MAINTAINERS: change git URL for mpc5xxx tree
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fe4b04fa 50struct remote_function_call {
e7e7ee2e
IM
51 struct task_struct *p;
52 int (*func)(void *info);
53 void *info;
54 int ret;
fe4b04fa
PZ
55};
56
57static void remote_function(void *data)
58{
59 struct remote_function_call *tfc = data;
60 struct task_struct *p = tfc->p;
61
62 if (p) {
63 tfc->ret = -EAGAIN;
64 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
65 return;
66 }
67
68 tfc->ret = tfc->func(tfc->info);
69}
70
71/**
72 * task_function_call - call a function on the cpu on which a task runs
73 * @p: the task to evaluate
74 * @func: the function to be called
75 * @info: the function call argument
76 *
77 * Calls the function @func when the task is currently running. This might
78 * be on the current CPU, which just calls the function directly
79 *
80 * returns: @func return value, or
81 * -ESRCH - when the process isn't running
82 * -EAGAIN - when the process moved away
83 */
84static int
85task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
86{
87 struct remote_function_call data = {
e7e7ee2e
IM
88 .p = p,
89 .func = func,
90 .info = info,
91 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
92 };
93
94 if (task_curr(p))
95 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
96
97 return data.ret;
98}
99
100/**
101 * cpu_function_call - call a function on the cpu
102 * @func: the function to be called
103 * @info: the function call argument
104 *
105 * Calls the function @func on the remote cpu.
106 *
107 * returns: @func return value or -ENXIO when the cpu is offline
108 */
109static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
110{
111 struct remote_function_call data = {
e7e7ee2e
IM
112 .p = NULL,
113 .func = func,
114 .info = info,
115 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
116 };
117
118 smp_call_function_single(cpu, remote_function, &data, 1);
119
120 return data.ret;
121}
122
e5d1367f
SE
123#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
124 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
125 PERF_FLAG_PID_CGROUP |\
126 PERF_FLAG_FD_CLOEXEC)
e5d1367f 127
bce38cd5
SE
128/*
129 * branch priv levels that need permission checks
130 */
131#define PERF_SAMPLE_BRANCH_PERM_PLM \
132 (PERF_SAMPLE_BRANCH_KERNEL |\
133 PERF_SAMPLE_BRANCH_HV)
134
0b3fcf17
SE
135enum event_type_t {
136 EVENT_FLEXIBLE = 0x1,
137 EVENT_PINNED = 0x2,
138 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
139};
140
e5d1367f
SE
141/*
142 * perf_sched_events : >0 events exist
143 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
144 */
c5905afb 145struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 146static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 147static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 148
cdd6c482
IM
149static atomic_t nr_mmap_events __read_mostly;
150static atomic_t nr_comm_events __read_mostly;
151static atomic_t nr_task_events __read_mostly;
948b26b6 152static atomic_t nr_freq_events __read_mostly;
9ee318a7 153
108b02cf
PZ
154static LIST_HEAD(pmus);
155static DEFINE_MUTEX(pmus_lock);
156static struct srcu_struct pmus_srcu;
157
0764771d 158/*
cdd6c482 159 * perf event paranoia level:
0fbdea19
IM
160 * -1 - not paranoid at all
161 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 162 * 1 - disallow cpu events for unpriv
0fbdea19 163 * 2 - disallow kernel profiling for unpriv
0764771d 164 */
cdd6c482 165int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 166
20443384
FW
167/* Minimum for 512 kiB + 1 user control page */
168int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
169
170/*
cdd6c482 171 * max perf event sample rate
df58ab24 172 */
14c63f17
DH
173#define DEFAULT_MAX_SAMPLE_RATE 100000
174#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
175#define DEFAULT_CPU_TIME_MAX_PERCENT 25
176
177int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
178
179static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
180static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
181
d9494cb4
PZ
182static int perf_sample_allowed_ns __read_mostly =
183 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
184
185void update_perf_cpu_limits(void)
186{
187 u64 tmp = perf_sample_period_ns;
188
189 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 190 do_div(tmp, 100);
d9494cb4 191 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 192}
163ec435 193
9e630205
SE
194static int perf_rotate_context(struct perf_cpu_context *cpuctx);
195
163ec435
PZ
196int perf_proc_update_handler(struct ctl_table *table, int write,
197 void __user *buffer, size_t *lenp,
198 loff_t *ppos)
199{
723478c8 200 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
201
202 if (ret || !write)
203 return ret;
204
205 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
206 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
207 update_perf_cpu_limits();
208
209 return 0;
210}
211
212int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
213
214int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
215 void __user *buffer, size_t *lenp,
216 loff_t *ppos)
217{
218 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
219
220 if (ret || !write)
221 return ret;
222
223 update_perf_cpu_limits();
163ec435
PZ
224
225 return 0;
226}
1ccd1549 227
14c63f17
DH
228/*
229 * perf samples are done in some very critical code paths (NMIs).
230 * If they take too much CPU time, the system can lock up and not
231 * get any real work done. This will drop the sample rate when
232 * we detect that events are taking too long.
233 */
234#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 235static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 236
6a02ad66 237static void perf_duration_warn(struct irq_work *w)
14c63f17 238{
6a02ad66 239 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 240 u64 avg_local_sample_len;
e5302920 241 u64 local_samples_len;
6a02ad66
PZ
242
243 local_samples_len = __get_cpu_var(running_sample_length);
244 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
245
246 printk_ratelimited(KERN_WARNING
247 "perf interrupt took too long (%lld > %lld), lowering "
248 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 249 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
250 sysctl_perf_event_sample_rate);
251}
252
253static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
254
255void perf_sample_event_took(u64 sample_len_ns)
256{
d9494cb4 257 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
258 u64 avg_local_sample_len;
259 u64 local_samples_len;
14c63f17 260
d9494cb4 261 if (allowed_ns == 0)
14c63f17
DH
262 return;
263
264 /* decay the counter by 1 average sample */
265 local_samples_len = __get_cpu_var(running_sample_length);
266 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
267 local_samples_len += sample_len_ns;
268 __get_cpu_var(running_sample_length) = local_samples_len;
269
270 /*
271 * note: this will be biased artifically low until we have
272 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
273 * from having to maintain a count.
274 */
275 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
276
d9494cb4 277 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
278 return;
279
280 if (max_samples_per_tick <= 1)
281 return;
282
283 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
284 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
285 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
286
14c63f17 287 update_perf_cpu_limits();
6a02ad66 288
cd578abb
PZ
289 if (!irq_work_queue(&perf_duration_work)) {
290 early_printk("perf interrupt took too long (%lld > %lld), lowering "
291 "kernel.perf_event_max_sample_rate to %d\n",
292 avg_local_sample_len, allowed_ns >> 1,
293 sysctl_perf_event_sample_rate);
294 }
14c63f17
DH
295}
296
cdd6c482 297static atomic64_t perf_event_id;
a96bbc16 298
0b3fcf17
SE
299static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
300 enum event_type_t event_type);
301
302static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
303 enum event_type_t event_type,
304 struct task_struct *task);
305
306static void update_context_time(struct perf_event_context *ctx);
307static u64 perf_event_time(struct perf_event *event);
0b3fcf17 308
cdd6c482 309void __weak perf_event_print_debug(void) { }
0793a61d 310
84c79910 311extern __weak const char *perf_pmu_name(void)
0793a61d 312{
84c79910 313 return "pmu";
0793a61d
TG
314}
315
0b3fcf17
SE
316static inline u64 perf_clock(void)
317{
318 return local_clock();
319}
320
e5d1367f
SE
321static inline struct perf_cpu_context *
322__get_cpu_context(struct perf_event_context *ctx)
323{
324 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
325}
326
facc4307
PZ
327static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
328 struct perf_event_context *ctx)
329{
330 raw_spin_lock(&cpuctx->ctx.lock);
331 if (ctx)
332 raw_spin_lock(&ctx->lock);
333}
334
335static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337{
338 if (ctx)
339 raw_spin_unlock(&ctx->lock);
340 raw_spin_unlock(&cpuctx->ctx.lock);
341}
342
e5d1367f
SE
343#ifdef CONFIG_CGROUP_PERF
344
877c6856
LZ
345/*
346 * perf_cgroup_info keeps track of time_enabled for a cgroup.
347 * This is a per-cpu dynamically allocated data structure.
348 */
349struct perf_cgroup_info {
350 u64 time;
351 u64 timestamp;
352};
353
354struct perf_cgroup {
355 struct cgroup_subsys_state css;
86e213e1 356 struct perf_cgroup_info __percpu *info;
877c6856
LZ
357};
358
3f7cce3c
SE
359/*
360 * Must ensure cgroup is pinned (css_get) before calling
361 * this function. In other words, we cannot call this function
362 * if there is no cgroup event for the current CPU context.
363 */
e5d1367f
SE
364static inline struct perf_cgroup *
365perf_cgroup_from_task(struct task_struct *task)
366{
073219e9 367 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 368 struct perf_cgroup, css);
e5d1367f
SE
369}
370
371static inline bool
372perf_cgroup_match(struct perf_event *event)
373{
374 struct perf_event_context *ctx = event->ctx;
375 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
376
ef824fa1
TH
377 /* @event doesn't care about cgroup */
378 if (!event->cgrp)
379 return true;
380
381 /* wants specific cgroup scope but @cpuctx isn't associated with any */
382 if (!cpuctx->cgrp)
383 return false;
384
385 /*
386 * Cgroup scoping is recursive. An event enabled for a cgroup is
387 * also enabled for all its descendant cgroups. If @cpuctx's
388 * cgroup is a descendant of @event's (the test covers identity
389 * case), it's a match.
390 */
391 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
392 event->cgrp->css.cgroup);
e5d1367f
SE
393}
394
e5d1367f
SE
395static inline void perf_put_cgroup(struct perf_event *event)
396{
397 css_put(&event->cgrp->css);
398}
399
400static inline void perf_detach_cgroup(struct perf_event *event)
401{
402 perf_put_cgroup(event);
403 event->cgrp = NULL;
404}
405
406static inline int is_cgroup_event(struct perf_event *event)
407{
408 return event->cgrp != NULL;
409}
410
411static inline u64 perf_cgroup_event_time(struct perf_event *event)
412{
413 struct perf_cgroup_info *t;
414
415 t = per_cpu_ptr(event->cgrp->info, event->cpu);
416 return t->time;
417}
418
419static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
420{
421 struct perf_cgroup_info *info;
422 u64 now;
423
424 now = perf_clock();
425
426 info = this_cpu_ptr(cgrp->info);
427
428 info->time += now - info->timestamp;
429 info->timestamp = now;
430}
431
432static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
433{
434 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
435 if (cgrp_out)
436 __update_cgrp_time(cgrp_out);
437}
438
439static inline void update_cgrp_time_from_event(struct perf_event *event)
440{
3f7cce3c
SE
441 struct perf_cgroup *cgrp;
442
e5d1367f 443 /*
3f7cce3c
SE
444 * ensure we access cgroup data only when needed and
445 * when we know the cgroup is pinned (css_get)
e5d1367f 446 */
3f7cce3c 447 if (!is_cgroup_event(event))
e5d1367f
SE
448 return;
449
3f7cce3c
SE
450 cgrp = perf_cgroup_from_task(current);
451 /*
452 * Do not update time when cgroup is not active
453 */
454 if (cgrp == event->cgrp)
455 __update_cgrp_time(event->cgrp);
e5d1367f
SE
456}
457
458static inline void
3f7cce3c
SE
459perf_cgroup_set_timestamp(struct task_struct *task,
460 struct perf_event_context *ctx)
e5d1367f
SE
461{
462 struct perf_cgroup *cgrp;
463 struct perf_cgroup_info *info;
464
3f7cce3c
SE
465 /*
466 * ctx->lock held by caller
467 * ensure we do not access cgroup data
468 * unless we have the cgroup pinned (css_get)
469 */
470 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
471 return;
472
473 cgrp = perf_cgroup_from_task(task);
474 info = this_cpu_ptr(cgrp->info);
3f7cce3c 475 info->timestamp = ctx->timestamp;
e5d1367f
SE
476}
477
478#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
479#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
480
481/*
482 * reschedule events based on the cgroup constraint of task.
483 *
484 * mode SWOUT : schedule out everything
485 * mode SWIN : schedule in based on cgroup for next
486 */
487void perf_cgroup_switch(struct task_struct *task, int mode)
488{
489 struct perf_cpu_context *cpuctx;
490 struct pmu *pmu;
491 unsigned long flags;
492
493 /*
494 * disable interrupts to avoid geting nr_cgroup
495 * changes via __perf_event_disable(). Also
496 * avoids preemption.
497 */
498 local_irq_save(flags);
499
500 /*
501 * we reschedule only in the presence of cgroup
502 * constrained events.
503 */
504 rcu_read_lock();
505
506 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 507 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
508 if (cpuctx->unique_pmu != pmu)
509 continue; /* ensure we process each cpuctx once */
e5d1367f 510
e5d1367f
SE
511 /*
512 * perf_cgroup_events says at least one
513 * context on this CPU has cgroup events.
514 *
515 * ctx->nr_cgroups reports the number of cgroup
516 * events for a context.
517 */
518 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
519 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
520 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
521
522 if (mode & PERF_CGROUP_SWOUT) {
523 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
524 /*
525 * must not be done before ctxswout due
526 * to event_filter_match() in event_sched_out()
527 */
528 cpuctx->cgrp = NULL;
529 }
530
531 if (mode & PERF_CGROUP_SWIN) {
e566b76e 532 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
533 /*
534 * set cgrp before ctxsw in to allow
535 * event_filter_match() to not have to pass
536 * task around
e5d1367f
SE
537 */
538 cpuctx->cgrp = perf_cgroup_from_task(task);
539 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
540 }
facc4307
PZ
541 perf_pmu_enable(cpuctx->ctx.pmu);
542 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 543 }
e5d1367f
SE
544 }
545
546 rcu_read_unlock();
547
548 local_irq_restore(flags);
549}
550
a8d757ef
SE
551static inline void perf_cgroup_sched_out(struct task_struct *task,
552 struct task_struct *next)
e5d1367f 553{
a8d757ef
SE
554 struct perf_cgroup *cgrp1;
555 struct perf_cgroup *cgrp2 = NULL;
556
557 /*
558 * we come here when we know perf_cgroup_events > 0
559 */
560 cgrp1 = perf_cgroup_from_task(task);
561
562 /*
563 * next is NULL when called from perf_event_enable_on_exec()
564 * that will systematically cause a cgroup_switch()
565 */
566 if (next)
567 cgrp2 = perf_cgroup_from_task(next);
568
569 /*
570 * only schedule out current cgroup events if we know
571 * that we are switching to a different cgroup. Otherwise,
572 * do no touch the cgroup events.
573 */
574 if (cgrp1 != cgrp2)
575 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
576}
577
a8d757ef
SE
578static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 struct task_struct *task)
e5d1367f 580{
a8d757ef
SE
581 struct perf_cgroup *cgrp1;
582 struct perf_cgroup *cgrp2 = NULL;
583
584 /*
585 * we come here when we know perf_cgroup_events > 0
586 */
587 cgrp1 = perf_cgroup_from_task(task);
588
589 /* prev can never be NULL */
590 cgrp2 = perf_cgroup_from_task(prev);
591
592 /*
593 * only need to schedule in cgroup events if we are changing
594 * cgroup during ctxsw. Cgroup events were not scheduled
595 * out of ctxsw out if that was not the case.
596 */
597 if (cgrp1 != cgrp2)
598 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
599}
600
601static inline int perf_cgroup_connect(int fd, struct perf_event *event,
602 struct perf_event_attr *attr,
603 struct perf_event *group_leader)
604{
605 struct perf_cgroup *cgrp;
606 struct cgroup_subsys_state *css;
2903ff01
AV
607 struct fd f = fdget(fd);
608 int ret = 0;
e5d1367f 609
2903ff01 610 if (!f.file)
e5d1367f
SE
611 return -EBADF;
612
ec903c0c
TH
613 css = css_tryget_online_from_dir(f.file->f_dentry,
614 &perf_event_cgrp_subsys);
3db272c0
LZ
615 if (IS_ERR(css)) {
616 ret = PTR_ERR(css);
617 goto out;
618 }
e5d1367f
SE
619
620 cgrp = container_of(css, struct perf_cgroup, css);
621 event->cgrp = cgrp;
622
623 /*
624 * all events in a group must monitor
625 * the same cgroup because a task belongs
626 * to only one perf cgroup at a time
627 */
628 if (group_leader && group_leader->cgrp != cgrp) {
629 perf_detach_cgroup(event);
630 ret = -EINVAL;
e5d1367f 631 }
3db272c0 632out:
2903ff01 633 fdput(f);
e5d1367f
SE
634 return ret;
635}
636
637static inline void
638perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
639{
640 struct perf_cgroup_info *t;
641 t = per_cpu_ptr(event->cgrp->info, event->cpu);
642 event->shadow_ctx_time = now - t->timestamp;
643}
644
645static inline void
646perf_cgroup_defer_enabled(struct perf_event *event)
647{
648 /*
649 * when the current task's perf cgroup does not match
650 * the event's, we need to remember to call the
651 * perf_mark_enable() function the first time a task with
652 * a matching perf cgroup is scheduled in.
653 */
654 if (is_cgroup_event(event) && !perf_cgroup_match(event))
655 event->cgrp_defer_enabled = 1;
656}
657
658static inline void
659perf_cgroup_mark_enabled(struct perf_event *event,
660 struct perf_event_context *ctx)
661{
662 struct perf_event *sub;
663 u64 tstamp = perf_event_time(event);
664
665 if (!event->cgrp_defer_enabled)
666 return;
667
668 event->cgrp_defer_enabled = 0;
669
670 event->tstamp_enabled = tstamp - event->total_time_enabled;
671 list_for_each_entry(sub, &event->sibling_list, group_entry) {
672 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
673 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
674 sub->cgrp_defer_enabled = 0;
675 }
676 }
677}
678#else /* !CONFIG_CGROUP_PERF */
679
680static inline bool
681perf_cgroup_match(struct perf_event *event)
682{
683 return true;
684}
685
686static inline void perf_detach_cgroup(struct perf_event *event)
687{}
688
689static inline int is_cgroup_event(struct perf_event *event)
690{
691 return 0;
692}
693
694static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
695{
696 return 0;
697}
698
699static inline void update_cgrp_time_from_event(struct perf_event *event)
700{
701}
702
703static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
704{
705}
706
a8d757ef
SE
707static inline void perf_cgroup_sched_out(struct task_struct *task,
708 struct task_struct *next)
e5d1367f
SE
709{
710}
711
a8d757ef
SE
712static inline void perf_cgroup_sched_in(struct task_struct *prev,
713 struct task_struct *task)
e5d1367f
SE
714{
715}
716
717static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
718 struct perf_event_attr *attr,
719 struct perf_event *group_leader)
720{
721 return -EINVAL;
722}
723
724static inline void
3f7cce3c
SE
725perf_cgroup_set_timestamp(struct task_struct *task,
726 struct perf_event_context *ctx)
e5d1367f
SE
727{
728}
729
730void
731perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
732{
733}
734
735static inline void
736perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
737{
738}
739
740static inline u64 perf_cgroup_event_time(struct perf_event *event)
741{
742 return 0;
743}
744
745static inline void
746perf_cgroup_defer_enabled(struct perf_event *event)
747{
748}
749
750static inline void
751perf_cgroup_mark_enabled(struct perf_event *event,
752 struct perf_event_context *ctx)
753{
754}
755#endif
756
9e630205
SE
757/*
758 * set default to be dependent on timer tick just
759 * like original code
760 */
761#define PERF_CPU_HRTIMER (1000 / HZ)
762/*
763 * function must be called with interrupts disbled
764 */
765static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
766{
767 struct perf_cpu_context *cpuctx;
768 enum hrtimer_restart ret = HRTIMER_NORESTART;
769 int rotations = 0;
770
771 WARN_ON(!irqs_disabled());
772
773 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
774
775 rotations = perf_rotate_context(cpuctx);
776
777 /*
778 * arm timer if needed
779 */
780 if (rotations) {
781 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
782 ret = HRTIMER_RESTART;
783 }
784
785 return ret;
786}
787
788/* CPU is going down */
789void perf_cpu_hrtimer_cancel(int cpu)
790{
791 struct perf_cpu_context *cpuctx;
792 struct pmu *pmu;
793 unsigned long flags;
794
795 if (WARN_ON(cpu != smp_processor_id()))
796 return;
797
798 local_irq_save(flags);
799
800 rcu_read_lock();
801
802 list_for_each_entry_rcu(pmu, &pmus, entry) {
803 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
804
805 if (pmu->task_ctx_nr == perf_sw_context)
806 continue;
807
808 hrtimer_cancel(&cpuctx->hrtimer);
809 }
810
811 rcu_read_unlock();
812
813 local_irq_restore(flags);
814}
815
816static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
817{
818 struct hrtimer *hr = &cpuctx->hrtimer;
819 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 820 int timer;
9e630205
SE
821
822 /* no multiplexing needed for SW PMU */
823 if (pmu->task_ctx_nr == perf_sw_context)
824 return;
825
62b85639
SE
826 /*
827 * check default is sane, if not set then force to
828 * default interval (1/tick)
829 */
830 timer = pmu->hrtimer_interval_ms;
831 if (timer < 1)
832 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
833
834 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
835
836 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
837 hr->function = perf_cpu_hrtimer_handler;
838}
839
840static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
841{
842 struct hrtimer *hr = &cpuctx->hrtimer;
843 struct pmu *pmu = cpuctx->ctx.pmu;
844
845 /* not for SW PMU */
846 if (pmu->task_ctx_nr == perf_sw_context)
847 return;
848
849 if (hrtimer_active(hr))
850 return;
851
852 if (!hrtimer_callback_running(hr))
853 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
854 0, HRTIMER_MODE_REL_PINNED, 0);
855}
856
33696fc0 857void perf_pmu_disable(struct pmu *pmu)
9e35ad38 858{
33696fc0
PZ
859 int *count = this_cpu_ptr(pmu->pmu_disable_count);
860 if (!(*count)++)
861 pmu->pmu_disable(pmu);
9e35ad38 862}
9e35ad38 863
33696fc0 864void perf_pmu_enable(struct pmu *pmu)
9e35ad38 865{
33696fc0
PZ
866 int *count = this_cpu_ptr(pmu->pmu_disable_count);
867 if (!--(*count))
868 pmu->pmu_enable(pmu);
9e35ad38 869}
9e35ad38 870
e9d2b064
PZ
871static DEFINE_PER_CPU(struct list_head, rotation_list);
872
873/*
874 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
875 * because they're strictly cpu affine and rotate_start is called with IRQs
876 * disabled, while rotate_context is called from IRQ context.
877 */
108b02cf 878static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 879{
108b02cf 880 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 881 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 882
e9d2b064 883 WARN_ON(!irqs_disabled());
b5ab4cd5 884
d84153d6 885 if (list_empty(&cpuctx->rotation_list))
e9d2b064 886 list_add(&cpuctx->rotation_list, head);
9e35ad38 887}
9e35ad38 888
cdd6c482 889static void get_ctx(struct perf_event_context *ctx)
a63eaf34 890{
e5289d4a 891 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
892}
893
cdd6c482 894static void put_ctx(struct perf_event_context *ctx)
a63eaf34 895{
564c2b21
PM
896 if (atomic_dec_and_test(&ctx->refcount)) {
897 if (ctx->parent_ctx)
898 put_ctx(ctx->parent_ctx);
c93f7669
PM
899 if (ctx->task)
900 put_task_struct(ctx->task);
cb796ff3 901 kfree_rcu(ctx, rcu_head);
564c2b21 902 }
a63eaf34
PM
903}
904
cdd6c482 905static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
906{
907 if (ctx->parent_ctx) {
908 put_ctx(ctx->parent_ctx);
909 ctx->parent_ctx = NULL;
910 }
5a3126d4 911 ctx->generation++;
71a851b4
PZ
912}
913
6844c09d
ACM
914static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
915{
916 /*
917 * only top level events have the pid namespace they were created in
918 */
919 if (event->parent)
920 event = event->parent;
921
922 return task_tgid_nr_ns(p, event->ns);
923}
924
925static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
926{
927 /*
928 * only top level events have the pid namespace they were created in
929 */
930 if (event->parent)
931 event = event->parent;
932
933 return task_pid_nr_ns(p, event->ns);
934}
935
7f453c24 936/*
cdd6c482 937 * If we inherit events we want to return the parent event id
7f453c24
PZ
938 * to userspace.
939 */
cdd6c482 940static u64 primary_event_id(struct perf_event *event)
7f453c24 941{
cdd6c482 942 u64 id = event->id;
7f453c24 943
cdd6c482
IM
944 if (event->parent)
945 id = event->parent->id;
7f453c24
PZ
946
947 return id;
948}
949
25346b93 950/*
cdd6c482 951 * Get the perf_event_context for a task and lock it.
25346b93
PM
952 * This has to cope with with the fact that until it is locked,
953 * the context could get moved to another task.
954 */
cdd6c482 955static struct perf_event_context *
8dc85d54 956perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 957{
cdd6c482 958 struct perf_event_context *ctx;
25346b93 959
9ed6060d 960retry:
058ebd0e
PZ
961 /*
962 * One of the few rules of preemptible RCU is that one cannot do
963 * rcu_read_unlock() while holding a scheduler (or nested) lock when
964 * part of the read side critical section was preemptible -- see
965 * rcu_read_unlock_special().
966 *
967 * Since ctx->lock nests under rq->lock we must ensure the entire read
968 * side critical section is non-preemptible.
969 */
970 preempt_disable();
971 rcu_read_lock();
8dc85d54 972 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
973 if (ctx) {
974 /*
975 * If this context is a clone of another, it might
976 * get swapped for another underneath us by
cdd6c482 977 * perf_event_task_sched_out, though the
25346b93
PM
978 * rcu_read_lock() protects us from any context
979 * getting freed. Lock the context and check if it
980 * got swapped before we could get the lock, and retry
981 * if so. If we locked the right context, then it
982 * can't get swapped on us any more.
983 */
e625cce1 984 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 985 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 986 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
987 rcu_read_unlock();
988 preempt_enable();
25346b93
PM
989 goto retry;
990 }
b49a9e7e
PZ
991
992 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 993 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
994 ctx = NULL;
995 }
25346b93
PM
996 }
997 rcu_read_unlock();
058ebd0e 998 preempt_enable();
25346b93
PM
999 return ctx;
1000}
1001
1002/*
1003 * Get the context for a task and increment its pin_count so it
1004 * can't get swapped to another task. This also increments its
1005 * reference count so that the context can't get freed.
1006 */
8dc85d54
PZ
1007static struct perf_event_context *
1008perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1009{
cdd6c482 1010 struct perf_event_context *ctx;
25346b93
PM
1011 unsigned long flags;
1012
8dc85d54 1013 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1014 if (ctx) {
1015 ++ctx->pin_count;
e625cce1 1016 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1017 }
1018 return ctx;
1019}
1020
cdd6c482 1021static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1022{
1023 unsigned long flags;
1024
e625cce1 1025 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1026 --ctx->pin_count;
e625cce1 1027 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1028}
1029
f67218c3
PZ
1030/*
1031 * Update the record of the current time in a context.
1032 */
1033static void update_context_time(struct perf_event_context *ctx)
1034{
1035 u64 now = perf_clock();
1036
1037 ctx->time += now - ctx->timestamp;
1038 ctx->timestamp = now;
1039}
1040
4158755d
SE
1041static u64 perf_event_time(struct perf_event *event)
1042{
1043 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1044
1045 if (is_cgroup_event(event))
1046 return perf_cgroup_event_time(event);
1047
4158755d
SE
1048 return ctx ? ctx->time : 0;
1049}
1050
f67218c3
PZ
1051/*
1052 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1053 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1054 */
1055static void update_event_times(struct perf_event *event)
1056{
1057 struct perf_event_context *ctx = event->ctx;
1058 u64 run_end;
1059
1060 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1061 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1062 return;
e5d1367f
SE
1063 /*
1064 * in cgroup mode, time_enabled represents
1065 * the time the event was enabled AND active
1066 * tasks were in the monitored cgroup. This is
1067 * independent of the activity of the context as
1068 * there may be a mix of cgroup and non-cgroup events.
1069 *
1070 * That is why we treat cgroup events differently
1071 * here.
1072 */
1073 if (is_cgroup_event(event))
46cd6a7f 1074 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1075 else if (ctx->is_active)
1076 run_end = ctx->time;
acd1d7c1
PZ
1077 else
1078 run_end = event->tstamp_stopped;
1079
1080 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1081
1082 if (event->state == PERF_EVENT_STATE_INACTIVE)
1083 run_end = event->tstamp_stopped;
1084 else
4158755d 1085 run_end = perf_event_time(event);
f67218c3
PZ
1086
1087 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1088
f67218c3
PZ
1089}
1090
96c21a46
PZ
1091/*
1092 * Update total_time_enabled and total_time_running for all events in a group.
1093 */
1094static void update_group_times(struct perf_event *leader)
1095{
1096 struct perf_event *event;
1097
1098 update_event_times(leader);
1099 list_for_each_entry(event, &leader->sibling_list, group_entry)
1100 update_event_times(event);
1101}
1102
889ff015
FW
1103static struct list_head *
1104ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1105{
1106 if (event->attr.pinned)
1107 return &ctx->pinned_groups;
1108 else
1109 return &ctx->flexible_groups;
1110}
1111
fccc714b 1112/*
cdd6c482 1113 * Add a event from the lists for its context.
fccc714b
PZ
1114 * Must be called with ctx->mutex and ctx->lock held.
1115 */
04289bb9 1116static void
cdd6c482 1117list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1118{
8a49542c
PZ
1119 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1120 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1121
1122 /*
8a49542c
PZ
1123 * If we're a stand alone event or group leader, we go to the context
1124 * list, group events are kept attached to the group so that
1125 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1126 */
8a49542c 1127 if (event->group_leader == event) {
889ff015
FW
1128 struct list_head *list;
1129
d6f962b5
FW
1130 if (is_software_event(event))
1131 event->group_flags |= PERF_GROUP_SOFTWARE;
1132
889ff015
FW
1133 list = ctx_group_list(event, ctx);
1134 list_add_tail(&event->group_entry, list);
5c148194 1135 }
592903cd 1136
08309379 1137 if (is_cgroup_event(event))
e5d1367f 1138 ctx->nr_cgroups++;
e5d1367f 1139
d010b332
SE
1140 if (has_branch_stack(event))
1141 ctx->nr_branch_stack++;
1142
cdd6c482 1143 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1144 if (!ctx->nr_events)
108b02cf 1145 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1146 ctx->nr_events++;
1147 if (event->attr.inherit_stat)
bfbd3381 1148 ctx->nr_stat++;
5a3126d4
PZ
1149
1150 ctx->generation++;
04289bb9
IM
1151}
1152
0231bb53
JO
1153/*
1154 * Initialize event state based on the perf_event_attr::disabled.
1155 */
1156static inline void perf_event__state_init(struct perf_event *event)
1157{
1158 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1159 PERF_EVENT_STATE_INACTIVE;
1160}
1161
c320c7b7
ACM
1162/*
1163 * Called at perf_event creation and when events are attached/detached from a
1164 * group.
1165 */
1166static void perf_event__read_size(struct perf_event *event)
1167{
1168 int entry = sizeof(u64); /* value */
1169 int size = 0;
1170 int nr = 1;
1171
1172 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1173 size += sizeof(u64);
1174
1175 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1176 size += sizeof(u64);
1177
1178 if (event->attr.read_format & PERF_FORMAT_ID)
1179 entry += sizeof(u64);
1180
1181 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1182 nr += event->group_leader->nr_siblings;
1183 size += sizeof(u64);
1184 }
1185
1186 size += entry * nr;
1187 event->read_size = size;
1188}
1189
1190static void perf_event__header_size(struct perf_event *event)
1191{
1192 struct perf_sample_data *data;
1193 u64 sample_type = event->attr.sample_type;
1194 u16 size = 0;
1195
1196 perf_event__read_size(event);
1197
1198 if (sample_type & PERF_SAMPLE_IP)
1199 size += sizeof(data->ip);
1200
6844c09d
ACM
1201 if (sample_type & PERF_SAMPLE_ADDR)
1202 size += sizeof(data->addr);
1203
1204 if (sample_type & PERF_SAMPLE_PERIOD)
1205 size += sizeof(data->period);
1206
c3feedf2
AK
1207 if (sample_type & PERF_SAMPLE_WEIGHT)
1208 size += sizeof(data->weight);
1209
6844c09d
ACM
1210 if (sample_type & PERF_SAMPLE_READ)
1211 size += event->read_size;
1212
d6be9ad6
SE
1213 if (sample_type & PERF_SAMPLE_DATA_SRC)
1214 size += sizeof(data->data_src.val);
1215
fdfbbd07
AK
1216 if (sample_type & PERF_SAMPLE_TRANSACTION)
1217 size += sizeof(data->txn);
1218
6844c09d
ACM
1219 event->header_size = size;
1220}
1221
1222static void perf_event__id_header_size(struct perf_event *event)
1223{
1224 struct perf_sample_data *data;
1225 u64 sample_type = event->attr.sample_type;
1226 u16 size = 0;
1227
c320c7b7
ACM
1228 if (sample_type & PERF_SAMPLE_TID)
1229 size += sizeof(data->tid_entry);
1230
1231 if (sample_type & PERF_SAMPLE_TIME)
1232 size += sizeof(data->time);
1233
ff3d527c
AH
1234 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1235 size += sizeof(data->id);
1236
c320c7b7
ACM
1237 if (sample_type & PERF_SAMPLE_ID)
1238 size += sizeof(data->id);
1239
1240 if (sample_type & PERF_SAMPLE_STREAM_ID)
1241 size += sizeof(data->stream_id);
1242
1243 if (sample_type & PERF_SAMPLE_CPU)
1244 size += sizeof(data->cpu_entry);
1245
6844c09d 1246 event->id_header_size = size;
c320c7b7
ACM
1247}
1248
8a49542c
PZ
1249static void perf_group_attach(struct perf_event *event)
1250{
c320c7b7 1251 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1252
74c3337c
PZ
1253 /*
1254 * We can have double attach due to group movement in perf_event_open.
1255 */
1256 if (event->attach_state & PERF_ATTACH_GROUP)
1257 return;
1258
8a49542c
PZ
1259 event->attach_state |= PERF_ATTACH_GROUP;
1260
1261 if (group_leader == event)
1262 return;
1263
1264 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1265 !is_software_event(event))
1266 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1267
1268 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1269 group_leader->nr_siblings++;
c320c7b7
ACM
1270
1271 perf_event__header_size(group_leader);
1272
1273 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1274 perf_event__header_size(pos);
8a49542c
PZ
1275}
1276
a63eaf34 1277/*
cdd6c482 1278 * Remove a event from the lists for its context.
fccc714b 1279 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1280 */
04289bb9 1281static void
cdd6c482 1282list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1283{
68cacd29 1284 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1285 /*
1286 * We can have double detach due to exit/hot-unplug + close.
1287 */
1288 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1289 return;
8a49542c
PZ
1290
1291 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1292
68cacd29 1293 if (is_cgroup_event(event)) {
e5d1367f 1294 ctx->nr_cgroups--;
68cacd29
SE
1295 cpuctx = __get_cpu_context(ctx);
1296 /*
1297 * if there are no more cgroup events
1298 * then cler cgrp to avoid stale pointer
1299 * in update_cgrp_time_from_cpuctx()
1300 */
1301 if (!ctx->nr_cgroups)
1302 cpuctx->cgrp = NULL;
1303 }
e5d1367f 1304
d010b332
SE
1305 if (has_branch_stack(event))
1306 ctx->nr_branch_stack--;
1307
cdd6c482
IM
1308 ctx->nr_events--;
1309 if (event->attr.inherit_stat)
bfbd3381 1310 ctx->nr_stat--;
8bc20959 1311
cdd6c482 1312 list_del_rcu(&event->event_entry);
04289bb9 1313
8a49542c
PZ
1314 if (event->group_leader == event)
1315 list_del_init(&event->group_entry);
5c148194 1316
96c21a46 1317 update_group_times(event);
b2e74a26
SE
1318
1319 /*
1320 * If event was in error state, then keep it
1321 * that way, otherwise bogus counts will be
1322 * returned on read(). The only way to get out
1323 * of error state is by explicit re-enabling
1324 * of the event
1325 */
1326 if (event->state > PERF_EVENT_STATE_OFF)
1327 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1328
1329 ctx->generation++;
050735b0
PZ
1330}
1331
8a49542c 1332static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1333{
1334 struct perf_event *sibling, *tmp;
8a49542c
PZ
1335 struct list_head *list = NULL;
1336
1337 /*
1338 * We can have double detach due to exit/hot-unplug + close.
1339 */
1340 if (!(event->attach_state & PERF_ATTACH_GROUP))
1341 return;
1342
1343 event->attach_state &= ~PERF_ATTACH_GROUP;
1344
1345 /*
1346 * If this is a sibling, remove it from its group.
1347 */
1348 if (event->group_leader != event) {
1349 list_del_init(&event->group_entry);
1350 event->group_leader->nr_siblings--;
c320c7b7 1351 goto out;
8a49542c
PZ
1352 }
1353
1354 if (!list_empty(&event->group_entry))
1355 list = &event->group_entry;
2e2af50b 1356
04289bb9 1357 /*
cdd6c482
IM
1358 * If this was a group event with sibling events then
1359 * upgrade the siblings to singleton events by adding them
8a49542c 1360 * to whatever list we are on.
04289bb9 1361 */
cdd6c482 1362 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1363 if (list)
1364 list_move_tail(&sibling->group_entry, list);
04289bb9 1365 sibling->group_leader = sibling;
d6f962b5
FW
1366
1367 /* Inherit group flags from the previous leader */
1368 sibling->group_flags = event->group_flags;
04289bb9 1369 }
c320c7b7
ACM
1370
1371out:
1372 perf_event__header_size(event->group_leader);
1373
1374 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1375 perf_event__header_size(tmp);
04289bb9
IM
1376}
1377
fa66f07a
SE
1378static inline int
1379event_filter_match(struct perf_event *event)
1380{
e5d1367f
SE
1381 return (event->cpu == -1 || event->cpu == smp_processor_id())
1382 && perf_cgroup_match(event);
fa66f07a
SE
1383}
1384
9ffcfa6f
SE
1385static void
1386event_sched_out(struct perf_event *event,
3b6f9e5c 1387 struct perf_cpu_context *cpuctx,
cdd6c482 1388 struct perf_event_context *ctx)
3b6f9e5c 1389{
4158755d 1390 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1391 u64 delta;
1392 /*
1393 * An event which could not be activated because of
1394 * filter mismatch still needs to have its timings
1395 * maintained, otherwise bogus information is return
1396 * via read() for time_enabled, time_running:
1397 */
1398 if (event->state == PERF_EVENT_STATE_INACTIVE
1399 && !event_filter_match(event)) {
e5d1367f 1400 delta = tstamp - event->tstamp_stopped;
fa66f07a 1401 event->tstamp_running += delta;
4158755d 1402 event->tstamp_stopped = tstamp;
fa66f07a
SE
1403 }
1404
cdd6c482 1405 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1406 return;
3b6f9e5c 1407
44377277
AS
1408 perf_pmu_disable(event->pmu);
1409
cdd6c482
IM
1410 event->state = PERF_EVENT_STATE_INACTIVE;
1411 if (event->pending_disable) {
1412 event->pending_disable = 0;
1413 event->state = PERF_EVENT_STATE_OFF;
970892a9 1414 }
4158755d 1415 event->tstamp_stopped = tstamp;
a4eaf7f1 1416 event->pmu->del(event, 0);
cdd6c482 1417 event->oncpu = -1;
3b6f9e5c 1418
cdd6c482 1419 if (!is_software_event(event))
3b6f9e5c
PM
1420 cpuctx->active_oncpu--;
1421 ctx->nr_active--;
0f5a2601
PZ
1422 if (event->attr.freq && event->attr.sample_freq)
1423 ctx->nr_freq--;
cdd6c482 1424 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1425 cpuctx->exclusive = 0;
44377277
AS
1426
1427 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1428}
1429
d859e29f 1430static void
cdd6c482 1431group_sched_out(struct perf_event *group_event,
d859e29f 1432 struct perf_cpu_context *cpuctx,
cdd6c482 1433 struct perf_event_context *ctx)
d859e29f 1434{
cdd6c482 1435 struct perf_event *event;
fa66f07a 1436 int state = group_event->state;
d859e29f 1437
cdd6c482 1438 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1439
1440 /*
1441 * Schedule out siblings (if any):
1442 */
cdd6c482
IM
1443 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1444 event_sched_out(event, cpuctx, ctx);
d859e29f 1445
fa66f07a 1446 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1447 cpuctx->exclusive = 0;
1448}
1449
46ce0fe9
PZ
1450struct remove_event {
1451 struct perf_event *event;
1452 bool detach_group;
1453};
1454
0793a61d 1455/*
cdd6c482 1456 * Cross CPU call to remove a performance event
0793a61d 1457 *
cdd6c482 1458 * We disable the event on the hardware level first. After that we
0793a61d
TG
1459 * remove it from the context list.
1460 */
fe4b04fa 1461static int __perf_remove_from_context(void *info)
0793a61d 1462{
46ce0fe9
PZ
1463 struct remove_event *re = info;
1464 struct perf_event *event = re->event;
cdd6c482 1465 struct perf_event_context *ctx = event->ctx;
108b02cf 1466 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1467
e625cce1 1468 raw_spin_lock(&ctx->lock);
cdd6c482 1469 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1470 if (re->detach_group)
1471 perf_group_detach(event);
cdd6c482 1472 list_del_event(event, ctx);
64ce3126
PZ
1473 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1474 ctx->is_active = 0;
1475 cpuctx->task_ctx = NULL;
1476 }
e625cce1 1477 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1478
1479 return 0;
0793a61d
TG
1480}
1481
1482
1483/*
cdd6c482 1484 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1485 *
cdd6c482 1486 * CPU events are removed with a smp call. For task events we only
0793a61d 1487 * call when the task is on a CPU.
c93f7669 1488 *
cdd6c482
IM
1489 * If event->ctx is a cloned context, callers must make sure that
1490 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1491 * remains valid. This is OK when called from perf_release since
1492 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1493 * When called from perf_event_exit_task, it's OK because the
c93f7669 1494 * context has been detached from its task.
0793a61d 1495 */
46ce0fe9 1496static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1497{
cdd6c482 1498 struct perf_event_context *ctx = event->ctx;
0793a61d 1499 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1500 struct remove_event re = {
1501 .event = event,
1502 .detach_group = detach_group,
1503 };
0793a61d 1504
fe4b04fa
PZ
1505 lockdep_assert_held(&ctx->mutex);
1506
0793a61d
TG
1507 if (!task) {
1508 /*
cdd6c482 1509 * Per cpu events are removed via an smp call and
af901ca1 1510 * the removal is always successful.
0793a61d 1511 */
46ce0fe9 1512 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1513 return;
1514 }
1515
1516retry:
46ce0fe9 1517 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1518 return;
0793a61d 1519
e625cce1 1520 raw_spin_lock_irq(&ctx->lock);
0793a61d 1521 /*
fe4b04fa
PZ
1522 * If we failed to find a running task, but find the context active now
1523 * that we've acquired the ctx->lock, retry.
0793a61d 1524 */
fe4b04fa 1525 if (ctx->is_active) {
e625cce1 1526 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1527 /*
1528 * Reload the task pointer, it might have been changed by
1529 * a concurrent perf_event_context_sched_out().
1530 */
1531 task = ctx->task;
0793a61d
TG
1532 goto retry;
1533 }
1534
1535 /*
fe4b04fa
PZ
1536 * Since the task isn't running, its safe to remove the event, us
1537 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1538 */
46ce0fe9
PZ
1539 if (detach_group)
1540 perf_group_detach(event);
fe4b04fa 1541 list_del_event(event, ctx);
e625cce1 1542 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1543}
1544
d859e29f 1545/*
cdd6c482 1546 * Cross CPU call to disable a performance event
d859e29f 1547 */
500ad2d8 1548int __perf_event_disable(void *info)
d859e29f 1549{
cdd6c482 1550 struct perf_event *event = info;
cdd6c482 1551 struct perf_event_context *ctx = event->ctx;
108b02cf 1552 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1553
1554 /*
cdd6c482
IM
1555 * If this is a per-task event, need to check whether this
1556 * event's task is the current task on this cpu.
fe4b04fa
PZ
1557 *
1558 * Can trigger due to concurrent perf_event_context_sched_out()
1559 * flipping contexts around.
d859e29f 1560 */
665c2142 1561 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1562 return -EINVAL;
d859e29f 1563
e625cce1 1564 raw_spin_lock(&ctx->lock);
d859e29f
PM
1565
1566 /*
cdd6c482 1567 * If the event is on, turn it off.
d859e29f
PM
1568 * If it is in error state, leave it in error state.
1569 */
cdd6c482 1570 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1571 update_context_time(ctx);
e5d1367f 1572 update_cgrp_time_from_event(event);
cdd6c482
IM
1573 update_group_times(event);
1574 if (event == event->group_leader)
1575 group_sched_out(event, cpuctx, ctx);
d859e29f 1576 else
cdd6c482
IM
1577 event_sched_out(event, cpuctx, ctx);
1578 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1579 }
1580
e625cce1 1581 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1582
1583 return 0;
d859e29f
PM
1584}
1585
1586/*
cdd6c482 1587 * Disable a event.
c93f7669 1588 *
cdd6c482
IM
1589 * If event->ctx is a cloned context, callers must make sure that
1590 * every task struct that event->ctx->task could possibly point to
c93f7669 1591 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1592 * perf_event_for_each_child or perf_event_for_each because they
1593 * hold the top-level event's child_mutex, so any descendant that
1594 * goes to exit will block in sync_child_event.
1595 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1596 * is the current context on this CPU and preemption is disabled,
cdd6c482 1597 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1598 */
44234adc 1599void perf_event_disable(struct perf_event *event)
d859e29f 1600{
cdd6c482 1601 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1602 struct task_struct *task = ctx->task;
1603
1604 if (!task) {
1605 /*
cdd6c482 1606 * Disable the event on the cpu that it's on
d859e29f 1607 */
fe4b04fa 1608 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1609 return;
1610 }
1611
9ed6060d 1612retry:
fe4b04fa
PZ
1613 if (!task_function_call(task, __perf_event_disable, event))
1614 return;
d859e29f 1615
e625cce1 1616 raw_spin_lock_irq(&ctx->lock);
d859e29f 1617 /*
cdd6c482 1618 * If the event is still active, we need to retry the cross-call.
d859e29f 1619 */
cdd6c482 1620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1621 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1622 /*
1623 * Reload the task pointer, it might have been changed by
1624 * a concurrent perf_event_context_sched_out().
1625 */
1626 task = ctx->task;
d859e29f
PM
1627 goto retry;
1628 }
1629
1630 /*
1631 * Since we have the lock this context can't be scheduled
1632 * in, so we can change the state safely.
1633 */
cdd6c482
IM
1634 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1635 update_group_times(event);
1636 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1637 }
e625cce1 1638 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1639}
dcfce4a0 1640EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1641
e5d1367f
SE
1642static void perf_set_shadow_time(struct perf_event *event,
1643 struct perf_event_context *ctx,
1644 u64 tstamp)
1645{
1646 /*
1647 * use the correct time source for the time snapshot
1648 *
1649 * We could get by without this by leveraging the
1650 * fact that to get to this function, the caller
1651 * has most likely already called update_context_time()
1652 * and update_cgrp_time_xx() and thus both timestamp
1653 * are identical (or very close). Given that tstamp is,
1654 * already adjusted for cgroup, we could say that:
1655 * tstamp - ctx->timestamp
1656 * is equivalent to
1657 * tstamp - cgrp->timestamp.
1658 *
1659 * Then, in perf_output_read(), the calculation would
1660 * work with no changes because:
1661 * - event is guaranteed scheduled in
1662 * - no scheduled out in between
1663 * - thus the timestamp would be the same
1664 *
1665 * But this is a bit hairy.
1666 *
1667 * So instead, we have an explicit cgroup call to remain
1668 * within the time time source all along. We believe it
1669 * is cleaner and simpler to understand.
1670 */
1671 if (is_cgroup_event(event))
1672 perf_cgroup_set_shadow_time(event, tstamp);
1673 else
1674 event->shadow_ctx_time = tstamp - ctx->timestamp;
1675}
1676
4fe757dd
PZ
1677#define MAX_INTERRUPTS (~0ULL)
1678
1679static void perf_log_throttle(struct perf_event *event, int enable);
1680
235c7fc7 1681static int
9ffcfa6f 1682event_sched_in(struct perf_event *event,
235c7fc7 1683 struct perf_cpu_context *cpuctx,
6e37738a 1684 struct perf_event_context *ctx)
235c7fc7 1685{
4158755d 1686 u64 tstamp = perf_event_time(event);
44377277 1687 int ret = 0;
4158755d 1688
63342411
PZ
1689 lockdep_assert_held(&ctx->lock);
1690
cdd6c482 1691 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1692 return 0;
1693
cdd6c482 1694 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1695 event->oncpu = smp_processor_id();
4fe757dd
PZ
1696
1697 /*
1698 * Unthrottle events, since we scheduled we might have missed several
1699 * ticks already, also for a heavily scheduling task there is little
1700 * guarantee it'll get a tick in a timely manner.
1701 */
1702 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1703 perf_log_throttle(event, 1);
1704 event->hw.interrupts = 0;
1705 }
1706
235c7fc7
IM
1707 /*
1708 * The new state must be visible before we turn it on in the hardware:
1709 */
1710 smp_wmb();
1711
44377277
AS
1712 perf_pmu_disable(event->pmu);
1713
a4eaf7f1 1714 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1715 event->state = PERF_EVENT_STATE_INACTIVE;
1716 event->oncpu = -1;
44377277
AS
1717 ret = -EAGAIN;
1718 goto out;
235c7fc7
IM
1719 }
1720
4158755d 1721 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1722
e5d1367f 1723 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1724
cdd6c482 1725 if (!is_software_event(event))
3b6f9e5c 1726 cpuctx->active_oncpu++;
235c7fc7 1727 ctx->nr_active++;
0f5a2601
PZ
1728 if (event->attr.freq && event->attr.sample_freq)
1729 ctx->nr_freq++;
235c7fc7 1730
cdd6c482 1731 if (event->attr.exclusive)
3b6f9e5c
PM
1732 cpuctx->exclusive = 1;
1733
44377277
AS
1734out:
1735 perf_pmu_enable(event->pmu);
1736
1737 return ret;
235c7fc7
IM
1738}
1739
6751b71e 1740static int
cdd6c482 1741group_sched_in(struct perf_event *group_event,
6751b71e 1742 struct perf_cpu_context *cpuctx,
6e37738a 1743 struct perf_event_context *ctx)
6751b71e 1744{
6bde9b6c 1745 struct perf_event *event, *partial_group = NULL;
4a234593 1746 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1747 u64 now = ctx->time;
1748 bool simulate = false;
6751b71e 1749
cdd6c482 1750 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1751 return 0;
1752
ad5133b7 1753 pmu->start_txn(pmu);
6bde9b6c 1754
9ffcfa6f 1755 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1756 pmu->cancel_txn(pmu);
9e630205 1757 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1758 return -EAGAIN;
90151c35 1759 }
6751b71e
PM
1760
1761 /*
1762 * Schedule in siblings as one group (if any):
1763 */
cdd6c482 1764 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1765 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1766 partial_group = event;
6751b71e
PM
1767 goto group_error;
1768 }
1769 }
1770
9ffcfa6f 1771 if (!pmu->commit_txn(pmu))
6e85158c 1772 return 0;
9ffcfa6f 1773
6751b71e
PM
1774group_error:
1775 /*
1776 * Groups can be scheduled in as one unit only, so undo any
1777 * partial group before returning:
d7842da4
SE
1778 * The events up to the failed event are scheduled out normally,
1779 * tstamp_stopped will be updated.
1780 *
1781 * The failed events and the remaining siblings need to have
1782 * their timings updated as if they had gone thru event_sched_in()
1783 * and event_sched_out(). This is required to get consistent timings
1784 * across the group. This also takes care of the case where the group
1785 * could never be scheduled by ensuring tstamp_stopped is set to mark
1786 * the time the event was actually stopped, such that time delta
1787 * calculation in update_event_times() is correct.
6751b71e 1788 */
cdd6c482
IM
1789 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1790 if (event == partial_group)
d7842da4
SE
1791 simulate = true;
1792
1793 if (simulate) {
1794 event->tstamp_running += now - event->tstamp_stopped;
1795 event->tstamp_stopped = now;
1796 } else {
1797 event_sched_out(event, cpuctx, ctx);
1798 }
6751b71e 1799 }
9ffcfa6f 1800 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1801
ad5133b7 1802 pmu->cancel_txn(pmu);
90151c35 1803
9e630205
SE
1804 perf_cpu_hrtimer_restart(cpuctx);
1805
6751b71e
PM
1806 return -EAGAIN;
1807}
1808
3b6f9e5c 1809/*
cdd6c482 1810 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1811 */
cdd6c482 1812static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1813 struct perf_cpu_context *cpuctx,
1814 int can_add_hw)
1815{
1816 /*
cdd6c482 1817 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1818 */
d6f962b5 1819 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1820 return 1;
1821 /*
1822 * If an exclusive group is already on, no other hardware
cdd6c482 1823 * events can go on.
3b6f9e5c
PM
1824 */
1825 if (cpuctx->exclusive)
1826 return 0;
1827 /*
1828 * If this group is exclusive and there are already
cdd6c482 1829 * events on the CPU, it can't go on.
3b6f9e5c 1830 */
cdd6c482 1831 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1832 return 0;
1833 /*
1834 * Otherwise, try to add it if all previous groups were able
1835 * to go on.
1836 */
1837 return can_add_hw;
1838}
1839
cdd6c482
IM
1840static void add_event_to_ctx(struct perf_event *event,
1841 struct perf_event_context *ctx)
53cfbf59 1842{
4158755d
SE
1843 u64 tstamp = perf_event_time(event);
1844
cdd6c482 1845 list_add_event(event, ctx);
8a49542c 1846 perf_group_attach(event);
4158755d
SE
1847 event->tstamp_enabled = tstamp;
1848 event->tstamp_running = tstamp;
1849 event->tstamp_stopped = tstamp;
53cfbf59
PM
1850}
1851
2c29ef0f
PZ
1852static void task_ctx_sched_out(struct perf_event_context *ctx);
1853static void
1854ctx_sched_in(struct perf_event_context *ctx,
1855 struct perf_cpu_context *cpuctx,
1856 enum event_type_t event_type,
1857 struct task_struct *task);
fe4b04fa 1858
dce5855b
PZ
1859static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1860 struct perf_event_context *ctx,
1861 struct task_struct *task)
1862{
1863 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1864 if (ctx)
1865 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1866 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1867 if (ctx)
1868 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1869}
1870
0793a61d 1871/*
cdd6c482 1872 * Cross CPU call to install and enable a performance event
682076ae
PZ
1873 *
1874 * Must be called with ctx->mutex held
0793a61d 1875 */
fe4b04fa 1876static int __perf_install_in_context(void *info)
0793a61d 1877{
cdd6c482
IM
1878 struct perf_event *event = info;
1879 struct perf_event_context *ctx = event->ctx;
108b02cf 1880 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1881 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1882 struct task_struct *task = current;
1883
b58f6b0d 1884 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1885 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1886
1887 /*
2c29ef0f 1888 * If there was an active task_ctx schedule it out.
0793a61d 1889 */
b58f6b0d 1890 if (task_ctx)
2c29ef0f 1891 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1892
1893 /*
1894 * If the context we're installing events in is not the
1895 * active task_ctx, flip them.
1896 */
1897 if (ctx->task && task_ctx != ctx) {
1898 if (task_ctx)
1899 raw_spin_unlock(&task_ctx->lock);
1900 raw_spin_lock(&ctx->lock);
1901 task_ctx = ctx;
1902 }
1903
1904 if (task_ctx) {
1905 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1906 task = task_ctx->task;
1907 }
b58f6b0d 1908
2c29ef0f 1909 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1910
4af4998b 1911 update_context_time(ctx);
e5d1367f
SE
1912 /*
1913 * update cgrp time only if current cgrp
1914 * matches event->cgrp. Must be done before
1915 * calling add_event_to_ctx()
1916 */
1917 update_cgrp_time_from_event(event);
0793a61d 1918
cdd6c482 1919 add_event_to_ctx(event, ctx);
0793a61d 1920
d859e29f 1921 /*
2c29ef0f 1922 * Schedule everything back in
d859e29f 1923 */
dce5855b 1924 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1925
1926 perf_pmu_enable(cpuctx->ctx.pmu);
1927 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1928
1929 return 0;
0793a61d
TG
1930}
1931
1932/*
cdd6c482 1933 * Attach a performance event to a context
0793a61d 1934 *
cdd6c482
IM
1935 * First we add the event to the list with the hardware enable bit
1936 * in event->hw_config cleared.
0793a61d 1937 *
cdd6c482 1938 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1939 * call to enable it in the task context. The task might have been
1940 * scheduled away, but we check this in the smp call again.
1941 */
1942static void
cdd6c482
IM
1943perf_install_in_context(struct perf_event_context *ctx,
1944 struct perf_event *event,
0793a61d
TG
1945 int cpu)
1946{
1947 struct task_struct *task = ctx->task;
1948
fe4b04fa
PZ
1949 lockdep_assert_held(&ctx->mutex);
1950
c3f00c70 1951 event->ctx = ctx;
0cda4c02
YZ
1952 if (event->cpu != -1)
1953 event->cpu = cpu;
c3f00c70 1954
0793a61d
TG
1955 if (!task) {
1956 /*
cdd6c482 1957 * Per cpu events are installed via an smp call and
af901ca1 1958 * the install is always successful.
0793a61d 1959 */
fe4b04fa 1960 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1961 return;
1962 }
1963
0793a61d 1964retry:
fe4b04fa
PZ
1965 if (!task_function_call(task, __perf_install_in_context, event))
1966 return;
0793a61d 1967
e625cce1 1968 raw_spin_lock_irq(&ctx->lock);
0793a61d 1969 /*
fe4b04fa
PZ
1970 * If we failed to find a running task, but find the context active now
1971 * that we've acquired the ctx->lock, retry.
0793a61d 1972 */
fe4b04fa 1973 if (ctx->is_active) {
e625cce1 1974 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1975 /*
1976 * Reload the task pointer, it might have been changed by
1977 * a concurrent perf_event_context_sched_out().
1978 */
1979 task = ctx->task;
0793a61d
TG
1980 goto retry;
1981 }
1982
1983 /*
fe4b04fa
PZ
1984 * Since the task isn't running, its safe to add the event, us holding
1985 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1986 */
fe4b04fa 1987 add_event_to_ctx(event, ctx);
e625cce1 1988 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1989}
1990
fa289bec 1991/*
cdd6c482 1992 * Put a event into inactive state and update time fields.
fa289bec
PM
1993 * Enabling the leader of a group effectively enables all
1994 * the group members that aren't explicitly disabled, so we
1995 * have to update their ->tstamp_enabled also.
1996 * Note: this works for group members as well as group leaders
1997 * since the non-leader members' sibling_lists will be empty.
1998 */
1d9b482e 1999static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2000{
cdd6c482 2001 struct perf_event *sub;
4158755d 2002 u64 tstamp = perf_event_time(event);
fa289bec 2003
cdd6c482 2004 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2005 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2006 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2007 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2008 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2009 }
fa289bec
PM
2010}
2011
d859e29f 2012/*
cdd6c482 2013 * Cross CPU call to enable a performance event
d859e29f 2014 */
fe4b04fa 2015static int __perf_event_enable(void *info)
04289bb9 2016{
cdd6c482 2017 struct perf_event *event = info;
cdd6c482
IM
2018 struct perf_event_context *ctx = event->ctx;
2019 struct perf_event *leader = event->group_leader;
108b02cf 2020 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2021 int err;
04289bb9 2022
06f41796
JO
2023 /*
2024 * There's a time window between 'ctx->is_active' check
2025 * in perf_event_enable function and this place having:
2026 * - IRQs on
2027 * - ctx->lock unlocked
2028 *
2029 * where the task could be killed and 'ctx' deactivated
2030 * by perf_event_exit_task.
2031 */
2032 if (!ctx->is_active)
fe4b04fa 2033 return -EINVAL;
3cbed429 2034
e625cce1 2035 raw_spin_lock(&ctx->lock);
4af4998b 2036 update_context_time(ctx);
d859e29f 2037
cdd6c482 2038 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2039 goto unlock;
e5d1367f
SE
2040
2041 /*
2042 * set current task's cgroup time reference point
2043 */
3f7cce3c 2044 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2045
1d9b482e 2046 __perf_event_mark_enabled(event);
04289bb9 2047
e5d1367f
SE
2048 if (!event_filter_match(event)) {
2049 if (is_cgroup_event(event))
2050 perf_cgroup_defer_enabled(event);
f4c4176f 2051 goto unlock;
e5d1367f 2052 }
f4c4176f 2053
04289bb9 2054 /*
cdd6c482 2055 * If the event is in a group and isn't the group leader,
d859e29f 2056 * then don't put it on unless the group is on.
04289bb9 2057 */
cdd6c482 2058 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2059 goto unlock;
3b6f9e5c 2060
cdd6c482 2061 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2062 err = -EEXIST;
e758a33d 2063 } else {
cdd6c482 2064 if (event == leader)
6e37738a 2065 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2066 else
6e37738a 2067 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2068 }
d859e29f
PM
2069
2070 if (err) {
2071 /*
cdd6c482 2072 * If this event can't go on and it's part of a
d859e29f
PM
2073 * group, then the whole group has to come off.
2074 */
9e630205 2075 if (leader != event) {
d859e29f 2076 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2077 perf_cpu_hrtimer_restart(cpuctx);
2078 }
0d48696f 2079 if (leader->attr.pinned) {
53cfbf59 2080 update_group_times(leader);
cdd6c482 2081 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2082 }
d859e29f
PM
2083 }
2084
9ed6060d 2085unlock:
e625cce1 2086 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2087
2088 return 0;
d859e29f
PM
2089}
2090
2091/*
cdd6c482 2092 * Enable a event.
c93f7669 2093 *
cdd6c482
IM
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
c93f7669 2096 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2097 * perf_event_for_each_child or perf_event_for_each as described
2098 * for perf_event_disable.
d859e29f 2099 */
44234adc 2100void perf_event_enable(struct perf_event *event)
d859e29f 2101{
cdd6c482 2102 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2103 struct task_struct *task = ctx->task;
2104
2105 if (!task) {
2106 /*
cdd6c482 2107 * Enable the event on the cpu that it's on
d859e29f 2108 */
fe4b04fa 2109 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2110 return;
2111 }
2112
e625cce1 2113 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2114 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2115 goto out;
2116
2117 /*
cdd6c482
IM
2118 * If the event is in error state, clear that first.
2119 * That way, if we see the event in error state below, we
d859e29f
PM
2120 * know that it has gone back into error state, as distinct
2121 * from the task having been scheduled away before the
2122 * cross-call arrived.
2123 */
cdd6c482
IM
2124 if (event->state == PERF_EVENT_STATE_ERROR)
2125 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2126
9ed6060d 2127retry:
fe4b04fa 2128 if (!ctx->is_active) {
1d9b482e 2129 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2130 goto out;
2131 }
2132
e625cce1 2133 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2134
2135 if (!task_function_call(task, __perf_event_enable, event))
2136 return;
d859e29f 2137
e625cce1 2138 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2139
2140 /*
cdd6c482 2141 * If the context is active and the event is still off,
d859e29f
PM
2142 * we need to retry the cross-call.
2143 */
fe4b04fa
PZ
2144 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2145 /*
2146 * task could have been flipped by a concurrent
2147 * perf_event_context_sched_out()
2148 */
2149 task = ctx->task;
d859e29f 2150 goto retry;
fe4b04fa 2151 }
fa289bec 2152
9ed6060d 2153out:
e625cce1 2154 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2155}
dcfce4a0 2156EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2157
26ca5c11 2158int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2159{
2023b359 2160 /*
cdd6c482 2161 * not supported on inherited events
2023b359 2162 */
2e939d1d 2163 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2164 return -EINVAL;
2165
cdd6c482
IM
2166 atomic_add(refresh, &event->event_limit);
2167 perf_event_enable(event);
2023b359
PZ
2168
2169 return 0;
79f14641 2170}
26ca5c11 2171EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2172
5b0311e1
FW
2173static void ctx_sched_out(struct perf_event_context *ctx,
2174 struct perf_cpu_context *cpuctx,
2175 enum event_type_t event_type)
235c7fc7 2176{
cdd6c482 2177 struct perf_event *event;
db24d33e 2178 int is_active = ctx->is_active;
235c7fc7 2179
db24d33e 2180 ctx->is_active &= ~event_type;
cdd6c482 2181 if (likely(!ctx->nr_events))
facc4307
PZ
2182 return;
2183
4af4998b 2184 update_context_time(ctx);
e5d1367f 2185 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2186 if (!ctx->nr_active)
facc4307 2187 return;
5b0311e1 2188
075e0b00 2189 perf_pmu_disable(ctx->pmu);
db24d33e 2190 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2191 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2192 group_sched_out(event, cpuctx, ctx);
9ed6060d 2193 }
889ff015 2194
db24d33e 2195 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2196 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2197 group_sched_out(event, cpuctx, ctx);
9ed6060d 2198 }
1b9a644f 2199 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2200}
2201
564c2b21 2202/*
5a3126d4
PZ
2203 * Test whether two contexts are equivalent, i.e. whether they have both been
2204 * cloned from the same version of the same context.
2205 *
2206 * Equivalence is measured using a generation number in the context that is
2207 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2208 * and list_del_event().
564c2b21 2209 */
cdd6c482
IM
2210static int context_equiv(struct perf_event_context *ctx1,
2211 struct perf_event_context *ctx2)
564c2b21 2212{
5a3126d4
PZ
2213 /* Pinning disables the swap optimization */
2214 if (ctx1->pin_count || ctx2->pin_count)
2215 return 0;
2216
2217 /* If ctx1 is the parent of ctx2 */
2218 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2219 return 1;
2220
2221 /* If ctx2 is the parent of ctx1 */
2222 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2223 return 1;
2224
2225 /*
2226 * If ctx1 and ctx2 have the same parent; we flatten the parent
2227 * hierarchy, see perf_event_init_context().
2228 */
2229 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2230 ctx1->parent_gen == ctx2->parent_gen)
2231 return 1;
2232
2233 /* Unmatched */
2234 return 0;
564c2b21
PM
2235}
2236
cdd6c482
IM
2237static void __perf_event_sync_stat(struct perf_event *event,
2238 struct perf_event *next_event)
bfbd3381
PZ
2239{
2240 u64 value;
2241
cdd6c482 2242 if (!event->attr.inherit_stat)
bfbd3381
PZ
2243 return;
2244
2245 /*
cdd6c482 2246 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2247 * because we're in the middle of a context switch and have IRQs
2248 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2249 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2250 * don't need to use it.
2251 */
cdd6c482
IM
2252 switch (event->state) {
2253 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2254 event->pmu->read(event);
2255 /* fall-through */
bfbd3381 2256
cdd6c482
IM
2257 case PERF_EVENT_STATE_INACTIVE:
2258 update_event_times(event);
bfbd3381
PZ
2259 break;
2260
2261 default:
2262 break;
2263 }
2264
2265 /*
cdd6c482 2266 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2267 * values when we flip the contexts.
2268 */
e7850595
PZ
2269 value = local64_read(&next_event->count);
2270 value = local64_xchg(&event->count, value);
2271 local64_set(&next_event->count, value);
bfbd3381 2272
cdd6c482
IM
2273 swap(event->total_time_enabled, next_event->total_time_enabled);
2274 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2275
bfbd3381 2276 /*
19d2e755 2277 * Since we swizzled the values, update the user visible data too.
bfbd3381 2278 */
cdd6c482
IM
2279 perf_event_update_userpage(event);
2280 perf_event_update_userpage(next_event);
bfbd3381
PZ
2281}
2282
cdd6c482
IM
2283static void perf_event_sync_stat(struct perf_event_context *ctx,
2284 struct perf_event_context *next_ctx)
bfbd3381 2285{
cdd6c482 2286 struct perf_event *event, *next_event;
bfbd3381
PZ
2287
2288 if (!ctx->nr_stat)
2289 return;
2290
02ffdbc8
PZ
2291 update_context_time(ctx);
2292
cdd6c482
IM
2293 event = list_first_entry(&ctx->event_list,
2294 struct perf_event, event_entry);
bfbd3381 2295
cdd6c482
IM
2296 next_event = list_first_entry(&next_ctx->event_list,
2297 struct perf_event, event_entry);
bfbd3381 2298
cdd6c482
IM
2299 while (&event->event_entry != &ctx->event_list &&
2300 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2301
cdd6c482 2302 __perf_event_sync_stat(event, next_event);
bfbd3381 2303
cdd6c482
IM
2304 event = list_next_entry(event, event_entry);
2305 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2306 }
2307}
2308
fe4b04fa
PZ
2309static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2310 struct task_struct *next)
0793a61d 2311{
8dc85d54 2312 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2313 struct perf_event_context *next_ctx;
5a3126d4 2314 struct perf_event_context *parent, *next_parent;
108b02cf 2315 struct perf_cpu_context *cpuctx;
c93f7669 2316 int do_switch = 1;
0793a61d 2317
108b02cf
PZ
2318 if (likely(!ctx))
2319 return;
10989fb2 2320
108b02cf
PZ
2321 cpuctx = __get_cpu_context(ctx);
2322 if (!cpuctx->task_ctx)
0793a61d
TG
2323 return;
2324
c93f7669 2325 rcu_read_lock();
8dc85d54 2326 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2327 if (!next_ctx)
2328 goto unlock;
2329
2330 parent = rcu_dereference(ctx->parent_ctx);
2331 next_parent = rcu_dereference(next_ctx->parent_ctx);
2332
2333 /* If neither context have a parent context; they cannot be clones. */
1f9a7268 2334 if (!parent || !next_parent)
5a3126d4
PZ
2335 goto unlock;
2336
2337 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2338 /*
2339 * Looks like the two contexts are clones, so we might be
2340 * able to optimize the context switch. We lock both
2341 * contexts and check that they are clones under the
2342 * lock (including re-checking that neither has been
2343 * uncloned in the meantime). It doesn't matter which
2344 * order we take the locks because no other cpu could
2345 * be trying to lock both of these tasks.
2346 */
e625cce1
TG
2347 raw_spin_lock(&ctx->lock);
2348 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2349 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2350 /*
2351 * XXX do we need a memory barrier of sorts
cdd6c482 2352 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2353 */
8dc85d54
PZ
2354 task->perf_event_ctxp[ctxn] = next_ctx;
2355 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2356 ctx->task = next;
2357 next_ctx->task = task;
2358 do_switch = 0;
bfbd3381 2359
cdd6c482 2360 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2361 }
e625cce1
TG
2362 raw_spin_unlock(&next_ctx->lock);
2363 raw_spin_unlock(&ctx->lock);
564c2b21 2364 }
5a3126d4 2365unlock:
c93f7669 2366 rcu_read_unlock();
564c2b21 2367
c93f7669 2368 if (do_switch) {
facc4307 2369 raw_spin_lock(&ctx->lock);
5b0311e1 2370 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2371 cpuctx->task_ctx = NULL;
facc4307 2372 raw_spin_unlock(&ctx->lock);
c93f7669 2373 }
0793a61d
TG
2374}
2375
8dc85d54
PZ
2376#define for_each_task_context_nr(ctxn) \
2377 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2378
2379/*
2380 * Called from scheduler to remove the events of the current task,
2381 * with interrupts disabled.
2382 *
2383 * We stop each event and update the event value in event->count.
2384 *
2385 * This does not protect us against NMI, but disable()
2386 * sets the disabled bit in the control field of event _before_
2387 * accessing the event control register. If a NMI hits, then it will
2388 * not restart the event.
2389 */
ab0cce56
JO
2390void __perf_event_task_sched_out(struct task_struct *task,
2391 struct task_struct *next)
8dc85d54
PZ
2392{
2393 int ctxn;
2394
8dc85d54
PZ
2395 for_each_task_context_nr(ctxn)
2396 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2397
2398 /*
2399 * if cgroup events exist on this CPU, then we need
2400 * to check if we have to switch out PMU state.
2401 * cgroup event are system-wide mode only
2402 */
2403 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2404 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2405}
2406
04dc2dbb 2407static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2408{
108b02cf 2409 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2410
a63eaf34
PM
2411 if (!cpuctx->task_ctx)
2412 return;
012b84da
IM
2413
2414 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2415 return;
2416
04dc2dbb 2417 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2418 cpuctx->task_ctx = NULL;
2419}
2420
5b0311e1
FW
2421/*
2422 * Called with IRQs disabled
2423 */
2424static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2425 enum event_type_t event_type)
2426{
2427 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2428}
2429
235c7fc7 2430static void
5b0311e1 2431ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2432 struct perf_cpu_context *cpuctx)
0793a61d 2433{
cdd6c482 2434 struct perf_event *event;
0793a61d 2435
889ff015
FW
2436 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2437 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2438 continue;
5632ab12 2439 if (!event_filter_match(event))
3b6f9e5c
PM
2440 continue;
2441
e5d1367f
SE
2442 /* may need to reset tstamp_enabled */
2443 if (is_cgroup_event(event))
2444 perf_cgroup_mark_enabled(event, ctx);
2445
8c9ed8e1 2446 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2447 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2448
2449 /*
2450 * If this pinned group hasn't been scheduled,
2451 * put it in error state.
2452 */
cdd6c482
IM
2453 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2454 update_group_times(event);
2455 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2456 }
3b6f9e5c 2457 }
5b0311e1
FW
2458}
2459
2460static void
2461ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2462 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2463{
2464 struct perf_event *event;
2465 int can_add_hw = 1;
3b6f9e5c 2466
889ff015
FW
2467 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2468 /* Ignore events in OFF or ERROR state */
2469 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2470 continue;
04289bb9
IM
2471 /*
2472 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2473 * of events:
04289bb9 2474 */
5632ab12 2475 if (!event_filter_match(event))
0793a61d
TG
2476 continue;
2477
e5d1367f
SE
2478 /* may need to reset tstamp_enabled */
2479 if (is_cgroup_event(event))
2480 perf_cgroup_mark_enabled(event, ctx);
2481
9ed6060d 2482 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2483 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2484 can_add_hw = 0;
9ed6060d 2485 }
0793a61d 2486 }
5b0311e1
FW
2487}
2488
2489static void
2490ctx_sched_in(struct perf_event_context *ctx,
2491 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2492 enum event_type_t event_type,
2493 struct task_struct *task)
5b0311e1 2494{
e5d1367f 2495 u64 now;
db24d33e 2496 int is_active = ctx->is_active;
e5d1367f 2497
db24d33e 2498 ctx->is_active |= event_type;
5b0311e1 2499 if (likely(!ctx->nr_events))
facc4307 2500 return;
5b0311e1 2501
e5d1367f
SE
2502 now = perf_clock();
2503 ctx->timestamp = now;
3f7cce3c 2504 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2505 /*
2506 * First go through the list and put on any pinned groups
2507 * in order to give them the best chance of going on.
2508 */
db24d33e 2509 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2510 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2511
2512 /* Then walk through the lower prio flexible groups */
db24d33e 2513 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2514 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2515}
2516
329c0e01 2517static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2518 enum event_type_t event_type,
2519 struct task_struct *task)
329c0e01
FW
2520{
2521 struct perf_event_context *ctx = &cpuctx->ctx;
2522
e5d1367f 2523 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2524}
2525
e5d1367f
SE
2526static void perf_event_context_sched_in(struct perf_event_context *ctx,
2527 struct task_struct *task)
235c7fc7 2528{
108b02cf 2529 struct perf_cpu_context *cpuctx;
235c7fc7 2530
108b02cf 2531 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2532 if (cpuctx->task_ctx == ctx)
2533 return;
2534
facc4307 2535 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2536 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2537 /*
2538 * We want to keep the following priority order:
2539 * cpu pinned (that don't need to move), task pinned,
2540 * cpu flexible, task flexible.
2541 */
2542 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2543
1d5f003f
GN
2544 if (ctx->nr_events)
2545 cpuctx->task_ctx = ctx;
9b33fa6b 2546
86b47c25
GN
2547 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2548
facc4307
PZ
2549 perf_pmu_enable(ctx->pmu);
2550 perf_ctx_unlock(cpuctx, ctx);
2551
b5ab4cd5
PZ
2552 /*
2553 * Since these rotations are per-cpu, we need to ensure the
2554 * cpu-context we got scheduled on is actually rotating.
2555 */
108b02cf 2556 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2557}
2558
d010b332
SE
2559/*
2560 * When sampling the branck stack in system-wide, it may be necessary
2561 * to flush the stack on context switch. This happens when the branch
2562 * stack does not tag its entries with the pid of the current task.
2563 * Otherwise it becomes impossible to associate a branch entry with a
2564 * task. This ambiguity is more likely to appear when the branch stack
2565 * supports priv level filtering and the user sets it to monitor only
2566 * at the user level (which could be a useful measurement in system-wide
2567 * mode). In that case, the risk is high of having a branch stack with
2568 * branch from multiple tasks. Flushing may mean dropping the existing
2569 * entries or stashing them somewhere in the PMU specific code layer.
2570 *
2571 * This function provides the context switch callback to the lower code
2572 * layer. It is invoked ONLY when there is at least one system-wide context
2573 * with at least one active event using taken branch sampling.
2574 */
2575static void perf_branch_stack_sched_in(struct task_struct *prev,
2576 struct task_struct *task)
2577{
2578 struct perf_cpu_context *cpuctx;
2579 struct pmu *pmu;
2580 unsigned long flags;
2581
2582 /* no need to flush branch stack if not changing task */
2583 if (prev == task)
2584 return;
2585
2586 local_irq_save(flags);
2587
2588 rcu_read_lock();
2589
2590 list_for_each_entry_rcu(pmu, &pmus, entry) {
2591 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2592
2593 /*
2594 * check if the context has at least one
2595 * event using PERF_SAMPLE_BRANCH_STACK
2596 */
2597 if (cpuctx->ctx.nr_branch_stack > 0
2598 && pmu->flush_branch_stack) {
2599
d010b332
SE
2600 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2601
2602 perf_pmu_disable(pmu);
2603
2604 pmu->flush_branch_stack();
2605
2606 perf_pmu_enable(pmu);
2607
2608 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2609 }
2610 }
2611
2612 rcu_read_unlock();
2613
2614 local_irq_restore(flags);
2615}
2616
8dc85d54
PZ
2617/*
2618 * Called from scheduler to add the events of the current task
2619 * with interrupts disabled.
2620 *
2621 * We restore the event value and then enable it.
2622 *
2623 * This does not protect us against NMI, but enable()
2624 * sets the enabled bit in the control field of event _before_
2625 * accessing the event control register. If a NMI hits, then it will
2626 * keep the event running.
2627 */
ab0cce56
JO
2628void __perf_event_task_sched_in(struct task_struct *prev,
2629 struct task_struct *task)
8dc85d54
PZ
2630{
2631 struct perf_event_context *ctx;
2632 int ctxn;
2633
2634 for_each_task_context_nr(ctxn) {
2635 ctx = task->perf_event_ctxp[ctxn];
2636 if (likely(!ctx))
2637 continue;
2638
e5d1367f 2639 perf_event_context_sched_in(ctx, task);
8dc85d54 2640 }
e5d1367f
SE
2641 /*
2642 * if cgroup events exist on this CPU, then we need
2643 * to check if we have to switch in PMU state.
2644 * cgroup event are system-wide mode only
2645 */
2646 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2647 perf_cgroup_sched_in(prev, task);
d010b332
SE
2648
2649 /* check for system-wide branch_stack events */
2650 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2651 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2652}
2653
abd50713
PZ
2654static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2655{
2656 u64 frequency = event->attr.sample_freq;
2657 u64 sec = NSEC_PER_SEC;
2658 u64 divisor, dividend;
2659
2660 int count_fls, nsec_fls, frequency_fls, sec_fls;
2661
2662 count_fls = fls64(count);
2663 nsec_fls = fls64(nsec);
2664 frequency_fls = fls64(frequency);
2665 sec_fls = 30;
2666
2667 /*
2668 * We got @count in @nsec, with a target of sample_freq HZ
2669 * the target period becomes:
2670 *
2671 * @count * 10^9
2672 * period = -------------------
2673 * @nsec * sample_freq
2674 *
2675 */
2676
2677 /*
2678 * Reduce accuracy by one bit such that @a and @b converge
2679 * to a similar magnitude.
2680 */
fe4b04fa 2681#define REDUCE_FLS(a, b) \
abd50713
PZ
2682do { \
2683 if (a##_fls > b##_fls) { \
2684 a >>= 1; \
2685 a##_fls--; \
2686 } else { \
2687 b >>= 1; \
2688 b##_fls--; \
2689 } \
2690} while (0)
2691
2692 /*
2693 * Reduce accuracy until either term fits in a u64, then proceed with
2694 * the other, so that finally we can do a u64/u64 division.
2695 */
2696 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2697 REDUCE_FLS(nsec, frequency);
2698 REDUCE_FLS(sec, count);
2699 }
2700
2701 if (count_fls + sec_fls > 64) {
2702 divisor = nsec * frequency;
2703
2704 while (count_fls + sec_fls > 64) {
2705 REDUCE_FLS(count, sec);
2706 divisor >>= 1;
2707 }
2708
2709 dividend = count * sec;
2710 } else {
2711 dividend = count * sec;
2712
2713 while (nsec_fls + frequency_fls > 64) {
2714 REDUCE_FLS(nsec, frequency);
2715 dividend >>= 1;
2716 }
2717
2718 divisor = nsec * frequency;
2719 }
2720
f6ab91ad
PZ
2721 if (!divisor)
2722 return dividend;
2723
abd50713
PZ
2724 return div64_u64(dividend, divisor);
2725}
2726
e050e3f0
SE
2727static DEFINE_PER_CPU(int, perf_throttled_count);
2728static DEFINE_PER_CPU(u64, perf_throttled_seq);
2729
f39d47ff 2730static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2731{
cdd6c482 2732 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2733 s64 period, sample_period;
bd2b5b12
PZ
2734 s64 delta;
2735
abd50713 2736 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2737
2738 delta = (s64)(period - hwc->sample_period);
2739 delta = (delta + 7) / 8; /* low pass filter */
2740
2741 sample_period = hwc->sample_period + delta;
2742
2743 if (!sample_period)
2744 sample_period = 1;
2745
bd2b5b12 2746 hwc->sample_period = sample_period;
abd50713 2747
e7850595 2748 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2749 if (disable)
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2751
e7850595 2752 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2753
2754 if (disable)
2755 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2756 }
bd2b5b12
PZ
2757}
2758
e050e3f0
SE
2759/*
2760 * combine freq adjustment with unthrottling to avoid two passes over the
2761 * events. At the same time, make sure, having freq events does not change
2762 * the rate of unthrottling as that would introduce bias.
2763 */
2764static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2765 int needs_unthr)
60db5e09 2766{
cdd6c482
IM
2767 struct perf_event *event;
2768 struct hw_perf_event *hwc;
e050e3f0 2769 u64 now, period = TICK_NSEC;
abd50713 2770 s64 delta;
60db5e09 2771
e050e3f0
SE
2772 /*
2773 * only need to iterate over all events iff:
2774 * - context have events in frequency mode (needs freq adjust)
2775 * - there are events to unthrottle on this cpu
2776 */
2777 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2778 return;
2779
e050e3f0 2780 raw_spin_lock(&ctx->lock);
f39d47ff 2781 perf_pmu_disable(ctx->pmu);
e050e3f0 2782
03541f8b 2783 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2784 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2785 continue;
2786
5632ab12 2787 if (!event_filter_match(event))
5d27c23d
PZ
2788 continue;
2789
44377277
AS
2790 perf_pmu_disable(event->pmu);
2791
cdd6c482 2792 hwc = &event->hw;
6a24ed6c 2793
ae23bff1 2794 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2795 hwc->interrupts = 0;
cdd6c482 2796 perf_log_throttle(event, 1);
a4eaf7f1 2797 event->pmu->start(event, 0);
a78ac325
PZ
2798 }
2799
cdd6c482 2800 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2801 goto next;
60db5e09 2802
e050e3f0
SE
2803 /*
2804 * stop the event and update event->count
2805 */
2806 event->pmu->stop(event, PERF_EF_UPDATE);
2807
e7850595 2808 now = local64_read(&event->count);
abd50713
PZ
2809 delta = now - hwc->freq_count_stamp;
2810 hwc->freq_count_stamp = now;
60db5e09 2811
e050e3f0
SE
2812 /*
2813 * restart the event
2814 * reload only if value has changed
f39d47ff
SE
2815 * we have stopped the event so tell that
2816 * to perf_adjust_period() to avoid stopping it
2817 * twice.
e050e3f0 2818 */
abd50713 2819 if (delta > 0)
f39d47ff 2820 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2821
2822 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2823 next:
2824 perf_pmu_enable(event->pmu);
60db5e09 2825 }
e050e3f0 2826
f39d47ff 2827 perf_pmu_enable(ctx->pmu);
e050e3f0 2828 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2829}
2830
235c7fc7 2831/*
cdd6c482 2832 * Round-robin a context's events:
235c7fc7 2833 */
cdd6c482 2834static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2835{
dddd3379
TG
2836 /*
2837 * Rotate the first entry last of non-pinned groups. Rotation might be
2838 * disabled by the inheritance code.
2839 */
2840 if (!ctx->rotate_disable)
2841 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2842}
2843
b5ab4cd5 2844/*
e9d2b064
PZ
2845 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2846 * because they're strictly cpu affine and rotate_start is called with IRQs
2847 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2848 */
9e630205 2849static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2850{
8dc85d54 2851 struct perf_event_context *ctx = NULL;
e050e3f0 2852 int rotate = 0, remove = 1;
7fc23a53 2853
b5ab4cd5 2854 if (cpuctx->ctx.nr_events) {
e9d2b064 2855 remove = 0;
b5ab4cd5
PZ
2856 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2857 rotate = 1;
2858 }
235c7fc7 2859
8dc85d54 2860 ctx = cpuctx->task_ctx;
b5ab4cd5 2861 if (ctx && ctx->nr_events) {
e9d2b064 2862 remove = 0;
b5ab4cd5
PZ
2863 if (ctx->nr_events != ctx->nr_active)
2864 rotate = 1;
2865 }
9717e6cd 2866
e050e3f0 2867 if (!rotate)
0f5a2601
PZ
2868 goto done;
2869
facc4307 2870 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2871 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2872
e050e3f0
SE
2873 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2874 if (ctx)
2875 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2876
e050e3f0
SE
2877 rotate_ctx(&cpuctx->ctx);
2878 if (ctx)
2879 rotate_ctx(ctx);
235c7fc7 2880
e050e3f0 2881 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2882
0f5a2601
PZ
2883 perf_pmu_enable(cpuctx->ctx.pmu);
2884 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2885done:
e9d2b064
PZ
2886 if (remove)
2887 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2888
2889 return rotate;
e9d2b064
PZ
2890}
2891
026249ef
FW
2892#ifdef CONFIG_NO_HZ_FULL
2893bool perf_event_can_stop_tick(void)
2894{
948b26b6 2895 if (atomic_read(&nr_freq_events) ||
d84153d6 2896 __this_cpu_read(perf_throttled_count))
026249ef 2897 return false;
d84153d6
FW
2898 else
2899 return true;
026249ef
FW
2900}
2901#endif
2902
e9d2b064
PZ
2903void perf_event_task_tick(void)
2904{
2905 struct list_head *head = &__get_cpu_var(rotation_list);
2906 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2907 struct perf_event_context *ctx;
2908 int throttled;
b5ab4cd5 2909
e9d2b064
PZ
2910 WARN_ON(!irqs_disabled());
2911
e050e3f0
SE
2912 __this_cpu_inc(perf_throttled_seq);
2913 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2914
e9d2b064 2915 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2916 ctx = &cpuctx->ctx;
2917 perf_adjust_freq_unthr_context(ctx, throttled);
2918
2919 ctx = cpuctx->task_ctx;
2920 if (ctx)
2921 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2922 }
0793a61d
TG
2923}
2924
889ff015
FW
2925static int event_enable_on_exec(struct perf_event *event,
2926 struct perf_event_context *ctx)
2927{
2928 if (!event->attr.enable_on_exec)
2929 return 0;
2930
2931 event->attr.enable_on_exec = 0;
2932 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2933 return 0;
2934
1d9b482e 2935 __perf_event_mark_enabled(event);
889ff015
FW
2936
2937 return 1;
2938}
2939
57e7986e 2940/*
cdd6c482 2941 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2942 * This expects task == current.
2943 */
8dc85d54 2944static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2945{
cdd6c482 2946 struct perf_event *event;
57e7986e
PM
2947 unsigned long flags;
2948 int enabled = 0;
889ff015 2949 int ret;
57e7986e
PM
2950
2951 local_irq_save(flags);
cdd6c482 2952 if (!ctx || !ctx->nr_events)
57e7986e
PM
2953 goto out;
2954
e566b76e
SE
2955 /*
2956 * We must ctxsw out cgroup events to avoid conflict
2957 * when invoking perf_task_event_sched_in() later on
2958 * in this function. Otherwise we end up trying to
2959 * ctxswin cgroup events which are already scheduled
2960 * in.
2961 */
a8d757ef 2962 perf_cgroup_sched_out(current, NULL);
57e7986e 2963
e625cce1 2964 raw_spin_lock(&ctx->lock);
04dc2dbb 2965 task_ctx_sched_out(ctx);
57e7986e 2966
b79387ef 2967 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2968 ret = event_enable_on_exec(event, ctx);
2969 if (ret)
2970 enabled = 1;
57e7986e
PM
2971 }
2972
2973 /*
cdd6c482 2974 * Unclone this context if we enabled any event.
57e7986e 2975 */
71a851b4
PZ
2976 if (enabled)
2977 unclone_ctx(ctx);
57e7986e 2978
e625cce1 2979 raw_spin_unlock(&ctx->lock);
57e7986e 2980
e566b76e
SE
2981 /*
2982 * Also calls ctxswin for cgroup events, if any:
2983 */
e5d1367f 2984 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2985out:
57e7986e
PM
2986 local_irq_restore(flags);
2987}
2988
e041e328
PZ
2989void perf_event_exec(void)
2990{
2991 struct perf_event_context *ctx;
2992 int ctxn;
2993
2994 rcu_read_lock();
2995 for_each_task_context_nr(ctxn) {
2996 ctx = current->perf_event_ctxp[ctxn];
2997 if (!ctx)
2998 continue;
2999
3000 perf_event_enable_on_exec(ctx);
3001 }
3002 rcu_read_unlock();
3003}
3004
0793a61d 3005/*
cdd6c482 3006 * Cross CPU call to read the hardware event
0793a61d 3007 */
cdd6c482 3008static void __perf_event_read(void *info)
0793a61d 3009{
cdd6c482
IM
3010 struct perf_event *event = info;
3011 struct perf_event_context *ctx = event->ctx;
108b02cf 3012 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3013
e1ac3614
PM
3014 /*
3015 * If this is a task context, we need to check whether it is
3016 * the current task context of this cpu. If not it has been
3017 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3018 * event->count would have been updated to a recent sample
3019 * when the event was scheduled out.
e1ac3614
PM
3020 */
3021 if (ctx->task && cpuctx->task_ctx != ctx)
3022 return;
3023
e625cce1 3024 raw_spin_lock(&ctx->lock);
e5d1367f 3025 if (ctx->is_active) {
542e72fc 3026 update_context_time(ctx);
e5d1367f
SE
3027 update_cgrp_time_from_event(event);
3028 }
cdd6c482 3029 update_event_times(event);
542e72fc
PZ
3030 if (event->state == PERF_EVENT_STATE_ACTIVE)
3031 event->pmu->read(event);
e625cce1 3032 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3033}
3034
b5e58793
PZ
3035static inline u64 perf_event_count(struct perf_event *event)
3036{
e7850595 3037 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3038}
3039
cdd6c482 3040static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3041{
3042 /*
cdd6c482
IM
3043 * If event is enabled and currently active on a CPU, update the
3044 * value in the event structure:
0793a61d 3045 */
cdd6c482
IM
3046 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3047 smp_call_function_single(event->oncpu,
3048 __perf_event_read, event, 1);
3049 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3050 struct perf_event_context *ctx = event->ctx;
3051 unsigned long flags;
3052
e625cce1 3053 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3054 /*
3055 * may read while context is not active
3056 * (e.g., thread is blocked), in that case
3057 * we cannot update context time
3058 */
e5d1367f 3059 if (ctx->is_active) {
c530ccd9 3060 update_context_time(ctx);
e5d1367f
SE
3061 update_cgrp_time_from_event(event);
3062 }
cdd6c482 3063 update_event_times(event);
e625cce1 3064 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3065 }
3066
b5e58793 3067 return perf_event_count(event);
0793a61d
TG
3068}
3069
a63eaf34 3070/*
cdd6c482 3071 * Initialize the perf_event context in a task_struct:
a63eaf34 3072 */
eb184479 3073static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3074{
e625cce1 3075 raw_spin_lock_init(&ctx->lock);
a63eaf34 3076 mutex_init(&ctx->mutex);
889ff015
FW
3077 INIT_LIST_HEAD(&ctx->pinned_groups);
3078 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3079 INIT_LIST_HEAD(&ctx->event_list);
3080 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3081}
3082
3083static struct perf_event_context *
3084alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3085{
3086 struct perf_event_context *ctx;
3087
3088 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3089 if (!ctx)
3090 return NULL;
3091
3092 __perf_event_init_context(ctx);
3093 if (task) {
3094 ctx->task = task;
3095 get_task_struct(task);
0793a61d 3096 }
eb184479
PZ
3097 ctx->pmu = pmu;
3098
3099 return ctx;
a63eaf34
PM
3100}
3101
2ebd4ffb
MH
3102static struct task_struct *
3103find_lively_task_by_vpid(pid_t vpid)
3104{
3105 struct task_struct *task;
3106 int err;
0793a61d
TG
3107
3108 rcu_read_lock();
2ebd4ffb 3109 if (!vpid)
0793a61d
TG
3110 task = current;
3111 else
2ebd4ffb 3112 task = find_task_by_vpid(vpid);
0793a61d
TG
3113 if (task)
3114 get_task_struct(task);
3115 rcu_read_unlock();
3116
3117 if (!task)
3118 return ERR_PTR(-ESRCH);
3119
0793a61d 3120 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3121 err = -EACCES;
3122 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3123 goto errout;
3124
2ebd4ffb
MH
3125 return task;
3126errout:
3127 put_task_struct(task);
3128 return ERR_PTR(err);
3129
3130}
3131
fe4b04fa
PZ
3132/*
3133 * Returns a matching context with refcount and pincount.
3134 */
108b02cf 3135static struct perf_event_context *
38a81da2 3136find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3137{
cdd6c482 3138 struct perf_event_context *ctx;
22a4f650 3139 struct perf_cpu_context *cpuctx;
25346b93 3140 unsigned long flags;
8dc85d54 3141 int ctxn, err;
0793a61d 3142
22a4ec72 3143 if (!task) {
cdd6c482 3144 /* Must be root to operate on a CPU event: */
0764771d 3145 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3146 return ERR_PTR(-EACCES);
3147
0793a61d 3148 /*
cdd6c482 3149 * We could be clever and allow to attach a event to an
0793a61d
TG
3150 * offline CPU and activate it when the CPU comes up, but
3151 * that's for later.
3152 */
f6325e30 3153 if (!cpu_online(cpu))
0793a61d
TG
3154 return ERR_PTR(-ENODEV);
3155
108b02cf 3156 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3157 ctx = &cpuctx->ctx;
c93f7669 3158 get_ctx(ctx);
fe4b04fa 3159 ++ctx->pin_count;
0793a61d 3160
0793a61d
TG
3161 return ctx;
3162 }
3163
8dc85d54
PZ
3164 err = -EINVAL;
3165 ctxn = pmu->task_ctx_nr;
3166 if (ctxn < 0)
3167 goto errout;
3168
9ed6060d 3169retry:
8dc85d54 3170 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3171 if (ctx) {
71a851b4 3172 unclone_ctx(ctx);
fe4b04fa 3173 ++ctx->pin_count;
e625cce1 3174 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3175 } else {
eb184479 3176 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3177 err = -ENOMEM;
3178 if (!ctx)
3179 goto errout;
eb184479 3180
dbe08d82
ON
3181 err = 0;
3182 mutex_lock(&task->perf_event_mutex);
3183 /*
3184 * If it has already passed perf_event_exit_task().
3185 * we must see PF_EXITING, it takes this mutex too.
3186 */
3187 if (task->flags & PF_EXITING)
3188 err = -ESRCH;
3189 else if (task->perf_event_ctxp[ctxn])
3190 err = -EAGAIN;
fe4b04fa 3191 else {
9137fb28 3192 get_ctx(ctx);
fe4b04fa 3193 ++ctx->pin_count;
dbe08d82 3194 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3195 }
dbe08d82
ON
3196 mutex_unlock(&task->perf_event_mutex);
3197
3198 if (unlikely(err)) {
9137fb28 3199 put_ctx(ctx);
dbe08d82
ON
3200
3201 if (err == -EAGAIN)
3202 goto retry;
3203 goto errout;
a63eaf34
PM
3204 }
3205 }
3206
0793a61d 3207 return ctx;
c93f7669 3208
9ed6060d 3209errout:
c93f7669 3210 return ERR_PTR(err);
0793a61d
TG
3211}
3212
6fb2915d
LZ
3213static void perf_event_free_filter(struct perf_event *event);
3214
cdd6c482 3215static void free_event_rcu(struct rcu_head *head)
592903cd 3216{
cdd6c482 3217 struct perf_event *event;
592903cd 3218
cdd6c482
IM
3219 event = container_of(head, struct perf_event, rcu_head);
3220 if (event->ns)
3221 put_pid_ns(event->ns);
6fb2915d 3222 perf_event_free_filter(event);
cdd6c482 3223 kfree(event);
592903cd
PZ
3224}
3225
76369139 3226static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3227static void ring_buffer_attach(struct perf_event *event,
3228 struct ring_buffer *rb);
925d519a 3229
4beb31f3 3230static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3231{
4beb31f3
FW
3232 if (event->parent)
3233 return;
3234
3235 if (has_branch_stack(event)) {
3236 if (!(event->attach_state & PERF_ATTACH_TASK))
3237 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3238 }
3239 if (is_cgroup_event(event))
3240 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3241}
925d519a 3242
4beb31f3
FW
3243static void unaccount_event(struct perf_event *event)
3244{
3245 if (event->parent)
3246 return;
3247
3248 if (event->attach_state & PERF_ATTACH_TASK)
3249 static_key_slow_dec_deferred(&perf_sched_events);
3250 if (event->attr.mmap || event->attr.mmap_data)
3251 atomic_dec(&nr_mmap_events);
3252 if (event->attr.comm)
3253 atomic_dec(&nr_comm_events);
3254 if (event->attr.task)
3255 atomic_dec(&nr_task_events);
948b26b6
FW
3256 if (event->attr.freq)
3257 atomic_dec(&nr_freq_events);
4beb31f3
FW
3258 if (is_cgroup_event(event))
3259 static_key_slow_dec_deferred(&perf_sched_events);
3260 if (has_branch_stack(event))
3261 static_key_slow_dec_deferred(&perf_sched_events);
3262
3263 unaccount_event_cpu(event, event->cpu);
3264}
925d519a 3265
766d6c07
FW
3266static void __free_event(struct perf_event *event)
3267{
cdd6c482 3268 if (!event->parent) {
927c7a9e
FW
3269 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3270 put_callchain_buffers();
f344011c 3271 }
9ee318a7 3272
766d6c07
FW
3273 if (event->destroy)
3274 event->destroy(event);
3275
3276 if (event->ctx)
3277 put_ctx(event->ctx);
3278
c464c76e
YZ
3279 if (event->pmu)
3280 module_put(event->pmu->module);
3281
766d6c07
FW
3282 call_rcu(&event->rcu_head, free_event_rcu);
3283}
683ede43
PZ
3284
3285static void _free_event(struct perf_event *event)
f1600952 3286{
e360adbe 3287 irq_work_sync(&event->pending);
925d519a 3288
4beb31f3 3289 unaccount_event(event);
9ee318a7 3290
76369139 3291 if (event->rb) {
9bb5d40c
PZ
3292 /*
3293 * Can happen when we close an event with re-directed output.
3294 *
3295 * Since we have a 0 refcount, perf_mmap_close() will skip
3296 * over us; possibly making our ring_buffer_put() the last.
3297 */
3298 mutex_lock(&event->mmap_mutex);
b69cf536 3299 ring_buffer_attach(event, NULL);
9bb5d40c 3300 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3301 }
3302
e5d1367f
SE
3303 if (is_cgroup_event(event))
3304 perf_detach_cgroup(event);
3305
766d6c07 3306 __free_event(event);
f1600952
PZ
3307}
3308
683ede43
PZ
3309/*
3310 * Used to free events which have a known refcount of 1, such as in error paths
3311 * where the event isn't exposed yet and inherited events.
3312 */
3313static void free_event(struct perf_event *event)
0793a61d 3314{
683ede43
PZ
3315 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3316 "unexpected event refcount: %ld; ptr=%p\n",
3317 atomic_long_read(&event->refcount), event)) {
3318 /* leak to avoid use-after-free */
3319 return;
3320 }
0793a61d 3321
683ede43 3322 _free_event(event);
0793a61d
TG
3323}
3324
a66a3052
PZ
3325/*
3326 * Called when the last reference to the file is gone.
3327 */
a6fa941d 3328static void put_event(struct perf_event *event)
fb0459d7 3329{
683ede43 3330 struct perf_event_context *ctx = event->ctx;
8882135b 3331 struct task_struct *owner;
fb0459d7 3332
a6fa941d
AV
3333 if (!atomic_long_dec_and_test(&event->refcount))
3334 return;
fb0459d7 3335
8882135b
PZ
3336 rcu_read_lock();
3337 owner = ACCESS_ONCE(event->owner);
3338 /*
3339 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3340 * !owner it means the list deletion is complete and we can indeed
3341 * free this event, otherwise we need to serialize on
3342 * owner->perf_event_mutex.
3343 */
3344 smp_read_barrier_depends();
3345 if (owner) {
3346 /*
3347 * Since delayed_put_task_struct() also drops the last
3348 * task reference we can safely take a new reference
3349 * while holding the rcu_read_lock().
3350 */
3351 get_task_struct(owner);
3352 }
3353 rcu_read_unlock();
3354
3355 if (owner) {
3356 mutex_lock(&owner->perf_event_mutex);
3357 /*
3358 * We have to re-check the event->owner field, if it is cleared
3359 * we raced with perf_event_exit_task(), acquiring the mutex
3360 * ensured they're done, and we can proceed with freeing the
3361 * event.
3362 */
3363 if (event->owner)
3364 list_del_init(&event->owner_entry);
3365 mutex_unlock(&owner->perf_event_mutex);
3366 put_task_struct(owner);
3367 }
3368
683ede43
PZ
3369 WARN_ON_ONCE(ctx->parent_ctx);
3370 /*
3371 * There are two ways this annotation is useful:
3372 *
3373 * 1) there is a lock recursion from perf_event_exit_task
3374 * see the comment there.
3375 *
3376 * 2) there is a lock-inversion with mmap_sem through
3377 * perf_event_read_group(), which takes faults while
3378 * holding ctx->mutex, however this is called after
3379 * the last filedesc died, so there is no possibility
3380 * to trigger the AB-BA case.
3381 */
3382 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3383 perf_remove_from_context(event, true);
3384 mutex_unlock(&ctx->mutex);
3385
3386 _free_event(event);
a6fa941d
AV
3387}
3388
683ede43
PZ
3389int perf_event_release_kernel(struct perf_event *event)
3390{
3391 put_event(event);
3392 return 0;
3393}
3394EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3395
a6fa941d
AV
3396static int perf_release(struct inode *inode, struct file *file)
3397{
3398 put_event(file->private_data);
3399 return 0;
fb0459d7 3400}
fb0459d7 3401
59ed446f 3402u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3403{
cdd6c482 3404 struct perf_event *child;
e53c0994
PZ
3405 u64 total = 0;
3406
59ed446f
PZ
3407 *enabled = 0;
3408 *running = 0;
3409
6f10581a 3410 mutex_lock(&event->child_mutex);
cdd6c482 3411 total += perf_event_read(event);
59ed446f
PZ
3412 *enabled += event->total_time_enabled +
3413 atomic64_read(&event->child_total_time_enabled);
3414 *running += event->total_time_running +
3415 atomic64_read(&event->child_total_time_running);
3416
3417 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3418 total += perf_event_read(child);
59ed446f
PZ
3419 *enabled += child->total_time_enabled;
3420 *running += child->total_time_running;
3421 }
6f10581a 3422 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3423
3424 return total;
3425}
fb0459d7 3426EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3427
cdd6c482 3428static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3429 u64 read_format, char __user *buf)
3430{
cdd6c482 3431 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3432 int n = 0, size = 0, ret = -EFAULT;
3433 struct perf_event_context *ctx = leader->ctx;
abf4868b 3434 u64 values[5];
59ed446f 3435 u64 count, enabled, running;
abf4868b 3436
6f10581a 3437 mutex_lock(&ctx->mutex);
59ed446f 3438 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3439
3440 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3442 values[n++] = enabled;
3443 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3444 values[n++] = running;
abf4868b
PZ
3445 values[n++] = count;
3446 if (read_format & PERF_FORMAT_ID)
3447 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3448
3449 size = n * sizeof(u64);
3450
3451 if (copy_to_user(buf, values, size))
6f10581a 3452 goto unlock;
3dab77fb 3453
6f10581a 3454 ret = size;
3dab77fb 3455
65abc865 3456 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3457 n = 0;
3dab77fb 3458
59ed446f 3459 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3460 if (read_format & PERF_FORMAT_ID)
3461 values[n++] = primary_event_id(sub);
3462
3463 size = n * sizeof(u64);
3464
184d3da8 3465 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3466 ret = -EFAULT;
3467 goto unlock;
3468 }
abf4868b
PZ
3469
3470 ret += size;
3dab77fb 3471 }
6f10581a
PZ
3472unlock:
3473 mutex_unlock(&ctx->mutex);
3dab77fb 3474
abf4868b 3475 return ret;
3dab77fb
PZ
3476}
3477
cdd6c482 3478static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3479 u64 read_format, char __user *buf)
3480{
59ed446f 3481 u64 enabled, running;
3dab77fb
PZ
3482 u64 values[4];
3483 int n = 0;
3484
59ed446f
PZ
3485 values[n++] = perf_event_read_value(event, &enabled, &running);
3486 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3487 values[n++] = enabled;
3488 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3489 values[n++] = running;
3dab77fb 3490 if (read_format & PERF_FORMAT_ID)
cdd6c482 3491 values[n++] = primary_event_id(event);
3dab77fb
PZ
3492
3493 if (copy_to_user(buf, values, n * sizeof(u64)))
3494 return -EFAULT;
3495
3496 return n * sizeof(u64);
3497}
3498
0793a61d 3499/*
cdd6c482 3500 * Read the performance event - simple non blocking version for now
0793a61d
TG
3501 */
3502static ssize_t
cdd6c482 3503perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3504{
cdd6c482 3505 u64 read_format = event->attr.read_format;
3dab77fb 3506 int ret;
0793a61d 3507
3b6f9e5c 3508 /*
cdd6c482 3509 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3510 * error state (i.e. because it was pinned but it couldn't be
3511 * scheduled on to the CPU at some point).
3512 */
cdd6c482 3513 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3514 return 0;
3515
c320c7b7 3516 if (count < event->read_size)
3dab77fb
PZ
3517 return -ENOSPC;
3518
cdd6c482 3519 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3520 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3521 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3522 else
cdd6c482 3523 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3524
3dab77fb 3525 return ret;
0793a61d
TG
3526}
3527
0793a61d
TG
3528static ssize_t
3529perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3530{
cdd6c482 3531 struct perf_event *event = file->private_data;
0793a61d 3532
cdd6c482 3533 return perf_read_hw(event, buf, count);
0793a61d
TG
3534}
3535
3536static unsigned int perf_poll(struct file *file, poll_table *wait)
3537{
cdd6c482 3538 struct perf_event *event = file->private_data;
76369139 3539 struct ring_buffer *rb;
c33a0bc4 3540 unsigned int events = POLL_HUP;
c7138f37 3541
10c6db11 3542 /*
9bb5d40c
PZ
3543 * Pin the event->rb by taking event->mmap_mutex; otherwise
3544 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3545 */
3546 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3547 rb = event->rb;
3548 if (rb)
76369139 3549 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3550 mutex_unlock(&event->mmap_mutex);
3551
cdd6c482 3552 poll_wait(file, &event->waitq, wait);
0793a61d 3553
0793a61d
TG
3554 return events;
3555}
3556
cdd6c482 3557static void perf_event_reset(struct perf_event *event)
6de6a7b9 3558{
cdd6c482 3559 (void)perf_event_read(event);
e7850595 3560 local64_set(&event->count, 0);
cdd6c482 3561 perf_event_update_userpage(event);
3df5edad
PZ
3562}
3563
c93f7669 3564/*
cdd6c482
IM
3565 * Holding the top-level event's child_mutex means that any
3566 * descendant process that has inherited this event will block
3567 * in sync_child_event if it goes to exit, thus satisfying the
3568 * task existence requirements of perf_event_enable/disable.
c93f7669 3569 */
cdd6c482
IM
3570static void perf_event_for_each_child(struct perf_event *event,
3571 void (*func)(struct perf_event *))
3df5edad 3572{
cdd6c482 3573 struct perf_event *child;
3df5edad 3574
cdd6c482
IM
3575 WARN_ON_ONCE(event->ctx->parent_ctx);
3576 mutex_lock(&event->child_mutex);
3577 func(event);
3578 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3579 func(child);
cdd6c482 3580 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3581}
3582
cdd6c482
IM
3583static void perf_event_for_each(struct perf_event *event,
3584 void (*func)(struct perf_event *))
3df5edad 3585{
cdd6c482
IM
3586 struct perf_event_context *ctx = event->ctx;
3587 struct perf_event *sibling;
3df5edad 3588
75f937f2
PZ
3589 WARN_ON_ONCE(ctx->parent_ctx);
3590 mutex_lock(&ctx->mutex);
cdd6c482 3591 event = event->group_leader;
75f937f2 3592
cdd6c482 3593 perf_event_for_each_child(event, func);
cdd6c482 3594 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3595 perf_event_for_each_child(sibling, func);
75f937f2 3596 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3597}
3598
cdd6c482 3599static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3600{
cdd6c482 3601 struct perf_event_context *ctx = event->ctx;
bad7192b 3602 int ret = 0, active;
08247e31
PZ
3603 u64 value;
3604
6c7e550f 3605 if (!is_sampling_event(event))
08247e31
PZ
3606 return -EINVAL;
3607
ad0cf347 3608 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3609 return -EFAULT;
3610
3611 if (!value)
3612 return -EINVAL;
3613
e625cce1 3614 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3615 if (event->attr.freq) {
3616 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3617 ret = -EINVAL;
3618 goto unlock;
3619 }
3620
cdd6c482 3621 event->attr.sample_freq = value;
08247e31 3622 } else {
cdd6c482
IM
3623 event->attr.sample_period = value;
3624 event->hw.sample_period = value;
08247e31 3625 }
bad7192b
PZ
3626
3627 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3628 if (active) {
3629 perf_pmu_disable(ctx->pmu);
3630 event->pmu->stop(event, PERF_EF_UPDATE);
3631 }
3632
3633 local64_set(&event->hw.period_left, 0);
3634
3635 if (active) {
3636 event->pmu->start(event, PERF_EF_RELOAD);
3637 perf_pmu_enable(ctx->pmu);
3638 }
3639
08247e31 3640unlock:
e625cce1 3641 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3642
3643 return ret;
3644}
3645
ac9721f3
PZ
3646static const struct file_operations perf_fops;
3647
2903ff01 3648static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3649{
2903ff01
AV
3650 struct fd f = fdget(fd);
3651 if (!f.file)
3652 return -EBADF;
ac9721f3 3653
2903ff01
AV
3654 if (f.file->f_op != &perf_fops) {
3655 fdput(f);
3656 return -EBADF;
ac9721f3 3657 }
2903ff01
AV
3658 *p = f;
3659 return 0;
ac9721f3
PZ
3660}
3661
3662static int perf_event_set_output(struct perf_event *event,
3663 struct perf_event *output_event);
6fb2915d 3664static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3665
d859e29f
PM
3666static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3667{
cdd6c482
IM
3668 struct perf_event *event = file->private_data;
3669 void (*func)(struct perf_event *);
3df5edad 3670 u32 flags = arg;
d859e29f
PM
3671
3672 switch (cmd) {
cdd6c482
IM
3673 case PERF_EVENT_IOC_ENABLE:
3674 func = perf_event_enable;
d859e29f 3675 break;
cdd6c482
IM
3676 case PERF_EVENT_IOC_DISABLE:
3677 func = perf_event_disable;
79f14641 3678 break;
cdd6c482
IM
3679 case PERF_EVENT_IOC_RESET:
3680 func = perf_event_reset;
6de6a7b9 3681 break;
3df5edad 3682
cdd6c482
IM
3683 case PERF_EVENT_IOC_REFRESH:
3684 return perf_event_refresh(event, arg);
08247e31 3685
cdd6c482
IM
3686 case PERF_EVENT_IOC_PERIOD:
3687 return perf_event_period(event, (u64 __user *)arg);
08247e31 3688
cf4957f1
JO
3689 case PERF_EVENT_IOC_ID:
3690 {
3691 u64 id = primary_event_id(event);
3692
3693 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3694 return -EFAULT;
3695 return 0;
3696 }
3697
cdd6c482 3698 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3699 {
ac9721f3 3700 int ret;
ac9721f3 3701 if (arg != -1) {
2903ff01
AV
3702 struct perf_event *output_event;
3703 struct fd output;
3704 ret = perf_fget_light(arg, &output);
3705 if (ret)
3706 return ret;
3707 output_event = output.file->private_data;
3708 ret = perf_event_set_output(event, output_event);
3709 fdput(output);
3710 } else {
3711 ret = perf_event_set_output(event, NULL);
ac9721f3 3712 }
ac9721f3
PZ
3713 return ret;
3714 }
a4be7c27 3715
6fb2915d
LZ
3716 case PERF_EVENT_IOC_SET_FILTER:
3717 return perf_event_set_filter(event, (void __user *)arg);
3718
d859e29f 3719 default:
3df5edad 3720 return -ENOTTY;
d859e29f 3721 }
3df5edad
PZ
3722
3723 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3724 perf_event_for_each(event, func);
3df5edad 3725 else
cdd6c482 3726 perf_event_for_each_child(event, func);
3df5edad
PZ
3727
3728 return 0;
d859e29f
PM
3729}
3730
b3f20785
PM
3731#ifdef CONFIG_COMPAT
3732static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3733 unsigned long arg)
3734{
3735 switch (_IOC_NR(cmd)) {
3736 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3737 case _IOC_NR(PERF_EVENT_IOC_ID):
3738 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3739 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3740 cmd &= ~IOCSIZE_MASK;
3741 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3742 }
3743 break;
3744 }
3745 return perf_ioctl(file, cmd, arg);
3746}
3747#else
3748# define perf_compat_ioctl NULL
3749#endif
3750
cdd6c482 3751int perf_event_task_enable(void)
771d7cde 3752{
cdd6c482 3753 struct perf_event *event;
771d7cde 3754
cdd6c482
IM
3755 mutex_lock(&current->perf_event_mutex);
3756 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3757 perf_event_for_each_child(event, perf_event_enable);
3758 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3759
3760 return 0;
3761}
3762
cdd6c482 3763int perf_event_task_disable(void)
771d7cde 3764{
cdd6c482 3765 struct perf_event *event;
771d7cde 3766
cdd6c482
IM
3767 mutex_lock(&current->perf_event_mutex);
3768 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3769 perf_event_for_each_child(event, perf_event_disable);
3770 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3771
3772 return 0;
3773}
3774
cdd6c482 3775static int perf_event_index(struct perf_event *event)
194002b2 3776{
a4eaf7f1
PZ
3777 if (event->hw.state & PERF_HES_STOPPED)
3778 return 0;
3779
cdd6c482 3780 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3781 return 0;
3782
35edc2a5 3783 return event->pmu->event_idx(event);
194002b2
PZ
3784}
3785
c4794295 3786static void calc_timer_values(struct perf_event *event,
e3f3541c 3787 u64 *now,
7f310a5d
EM
3788 u64 *enabled,
3789 u64 *running)
c4794295 3790{
e3f3541c 3791 u64 ctx_time;
c4794295 3792
e3f3541c
PZ
3793 *now = perf_clock();
3794 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3795 *enabled = ctx_time - event->tstamp_enabled;
3796 *running = ctx_time - event->tstamp_running;
3797}
3798
fa731587
PZ
3799static void perf_event_init_userpage(struct perf_event *event)
3800{
3801 struct perf_event_mmap_page *userpg;
3802 struct ring_buffer *rb;
3803
3804 rcu_read_lock();
3805 rb = rcu_dereference(event->rb);
3806 if (!rb)
3807 goto unlock;
3808
3809 userpg = rb->user_page;
3810
3811 /* Allow new userspace to detect that bit 0 is deprecated */
3812 userpg->cap_bit0_is_deprecated = 1;
3813 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3814
3815unlock:
3816 rcu_read_unlock();
3817}
3818
c7206205 3819void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3820{
3821}
3822
38ff667b
PZ
3823/*
3824 * Callers need to ensure there can be no nesting of this function, otherwise
3825 * the seqlock logic goes bad. We can not serialize this because the arch
3826 * code calls this from NMI context.
3827 */
cdd6c482 3828void perf_event_update_userpage(struct perf_event *event)
37d81828 3829{
cdd6c482 3830 struct perf_event_mmap_page *userpg;
76369139 3831 struct ring_buffer *rb;
e3f3541c 3832 u64 enabled, running, now;
38ff667b
PZ
3833
3834 rcu_read_lock();
5ec4c599
PZ
3835 rb = rcu_dereference(event->rb);
3836 if (!rb)
3837 goto unlock;
3838
0d641208
EM
3839 /*
3840 * compute total_time_enabled, total_time_running
3841 * based on snapshot values taken when the event
3842 * was last scheduled in.
3843 *
3844 * we cannot simply called update_context_time()
3845 * because of locking issue as we can be called in
3846 * NMI context
3847 */
e3f3541c 3848 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3849
76369139 3850 userpg = rb->user_page;
7b732a75
PZ
3851 /*
3852 * Disable preemption so as to not let the corresponding user-space
3853 * spin too long if we get preempted.
3854 */
3855 preempt_disable();
37d81828 3856 ++userpg->lock;
92f22a38 3857 barrier();
cdd6c482 3858 userpg->index = perf_event_index(event);
b5e58793 3859 userpg->offset = perf_event_count(event);
365a4038 3860 if (userpg->index)
e7850595 3861 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3862
0d641208 3863 userpg->time_enabled = enabled +
cdd6c482 3864 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3865
0d641208 3866 userpg->time_running = running +
cdd6c482 3867 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3868
c7206205 3869 arch_perf_update_userpage(userpg, now);
e3f3541c 3870
92f22a38 3871 barrier();
37d81828 3872 ++userpg->lock;
7b732a75 3873 preempt_enable();
38ff667b 3874unlock:
7b732a75 3875 rcu_read_unlock();
37d81828
PM
3876}
3877
906010b2
PZ
3878static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3879{
3880 struct perf_event *event = vma->vm_file->private_data;
76369139 3881 struct ring_buffer *rb;
906010b2
PZ
3882 int ret = VM_FAULT_SIGBUS;
3883
3884 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3885 if (vmf->pgoff == 0)
3886 ret = 0;
3887 return ret;
3888 }
3889
3890 rcu_read_lock();
76369139
FW
3891 rb = rcu_dereference(event->rb);
3892 if (!rb)
906010b2
PZ
3893 goto unlock;
3894
3895 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3896 goto unlock;
3897
76369139 3898 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3899 if (!vmf->page)
3900 goto unlock;
3901
3902 get_page(vmf->page);
3903 vmf->page->mapping = vma->vm_file->f_mapping;
3904 vmf->page->index = vmf->pgoff;
3905
3906 ret = 0;
3907unlock:
3908 rcu_read_unlock();
3909
3910 return ret;
3911}
3912
10c6db11
PZ
3913static void ring_buffer_attach(struct perf_event *event,
3914 struct ring_buffer *rb)
3915{
b69cf536 3916 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
3917 unsigned long flags;
3918
b69cf536
PZ
3919 if (event->rb) {
3920 /*
3921 * Should be impossible, we set this when removing
3922 * event->rb_entry and wait/clear when adding event->rb_entry.
3923 */
3924 WARN_ON_ONCE(event->rcu_pending);
10c6db11 3925
b69cf536
PZ
3926 old_rb = event->rb;
3927 event->rcu_batches = get_state_synchronize_rcu();
3928 event->rcu_pending = 1;
10c6db11 3929
b69cf536
PZ
3930 spin_lock_irqsave(&old_rb->event_lock, flags);
3931 list_del_rcu(&event->rb_entry);
3932 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3933 }
10c6db11 3934
b69cf536
PZ
3935 if (event->rcu_pending && rb) {
3936 cond_synchronize_rcu(event->rcu_batches);
3937 event->rcu_pending = 0;
3938 }
10c6db11 3939
b69cf536
PZ
3940 if (rb) {
3941 spin_lock_irqsave(&rb->event_lock, flags);
3942 list_add_rcu(&event->rb_entry, &rb->event_list);
3943 spin_unlock_irqrestore(&rb->event_lock, flags);
3944 }
3945
3946 rcu_assign_pointer(event->rb, rb);
3947
3948 if (old_rb) {
3949 ring_buffer_put(old_rb);
3950 /*
3951 * Since we detached before setting the new rb, so that we
3952 * could attach the new rb, we could have missed a wakeup.
3953 * Provide it now.
3954 */
3955 wake_up_all(&event->waitq);
3956 }
10c6db11
PZ
3957}
3958
3959static void ring_buffer_wakeup(struct perf_event *event)
3960{
3961 struct ring_buffer *rb;
3962
3963 rcu_read_lock();
3964 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3965 if (rb) {
3966 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3967 wake_up_all(&event->waitq);
3968 }
10c6db11
PZ
3969 rcu_read_unlock();
3970}
3971
76369139 3972static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3973{
76369139 3974 struct ring_buffer *rb;
906010b2 3975
76369139
FW
3976 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3977 rb_free(rb);
7b732a75
PZ
3978}
3979
76369139 3980static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3981{
76369139 3982 struct ring_buffer *rb;
7b732a75 3983
ac9721f3 3984 rcu_read_lock();
76369139
FW
3985 rb = rcu_dereference(event->rb);
3986 if (rb) {
3987 if (!atomic_inc_not_zero(&rb->refcount))
3988 rb = NULL;
ac9721f3
PZ
3989 }
3990 rcu_read_unlock();
3991
76369139 3992 return rb;
ac9721f3
PZ
3993}
3994
76369139 3995static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3996{
76369139 3997 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3998 return;
7b732a75 3999
9bb5d40c 4000 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4001
76369139 4002 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4003}
4004
4005static void perf_mmap_open(struct vm_area_struct *vma)
4006{
cdd6c482 4007 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4008
cdd6c482 4009 atomic_inc(&event->mmap_count);
9bb5d40c 4010 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4011}
4012
9bb5d40c
PZ
4013/*
4014 * A buffer can be mmap()ed multiple times; either directly through the same
4015 * event, or through other events by use of perf_event_set_output().
4016 *
4017 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4018 * the buffer here, where we still have a VM context. This means we need
4019 * to detach all events redirecting to us.
4020 */
7b732a75
PZ
4021static void perf_mmap_close(struct vm_area_struct *vma)
4022{
cdd6c482 4023 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4024
b69cf536 4025 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4026 struct user_struct *mmap_user = rb->mmap_user;
4027 int mmap_locked = rb->mmap_locked;
4028 unsigned long size = perf_data_size(rb);
789f90fc 4029
9bb5d40c
PZ
4030 atomic_dec(&rb->mmap_count);
4031
4032 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4033 goto out_put;
9bb5d40c 4034
b69cf536 4035 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4036 mutex_unlock(&event->mmap_mutex);
4037
4038 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4039 if (atomic_read(&rb->mmap_count))
4040 goto out_put;
ac9721f3 4041
9bb5d40c
PZ
4042 /*
4043 * No other mmap()s, detach from all other events that might redirect
4044 * into the now unreachable buffer. Somewhat complicated by the
4045 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4046 */
4047again:
4048 rcu_read_lock();
4049 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4050 if (!atomic_long_inc_not_zero(&event->refcount)) {
4051 /*
4052 * This event is en-route to free_event() which will
4053 * detach it and remove it from the list.
4054 */
4055 continue;
4056 }
4057 rcu_read_unlock();
789f90fc 4058
9bb5d40c
PZ
4059 mutex_lock(&event->mmap_mutex);
4060 /*
4061 * Check we didn't race with perf_event_set_output() which can
4062 * swizzle the rb from under us while we were waiting to
4063 * acquire mmap_mutex.
4064 *
4065 * If we find a different rb; ignore this event, a next
4066 * iteration will no longer find it on the list. We have to
4067 * still restart the iteration to make sure we're not now
4068 * iterating the wrong list.
4069 */
b69cf536
PZ
4070 if (event->rb == rb)
4071 ring_buffer_attach(event, NULL);
4072
cdd6c482 4073 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4074 put_event(event);
ac9721f3 4075
9bb5d40c
PZ
4076 /*
4077 * Restart the iteration; either we're on the wrong list or
4078 * destroyed its integrity by doing a deletion.
4079 */
4080 goto again;
7b732a75 4081 }
9bb5d40c
PZ
4082 rcu_read_unlock();
4083
4084 /*
4085 * It could be there's still a few 0-ref events on the list; they'll
4086 * get cleaned up by free_event() -- they'll also still have their
4087 * ref on the rb and will free it whenever they are done with it.
4088 *
4089 * Aside from that, this buffer is 'fully' detached and unmapped,
4090 * undo the VM accounting.
4091 */
4092
4093 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4094 vma->vm_mm->pinned_vm -= mmap_locked;
4095 free_uid(mmap_user);
4096
b69cf536 4097out_put:
9bb5d40c 4098 ring_buffer_put(rb); /* could be last */
37d81828
PM
4099}
4100
f0f37e2f 4101static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4102 .open = perf_mmap_open,
4103 .close = perf_mmap_close,
4104 .fault = perf_mmap_fault,
4105 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4106};
4107
4108static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4109{
cdd6c482 4110 struct perf_event *event = file->private_data;
22a4f650 4111 unsigned long user_locked, user_lock_limit;
789f90fc 4112 struct user_struct *user = current_user();
22a4f650 4113 unsigned long locked, lock_limit;
76369139 4114 struct ring_buffer *rb;
7b732a75
PZ
4115 unsigned long vma_size;
4116 unsigned long nr_pages;
789f90fc 4117 long user_extra, extra;
d57e34fd 4118 int ret = 0, flags = 0;
37d81828 4119
c7920614
PZ
4120 /*
4121 * Don't allow mmap() of inherited per-task counters. This would
4122 * create a performance issue due to all children writing to the
76369139 4123 * same rb.
c7920614
PZ
4124 */
4125 if (event->cpu == -1 && event->attr.inherit)
4126 return -EINVAL;
4127
43a21ea8 4128 if (!(vma->vm_flags & VM_SHARED))
37d81828 4129 return -EINVAL;
7b732a75
PZ
4130
4131 vma_size = vma->vm_end - vma->vm_start;
4132 nr_pages = (vma_size / PAGE_SIZE) - 1;
4133
7730d865 4134 /*
76369139 4135 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4136 * can do bitmasks instead of modulo.
4137 */
4138 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4139 return -EINVAL;
4140
7b732a75 4141 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4142 return -EINVAL;
4143
7b732a75
PZ
4144 if (vma->vm_pgoff != 0)
4145 return -EINVAL;
37d81828 4146
cdd6c482 4147 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4148again:
cdd6c482 4149 mutex_lock(&event->mmap_mutex);
76369139 4150 if (event->rb) {
9bb5d40c 4151 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4152 ret = -EINVAL;
9bb5d40c
PZ
4153 goto unlock;
4154 }
4155
4156 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4157 /*
4158 * Raced against perf_mmap_close() through
4159 * perf_event_set_output(). Try again, hope for better
4160 * luck.
4161 */
4162 mutex_unlock(&event->mmap_mutex);
4163 goto again;
4164 }
4165
ebb3c4c4
PZ
4166 goto unlock;
4167 }
4168
789f90fc 4169 user_extra = nr_pages + 1;
cdd6c482 4170 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4171
4172 /*
4173 * Increase the limit linearly with more CPUs:
4174 */
4175 user_lock_limit *= num_online_cpus();
4176
789f90fc 4177 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4178
789f90fc
PZ
4179 extra = 0;
4180 if (user_locked > user_lock_limit)
4181 extra = user_locked - user_lock_limit;
7b732a75 4182
78d7d407 4183 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4184 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4185 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4186
459ec28a
IM
4187 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4188 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4189 ret = -EPERM;
4190 goto unlock;
4191 }
7b732a75 4192
76369139 4193 WARN_ON(event->rb);
906010b2 4194
d57e34fd 4195 if (vma->vm_flags & VM_WRITE)
76369139 4196 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4197
4ec8363d
VW
4198 rb = rb_alloc(nr_pages,
4199 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4200 event->cpu, flags);
4201
76369139 4202 if (!rb) {
ac9721f3 4203 ret = -ENOMEM;
ebb3c4c4 4204 goto unlock;
ac9721f3 4205 }
26cb63ad 4206
9bb5d40c 4207 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4208 rb->mmap_locked = extra;
4209 rb->mmap_user = get_current_user();
43a21ea8 4210
ac9721f3 4211 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4212 vma->vm_mm->pinned_vm += extra;
4213
9bb5d40c 4214 ring_buffer_attach(event, rb);
ac9721f3 4215
fa731587 4216 perf_event_init_userpage(event);
9a0f05cb
PZ
4217 perf_event_update_userpage(event);
4218
ebb3c4c4 4219unlock:
ac9721f3
PZ
4220 if (!ret)
4221 atomic_inc(&event->mmap_count);
cdd6c482 4222 mutex_unlock(&event->mmap_mutex);
37d81828 4223
9bb5d40c
PZ
4224 /*
4225 * Since pinned accounting is per vm we cannot allow fork() to copy our
4226 * vma.
4227 */
26cb63ad 4228 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4229 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4230
4231 return ret;
37d81828
PM
4232}
4233
3c446b3d
PZ
4234static int perf_fasync(int fd, struct file *filp, int on)
4235{
496ad9aa 4236 struct inode *inode = file_inode(filp);
cdd6c482 4237 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4238 int retval;
4239
4240 mutex_lock(&inode->i_mutex);
cdd6c482 4241 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4242 mutex_unlock(&inode->i_mutex);
4243
4244 if (retval < 0)
4245 return retval;
4246
4247 return 0;
4248}
4249
0793a61d 4250static const struct file_operations perf_fops = {
3326c1ce 4251 .llseek = no_llseek,
0793a61d
TG
4252 .release = perf_release,
4253 .read = perf_read,
4254 .poll = perf_poll,
d859e29f 4255 .unlocked_ioctl = perf_ioctl,
b3f20785 4256 .compat_ioctl = perf_compat_ioctl,
37d81828 4257 .mmap = perf_mmap,
3c446b3d 4258 .fasync = perf_fasync,
0793a61d
TG
4259};
4260
925d519a 4261/*
cdd6c482 4262 * Perf event wakeup
925d519a
PZ
4263 *
4264 * If there's data, ensure we set the poll() state and publish everything
4265 * to user-space before waking everybody up.
4266 */
4267
cdd6c482 4268void perf_event_wakeup(struct perf_event *event)
925d519a 4269{
10c6db11 4270 ring_buffer_wakeup(event);
4c9e2542 4271
cdd6c482
IM
4272 if (event->pending_kill) {
4273 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4274 event->pending_kill = 0;
4c9e2542 4275 }
925d519a
PZ
4276}
4277
e360adbe 4278static void perf_pending_event(struct irq_work *entry)
79f14641 4279{
cdd6c482
IM
4280 struct perf_event *event = container_of(entry,
4281 struct perf_event, pending);
79f14641 4282
cdd6c482
IM
4283 if (event->pending_disable) {
4284 event->pending_disable = 0;
4285 __perf_event_disable(event);
79f14641
PZ
4286 }
4287
cdd6c482
IM
4288 if (event->pending_wakeup) {
4289 event->pending_wakeup = 0;
4290 perf_event_wakeup(event);
79f14641
PZ
4291 }
4292}
4293
39447b38
ZY
4294/*
4295 * We assume there is only KVM supporting the callbacks.
4296 * Later on, we might change it to a list if there is
4297 * another virtualization implementation supporting the callbacks.
4298 */
4299struct perf_guest_info_callbacks *perf_guest_cbs;
4300
4301int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4302{
4303 perf_guest_cbs = cbs;
4304 return 0;
4305}
4306EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4307
4308int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4309{
4310 perf_guest_cbs = NULL;
4311 return 0;
4312}
4313EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4314
4018994f
JO
4315static void
4316perf_output_sample_regs(struct perf_output_handle *handle,
4317 struct pt_regs *regs, u64 mask)
4318{
4319 int bit;
4320
4321 for_each_set_bit(bit, (const unsigned long *) &mask,
4322 sizeof(mask) * BITS_PER_BYTE) {
4323 u64 val;
4324
4325 val = perf_reg_value(regs, bit);
4326 perf_output_put(handle, val);
4327 }
4328}
4329
4330static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4331 struct pt_regs *regs)
4332{
4333 if (!user_mode(regs)) {
4334 if (current->mm)
4335 regs = task_pt_regs(current);
4336 else
4337 regs = NULL;
4338 }
4339
4340 if (regs) {
4341 regs_user->regs = regs;
4342 regs_user->abi = perf_reg_abi(current);
4343 }
4344}
4345
c5ebcedb
JO
4346/*
4347 * Get remaining task size from user stack pointer.
4348 *
4349 * It'd be better to take stack vma map and limit this more
4350 * precisly, but there's no way to get it safely under interrupt,
4351 * so using TASK_SIZE as limit.
4352 */
4353static u64 perf_ustack_task_size(struct pt_regs *regs)
4354{
4355 unsigned long addr = perf_user_stack_pointer(regs);
4356
4357 if (!addr || addr >= TASK_SIZE)
4358 return 0;
4359
4360 return TASK_SIZE - addr;
4361}
4362
4363static u16
4364perf_sample_ustack_size(u16 stack_size, u16 header_size,
4365 struct pt_regs *regs)
4366{
4367 u64 task_size;
4368
4369 /* No regs, no stack pointer, no dump. */
4370 if (!regs)
4371 return 0;
4372
4373 /*
4374 * Check if we fit in with the requested stack size into the:
4375 * - TASK_SIZE
4376 * If we don't, we limit the size to the TASK_SIZE.
4377 *
4378 * - remaining sample size
4379 * If we don't, we customize the stack size to
4380 * fit in to the remaining sample size.
4381 */
4382
4383 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4384 stack_size = min(stack_size, (u16) task_size);
4385
4386 /* Current header size plus static size and dynamic size. */
4387 header_size += 2 * sizeof(u64);
4388
4389 /* Do we fit in with the current stack dump size? */
4390 if ((u16) (header_size + stack_size) < header_size) {
4391 /*
4392 * If we overflow the maximum size for the sample,
4393 * we customize the stack dump size to fit in.
4394 */
4395 stack_size = USHRT_MAX - header_size - sizeof(u64);
4396 stack_size = round_up(stack_size, sizeof(u64));
4397 }
4398
4399 return stack_size;
4400}
4401
4402static void
4403perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4404 struct pt_regs *regs)
4405{
4406 /* Case of a kernel thread, nothing to dump */
4407 if (!regs) {
4408 u64 size = 0;
4409 perf_output_put(handle, size);
4410 } else {
4411 unsigned long sp;
4412 unsigned int rem;
4413 u64 dyn_size;
4414
4415 /*
4416 * We dump:
4417 * static size
4418 * - the size requested by user or the best one we can fit
4419 * in to the sample max size
4420 * data
4421 * - user stack dump data
4422 * dynamic size
4423 * - the actual dumped size
4424 */
4425
4426 /* Static size. */
4427 perf_output_put(handle, dump_size);
4428
4429 /* Data. */
4430 sp = perf_user_stack_pointer(regs);
4431 rem = __output_copy_user(handle, (void *) sp, dump_size);
4432 dyn_size = dump_size - rem;
4433
4434 perf_output_skip(handle, rem);
4435
4436 /* Dynamic size. */
4437 perf_output_put(handle, dyn_size);
4438 }
4439}
4440
c980d109
ACM
4441static void __perf_event_header__init_id(struct perf_event_header *header,
4442 struct perf_sample_data *data,
4443 struct perf_event *event)
6844c09d
ACM
4444{
4445 u64 sample_type = event->attr.sample_type;
4446
4447 data->type = sample_type;
4448 header->size += event->id_header_size;
4449
4450 if (sample_type & PERF_SAMPLE_TID) {
4451 /* namespace issues */
4452 data->tid_entry.pid = perf_event_pid(event, current);
4453 data->tid_entry.tid = perf_event_tid(event, current);
4454 }
4455
4456 if (sample_type & PERF_SAMPLE_TIME)
4457 data->time = perf_clock();
4458
ff3d527c 4459 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4460 data->id = primary_event_id(event);
4461
4462 if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 data->stream_id = event->id;
4464
4465 if (sample_type & PERF_SAMPLE_CPU) {
4466 data->cpu_entry.cpu = raw_smp_processor_id();
4467 data->cpu_entry.reserved = 0;
4468 }
4469}
4470
76369139
FW
4471void perf_event_header__init_id(struct perf_event_header *header,
4472 struct perf_sample_data *data,
4473 struct perf_event *event)
c980d109
ACM
4474{
4475 if (event->attr.sample_id_all)
4476 __perf_event_header__init_id(header, data, event);
4477}
4478
4479static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4480 struct perf_sample_data *data)
4481{
4482 u64 sample_type = data->type;
4483
4484 if (sample_type & PERF_SAMPLE_TID)
4485 perf_output_put(handle, data->tid_entry);
4486
4487 if (sample_type & PERF_SAMPLE_TIME)
4488 perf_output_put(handle, data->time);
4489
4490 if (sample_type & PERF_SAMPLE_ID)
4491 perf_output_put(handle, data->id);
4492
4493 if (sample_type & PERF_SAMPLE_STREAM_ID)
4494 perf_output_put(handle, data->stream_id);
4495
4496 if (sample_type & PERF_SAMPLE_CPU)
4497 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4498
4499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4500 perf_output_put(handle, data->id);
c980d109
ACM
4501}
4502
76369139
FW
4503void perf_event__output_id_sample(struct perf_event *event,
4504 struct perf_output_handle *handle,
4505 struct perf_sample_data *sample)
c980d109
ACM
4506{
4507 if (event->attr.sample_id_all)
4508 __perf_event__output_id_sample(handle, sample);
4509}
4510
3dab77fb 4511static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4512 struct perf_event *event,
4513 u64 enabled, u64 running)
3dab77fb 4514{
cdd6c482 4515 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4516 u64 values[4];
4517 int n = 0;
4518
b5e58793 4519 values[n++] = perf_event_count(event);
3dab77fb 4520 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4521 values[n++] = enabled +
cdd6c482 4522 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4523 }
4524 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4525 values[n++] = running +
cdd6c482 4526 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4527 }
4528 if (read_format & PERF_FORMAT_ID)
cdd6c482 4529 values[n++] = primary_event_id(event);
3dab77fb 4530
76369139 4531 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4532}
4533
4534/*
cdd6c482 4535 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4536 */
4537static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4538 struct perf_event *event,
4539 u64 enabled, u64 running)
3dab77fb 4540{
cdd6c482
IM
4541 struct perf_event *leader = event->group_leader, *sub;
4542 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4543 u64 values[5];
4544 int n = 0;
4545
4546 values[n++] = 1 + leader->nr_siblings;
4547
4548 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4549 values[n++] = enabled;
3dab77fb
PZ
4550
4551 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4552 values[n++] = running;
3dab77fb 4553
cdd6c482 4554 if (leader != event)
3dab77fb
PZ
4555 leader->pmu->read(leader);
4556
b5e58793 4557 values[n++] = perf_event_count(leader);
3dab77fb 4558 if (read_format & PERF_FORMAT_ID)
cdd6c482 4559 values[n++] = primary_event_id(leader);
3dab77fb 4560
76369139 4561 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4562
65abc865 4563 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4564 n = 0;
4565
6f5ab001
JO
4566 if ((sub != event) &&
4567 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4568 sub->pmu->read(sub);
4569
b5e58793 4570 values[n++] = perf_event_count(sub);
3dab77fb 4571 if (read_format & PERF_FORMAT_ID)
cdd6c482 4572 values[n++] = primary_event_id(sub);
3dab77fb 4573
76369139 4574 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4575 }
4576}
4577
eed01528
SE
4578#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4579 PERF_FORMAT_TOTAL_TIME_RUNNING)
4580
3dab77fb 4581static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4582 struct perf_event *event)
3dab77fb 4583{
e3f3541c 4584 u64 enabled = 0, running = 0, now;
eed01528
SE
4585 u64 read_format = event->attr.read_format;
4586
4587 /*
4588 * compute total_time_enabled, total_time_running
4589 * based on snapshot values taken when the event
4590 * was last scheduled in.
4591 *
4592 * we cannot simply called update_context_time()
4593 * because of locking issue as we are called in
4594 * NMI context
4595 */
c4794295 4596 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4597 calc_timer_values(event, &now, &enabled, &running);
eed01528 4598
cdd6c482 4599 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4600 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4601 else
eed01528 4602 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4603}
4604
5622f295
MM
4605void perf_output_sample(struct perf_output_handle *handle,
4606 struct perf_event_header *header,
4607 struct perf_sample_data *data,
cdd6c482 4608 struct perf_event *event)
5622f295
MM
4609{
4610 u64 sample_type = data->type;
4611
4612 perf_output_put(handle, *header);
4613
ff3d527c
AH
4614 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4615 perf_output_put(handle, data->id);
4616
5622f295
MM
4617 if (sample_type & PERF_SAMPLE_IP)
4618 perf_output_put(handle, data->ip);
4619
4620 if (sample_type & PERF_SAMPLE_TID)
4621 perf_output_put(handle, data->tid_entry);
4622
4623 if (sample_type & PERF_SAMPLE_TIME)
4624 perf_output_put(handle, data->time);
4625
4626 if (sample_type & PERF_SAMPLE_ADDR)
4627 perf_output_put(handle, data->addr);
4628
4629 if (sample_type & PERF_SAMPLE_ID)
4630 perf_output_put(handle, data->id);
4631
4632 if (sample_type & PERF_SAMPLE_STREAM_ID)
4633 perf_output_put(handle, data->stream_id);
4634
4635 if (sample_type & PERF_SAMPLE_CPU)
4636 perf_output_put(handle, data->cpu_entry);
4637
4638 if (sample_type & PERF_SAMPLE_PERIOD)
4639 perf_output_put(handle, data->period);
4640
4641 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4642 perf_output_read(handle, event);
5622f295
MM
4643
4644 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4645 if (data->callchain) {
4646 int size = 1;
4647
4648 if (data->callchain)
4649 size += data->callchain->nr;
4650
4651 size *= sizeof(u64);
4652
76369139 4653 __output_copy(handle, data->callchain, size);
5622f295
MM
4654 } else {
4655 u64 nr = 0;
4656 perf_output_put(handle, nr);
4657 }
4658 }
4659
4660 if (sample_type & PERF_SAMPLE_RAW) {
4661 if (data->raw) {
4662 perf_output_put(handle, data->raw->size);
76369139
FW
4663 __output_copy(handle, data->raw->data,
4664 data->raw->size);
5622f295
MM
4665 } else {
4666 struct {
4667 u32 size;
4668 u32 data;
4669 } raw = {
4670 .size = sizeof(u32),
4671 .data = 0,
4672 };
4673 perf_output_put(handle, raw);
4674 }
4675 }
a7ac67ea 4676
bce38cd5
SE
4677 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4678 if (data->br_stack) {
4679 size_t size;
4680
4681 size = data->br_stack->nr
4682 * sizeof(struct perf_branch_entry);
4683
4684 perf_output_put(handle, data->br_stack->nr);
4685 perf_output_copy(handle, data->br_stack->entries, size);
4686 } else {
4687 /*
4688 * we always store at least the value of nr
4689 */
4690 u64 nr = 0;
4691 perf_output_put(handle, nr);
4692 }
4693 }
4018994f
JO
4694
4695 if (sample_type & PERF_SAMPLE_REGS_USER) {
4696 u64 abi = data->regs_user.abi;
4697
4698 /*
4699 * If there are no regs to dump, notice it through
4700 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4701 */
4702 perf_output_put(handle, abi);
4703
4704 if (abi) {
4705 u64 mask = event->attr.sample_regs_user;
4706 perf_output_sample_regs(handle,
4707 data->regs_user.regs,
4708 mask);
4709 }
4710 }
c5ebcedb 4711
a5cdd40c 4712 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4713 perf_output_sample_ustack(handle,
4714 data->stack_user_size,
4715 data->regs_user.regs);
a5cdd40c 4716 }
c3feedf2
AK
4717
4718 if (sample_type & PERF_SAMPLE_WEIGHT)
4719 perf_output_put(handle, data->weight);
d6be9ad6
SE
4720
4721 if (sample_type & PERF_SAMPLE_DATA_SRC)
4722 perf_output_put(handle, data->data_src.val);
a5cdd40c 4723
fdfbbd07
AK
4724 if (sample_type & PERF_SAMPLE_TRANSACTION)
4725 perf_output_put(handle, data->txn);
4726
a5cdd40c
PZ
4727 if (!event->attr.watermark) {
4728 int wakeup_events = event->attr.wakeup_events;
4729
4730 if (wakeup_events) {
4731 struct ring_buffer *rb = handle->rb;
4732 int events = local_inc_return(&rb->events);
4733
4734 if (events >= wakeup_events) {
4735 local_sub(wakeup_events, &rb->events);
4736 local_inc(&rb->wakeup);
4737 }
4738 }
4739 }
5622f295
MM
4740}
4741
4742void perf_prepare_sample(struct perf_event_header *header,
4743 struct perf_sample_data *data,
cdd6c482 4744 struct perf_event *event,
5622f295 4745 struct pt_regs *regs)
7b732a75 4746{
cdd6c482 4747 u64 sample_type = event->attr.sample_type;
7b732a75 4748
cdd6c482 4749 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4750 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4751
4752 header->misc = 0;
4753 header->misc |= perf_misc_flags(regs);
6fab0192 4754
c980d109 4755 __perf_event_header__init_id(header, data, event);
6844c09d 4756
c320c7b7 4757 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4758 data->ip = perf_instruction_pointer(regs);
4759
b23f3325 4760 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4761 int size = 1;
394ee076 4762
e6dab5ff 4763 data->callchain = perf_callchain(event, regs);
5622f295
MM
4764
4765 if (data->callchain)
4766 size += data->callchain->nr;
4767
4768 header->size += size * sizeof(u64);
394ee076
PZ
4769 }
4770
3a43ce68 4771 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4772 int size = sizeof(u32);
4773
4774 if (data->raw)
4775 size += data->raw->size;
4776 else
4777 size += sizeof(u32);
4778
4779 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4780 header->size += size;
7f453c24 4781 }
bce38cd5
SE
4782
4783 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4784 int size = sizeof(u64); /* nr */
4785 if (data->br_stack) {
4786 size += data->br_stack->nr
4787 * sizeof(struct perf_branch_entry);
4788 }
4789 header->size += size;
4790 }
4018994f
JO
4791
4792 if (sample_type & PERF_SAMPLE_REGS_USER) {
4793 /* regs dump ABI info */
4794 int size = sizeof(u64);
4795
4796 perf_sample_regs_user(&data->regs_user, regs);
4797
4798 if (data->regs_user.regs) {
4799 u64 mask = event->attr.sample_regs_user;
4800 size += hweight64(mask) * sizeof(u64);
4801 }
4802
4803 header->size += size;
4804 }
c5ebcedb
JO
4805
4806 if (sample_type & PERF_SAMPLE_STACK_USER) {
4807 /*
4808 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4809 * processed as the last one or have additional check added
4810 * in case new sample type is added, because we could eat
4811 * up the rest of the sample size.
4812 */
4813 struct perf_regs_user *uregs = &data->regs_user;
4814 u16 stack_size = event->attr.sample_stack_user;
4815 u16 size = sizeof(u64);
4816
4817 if (!uregs->abi)
4818 perf_sample_regs_user(uregs, regs);
4819
4820 stack_size = perf_sample_ustack_size(stack_size, header->size,
4821 uregs->regs);
4822
4823 /*
4824 * If there is something to dump, add space for the dump
4825 * itself and for the field that tells the dynamic size,
4826 * which is how many have been actually dumped.
4827 */
4828 if (stack_size)
4829 size += sizeof(u64) + stack_size;
4830
4831 data->stack_user_size = stack_size;
4832 header->size += size;
4833 }
5622f295 4834}
7f453c24 4835
a8b0ca17 4836static void perf_event_output(struct perf_event *event,
5622f295
MM
4837 struct perf_sample_data *data,
4838 struct pt_regs *regs)
4839{
4840 struct perf_output_handle handle;
4841 struct perf_event_header header;
689802b2 4842
927c7a9e
FW
4843 /* protect the callchain buffers */
4844 rcu_read_lock();
4845
cdd6c482 4846 perf_prepare_sample(&header, data, event, regs);
5c148194 4847
a7ac67ea 4848 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4849 goto exit;
0322cd6e 4850
cdd6c482 4851 perf_output_sample(&handle, &header, data, event);
f413cdb8 4852
8a057d84 4853 perf_output_end(&handle);
927c7a9e
FW
4854
4855exit:
4856 rcu_read_unlock();
0322cd6e
PZ
4857}
4858
38b200d6 4859/*
cdd6c482 4860 * read event_id
38b200d6
PZ
4861 */
4862
4863struct perf_read_event {
4864 struct perf_event_header header;
4865
4866 u32 pid;
4867 u32 tid;
38b200d6
PZ
4868};
4869
4870static void
cdd6c482 4871perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4872 struct task_struct *task)
4873{
4874 struct perf_output_handle handle;
c980d109 4875 struct perf_sample_data sample;
dfc65094 4876 struct perf_read_event read_event = {
38b200d6 4877 .header = {
cdd6c482 4878 .type = PERF_RECORD_READ,
38b200d6 4879 .misc = 0,
c320c7b7 4880 .size = sizeof(read_event) + event->read_size,
38b200d6 4881 },
cdd6c482
IM
4882 .pid = perf_event_pid(event, task),
4883 .tid = perf_event_tid(event, task),
38b200d6 4884 };
3dab77fb 4885 int ret;
38b200d6 4886
c980d109 4887 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4888 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4889 if (ret)
4890 return;
4891
dfc65094 4892 perf_output_put(&handle, read_event);
cdd6c482 4893 perf_output_read(&handle, event);
c980d109 4894 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4895
38b200d6
PZ
4896 perf_output_end(&handle);
4897}
4898
52d857a8
JO
4899typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4900
4901static void
4902perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4903 perf_event_aux_output_cb output,
4904 void *data)
4905{
4906 struct perf_event *event;
4907
4908 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4909 if (event->state < PERF_EVENT_STATE_INACTIVE)
4910 continue;
4911 if (!event_filter_match(event))
4912 continue;
67516844 4913 output(event, data);
52d857a8
JO
4914 }
4915}
4916
4917static void
67516844 4918perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4919 struct perf_event_context *task_ctx)
4920{
4921 struct perf_cpu_context *cpuctx;
4922 struct perf_event_context *ctx;
4923 struct pmu *pmu;
4924 int ctxn;
4925
4926 rcu_read_lock();
4927 list_for_each_entry_rcu(pmu, &pmus, entry) {
4928 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4929 if (cpuctx->unique_pmu != pmu)
4930 goto next;
67516844 4931 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4932 if (task_ctx)
4933 goto next;
4934 ctxn = pmu->task_ctx_nr;
4935 if (ctxn < 0)
4936 goto next;
4937 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4938 if (ctx)
67516844 4939 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4940next:
4941 put_cpu_ptr(pmu->pmu_cpu_context);
4942 }
4943
4944 if (task_ctx) {
4945 preempt_disable();
67516844 4946 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4947 preempt_enable();
4948 }
4949 rcu_read_unlock();
4950}
4951
60313ebe 4952/*
9f498cc5
PZ
4953 * task tracking -- fork/exit
4954 *
13d7a241 4955 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4956 */
4957
9f498cc5 4958struct perf_task_event {
3a80b4a3 4959 struct task_struct *task;
cdd6c482 4960 struct perf_event_context *task_ctx;
60313ebe
PZ
4961
4962 struct {
4963 struct perf_event_header header;
4964
4965 u32 pid;
4966 u32 ppid;
9f498cc5
PZ
4967 u32 tid;
4968 u32 ptid;
393b2ad8 4969 u64 time;
cdd6c482 4970 } event_id;
60313ebe
PZ
4971};
4972
67516844
JO
4973static int perf_event_task_match(struct perf_event *event)
4974{
13d7a241
SE
4975 return event->attr.comm || event->attr.mmap ||
4976 event->attr.mmap2 || event->attr.mmap_data ||
4977 event->attr.task;
67516844
JO
4978}
4979
cdd6c482 4980static void perf_event_task_output(struct perf_event *event,
52d857a8 4981 void *data)
60313ebe 4982{
52d857a8 4983 struct perf_task_event *task_event = data;
60313ebe 4984 struct perf_output_handle handle;
c980d109 4985 struct perf_sample_data sample;
9f498cc5 4986 struct task_struct *task = task_event->task;
c980d109 4987 int ret, size = task_event->event_id.header.size;
8bb39f9a 4988
67516844
JO
4989 if (!perf_event_task_match(event))
4990 return;
4991
c980d109 4992 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4993
c980d109 4994 ret = perf_output_begin(&handle, event,
a7ac67ea 4995 task_event->event_id.header.size);
ef60777c 4996 if (ret)
c980d109 4997 goto out;
60313ebe 4998
cdd6c482
IM
4999 task_event->event_id.pid = perf_event_pid(event, task);
5000 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5001
cdd6c482
IM
5002 task_event->event_id.tid = perf_event_tid(event, task);
5003 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5004
cdd6c482 5005 perf_output_put(&handle, task_event->event_id);
393b2ad8 5006
c980d109
ACM
5007 perf_event__output_id_sample(event, &handle, &sample);
5008
60313ebe 5009 perf_output_end(&handle);
c980d109
ACM
5010out:
5011 task_event->event_id.header.size = size;
60313ebe
PZ
5012}
5013
cdd6c482
IM
5014static void perf_event_task(struct task_struct *task,
5015 struct perf_event_context *task_ctx,
3a80b4a3 5016 int new)
60313ebe 5017{
9f498cc5 5018 struct perf_task_event task_event;
60313ebe 5019
cdd6c482
IM
5020 if (!atomic_read(&nr_comm_events) &&
5021 !atomic_read(&nr_mmap_events) &&
5022 !atomic_read(&nr_task_events))
60313ebe
PZ
5023 return;
5024
9f498cc5 5025 task_event = (struct perf_task_event){
3a80b4a3
PZ
5026 .task = task,
5027 .task_ctx = task_ctx,
cdd6c482 5028 .event_id = {
60313ebe 5029 .header = {
cdd6c482 5030 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5031 .misc = 0,
cdd6c482 5032 .size = sizeof(task_event.event_id),
60313ebe 5033 },
573402db
PZ
5034 /* .pid */
5035 /* .ppid */
9f498cc5
PZ
5036 /* .tid */
5037 /* .ptid */
6f93d0a7 5038 .time = perf_clock(),
60313ebe
PZ
5039 },
5040 };
5041
67516844 5042 perf_event_aux(perf_event_task_output,
52d857a8
JO
5043 &task_event,
5044 task_ctx);
9f498cc5
PZ
5045}
5046
cdd6c482 5047void perf_event_fork(struct task_struct *task)
9f498cc5 5048{
cdd6c482 5049 perf_event_task(task, NULL, 1);
60313ebe
PZ
5050}
5051
8d1b2d93
PZ
5052/*
5053 * comm tracking
5054 */
5055
5056struct perf_comm_event {
22a4f650
IM
5057 struct task_struct *task;
5058 char *comm;
8d1b2d93
PZ
5059 int comm_size;
5060
5061 struct {
5062 struct perf_event_header header;
5063
5064 u32 pid;
5065 u32 tid;
cdd6c482 5066 } event_id;
8d1b2d93
PZ
5067};
5068
67516844
JO
5069static int perf_event_comm_match(struct perf_event *event)
5070{
5071 return event->attr.comm;
5072}
5073
cdd6c482 5074static void perf_event_comm_output(struct perf_event *event,
52d857a8 5075 void *data)
8d1b2d93 5076{
52d857a8 5077 struct perf_comm_event *comm_event = data;
8d1b2d93 5078 struct perf_output_handle handle;
c980d109 5079 struct perf_sample_data sample;
cdd6c482 5080 int size = comm_event->event_id.header.size;
c980d109
ACM
5081 int ret;
5082
67516844
JO
5083 if (!perf_event_comm_match(event))
5084 return;
5085
c980d109
ACM
5086 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5087 ret = perf_output_begin(&handle, event,
a7ac67ea 5088 comm_event->event_id.header.size);
8d1b2d93
PZ
5089
5090 if (ret)
c980d109 5091 goto out;
8d1b2d93 5092
cdd6c482
IM
5093 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5094 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5095
cdd6c482 5096 perf_output_put(&handle, comm_event->event_id);
76369139 5097 __output_copy(&handle, comm_event->comm,
8d1b2d93 5098 comm_event->comm_size);
c980d109
ACM
5099
5100 perf_event__output_id_sample(event, &handle, &sample);
5101
8d1b2d93 5102 perf_output_end(&handle);
c980d109
ACM
5103out:
5104 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5105}
5106
cdd6c482 5107static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5108{
413ee3b4 5109 char comm[TASK_COMM_LEN];
8d1b2d93 5110 unsigned int size;
8d1b2d93 5111
413ee3b4 5112 memset(comm, 0, sizeof(comm));
96b02d78 5113 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5114 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5115
5116 comm_event->comm = comm;
5117 comm_event->comm_size = size;
5118
cdd6c482 5119 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5120
67516844 5121 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5122 comm_event,
5123 NULL);
8d1b2d93
PZ
5124}
5125
82b89778 5126void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5127{
9ee318a7
PZ
5128 struct perf_comm_event comm_event;
5129
cdd6c482 5130 if (!atomic_read(&nr_comm_events))
9ee318a7 5131 return;
a63eaf34 5132
9ee318a7 5133 comm_event = (struct perf_comm_event){
8d1b2d93 5134 .task = task,
573402db
PZ
5135 /* .comm */
5136 /* .comm_size */
cdd6c482 5137 .event_id = {
573402db 5138 .header = {
cdd6c482 5139 .type = PERF_RECORD_COMM,
82b89778 5140 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5141 /* .size */
5142 },
5143 /* .pid */
5144 /* .tid */
8d1b2d93
PZ
5145 },
5146 };
5147
cdd6c482 5148 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5149}
5150
0a4a9391
PZ
5151/*
5152 * mmap tracking
5153 */
5154
5155struct perf_mmap_event {
089dd79d
PZ
5156 struct vm_area_struct *vma;
5157
5158 const char *file_name;
5159 int file_size;
13d7a241
SE
5160 int maj, min;
5161 u64 ino;
5162 u64 ino_generation;
f972eb63 5163 u32 prot, flags;
0a4a9391
PZ
5164
5165 struct {
5166 struct perf_event_header header;
5167
5168 u32 pid;
5169 u32 tid;
5170 u64 start;
5171 u64 len;
5172 u64 pgoff;
cdd6c482 5173 } event_id;
0a4a9391
PZ
5174};
5175
67516844
JO
5176static int perf_event_mmap_match(struct perf_event *event,
5177 void *data)
5178{
5179 struct perf_mmap_event *mmap_event = data;
5180 struct vm_area_struct *vma = mmap_event->vma;
5181 int executable = vma->vm_flags & VM_EXEC;
5182
5183 return (!executable && event->attr.mmap_data) ||
13d7a241 5184 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5185}
5186
cdd6c482 5187static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5188 void *data)
0a4a9391 5189{
52d857a8 5190 struct perf_mmap_event *mmap_event = data;
0a4a9391 5191 struct perf_output_handle handle;
c980d109 5192 struct perf_sample_data sample;
cdd6c482 5193 int size = mmap_event->event_id.header.size;
c980d109 5194 int ret;
0a4a9391 5195
67516844
JO
5196 if (!perf_event_mmap_match(event, data))
5197 return;
5198
13d7a241
SE
5199 if (event->attr.mmap2) {
5200 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5201 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5202 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5203 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5204 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5205 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5206 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5207 }
5208
c980d109
ACM
5209 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5210 ret = perf_output_begin(&handle, event,
a7ac67ea 5211 mmap_event->event_id.header.size);
0a4a9391 5212 if (ret)
c980d109 5213 goto out;
0a4a9391 5214
cdd6c482
IM
5215 mmap_event->event_id.pid = perf_event_pid(event, current);
5216 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5217
cdd6c482 5218 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5219
5220 if (event->attr.mmap2) {
5221 perf_output_put(&handle, mmap_event->maj);
5222 perf_output_put(&handle, mmap_event->min);
5223 perf_output_put(&handle, mmap_event->ino);
5224 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5225 perf_output_put(&handle, mmap_event->prot);
5226 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5227 }
5228
76369139 5229 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5230 mmap_event->file_size);
c980d109
ACM
5231
5232 perf_event__output_id_sample(event, &handle, &sample);
5233
78d613eb 5234 perf_output_end(&handle);
c980d109
ACM
5235out:
5236 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5237}
5238
cdd6c482 5239static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5240{
089dd79d
PZ
5241 struct vm_area_struct *vma = mmap_event->vma;
5242 struct file *file = vma->vm_file;
13d7a241
SE
5243 int maj = 0, min = 0;
5244 u64 ino = 0, gen = 0;
f972eb63 5245 u32 prot = 0, flags = 0;
0a4a9391
PZ
5246 unsigned int size;
5247 char tmp[16];
5248 char *buf = NULL;
2c42cfbf 5249 char *name;
413ee3b4 5250
0a4a9391 5251 if (file) {
13d7a241
SE
5252 struct inode *inode;
5253 dev_t dev;
3ea2f2b9 5254
2c42cfbf 5255 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5256 if (!buf) {
c7e548b4
ON
5257 name = "//enomem";
5258 goto cpy_name;
0a4a9391 5259 }
413ee3b4 5260 /*
3ea2f2b9 5261 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5262 * need to add enough zero bytes after the string to handle
5263 * the 64bit alignment we do later.
5264 */
3ea2f2b9 5265 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5266 if (IS_ERR(name)) {
c7e548b4
ON
5267 name = "//toolong";
5268 goto cpy_name;
0a4a9391 5269 }
13d7a241
SE
5270 inode = file_inode(vma->vm_file);
5271 dev = inode->i_sb->s_dev;
5272 ino = inode->i_ino;
5273 gen = inode->i_generation;
5274 maj = MAJOR(dev);
5275 min = MINOR(dev);
f972eb63
PZ
5276
5277 if (vma->vm_flags & VM_READ)
5278 prot |= PROT_READ;
5279 if (vma->vm_flags & VM_WRITE)
5280 prot |= PROT_WRITE;
5281 if (vma->vm_flags & VM_EXEC)
5282 prot |= PROT_EXEC;
5283
5284 if (vma->vm_flags & VM_MAYSHARE)
5285 flags = MAP_SHARED;
5286 else
5287 flags = MAP_PRIVATE;
5288
5289 if (vma->vm_flags & VM_DENYWRITE)
5290 flags |= MAP_DENYWRITE;
5291 if (vma->vm_flags & VM_MAYEXEC)
5292 flags |= MAP_EXECUTABLE;
5293 if (vma->vm_flags & VM_LOCKED)
5294 flags |= MAP_LOCKED;
5295 if (vma->vm_flags & VM_HUGETLB)
5296 flags |= MAP_HUGETLB;
5297
c7e548b4 5298 goto got_name;
0a4a9391 5299 } else {
fbe26abe
JO
5300 if (vma->vm_ops && vma->vm_ops->name) {
5301 name = (char *) vma->vm_ops->name(vma);
5302 if (name)
5303 goto cpy_name;
5304 }
5305
2c42cfbf 5306 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5307 if (name)
5308 goto cpy_name;
089dd79d 5309
32c5fb7e 5310 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5311 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5312 name = "[heap]";
5313 goto cpy_name;
32c5fb7e
ON
5314 }
5315 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5316 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5317 name = "[stack]";
5318 goto cpy_name;
089dd79d
PZ
5319 }
5320
c7e548b4
ON
5321 name = "//anon";
5322 goto cpy_name;
0a4a9391
PZ
5323 }
5324
c7e548b4
ON
5325cpy_name:
5326 strlcpy(tmp, name, sizeof(tmp));
5327 name = tmp;
0a4a9391 5328got_name:
2c42cfbf
PZ
5329 /*
5330 * Since our buffer works in 8 byte units we need to align our string
5331 * size to a multiple of 8. However, we must guarantee the tail end is
5332 * zero'd out to avoid leaking random bits to userspace.
5333 */
5334 size = strlen(name)+1;
5335 while (!IS_ALIGNED(size, sizeof(u64)))
5336 name[size++] = '\0';
0a4a9391
PZ
5337
5338 mmap_event->file_name = name;
5339 mmap_event->file_size = size;
13d7a241
SE
5340 mmap_event->maj = maj;
5341 mmap_event->min = min;
5342 mmap_event->ino = ino;
5343 mmap_event->ino_generation = gen;
f972eb63
PZ
5344 mmap_event->prot = prot;
5345 mmap_event->flags = flags;
0a4a9391 5346
2fe85427
SE
5347 if (!(vma->vm_flags & VM_EXEC))
5348 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5349
cdd6c482 5350 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5351
67516844 5352 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5353 mmap_event,
5354 NULL);
665c2142 5355
0a4a9391
PZ
5356 kfree(buf);
5357}
5358
3af9e859 5359void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5360{
9ee318a7
PZ
5361 struct perf_mmap_event mmap_event;
5362
cdd6c482 5363 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5364 return;
5365
5366 mmap_event = (struct perf_mmap_event){
089dd79d 5367 .vma = vma,
573402db
PZ
5368 /* .file_name */
5369 /* .file_size */
cdd6c482 5370 .event_id = {
573402db 5371 .header = {
cdd6c482 5372 .type = PERF_RECORD_MMAP,
39447b38 5373 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5374 /* .size */
5375 },
5376 /* .pid */
5377 /* .tid */
089dd79d
PZ
5378 .start = vma->vm_start,
5379 .len = vma->vm_end - vma->vm_start,
3a0304e9 5380 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5381 },
13d7a241
SE
5382 /* .maj (attr_mmap2 only) */
5383 /* .min (attr_mmap2 only) */
5384 /* .ino (attr_mmap2 only) */
5385 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5386 /* .prot (attr_mmap2 only) */
5387 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5388 };
5389
cdd6c482 5390 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5391}
5392
a78ac325
PZ
5393/*
5394 * IRQ throttle logging
5395 */
5396
cdd6c482 5397static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5398{
5399 struct perf_output_handle handle;
c980d109 5400 struct perf_sample_data sample;
a78ac325
PZ
5401 int ret;
5402
5403 struct {
5404 struct perf_event_header header;
5405 u64 time;
cca3f454 5406 u64 id;
7f453c24 5407 u64 stream_id;
a78ac325
PZ
5408 } throttle_event = {
5409 .header = {
cdd6c482 5410 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5411 .misc = 0,
5412 .size = sizeof(throttle_event),
5413 },
def0a9b2 5414 .time = perf_clock(),
cdd6c482
IM
5415 .id = primary_event_id(event),
5416 .stream_id = event->id,
a78ac325
PZ
5417 };
5418
966ee4d6 5419 if (enable)
cdd6c482 5420 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5421
c980d109
ACM
5422 perf_event_header__init_id(&throttle_event.header, &sample, event);
5423
5424 ret = perf_output_begin(&handle, event,
a7ac67ea 5425 throttle_event.header.size);
a78ac325
PZ
5426 if (ret)
5427 return;
5428
5429 perf_output_put(&handle, throttle_event);
c980d109 5430 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5431 perf_output_end(&handle);
5432}
5433
f6c7d5fe 5434/*
cdd6c482 5435 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5436 */
5437
a8b0ca17 5438static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5439 int throttle, struct perf_sample_data *data,
5440 struct pt_regs *regs)
f6c7d5fe 5441{
cdd6c482
IM
5442 int events = atomic_read(&event->event_limit);
5443 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5444 u64 seq;
79f14641
PZ
5445 int ret = 0;
5446
96398826
PZ
5447 /*
5448 * Non-sampling counters might still use the PMI to fold short
5449 * hardware counters, ignore those.
5450 */
5451 if (unlikely(!is_sampling_event(event)))
5452 return 0;
5453
e050e3f0
SE
5454 seq = __this_cpu_read(perf_throttled_seq);
5455 if (seq != hwc->interrupts_seq) {
5456 hwc->interrupts_seq = seq;
5457 hwc->interrupts = 1;
5458 } else {
5459 hwc->interrupts++;
5460 if (unlikely(throttle
5461 && hwc->interrupts >= max_samples_per_tick)) {
5462 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5463 hwc->interrupts = MAX_INTERRUPTS;
5464 perf_log_throttle(event, 0);
d84153d6 5465 tick_nohz_full_kick();
a78ac325
PZ
5466 ret = 1;
5467 }
e050e3f0 5468 }
60db5e09 5469
cdd6c482 5470 if (event->attr.freq) {
def0a9b2 5471 u64 now = perf_clock();
abd50713 5472 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5473
abd50713 5474 hwc->freq_time_stamp = now;
bd2b5b12 5475
abd50713 5476 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5477 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5478 }
5479
2023b359
PZ
5480 /*
5481 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5482 * events
2023b359
PZ
5483 */
5484
cdd6c482
IM
5485 event->pending_kill = POLL_IN;
5486 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5487 ret = 1;
cdd6c482 5488 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5489 event->pending_disable = 1;
5490 irq_work_queue(&event->pending);
79f14641
PZ
5491 }
5492
453f19ee 5493 if (event->overflow_handler)
a8b0ca17 5494 event->overflow_handler(event, data, regs);
453f19ee 5495 else
a8b0ca17 5496 perf_event_output(event, data, regs);
453f19ee 5497
f506b3dc 5498 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5499 event->pending_wakeup = 1;
5500 irq_work_queue(&event->pending);
f506b3dc
PZ
5501 }
5502
79f14641 5503 return ret;
f6c7d5fe
PZ
5504}
5505
a8b0ca17 5506int perf_event_overflow(struct perf_event *event,
5622f295
MM
5507 struct perf_sample_data *data,
5508 struct pt_regs *regs)
850bc73f 5509{
a8b0ca17 5510 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5511}
5512
15dbf27c 5513/*
cdd6c482 5514 * Generic software event infrastructure
15dbf27c
PZ
5515 */
5516
b28ab83c
PZ
5517struct swevent_htable {
5518 struct swevent_hlist *swevent_hlist;
5519 struct mutex hlist_mutex;
5520 int hlist_refcount;
5521
5522 /* Recursion avoidance in each contexts */
5523 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5524
5525 /* Keeps track of cpu being initialized/exited */
5526 bool online;
b28ab83c
PZ
5527};
5528
5529static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5530
7b4b6658 5531/*
cdd6c482
IM
5532 * We directly increment event->count and keep a second value in
5533 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5534 * is kept in the range [-sample_period, 0] so that we can use the
5535 * sign as trigger.
5536 */
5537
ab573844 5538u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5539{
cdd6c482 5540 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5541 u64 period = hwc->last_period;
5542 u64 nr, offset;
5543 s64 old, val;
5544
5545 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5546
5547again:
e7850595 5548 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5549 if (val < 0)
5550 return 0;
15dbf27c 5551
7b4b6658
PZ
5552 nr = div64_u64(period + val, period);
5553 offset = nr * period;
5554 val -= offset;
e7850595 5555 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5556 goto again;
15dbf27c 5557
7b4b6658 5558 return nr;
15dbf27c
PZ
5559}
5560
0cff784a 5561static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5562 struct perf_sample_data *data,
5622f295 5563 struct pt_regs *regs)
15dbf27c 5564{
cdd6c482 5565 struct hw_perf_event *hwc = &event->hw;
850bc73f 5566 int throttle = 0;
15dbf27c 5567
0cff784a
PZ
5568 if (!overflow)
5569 overflow = perf_swevent_set_period(event);
15dbf27c 5570
7b4b6658
PZ
5571 if (hwc->interrupts == MAX_INTERRUPTS)
5572 return;
15dbf27c 5573
7b4b6658 5574 for (; overflow; overflow--) {
a8b0ca17 5575 if (__perf_event_overflow(event, throttle,
5622f295 5576 data, regs)) {
7b4b6658
PZ
5577 /*
5578 * We inhibit the overflow from happening when
5579 * hwc->interrupts == MAX_INTERRUPTS.
5580 */
5581 break;
5582 }
cf450a73 5583 throttle = 1;
7b4b6658 5584 }
15dbf27c
PZ
5585}
5586
a4eaf7f1 5587static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5588 struct perf_sample_data *data,
5622f295 5589 struct pt_regs *regs)
7b4b6658 5590{
cdd6c482 5591 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5592
e7850595 5593 local64_add(nr, &event->count);
d6d020e9 5594
0cff784a
PZ
5595 if (!regs)
5596 return;
5597
6c7e550f 5598 if (!is_sampling_event(event))
7b4b6658 5599 return;
d6d020e9 5600
5d81e5cf
AV
5601 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5602 data->period = nr;
5603 return perf_swevent_overflow(event, 1, data, regs);
5604 } else
5605 data->period = event->hw.last_period;
5606
0cff784a 5607 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5608 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5609
e7850595 5610 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5611 return;
df1a132b 5612
a8b0ca17 5613 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5614}
5615
f5ffe02e
FW
5616static int perf_exclude_event(struct perf_event *event,
5617 struct pt_regs *regs)
5618{
a4eaf7f1 5619 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5620 return 1;
a4eaf7f1 5621
f5ffe02e
FW
5622 if (regs) {
5623 if (event->attr.exclude_user && user_mode(regs))
5624 return 1;
5625
5626 if (event->attr.exclude_kernel && !user_mode(regs))
5627 return 1;
5628 }
5629
5630 return 0;
5631}
5632
cdd6c482 5633static int perf_swevent_match(struct perf_event *event,
1c432d89 5634 enum perf_type_id type,
6fb2915d
LZ
5635 u32 event_id,
5636 struct perf_sample_data *data,
5637 struct pt_regs *regs)
15dbf27c 5638{
cdd6c482 5639 if (event->attr.type != type)
a21ca2ca 5640 return 0;
f5ffe02e 5641
cdd6c482 5642 if (event->attr.config != event_id)
15dbf27c
PZ
5643 return 0;
5644
f5ffe02e
FW
5645 if (perf_exclude_event(event, regs))
5646 return 0;
15dbf27c
PZ
5647
5648 return 1;
5649}
5650
76e1d904
FW
5651static inline u64 swevent_hash(u64 type, u32 event_id)
5652{
5653 u64 val = event_id | (type << 32);
5654
5655 return hash_64(val, SWEVENT_HLIST_BITS);
5656}
5657
49f135ed
FW
5658static inline struct hlist_head *
5659__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5660{
49f135ed
FW
5661 u64 hash = swevent_hash(type, event_id);
5662
5663 return &hlist->heads[hash];
5664}
76e1d904 5665
49f135ed
FW
5666/* For the read side: events when they trigger */
5667static inline struct hlist_head *
b28ab83c 5668find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5669{
5670 struct swevent_hlist *hlist;
76e1d904 5671
b28ab83c 5672 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5673 if (!hlist)
5674 return NULL;
5675
49f135ed
FW
5676 return __find_swevent_head(hlist, type, event_id);
5677}
5678
5679/* For the event head insertion and removal in the hlist */
5680static inline struct hlist_head *
b28ab83c 5681find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5682{
5683 struct swevent_hlist *hlist;
5684 u32 event_id = event->attr.config;
5685 u64 type = event->attr.type;
5686
5687 /*
5688 * Event scheduling is always serialized against hlist allocation
5689 * and release. Which makes the protected version suitable here.
5690 * The context lock guarantees that.
5691 */
b28ab83c 5692 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5693 lockdep_is_held(&event->ctx->lock));
5694 if (!hlist)
5695 return NULL;
5696
5697 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5698}
5699
5700static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5701 u64 nr,
76e1d904
FW
5702 struct perf_sample_data *data,
5703 struct pt_regs *regs)
15dbf27c 5704{
b28ab83c 5705 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5706 struct perf_event *event;
76e1d904 5707 struct hlist_head *head;
15dbf27c 5708
76e1d904 5709 rcu_read_lock();
b28ab83c 5710 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5711 if (!head)
5712 goto end;
5713
b67bfe0d 5714 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5715 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5716 perf_swevent_event(event, nr, data, regs);
15dbf27c 5717 }
76e1d904
FW
5718end:
5719 rcu_read_unlock();
15dbf27c
PZ
5720}
5721
4ed7c92d 5722int perf_swevent_get_recursion_context(void)
96f6d444 5723{
b28ab83c 5724 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5725
b28ab83c 5726 return get_recursion_context(swhash->recursion);
96f6d444 5727}
645e8cc0 5728EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5729
fa9f90be 5730inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5731{
b28ab83c 5732 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5733
b28ab83c 5734 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5735}
15dbf27c 5736
a8b0ca17 5737void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5738{
a4234bfc 5739 struct perf_sample_data data;
4ed7c92d
PZ
5740 int rctx;
5741
1c024eca 5742 preempt_disable_notrace();
4ed7c92d
PZ
5743 rctx = perf_swevent_get_recursion_context();
5744 if (rctx < 0)
5745 return;
a4234bfc 5746
fd0d000b 5747 perf_sample_data_init(&data, addr, 0);
92bf309a 5748
a8b0ca17 5749 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5750
5751 perf_swevent_put_recursion_context(rctx);
1c024eca 5752 preempt_enable_notrace();
b8e83514
PZ
5753}
5754
cdd6c482 5755static void perf_swevent_read(struct perf_event *event)
15dbf27c 5756{
15dbf27c
PZ
5757}
5758
a4eaf7f1 5759static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5760{
b28ab83c 5761 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5762 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5763 struct hlist_head *head;
5764
6c7e550f 5765 if (is_sampling_event(event)) {
7b4b6658 5766 hwc->last_period = hwc->sample_period;
cdd6c482 5767 perf_swevent_set_period(event);
7b4b6658 5768 }
76e1d904 5769
a4eaf7f1
PZ
5770 hwc->state = !(flags & PERF_EF_START);
5771
b28ab83c 5772 head = find_swevent_head(swhash, event);
39af6b16
JO
5773 if (!head) {
5774 /*
5775 * We can race with cpu hotplug code. Do not
5776 * WARN if the cpu just got unplugged.
5777 */
5778 WARN_ON_ONCE(swhash->online);
76e1d904 5779 return -EINVAL;
39af6b16 5780 }
76e1d904
FW
5781
5782 hlist_add_head_rcu(&event->hlist_entry, head);
5783
15dbf27c
PZ
5784 return 0;
5785}
5786
a4eaf7f1 5787static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5788{
76e1d904 5789 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5790}
5791
a4eaf7f1 5792static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5793{
a4eaf7f1 5794 event->hw.state = 0;
d6d020e9 5795}
aa9c4c0f 5796
a4eaf7f1 5797static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5798{
a4eaf7f1 5799 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5800}
5801
49f135ed
FW
5802/* Deref the hlist from the update side */
5803static inline struct swevent_hlist *
b28ab83c 5804swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5805{
b28ab83c
PZ
5806 return rcu_dereference_protected(swhash->swevent_hlist,
5807 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5808}
5809
b28ab83c 5810static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5811{
b28ab83c 5812 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5813
49f135ed 5814 if (!hlist)
76e1d904
FW
5815 return;
5816
b28ab83c 5817 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5818 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5819}
5820
5821static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5822{
b28ab83c 5823 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5824
b28ab83c 5825 mutex_lock(&swhash->hlist_mutex);
76e1d904 5826
b28ab83c
PZ
5827 if (!--swhash->hlist_refcount)
5828 swevent_hlist_release(swhash);
76e1d904 5829
b28ab83c 5830 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5831}
5832
5833static void swevent_hlist_put(struct perf_event *event)
5834{
5835 int cpu;
5836
76e1d904
FW
5837 for_each_possible_cpu(cpu)
5838 swevent_hlist_put_cpu(event, cpu);
5839}
5840
5841static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5842{
b28ab83c 5843 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5844 int err = 0;
5845
b28ab83c 5846 mutex_lock(&swhash->hlist_mutex);
76e1d904 5847
b28ab83c 5848 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5849 struct swevent_hlist *hlist;
5850
5851 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5852 if (!hlist) {
5853 err = -ENOMEM;
5854 goto exit;
5855 }
b28ab83c 5856 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5857 }
b28ab83c 5858 swhash->hlist_refcount++;
9ed6060d 5859exit:
b28ab83c 5860 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5861
5862 return err;
5863}
5864
5865static int swevent_hlist_get(struct perf_event *event)
5866{
5867 int err;
5868 int cpu, failed_cpu;
5869
76e1d904
FW
5870 get_online_cpus();
5871 for_each_possible_cpu(cpu) {
5872 err = swevent_hlist_get_cpu(event, cpu);
5873 if (err) {
5874 failed_cpu = cpu;
5875 goto fail;
5876 }
5877 }
5878 put_online_cpus();
5879
5880 return 0;
9ed6060d 5881fail:
76e1d904
FW
5882 for_each_possible_cpu(cpu) {
5883 if (cpu == failed_cpu)
5884 break;
5885 swevent_hlist_put_cpu(event, cpu);
5886 }
5887
5888 put_online_cpus();
5889 return err;
5890}
5891
c5905afb 5892struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5893
b0a873eb
PZ
5894static void sw_perf_event_destroy(struct perf_event *event)
5895{
5896 u64 event_id = event->attr.config;
95476b64 5897
b0a873eb
PZ
5898 WARN_ON(event->parent);
5899
c5905afb 5900 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5901 swevent_hlist_put(event);
5902}
5903
5904static int perf_swevent_init(struct perf_event *event)
5905{
8176cced 5906 u64 event_id = event->attr.config;
b0a873eb
PZ
5907
5908 if (event->attr.type != PERF_TYPE_SOFTWARE)
5909 return -ENOENT;
5910
2481c5fa
SE
5911 /*
5912 * no branch sampling for software events
5913 */
5914 if (has_branch_stack(event))
5915 return -EOPNOTSUPP;
5916
b0a873eb
PZ
5917 switch (event_id) {
5918 case PERF_COUNT_SW_CPU_CLOCK:
5919 case PERF_COUNT_SW_TASK_CLOCK:
5920 return -ENOENT;
5921
5922 default:
5923 break;
5924 }
5925
ce677831 5926 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5927 return -ENOENT;
5928
5929 if (!event->parent) {
5930 int err;
5931
5932 err = swevent_hlist_get(event);
5933 if (err)
5934 return err;
5935
c5905afb 5936 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5937 event->destroy = sw_perf_event_destroy;
5938 }
5939
5940 return 0;
5941}
5942
35edc2a5
PZ
5943static int perf_swevent_event_idx(struct perf_event *event)
5944{
5945 return 0;
5946}
5947
b0a873eb 5948static struct pmu perf_swevent = {
89a1e187 5949 .task_ctx_nr = perf_sw_context,
95476b64 5950
b0a873eb 5951 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5952 .add = perf_swevent_add,
5953 .del = perf_swevent_del,
5954 .start = perf_swevent_start,
5955 .stop = perf_swevent_stop,
1c024eca 5956 .read = perf_swevent_read,
35edc2a5
PZ
5957
5958 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5959};
5960
b0a873eb
PZ
5961#ifdef CONFIG_EVENT_TRACING
5962
1c024eca
PZ
5963static int perf_tp_filter_match(struct perf_event *event,
5964 struct perf_sample_data *data)
5965{
5966 void *record = data->raw->data;
5967
5968 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5969 return 1;
5970 return 0;
5971}
5972
5973static int perf_tp_event_match(struct perf_event *event,
5974 struct perf_sample_data *data,
5975 struct pt_regs *regs)
5976{
a0f7d0f7
FW
5977 if (event->hw.state & PERF_HES_STOPPED)
5978 return 0;
580d607c
PZ
5979 /*
5980 * All tracepoints are from kernel-space.
5981 */
5982 if (event->attr.exclude_kernel)
1c024eca
PZ
5983 return 0;
5984
5985 if (!perf_tp_filter_match(event, data))
5986 return 0;
5987
5988 return 1;
5989}
5990
5991void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5992 struct pt_regs *regs, struct hlist_head *head, int rctx,
5993 struct task_struct *task)
95476b64
FW
5994{
5995 struct perf_sample_data data;
1c024eca 5996 struct perf_event *event;
1c024eca 5997
95476b64
FW
5998 struct perf_raw_record raw = {
5999 .size = entry_size,
6000 .data = record,
6001 };
6002
fd0d000b 6003 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6004 data.raw = &raw;
6005
b67bfe0d 6006 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6007 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6008 perf_swevent_event(event, count, &data, regs);
4f41c013 6009 }
ecc55f84 6010
e6dab5ff
AV
6011 /*
6012 * If we got specified a target task, also iterate its context and
6013 * deliver this event there too.
6014 */
6015 if (task && task != current) {
6016 struct perf_event_context *ctx;
6017 struct trace_entry *entry = record;
6018
6019 rcu_read_lock();
6020 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6021 if (!ctx)
6022 goto unlock;
6023
6024 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6025 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6026 continue;
6027 if (event->attr.config != entry->type)
6028 continue;
6029 if (perf_tp_event_match(event, &data, regs))
6030 perf_swevent_event(event, count, &data, regs);
6031 }
6032unlock:
6033 rcu_read_unlock();
6034 }
6035
ecc55f84 6036 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6037}
6038EXPORT_SYMBOL_GPL(perf_tp_event);
6039
cdd6c482 6040static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6041{
1c024eca 6042 perf_trace_destroy(event);
e077df4f
PZ
6043}
6044
b0a873eb 6045static int perf_tp_event_init(struct perf_event *event)
e077df4f 6046{
76e1d904
FW
6047 int err;
6048
b0a873eb
PZ
6049 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6050 return -ENOENT;
6051
2481c5fa
SE
6052 /*
6053 * no branch sampling for tracepoint events
6054 */
6055 if (has_branch_stack(event))
6056 return -EOPNOTSUPP;
6057
1c024eca
PZ
6058 err = perf_trace_init(event);
6059 if (err)
b0a873eb 6060 return err;
e077df4f 6061
cdd6c482 6062 event->destroy = tp_perf_event_destroy;
e077df4f 6063
b0a873eb
PZ
6064 return 0;
6065}
6066
6067static struct pmu perf_tracepoint = {
89a1e187
PZ
6068 .task_ctx_nr = perf_sw_context,
6069
b0a873eb 6070 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6071 .add = perf_trace_add,
6072 .del = perf_trace_del,
6073 .start = perf_swevent_start,
6074 .stop = perf_swevent_stop,
b0a873eb 6075 .read = perf_swevent_read,
35edc2a5
PZ
6076
6077 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6078};
6079
6080static inline void perf_tp_register(void)
6081{
2e80a82a 6082 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6083}
6fb2915d
LZ
6084
6085static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6086{
6087 char *filter_str;
6088 int ret;
6089
6090 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6091 return -EINVAL;
6092
6093 filter_str = strndup_user(arg, PAGE_SIZE);
6094 if (IS_ERR(filter_str))
6095 return PTR_ERR(filter_str);
6096
6097 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6098
6099 kfree(filter_str);
6100 return ret;
6101}
6102
6103static void perf_event_free_filter(struct perf_event *event)
6104{
6105 ftrace_profile_free_filter(event);
6106}
6107
e077df4f 6108#else
6fb2915d 6109
b0a873eb 6110static inline void perf_tp_register(void)
e077df4f 6111{
e077df4f 6112}
6fb2915d
LZ
6113
6114static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6115{
6116 return -ENOENT;
6117}
6118
6119static void perf_event_free_filter(struct perf_event *event)
6120{
6121}
6122
07b139c8 6123#endif /* CONFIG_EVENT_TRACING */
e077df4f 6124
24f1e32c 6125#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6126void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6127{
f5ffe02e
FW
6128 struct perf_sample_data sample;
6129 struct pt_regs *regs = data;
6130
fd0d000b 6131 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6132
a4eaf7f1 6133 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6134 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6135}
6136#endif
6137
b0a873eb
PZ
6138/*
6139 * hrtimer based swevent callback
6140 */
f29ac756 6141
b0a873eb 6142static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6143{
b0a873eb
PZ
6144 enum hrtimer_restart ret = HRTIMER_RESTART;
6145 struct perf_sample_data data;
6146 struct pt_regs *regs;
6147 struct perf_event *event;
6148 u64 period;
f29ac756 6149
b0a873eb 6150 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6151
6152 if (event->state != PERF_EVENT_STATE_ACTIVE)
6153 return HRTIMER_NORESTART;
6154
b0a873eb 6155 event->pmu->read(event);
f344011c 6156
fd0d000b 6157 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6158 regs = get_irq_regs();
6159
6160 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6161 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6162 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6163 ret = HRTIMER_NORESTART;
6164 }
24f1e32c 6165
b0a873eb
PZ
6166 period = max_t(u64, 10000, event->hw.sample_period);
6167 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6168
b0a873eb 6169 return ret;
f29ac756
PZ
6170}
6171
b0a873eb 6172static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6173{
b0a873eb 6174 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6175 s64 period;
6176
6177 if (!is_sampling_event(event))
6178 return;
f5ffe02e 6179
5d508e82
FBH
6180 period = local64_read(&hwc->period_left);
6181 if (period) {
6182 if (period < 0)
6183 period = 10000;
fa407f35 6184
5d508e82
FBH
6185 local64_set(&hwc->period_left, 0);
6186 } else {
6187 period = max_t(u64, 10000, hwc->sample_period);
6188 }
6189 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6190 ns_to_ktime(period), 0,
b5ab4cd5 6191 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6192}
b0a873eb
PZ
6193
6194static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6195{
b0a873eb
PZ
6196 struct hw_perf_event *hwc = &event->hw;
6197
6c7e550f 6198 if (is_sampling_event(event)) {
b0a873eb 6199 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6200 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6201
6202 hrtimer_cancel(&hwc->hrtimer);
6203 }
24f1e32c
FW
6204}
6205
ba3dd36c
PZ
6206static void perf_swevent_init_hrtimer(struct perf_event *event)
6207{
6208 struct hw_perf_event *hwc = &event->hw;
6209
6210 if (!is_sampling_event(event))
6211 return;
6212
6213 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6214 hwc->hrtimer.function = perf_swevent_hrtimer;
6215
6216 /*
6217 * Since hrtimers have a fixed rate, we can do a static freq->period
6218 * mapping and avoid the whole period adjust feedback stuff.
6219 */
6220 if (event->attr.freq) {
6221 long freq = event->attr.sample_freq;
6222
6223 event->attr.sample_period = NSEC_PER_SEC / freq;
6224 hwc->sample_period = event->attr.sample_period;
6225 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6226 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6227 event->attr.freq = 0;
6228 }
6229}
6230
b0a873eb
PZ
6231/*
6232 * Software event: cpu wall time clock
6233 */
6234
6235static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6236{
b0a873eb
PZ
6237 s64 prev;
6238 u64 now;
6239
a4eaf7f1 6240 now = local_clock();
b0a873eb
PZ
6241 prev = local64_xchg(&event->hw.prev_count, now);
6242 local64_add(now - prev, &event->count);
24f1e32c 6243}
24f1e32c 6244
a4eaf7f1 6245static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6246{
a4eaf7f1 6247 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6248 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6249}
6250
a4eaf7f1 6251static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6252{
b0a873eb
PZ
6253 perf_swevent_cancel_hrtimer(event);
6254 cpu_clock_event_update(event);
6255}
f29ac756 6256
a4eaf7f1
PZ
6257static int cpu_clock_event_add(struct perf_event *event, int flags)
6258{
6259 if (flags & PERF_EF_START)
6260 cpu_clock_event_start(event, flags);
6261
6262 return 0;
6263}
6264
6265static void cpu_clock_event_del(struct perf_event *event, int flags)
6266{
6267 cpu_clock_event_stop(event, flags);
6268}
6269
b0a873eb
PZ
6270static void cpu_clock_event_read(struct perf_event *event)
6271{
6272 cpu_clock_event_update(event);
6273}
f344011c 6274
b0a873eb
PZ
6275static int cpu_clock_event_init(struct perf_event *event)
6276{
6277 if (event->attr.type != PERF_TYPE_SOFTWARE)
6278 return -ENOENT;
6279
6280 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6281 return -ENOENT;
6282
2481c5fa
SE
6283 /*
6284 * no branch sampling for software events
6285 */
6286 if (has_branch_stack(event))
6287 return -EOPNOTSUPP;
6288
ba3dd36c
PZ
6289 perf_swevent_init_hrtimer(event);
6290
b0a873eb 6291 return 0;
f29ac756
PZ
6292}
6293
b0a873eb 6294static struct pmu perf_cpu_clock = {
89a1e187
PZ
6295 .task_ctx_nr = perf_sw_context,
6296
b0a873eb 6297 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6298 .add = cpu_clock_event_add,
6299 .del = cpu_clock_event_del,
6300 .start = cpu_clock_event_start,
6301 .stop = cpu_clock_event_stop,
b0a873eb 6302 .read = cpu_clock_event_read,
35edc2a5
PZ
6303
6304 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6305};
6306
6307/*
6308 * Software event: task time clock
6309 */
6310
6311static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6312{
b0a873eb
PZ
6313 u64 prev;
6314 s64 delta;
5c92d124 6315
b0a873eb
PZ
6316 prev = local64_xchg(&event->hw.prev_count, now);
6317 delta = now - prev;
6318 local64_add(delta, &event->count);
6319}
5c92d124 6320
a4eaf7f1 6321static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6322{
a4eaf7f1 6323 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6324 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6325}
6326
a4eaf7f1 6327static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6328{
6329 perf_swevent_cancel_hrtimer(event);
6330 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6331}
6332
6333static int task_clock_event_add(struct perf_event *event, int flags)
6334{
6335 if (flags & PERF_EF_START)
6336 task_clock_event_start(event, flags);
b0a873eb 6337
a4eaf7f1
PZ
6338 return 0;
6339}
6340
6341static void task_clock_event_del(struct perf_event *event, int flags)
6342{
6343 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6344}
6345
6346static void task_clock_event_read(struct perf_event *event)
6347{
768a06e2
PZ
6348 u64 now = perf_clock();
6349 u64 delta = now - event->ctx->timestamp;
6350 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6351
6352 task_clock_event_update(event, time);
6353}
6354
6355static int task_clock_event_init(struct perf_event *event)
6fb2915d 6356{
b0a873eb
PZ
6357 if (event->attr.type != PERF_TYPE_SOFTWARE)
6358 return -ENOENT;
6359
6360 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6361 return -ENOENT;
6362
2481c5fa
SE
6363 /*
6364 * no branch sampling for software events
6365 */
6366 if (has_branch_stack(event))
6367 return -EOPNOTSUPP;
6368
ba3dd36c
PZ
6369 perf_swevent_init_hrtimer(event);
6370
b0a873eb 6371 return 0;
6fb2915d
LZ
6372}
6373
b0a873eb 6374static struct pmu perf_task_clock = {
89a1e187
PZ
6375 .task_ctx_nr = perf_sw_context,
6376
b0a873eb 6377 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6378 .add = task_clock_event_add,
6379 .del = task_clock_event_del,
6380 .start = task_clock_event_start,
6381 .stop = task_clock_event_stop,
b0a873eb 6382 .read = task_clock_event_read,
35edc2a5
PZ
6383
6384 .event_idx = perf_swevent_event_idx,
b0a873eb 6385};
6fb2915d 6386
ad5133b7 6387static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6388{
e077df4f 6389}
6fb2915d 6390
ad5133b7 6391static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6392{
ad5133b7 6393 return 0;
6fb2915d
LZ
6394}
6395
ad5133b7 6396static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6397{
ad5133b7 6398 perf_pmu_disable(pmu);
6fb2915d
LZ
6399}
6400
ad5133b7
PZ
6401static int perf_pmu_commit_txn(struct pmu *pmu)
6402{
6403 perf_pmu_enable(pmu);
6404 return 0;
6405}
e077df4f 6406
ad5133b7 6407static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6408{
ad5133b7 6409 perf_pmu_enable(pmu);
24f1e32c
FW
6410}
6411
35edc2a5
PZ
6412static int perf_event_idx_default(struct perf_event *event)
6413{
6414 return event->hw.idx + 1;
6415}
6416
8dc85d54
PZ
6417/*
6418 * Ensures all contexts with the same task_ctx_nr have the same
6419 * pmu_cpu_context too.
6420 */
9e317041 6421static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6422{
8dc85d54 6423 struct pmu *pmu;
b326e956 6424
8dc85d54
PZ
6425 if (ctxn < 0)
6426 return NULL;
24f1e32c 6427
8dc85d54
PZ
6428 list_for_each_entry(pmu, &pmus, entry) {
6429 if (pmu->task_ctx_nr == ctxn)
6430 return pmu->pmu_cpu_context;
6431 }
24f1e32c 6432
8dc85d54 6433 return NULL;
24f1e32c
FW
6434}
6435
51676957 6436static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6437{
51676957
PZ
6438 int cpu;
6439
6440 for_each_possible_cpu(cpu) {
6441 struct perf_cpu_context *cpuctx;
6442
6443 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6444
3f1f3320
PZ
6445 if (cpuctx->unique_pmu == old_pmu)
6446 cpuctx->unique_pmu = pmu;
51676957
PZ
6447 }
6448}
6449
6450static void free_pmu_context(struct pmu *pmu)
6451{
6452 struct pmu *i;
f5ffe02e 6453
8dc85d54 6454 mutex_lock(&pmus_lock);
0475f9ea 6455 /*
8dc85d54 6456 * Like a real lame refcount.
0475f9ea 6457 */
51676957
PZ
6458 list_for_each_entry(i, &pmus, entry) {
6459 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6460 update_pmu_context(i, pmu);
8dc85d54 6461 goto out;
51676957 6462 }
8dc85d54 6463 }
d6d020e9 6464
51676957 6465 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6466out:
6467 mutex_unlock(&pmus_lock);
24f1e32c 6468}
2e80a82a 6469static struct idr pmu_idr;
d6d020e9 6470
abe43400
PZ
6471static ssize_t
6472type_show(struct device *dev, struct device_attribute *attr, char *page)
6473{
6474 struct pmu *pmu = dev_get_drvdata(dev);
6475
6476 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6477}
90826ca7 6478static DEVICE_ATTR_RO(type);
abe43400 6479
62b85639
SE
6480static ssize_t
6481perf_event_mux_interval_ms_show(struct device *dev,
6482 struct device_attribute *attr,
6483 char *page)
6484{
6485 struct pmu *pmu = dev_get_drvdata(dev);
6486
6487 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6488}
6489
6490static ssize_t
6491perf_event_mux_interval_ms_store(struct device *dev,
6492 struct device_attribute *attr,
6493 const char *buf, size_t count)
6494{
6495 struct pmu *pmu = dev_get_drvdata(dev);
6496 int timer, cpu, ret;
6497
6498 ret = kstrtoint(buf, 0, &timer);
6499 if (ret)
6500 return ret;
6501
6502 if (timer < 1)
6503 return -EINVAL;
6504
6505 /* same value, noting to do */
6506 if (timer == pmu->hrtimer_interval_ms)
6507 return count;
6508
6509 pmu->hrtimer_interval_ms = timer;
6510
6511 /* update all cpuctx for this PMU */
6512 for_each_possible_cpu(cpu) {
6513 struct perf_cpu_context *cpuctx;
6514 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6515 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6516
6517 if (hrtimer_active(&cpuctx->hrtimer))
6518 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6519 }
6520
6521 return count;
6522}
90826ca7 6523static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6524
90826ca7
GKH
6525static struct attribute *pmu_dev_attrs[] = {
6526 &dev_attr_type.attr,
6527 &dev_attr_perf_event_mux_interval_ms.attr,
6528 NULL,
abe43400 6529};
90826ca7 6530ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6531
6532static int pmu_bus_running;
6533static struct bus_type pmu_bus = {
6534 .name = "event_source",
90826ca7 6535 .dev_groups = pmu_dev_groups,
abe43400
PZ
6536};
6537
6538static void pmu_dev_release(struct device *dev)
6539{
6540 kfree(dev);
6541}
6542
6543static int pmu_dev_alloc(struct pmu *pmu)
6544{
6545 int ret = -ENOMEM;
6546
6547 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6548 if (!pmu->dev)
6549 goto out;
6550
0c9d42ed 6551 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6552 device_initialize(pmu->dev);
6553 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6554 if (ret)
6555 goto free_dev;
6556
6557 dev_set_drvdata(pmu->dev, pmu);
6558 pmu->dev->bus = &pmu_bus;
6559 pmu->dev->release = pmu_dev_release;
6560 ret = device_add(pmu->dev);
6561 if (ret)
6562 goto free_dev;
6563
6564out:
6565 return ret;
6566
6567free_dev:
6568 put_device(pmu->dev);
6569 goto out;
6570}
6571
547e9fd7 6572static struct lock_class_key cpuctx_mutex;
facc4307 6573static struct lock_class_key cpuctx_lock;
547e9fd7 6574
03d8e80b 6575int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6576{
108b02cf 6577 int cpu, ret;
24f1e32c 6578
b0a873eb 6579 mutex_lock(&pmus_lock);
33696fc0
PZ
6580 ret = -ENOMEM;
6581 pmu->pmu_disable_count = alloc_percpu(int);
6582 if (!pmu->pmu_disable_count)
6583 goto unlock;
f29ac756 6584
2e80a82a
PZ
6585 pmu->type = -1;
6586 if (!name)
6587 goto skip_type;
6588 pmu->name = name;
6589
6590 if (type < 0) {
0e9c3be2
TH
6591 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6592 if (type < 0) {
6593 ret = type;
2e80a82a
PZ
6594 goto free_pdc;
6595 }
6596 }
6597 pmu->type = type;
6598
abe43400
PZ
6599 if (pmu_bus_running) {
6600 ret = pmu_dev_alloc(pmu);
6601 if (ret)
6602 goto free_idr;
6603 }
6604
2e80a82a 6605skip_type:
8dc85d54
PZ
6606 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6607 if (pmu->pmu_cpu_context)
6608 goto got_cpu_context;
f29ac756 6609
c4814202 6610 ret = -ENOMEM;
108b02cf
PZ
6611 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6612 if (!pmu->pmu_cpu_context)
abe43400 6613 goto free_dev;
f344011c 6614
108b02cf
PZ
6615 for_each_possible_cpu(cpu) {
6616 struct perf_cpu_context *cpuctx;
6617
6618 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6619 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6620 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6621 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6622 cpuctx->ctx.type = cpu_context;
108b02cf 6623 cpuctx->ctx.pmu = pmu;
9e630205
SE
6624
6625 __perf_cpu_hrtimer_init(cpuctx, cpu);
6626
e9d2b064 6627 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6628 cpuctx->unique_pmu = pmu;
108b02cf 6629 }
76e1d904 6630
8dc85d54 6631got_cpu_context:
ad5133b7
PZ
6632 if (!pmu->start_txn) {
6633 if (pmu->pmu_enable) {
6634 /*
6635 * If we have pmu_enable/pmu_disable calls, install
6636 * transaction stubs that use that to try and batch
6637 * hardware accesses.
6638 */
6639 pmu->start_txn = perf_pmu_start_txn;
6640 pmu->commit_txn = perf_pmu_commit_txn;
6641 pmu->cancel_txn = perf_pmu_cancel_txn;
6642 } else {
6643 pmu->start_txn = perf_pmu_nop_void;
6644 pmu->commit_txn = perf_pmu_nop_int;
6645 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6646 }
5c92d124 6647 }
15dbf27c 6648
ad5133b7
PZ
6649 if (!pmu->pmu_enable) {
6650 pmu->pmu_enable = perf_pmu_nop_void;
6651 pmu->pmu_disable = perf_pmu_nop_void;
6652 }
6653
35edc2a5
PZ
6654 if (!pmu->event_idx)
6655 pmu->event_idx = perf_event_idx_default;
6656
b0a873eb 6657 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6658 ret = 0;
6659unlock:
b0a873eb
PZ
6660 mutex_unlock(&pmus_lock);
6661
33696fc0 6662 return ret;
108b02cf 6663
abe43400
PZ
6664free_dev:
6665 device_del(pmu->dev);
6666 put_device(pmu->dev);
6667
2e80a82a
PZ
6668free_idr:
6669 if (pmu->type >= PERF_TYPE_MAX)
6670 idr_remove(&pmu_idr, pmu->type);
6671
108b02cf
PZ
6672free_pdc:
6673 free_percpu(pmu->pmu_disable_count);
6674 goto unlock;
f29ac756 6675}
c464c76e 6676EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6677
b0a873eb 6678void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6679{
b0a873eb
PZ
6680 mutex_lock(&pmus_lock);
6681 list_del_rcu(&pmu->entry);
6682 mutex_unlock(&pmus_lock);
5c92d124 6683
0475f9ea 6684 /*
cde8e884
PZ
6685 * We dereference the pmu list under both SRCU and regular RCU, so
6686 * synchronize against both of those.
0475f9ea 6687 */
b0a873eb 6688 synchronize_srcu(&pmus_srcu);
cde8e884 6689 synchronize_rcu();
d6d020e9 6690
33696fc0 6691 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6692 if (pmu->type >= PERF_TYPE_MAX)
6693 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6694 device_del(pmu->dev);
6695 put_device(pmu->dev);
51676957 6696 free_pmu_context(pmu);
b0a873eb 6697}
c464c76e 6698EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6699
b0a873eb
PZ
6700struct pmu *perf_init_event(struct perf_event *event)
6701{
6702 struct pmu *pmu = NULL;
6703 int idx;
940c5b29 6704 int ret;
b0a873eb
PZ
6705
6706 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6707
6708 rcu_read_lock();
6709 pmu = idr_find(&pmu_idr, event->attr.type);
6710 rcu_read_unlock();
940c5b29 6711 if (pmu) {
c464c76e
YZ
6712 if (!try_module_get(pmu->module)) {
6713 pmu = ERR_PTR(-ENODEV);
6714 goto unlock;
6715 }
7e5b2a01 6716 event->pmu = pmu;
940c5b29
LM
6717 ret = pmu->event_init(event);
6718 if (ret)
6719 pmu = ERR_PTR(ret);
2e80a82a 6720 goto unlock;
940c5b29 6721 }
2e80a82a 6722
b0a873eb 6723 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6724 if (!try_module_get(pmu->module)) {
6725 pmu = ERR_PTR(-ENODEV);
6726 goto unlock;
6727 }
7e5b2a01 6728 event->pmu = pmu;
940c5b29 6729 ret = pmu->event_init(event);
b0a873eb 6730 if (!ret)
e5f4d339 6731 goto unlock;
76e1d904 6732
b0a873eb
PZ
6733 if (ret != -ENOENT) {
6734 pmu = ERR_PTR(ret);
e5f4d339 6735 goto unlock;
f344011c 6736 }
5c92d124 6737 }
e5f4d339
PZ
6738 pmu = ERR_PTR(-ENOENT);
6739unlock:
b0a873eb 6740 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6741
4aeb0b42 6742 return pmu;
5c92d124
IM
6743}
6744
4beb31f3
FW
6745static void account_event_cpu(struct perf_event *event, int cpu)
6746{
6747 if (event->parent)
6748 return;
6749
6750 if (has_branch_stack(event)) {
6751 if (!(event->attach_state & PERF_ATTACH_TASK))
6752 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6753 }
6754 if (is_cgroup_event(event))
6755 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6756}
6757
766d6c07
FW
6758static void account_event(struct perf_event *event)
6759{
4beb31f3
FW
6760 if (event->parent)
6761 return;
6762
766d6c07
FW
6763 if (event->attach_state & PERF_ATTACH_TASK)
6764 static_key_slow_inc(&perf_sched_events.key);
6765 if (event->attr.mmap || event->attr.mmap_data)
6766 atomic_inc(&nr_mmap_events);
6767 if (event->attr.comm)
6768 atomic_inc(&nr_comm_events);
6769 if (event->attr.task)
6770 atomic_inc(&nr_task_events);
948b26b6
FW
6771 if (event->attr.freq) {
6772 if (atomic_inc_return(&nr_freq_events) == 1)
6773 tick_nohz_full_kick_all();
6774 }
4beb31f3 6775 if (has_branch_stack(event))
766d6c07 6776 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6777 if (is_cgroup_event(event))
766d6c07 6778 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6779
6780 account_event_cpu(event, event->cpu);
766d6c07
FW
6781}
6782
0793a61d 6783/*
cdd6c482 6784 * Allocate and initialize a event structure
0793a61d 6785 */
cdd6c482 6786static struct perf_event *
c3f00c70 6787perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6788 struct task_struct *task,
6789 struct perf_event *group_leader,
6790 struct perf_event *parent_event,
4dc0da86
AK
6791 perf_overflow_handler_t overflow_handler,
6792 void *context)
0793a61d 6793{
51b0fe39 6794 struct pmu *pmu;
cdd6c482
IM
6795 struct perf_event *event;
6796 struct hw_perf_event *hwc;
90983b16 6797 long err = -EINVAL;
0793a61d 6798
66832eb4
ON
6799 if ((unsigned)cpu >= nr_cpu_ids) {
6800 if (!task || cpu != -1)
6801 return ERR_PTR(-EINVAL);
6802 }
6803
c3f00c70 6804 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6805 if (!event)
d5d2bc0d 6806 return ERR_PTR(-ENOMEM);
0793a61d 6807
04289bb9 6808 /*
cdd6c482 6809 * Single events are their own group leaders, with an
04289bb9
IM
6810 * empty sibling list:
6811 */
6812 if (!group_leader)
cdd6c482 6813 group_leader = event;
04289bb9 6814
cdd6c482
IM
6815 mutex_init(&event->child_mutex);
6816 INIT_LIST_HEAD(&event->child_list);
fccc714b 6817
cdd6c482
IM
6818 INIT_LIST_HEAD(&event->group_entry);
6819 INIT_LIST_HEAD(&event->event_entry);
6820 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6821 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6822 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6823 INIT_HLIST_NODE(&event->hlist_entry);
6824
10c6db11 6825
cdd6c482 6826 init_waitqueue_head(&event->waitq);
e360adbe 6827 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6828
cdd6c482 6829 mutex_init(&event->mmap_mutex);
7b732a75 6830
a6fa941d 6831 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6832 event->cpu = cpu;
6833 event->attr = *attr;
6834 event->group_leader = group_leader;
6835 event->pmu = NULL;
cdd6c482 6836 event->oncpu = -1;
a96bbc16 6837
cdd6c482 6838 event->parent = parent_event;
b84fbc9f 6839
17cf22c3 6840 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6841 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6842
cdd6c482 6843 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6844
d580ff86
PZ
6845 if (task) {
6846 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6847
6848 if (attr->type == PERF_TYPE_TRACEPOINT)
6849 event->hw.tp_target = task;
d580ff86
PZ
6850#ifdef CONFIG_HAVE_HW_BREAKPOINT
6851 /*
6852 * hw_breakpoint is a bit difficult here..
6853 */
f22c1bb6 6854 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6855 event->hw.bp_target = task;
6856#endif
6857 }
6858
4dc0da86 6859 if (!overflow_handler && parent_event) {
b326e956 6860 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6861 context = parent_event->overflow_handler_context;
6862 }
66832eb4 6863
b326e956 6864 event->overflow_handler = overflow_handler;
4dc0da86 6865 event->overflow_handler_context = context;
97eaf530 6866
0231bb53 6867 perf_event__state_init(event);
a86ed508 6868
4aeb0b42 6869 pmu = NULL;
b8e83514 6870
cdd6c482 6871 hwc = &event->hw;
bd2b5b12 6872 hwc->sample_period = attr->sample_period;
0d48696f 6873 if (attr->freq && attr->sample_freq)
bd2b5b12 6874 hwc->sample_period = 1;
eced1dfc 6875 hwc->last_period = hwc->sample_period;
bd2b5b12 6876
e7850595 6877 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6878
2023b359 6879 /*
cdd6c482 6880 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6881 */
3dab77fb 6882 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6883 goto err_ns;
2023b359 6884
b0a873eb 6885 pmu = perf_init_event(event);
4aeb0b42 6886 if (!pmu)
90983b16
FW
6887 goto err_ns;
6888 else if (IS_ERR(pmu)) {
4aeb0b42 6889 err = PTR_ERR(pmu);
90983b16 6890 goto err_ns;
621a01ea 6891 }
d5d2bc0d 6892
cdd6c482 6893 if (!event->parent) {
927c7a9e
FW
6894 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6895 err = get_callchain_buffers();
90983b16
FW
6896 if (err)
6897 goto err_pmu;
d010b332 6898 }
f344011c 6899 }
9ee318a7 6900
cdd6c482 6901 return event;
90983b16
FW
6902
6903err_pmu:
6904 if (event->destroy)
6905 event->destroy(event);
c464c76e 6906 module_put(pmu->module);
90983b16
FW
6907err_ns:
6908 if (event->ns)
6909 put_pid_ns(event->ns);
6910 kfree(event);
6911
6912 return ERR_PTR(err);
0793a61d
TG
6913}
6914
cdd6c482
IM
6915static int perf_copy_attr(struct perf_event_attr __user *uattr,
6916 struct perf_event_attr *attr)
974802ea 6917{
974802ea 6918 u32 size;
cdf8073d 6919 int ret;
974802ea
PZ
6920
6921 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6922 return -EFAULT;
6923
6924 /*
6925 * zero the full structure, so that a short copy will be nice.
6926 */
6927 memset(attr, 0, sizeof(*attr));
6928
6929 ret = get_user(size, &uattr->size);
6930 if (ret)
6931 return ret;
6932
6933 if (size > PAGE_SIZE) /* silly large */
6934 goto err_size;
6935
6936 if (!size) /* abi compat */
6937 size = PERF_ATTR_SIZE_VER0;
6938
6939 if (size < PERF_ATTR_SIZE_VER0)
6940 goto err_size;
6941
6942 /*
6943 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6944 * ensure all the unknown bits are 0 - i.e. new
6945 * user-space does not rely on any kernel feature
6946 * extensions we dont know about yet.
974802ea
PZ
6947 */
6948 if (size > sizeof(*attr)) {
cdf8073d
IS
6949 unsigned char __user *addr;
6950 unsigned char __user *end;
6951 unsigned char val;
974802ea 6952
cdf8073d
IS
6953 addr = (void __user *)uattr + sizeof(*attr);
6954 end = (void __user *)uattr + size;
974802ea 6955
cdf8073d 6956 for (; addr < end; addr++) {
974802ea
PZ
6957 ret = get_user(val, addr);
6958 if (ret)
6959 return ret;
6960 if (val)
6961 goto err_size;
6962 }
b3e62e35 6963 size = sizeof(*attr);
974802ea
PZ
6964 }
6965
6966 ret = copy_from_user(attr, uattr, size);
6967 if (ret)
6968 return -EFAULT;
6969
cd757645 6970 if (attr->__reserved_1)
974802ea
PZ
6971 return -EINVAL;
6972
6973 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6974 return -EINVAL;
6975
6976 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6977 return -EINVAL;
6978
bce38cd5
SE
6979 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6980 u64 mask = attr->branch_sample_type;
6981
6982 /* only using defined bits */
6983 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6984 return -EINVAL;
6985
6986 /* at least one branch bit must be set */
6987 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6988 return -EINVAL;
6989
bce38cd5
SE
6990 /* propagate priv level, when not set for branch */
6991 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6992
6993 /* exclude_kernel checked on syscall entry */
6994 if (!attr->exclude_kernel)
6995 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6996
6997 if (!attr->exclude_user)
6998 mask |= PERF_SAMPLE_BRANCH_USER;
6999
7000 if (!attr->exclude_hv)
7001 mask |= PERF_SAMPLE_BRANCH_HV;
7002 /*
7003 * adjust user setting (for HW filter setup)
7004 */
7005 attr->branch_sample_type = mask;
7006 }
e712209a
SE
7007 /* privileged levels capture (kernel, hv): check permissions */
7008 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7009 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7010 return -EACCES;
bce38cd5 7011 }
4018994f 7012
c5ebcedb 7013 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7014 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7015 if (ret)
7016 return ret;
7017 }
7018
7019 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7020 if (!arch_perf_have_user_stack_dump())
7021 return -ENOSYS;
7022
7023 /*
7024 * We have __u32 type for the size, but so far
7025 * we can only use __u16 as maximum due to the
7026 * __u16 sample size limit.
7027 */
7028 if (attr->sample_stack_user >= USHRT_MAX)
7029 ret = -EINVAL;
7030 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7031 ret = -EINVAL;
7032 }
4018994f 7033
974802ea
PZ
7034out:
7035 return ret;
7036
7037err_size:
7038 put_user(sizeof(*attr), &uattr->size);
7039 ret = -E2BIG;
7040 goto out;
7041}
7042
ac9721f3
PZ
7043static int
7044perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7045{
b69cf536 7046 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7047 int ret = -EINVAL;
7048
ac9721f3 7049 if (!output_event)
a4be7c27
PZ
7050 goto set;
7051
ac9721f3
PZ
7052 /* don't allow circular references */
7053 if (event == output_event)
a4be7c27
PZ
7054 goto out;
7055
0f139300
PZ
7056 /*
7057 * Don't allow cross-cpu buffers
7058 */
7059 if (output_event->cpu != event->cpu)
7060 goto out;
7061
7062 /*
76369139 7063 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7064 */
7065 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7066 goto out;
7067
a4be7c27 7068set:
cdd6c482 7069 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7070 /* Can't redirect output if we've got an active mmap() */
7071 if (atomic_read(&event->mmap_count))
7072 goto unlock;
a4be7c27 7073
ac9721f3 7074 if (output_event) {
76369139
FW
7075 /* get the rb we want to redirect to */
7076 rb = ring_buffer_get(output_event);
7077 if (!rb)
ac9721f3 7078 goto unlock;
a4be7c27
PZ
7079 }
7080
b69cf536 7081 ring_buffer_attach(event, rb);
9bb5d40c 7082
a4be7c27 7083 ret = 0;
ac9721f3
PZ
7084unlock:
7085 mutex_unlock(&event->mmap_mutex);
7086
a4be7c27 7087out:
a4be7c27
PZ
7088 return ret;
7089}
7090
0793a61d 7091/**
cdd6c482 7092 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7093 *
cdd6c482 7094 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7095 * @pid: target pid
9f66a381 7096 * @cpu: target cpu
cdd6c482 7097 * @group_fd: group leader event fd
0793a61d 7098 */
cdd6c482
IM
7099SYSCALL_DEFINE5(perf_event_open,
7100 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7101 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7102{
b04243ef
PZ
7103 struct perf_event *group_leader = NULL, *output_event = NULL;
7104 struct perf_event *event, *sibling;
cdd6c482
IM
7105 struct perf_event_attr attr;
7106 struct perf_event_context *ctx;
7107 struct file *event_file = NULL;
2903ff01 7108 struct fd group = {NULL, 0};
38a81da2 7109 struct task_struct *task = NULL;
89a1e187 7110 struct pmu *pmu;
ea635c64 7111 int event_fd;
b04243ef 7112 int move_group = 0;
dc86cabe 7113 int err;
a21b0b35 7114 int f_flags = O_RDWR;
0793a61d 7115
2743a5b0 7116 /* for future expandability... */
e5d1367f 7117 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7118 return -EINVAL;
7119
dc86cabe
IM
7120 err = perf_copy_attr(attr_uptr, &attr);
7121 if (err)
7122 return err;
eab656ae 7123
0764771d
PZ
7124 if (!attr.exclude_kernel) {
7125 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7126 return -EACCES;
7127 }
7128
df58ab24 7129 if (attr.freq) {
cdd6c482 7130 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7131 return -EINVAL;
0819b2e3
PZ
7132 } else {
7133 if (attr.sample_period & (1ULL << 63))
7134 return -EINVAL;
df58ab24
PZ
7135 }
7136
e5d1367f
SE
7137 /*
7138 * In cgroup mode, the pid argument is used to pass the fd
7139 * opened to the cgroup directory in cgroupfs. The cpu argument
7140 * designates the cpu on which to monitor threads from that
7141 * cgroup.
7142 */
7143 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7144 return -EINVAL;
7145
a21b0b35
YD
7146 if (flags & PERF_FLAG_FD_CLOEXEC)
7147 f_flags |= O_CLOEXEC;
7148
7149 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7150 if (event_fd < 0)
7151 return event_fd;
7152
ac9721f3 7153 if (group_fd != -1) {
2903ff01
AV
7154 err = perf_fget_light(group_fd, &group);
7155 if (err)
d14b12d7 7156 goto err_fd;
2903ff01 7157 group_leader = group.file->private_data;
ac9721f3
PZ
7158 if (flags & PERF_FLAG_FD_OUTPUT)
7159 output_event = group_leader;
7160 if (flags & PERF_FLAG_FD_NO_GROUP)
7161 group_leader = NULL;
7162 }
7163
e5d1367f 7164 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7165 task = find_lively_task_by_vpid(pid);
7166 if (IS_ERR(task)) {
7167 err = PTR_ERR(task);
7168 goto err_group_fd;
7169 }
7170 }
7171
1f4ee503
PZ
7172 if (task && group_leader &&
7173 group_leader->attr.inherit != attr.inherit) {
7174 err = -EINVAL;
7175 goto err_task;
7176 }
7177
fbfc623f
YZ
7178 get_online_cpus();
7179
4dc0da86
AK
7180 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7181 NULL, NULL);
d14b12d7
SE
7182 if (IS_ERR(event)) {
7183 err = PTR_ERR(event);
1f4ee503 7184 goto err_cpus;
d14b12d7
SE
7185 }
7186
e5d1367f
SE
7187 if (flags & PERF_FLAG_PID_CGROUP) {
7188 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7189 if (err) {
7190 __free_event(event);
1f4ee503 7191 goto err_cpus;
766d6c07 7192 }
e5d1367f
SE
7193 }
7194
53b25335
VW
7195 if (is_sampling_event(event)) {
7196 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7197 err = -ENOTSUPP;
7198 goto err_alloc;
7199 }
7200 }
7201
766d6c07
FW
7202 account_event(event);
7203
89a1e187
PZ
7204 /*
7205 * Special case software events and allow them to be part of
7206 * any hardware group.
7207 */
7208 pmu = event->pmu;
b04243ef
PZ
7209
7210 if (group_leader &&
7211 (is_software_event(event) != is_software_event(group_leader))) {
7212 if (is_software_event(event)) {
7213 /*
7214 * If event and group_leader are not both a software
7215 * event, and event is, then group leader is not.
7216 *
7217 * Allow the addition of software events to !software
7218 * groups, this is safe because software events never
7219 * fail to schedule.
7220 */
7221 pmu = group_leader->pmu;
7222 } else if (is_software_event(group_leader) &&
7223 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7224 /*
7225 * In case the group is a pure software group, and we
7226 * try to add a hardware event, move the whole group to
7227 * the hardware context.
7228 */
7229 move_group = 1;
7230 }
7231 }
89a1e187
PZ
7232
7233 /*
7234 * Get the target context (task or percpu):
7235 */
e2d37cd2 7236 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7237 if (IS_ERR(ctx)) {
7238 err = PTR_ERR(ctx);
c6be5a5c 7239 goto err_alloc;
89a1e187
PZ
7240 }
7241
fd1edb3a
PZ
7242 if (task) {
7243 put_task_struct(task);
7244 task = NULL;
7245 }
7246
ccff286d 7247 /*
cdd6c482 7248 * Look up the group leader (we will attach this event to it):
04289bb9 7249 */
ac9721f3 7250 if (group_leader) {
dc86cabe 7251 err = -EINVAL;
04289bb9 7252
04289bb9 7253 /*
ccff286d
IM
7254 * Do not allow a recursive hierarchy (this new sibling
7255 * becoming part of another group-sibling):
7256 */
7257 if (group_leader->group_leader != group_leader)
c3f00c70 7258 goto err_context;
ccff286d
IM
7259 /*
7260 * Do not allow to attach to a group in a different
7261 * task or CPU context:
04289bb9 7262 */
b04243ef
PZ
7263 if (move_group) {
7264 if (group_leader->ctx->type != ctx->type)
7265 goto err_context;
7266 } else {
7267 if (group_leader->ctx != ctx)
7268 goto err_context;
7269 }
7270
3b6f9e5c
PM
7271 /*
7272 * Only a group leader can be exclusive or pinned
7273 */
0d48696f 7274 if (attr.exclusive || attr.pinned)
c3f00c70 7275 goto err_context;
ac9721f3
PZ
7276 }
7277
7278 if (output_event) {
7279 err = perf_event_set_output(event, output_event);
7280 if (err)
c3f00c70 7281 goto err_context;
ac9721f3 7282 }
0793a61d 7283
a21b0b35
YD
7284 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7285 f_flags);
ea635c64
AV
7286 if (IS_ERR(event_file)) {
7287 err = PTR_ERR(event_file);
c3f00c70 7288 goto err_context;
ea635c64 7289 }
9b51f66d 7290
b04243ef
PZ
7291 if (move_group) {
7292 struct perf_event_context *gctx = group_leader->ctx;
7293
7294 mutex_lock(&gctx->mutex);
46ce0fe9 7295 perf_remove_from_context(group_leader, false);
0231bb53
JO
7296
7297 /*
7298 * Removing from the context ends up with disabled
7299 * event. What we want here is event in the initial
7300 * startup state, ready to be add into new context.
7301 */
7302 perf_event__state_init(group_leader);
b04243ef
PZ
7303 list_for_each_entry(sibling, &group_leader->sibling_list,
7304 group_entry) {
46ce0fe9 7305 perf_remove_from_context(sibling, false);
0231bb53 7306 perf_event__state_init(sibling);
b04243ef
PZ
7307 put_ctx(gctx);
7308 }
7309 mutex_unlock(&gctx->mutex);
7310 put_ctx(gctx);
ea635c64 7311 }
9b51f66d 7312
ad3a37de 7313 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7314 mutex_lock(&ctx->mutex);
b04243ef
PZ
7315
7316 if (move_group) {
0cda4c02 7317 synchronize_rcu();
e2d37cd2 7318 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7319 get_ctx(ctx);
7320 list_for_each_entry(sibling, &group_leader->sibling_list,
7321 group_entry) {
e2d37cd2 7322 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7323 get_ctx(ctx);
7324 }
7325 }
7326
e2d37cd2 7327 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7328 perf_unpin_context(ctx);
d859e29f 7329 mutex_unlock(&ctx->mutex);
9b51f66d 7330
fbfc623f
YZ
7331 put_online_cpus();
7332
cdd6c482 7333 event->owner = current;
8882135b 7334
cdd6c482
IM
7335 mutex_lock(&current->perf_event_mutex);
7336 list_add_tail(&event->owner_entry, &current->perf_event_list);
7337 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7338
c320c7b7
ACM
7339 /*
7340 * Precalculate sample_data sizes
7341 */
7342 perf_event__header_size(event);
6844c09d 7343 perf_event__id_header_size(event);
c320c7b7 7344
8a49542c
PZ
7345 /*
7346 * Drop the reference on the group_event after placing the
7347 * new event on the sibling_list. This ensures destruction
7348 * of the group leader will find the pointer to itself in
7349 * perf_group_detach().
7350 */
2903ff01 7351 fdput(group);
ea635c64
AV
7352 fd_install(event_fd, event_file);
7353 return event_fd;
0793a61d 7354
c3f00c70 7355err_context:
fe4b04fa 7356 perf_unpin_context(ctx);
ea635c64 7357 put_ctx(ctx);
c6be5a5c 7358err_alloc:
ea635c64 7359 free_event(event);
1f4ee503 7360err_cpus:
fbfc623f 7361 put_online_cpus();
1f4ee503 7362err_task:
e7d0bc04
PZ
7363 if (task)
7364 put_task_struct(task);
89a1e187 7365err_group_fd:
2903ff01 7366 fdput(group);
ea635c64
AV
7367err_fd:
7368 put_unused_fd(event_fd);
dc86cabe 7369 return err;
0793a61d
TG
7370}
7371
fb0459d7
AV
7372/**
7373 * perf_event_create_kernel_counter
7374 *
7375 * @attr: attributes of the counter to create
7376 * @cpu: cpu in which the counter is bound
38a81da2 7377 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7378 */
7379struct perf_event *
7380perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7381 struct task_struct *task,
4dc0da86
AK
7382 perf_overflow_handler_t overflow_handler,
7383 void *context)
fb0459d7 7384{
fb0459d7 7385 struct perf_event_context *ctx;
c3f00c70 7386 struct perf_event *event;
fb0459d7 7387 int err;
d859e29f 7388
fb0459d7
AV
7389 /*
7390 * Get the target context (task or percpu):
7391 */
d859e29f 7392
4dc0da86
AK
7393 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7394 overflow_handler, context);
c3f00c70
PZ
7395 if (IS_ERR(event)) {
7396 err = PTR_ERR(event);
7397 goto err;
7398 }
d859e29f 7399
766d6c07
FW
7400 account_event(event);
7401
38a81da2 7402 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7403 if (IS_ERR(ctx)) {
7404 err = PTR_ERR(ctx);
c3f00c70 7405 goto err_free;
d859e29f 7406 }
fb0459d7 7407
fb0459d7
AV
7408 WARN_ON_ONCE(ctx->parent_ctx);
7409 mutex_lock(&ctx->mutex);
7410 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7411 perf_unpin_context(ctx);
fb0459d7
AV
7412 mutex_unlock(&ctx->mutex);
7413
fb0459d7
AV
7414 return event;
7415
c3f00c70
PZ
7416err_free:
7417 free_event(event);
7418err:
c6567f64 7419 return ERR_PTR(err);
9b51f66d 7420}
fb0459d7 7421EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7422
0cda4c02
YZ
7423void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7424{
7425 struct perf_event_context *src_ctx;
7426 struct perf_event_context *dst_ctx;
7427 struct perf_event *event, *tmp;
7428 LIST_HEAD(events);
7429
7430 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7431 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7432
7433 mutex_lock(&src_ctx->mutex);
7434 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7435 event_entry) {
46ce0fe9 7436 perf_remove_from_context(event, false);
9a545de0 7437 unaccount_event_cpu(event, src_cpu);
0cda4c02 7438 put_ctx(src_ctx);
9886167d 7439 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7440 }
7441 mutex_unlock(&src_ctx->mutex);
7442
7443 synchronize_rcu();
7444
7445 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7446 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7447 list_del(&event->migrate_entry);
0cda4c02
YZ
7448 if (event->state >= PERF_EVENT_STATE_OFF)
7449 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7450 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7451 perf_install_in_context(dst_ctx, event, dst_cpu);
7452 get_ctx(dst_ctx);
7453 }
7454 mutex_unlock(&dst_ctx->mutex);
7455}
7456EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7457
cdd6c482 7458static void sync_child_event(struct perf_event *child_event,
38b200d6 7459 struct task_struct *child)
d859e29f 7460{
cdd6c482 7461 struct perf_event *parent_event = child_event->parent;
8bc20959 7462 u64 child_val;
d859e29f 7463
cdd6c482
IM
7464 if (child_event->attr.inherit_stat)
7465 perf_event_read_event(child_event, child);
38b200d6 7466
b5e58793 7467 child_val = perf_event_count(child_event);
d859e29f
PM
7468
7469 /*
7470 * Add back the child's count to the parent's count:
7471 */
a6e6dea6 7472 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7473 atomic64_add(child_event->total_time_enabled,
7474 &parent_event->child_total_time_enabled);
7475 atomic64_add(child_event->total_time_running,
7476 &parent_event->child_total_time_running);
d859e29f
PM
7477
7478 /*
cdd6c482 7479 * Remove this event from the parent's list
d859e29f 7480 */
cdd6c482
IM
7481 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7482 mutex_lock(&parent_event->child_mutex);
7483 list_del_init(&child_event->child_list);
7484 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7485
7486 /*
cdd6c482 7487 * Release the parent event, if this was the last
d859e29f
PM
7488 * reference to it.
7489 */
a6fa941d 7490 put_event(parent_event);
d859e29f
PM
7491}
7492
9b51f66d 7493static void
cdd6c482
IM
7494__perf_event_exit_task(struct perf_event *child_event,
7495 struct perf_event_context *child_ctx,
38b200d6 7496 struct task_struct *child)
9b51f66d 7497{
1903d50c
PZ
7498 /*
7499 * Do not destroy the 'original' grouping; because of the context
7500 * switch optimization the original events could've ended up in a
7501 * random child task.
7502 *
7503 * If we were to destroy the original group, all group related
7504 * operations would cease to function properly after this random
7505 * child dies.
7506 *
7507 * Do destroy all inherited groups, we don't care about those
7508 * and being thorough is better.
7509 */
7510 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7511
9b51f66d 7512 /*
38b435b1 7513 * It can happen that the parent exits first, and has events
9b51f66d 7514 * that are still around due to the child reference. These
38b435b1 7515 * events need to be zapped.
9b51f66d 7516 */
38b435b1 7517 if (child_event->parent) {
cdd6c482
IM
7518 sync_child_event(child_event, child);
7519 free_event(child_event);
4bcf349a 7520 }
9b51f66d
IM
7521}
7522
8dc85d54 7523static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7524{
ebf905fc 7525 struct perf_event *child_event, *next;
4a1c0f26 7526 struct perf_event_context *child_ctx, *parent_ctx;
a63eaf34 7527 unsigned long flags;
9b51f66d 7528
8dc85d54 7529 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7530 perf_event_task(child, NULL, 0);
9b51f66d 7531 return;
9f498cc5 7532 }
9b51f66d 7533
a63eaf34 7534 local_irq_save(flags);
ad3a37de
PM
7535 /*
7536 * We can't reschedule here because interrupts are disabled,
7537 * and either child is current or it is a task that can't be
7538 * scheduled, so we are now safe from rescheduling changing
7539 * our context.
7540 */
806839b2 7541 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7542
7543 /*
7544 * Take the context lock here so that if find_get_context is
cdd6c482 7545 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7546 * incremented the context's refcount before we do put_ctx below.
7547 */
e625cce1 7548 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7549 task_ctx_sched_out(child_ctx);
8dc85d54 7550 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26
PZ
7551
7552 /*
7553 * In order to avoid freeing: child_ctx->parent_ctx->task
7554 * under perf_event_context::lock, grab another reference.
7555 */
7556 parent_ctx = child_ctx->parent_ctx;
7557 if (parent_ctx)
7558 get_ctx(parent_ctx);
7559
71a851b4
PZ
7560 /*
7561 * If this context is a clone; unclone it so it can't get
7562 * swapped to another process while we're removing all
cdd6c482 7563 * the events from it.
71a851b4
PZ
7564 */
7565 unclone_ctx(child_ctx);
5e942bb3 7566 update_context_time(child_ctx);
e625cce1 7567 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7568
4a1c0f26
PZ
7569 /*
7570 * Now that we no longer hold perf_event_context::lock, drop
7571 * our extra child_ctx->parent_ctx reference.
7572 */
7573 if (parent_ctx)
7574 put_ctx(parent_ctx);
7575
9f498cc5 7576 /*
cdd6c482
IM
7577 * Report the task dead after unscheduling the events so that we
7578 * won't get any samples after PERF_RECORD_EXIT. We can however still
7579 * get a few PERF_RECORD_READ events.
9f498cc5 7580 */
cdd6c482 7581 perf_event_task(child, child_ctx, 0);
a63eaf34 7582
66fff224
PZ
7583 /*
7584 * We can recurse on the same lock type through:
7585 *
cdd6c482
IM
7586 * __perf_event_exit_task()
7587 * sync_child_event()
a6fa941d
AV
7588 * put_event()
7589 * mutex_lock(&ctx->mutex)
66fff224
PZ
7590 *
7591 * But since its the parent context it won't be the same instance.
7592 */
a0507c84 7593 mutex_lock(&child_ctx->mutex);
a63eaf34 7594
ebf905fc 7595 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7596 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7597
a63eaf34
PM
7598 mutex_unlock(&child_ctx->mutex);
7599
7600 put_ctx(child_ctx);
9b51f66d
IM
7601}
7602
8dc85d54
PZ
7603/*
7604 * When a child task exits, feed back event values to parent events.
7605 */
7606void perf_event_exit_task(struct task_struct *child)
7607{
8882135b 7608 struct perf_event *event, *tmp;
8dc85d54
PZ
7609 int ctxn;
7610
8882135b
PZ
7611 mutex_lock(&child->perf_event_mutex);
7612 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7613 owner_entry) {
7614 list_del_init(&event->owner_entry);
7615
7616 /*
7617 * Ensure the list deletion is visible before we clear
7618 * the owner, closes a race against perf_release() where
7619 * we need to serialize on the owner->perf_event_mutex.
7620 */
7621 smp_wmb();
7622 event->owner = NULL;
7623 }
7624 mutex_unlock(&child->perf_event_mutex);
7625
8dc85d54
PZ
7626 for_each_task_context_nr(ctxn)
7627 perf_event_exit_task_context(child, ctxn);
7628}
7629
889ff015
FW
7630static void perf_free_event(struct perf_event *event,
7631 struct perf_event_context *ctx)
7632{
7633 struct perf_event *parent = event->parent;
7634
7635 if (WARN_ON_ONCE(!parent))
7636 return;
7637
7638 mutex_lock(&parent->child_mutex);
7639 list_del_init(&event->child_list);
7640 mutex_unlock(&parent->child_mutex);
7641
a6fa941d 7642 put_event(parent);
889ff015 7643
8a49542c 7644 perf_group_detach(event);
889ff015
FW
7645 list_del_event(event, ctx);
7646 free_event(event);
7647}
7648
bbbee908
PZ
7649/*
7650 * free an unexposed, unused context as created by inheritance by
8dc85d54 7651 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7652 */
cdd6c482 7653void perf_event_free_task(struct task_struct *task)
bbbee908 7654{
8dc85d54 7655 struct perf_event_context *ctx;
cdd6c482 7656 struct perf_event *event, *tmp;
8dc85d54 7657 int ctxn;
bbbee908 7658
8dc85d54
PZ
7659 for_each_task_context_nr(ctxn) {
7660 ctx = task->perf_event_ctxp[ctxn];
7661 if (!ctx)
7662 continue;
bbbee908 7663
8dc85d54 7664 mutex_lock(&ctx->mutex);
bbbee908 7665again:
8dc85d54
PZ
7666 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7667 group_entry)
7668 perf_free_event(event, ctx);
bbbee908 7669
8dc85d54
PZ
7670 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7671 group_entry)
7672 perf_free_event(event, ctx);
bbbee908 7673
8dc85d54
PZ
7674 if (!list_empty(&ctx->pinned_groups) ||
7675 !list_empty(&ctx->flexible_groups))
7676 goto again;
bbbee908 7677
8dc85d54 7678 mutex_unlock(&ctx->mutex);
bbbee908 7679
8dc85d54
PZ
7680 put_ctx(ctx);
7681 }
889ff015
FW
7682}
7683
4e231c79
PZ
7684void perf_event_delayed_put(struct task_struct *task)
7685{
7686 int ctxn;
7687
7688 for_each_task_context_nr(ctxn)
7689 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7690}
7691
97dee4f3
PZ
7692/*
7693 * inherit a event from parent task to child task:
7694 */
7695static struct perf_event *
7696inherit_event(struct perf_event *parent_event,
7697 struct task_struct *parent,
7698 struct perf_event_context *parent_ctx,
7699 struct task_struct *child,
7700 struct perf_event *group_leader,
7701 struct perf_event_context *child_ctx)
7702{
7703 struct perf_event *child_event;
cee010ec 7704 unsigned long flags;
97dee4f3
PZ
7705
7706 /*
7707 * Instead of creating recursive hierarchies of events,
7708 * we link inherited events back to the original parent,
7709 * which has a filp for sure, which we use as the reference
7710 * count:
7711 */
7712 if (parent_event->parent)
7713 parent_event = parent_event->parent;
7714
7715 child_event = perf_event_alloc(&parent_event->attr,
7716 parent_event->cpu,
d580ff86 7717 child,
97dee4f3 7718 group_leader, parent_event,
4dc0da86 7719 NULL, NULL);
97dee4f3
PZ
7720 if (IS_ERR(child_event))
7721 return child_event;
a6fa941d
AV
7722
7723 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7724 free_event(child_event);
7725 return NULL;
7726 }
7727
97dee4f3
PZ
7728 get_ctx(child_ctx);
7729
7730 /*
7731 * Make the child state follow the state of the parent event,
7732 * not its attr.disabled bit. We hold the parent's mutex,
7733 * so we won't race with perf_event_{en, dis}able_family.
7734 */
7735 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7736 child_event->state = PERF_EVENT_STATE_INACTIVE;
7737 else
7738 child_event->state = PERF_EVENT_STATE_OFF;
7739
7740 if (parent_event->attr.freq) {
7741 u64 sample_period = parent_event->hw.sample_period;
7742 struct hw_perf_event *hwc = &child_event->hw;
7743
7744 hwc->sample_period = sample_period;
7745 hwc->last_period = sample_period;
7746
7747 local64_set(&hwc->period_left, sample_period);
7748 }
7749
7750 child_event->ctx = child_ctx;
7751 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7752 child_event->overflow_handler_context
7753 = parent_event->overflow_handler_context;
97dee4f3 7754
614b6780
TG
7755 /*
7756 * Precalculate sample_data sizes
7757 */
7758 perf_event__header_size(child_event);
6844c09d 7759 perf_event__id_header_size(child_event);
614b6780 7760
97dee4f3
PZ
7761 /*
7762 * Link it up in the child's context:
7763 */
cee010ec 7764 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7765 add_event_to_ctx(child_event, child_ctx);
cee010ec 7766 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7767
97dee4f3
PZ
7768 /*
7769 * Link this into the parent event's child list
7770 */
7771 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7772 mutex_lock(&parent_event->child_mutex);
7773 list_add_tail(&child_event->child_list, &parent_event->child_list);
7774 mutex_unlock(&parent_event->child_mutex);
7775
7776 return child_event;
7777}
7778
7779static int inherit_group(struct perf_event *parent_event,
7780 struct task_struct *parent,
7781 struct perf_event_context *parent_ctx,
7782 struct task_struct *child,
7783 struct perf_event_context *child_ctx)
7784{
7785 struct perf_event *leader;
7786 struct perf_event *sub;
7787 struct perf_event *child_ctr;
7788
7789 leader = inherit_event(parent_event, parent, parent_ctx,
7790 child, NULL, child_ctx);
7791 if (IS_ERR(leader))
7792 return PTR_ERR(leader);
7793 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7794 child_ctr = inherit_event(sub, parent, parent_ctx,
7795 child, leader, child_ctx);
7796 if (IS_ERR(child_ctr))
7797 return PTR_ERR(child_ctr);
7798 }
7799 return 0;
889ff015
FW
7800}
7801
7802static int
7803inherit_task_group(struct perf_event *event, struct task_struct *parent,
7804 struct perf_event_context *parent_ctx,
8dc85d54 7805 struct task_struct *child, int ctxn,
889ff015
FW
7806 int *inherited_all)
7807{
7808 int ret;
8dc85d54 7809 struct perf_event_context *child_ctx;
889ff015
FW
7810
7811 if (!event->attr.inherit) {
7812 *inherited_all = 0;
7813 return 0;
bbbee908
PZ
7814 }
7815
fe4b04fa 7816 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7817 if (!child_ctx) {
7818 /*
7819 * This is executed from the parent task context, so
7820 * inherit events that have been marked for cloning.
7821 * First allocate and initialize a context for the
7822 * child.
7823 */
bbbee908 7824
734df5ab 7825 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7826 if (!child_ctx)
7827 return -ENOMEM;
bbbee908 7828
8dc85d54 7829 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7830 }
7831
7832 ret = inherit_group(event, parent, parent_ctx,
7833 child, child_ctx);
7834
7835 if (ret)
7836 *inherited_all = 0;
7837
7838 return ret;
bbbee908
PZ
7839}
7840
9b51f66d 7841/*
cdd6c482 7842 * Initialize the perf_event context in task_struct
9b51f66d 7843 */
985c8dcb 7844static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7845{
889ff015 7846 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7847 struct perf_event_context *cloned_ctx;
7848 struct perf_event *event;
9b51f66d 7849 struct task_struct *parent = current;
564c2b21 7850 int inherited_all = 1;
dddd3379 7851 unsigned long flags;
6ab423e0 7852 int ret = 0;
9b51f66d 7853
8dc85d54 7854 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7855 return 0;
7856
ad3a37de 7857 /*
25346b93
PM
7858 * If the parent's context is a clone, pin it so it won't get
7859 * swapped under us.
ad3a37de 7860 */
8dc85d54 7861 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7862 if (!parent_ctx)
7863 return 0;
25346b93 7864
ad3a37de
PM
7865 /*
7866 * No need to check if parent_ctx != NULL here; since we saw
7867 * it non-NULL earlier, the only reason for it to become NULL
7868 * is if we exit, and since we're currently in the middle of
7869 * a fork we can't be exiting at the same time.
7870 */
ad3a37de 7871
9b51f66d
IM
7872 /*
7873 * Lock the parent list. No need to lock the child - not PID
7874 * hashed yet and not running, so nobody can access it.
7875 */
d859e29f 7876 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7877
7878 /*
7879 * We dont have to disable NMIs - we are only looking at
7880 * the list, not manipulating it:
7881 */
889ff015 7882 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7883 ret = inherit_task_group(event, parent, parent_ctx,
7884 child, ctxn, &inherited_all);
889ff015
FW
7885 if (ret)
7886 break;
7887 }
b93f7978 7888
dddd3379
TG
7889 /*
7890 * We can't hold ctx->lock when iterating the ->flexible_group list due
7891 * to allocations, but we need to prevent rotation because
7892 * rotate_ctx() will change the list from interrupt context.
7893 */
7894 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7895 parent_ctx->rotate_disable = 1;
7896 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7897
889ff015 7898 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7899 ret = inherit_task_group(event, parent, parent_ctx,
7900 child, ctxn, &inherited_all);
889ff015 7901 if (ret)
9b51f66d 7902 break;
564c2b21
PM
7903 }
7904
dddd3379
TG
7905 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7906 parent_ctx->rotate_disable = 0;
dddd3379 7907
8dc85d54 7908 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7909
05cbaa28 7910 if (child_ctx && inherited_all) {
564c2b21
PM
7911 /*
7912 * Mark the child context as a clone of the parent
7913 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7914 *
7915 * Note that if the parent is a clone, the holding of
7916 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7917 */
c5ed5145 7918 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7919 if (cloned_ctx) {
7920 child_ctx->parent_ctx = cloned_ctx;
25346b93 7921 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7922 } else {
7923 child_ctx->parent_ctx = parent_ctx;
7924 child_ctx->parent_gen = parent_ctx->generation;
7925 }
7926 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7927 }
7928
c5ed5145 7929 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7930 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7931
25346b93 7932 perf_unpin_context(parent_ctx);
fe4b04fa 7933 put_ctx(parent_ctx);
ad3a37de 7934
6ab423e0 7935 return ret;
9b51f66d
IM
7936}
7937
8dc85d54
PZ
7938/*
7939 * Initialize the perf_event context in task_struct
7940 */
7941int perf_event_init_task(struct task_struct *child)
7942{
7943 int ctxn, ret;
7944
8550d7cb
ON
7945 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7946 mutex_init(&child->perf_event_mutex);
7947 INIT_LIST_HEAD(&child->perf_event_list);
7948
8dc85d54
PZ
7949 for_each_task_context_nr(ctxn) {
7950 ret = perf_event_init_context(child, ctxn);
7951 if (ret)
7952 return ret;
7953 }
7954
7955 return 0;
7956}
7957
220b140b
PM
7958static void __init perf_event_init_all_cpus(void)
7959{
b28ab83c 7960 struct swevent_htable *swhash;
220b140b 7961 int cpu;
220b140b
PM
7962
7963 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7964 swhash = &per_cpu(swevent_htable, cpu);
7965 mutex_init(&swhash->hlist_mutex);
e9d2b064 7966 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7967 }
7968}
7969
0db0628d 7970static void perf_event_init_cpu(int cpu)
0793a61d 7971{
108b02cf 7972 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7973
b28ab83c 7974 mutex_lock(&swhash->hlist_mutex);
39af6b16 7975 swhash->online = true;
4536e4d1 7976 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7977 struct swevent_hlist *hlist;
7978
b28ab83c
PZ
7979 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7980 WARN_ON(!hlist);
7981 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7982 }
b28ab83c 7983 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7984}
7985
c277443c 7986#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7987static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7988{
e9d2b064
PZ
7989 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7990
7991 WARN_ON(!irqs_disabled());
7992
7993 list_del_init(&cpuctx->rotation_list);
7994}
7995
108b02cf 7996static void __perf_event_exit_context(void *__info)
0793a61d 7997{
46ce0fe9 7998 struct remove_event re = { .detach_group = false };
108b02cf 7999 struct perf_event_context *ctx = __info;
0793a61d 8000
108b02cf 8001 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 8002
e3703f8c 8003 rcu_read_lock();
46ce0fe9
PZ
8004 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8005 __perf_remove_from_context(&re);
e3703f8c 8006 rcu_read_unlock();
0793a61d 8007}
108b02cf
PZ
8008
8009static void perf_event_exit_cpu_context(int cpu)
8010{
8011 struct perf_event_context *ctx;
8012 struct pmu *pmu;
8013 int idx;
8014
8015 idx = srcu_read_lock(&pmus_srcu);
8016 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8017 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8018
8019 mutex_lock(&ctx->mutex);
8020 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8021 mutex_unlock(&ctx->mutex);
8022 }
8023 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8024}
8025
cdd6c482 8026static void perf_event_exit_cpu(int cpu)
0793a61d 8027{
b28ab83c 8028 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8029
e3703f8c
PZ
8030 perf_event_exit_cpu_context(cpu);
8031
b28ab83c 8032 mutex_lock(&swhash->hlist_mutex);
39af6b16 8033 swhash->online = false;
b28ab83c
PZ
8034 swevent_hlist_release(swhash);
8035 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8036}
8037#else
cdd6c482 8038static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8039#endif
8040
c277443c
PZ
8041static int
8042perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8043{
8044 int cpu;
8045
8046 for_each_online_cpu(cpu)
8047 perf_event_exit_cpu(cpu);
8048
8049 return NOTIFY_OK;
8050}
8051
8052/*
8053 * Run the perf reboot notifier at the very last possible moment so that
8054 * the generic watchdog code runs as long as possible.
8055 */
8056static struct notifier_block perf_reboot_notifier = {
8057 .notifier_call = perf_reboot,
8058 .priority = INT_MIN,
8059};
8060
0db0628d 8061static int
0793a61d
TG
8062perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8063{
8064 unsigned int cpu = (long)hcpu;
8065
4536e4d1 8066 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8067
8068 case CPU_UP_PREPARE:
5e11637e 8069 case CPU_DOWN_FAILED:
cdd6c482 8070 perf_event_init_cpu(cpu);
0793a61d
TG
8071 break;
8072
5e11637e 8073 case CPU_UP_CANCELED:
0793a61d 8074 case CPU_DOWN_PREPARE:
cdd6c482 8075 perf_event_exit_cpu(cpu);
0793a61d 8076 break;
0793a61d
TG
8077 default:
8078 break;
8079 }
8080
8081 return NOTIFY_OK;
8082}
8083
cdd6c482 8084void __init perf_event_init(void)
0793a61d 8085{
3c502e7a
JW
8086 int ret;
8087
2e80a82a
PZ
8088 idr_init(&pmu_idr);
8089
220b140b 8090 perf_event_init_all_cpus();
b0a873eb 8091 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8092 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8093 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8094 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8095 perf_tp_register();
8096 perf_cpu_notifier(perf_cpu_notify);
c277443c 8097 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8098
8099 ret = init_hw_breakpoint();
8100 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8101
8102 /* do not patch jump label more than once per second */
8103 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8104
8105 /*
8106 * Build time assertion that we keep the data_head at the intended
8107 * location. IOW, validation we got the __reserved[] size right.
8108 */
8109 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8110 != 1024);
0793a61d 8111}
abe43400
PZ
8112
8113static int __init perf_event_sysfs_init(void)
8114{
8115 struct pmu *pmu;
8116 int ret;
8117
8118 mutex_lock(&pmus_lock);
8119
8120 ret = bus_register(&pmu_bus);
8121 if (ret)
8122 goto unlock;
8123
8124 list_for_each_entry(pmu, &pmus, entry) {
8125 if (!pmu->name || pmu->type < 0)
8126 continue;
8127
8128 ret = pmu_dev_alloc(pmu);
8129 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8130 }
8131 pmu_bus_running = 1;
8132 ret = 0;
8133
8134unlock:
8135 mutex_unlock(&pmus_lock);
8136
8137 return ret;
8138}
8139device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8140
8141#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8142static struct cgroup_subsys_state *
8143perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8144{
8145 struct perf_cgroup *jc;
e5d1367f 8146
1b15d055 8147 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8148 if (!jc)
8149 return ERR_PTR(-ENOMEM);
8150
e5d1367f
SE
8151 jc->info = alloc_percpu(struct perf_cgroup_info);
8152 if (!jc->info) {
8153 kfree(jc);
8154 return ERR_PTR(-ENOMEM);
8155 }
8156
e5d1367f
SE
8157 return &jc->css;
8158}
8159
eb95419b 8160static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8161{
eb95419b
TH
8162 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8163
e5d1367f
SE
8164 free_percpu(jc->info);
8165 kfree(jc);
8166}
8167
8168static int __perf_cgroup_move(void *info)
8169{
8170 struct task_struct *task = info;
8171 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8172 return 0;
8173}
8174
eb95419b
TH
8175static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8176 struct cgroup_taskset *tset)
e5d1367f 8177{
bb9d97b6
TH
8178 struct task_struct *task;
8179
924f0d9a 8180 cgroup_taskset_for_each(task, tset)
bb9d97b6 8181 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8182}
8183
eb95419b
TH
8184static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8185 struct cgroup_subsys_state *old_css,
761b3ef5 8186 struct task_struct *task)
e5d1367f
SE
8187{
8188 /*
8189 * cgroup_exit() is called in the copy_process() failure path.
8190 * Ignore this case since the task hasn't ran yet, this avoids
8191 * trying to poke a half freed task state from generic code.
8192 */
8193 if (!(task->flags & PF_EXITING))
8194 return;
8195
bb9d97b6 8196 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8197}
8198
073219e9 8199struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8200 .css_alloc = perf_cgroup_css_alloc,
8201 .css_free = perf_cgroup_css_free,
e7e7ee2e 8202 .exit = perf_cgroup_exit,
bb9d97b6 8203 .attach = perf_cgroup_attach,
e5d1367f
SE
8204};
8205#endif /* CONFIG_CGROUP_PERF */