perf: Add lockdep assertions
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
0017960f
PZ
129static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133{
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158}
159
f8697762
JO
160#define EVENT_OWNER_KERNEL ((void *) -1)
161
162static bool is_kernel_event(struct perf_event *event)
163{
164 return event->owner == EVENT_OWNER_KERNEL;
165}
166
e5d1367f
SE
167#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
e5d1367f 171
bce38cd5
SE
172/*
173 * branch priv levels that need permission checks
174 */
175#define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
0b3fcf17
SE
179enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183};
184
e5d1367f
SE
185/*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
c5905afb 189struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 190static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 191static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 192
cdd6c482
IM
193static atomic_t nr_mmap_events __read_mostly;
194static atomic_t nr_comm_events __read_mostly;
195static atomic_t nr_task_events __read_mostly;
948b26b6 196static atomic_t nr_freq_events __read_mostly;
45ac1403 197static atomic_t nr_switch_events __read_mostly;
9ee318a7 198
108b02cf
PZ
199static LIST_HEAD(pmus);
200static DEFINE_MUTEX(pmus_lock);
201static struct srcu_struct pmus_srcu;
202
0764771d 203/*
cdd6c482 204 * perf event paranoia level:
0fbdea19
IM
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 207 * 1 - disallow cpu events for unpriv
0fbdea19 208 * 2 - disallow kernel profiling for unpriv
0764771d 209 */
cdd6c482 210int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 211
20443384
FW
212/* Minimum for 512 kiB + 1 user control page */
213int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
214
215/*
cdd6c482 216 * max perf event sample rate
df58ab24 217 */
14c63f17
DH
218#define DEFAULT_MAX_SAMPLE_RATE 100000
219#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220#define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
d9494cb4
PZ
227static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 229
18ab2cd3 230static void update_perf_cpu_limits(void)
14c63f17
DH
231{
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 235 do_div(tmp, 100);
d9494cb4 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 237}
163ec435 238
9e630205
SE
239static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
163ec435
PZ
241int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
723478c8 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255}
256
257int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262{
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
163ec435
PZ
269
270 return 0;
271}
1ccd1549 272
14c63f17
DH
273/*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 280static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 281
6a02ad66 282static void perf_duration_warn(struct irq_work *w)
14c63f17 283{
6a02ad66 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 285 u64 avg_local_sample_len;
e5302920 286 u64 local_samples_len;
6a02ad66 287
4a32fea9 288 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 294 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
295 sysctl_perf_event_sample_rate);
296}
297
298static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300void perf_sample_event_took(u64 sample_len_ns)
301{
d9494cb4 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
14c63f17 305
d9494cb4 306 if (allowed_ns == 0)
14c63f17
DH
307 return;
308
309 /* decay the counter by 1 average sample */
4a32fea9 310 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
4a32fea9 313 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
d9494cb4 322 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
14c63f17 332 update_perf_cpu_limits();
6a02ad66 333
cd578abb
PZ
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
14c63f17
DH
340}
341
cdd6c482 342static atomic64_t perf_event_id;
a96bbc16 343
0b3fcf17
SE
344static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351static void update_context_time(struct perf_event_context *ctx);
352static u64 perf_event_time(struct perf_event *event);
0b3fcf17 353
cdd6c482 354void __weak perf_event_print_debug(void) { }
0793a61d 355
84c79910 356extern __weak const char *perf_pmu_name(void)
0793a61d 357{
84c79910 358 return "pmu";
0793a61d
TG
359}
360
0b3fcf17
SE
361static inline u64 perf_clock(void)
362{
363 return local_clock();
364}
365
34f43927
PZ
366static inline u64 perf_event_clock(struct perf_event *event)
367{
368 return event->clock();
369}
370
e5d1367f
SE
371static inline struct perf_cpu_context *
372__get_cpu_context(struct perf_event_context *ctx)
373{
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375}
376
facc4307
PZ
377static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379{
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383}
384
385static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387{
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391}
392
e5d1367f
SE
393#ifdef CONFIG_CGROUP_PERF
394
e5d1367f
SE
395static inline bool
396perf_cgroup_match(struct perf_event *event)
397{
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
ef824fa1
TH
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
e5d1367f
SE
417}
418
e5d1367f
SE
419static inline void perf_detach_cgroup(struct perf_event *event)
420{
4e2ba650 421 css_put(&event->cgrp->css);
e5d1367f
SE
422 event->cgrp = NULL;
423}
424
425static inline int is_cgroup_event(struct perf_event *event)
426{
427 return event->cgrp != NULL;
428}
429
430static inline u64 perf_cgroup_event_time(struct perf_event *event)
431{
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436}
437
438static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439{
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449}
450
451static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452{
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456}
457
458static inline void update_cgrp_time_from_event(struct perf_event *event)
459{
3f7cce3c
SE
460 struct perf_cgroup *cgrp;
461
e5d1367f 462 /*
3f7cce3c
SE
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
e5d1367f 465 */
3f7cce3c 466 if (!is_cgroup_event(event))
e5d1367f
SE
467 return;
468
614e4c4e 469 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
e5d1367f
SE
475}
476
477static inline void
3f7cce3c
SE
478perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
e5d1367f
SE
480{
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
3f7cce3c
SE
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
490 return;
491
614e4c4e 492 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 493 info = this_cpu_ptr(cgrp->info);
3f7cce3c 494 info->timestamp = ctx->timestamp;
e5d1367f
SE
495}
496
497#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500/*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
18ab2cd3 506static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
507{
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
e5d1367f
SE
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
e5d1367f 528
e5d1367f
SE
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
e566b76e 550 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
614e4c4e
SE
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
e5d1367f 557 */
614e4c4e 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
facc4307
PZ
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 563 }
e5d1367f
SE
564 }
565
e5d1367f
SE
566 local_irq_restore(flags);
567}
568
a8d757ef
SE
569static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
e5d1367f 571{
a8d757ef
SE
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
ddaaf4e2 575 rcu_read_lock();
a8d757ef
SE
576 /*
577 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
a8d757ef 580 */
614e4c4e 581 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
582
583 /*
584 * next is NULL when called from perf_event_enable_on_exec()
585 * that will systematically cause a cgroup_switch()
586 */
587 if (next)
614e4c4e 588 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
589
590 /*
591 * only schedule out current cgroup events if we know
592 * that we are switching to a different cgroup. Otherwise,
593 * do no touch the cgroup events.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
597
598 rcu_read_unlock();
e5d1367f
SE
599}
600
a8d757ef
SE
601static inline void perf_cgroup_sched_in(struct task_struct *prev,
602 struct task_struct *task)
e5d1367f 603{
a8d757ef
SE
604 struct perf_cgroup *cgrp1;
605 struct perf_cgroup *cgrp2 = NULL;
606
ddaaf4e2 607 rcu_read_lock();
a8d757ef
SE
608 /*
609 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
a8d757ef 612 */
614e4c4e 613 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
614
615 /* prev can never be NULL */
614e4c4e 616 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
617
618 /*
619 * only need to schedule in cgroup events if we are changing
620 * cgroup during ctxsw. Cgroup events were not scheduled
621 * out of ctxsw out if that was not the case.
622 */
623 if (cgrp1 != cgrp2)
624 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
625
626 rcu_read_unlock();
e5d1367f
SE
627}
628
629static inline int perf_cgroup_connect(int fd, struct perf_event *event,
630 struct perf_event_attr *attr,
631 struct perf_event *group_leader)
632{
633 struct perf_cgroup *cgrp;
634 struct cgroup_subsys_state *css;
2903ff01
AV
635 struct fd f = fdget(fd);
636 int ret = 0;
e5d1367f 637
2903ff01 638 if (!f.file)
e5d1367f
SE
639 return -EBADF;
640
b583043e 641 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 642 &perf_event_cgrp_subsys);
3db272c0
LZ
643 if (IS_ERR(css)) {
644 ret = PTR_ERR(css);
645 goto out;
646 }
e5d1367f
SE
647
648 cgrp = container_of(css, struct perf_cgroup, css);
649 event->cgrp = cgrp;
650
651 /*
652 * all events in a group must monitor
653 * the same cgroup because a task belongs
654 * to only one perf cgroup at a time
655 */
656 if (group_leader && group_leader->cgrp != cgrp) {
657 perf_detach_cgroup(event);
658 ret = -EINVAL;
e5d1367f 659 }
3db272c0 660out:
2903ff01 661 fdput(f);
e5d1367f
SE
662 return ret;
663}
664
665static inline void
666perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
667{
668 struct perf_cgroup_info *t;
669 t = per_cpu_ptr(event->cgrp->info, event->cpu);
670 event->shadow_ctx_time = now - t->timestamp;
671}
672
673static inline void
674perf_cgroup_defer_enabled(struct perf_event *event)
675{
676 /*
677 * when the current task's perf cgroup does not match
678 * the event's, we need to remember to call the
679 * perf_mark_enable() function the first time a task with
680 * a matching perf cgroup is scheduled in.
681 */
682 if (is_cgroup_event(event) && !perf_cgroup_match(event))
683 event->cgrp_defer_enabled = 1;
684}
685
686static inline void
687perf_cgroup_mark_enabled(struct perf_event *event,
688 struct perf_event_context *ctx)
689{
690 struct perf_event *sub;
691 u64 tstamp = perf_event_time(event);
692
693 if (!event->cgrp_defer_enabled)
694 return;
695
696 event->cgrp_defer_enabled = 0;
697
698 event->tstamp_enabled = tstamp - event->total_time_enabled;
699 list_for_each_entry(sub, &event->sibling_list, group_entry) {
700 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
701 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
702 sub->cgrp_defer_enabled = 0;
703 }
704 }
705}
706#else /* !CONFIG_CGROUP_PERF */
707
708static inline bool
709perf_cgroup_match(struct perf_event *event)
710{
711 return true;
712}
713
714static inline void perf_detach_cgroup(struct perf_event *event)
715{}
716
717static inline int is_cgroup_event(struct perf_event *event)
718{
719 return 0;
720}
721
722static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
723{
724 return 0;
725}
726
727static inline void update_cgrp_time_from_event(struct perf_event *event)
728{
729}
730
731static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732{
733}
734
a8d757ef
SE
735static inline void perf_cgroup_sched_out(struct task_struct *task,
736 struct task_struct *next)
e5d1367f
SE
737{
738}
739
a8d757ef
SE
740static inline void perf_cgroup_sched_in(struct task_struct *prev,
741 struct task_struct *task)
e5d1367f
SE
742{
743}
744
745static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
746 struct perf_event_attr *attr,
747 struct perf_event *group_leader)
748{
749 return -EINVAL;
750}
751
752static inline void
3f7cce3c
SE
753perf_cgroup_set_timestamp(struct task_struct *task,
754 struct perf_event_context *ctx)
e5d1367f
SE
755{
756}
757
758void
759perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
760{
761}
762
763static inline void
764perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
765{
766}
767
768static inline u64 perf_cgroup_event_time(struct perf_event *event)
769{
770 return 0;
771}
772
773static inline void
774perf_cgroup_defer_enabled(struct perf_event *event)
775{
776}
777
778static inline void
779perf_cgroup_mark_enabled(struct perf_event *event,
780 struct perf_event_context *ctx)
781{
782}
783#endif
784
9e630205
SE
785/*
786 * set default to be dependent on timer tick just
787 * like original code
788 */
789#define PERF_CPU_HRTIMER (1000 / HZ)
790/*
791 * function must be called with interrupts disbled
792 */
272325c4 793static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
794{
795 struct perf_cpu_context *cpuctx;
9e630205
SE
796 int rotations = 0;
797
798 WARN_ON(!irqs_disabled());
799
800 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
801 rotations = perf_rotate_context(cpuctx);
802
4cfafd30
PZ
803 raw_spin_lock(&cpuctx->hrtimer_lock);
804 if (rotations)
9e630205 805 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
806 else
807 cpuctx->hrtimer_active = 0;
808 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 809
4cfafd30 810 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
811}
812
272325c4 813static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 814{
272325c4 815 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 816 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 817 u64 interval;
9e630205
SE
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
62b85639
SE
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
272325c4
PZ
827 interval = pmu->hrtimer_interval_ms;
828 if (interval < 1)
829 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 830
272325c4 831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 832
4cfafd30
PZ
833 raw_spin_lock_init(&cpuctx->hrtimer_lock);
834 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 835 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
836}
837
272325c4 838static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 839{
272325c4 840 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 841 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 842 unsigned long flags;
9e630205
SE
843
844 /* not for SW PMU */
845 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 846 return 0;
9e630205 847
4cfafd30
PZ
848 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
849 if (!cpuctx->hrtimer_active) {
850 cpuctx->hrtimer_active = 1;
851 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
852 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
853 }
854 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 855
272325c4 856 return 0;
9e630205
SE
857}
858
33696fc0 859void perf_pmu_disable(struct pmu *pmu)
9e35ad38 860{
33696fc0
PZ
861 int *count = this_cpu_ptr(pmu->pmu_disable_count);
862 if (!(*count)++)
863 pmu->pmu_disable(pmu);
9e35ad38 864}
9e35ad38 865
33696fc0 866void perf_pmu_enable(struct pmu *pmu)
9e35ad38 867{
33696fc0
PZ
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!--(*count))
870 pmu->pmu_enable(pmu);
9e35ad38 871}
9e35ad38 872
2fde4f94 873static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
874
875/*
2fde4f94
MR
876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877 * perf_event_task_tick() are fully serialized because they're strictly cpu
878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 880 */
2fde4f94 881static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 882{
2fde4f94 883 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 884
e9d2b064 885 WARN_ON(!irqs_disabled());
b5ab4cd5 886
2fde4f94
MR
887 WARN_ON(!list_empty(&ctx->active_ctx_list));
888
889 list_add(&ctx->active_ctx_list, head);
890}
891
892static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
893{
894 WARN_ON(!irqs_disabled());
895
896 WARN_ON(list_empty(&ctx->active_ctx_list));
897
898 list_del_init(&ctx->active_ctx_list);
9e35ad38 899}
9e35ad38 900
cdd6c482 901static void get_ctx(struct perf_event_context *ctx)
a63eaf34 902{
e5289d4a 903 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
904}
905
4af57ef2
YZ
906static void free_ctx(struct rcu_head *head)
907{
908 struct perf_event_context *ctx;
909
910 ctx = container_of(head, struct perf_event_context, rcu_head);
911 kfree(ctx->task_ctx_data);
912 kfree(ctx);
913}
914
cdd6c482 915static void put_ctx(struct perf_event_context *ctx)
a63eaf34 916{
564c2b21
PM
917 if (atomic_dec_and_test(&ctx->refcount)) {
918 if (ctx->parent_ctx)
919 put_ctx(ctx->parent_ctx);
c93f7669
PM
920 if (ctx->task)
921 put_task_struct(ctx->task);
4af57ef2 922 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 923 }
a63eaf34
PM
924}
925
f63a8daa
PZ
926/*
927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928 * perf_pmu_migrate_context() we need some magic.
929 *
930 * Those places that change perf_event::ctx will hold both
931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
932 *
8b10c5e2
PZ
933 * Lock ordering is by mutex address. There are two other sites where
934 * perf_event_context::mutex nests and those are:
935 *
936 * - perf_event_exit_task_context() [ child , 0 ]
937 * __perf_event_exit_task()
938 * sync_child_event()
939 * put_event() [ parent, 1 ]
940 *
941 * - perf_event_init_context() [ parent, 0 ]
942 * inherit_task_group()
943 * inherit_group()
944 * inherit_event()
945 * perf_event_alloc()
946 * perf_init_event()
947 * perf_try_init_event() [ child , 1 ]
948 *
949 * While it appears there is an obvious deadlock here -- the parent and child
950 * nesting levels are inverted between the two. This is in fact safe because
951 * life-time rules separate them. That is an exiting task cannot fork, and a
952 * spawning task cannot (yet) exit.
953 *
954 * But remember that that these are parent<->child context relations, and
955 * migration does not affect children, therefore these two orderings should not
956 * interact.
f63a8daa
PZ
957 *
958 * The change in perf_event::ctx does not affect children (as claimed above)
959 * because the sys_perf_event_open() case will install a new event and break
960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961 * concerned with cpuctx and that doesn't have children.
962 *
963 * The places that change perf_event::ctx will issue:
964 *
965 * perf_remove_from_context();
966 * synchronize_rcu();
967 * perf_install_in_context();
968 *
969 * to affect the change. The remove_from_context() + synchronize_rcu() should
970 * quiesce the event, after which we can install it in the new location. This
971 * means that only external vectors (perf_fops, prctl) can perturb the event
972 * while in transit. Therefore all such accessors should also acquire
973 * perf_event_context::mutex to serialize against this.
974 *
975 * However; because event->ctx can change while we're waiting to acquire
976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
977 * function.
978 *
979 * Lock order:
980 * task_struct::perf_event_mutex
981 * perf_event_context::mutex
982 * perf_event_context::lock
983 * perf_event::child_mutex;
984 * perf_event::mmap_mutex
985 * mmap_sem
986 */
a83fe28e
PZ
987static struct perf_event_context *
988perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
989{
990 struct perf_event_context *ctx;
991
992again:
993 rcu_read_lock();
994 ctx = ACCESS_ONCE(event->ctx);
995 if (!atomic_inc_not_zero(&ctx->refcount)) {
996 rcu_read_unlock();
997 goto again;
998 }
999 rcu_read_unlock();
1000
a83fe28e 1001 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1002 if (event->ctx != ctx) {
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1005 goto again;
1006 }
1007
1008 return ctx;
1009}
1010
a83fe28e
PZ
1011static inline struct perf_event_context *
1012perf_event_ctx_lock(struct perf_event *event)
1013{
1014 return perf_event_ctx_lock_nested(event, 0);
1015}
1016
f63a8daa
PZ
1017static void perf_event_ctx_unlock(struct perf_event *event,
1018 struct perf_event_context *ctx)
1019{
1020 mutex_unlock(&ctx->mutex);
1021 put_ctx(ctx);
1022}
1023
211de6eb
PZ
1024/*
1025 * This must be done under the ctx->lock, such as to serialize against
1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027 * calling scheduler related locks and ctx->lock nests inside those.
1028 */
1029static __must_check struct perf_event_context *
1030unclone_ctx(struct perf_event_context *ctx)
71a851b4 1031{
211de6eb
PZ
1032 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1033
1034 lockdep_assert_held(&ctx->lock);
1035
1036 if (parent_ctx)
71a851b4 1037 ctx->parent_ctx = NULL;
5a3126d4 1038 ctx->generation++;
211de6eb
PZ
1039
1040 return parent_ctx;
71a851b4
PZ
1041}
1042
6844c09d
ACM
1043static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1044{
1045 /*
1046 * only top level events have the pid namespace they were created in
1047 */
1048 if (event->parent)
1049 event = event->parent;
1050
1051 return task_tgid_nr_ns(p, event->ns);
1052}
1053
1054static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1055{
1056 /*
1057 * only top level events have the pid namespace they were created in
1058 */
1059 if (event->parent)
1060 event = event->parent;
1061
1062 return task_pid_nr_ns(p, event->ns);
1063}
1064
7f453c24 1065/*
cdd6c482 1066 * If we inherit events we want to return the parent event id
7f453c24
PZ
1067 * to userspace.
1068 */
cdd6c482 1069static u64 primary_event_id(struct perf_event *event)
7f453c24 1070{
cdd6c482 1071 u64 id = event->id;
7f453c24 1072
cdd6c482
IM
1073 if (event->parent)
1074 id = event->parent->id;
7f453c24
PZ
1075
1076 return id;
1077}
1078
25346b93 1079/*
cdd6c482 1080 * Get the perf_event_context for a task and lock it.
25346b93
PM
1081 * This has to cope with with the fact that until it is locked,
1082 * the context could get moved to another task.
1083 */
cdd6c482 1084static struct perf_event_context *
8dc85d54 1085perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1086{
cdd6c482 1087 struct perf_event_context *ctx;
25346b93 1088
9ed6060d 1089retry:
058ebd0e
PZ
1090 /*
1091 * One of the few rules of preemptible RCU is that one cannot do
1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1093 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1094 * rcu_read_unlock_special().
1095 *
1096 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1097 * side critical section has interrupts disabled.
058ebd0e 1098 */
2fd59077 1099 local_irq_save(*flags);
058ebd0e 1100 rcu_read_lock();
8dc85d54 1101 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1102 if (ctx) {
1103 /*
1104 * If this context is a clone of another, it might
1105 * get swapped for another underneath us by
cdd6c482 1106 * perf_event_task_sched_out, though the
25346b93
PM
1107 * rcu_read_lock() protects us from any context
1108 * getting freed. Lock the context and check if it
1109 * got swapped before we could get the lock, and retry
1110 * if so. If we locked the right context, then it
1111 * can't get swapped on us any more.
1112 */
2fd59077 1113 raw_spin_lock(&ctx->lock);
8dc85d54 1114 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1115 raw_spin_unlock(&ctx->lock);
058ebd0e 1116 rcu_read_unlock();
2fd59077 1117 local_irq_restore(*flags);
25346b93
PM
1118 goto retry;
1119 }
b49a9e7e
PZ
1120
1121 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1122 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1123 ctx = NULL;
1124 }
25346b93
PM
1125 }
1126 rcu_read_unlock();
2fd59077
PM
1127 if (!ctx)
1128 local_irq_restore(*flags);
25346b93
PM
1129 return ctx;
1130}
1131
1132/*
1133 * Get the context for a task and increment its pin_count so it
1134 * can't get swapped to another task. This also increments its
1135 * reference count so that the context can't get freed.
1136 */
8dc85d54
PZ
1137static struct perf_event_context *
1138perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1139{
cdd6c482 1140 struct perf_event_context *ctx;
25346b93
PM
1141 unsigned long flags;
1142
8dc85d54 1143 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1144 if (ctx) {
1145 ++ctx->pin_count;
e625cce1 1146 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1147 }
1148 return ctx;
1149}
1150
cdd6c482 1151static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1152{
1153 unsigned long flags;
1154
e625cce1 1155 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1156 --ctx->pin_count;
e625cce1 1157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1158}
1159
f67218c3
PZ
1160/*
1161 * Update the record of the current time in a context.
1162 */
1163static void update_context_time(struct perf_event_context *ctx)
1164{
1165 u64 now = perf_clock();
1166
1167 ctx->time += now - ctx->timestamp;
1168 ctx->timestamp = now;
1169}
1170
4158755d
SE
1171static u64 perf_event_time(struct perf_event *event)
1172{
1173 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1174
1175 if (is_cgroup_event(event))
1176 return perf_cgroup_event_time(event);
1177
4158755d
SE
1178 return ctx ? ctx->time : 0;
1179}
1180
f67218c3
PZ
1181/*
1182 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1183 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1184 */
1185static void update_event_times(struct perf_event *event)
1186{
1187 struct perf_event_context *ctx = event->ctx;
1188 u64 run_end;
1189
1190 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1191 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1192 return;
e5d1367f
SE
1193 /*
1194 * in cgroup mode, time_enabled represents
1195 * the time the event was enabled AND active
1196 * tasks were in the monitored cgroup. This is
1197 * independent of the activity of the context as
1198 * there may be a mix of cgroup and non-cgroup events.
1199 *
1200 * That is why we treat cgroup events differently
1201 * here.
1202 */
1203 if (is_cgroup_event(event))
46cd6a7f 1204 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1205 else if (ctx->is_active)
1206 run_end = ctx->time;
acd1d7c1
PZ
1207 else
1208 run_end = event->tstamp_stopped;
1209
1210 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1211
1212 if (event->state == PERF_EVENT_STATE_INACTIVE)
1213 run_end = event->tstamp_stopped;
1214 else
4158755d 1215 run_end = perf_event_time(event);
f67218c3
PZ
1216
1217 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1218
f67218c3
PZ
1219}
1220
96c21a46
PZ
1221/*
1222 * Update total_time_enabled and total_time_running for all events in a group.
1223 */
1224static void update_group_times(struct perf_event *leader)
1225{
1226 struct perf_event *event;
1227
1228 update_event_times(leader);
1229 list_for_each_entry(event, &leader->sibling_list, group_entry)
1230 update_event_times(event);
1231}
1232
889ff015
FW
1233static struct list_head *
1234ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1235{
1236 if (event->attr.pinned)
1237 return &ctx->pinned_groups;
1238 else
1239 return &ctx->flexible_groups;
1240}
1241
fccc714b 1242/*
cdd6c482 1243 * Add a event from the lists for its context.
fccc714b
PZ
1244 * Must be called with ctx->mutex and ctx->lock held.
1245 */
04289bb9 1246static void
cdd6c482 1247list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1248{
c994d613
PZ
1249 lockdep_assert_held(&ctx->lock);
1250
8a49542c
PZ
1251 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1252 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1253
1254 /*
8a49542c
PZ
1255 * If we're a stand alone event or group leader, we go to the context
1256 * list, group events are kept attached to the group so that
1257 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1258 */
8a49542c 1259 if (event->group_leader == event) {
889ff015
FW
1260 struct list_head *list;
1261
d6f962b5
FW
1262 if (is_software_event(event))
1263 event->group_flags |= PERF_GROUP_SOFTWARE;
1264
889ff015
FW
1265 list = ctx_group_list(event, ctx);
1266 list_add_tail(&event->group_entry, list);
5c148194 1267 }
592903cd 1268
08309379 1269 if (is_cgroup_event(event))
e5d1367f 1270 ctx->nr_cgroups++;
e5d1367f 1271
cdd6c482
IM
1272 list_add_rcu(&event->event_entry, &ctx->event_list);
1273 ctx->nr_events++;
1274 if (event->attr.inherit_stat)
bfbd3381 1275 ctx->nr_stat++;
5a3126d4
PZ
1276
1277 ctx->generation++;
04289bb9
IM
1278}
1279
0231bb53
JO
1280/*
1281 * Initialize event state based on the perf_event_attr::disabled.
1282 */
1283static inline void perf_event__state_init(struct perf_event *event)
1284{
1285 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1286 PERF_EVENT_STATE_INACTIVE;
1287}
1288
a723968c 1289static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1290{
1291 int entry = sizeof(u64); /* value */
1292 int size = 0;
1293 int nr = 1;
1294
1295 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1296 size += sizeof(u64);
1297
1298 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1299 size += sizeof(u64);
1300
1301 if (event->attr.read_format & PERF_FORMAT_ID)
1302 entry += sizeof(u64);
1303
1304 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1305 nr += nr_siblings;
c320c7b7
ACM
1306 size += sizeof(u64);
1307 }
1308
1309 size += entry * nr;
1310 event->read_size = size;
1311}
1312
a723968c 1313static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1314{
1315 struct perf_sample_data *data;
c320c7b7
ACM
1316 u16 size = 0;
1317
c320c7b7
ACM
1318 if (sample_type & PERF_SAMPLE_IP)
1319 size += sizeof(data->ip);
1320
6844c09d
ACM
1321 if (sample_type & PERF_SAMPLE_ADDR)
1322 size += sizeof(data->addr);
1323
1324 if (sample_type & PERF_SAMPLE_PERIOD)
1325 size += sizeof(data->period);
1326
c3feedf2
AK
1327 if (sample_type & PERF_SAMPLE_WEIGHT)
1328 size += sizeof(data->weight);
1329
6844c09d
ACM
1330 if (sample_type & PERF_SAMPLE_READ)
1331 size += event->read_size;
1332
d6be9ad6
SE
1333 if (sample_type & PERF_SAMPLE_DATA_SRC)
1334 size += sizeof(data->data_src.val);
1335
fdfbbd07
AK
1336 if (sample_type & PERF_SAMPLE_TRANSACTION)
1337 size += sizeof(data->txn);
1338
6844c09d
ACM
1339 event->header_size = size;
1340}
1341
a723968c
PZ
1342/*
1343 * Called at perf_event creation and when events are attached/detached from a
1344 * group.
1345 */
1346static void perf_event__header_size(struct perf_event *event)
1347{
1348 __perf_event_read_size(event,
1349 event->group_leader->nr_siblings);
1350 __perf_event_header_size(event, event->attr.sample_type);
1351}
1352
6844c09d
ACM
1353static void perf_event__id_header_size(struct perf_event *event)
1354{
1355 struct perf_sample_data *data;
1356 u64 sample_type = event->attr.sample_type;
1357 u16 size = 0;
1358
c320c7b7
ACM
1359 if (sample_type & PERF_SAMPLE_TID)
1360 size += sizeof(data->tid_entry);
1361
1362 if (sample_type & PERF_SAMPLE_TIME)
1363 size += sizeof(data->time);
1364
ff3d527c
AH
1365 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1366 size += sizeof(data->id);
1367
c320c7b7
ACM
1368 if (sample_type & PERF_SAMPLE_ID)
1369 size += sizeof(data->id);
1370
1371 if (sample_type & PERF_SAMPLE_STREAM_ID)
1372 size += sizeof(data->stream_id);
1373
1374 if (sample_type & PERF_SAMPLE_CPU)
1375 size += sizeof(data->cpu_entry);
1376
6844c09d 1377 event->id_header_size = size;
c320c7b7
ACM
1378}
1379
a723968c
PZ
1380static bool perf_event_validate_size(struct perf_event *event)
1381{
1382 /*
1383 * The values computed here will be over-written when we actually
1384 * attach the event.
1385 */
1386 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1387 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1388 perf_event__id_header_size(event);
1389
1390 /*
1391 * Sum the lot; should not exceed the 64k limit we have on records.
1392 * Conservative limit to allow for callchains and other variable fields.
1393 */
1394 if (event->read_size + event->header_size +
1395 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1396 return false;
1397
1398 return true;
1399}
1400
8a49542c
PZ
1401static void perf_group_attach(struct perf_event *event)
1402{
c320c7b7 1403 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1404
74c3337c
PZ
1405 /*
1406 * We can have double attach due to group movement in perf_event_open.
1407 */
1408 if (event->attach_state & PERF_ATTACH_GROUP)
1409 return;
1410
8a49542c
PZ
1411 event->attach_state |= PERF_ATTACH_GROUP;
1412
1413 if (group_leader == event)
1414 return;
1415
652884fe
PZ
1416 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1417
8a49542c
PZ
1418 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1419 !is_software_event(event))
1420 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1421
1422 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1423 group_leader->nr_siblings++;
c320c7b7
ACM
1424
1425 perf_event__header_size(group_leader);
1426
1427 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1428 perf_event__header_size(pos);
8a49542c
PZ
1429}
1430
a63eaf34 1431/*
cdd6c482 1432 * Remove a event from the lists for its context.
fccc714b 1433 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1434 */
04289bb9 1435static void
cdd6c482 1436list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1437{
68cacd29 1438 struct perf_cpu_context *cpuctx;
652884fe
PZ
1439
1440 WARN_ON_ONCE(event->ctx != ctx);
1441 lockdep_assert_held(&ctx->lock);
1442
8a49542c
PZ
1443 /*
1444 * We can have double detach due to exit/hot-unplug + close.
1445 */
1446 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1447 return;
8a49542c
PZ
1448
1449 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1450
68cacd29 1451 if (is_cgroup_event(event)) {
e5d1367f 1452 ctx->nr_cgroups--;
68cacd29
SE
1453 cpuctx = __get_cpu_context(ctx);
1454 /*
1455 * if there are no more cgroup events
1456 * then cler cgrp to avoid stale pointer
1457 * in update_cgrp_time_from_cpuctx()
1458 */
1459 if (!ctx->nr_cgroups)
1460 cpuctx->cgrp = NULL;
1461 }
e5d1367f 1462
cdd6c482
IM
1463 ctx->nr_events--;
1464 if (event->attr.inherit_stat)
bfbd3381 1465 ctx->nr_stat--;
8bc20959 1466
cdd6c482 1467 list_del_rcu(&event->event_entry);
04289bb9 1468
8a49542c
PZ
1469 if (event->group_leader == event)
1470 list_del_init(&event->group_entry);
5c148194 1471
96c21a46 1472 update_group_times(event);
b2e74a26
SE
1473
1474 /*
1475 * If event was in error state, then keep it
1476 * that way, otherwise bogus counts will be
1477 * returned on read(). The only way to get out
1478 * of error state is by explicit re-enabling
1479 * of the event
1480 */
1481 if (event->state > PERF_EVENT_STATE_OFF)
1482 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1483
1484 ctx->generation++;
050735b0
PZ
1485}
1486
8a49542c 1487static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1488{
1489 struct perf_event *sibling, *tmp;
8a49542c
PZ
1490 struct list_head *list = NULL;
1491
1492 /*
1493 * We can have double detach due to exit/hot-unplug + close.
1494 */
1495 if (!(event->attach_state & PERF_ATTACH_GROUP))
1496 return;
1497
1498 event->attach_state &= ~PERF_ATTACH_GROUP;
1499
1500 /*
1501 * If this is a sibling, remove it from its group.
1502 */
1503 if (event->group_leader != event) {
1504 list_del_init(&event->group_entry);
1505 event->group_leader->nr_siblings--;
c320c7b7 1506 goto out;
8a49542c
PZ
1507 }
1508
1509 if (!list_empty(&event->group_entry))
1510 list = &event->group_entry;
2e2af50b 1511
04289bb9 1512 /*
cdd6c482
IM
1513 * If this was a group event with sibling events then
1514 * upgrade the siblings to singleton events by adding them
8a49542c 1515 * to whatever list we are on.
04289bb9 1516 */
cdd6c482 1517 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1518 if (list)
1519 list_move_tail(&sibling->group_entry, list);
04289bb9 1520 sibling->group_leader = sibling;
d6f962b5
FW
1521
1522 /* Inherit group flags from the previous leader */
1523 sibling->group_flags = event->group_flags;
652884fe
PZ
1524
1525 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1526 }
c320c7b7
ACM
1527
1528out:
1529 perf_event__header_size(event->group_leader);
1530
1531 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1532 perf_event__header_size(tmp);
04289bb9
IM
1533}
1534
fadfe7be
JO
1535/*
1536 * User event without the task.
1537 */
1538static bool is_orphaned_event(struct perf_event *event)
1539{
1540 return event && !is_kernel_event(event) && !event->owner;
1541}
1542
1543/*
1544 * Event has a parent but parent's task finished and it's
1545 * alive only because of children holding refference.
1546 */
1547static bool is_orphaned_child(struct perf_event *event)
1548{
1549 return is_orphaned_event(event->parent);
1550}
1551
1552static void orphans_remove_work(struct work_struct *work);
1553
1554static void schedule_orphans_remove(struct perf_event_context *ctx)
1555{
1556 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1557 return;
1558
1559 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1560 get_ctx(ctx);
1561 ctx->orphans_remove_sched = true;
1562 }
1563}
1564
1565static int __init perf_workqueue_init(void)
1566{
1567 perf_wq = create_singlethread_workqueue("perf");
1568 WARN(!perf_wq, "failed to create perf workqueue\n");
1569 return perf_wq ? 0 : -1;
1570}
1571
1572core_initcall(perf_workqueue_init);
1573
66eb579e
MR
1574static inline int pmu_filter_match(struct perf_event *event)
1575{
1576 struct pmu *pmu = event->pmu;
1577 return pmu->filter_match ? pmu->filter_match(event) : 1;
1578}
1579
fa66f07a
SE
1580static inline int
1581event_filter_match(struct perf_event *event)
1582{
e5d1367f 1583 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1584 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1585}
1586
9ffcfa6f
SE
1587static void
1588event_sched_out(struct perf_event *event,
3b6f9e5c 1589 struct perf_cpu_context *cpuctx,
cdd6c482 1590 struct perf_event_context *ctx)
3b6f9e5c 1591{
4158755d 1592 u64 tstamp = perf_event_time(event);
fa66f07a 1593 u64 delta;
652884fe
PZ
1594
1595 WARN_ON_ONCE(event->ctx != ctx);
1596 lockdep_assert_held(&ctx->lock);
1597
fa66f07a
SE
1598 /*
1599 * An event which could not be activated because of
1600 * filter mismatch still needs to have its timings
1601 * maintained, otherwise bogus information is return
1602 * via read() for time_enabled, time_running:
1603 */
1604 if (event->state == PERF_EVENT_STATE_INACTIVE
1605 && !event_filter_match(event)) {
e5d1367f 1606 delta = tstamp - event->tstamp_stopped;
fa66f07a 1607 event->tstamp_running += delta;
4158755d 1608 event->tstamp_stopped = tstamp;
fa66f07a
SE
1609 }
1610
cdd6c482 1611 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1612 return;
3b6f9e5c 1613
44377277
AS
1614 perf_pmu_disable(event->pmu);
1615
cdd6c482
IM
1616 event->state = PERF_EVENT_STATE_INACTIVE;
1617 if (event->pending_disable) {
1618 event->pending_disable = 0;
1619 event->state = PERF_EVENT_STATE_OFF;
970892a9 1620 }
4158755d 1621 event->tstamp_stopped = tstamp;
a4eaf7f1 1622 event->pmu->del(event, 0);
cdd6c482 1623 event->oncpu = -1;
3b6f9e5c 1624
cdd6c482 1625 if (!is_software_event(event))
3b6f9e5c 1626 cpuctx->active_oncpu--;
2fde4f94
MR
1627 if (!--ctx->nr_active)
1628 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1629 if (event->attr.freq && event->attr.sample_freq)
1630 ctx->nr_freq--;
cdd6c482 1631 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1632 cpuctx->exclusive = 0;
44377277 1633
fadfe7be
JO
1634 if (is_orphaned_child(event))
1635 schedule_orphans_remove(ctx);
1636
44377277 1637 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1638}
1639
d859e29f 1640static void
cdd6c482 1641group_sched_out(struct perf_event *group_event,
d859e29f 1642 struct perf_cpu_context *cpuctx,
cdd6c482 1643 struct perf_event_context *ctx)
d859e29f 1644{
cdd6c482 1645 struct perf_event *event;
fa66f07a 1646 int state = group_event->state;
d859e29f 1647
cdd6c482 1648 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1649
1650 /*
1651 * Schedule out siblings (if any):
1652 */
cdd6c482
IM
1653 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1654 event_sched_out(event, cpuctx, ctx);
d859e29f 1655
fa66f07a 1656 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1657 cpuctx->exclusive = 0;
1658}
1659
46ce0fe9
PZ
1660struct remove_event {
1661 struct perf_event *event;
1662 bool detach_group;
1663};
1664
0017960f
PZ
1665static void ___perf_remove_from_context(void *info)
1666{
1667 struct remove_event *re = info;
1668 struct perf_event *event = re->event;
1669 struct perf_event_context *ctx = event->ctx;
1670
1671 if (re->detach_group)
1672 perf_group_detach(event);
1673 list_del_event(event, ctx);
1674}
1675
0793a61d 1676/*
cdd6c482 1677 * Cross CPU call to remove a performance event
0793a61d 1678 *
cdd6c482 1679 * We disable the event on the hardware level first. After that we
0793a61d
TG
1680 * remove it from the context list.
1681 */
fe4b04fa 1682static int __perf_remove_from_context(void *info)
0793a61d 1683{
46ce0fe9
PZ
1684 struct remove_event *re = info;
1685 struct perf_event *event = re->event;
cdd6c482 1686 struct perf_event_context *ctx = event->ctx;
108b02cf 1687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1688
e625cce1 1689 raw_spin_lock(&ctx->lock);
cdd6c482 1690 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1691 if (re->detach_group)
1692 perf_group_detach(event);
cdd6c482 1693 list_del_event(event, ctx);
64ce3126
PZ
1694 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1695 ctx->is_active = 0;
1696 cpuctx->task_ctx = NULL;
1697 }
e625cce1 1698 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1699
1700 return 0;
0793a61d
TG
1701}
1702
0793a61d 1703/*
cdd6c482 1704 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1705 *
cdd6c482 1706 * CPU events are removed with a smp call. For task events we only
0793a61d 1707 * call when the task is on a CPU.
c93f7669 1708 *
cdd6c482
IM
1709 * If event->ctx is a cloned context, callers must make sure that
1710 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1711 * remains valid. This is OK when called from perf_release since
1712 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1713 * When called from perf_event_exit_task, it's OK because the
c93f7669 1714 * context has been detached from its task.
0793a61d 1715 */
46ce0fe9 1716static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1717{
cdd6c482 1718 struct perf_event_context *ctx = event->ctx;
46ce0fe9
PZ
1719 struct remove_event re = {
1720 .event = event,
1721 .detach_group = detach_group,
1722 };
0793a61d 1723
fe4b04fa
PZ
1724 lockdep_assert_held(&ctx->mutex);
1725
0017960f
PZ
1726 event_function_call(event, __perf_remove_from_context,
1727 ___perf_remove_from_context, &re);
0793a61d
TG
1728}
1729
d859e29f 1730/*
cdd6c482 1731 * Cross CPU call to disable a performance event
d859e29f 1732 */
500ad2d8 1733int __perf_event_disable(void *info)
d859e29f 1734{
cdd6c482 1735 struct perf_event *event = info;
cdd6c482 1736 struct perf_event_context *ctx = event->ctx;
108b02cf 1737 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1738
1739 /*
cdd6c482
IM
1740 * If this is a per-task event, need to check whether this
1741 * event's task is the current task on this cpu.
fe4b04fa
PZ
1742 *
1743 * Can trigger due to concurrent perf_event_context_sched_out()
1744 * flipping contexts around.
d859e29f 1745 */
665c2142 1746 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1747 return -EINVAL;
d859e29f 1748
e625cce1 1749 raw_spin_lock(&ctx->lock);
d859e29f
PM
1750
1751 /*
cdd6c482 1752 * If the event is on, turn it off.
d859e29f
PM
1753 * If it is in error state, leave it in error state.
1754 */
cdd6c482 1755 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1756 update_context_time(ctx);
e5d1367f 1757 update_cgrp_time_from_event(event);
cdd6c482
IM
1758 update_group_times(event);
1759 if (event == event->group_leader)
1760 group_sched_out(event, cpuctx, ctx);
d859e29f 1761 else
cdd6c482
IM
1762 event_sched_out(event, cpuctx, ctx);
1763 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1764 }
1765
e625cce1 1766 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1767
1768 return 0;
d859e29f
PM
1769}
1770
7b648018
PZ
1771void ___perf_event_disable(void *info)
1772{
1773 struct perf_event *event = info;
1774
1775 /*
1776 * Since we have the lock this context can't be scheduled
1777 * in, so we can change the state safely.
1778 */
1779 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1780 update_group_times(event);
1781 event->state = PERF_EVENT_STATE_OFF;
1782 }
1783}
1784
d859e29f 1785/*
cdd6c482 1786 * Disable a event.
c93f7669 1787 *
cdd6c482
IM
1788 * If event->ctx is a cloned context, callers must make sure that
1789 * every task struct that event->ctx->task could possibly point to
c93f7669 1790 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1791 * perf_event_for_each_child or perf_event_for_each because they
1792 * hold the top-level event's child_mutex, so any descendant that
1793 * goes to exit will block in sync_child_event.
1794 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1795 * is the current context on this CPU and preemption is disabled,
cdd6c482 1796 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1797 */
f63a8daa 1798static void _perf_event_disable(struct perf_event *event)
d859e29f 1799{
cdd6c482 1800 struct perf_event_context *ctx = event->ctx;
d859e29f 1801
e625cce1 1802 raw_spin_lock_irq(&ctx->lock);
7b648018 1803 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1804 raw_spin_unlock_irq(&ctx->lock);
7b648018 1805 return;
53cfbf59 1806 }
e625cce1 1807 raw_spin_unlock_irq(&ctx->lock);
7b648018
PZ
1808
1809 event_function_call(event, __perf_event_disable,
1810 ___perf_event_disable, event);
d859e29f 1811}
f63a8daa
PZ
1812
1813/*
1814 * Strictly speaking kernel users cannot create groups and therefore this
1815 * interface does not need the perf_event_ctx_lock() magic.
1816 */
1817void perf_event_disable(struct perf_event *event)
1818{
1819 struct perf_event_context *ctx;
1820
1821 ctx = perf_event_ctx_lock(event);
1822 _perf_event_disable(event);
1823 perf_event_ctx_unlock(event, ctx);
1824}
dcfce4a0 1825EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1826
e5d1367f
SE
1827static void perf_set_shadow_time(struct perf_event *event,
1828 struct perf_event_context *ctx,
1829 u64 tstamp)
1830{
1831 /*
1832 * use the correct time source for the time snapshot
1833 *
1834 * We could get by without this by leveraging the
1835 * fact that to get to this function, the caller
1836 * has most likely already called update_context_time()
1837 * and update_cgrp_time_xx() and thus both timestamp
1838 * are identical (or very close). Given that tstamp is,
1839 * already adjusted for cgroup, we could say that:
1840 * tstamp - ctx->timestamp
1841 * is equivalent to
1842 * tstamp - cgrp->timestamp.
1843 *
1844 * Then, in perf_output_read(), the calculation would
1845 * work with no changes because:
1846 * - event is guaranteed scheduled in
1847 * - no scheduled out in between
1848 * - thus the timestamp would be the same
1849 *
1850 * But this is a bit hairy.
1851 *
1852 * So instead, we have an explicit cgroup call to remain
1853 * within the time time source all along. We believe it
1854 * is cleaner and simpler to understand.
1855 */
1856 if (is_cgroup_event(event))
1857 perf_cgroup_set_shadow_time(event, tstamp);
1858 else
1859 event->shadow_ctx_time = tstamp - ctx->timestamp;
1860}
1861
4fe757dd
PZ
1862#define MAX_INTERRUPTS (~0ULL)
1863
1864static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1865static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1866
235c7fc7 1867static int
9ffcfa6f 1868event_sched_in(struct perf_event *event,
235c7fc7 1869 struct perf_cpu_context *cpuctx,
6e37738a 1870 struct perf_event_context *ctx)
235c7fc7 1871{
4158755d 1872 u64 tstamp = perf_event_time(event);
44377277 1873 int ret = 0;
4158755d 1874
63342411
PZ
1875 lockdep_assert_held(&ctx->lock);
1876
cdd6c482 1877 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1878 return 0;
1879
cdd6c482 1880 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1881 event->oncpu = smp_processor_id();
4fe757dd
PZ
1882
1883 /*
1884 * Unthrottle events, since we scheduled we might have missed several
1885 * ticks already, also for a heavily scheduling task there is little
1886 * guarantee it'll get a tick in a timely manner.
1887 */
1888 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1889 perf_log_throttle(event, 1);
1890 event->hw.interrupts = 0;
1891 }
1892
235c7fc7
IM
1893 /*
1894 * The new state must be visible before we turn it on in the hardware:
1895 */
1896 smp_wmb();
1897
44377277
AS
1898 perf_pmu_disable(event->pmu);
1899
72f669c0
SL
1900 perf_set_shadow_time(event, ctx, tstamp);
1901
ec0d7729
AS
1902 perf_log_itrace_start(event);
1903
a4eaf7f1 1904 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1905 event->state = PERF_EVENT_STATE_INACTIVE;
1906 event->oncpu = -1;
44377277
AS
1907 ret = -EAGAIN;
1908 goto out;
235c7fc7
IM
1909 }
1910
00a2916f
PZ
1911 event->tstamp_running += tstamp - event->tstamp_stopped;
1912
cdd6c482 1913 if (!is_software_event(event))
3b6f9e5c 1914 cpuctx->active_oncpu++;
2fde4f94
MR
1915 if (!ctx->nr_active++)
1916 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1917 if (event->attr.freq && event->attr.sample_freq)
1918 ctx->nr_freq++;
235c7fc7 1919
cdd6c482 1920 if (event->attr.exclusive)
3b6f9e5c
PM
1921 cpuctx->exclusive = 1;
1922
fadfe7be
JO
1923 if (is_orphaned_child(event))
1924 schedule_orphans_remove(ctx);
1925
44377277
AS
1926out:
1927 perf_pmu_enable(event->pmu);
1928
1929 return ret;
235c7fc7
IM
1930}
1931
6751b71e 1932static int
cdd6c482 1933group_sched_in(struct perf_event *group_event,
6751b71e 1934 struct perf_cpu_context *cpuctx,
6e37738a 1935 struct perf_event_context *ctx)
6751b71e 1936{
6bde9b6c 1937 struct perf_event *event, *partial_group = NULL;
4a234593 1938 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1939 u64 now = ctx->time;
1940 bool simulate = false;
6751b71e 1941
cdd6c482 1942 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1943 return 0;
1944
fbbe0701 1945 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1946
9ffcfa6f 1947 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1948 pmu->cancel_txn(pmu);
272325c4 1949 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1950 return -EAGAIN;
90151c35 1951 }
6751b71e
PM
1952
1953 /*
1954 * Schedule in siblings as one group (if any):
1955 */
cdd6c482 1956 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1957 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1958 partial_group = event;
6751b71e
PM
1959 goto group_error;
1960 }
1961 }
1962
9ffcfa6f 1963 if (!pmu->commit_txn(pmu))
6e85158c 1964 return 0;
9ffcfa6f 1965
6751b71e
PM
1966group_error:
1967 /*
1968 * Groups can be scheduled in as one unit only, so undo any
1969 * partial group before returning:
d7842da4
SE
1970 * The events up to the failed event are scheduled out normally,
1971 * tstamp_stopped will be updated.
1972 *
1973 * The failed events and the remaining siblings need to have
1974 * their timings updated as if they had gone thru event_sched_in()
1975 * and event_sched_out(). This is required to get consistent timings
1976 * across the group. This also takes care of the case where the group
1977 * could never be scheduled by ensuring tstamp_stopped is set to mark
1978 * the time the event was actually stopped, such that time delta
1979 * calculation in update_event_times() is correct.
6751b71e 1980 */
cdd6c482
IM
1981 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1982 if (event == partial_group)
d7842da4
SE
1983 simulate = true;
1984
1985 if (simulate) {
1986 event->tstamp_running += now - event->tstamp_stopped;
1987 event->tstamp_stopped = now;
1988 } else {
1989 event_sched_out(event, cpuctx, ctx);
1990 }
6751b71e 1991 }
9ffcfa6f 1992 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1993
ad5133b7 1994 pmu->cancel_txn(pmu);
90151c35 1995
272325c4 1996 perf_mux_hrtimer_restart(cpuctx);
9e630205 1997
6751b71e
PM
1998 return -EAGAIN;
1999}
2000
3b6f9e5c 2001/*
cdd6c482 2002 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2003 */
cdd6c482 2004static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2005 struct perf_cpu_context *cpuctx,
2006 int can_add_hw)
2007{
2008 /*
cdd6c482 2009 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2010 */
d6f962b5 2011 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2012 return 1;
2013 /*
2014 * If an exclusive group is already on, no other hardware
cdd6c482 2015 * events can go on.
3b6f9e5c
PM
2016 */
2017 if (cpuctx->exclusive)
2018 return 0;
2019 /*
2020 * If this group is exclusive and there are already
cdd6c482 2021 * events on the CPU, it can't go on.
3b6f9e5c 2022 */
cdd6c482 2023 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2024 return 0;
2025 /*
2026 * Otherwise, try to add it if all previous groups were able
2027 * to go on.
2028 */
2029 return can_add_hw;
2030}
2031
cdd6c482
IM
2032static void add_event_to_ctx(struct perf_event *event,
2033 struct perf_event_context *ctx)
53cfbf59 2034{
4158755d
SE
2035 u64 tstamp = perf_event_time(event);
2036
cdd6c482 2037 list_add_event(event, ctx);
8a49542c 2038 perf_group_attach(event);
4158755d
SE
2039 event->tstamp_enabled = tstamp;
2040 event->tstamp_running = tstamp;
2041 event->tstamp_stopped = tstamp;
53cfbf59
PM
2042}
2043
2c29ef0f
PZ
2044static void task_ctx_sched_out(struct perf_event_context *ctx);
2045static void
2046ctx_sched_in(struct perf_event_context *ctx,
2047 struct perf_cpu_context *cpuctx,
2048 enum event_type_t event_type,
2049 struct task_struct *task);
fe4b04fa 2050
dce5855b
PZ
2051static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2052 struct perf_event_context *ctx,
2053 struct task_struct *task)
2054{
2055 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2058 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2059 if (ctx)
2060 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2061}
2062
0017960f
PZ
2063static void ___perf_install_in_context(void *info)
2064{
2065 struct perf_event *event = info;
2066 struct perf_event_context *ctx = event->ctx;
2067
2068 /*
2069 * Since the task isn't running, its safe to add the event, us holding
2070 * the ctx->lock ensures the task won't get scheduled in.
2071 */
2072 add_event_to_ctx(event, ctx);
2073}
2074
0793a61d 2075/*
cdd6c482 2076 * Cross CPU call to install and enable a performance event
682076ae
PZ
2077 *
2078 * Must be called with ctx->mutex held
0793a61d 2079 */
fe4b04fa 2080static int __perf_install_in_context(void *info)
0793a61d 2081{
cdd6c482
IM
2082 struct perf_event *event = info;
2083 struct perf_event_context *ctx = event->ctx;
108b02cf 2084 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2085 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2086 struct task_struct *task = current;
2087
b58f6b0d 2088 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2089 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2090
2091 /*
2c29ef0f 2092 * If there was an active task_ctx schedule it out.
0793a61d 2093 */
b58f6b0d 2094 if (task_ctx)
2c29ef0f 2095 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2096
2097 /*
2098 * If the context we're installing events in is not the
2099 * active task_ctx, flip them.
2100 */
2101 if (ctx->task && task_ctx != ctx) {
2102 if (task_ctx)
2103 raw_spin_unlock(&task_ctx->lock);
2104 raw_spin_lock(&ctx->lock);
2105 task_ctx = ctx;
2106 }
2107
2108 if (task_ctx) {
2109 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2110 task = task_ctx->task;
2111 }
b58f6b0d 2112
2c29ef0f 2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2114
4af4998b 2115 update_context_time(ctx);
e5d1367f
SE
2116 /*
2117 * update cgrp time only if current cgrp
2118 * matches event->cgrp. Must be done before
2119 * calling add_event_to_ctx()
2120 */
2121 update_cgrp_time_from_event(event);
0793a61d 2122
cdd6c482 2123 add_event_to_ctx(event, ctx);
0793a61d 2124
d859e29f 2125 /*
2c29ef0f 2126 * Schedule everything back in
d859e29f 2127 */
dce5855b 2128 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2129
2130 perf_pmu_enable(cpuctx->ctx.pmu);
2131 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2132
2133 return 0;
0793a61d
TG
2134}
2135
2136/*
cdd6c482 2137 * Attach a performance event to a context
0793a61d 2138 *
cdd6c482
IM
2139 * First we add the event to the list with the hardware enable bit
2140 * in event->hw_config cleared.
0793a61d 2141 *
cdd6c482 2142 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2143 * call to enable it in the task context. The task might have been
2144 * scheduled away, but we check this in the smp call again.
2145 */
2146static void
cdd6c482
IM
2147perf_install_in_context(struct perf_event_context *ctx,
2148 struct perf_event *event,
0793a61d
TG
2149 int cpu)
2150{
fe4b04fa
PZ
2151 lockdep_assert_held(&ctx->mutex);
2152
c3f00c70 2153 event->ctx = ctx;
0cda4c02
YZ
2154 if (event->cpu != -1)
2155 event->cpu = cpu;
c3f00c70 2156
0017960f
PZ
2157 event_function_call(event, __perf_install_in_context,
2158 ___perf_install_in_context, event);
0793a61d
TG
2159}
2160
fa289bec 2161/*
cdd6c482 2162 * Put a event into inactive state and update time fields.
fa289bec
PM
2163 * Enabling the leader of a group effectively enables all
2164 * the group members that aren't explicitly disabled, so we
2165 * have to update their ->tstamp_enabled also.
2166 * Note: this works for group members as well as group leaders
2167 * since the non-leader members' sibling_lists will be empty.
2168 */
1d9b482e 2169static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2170{
cdd6c482 2171 struct perf_event *sub;
4158755d 2172 u64 tstamp = perf_event_time(event);
fa289bec 2173
cdd6c482 2174 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2175 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2177 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2178 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2179 }
fa289bec
PM
2180}
2181
d859e29f 2182/*
cdd6c482 2183 * Cross CPU call to enable a performance event
d859e29f 2184 */
fe4b04fa 2185static int __perf_event_enable(void *info)
04289bb9 2186{
cdd6c482 2187 struct perf_event *event = info;
cdd6c482
IM
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *leader = event->group_leader;
108b02cf 2190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2191 int err;
04289bb9 2192
06f41796
JO
2193 /*
2194 * There's a time window between 'ctx->is_active' check
2195 * in perf_event_enable function and this place having:
2196 * - IRQs on
2197 * - ctx->lock unlocked
2198 *
2199 * where the task could be killed and 'ctx' deactivated
2200 * by perf_event_exit_task.
2201 */
2202 if (!ctx->is_active)
fe4b04fa 2203 return -EINVAL;
3cbed429 2204
e625cce1 2205 raw_spin_lock(&ctx->lock);
4af4998b 2206 update_context_time(ctx);
d859e29f 2207
cdd6c482 2208 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2209 goto unlock;
e5d1367f
SE
2210
2211 /*
2212 * set current task's cgroup time reference point
2213 */
3f7cce3c 2214 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2215
1d9b482e 2216 __perf_event_mark_enabled(event);
04289bb9 2217
e5d1367f
SE
2218 if (!event_filter_match(event)) {
2219 if (is_cgroup_event(event))
2220 perf_cgroup_defer_enabled(event);
f4c4176f 2221 goto unlock;
e5d1367f 2222 }
f4c4176f 2223
04289bb9 2224 /*
cdd6c482 2225 * If the event is in a group and isn't the group leader,
d859e29f 2226 * then don't put it on unless the group is on.
04289bb9 2227 */
cdd6c482 2228 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2229 goto unlock;
3b6f9e5c 2230
cdd6c482 2231 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2232 err = -EEXIST;
e758a33d 2233 } else {
cdd6c482 2234 if (event == leader)
6e37738a 2235 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2236 else
6e37738a 2237 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2238 }
d859e29f
PM
2239
2240 if (err) {
2241 /*
cdd6c482 2242 * If this event can't go on and it's part of a
d859e29f
PM
2243 * group, then the whole group has to come off.
2244 */
9e630205 2245 if (leader != event) {
d859e29f 2246 group_sched_out(leader, cpuctx, ctx);
272325c4 2247 perf_mux_hrtimer_restart(cpuctx);
9e630205 2248 }
0d48696f 2249 if (leader->attr.pinned) {
53cfbf59 2250 update_group_times(leader);
cdd6c482 2251 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2252 }
d859e29f
PM
2253 }
2254
9ed6060d 2255unlock:
e625cce1 2256 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2257
2258 return 0;
d859e29f
PM
2259}
2260
7b648018
PZ
2261void ___perf_event_enable(void *info)
2262{
2263 __perf_event_mark_enabled((struct perf_event *)info);
2264}
2265
d859e29f 2266/*
cdd6c482 2267 * Enable a event.
c93f7669 2268 *
cdd6c482
IM
2269 * If event->ctx is a cloned context, callers must make sure that
2270 * every task struct that event->ctx->task could possibly point to
c93f7669 2271 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2272 * perf_event_for_each_child or perf_event_for_each as described
2273 * for perf_event_disable.
d859e29f 2274 */
f63a8daa 2275static void _perf_event_enable(struct perf_event *event)
d859e29f 2276{
cdd6c482 2277 struct perf_event_context *ctx = event->ctx;
d859e29f 2278
7b648018
PZ
2279 raw_spin_lock_irq(&ctx->lock);
2280 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2281 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2282 return;
2283 }
2284
d859e29f 2285 /*
cdd6c482 2286 * If the event is in error state, clear that first.
7b648018
PZ
2287 *
2288 * That way, if we see the event in error state below, we know that it
2289 * has gone back into error state, as distinct from the task having
2290 * been scheduled away before the cross-call arrived.
d859e29f 2291 */
cdd6c482
IM
2292 if (event->state == PERF_EVENT_STATE_ERROR)
2293 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2294 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2295
7b648018
PZ
2296 event_function_call(event, __perf_event_enable,
2297 ___perf_event_enable, event);
d859e29f 2298}
f63a8daa
PZ
2299
2300/*
2301 * See perf_event_disable();
2302 */
2303void perf_event_enable(struct perf_event *event)
2304{
2305 struct perf_event_context *ctx;
2306
2307 ctx = perf_event_ctx_lock(event);
2308 _perf_event_enable(event);
2309 perf_event_ctx_unlock(event, ctx);
2310}
dcfce4a0 2311EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2312
f63a8daa 2313static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2314{
2023b359 2315 /*
cdd6c482 2316 * not supported on inherited events
2023b359 2317 */
2e939d1d 2318 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2319 return -EINVAL;
2320
cdd6c482 2321 atomic_add(refresh, &event->event_limit);
f63a8daa 2322 _perf_event_enable(event);
2023b359
PZ
2323
2324 return 0;
79f14641 2325}
f63a8daa
PZ
2326
2327/*
2328 * See perf_event_disable()
2329 */
2330int perf_event_refresh(struct perf_event *event, int refresh)
2331{
2332 struct perf_event_context *ctx;
2333 int ret;
2334
2335 ctx = perf_event_ctx_lock(event);
2336 ret = _perf_event_refresh(event, refresh);
2337 perf_event_ctx_unlock(event, ctx);
2338
2339 return ret;
2340}
26ca5c11 2341EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2342
5b0311e1
FW
2343static void ctx_sched_out(struct perf_event_context *ctx,
2344 struct perf_cpu_context *cpuctx,
2345 enum event_type_t event_type)
235c7fc7 2346{
db24d33e 2347 int is_active = ctx->is_active;
c994d613
PZ
2348 struct perf_event *event;
2349
2350 lockdep_assert_held(&ctx->lock);
235c7fc7 2351
db24d33e 2352 ctx->is_active &= ~event_type;
cdd6c482 2353 if (likely(!ctx->nr_events))
facc4307
PZ
2354 return;
2355
4af4998b 2356 update_context_time(ctx);
e5d1367f 2357 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2358 if (!ctx->nr_active)
facc4307 2359 return;
5b0311e1 2360
075e0b00 2361 perf_pmu_disable(ctx->pmu);
db24d33e 2362 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2363 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2364 group_sched_out(event, cpuctx, ctx);
9ed6060d 2365 }
889ff015 2366
db24d33e 2367 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2368 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2369 group_sched_out(event, cpuctx, ctx);
9ed6060d 2370 }
1b9a644f 2371 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2372}
2373
564c2b21 2374/*
5a3126d4
PZ
2375 * Test whether two contexts are equivalent, i.e. whether they have both been
2376 * cloned from the same version of the same context.
2377 *
2378 * Equivalence is measured using a generation number in the context that is
2379 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2380 * and list_del_event().
564c2b21 2381 */
cdd6c482
IM
2382static int context_equiv(struct perf_event_context *ctx1,
2383 struct perf_event_context *ctx2)
564c2b21 2384{
211de6eb
PZ
2385 lockdep_assert_held(&ctx1->lock);
2386 lockdep_assert_held(&ctx2->lock);
2387
5a3126d4
PZ
2388 /* Pinning disables the swap optimization */
2389 if (ctx1->pin_count || ctx2->pin_count)
2390 return 0;
2391
2392 /* If ctx1 is the parent of ctx2 */
2393 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2394 return 1;
2395
2396 /* If ctx2 is the parent of ctx1 */
2397 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2398 return 1;
2399
2400 /*
2401 * If ctx1 and ctx2 have the same parent; we flatten the parent
2402 * hierarchy, see perf_event_init_context().
2403 */
2404 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2405 ctx1->parent_gen == ctx2->parent_gen)
2406 return 1;
2407
2408 /* Unmatched */
2409 return 0;
564c2b21
PM
2410}
2411
cdd6c482
IM
2412static void __perf_event_sync_stat(struct perf_event *event,
2413 struct perf_event *next_event)
bfbd3381
PZ
2414{
2415 u64 value;
2416
cdd6c482 2417 if (!event->attr.inherit_stat)
bfbd3381
PZ
2418 return;
2419
2420 /*
cdd6c482 2421 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2422 * because we're in the middle of a context switch and have IRQs
2423 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2424 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2425 * don't need to use it.
2426 */
cdd6c482
IM
2427 switch (event->state) {
2428 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2429 event->pmu->read(event);
2430 /* fall-through */
bfbd3381 2431
cdd6c482
IM
2432 case PERF_EVENT_STATE_INACTIVE:
2433 update_event_times(event);
bfbd3381
PZ
2434 break;
2435
2436 default:
2437 break;
2438 }
2439
2440 /*
cdd6c482 2441 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2442 * values when we flip the contexts.
2443 */
e7850595
PZ
2444 value = local64_read(&next_event->count);
2445 value = local64_xchg(&event->count, value);
2446 local64_set(&next_event->count, value);
bfbd3381 2447
cdd6c482
IM
2448 swap(event->total_time_enabled, next_event->total_time_enabled);
2449 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2450
bfbd3381 2451 /*
19d2e755 2452 * Since we swizzled the values, update the user visible data too.
bfbd3381 2453 */
cdd6c482
IM
2454 perf_event_update_userpage(event);
2455 perf_event_update_userpage(next_event);
bfbd3381
PZ
2456}
2457
cdd6c482
IM
2458static void perf_event_sync_stat(struct perf_event_context *ctx,
2459 struct perf_event_context *next_ctx)
bfbd3381 2460{
cdd6c482 2461 struct perf_event *event, *next_event;
bfbd3381
PZ
2462
2463 if (!ctx->nr_stat)
2464 return;
2465
02ffdbc8
PZ
2466 update_context_time(ctx);
2467
cdd6c482
IM
2468 event = list_first_entry(&ctx->event_list,
2469 struct perf_event, event_entry);
bfbd3381 2470
cdd6c482
IM
2471 next_event = list_first_entry(&next_ctx->event_list,
2472 struct perf_event, event_entry);
bfbd3381 2473
cdd6c482
IM
2474 while (&event->event_entry != &ctx->event_list &&
2475 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2476
cdd6c482 2477 __perf_event_sync_stat(event, next_event);
bfbd3381 2478
cdd6c482
IM
2479 event = list_next_entry(event, event_entry);
2480 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2481 }
2482}
2483
fe4b04fa
PZ
2484static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2485 struct task_struct *next)
0793a61d 2486{
8dc85d54 2487 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2488 struct perf_event_context *next_ctx;
5a3126d4 2489 struct perf_event_context *parent, *next_parent;
108b02cf 2490 struct perf_cpu_context *cpuctx;
c93f7669 2491 int do_switch = 1;
0793a61d 2492
108b02cf
PZ
2493 if (likely(!ctx))
2494 return;
10989fb2 2495
108b02cf
PZ
2496 cpuctx = __get_cpu_context(ctx);
2497 if (!cpuctx->task_ctx)
0793a61d
TG
2498 return;
2499
c93f7669 2500 rcu_read_lock();
8dc85d54 2501 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2502 if (!next_ctx)
2503 goto unlock;
2504
2505 parent = rcu_dereference(ctx->parent_ctx);
2506 next_parent = rcu_dereference(next_ctx->parent_ctx);
2507
2508 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2509 if (!parent && !next_parent)
5a3126d4
PZ
2510 goto unlock;
2511
2512 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2513 /*
2514 * Looks like the two contexts are clones, so we might be
2515 * able to optimize the context switch. We lock both
2516 * contexts and check that they are clones under the
2517 * lock (including re-checking that neither has been
2518 * uncloned in the meantime). It doesn't matter which
2519 * order we take the locks because no other cpu could
2520 * be trying to lock both of these tasks.
2521 */
e625cce1
TG
2522 raw_spin_lock(&ctx->lock);
2523 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2524 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2525 /*
2526 * XXX do we need a memory barrier of sorts
cdd6c482 2527 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2528 */
8dc85d54
PZ
2529 task->perf_event_ctxp[ctxn] = next_ctx;
2530 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2531 ctx->task = next;
2532 next_ctx->task = task;
5a158c3c
YZ
2533
2534 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2535
c93f7669 2536 do_switch = 0;
bfbd3381 2537
cdd6c482 2538 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2539 }
e625cce1
TG
2540 raw_spin_unlock(&next_ctx->lock);
2541 raw_spin_unlock(&ctx->lock);
564c2b21 2542 }
5a3126d4 2543unlock:
c93f7669 2544 rcu_read_unlock();
564c2b21 2545
c93f7669 2546 if (do_switch) {
facc4307 2547 raw_spin_lock(&ctx->lock);
5b0311e1 2548 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2549 cpuctx->task_ctx = NULL;
facc4307 2550 raw_spin_unlock(&ctx->lock);
c93f7669 2551 }
0793a61d
TG
2552}
2553
ba532500
YZ
2554void perf_sched_cb_dec(struct pmu *pmu)
2555{
2556 this_cpu_dec(perf_sched_cb_usages);
2557}
2558
2559void perf_sched_cb_inc(struct pmu *pmu)
2560{
2561 this_cpu_inc(perf_sched_cb_usages);
2562}
2563
2564/*
2565 * This function provides the context switch callback to the lower code
2566 * layer. It is invoked ONLY when the context switch callback is enabled.
2567 */
2568static void perf_pmu_sched_task(struct task_struct *prev,
2569 struct task_struct *next,
2570 bool sched_in)
2571{
2572 struct perf_cpu_context *cpuctx;
2573 struct pmu *pmu;
2574 unsigned long flags;
2575
2576 if (prev == next)
2577 return;
2578
2579 local_irq_save(flags);
2580
2581 rcu_read_lock();
2582
2583 list_for_each_entry_rcu(pmu, &pmus, entry) {
2584 if (pmu->sched_task) {
2585 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2586
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->sched_task(cpuctx->task_ctx, sched_in);
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602}
2603
45ac1403
AH
2604static void perf_event_switch(struct task_struct *task,
2605 struct task_struct *next_prev, bool sched_in);
2606
8dc85d54
PZ
2607#define for_each_task_context_nr(ctxn) \
2608 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2609
2610/*
2611 * Called from scheduler to remove the events of the current task,
2612 * with interrupts disabled.
2613 *
2614 * We stop each event and update the event value in event->count.
2615 *
2616 * This does not protect us against NMI, but disable()
2617 * sets the disabled bit in the control field of event _before_
2618 * accessing the event control register. If a NMI hits, then it will
2619 * not restart the event.
2620 */
ab0cce56
JO
2621void __perf_event_task_sched_out(struct task_struct *task,
2622 struct task_struct *next)
8dc85d54
PZ
2623{
2624 int ctxn;
2625
ba532500
YZ
2626 if (__this_cpu_read(perf_sched_cb_usages))
2627 perf_pmu_sched_task(task, next, false);
2628
45ac1403
AH
2629 if (atomic_read(&nr_switch_events))
2630 perf_event_switch(task, next, false);
2631
8dc85d54
PZ
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
4a32fea9 2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2641 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2642}
2643
04dc2dbb 2644static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2645{
108b02cf 2646 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2647
a63eaf34
PM
2648 if (!cpuctx->task_ctx)
2649 return;
012b84da
IM
2650
2651 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2652 return;
2653
04dc2dbb 2654 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2655 cpuctx->task_ctx = NULL;
2656}
2657
5b0311e1
FW
2658/*
2659 * Called with IRQs disabled
2660 */
2661static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type)
2663{
2664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2665}
2666
235c7fc7 2667static void
5b0311e1 2668ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2669 struct perf_cpu_context *cpuctx)
0793a61d 2670{
cdd6c482 2671 struct perf_event *event;
0793a61d 2672
889ff015
FW
2673 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2674 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2675 continue;
5632ab12 2676 if (!event_filter_match(event))
3b6f9e5c
PM
2677 continue;
2678
e5d1367f
SE
2679 /* may need to reset tstamp_enabled */
2680 if (is_cgroup_event(event))
2681 perf_cgroup_mark_enabled(event, ctx);
2682
8c9ed8e1 2683 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2684 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2685
2686 /*
2687 * If this pinned group hasn't been scheduled,
2688 * put it in error state.
2689 */
cdd6c482
IM
2690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2691 update_group_times(event);
2692 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2693 }
3b6f9e5c 2694 }
5b0311e1
FW
2695}
2696
2697static void
2698ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2699 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2700{
2701 struct perf_event *event;
2702 int can_add_hw = 1;
3b6f9e5c 2703
889ff015
FW
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2705 /* Ignore events in OFF or ERROR state */
2706 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2707 continue;
04289bb9
IM
2708 /*
2709 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2710 * of events:
04289bb9 2711 */
5632ab12 2712 if (!event_filter_match(event))
0793a61d
TG
2713 continue;
2714
e5d1367f
SE
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
9ed6060d 2719 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2720 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2721 can_add_hw = 0;
9ed6060d 2722 }
0793a61d 2723 }
5b0311e1
FW
2724}
2725
2726static void
2727ctx_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2729 enum event_type_t event_type,
2730 struct task_struct *task)
5b0311e1 2731{
db24d33e 2732 int is_active = ctx->is_active;
c994d613
PZ
2733 u64 now;
2734
2735 lockdep_assert_held(&ctx->lock);
e5d1367f 2736
db24d33e 2737 ctx->is_active |= event_type;
5b0311e1 2738 if (likely(!ctx->nr_events))
facc4307 2739 return;
5b0311e1 2740
e5d1367f
SE
2741 now = perf_clock();
2742 ctx->timestamp = now;
3f7cce3c 2743 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2744 /*
2745 * First go through the list and put on any pinned groups
2746 * in order to give them the best chance of going on.
2747 */
db24d33e 2748 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2749 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2750
2751 /* Then walk through the lower prio flexible groups */
db24d33e 2752 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2753 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2754}
2755
329c0e01 2756static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2757 enum event_type_t event_type,
2758 struct task_struct *task)
329c0e01
FW
2759{
2760 struct perf_event_context *ctx = &cpuctx->ctx;
2761
e5d1367f 2762 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2763}
2764
e5d1367f
SE
2765static void perf_event_context_sched_in(struct perf_event_context *ctx,
2766 struct task_struct *task)
235c7fc7 2767{
108b02cf 2768 struct perf_cpu_context *cpuctx;
235c7fc7 2769
108b02cf 2770 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2771 if (cpuctx->task_ctx == ctx)
2772 return;
2773
facc4307 2774 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2775 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2776 /*
2777 * We want to keep the following priority order:
2778 * cpu pinned (that don't need to move), task pinned,
2779 * cpu flexible, task flexible.
2780 */
2781 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2782
1d5f003f
GN
2783 if (ctx->nr_events)
2784 cpuctx->task_ctx = ctx;
9b33fa6b 2785
86b47c25
GN
2786 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2787
facc4307
PZ
2788 perf_pmu_enable(ctx->pmu);
2789 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2790}
2791
8dc85d54
PZ
2792/*
2793 * Called from scheduler to add the events of the current task
2794 * with interrupts disabled.
2795 *
2796 * We restore the event value and then enable it.
2797 *
2798 * This does not protect us against NMI, but enable()
2799 * sets the enabled bit in the control field of event _before_
2800 * accessing the event control register. If a NMI hits, then it will
2801 * keep the event running.
2802 */
ab0cce56
JO
2803void __perf_event_task_sched_in(struct task_struct *prev,
2804 struct task_struct *task)
8dc85d54
PZ
2805{
2806 struct perf_event_context *ctx;
2807 int ctxn;
2808
2809 for_each_task_context_nr(ctxn) {
2810 ctx = task->perf_event_ctxp[ctxn];
2811 if (likely(!ctx))
2812 continue;
2813
e5d1367f 2814 perf_event_context_sched_in(ctx, task);
8dc85d54 2815 }
e5d1367f
SE
2816 /*
2817 * if cgroup events exist on this CPU, then we need
2818 * to check if we have to switch in PMU state.
2819 * cgroup event are system-wide mode only
2820 */
4a32fea9 2821 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2822 perf_cgroup_sched_in(prev, task);
d010b332 2823
45ac1403
AH
2824 if (atomic_read(&nr_switch_events))
2825 perf_event_switch(task, prev, true);
2826
ba532500
YZ
2827 if (__this_cpu_read(perf_sched_cb_usages))
2828 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2829}
2830
abd50713
PZ
2831static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2832{
2833 u64 frequency = event->attr.sample_freq;
2834 u64 sec = NSEC_PER_SEC;
2835 u64 divisor, dividend;
2836
2837 int count_fls, nsec_fls, frequency_fls, sec_fls;
2838
2839 count_fls = fls64(count);
2840 nsec_fls = fls64(nsec);
2841 frequency_fls = fls64(frequency);
2842 sec_fls = 30;
2843
2844 /*
2845 * We got @count in @nsec, with a target of sample_freq HZ
2846 * the target period becomes:
2847 *
2848 * @count * 10^9
2849 * period = -------------------
2850 * @nsec * sample_freq
2851 *
2852 */
2853
2854 /*
2855 * Reduce accuracy by one bit such that @a and @b converge
2856 * to a similar magnitude.
2857 */
fe4b04fa 2858#define REDUCE_FLS(a, b) \
abd50713
PZ
2859do { \
2860 if (a##_fls > b##_fls) { \
2861 a >>= 1; \
2862 a##_fls--; \
2863 } else { \
2864 b >>= 1; \
2865 b##_fls--; \
2866 } \
2867} while (0)
2868
2869 /*
2870 * Reduce accuracy until either term fits in a u64, then proceed with
2871 * the other, so that finally we can do a u64/u64 division.
2872 */
2873 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2874 REDUCE_FLS(nsec, frequency);
2875 REDUCE_FLS(sec, count);
2876 }
2877
2878 if (count_fls + sec_fls > 64) {
2879 divisor = nsec * frequency;
2880
2881 while (count_fls + sec_fls > 64) {
2882 REDUCE_FLS(count, sec);
2883 divisor >>= 1;
2884 }
2885
2886 dividend = count * sec;
2887 } else {
2888 dividend = count * sec;
2889
2890 while (nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 dividend >>= 1;
2893 }
2894
2895 divisor = nsec * frequency;
2896 }
2897
f6ab91ad
PZ
2898 if (!divisor)
2899 return dividend;
2900
abd50713
PZ
2901 return div64_u64(dividend, divisor);
2902}
2903
e050e3f0
SE
2904static DEFINE_PER_CPU(int, perf_throttled_count);
2905static DEFINE_PER_CPU(u64, perf_throttled_seq);
2906
f39d47ff 2907static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2908{
cdd6c482 2909 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2910 s64 period, sample_period;
bd2b5b12
PZ
2911 s64 delta;
2912
abd50713 2913 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2914
2915 delta = (s64)(period - hwc->sample_period);
2916 delta = (delta + 7) / 8; /* low pass filter */
2917
2918 sample_period = hwc->sample_period + delta;
2919
2920 if (!sample_period)
2921 sample_period = 1;
2922
bd2b5b12 2923 hwc->sample_period = sample_period;
abd50713 2924
e7850595 2925 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2926 if (disable)
2927 event->pmu->stop(event, PERF_EF_UPDATE);
2928
e7850595 2929 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2930
2931 if (disable)
2932 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2933 }
bd2b5b12
PZ
2934}
2935
e050e3f0
SE
2936/*
2937 * combine freq adjustment with unthrottling to avoid two passes over the
2938 * events. At the same time, make sure, having freq events does not change
2939 * the rate of unthrottling as that would introduce bias.
2940 */
2941static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2942 int needs_unthr)
60db5e09 2943{
cdd6c482
IM
2944 struct perf_event *event;
2945 struct hw_perf_event *hwc;
e050e3f0 2946 u64 now, period = TICK_NSEC;
abd50713 2947 s64 delta;
60db5e09 2948
e050e3f0
SE
2949 /*
2950 * only need to iterate over all events iff:
2951 * - context have events in frequency mode (needs freq adjust)
2952 * - there are events to unthrottle on this cpu
2953 */
2954 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2955 return;
2956
e050e3f0 2957 raw_spin_lock(&ctx->lock);
f39d47ff 2958 perf_pmu_disable(ctx->pmu);
e050e3f0 2959
03541f8b 2960 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2961 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2962 continue;
2963
5632ab12 2964 if (!event_filter_match(event))
5d27c23d
PZ
2965 continue;
2966
44377277
AS
2967 perf_pmu_disable(event->pmu);
2968
cdd6c482 2969 hwc = &event->hw;
6a24ed6c 2970
ae23bff1 2971 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2972 hwc->interrupts = 0;
cdd6c482 2973 perf_log_throttle(event, 1);
a4eaf7f1 2974 event->pmu->start(event, 0);
a78ac325
PZ
2975 }
2976
cdd6c482 2977 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2978 goto next;
60db5e09 2979
e050e3f0
SE
2980 /*
2981 * stop the event and update event->count
2982 */
2983 event->pmu->stop(event, PERF_EF_UPDATE);
2984
e7850595 2985 now = local64_read(&event->count);
abd50713
PZ
2986 delta = now - hwc->freq_count_stamp;
2987 hwc->freq_count_stamp = now;
60db5e09 2988
e050e3f0
SE
2989 /*
2990 * restart the event
2991 * reload only if value has changed
f39d47ff
SE
2992 * we have stopped the event so tell that
2993 * to perf_adjust_period() to avoid stopping it
2994 * twice.
e050e3f0 2995 */
abd50713 2996 if (delta > 0)
f39d47ff 2997 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2998
2999 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3000 next:
3001 perf_pmu_enable(event->pmu);
60db5e09 3002 }
e050e3f0 3003
f39d47ff 3004 perf_pmu_enable(ctx->pmu);
e050e3f0 3005 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3006}
3007
235c7fc7 3008/*
cdd6c482 3009 * Round-robin a context's events:
235c7fc7 3010 */
cdd6c482 3011static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3012{
dddd3379
TG
3013 /*
3014 * Rotate the first entry last of non-pinned groups. Rotation might be
3015 * disabled by the inheritance code.
3016 */
3017 if (!ctx->rotate_disable)
3018 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3019}
3020
9e630205 3021static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3022{
8dc85d54 3023 struct perf_event_context *ctx = NULL;
2fde4f94 3024 int rotate = 0;
7fc23a53 3025
b5ab4cd5 3026 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3027 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3028 rotate = 1;
3029 }
235c7fc7 3030
8dc85d54 3031 ctx = cpuctx->task_ctx;
b5ab4cd5 3032 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3033 if (ctx->nr_events != ctx->nr_active)
3034 rotate = 1;
3035 }
9717e6cd 3036
e050e3f0 3037 if (!rotate)
0f5a2601
PZ
3038 goto done;
3039
facc4307 3040 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3041 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3042
e050e3f0
SE
3043 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3044 if (ctx)
3045 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3046
e050e3f0
SE
3047 rotate_ctx(&cpuctx->ctx);
3048 if (ctx)
3049 rotate_ctx(ctx);
235c7fc7 3050
e050e3f0 3051 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3052
0f5a2601
PZ
3053 perf_pmu_enable(cpuctx->ctx.pmu);
3054 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3055done:
9e630205
SE
3056
3057 return rotate;
e9d2b064
PZ
3058}
3059
026249ef
FW
3060#ifdef CONFIG_NO_HZ_FULL
3061bool perf_event_can_stop_tick(void)
3062{
948b26b6 3063 if (atomic_read(&nr_freq_events) ||
d84153d6 3064 __this_cpu_read(perf_throttled_count))
026249ef 3065 return false;
d84153d6
FW
3066 else
3067 return true;
026249ef
FW
3068}
3069#endif
3070
e9d2b064
PZ
3071void perf_event_task_tick(void)
3072{
2fde4f94
MR
3073 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3074 struct perf_event_context *ctx, *tmp;
e050e3f0 3075 int throttled;
b5ab4cd5 3076
e9d2b064
PZ
3077 WARN_ON(!irqs_disabled());
3078
e050e3f0
SE
3079 __this_cpu_inc(perf_throttled_seq);
3080 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3081
2fde4f94 3082 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3083 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3084}
3085
889ff015
FW
3086static int event_enable_on_exec(struct perf_event *event,
3087 struct perf_event_context *ctx)
3088{
3089 if (!event->attr.enable_on_exec)
3090 return 0;
3091
3092 event->attr.enable_on_exec = 0;
3093 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3094 return 0;
3095
1d9b482e 3096 __perf_event_mark_enabled(event);
889ff015
FW
3097
3098 return 1;
3099}
3100
57e7986e 3101/*
cdd6c482 3102 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3103 * This expects task == current.
3104 */
c1274499 3105static void perf_event_enable_on_exec(int ctxn)
57e7986e 3106{
c1274499 3107 struct perf_event_context *ctx, *clone_ctx = NULL;
cdd6c482 3108 struct perf_event *event;
57e7986e
PM
3109 unsigned long flags;
3110 int enabled = 0;
889ff015 3111 int ret;
57e7986e
PM
3112
3113 local_irq_save(flags);
c1274499 3114 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3115 if (!ctx || !ctx->nr_events)
57e7986e
PM
3116 goto out;
3117
e566b76e
SE
3118 /*
3119 * We must ctxsw out cgroup events to avoid conflict
3120 * when invoking perf_task_event_sched_in() later on
3121 * in this function. Otherwise we end up trying to
3122 * ctxswin cgroup events which are already scheduled
3123 * in.
3124 */
a8d757ef 3125 perf_cgroup_sched_out(current, NULL);
57e7986e 3126
e625cce1 3127 raw_spin_lock(&ctx->lock);
04dc2dbb 3128 task_ctx_sched_out(ctx);
57e7986e 3129
b79387ef 3130 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3131 ret = event_enable_on_exec(event, ctx);
3132 if (ret)
3133 enabled = 1;
57e7986e
PM
3134 }
3135
3136 /*
cdd6c482 3137 * Unclone this context if we enabled any event.
57e7986e 3138 */
71a851b4 3139 if (enabled)
211de6eb 3140 clone_ctx = unclone_ctx(ctx);
57e7986e 3141
e625cce1 3142 raw_spin_unlock(&ctx->lock);
57e7986e 3143
e566b76e
SE
3144 /*
3145 * Also calls ctxswin for cgroup events, if any:
3146 */
e5d1367f 3147 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3148out:
57e7986e 3149 local_irq_restore(flags);
211de6eb
PZ
3150
3151 if (clone_ctx)
3152 put_ctx(clone_ctx);
57e7986e
PM
3153}
3154
e041e328
PZ
3155void perf_event_exec(void)
3156{
e041e328
PZ
3157 int ctxn;
3158
3159 rcu_read_lock();
c1274499
PZ
3160 for_each_task_context_nr(ctxn)
3161 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3162 rcu_read_unlock();
3163}
3164
0492d4c5
PZ
3165struct perf_read_data {
3166 struct perf_event *event;
3167 bool group;
7d88962e 3168 int ret;
0492d4c5
PZ
3169};
3170
0793a61d 3171/*
cdd6c482 3172 * Cross CPU call to read the hardware event
0793a61d 3173 */
cdd6c482 3174static void __perf_event_read(void *info)
0793a61d 3175{
0492d4c5
PZ
3176 struct perf_read_data *data = info;
3177 struct perf_event *sub, *event = data->event;
cdd6c482 3178 struct perf_event_context *ctx = event->ctx;
108b02cf 3179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3180 struct pmu *pmu = event->pmu;
621a01ea 3181
e1ac3614
PM
3182 /*
3183 * If this is a task context, we need to check whether it is
3184 * the current task context of this cpu. If not it has been
3185 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3186 * event->count would have been updated to a recent sample
3187 * when the event was scheduled out.
e1ac3614
PM
3188 */
3189 if (ctx->task && cpuctx->task_ctx != ctx)
3190 return;
3191
e625cce1 3192 raw_spin_lock(&ctx->lock);
e5d1367f 3193 if (ctx->is_active) {
542e72fc 3194 update_context_time(ctx);
e5d1367f
SE
3195 update_cgrp_time_from_event(event);
3196 }
0492d4c5 3197
cdd6c482 3198 update_event_times(event);
4a00c16e
SB
3199 if (event->state != PERF_EVENT_STATE_ACTIVE)
3200 goto unlock;
0492d4c5 3201
4a00c16e
SB
3202 if (!data->group) {
3203 pmu->read(event);
3204 data->ret = 0;
0492d4c5 3205 goto unlock;
4a00c16e
SB
3206 }
3207
3208 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3209
3210 pmu->read(event);
0492d4c5
PZ
3211
3212 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3213 update_event_times(sub);
4a00c16e
SB
3214 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3215 /*
3216 * Use sibling's PMU rather than @event's since
3217 * sibling could be on different (eg: software) PMU.
3218 */
0492d4c5 3219 sub->pmu->read(sub);
4a00c16e 3220 }
0492d4c5 3221 }
4a00c16e
SB
3222
3223 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3224
3225unlock:
e625cce1 3226 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3227}
3228
b5e58793
PZ
3229static inline u64 perf_event_count(struct perf_event *event)
3230{
eacd3ecc
MF
3231 if (event->pmu->count)
3232 return event->pmu->count(event);
3233
3234 return __perf_event_count(event);
b5e58793
PZ
3235}
3236
ffe8690c
KX
3237/*
3238 * NMI-safe method to read a local event, that is an event that
3239 * is:
3240 * - either for the current task, or for this CPU
3241 * - does not have inherit set, for inherited task events
3242 * will not be local and we cannot read them atomically
3243 * - must not have a pmu::count method
3244 */
3245u64 perf_event_read_local(struct perf_event *event)
3246{
3247 unsigned long flags;
3248 u64 val;
3249
3250 /*
3251 * Disabling interrupts avoids all counter scheduling (context
3252 * switches, timer based rotation and IPIs).
3253 */
3254 local_irq_save(flags);
3255
3256 /* If this is a per-task event, it must be for current */
3257 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3258 event->hw.target != current);
3259
3260 /* If this is a per-CPU event, it must be for this CPU */
3261 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3262 event->cpu != smp_processor_id());
3263
3264 /*
3265 * It must not be an event with inherit set, we cannot read
3266 * all child counters from atomic context.
3267 */
3268 WARN_ON_ONCE(event->attr.inherit);
3269
3270 /*
3271 * It must not have a pmu::count method, those are not
3272 * NMI safe.
3273 */
3274 WARN_ON_ONCE(event->pmu->count);
3275
3276 /*
3277 * If the event is currently on this CPU, its either a per-task event,
3278 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3279 * oncpu == -1).
3280 */
3281 if (event->oncpu == smp_processor_id())
3282 event->pmu->read(event);
3283
3284 val = local64_read(&event->count);
3285 local_irq_restore(flags);
3286
3287 return val;
3288}
3289
7d88962e 3290static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3291{
7d88962e
SB
3292 int ret = 0;
3293
0793a61d 3294 /*
cdd6c482
IM
3295 * If event is enabled and currently active on a CPU, update the
3296 * value in the event structure:
0793a61d 3297 */
cdd6c482 3298 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3299 struct perf_read_data data = {
3300 .event = event,
3301 .group = group,
7d88962e 3302 .ret = 0,
0492d4c5 3303 };
cdd6c482 3304 smp_call_function_single(event->oncpu,
0492d4c5 3305 __perf_event_read, &data, 1);
7d88962e 3306 ret = data.ret;
cdd6c482 3307 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3308 struct perf_event_context *ctx = event->ctx;
3309 unsigned long flags;
3310
e625cce1 3311 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3312 /*
3313 * may read while context is not active
3314 * (e.g., thread is blocked), in that case
3315 * we cannot update context time
3316 */
e5d1367f 3317 if (ctx->is_active) {
c530ccd9 3318 update_context_time(ctx);
e5d1367f
SE
3319 update_cgrp_time_from_event(event);
3320 }
0492d4c5
PZ
3321 if (group)
3322 update_group_times(event);
3323 else
3324 update_event_times(event);
e625cce1 3325 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3326 }
7d88962e
SB
3327
3328 return ret;
0793a61d
TG
3329}
3330
a63eaf34 3331/*
cdd6c482 3332 * Initialize the perf_event context in a task_struct:
a63eaf34 3333 */
eb184479 3334static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3335{
e625cce1 3336 raw_spin_lock_init(&ctx->lock);
a63eaf34 3337 mutex_init(&ctx->mutex);
2fde4f94 3338 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3339 INIT_LIST_HEAD(&ctx->pinned_groups);
3340 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3341 INIT_LIST_HEAD(&ctx->event_list);
3342 atomic_set(&ctx->refcount, 1);
fadfe7be 3343 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3344}
3345
3346static struct perf_event_context *
3347alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3348{
3349 struct perf_event_context *ctx;
3350
3351 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3352 if (!ctx)
3353 return NULL;
3354
3355 __perf_event_init_context(ctx);
3356 if (task) {
3357 ctx->task = task;
3358 get_task_struct(task);
0793a61d 3359 }
eb184479
PZ
3360 ctx->pmu = pmu;
3361
3362 return ctx;
a63eaf34
PM
3363}
3364
2ebd4ffb
MH
3365static struct task_struct *
3366find_lively_task_by_vpid(pid_t vpid)
3367{
3368 struct task_struct *task;
3369 int err;
0793a61d
TG
3370
3371 rcu_read_lock();
2ebd4ffb 3372 if (!vpid)
0793a61d
TG
3373 task = current;
3374 else
2ebd4ffb 3375 task = find_task_by_vpid(vpid);
0793a61d
TG
3376 if (task)
3377 get_task_struct(task);
3378 rcu_read_unlock();
3379
3380 if (!task)
3381 return ERR_PTR(-ESRCH);
3382
0793a61d 3383 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3384 err = -EACCES;
3385 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3386 goto errout;
3387
2ebd4ffb
MH
3388 return task;
3389errout:
3390 put_task_struct(task);
3391 return ERR_PTR(err);
3392
3393}
3394
fe4b04fa
PZ
3395/*
3396 * Returns a matching context with refcount and pincount.
3397 */
108b02cf 3398static struct perf_event_context *
4af57ef2
YZ
3399find_get_context(struct pmu *pmu, struct task_struct *task,
3400 struct perf_event *event)
0793a61d 3401{
211de6eb 3402 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3403 struct perf_cpu_context *cpuctx;
4af57ef2 3404 void *task_ctx_data = NULL;
25346b93 3405 unsigned long flags;
8dc85d54 3406 int ctxn, err;
4af57ef2 3407 int cpu = event->cpu;
0793a61d 3408
22a4ec72 3409 if (!task) {
cdd6c482 3410 /* Must be root to operate on a CPU event: */
0764771d 3411 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3412 return ERR_PTR(-EACCES);
3413
0793a61d 3414 /*
cdd6c482 3415 * We could be clever and allow to attach a event to an
0793a61d
TG
3416 * offline CPU and activate it when the CPU comes up, but
3417 * that's for later.
3418 */
f6325e30 3419 if (!cpu_online(cpu))
0793a61d
TG
3420 return ERR_PTR(-ENODEV);
3421
108b02cf 3422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3423 ctx = &cpuctx->ctx;
c93f7669 3424 get_ctx(ctx);
fe4b04fa 3425 ++ctx->pin_count;
0793a61d 3426
0793a61d
TG
3427 return ctx;
3428 }
3429
8dc85d54
PZ
3430 err = -EINVAL;
3431 ctxn = pmu->task_ctx_nr;
3432 if (ctxn < 0)
3433 goto errout;
3434
4af57ef2
YZ
3435 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3436 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3437 if (!task_ctx_data) {
3438 err = -ENOMEM;
3439 goto errout;
3440 }
3441 }
3442
9ed6060d 3443retry:
8dc85d54 3444 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3445 if (ctx) {
211de6eb 3446 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3447 ++ctx->pin_count;
4af57ef2
YZ
3448
3449 if (task_ctx_data && !ctx->task_ctx_data) {
3450 ctx->task_ctx_data = task_ctx_data;
3451 task_ctx_data = NULL;
3452 }
e625cce1 3453 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3454
3455 if (clone_ctx)
3456 put_ctx(clone_ctx);
9137fb28 3457 } else {
eb184479 3458 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3459 err = -ENOMEM;
3460 if (!ctx)
3461 goto errout;
eb184479 3462
4af57ef2
YZ
3463 if (task_ctx_data) {
3464 ctx->task_ctx_data = task_ctx_data;
3465 task_ctx_data = NULL;
3466 }
3467
dbe08d82
ON
3468 err = 0;
3469 mutex_lock(&task->perf_event_mutex);
3470 /*
3471 * If it has already passed perf_event_exit_task().
3472 * we must see PF_EXITING, it takes this mutex too.
3473 */
3474 if (task->flags & PF_EXITING)
3475 err = -ESRCH;
3476 else if (task->perf_event_ctxp[ctxn])
3477 err = -EAGAIN;
fe4b04fa 3478 else {
9137fb28 3479 get_ctx(ctx);
fe4b04fa 3480 ++ctx->pin_count;
dbe08d82 3481 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3482 }
dbe08d82
ON
3483 mutex_unlock(&task->perf_event_mutex);
3484
3485 if (unlikely(err)) {
9137fb28 3486 put_ctx(ctx);
dbe08d82
ON
3487
3488 if (err == -EAGAIN)
3489 goto retry;
3490 goto errout;
a63eaf34
PM
3491 }
3492 }
3493
4af57ef2 3494 kfree(task_ctx_data);
0793a61d 3495 return ctx;
c93f7669 3496
9ed6060d 3497errout:
4af57ef2 3498 kfree(task_ctx_data);
c93f7669 3499 return ERR_PTR(err);
0793a61d
TG
3500}
3501
6fb2915d 3502static void perf_event_free_filter(struct perf_event *event);
2541517c 3503static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3504
cdd6c482 3505static void free_event_rcu(struct rcu_head *head)
592903cd 3506{
cdd6c482 3507 struct perf_event *event;
592903cd 3508
cdd6c482
IM
3509 event = container_of(head, struct perf_event, rcu_head);
3510 if (event->ns)
3511 put_pid_ns(event->ns);
6fb2915d 3512 perf_event_free_filter(event);
cdd6c482 3513 kfree(event);
592903cd
PZ
3514}
3515
b69cf536
PZ
3516static void ring_buffer_attach(struct perf_event *event,
3517 struct ring_buffer *rb);
925d519a 3518
4beb31f3 3519static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3520{
4beb31f3
FW
3521 if (event->parent)
3522 return;
3523
4beb31f3
FW
3524 if (is_cgroup_event(event))
3525 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3526}
925d519a 3527
4beb31f3
FW
3528static void unaccount_event(struct perf_event *event)
3529{
3530 if (event->parent)
3531 return;
3532
3533 if (event->attach_state & PERF_ATTACH_TASK)
3534 static_key_slow_dec_deferred(&perf_sched_events);
3535 if (event->attr.mmap || event->attr.mmap_data)
3536 atomic_dec(&nr_mmap_events);
3537 if (event->attr.comm)
3538 atomic_dec(&nr_comm_events);
3539 if (event->attr.task)
3540 atomic_dec(&nr_task_events);
948b26b6
FW
3541 if (event->attr.freq)
3542 atomic_dec(&nr_freq_events);
45ac1403
AH
3543 if (event->attr.context_switch) {
3544 static_key_slow_dec_deferred(&perf_sched_events);
3545 atomic_dec(&nr_switch_events);
3546 }
4beb31f3
FW
3547 if (is_cgroup_event(event))
3548 static_key_slow_dec_deferred(&perf_sched_events);
3549 if (has_branch_stack(event))
3550 static_key_slow_dec_deferred(&perf_sched_events);
3551
3552 unaccount_event_cpu(event, event->cpu);
3553}
925d519a 3554
bed5b25a
AS
3555/*
3556 * The following implement mutual exclusion of events on "exclusive" pmus
3557 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3558 * at a time, so we disallow creating events that might conflict, namely:
3559 *
3560 * 1) cpu-wide events in the presence of per-task events,
3561 * 2) per-task events in the presence of cpu-wide events,
3562 * 3) two matching events on the same context.
3563 *
3564 * The former two cases are handled in the allocation path (perf_event_alloc(),
3565 * __free_event()), the latter -- before the first perf_install_in_context().
3566 */
3567static int exclusive_event_init(struct perf_event *event)
3568{
3569 struct pmu *pmu = event->pmu;
3570
3571 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3572 return 0;
3573
3574 /*
3575 * Prevent co-existence of per-task and cpu-wide events on the
3576 * same exclusive pmu.
3577 *
3578 * Negative pmu::exclusive_cnt means there are cpu-wide
3579 * events on this "exclusive" pmu, positive means there are
3580 * per-task events.
3581 *
3582 * Since this is called in perf_event_alloc() path, event::ctx
3583 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3584 * to mean "per-task event", because unlike other attach states it
3585 * never gets cleared.
3586 */
3587 if (event->attach_state & PERF_ATTACH_TASK) {
3588 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3589 return -EBUSY;
3590 } else {
3591 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3592 return -EBUSY;
3593 }
3594
3595 return 0;
3596}
3597
3598static void exclusive_event_destroy(struct perf_event *event)
3599{
3600 struct pmu *pmu = event->pmu;
3601
3602 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3603 return;
3604
3605 /* see comment in exclusive_event_init() */
3606 if (event->attach_state & PERF_ATTACH_TASK)
3607 atomic_dec(&pmu->exclusive_cnt);
3608 else
3609 atomic_inc(&pmu->exclusive_cnt);
3610}
3611
3612static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3613{
3614 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3615 (e1->cpu == e2->cpu ||
3616 e1->cpu == -1 ||
3617 e2->cpu == -1))
3618 return true;
3619 return false;
3620}
3621
3622/* Called under the same ctx::mutex as perf_install_in_context() */
3623static bool exclusive_event_installable(struct perf_event *event,
3624 struct perf_event_context *ctx)
3625{
3626 struct perf_event *iter_event;
3627 struct pmu *pmu = event->pmu;
3628
3629 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3630 return true;
3631
3632 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3633 if (exclusive_event_match(iter_event, event))
3634 return false;
3635 }
3636
3637 return true;
3638}
3639
766d6c07
FW
3640static void __free_event(struct perf_event *event)
3641{
cdd6c482 3642 if (!event->parent) {
927c7a9e
FW
3643 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3644 put_callchain_buffers();
f344011c 3645 }
9ee318a7 3646
dead9f29
AS
3647 perf_event_free_bpf_prog(event);
3648
766d6c07
FW
3649 if (event->destroy)
3650 event->destroy(event);
3651
3652 if (event->ctx)
3653 put_ctx(event->ctx);
3654
bed5b25a
AS
3655 if (event->pmu) {
3656 exclusive_event_destroy(event);
c464c76e 3657 module_put(event->pmu->module);
bed5b25a 3658 }
c464c76e 3659
766d6c07
FW
3660 call_rcu(&event->rcu_head, free_event_rcu);
3661}
683ede43
PZ
3662
3663static void _free_event(struct perf_event *event)
f1600952 3664{
e360adbe 3665 irq_work_sync(&event->pending);
925d519a 3666
4beb31f3 3667 unaccount_event(event);
9ee318a7 3668
76369139 3669 if (event->rb) {
9bb5d40c
PZ
3670 /*
3671 * Can happen when we close an event with re-directed output.
3672 *
3673 * Since we have a 0 refcount, perf_mmap_close() will skip
3674 * over us; possibly making our ring_buffer_put() the last.
3675 */
3676 mutex_lock(&event->mmap_mutex);
b69cf536 3677 ring_buffer_attach(event, NULL);
9bb5d40c 3678 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3679 }
3680
e5d1367f
SE
3681 if (is_cgroup_event(event))
3682 perf_detach_cgroup(event);
3683
766d6c07 3684 __free_event(event);
f1600952
PZ
3685}
3686
683ede43
PZ
3687/*
3688 * Used to free events which have a known refcount of 1, such as in error paths
3689 * where the event isn't exposed yet and inherited events.
3690 */
3691static void free_event(struct perf_event *event)
0793a61d 3692{
683ede43
PZ
3693 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3694 "unexpected event refcount: %ld; ptr=%p\n",
3695 atomic_long_read(&event->refcount), event)) {
3696 /* leak to avoid use-after-free */
3697 return;
3698 }
0793a61d 3699
683ede43 3700 _free_event(event);
0793a61d
TG
3701}
3702
a66a3052 3703/*
f8697762 3704 * Remove user event from the owner task.
a66a3052 3705 */
f8697762 3706static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3707{
8882135b 3708 struct task_struct *owner;
fb0459d7 3709
8882135b
PZ
3710 rcu_read_lock();
3711 owner = ACCESS_ONCE(event->owner);
3712 /*
3713 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3714 * !owner it means the list deletion is complete and we can indeed
3715 * free this event, otherwise we need to serialize on
3716 * owner->perf_event_mutex.
3717 */
3718 smp_read_barrier_depends();
3719 if (owner) {
3720 /*
3721 * Since delayed_put_task_struct() also drops the last
3722 * task reference we can safely take a new reference
3723 * while holding the rcu_read_lock().
3724 */
3725 get_task_struct(owner);
3726 }
3727 rcu_read_unlock();
3728
3729 if (owner) {
f63a8daa
PZ
3730 /*
3731 * If we're here through perf_event_exit_task() we're already
3732 * holding ctx->mutex which would be an inversion wrt. the
3733 * normal lock order.
3734 *
3735 * However we can safely take this lock because its the child
3736 * ctx->mutex.
3737 */
3738 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3739
8882135b
PZ
3740 /*
3741 * We have to re-check the event->owner field, if it is cleared
3742 * we raced with perf_event_exit_task(), acquiring the mutex
3743 * ensured they're done, and we can proceed with freeing the
3744 * event.
3745 */
3746 if (event->owner)
3747 list_del_init(&event->owner_entry);
3748 mutex_unlock(&owner->perf_event_mutex);
3749 put_task_struct(owner);
3750 }
f8697762
JO
3751}
3752
f8697762
JO
3753static void put_event(struct perf_event *event)
3754{
a83fe28e 3755 struct perf_event_context *ctx;
f8697762
JO
3756
3757 if (!atomic_long_dec_and_test(&event->refcount))
3758 return;
3759
3760 if (!is_kernel_event(event))
3761 perf_remove_from_owner(event);
8882135b 3762
683ede43
PZ
3763 /*
3764 * There are two ways this annotation is useful:
3765 *
3766 * 1) there is a lock recursion from perf_event_exit_task
3767 * see the comment there.
3768 *
3769 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3770 * perf_read_group(), which takes faults while
683ede43
PZ
3771 * holding ctx->mutex, however this is called after
3772 * the last filedesc died, so there is no possibility
3773 * to trigger the AB-BA case.
3774 */
a83fe28e
PZ
3775 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3776 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3777 perf_remove_from_context(event, true);
d415a7f1 3778 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3779
3780 _free_event(event);
a6fa941d
AV
3781}
3782
683ede43
PZ
3783int perf_event_release_kernel(struct perf_event *event)
3784{
3785 put_event(event);
3786 return 0;
3787}
3788EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3789
8b10c5e2
PZ
3790/*
3791 * Called when the last reference to the file is gone.
3792 */
a6fa941d
AV
3793static int perf_release(struct inode *inode, struct file *file)
3794{
3795 put_event(file->private_data);
3796 return 0;
fb0459d7 3797}
fb0459d7 3798
fadfe7be
JO
3799/*
3800 * Remove all orphanes events from the context.
3801 */
3802static void orphans_remove_work(struct work_struct *work)
3803{
3804 struct perf_event_context *ctx;
3805 struct perf_event *event, *tmp;
3806
3807 ctx = container_of(work, struct perf_event_context,
3808 orphans_remove.work);
3809
3810 mutex_lock(&ctx->mutex);
3811 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3812 struct perf_event *parent_event = event->parent;
3813
3814 if (!is_orphaned_child(event))
3815 continue;
3816
3817 perf_remove_from_context(event, true);
3818
3819 mutex_lock(&parent_event->child_mutex);
3820 list_del_init(&event->child_list);
3821 mutex_unlock(&parent_event->child_mutex);
3822
3823 free_event(event);
3824 put_event(parent_event);
3825 }
3826
3827 raw_spin_lock_irq(&ctx->lock);
3828 ctx->orphans_remove_sched = false;
3829 raw_spin_unlock_irq(&ctx->lock);
3830 mutex_unlock(&ctx->mutex);
3831
3832 put_ctx(ctx);
3833}
3834
59ed446f 3835u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3836{
cdd6c482 3837 struct perf_event *child;
e53c0994
PZ
3838 u64 total = 0;
3839
59ed446f
PZ
3840 *enabled = 0;
3841 *running = 0;
3842
6f10581a 3843 mutex_lock(&event->child_mutex);
01add3ea 3844
7d88962e 3845 (void)perf_event_read(event, false);
01add3ea
SB
3846 total += perf_event_count(event);
3847
59ed446f
PZ
3848 *enabled += event->total_time_enabled +
3849 atomic64_read(&event->child_total_time_enabled);
3850 *running += event->total_time_running +
3851 atomic64_read(&event->child_total_time_running);
3852
3853 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3854 (void)perf_event_read(child, false);
01add3ea 3855 total += perf_event_count(child);
59ed446f
PZ
3856 *enabled += child->total_time_enabled;
3857 *running += child->total_time_running;
3858 }
6f10581a 3859 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3860
3861 return total;
3862}
fb0459d7 3863EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3864
7d88962e 3865static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3866 u64 read_format, u64 *values)
3dab77fb 3867{
fa8c2693
PZ
3868 struct perf_event *sub;
3869 int n = 1; /* skip @nr */
7d88962e 3870 int ret;
f63a8daa 3871
7d88962e
SB
3872 ret = perf_event_read(leader, true);
3873 if (ret)
3874 return ret;
abf4868b 3875
fa8c2693
PZ
3876 /*
3877 * Since we co-schedule groups, {enabled,running} times of siblings
3878 * will be identical to those of the leader, so we only publish one
3879 * set.
3880 */
3881 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3882 values[n++] += leader->total_time_enabled +
3883 atomic64_read(&leader->child_total_time_enabled);
3884 }
3dab77fb 3885
fa8c2693
PZ
3886 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3887 values[n++] += leader->total_time_running +
3888 atomic64_read(&leader->child_total_time_running);
3889 }
3890
3891 /*
3892 * Write {count,id} tuples for every sibling.
3893 */
3894 values[n++] += perf_event_count(leader);
abf4868b
PZ
3895 if (read_format & PERF_FORMAT_ID)
3896 values[n++] = primary_event_id(leader);
3dab77fb 3897
fa8c2693
PZ
3898 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3899 values[n++] += perf_event_count(sub);
3900 if (read_format & PERF_FORMAT_ID)
3901 values[n++] = primary_event_id(sub);
3902 }
7d88962e
SB
3903
3904 return 0;
fa8c2693 3905}
3dab77fb 3906
fa8c2693
PZ
3907static int perf_read_group(struct perf_event *event,
3908 u64 read_format, char __user *buf)
3909{
3910 struct perf_event *leader = event->group_leader, *child;
3911 struct perf_event_context *ctx = leader->ctx;
7d88962e 3912 int ret;
fa8c2693 3913 u64 *values;
3dab77fb 3914
fa8c2693 3915 lockdep_assert_held(&ctx->mutex);
3dab77fb 3916
fa8c2693
PZ
3917 values = kzalloc(event->read_size, GFP_KERNEL);
3918 if (!values)
3919 return -ENOMEM;
3dab77fb 3920
fa8c2693
PZ
3921 values[0] = 1 + leader->nr_siblings;
3922
3923 /*
3924 * By locking the child_mutex of the leader we effectively
3925 * lock the child list of all siblings.. XXX explain how.
3926 */
3927 mutex_lock(&leader->child_mutex);
abf4868b 3928
7d88962e
SB
3929 ret = __perf_read_group_add(leader, read_format, values);
3930 if (ret)
3931 goto unlock;
3932
3933 list_for_each_entry(child, &leader->child_list, child_list) {
3934 ret = __perf_read_group_add(child, read_format, values);
3935 if (ret)
3936 goto unlock;
3937 }
abf4868b 3938
fa8c2693 3939 mutex_unlock(&leader->child_mutex);
abf4868b 3940
7d88962e 3941 ret = event->read_size;
fa8c2693
PZ
3942 if (copy_to_user(buf, values, event->read_size))
3943 ret = -EFAULT;
7d88962e 3944 goto out;
fa8c2693 3945
7d88962e
SB
3946unlock:
3947 mutex_unlock(&leader->child_mutex);
3948out:
fa8c2693 3949 kfree(values);
abf4868b 3950 return ret;
3dab77fb
PZ
3951}
3952
b15f495b 3953static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3954 u64 read_format, char __user *buf)
3955{
59ed446f 3956 u64 enabled, running;
3dab77fb
PZ
3957 u64 values[4];
3958 int n = 0;
3959
59ed446f
PZ
3960 values[n++] = perf_event_read_value(event, &enabled, &running);
3961 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3962 values[n++] = enabled;
3963 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3964 values[n++] = running;
3dab77fb 3965 if (read_format & PERF_FORMAT_ID)
cdd6c482 3966 values[n++] = primary_event_id(event);
3dab77fb
PZ
3967
3968 if (copy_to_user(buf, values, n * sizeof(u64)))
3969 return -EFAULT;
3970
3971 return n * sizeof(u64);
3972}
3973
dc633982
JO
3974static bool is_event_hup(struct perf_event *event)
3975{
3976 bool no_children;
3977
3978 if (event->state != PERF_EVENT_STATE_EXIT)
3979 return false;
3980
3981 mutex_lock(&event->child_mutex);
3982 no_children = list_empty(&event->child_list);
3983 mutex_unlock(&event->child_mutex);
3984 return no_children;
3985}
3986
0793a61d 3987/*
cdd6c482 3988 * Read the performance event - simple non blocking version for now
0793a61d
TG
3989 */
3990static ssize_t
b15f495b 3991__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3992{
cdd6c482 3993 u64 read_format = event->attr.read_format;
3dab77fb 3994 int ret;
0793a61d 3995
3b6f9e5c 3996 /*
cdd6c482 3997 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3998 * error state (i.e. because it was pinned but it couldn't be
3999 * scheduled on to the CPU at some point).
4000 */
cdd6c482 4001 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4002 return 0;
4003
c320c7b7 4004 if (count < event->read_size)
3dab77fb
PZ
4005 return -ENOSPC;
4006
cdd6c482 4007 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4008 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4009 ret = perf_read_group(event, read_format, buf);
3dab77fb 4010 else
b15f495b 4011 ret = perf_read_one(event, read_format, buf);
0793a61d 4012
3dab77fb 4013 return ret;
0793a61d
TG
4014}
4015
0793a61d
TG
4016static ssize_t
4017perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4018{
cdd6c482 4019 struct perf_event *event = file->private_data;
f63a8daa
PZ
4020 struct perf_event_context *ctx;
4021 int ret;
0793a61d 4022
f63a8daa 4023 ctx = perf_event_ctx_lock(event);
b15f495b 4024 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4025 perf_event_ctx_unlock(event, ctx);
4026
4027 return ret;
0793a61d
TG
4028}
4029
4030static unsigned int perf_poll(struct file *file, poll_table *wait)
4031{
cdd6c482 4032 struct perf_event *event = file->private_data;
76369139 4033 struct ring_buffer *rb;
61b67684 4034 unsigned int events = POLLHUP;
c7138f37 4035
e708d7ad 4036 poll_wait(file, &event->waitq, wait);
179033b3 4037
dc633982 4038 if (is_event_hup(event))
179033b3 4039 return events;
c7138f37 4040
10c6db11 4041 /*
9bb5d40c
PZ
4042 * Pin the event->rb by taking event->mmap_mutex; otherwise
4043 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4044 */
4045 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4046 rb = event->rb;
4047 if (rb)
76369139 4048 events = atomic_xchg(&rb->poll, 0);
10c6db11 4049 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4050 return events;
4051}
4052
f63a8daa 4053static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4054{
7d88962e 4055 (void)perf_event_read(event, false);
e7850595 4056 local64_set(&event->count, 0);
cdd6c482 4057 perf_event_update_userpage(event);
3df5edad
PZ
4058}
4059
c93f7669 4060/*
cdd6c482
IM
4061 * Holding the top-level event's child_mutex means that any
4062 * descendant process that has inherited this event will block
4063 * in sync_child_event if it goes to exit, thus satisfying the
4064 * task existence requirements of perf_event_enable/disable.
c93f7669 4065 */
cdd6c482
IM
4066static void perf_event_for_each_child(struct perf_event *event,
4067 void (*func)(struct perf_event *))
3df5edad 4068{
cdd6c482 4069 struct perf_event *child;
3df5edad 4070
cdd6c482 4071 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4072
cdd6c482
IM
4073 mutex_lock(&event->child_mutex);
4074 func(event);
4075 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4076 func(child);
cdd6c482 4077 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4078}
4079
cdd6c482
IM
4080static void perf_event_for_each(struct perf_event *event,
4081 void (*func)(struct perf_event *))
3df5edad 4082{
cdd6c482
IM
4083 struct perf_event_context *ctx = event->ctx;
4084 struct perf_event *sibling;
3df5edad 4085
f63a8daa
PZ
4086 lockdep_assert_held(&ctx->mutex);
4087
cdd6c482 4088 event = event->group_leader;
75f937f2 4089
cdd6c482 4090 perf_event_for_each_child(event, func);
cdd6c482 4091 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4092 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4093}
4094
c7999c6f
PZ
4095struct period_event {
4096 struct perf_event *event;
08247e31 4097 u64 value;
c7999c6f 4098};
08247e31 4099
0017960f
PZ
4100static void ___perf_event_period(void *info)
4101{
4102 struct period_event *pe = info;
4103 struct perf_event *event = pe->event;
4104 u64 value = pe->value;
4105
4106 if (event->attr.freq) {
4107 event->attr.sample_freq = value;
4108 } else {
4109 event->attr.sample_period = value;
4110 event->hw.sample_period = value;
4111 }
4112
4113 local64_set(&event->hw.period_left, 0);
4114}
4115
c7999c6f
PZ
4116static int __perf_event_period(void *info)
4117{
4118 struct period_event *pe = info;
4119 struct perf_event *event = pe->event;
4120 struct perf_event_context *ctx = event->ctx;
4121 u64 value = pe->value;
4122 bool active;
08247e31 4123
c7999c6f 4124 raw_spin_lock(&ctx->lock);
cdd6c482 4125 if (event->attr.freq) {
cdd6c482 4126 event->attr.sample_freq = value;
08247e31 4127 } else {
cdd6c482
IM
4128 event->attr.sample_period = value;
4129 event->hw.sample_period = value;
08247e31 4130 }
bad7192b
PZ
4131
4132 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4133 if (active) {
4134 perf_pmu_disable(ctx->pmu);
4135 event->pmu->stop(event, PERF_EF_UPDATE);
4136 }
4137
4138 local64_set(&event->hw.period_left, 0);
4139
4140 if (active) {
4141 event->pmu->start(event, PERF_EF_RELOAD);
4142 perf_pmu_enable(ctx->pmu);
4143 }
c7999c6f 4144 raw_spin_unlock(&ctx->lock);
bad7192b 4145
c7999c6f
PZ
4146 return 0;
4147}
4148
4149static int perf_event_period(struct perf_event *event, u64 __user *arg)
4150{
4151 struct period_event pe = { .event = event, };
c7999c6f
PZ
4152 u64 value;
4153
4154 if (!is_sampling_event(event))
4155 return -EINVAL;
4156
4157 if (copy_from_user(&value, arg, sizeof(value)))
4158 return -EFAULT;
4159
4160 if (!value)
4161 return -EINVAL;
4162
4163 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4164 return -EINVAL;
4165
c7999c6f
PZ
4166 pe.value = value;
4167
0017960f
PZ
4168 event_function_call(event, __perf_event_period,
4169 ___perf_event_period, &pe);
08247e31 4170
c7999c6f 4171 return 0;
08247e31
PZ
4172}
4173
ac9721f3
PZ
4174static const struct file_operations perf_fops;
4175
2903ff01 4176static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4177{
2903ff01
AV
4178 struct fd f = fdget(fd);
4179 if (!f.file)
4180 return -EBADF;
ac9721f3 4181
2903ff01
AV
4182 if (f.file->f_op != &perf_fops) {
4183 fdput(f);
4184 return -EBADF;
ac9721f3 4185 }
2903ff01
AV
4186 *p = f;
4187 return 0;
ac9721f3
PZ
4188}
4189
4190static int perf_event_set_output(struct perf_event *event,
4191 struct perf_event *output_event);
6fb2915d 4192static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4193static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4194
f63a8daa 4195static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4196{
cdd6c482 4197 void (*func)(struct perf_event *);
3df5edad 4198 u32 flags = arg;
d859e29f
PM
4199
4200 switch (cmd) {
cdd6c482 4201 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4202 func = _perf_event_enable;
d859e29f 4203 break;
cdd6c482 4204 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4205 func = _perf_event_disable;
79f14641 4206 break;
cdd6c482 4207 case PERF_EVENT_IOC_RESET:
f63a8daa 4208 func = _perf_event_reset;
6de6a7b9 4209 break;
3df5edad 4210
cdd6c482 4211 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4212 return _perf_event_refresh(event, arg);
08247e31 4213
cdd6c482
IM
4214 case PERF_EVENT_IOC_PERIOD:
4215 return perf_event_period(event, (u64 __user *)arg);
08247e31 4216
cf4957f1
JO
4217 case PERF_EVENT_IOC_ID:
4218 {
4219 u64 id = primary_event_id(event);
4220
4221 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4222 return -EFAULT;
4223 return 0;
4224 }
4225
cdd6c482 4226 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4227 {
ac9721f3 4228 int ret;
ac9721f3 4229 if (arg != -1) {
2903ff01
AV
4230 struct perf_event *output_event;
4231 struct fd output;
4232 ret = perf_fget_light(arg, &output);
4233 if (ret)
4234 return ret;
4235 output_event = output.file->private_data;
4236 ret = perf_event_set_output(event, output_event);
4237 fdput(output);
4238 } else {
4239 ret = perf_event_set_output(event, NULL);
ac9721f3 4240 }
ac9721f3
PZ
4241 return ret;
4242 }
a4be7c27 4243
6fb2915d
LZ
4244 case PERF_EVENT_IOC_SET_FILTER:
4245 return perf_event_set_filter(event, (void __user *)arg);
4246
2541517c
AS
4247 case PERF_EVENT_IOC_SET_BPF:
4248 return perf_event_set_bpf_prog(event, arg);
4249
d859e29f 4250 default:
3df5edad 4251 return -ENOTTY;
d859e29f 4252 }
3df5edad
PZ
4253
4254 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4255 perf_event_for_each(event, func);
3df5edad 4256 else
cdd6c482 4257 perf_event_for_each_child(event, func);
3df5edad
PZ
4258
4259 return 0;
d859e29f
PM
4260}
4261
f63a8daa
PZ
4262static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4263{
4264 struct perf_event *event = file->private_data;
4265 struct perf_event_context *ctx;
4266 long ret;
4267
4268 ctx = perf_event_ctx_lock(event);
4269 ret = _perf_ioctl(event, cmd, arg);
4270 perf_event_ctx_unlock(event, ctx);
4271
4272 return ret;
4273}
4274
b3f20785
PM
4275#ifdef CONFIG_COMPAT
4276static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4277 unsigned long arg)
4278{
4279 switch (_IOC_NR(cmd)) {
4280 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4281 case _IOC_NR(PERF_EVENT_IOC_ID):
4282 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4283 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4284 cmd &= ~IOCSIZE_MASK;
4285 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4286 }
4287 break;
4288 }
4289 return perf_ioctl(file, cmd, arg);
4290}
4291#else
4292# define perf_compat_ioctl NULL
4293#endif
4294
cdd6c482 4295int perf_event_task_enable(void)
771d7cde 4296{
f63a8daa 4297 struct perf_event_context *ctx;
cdd6c482 4298 struct perf_event *event;
771d7cde 4299
cdd6c482 4300 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4301 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4302 ctx = perf_event_ctx_lock(event);
4303 perf_event_for_each_child(event, _perf_event_enable);
4304 perf_event_ctx_unlock(event, ctx);
4305 }
cdd6c482 4306 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4307
4308 return 0;
4309}
4310
cdd6c482 4311int perf_event_task_disable(void)
771d7cde 4312{
f63a8daa 4313 struct perf_event_context *ctx;
cdd6c482 4314 struct perf_event *event;
771d7cde 4315
cdd6c482 4316 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4317 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4318 ctx = perf_event_ctx_lock(event);
4319 perf_event_for_each_child(event, _perf_event_disable);
4320 perf_event_ctx_unlock(event, ctx);
4321 }
cdd6c482 4322 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4323
4324 return 0;
4325}
4326
cdd6c482 4327static int perf_event_index(struct perf_event *event)
194002b2 4328{
a4eaf7f1
PZ
4329 if (event->hw.state & PERF_HES_STOPPED)
4330 return 0;
4331
cdd6c482 4332 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4333 return 0;
4334
35edc2a5 4335 return event->pmu->event_idx(event);
194002b2
PZ
4336}
4337
c4794295 4338static void calc_timer_values(struct perf_event *event,
e3f3541c 4339 u64 *now,
7f310a5d
EM
4340 u64 *enabled,
4341 u64 *running)
c4794295 4342{
e3f3541c 4343 u64 ctx_time;
c4794295 4344
e3f3541c
PZ
4345 *now = perf_clock();
4346 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4347 *enabled = ctx_time - event->tstamp_enabled;
4348 *running = ctx_time - event->tstamp_running;
4349}
4350
fa731587
PZ
4351static void perf_event_init_userpage(struct perf_event *event)
4352{
4353 struct perf_event_mmap_page *userpg;
4354 struct ring_buffer *rb;
4355
4356 rcu_read_lock();
4357 rb = rcu_dereference(event->rb);
4358 if (!rb)
4359 goto unlock;
4360
4361 userpg = rb->user_page;
4362
4363 /* Allow new userspace to detect that bit 0 is deprecated */
4364 userpg->cap_bit0_is_deprecated = 1;
4365 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4366 userpg->data_offset = PAGE_SIZE;
4367 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4368
4369unlock:
4370 rcu_read_unlock();
4371}
4372
c1317ec2
AL
4373void __weak arch_perf_update_userpage(
4374 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4375{
4376}
4377
38ff667b
PZ
4378/*
4379 * Callers need to ensure there can be no nesting of this function, otherwise
4380 * the seqlock logic goes bad. We can not serialize this because the arch
4381 * code calls this from NMI context.
4382 */
cdd6c482 4383void perf_event_update_userpage(struct perf_event *event)
37d81828 4384{
cdd6c482 4385 struct perf_event_mmap_page *userpg;
76369139 4386 struct ring_buffer *rb;
e3f3541c 4387 u64 enabled, running, now;
38ff667b
PZ
4388
4389 rcu_read_lock();
5ec4c599
PZ
4390 rb = rcu_dereference(event->rb);
4391 if (!rb)
4392 goto unlock;
4393
0d641208
EM
4394 /*
4395 * compute total_time_enabled, total_time_running
4396 * based on snapshot values taken when the event
4397 * was last scheduled in.
4398 *
4399 * we cannot simply called update_context_time()
4400 * because of locking issue as we can be called in
4401 * NMI context
4402 */
e3f3541c 4403 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4404
76369139 4405 userpg = rb->user_page;
7b732a75
PZ
4406 /*
4407 * Disable preemption so as to not let the corresponding user-space
4408 * spin too long if we get preempted.
4409 */
4410 preempt_disable();
37d81828 4411 ++userpg->lock;
92f22a38 4412 barrier();
cdd6c482 4413 userpg->index = perf_event_index(event);
b5e58793 4414 userpg->offset = perf_event_count(event);
365a4038 4415 if (userpg->index)
e7850595 4416 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4417
0d641208 4418 userpg->time_enabled = enabled +
cdd6c482 4419 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4420
0d641208 4421 userpg->time_running = running +
cdd6c482 4422 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4423
c1317ec2 4424 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4425
92f22a38 4426 barrier();
37d81828 4427 ++userpg->lock;
7b732a75 4428 preempt_enable();
38ff667b 4429unlock:
7b732a75 4430 rcu_read_unlock();
37d81828
PM
4431}
4432
906010b2
PZ
4433static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4434{
4435 struct perf_event *event = vma->vm_file->private_data;
76369139 4436 struct ring_buffer *rb;
906010b2
PZ
4437 int ret = VM_FAULT_SIGBUS;
4438
4439 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4440 if (vmf->pgoff == 0)
4441 ret = 0;
4442 return ret;
4443 }
4444
4445 rcu_read_lock();
76369139
FW
4446 rb = rcu_dereference(event->rb);
4447 if (!rb)
906010b2
PZ
4448 goto unlock;
4449
4450 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4451 goto unlock;
4452
76369139 4453 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4454 if (!vmf->page)
4455 goto unlock;
4456
4457 get_page(vmf->page);
4458 vmf->page->mapping = vma->vm_file->f_mapping;
4459 vmf->page->index = vmf->pgoff;
4460
4461 ret = 0;
4462unlock:
4463 rcu_read_unlock();
4464
4465 return ret;
4466}
4467
10c6db11
PZ
4468static void ring_buffer_attach(struct perf_event *event,
4469 struct ring_buffer *rb)
4470{
b69cf536 4471 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4472 unsigned long flags;
4473
b69cf536
PZ
4474 if (event->rb) {
4475 /*
4476 * Should be impossible, we set this when removing
4477 * event->rb_entry and wait/clear when adding event->rb_entry.
4478 */
4479 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4480
b69cf536 4481 old_rb = event->rb;
b69cf536
PZ
4482 spin_lock_irqsave(&old_rb->event_lock, flags);
4483 list_del_rcu(&event->rb_entry);
4484 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4485
2f993cf0
ON
4486 event->rcu_batches = get_state_synchronize_rcu();
4487 event->rcu_pending = 1;
b69cf536 4488 }
10c6db11 4489
b69cf536 4490 if (rb) {
2f993cf0
ON
4491 if (event->rcu_pending) {
4492 cond_synchronize_rcu(event->rcu_batches);
4493 event->rcu_pending = 0;
4494 }
4495
b69cf536
PZ
4496 spin_lock_irqsave(&rb->event_lock, flags);
4497 list_add_rcu(&event->rb_entry, &rb->event_list);
4498 spin_unlock_irqrestore(&rb->event_lock, flags);
4499 }
4500
4501 rcu_assign_pointer(event->rb, rb);
4502
4503 if (old_rb) {
4504 ring_buffer_put(old_rb);
4505 /*
4506 * Since we detached before setting the new rb, so that we
4507 * could attach the new rb, we could have missed a wakeup.
4508 * Provide it now.
4509 */
4510 wake_up_all(&event->waitq);
4511 }
10c6db11
PZ
4512}
4513
4514static void ring_buffer_wakeup(struct perf_event *event)
4515{
4516 struct ring_buffer *rb;
4517
4518 rcu_read_lock();
4519 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4520 if (rb) {
4521 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4522 wake_up_all(&event->waitq);
4523 }
10c6db11
PZ
4524 rcu_read_unlock();
4525}
4526
fdc26706 4527struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4528{
76369139 4529 struct ring_buffer *rb;
7b732a75 4530
ac9721f3 4531 rcu_read_lock();
76369139
FW
4532 rb = rcu_dereference(event->rb);
4533 if (rb) {
4534 if (!atomic_inc_not_zero(&rb->refcount))
4535 rb = NULL;
ac9721f3
PZ
4536 }
4537 rcu_read_unlock();
4538
76369139 4539 return rb;
ac9721f3
PZ
4540}
4541
fdc26706 4542void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4543{
76369139 4544 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4545 return;
7b732a75 4546
9bb5d40c 4547 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4548
76369139 4549 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4550}
4551
4552static void perf_mmap_open(struct vm_area_struct *vma)
4553{
cdd6c482 4554 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4555
cdd6c482 4556 atomic_inc(&event->mmap_count);
9bb5d40c 4557 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4558
45bfb2e5
PZ
4559 if (vma->vm_pgoff)
4560 atomic_inc(&event->rb->aux_mmap_count);
4561
1e0fb9ec
AL
4562 if (event->pmu->event_mapped)
4563 event->pmu->event_mapped(event);
7b732a75
PZ
4564}
4565
9bb5d40c
PZ
4566/*
4567 * A buffer can be mmap()ed multiple times; either directly through the same
4568 * event, or through other events by use of perf_event_set_output().
4569 *
4570 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4571 * the buffer here, where we still have a VM context. This means we need
4572 * to detach all events redirecting to us.
4573 */
7b732a75
PZ
4574static void perf_mmap_close(struct vm_area_struct *vma)
4575{
cdd6c482 4576 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4577
b69cf536 4578 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4579 struct user_struct *mmap_user = rb->mmap_user;
4580 int mmap_locked = rb->mmap_locked;
4581 unsigned long size = perf_data_size(rb);
789f90fc 4582
1e0fb9ec
AL
4583 if (event->pmu->event_unmapped)
4584 event->pmu->event_unmapped(event);
4585
45bfb2e5
PZ
4586 /*
4587 * rb->aux_mmap_count will always drop before rb->mmap_count and
4588 * event->mmap_count, so it is ok to use event->mmap_mutex to
4589 * serialize with perf_mmap here.
4590 */
4591 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4592 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4593 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4594 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4595
4596 rb_free_aux(rb);
4597 mutex_unlock(&event->mmap_mutex);
4598 }
4599
9bb5d40c
PZ
4600 atomic_dec(&rb->mmap_count);
4601
4602 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4603 goto out_put;
9bb5d40c 4604
b69cf536 4605 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4606 mutex_unlock(&event->mmap_mutex);
4607
4608 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4609 if (atomic_read(&rb->mmap_count))
4610 goto out_put;
ac9721f3 4611
9bb5d40c
PZ
4612 /*
4613 * No other mmap()s, detach from all other events that might redirect
4614 * into the now unreachable buffer. Somewhat complicated by the
4615 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4616 */
4617again:
4618 rcu_read_lock();
4619 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4620 if (!atomic_long_inc_not_zero(&event->refcount)) {
4621 /*
4622 * This event is en-route to free_event() which will
4623 * detach it and remove it from the list.
4624 */
4625 continue;
4626 }
4627 rcu_read_unlock();
789f90fc 4628
9bb5d40c
PZ
4629 mutex_lock(&event->mmap_mutex);
4630 /*
4631 * Check we didn't race with perf_event_set_output() which can
4632 * swizzle the rb from under us while we were waiting to
4633 * acquire mmap_mutex.
4634 *
4635 * If we find a different rb; ignore this event, a next
4636 * iteration will no longer find it on the list. We have to
4637 * still restart the iteration to make sure we're not now
4638 * iterating the wrong list.
4639 */
b69cf536
PZ
4640 if (event->rb == rb)
4641 ring_buffer_attach(event, NULL);
4642
cdd6c482 4643 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4644 put_event(event);
ac9721f3 4645
9bb5d40c
PZ
4646 /*
4647 * Restart the iteration; either we're on the wrong list or
4648 * destroyed its integrity by doing a deletion.
4649 */
4650 goto again;
7b732a75 4651 }
9bb5d40c
PZ
4652 rcu_read_unlock();
4653
4654 /*
4655 * It could be there's still a few 0-ref events on the list; they'll
4656 * get cleaned up by free_event() -- they'll also still have their
4657 * ref on the rb and will free it whenever they are done with it.
4658 *
4659 * Aside from that, this buffer is 'fully' detached and unmapped,
4660 * undo the VM accounting.
4661 */
4662
4663 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4664 vma->vm_mm->pinned_vm -= mmap_locked;
4665 free_uid(mmap_user);
4666
b69cf536 4667out_put:
9bb5d40c 4668 ring_buffer_put(rb); /* could be last */
37d81828
PM
4669}
4670
f0f37e2f 4671static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4672 .open = perf_mmap_open,
45bfb2e5 4673 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4674 .fault = perf_mmap_fault,
4675 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4676};
4677
4678static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4679{
cdd6c482 4680 struct perf_event *event = file->private_data;
22a4f650 4681 unsigned long user_locked, user_lock_limit;
789f90fc 4682 struct user_struct *user = current_user();
22a4f650 4683 unsigned long locked, lock_limit;
45bfb2e5 4684 struct ring_buffer *rb = NULL;
7b732a75
PZ
4685 unsigned long vma_size;
4686 unsigned long nr_pages;
45bfb2e5 4687 long user_extra = 0, extra = 0;
d57e34fd 4688 int ret = 0, flags = 0;
37d81828 4689
c7920614
PZ
4690 /*
4691 * Don't allow mmap() of inherited per-task counters. This would
4692 * create a performance issue due to all children writing to the
76369139 4693 * same rb.
c7920614
PZ
4694 */
4695 if (event->cpu == -1 && event->attr.inherit)
4696 return -EINVAL;
4697
43a21ea8 4698 if (!(vma->vm_flags & VM_SHARED))
37d81828 4699 return -EINVAL;
7b732a75
PZ
4700
4701 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4702
4703 if (vma->vm_pgoff == 0) {
4704 nr_pages = (vma_size / PAGE_SIZE) - 1;
4705 } else {
4706 /*
4707 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4708 * mapped, all subsequent mappings should have the same size
4709 * and offset. Must be above the normal perf buffer.
4710 */
4711 u64 aux_offset, aux_size;
4712
4713 if (!event->rb)
4714 return -EINVAL;
4715
4716 nr_pages = vma_size / PAGE_SIZE;
4717
4718 mutex_lock(&event->mmap_mutex);
4719 ret = -EINVAL;
4720
4721 rb = event->rb;
4722 if (!rb)
4723 goto aux_unlock;
4724
4725 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4726 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4727
4728 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4729 goto aux_unlock;
4730
4731 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4732 goto aux_unlock;
4733
4734 /* already mapped with a different offset */
4735 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4736 goto aux_unlock;
4737
4738 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4739 goto aux_unlock;
4740
4741 /* already mapped with a different size */
4742 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4743 goto aux_unlock;
4744
4745 if (!is_power_of_2(nr_pages))
4746 goto aux_unlock;
4747
4748 if (!atomic_inc_not_zero(&rb->mmap_count))
4749 goto aux_unlock;
4750
4751 if (rb_has_aux(rb)) {
4752 atomic_inc(&rb->aux_mmap_count);
4753 ret = 0;
4754 goto unlock;
4755 }
4756
4757 atomic_set(&rb->aux_mmap_count, 1);
4758 user_extra = nr_pages;
4759
4760 goto accounting;
4761 }
7b732a75 4762
7730d865 4763 /*
76369139 4764 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4765 * can do bitmasks instead of modulo.
4766 */
2ed11312 4767 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4768 return -EINVAL;
4769
7b732a75 4770 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4771 return -EINVAL;
4772
cdd6c482 4773 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4774again:
cdd6c482 4775 mutex_lock(&event->mmap_mutex);
76369139 4776 if (event->rb) {
9bb5d40c 4777 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4778 ret = -EINVAL;
9bb5d40c
PZ
4779 goto unlock;
4780 }
4781
4782 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4783 /*
4784 * Raced against perf_mmap_close() through
4785 * perf_event_set_output(). Try again, hope for better
4786 * luck.
4787 */
4788 mutex_unlock(&event->mmap_mutex);
4789 goto again;
4790 }
4791
ebb3c4c4
PZ
4792 goto unlock;
4793 }
4794
789f90fc 4795 user_extra = nr_pages + 1;
45bfb2e5
PZ
4796
4797accounting:
cdd6c482 4798 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4799
4800 /*
4801 * Increase the limit linearly with more CPUs:
4802 */
4803 user_lock_limit *= num_online_cpus();
4804
789f90fc 4805 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4806
789f90fc
PZ
4807 if (user_locked > user_lock_limit)
4808 extra = user_locked - user_lock_limit;
7b732a75 4809
78d7d407 4810 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4811 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4812 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4813
459ec28a
IM
4814 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4815 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4816 ret = -EPERM;
4817 goto unlock;
4818 }
7b732a75 4819
45bfb2e5 4820 WARN_ON(!rb && event->rb);
906010b2 4821
d57e34fd 4822 if (vma->vm_flags & VM_WRITE)
76369139 4823 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4824
76369139 4825 if (!rb) {
45bfb2e5
PZ
4826 rb = rb_alloc(nr_pages,
4827 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4828 event->cpu, flags);
26cb63ad 4829
45bfb2e5
PZ
4830 if (!rb) {
4831 ret = -ENOMEM;
4832 goto unlock;
4833 }
43a21ea8 4834
45bfb2e5
PZ
4835 atomic_set(&rb->mmap_count, 1);
4836 rb->mmap_user = get_current_user();
4837 rb->mmap_locked = extra;
26cb63ad 4838
45bfb2e5 4839 ring_buffer_attach(event, rb);
ac9721f3 4840
45bfb2e5
PZ
4841 perf_event_init_userpage(event);
4842 perf_event_update_userpage(event);
4843 } else {
1a594131
AS
4844 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4845 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4846 if (!ret)
4847 rb->aux_mmap_locked = extra;
4848 }
9a0f05cb 4849
ebb3c4c4 4850unlock:
45bfb2e5
PZ
4851 if (!ret) {
4852 atomic_long_add(user_extra, &user->locked_vm);
4853 vma->vm_mm->pinned_vm += extra;
4854
ac9721f3 4855 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4856 } else if (rb) {
4857 atomic_dec(&rb->mmap_count);
4858 }
4859aux_unlock:
cdd6c482 4860 mutex_unlock(&event->mmap_mutex);
37d81828 4861
9bb5d40c
PZ
4862 /*
4863 * Since pinned accounting is per vm we cannot allow fork() to copy our
4864 * vma.
4865 */
26cb63ad 4866 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4867 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4868
1e0fb9ec
AL
4869 if (event->pmu->event_mapped)
4870 event->pmu->event_mapped(event);
4871
7b732a75 4872 return ret;
37d81828
PM
4873}
4874
3c446b3d
PZ
4875static int perf_fasync(int fd, struct file *filp, int on)
4876{
496ad9aa 4877 struct inode *inode = file_inode(filp);
cdd6c482 4878 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4879 int retval;
4880
4881 mutex_lock(&inode->i_mutex);
cdd6c482 4882 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4883 mutex_unlock(&inode->i_mutex);
4884
4885 if (retval < 0)
4886 return retval;
4887
4888 return 0;
4889}
4890
0793a61d 4891static const struct file_operations perf_fops = {
3326c1ce 4892 .llseek = no_llseek,
0793a61d
TG
4893 .release = perf_release,
4894 .read = perf_read,
4895 .poll = perf_poll,
d859e29f 4896 .unlocked_ioctl = perf_ioctl,
b3f20785 4897 .compat_ioctl = perf_compat_ioctl,
37d81828 4898 .mmap = perf_mmap,
3c446b3d 4899 .fasync = perf_fasync,
0793a61d
TG
4900};
4901
925d519a 4902/*
cdd6c482 4903 * Perf event wakeup
925d519a
PZ
4904 *
4905 * If there's data, ensure we set the poll() state and publish everything
4906 * to user-space before waking everybody up.
4907 */
4908
fed66e2c
PZ
4909static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4910{
4911 /* only the parent has fasync state */
4912 if (event->parent)
4913 event = event->parent;
4914 return &event->fasync;
4915}
4916
cdd6c482 4917void perf_event_wakeup(struct perf_event *event)
925d519a 4918{
10c6db11 4919 ring_buffer_wakeup(event);
4c9e2542 4920
cdd6c482 4921 if (event->pending_kill) {
fed66e2c 4922 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4923 event->pending_kill = 0;
4c9e2542 4924 }
925d519a
PZ
4925}
4926
e360adbe 4927static void perf_pending_event(struct irq_work *entry)
79f14641 4928{
cdd6c482
IM
4929 struct perf_event *event = container_of(entry,
4930 struct perf_event, pending);
d525211f
PZ
4931 int rctx;
4932
4933 rctx = perf_swevent_get_recursion_context();
4934 /*
4935 * If we 'fail' here, that's OK, it means recursion is already disabled
4936 * and we won't recurse 'further'.
4937 */
79f14641 4938
cdd6c482
IM
4939 if (event->pending_disable) {
4940 event->pending_disable = 0;
4941 __perf_event_disable(event);
79f14641
PZ
4942 }
4943
cdd6c482
IM
4944 if (event->pending_wakeup) {
4945 event->pending_wakeup = 0;
4946 perf_event_wakeup(event);
79f14641 4947 }
d525211f
PZ
4948
4949 if (rctx >= 0)
4950 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4951}
4952
39447b38
ZY
4953/*
4954 * We assume there is only KVM supporting the callbacks.
4955 * Later on, we might change it to a list if there is
4956 * another virtualization implementation supporting the callbacks.
4957 */
4958struct perf_guest_info_callbacks *perf_guest_cbs;
4959
4960int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4961{
4962 perf_guest_cbs = cbs;
4963 return 0;
4964}
4965EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4966
4967int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4968{
4969 perf_guest_cbs = NULL;
4970 return 0;
4971}
4972EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4973
4018994f
JO
4974static void
4975perf_output_sample_regs(struct perf_output_handle *handle,
4976 struct pt_regs *regs, u64 mask)
4977{
4978 int bit;
4979
4980 for_each_set_bit(bit, (const unsigned long *) &mask,
4981 sizeof(mask) * BITS_PER_BYTE) {
4982 u64 val;
4983
4984 val = perf_reg_value(regs, bit);
4985 perf_output_put(handle, val);
4986 }
4987}
4988
60e2364e 4989static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4990 struct pt_regs *regs,
4991 struct pt_regs *regs_user_copy)
4018994f 4992{
88a7c26a
AL
4993 if (user_mode(regs)) {
4994 regs_user->abi = perf_reg_abi(current);
2565711f 4995 regs_user->regs = regs;
88a7c26a
AL
4996 } else if (current->mm) {
4997 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4998 } else {
4999 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5000 regs_user->regs = NULL;
4018994f
JO
5001 }
5002}
5003
60e2364e
SE
5004static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5005 struct pt_regs *regs)
5006{
5007 regs_intr->regs = regs;
5008 regs_intr->abi = perf_reg_abi(current);
5009}
5010
5011
c5ebcedb
JO
5012/*
5013 * Get remaining task size from user stack pointer.
5014 *
5015 * It'd be better to take stack vma map and limit this more
5016 * precisly, but there's no way to get it safely under interrupt,
5017 * so using TASK_SIZE as limit.
5018 */
5019static u64 perf_ustack_task_size(struct pt_regs *regs)
5020{
5021 unsigned long addr = perf_user_stack_pointer(regs);
5022
5023 if (!addr || addr >= TASK_SIZE)
5024 return 0;
5025
5026 return TASK_SIZE - addr;
5027}
5028
5029static u16
5030perf_sample_ustack_size(u16 stack_size, u16 header_size,
5031 struct pt_regs *regs)
5032{
5033 u64 task_size;
5034
5035 /* No regs, no stack pointer, no dump. */
5036 if (!regs)
5037 return 0;
5038
5039 /*
5040 * Check if we fit in with the requested stack size into the:
5041 * - TASK_SIZE
5042 * If we don't, we limit the size to the TASK_SIZE.
5043 *
5044 * - remaining sample size
5045 * If we don't, we customize the stack size to
5046 * fit in to the remaining sample size.
5047 */
5048
5049 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5050 stack_size = min(stack_size, (u16) task_size);
5051
5052 /* Current header size plus static size and dynamic size. */
5053 header_size += 2 * sizeof(u64);
5054
5055 /* Do we fit in with the current stack dump size? */
5056 if ((u16) (header_size + stack_size) < header_size) {
5057 /*
5058 * If we overflow the maximum size for the sample,
5059 * we customize the stack dump size to fit in.
5060 */
5061 stack_size = USHRT_MAX - header_size - sizeof(u64);
5062 stack_size = round_up(stack_size, sizeof(u64));
5063 }
5064
5065 return stack_size;
5066}
5067
5068static void
5069perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5070 struct pt_regs *regs)
5071{
5072 /* Case of a kernel thread, nothing to dump */
5073 if (!regs) {
5074 u64 size = 0;
5075 perf_output_put(handle, size);
5076 } else {
5077 unsigned long sp;
5078 unsigned int rem;
5079 u64 dyn_size;
5080
5081 /*
5082 * We dump:
5083 * static size
5084 * - the size requested by user or the best one we can fit
5085 * in to the sample max size
5086 * data
5087 * - user stack dump data
5088 * dynamic size
5089 * - the actual dumped size
5090 */
5091
5092 /* Static size. */
5093 perf_output_put(handle, dump_size);
5094
5095 /* Data. */
5096 sp = perf_user_stack_pointer(regs);
5097 rem = __output_copy_user(handle, (void *) sp, dump_size);
5098 dyn_size = dump_size - rem;
5099
5100 perf_output_skip(handle, rem);
5101
5102 /* Dynamic size. */
5103 perf_output_put(handle, dyn_size);
5104 }
5105}
5106
c980d109
ACM
5107static void __perf_event_header__init_id(struct perf_event_header *header,
5108 struct perf_sample_data *data,
5109 struct perf_event *event)
6844c09d
ACM
5110{
5111 u64 sample_type = event->attr.sample_type;
5112
5113 data->type = sample_type;
5114 header->size += event->id_header_size;
5115
5116 if (sample_type & PERF_SAMPLE_TID) {
5117 /* namespace issues */
5118 data->tid_entry.pid = perf_event_pid(event, current);
5119 data->tid_entry.tid = perf_event_tid(event, current);
5120 }
5121
5122 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5123 data->time = perf_event_clock(event);
6844c09d 5124
ff3d527c 5125 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5126 data->id = primary_event_id(event);
5127
5128 if (sample_type & PERF_SAMPLE_STREAM_ID)
5129 data->stream_id = event->id;
5130
5131 if (sample_type & PERF_SAMPLE_CPU) {
5132 data->cpu_entry.cpu = raw_smp_processor_id();
5133 data->cpu_entry.reserved = 0;
5134 }
5135}
5136
76369139
FW
5137void perf_event_header__init_id(struct perf_event_header *header,
5138 struct perf_sample_data *data,
5139 struct perf_event *event)
c980d109
ACM
5140{
5141 if (event->attr.sample_id_all)
5142 __perf_event_header__init_id(header, data, event);
5143}
5144
5145static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5146 struct perf_sample_data *data)
5147{
5148 u64 sample_type = data->type;
5149
5150 if (sample_type & PERF_SAMPLE_TID)
5151 perf_output_put(handle, data->tid_entry);
5152
5153 if (sample_type & PERF_SAMPLE_TIME)
5154 perf_output_put(handle, data->time);
5155
5156 if (sample_type & PERF_SAMPLE_ID)
5157 perf_output_put(handle, data->id);
5158
5159 if (sample_type & PERF_SAMPLE_STREAM_ID)
5160 perf_output_put(handle, data->stream_id);
5161
5162 if (sample_type & PERF_SAMPLE_CPU)
5163 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5164
5165 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5166 perf_output_put(handle, data->id);
c980d109
ACM
5167}
5168
76369139
FW
5169void perf_event__output_id_sample(struct perf_event *event,
5170 struct perf_output_handle *handle,
5171 struct perf_sample_data *sample)
c980d109
ACM
5172{
5173 if (event->attr.sample_id_all)
5174 __perf_event__output_id_sample(handle, sample);
5175}
5176
3dab77fb 5177static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5178 struct perf_event *event,
5179 u64 enabled, u64 running)
3dab77fb 5180{
cdd6c482 5181 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5182 u64 values[4];
5183 int n = 0;
5184
b5e58793 5185 values[n++] = perf_event_count(event);
3dab77fb 5186 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5187 values[n++] = enabled +
cdd6c482 5188 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5189 }
5190 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5191 values[n++] = running +
cdd6c482 5192 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5193 }
5194 if (read_format & PERF_FORMAT_ID)
cdd6c482 5195 values[n++] = primary_event_id(event);
3dab77fb 5196
76369139 5197 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5198}
5199
5200/*
cdd6c482 5201 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5202 */
5203static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5204 struct perf_event *event,
5205 u64 enabled, u64 running)
3dab77fb 5206{
cdd6c482
IM
5207 struct perf_event *leader = event->group_leader, *sub;
5208 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5209 u64 values[5];
5210 int n = 0;
5211
5212 values[n++] = 1 + leader->nr_siblings;
5213
5214 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5215 values[n++] = enabled;
3dab77fb
PZ
5216
5217 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5218 values[n++] = running;
3dab77fb 5219
cdd6c482 5220 if (leader != event)
3dab77fb
PZ
5221 leader->pmu->read(leader);
5222
b5e58793 5223 values[n++] = perf_event_count(leader);
3dab77fb 5224 if (read_format & PERF_FORMAT_ID)
cdd6c482 5225 values[n++] = primary_event_id(leader);
3dab77fb 5226
76369139 5227 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5228
65abc865 5229 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5230 n = 0;
5231
6f5ab001
JO
5232 if ((sub != event) &&
5233 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5234 sub->pmu->read(sub);
5235
b5e58793 5236 values[n++] = perf_event_count(sub);
3dab77fb 5237 if (read_format & PERF_FORMAT_ID)
cdd6c482 5238 values[n++] = primary_event_id(sub);
3dab77fb 5239
76369139 5240 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5241 }
5242}
5243
eed01528
SE
5244#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5245 PERF_FORMAT_TOTAL_TIME_RUNNING)
5246
3dab77fb 5247static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5248 struct perf_event *event)
3dab77fb 5249{
e3f3541c 5250 u64 enabled = 0, running = 0, now;
eed01528
SE
5251 u64 read_format = event->attr.read_format;
5252
5253 /*
5254 * compute total_time_enabled, total_time_running
5255 * based on snapshot values taken when the event
5256 * was last scheduled in.
5257 *
5258 * we cannot simply called update_context_time()
5259 * because of locking issue as we are called in
5260 * NMI context
5261 */
c4794295 5262 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5263 calc_timer_values(event, &now, &enabled, &running);
eed01528 5264
cdd6c482 5265 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5266 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5267 else
eed01528 5268 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5269}
5270
5622f295
MM
5271void perf_output_sample(struct perf_output_handle *handle,
5272 struct perf_event_header *header,
5273 struct perf_sample_data *data,
cdd6c482 5274 struct perf_event *event)
5622f295
MM
5275{
5276 u64 sample_type = data->type;
5277
5278 perf_output_put(handle, *header);
5279
ff3d527c
AH
5280 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5281 perf_output_put(handle, data->id);
5282
5622f295
MM
5283 if (sample_type & PERF_SAMPLE_IP)
5284 perf_output_put(handle, data->ip);
5285
5286 if (sample_type & PERF_SAMPLE_TID)
5287 perf_output_put(handle, data->tid_entry);
5288
5289 if (sample_type & PERF_SAMPLE_TIME)
5290 perf_output_put(handle, data->time);
5291
5292 if (sample_type & PERF_SAMPLE_ADDR)
5293 perf_output_put(handle, data->addr);
5294
5295 if (sample_type & PERF_SAMPLE_ID)
5296 perf_output_put(handle, data->id);
5297
5298 if (sample_type & PERF_SAMPLE_STREAM_ID)
5299 perf_output_put(handle, data->stream_id);
5300
5301 if (sample_type & PERF_SAMPLE_CPU)
5302 perf_output_put(handle, data->cpu_entry);
5303
5304 if (sample_type & PERF_SAMPLE_PERIOD)
5305 perf_output_put(handle, data->period);
5306
5307 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5308 perf_output_read(handle, event);
5622f295
MM
5309
5310 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5311 if (data->callchain) {
5312 int size = 1;
5313
5314 if (data->callchain)
5315 size += data->callchain->nr;
5316
5317 size *= sizeof(u64);
5318
76369139 5319 __output_copy(handle, data->callchain, size);
5622f295
MM
5320 } else {
5321 u64 nr = 0;
5322 perf_output_put(handle, nr);
5323 }
5324 }
5325
5326 if (sample_type & PERF_SAMPLE_RAW) {
5327 if (data->raw) {
fa128e6a
AS
5328 u32 raw_size = data->raw->size;
5329 u32 real_size = round_up(raw_size + sizeof(u32),
5330 sizeof(u64)) - sizeof(u32);
5331 u64 zero = 0;
5332
5333 perf_output_put(handle, real_size);
5334 __output_copy(handle, data->raw->data, raw_size);
5335 if (real_size - raw_size)
5336 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5337 } else {
5338 struct {
5339 u32 size;
5340 u32 data;
5341 } raw = {
5342 .size = sizeof(u32),
5343 .data = 0,
5344 };
5345 perf_output_put(handle, raw);
5346 }
5347 }
a7ac67ea 5348
bce38cd5
SE
5349 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5350 if (data->br_stack) {
5351 size_t size;
5352
5353 size = data->br_stack->nr
5354 * sizeof(struct perf_branch_entry);
5355
5356 perf_output_put(handle, data->br_stack->nr);
5357 perf_output_copy(handle, data->br_stack->entries, size);
5358 } else {
5359 /*
5360 * we always store at least the value of nr
5361 */
5362 u64 nr = 0;
5363 perf_output_put(handle, nr);
5364 }
5365 }
4018994f
JO
5366
5367 if (sample_type & PERF_SAMPLE_REGS_USER) {
5368 u64 abi = data->regs_user.abi;
5369
5370 /*
5371 * If there are no regs to dump, notice it through
5372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5373 */
5374 perf_output_put(handle, abi);
5375
5376 if (abi) {
5377 u64 mask = event->attr.sample_regs_user;
5378 perf_output_sample_regs(handle,
5379 data->regs_user.regs,
5380 mask);
5381 }
5382 }
c5ebcedb 5383
a5cdd40c 5384 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5385 perf_output_sample_ustack(handle,
5386 data->stack_user_size,
5387 data->regs_user.regs);
a5cdd40c 5388 }
c3feedf2
AK
5389
5390 if (sample_type & PERF_SAMPLE_WEIGHT)
5391 perf_output_put(handle, data->weight);
d6be9ad6
SE
5392
5393 if (sample_type & PERF_SAMPLE_DATA_SRC)
5394 perf_output_put(handle, data->data_src.val);
a5cdd40c 5395
fdfbbd07
AK
5396 if (sample_type & PERF_SAMPLE_TRANSACTION)
5397 perf_output_put(handle, data->txn);
5398
60e2364e
SE
5399 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5400 u64 abi = data->regs_intr.abi;
5401 /*
5402 * If there are no regs to dump, notice it through
5403 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5404 */
5405 perf_output_put(handle, abi);
5406
5407 if (abi) {
5408 u64 mask = event->attr.sample_regs_intr;
5409
5410 perf_output_sample_regs(handle,
5411 data->regs_intr.regs,
5412 mask);
5413 }
5414 }
5415
a5cdd40c
PZ
5416 if (!event->attr.watermark) {
5417 int wakeup_events = event->attr.wakeup_events;
5418
5419 if (wakeup_events) {
5420 struct ring_buffer *rb = handle->rb;
5421 int events = local_inc_return(&rb->events);
5422
5423 if (events >= wakeup_events) {
5424 local_sub(wakeup_events, &rb->events);
5425 local_inc(&rb->wakeup);
5426 }
5427 }
5428 }
5622f295
MM
5429}
5430
5431void perf_prepare_sample(struct perf_event_header *header,
5432 struct perf_sample_data *data,
cdd6c482 5433 struct perf_event *event,
5622f295 5434 struct pt_regs *regs)
7b732a75 5435{
cdd6c482 5436 u64 sample_type = event->attr.sample_type;
7b732a75 5437
cdd6c482 5438 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5439 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5440
5441 header->misc = 0;
5442 header->misc |= perf_misc_flags(regs);
6fab0192 5443
c980d109 5444 __perf_event_header__init_id(header, data, event);
6844c09d 5445
c320c7b7 5446 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5447 data->ip = perf_instruction_pointer(regs);
5448
b23f3325 5449 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5450 int size = 1;
394ee076 5451
e6dab5ff 5452 data->callchain = perf_callchain(event, regs);
5622f295
MM
5453
5454 if (data->callchain)
5455 size += data->callchain->nr;
5456
5457 header->size += size * sizeof(u64);
394ee076
PZ
5458 }
5459
3a43ce68 5460 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5461 int size = sizeof(u32);
5462
5463 if (data->raw)
5464 size += data->raw->size;
5465 else
5466 size += sizeof(u32);
5467
fa128e6a 5468 header->size += round_up(size, sizeof(u64));
7f453c24 5469 }
bce38cd5
SE
5470
5471 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5472 int size = sizeof(u64); /* nr */
5473 if (data->br_stack) {
5474 size += data->br_stack->nr
5475 * sizeof(struct perf_branch_entry);
5476 }
5477 header->size += size;
5478 }
4018994f 5479
2565711f 5480 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5481 perf_sample_regs_user(&data->regs_user, regs,
5482 &data->regs_user_copy);
2565711f 5483
4018994f
JO
5484 if (sample_type & PERF_SAMPLE_REGS_USER) {
5485 /* regs dump ABI info */
5486 int size = sizeof(u64);
5487
4018994f
JO
5488 if (data->regs_user.regs) {
5489 u64 mask = event->attr.sample_regs_user;
5490 size += hweight64(mask) * sizeof(u64);
5491 }
5492
5493 header->size += size;
5494 }
c5ebcedb
JO
5495
5496 if (sample_type & PERF_SAMPLE_STACK_USER) {
5497 /*
5498 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5499 * processed as the last one or have additional check added
5500 * in case new sample type is added, because we could eat
5501 * up the rest of the sample size.
5502 */
c5ebcedb
JO
5503 u16 stack_size = event->attr.sample_stack_user;
5504 u16 size = sizeof(u64);
5505
c5ebcedb 5506 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5507 data->regs_user.regs);
c5ebcedb
JO
5508
5509 /*
5510 * If there is something to dump, add space for the dump
5511 * itself and for the field that tells the dynamic size,
5512 * which is how many have been actually dumped.
5513 */
5514 if (stack_size)
5515 size += sizeof(u64) + stack_size;
5516
5517 data->stack_user_size = stack_size;
5518 header->size += size;
5519 }
60e2364e
SE
5520
5521 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5522 /* regs dump ABI info */
5523 int size = sizeof(u64);
5524
5525 perf_sample_regs_intr(&data->regs_intr, regs);
5526
5527 if (data->regs_intr.regs) {
5528 u64 mask = event->attr.sample_regs_intr;
5529
5530 size += hweight64(mask) * sizeof(u64);
5531 }
5532
5533 header->size += size;
5534 }
5622f295 5535}
7f453c24 5536
21509084
YZ
5537void perf_event_output(struct perf_event *event,
5538 struct perf_sample_data *data,
5539 struct pt_regs *regs)
5622f295
MM
5540{
5541 struct perf_output_handle handle;
5542 struct perf_event_header header;
689802b2 5543
927c7a9e
FW
5544 /* protect the callchain buffers */
5545 rcu_read_lock();
5546
cdd6c482 5547 perf_prepare_sample(&header, data, event, regs);
5c148194 5548
a7ac67ea 5549 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5550 goto exit;
0322cd6e 5551
cdd6c482 5552 perf_output_sample(&handle, &header, data, event);
f413cdb8 5553
8a057d84 5554 perf_output_end(&handle);
927c7a9e
FW
5555
5556exit:
5557 rcu_read_unlock();
0322cd6e
PZ
5558}
5559
38b200d6 5560/*
cdd6c482 5561 * read event_id
38b200d6
PZ
5562 */
5563
5564struct perf_read_event {
5565 struct perf_event_header header;
5566
5567 u32 pid;
5568 u32 tid;
38b200d6
PZ
5569};
5570
5571static void
cdd6c482 5572perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5573 struct task_struct *task)
5574{
5575 struct perf_output_handle handle;
c980d109 5576 struct perf_sample_data sample;
dfc65094 5577 struct perf_read_event read_event = {
38b200d6 5578 .header = {
cdd6c482 5579 .type = PERF_RECORD_READ,
38b200d6 5580 .misc = 0,
c320c7b7 5581 .size = sizeof(read_event) + event->read_size,
38b200d6 5582 },
cdd6c482
IM
5583 .pid = perf_event_pid(event, task),
5584 .tid = perf_event_tid(event, task),
38b200d6 5585 };
3dab77fb 5586 int ret;
38b200d6 5587
c980d109 5588 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5589 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5590 if (ret)
5591 return;
5592
dfc65094 5593 perf_output_put(&handle, read_event);
cdd6c482 5594 perf_output_read(&handle, event);
c980d109 5595 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5596
38b200d6
PZ
5597 perf_output_end(&handle);
5598}
5599
52d857a8
JO
5600typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5601
5602static void
5603perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5604 perf_event_aux_output_cb output,
5605 void *data)
5606{
5607 struct perf_event *event;
5608
5609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5610 if (event->state < PERF_EVENT_STATE_INACTIVE)
5611 continue;
5612 if (!event_filter_match(event))
5613 continue;
67516844 5614 output(event, data);
52d857a8
JO
5615 }
5616}
5617
4e93ad60
JO
5618static void
5619perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5620 struct perf_event_context *task_ctx)
5621{
5622 rcu_read_lock();
5623 preempt_disable();
5624 perf_event_aux_ctx(task_ctx, output, data);
5625 preempt_enable();
5626 rcu_read_unlock();
5627}
5628
52d857a8 5629static void
67516844 5630perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5631 struct perf_event_context *task_ctx)
5632{
5633 struct perf_cpu_context *cpuctx;
5634 struct perf_event_context *ctx;
5635 struct pmu *pmu;
5636 int ctxn;
5637
4e93ad60
JO
5638 /*
5639 * If we have task_ctx != NULL we only notify
5640 * the task context itself. The task_ctx is set
5641 * only for EXIT events before releasing task
5642 * context.
5643 */
5644 if (task_ctx) {
5645 perf_event_aux_task_ctx(output, data, task_ctx);
5646 return;
5647 }
5648
52d857a8
JO
5649 rcu_read_lock();
5650 list_for_each_entry_rcu(pmu, &pmus, entry) {
5651 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5652 if (cpuctx->unique_pmu != pmu)
5653 goto next;
67516844 5654 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5655 ctxn = pmu->task_ctx_nr;
5656 if (ctxn < 0)
5657 goto next;
5658 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5659 if (ctx)
67516844 5660 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5661next:
5662 put_cpu_ptr(pmu->pmu_cpu_context);
5663 }
52d857a8
JO
5664 rcu_read_unlock();
5665}
5666
60313ebe 5667/*
9f498cc5
PZ
5668 * task tracking -- fork/exit
5669 *
13d7a241 5670 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5671 */
5672
9f498cc5 5673struct perf_task_event {
3a80b4a3 5674 struct task_struct *task;
cdd6c482 5675 struct perf_event_context *task_ctx;
60313ebe
PZ
5676
5677 struct {
5678 struct perf_event_header header;
5679
5680 u32 pid;
5681 u32 ppid;
9f498cc5
PZ
5682 u32 tid;
5683 u32 ptid;
393b2ad8 5684 u64 time;
cdd6c482 5685 } event_id;
60313ebe
PZ
5686};
5687
67516844
JO
5688static int perf_event_task_match(struct perf_event *event)
5689{
13d7a241
SE
5690 return event->attr.comm || event->attr.mmap ||
5691 event->attr.mmap2 || event->attr.mmap_data ||
5692 event->attr.task;
67516844
JO
5693}
5694
cdd6c482 5695static void perf_event_task_output(struct perf_event *event,
52d857a8 5696 void *data)
60313ebe 5697{
52d857a8 5698 struct perf_task_event *task_event = data;
60313ebe 5699 struct perf_output_handle handle;
c980d109 5700 struct perf_sample_data sample;
9f498cc5 5701 struct task_struct *task = task_event->task;
c980d109 5702 int ret, size = task_event->event_id.header.size;
8bb39f9a 5703
67516844
JO
5704 if (!perf_event_task_match(event))
5705 return;
5706
c980d109 5707 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5708
c980d109 5709 ret = perf_output_begin(&handle, event,
a7ac67ea 5710 task_event->event_id.header.size);
ef60777c 5711 if (ret)
c980d109 5712 goto out;
60313ebe 5713
cdd6c482
IM
5714 task_event->event_id.pid = perf_event_pid(event, task);
5715 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5716
cdd6c482
IM
5717 task_event->event_id.tid = perf_event_tid(event, task);
5718 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5719
34f43927
PZ
5720 task_event->event_id.time = perf_event_clock(event);
5721
cdd6c482 5722 perf_output_put(&handle, task_event->event_id);
393b2ad8 5723
c980d109
ACM
5724 perf_event__output_id_sample(event, &handle, &sample);
5725
60313ebe 5726 perf_output_end(&handle);
c980d109
ACM
5727out:
5728 task_event->event_id.header.size = size;
60313ebe
PZ
5729}
5730
cdd6c482
IM
5731static void perf_event_task(struct task_struct *task,
5732 struct perf_event_context *task_ctx,
3a80b4a3 5733 int new)
60313ebe 5734{
9f498cc5 5735 struct perf_task_event task_event;
60313ebe 5736
cdd6c482
IM
5737 if (!atomic_read(&nr_comm_events) &&
5738 !atomic_read(&nr_mmap_events) &&
5739 !atomic_read(&nr_task_events))
60313ebe
PZ
5740 return;
5741
9f498cc5 5742 task_event = (struct perf_task_event){
3a80b4a3
PZ
5743 .task = task,
5744 .task_ctx = task_ctx,
cdd6c482 5745 .event_id = {
60313ebe 5746 .header = {
cdd6c482 5747 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5748 .misc = 0,
cdd6c482 5749 .size = sizeof(task_event.event_id),
60313ebe 5750 },
573402db
PZ
5751 /* .pid */
5752 /* .ppid */
9f498cc5
PZ
5753 /* .tid */
5754 /* .ptid */
34f43927 5755 /* .time */
60313ebe
PZ
5756 },
5757 };
5758
67516844 5759 perf_event_aux(perf_event_task_output,
52d857a8
JO
5760 &task_event,
5761 task_ctx);
9f498cc5
PZ
5762}
5763
cdd6c482 5764void perf_event_fork(struct task_struct *task)
9f498cc5 5765{
cdd6c482 5766 perf_event_task(task, NULL, 1);
60313ebe
PZ
5767}
5768
8d1b2d93
PZ
5769/*
5770 * comm tracking
5771 */
5772
5773struct perf_comm_event {
22a4f650
IM
5774 struct task_struct *task;
5775 char *comm;
8d1b2d93
PZ
5776 int comm_size;
5777
5778 struct {
5779 struct perf_event_header header;
5780
5781 u32 pid;
5782 u32 tid;
cdd6c482 5783 } event_id;
8d1b2d93
PZ
5784};
5785
67516844
JO
5786static int perf_event_comm_match(struct perf_event *event)
5787{
5788 return event->attr.comm;
5789}
5790
cdd6c482 5791static void perf_event_comm_output(struct perf_event *event,
52d857a8 5792 void *data)
8d1b2d93 5793{
52d857a8 5794 struct perf_comm_event *comm_event = data;
8d1b2d93 5795 struct perf_output_handle handle;
c980d109 5796 struct perf_sample_data sample;
cdd6c482 5797 int size = comm_event->event_id.header.size;
c980d109
ACM
5798 int ret;
5799
67516844
JO
5800 if (!perf_event_comm_match(event))
5801 return;
5802
c980d109
ACM
5803 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5804 ret = perf_output_begin(&handle, event,
a7ac67ea 5805 comm_event->event_id.header.size);
8d1b2d93
PZ
5806
5807 if (ret)
c980d109 5808 goto out;
8d1b2d93 5809
cdd6c482
IM
5810 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5811 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5812
cdd6c482 5813 perf_output_put(&handle, comm_event->event_id);
76369139 5814 __output_copy(&handle, comm_event->comm,
8d1b2d93 5815 comm_event->comm_size);
c980d109
ACM
5816
5817 perf_event__output_id_sample(event, &handle, &sample);
5818
8d1b2d93 5819 perf_output_end(&handle);
c980d109
ACM
5820out:
5821 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5822}
5823
cdd6c482 5824static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5825{
413ee3b4 5826 char comm[TASK_COMM_LEN];
8d1b2d93 5827 unsigned int size;
8d1b2d93 5828
413ee3b4 5829 memset(comm, 0, sizeof(comm));
96b02d78 5830 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5831 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5832
5833 comm_event->comm = comm;
5834 comm_event->comm_size = size;
5835
cdd6c482 5836 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5837
67516844 5838 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5839 comm_event,
5840 NULL);
8d1b2d93
PZ
5841}
5842
82b89778 5843void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5844{
9ee318a7
PZ
5845 struct perf_comm_event comm_event;
5846
cdd6c482 5847 if (!atomic_read(&nr_comm_events))
9ee318a7 5848 return;
a63eaf34 5849
9ee318a7 5850 comm_event = (struct perf_comm_event){
8d1b2d93 5851 .task = task,
573402db
PZ
5852 /* .comm */
5853 /* .comm_size */
cdd6c482 5854 .event_id = {
573402db 5855 .header = {
cdd6c482 5856 .type = PERF_RECORD_COMM,
82b89778 5857 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5858 /* .size */
5859 },
5860 /* .pid */
5861 /* .tid */
8d1b2d93
PZ
5862 },
5863 };
5864
cdd6c482 5865 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5866}
5867
0a4a9391
PZ
5868/*
5869 * mmap tracking
5870 */
5871
5872struct perf_mmap_event {
089dd79d
PZ
5873 struct vm_area_struct *vma;
5874
5875 const char *file_name;
5876 int file_size;
13d7a241
SE
5877 int maj, min;
5878 u64 ino;
5879 u64 ino_generation;
f972eb63 5880 u32 prot, flags;
0a4a9391
PZ
5881
5882 struct {
5883 struct perf_event_header header;
5884
5885 u32 pid;
5886 u32 tid;
5887 u64 start;
5888 u64 len;
5889 u64 pgoff;
cdd6c482 5890 } event_id;
0a4a9391
PZ
5891};
5892
67516844
JO
5893static int perf_event_mmap_match(struct perf_event *event,
5894 void *data)
5895{
5896 struct perf_mmap_event *mmap_event = data;
5897 struct vm_area_struct *vma = mmap_event->vma;
5898 int executable = vma->vm_flags & VM_EXEC;
5899
5900 return (!executable && event->attr.mmap_data) ||
13d7a241 5901 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5902}
5903
cdd6c482 5904static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5905 void *data)
0a4a9391 5906{
52d857a8 5907 struct perf_mmap_event *mmap_event = data;
0a4a9391 5908 struct perf_output_handle handle;
c980d109 5909 struct perf_sample_data sample;
cdd6c482 5910 int size = mmap_event->event_id.header.size;
c980d109 5911 int ret;
0a4a9391 5912
67516844
JO
5913 if (!perf_event_mmap_match(event, data))
5914 return;
5915
13d7a241
SE
5916 if (event->attr.mmap2) {
5917 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5918 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5919 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5920 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5921 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5922 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5923 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5924 }
5925
c980d109
ACM
5926 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5927 ret = perf_output_begin(&handle, event,
a7ac67ea 5928 mmap_event->event_id.header.size);
0a4a9391 5929 if (ret)
c980d109 5930 goto out;
0a4a9391 5931
cdd6c482
IM
5932 mmap_event->event_id.pid = perf_event_pid(event, current);
5933 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5934
cdd6c482 5935 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5936
5937 if (event->attr.mmap2) {
5938 perf_output_put(&handle, mmap_event->maj);
5939 perf_output_put(&handle, mmap_event->min);
5940 perf_output_put(&handle, mmap_event->ino);
5941 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5942 perf_output_put(&handle, mmap_event->prot);
5943 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5944 }
5945
76369139 5946 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5947 mmap_event->file_size);
c980d109
ACM
5948
5949 perf_event__output_id_sample(event, &handle, &sample);
5950
78d613eb 5951 perf_output_end(&handle);
c980d109
ACM
5952out:
5953 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5954}
5955
cdd6c482 5956static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5957{
089dd79d
PZ
5958 struct vm_area_struct *vma = mmap_event->vma;
5959 struct file *file = vma->vm_file;
13d7a241
SE
5960 int maj = 0, min = 0;
5961 u64 ino = 0, gen = 0;
f972eb63 5962 u32 prot = 0, flags = 0;
0a4a9391
PZ
5963 unsigned int size;
5964 char tmp[16];
5965 char *buf = NULL;
2c42cfbf 5966 char *name;
413ee3b4 5967
0a4a9391 5968 if (file) {
13d7a241
SE
5969 struct inode *inode;
5970 dev_t dev;
3ea2f2b9 5971
2c42cfbf 5972 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5973 if (!buf) {
c7e548b4
ON
5974 name = "//enomem";
5975 goto cpy_name;
0a4a9391 5976 }
413ee3b4 5977 /*
3ea2f2b9 5978 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5979 * need to add enough zero bytes after the string to handle
5980 * the 64bit alignment we do later.
5981 */
9bf39ab2 5982 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5983 if (IS_ERR(name)) {
c7e548b4
ON
5984 name = "//toolong";
5985 goto cpy_name;
0a4a9391 5986 }
13d7a241
SE
5987 inode = file_inode(vma->vm_file);
5988 dev = inode->i_sb->s_dev;
5989 ino = inode->i_ino;
5990 gen = inode->i_generation;
5991 maj = MAJOR(dev);
5992 min = MINOR(dev);
f972eb63
PZ
5993
5994 if (vma->vm_flags & VM_READ)
5995 prot |= PROT_READ;
5996 if (vma->vm_flags & VM_WRITE)
5997 prot |= PROT_WRITE;
5998 if (vma->vm_flags & VM_EXEC)
5999 prot |= PROT_EXEC;
6000
6001 if (vma->vm_flags & VM_MAYSHARE)
6002 flags = MAP_SHARED;
6003 else
6004 flags = MAP_PRIVATE;
6005
6006 if (vma->vm_flags & VM_DENYWRITE)
6007 flags |= MAP_DENYWRITE;
6008 if (vma->vm_flags & VM_MAYEXEC)
6009 flags |= MAP_EXECUTABLE;
6010 if (vma->vm_flags & VM_LOCKED)
6011 flags |= MAP_LOCKED;
6012 if (vma->vm_flags & VM_HUGETLB)
6013 flags |= MAP_HUGETLB;
6014
c7e548b4 6015 goto got_name;
0a4a9391 6016 } else {
fbe26abe
JO
6017 if (vma->vm_ops && vma->vm_ops->name) {
6018 name = (char *) vma->vm_ops->name(vma);
6019 if (name)
6020 goto cpy_name;
6021 }
6022
2c42cfbf 6023 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6024 if (name)
6025 goto cpy_name;
089dd79d 6026
32c5fb7e 6027 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6028 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6029 name = "[heap]";
6030 goto cpy_name;
32c5fb7e
ON
6031 }
6032 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6033 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6034 name = "[stack]";
6035 goto cpy_name;
089dd79d
PZ
6036 }
6037
c7e548b4
ON
6038 name = "//anon";
6039 goto cpy_name;
0a4a9391
PZ
6040 }
6041
c7e548b4
ON
6042cpy_name:
6043 strlcpy(tmp, name, sizeof(tmp));
6044 name = tmp;
0a4a9391 6045got_name:
2c42cfbf
PZ
6046 /*
6047 * Since our buffer works in 8 byte units we need to align our string
6048 * size to a multiple of 8. However, we must guarantee the tail end is
6049 * zero'd out to avoid leaking random bits to userspace.
6050 */
6051 size = strlen(name)+1;
6052 while (!IS_ALIGNED(size, sizeof(u64)))
6053 name[size++] = '\0';
0a4a9391
PZ
6054
6055 mmap_event->file_name = name;
6056 mmap_event->file_size = size;
13d7a241
SE
6057 mmap_event->maj = maj;
6058 mmap_event->min = min;
6059 mmap_event->ino = ino;
6060 mmap_event->ino_generation = gen;
f972eb63
PZ
6061 mmap_event->prot = prot;
6062 mmap_event->flags = flags;
0a4a9391 6063
2fe85427
SE
6064 if (!(vma->vm_flags & VM_EXEC))
6065 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6066
cdd6c482 6067 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6068
67516844 6069 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6070 mmap_event,
6071 NULL);
665c2142 6072
0a4a9391
PZ
6073 kfree(buf);
6074}
6075
3af9e859 6076void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6077{
9ee318a7
PZ
6078 struct perf_mmap_event mmap_event;
6079
cdd6c482 6080 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6081 return;
6082
6083 mmap_event = (struct perf_mmap_event){
089dd79d 6084 .vma = vma,
573402db
PZ
6085 /* .file_name */
6086 /* .file_size */
cdd6c482 6087 .event_id = {
573402db 6088 .header = {
cdd6c482 6089 .type = PERF_RECORD_MMAP,
39447b38 6090 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6091 /* .size */
6092 },
6093 /* .pid */
6094 /* .tid */
089dd79d
PZ
6095 .start = vma->vm_start,
6096 .len = vma->vm_end - vma->vm_start,
3a0304e9 6097 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6098 },
13d7a241
SE
6099 /* .maj (attr_mmap2 only) */
6100 /* .min (attr_mmap2 only) */
6101 /* .ino (attr_mmap2 only) */
6102 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6103 /* .prot (attr_mmap2 only) */
6104 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6105 };
6106
cdd6c482 6107 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6108}
6109
68db7e98
AS
6110void perf_event_aux_event(struct perf_event *event, unsigned long head,
6111 unsigned long size, u64 flags)
6112{
6113 struct perf_output_handle handle;
6114 struct perf_sample_data sample;
6115 struct perf_aux_event {
6116 struct perf_event_header header;
6117 u64 offset;
6118 u64 size;
6119 u64 flags;
6120 } rec = {
6121 .header = {
6122 .type = PERF_RECORD_AUX,
6123 .misc = 0,
6124 .size = sizeof(rec),
6125 },
6126 .offset = head,
6127 .size = size,
6128 .flags = flags,
6129 };
6130 int ret;
6131
6132 perf_event_header__init_id(&rec.header, &sample, event);
6133 ret = perf_output_begin(&handle, event, rec.header.size);
6134
6135 if (ret)
6136 return;
6137
6138 perf_output_put(&handle, rec);
6139 perf_event__output_id_sample(event, &handle, &sample);
6140
6141 perf_output_end(&handle);
6142}
6143
f38b0dbb
KL
6144/*
6145 * Lost/dropped samples logging
6146 */
6147void perf_log_lost_samples(struct perf_event *event, u64 lost)
6148{
6149 struct perf_output_handle handle;
6150 struct perf_sample_data sample;
6151 int ret;
6152
6153 struct {
6154 struct perf_event_header header;
6155 u64 lost;
6156 } lost_samples_event = {
6157 .header = {
6158 .type = PERF_RECORD_LOST_SAMPLES,
6159 .misc = 0,
6160 .size = sizeof(lost_samples_event),
6161 },
6162 .lost = lost,
6163 };
6164
6165 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6166
6167 ret = perf_output_begin(&handle, event,
6168 lost_samples_event.header.size);
6169 if (ret)
6170 return;
6171
6172 perf_output_put(&handle, lost_samples_event);
6173 perf_event__output_id_sample(event, &handle, &sample);
6174 perf_output_end(&handle);
6175}
6176
45ac1403
AH
6177/*
6178 * context_switch tracking
6179 */
6180
6181struct perf_switch_event {
6182 struct task_struct *task;
6183 struct task_struct *next_prev;
6184
6185 struct {
6186 struct perf_event_header header;
6187 u32 next_prev_pid;
6188 u32 next_prev_tid;
6189 } event_id;
6190};
6191
6192static int perf_event_switch_match(struct perf_event *event)
6193{
6194 return event->attr.context_switch;
6195}
6196
6197static void perf_event_switch_output(struct perf_event *event, void *data)
6198{
6199 struct perf_switch_event *se = data;
6200 struct perf_output_handle handle;
6201 struct perf_sample_data sample;
6202 int ret;
6203
6204 if (!perf_event_switch_match(event))
6205 return;
6206
6207 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6208 if (event->ctx->task) {
6209 se->event_id.header.type = PERF_RECORD_SWITCH;
6210 se->event_id.header.size = sizeof(se->event_id.header);
6211 } else {
6212 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6213 se->event_id.header.size = sizeof(se->event_id);
6214 se->event_id.next_prev_pid =
6215 perf_event_pid(event, se->next_prev);
6216 se->event_id.next_prev_tid =
6217 perf_event_tid(event, se->next_prev);
6218 }
6219
6220 perf_event_header__init_id(&se->event_id.header, &sample, event);
6221
6222 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6223 if (ret)
6224 return;
6225
6226 if (event->ctx->task)
6227 perf_output_put(&handle, se->event_id.header);
6228 else
6229 perf_output_put(&handle, se->event_id);
6230
6231 perf_event__output_id_sample(event, &handle, &sample);
6232
6233 perf_output_end(&handle);
6234}
6235
6236static void perf_event_switch(struct task_struct *task,
6237 struct task_struct *next_prev, bool sched_in)
6238{
6239 struct perf_switch_event switch_event;
6240
6241 /* N.B. caller checks nr_switch_events != 0 */
6242
6243 switch_event = (struct perf_switch_event){
6244 .task = task,
6245 .next_prev = next_prev,
6246 .event_id = {
6247 .header = {
6248 /* .type */
6249 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6250 /* .size */
6251 },
6252 /* .next_prev_pid */
6253 /* .next_prev_tid */
6254 },
6255 };
6256
6257 perf_event_aux(perf_event_switch_output,
6258 &switch_event,
6259 NULL);
6260}
6261
a78ac325
PZ
6262/*
6263 * IRQ throttle logging
6264 */
6265
cdd6c482 6266static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6267{
6268 struct perf_output_handle handle;
c980d109 6269 struct perf_sample_data sample;
a78ac325
PZ
6270 int ret;
6271
6272 struct {
6273 struct perf_event_header header;
6274 u64 time;
cca3f454 6275 u64 id;
7f453c24 6276 u64 stream_id;
a78ac325
PZ
6277 } throttle_event = {
6278 .header = {
cdd6c482 6279 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6280 .misc = 0,
6281 .size = sizeof(throttle_event),
6282 },
34f43927 6283 .time = perf_event_clock(event),
cdd6c482
IM
6284 .id = primary_event_id(event),
6285 .stream_id = event->id,
a78ac325
PZ
6286 };
6287
966ee4d6 6288 if (enable)
cdd6c482 6289 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6290
c980d109
ACM
6291 perf_event_header__init_id(&throttle_event.header, &sample, event);
6292
6293 ret = perf_output_begin(&handle, event,
a7ac67ea 6294 throttle_event.header.size);
a78ac325
PZ
6295 if (ret)
6296 return;
6297
6298 perf_output_put(&handle, throttle_event);
c980d109 6299 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6300 perf_output_end(&handle);
6301}
6302
ec0d7729
AS
6303static void perf_log_itrace_start(struct perf_event *event)
6304{
6305 struct perf_output_handle handle;
6306 struct perf_sample_data sample;
6307 struct perf_aux_event {
6308 struct perf_event_header header;
6309 u32 pid;
6310 u32 tid;
6311 } rec;
6312 int ret;
6313
6314 if (event->parent)
6315 event = event->parent;
6316
6317 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6318 event->hw.itrace_started)
6319 return;
6320
ec0d7729
AS
6321 rec.header.type = PERF_RECORD_ITRACE_START;
6322 rec.header.misc = 0;
6323 rec.header.size = sizeof(rec);
6324 rec.pid = perf_event_pid(event, current);
6325 rec.tid = perf_event_tid(event, current);
6326
6327 perf_event_header__init_id(&rec.header, &sample, event);
6328 ret = perf_output_begin(&handle, event, rec.header.size);
6329
6330 if (ret)
6331 return;
6332
6333 perf_output_put(&handle, rec);
6334 perf_event__output_id_sample(event, &handle, &sample);
6335
6336 perf_output_end(&handle);
6337}
6338
f6c7d5fe 6339/*
cdd6c482 6340 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6341 */
6342
a8b0ca17 6343static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6344 int throttle, struct perf_sample_data *data,
6345 struct pt_regs *regs)
f6c7d5fe 6346{
cdd6c482
IM
6347 int events = atomic_read(&event->event_limit);
6348 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6349 u64 seq;
79f14641
PZ
6350 int ret = 0;
6351
96398826
PZ
6352 /*
6353 * Non-sampling counters might still use the PMI to fold short
6354 * hardware counters, ignore those.
6355 */
6356 if (unlikely(!is_sampling_event(event)))
6357 return 0;
6358
e050e3f0
SE
6359 seq = __this_cpu_read(perf_throttled_seq);
6360 if (seq != hwc->interrupts_seq) {
6361 hwc->interrupts_seq = seq;
6362 hwc->interrupts = 1;
6363 } else {
6364 hwc->interrupts++;
6365 if (unlikely(throttle
6366 && hwc->interrupts >= max_samples_per_tick)) {
6367 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6368 hwc->interrupts = MAX_INTERRUPTS;
6369 perf_log_throttle(event, 0);
d84153d6 6370 tick_nohz_full_kick();
a78ac325
PZ
6371 ret = 1;
6372 }
e050e3f0 6373 }
60db5e09 6374
cdd6c482 6375 if (event->attr.freq) {
def0a9b2 6376 u64 now = perf_clock();
abd50713 6377 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6378
abd50713 6379 hwc->freq_time_stamp = now;
bd2b5b12 6380
abd50713 6381 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6382 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6383 }
6384
2023b359
PZ
6385 /*
6386 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6387 * events
2023b359
PZ
6388 */
6389
cdd6c482
IM
6390 event->pending_kill = POLL_IN;
6391 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6392 ret = 1;
cdd6c482 6393 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6394 event->pending_disable = 1;
6395 irq_work_queue(&event->pending);
79f14641
PZ
6396 }
6397
453f19ee 6398 if (event->overflow_handler)
a8b0ca17 6399 event->overflow_handler(event, data, regs);
453f19ee 6400 else
a8b0ca17 6401 perf_event_output(event, data, regs);
453f19ee 6402
fed66e2c 6403 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6404 event->pending_wakeup = 1;
6405 irq_work_queue(&event->pending);
f506b3dc
PZ
6406 }
6407
79f14641 6408 return ret;
f6c7d5fe
PZ
6409}
6410
a8b0ca17 6411int perf_event_overflow(struct perf_event *event,
5622f295
MM
6412 struct perf_sample_data *data,
6413 struct pt_regs *regs)
850bc73f 6414{
a8b0ca17 6415 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6416}
6417
15dbf27c 6418/*
cdd6c482 6419 * Generic software event infrastructure
15dbf27c
PZ
6420 */
6421
b28ab83c
PZ
6422struct swevent_htable {
6423 struct swevent_hlist *swevent_hlist;
6424 struct mutex hlist_mutex;
6425 int hlist_refcount;
6426
6427 /* Recursion avoidance in each contexts */
6428 int recursion[PERF_NR_CONTEXTS];
6429};
6430
6431static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6432
7b4b6658 6433/*
cdd6c482
IM
6434 * We directly increment event->count and keep a second value in
6435 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6436 * is kept in the range [-sample_period, 0] so that we can use the
6437 * sign as trigger.
6438 */
6439
ab573844 6440u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6441{
cdd6c482 6442 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6443 u64 period = hwc->last_period;
6444 u64 nr, offset;
6445 s64 old, val;
6446
6447 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6448
6449again:
e7850595 6450 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6451 if (val < 0)
6452 return 0;
15dbf27c 6453
7b4b6658
PZ
6454 nr = div64_u64(period + val, period);
6455 offset = nr * period;
6456 val -= offset;
e7850595 6457 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6458 goto again;
15dbf27c 6459
7b4b6658 6460 return nr;
15dbf27c
PZ
6461}
6462
0cff784a 6463static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6464 struct perf_sample_data *data,
5622f295 6465 struct pt_regs *regs)
15dbf27c 6466{
cdd6c482 6467 struct hw_perf_event *hwc = &event->hw;
850bc73f 6468 int throttle = 0;
15dbf27c 6469
0cff784a
PZ
6470 if (!overflow)
6471 overflow = perf_swevent_set_period(event);
15dbf27c 6472
7b4b6658
PZ
6473 if (hwc->interrupts == MAX_INTERRUPTS)
6474 return;
15dbf27c 6475
7b4b6658 6476 for (; overflow; overflow--) {
a8b0ca17 6477 if (__perf_event_overflow(event, throttle,
5622f295 6478 data, regs)) {
7b4b6658
PZ
6479 /*
6480 * We inhibit the overflow from happening when
6481 * hwc->interrupts == MAX_INTERRUPTS.
6482 */
6483 break;
6484 }
cf450a73 6485 throttle = 1;
7b4b6658 6486 }
15dbf27c
PZ
6487}
6488
a4eaf7f1 6489static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6490 struct perf_sample_data *data,
5622f295 6491 struct pt_regs *regs)
7b4b6658 6492{
cdd6c482 6493 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6494
e7850595 6495 local64_add(nr, &event->count);
d6d020e9 6496
0cff784a
PZ
6497 if (!regs)
6498 return;
6499
6c7e550f 6500 if (!is_sampling_event(event))
7b4b6658 6501 return;
d6d020e9 6502
5d81e5cf
AV
6503 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6504 data->period = nr;
6505 return perf_swevent_overflow(event, 1, data, regs);
6506 } else
6507 data->period = event->hw.last_period;
6508
0cff784a 6509 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6510 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6511
e7850595 6512 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6513 return;
df1a132b 6514
a8b0ca17 6515 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6516}
6517
f5ffe02e
FW
6518static int perf_exclude_event(struct perf_event *event,
6519 struct pt_regs *regs)
6520{
a4eaf7f1 6521 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6522 return 1;
a4eaf7f1 6523
f5ffe02e
FW
6524 if (regs) {
6525 if (event->attr.exclude_user && user_mode(regs))
6526 return 1;
6527
6528 if (event->attr.exclude_kernel && !user_mode(regs))
6529 return 1;
6530 }
6531
6532 return 0;
6533}
6534
cdd6c482 6535static int perf_swevent_match(struct perf_event *event,
1c432d89 6536 enum perf_type_id type,
6fb2915d
LZ
6537 u32 event_id,
6538 struct perf_sample_data *data,
6539 struct pt_regs *regs)
15dbf27c 6540{
cdd6c482 6541 if (event->attr.type != type)
a21ca2ca 6542 return 0;
f5ffe02e 6543
cdd6c482 6544 if (event->attr.config != event_id)
15dbf27c
PZ
6545 return 0;
6546
f5ffe02e
FW
6547 if (perf_exclude_event(event, regs))
6548 return 0;
15dbf27c
PZ
6549
6550 return 1;
6551}
6552
76e1d904
FW
6553static inline u64 swevent_hash(u64 type, u32 event_id)
6554{
6555 u64 val = event_id | (type << 32);
6556
6557 return hash_64(val, SWEVENT_HLIST_BITS);
6558}
6559
49f135ed
FW
6560static inline struct hlist_head *
6561__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6562{
49f135ed
FW
6563 u64 hash = swevent_hash(type, event_id);
6564
6565 return &hlist->heads[hash];
6566}
76e1d904 6567
49f135ed
FW
6568/* For the read side: events when they trigger */
6569static inline struct hlist_head *
b28ab83c 6570find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6571{
6572 struct swevent_hlist *hlist;
76e1d904 6573
b28ab83c 6574 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6575 if (!hlist)
6576 return NULL;
6577
49f135ed
FW
6578 return __find_swevent_head(hlist, type, event_id);
6579}
6580
6581/* For the event head insertion and removal in the hlist */
6582static inline struct hlist_head *
b28ab83c 6583find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6584{
6585 struct swevent_hlist *hlist;
6586 u32 event_id = event->attr.config;
6587 u64 type = event->attr.type;
6588
6589 /*
6590 * Event scheduling is always serialized against hlist allocation
6591 * and release. Which makes the protected version suitable here.
6592 * The context lock guarantees that.
6593 */
b28ab83c 6594 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6595 lockdep_is_held(&event->ctx->lock));
6596 if (!hlist)
6597 return NULL;
6598
6599 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6600}
6601
6602static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6603 u64 nr,
76e1d904
FW
6604 struct perf_sample_data *data,
6605 struct pt_regs *regs)
15dbf27c 6606{
4a32fea9 6607 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6608 struct perf_event *event;
76e1d904 6609 struct hlist_head *head;
15dbf27c 6610
76e1d904 6611 rcu_read_lock();
b28ab83c 6612 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6613 if (!head)
6614 goto end;
6615
b67bfe0d 6616 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6617 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6618 perf_swevent_event(event, nr, data, regs);
15dbf27c 6619 }
76e1d904
FW
6620end:
6621 rcu_read_unlock();
15dbf27c
PZ
6622}
6623
86038c5e
PZI
6624DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6625
4ed7c92d 6626int perf_swevent_get_recursion_context(void)
96f6d444 6627{
4a32fea9 6628 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6629
b28ab83c 6630 return get_recursion_context(swhash->recursion);
96f6d444 6631}
645e8cc0 6632EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6633
fa9f90be 6634inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6635{
4a32fea9 6636 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6637
b28ab83c 6638 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6639}
15dbf27c 6640
86038c5e 6641void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6642{
a4234bfc 6643 struct perf_sample_data data;
4ed7c92d 6644
86038c5e 6645 if (WARN_ON_ONCE(!regs))
4ed7c92d 6646 return;
a4234bfc 6647
fd0d000b 6648 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6649 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6650}
6651
6652void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6653{
6654 int rctx;
6655
6656 preempt_disable_notrace();
6657 rctx = perf_swevent_get_recursion_context();
6658 if (unlikely(rctx < 0))
6659 goto fail;
6660
6661 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6662
6663 perf_swevent_put_recursion_context(rctx);
86038c5e 6664fail:
1c024eca 6665 preempt_enable_notrace();
b8e83514
PZ
6666}
6667
cdd6c482 6668static void perf_swevent_read(struct perf_event *event)
15dbf27c 6669{
15dbf27c
PZ
6670}
6671
a4eaf7f1 6672static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6673{
4a32fea9 6674 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6675 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6676 struct hlist_head *head;
6677
6c7e550f 6678 if (is_sampling_event(event)) {
7b4b6658 6679 hwc->last_period = hwc->sample_period;
cdd6c482 6680 perf_swevent_set_period(event);
7b4b6658 6681 }
76e1d904 6682
a4eaf7f1
PZ
6683 hwc->state = !(flags & PERF_EF_START);
6684
b28ab83c 6685 head = find_swevent_head(swhash, event);
12ca6ad2 6686 if (WARN_ON_ONCE(!head))
76e1d904
FW
6687 return -EINVAL;
6688
6689 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6690 perf_event_update_userpage(event);
76e1d904 6691
15dbf27c
PZ
6692 return 0;
6693}
6694
a4eaf7f1 6695static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6696{
76e1d904 6697 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6698}
6699
a4eaf7f1 6700static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6701{
a4eaf7f1 6702 event->hw.state = 0;
d6d020e9 6703}
aa9c4c0f 6704
a4eaf7f1 6705static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6706{
a4eaf7f1 6707 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6708}
6709
49f135ed
FW
6710/* Deref the hlist from the update side */
6711static inline struct swevent_hlist *
b28ab83c 6712swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6713{
b28ab83c
PZ
6714 return rcu_dereference_protected(swhash->swevent_hlist,
6715 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6716}
6717
b28ab83c 6718static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6719{
b28ab83c 6720 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6721
49f135ed 6722 if (!hlist)
76e1d904
FW
6723 return;
6724
70691d4a 6725 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6726 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6727}
6728
6729static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6730{
b28ab83c 6731 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6732
b28ab83c 6733 mutex_lock(&swhash->hlist_mutex);
76e1d904 6734
b28ab83c
PZ
6735 if (!--swhash->hlist_refcount)
6736 swevent_hlist_release(swhash);
76e1d904 6737
b28ab83c 6738 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6739}
6740
6741static void swevent_hlist_put(struct perf_event *event)
6742{
6743 int cpu;
6744
76e1d904
FW
6745 for_each_possible_cpu(cpu)
6746 swevent_hlist_put_cpu(event, cpu);
6747}
6748
6749static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6750{
b28ab83c 6751 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6752 int err = 0;
6753
b28ab83c 6754 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6755 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6756 struct swevent_hlist *hlist;
6757
6758 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6759 if (!hlist) {
6760 err = -ENOMEM;
6761 goto exit;
6762 }
b28ab83c 6763 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6764 }
b28ab83c 6765 swhash->hlist_refcount++;
9ed6060d 6766exit:
b28ab83c 6767 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6768
6769 return err;
6770}
6771
6772static int swevent_hlist_get(struct perf_event *event)
6773{
6774 int err;
6775 int cpu, failed_cpu;
6776
76e1d904
FW
6777 get_online_cpus();
6778 for_each_possible_cpu(cpu) {
6779 err = swevent_hlist_get_cpu(event, cpu);
6780 if (err) {
6781 failed_cpu = cpu;
6782 goto fail;
6783 }
6784 }
6785 put_online_cpus();
6786
6787 return 0;
9ed6060d 6788fail:
76e1d904
FW
6789 for_each_possible_cpu(cpu) {
6790 if (cpu == failed_cpu)
6791 break;
6792 swevent_hlist_put_cpu(event, cpu);
6793 }
6794
6795 put_online_cpus();
6796 return err;
6797}
6798
c5905afb 6799struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6800
b0a873eb
PZ
6801static void sw_perf_event_destroy(struct perf_event *event)
6802{
6803 u64 event_id = event->attr.config;
95476b64 6804
b0a873eb
PZ
6805 WARN_ON(event->parent);
6806
c5905afb 6807 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6808 swevent_hlist_put(event);
6809}
6810
6811static int perf_swevent_init(struct perf_event *event)
6812{
8176cced 6813 u64 event_id = event->attr.config;
b0a873eb
PZ
6814
6815 if (event->attr.type != PERF_TYPE_SOFTWARE)
6816 return -ENOENT;
6817
2481c5fa
SE
6818 /*
6819 * no branch sampling for software events
6820 */
6821 if (has_branch_stack(event))
6822 return -EOPNOTSUPP;
6823
b0a873eb
PZ
6824 switch (event_id) {
6825 case PERF_COUNT_SW_CPU_CLOCK:
6826 case PERF_COUNT_SW_TASK_CLOCK:
6827 return -ENOENT;
6828
6829 default:
6830 break;
6831 }
6832
ce677831 6833 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6834 return -ENOENT;
6835
6836 if (!event->parent) {
6837 int err;
6838
6839 err = swevent_hlist_get(event);
6840 if (err)
6841 return err;
6842
c5905afb 6843 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6844 event->destroy = sw_perf_event_destroy;
6845 }
6846
6847 return 0;
6848}
6849
6850static struct pmu perf_swevent = {
89a1e187 6851 .task_ctx_nr = perf_sw_context,
95476b64 6852
34f43927
PZ
6853 .capabilities = PERF_PMU_CAP_NO_NMI,
6854
b0a873eb 6855 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6856 .add = perf_swevent_add,
6857 .del = perf_swevent_del,
6858 .start = perf_swevent_start,
6859 .stop = perf_swevent_stop,
1c024eca 6860 .read = perf_swevent_read,
1c024eca
PZ
6861};
6862
b0a873eb
PZ
6863#ifdef CONFIG_EVENT_TRACING
6864
1c024eca
PZ
6865static int perf_tp_filter_match(struct perf_event *event,
6866 struct perf_sample_data *data)
6867{
6868 void *record = data->raw->data;
6869
b71b437e
PZ
6870 /* only top level events have filters set */
6871 if (event->parent)
6872 event = event->parent;
6873
1c024eca
PZ
6874 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6875 return 1;
6876 return 0;
6877}
6878
6879static int perf_tp_event_match(struct perf_event *event,
6880 struct perf_sample_data *data,
6881 struct pt_regs *regs)
6882{
a0f7d0f7
FW
6883 if (event->hw.state & PERF_HES_STOPPED)
6884 return 0;
580d607c
PZ
6885 /*
6886 * All tracepoints are from kernel-space.
6887 */
6888 if (event->attr.exclude_kernel)
1c024eca
PZ
6889 return 0;
6890
6891 if (!perf_tp_filter_match(event, data))
6892 return 0;
6893
6894 return 1;
6895}
6896
6897void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6898 struct pt_regs *regs, struct hlist_head *head, int rctx,
6899 struct task_struct *task)
95476b64
FW
6900{
6901 struct perf_sample_data data;
1c024eca 6902 struct perf_event *event;
1c024eca 6903
95476b64
FW
6904 struct perf_raw_record raw = {
6905 .size = entry_size,
6906 .data = record,
6907 };
6908
fd0d000b 6909 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6910 data.raw = &raw;
6911
b67bfe0d 6912 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6913 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6914 perf_swevent_event(event, count, &data, regs);
4f41c013 6915 }
ecc55f84 6916
e6dab5ff
AV
6917 /*
6918 * If we got specified a target task, also iterate its context and
6919 * deliver this event there too.
6920 */
6921 if (task && task != current) {
6922 struct perf_event_context *ctx;
6923 struct trace_entry *entry = record;
6924
6925 rcu_read_lock();
6926 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6927 if (!ctx)
6928 goto unlock;
6929
6930 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6931 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6932 continue;
6933 if (event->attr.config != entry->type)
6934 continue;
6935 if (perf_tp_event_match(event, &data, regs))
6936 perf_swevent_event(event, count, &data, regs);
6937 }
6938unlock:
6939 rcu_read_unlock();
6940 }
6941
ecc55f84 6942 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6943}
6944EXPORT_SYMBOL_GPL(perf_tp_event);
6945
cdd6c482 6946static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6947{
1c024eca 6948 perf_trace_destroy(event);
e077df4f
PZ
6949}
6950
b0a873eb 6951static int perf_tp_event_init(struct perf_event *event)
e077df4f 6952{
76e1d904
FW
6953 int err;
6954
b0a873eb
PZ
6955 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6956 return -ENOENT;
6957
2481c5fa
SE
6958 /*
6959 * no branch sampling for tracepoint events
6960 */
6961 if (has_branch_stack(event))
6962 return -EOPNOTSUPP;
6963
1c024eca
PZ
6964 err = perf_trace_init(event);
6965 if (err)
b0a873eb 6966 return err;
e077df4f 6967
cdd6c482 6968 event->destroy = tp_perf_event_destroy;
e077df4f 6969
b0a873eb
PZ
6970 return 0;
6971}
6972
6973static struct pmu perf_tracepoint = {
89a1e187
PZ
6974 .task_ctx_nr = perf_sw_context,
6975
b0a873eb 6976 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6977 .add = perf_trace_add,
6978 .del = perf_trace_del,
6979 .start = perf_swevent_start,
6980 .stop = perf_swevent_stop,
b0a873eb 6981 .read = perf_swevent_read,
b0a873eb
PZ
6982};
6983
6984static inline void perf_tp_register(void)
6985{
2e80a82a 6986 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6987}
6fb2915d
LZ
6988
6989static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6990{
6991 char *filter_str;
6992 int ret;
6993
6994 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6995 return -EINVAL;
6996
6997 filter_str = strndup_user(arg, PAGE_SIZE);
6998 if (IS_ERR(filter_str))
6999 return PTR_ERR(filter_str);
7000
7001 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7002
7003 kfree(filter_str);
7004 return ret;
7005}
7006
7007static void perf_event_free_filter(struct perf_event *event)
7008{
7009 ftrace_profile_free_filter(event);
7010}
7011
2541517c
AS
7012static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7013{
7014 struct bpf_prog *prog;
7015
7016 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7017 return -EINVAL;
7018
7019 if (event->tp_event->prog)
7020 return -EEXIST;
7021
04a22fae
WN
7022 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7023 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7024 return -EINVAL;
7025
7026 prog = bpf_prog_get(prog_fd);
7027 if (IS_ERR(prog))
7028 return PTR_ERR(prog);
7029
6c373ca8 7030 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7031 /* valid fd, but invalid bpf program type */
7032 bpf_prog_put(prog);
7033 return -EINVAL;
7034 }
7035
7036 event->tp_event->prog = prog;
7037
7038 return 0;
7039}
7040
7041static void perf_event_free_bpf_prog(struct perf_event *event)
7042{
7043 struct bpf_prog *prog;
7044
7045 if (!event->tp_event)
7046 return;
7047
7048 prog = event->tp_event->prog;
7049 if (prog) {
7050 event->tp_event->prog = NULL;
7051 bpf_prog_put(prog);
7052 }
7053}
7054
e077df4f 7055#else
6fb2915d 7056
b0a873eb 7057static inline void perf_tp_register(void)
e077df4f 7058{
e077df4f 7059}
6fb2915d
LZ
7060
7061static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7062{
7063 return -ENOENT;
7064}
7065
7066static void perf_event_free_filter(struct perf_event *event)
7067{
7068}
7069
2541517c
AS
7070static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7071{
7072 return -ENOENT;
7073}
7074
7075static void perf_event_free_bpf_prog(struct perf_event *event)
7076{
7077}
07b139c8 7078#endif /* CONFIG_EVENT_TRACING */
e077df4f 7079
24f1e32c 7080#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7081void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7082{
f5ffe02e
FW
7083 struct perf_sample_data sample;
7084 struct pt_regs *regs = data;
7085
fd0d000b 7086 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7087
a4eaf7f1 7088 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7089 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7090}
7091#endif
7092
b0a873eb
PZ
7093/*
7094 * hrtimer based swevent callback
7095 */
f29ac756 7096
b0a873eb 7097static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7098{
b0a873eb
PZ
7099 enum hrtimer_restart ret = HRTIMER_RESTART;
7100 struct perf_sample_data data;
7101 struct pt_regs *regs;
7102 struct perf_event *event;
7103 u64 period;
f29ac756 7104
b0a873eb 7105 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7106
7107 if (event->state != PERF_EVENT_STATE_ACTIVE)
7108 return HRTIMER_NORESTART;
7109
b0a873eb 7110 event->pmu->read(event);
f344011c 7111
fd0d000b 7112 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7113 regs = get_irq_regs();
7114
7115 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7116 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7117 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7118 ret = HRTIMER_NORESTART;
7119 }
24f1e32c 7120
b0a873eb
PZ
7121 period = max_t(u64, 10000, event->hw.sample_period);
7122 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7123
b0a873eb 7124 return ret;
f29ac756
PZ
7125}
7126
b0a873eb 7127static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7128{
b0a873eb 7129 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7130 s64 period;
7131
7132 if (!is_sampling_event(event))
7133 return;
f5ffe02e 7134
5d508e82
FBH
7135 period = local64_read(&hwc->period_left);
7136 if (period) {
7137 if (period < 0)
7138 period = 10000;
fa407f35 7139
5d508e82
FBH
7140 local64_set(&hwc->period_left, 0);
7141 } else {
7142 period = max_t(u64, 10000, hwc->sample_period);
7143 }
3497d206
TG
7144 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7145 HRTIMER_MODE_REL_PINNED);
24f1e32c 7146}
b0a873eb
PZ
7147
7148static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7149{
b0a873eb
PZ
7150 struct hw_perf_event *hwc = &event->hw;
7151
6c7e550f 7152 if (is_sampling_event(event)) {
b0a873eb 7153 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7154 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7155
7156 hrtimer_cancel(&hwc->hrtimer);
7157 }
24f1e32c
FW
7158}
7159
ba3dd36c
PZ
7160static void perf_swevent_init_hrtimer(struct perf_event *event)
7161{
7162 struct hw_perf_event *hwc = &event->hw;
7163
7164 if (!is_sampling_event(event))
7165 return;
7166
7167 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7168 hwc->hrtimer.function = perf_swevent_hrtimer;
7169
7170 /*
7171 * Since hrtimers have a fixed rate, we can do a static freq->period
7172 * mapping and avoid the whole period adjust feedback stuff.
7173 */
7174 if (event->attr.freq) {
7175 long freq = event->attr.sample_freq;
7176
7177 event->attr.sample_period = NSEC_PER_SEC / freq;
7178 hwc->sample_period = event->attr.sample_period;
7179 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7180 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7181 event->attr.freq = 0;
7182 }
7183}
7184
b0a873eb
PZ
7185/*
7186 * Software event: cpu wall time clock
7187 */
7188
7189static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7190{
b0a873eb
PZ
7191 s64 prev;
7192 u64 now;
7193
a4eaf7f1 7194 now = local_clock();
b0a873eb
PZ
7195 prev = local64_xchg(&event->hw.prev_count, now);
7196 local64_add(now - prev, &event->count);
24f1e32c 7197}
24f1e32c 7198
a4eaf7f1 7199static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7200{
a4eaf7f1 7201 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7202 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7203}
7204
a4eaf7f1 7205static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7206{
b0a873eb
PZ
7207 perf_swevent_cancel_hrtimer(event);
7208 cpu_clock_event_update(event);
7209}
f29ac756 7210
a4eaf7f1
PZ
7211static int cpu_clock_event_add(struct perf_event *event, int flags)
7212{
7213 if (flags & PERF_EF_START)
7214 cpu_clock_event_start(event, flags);
6a694a60 7215 perf_event_update_userpage(event);
a4eaf7f1
PZ
7216
7217 return 0;
7218}
7219
7220static void cpu_clock_event_del(struct perf_event *event, int flags)
7221{
7222 cpu_clock_event_stop(event, flags);
7223}
7224
b0a873eb
PZ
7225static void cpu_clock_event_read(struct perf_event *event)
7226{
7227 cpu_clock_event_update(event);
7228}
f344011c 7229
b0a873eb
PZ
7230static int cpu_clock_event_init(struct perf_event *event)
7231{
7232 if (event->attr.type != PERF_TYPE_SOFTWARE)
7233 return -ENOENT;
7234
7235 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7236 return -ENOENT;
7237
2481c5fa
SE
7238 /*
7239 * no branch sampling for software events
7240 */
7241 if (has_branch_stack(event))
7242 return -EOPNOTSUPP;
7243
ba3dd36c
PZ
7244 perf_swevent_init_hrtimer(event);
7245
b0a873eb 7246 return 0;
f29ac756
PZ
7247}
7248
b0a873eb 7249static struct pmu perf_cpu_clock = {
89a1e187
PZ
7250 .task_ctx_nr = perf_sw_context,
7251
34f43927
PZ
7252 .capabilities = PERF_PMU_CAP_NO_NMI,
7253
b0a873eb 7254 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7255 .add = cpu_clock_event_add,
7256 .del = cpu_clock_event_del,
7257 .start = cpu_clock_event_start,
7258 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7259 .read = cpu_clock_event_read,
7260};
7261
7262/*
7263 * Software event: task time clock
7264 */
7265
7266static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7267{
b0a873eb
PZ
7268 u64 prev;
7269 s64 delta;
5c92d124 7270
b0a873eb
PZ
7271 prev = local64_xchg(&event->hw.prev_count, now);
7272 delta = now - prev;
7273 local64_add(delta, &event->count);
7274}
5c92d124 7275
a4eaf7f1 7276static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7277{
a4eaf7f1 7278 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7279 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7280}
7281
a4eaf7f1 7282static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7283{
7284 perf_swevent_cancel_hrtimer(event);
7285 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7286}
7287
7288static int task_clock_event_add(struct perf_event *event, int flags)
7289{
7290 if (flags & PERF_EF_START)
7291 task_clock_event_start(event, flags);
6a694a60 7292 perf_event_update_userpage(event);
b0a873eb 7293
a4eaf7f1
PZ
7294 return 0;
7295}
7296
7297static void task_clock_event_del(struct perf_event *event, int flags)
7298{
7299 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7300}
7301
7302static void task_clock_event_read(struct perf_event *event)
7303{
768a06e2
PZ
7304 u64 now = perf_clock();
7305 u64 delta = now - event->ctx->timestamp;
7306 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7307
7308 task_clock_event_update(event, time);
7309}
7310
7311static int task_clock_event_init(struct perf_event *event)
6fb2915d 7312{
b0a873eb
PZ
7313 if (event->attr.type != PERF_TYPE_SOFTWARE)
7314 return -ENOENT;
7315
7316 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7317 return -ENOENT;
7318
2481c5fa
SE
7319 /*
7320 * no branch sampling for software events
7321 */
7322 if (has_branch_stack(event))
7323 return -EOPNOTSUPP;
7324
ba3dd36c
PZ
7325 perf_swevent_init_hrtimer(event);
7326
b0a873eb 7327 return 0;
6fb2915d
LZ
7328}
7329
b0a873eb 7330static struct pmu perf_task_clock = {
89a1e187
PZ
7331 .task_ctx_nr = perf_sw_context,
7332
34f43927
PZ
7333 .capabilities = PERF_PMU_CAP_NO_NMI,
7334
b0a873eb 7335 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7336 .add = task_clock_event_add,
7337 .del = task_clock_event_del,
7338 .start = task_clock_event_start,
7339 .stop = task_clock_event_stop,
b0a873eb
PZ
7340 .read = task_clock_event_read,
7341};
6fb2915d 7342
ad5133b7 7343static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7344{
e077df4f 7345}
6fb2915d 7346
fbbe0701
SB
7347static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7348{
7349}
7350
ad5133b7 7351static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7352{
ad5133b7 7353 return 0;
6fb2915d
LZ
7354}
7355
18ab2cd3 7356static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7357
7358static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7359{
fbbe0701
SB
7360 __this_cpu_write(nop_txn_flags, flags);
7361
7362 if (flags & ~PERF_PMU_TXN_ADD)
7363 return;
7364
ad5133b7 7365 perf_pmu_disable(pmu);
6fb2915d
LZ
7366}
7367
ad5133b7
PZ
7368static int perf_pmu_commit_txn(struct pmu *pmu)
7369{
fbbe0701
SB
7370 unsigned int flags = __this_cpu_read(nop_txn_flags);
7371
7372 __this_cpu_write(nop_txn_flags, 0);
7373
7374 if (flags & ~PERF_PMU_TXN_ADD)
7375 return 0;
7376
ad5133b7
PZ
7377 perf_pmu_enable(pmu);
7378 return 0;
7379}
e077df4f 7380
ad5133b7 7381static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7382{
fbbe0701
SB
7383 unsigned int flags = __this_cpu_read(nop_txn_flags);
7384
7385 __this_cpu_write(nop_txn_flags, 0);
7386
7387 if (flags & ~PERF_PMU_TXN_ADD)
7388 return;
7389
ad5133b7 7390 perf_pmu_enable(pmu);
24f1e32c
FW
7391}
7392
35edc2a5
PZ
7393static int perf_event_idx_default(struct perf_event *event)
7394{
c719f560 7395 return 0;
35edc2a5
PZ
7396}
7397
8dc85d54
PZ
7398/*
7399 * Ensures all contexts with the same task_ctx_nr have the same
7400 * pmu_cpu_context too.
7401 */
9e317041 7402static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7403{
8dc85d54 7404 struct pmu *pmu;
b326e956 7405
8dc85d54
PZ
7406 if (ctxn < 0)
7407 return NULL;
24f1e32c 7408
8dc85d54
PZ
7409 list_for_each_entry(pmu, &pmus, entry) {
7410 if (pmu->task_ctx_nr == ctxn)
7411 return pmu->pmu_cpu_context;
7412 }
24f1e32c 7413
8dc85d54 7414 return NULL;
24f1e32c
FW
7415}
7416
51676957 7417static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7418{
51676957
PZ
7419 int cpu;
7420
7421 for_each_possible_cpu(cpu) {
7422 struct perf_cpu_context *cpuctx;
7423
7424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7425
3f1f3320
PZ
7426 if (cpuctx->unique_pmu == old_pmu)
7427 cpuctx->unique_pmu = pmu;
51676957
PZ
7428 }
7429}
7430
7431static void free_pmu_context(struct pmu *pmu)
7432{
7433 struct pmu *i;
f5ffe02e 7434
8dc85d54 7435 mutex_lock(&pmus_lock);
0475f9ea 7436 /*
8dc85d54 7437 * Like a real lame refcount.
0475f9ea 7438 */
51676957
PZ
7439 list_for_each_entry(i, &pmus, entry) {
7440 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7441 update_pmu_context(i, pmu);
8dc85d54 7442 goto out;
51676957 7443 }
8dc85d54 7444 }
d6d020e9 7445
51676957 7446 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7447out:
7448 mutex_unlock(&pmus_lock);
24f1e32c 7449}
2e80a82a 7450static struct idr pmu_idr;
d6d020e9 7451
abe43400
PZ
7452static ssize_t
7453type_show(struct device *dev, struct device_attribute *attr, char *page)
7454{
7455 struct pmu *pmu = dev_get_drvdata(dev);
7456
7457 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7458}
90826ca7 7459static DEVICE_ATTR_RO(type);
abe43400 7460
62b85639
SE
7461static ssize_t
7462perf_event_mux_interval_ms_show(struct device *dev,
7463 struct device_attribute *attr,
7464 char *page)
7465{
7466 struct pmu *pmu = dev_get_drvdata(dev);
7467
7468 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7469}
7470
272325c4
PZ
7471static DEFINE_MUTEX(mux_interval_mutex);
7472
62b85639
SE
7473static ssize_t
7474perf_event_mux_interval_ms_store(struct device *dev,
7475 struct device_attribute *attr,
7476 const char *buf, size_t count)
7477{
7478 struct pmu *pmu = dev_get_drvdata(dev);
7479 int timer, cpu, ret;
7480
7481 ret = kstrtoint(buf, 0, &timer);
7482 if (ret)
7483 return ret;
7484
7485 if (timer < 1)
7486 return -EINVAL;
7487
7488 /* same value, noting to do */
7489 if (timer == pmu->hrtimer_interval_ms)
7490 return count;
7491
272325c4 7492 mutex_lock(&mux_interval_mutex);
62b85639
SE
7493 pmu->hrtimer_interval_ms = timer;
7494
7495 /* update all cpuctx for this PMU */
272325c4
PZ
7496 get_online_cpus();
7497 for_each_online_cpu(cpu) {
62b85639
SE
7498 struct perf_cpu_context *cpuctx;
7499 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7500 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7501
272325c4
PZ
7502 cpu_function_call(cpu,
7503 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7504 }
272325c4
PZ
7505 put_online_cpus();
7506 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7507
7508 return count;
7509}
90826ca7 7510static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7511
90826ca7
GKH
7512static struct attribute *pmu_dev_attrs[] = {
7513 &dev_attr_type.attr,
7514 &dev_attr_perf_event_mux_interval_ms.attr,
7515 NULL,
abe43400 7516};
90826ca7 7517ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7518
7519static int pmu_bus_running;
7520static struct bus_type pmu_bus = {
7521 .name = "event_source",
90826ca7 7522 .dev_groups = pmu_dev_groups,
abe43400
PZ
7523};
7524
7525static void pmu_dev_release(struct device *dev)
7526{
7527 kfree(dev);
7528}
7529
7530static int pmu_dev_alloc(struct pmu *pmu)
7531{
7532 int ret = -ENOMEM;
7533
7534 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7535 if (!pmu->dev)
7536 goto out;
7537
0c9d42ed 7538 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7539 device_initialize(pmu->dev);
7540 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7541 if (ret)
7542 goto free_dev;
7543
7544 dev_set_drvdata(pmu->dev, pmu);
7545 pmu->dev->bus = &pmu_bus;
7546 pmu->dev->release = pmu_dev_release;
7547 ret = device_add(pmu->dev);
7548 if (ret)
7549 goto free_dev;
7550
7551out:
7552 return ret;
7553
7554free_dev:
7555 put_device(pmu->dev);
7556 goto out;
7557}
7558
547e9fd7 7559static struct lock_class_key cpuctx_mutex;
facc4307 7560static struct lock_class_key cpuctx_lock;
547e9fd7 7561
03d8e80b 7562int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7563{
108b02cf 7564 int cpu, ret;
24f1e32c 7565
b0a873eb 7566 mutex_lock(&pmus_lock);
33696fc0
PZ
7567 ret = -ENOMEM;
7568 pmu->pmu_disable_count = alloc_percpu(int);
7569 if (!pmu->pmu_disable_count)
7570 goto unlock;
f29ac756 7571
2e80a82a
PZ
7572 pmu->type = -1;
7573 if (!name)
7574 goto skip_type;
7575 pmu->name = name;
7576
7577 if (type < 0) {
0e9c3be2
TH
7578 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7579 if (type < 0) {
7580 ret = type;
2e80a82a
PZ
7581 goto free_pdc;
7582 }
7583 }
7584 pmu->type = type;
7585
abe43400
PZ
7586 if (pmu_bus_running) {
7587 ret = pmu_dev_alloc(pmu);
7588 if (ret)
7589 goto free_idr;
7590 }
7591
2e80a82a 7592skip_type:
8dc85d54
PZ
7593 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7594 if (pmu->pmu_cpu_context)
7595 goto got_cpu_context;
f29ac756 7596
c4814202 7597 ret = -ENOMEM;
108b02cf
PZ
7598 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7599 if (!pmu->pmu_cpu_context)
abe43400 7600 goto free_dev;
f344011c 7601
108b02cf
PZ
7602 for_each_possible_cpu(cpu) {
7603 struct perf_cpu_context *cpuctx;
7604
7605 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7606 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7607 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7608 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7609 cpuctx->ctx.pmu = pmu;
9e630205 7610
272325c4 7611 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7612
3f1f3320 7613 cpuctx->unique_pmu = pmu;
108b02cf 7614 }
76e1d904 7615
8dc85d54 7616got_cpu_context:
ad5133b7
PZ
7617 if (!pmu->start_txn) {
7618 if (pmu->pmu_enable) {
7619 /*
7620 * If we have pmu_enable/pmu_disable calls, install
7621 * transaction stubs that use that to try and batch
7622 * hardware accesses.
7623 */
7624 pmu->start_txn = perf_pmu_start_txn;
7625 pmu->commit_txn = perf_pmu_commit_txn;
7626 pmu->cancel_txn = perf_pmu_cancel_txn;
7627 } else {
fbbe0701 7628 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7629 pmu->commit_txn = perf_pmu_nop_int;
7630 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7631 }
5c92d124 7632 }
15dbf27c 7633
ad5133b7
PZ
7634 if (!pmu->pmu_enable) {
7635 pmu->pmu_enable = perf_pmu_nop_void;
7636 pmu->pmu_disable = perf_pmu_nop_void;
7637 }
7638
35edc2a5
PZ
7639 if (!pmu->event_idx)
7640 pmu->event_idx = perf_event_idx_default;
7641
b0a873eb 7642 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7643 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7644 ret = 0;
7645unlock:
b0a873eb
PZ
7646 mutex_unlock(&pmus_lock);
7647
33696fc0 7648 return ret;
108b02cf 7649
abe43400
PZ
7650free_dev:
7651 device_del(pmu->dev);
7652 put_device(pmu->dev);
7653
2e80a82a
PZ
7654free_idr:
7655 if (pmu->type >= PERF_TYPE_MAX)
7656 idr_remove(&pmu_idr, pmu->type);
7657
108b02cf
PZ
7658free_pdc:
7659 free_percpu(pmu->pmu_disable_count);
7660 goto unlock;
f29ac756 7661}
c464c76e 7662EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7663
b0a873eb 7664void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7665{
b0a873eb
PZ
7666 mutex_lock(&pmus_lock);
7667 list_del_rcu(&pmu->entry);
7668 mutex_unlock(&pmus_lock);
5c92d124 7669
0475f9ea 7670 /*
cde8e884
PZ
7671 * We dereference the pmu list under both SRCU and regular RCU, so
7672 * synchronize against both of those.
0475f9ea 7673 */
b0a873eb 7674 synchronize_srcu(&pmus_srcu);
cde8e884 7675 synchronize_rcu();
d6d020e9 7676
33696fc0 7677 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7678 if (pmu->type >= PERF_TYPE_MAX)
7679 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7680 device_del(pmu->dev);
7681 put_device(pmu->dev);
51676957 7682 free_pmu_context(pmu);
b0a873eb 7683}
c464c76e 7684EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7685
cc34b98b
MR
7686static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7687{
ccd41c86 7688 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7689 int ret;
7690
7691 if (!try_module_get(pmu->module))
7692 return -ENODEV;
ccd41c86
PZ
7693
7694 if (event->group_leader != event) {
8b10c5e2
PZ
7695 /*
7696 * This ctx->mutex can nest when we're called through
7697 * inheritance. See the perf_event_ctx_lock_nested() comment.
7698 */
7699 ctx = perf_event_ctx_lock_nested(event->group_leader,
7700 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7701 BUG_ON(!ctx);
7702 }
7703
cc34b98b
MR
7704 event->pmu = pmu;
7705 ret = pmu->event_init(event);
ccd41c86
PZ
7706
7707 if (ctx)
7708 perf_event_ctx_unlock(event->group_leader, ctx);
7709
cc34b98b
MR
7710 if (ret)
7711 module_put(pmu->module);
7712
7713 return ret;
7714}
7715
18ab2cd3 7716static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7717{
7718 struct pmu *pmu = NULL;
7719 int idx;
940c5b29 7720 int ret;
b0a873eb
PZ
7721
7722 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7723
7724 rcu_read_lock();
7725 pmu = idr_find(&pmu_idr, event->attr.type);
7726 rcu_read_unlock();
940c5b29 7727 if (pmu) {
cc34b98b 7728 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7729 if (ret)
7730 pmu = ERR_PTR(ret);
2e80a82a 7731 goto unlock;
940c5b29 7732 }
2e80a82a 7733
b0a873eb 7734 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7735 ret = perf_try_init_event(pmu, event);
b0a873eb 7736 if (!ret)
e5f4d339 7737 goto unlock;
76e1d904 7738
b0a873eb
PZ
7739 if (ret != -ENOENT) {
7740 pmu = ERR_PTR(ret);
e5f4d339 7741 goto unlock;
f344011c 7742 }
5c92d124 7743 }
e5f4d339
PZ
7744 pmu = ERR_PTR(-ENOENT);
7745unlock:
b0a873eb 7746 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7747
4aeb0b42 7748 return pmu;
5c92d124
IM
7749}
7750
4beb31f3
FW
7751static void account_event_cpu(struct perf_event *event, int cpu)
7752{
7753 if (event->parent)
7754 return;
7755
4beb31f3
FW
7756 if (is_cgroup_event(event))
7757 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7758}
7759
766d6c07
FW
7760static void account_event(struct perf_event *event)
7761{
4beb31f3
FW
7762 if (event->parent)
7763 return;
7764
766d6c07
FW
7765 if (event->attach_state & PERF_ATTACH_TASK)
7766 static_key_slow_inc(&perf_sched_events.key);
7767 if (event->attr.mmap || event->attr.mmap_data)
7768 atomic_inc(&nr_mmap_events);
7769 if (event->attr.comm)
7770 atomic_inc(&nr_comm_events);
7771 if (event->attr.task)
7772 atomic_inc(&nr_task_events);
948b26b6
FW
7773 if (event->attr.freq) {
7774 if (atomic_inc_return(&nr_freq_events) == 1)
7775 tick_nohz_full_kick_all();
7776 }
45ac1403
AH
7777 if (event->attr.context_switch) {
7778 atomic_inc(&nr_switch_events);
7779 static_key_slow_inc(&perf_sched_events.key);
7780 }
4beb31f3 7781 if (has_branch_stack(event))
766d6c07 7782 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7783 if (is_cgroup_event(event))
766d6c07 7784 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7785
7786 account_event_cpu(event, event->cpu);
766d6c07
FW
7787}
7788
0793a61d 7789/*
cdd6c482 7790 * Allocate and initialize a event structure
0793a61d 7791 */
cdd6c482 7792static struct perf_event *
c3f00c70 7793perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7794 struct task_struct *task,
7795 struct perf_event *group_leader,
7796 struct perf_event *parent_event,
4dc0da86 7797 perf_overflow_handler_t overflow_handler,
79dff51e 7798 void *context, int cgroup_fd)
0793a61d 7799{
51b0fe39 7800 struct pmu *pmu;
cdd6c482
IM
7801 struct perf_event *event;
7802 struct hw_perf_event *hwc;
90983b16 7803 long err = -EINVAL;
0793a61d 7804
66832eb4
ON
7805 if ((unsigned)cpu >= nr_cpu_ids) {
7806 if (!task || cpu != -1)
7807 return ERR_PTR(-EINVAL);
7808 }
7809
c3f00c70 7810 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7811 if (!event)
d5d2bc0d 7812 return ERR_PTR(-ENOMEM);
0793a61d 7813
04289bb9 7814 /*
cdd6c482 7815 * Single events are their own group leaders, with an
04289bb9
IM
7816 * empty sibling list:
7817 */
7818 if (!group_leader)
cdd6c482 7819 group_leader = event;
04289bb9 7820
cdd6c482
IM
7821 mutex_init(&event->child_mutex);
7822 INIT_LIST_HEAD(&event->child_list);
fccc714b 7823
cdd6c482
IM
7824 INIT_LIST_HEAD(&event->group_entry);
7825 INIT_LIST_HEAD(&event->event_entry);
7826 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7827 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7828 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7829 INIT_HLIST_NODE(&event->hlist_entry);
7830
10c6db11 7831
cdd6c482 7832 init_waitqueue_head(&event->waitq);
e360adbe 7833 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7834
cdd6c482 7835 mutex_init(&event->mmap_mutex);
7b732a75 7836
a6fa941d 7837 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7838 event->cpu = cpu;
7839 event->attr = *attr;
7840 event->group_leader = group_leader;
7841 event->pmu = NULL;
cdd6c482 7842 event->oncpu = -1;
a96bbc16 7843
cdd6c482 7844 event->parent = parent_event;
b84fbc9f 7845
17cf22c3 7846 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7847 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7848
cdd6c482 7849 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7850
d580ff86
PZ
7851 if (task) {
7852 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7853 /*
50f16a8b
PZ
7854 * XXX pmu::event_init needs to know what task to account to
7855 * and we cannot use the ctx information because we need the
7856 * pmu before we get a ctx.
d580ff86 7857 */
50f16a8b 7858 event->hw.target = task;
d580ff86
PZ
7859 }
7860
34f43927
PZ
7861 event->clock = &local_clock;
7862 if (parent_event)
7863 event->clock = parent_event->clock;
7864
4dc0da86 7865 if (!overflow_handler && parent_event) {
b326e956 7866 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7867 context = parent_event->overflow_handler_context;
7868 }
66832eb4 7869
b326e956 7870 event->overflow_handler = overflow_handler;
4dc0da86 7871 event->overflow_handler_context = context;
97eaf530 7872
0231bb53 7873 perf_event__state_init(event);
a86ed508 7874
4aeb0b42 7875 pmu = NULL;
b8e83514 7876
cdd6c482 7877 hwc = &event->hw;
bd2b5b12 7878 hwc->sample_period = attr->sample_period;
0d48696f 7879 if (attr->freq && attr->sample_freq)
bd2b5b12 7880 hwc->sample_period = 1;
eced1dfc 7881 hwc->last_period = hwc->sample_period;
bd2b5b12 7882
e7850595 7883 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7884
2023b359 7885 /*
cdd6c482 7886 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7887 */
3dab77fb 7888 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7889 goto err_ns;
a46a2300
YZ
7890
7891 if (!has_branch_stack(event))
7892 event->attr.branch_sample_type = 0;
2023b359 7893
79dff51e
MF
7894 if (cgroup_fd != -1) {
7895 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7896 if (err)
7897 goto err_ns;
7898 }
7899
b0a873eb 7900 pmu = perf_init_event(event);
4aeb0b42 7901 if (!pmu)
90983b16
FW
7902 goto err_ns;
7903 else if (IS_ERR(pmu)) {
4aeb0b42 7904 err = PTR_ERR(pmu);
90983b16 7905 goto err_ns;
621a01ea 7906 }
d5d2bc0d 7907
bed5b25a
AS
7908 err = exclusive_event_init(event);
7909 if (err)
7910 goto err_pmu;
7911
cdd6c482 7912 if (!event->parent) {
927c7a9e
FW
7913 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7914 err = get_callchain_buffers();
90983b16 7915 if (err)
bed5b25a 7916 goto err_per_task;
d010b332 7917 }
f344011c 7918 }
9ee318a7 7919
cdd6c482 7920 return event;
90983b16 7921
bed5b25a
AS
7922err_per_task:
7923 exclusive_event_destroy(event);
7924
90983b16
FW
7925err_pmu:
7926 if (event->destroy)
7927 event->destroy(event);
c464c76e 7928 module_put(pmu->module);
90983b16 7929err_ns:
79dff51e
MF
7930 if (is_cgroup_event(event))
7931 perf_detach_cgroup(event);
90983b16
FW
7932 if (event->ns)
7933 put_pid_ns(event->ns);
7934 kfree(event);
7935
7936 return ERR_PTR(err);
0793a61d
TG
7937}
7938
cdd6c482
IM
7939static int perf_copy_attr(struct perf_event_attr __user *uattr,
7940 struct perf_event_attr *attr)
974802ea 7941{
974802ea 7942 u32 size;
cdf8073d 7943 int ret;
974802ea
PZ
7944
7945 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7946 return -EFAULT;
7947
7948 /*
7949 * zero the full structure, so that a short copy will be nice.
7950 */
7951 memset(attr, 0, sizeof(*attr));
7952
7953 ret = get_user(size, &uattr->size);
7954 if (ret)
7955 return ret;
7956
7957 if (size > PAGE_SIZE) /* silly large */
7958 goto err_size;
7959
7960 if (!size) /* abi compat */
7961 size = PERF_ATTR_SIZE_VER0;
7962
7963 if (size < PERF_ATTR_SIZE_VER0)
7964 goto err_size;
7965
7966 /*
7967 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7968 * ensure all the unknown bits are 0 - i.e. new
7969 * user-space does not rely on any kernel feature
7970 * extensions we dont know about yet.
974802ea
PZ
7971 */
7972 if (size > sizeof(*attr)) {
cdf8073d
IS
7973 unsigned char __user *addr;
7974 unsigned char __user *end;
7975 unsigned char val;
974802ea 7976
cdf8073d
IS
7977 addr = (void __user *)uattr + sizeof(*attr);
7978 end = (void __user *)uattr + size;
974802ea 7979
cdf8073d 7980 for (; addr < end; addr++) {
974802ea
PZ
7981 ret = get_user(val, addr);
7982 if (ret)
7983 return ret;
7984 if (val)
7985 goto err_size;
7986 }
b3e62e35 7987 size = sizeof(*attr);
974802ea
PZ
7988 }
7989
7990 ret = copy_from_user(attr, uattr, size);
7991 if (ret)
7992 return -EFAULT;
7993
cd757645 7994 if (attr->__reserved_1)
974802ea
PZ
7995 return -EINVAL;
7996
7997 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7998 return -EINVAL;
7999
8000 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8001 return -EINVAL;
8002
bce38cd5
SE
8003 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8004 u64 mask = attr->branch_sample_type;
8005
8006 /* only using defined bits */
8007 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8008 return -EINVAL;
8009
8010 /* at least one branch bit must be set */
8011 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8012 return -EINVAL;
8013
bce38cd5
SE
8014 /* propagate priv level, when not set for branch */
8015 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8016
8017 /* exclude_kernel checked on syscall entry */
8018 if (!attr->exclude_kernel)
8019 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8020
8021 if (!attr->exclude_user)
8022 mask |= PERF_SAMPLE_BRANCH_USER;
8023
8024 if (!attr->exclude_hv)
8025 mask |= PERF_SAMPLE_BRANCH_HV;
8026 /*
8027 * adjust user setting (for HW filter setup)
8028 */
8029 attr->branch_sample_type = mask;
8030 }
e712209a
SE
8031 /* privileged levels capture (kernel, hv): check permissions */
8032 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8033 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8034 return -EACCES;
bce38cd5 8035 }
4018994f 8036
c5ebcedb 8037 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8038 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8039 if (ret)
8040 return ret;
8041 }
8042
8043 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8044 if (!arch_perf_have_user_stack_dump())
8045 return -ENOSYS;
8046
8047 /*
8048 * We have __u32 type for the size, but so far
8049 * we can only use __u16 as maximum due to the
8050 * __u16 sample size limit.
8051 */
8052 if (attr->sample_stack_user >= USHRT_MAX)
8053 ret = -EINVAL;
8054 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8055 ret = -EINVAL;
8056 }
4018994f 8057
60e2364e
SE
8058 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8059 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8060out:
8061 return ret;
8062
8063err_size:
8064 put_user(sizeof(*attr), &uattr->size);
8065 ret = -E2BIG;
8066 goto out;
8067}
8068
ac9721f3
PZ
8069static int
8070perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8071{
b69cf536 8072 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8073 int ret = -EINVAL;
8074
ac9721f3 8075 if (!output_event)
a4be7c27
PZ
8076 goto set;
8077
ac9721f3
PZ
8078 /* don't allow circular references */
8079 if (event == output_event)
a4be7c27
PZ
8080 goto out;
8081
0f139300
PZ
8082 /*
8083 * Don't allow cross-cpu buffers
8084 */
8085 if (output_event->cpu != event->cpu)
8086 goto out;
8087
8088 /*
76369139 8089 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8090 */
8091 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8092 goto out;
8093
34f43927
PZ
8094 /*
8095 * Mixing clocks in the same buffer is trouble you don't need.
8096 */
8097 if (output_event->clock != event->clock)
8098 goto out;
8099
45bfb2e5
PZ
8100 /*
8101 * If both events generate aux data, they must be on the same PMU
8102 */
8103 if (has_aux(event) && has_aux(output_event) &&
8104 event->pmu != output_event->pmu)
8105 goto out;
8106
a4be7c27 8107set:
cdd6c482 8108 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8109 /* Can't redirect output if we've got an active mmap() */
8110 if (atomic_read(&event->mmap_count))
8111 goto unlock;
a4be7c27 8112
ac9721f3 8113 if (output_event) {
76369139
FW
8114 /* get the rb we want to redirect to */
8115 rb = ring_buffer_get(output_event);
8116 if (!rb)
ac9721f3 8117 goto unlock;
a4be7c27
PZ
8118 }
8119
b69cf536 8120 ring_buffer_attach(event, rb);
9bb5d40c 8121
a4be7c27 8122 ret = 0;
ac9721f3
PZ
8123unlock:
8124 mutex_unlock(&event->mmap_mutex);
8125
a4be7c27 8126out:
a4be7c27
PZ
8127 return ret;
8128}
8129
f63a8daa
PZ
8130static void mutex_lock_double(struct mutex *a, struct mutex *b)
8131{
8132 if (b < a)
8133 swap(a, b);
8134
8135 mutex_lock(a);
8136 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8137}
8138
34f43927
PZ
8139static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8140{
8141 bool nmi_safe = false;
8142
8143 switch (clk_id) {
8144 case CLOCK_MONOTONIC:
8145 event->clock = &ktime_get_mono_fast_ns;
8146 nmi_safe = true;
8147 break;
8148
8149 case CLOCK_MONOTONIC_RAW:
8150 event->clock = &ktime_get_raw_fast_ns;
8151 nmi_safe = true;
8152 break;
8153
8154 case CLOCK_REALTIME:
8155 event->clock = &ktime_get_real_ns;
8156 break;
8157
8158 case CLOCK_BOOTTIME:
8159 event->clock = &ktime_get_boot_ns;
8160 break;
8161
8162 case CLOCK_TAI:
8163 event->clock = &ktime_get_tai_ns;
8164 break;
8165
8166 default:
8167 return -EINVAL;
8168 }
8169
8170 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8171 return -EINVAL;
8172
8173 return 0;
8174}
8175
0793a61d 8176/**
cdd6c482 8177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8178 *
cdd6c482 8179 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8180 * @pid: target pid
9f66a381 8181 * @cpu: target cpu
cdd6c482 8182 * @group_fd: group leader event fd
0793a61d 8183 */
cdd6c482
IM
8184SYSCALL_DEFINE5(perf_event_open,
8185 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8187{
b04243ef
PZ
8188 struct perf_event *group_leader = NULL, *output_event = NULL;
8189 struct perf_event *event, *sibling;
cdd6c482 8190 struct perf_event_attr attr;
f63a8daa 8191 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8192 struct file *event_file = NULL;
2903ff01 8193 struct fd group = {NULL, 0};
38a81da2 8194 struct task_struct *task = NULL;
89a1e187 8195 struct pmu *pmu;
ea635c64 8196 int event_fd;
b04243ef 8197 int move_group = 0;
dc86cabe 8198 int err;
a21b0b35 8199 int f_flags = O_RDWR;
79dff51e 8200 int cgroup_fd = -1;
0793a61d 8201
2743a5b0 8202 /* for future expandability... */
e5d1367f 8203 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8204 return -EINVAL;
8205
dc86cabe
IM
8206 err = perf_copy_attr(attr_uptr, &attr);
8207 if (err)
8208 return err;
eab656ae 8209
0764771d
PZ
8210 if (!attr.exclude_kernel) {
8211 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8212 return -EACCES;
8213 }
8214
df58ab24 8215 if (attr.freq) {
cdd6c482 8216 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8217 return -EINVAL;
0819b2e3
PZ
8218 } else {
8219 if (attr.sample_period & (1ULL << 63))
8220 return -EINVAL;
df58ab24
PZ
8221 }
8222
e5d1367f
SE
8223 /*
8224 * In cgroup mode, the pid argument is used to pass the fd
8225 * opened to the cgroup directory in cgroupfs. The cpu argument
8226 * designates the cpu on which to monitor threads from that
8227 * cgroup.
8228 */
8229 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8230 return -EINVAL;
8231
a21b0b35
YD
8232 if (flags & PERF_FLAG_FD_CLOEXEC)
8233 f_flags |= O_CLOEXEC;
8234
8235 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8236 if (event_fd < 0)
8237 return event_fd;
8238
ac9721f3 8239 if (group_fd != -1) {
2903ff01
AV
8240 err = perf_fget_light(group_fd, &group);
8241 if (err)
d14b12d7 8242 goto err_fd;
2903ff01 8243 group_leader = group.file->private_data;
ac9721f3
PZ
8244 if (flags & PERF_FLAG_FD_OUTPUT)
8245 output_event = group_leader;
8246 if (flags & PERF_FLAG_FD_NO_GROUP)
8247 group_leader = NULL;
8248 }
8249
e5d1367f 8250 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8251 task = find_lively_task_by_vpid(pid);
8252 if (IS_ERR(task)) {
8253 err = PTR_ERR(task);
8254 goto err_group_fd;
8255 }
8256 }
8257
1f4ee503
PZ
8258 if (task && group_leader &&
8259 group_leader->attr.inherit != attr.inherit) {
8260 err = -EINVAL;
8261 goto err_task;
8262 }
8263
fbfc623f
YZ
8264 get_online_cpus();
8265
79dff51e
MF
8266 if (flags & PERF_FLAG_PID_CGROUP)
8267 cgroup_fd = pid;
8268
4dc0da86 8269 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8270 NULL, NULL, cgroup_fd);
d14b12d7
SE
8271 if (IS_ERR(event)) {
8272 err = PTR_ERR(event);
1f4ee503 8273 goto err_cpus;
d14b12d7
SE
8274 }
8275
53b25335
VW
8276 if (is_sampling_event(event)) {
8277 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8278 err = -ENOTSUPP;
8279 goto err_alloc;
8280 }
8281 }
8282
766d6c07
FW
8283 account_event(event);
8284
89a1e187
PZ
8285 /*
8286 * Special case software events and allow them to be part of
8287 * any hardware group.
8288 */
8289 pmu = event->pmu;
b04243ef 8290
34f43927
PZ
8291 if (attr.use_clockid) {
8292 err = perf_event_set_clock(event, attr.clockid);
8293 if (err)
8294 goto err_alloc;
8295 }
8296
b04243ef
PZ
8297 if (group_leader &&
8298 (is_software_event(event) != is_software_event(group_leader))) {
8299 if (is_software_event(event)) {
8300 /*
8301 * If event and group_leader are not both a software
8302 * event, and event is, then group leader is not.
8303 *
8304 * Allow the addition of software events to !software
8305 * groups, this is safe because software events never
8306 * fail to schedule.
8307 */
8308 pmu = group_leader->pmu;
8309 } else if (is_software_event(group_leader) &&
8310 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8311 /*
8312 * In case the group is a pure software group, and we
8313 * try to add a hardware event, move the whole group to
8314 * the hardware context.
8315 */
8316 move_group = 1;
8317 }
8318 }
89a1e187
PZ
8319
8320 /*
8321 * Get the target context (task or percpu):
8322 */
4af57ef2 8323 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8324 if (IS_ERR(ctx)) {
8325 err = PTR_ERR(ctx);
c6be5a5c 8326 goto err_alloc;
89a1e187
PZ
8327 }
8328
bed5b25a
AS
8329 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8330 err = -EBUSY;
8331 goto err_context;
8332 }
8333
fd1edb3a
PZ
8334 if (task) {
8335 put_task_struct(task);
8336 task = NULL;
8337 }
8338
ccff286d 8339 /*
cdd6c482 8340 * Look up the group leader (we will attach this event to it):
04289bb9 8341 */
ac9721f3 8342 if (group_leader) {
dc86cabe 8343 err = -EINVAL;
04289bb9 8344
04289bb9 8345 /*
ccff286d
IM
8346 * Do not allow a recursive hierarchy (this new sibling
8347 * becoming part of another group-sibling):
8348 */
8349 if (group_leader->group_leader != group_leader)
c3f00c70 8350 goto err_context;
34f43927
PZ
8351
8352 /* All events in a group should have the same clock */
8353 if (group_leader->clock != event->clock)
8354 goto err_context;
8355
ccff286d
IM
8356 /*
8357 * Do not allow to attach to a group in a different
8358 * task or CPU context:
04289bb9 8359 */
b04243ef 8360 if (move_group) {
c3c87e77
PZ
8361 /*
8362 * Make sure we're both on the same task, or both
8363 * per-cpu events.
8364 */
8365 if (group_leader->ctx->task != ctx->task)
8366 goto err_context;
8367
8368 /*
8369 * Make sure we're both events for the same CPU;
8370 * grouping events for different CPUs is broken; since
8371 * you can never concurrently schedule them anyhow.
8372 */
8373 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8374 goto err_context;
8375 } else {
8376 if (group_leader->ctx != ctx)
8377 goto err_context;
8378 }
8379
3b6f9e5c
PM
8380 /*
8381 * Only a group leader can be exclusive or pinned
8382 */
0d48696f 8383 if (attr.exclusive || attr.pinned)
c3f00c70 8384 goto err_context;
ac9721f3
PZ
8385 }
8386
8387 if (output_event) {
8388 err = perf_event_set_output(event, output_event);
8389 if (err)
c3f00c70 8390 goto err_context;
ac9721f3 8391 }
0793a61d 8392
a21b0b35
YD
8393 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8394 f_flags);
ea635c64
AV
8395 if (IS_ERR(event_file)) {
8396 err = PTR_ERR(event_file);
c3f00c70 8397 goto err_context;
ea635c64 8398 }
9b51f66d 8399
b04243ef 8400 if (move_group) {
f63a8daa 8401 gctx = group_leader->ctx;
f55fc2a5
PZ
8402 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8403 } else {
8404 mutex_lock(&ctx->mutex);
8405 }
8406
a723968c
PZ
8407 if (!perf_event_validate_size(event)) {
8408 err = -E2BIG;
8409 goto err_locked;
8410 }
8411
f55fc2a5
PZ
8412 /*
8413 * Must be under the same ctx::mutex as perf_install_in_context(),
8414 * because we need to serialize with concurrent event creation.
8415 */
8416 if (!exclusive_event_installable(event, ctx)) {
8417 /* exclusive and group stuff are assumed mutually exclusive */
8418 WARN_ON_ONCE(move_group);
f63a8daa 8419
f55fc2a5
PZ
8420 err = -EBUSY;
8421 goto err_locked;
8422 }
f63a8daa 8423
f55fc2a5
PZ
8424 WARN_ON_ONCE(ctx->parent_ctx);
8425
8426 if (move_group) {
f63a8daa
PZ
8427 /*
8428 * See perf_event_ctx_lock() for comments on the details
8429 * of swizzling perf_event::ctx.
8430 */
46ce0fe9 8431 perf_remove_from_context(group_leader, false);
0231bb53 8432
b04243ef
PZ
8433 list_for_each_entry(sibling, &group_leader->sibling_list,
8434 group_entry) {
46ce0fe9 8435 perf_remove_from_context(sibling, false);
b04243ef
PZ
8436 put_ctx(gctx);
8437 }
b04243ef 8438
f63a8daa
PZ
8439 /*
8440 * Wait for everybody to stop referencing the events through
8441 * the old lists, before installing it on new lists.
8442 */
0cda4c02 8443 synchronize_rcu();
f63a8daa 8444
8f95b435
PZI
8445 /*
8446 * Install the group siblings before the group leader.
8447 *
8448 * Because a group leader will try and install the entire group
8449 * (through the sibling list, which is still in-tact), we can
8450 * end up with siblings installed in the wrong context.
8451 *
8452 * By installing siblings first we NO-OP because they're not
8453 * reachable through the group lists.
8454 */
b04243ef
PZ
8455 list_for_each_entry(sibling, &group_leader->sibling_list,
8456 group_entry) {
8f95b435 8457 perf_event__state_init(sibling);
9fc81d87 8458 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8459 get_ctx(ctx);
8460 }
8f95b435
PZI
8461
8462 /*
8463 * Removing from the context ends up with disabled
8464 * event. What we want here is event in the initial
8465 * startup state, ready to be add into new context.
8466 */
8467 perf_event__state_init(group_leader);
8468 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8469 get_ctx(ctx);
b04243ef 8470
f55fc2a5
PZ
8471 /*
8472 * Now that all events are installed in @ctx, nothing
8473 * references @gctx anymore, so drop the last reference we have
8474 * on it.
8475 */
8476 put_ctx(gctx);
bed5b25a
AS
8477 }
8478
f73e22ab
PZ
8479 /*
8480 * Precalculate sample_data sizes; do while holding ctx::mutex such
8481 * that we're serialized against further additions and before
8482 * perf_install_in_context() which is the point the event is active and
8483 * can use these values.
8484 */
8485 perf_event__header_size(event);
8486 perf_event__id_header_size(event);
8487
e2d37cd2 8488 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8489 perf_unpin_context(ctx);
f63a8daa 8490
f55fc2a5 8491 if (move_group)
f63a8daa 8492 mutex_unlock(&gctx->mutex);
d859e29f 8493 mutex_unlock(&ctx->mutex);
9b51f66d 8494
fbfc623f
YZ
8495 put_online_cpus();
8496
cdd6c482 8497 event->owner = current;
8882135b 8498
cdd6c482
IM
8499 mutex_lock(&current->perf_event_mutex);
8500 list_add_tail(&event->owner_entry, &current->perf_event_list);
8501 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8502
8a49542c
PZ
8503 /*
8504 * Drop the reference on the group_event after placing the
8505 * new event on the sibling_list. This ensures destruction
8506 * of the group leader will find the pointer to itself in
8507 * perf_group_detach().
8508 */
2903ff01 8509 fdput(group);
ea635c64
AV
8510 fd_install(event_fd, event_file);
8511 return event_fd;
0793a61d 8512
f55fc2a5
PZ
8513err_locked:
8514 if (move_group)
8515 mutex_unlock(&gctx->mutex);
8516 mutex_unlock(&ctx->mutex);
8517/* err_file: */
8518 fput(event_file);
c3f00c70 8519err_context:
fe4b04fa 8520 perf_unpin_context(ctx);
ea635c64 8521 put_ctx(ctx);
c6be5a5c 8522err_alloc:
ea635c64 8523 free_event(event);
1f4ee503 8524err_cpus:
fbfc623f 8525 put_online_cpus();
1f4ee503 8526err_task:
e7d0bc04
PZ
8527 if (task)
8528 put_task_struct(task);
89a1e187 8529err_group_fd:
2903ff01 8530 fdput(group);
ea635c64
AV
8531err_fd:
8532 put_unused_fd(event_fd);
dc86cabe 8533 return err;
0793a61d
TG
8534}
8535
fb0459d7
AV
8536/**
8537 * perf_event_create_kernel_counter
8538 *
8539 * @attr: attributes of the counter to create
8540 * @cpu: cpu in which the counter is bound
38a81da2 8541 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8542 */
8543struct perf_event *
8544perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8545 struct task_struct *task,
4dc0da86
AK
8546 perf_overflow_handler_t overflow_handler,
8547 void *context)
fb0459d7 8548{
fb0459d7 8549 struct perf_event_context *ctx;
c3f00c70 8550 struct perf_event *event;
fb0459d7 8551 int err;
d859e29f 8552
fb0459d7
AV
8553 /*
8554 * Get the target context (task or percpu):
8555 */
d859e29f 8556
4dc0da86 8557 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8558 overflow_handler, context, -1);
c3f00c70
PZ
8559 if (IS_ERR(event)) {
8560 err = PTR_ERR(event);
8561 goto err;
8562 }
d859e29f 8563
f8697762
JO
8564 /* Mark owner so we could distinguish it from user events. */
8565 event->owner = EVENT_OWNER_KERNEL;
8566
766d6c07
FW
8567 account_event(event);
8568
4af57ef2 8569 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8570 if (IS_ERR(ctx)) {
8571 err = PTR_ERR(ctx);
c3f00c70 8572 goto err_free;
d859e29f 8573 }
fb0459d7 8574
fb0459d7
AV
8575 WARN_ON_ONCE(ctx->parent_ctx);
8576 mutex_lock(&ctx->mutex);
bed5b25a
AS
8577 if (!exclusive_event_installable(event, ctx)) {
8578 mutex_unlock(&ctx->mutex);
8579 perf_unpin_context(ctx);
8580 put_ctx(ctx);
8581 err = -EBUSY;
8582 goto err_free;
8583 }
8584
fb0459d7 8585 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8586 perf_unpin_context(ctx);
fb0459d7
AV
8587 mutex_unlock(&ctx->mutex);
8588
fb0459d7
AV
8589 return event;
8590
c3f00c70
PZ
8591err_free:
8592 free_event(event);
8593err:
c6567f64 8594 return ERR_PTR(err);
9b51f66d 8595}
fb0459d7 8596EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8597
0cda4c02
YZ
8598void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8599{
8600 struct perf_event_context *src_ctx;
8601 struct perf_event_context *dst_ctx;
8602 struct perf_event *event, *tmp;
8603 LIST_HEAD(events);
8604
8605 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8606 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8607
f63a8daa
PZ
8608 /*
8609 * See perf_event_ctx_lock() for comments on the details
8610 * of swizzling perf_event::ctx.
8611 */
8612 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8613 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8614 event_entry) {
46ce0fe9 8615 perf_remove_from_context(event, false);
9a545de0 8616 unaccount_event_cpu(event, src_cpu);
0cda4c02 8617 put_ctx(src_ctx);
9886167d 8618 list_add(&event->migrate_entry, &events);
0cda4c02 8619 }
0cda4c02 8620
8f95b435
PZI
8621 /*
8622 * Wait for the events to quiesce before re-instating them.
8623 */
0cda4c02
YZ
8624 synchronize_rcu();
8625
8f95b435
PZI
8626 /*
8627 * Re-instate events in 2 passes.
8628 *
8629 * Skip over group leaders and only install siblings on this first
8630 * pass, siblings will not get enabled without a leader, however a
8631 * leader will enable its siblings, even if those are still on the old
8632 * context.
8633 */
8634 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8635 if (event->group_leader == event)
8636 continue;
8637
8638 list_del(&event->migrate_entry);
8639 if (event->state >= PERF_EVENT_STATE_OFF)
8640 event->state = PERF_EVENT_STATE_INACTIVE;
8641 account_event_cpu(event, dst_cpu);
8642 perf_install_in_context(dst_ctx, event, dst_cpu);
8643 get_ctx(dst_ctx);
8644 }
8645
8646 /*
8647 * Once all the siblings are setup properly, install the group leaders
8648 * to make it go.
8649 */
9886167d
PZ
8650 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8651 list_del(&event->migrate_entry);
0cda4c02
YZ
8652 if (event->state >= PERF_EVENT_STATE_OFF)
8653 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8654 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8655 perf_install_in_context(dst_ctx, event, dst_cpu);
8656 get_ctx(dst_ctx);
8657 }
8658 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8659 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8660}
8661EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8662
cdd6c482 8663static void sync_child_event(struct perf_event *child_event,
38b200d6 8664 struct task_struct *child)
d859e29f 8665{
cdd6c482 8666 struct perf_event *parent_event = child_event->parent;
8bc20959 8667 u64 child_val;
d859e29f 8668
cdd6c482
IM
8669 if (child_event->attr.inherit_stat)
8670 perf_event_read_event(child_event, child);
38b200d6 8671
b5e58793 8672 child_val = perf_event_count(child_event);
d859e29f
PM
8673
8674 /*
8675 * Add back the child's count to the parent's count:
8676 */
a6e6dea6 8677 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8678 atomic64_add(child_event->total_time_enabled,
8679 &parent_event->child_total_time_enabled);
8680 atomic64_add(child_event->total_time_running,
8681 &parent_event->child_total_time_running);
d859e29f
PM
8682
8683 /*
cdd6c482 8684 * Remove this event from the parent's list
d859e29f 8685 */
cdd6c482
IM
8686 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8687 mutex_lock(&parent_event->child_mutex);
8688 list_del_init(&child_event->child_list);
8689 mutex_unlock(&parent_event->child_mutex);
d859e29f 8690
dc633982
JO
8691 /*
8692 * Make sure user/parent get notified, that we just
8693 * lost one event.
8694 */
8695 perf_event_wakeup(parent_event);
8696
d859e29f 8697 /*
cdd6c482 8698 * Release the parent event, if this was the last
d859e29f
PM
8699 * reference to it.
8700 */
a6fa941d 8701 put_event(parent_event);
d859e29f
PM
8702}
8703
9b51f66d 8704static void
cdd6c482
IM
8705__perf_event_exit_task(struct perf_event *child_event,
8706 struct perf_event_context *child_ctx,
38b200d6 8707 struct task_struct *child)
9b51f66d 8708{
1903d50c
PZ
8709 /*
8710 * Do not destroy the 'original' grouping; because of the context
8711 * switch optimization the original events could've ended up in a
8712 * random child task.
8713 *
8714 * If we were to destroy the original group, all group related
8715 * operations would cease to function properly after this random
8716 * child dies.
8717 *
8718 * Do destroy all inherited groups, we don't care about those
8719 * and being thorough is better.
8720 */
8721 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8722
9b51f66d 8723 /*
38b435b1 8724 * It can happen that the parent exits first, and has events
9b51f66d 8725 * that are still around due to the child reference. These
38b435b1 8726 * events need to be zapped.
9b51f66d 8727 */
38b435b1 8728 if (child_event->parent) {
cdd6c482
IM
8729 sync_child_event(child_event, child);
8730 free_event(child_event);
179033b3
JO
8731 } else {
8732 child_event->state = PERF_EVENT_STATE_EXIT;
8733 perf_event_wakeup(child_event);
4bcf349a 8734 }
9b51f66d
IM
8735}
8736
8dc85d54 8737static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8738{
ebf905fc 8739 struct perf_event *child_event, *next;
211de6eb 8740 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8741 unsigned long flags;
9b51f66d 8742
4e93ad60 8743 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8744 return;
8745
a63eaf34 8746 local_irq_save(flags);
ad3a37de
PM
8747 /*
8748 * We can't reschedule here because interrupts are disabled,
8749 * and either child is current or it is a task that can't be
8750 * scheduled, so we are now safe from rescheduling changing
8751 * our context.
8752 */
806839b2 8753 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8754
8755 /*
8756 * Take the context lock here so that if find_get_context is
cdd6c482 8757 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8758 * incremented the context's refcount before we do put_ctx below.
8759 */
e625cce1 8760 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8761 task_ctx_sched_out(child_ctx);
8dc85d54 8762 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8763
71a851b4
PZ
8764 /*
8765 * If this context is a clone; unclone it so it can't get
8766 * swapped to another process while we're removing all
cdd6c482 8767 * the events from it.
71a851b4 8768 */
211de6eb 8769 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8770 update_context_time(child_ctx);
e625cce1 8771 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8772
211de6eb
PZ
8773 if (clone_ctx)
8774 put_ctx(clone_ctx);
4a1c0f26 8775
9f498cc5 8776 /*
cdd6c482
IM
8777 * Report the task dead after unscheduling the events so that we
8778 * won't get any samples after PERF_RECORD_EXIT. We can however still
8779 * get a few PERF_RECORD_READ events.
9f498cc5 8780 */
cdd6c482 8781 perf_event_task(child, child_ctx, 0);
a63eaf34 8782
66fff224
PZ
8783 /*
8784 * We can recurse on the same lock type through:
8785 *
cdd6c482
IM
8786 * __perf_event_exit_task()
8787 * sync_child_event()
a6fa941d
AV
8788 * put_event()
8789 * mutex_lock(&ctx->mutex)
66fff224
PZ
8790 *
8791 * But since its the parent context it won't be the same instance.
8792 */
a0507c84 8793 mutex_lock(&child_ctx->mutex);
a63eaf34 8794
ebf905fc 8795 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8796 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8797
a63eaf34
PM
8798 mutex_unlock(&child_ctx->mutex);
8799
8800 put_ctx(child_ctx);
9b51f66d
IM
8801}
8802
8dc85d54
PZ
8803/*
8804 * When a child task exits, feed back event values to parent events.
8805 */
8806void perf_event_exit_task(struct task_struct *child)
8807{
8882135b 8808 struct perf_event *event, *tmp;
8dc85d54
PZ
8809 int ctxn;
8810
8882135b
PZ
8811 mutex_lock(&child->perf_event_mutex);
8812 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8813 owner_entry) {
8814 list_del_init(&event->owner_entry);
8815
8816 /*
8817 * Ensure the list deletion is visible before we clear
8818 * the owner, closes a race against perf_release() where
8819 * we need to serialize on the owner->perf_event_mutex.
8820 */
8821 smp_wmb();
8822 event->owner = NULL;
8823 }
8824 mutex_unlock(&child->perf_event_mutex);
8825
8dc85d54
PZ
8826 for_each_task_context_nr(ctxn)
8827 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8828
8829 /*
8830 * The perf_event_exit_task_context calls perf_event_task
8831 * with child's task_ctx, which generates EXIT events for
8832 * child contexts and sets child->perf_event_ctxp[] to NULL.
8833 * At this point we need to send EXIT events to cpu contexts.
8834 */
8835 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8836}
8837
889ff015
FW
8838static void perf_free_event(struct perf_event *event,
8839 struct perf_event_context *ctx)
8840{
8841 struct perf_event *parent = event->parent;
8842
8843 if (WARN_ON_ONCE(!parent))
8844 return;
8845
8846 mutex_lock(&parent->child_mutex);
8847 list_del_init(&event->child_list);
8848 mutex_unlock(&parent->child_mutex);
8849
a6fa941d 8850 put_event(parent);
889ff015 8851
652884fe 8852 raw_spin_lock_irq(&ctx->lock);
8a49542c 8853 perf_group_detach(event);
889ff015 8854 list_del_event(event, ctx);
652884fe 8855 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8856 free_event(event);
8857}
8858
bbbee908 8859/*
652884fe 8860 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8861 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8862 *
8863 * Not all locks are strictly required, but take them anyway to be nice and
8864 * help out with the lockdep assertions.
bbbee908 8865 */
cdd6c482 8866void perf_event_free_task(struct task_struct *task)
bbbee908 8867{
8dc85d54 8868 struct perf_event_context *ctx;
cdd6c482 8869 struct perf_event *event, *tmp;
8dc85d54 8870 int ctxn;
bbbee908 8871
8dc85d54
PZ
8872 for_each_task_context_nr(ctxn) {
8873 ctx = task->perf_event_ctxp[ctxn];
8874 if (!ctx)
8875 continue;
bbbee908 8876
8dc85d54 8877 mutex_lock(&ctx->mutex);
bbbee908 8878again:
8dc85d54
PZ
8879 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8880 group_entry)
8881 perf_free_event(event, ctx);
bbbee908 8882
8dc85d54
PZ
8883 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8884 group_entry)
8885 perf_free_event(event, ctx);
bbbee908 8886
8dc85d54
PZ
8887 if (!list_empty(&ctx->pinned_groups) ||
8888 !list_empty(&ctx->flexible_groups))
8889 goto again;
bbbee908 8890
8dc85d54 8891 mutex_unlock(&ctx->mutex);
bbbee908 8892
8dc85d54
PZ
8893 put_ctx(ctx);
8894 }
889ff015
FW
8895}
8896
4e231c79
PZ
8897void perf_event_delayed_put(struct task_struct *task)
8898{
8899 int ctxn;
8900
8901 for_each_task_context_nr(ctxn)
8902 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8903}
8904
ffe8690c
KX
8905struct perf_event *perf_event_get(unsigned int fd)
8906{
8907 int err;
8908 struct fd f;
8909 struct perf_event *event;
8910
8911 err = perf_fget_light(fd, &f);
8912 if (err)
8913 return ERR_PTR(err);
8914
8915 event = f.file->private_data;
8916 atomic_long_inc(&event->refcount);
8917 fdput(f);
8918
8919 return event;
8920}
8921
8922const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8923{
8924 if (!event)
8925 return ERR_PTR(-EINVAL);
8926
8927 return &event->attr;
8928}
8929
97dee4f3
PZ
8930/*
8931 * inherit a event from parent task to child task:
8932 */
8933static struct perf_event *
8934inherit_event(struct perf_event *parent_event,
8935 struct task_struct *parent,
8936 struct perf_event_context *parent_ctx,
8937 struct task_struct *child,
8938 struct perf_event *group_leader,
8939 struct perf_event_context *child_ctx)
8940{
1929def9 8941 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8942 struct perf_event *child_event;
cee010ec 8943 unsigned long flags;
97dee4f3
PZ
8944
8945 /*
8946 * Instead of creating recursive hierarchies of events,
8947 * we link inherited events back to the original parent,
8948 * which has a filp for sure, which we use as the reference
8949 * count:
8950 */
8951 if (parent_event->parent)
8952 parent_event = parent_event->parent;
8953
8954 child_event = perf_event_alloc(&parent_event->attr,
8955 parent_event->cpu,
d580ff86 8956 child,
97dee4f3 8957 group_leader, parent_event,
79dff51e 8958 NULL, NULL, -1);
97dee4f3
PZ
8959 if (IS_ERR(child_event))
8960 return child_event;
a6fa941d 8961
fadfe7be
JO
8962 if (is_orphaned_event(parent_event) ||
8963 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8964 free_event(child_event);
8965 return NULL;
8966 }
8967
97dee4f3
PZ
8968 get_ctx(child_ctx);
8969
8970 /*
8971 * Make the child state follow the state of the parent event,
8972 * not its attr.disabled bit. We hold the parent's mutex,
8973 * so we won't race with perf_event_{en, dis}able_family.
8974 */
1929def9 8975 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8976 child_event->state = PERF_EVENT_STATE_INACTIVE;
8977 else
8978 child_event->state = PERF_EVENT_STATE_OFF;
8979
8980 if (parent_event->attr.freq) {
8981 u64 sample_period = parent_event->hw.sample_period;
8982 struct hw_perf_event *hwc = &child_event->hw;
8983
8984 hwc->sample_period = sample_period;
8985 hwc->last_period = sample_period;
8986
8987 local64_set(&hwc->period_left, sample_period);
8988 }
8989
8990 child_event->ctx = child_ctx;
8991 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8992 child_event->overflow_handler_context
8993 = parent_event->overflow_handler_context;
97dee4f3 8994
614b6780
TG
8995 /*
8996 * Precalculate sample_data sizes
8997 */
8998 perf_event__header_size(child_event);
6844c09d 8999 perf_event__id_header_size(child_event);
614b6780 9000
97dee4f3
PZ
9001 /*
9002 * Link it up in the child's context:
9003 */
cee010ec 9004 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9005 add_event_to_ctx(child_event, child_ctx);
cee010ec 9006 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9007
97dee4f3
PZ
9008 /*
9009 * Link this into the parent event's child list
9010 */
9011 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9012 mutex_lock(&parent_event->child_mutex);
9013 list_add_tail(&child_event->child_list, &parent_event->child_list);
9014 mutex_unlock(&parent_event->child_mutex);
9015
9016 return child_event;
9017}
9018
9019static int inherit_group(struct perf_event *parent_event,
9020 struct task_struct *parent,
9021 struct perf_event_context *parent_ctx,
9022 struct task_struct *child,
9023 struct perf_event_context *child_ctx)
9024{
9025 struct perf_event *leader;
9026 struct perf_event *sub;
9027 struct perf_event *child_ctr;
9028
9029 leader = inherit_event(parent_event, parent, parent_ctx,
9030 child, NULL, child_ctx);
9031 if (IS_ERR(leader))
9032 return PTR_ERR(leader);
9033 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9034 child_ctr = inherit_event(sub, parent, parent_ctx,
9035 child, leader, child_ctx);
9036 if (IS_ERR(child_ctr))
9037 return PTR_ERR(child_ctr);
9038 }
9039 return 0;
889ff015
FW
9040}
9041
9042static int
9043inherit_task_group(struct perf_event *event, struct task_struct *parent,
9044 struct perf_event_context *parent_ctx,
8dc85d54 9045 struct task_struct *child, int ctxn,
889ff015
FW
9046 int *inherited_all)
9047{
9048 int ret;
8dc85d54 9049 struct perf_event_context *child_ctx;
889ff015
FW
9050
9051 if (!event->attr.inherit) {
9052 *inherited_all = 0;
9053 return 0;
bbbee908
PZ
9054 }
9055
fe4b04fa 9056 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9057 if (!child_ctx) {
9058 /*
9059 * This is executed from the parent task context, so
9060 * inherit events that have been marked for cloning.
9061 * First allocate and initialize a context for the
9062 * child.
9063 */
bbbee908 9064
734df5ab 9065 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9066 if (!child_ctx)
9067 return -ENOMEM;
bbbee908 9068
8dc85d54 9069 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9070 }
9071
9072 ret = inherit_group(event, parent, parent_ctx,
9073 child, child_ctx);
9074
9075 if (ret)
9076 *inherited_all = 0;
9077
9078 return ret;
bbbee908
PZ
9079}
9080
9b51f66d 9081/*
cdd6c482 9082 * Initialize the perf_event context in task_struct
9b51f66d 9083 */
985c8dcb 9084static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9085{
889ff015 9086 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9087 struct perf_event_context *cloned_ctx;
9088 struct perf_event *event;
9b51f66d 9089 struct task_struct *parent = current;
564c2b21 9090 int inherited_all = 1;
dddd3379 9091 unsigned long flags;
6ab423e0 9092 int ret = 0;
9b51f66d 9093
8dc85d54 9094 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9095 return 0;
9096
ad3a37de 9097 /*
25346b93
PM
9098 * If the parent's context is a clone, pin it so it won't get
9099 * swapped under us.
ad3a37de 9100 */
8dc85d54 9101 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9102 if (!parent_ctx)
9103 return 0;
25346b93 9104
ad3a37de
PM
9105 /*
9106 * No need to check if parent_ctx != NULL here; since we saw
9107 * it non-NULL earlier, the only reason for it to become NULL
9108 * is if we exit, and since we're currently in the middle of
9109 * a fork we can't be exiting at the same time.
9110 */
ad3a37de 9111
9b51f66d
IM
9112 /*
9113 * Lock the parent list. No need to lock the child - not PID
9114 * hashed yet and not running, so nobody can access it.
9115 */
d859e29f 9116 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9117
9118 /*
9119 * We dont have to disable NMIs - we are only looking at
9120 * the list, not manipulating it:
9121 */
889ff015 9122 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9123 ret = inherit_task_group(event, parent, parent_ctx,
9124 child, ctxn, &inherited_all);
889ff015
FW
9125 if (ret)
9126 break;
9127 }
b93f7978 9128
dddd3379
TG
9129 /*
9130 * We can't hold ctx->lock when iterating the ->flexible_group list due
9131 * to allocations, but we need to prevent rotation because
9132 * rotate_ctx() will change the list from interrupt context.
9133 */
9134 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9135 parent_ctx->rotate_disable = 1;
9136 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9137
889ff015 9138 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9139 ret = inherit_task_group(event, parent, parent_ctx,
9140 child, ctxn, &inherited_all);
889ff015 9141 if (ret)
9b51f66d 9142 break;
564c2b21
PM
9143 }
9144
dddd3379
TG
9145 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9146 parent_ctx->rotate_disable = 0;
dddd3379 9147
8dc85d54 9148 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9149
05cbaa28 9150 if (child_ctx && inherited_all) {
564c2b21
PM
9151 /*
9152 * Mark the child context as a clone of the parent
9153 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9154 *
9155 * Note that if the parent is a clone, the holding of
9156 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9157 */
c5ed5145 9158 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9159 if (cloned_ctx) {
9160 child_ctx->parent_ctx = cloned_ctx;
25346b93 9161 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9162 } else {
9163 child_ctx->parent_ctx = parent_ctx;
9164 child_ctx->parent_gen = parent_ctx->generation;
9165 }
9166 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9167 }
9168
c5ed5145 9169 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9170 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9171
25346b93 9172 perf_unpin_context(parent_ctx);
fe4b04fa 9173 put_ctx(parent_ctx);
ad3a37de 9174
6ab423e0 9175 return ret;
9b51f66d
IM
9176}
9177
8dc85d54
PZ
9178/*
9179 * Initialize the perf_event context in task_struct
9180 */
9181int perf_event_init_task(struct task_struct *child)
9182{
9183 int ctxn, ret;
9184
8550d7cb
ON
9185 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9186 mutex_init(&child->perf_event_mutex);
9187 INIT_LIST_HEAD(&child->perf_event_list);
9188
8dc85d54
PZ
9189 for_each_task_context_nr(ctxn) {
9190 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9191 if (ret) {
9192 perf_event_free_task(child);
8dc85d54 9193 return ret;
6c72e350 9194 }
8dc85d54
PZ
9195 }
9196
9197 return 0;
9198}
9199
220b140b
PM
9200static void __init perf_event_init_all_cpus(void)
9201{
b28ab83c 9202 struct swevent_htable *swhash;
220b140b 9203 int cpu;
220b140b
PM
9204
9205 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9206 swhash = &per_cpu(swevent_htable, cpu);
9207 mutex_init(&swhash->hlist_mutex);
2fde4f94 9208 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9209 }
9210}
9211
0db0628d 9212static void perf_event_init_cpu(int cpu)
0793a61d 9213{
108b02cf 9214 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9215
b28ab83c 9216 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9217 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9218 struct swevent_hlist *hlist;
9219
b28ab83c
PZ
9220 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9221 WARN_ON(!hlist);
9222 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9223 }
b28ab83c 9224 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9225}
9226
2965faa5 9227#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9228static void __perf_event_exit_context(void *__info)
0793a61d 9229{
226424ee 9230 struct remove_event re = { .detach_group = true };
108b02cf 9231 struct perf_event_context *ctx = __info;
0793a61d 9232
e3703f8c 9233 rcu_read_lock();
46ce0fe9
PZ
9234 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9235 __perf_remove_from_context(&re);
e3703f8c 9236 rcu_read_unlock();
0793a61d 9237}
108b02cf
PZ
9238
9239static void perf_event_exit_cpu_context(int cpu)
9240{
9241 struct perf_event_context *ctx;
9242 struct pmu *pmu;
9243 int idx;
9244
9245 idx = srcu_read_lock(&pmus_srcu);
9246 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9247 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9248
9249 mutex_lock(&ctx->mutex);
9250 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9251 mutex_unlock(&ctx->mutex);
9252 }
9253 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9254}
9255
cdd6c482 9256static void perf_event_exit_cpu(int cpu)
0793a61d 9257{
e3703f8c 9258 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9259}
9260#else
cdd6c482 9261static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9262#endif
9263
c277443c
PZ
9264static int
9265perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9266{
9267 int cpu;
9268
9269 for_each_online_cpu(cpu)
9270 perf_event_exit_cpu(cpu);
9271
9272 return NOTIFY_OK;
9273}
9274
9275/*
9276 * Run the perf reboot notifier at the very last possible moment so that
9277 * the generic watchdog code runs as long as possible.
9278 */
9279static struct notifier_block perf_reboot_notifier = {
9280 .notifier_call = perf_reboot,
9281 .priority = INT_MIN,
9282};
9283
0db0628d 9284static int
0793a61d
TG
9285perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9286{
9287 unsigned int cpu = (long)hcpu;
9288
4536e4d1 9289 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9290
9291 case CPU_UP_PREPARE:
5e11637e 9292 case CPU_DOWN_FAILED:
cdd6c482 9293 perf_event_init_cpu(cpu);
0793a61d
TG
9294 break;
9295
5e11637e 9296 case CPU_UP_CANCELED:
0793a61d 9297 case CPU_DOWN_PREPARE:
cdd6c482 9298 perf_event_exit_cpu(cpu);
0793a61d 9299 break;
0793a61d
TG
9300 default:
9301 break;
9302 }
9303
9304 return NOTIFY_OK;
9305}
9306
cdd6c482 9307void __init perf_event_init(void)
0793a61d 9308{
3c502e7a
JW
9309 int ret;
9310
2e80a82a
PZ
9311 idr_init(&pmu_idr);
9312
220b140b 9313 perf_event_init_all_cpus();
b0a873eb 9314 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9315 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9316 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9317 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9318 perf_tp_register();
9319 perf_cpu_notifier(perf_cpu_notify);
c277443c 9320 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9321
9322 ret = init_hw_breakpoint();
9323 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9324
9325 /* do not patch jump label more than once per second */
9326 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9327
9328 /*
9329 * Build time assertion that we keep the data_head at the intended
9330 * location. IOW, validation we got the __reserved[] size right.
9331 */
9332 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9333 != 1024);
0793a61d 9334}
abe43400 9335
fd979c01
CS
9336ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9337 char *page)
9338{
9339 struct perf_pmu_events_attr *pmu_attr =
9340 container_of(attr, struct perf_pmu_events_attr, attr);
9341
9342 if (pmu_attr->event_str)
9343 return sprintf(page, "%s\n", pmu_attr->event_str);
9344
9345 return 0;
9346}
9347
abe43400
PZ
9348static int __init perf_event_sysfs_init(void)
9349{
9350 struct pmu *pmu;
9351 int ret;
9352
9353 mutex_lock(&pmus_lock);
9354
9355 ret = bus_register(&pmu_bus);
9356 if (ret)
9357 goto unlock;
9358
9359 list_for_each_entry(pmu, &pmus, entry) {
9360 if (!pmu->name || pmu->type < 0)
9361 continue;
9362
9363 ret = pmu_dev_alloc(pmu);
9364 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9365 }
9366 pmu_bus_running = 1;
9367 ret = 0;
9368
9369unlock:
9370 mutex_unlock(&pmus_lock);
9371
9372 return ret;
9373}
9374device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9375
9376#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9377static struct cgroup_subsys_state *
9378perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9379{
9380 struct perf_cgroup *jc;
e5d1367f 9381
1b15d055 9382 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9383 if (!jc)
9384 return ERR_PTR(-ENOMEM);
9385
e5d1367f
SE
9386 jc->info = alloc_percpu(struct perf_cgroup_info);
9387 if (!jc->info) {
9388 kfree(jc);
9389 return ERR_PTR(-ENOMEM);
9390 }
9391
e5d1367f
SE
9392 return &jc->css;
9393}
9394
eb95419b 9395static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9396{
eb95419b
TH
9397 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9398
e5d1367f
SE
9399 free_percpu(jc->info);
9400 kfree(jc);
9401}
9402
9403static int __perf_cgroup_move(void *info)
9404{
9405 struct task_struct *task = info;
ddaaf4e2 9406 rcu_read_lock();
e5d1367f 9407 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9408 rcu_read_unlock();
e5d1367f
SE
9409 return 0;
9410}
9411
1f7dd3e5 9412static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9413{
bb9d97b6 9414 struct task_struct *task;
1f7dd3e5 9415 struct cgroup_subsys_state *css;
bb9d97b6 9416
1f7dd3e5 9417 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9418 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9419}
9420
073219e9 9421struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9422 .css_alloc = perf_cgroup_css_alloc,
9423 .css_free = perf_cgroup_css_free,
bb9d97b6 9424 .attach = perf_cgroup_attach,
e5d1367f
SE
9425};
9426#endif /* CONFIG_CGROUP_PERF */