f 5450 if (!is_sampling_event(event))
7b4b6658 5451 return;
d6d020e9 5452
5d81e5cf
AV
5453 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5454 data->period = nr;
5455 return perf_swevent_overflow(event, 1, data, regs);
5456 } else
5457 data->period = event->hw.last_period;
5458
0cff784a 5459 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5460 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5461
e7850595 5462 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5463 return;
df1a132b 5464
a8b0ca17 5465 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5466}
5467
f5ffe02e
FW
5468static int perf_exclude_event(struct perf_event *event,
5469 struct pt_regs *regs)
5470{
a4eaf7f1 5471 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5472 return 1;
a4eaf7f1 5473
f5ffe02e
FW
5474 if (regs) {
5475 if (event->attr.exclude_user && user_mode(regs))
5476 return 1;
5477
5478 if (event->attr.exclude_kernel && !user_mode(regs))
5479 return 1;
5480 }
5481
5482 return 0;
5483}
5484
cdd6c482 5485static int perf_swevent_match(struct perf_event *event,
1c432d89 5486 enum perf_type_id type,
6fb2915d
LZ
5487 u32 event_id,
5488 struct perf_sample_data *data,
5489 struct pt_regs *regs)
15dbf27c 5490{
cdd6c482 5491 if (event->attr.type != type)
a21ca2ca 5492 return 0;
f5ffe02e 5493
cdd6c482 5494 if (event->attr.config != event_id)
15dbf27c
PZ
5495 return 0;
5496
f5ffe02e
FW
5497 if (perf_exclude_event(event, regs))
5498 return 0;
15dbf27c
PZ
5499
5500 return 1;
5501}
5502
76e1d904
FW
5503static inline u64 swevent_hash(u64 type, u32 event_id)
5504{
5505 u64 val = event_id | (type << 32);
5506
5507 return hash_64(val, SWEVENT_HLIST_BITS);
5508}
5509
49f135ed
FW
5510static inline struct hlist_head *
5511__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5512{
49f135ed
FW
5513 u64 hash = swevent_hash(type, event_id);
5514
5515 return &hlist->heads[hash];
5516}
76e1d904 5517
49f135ed
FW
5518/* For the read side: events when they trigger */
5519static inline struct hlist_head *
b28ab83c 5520find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5521{
5522 struct swevent_hlist *hlist;
76e1d904 5523
b28ab83c 5524 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5525 if (!hlist)
5526 return NULL;
5527
49f135ed
FW
5528 return __find_swevent_head(hlist, type, event_id);
5529}
5530
5531/* For the event head insertion and removal in the hlist */
5532static inline struct hlist_head *
b28ab83c 5533find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5534{
5535 struct swevent_hlist *hlist;
5536 u32 event_id = event->attr.config;
5537 u64 type = event->attr.type;
5538
5539 /*
5540 * Event scheduling is always serialized against hlist allocation
5541 * and release. Which makes the protected version suitable here.
5542 * The context lock guarantees that.
5543 */
b28ab83c 5544 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5545 lockdep_is_held(&event->ctx->lock));
5546 if (!hlist)
5547 return NULL;
5548
5549 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5550}
5551
5552static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5553 u64 nr,
76e1d904
FW
5554 struct perf_sample_data *data,
5555 struct pt_regs *regs)
15dbf27c 5556{
b28ab83c 5557 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5558 struct perf_event *event;
76e1d904 5559 struct hlist_head *head;
15dbf27c 5560
76e1d904 5561 rcu_read_lock();
b28ab83c 5562 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5563 if (!head)
5564 goto end;
5565
b67bfe0d 5566 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5567 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5568 perf_swevent_event(event, nr, data, regs);
15dbf27c 5569 }
76e1d904
FW
5570end:
5571 rcu_read_unlock();
15dbf27c
PZ
5572}
5573
4ed7c92d 5574int perf_swevent_get_recursion_context(void)
96f6d444 5575{
b28ab83c 5576 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5577
b28ab83c 5578 return get_recursion_context(swhash->recursion);
96f6d444 5579}
645e8cc0 5580EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5581
fa9f90be 5582inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5583{
b28ab83c 5584 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5585
b28ab83c 5586 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5587}
15dbf27c 5588
a8b0ca17 5589void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5590{
a4234bfc 5591 struct perf_sample_data data;
4ed7c92d
PZ
5592 int rctx;
5593
1c024eca 5594 preempt_disable_notrace();
4ed7c92d
PZ
5595 rctx = perf_swevent_get_recursion_context();
5596 if (rctx < 0)
5597 return;
a4234bfc 5598
fd0d000b 5599 perf_sample_data_init(&data, addr, 0);
92bf309a 5600
a8b0ca17 5601 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5602
5603 perf_swevent_put_recursion_context(rctx);
1c024eca 5604 preempt_enable_notrace();
b8e83514
PZ
5605}
5606
cdd6c482 5607static void perf_swevent_read(struct perf_event *event)
15dbf27c 5608{
15dbf27c
PZ
5609}
5610
a4eaf7f1 5611static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5612{
b28ab83c 5613 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5614 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5615 struct hlist_head *head;
5616
6c7e550f 5617 if (is_sampling_event(event)) {
7b4b6658 5618 hwc->last_period = hwc->sample_period;
cdd6c482 5619 perf_swevent_set_period(event);
7b4b6658 5620 }
76e1d904 5621
a4eaf7f1
PZ
5622 hwc->state = !(flags & PERF_EF_START);
5623
b28ab83c 5624 head = find_swevent_head(swhash, event);
76e1d904
FW
5625 if (WARN_ON_ONCE(!head))
5626 return -EINVAL;
5627
5628 hlist_add_head_rcu(&event->hlist_entry, head);
5629
15dbf27c
PZ
5630 return 0;
5631}
5632
a4eaf7f1 5633static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5634{
76e1d904 5635 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5636}
5637
a4eaf7f1 5638static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5639{
a4eaf7f1 5640 event->hw.state = 0;
d6d020e9 5641}
aa9c4c0f 5642
a4eaf7f1 5643static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5644{
a4eaf7f1 5645 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5646}
5647
49f135ed
FW
5648/* Deref the hlist from the update side */
5649static inline struct swevent_hlist *
b28ab83c 5650swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5651{
b28ab83c
PZ
5652 return rcu_dereference_protected(swhash->swevent_hlist,
5653 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5654}
5655
b28ab83c 5656static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5657{
b28ab83c 5658 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5659
49f135ed 5660 if (!hlist)
76e1d904
FW
5661 return;
5662
b28ab83c 5663 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5664 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5665}
5666
5667static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5668{
b28ab83c 5669 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5670
b28ab83c 5671 mutex_lock(&swhash->hlist_mutex);
76e1d904 5672
b28ab83c
PZ
5673 if (!--swhash->hlist_refcount)
5674 swevent_hlist_release(swhash);
76e1d904 5675
b28ab83c 5676 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5677}
5678
5679static void swevent_hlist_put(struct perf_event *event)
5680{
5681 int cpu;
5682
76e1d904
FW
5683 for_each_possible_cpu(cpu)
5684 swevent_hlist_put_cpu(event, cpu);
5685}
5686
5687static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5688{
b28ab83c 5689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5690 int err = 0;
5691
b28ab83c 5692 mutex_lock(&swhash->hlist_mutex);
76e1d904 5693
b28ab83c 5694 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5695 struct swevent_hlist *hlist;
5696
5697 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5698 if (!hlist) {
5699 err = -ENOMEM;
5700 goto exit;
5701 }
b28ab83c 5702 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5703 }
b28ab83c 5704 swhash->hlist_refcount++;
9ed6060d 5705exit:
b28ab83c 5706 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5707
5708 return err;
5709}
5710
5711static int swevent_hlist_get(struct perf_event *event)
5712{
5713 int err;
5714 int cpu, failed_cpu;
5715
76e1d904
FW
5716 get_online_cpus();
5717 for_each_possible_cpu(cpu) {
5718 err = swevent_hlist_get_cpu(event, cpu);
5719 if (err) {
5720 failed_cpu = cpu;
5721 goto fail;
5722 }
5723 }
5724 put_online_cpus();
5725
5726 return 0;
9ed6060d 5727fail:
76e1d904
FW
5728 for_each_possible_cpu(cpu) {
5729 if (cpu == failed_cpu)
5730 break;
5731 swevent_hlist_put_cpu(event, cpu);
5732 }
5733
5734 put_online_cpus();
5735 return err;
5736}
5737
c5905afb 5738struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5739
b0a873eb
PZ
5740static void sw_perf_event_destroy(struct perf_event *event)
5741{
5742 u64 event_id = event->attr.config;
95476b64 5743
b0a873eb
PZ
5744 WARN_ON(event->parent);
5745
c5905afb 5746 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5747 swevent_hlist_put(event);
5748}
5749
5750static int perf_swevent_init(struct perf_event *event)
5751{
8176cced 5752 u64 event_id = event->attr.config;
b0a873eb
PZ
5753
5754 if (event->attr.type != PERF_TYPE_SOFTWARE)
5755 return -ENOENT;
5756
2481c5fa
SE
5757 /*
5758 * no branch sampling for software events
5759 */
5760 if (has_branch_stack(event))
5761 return -EOPNOTSUPP;
5762
b0a873eb
PZ
5763 switch (event_id) {
5764 case PERF_COUNT_SW_CPU_CLOCK:
5765 case PERF_COUNT_SW_TASK_CLOCK:
5766 return -ENOENT;
5767
5768 default:
5769 break;
5770 }
5771
ce677831 5772 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5773 return -ENOENT;
5774
5775 if (!event->parent) {
5776 int err;
5777
5778 err = swevent_hlist_get(event);
5779 if (err)
5780 return err;
5781
c5905afb 5782 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5783 event->destroy = sw_perf_event_destroy;
5784 }
5785
5786 return 0;
5787}
5788
35edc2a5
PZ
5789static int perf_swevent_event_idx(struct perf_event *event)
5790{
5791 return 0;
5792}
5793
b0a873eb 5794static struct pmu perf_swevent = {
89a1e187 5795 .task_ctx_nr = perf_sw_context,
95476b64 5796
b0a873eb 5797 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5798 .add = perf_swevent_add,
5799 .del = perf_swevent_del,
5800 .start = perf_swevent_start,
5801 .stop = perf_swevent_stop,
1c024eca 5802 .read = perf_swevent_read,
35edc2a5
PZ
5803
5804 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5805};
5806
b0a873eb
PZ
5807#ifdef CONFIG_EVENT_TRACING
5808
1c024eca
PZ
5809static int perf_tp_filter_match(struct perf_event *event,
5810 struct perf_sample_data *data)
5811{
5812 void *record = data->raw->data;
5813
5814 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5815 return 1;
5816 return 0;
5817}
5818
5819static int perf_tp_event_match(struct perf_event *event,
5820 struct perf_sample_data *data,
5821 struct pt_regs *regs)
5822{
a0f7d0f7
FW
5823 if (event->hw.state & PERF_HES_STOPPED)
5824 return 0;
580d607c
PZ
5825 /*
5826 * All tracepoints are from kernel-space.
5827 */
5828 if (event->attr.exclude_kernel)
1c024eca
PZ
5829 return 0;
5830
5831 if (!perf_tp_filter_match(event, data))
5832 return 0;
5833
5834 return 1;
5835}
5836
5837void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5838 struct pt_regs *regs, struct hlist_head *head, int rctx,
5839 struct task_struct *task)
95476b64
FW
5840{
5841 struct perf_sample_data data;
1c024eca 5842 struct perf_event *event;
1c024eca 5843
95476b64
FW
5844 struct perf_raw_record raw = {
5845 .size = entry_size,
5846 .data = record,
5847 };
5848
fd0d000b 5849 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5850 data.raw = &raw;
5851
b67bfe0d 5852 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5853 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5854 perf_swevent_event(event, count, &data, regs);
4f41c013 5855 }
ecc55f84 5856
e6dab5ff
AV
5857 /*
5858 * If we got specified a target task, also iterate its context and
5859 * deliver this event there too.
5860 */
5861 if (task && task != current) {
5862 struct perf_event_context *ctx;
5863 struct trace_entry *entry = record;
5864
5865 rcu_read_lock();
5866 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5867 if (!ctx)
5868 goto unlock;
5869
5870 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5871 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5872 continue;
5873 if (event->attr.config != entry->type)
5874 continue;
5875 if (perf_tp_event_match(event, &data, regs))
5876 perf_swevent_event(event, count, &data, regs);
5877 }
5878unlock:
5879 rcu_read_unlock();
5880 }
5881
ecc55f84 5882 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5883}
5884EXPORT_SYMBOL_GPL(perf_tp_event);
5885
cdd6c482 5886static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5887{
1c024eca 5888 perf_trace_destroy(event);
e077df4f
PZ
5889}
5890
b0a873eb 5891static int perf_tp_event_init(struct perf_event *event)
e077df4f 5892{
76e1d904
FW
5893 int err;
5894
b0a873eb
PZ
5895 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5896 return -ENOENT;
5897
2481c5fa
SE
5898 /*
5899 * no branch sampling for tracepoint events
5900 */
5901 if (has_branch_stack(event))
5902 return -EOPNOTSUPP;
5903
1c024eca
PZ
5904 err = perf_trace_init(event);
5905 if (err)
b0a873eb 5906 return err;
e077df4f 5907
cdd6c482 5908 event->destroy = tp_perf_event_destroy;
e077df4f 5909
b0a873eb
PZ
5910 return 0;
5911}
5912
5913static struct pmu perf_tracepoint = {
89a1e187
PZ
5914 .task_ctx_nr = perf_sw_context,
5915
b0a873eb 5916 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5917 .add = perf_trace_add,
5918 .del = perf_trace_del,
5919 .start = perf_swevent_start,
5920 .stop = perf_swevent_stop,
b0a873eb 5921 .read = perf_swevent_read,
35edc2a5
PZ
5922
5923 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5924};
5925
5926static inline void perf_tp_register(void)
5927{
2e80a82a 5928 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5929}
6fb2915d
LZ
5930
5931static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5932{
5933 char *filter_str;
5934 int ret;
5935
5936 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5937 return -EINVAL;
5938
5939 filter_str = strndup_user(arg, PAGE_SIZE);
5940 if (IS_ERR(filter_str))
5941 return PTR_ERR(filter_str);
5942
5943 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5944
5945 kfree(filter_str);
5946 return ret;
5947}
5948
5949static void perf_event_free_filter(struct perf_event *event)
5950{
5951 ftrace_profile_free_filter(event);
5952}
5953
e077df4f 5954#else
6fb2915d 5955
b0a873eb 5956static inline void perf_tp_register(void)
e077df4f 5957{
e077df4f 5958}
6fb2915d
LZ
5959
5960static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5961{
5962 return -ENOENT;
5963}
5964
5965static void perf_event_free_filter(struct perf_event *event)
5966{
5967}
5968
07b139c8 5969#endif /* CONFIG_EVENT_TRACING */
e077df4f 5970
24f1e32c 5971#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5972void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5973{
f5ffe02e
FW
5974 struct perf_sample_data sample;
5975 struct pt_regs *regs = data;
5976
fd0d000b 5977 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5978
a4eaf7f1 5979 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5980 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5981}
5982#endif
5983
b0a873eb
PZ
5984/*
5985 * hrtimer based swevent callback
5986 */
f29ac756 5987
b0a873eb 5988static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5989{
b0a873eb
PZ
5990 enum hrtimer_restart ret = HRTIMER_RESTART;
5991 struct perf_sample_data data;
5992 struct pt_regs *regs;
5993 struct perf_event *event;
5994 u64 period;
f29ac756 5995
b0a873eb 5996 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5997
5998 if (event->state != PERF_EVENT_STATE_ACTIVE)
5999 return HRTIMER_NORESTART;
6000
b0a873eb 6001 event->pmu->read(event);
f344011c 6002
fd0d000b 6003 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6004 regs = get_irq_regs();
6005
6006 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6007 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6008 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6009 ret = HRTIMER_NORESTART;
6010 }
24f1e32c 6011
b0a873eb
PZ
6012 period = max_t(u64, 10000, event->hw.sample_period);
6013 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6014
b0a873eb 6015 return ret;
f29ac756
PZ
6016}
6017
b0a873eb 6018static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6019{
b0a873eb 6020 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6021 s64 period;
6022
6023 if (!is_sampling_event(event))
6024 return;
f5ffe02e 6025
5d508e82
FBH
6026 period = local64_read(&hwc->period_left);
6027 if (period) {
6028 if (period < 0)
6029 period = 10000;
fa407f35 6030
5d508e82
FBH
6031 local64_set(&hwc->period_left, 0);
6032 } else {
6033 period = max_t(u64, 10000, hwc->sample_period);
6034 }
6035 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6036 ns_to_ktime(period), 0,
b5ab4cd5 6037 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6038}
b0a873eb
PZ
6039
6040static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6041{
b0a873eb
PZ
6042 struct hw_perf_event *hwc = &event->hw;
6043
6c7e550f 6044 if (is_sampling_event(event)) {
b0a873eb 6045 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6046 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6047
6048 hrtimer_cancel(&hwc->hrtimer);
6049 }
24f1e32c
FW
6050}
6051
ba3dd36c
PZ
6052static void perf_swevent_init_hrtimer(struct perf_event *event)
6053{
6054 struct hw_perf_event *hwc = &event->hw;
6055
6056 if (!is_sampling_event(event))
6057 return;
6058
6059 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6060 hwc->hrtimer.function = perf_swevent_hrtimer;
6061
6062 /*
6063 * Since hrtimers have a fixed rate, we can do a static freq->period
6064 * mapping and avoid the whole period adjust feedback stuff.
6065 */
6066 if (event->attr.freq) {
6067 long freq = event->attr.sample_freq;
6068
6069 event->attr.sample_period = NSEC_PER_SEC / freq;
6070 hwc->sample_period = event->attr.sample_period;
6071 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6072 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6073 event->attr.freq = 0;
6074 }
6075}
6076
b0a873eb
PZ
6077/*
6078 * Software event: cpu wall time clock
6079 */
6080
6081static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6082{
b0a873eb
PZ
6083 s64 prev;
6084 u64 now;
6085
a4eaf7f1 6086 now = local_clock();
b0a873eb
PZ
6087 prev = local64_xchg(&event->hw.prev_count, now);
6088 local64_add(now - prev, &event->count);
24f1e32c 6089}
24f1e32c 6090
a4eaf7f1 6091static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6092{
a4eaf7f1 6093 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6094 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6095}
6096
a4eaf7f1 6097static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6098{
b0a873eb
PZ
6099 perf_swevent_cancel_hrtimer(event);
6100 cpu_clock_event_update(event);
6101}
f29ac756 6102
a4eaf7f1
PZ
6103static int cpu_clock_event_add(struct perf_event *event, int flags)
6104{
6105 if (flags & PERF_EF_START)
6106 cpu_clock_event_start(event, flags);
6107
6108 return 0;
6109}
6110
6111static void cpu_clock_event_del(struct perf_event *event, int flags)
6112{
6113 cpu_clock_event_stop(event, flags);
6114}
6115
b0a873eb
PZ
6116static void cpu_clock_event_read(struct perf_event *event)
6117{
6118 cpu_clock_event_update(event);
6119}
f344011c 6120
b0a873eb
PZ
6121static int cpu_clock_event_init(struct perf_event *event)
6122{
6123 if (event->attr.type != PERF_TYPE_SOFTWARE)
6124 return -ENOENT;
6125
6126 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6127 return -ENOENT;
6128
2481c5fa
SE
6129 /*
6130 * no branch sampling for software events
6131 */
6132 if (has_branch_stack(event))
6133 return -EOPNOTSUPP;
6134
ba3dd36c
PZ
6135 perf_swevent_init_hrtimer(event);
6136
b0a873eb 6137 return 0;
f29ac756
PZ
6138}
6139
b0a873eb 6140static struct pmu perf_cpu_clock = {
89a1e187
PZ
6141 .task_ctx_nr = perf_sw_context,
6142
b0a873eb 6143 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6144 .add = cpu_clock_event_add,
6145 .del = cpu_clock_event_del,
6146 .start = cpu_clock_event_start,
6147 .stop = cpu_clock_event_stop,
b0a873eb 6148 .read = cpu_clock_event_read,
35edc2a5
PZ
6149
6150 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6151};
6152
6153/*
6154 * Software event: task time clock
6155 */
6156
6157static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6158{
b0a873eb
PZ
6159 u64 prev;
6160 s64 delta;
5c92d124 6161
b0a873eb
PZ
6162 prev = local64_xchg(&event->hw.prev_count, now);
6163 delta = now - prev;
6164 local64_add(delta, &event->count);
6165}
5c92d124 6166
a4eaf7f1 6167static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6168{
a4eaf7f1 6169 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6170 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6171}
6172
a4eaf7f1 6173static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6174{
6175 perf_swevent_cancel_hrtimer(event);
6176 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6177}
6178
6179static int task_clock_event_add(struct perf_event *event, int flags)
6180{
6181 if (flags & PERF_EF_START)
6182 task_clock_event_start(event, flags);
b0a873eb 6183
a4eaf7f1
PZ
6184 return 0;
6185}
6186
6187static void task_clock_event_del(struct perf_event *event, int flags)
6188{
6189 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6190}
6191
6192static void task_clock_event_read(struct perf_event *event)
6193{
768a06e2
PZ
6194 u64 now = perf_clock();
6195 u64 delta = now - event->ctx->timestamp;
6196 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6197
6198 task_clock_event_update(event, time);
6199}
6200
6201static int task_clock_event_init(struct perf_event *event)
6fb2915d 6202{
b0a873eb
PZ
6203 if (event->attr.type != PERF_TYPE_SOFTWARE)
6204 return -ENOENT;
6205
6206 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6207 return -ENOENT;
6208
2481c5fa
SE
6209 /*
6210 * no branch sampling for software events
6211 */
6212 if (has_branch_stack(event))
6213 return -EOPNOTSUPP;
6214
ba3dd36c
PZ
6215 perf_swevent_init_hrtimer(event);
6216
b0a873eb 6217 return 0;
6fb2915d
LZ
6218}
6219
b0a873eb 6220static struct pmu perf_task_clock = {
89a1e187
PZ
6221 .task_ctx_nr = perf_sw_context,
6222
b0a873eb 6223 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6224 .add = task_clock_event_add,
6225 .del = task_clock_event_del,
6226 .start = task_clock_event_start,
6227 .stop = task_clock_event_stop,
b0a873eb 6228 .read = task_clock_event_read,
35edc2a5
PZ
6229
6230 .event_idx = perf_swevent_event_idx,
b0a873eb 6231};
6fb2915d 6232
ad5133b7 6233static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6234{
e077df4f 6235}
6fb2915d 6236
ad5133b7 6237static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6238{
ad5133b7 6239 return 0;
6fb2915d
LZ
6240}
6241
ad5133b7 6242static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6243{
ad5133b7 6244 perf_pmu_disable(pmu);
6fb2915d
LZ
6245}
6246
ad5133b7
PZ
6247static int perf_pmu_commit_txn(struct pmu *pmu)
6248{
6249 perf_pmu_enable(pmu);
6250 return 0;
6251}
e077df4f 6252
ad5133b7 6253static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6254{
ad5133b7 6255 perf_pmu_enable(pmu);
24f1e32c
FW
6256}
6257
35edc2a5
PZ
6258static int perf_event_idx_default(struct perf_event *event)
6259{
6260 return event->hw.idx + 1;
6261}
6262
8dc85d54
PZ
6263/*
6264 * Ensures all contexts with the same task_ctx_nr have the same
6265 * pmu_cpu_context too.
6266 */
6267static void *find_pmu_context(int ctxn)
24f1e32c 6268{
8dc85d54 6269 struct pmu *pmu;
b326e956 6270
8dc85d54
PZ
6271 if (ctxn < 0)
6272 return NULL;
24f1e32c 6273
8dc85d54
PZ
6274 list_for_each_entry(pmu, &pmus, entry) {
6275 if (pmu->task_ctx_nr == ctxn)
6276 return pmu->pmu_cpu_context;
6277 }
24f1e32c 6278
8dc85d54 6279 return NULL;
24f1e32c
FW
6280}
6281
51676957 6282static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6283{
51676957
PZ
6284 int cpu;
6285
6286 for_each_possible_cpu(cpu) {
6287 struct perf_cpu_context *cpuctx;
6288
6289 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6290
3f1f3320
PZ
6291 if (cpuctx->unique_pmu == old_pmu)
6292 cpuctx->unique_pmu = pmu;
51676957
PZ
6293 }
6294}
6295
6296static void free_pmu_context(struct pmu *pmu)
6297{
6298 struct pmu *i;
f5ffe02e 6299
8dc85d54 6300 mutex_lock(&pmus_lock);
0475f9ea 6301 /*
8dc85d54 6302 * Like a real lame refcount.
0475f9ea 6303 */
51676957
PZ
6304 list_for_each_entry(i, &pmus, entry) {
6305 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6306 update_pmu_context(i, pmu);
8dc85d54 6307 goto out;
51676957 6308 }
8dc85d54 6309 }
d6d020e9 6310
51676957 6311 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6312out:
6313 mutex_unlock(&pmus_lock);
24f1e32c 6314}
2e80a82a 6315static struct idr pmu_idr;
d6d020e9 6316
abe43400
PZ
6317static ssize_t
6318type_show(struct device *dev, struct device_attribute *attr, char *page)
6319{
6320 struct pmu *pmu = dev_get_drvdata(dev);
6321
6322 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6323}
90826ca7 6324static DEVICE_ATTR_RO(type);
abe43400 6325
62b85639
SE
6326static ssize_t
6327perf_event_mux_interval_ms_show(struct device *dev,
6328 struct device_attribute *attr,
6329 char *page)
6330{
6331 struct pmu *pmu = dev_get_drvdata(dev);
6332
6333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6334}
6335
6336static ssize_t
6337perf_event_mux_interval_ms_store(struct device *dev,
6338 struct device_attribute *attr,
6339 const char *buf, size_t count)
6340{
6341 struct pmu *pmu = dev_get_drvdata(dev);
6342 int timer, cpu, ret;
6343
6344 ret = kstrtoint(buf, 0, &timer);
6345 if (ret)
6346 return ret;
6347
6348 if (timer < 1)
6349 return -EINVAL;
6350
6351 /* same value, noting to do */
6352 if (timer == pmu->hrtimer_interval_ms)
6353 return count;
6354
6355 pmu->hrtimer_interval_ms = timer;
6356
6357 /* update all cpuctx for this PMU */
6358 for_each_possible_cpu(cpu) {
6359 struct perf_cpu_context *cpuctx;
6360 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6361 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6362
6363 if (hrtimer_active(&cpuctx->hrtimer))
6364 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6365 }
6366
6367 return count;
6368}
90826ca7 6369static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6370
90826ca7
GKH
6371static struct attribute *pmu_dev_attrs[] = {
6372 &dev_attr_type.attr,
6373 &dev_attr_perf_event_mux_interval_ms.attr,
6374 NULL,
abe43400 6375};
90826ca7 6376ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6377
6378static int pmu_bus_running;
6379static struct bus_type pmu_bus = {
6380 .name = "event_source",
90826ca7 6381 .dev_groups = pmu_dev_groups,
abe43400
PZ
6382};
6383
6384static void pmu_dev_release(struct device *dev)
6385{
6386 kfree(dev);
6387}
6388
6389static int pmu_dev_alloc(struct pmu *pmu)
6390{
6391 int ret = -ENOMEM;
6392
6393 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6394 if (!pmu->dev)
6395 goto out;
6396
0c9d42ed 6397 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6398 device_initialize(pmu->dev);
6399 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6400 if (ret)
6401 goto free_dev;
6402
6403 dev_set_drvdata(pmu->dev, pmu);
6404 pmu->dev->bus = &pmu_bus;
6405 pmu->dev->release = pmu_dev_release;
6406 ret = device_add(pmu->dev);
6407 if (ret)
6408 goto free_dev;
6409
6410out:
6411 return ret;
6412
6413free_dev:
6414 put_device(pmu->dev);
6415 goto out;
6416}
6417
547e9fd7 6418static struct lock_class_key cpuctx_mutex;
facc4307 6419static struct lock_class_key cpuctx_lock;
547e9fd7 6420
03d8e80b 6421int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6422{
108b02cf 6423 int cpu, ret;
24f1e32c 6424
b0a873eb 6425 mutex_lock(&pmus_lock);
33696fc0
PZ
6426 ret = -ENOMEM;
6427 pmu->pmu_disable_count = alloc_percpu(int);
6428 if (!pmu->pmu_disable_count)
6429 goto unlock;
f29ac756 6430
2e80a82a
PZ
6431 pmu->type = -1;
6432 if (!name)
6433 goto skip_type;
6434 pmu->name = name;
6435
6436 if (type < 0) {
0e9c3be2
TH
6437 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6438 if (type < 0) {
6439 ret = type;
2e80a82a
PZ
6440 goto free_pdc;
6441 }
6442 }
6443 pmu->type = type;
6444
abe43400
PZ
6445 if (pmu_bus_running) {
6446 ret = pmu_dev_alloc(pmu);
6447 if (ret)
6448 goto free_idr;
6449 }
6450
2e80a82a 6451skip_type:
8dc85d54
PZ
6452 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6453 if (pmu->pmu_cpu_context)
6454 goto got_cpu_context;
f29ac756 6455
c4814202 6456 ret = -ENOMEM;
108b02cf
PZ
6457 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6458 if (!pmu->pmu_cpu_context)
abe43400 6459 goto free_dev;
f344011c 6460
108b02cf
PZ
6461 for_each_possible_cpu(cpu) {
6462 struct perf_cpu_context *cpuctx;
6463
6464 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6465 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6466 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6467 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6468 cpuctx->ctx.type = cpu_context;
108b02cf 6469 cpuctx->ctx.pmu = pmu;
9e630205
SE
6470
6471 __perf_cpu_hrtimer_init(cpuctx, cpu);
6472
e9d2b064 6473 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6474 cpuctx->unique_pmu = pmu;
108b02cf 6475 }
76e1d904 6476
8dc85d54 6477got_cpu_context:
ad5133b7
PZ
6478 if (!pmu->start_txn) {
6479 if (pmu->pmu_enable) {
6480 /*
6481 * If we have pmu_enable/pmu_disable calls, install
6482 * transaction stubs that use that to try and batch
6483 * hardware accesses.
6484 */
6485 pmu->start_txn = perf_pmu_start_txn;
6486 pmu->commit_txn = perf_pmu_commit_txn;
6487 pmu->cancel_txn = perf_pmu_cancel_txn;
6488 } else {
6489 pmu->start_txn = perf_pmu_nop_void;
6490 pmu->commit_txn = perf_pmu_nop_int;
6491 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6492 }
5c92d124 6493 }
15dbf27c 6494
ad5133b7
PZ
6495 if (!pmu->pmu_enable) {
6496 pmu->pmu_enable = perf_pmu_nop_void;
6497 pmu->pmu_disable = perf_pmu_nop_void;
6498 }
6499
35edc2a5
PZ
6500 if (!pmu->event_idx)
6501 pmu->event_idx = perf_event_idx_default;
6502
b0a873eb 6503 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6504 ret = 0;
6505unlock:
b0a873eb
PZ
6506 mutex_unlock(&pmus_lock);
6507
33696fc0 6508 return ret;
108b02cf 6509
abe43400
PZ
6510free_dev:
6511 device_del(pmu->dev);
6512 put_device(pmu->dev);
6513
2e80a82a
PZ
6514free_idr:
6515 if (pmu->type >= PERF_TYPE_MAX)
6516 idr_remove(&pmu_idr, pmu->type);
6517
108b02cf
PZ
6518free_pdc:
6519 free_percpu(pmu->pmu_disable_count);
6520 goto unlock;
f29ac756
PZ
6521}
6522
b0a873eb 6523void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6524{
b0a873eb
PZ
6525 mutex_lock(&pmus_lock);
6526 list_del_rcu(&pmu->entry);
6527 mutex_unlock(&pmus_lock);
5c92d124 6528
0475f9ea 6529 /*
cde8e884
PZ
6530 * We dereference the pmu list under both SRCU and regular RCU, so
6531 * synchronize against both of those.
0475f9ea 6532 */
b0a873eb 6533 synchronize_srcu(&pmus_srcu);
cde8e884 6534 synchronize_rcu();
d6d020e9 6535
33696fc0 6536 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6537 if (pmu->type >= PERF_TYPE_MAX)
6538 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6539 device_del(pmu->dev);
6540 put_device(pmu->dev);
51676957 6541 free_pmu_context(pmu);
b0a873eb 6542}
d6d020e9 6543
b0a873eb
PZ
6544struct pmu *perf_init_event(struct perf_event *event)
6545{
6546 struct pmu *pmu = NULL;
6547 int idx;
940c5b29 6548 int ret;
b0a873eb
PZ
6549
6550 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6551
6552 rcu_read_lock();
6553 pmu = idr_find(&pmu_idr, event->attr.type);
6554 rcu_read_unlock();
940c5b29 6555 if (pmu) {
7e5b2a01 6556 event->pmu = pmu;
940c5b29
LM
6557 ret = pmu->event_init(event);
6558 if (ret)
6559 pmu = ERR_PTR(ret);
2e80a82a 6560 goto unlock;
940c5b29 6561 }
2e80a82a 6562
b0a873eb 6563 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6564 event->pmu = pmu;
940c5b29 6565 ret = pmu->event_init(event);
b0a873eb 6566 if (!ret)
e5f4d339 6567 goto unlock;
76e1d904 6568
b0a873eb
PZ
6569 if (ret != -ENOENT) {
6570 pmu = ERR_PTR(ret);
e5f4d339 6571 goto unlock;
f344011c 6572 }
5c92d124 6573 }
e5f4d339
PZ
6574 pmu = ERR_PTR(-ENOENT);
6575unlock:
b0a873eb 6576 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6577
4aeb0b42 6578 return pmu;
5c92d124
IM
6579}
6580
4beb31f3
FW
6581static void account_event_cpu(struct perf_event *event, int cpu)
6582{
6583 if (event->parent)
6584 return;
6585
6586 if (has_branch_stack(event)) {
6587 if (!(event->attach_state & PERF_ATTACH_TASK))
6588 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6589 }
6590 if (is_cgroup_event(event))
6591 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6592}
6593
766d6c07
FW
6594static void account_event(struct perf_event *event)
6595{
4beb31f3
FW
6596 if (event->parent)
6597 return;
6598
766d6c07
FW
6599 if (event->attach_state & PERF_ATTACH_TASK)
6600 static_key_slow_inc(&perf_sched_events.key);
6601 if (event->attr.mmap || event->attr.mmap_data)
6602 atomic_inc(&nr_mmap_events);
6603 if (event->attr.comm)
6604 atomic_inc(&nr_comm_events);
6605 if (event->attr.task)
6606 atomic_inc(&nr_task_events);
948b26b6
FW
6607 if (event->attr.freq) {
6608 if (atomic_inc_return(&nr_freq_events) == 1)
6609 tick_nohz_full_kick_all();
6610 }
4beb31f3 6611 if (has_branch_stack(event))
766d6c07 6612 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6613 if (is_cgroup_event(event))
766d6c07 6614 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6615
6616 account_event_cpu(event, event->cpu);
766d6c07
FW
6617}
6618
0793a61d 6619/*
cdd6c482 6620 * Allocate and initialize a event structure
0793a61d 6621 */
cdd6c482 6622static struct perf_event *
c3f00c70 6623perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6624 struct task_struct *task,
6625 struct perf_event *group_leader,
6626 struct perf_event *parent_event,
4dc0da86
AK
6627 perf_overflow_handler_t overflow_handler,
6628 void *context)
0793a61d 6629{
51b0fe39 6630 struct pmu *pmu;
cdd6c482
IM
6631 struct perf_event *event;
6632 struct hw_perf_event *hwc;
90983b16 6633 long err = -EINVAL;
0793a61d 6634
66832eb4
ON
6635 if ((unsigned)cpu >= nr_cpu_ids) {
6636 if (!task || cpu != -1)
6637 return ERR_PTR(-EINVAL);
6638 }
6639
c3f00c70 6640 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6641 if (!event)
d5d2bc0d 6642 return ERR_PTR(-ENOMEM);
0793a61d 6643
04289bb9 6644 /*
cdd6c482 6645 * Single events are their own group leaders, with an
04289bb9
IM
6646 * empty sibling list:
6647 */
6648 if (!group_leader)
cdd6c482 6649 group_leader = event;
04289bb9 6650
cdd6c482
IM
6651 mutex_init(&event->child_mutex);
6652 INIT_LIST_HEAD(&event->child_list);
fccc714b 6653
cdd6c482
IM
6654 INIT_LIST_HEAD(&event->group_entry);
6655 INIT_LIST_HEAD(&event->event_entry);
6656 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6657 INIT_LIST_HEAD(&event->rb_entry);
6658
cdd6c482 6659 init_waitqueue_head(&event->waitq);
e360adbe 6660 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6661
cdd6c482 6662 mutex_init(&event->mmap_mutex);
7b732a75 6663
a6fa941d 6664 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6665 event->cpu = cpu;
6666 event->attr = *attr;
6667 event->group_leader = group_leader;
6668 event->pmu = NULL;
cdd6c482 6669 event->oncpu = -1;
a96bbc16 6670
cdd6c482 6671 event->parent = parent_event;
b84fbc9f 6672
17cf22c3 6673 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6674 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6675
cdd6c482 6676 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6677
d580ff86
PZ
6678 if (task) {
6679 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6680
6681 if (attr->type == PERF_TYPE_TRACEPOINT)
6682 event->hw.tp_target = task;
d580ff86
PZ
6683#ifdef CONFIG_HAVE_HW_BREAKPOINT
6684 /*
6685 * hw_breakpoint is a bit difficult here..
6686 */
f22c1bb6 6687 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6688 event->hw.bp_target = task;
6689#endif
6690 }
6691
4dc0da86 6692 if (!overflow_handler && parent_event) {
b326e956 6693 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6694 context = parent_event->overflow_handler_context;
6695 }
66832eb4 6696
b326e956 6697 event->overflow_handler = overflow_handler;
4dc0da86 6698 event->overflow_handler_context = context;
97eaf530 6699
0231bb53 6700 perf_event__state_init(event);
a86ed508 6701
4aeb0b42 6702 pmu = NULL;
b8e83514 6703
cdd6c482 6704 hwc = &event->hw;
bd2b5b12 6705 hwc->sample_period = attr->sample_period;
0d48696f 6706 if (attr->freq && attr->sample_freq)
bd2b5b12 6707 hwc->sample_period = 1;
eced1dfc 6708 hwc->last_period = hwc->sample_period;
bd2b5b12 6709
e7850595 6710 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6711
2023b359 6712 /*
cdd6c482 6713 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6714 */
3dab77fb 6715 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6716 goto err_ns;
2023b359 6717
b0a873eb 6718 pmu = perf_init_event(event);
4aeb0b42 6719 if (!pmu)
90983b16
FW
6720 goto err_ns;
6721 else if (IS_ERR(pmu)) {
4aeb0b42 6722 err = PTR_ERR(pmu);
90983b16 6723 goto err_ns;
621a01ea 6724 }
d5d2bc0d 6725
cdd6c482 6726 if (!event->parent) {
927c7a9e
FW
6727 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6728 err = get_callchain_buffers();
90983b16
FW
6729 if (err)
6730 goto err_pmu;
d010b332 6731 }
f344011c 6732 }
9ee318a7 6733
cdd6c482 6734 return event;
90983b16
FW
6735
6736err_pmu:
6737 if (event->destroy)
6738 event->destroy(event);
6739err_ns:
6740 if (event->ns)
6741 put_pid_ns(event->ns);
6742 kfree(event);
6743
6744 return ERR_PTR(err);
0793a61d
TG
6745}
6746
cdd6c482
IM
6747static int perf_copy_attr(struct perf_event_attr __user *uattr,
6748 struct perf_event_attr *attr)
974802ea 6749{
974802ea 6750 u32 size;
cdf8073d 6751 int ret;
974802ea
PZ
6752
6753 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6754 return -EFAULT;
6755
6756 /*
6757 * zero the full structure, so that a short copy will be nice.
6758 */
6759 memset(attr, 0, sizeof(*attr));
6760
6761 ret = get_user(size, &uattr->size);
6762 if (ret)
6763 return ret;
6764
6765 if (size > PAGE_SIZE) /* silly large */
6766 goto err_size;
6767
6768 if (!size) /* abi compat */
6769 size = PERF_ATTR_SIZE_VER0;
6770
6771 if (size < PERF_ATTR_SIZE_VER0)
6772 goto err_size;
6773
6774 /*
6775 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6776 * ensure all the unknown bits are 0 - i.e. new
6777 * user-space does not rely on any kernel feature
6778 * extensions we dont know about yet.
974802ea
PZ
6779 */
6780 if (size > sizeof(*attr)) {
cdf8073d
IS
6781 unsigned char __user *addr;
6782 unsigned char __user *end;
6783 unsigned char val;
974802ea 6784
cdf8073d
IS
6785 addr = (void __user *)uattr + sizeof(*attr);
6786 end = (void __user *)uattr + size;
974802ea 6787
cdf8073d 6788 for (; addr < end; addr++) {
974802ea
PZ
6789 ret = get_user(val, addr);
6790 if (ret)
6791 return ret;
6792 if (val)
6793 goto err_size;
6794 }
b3e62e35 6795 size = sizeof(*attr);
974802ea
PZ
6796 }
6797
6798 ret = copy_from_user(attr, uattr, size);
6799 if (ret)
6800 return -EFAULT;
6801
3090ffb5
SE
6802 /* disabled for now */
6803 if (attr->mmap2)
6804 return -EINVAL;
6805
cd757645 6806 if (attr->__reserved_1)
974802ea
PZ
6807 return -EINVAL;
6808
6809 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6810 return -EINVAL;
6811
6812 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6813 return -EINVAL;
6814
bce38cd5
SE
6815 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6816 u64 mask = attr->branch_sample_type;
6817
6818 /* only using defined bits */
6819 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6820 return -EINVAL;
6821
6822 /* at least one branch bit must be set */
6823 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6824 return -EINVAL;
6825
bce38cd5
SE
6826 /* propagate priv level, when not set for branch */
6827 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6828
6829 /* exclude_kernel checked on syscall entry */
6830 if (!attr->exclude_kernel)
6831 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6832
6833 if (!attr->exclude_user)
6834 mask |= PERF_SAMPLE_BRANCH_USER;
6835
6836 if (!attr->exclude_hv)
6837 mask |= PERF_SAMPLE_BRANCH_HV;
6838 /*
6839 * adjust user setting (for HW filter setup)
6840 */
6841 attr->branch_sample_type = mask;
6842 }
e712209a
SE
6843 /* privileged levels capture (kernel, hv): check permissions */
6844 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6845 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6846 return -EACCES;
bce38cd5 6847 }
4018994f 6848
c5ebcedb 6849 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6850 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6851 if (ret)
6852 return ret;
6853 }
6854
6855 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6856 if (!arch_perf_have_user_stack_dump())
6857 return -ENOSYS;
6858
6859 /*
6860 * We have __u32 type for the size, but so far
6861 * we can only use __u16 as maximum due to the
6862 * __u16 sample size limit.
6863 */
6864 if (attr->sample_stack_user >= USHRT_MAX)
6865 ret = -EINVAL;
6866 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6867 ret = -EINVAL;
6868 }
4018994f 6869
974802ea
PZ
6870out:
6871 return ret;
6872
6873err_size:
6874 put_user(sizeof(*attr), &uattr->size);
6875 ret = -E2BIG;
6876 goto out;
6877}
6878
ac9721f3
PZ
6879static int
6880perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6881{
76369139 6882 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6883 int ret = -EINVAL;
6884
ac9721f3 6885 if (!output_event)
a4be7c27
PZ
6886 goto set;
6887
ac9721f3
PZ
6888 /* don't allow circular references */
6889 if (event == output_event)
a4be7c27
PZ
6890 goto out;
6891
0f139300
PZ
6892 /*
6893 * Don't allow cross-cpu buffers
6894 */
6895 if (output_event->cpu != event->cpu)
6896 goto out;
6897
6898 /*
76369139 6899 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6900 */
6901 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6902 goto out;
6903
a4be7c27 6904set:
cdd6c482 6905 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6906 /* Can't redirect output if we've got an active mmap() */
6907 if (atomic_read(&event->mmap_count))
6908 goto unlock;
a4be7c27 6909
9bb5d40c
PZ
6910 old_rb = event->rb;
6911
ac9721f3 6912 if (output_event) {
76369139
FW
6913 /* get the rb we want to redirect to */
6914 rb = ring_buffer_get(output_event);
6915 if (!rb)
ac9721f3 6916 goto unlock;
a4be7c27
PZ
6917 }
6918
10c6db11
PZ
6919 if (old_rb)
6920 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6921
6922 if (rb)
6923 ring_buffer_attach(event, rb);
6924
6925 rcu_assign_pointer(event->rb, rb);
6926
6927 if (old_rb) {
6928 ring_buffer_put(old_rb);
6929 /*
6930 * Since we detached before setting the new rb, so that we
6931 * could attach the new rb, we could have missed a wakeup.
6932 * Provide it now.
6933 */
6934 wake_up_all(&event->waitq);
6935 }
6936
a4be7c27 6937 ret = 0;
ac9721f3
PZ
6938unlock:
6939 mutex_unlock(&event->mmap_mutex);
6940
a4be7c27 6941out:
a4be7c27
PZ
6942 return ret;
6943}
6944
0793a61d 6945/**
cdd6c482 6946 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6947 *
cdd6c482 6948 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6949 * @pid: target pid
9f66a381 6950 * @cpu: target cpu
cdd6c482 6951 * @group_fd: group leader event fd
0793a61d 6952 */
cdd6c482
IM
6953SYSCALL_DEFINE5(perf_event_open,
6954 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6955 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6956{
b04243ef
PZ
6957 struct perf_event *group_leader = NULL, *output_event = NULL;
6958 struct perf_event *event, *sibling;
cdd6c482
IM
6959 struct perf_event_attr attr;
6960 struct perf_event_context *ctx;
6961 struct file *event_file = NULL;
2903ff01 6962 struct fd group = {NULL, 0};
38a81da2 6963 struct task_struct *task = NULL;
89a1e187 6964 struct pmu *pmu;
ea635c64 6965 int event_fd;
b04243ef 6966 int move_group = 0;
dc86cabe 6967 int err;
0793a61d 6968
2743a5b0 6969 /* for future expandability... */
e5d1367f 6970 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6971 return -EINVAL;
6972
dc86cabe
IM
6973 err = perf_copy_attr(attr_uptr, &attr);
6974 if (err)
6975 return err;
eab656ae 6976
0764771d
PZ
6977 if (!attr.exclude_kernel) {
6978 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6979 return -EACCES;
6980 }
6981
df58ab24 6982 if (attr.freq) {
cdd6c482 6983 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6984 return -EINVAL;
6985 }
6986
e5d1367f
SE
6987 /*
6988 * In cgroup mode, the pid argument is used to pass the fd
6989 * opened to the cgroup directory in cgroupfs. The cpu argument
6990 * designates the cpu on which to monitor threads from that
6991 * cgroup.
6992 */
6993 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6994 return -EINVAL;
6995
ab72a702 6996 event_fd = get_unused_fd();
ea635c64
AV
6997 if (event_fd < 0)
6998 return event_fd;
6999
ac9721f3 7000 if (group_fd != -1) {
2903ff01
AV
7001 err = perf_fget_light(group_fd, &group);
7002 if (err)
d14b12d7 7003 goto err_fd;
2903ff01 7004 group_leader = group.file->private_data;
ac9721f3
PZ
7005 if (flags & PERF_FLAG_FD_OUTPUT)
7006 output_event = group_leader;
7007 if (flags & PERF_FLAG_FD_NO_GROUP)
7008 group_leader = NULL;
7009 }
7010
e5d1367f 7011 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7012 task = find_lively_task_by_vpid(pid);
7013 if (IS_ERR(task)) {
7014 err = PTR_ERR(task);
7015 goto err_group_fd;
7016 }
7017 }
7018
fbfc623f
YZ
7019 get_online_cpus();
7020
4dc0da86
AK
7021 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7022 NULL, NULL);
d14b12d7
SE
7023 if (IS_ERR(event)) {
7024 err = PTR_ERR(event);
c6be5a5c 7025 goto err_task;
d14b12d7
SE
7026 }
7027
e5d1367f
SE
7028 if (flags & PERF_FLAG_PID_CGROUP) {
7029 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7030 if (err) {
7031 __free_event(event);
7032 goto err_task;
7033 }
e5d1367f
SE
7034 }
7035
766d6c07
FW
7036 account_event(event);
7037
89a1e187
PZ
7038 /*
7039 * Special case software events and allow them to be part of
7040 * any hardware group.
7041 */
7042 pmu = event->pmu;
b04243ef
PZ
7043
7044 if (group_leader &&
7045 (is_software_event(event) != is_software_event(group_leader))) {
7046 if (is_software_event(event)) {
7047 /*
7048 * If event and group_leader are not both a software
7049 * event, and event is, then group leader is not.
7050 *
7051 * Allow the addition of software events to !software
7052 * groups, this is safe because software events never
7053 * fail to schedule.
7054 */
7055 pmu = group_leader->pmu;
7056 } else if (is_software_event(group_leader) &&
7057 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7058 /*
7059 * In case the group is a pure software group, and we
7060 * try to add a hardware event, move the whole group to
7061 * the hardware context.
7062 */
7063 move_group = 1;
7064 }
7065 }
89a1e187
PZ
7066
7067 /*
7068 * Get the target context (task or percpu):
7069 */
e2d37cd2 7070 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7071 if (IS_ERR(ctx)) {
7072 err = PTR_ERR(ctx);
c6be5a5c 7073 goto err_alloc;
89a1e187
PZ
7074 }
7075
fd1edb3a
PZ
7076 if (task) {
7077 put_task_struct(task);
7078 task = NULL;
7079 }
7080
ccff286d 7081 /*
cdd6c482 7082 * Look up the group leader (we will attach this event to it):
04289bb9 7083 */
ac9721f3 7084 if (group_leader) {
dc86cabe 7085 err = -EINVAL;
04289bb9 7086
04289bb9 7087 /*
ccff286d
IM
7088 * Do not allow a recursive hierarchy (this new sibling
7089 * becoming part of another group-sibling):
7090 */
7091 if (group_leader->group_leader != group_leader)
c3f00c70 7092 goto err_context;
ccff286d
IM
7093 /*
7094 * Do not allow to attach to a group in a different
7095 * task or CPU context:
04289bb9 7096 */
b04243ef
PZ
7097 if (move_group) {
7098 if (group_leader->ctx->type != ctx->type)
7099 goto err_context;
7100 } else {
7101 if (group_leader->ctx != ctx)
7102 goto err_context;
7103 }
7104
3b6f9e5c
PM
7105 /*
7106 * Only a group leader can be exclusive or pinned
7107 */
0d48696f 7108 if (attr.exclusive || attr.pinned)
c3f00c70 7109 goto err_context;
ac9721f3
PZ
7110 }
7111
7112 if (output_event) {
7113 err = perf_event_set_output(event, output_event);
7114 if (err)
c3f00c70 7115 goto err_context;
ac9721f3 7116 }
0793a61d 7117
ea635c64
AV
7118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7119 if (IS_ERR(event_file)) {
7120 err = PTR_ERR(event_file);
c3f00c70 7121 goto err_context;
ea635c64 7122 }
9b51f66d 7123
b04243ef
PZ
7124 if (move_group) {
7125 struct perf_event_context *gctx = group_leader->ctx;
7126
7127 mutex_lock(&gctx->mutex);
fe4b04fa 7128 perf_remove_from_context(group_leader);
0231bb53
JO
7129
7130 /*
7131 * Removing from the context ends up with disabled
7132 * event. What we want here is event in the initial
7133 * startup state, ready to be add into new context.
7134 */
7135 perf_event__state_init(group_leader);
b04243ef
PZ
7136 list_for_each_entry(sibling, &group_leader->sibling_list,
7137 group_entry) {
fe4b04fa 7138 perf_remove_from_context(sibling);
0231bb53 7139 perf_event__state_init(sibling);
b04243ef
PZ
7140 put_ctx(gctx);
7141 }
7142 mutex_unlock(&gctx->mutex);
7143 put_ctx(gctx);
ea635c64 7144 }
9b51f66d 7145
ad3a37de 7146 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7147 mutex_lock(&ctx->mutex);
b04243ef
PZ
7148
7149 if (move_group) {
0cda4c02 7150 synchronize_rcu();
e2d37cd2 7151 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7152 get_ctx(ctx);
7153 list_for_each_entry(sibling, &group_leader->sibling_list,
7154 group_entry) {
e2d37cd2 7155 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7156 get_ctx(ctx);
7157 }
7158 }
7159
e2d37cd2 7160 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7161 perf_unpin_context(ctx);
d859e29f 7162 mutex_unlock(&ctx->mutex);
9b51f66d 7163
fbfc623f
YZ
7164 put_online_cpus();
7165
cdd6c482 7166 event->owner = current;
8882135b 7167
cdd6c482
IM
7168 mutex_lock(&current->perf_event_mutex);
7169 list_add_tail(&event->owner_entry, &current->perf_event_list);
7170 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7171
c320c7b7
ACM
7172 /*
7173 * Precalculate sample_data sizes
7174 */
7175 perf_event__header_size(event);
6844c09d 7176 perf_event__id_header_size(event);
c320c7b7 7177
8a49542c
PZ
7178 /*
7179 * Drop the reference on the group_event after placing the
7180 * new event on the sibling_list. This ensures destruction
7181 * of the group leader will find the pointer to itself in
7182 * perf_group_detach().
7183 */
2903ff01 7184 fdput(group);
ea635c64
AV
7185 fd_install(event_fd, event_file);
7186 return event_fd;
0793a61d 7187
c3f00c70 7188err_context:
fe4b04fa 7189 perf_unpin_context(ctx);
ea635c64 7190 put_ctx(ctx);
c6be5a5c 7191err_alloc:
ea635c64 7192 free_event(event);
e7d0bc04 7193err_task:
fbfc623f 7194 put_online_cpus();
e7d0bc04
PZ
7195 if (task)
7196 put_task_struct(task);
89a1e187 7197err_group_fd:
2903ff01 7198 fdput(group);
ea635c64
AV
7199err_fd:
7200 put_unused_fd(event_fd);
dc86cabe 7201 return err;
0793a61d
TG
7202}
7203
fb0459d7
AV
7204/**
7205 * perf_event_create_kernel_counter
7206 *
7207 * @attr: attributes of the counter to create
7208 * @cpu: cpu in which the counter is bound
38a81da2 7209 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7210 */
7211struct perf_event *
7212perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7213 struct task_struct *task,
4dc0da86
AK
7214 perf_overflow_handler_t overflow_handler,
7215 void *context)
fb0459d7 7216{
fb0459d7 7217 struct perf_event_context *ctx;
c3f00c70 7218 struct perf_event *event;
fb0459d7 7219 int err;
d859e29f 7220
fb0459d7
AV
7221 /*
7222 * Get the target context (task or percpu):
7223 */
d859e29f 7224
4dc0da86
AK
7225 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7226 overflow_handler, context);
c3f00c70
PZ
7227 if (IS_ERR(event)) {
7228 err = PTR_ERR(event);
7229 goto err;
7230 }
d859e29f 7231
766d6c07
FW
7232 account_event(event);
7233
38a81da2 7234 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7235 if (IS_ERR(ctx)) {
7236 err = PTR_ERR(ctx);
c3f00c70 7237 goto err_free;
d859e29f 7238 }
fb0459d7 7239
fb0459d7
AV
7240 WARN_ON_ONCE(ctx->parent_ctx);
7241 mutex_lock(&ctx->mutex);
7242 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7243 perf_unpin_context(ctx);
fb0459d7
AV
7244 mutex_unlock(&ctx->mutex);
7245
fb0459d7
AV
7246 return event;
7247
c3f00c70
PZ
7248err_free:
7249 free_event(event);
7250err:
c6567f64 7251 return ERR_PTR(err);
9b51f66d 7252}
fb0459d7 7253EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7254
0cda4c02
YZ
7255void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7256{
7257 struct perf_event_context *src_ctx;
7258 struct perf_event_context *dst_ctx;
7259 struct perf_event *event, *tmp;
7260 LIST_HEAD(events);
7261
7262 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7263 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7264
7265 mutex_lock(&src_ctx->mutex);
7266 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7267 event_entry) {
7268 perf_remove_from_context(event);
9a545de0 7269 unaccount_event_cpu(event, src_cpu);
0cda4c02 7270 put_ctx(src_ctx);
9886167d 7271 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7272 }
7273 mutex_unlock(&src_ctx->mutex);
7274
7275 synchronize_rcu();
7276
7277 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7278 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7279 list_del(&event->migrate_entry);
0cda4c02
YZ
7280 if (event->state >= PERF_EVENT_STATE_OFF)
7281 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7282 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7283 perf_install_in_context(dst_ctx, event, dst_cpu);
7284 get_ctx(dst_ctx);
7285 }
7286 mutex_unlock(&dst_ctx->mutex);
7287}
7288EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7289
cdd6c482 7290static void sync_child_event(struct perf_event *child_event,
38b200d6 7291 struct task_struct *child)
d859e29f 7292{
cdd6c482 7293 struct perf_event *parent_event = child_event->parent;
8bc20959 7294 u64 child_val;
d859e29f 7295
cdd6c482
IM
7296 if (child_event->attr.inherit_stat)
7297 perf_event_read_event(child_event, child);
38b200d6 7298
b5e58793 7299 child_val = perf_event_count(child_event);
d859e29f
PM
7300
7301 /*
7302 * Add back the child's count to the parent's count:
7303 */
a6e6dea6 7304 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7305 atomic64_add(child_event->total_time_enabled,
7306 &parent_event->child_total_time_enabled);
7307 atomic64_add(child_event->total_time_running,
7308 &parent_event->child_total_time_running);
d859e29f
PM
7309
7310 /*
cdd6c482 7311 * Remove this event from the parent's list
d859e29f 7312 */
cdd6c482
IM
7313 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7314 mutex_lock(&parent_event->child_mutex);
7315 list_del_init(&child_event->child_list);
7316 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7317
7318 /*
cdd6c482 7319 * Release the parent event, if this was the last
d859e29f
PM
7320 * reference to it.
7321 */
a6fa941d 7322 put_event(parent_event);
d859e29f
PM
7323}
7324
9b51f66d 7325static void
cdd6c482
IM
7326__perf_event_exit_task(struct perf_event *child_event,
7327 struct perf_event_context *child_ctx,
38b200d6 7328 struct task_struct *child)
9b51f66d 7329{
38b435b1
PZ
7330 if (child_event->parent) {
7331 raw_spin_lock_irq(&child_ctx->lock);
7332 perf_group_detach(child_event);
7333 raw_spin_unlock_irq(&child_ctx->lock);
7334 }
9b51f66d 7335
fe4b04fa 7336 perf_remove_from_context(child_event);
0cc0c027 7337
9b51f66d 7338 /*
38b435b1 7339 * It can happen that the parent exits first, and has events
9b51f66d 7340 * that are still around due to the child reference. These
38b435b1 7341 * events need to be zapped.
9b51f66d 7342 */
38b435b1 7343 if (child_event->parent) {
cdd6c482
IM
7344 sync_child_event(child_event, child);
7345 free_event(child_event);
4bcf349a 7346 }
9b51f66d
IM
7347}
7348
8dc85d54 7349static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7350{
cdd6c482
IM
7351 struct perf_event *child_event, *tmp;
7352 struct perf_event_context *child_ctx;
a63eaf34 7353 unsigned long flags;
9b51f66d 7354
8dc85d54 7355 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7356 perf_event_task(child, NULL, 0);
9b51f66d 7357 return;
9f498cc5 7358 }
9b51f66d 7359
a63eaf34 7360 local_irq_save(flags);
ad3a37de
PM
7361 /*
7362 * We can't reschedule here because interrupts are disabled,
7363 * and either child is current or it is a task that can't be
7364 * scheduled, so we are now safe from rescheduling changing
7365 * our context.
7366 */
806839b2 7367 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7368
7369 /*
7370 * Take the context lock here so that if find_get_context is
cdd6c482 7371 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7372 * incremented the context's refcount before we do put_ctx below.
7373 */
e625cce1 7374 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7375 task_ctx_sched_out(child_ctx);
8dc85d54 7376 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7377 /*
7378 * If this context is a clone; unclone it so it can't get
7379 * swapped to another process while we're removing all
cdd6c482 7380 * the events from it.
71a851b4
PZ
7381 */
7382 unclone_ctx(child_ctx);
5e942bb3 7383 update_context_time(child_ctx);
e625cce1 7384 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7385
7386 /*
cdd6c482
IM
7387 * Report the task dead after unscheduling the events so that we
7388 * won't get any samples after PERF_RECORD_EXIT. We can however still
7389 * get a few PERF_RECORD_READ events.
9f498cc5 7390 */
cdd6c482 7391 perf_event_task(child, child_ctx, 0);
a63eaf34 7392
66fff224
PZ
7393 /*
7394 * We can recurse on the same lock type through:
7395 *
cdd6c482
IM
7396 * __perf_event_exit_task()
7397 * sync_child_event()
a6fa941d
AV
7398 * put_event()
7399 * mutex_lock(&ctx->mutex)
66fff224
PZ
7400 *
7401 * But since its the parent context it won't be the same instance.
7402 */
a0507c84 7403 mutex_lock(&child_ctx->mutex);
a63eaf34 7404
8bc20959 7405again:
889ff015
FW
7406 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7407 group_entry)
7408 __perf_event_exit_task(child_event, child_ctx, child);
7409
7410 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7411 group_entry)
cdd6c482 7412 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7413
7414 /*
cdd6c482 7415 * If the last event was a group event, it will have appended all
8bc20959
PZ
7416 * its siblings to the list, but we obtained 'tmp' before that which
7417 * will still point to the list head terminating the iteration.
7418 */
889ff015
FW
7419 if (!list_empty(&child_ctx->pinned_groups) ||
7420 !list_empty(&child_ctx->flexible_groups))
8bc20959 7421 goto again;
a63eaf34
PM
7422
7423 mutex_unlock(&child_ctx->mutex);
7424
7425 put_ctx(child_ctx);
9b51f66d
IM
7426}
7427
8dc85d54
PZ
7428/*
7429 * When a child task exits, feed back event values to parent events.
7430 */
7431void perf_event_exit_task(struct task_struct *child)
7432{
8882135b 7433 struct perf_event *event, *tmp;
8dc85d54
PZ
7434 int ctxn;
7435
8882135b
PZ
7436 mutex_lock(&child->perf_event_mutex);
7437 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7438 owner_entry) {
7439 list_del_init(&event->owner_entry);
7440
7441 /*
7442 * Ensure the list deletion is visible before we clear
7443 * the owner, closes a race against perf_release() where
7444 * we need to serialize on the owner->perf_event_mutex.
7445 */
7446 smp_wmb();
7447 event->owner = NULL;
7448 }
7449 mutex_unlock(&child->perf_event_mutex);
7450
8dc85d54
PZ
7451 for_each_task_context_nr(ctxn)
7452 perf_event_exit_task_context(child, ctxn);
7453}
7454
889ff015
FW
7455static void perf_free_event(struct perf_event *event,
7456 struct perf_event_context *ctx)
7457{
7458 struct perf_event *parent = event->parent;
7459
7460 if (WARN_ON_ONCE(!parent))
7461 return;
7462
7463 mutex_lock(&parent->child_mutex);
7464 list_del_init(&event->child_list);
7465 mutex_unlock(&parent->child_mutex);
7466
a6fa941d 7467 put_event(parent);
889ff015 7468
8a49542c 7469 perf_group_detach(event);
889ff015
FW
7470 list_del_event(event, ctx);
7471 free_event(event);
7472}
7473
bbbee908
PZ
7474/*
7475 * free an unexposed, unused context as created by inheritance by
8dc85d54 7476 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7477 */
cdd6c482 7478void perf_event_free_task(struct task_struct *task)
bbbee908 7479{
8dc85d54 7480 struct perf_event_context *ctx;
cdd6c482 7481 struct perf_event *event, *tmp;
8dc85d54 7482 int ctxn;
bbbee908 7483
8dc85d54
PZ
7484 for_each_task_context_nr(ctxn) {
7485 ctx = task->perf_event_ctxp[ctxn];
7486 if (!ctx)
7487 continue;
bbbee908 7488
8dc85d54 7489 mutex_lock(&ctx->mutex);
bbbee908 7490again:
8dc85d54
PZ
7491 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7492 group_entry)
7493 perf_free_event(event, ctx);
bbbee908 7494
8dc85d54
PZ
7495 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7496 group_entry)
7497 perf_free_event(event, ctx);
bbbee908 7498
8dc85d54
PZ
7499 if (!list_empty(&ctx->pinned_groups) ||
7500 !list_empty(&ctx->flexible_groups))
7501 goto again;
bbbee908 7502
8dc85d54 7503 mutex_unlock(&ctx->mutex);
bbbee908 7504
8dc85d54
PZ
7505 put_ctx(ctx);
7506 }
889ff015
FW
7507}
7508
4e231c79
PZ
7509void perf_event_delayed_put(struct task_struct *task)
7510{
7511 int ctxn;
7512
7513 for_each_task_context_nr(ctxn)
7514 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7515}
7516
97dee4f3
PZ
7517/*
7518 * inherit a event from parent task to child task:
7519 */
7520static struct perf_event *
7521inherit_event(struct perf_event *parent_event,
7522 struct task_struct *parent,
7523 struct perf_event_context *parent_ctx,
7524 struct task_struct *child,
7525 struct perf_event *group_leader,
7526 struct perf_event_context *child_ctx)
7527{
7528 struct perf_event *child_event;
cee010ec 7529 unsigned long flags;
97dee4f3
PZ
7530
7531 /*
7532 * Instead of creating recursive hierarchies of events,
7533 * we link inherited events back to the original parent,
7534 * which has a filp for sure, which we use as the reference
7535 * count:
7536 */
7537 if (parent_event->parent)
7538 parent_event = parent_event->parent;
7539
7540 child_event = perf_event_alloc(&parent_event->attr,
7541 parent_event->cpu,
d580ff86 7542 child,
97dee4f3 7543 group_leader, parent_event,
4dc0da86 7544 NULL, NULL);
97dee4f3
PZ
7545 if (IS_ERR(child_event))
7546 return child_event;
a6fa941d
AV
7547
7548 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7549 free_event(child_event);
7550 return NULL;
7551 }
7552
97dee4f3
PZ
7553 get_ctx(child_ctx);
7554
7555 /*
7556 * Make the child state follow the state of the parent event,
7557 * not its attr.disabled bit. We hold the parent's mutex,
7558 * so we won't race with perf_event_{en, dis}able_family.
7559 */
7560 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7561 child_event->state = PERF_EVENT_STATE_INACTIVE;
7562 else
7563 child_event->state = PERF_EVENT_STATE_OFF;
7564
7565 if (parent_event->attr.freq) {
7566 u64 sample_period = parent_event->hw.sample_period;
7567 struct hw_perf_event *hwc = &child_event->hw;
7568
7569 hwc->sample_period = sample_period;
7570 hwc->last_period = sample_period;
7571
7572 local64_set(&hwc->period_left, sample_period);
7573 }
7574
7575 child_event->ctx = child_ctx;
7576 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7577 child_event->overflow_handler_context
7578 = parent_event->overflow_handler_context;
97dee4f3 7579
614b6780
TG
7580 /*
7581 * Precalculate sample_data sizes
7582 */
7583 perf_event__header_size(child_event);
6844c09d 7584 perf_event__id_header_size(child_event);
614b6780 7585
97dee4f3
PZ
7586 /*
7587 * Link it up in the child's context:
7588 */
cee010ec 7589 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7590 add_event_to_ctx(child_event, child_ctx);
cee010ec 7591 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7592
97dee4f3
PZ
7593 /*
7594 * Link this into the parent event's child list
7595 */
7596 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7597 mutex_lock(&parent_event->child_mutex);
7598 list_add_tail(&child_event->child_list, &parent_event->child_list);
7599 mutex_unlock(&parent_event->child_mutex);
7600
7601 return child_event;
7602}
7603
7604static int inherit_group(struct perf_event *parent_event,
7605 struct task_struct *parent,
7606 struct perf_event_context *parent_ctx,
7607 struct task_struct *child,
7608 struct perf_event_context *child_ctx)
7609{
7610 struct perf_event *leader;
7611 struct perf_event *sub;
7612 struct perf_event *child_ctr;
7613
7614 leader = inherit_event(parent_event, parent, parent_ctx,
7615 child, NULL, child_ctx);
7616 if (IS_ERR(leader))
7617 return PTR_ERR(leader);
7618 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7619 child_ctr = inherit_event(sub, parent, parent_ctx,
7620 child, leader, child_ctx);
7621 if (IS_ERR(child_ctr))
7622 return PTR_ERR(child_ctr);
7623 }
7624 return 0;
889ff015
FW
7625}
7626
7627static int
7628inherit_task_group(struct perf_event *event, struct task_struct *parent,
7629 struct perf_event_context *parent_ctx,
8dc85d54 7630 struct task_struct *child, int ctxn,
889ff015
FW
7631 int *inherited_all)
7632{
7633 int ret;
8dc85d54 7634 struct perf_event_context *child_ctx;
889ff015
FW
7635
7636 if (!event->attr.inherit) {
7637 *inherited_all = 0;
7638 return 0;
bbbee908
PZ
7639 }
7640
fe4b04fa 7641 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7642 if (!child_ctx) {
7643 /*
7644 * This is executed from the parent task context, so
7645 * inherit events that have been marked for cloning.
7646 * First allocate and initialize a context for the
7647 * child.
7648 */
bbbee908 7649
734df5ab 7650 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7651 if (!child_ctx)
7652 return -ENOMEM;
bbbee908 7653
8dc85d54 7654 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7655 }
7656
7657 ret = inherit_group(event, parent, parent_ctx,
7658 child, child_ctx);
7659
7660 if (ret)
7661 *inherited_all = 0;
7662
7663 return ret;
bbbee908
PZ
7664}
7665
9b51f66d 7666/*
cdd6c482 7667 * Initialize the perf_event context in task_struct
9b51f66d 7668 */
8dc85d54 7669int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7670{
889ff015 7671 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7672 struct perf_event_context *cloned_ctx;
7673 struct perf_event *event;
9b51f66d 7674 struct task_struct *parent = current;
564c2b21 7675 int inherited_all = 1;
dddd3379 7676 unsigned long flags;
6ab423e0 7677 int ret = 0;
9b51f66d 7678
8dc85d54 7679 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7680 return 0;
7681
ad3a37de 7682 /*
25346b93
PM
7683 * If the parent's context is a clone, pin it so it won't get
7684 * swapped under us.
ad3a37de 7685 */
8dc85d54 7686 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7687
ad3a37de
PM
7688 /*
7689 * No need to check if parent_ctx != NULL here; since we saw
7690 * it non-NULL earlier, the only reason for it to become NULL
7691 * is if we exit, and since we're currently in the middle of
7692 * a fork we can't be exiting at the same time.
7693 */
ad3a37de 7694
9b51f66d
IM
7695 /*
7696 * Lock the parent list. No need to lock the child - not PID
7697 * hashed yet and not running, so nobody can access it.
7698 */
d859e29f 7699 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7700
7701 /*
7702 * We dont have to disable NMIs - we are only looking at
7703 * the list, not manipulating it:
7704 */
889ff015 7705 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7706 ret = inherit_task_group(event, parent, parent_ctx,
7707 child, ctxn, &inherited_all);
889ff015
FW
7708 if (ret)
7709 break;
7710 }
b93f7978 7711
dddd3379
TG
7712 /*
7713 * We can't hold ctx->lock when iterating the ->flexible_group list due
7714 * to allocations, but we need to prevent rotation because
7715 * rotate_ctx() will change the list from interrupt context.
7716 */
7717 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7718 parent_ctx->rotate_disable = 1;
7719 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7720
889ff015 7721 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7722 ret = inherit_task_group(event, parent, parent_ctx,
7723 child, ctxn, &inherited_all);
889ff015 7724 if (ret)
9b51f66d 7725 break;
564c2b21
PM
7726 }
7727
dddd3379
TG
7728 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7729 parent_ctx->rotate_disable = 0;
dddd3379 7730
8dc85d54 7731 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7732
05cbaa28 7733 if (child_ctx && inherited_all) {
564c2b21
PM
7734 /*
7735 * Mark the child context as a clone of the parent
7736 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7737 *
7738 * Note that if the parent is a clone, the holding of
7739 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7740 */
c5ed5145 7741 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7742 if (cloned_ctx) {
7743 child_ctx->parent_ctx = cloned_ctx;
25346b93 7744 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7745 } else {
7746 child_ctx->parent_ctx = parent_ctx;
7747 child_ctx->parent_gen = parent_ctx->generation;
7748 }
7749 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7750 }
7751
c5ed5145 7752 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7753 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7754
25346b93 7755 perf_unpin_context(parent_ctx);
fe4b04fa 7756 put_ctx(parent_ctx);
ad3a37de 7757
6ab423e0 7758 return ret;
9b51f66d
IM
7759}
7760
8dc85d54
PZ
7761/*
7762 * Initialize the perf_event context in task_struct
7763 */
7764int perf_event_init_task(struct task_struct *child)
7765{
7766 int ctxn, ret;
7767
8550d7cb
ON
7768 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7769 mutex_init(&child->perf_event_mutex);
7770 INIT_LIST_HEAD(&child->perf_event_list);
7771
8dc85d54
PZ
7772 for_each_task_context_nr(ctxn) {
7773 ret = perf_event_init_context(child, ctxn);
7774 if (ret)
7775 return ret;
7776 }
7777
7778 return 0;
7779}
7780
220b140b
PM
7781static void __init perf_event_init_all_cpus(void)
7782{
b28ab83c 7783 struct swevent_htable *swhash;
220b140b 7784 int cpu;
220b140b
PM
7785
7786 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7787 swhash = &per_cpu(swevent_htable, cpu);
7788 mutex_init(&swhash->hlist_mutex);
e9d2b064 7789 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7790 }
7791}
7792
0db0628d 7793static void perf_event_init_cpu(int cpu)
0793a61d 7794{
108b02cf 7795 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7796
b28ab83c 7797 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7798 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7799 struct swevent_hlist *hlist;
7800
b28ab83c
PZ
7801 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7802 WARN_ON(!hlist);
7803 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7804 }
b28ab83c 7805 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7806}
7807
c277443c 7808#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7809static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7810{
e9d2b064
PZ
7811 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7812
7813 WARN_ON(!irqs_disabled());
7814
7815 list_del_init(&cpuctx->rotation_list);
7816}
7817
108b02cf 7818static void __perf_event_exit_context(void *__info)
0793a61d 7819{
108b02cf 7820 struct perf_event_context *ctx = __info;
cdd6c482 7821 struct perf_event *event, *tmp;
0793a61d 7822
108b02cf 7823 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7824
889ff015 7825 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7826 __perf_remove_from_context(event);
889ff015 7827 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7828 __perf_remove_from_context(event);
0793a61d 7829}
108b02cf
PZ
7830
7831static void perf_event_exit_cpu_context(int cpu)
7832{
7833 struct perf_event_context *ctx;
7834 struct pmu *pmu;
7835 int idx;
7836
7837 idx = srcu_read_lock(&pmus_srcu);
7838 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7839 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7840
7841 mutex_lock(&ctx->mutex);
7842 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7843 mutex_unlock(&ctx->mutex);
7844 }
7845 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7846}
7847
cdd6c482 7848static void perf_event_exit_cpu(int cpu)
0793a61d 7849{
b28ab83c 7850 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7851
b28ab83c
PZ
7852 mutex_lock(&swhash->hlist_mutex);
7853 swevent_hlist_release(swhash);
7854 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7855
108b02cf 7856 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7857}
7858#else
cdd6c482 7859static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7860#endif
7861
c277443c
PZ
7862static int
7863perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7864{
7865 int cpu;
7866
7867 for_each_online_cpu(cpu)
7868 perf_event_exit_cpu(cpu);
7869
7870 return NOTIFY_OK;
7871}
7872
7873/*
7874 * Run the perf reboot notifier at the very last possible moment so that
7875 * the generic watchdog code runs as long as possible.
7876 */
7877static struct notifier_block perf_reboot_notifier = {
7878 .notifier_call = perf_reboot,
7879 .priority = INT_MIN,
7880};
7881
0db0628d 7882static int
0793a61d
TG
7883perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7884{
7885 unsigned int cpu = (long)hcpu;
7886
4536e4d1 7887 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7888
7889 case CPU_UP_PREPARE:
5e11637e 7890 case CPU_DOWN_FAILED:
cdd6c482 7891 perf_event_init_cpu(cpu);
0793a61d
TG
7892 break;
7893
5e11637e 7894 case CPU_UP_CANCELED:
0793a61d 7895 case CPU_DOWN_PREPARE:
cdd6c482 7896 perf_event_exit_cpu(cpu);
0793a61d 7897 break;
0793a61d
TG
7898 default:
7899 break;
7900 }
7901
7902 return NOTIFY_OK;
7903}
7904
cdd6c482 7905void __init perf_event_init(void)
0793a61d 7906{
3c502e7a
JW
7907 int ret;
7908
2e80a82a
PZ
7909 idr_init(&pmu_idr);
7910
220b140b 7911 perf_event_init_all_cpus();
b0a873eb 7912 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7913 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7914 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7915 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7916 perf_tp_register();
7917 perf_cpu_notifier(perf_cpu_notify);
c277443c 7918 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7919
7920 ret = init_hw_breakpoint();
7921 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7922
7923 /* do not patch jump label more than once per second */
7924 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7925
7926 /*
7927 * Build time assertion that we keep the data_head at the intended
7928 * location. IOW, validation we got the __reserved[] size right.
7929 */
7930 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7931 != 1024);
0793a61d 7932}
abe43400
PZ
7933
7934static int __init perf_event_sysfs_init(void)
7935{
7936 struct pmu *pmu;
7937 int ret;
7938
7939 mutex_lock(&pmus_lock);
7940
7941 ret = bus_register(&pmu_bus);
7942 if (ret)
7943 goto unlock;
7944
7945 list_for_each_entry(pmu, &pmus, entry) {
7946 if (!pmu->name || pmu->type < 0)
7947 continue;
7948
7949 ret = pmu_dev_alloc(pmu);
7950 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7951 }
7952 pmu_bus_running = 1;
7953 ret = 0;
7954
7955unlock:
7956 mutex_unlock(&pmus_lock);
7957
7958 return ret;
7959}
7960device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7961
7962#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
7963static struct cgroup_subsys_state *
7964perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
7965{
7966 struct perf_cgroup *jc;
e5d1367f 7967
1b15d055 7968 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7969 if (!jc)
7970 return ERR_PTR(-ENOMEM);
7971
e5d1367f
SE
7972 jc->info = alloc_percpu(struct perf_cgroup_info);
7973 if (!jc->info) {
7974 kfree(jc);
7975 return ERR_PTR(-ENOMEM);
7976 }
7977
e5d1367f
SE
7978 return &jc->css;
7979}
7980
eb95419b 7981static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 7982{
eb95419b
TH
7983 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7984
e5d1367f
SE
7985 free_percpu(jc->info);
7986 kfree(jc);
7987}
7988
7989static int __perf_cgroup_move(void *info)
7990{
7991 struct task_struct *task = info;
7992 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7993 return 0;
7994}
7995
eb95419b
TH
7996static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7997 struct cgroup_taskset *tset)
e5d1367f 7998{
bb9d97b6
TH
7999 struct task_struct *task;
8000
d99c8727 8001 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8002 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8003}
8004
eb95419b
TH
8005static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8006 struct cgroup_subsys_state *old_css,
761b3ef5 8007 struct task_struct *task)
e5d1367f
SE
8008{
8009 /*
8010 * cgroup_exit() is called in the copy_process() failure path.
8011 * Ignore this case since the task hasn't ran yet, this avoids
8012 * trying to poke a half freed task state from generic code.
8013 */
8014 if (!(task->flags & PF_EXITING))
8015 return;
8016
bb9d97b6 8017 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8018}
8019
8020struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
8021 .name = "perf_event",
8022 .subsys_id = perf_subsys_id,
92fb9748
TH
8023 .css_alloc = perf_cgroup_css_alloc,
8024 .css_free = perf_cgroup_css_free,
e7e7ee2e 8025 .exit = perf_cgroup_exit,
bb9d97b6 8026 .attach = perf_cgroup_attach,
e5d1367f
SE
8027};
8028#endif /* CONFIG_CGROUP_PERF */