Merge tag 'perf-urgent-for-mingo-20160330' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
91a612ee
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100) {
416 printk(KERN_WARNING
417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 WRITE_ONCE(perf_sample_allowed_ns, 0);
419 } else {
420 update_perf_cpu_limits();
421 }
163ec435
PZ
422
423 return 0;
424}
1ccd1549 425
14c63f17
DH
426/*
427 * perf samples are done in some very critical code paths (NMIs).
428 * If they take too much CPU time, the system can lock up and not
429 * get any real work done. This will drop the sample rate when
430 * we detect that events are taking too long.
431 */
432#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 433static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 434
91a612ee
PZ
435static u64 __report_avg;
436static u64 __report_allowed;
437
6a02ad66 438static void perf_duration_warn(struct irq_work *w)
14c63f17 439{
6a02ad66 440 printk_ratelimited(KERN_WARNING
91a612ee
PZ
441 "perf: interrupt took too long (%lld > %lld), lowering "
442 "kernel.perf_event_max_sample_rate to %d\n",
443 __report_avg, __report_allowed,
444 sysctl_perf_event_sample_rate);
6a02ad66
PZ
445}
446
447static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448
449void perf_sample_event_took(u64 sample_len_ns)
450{
91a612ee
PZ
451 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 u64 running_len;
453 u64 avg_len;
454 u32 max;
14c63f17 455
91a612ee 456 if (max_len == 0)
14c63f17
DH
457 return;
458
91a612ee
PZ
459 /* Decay the counter by 1 average sample. */
460 running_len = __this_cpu_read(running_sample_length);
461 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 running_len += sample_len_ns;
463 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
464
465 /*
91a612ee
PZ
466 * Note: this will be biased artifically low until we have
467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
468 * from having to maintain a count.
469 */
91a612ee
PZ
470 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 if (avg_len <= max_len)
14c63f17
DH
472 return;
473
91a612ee
PZ
474 __report_avg = avg_len;
475 __report_allowed = max_len;
14c63f17 476
91a612ee
PZ
477 /*
478 * Compute a throttle threshold 25% below the current duration.
479 */
480 avg_len += avg_len / 4;
481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 if (avg_len < max)
483 max /= (u32)avg_len;
484 else
485 max = 1;
14c63f17 486
91a612ee
PZ
487 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 WRITE_ONCE(max_samples_per_tick, max);
489
490 sysctl_perf_event_sample_rate = max * HZ;
491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 492
cd578abb 493 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 494 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 495 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 496 __report_avg, __report_allowed,
cd578abb
PZ
497 sysctl_perf_event_sample_rate);
498 }
14c63f17
DH
499}
500
cdd6c482 501static atomic64_t perf_event_id;
a96bbc16 502
0b3fcf17
SE
503static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 enum event_type_t event_type);
505
506static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
507 enum event_type_t event_type,
508 struct task_struct *task);
509
510static void update_context_time(struct perf_event_context *ctx);
511static u64 perf_event_time(struct perf_event *event);
0b3fcf17 512
cdd6c482 513void __weak perf_event_print_debug(void) { }
0793a61d 514
84c79910 515extern __weak const char *perf_pmu_name(void)
0793a61d 516{
84c79910 517 return "pmu";
0793a61d
TG
518}
519
0b3fcf17
SE
520static inline u64 perf_clock(void)
521{
522 return local_clock();
523}
524
34f43927
PZ
525static inline u64 perf_event_clock(struct perf_event *event)
526{
527 return event->clock();
528}
529
e5d1367f
SE
530#ifdef CONFIG_CGROUP_PERF
531
e5d1367f
SE
532static inline bool
533perf_cgroup_match(struct perf_event *event)
534{
535 struct perf_event_context *ctx = event->ctx;
536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537
ef824fa1
TH
538 /* @event doesn't care about cgroup */
539 if (!event->cgrp)
540 return true;
541
542 /* wants specific cgroup scope but @cpuctx isn't associated with any */
543 if (!cpuctx->cgrp)
544 return false;
545
546 /*
547 * Cgroup scoping is recursive. An event enabled for a cgroup is
548 * also enabled for all its descendant cgroups. If @cpuctx's
549 * cgroup is a descendant of @event's (the test covers identity
550 * case), it's a match.
551 */
552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 event->cgrp->css.cgroup);
e5d1367f
SE
554}
555
e5d1367f
SE
556static inline void perf_detach_cgroup(struct perf_event *event)
557{
4e2ba650 558 css_put(&event->cgrp->css);
e5d1367f
SE
559 event->cgrp = NULL;
560}
561
562static inline int is_cgroup_event(struct perf_event *event)
563{
564 return event->cgrp != NULL;
565}
566
567static inline u64 perf_cgroup_event_time(struct perf_event *event)
568{
569 struct perf_cgroup_info *t;
570
571 t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 return t->time;
573}
574
575static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576{
577 struct perf_cgroup_info *info;
578 u64 now;
579
580 now = perf_clock();
581
582 info = this_cpu_ptr(cgrp->info);
583
584 info->time += now - info->timestamp;
585 info->timestamp = now;
586}
587
588static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589{
590 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 if (cgrp_out)
592 __update_cgrp_time(cgrp_out);
593}
594
595static inline void update_cgrp_time_from_event(struct perf_event *event)
596{
3f7cce3c
SE
597 struct perf_cgroup *cgrp;
598
e5d1367f 599 /*
3f7cce3c
SE
600 * ensure we access cgroup data only when needed and
601 * when we know the cgroup is pinned (css_get)
e5d1367f 602 */
3f7cce3c 603 if (!is_cgroup_event(event))
e5d1367f
SE
604 return;
605
614e4c4e 606 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
607 /*
608 * Do not update time when cgroup is not active
609 */
610 if (cgrp == event->cgrp)
611 __update_cgrp_time(event->cgrp);
e5d1367f
SE
612}
613
614static inline void
3f7cce3c
SE
615perf_cgroup_set_timestamp(struct task_struct *task,
616 struct perf_event_context *ctx)
e5d1367f
SE
617{
618 struct perf_cgroup *cgrp;
619 struct perf_cgroup_info *info;
620
3f7cce3c
SE
621 /*
622 * ctx->lock held by caller
623 * ensure we do not access cgroup data
624 * unless we have the cgroup pinned (css_get)
625 */
626 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
627 return;
628
614e4c4e 629 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 630 info = this_cpu_ptr(cgrp->info);
3f7cce3c 631 info->timestamp = ctx->timestamp;
e5d1367f
SE
632}
633
634#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
635#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
636
637/*
638 * reschedule events based on the cgroup constraint of task.
639 *
640 * mode SWOUT : schedule out everything
641 * mode SWIN : schedule in based on cgroup for next
642 */
18ab2cd3 643static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
644{
645 struct perf_cpu_context *cpuctx;
646 struct pmu *pmu;
647 unsigned long flags;
648
649 /*
650 * disable interrupts to avoid geting nr_cgroup
651 * changes via __perf_event_disable(). Also
652 * avoids preemption.
653 */
654 local_irq_save(flags);
655
656 /*
657 * we reschedule only in the presence of cgroup
658 * constrained events.
659 */
e5d1367f
SE
660
661 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
663 if (cpuctx->unique_pmu != pmu)
664 continue; /* ensure we process each cpuctx once */
e5d1367f 665
e5d1367f
SE
666 /*
667 * perf_cgroup_events says at least one
668 * context on this CPU has cgroup events.
669 *
670 * ctx->nr_cgroups reports the number of cgroup
671 * events for a context.
672 */
673 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
674 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
676
677 if (mode & PERF_CGROUP_SWOUT) {
678 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 /*
680 * must not be done before ctxswout due
681 * to event_filter_match() in event_sched_out()
682 */
683 cpuctx->cgrp = NULL;
684 }
685
686 if (mode & PERF_CGROUP_SWIN) {
e566b76e 687 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
688 /*
689 * set cgrp before ctxsw in to allow
690 * event_filter_match() to not have to pass
691 * task around
614e4c4e
SE
692 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 * because cgorup events are only per-cpu
e5d1367f 694 */
614e4c4e 695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 }
facc4307
PZ
698 perf_pmu_enable(cpuctx->ctx.pmu);
699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 700 }
e5d1367f
SE
701 }
702
e5d1367f
SE
703 local_irq_restore(flags);
704}
705
a8d757ef
SE
706static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
e5d1367f 708{
a8d757ef
SE
709 struct perf_cgroup *cgrp1;
710 struct perf_cgroup *cgrp2 = NULL;
711
ddaaf4e2 712 rcu_read_lock();
a8d757ef
SE
713 /*
714 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
715 * we do not need to pass the ctx here because we know
716 * we are holding the rcu lock
a8d757ef 717 */
614e4c4e 718 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 719 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
720
721 /*
722 * only schedule out current cgroup events if we know
723 * that we are switching to a different cgroup. Otherwise,
724 * do no touch the cgroup events.
725 */
726 if (cgrp1 != cgrp2)
727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
728
729 rcu_read_unlock();
e5d1367f
SE
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f 734{
a8d757ef
SE
735 struct perf_cgroup *cgrp1;
736 struct perf_cgroup *cgrp2 = NULL;
737
ddaaf4e2 738 rcu_read_lock();
a8d757ef
SE
739 /*
740 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
741 * we do not need to pass the ctx here because we know
742 * we are holding the rcu lock
a8d757ef 743 */
614e4c4e 744 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 745 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
746
747 /*
748 * only need to schedule in cgroup events if we are changing
749 * cgroup during ctxsw. Cgroup events were not scheduled
750 * out of ctxsw out if that was not the case.
751 */
752 if (cgrp1 != cgrp2)
753 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
754
755 rcu_read_unlock();
e5d1367f
SE
756}
757
758static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 struct perf_event_attr *attr,
760 struct perf_event *group_leader)
761{
762 struct perf_cgroup *cgrp;
763 struct cgroup_subsys_state *css;
2903ff01
AV
764 struct fd f = fdget(fd);
765 int ret = 0;
e5d1367f 766
2903ff01 767 if (!f.file)
e5d1367f
SE
768 return -EBADF;
769
b583043e 770 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 771 &perf_event_cgrp_subsys);
3db272c0
LZ
772 if (IS_ERR(css)) {
773 ret = PTR_ERR(css);
774 goto out;
775 }
e5d1367f
SE
776
777 cgrp = container_of(css, struct perf_cgroup, css);
778 event->cgrp = cgrp;
779
780 /*
781 * all events in a group must monitor
782 * the same cgroup because a task belongs
783 * to only one perf cgroup at a time
784 */
785 if (group_leader && group_leader->cgrp != cgrp) {
786 perf_detach_cgroup(event);
787 ret = -EINVAL;
e5d1367f 788 }
3db272c0 789out:
2903ff01 790 fdput(f);
e5d1367f
SE
791 return ret;
792}
793
794static inline void
795perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796{
797 struct perf_cgroup_info *t;
798 t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 event->shadow_ctx_time = now - t->timestamp;
800}
801
802static inline void
803perf_cgroup_defer_enabled(struct perf_event *event)
804{
805 /*
806 * when the current task's perf cgroup does not match
807 * the event's, we need to remember to call the
808 * perf_mark_enable() function the first time a task with
809 * a matching perf cgroup is scheduled in.
810 */
811 if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 event->cgrp_defer_enabled = 1;
813}
814
815static inline void
816perf_cgroup_mark_enabled(struct perf_event *event,
817 struct perf_event_context *ctx)
818{
819 struct perf_event *sub;
820 u64 tstamp = perf_event_time(event);
821
822 if (!event->cgrp_defer_enabled)
823 return;
824
825 event->cgrp_defer_enabled = 0;
826
827 event->tstamp_enabled = tstamp - event->total_time_enabled;
828 list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 sub->cgrp_defer_enabled = 0;
832 }
833 }
834}
835#else /* !CONFIG_CGROUP_PERF */
836
837static inline bool
838perf_cgroup_match(struct perf_event *event)
839{
840 return true;
841}
842
843static inline void perf_detach_cgroup(struct perf_event *event)
844{}
845
846static inline int is_cgroup_event(struct perf_event *event)
847{
848 return 0;
849}
850
851static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852{
853 return 0;
854}
855
856static inline void update_cgrp_time_from_event(struct perf_event *event)
857{
858}
859
860static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861{
862}
863
a8d757ef
SE
864static inline void perf_cgroup_sched_out(struct task_struct *task,
865 struct task_struct *next)
e5d1367f
SE
866{
867}
868
a8d757ef
SE
869static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
e5d1367f
SE
871{
872}
873
874static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 struct perf_event_attr *attr,
876 struct perf_event *group_leader)
877{
878 return -EINVAL;
879}
880
881static inline void
3f7cce3c
SE
882perf_cgroup_set_timestamp(struct task_struct *task,
883 struct perf_event_context *ctx)
e5d1367f
SE
884{
885}
886
887void
888perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889{
890}
891
892static inline void
893perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894{
895}
896
897static inline u64 perf_cgroup_event_time(struct perf_event *event)
898{
899 return 0;
900}
901
902static inline void
903perf_cgroup_defer_enabled(struct perf_event *event)
904{
905}
906
907static inline void
908perf_cgroup_mark_enabled(struct perf_event *event,
909 struct perf_event_context *ctx)
910{
911}
912#endif
913
9e630205
SE
914/*
915 * set default to be dependent on timer tick just
916 * like original code
917 */
918#define PERF_CPU_HRTIMER (1000 / HZ)
919/*
920 * function must be called with interrupts disbled
921 */
272325c4 922static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
923{
924 struct perf_cpu_context *cpuctx;
9e630205
SE
925 int rotations = 0;
926
927 WARN_ON(!irqs_disabled());
928
929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
930 rotations = perf_rotate_context(cpuctx);
931
4cfafd30
PZ
932 raw_spin_lock(&cpuctx->hrtimer_lock);
933 if (rotations)
9e630205 934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
935 else
936 cpuctx->hrtimer_active = 0;
937 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 938
4cfafd30 939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
940}
941
272325c4 942static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 943{
272325c4 944 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 945 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 946 u64 interval;
9e630205
SE
947
948 /* no multiplexing needed for SW PMU */
949 if (pmu->task_ctx_nr == perf_sw_context)
950 return;
951
62b85639
SE
952 /*
953 * check default is sane, if not set then force to
954 * default interval (1/tick)
955 */
272325c4
PZ
956 interval = pmu->hrtimer_interval_ms;
957 if (interval < 1)
958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 959
272325c4 960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 961
4cfafd30
PZ
962 raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 964 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
965}
966
272325c4 967static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 968{
272325c4 969 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 970 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 971 unsigned long flags;
9e630205
SE
972
973 /* not for SW PMU */
974 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 975 return 0;
9e630205 976
4cfafd30
PZ
977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 if (!cpuctx->hrtimer_active) {
979 cpuctx->hrtimer_active = 1;
980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 }
983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 984
272325c4 985 return 0;
9e630205
SE
986}
987
33696fc0 988void perf_pmu_disable(struct pmu *pmu)
9e35ad38 989{
33696fc0
PZ
990 int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 if (!(*count)++)
992 pmu->pmu_disable(pmu);
9e35ad38 993}
9e35ad38 994
33696fc0 995void perf_pmu_enable(struct pmu *pmu)
9e35ad38 996{
33696fc0
PZ
997 int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 if (!--(*count))
999 pmu->pmu_enable(pmu);
9e35ad38 1000}
9e35ad38 1001
2fde4f94 1002static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1003
1004/*
2fde4f94
MR
1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006 * perf_event_task_tick() are fully serialized because they're strictly cpu
1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1009 */
2fde4f94 1010static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1011{
2fde4f94 1012 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1013
e9d2b064 1014 WARN_ON(!irqs_disabled());
b5ab4cd5 1015
2fde4f94
MR
1016 WARN_ON(!list_empty(&ctx->active_ctx_list));
1017
1018 list_add(&ctx->active_ctx_list, head);
1019}
1020
1021static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022{
1023 WARN_ON(!irqs_disabled());
1024
1025 WARN_ON(list_empty(&ctx->active_ctx_list));
1026
1027 list_del_init(&ctx->active_ctx_list);
9e35ad38 1028}
9e35ad38 1029
cdd6c482 1030static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1031{
e5289d4a 1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1033}
1034
4af57ef2
YZ
1035static void free_ctx(struct rcu_head *head)
1036{
1037 struct perf_event_context *ctx;
1038
1039 ctx = container_of(head, struct perf_event_context, rcu_head);
1040 kfree(ctx->task_ctx_data);
1041 kfree(ctx);
1042}
1043
cdd6c482 1044static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1045{
564c2b21
PM
1046 if (atomic_dec_and_test(&ctx->refcount)) {
1047 if (ctx->parent_ctx)
1048 put_ctx(ctx->parent_ctx);
63b6da39 1049 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1050 put_task_struct(ctx->task);
4af57ef2 1051 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1052 }
a63eaf34
PM
1053}
1054
f63a8daa
PZ
1055/*
1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057 * perf_pmu_migrate_context() we need some magic.
1058 *
1059 * Those places that change perf_event::ctx will hold both
1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061 *
8b10c5e2
PZ
1062 * Lock ordering is by mutex address. There are two other sites where
1063 * perf_event_context::mutex nests and those are:
1064 *
1065 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1066 * perf_event_exit_event()
1067 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1068 *
1069 * - perf_event_init_context() [ parent, 0 ]
1070 * inherit_task_group()
1071 * inherit_group()
1072 * inherit_event()
1073 * perf_event_alloc()
1074 * perf_init_event()
1075 * perf_try_init_event() [ child , 1 ]
1076 *
1077 * While it appears there is an obvious deadlock here -- the parent and child
1078 * nesting levels are inverted between the two. This is in fact safe because
1079 * life-time rules separate them. That is an exiting task cannot fork, and a
1080 * spawning task cannot (yet) exit.
1081 *
1082 * But remember that that these are parent<->child context relations, and
1083 * migration does not affect children, therefore these two orderings should not
1084 * interact.
f63a8daa
PZ
1085 *
1086 * The change in perf_event::ctx does not affect children (as claimed above)
1087 * because the sys_perf_event_open() case will install a new event and break
1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089 * concerned with cpuctx and that doesn't have children.
1090 *
1091 * The places that change perf_event::ctx will issue:
1092 *
1093 * perf_remove_from_context();
1094 * synchronize_rcu();
1095 * perf_install_in_context();
1096 *
1097 * to affect the change. The remove_from_context() + synchronize_rcu() should
1098 * quiesce the event, after which we can install it in the new location. This
1099 * means that only external vectors (perf_fops, prctl) can perturb the event
1100 * while in transit. Therefore all such accessors should also acquire
1101 * perf_event_context::mutex to serialize against this.
1102 *
1103 * However; because event->ctx can change while we're waiting to acquire
1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105 * function.
1106 *
1107 * Lock order:
1108 * task_struct::perf_event_mutex
1109 * perf_event_context::mutex
f63a8daa 1110 * perf_event::child_mutex;
07c4a776 1111 * perf_event_context::lock
f63a8daa
PZ
1112 * perf_event::mmap_mutex
1113 * mmap_sem
1114 */
a83fe28e
PZ
1115static struct perf_event_context *
1116perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1117{
1118 struct perf_event_context *ctx;
1119
1120again:
1121 rcu_read_lock();
1122 ctx = ACCESS_ONCE(event->ctx);
1123 if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 rcu_read_unlock();
1125 goto again;
1126 }
1127 rcu_read_unlock();
1128
a83fe28e 1129 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1130 if (event->ctx != ctx) {
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133 goto again;
1134 }
1135
1136 return ctx;
1137}
1138
a83fe28e
PZ
1139static inline struct perf_event_context *
1140perf_event_ctx_lock(struct perf_event *event)
1141{
1142 return perf_event_ctx_lock_nested(event, 0);
1143}
1144
f63a8daa
PZ
1145static void perf_event_ctx_unlock(struct perf_event *event,
1146 struct perf_event_context *ctx)
1147{
1148 mutex_unlock(&ctx->mutex);
1149 put_ctx(ctx);
1150}
1151
211de6eb
PZ
1152/*
1153 * This must be done under the ctx->lock, such as to serialize against
1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155 * calling scheduler related locks and ctx->lock nests inside those.
1156 */
1157static __must_check struct perf_event_context *
1158unclone_ctx(struct perf_event_context *ctx)
71a851b4 1159{
211de6eb
PZ
1160 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161
1162 lockdep_assert_held(&ctx->lock);
1163
1164 if (parent_ctx)
71a851b4 1165 ctx->parent_ctx = NULL;
5a3126d4 1166 ctx->generation++;
211de6eb
PZ
1167
1168 return parent_ctx;
71a851b4
PZ
1169}
1170
6844c09d
ACM
1171static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172{
1173 /*
1174 * only top level events have the pid namespace they were created in
1175 */
1176 if (event->parent)
1177 event = event->parent;
1178
1179 return task_tgid_nr_ns(p, event->ns);
1180}
1181
1182static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183{
1184 /*
1185 * only top level events have the pid namespace they were created in
1186 */
1187 if (event->parent)
1188 event = event->parent;
1189
1190 return task_pid_nr_ns(p, event->ns);
1191}
1192
7f453c24 1193/*
cdd6c482 1194 * If we inherit events we want to return the parent event id
7f453c24
PZ
1195 * to userspace.
1196 */
cdd6c482 1197static u64 primary_event_id(struct perf_event *event)
7f453c24 1198{
cdd6c482 1199 u64 id = event->id;
7f453c24 1200
cdd6c482
IM
1201 if (event->parent)
1202 id = event->parent->id;
7f453c24
PZ
1203
1204 return id;
1205}
1206
25346b93 1207/*
cdd6c482 1208 * Get the perf_event_context for a task and lock it.
63b6da39 1209 *
25346b93
PM
1210 * This has to cope with with the fact that until it is locked,
1211 * the context could get moved to another task.
1212 */
cdd6c482 1213static struct perf_event_context *
8dc85d54 1214perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1215{
cdd6c482 1216 struct perf_event_context *ctx;
25346b93 1217
9ed6060d 1218retry:
058ebd0e
PZ
1219 /*
1220 * One of the few rules of preemptible RCU is that one cannot do
1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1222 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1223 * rcu_read_unlock_special().
1224 *
1225 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1226 * side critical section has interrupts disabled.
058ebd0e 1227 */
2fd59077 1228 local_irq_save(*flags);
058ebd0e 1229 rcu_read_lock();
8dc85d54 1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1231 if (ctx) {
1232 /*
1233 * If this context is a clone of another, it might
1234 * get swapped for another underneath us by
cdd6c482 1235 * perf_event_task_sched_out, though the
25346b93
PM
1236 * rcu_read_lock() protects us from any context
1237 * getting freed. Lock the context and check if it
1238 * got swapped before we could get the lock, and retry
1239 * if so. If we locked the right context, then it
1240 * can't get swapped on us any more.
1241 */
2fd59077 1242 raw_spin_lock(&ctx->lock);
8dc85d54 1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1244 raw_spin_unlock(&ctx->lock);
058ebd0e 1245 rcu_read_unlock();
2fd59077 1246 local_irq_restore(*flags);
25346b93
PM
1247 goto retry;
1248 }
b49a9e7e 1249
63b6da39
PZ
1250 if (ctx->task == TASK_TOMBSTONE ||
1251 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1252 raw_spin_unlock(&ctx->lock);
b49a9e7e 1253 ctx = NULL;
828b6f0e
PZ
1254 } else {
1255 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1256 }
25346b93
PM
1257 }
1258 rcu_read_unlock();
2fd59077
PM
1259 if (!ctx)
1260 local_irq_restore(*flags);
25346b93
PM
1261 return ctx;
1262}
1263
1264/*
1265 * Get the context for a task and increment its pin_count so it
1266 * can't get swapped to another task. This also increments its
1267 * reference count so that the context can't get freed.
1268 */
8dc85d54
PZ
1269static struct perf_event_context *
1270perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1271{
cdd6c482 1272 struct perf_event_context *ctx;
25346b93
PM
1273 unsigned long flags;
1274
8dc85d54 1275 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1276 if (ctx) {
1277 ++ctx->pin_count;
e625cce1 1278 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1279 }
1280 return ctx;
1281}
1282
cdd6c482 1283static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1284{
1285 unsigned long flags;
1286
e625cce1 1287 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1288 --ctx->pin_count;
e625cce1 1289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the record of the current time in a context.
1294 */
1295static void update_context_time(struct perf_event_context *ctx)
1296{
1297 u64 now = perf_clock();
1298
1299 ctx->time += now - ctx->timestamp;
1300 ctx->timestamp = now;
1301}
1302
4158755d
SE
1303static u64 perf_event_time(struct perf_event *event)
1304{
1305 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1306
1307 if (is_cgroup_event(event))
1308 return perf_cgroup_event_time(event);
1309
4158755d
SE
1310 return ctx ? ctx->time : 0;
1311}
1312
f67218c3
PZ
1313/*
1314 * Update the total_time_enabled and total_time_running fields for a event.
1315 */
1316static void update_event_times(struct perf_event *event)
1317{
1318 struct perf_event_context *ctx = event->ctx;
1319 u64 run_end;
1320
3cbaa590
PZ
1321 lockdep_assert_held(&ctx->lock);
1322
f67218c3
PZ
1323 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 return;
3cbaa590 1326
e5d1367f
SE
1327 /*
1328 * in cgroup mode, time_enabled represents
1329 * the time the event was enabled AND active
1330 * tasks were in the monitored cgroup. This is
1331 * independent of the activity of the context as
1332 * there may be a mix of cgroup and non-cgroup events.
1333 *
1334 * That is why we treat cgroup events differently
1335 * here.
1336 */
1337 if (is_cgroup_event(event))
46cd6a7f 1338 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1339 else if (ctx->is_active)
1340 run_end = ctx->time;
acd1d7c1
PZ
1341 else
1342 run_end = event->tstamp_stopped;
1343
1344 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1345
1346 if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 run_end = event->tstamp_stopped;
1348 else
4158755d 1349 run_end = perf_event_time(event);
f67218c3
PZ
1350
1351 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1352
f67218c3
PZ
1353}
1354
96c21a46
PZ
1355/*
1356 * Update total_time_enabled and total_time_running for all events in a group.
1357 */
1358static void update_group_times(struct perf_event *leader)
1359{
1360 struct perf_event *event;
1361
1362 update_event_times(leader);
1363 list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 update_event_times(event);
1365}
1366
889ff015
FW
1367static struct list_head *
1368ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369{
1370 if (event->attr.pinned)
1371 return &ctx->pinned_groups;
1372 else
1373 return &ctx->flexible_groups;
1374}
1375
fccc714b 1376/*
cdd6c482 1377 * Add a event from the lists for its context.
fccc714b
PZ
1378 * Must be called with ctx->mutex and ctx->lock held.
1379 */
04289bb9 1380static void
cdd6c482 1381list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1382{
c994d613
PZ
1383 lockdep_assert_held(&ctx->lock);
1384
8a49542c
PZ
1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1387
1388 /*
8a49542c
PZ
1389 * If we're a stand alone event or group leader, we go to the context
1390 * list, group events are kept attached to the group so that
1391 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1392 */
8a49542c 1393 if (event->group_leader == event) {
889ff015
FW
1394 struct list_head *list;
1395
d6f962b5
FW
1396 if (is_software_event(event))
1397 event->group_flags |= PERF_GROUP_SOFTWARE;
1398
889ff015
FW
1399 list = ctx_group_list(event, ctx);
1400 list_add_tail(&event->group_entry, list);
5c148194 1401 }
592903cd 1402
08309379 1403 if (is_cgroup_event(event))
e5d1367f 1404 ctx->nr_cgroups++;
e5d1367f 1405
cdd6c482
IM
1406 list_add_rcu(&event->event_entry, &ctx->event_list);
1407 ctx->nr_events++;
1408 if (event->attr.inherit_stat)
bfbd3381 1409 ctx->nr_stat++;
5a3126d4
PZ
1410
1411 ctx->generation++;
04289bb9
IM
1412}
1413
0231bb53
JO
1414/*
1415 * Initialize event state based on the perf_event_attr::disabled.
1416 */
1417static inline void perf_event__state_init(struct perf_event *event)
1418{
1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 PERF_EVENT_STATE_INACTIVE;
1421}
1422
a723968c 1423static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1424{
1425 int entry = sizeof(u64); /* value */
1426 int size = 0;
1427 int nr = 1;
1428
1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 size += sizeof(u64);
1431
1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 size += sizeof(u64);
1434
1435 if (event->attr.read_format & PERF_FORMAT_ID)
1436 entry += sizeof(u64);
1437
1438 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1439 nr += nr_siblings;
c320c7b7
ACM
1440 size += sizeof(u64);
1441 }
1442
1443 size += entry * nr;
1444 event->read_size = size;
1445}
1446
a723968c 1447static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1448{
1449 struct perf_sample_data *data;
c320c7b7
ACM
1450 u16 size = 0;
1451
c320c7b7
ACM
1452 if (sample_type & PERF_SAMPLE_IP)
1453 size += sizeof(data->ip);
1454
6844c09d
ACM
1455 if (sample_type & PERF_SAMPLE_ADDR)
1456 size += sizeof(data->addr);
1457
1458 if (sample_type & PERF_SAMPLE_PERIOD)
1459 size += sizeof(data->period);
1460
c3feedf2
AK
1461 if (sample_type & PERF_SAMPLE_WEIGHT)
1462 size += sizeof(data->weight);
1463
6844c09d
ACM
1464 if (sample_type & PERF_SAMPLE_READ)
1465 size += event->read_size;
1466
d6be9ad6
SE
1467 if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 size += sizeof(data->data_src.val);
1469
fdfbbd07
AK
1470 if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 size += sizeof(data->txn);
1472
6844c09d
ACM
1473 event->header_size = size;
1474}
1475
a723968c
PZ
1476/*
1477 * Called at perf_event creation and when events are attached/detached from a
1478 * group.
1479 */
1480static void perf_event__header_size(struct perf_event *event)
1481{
1482 __perf_event_read_size(event,
1483 event->group_leader->nr_siblings);
1484 __perf_event_header_size(event, event->attr.sample_type);
1485}
1486
6844c09d
ACM
1487static void perf_event__id_header_size(struct perf_event *event)
1488{
1489 struct perf_sample_data *data;
1490 u64 sample_type = event->attr.sample_type;
1491 u16 size = 0;
1492
c320c7b7
ACM
1493 if (sample_type & PERF_SAMPLE_TID)
1494 size += sizeof(data->tid_entry);
1495
1496 if (sample_type & PERF_SAMPLE_TIME)
1497 size += sizeof(data->time);
1498
ff3d527c
AH
1499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 size += sizeof(data->id);
1501
c320c7b7
ACM
1502 if (sample_type & PERF_SAMPLE_ID)
1503 size += sizeof(data->id);
1504
1505 if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 size += sizeof(data->stream_id);
1507
1508 if (sample_type & PERF_SAMPLE_CPU)
1509 size += sizeof(data->cpu_entry);
1510
6844c09d 1511 event->id_header_size = size;
c320c7b7
ACM
1512}
1513
a723968c
PZ
1514static bool perf_event_validate_size(struct perf_event *event)
1515{
1516 /*
1517 * The values computed here will be over-written when we actually
1518 * attach the event.
1519 */
1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 perf_event__id_header_size(event);
1523
1524 /*
1525 * Sum the lot; should not exceed the 64k limit we have on records.
1526 * Conservative limit to allow for callchains and other variable fields.
1527 */
1528 if (event->read_size + event->header_size +
1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 return false;
1531
1532 return true;
1533}
1534
8a49542c
PZ
1535static void perf_group_attach(struct perf_event *event)
1536{
c320c7b7 1537 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1538
74c3337c
PZ
1539 /*
1540 * We can have double attach due to group movement in perf_event_open.
1541 */
1542 if (event->attach_state & PERF_ATTACH_GROUP)
1543 return;
1544
8a49542c
PZ
1545 event->attach_state |= PERF_ATTACH_GROUP;
1546
1547 if (group_leader == event)
1548 return;
1549
652884fe
PZ
1550 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551
8a49542c
PZ
1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 !is_software_event(event))
1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555
1556 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 group_leader->nr_siblings++;
c320c7b7
ACM
1558
1559 perf_event__header_size(group_leader);
1560
1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 perf_event__header_size(pos);
8a49542c
PZ
1563}
1564
a63eaf34 1565/*
cdd6c482 1566 * Remove a event from the lists for its context.
fccc714b 1567 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1568 */
04289bb9 1569static void
cdd6c482 1570list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1571{
68cacd29 1572 struct perf_cpu_context *cpuctx;
652884fe
PZ
1573
1574 WARN_ON_ONCE(event->ctx != ctx);
1575 lockdep_assert_held(&ctx->lock);
1576
8a49542c
PZ
1577 /*
1578 * We can have double detach due to exit/hot-unplug + close.
1579 */
1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1581 return;
8a49542c
PZ
1582
1583 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584
68cacd29 1585 if (is_cgroup_event(event)) {
e5d1367f 1586 ctx->nr_cgroups--;
70a01657
PZ
1587 /*
1588 * Because cgroup events are always per-cpu events, this will
1589 * always be called from the right CPU.
1590 */
68cacd29
SE
1591 cpuctx = __get_cpu_context(ctx);
1592 /*
70a01657
PZ
1593 * If there are no more cgroup events then clear cgrp to avoid
1594 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1595 */
1596 if (!ctx->nr_cgroups)
1597 cpuctx->cgrp = NULL;
1598 }
e5d1367f 1599
cdd6c482
IM
1600 ctx->nr_events--;
1601 if (event->attr.inherit_stat)
bfbd3381 1602 ctx->nr_stat--;
8bc20959 1603
cdd6c482 1604 list_del_rcu(&event->event_entry);
04289bb9 1605
8a49542c
PZ
1606 if (event->group_leader == event)
1607 list_del_init(&event->group_entry);
5c148194 1608
96c21a46 1609 update_group_times(event);
b2e74a26
SE
1610
1611 /*
1612 * If event was in error state, then keep it
1613 * that way, otherwise bogus counts will be
1614 * returned on read(). The only way to get out
1615 * of error state is by explicit re-enabling
1616 * of the event
1617 */
1618 if (event->state > PERF_EVENT_STATE_OFF)
1619 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1620
1621 ctx->generation++;
050735b0
PZ
1622}
1623
8a49542c 1624static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1625{
1626 struct perf_event *sibling, *tmp;
8a49542c
PZ
1627 struct list_head *list = NULL;
1628
1629 /*
1630 * We can have double detach due to exit/hot-unplug + close.
1631 */
1632 if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 return;
1634
1635 event->attach_state &= ~PERF_ATTACH_GROUP;
1636
1637 /*
1638 * If this is a sibling, remove it from its group.
1639 */
1640 if (event->group_leader != event) {
1641 list_del_init(&event->group_entry);
1642 event->group_leader->nr_siblings--;
c320c7b7 1643 goto out;
8a49542c
PZ
1644 }
1645
1646 if (!list_empty(&event->group_entry))
1647 list = &event->group_entry;
2e2af50b 1648
04289bb9 1649 /*
cdd6c482
IM
1650 * If this was a group event with sibling events then
1651 * upgrade the siblings to singleton events by adding them
8a49542c 1652 * to whatever list we are on.
04289bb9 1653 */
cdd6c482 1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1655 if (list)
1656 list_move_tail(&sibling->group_entry, list);
04289bb9 1657 sibling->group_leader = sibling;
d6f962b5
FW
1658
1659 /* Inherit group flags from the previous leader */
1660 sibling->group_flags = event->group_flags;
652884fe
PZ
1661
1662 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1663 }
c320c7b7
ACM
1664
1665out:
1666 perf_event__header_size(event->group_leader);
1667
1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 perf_event__header_size(tmp);
04289bb9
IM
1670}
1671
fadfe7be
JO
1672static bool is_orphaned_event(struct perf_event *event)
1673{
a69b0ca4 1674 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1675}
1676
66eb579e
MR
1677static inline int pmu_filter_match(struct perf_event *event)
1678{
1679 struct pmu *pmu = event->pmu;
1680 return pmu->filter_match ? pmu->filter_match(event) : 1;
1681}
1682
fa66f07a
SE
1683static inline int
1684event_filter_match(struct perf_event *event)
1685{
e5d1367f 1686 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1687 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1688}
1689
9ffcfa6f
SE
1690static void
1691event_sched_out(struct perf_event *event,
3b6f9e5c 1692 struct perf_cpu_context *cpuctx,
cdd6c482 1693 struct perf_event_context *ctx)
3b6f9e5c 1694{
4158755d 1695 u64 tstamp = perf_event_time(event);
fa66f07a 1696 u64 delta;
652884fe
PZ
1697
1698 WARN_ON_ONCE(event->ctx != ctx);
1699 lockdep_assert_held(&ctx->lock);
1700
fa66f07a
SE
1701 /*
1702 * An event which could not be activated because of
1703 * filter mismatch still needs to have its timings
1704 * maintained, otherwise bogus information is return
1705 * via read() for time_enabled, time_running:
1706 */
1707 if (event->state == PERF_EVENT_STATE_INACTIVE
1708 && !event_filter_match(event)) {
e5d1367f 1709 delta = tstamp - event->tstamp_stopped;
fa66f07a 1710 event->tstamp_running += delta;
4158755d 1711 event->tstamp_stopped = tstamp;
fa66f07a
SE
1712 }
1713
cdd6c482 1714 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1715 return;
3b6f9e5c 1716
44377277
AS
1717 perf_pmu_disable(event->pmu);
1718
28a967c3
PZ
1719 event->tstamp_stopped = tstamp;
1720 event->pmu->del(event, 0);
1721 event->oncpu = -1;
cdd6c482
IM
1722 event->state = PERF_EVENT_STATE_INACTIVE;
1723 if (event->pending_disable) {
1724 event->pending_disable = 0;
1725 event->state = PERF_EVENT_STATE_OFF;
970892a9 1726 }
3b6f9e5c 1727
cdd6c482 1728 if (!is_software_event(event))
3b6f9e5c 1729 cpuctx->active_oncpu--;
2fde4f94
MR
1730 if (!--ctx->nr_active)
1731 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1732 if (event->attr.freq && event->attr.sample_freq)
1733 ctx->nr_freq--;
cdd6c482 1734 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1735 cpuctx->exclusive = 0;
44377277
AS
1736
1737 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1738}
1739
d859e29f 1740static void
cdd6c482 1741group_sched_out(struct perf_event *group_event,
d859e29f 1742 struct perf_cpu_context *cpuctx,
cdd6c482 1743 struct perf_event_context *ctx)
d859e29f 1744{
cdd6c482 1745 struct perf_event *event;
fa66f07a 1746 int state = group_event->state;
d859e29f 1747
cdd6c482 1748 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1749
1750 /*
1751 * Schedule out siblings (if any):
1752 */
cdd6c482
IM
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 event_sched_out(event, cpuctx, ctx);
d859e29f 1755
fa66f07a 1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1757 cpuctx->exclusive = 0;
1758}
1759
45a0e07a 1760#define DETACH_GROUP 0x01UL
0017960f 1761
0793a61d 1762/*
cdd6c482 1763 * Cross CPU call to remove a performance event
0793a61d 1764 *
cdd6c482 1765 * We disable the event on the hardware level first. After that we
0793a61d
TG
1766 * remove it from the context list.
1767 */
fae3fde6
PZ
1768static void
1769__perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
0793a61d 1773{
45a0e07a 1774 unsigned long flags = (unsigned long)info;
0793a61d 1775
cdd6c482 1776 event_sched_out(event, cpuctx, ctx);
45a0e07a 1777 if (flags & DETACH_GROUP)
46ce0fe9 1778 perf_group_detach(event);
cdd6c482 1779 list_del_event(event, ctx);
39a43640
PZ
1780
1781 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1782 ctx->is_active = 0;
39a43640
PZ
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
64ce3126 1787 }
0793a61d
TG
1788}
1789
0793a61d 1790/*
cdd6c482 1791 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1792 *
cdd6c482
IM
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1797 * When called from perf_event_exit_task, it's OK because the
c93f7669 1798 * context has been detached from its task.
0793a61d 1799 */
45a0e07a 1800static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1801{
fae3fde6 1802 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1803
45a0e07a 1804 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1805}
1806
d859e29f 1807/*
cdd6c482 1808 * Cross CPU call to disable a performance event
d859e29f 1809 */
fae3fde6
PZ
1810static void __perf_event_disable(struct perf_event *event,
1811 struct perf_cpu_context *cpuctx,
1812 struct perf_event_context *ctx,
1813 void *info)
7b648018 1814{
fae3fde6
PZ
1815 if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 return;
7b648018 1817
fae3fde6
PZ
1818 update_context_time(ctx);
1819 update_cgrp_time_from_event(event);
1820 update_group_times(event);
1821 if (event == event->group_leader)
1822 group_sched_out(event, cpuctx, ctx);
1823 else
1824 event_sched_out(event, cpuctx, ctx);
1825 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1826}
1827
d859e29f 1828/*
cdd6c482 1829 * Disable a event.
c93f7669 1830 *
cdd6c482
IM
1831 * If event->ctx is a cloned context, callers must make sure that
1832 * every task struct that event->ctx->task could possibly point to
c93f7669 1833 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1834 * perf_event_for_each_child or perf_event_for_each because they
1835 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1836 * goes to exit will block in perf_event_exit_event().
1837 *
cdd6c482 1838 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1839 * is the current context on this CPU and preemption is disabled,
cdd6c482 1840 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1841 */
f63a8daa 1842static void _perf_event_disable(struct perf_event *event)
d859e29f 1843{
cdd6c482 1844 struct perf_event_context *ctx = event->ctx;
d859e29f 1845
e625cce1 1846 raw_spin_lock_irq(&ctx->lock);
7b648018 1847 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1848 raw_spin_unlock_irq(&ctx->lock);
7b648018 1849 return;
53cfbf59 1850 }
e625cce1 1851 raw_spin_unlock_irq(&ctx->lock);
7b648018 1852
fae3fde6
PZ
1853 event_function_call(event, __perf_event_disable, NULL);
1854}
1855
1856void perf_event_disable_local(struct perf_event *event)
1857{
1858 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1859}
f63a8daa
PZ
1860
1861/*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865void perf_event_disable(struct perf_event *event)
1866{
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872}
dcfce4a0 1873EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1874
e5d1367f
SE
1875static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878{
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908}
1909
4fe757dd
PZ
1910#define MAX_INTERRUPTS (~0ULL)
1911
1912static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1913static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1914
235c7fc7 1915static int
9ffcfa6f 1916event_sched_in(struct perf_event *event,
235c7fc7 1917 struct perf_cpu_context *cpuctx,
6e37738a 1918 struct perf_event_context *ctx)
235c7fc7 1919{
4158755d 1920 u64 tstamp = perf_event_time(event);
44377277 1921 int ret = 0;
4158755d 1922
63342411
PZ
1923 lockdep_assert_held(&ctx->lock);
1924
cdd6c482 1925 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1926 return 0;
1927
cdd6c482 1928 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1929 event->oncpu = smp_processor_id();
4fe757dd
PZ
1930
1931 /*
1932 * Unthrottle events, since we scheduled we might have missed several
1933 * ticks already, also for a heavily scheduling task there is little
1934 * guarantee it'll get a tick in a timely manner.
1935 */
1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 perf_log_throttle(event, 1);
1938 event->hw.interrupts = 0;
1939 }
1940
235c7fc7
IM
1941 /*
1942 * The new state must be visible before we turn it on in the hardware:
1943 */
1944 smp_wmb();
1945
44377277
AS
1946 perf_pmu_disable(event->pmu);
1947
72f669c0
SL
1948 perf_set_shadow_time(event, ctx, tstamp);
1949
ec0d7729
AS
1950 perf_log_itrace_start(event);
1951
a4eaf7f1 1952 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1953 event->state = PERF_EVENT_STATE_INACTIVE;
1954 event->oncpu = -1;
44377277
AS
1955 ret = -EAGAIN;
1956 goto out;
235c7fc7
IM
1957 }
1958
00a2916f
PZ
1959 event->tstamp_running += tstamp - event->tstamp_stopped;
1960
cdd6c482 1961 if (!is_software_event(event))
3b6f9e5c 1962 cpuctx->active_oncpu++;
2fde4f94
MR
1963 if (!ctx->nr_active++)
1964 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1965 if (event->attr.freq && event->attr.sample_freq)
1966 ctx->nr_freq++;
235c7fc7 1967
cdd6c482 1968 if (event->attr.exclusive)
3b6f9e5c
PM
1969 cpuctx->exclusive = 1;
1970
44377277
AS
1971out:
1972 perf_pmu_enable(event->pmu);
1973
1974 return ret;
235c7fc7
IM
1975}
1976
6751b71e 1977static int
cdd6c482 1978group_sched_in(struct perf_event *group_event,
6751b71e 1979 struct perf_cpu_context *cpuctx,
6e37738a 1980 struct perf_event_context *ctx)
6751b71e 1981{
6bde9b6c 1982 struct perf_event *event, *partial_group = NULL;
4a234593 1983 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1984 u64 now = ctx->time;
1985 bool simulate = false;
6751b71e 1986
cdd6c482 1987 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1988 return 0;
1989
fbbe0701 1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1991
9ffcfa6f 1992 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1993 pmu->cancel_txn(pmu);
272325c4 1994 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1995 return -EAGAIN;
90151c35 1996 }
6751b71e
PM
1997
1998 /*
1999 * Schedule in siblings as one group (if any):
2000 */
cdd6c482 2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2002 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2003 partial_group = event;
6751b71e
PM
2004 goto group_error;
2005 }
2006 }
2007
9ffcfa6f 2008 if (!pmu->commit_txn(pmu))
6e85158c 2009 return 0;
9ffcfa6f 2010
6751b71e
PM
2011group_error:
2012 /*
2013 * Groups can be scheduled in as one unit only, so undo any
2014 * partial group before returning:
d7842da4
SE
2015 * The events up to the failed event are scheduled out normally,
2016 * tstamp_stopped will be updated.
2017 *
2018 * The failed events and the remaining siblings need to have
2019 * their timings updated as if they had gone thru event_sched_in()
2020 * and event_sched_out(). This is required to get consistent timings
2021 * across the group. This also takes care of the case where the group
2022 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 * the time the event was actually stopped, such that time delta
2024 * calculation in update_event_times() is correct.
6751b71e 2025 */
cdd6c482
IM
2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 if (event == partial_group)
d7842da4
SE
2028 simulate = true;
2029
2030 if (simulate) {
2031 event->tstamp_running += now - event->tstamp_stopped;
2032 event->tstamp_stopped = now;
2033 } else {
2034 event_sched_out(event, cpuctx, ctx);
2035 }
6751b71e 2036 }
9ffcfa6f 2037 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2038
ad5133b7 2039 pmu->cancel_txn(pmu);
90151c35 2040
272325c4 2041 perf_mux_hrtimer_restart(cpuctx);
9e630205 2042
6751b71e
PM
2043 return -EAGAIN;
2044}
2045
3b6f9e5c 2046/*
cdd6c482 2047 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2048 */
cdd6c482 2049static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2050 struct perf_cpu_context *cpuctx,
2051 int can_add_hw)
2052{
2053 /*
cdd6c482 2054 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2055 */
d6f962b5 2056 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2057 return 1;
2058 /*
2059 * If an exclusive group is already on, no other hardware
cdd6c482 2060 * events can go on.
3b6f9e5c
PM
2061 */
2062 if (cpuctx->exclusive)
2063 return 0;
2064 /*
2065 * If this group is exclusive and there are already
cdd6c482 2066 * events on the CPU, it can't go on.
3b6f9e5c 2067 */
cdd6c482 2068 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2069 return 0;
2070 /*
2071 * Otherwise, try to add it if all previous groups were able
2072 * to go on.
2073 */
2074 return can_add_hw;
2075}
2076
cdd6c482
IM
2077static void add_event_to_ctx(struct perf_event *event,
2078 struct perf_event_context *ctx)
53cfbf59 2079{
4158755d
SE
2080 u64 tstamp = perf_event_time(event);
2081
cdd6c482 2082 list_add_event(event, ctx);
8a49542c 2083 perf_group_attach(event);
4158755d
SE
2084 event->tstamp_enabled = tstamp;
2085 event->tstamp_running = tstamp;
2086 event->tstamp_stopped = tstamp;
53cfbf59
PM
2087}
2088
bd2afa49
PZ
2089static void ctx_sched_out(struct perf_event_context *ctx,
2090 struct perf_cpu_context *cpuctx,
2091 enum event_type_t event_type);
2c29ef0f
PZ
2092static void
2093ctx_sched_in(struct perf_event_context *ctx,
2094 struct perf_cpu_context *cpuctx,
2095 enum event_type_t event_type,
2096 struct task_struct *task);
fe4b04fa 2097
bd2afa49
PZ
2098static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2099 struct perf_event_context *ctx)
2100{
2101 if (!cpuctx->task_ctx)
2102 return;
2103
2104 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2105 return;
2106
2107 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2108}
2109
dce5855b
PZ
2110static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2111 struct perf_event_context *ctx,
2112 struct task_struct *task)
2113{
2114 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2115 if (ctx)
2116 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2117 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2118 if (ctx)
2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2120}
2121
3e349507
PZ
2122static void ctx_resched(struct perf_cpu_context *cpuctx,
2123 struct perf_event_context *task_ctx)
0017960f 2124{
3e349507
PZ
2125 perf_pmu_disable(cpuctx->ctx.pmu);
2126 if (task_ctx)
2127 task_ctx_sched_out(cpuctx, task_ctx);
2128 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2129 perf_event_sched_in(cpuctx, task_ctx, current);
2130 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2131}
2132
0793a61d 2133/*
cdd6c482 2134 * Cross CPU call to install and enable a performance event
682076ae 2135 *
a096309b
PZ
2136 * Very similar to remote_function() + event_function() but cannot assume that
2137 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2138 */
fe4b04fa 2139static int __perf_install_in_context(void *info)
0793a61d 2140{
a096309b
PZ
2141 struct perf_event *event = info;
2142 struct perf_event_context *ctx = event->ctx;
108b02cf 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2145 bool activate = true;
2146 int ret = 0;
0793a61d 2147
63b6da39 2148 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2149 if (ctx->task) {
b58f6b0d
PZ
2150 raw_spin_lock(&ctx->lock);
2151 task_ctx = ctx;
a096309b
PZ
2152
2153 /* If we're on the wrong CPU, try again */
2154 if (task_cpu(ctx->task) != smp_processor_id()) {
2155 ret = -ESRCH;
63b6da39 2156 goto unlock;
a096309b 2157 }
b58f6b0d 2158
39a43640 2159 /*
a096309b
PZ
2160 * If we're on the right CPU, see if the task we target is
2161 * current, if not we don't have to activate the ctx, a future
2162 * context switch will do that for us.
39a43640 2163 */
a096309b
PZ
2164 if (ctx->task != current)
2165 activate = false;
2166 else
2167 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2168
63b6da39
PZ
2169 } else if (task_ctx) {
2170 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2171 }
b58f6b0d 2172
a096309b
PZ
2173 if (activate) {
2174 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2175 add_event_to_ctx(event, ctx);
2176 ctx_resched(cpuctx, task_ctx);
2177 } else {
2178 add_event_to_ctx(event, ctx);
2179 }
2180
63b6da39 2181unlock:
2c29ef0f 2182 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2183
a096309b 2184 return ret;
0793a61d
TG
2185}
2186
2187/*
a096309b
PZ
2188 * Attach a performance event to a context.
2189 *
2190 * Very similar to event_function_call, see comment there.
0793a61d
TG
2191 */
2192static void
cdd6c482
IM
2193perf_install_in_context(struct perf_event_context *ctx,
2194 struct perf_event *event,
0793a61d
TG
2195 int cpu)
2196{
a096309b 2197 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2198
fe4b04fa
PZ
2199 lockdep_assert_held(&ctx->mutex);
2200
c3f00c70 2201 event->ctx = ctx;
0cda4c02
YZ
2202 if (event->cpu != -1)
2203 event->cpu = cpu;
c3f00c70 2204
a096309b
PZ
2205 if (!task) {
2206 cpu_function_call(cpu, __perf_install_in_context, event);
2207 return;
2208 }
2209
2210 /*
2211 * Should not happen, we validate the ctx is still alive before calling.
2212 */
2213 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2214 return;
2215
39a43640
PZ
2216 /*
2217 * Installing events is tricky because we cannot rely on ctx->is_active
2218 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2219 */
a096309b 2220again:
63b6da39 2221 /*
a096309b
PZ
2222 * Cannot use task_function_call() because we need to run on the task's
2223 * CPU regardless of whether its current or not.
63b6da39 2224 */
a096309b
PZ
2225 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2226 return;
2227
2228 raw_spin_lock_irq(&ctx->lock);
2229 task = ctx->task;
84c4e620 2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2231 /*
2232 * Cannot happen because we already checked above (which also
2233 * cannot happen), and we hold ctx->mutex, which serializes us
2234 * against perf_event_exit_task_context().
2235 */
63b6da39
PZ
2236 raw_spin_unlock_irq(&ctx->lock);
2237 return;
2238 }
39a43640 2239 raw_spin_unlock_irq(&ctx->lock);
39a43640 2240 /*
a096309b
PZ
2241 * Since !ctx->is_active doesn't mean anything, we must IPI
2242 * unconditionally.
39a43640 2243 */
a096309b 2244 goto again;
0793a61d
TG
2245}
2246
fa289bec 2247/*
cdd6c482 2248 * Put a event into inactive state and update time fields.
fa289bec
PM
2249 * Enabling the leader of a group effectively enables all
2250 * the group members that aren't explicitly disabled, so we
2251 * have to update their ->tstamp_enabled also.
2252 * Note: this works for group members as well as group leaders
2253 * since the non-leader members' sibling_lists will be empty.
2254 */
1d9b482e 2255static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2256{
cdd6c482 2257 struct perf_event *sub;
4158755d 2258 u64 tstamp = perf_event_time(event);
fa289bec 2259
cdd6c482 2260 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2261 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2262 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2263 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2264 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2265 }
fa289bec
PM
2266}
2267
d859e29f 2268/*
cdd6c482 2269 * Cross CPU call to enable a performance event
d859e29f 2270 */
fae3fde6
PZ
2271static void __perf_event_enable(struct perf_event *event,
2272 struct perf_cpu_context *cpuctx,
2273 struct perf_event_context *ctx,
2274 void *info)
04289bb9 2275{
cdd6c482 2276 struct perf_event *leader = event->group_leader;
fae3fde6 2277 struct perf_event_context *task_ctx;
04289bb9 2278
6e801e01
PZ
2279 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2280 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2281 return;
3cbed429 2282
bd2afa49
PZ
2283 if (ctx->is_active)
2284 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2285
1d9b482e 2286 __perf_event_mark_enabled(event);
04289bb9 2287
fae3fde6
PZ
2288 if (!ctx->is_active)
2289 return;
2290
e5d1367f 2291 if (!event_filter_match(event)) {
bd2afa49 2292 if (is_cgroup_event(event))
e5d1367f 2293 perf_cgroup_defer_enabled(event);
bd2afa49 2294 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2295 return;
e5d1367f 2296 }
f4c4176f 2297
04289bb9 2298 /*
cdd6c482 2299 * If the event is in a group and isn't the group leader,
d859e29f 2300 * then don't put it on unless the group is on.
04289bb9 2301 */
bd2afa49
PZ
2302 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2304 return;
bd2afa49 2305 }
fe4b04fa 2306
fae3fde6
PZ
2307 task_ctx = cpuctx->task_ctx;
2308 if (ctx->task)
2309 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2310
fae3fde6 2311 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2312}
2313
d859e29f 2314/*
cdd6c482 2315 * Enable a event.
c93f7669 2316 *
cdd6c482
IM
2317 * If event->ctx is a cloned context, callers must make sure that
2318 * every task struct that event->ctx->task could possibly point to
c93f7669 2319 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2320 * perf_event_for_each_child or perf_event_for_each as described
2321 * for perf_event_disable.
d859e29f 2322 */
f63a8daa 2323static void _perf_event_enable(struct perf_event *event)
d859e29f 2324{
cdd6c482 2325 struct perf_event_context *ctx = event->ctx;
d859e29f 2326
7b648018 2327 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2328 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2329 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2330 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2331 return;
2332 }
2333
d859e29f 2334 /*
cdd6c482 2335 * If the event is in error state, clear that first.
7b648018
PZ
2336 *
2337 * That way, if we see the event in error state below, we know that it
2338 * has gone back into error state, as distinct from the task having
2339 * been scheduled away before the cross-call arrived.
d859e29f 2340 */
cdd6c482
IM
2341 if (event->state == PERF_EVENT_STATE_ERROR)
2342 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2343 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2344
fae3fde6 2345 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable();
2350 */
2351void perf_event_enable(struct perf_event *event)
2352{
2353 struct perf_event_context *ctx;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 _perf_event_enable(event);
2357 perf_event_ctx_unlock(event, ctx);
2358}
dcfce4a0 2359EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2360
f63a8daa 2361static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2362{
2023b359 2363 /*
cdd6c482 2364 * not supported on inherited events
2023b359 2365 */
2e939d1d 2366 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2367 return -EINVAL;
2368
cdd6c482 2369 atomic_add(refresh, &event->event_limit);
f63a8daa 2370 _perf_event_enable(event);
2023b359
PZ
2371
2372 return 0;
79f14641 2373}
f63a8daa
PZ
2374
2375/*
2376 * See perf_event_disable()
2377 */
2378int perf_event_refresh(struct perf_event *event, int refresh)
2379{
2380 struct perf_event_context *ctx;
2381 int ret;
2382
2383 ctx = perf_event_ctx_lock(event);
2384 ret = _perf_event_refresh(event, refresh);
2385 perf_event_ctx_unlock(event, ctx);
2386
2387 return ret;
2388}
26ca5c11 2389EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2390
5b0311e1
FW
2391static void ctx_sched_out(struct perf_event_context *ctx,
2392 struct perf_cpu_context *cpuctx,
2393 enum event_type_t event_type)
235c7fc7 2394{
db24d33e 2395 int is_active = ctx->is_active;
c994d613 2396 struct perf_event *event;
235c7fc7 2397
c994d613 2398 lockdep_assert_held(&ctx->lock);
235c7fc7 2399
39a43640
PZ
2400 if (likely(!ctx->nr_events)) {
2401 /*
2402 * See __perf_remove_from_context().
2403 */
2404 WARN_ON_ONCE(ctx->is_active);
2405 if (ctx->task)
2406 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2407 return;
39a43640
PZ
2408 }
2409
db24d33e 2410 ctx->is_active &= ~event_type;
3cbaa590
PZ
2411 if (!(ctx->is_active & EVENT_ALL))
2412 ctx->is_active = 0;
2413
63e30d3e
PZ
2414 if (ctx->task) {
2415 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2416 if (!ctx->is_active)
2417 cpuctx->task_ctx = NULL;
2418 }
facc4307 2419
3cbaa590
PZ
2420 is_active ^= ctx->is_active; /* changed bits */
2421
2422 if (is_active & EVENT_TIME) {
2423 /* update (and stop) ctx time */
2424 update_context_time(ctx);
2425 update_cgrp_time_from_cpuctx(cpuctx);
2426 }
2427
2428 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2429 return;
5b0311e1 2430
075e0b00 2431 perf_pmu_disable(ctx->pmu);
3cbaa590 2432 if (is_active & EVENT_PINNED) {
889ff015
FW
2433 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2434 group_sched_out(event, cpuctx, ctx);
9ed6060d 2435 }
889ff015 2436
3cbaa590 2437 if (is_active & EVENT_FLEXIBLE) {
889ff015 2438 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2439 group_sched_out(event, cpuctx, ctx);
9ed6060d 2440 }
1b9a644f 2441 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2442}
2443
564c2b21 2444/*
5a3126d4
PZ
2445 * Test whether two contexts are equivalent, i.e. whether they have both been
2446 * cloned from the same version of the same context.
2447 *
2448 * Equivalence is measured using a generation number in the context that is
2449 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2450 * and list_del_event().
564c2b21 2451 */
cdd6c482
IM
2452static int context_equiv(struct perf_event_context *ctx1,
2453 struct perf_event_context *ctx2)
564c2b21 2454{
211de6eb
PZ
2455 lockdep_assert_held(&ctx1->lock);
2456 lockdep_assert_held(&ctx2->lock);
2457
5a3126d4
PZ
2458 /* Pinning disables the swap optimization */
2459 if (ctx1->pin_count || ctx2->pin_count)
2460 return 0;
2461
2462 /* If ctx1 is the parent of ctx2 */
2463 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2464 return 1;
2465
2466 /* If ctx2 is the parent of ctx1 */
2467 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2468 return 1;
2469
2470 /*
2471 * If ctx1 and ctx2 have the same parent; we flatten the parent
2472 * hierarchy, see perf_event_init_context().
2473 */
2474 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2475 ctx1->parent_gen == ctx2->parent_gen)
2476 return 1;
2477
2478 /* Unmatched */
2479 return 0;
564c2b21
PM
2480}
2481
cdd6c482
IM
2482static void __perf_event_sync_stat(struct perf_event *event,
2483 struct perf_event *next_event)
bfbd3381
PZ
2484{
2485 u64 value;
2486
cdd6c482 2487 if (!event->attr.inherit_stat)
bfbd3381
PZ
2488 return;
2489
2490 /*
cdd6c482 2491 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2492 * because we're in the middle of a context switch and have IRQs
2493 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2494 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2495 * don't need to use it.
2496 */
cdd6c482
IM
2497 switch (event->state) {
2498 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2499 event->pmu->read(event);
2500 /* fall-through */
bfbd3381 2501
cdd6c482
IM
2502 case PERF_EVENT_STATE_INACTIVE:
2503 update_event_times(event);
bfbd3381
PZ
2504 break;
2505
2506 default:
2507 break;
2508 }
2509
2510 /*
cdd6c482 2511 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2512 * values when we flip the contexts.
2513 */
e7850595
PZ
2514 value = local64_read(&next_event->count);
2515 value = local64_xchg(&event->count, value);
2516 local64_set(&next_event->count, value);
bfbd3381 2517
cdd6c482
IM
2518 swap(event->total_time_enabled, next_event->total_time_enabled);
2519 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2520
bfbd3381 2521 /*
19d2e755 2522 * Since we swizzled the values, update the user visible data too.
bfbd3381 2523 */
cdd6c482
IM
2524 perf_event_update_userpage(event);
2525 perf_event_update_userpage(next_event);
bfbd3381
PZ
2526}
2527
cdd6c482
IM
2528static void perf_event_sync_stat(struct perf_event_context *ctx,
2529 struct perf_event_context *next_ctx)
bfbd3381 2530{
cdd6c482 2531 struct perf_event *event, *next_event;
bfbd3381
PZ
2532
2533 if (!ctx->nr_stat)
2534 return;
2535
02ffdbc8
PZ
2536 update_context_time(ctx);
2537
cdd6c482
IM
2538 event = list_first_entry(&ctx->event_list,
2539 struct perf_event, event_entry);
bfbd3381 2540
cdd6c482
IM
2541 next_event = list_first_entry(&next_ctx->event_list,
2542 struct perf_event, event_entry);
bfbd3381 2543
cdd6c482
IM
2544 while (&event->event_entry != &ctx->event_list &&
2545 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2546
cdd6c482 2547 __perf_event_sync_stat(event, next_event);
bfbd3381 2548
cdd6c482
IM
2549 event = list_next_entry(event, event_entry);
2550 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2551 }
2552}
2553
fe4b04fa
PZ
2554static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2555 struct task_struct *next)
0793a61d 2556{
8dc85d54 2557 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2558 struct perf_event_context *next_ctx;
5a3126d4 2559 struct perf_event_context *parent, *next_parent;
108b02cf 2560 struct perf_cpu_context *cpuctx;
c93f7669 2561 int do_switch = 1;
0793a61d 2562
108b02cf
PZ
2563 if (likely(!ctx))
2564 return;
10989fb2 2565
108b02cf
PZ
2566 cpuctx = __get_cpu_context(ctx);
2567 if (!cpuctx->task_ctx)
0793a61d
TG
2568 return;
2569
c93f7669 2570 rcu_read_lock();
8dc85d54 2571 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2572 if (!next_ctx)
2573 goto unlock;
2574
2575 parent = rcu_dereference(ctx->parent_ctx);
2576 next_parent = rcu_dereference(next_ctx->parent_ctx);
2577
2578 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2579 if (!parent && !next_parent)
5a3126d4
PZ
2580 goto unlock;
2581
2582 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2583 /*
2584 * Looks like the two contexts are clones, so we might be
2585 * able to optimize the context switch. We lock both
2586 * contexts and check that they are clones under the
2587 * lock (including re-checking that neither has been
2588 * uncloned in the meantime). It doesn't matter which
2589 * order we take the locks because no other cpu could
2590 * be trying to lock both of these tasks.
2591 */
e625cce1
TG
2592 raw_spin_lock(&ctx->lock);
2593 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2594 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2595 WRITE_ONCE(ctx->task, next);
2596 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2597
2598 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2599
63b6da39
PZ
2600 /*
2601 * RCU_INIT_POINTER here is safe because we've not
2602 * modified the ctx and the above modification of
2603 * ctx->task and ctx->task_ctx_data are immaterial
2604 * since those values are always verified under
2605 * ctx->lock which we're now holding.
2606 */
2607 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2608 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2609
c93f7669 2610 do_switch = 0;
bfbd3381 2611
cdd6c482 2612 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2613 }
e625cce1
TG
2614 raw_spin_unlock(&next_ctx->lock);
2615 raw_spin_unlock(&ctx->lock);
564c2b21 2616 }
5a3126d4 2617unlock:
c93f7669 2618 rcu_read_unlock();
564c2b21 2619
c93f7669 2620 if (do_switch) {
facc4307 2621 raw_spin_lock(&ctx->lock);
8833d0e2 2622 task_ctx_sched_out(cpuctx, ctx);
facc4307 2623 raw_spin_unlock(&ctx->lock);
c93f7669 2624 }
0793a61d
TG
2625}
2626
ba532500
YZ
2627void perf_sched_cb_dec(struct pmu *pmu)
2628{
2629 this_cpu_dec(perf_sched_cb_usages);
2630}
2631
2632void perf_sched_cb_inc(struct pmu *pmu)
2633{
2634 this_cpu_inc(perf_sched_cb_usages);
2635}
2636
2637/*
2638 * This function provides the context switch callback to the lower code
2639 * layer. It is invoked ONLY when the context switch callback is enabled.
2640 */
2641static void perf_pmu_sched_task(struct task_struct *prev,
2642 struct task_struct *next,
2643 bool sched_in)
2644{
2645 struct perf_cpu_context *cpuctx;
2646 struct pmu *pmu;
2647 unsigned long flags;
2648
2649 if (prev == next)
2650 return;
2651
2652 local_irq_save(flags);
2653
2654 rcu_read_lock();
2655
2656 list_for_each_entry_rcu(pmu, &pmus, entry) {
2657 if (pmu->sched_task) {
2658 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2659
2660 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2661
2662 perf_pmu_disable(pmu);
2663
2664 pmu->sched_task(cpuctx->task_ctx, sched_in);
2665
2666 perf_pmu_enable(pmu);
2667
2668 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2669 }
2670 }
2671
2672 rcu_read_unlock();
2673
2674 local_irq_restore(flags);
2675}
2676
45ac1403
AH
2677static void perf_event_switch(struct task_struct *task,
2678 struct task_struct *next_prev, bool sched_in);
2679
8dc85d54
PZ
2680#define for_each_task_context_nr(ctxn) \
2681 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2682
2683/*
2684 * Called from scheduler to remove the events of the current task,
2685 * with interrupts disabled.
2686 *
2687 * We stop each event and update the event value in event->count.
2688 *
2689 * This does not protect us against NMI, but disable()
2690 * sets the disabled bit in the control field of event _before_
2691 * accessing the event control register. If a NMI hits, then it will
2692 * not restart the event.
2693 */
ab0cce56
JO
2694void __perf_event_task_sched_out(struct task_struct *task,
2695 struct task_struct *next)
8dc85d54
PZ
2696{
2697 int ctxn;
2698
ba532500
YZ
2699 if (__this_cpu_read(perf_sched_cb_usages))
2700 perf_pmu_sched_task(task, next, false);
2701
45ac1403
AH
2702 if (atomic_read(&nr_switch_events))
2703 perf_event_switch(task, next, false);
2704
8dc85d54
PZ
2705 for_each_task_context_nr(ctxn)
2706 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2707
2708 /*
2709 * if cgroup events exist on this CPU, then we need
2710 * to check if we have to switch out PMU state.
2711 * cgroup event are system-wide mode only
2712 */
4a32fea9 2713 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2714 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2715}
2716
5b0311e1
FW
2717/*
2718 * Called with IRQs disabled
2719 */
2720static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2721 enum event_type_t event_type)
2722{
2723 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2724}
2725
235c7fc7 2726static void
5b0311e1 2727ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2728 struct perf_cpu_context *cpuctx)
0793a61d 2729{
cdd6c482 2730 struct perf_event *event;
0793a61d 2731
889ff015
FW
2732 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2733 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2734 continue;
5632ab12 2735 if (!event_filter_match(event))
3b6f9e5c
PM
2736 continue;
2737
e5d1367f
SE
2738 /* may need to reset tstamp_enabled */
2739 if (is_cgroup_event(event))
2740 perf_cgroup_mark_enabled(event, ctx);
2741
8c9ed8e1 2742 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2743 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2744
2745 /*
2746 * If this pinned group hasn't been scheduled,
2747 * put it in error state.
2748 */
cdd6c482
IM
2749 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2750 update_group_times(event);
2751 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2752 }
3b6f9e5c 2753 }
5b0311e1
FW
2754}
2755
2756static void
2757ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2758 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2759{
2760 struct perf_event *event;
2761 int can_add_hw = 1;
3b6f9e5c 2762
889ff015
FW
2763 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2764 /* Ignore events in OFF or ERROR state */
2765 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2766 continue;
04289bb9
IM
2767 /*
2768 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2769 * of events:
04289bb9 2770 */
5632ab12 2771 if (!event_filter_match(event))
0793a61d
TG
2772 continue;
2773
e5d1367f
SE
2774 /* may need to reset tstamp_enabled */
2775 if (is_cgroup_event(event))
2776 perf_cgroup_mark_enabled(event, ctx);
2777
9ed6060d 2778 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2779 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2780 can_add_hw = 0;
9ed6060d 2781 }
0793a61d 2782 }
5b0311e1
FW
2783}
2784
2785static void
2786ctx_sched_in(struct perf_event_context *ctx,
2787 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2788 enum event_type_t event_type,
2789 struct task_struct *task)
5b0311e1 2790{
db24d33e 2791 int is_active = ctx->is_active;
c994d613
PZ
2792 u64 now;
2793
2794 lockdep_assert_held(&ctx->lock);
e5d1367f 2795
5b0311e1 2796 if (likely(!ctx->nr_events))
facc4307 2797 return;
5b0311e1 2798
3cbaa590 2799 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2800 if (ctx->task) {
2801 if (!is_active)
2802 cpuctx->task_ctx = ctx;
2803 else
2804 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2805 }
2806
3cbaa590
PZ
2807 is_active ^= ctx->is_active; /* changed bits */
2808
2809 if (is_active & EVENT_TIME) {
2810 /* start ctx time */
2811 now = perf_clock();
2812 ctx->timestamp = now;
2813 perf_cgroup_set_timestamp(task, ctx);
2814 }
2815
5b0311e1
FW
2816 /*
2817 * First go through the list and put on any pinned groups
2818 * in order to give them the best chance of going on.
2819 */
3cbaa590 2820 if (is_active & EVENT_PINNED)
6e37738a 2821 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2822
2823 /* Then walk through the lower prio flexible groups */
3cbaa590 2824 if (is_active & EVENT_FLEXIBLE)
6e37738a 2825 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2826}
2827
329c0e01 2828static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2829 enum event_type_t event_type,
2830 struct task_struct *task)
329c0e01
FW
2831{
2832 struct perf_event_context *ctx = &cpuctx->ctx;
2833
e5d1367f 2834 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2835}
2836
e5d1367f
SE
2837static void perf_event_context_sched_in(struct perf_event_context *ctx,
2838 struct task_struct *task)
235c7fc7 2839{
108b02cf 2840 struct perf_cpu_context *cpuctx;
235c7fc7 2841
108b02cf 2842 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2843 if (cpuctx->task_ctx == ctx)
2844 return;
2845
facc4307 2846 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2847 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2848 /*
2849 * We want to keep the following priority order:
2850 * cpu pinned (that don't need to move), task pinned,
2851 * cpu flexible, task flexible.
2852 */
2853 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2854 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2855 perf_pmu_enable(ctx->pmu);
2856 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2857}
2858
8dc85d54
PZ
2859/*
2860 * Called from scheduler to add the events of the current task
2861 * with interrupts disabled.
2862 *
2863 * We restore the event value and then enable it.
2864 *
2865 * This does not protect us against NMI, but enable()
2866 * sets the enabled bit in the control field of event _before_
2867 * accessing the event control register. If a NMI hits, then it will
2868 * keep the event running.
2869 */
ab0cce56
JO
2870void __perf_event_task_sched_in(struct task_struct *prev,
2871 struct task_struct *task)
8dc85d54
PZ
2872{
2873 struct perf_event_context *ctx;
2874 int ctxn;
2875
7e41d177
PZ
2876 /*
2877 * If cgroup events exist on this CPU, then we need to check if we have
2878 * to switch in PMU state; cgroup event are system-wide mode only.
2879 *
2880 * Since cgroup events are CPU events, we must schedule these in before
2881 * we schedule in the task events.
2882 */
2883 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2884 perf_cgroup_sched_in(prev, task);
2885
8dc85d54
PZ
2886 for_each_task_context_nr(ctxn) {
2887 ctx = task->perf_event_ctxp[ctxn];
2888 if (likely(!ctx))
2889 continue;
2890
e5d1367f 2891 perf_event_context_sched_in(ctx, task);
8dc85d54 2892 }
d010b332 2893
45ac1403
AH
2894 if (atomic_read(&nr_switch_events))
2895 perf_event_switch(task, prev, true);
2896
ba532500
YZ
2897 if (__this_cpu_read(perf_sched_cb_usages))
2898 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2899}
2900
abd50713
PZ
2901static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2902{
2903 u64 frequency = event->attr.sample_freq;
2904 u64 sec = NSEC_PER_SEC;
2905 u64 divisor, dividend;
2906
2907 int count_fls, nsec_fls, frequency_fls, sec_fls;
2908
2909 count_fls = fls64(count);
2910 nsec_fls = fls64(nsec);
2911 frequency_fls = fls64(frequency);
2912 sec_fls = 30;
2913
2914 /*
2915 * We got @count in @nsec, with a target of sample_freq HZ
2916 * the target period becomes:
2917 *
2918 * @count * 10^9
2919 * period = -------------------
2920 * @nsec * sample_freq
2921 *
2922 */
2923
2924 /*
2925 * Reduce accuracy by one bit such that @a and @b converge
2926 * to a similar magnitude.
2927 */
fe4b04fa 2928#define REDUCE_FLS(a, b) \
abd50713
PZ
2929do { \
2930 if (a##_fls > b##_fls) { \
2931 a >>= 1; \
2932 a##_fls--; \
2933 } else { \
2934 b >>= 1; \
2935 b##_fls--; \
2936 } \
2937} while (0)
2938
2939 /*
2940 * Reduce accuracy until either term fits in a u64, then proceed with
2941 * the other, so that finally we can do a u64/u64 division.
2942 */
2943 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2944 REDUCE_FLS(nsec, frequency);
2945 REDUCE_FLS(sec, count);
2946 }
2947
2948 if (count_fls + sec_fls > 64) {
2949 divisor = nsec * frequency;
2950
2951 while (count_fls + sec_fls > 64) {
2952 REDUCE_FLS(count, sec);
2953 divisor >>= 1;
2954 }
2955
2956 dividend = count * sec;
2957 } else {
2958 dividend = count * sec;
2959
2960 while (nsec_fls + frequency_fls > 64) {
2961 REDUCE_FLS(nsec, frequency);
2962 dividend >>= 1;
2963 }
2964
2965 divisor = nsec * frequency;
2966 }
2967
f6ab91ad
PZ
2968 if (!divisor)
2969 return dividend;
2970
abd50713
PZ
2971 return div64_u64(dividend, divisor);
2972}
2973
e050e3f0
SE
2974static DEFINE_PER_CPU(int, perf_throttled_count);
2975static DEFINE_PER_CPU(u64, perf_throttled_seq);
2976
f39d47ff 2977static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2978{
cdd6c482 2979 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2980 s64 period, sample_period;
bd2b5b12
PZ
2981 s64 delta;
2982
abd50713 2983 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2984
2985 delta = (s64)(period - hwc->sample_period);
2986 delta = (delta + 7) / 8; /* low pass filter */
2987
2988 sample_period = hwc->sample_period + delta;
2989
2990 if (!sample_period)
2991 sample_period = 1;
2992
bd2b5b12 2993 hwc->sample_period = sample_period;
abd50713 2994
e7850595 2995 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2996 if (disable)
2997 event->pmu->stop(event, PERF_EF_UPDATE);
2998
e7850595 2999 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3000
3001 if (disable)
3002 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3003 }
bd2b5b12
PZ
3004}
3005
e050e3f0
SE
3006/*
3007 * combine freq adjustment with unthrottling to avoid two passes over the
3008 * events. At the same time, make sure, having freq events does not change
3009 * the rate of unthrottling as that would introduce bias.
3010 */
3011static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3012 int needs_unthr)
60db5e09 3013{
cdd6c482
IM
3014 struct perf_event *event;
3015 struct hw_perf_event *hwc;
e050e3f0 3016 u64 now, period = TICK_NSEC;
abd50713 3017 s64 delta;
60db5e09 3018
e050e3f0
SE
3019 /*
3020 * only need to iterate over all events iff:
3021 * - context have events in frequency mode (needs freq adjust)
3022 * - there are events to unthrottle on this cpu
3023 */
3024 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3025 return;
3026
e050e3f0 3027 raw_spin_lock(&ctx->lock);
f39d47ff 3028 perf_pmu_disable(ctx->pmu);
e050e3f0 3029
03541f8b 3030 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3031 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3032 continue;
3033
5632ab12 3034 if (!event_filter_match(event))
5d27c23d
PZ
3035 continue;
3036
44377277
AS
3037 perf_pmu_disable(event->pmu);
3038
cdd6c482 3039 hwc = &event->hw;
6a24ed6c 3040
ae23bff1 3041 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3042 hwc->interrupts = 0;
cdd6c482 3043 perf_log_throttle(event, 1);
a4eaf7f1 3044 event->pmu->start(event, 0);
a78ac325
PZ
3045 }
3046
cdd6c482 3047 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3048 goto next;
60db5e09 3049
e050e3f0
SE
3050 /*
3051 * stop the event and update event->count
3052 */
3053 event->pmu->stop(event, PERF_EF_UPDATE);
3054
e7850595 3055 now = local64_read(&event->count);
abd50713
PZ
3056 delta = now - hwc->freq_count_stamp;
3057 hwc->freq_count_stamp = now;
60db5e09 3058
e050e3f0
SE
3059 /*
3060 * restart the event
3061 * reload only if value has changed
f39d47ff
SE
3062 * we have stopped the event so tell that
3063 * to perf_adjust_period() to avoid stopping it
3064 * twice.
e050e3f0 3065 */
abd50713 3066 if (delta > 0)
f39d47ff 3067 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3068
3069 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3070 next:
3071 perf_pmu_enable(event->pmu);
60db5e09 3072 }
e050e3f0 3073
f39d47ff 3074 perf_pmu_enable(ctx->pmu);
e050e3f0 3075 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3076}
3077
235c7fc7 3078/*
cdd6c482 3079 * Round-robin a context's events:
235c7fc7 3080 */
cdd6c482 3081static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3082{
dddd3379
TG
3083 /*
3084 * Rotate the first entry last of non-pinned groups. Rotation might be
3085 * disabled by the inheritance code.
3086 */
3087 if (!ctx->rotate_disable)
3088 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3089}
3090
9e630205 3091static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3092{
8dc85d54 3093 struct perf_event_context *ctx = NULL;
2fde4f94 3094 int rotate = 0;
7fc23a53 3095
b5ab4cd5 3096 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3097 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3098 rotate = 1;
3099 }
235c7fc7 3100
8dc85d54 3101 ctx = cpuctx->task_ctx;
b5ab4cd5 3102 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3103 if (ctx->nr_events != ctx->nr_active)
3104 rotate = 1;
3105 }
9717e6cd 3106
e050e3f0 3107 if (!rotate)
0f5a2601
PZ
3108 goto done;
3109
facc4307 3110 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3111 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3112
e050e3f0
SE
3113 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3114 if (ctx)
3115 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3116
e050e3f0
SE
3117 rotate_ctx(&cpuctx->ctx);
3118 if (ctx)
3119 rotate_ctx(ctx);
235c7fc7 3120
e050e3f0 3121 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3122
0f5a2601
PZ
3123 perf_pmu_enable(cpuctx->ctx.pmu);
3124 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3125done:
9e630205
SE
3126
3127 return rotate;
e9d2b064
PZ
3128}
3129
3130void perf_event_task_tick(void)
3131{
2fde4f94
MR
3132 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3133 struct perf_event_context *ctx, *tmp;
e050e3f0 3134 int throttled;
b5ab4cd5 3135
e9d2b064
PZ
3136 WARN_ON(!irqs_disabled());
3137
e050e3f0
SE
3138 __this_cpu_inc(perf_throttled_seq);
3139 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3140 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3141
2fde4f94 3142 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3143 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3144}
3145
889ff015
FW
3146static int event_enable_on_exec(struct perf_event *event,
3147 struct perf_event_context *ctx)
3148{
3149 if (!event->attr.enable_on_exec)
3150 return 0;
3151
3152 event->attr.enable_on_exec = 0;
3153 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3154 return 0;
3155
1d9b482e 3156 __perf_event_mark_enabled(event);
889ff015
FW
3157
3158 return 1;
3159}
3160
57e7986e 3161/*
cdd6c482 3162 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3163 * This expects task == current.
3164 */
c1274499 3165static void perf_event_enable_on_exec(int ctxn)
57e7986e 3166{
c1274499 3167 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3168 struct perf_cpu_context *cpuctx;
cdd6c482 3169 struct perf_event *event;
57e7986e
PM
3170 unsigned long flags;
3171 int enabled = 0;
3172
3173 local_irq_save(flags);
c1274499 3174 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3175 if (!ctx || !ctx->nr_events)
57e7986e
PM
3176 goto out;
3177
3e349507
PZ
3178 cpuctx = __get_cpu_context(ctx);
3179 perf_ctx_lock(cpuctx, ctx);
7fce2509 3180 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3181 list_for_each_entry(event, &ctx->event_list, event_entry)
3182 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3183
3184 /*
3e349507 3185 * Unclone and reschedule this context if we enabled any event.
57e7986e 3186 */
3e349507 3187 if (enabled) {
211de6eb 3188 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3189 ctx_resched(cpuctx, ctx);
3190 }
3191 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3192
9ed6060d 3193out:
57e7986e 3194 local_irq_restore(flags);
211de6eb
PZ
3195
3196 if (clone_ctx)
3197 put_ctx(clone_ctx);
57e7986e
PM
3198}
3199
e041e328
PZ
3200void perf_event_exec(void)
3201{
e041e328
PZ
3202 int ctxn;
3203
3204 rcu_read_lock();
c1274499
PZ
3205 for_each_task_context_nr(ctxn)
3206 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3207 rcu_read_unlock();
3208}
3209
0492d4c5
PZ
3210struct perf_read_data {
3211 struct perf_event *event;
3212 bool group;
7d88962e 3213 int ret;
0492d4c5
PZ
3214};
3215
0793a61d 3216/*
cdd6c482 3217 * Cross CPU call to read the hardware event
0793a61d 3218 */
cdd6c482 3219static void __perf_event_read(void *info)
0793a61d 3220{
0492d4c5
PZ
3221 struct perf_read_data *data = info;
3222 struct perf_event *sub, *event = data->event;
cdd6c482 3223 struct perf_event_context *ctx = event->ctx;
108b02cf 3224 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3225 struct pmu *pmu = event->pmu;
621a01ea 3226
e1ac3614
PM
3227 /*
3228 * If this is a task context, we need to check whether it is
3229 * the current task context of this cpu. If not it has been
3230 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3231 * event->count would have been updated to a recent sample
3232 * when the event was scheduled out.
e1ac3614
PM
3233 */
3234 if (ctx->task && cpuctx->task_ctx != ctx)
3235 return;
3236
e625cce1 3237 raw_spin_lock(&ctx->lock);
e5d1367f 3238 if (ctx->is_active) {
542e72fc 3239 update_context_time(ctx);
e5d1367f
SE
3240 update_cgrp_time_from_event(event);
3241 }
0492d4c5 3242
cdd6c482 3243 update_event_times(event);
4a00c16e
SB
3244 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245 goto unlock;
0492d4c5 3246
4a00c16e
SB
3247 if (!data->group) {
3248 pmu->read(event);
3249 data->ret = 0;
0492d4c5 3250 goto unlock;
4a00c16e
SB
3251 }
3252
3253 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3254
3255 pmu->read(event);
0492d4c5
PZ
3256
3257 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3258 update_event_times(sub);
4a00c16e
SB
3259 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3260 /*
3261 * Use sibling's PMU rather than @event's since
3262 * sibling could be on different (eg: software) PMU.
3263 */
0492d4c5 3264 sub->pmu->read(sub);
4a00c16e 3265 }
0492d4c5 3266 }
4a00c16e
SB
3267
3268 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3269
3270unlock:
e625cce1 3271 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3272}
3273
b5e58793
PZ
3274static inline u64 perf_event_count(struct perf_event *event)
3275{
eacd3ecc
MF
3276 if (event->pmu->count)
3277 return event->pmu->count(event);
3278
3279 return __perf_event_count(event);
b5e58793
PZ
3280}
3281
ffe8690c
KX
3282/*
3283 * NMI-safe method to read a local event, that is an event that
3284 * is:
3285 * - either for the current task, or for this CPU
3286 * - does not have inherit set, for inherited task events
3287 * will not be local and we cannot read them atomically
3288 * - must not have a pmu::count method
3289 */
3290u64 perf_event_read_local(struct perf_event *event)
3291{
3292 unsigned long flags;
3293 u64 val;
3294
3295 /*
3296 * Disabling interrupts avoids all counter scheduling (context
3297 * switches, timer based rotation and IPIs).
3298 */
3299 local_irq_save(flags);
3300
3301 /* If this is a per-task event, it must be for current */
3302 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3303 event->hw.target != current);
3304
3305 /* If this is a per-CPU event, it must be for this CPU */
3306 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3307 event->cpu != smp_processor_id());
3308
3309 /*
3310 * It must not be an event with inherit set, we cannot read
3311 * all child counters from atomic context.
3312 */
3313 WARN_ON_ONCE(event->attr.inherit);
3314
3315 /*
3316 * It must not have a pmu::count method, those are not
3317 * NMI safe.
3318 */
3319 WARN_ON_ONCE(event->pmu->count);
3320
3321 /*
3322 * If the event is currently on this CPU, its either a per-task event,
3323 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3324 * oncpu == -1).
3325 */
3326 if (event->oncpu == smp_processor_id())
3327 event->pmu->read(event);
3328
3329 val = local64_read(&event->count);
3330 local_irq_restore(flags);
3331
3332 return val;
3333}
3334
7d88962e 3335static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3336{
7d88962e
SB
3337 int ret = 0;
3338
0793a61d 3339 /*
cdd6c482
IM
3340 * If event is enabled and currently active on a CPU, update the
3341 * value in the event structure:
0793a61d 3342 */
cdd6c482 3343 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3344 struct perf_read_data data = {
3345 .event = event,
3346 .group = group,
7d88962e 3347 .ret = 0,
0492d4c5 3348 };
cdd6c482 3349 smp_call_function_single(event->oncpu,
0492d4c5 3350 __perf_event_read, &data, 1);
7d88962e 3351 ret = data.ret;
cdd6c482 3352 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3353 struct perf_event_context *ctx = event->ctx;
3354 unsigned long flags;
3355
e625cce1 3356 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3357 /*
3358 * may read while context is not active
3359 * (e.g., thread is blocked), in that case
3360 * we cannot update context time
3361 */
e5d1367f 3362 if (ctx->is_active) {
c530ccd9 3363 update_context_time(ctx);
e5d1367f
SE
3364 update_cgrp_time_from_event(event);
3365 }
0492d4c5
PZ
3366 if (group)
3367 update_group_times(event);
3368 else
3369 update_event_times(event);
e625cce1 3370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3371 }
7d88962e
SB
3372
3373 return ret;
0793a61d
TG
3374}
3375
a63eaf34 3376/*
cdd6c482 3377 * Initialize the perf_event context in a task_struct:
a63eaf34 3378 */
eb184479 3379static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3380{
e625cce1 3381 raw_spin_lock_init(&ctx->lock);
a63eaf34 3382 mutex_init(&ctx->mutex);
2fde4f94 3383 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3384 INIT_LIST_HEAD(&ctx->pinned_groups);
3385 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3386 INIT_LIST_HEAD(&ctx->event_list);
3387 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3388}
3389
3390static struct perf_event_context *
3391alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3392{
3393 struct perf_event_context *ctx;
3394
3395 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3396 if (!ctx)
3397 return NULL;
3398
3399 __perf_event_init_context(ctx);
3400 if (task) {
3401 ctx->task = task;
3402 get_task_struct(task);
0793a61d 3403 }
eb184479
PZ
3404 ctx->pmu = pmu;
3405
3406 return ctx;
a63eaf34
PM
3407}
3408
2ebd4ffb
MH
3409static struct task_struct *
3410find_lively_task_by_vpid(pid_t vpid)
3411{
3412 struct task_struct *task;
3413 int err;
0793a61d
TG
3414
3415 rcu_read_lock();
2ebd4ffb 3416 if (!vpid)
0793a61d
TG
3417 task = current;
3418 else
2ebd4ffb 3419 task = find_task_by_vpid(vpid);
0793a61d
TG
3420 if (task)
3421 get_task_struct(task);
3422 rcu_read_unlock();
3423
3424 if (!task)
3425 return ERR_PTR(-ESRCH);
3426
0793a61d 3427 /* Reuse ptrace permission checks for now. */
c93f7669 3428 err = -EACCES;
caaee623 3429 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3430 goto errout;
3431
2ebd4ffb
MH
3432 return task;
3433errout:
3434 put_task_struct(task);
3435 return ERR_PTR(err);
3436
3437}
3438
fe4b04fa
PZ
3439/*
3440 * Returns a matching context with refcount and pincount.
3441 */
108b02cf 3442static struct perf_event_context *
4af57ef2
YZ
3443find_get_context(struct pmu *pmu, struct task_struct *task,
3444 struct perf_event *event)
0793a61d 3445{
211de6eb 3446 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3447 struct perf_cpu_context *cpuctx;
4af57ef2 3448 void *task_ctx_data = NULL;
25346b93 3449 unsigned long flags;
8dc85d54 3450 int ctxn, err;
4af57ef2 3451 int cpu = event->cpu;
0793a61d 3452
22a4ec72 3453 if (!task) {
cdd6c482 3454 /* Must be root to operate on a CPU event: */
0764771d 3455 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3456 return ERR_PTR(-EACCES);
3457
0793a61d 3458 /*
cdd6c482 3459 * We could be clever and allow to attach a event to an
0793a61d
TG
3460 * offline CPU and activate it when the CPU comes up, but
3461 * that's for later.
3462 */
f6325e30 3463 if (!cpu_online(cpu))
0793a61d
TG
3464 return ERR_PTR(-ENODEV);
3465
108b02cf 3466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3467 ctx = &cpuctx->ctx;
c93f7669 3468 get_ctx(ctx);
fe4b04fa 3469 ++ctx->pin_count;
0793a61d 3470
0793a61d
TG
3471 return ctx;
3472 }
3473
8dc85d54
PZ
3474 err = -EINVAL;
3475 ctxn = pmu->task_ctx_nr;
3476 if (ctxn < 0)
3477 goto errout;
3478
4af57ef2
YZ
3479 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3480 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3481 if (!task_ctx_data) {
3482 err = -ENOMEM;
3483 goto errout;
3484 }
3485 }
3486
9ed6060d 3487retry:
8dc85d54 3488 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3489 if (ctx) {
211de6eb 3490 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3491 ++ctx->pin_count;
4af57ef2
YZ
3492
3493 if (task_ctx_data && !ctx->task_ctx_data) {
3494 ctx->task_ctx_data = task_ctx_data;
3495 task_ctx_data = NULL;
3496 }
e625cce1 3497 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3498
3499 if (clone_ctx)
3500 put_ctx(clone_ctx);
9137fb28 3501 } else {
eb184479 3502 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3503 err = -ENOMEM;
3504 if (!ctx)
3505 goto errout;
eb184479 3506
4af57ef2
YZ
3507 if (task_ctx_data) {
3508 ctx->task_ctx_data = task_ctx_data;
3509 task_ctx_data = NULL;
3510 }
3511
dbe08d82
ON
3512 err = 0;
3513 mutex_lock(&task->perf_event_mutex);
3514 /*
3515 * If it has already passed perf_event_exit_task().
3516 * we must see PF_EXITING, it takes this mutex too.
3517 */
3518 if (task->flags & PF_EXITING)
3519 err = -ESRCH;
3520 else if (task->perf_event_ctxp[ctxn])
3521 err = -EAGAIN;
fe4b04fa 3522 else {
9137fb28 3523 get_ctx(ctx);
fe4b04fa 3524 ++ctx->pin_count;
dbe08d82 3525 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3526 }
dbe08d82
ON
3527 mutex_unlock(&task->perf_event_mutex);
3528
3529 if (unlikely(err)) {
9137fb28 3530 put_ctx(ctx);
dbe08d82
ON
3531
3532 if (err == -EAGAIN)
3533 goto retry;
3534 goto errout;
a63eaf34
PM
3535 }
3536 }
3537
4af57ef2 3538 kfree(task_ctx_data);
0793a61d 3539 return ctx;
c93f7669 3540
9ed6060d 3541errout:
4af57ef2 3542 kfree(task_ctx_data);
c93f7669 3543 return ERR_PTR(err);
0793a61d
TG
3544}
3545
6fb2915d 3546static void perf_event_free_filter(struct perf_event *event);
2541517c 3547static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3548
cdd6c482 3549static void free_event_rcu(struct rcu_head *head)
592903cd 3550{
cdd6c482 3551 struct perf_event *event;
592903cd 3552
cdd6c482
IM
3553 event = container_of(head, struct perf_event, rcu_head);
3554 if (event->ns)
3555 put_pid_ns(event->ns);
6fb2915d 3556 perf_event_free_filter(event);
cdd6c482 3557 kfree(event);
592903cd
PZ
3558}
3559
b69cf536
PZ
3560static void ring_buffer_attach(struct perf_event *event,
3561 struct ring_buffer *rb);
925d519a 3562
4beb31f3 3563static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3564{
4beb31f3
FW
3565 if (event->parent)
3566 return;
3567
4beb31f3
FW
3568 if (is_cgroup_event(event))
3569 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3570}
925d519a 3571
555e0c1e
FW
3572#ifdef CONFIG_NO_HZ_FULL
3573static DEFINE_SPINLOCK(nr_freq_lock);
3574#endif
3575
3576static void unaccount_freq_event_nohz(void)
3577{
3578#ifdef CONFIG_NO_HZ_FULL
3579 spin_lock(&nr_freq_lock);
3580 if (atomic_dec_and_test(&nr_freq_events))
3581 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3582 spin_unlock(&nr_freq_lock);
3583#endif
3584}
3585
3586static void unaccount_freq_event(void)
3587{
3588 if (tick_nohz_full_enabled())
3589 unaccount_freq_event_nohz();
3590 else
3591 atomic_dec(&nr_freq_events);
3592}
3593
4beb31f3
FW
3594static void unaccount_event(struct perf_event *event)
3595{
25432ae9
PZ
3596 bool dec = false;
3597
4beb31f3
FW
3598 if (event->parent)
3599 return;
3600
3601 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3602 dec = true;
4beb31f3
FW
3603 if (event->attr.mmap || event->attr.mmap_data)
3604 atomic_dec(&nr_mmap_events);
3605 if (event->attr.comm)
3606 atomic_dec(&nr_comm_events);
3607 if (event->attr.task)
3608 atomic_dec(&nr_task_events);
948b26b6 3609 if (event->attr.freq)
555e0c1e 3610 unaccount_freq_event();
45ac1403 3611 if (event->attr.context_switch) {
25432ae9 3612 dec = true;
45ac1403
AH
3613 atomic_dec(&nr_switch_events);
3614 }
4beb31f3 3615 if (is_cgroup_event(event))
25432ae9 3616 dec = true;
4beb31f3 3617 if (has_branch_stack(event))
25432ae9
PZ
3618 dec = true;
3619
9107c89e
PZ
3620 if (dec) {
3621 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3622 schedule_delayed_work(&perf_sched_work, HZ);
3623 }
4beb31f3
FW
3624
3625 unaccount_event_cpu(event, event->cpu);
3626}
925d519a 3627
9107c89e
PZ
3628static void perf_sched_delayed(struct work_struct *work)
3629{
3630 mutex_lock(&perf_sched_mutex);
3631 if (atomic_dec_and_test(&perf_sched_count))
3632 static_branch_disable(&perf_sched_events);
3633 mutex_unlock(&perf_sched_mutex);
3634}
3635
bed5b25a
AS
3636/*
3637 * The following implement mutual exclusion of events on "exclusive" pmus
3638 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3639 * at a time, so we disallow creating events that might conflict, namely:
3640 *
3641 * 1) cpu-wide events in the presence of per-task events,
3642 * 2) per-task events in the presence of cpu-wide events,
3643 * 3) two matching events on the same context.
3644 *
3645 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3646 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3647 */
3648static int exclusive_event_init(struct perf_event *event)
3649{
3650 struct pmu *pmu = event->pmu;
3651
3652 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3653 return 0;
3654
3655 /*
3656 * Prevent co-existence of per-task and cpu-wide events on the
3657 * same exclusive pmu.
3658 *
3659 * Negative pmu::exclusive_cnt means there are cpu-wide
3660 * events on this "exclusive" pmu, positive means there are
3661 * per-task events.
3662 *
3663 * Since this is called in perf_event_alloc() path, event::ctx
3664 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3665 * to mean "per-task event", because unlike other attach states it
3666 * never gets cleared.
3667 */
3668 if (event->attach_state & PERF_ATTACH_TASK) {
3669 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3670 return -EBUSY;
3671 } else {
3672 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3673 return -EBUSY;
3674 }
3675
3676 return 0;
3677}
3678
3679static void exclusive_event_destroy(struct perf_event *event)
3680{
3681 struct pmu *pmu = event->pmu;
3682
3683 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3684 return;
3685
3686 /* see comment in exclusive_event_init() */
3687 if (event->attach_state & PERF_ATTACH_TASK)
3688 atomic_dec(&pmu->exclusive_cnt);
3689 else
3690 atomic_inc(&pmu->exclusive_cnt);
3691}
3692
3693static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3694{
3695 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3696 (e1->cpu == e2->cpu ||
3697 e1->cpu == -1 ||
3698 e2->cpu == -1))
3699 return true;
3700 return false;
3701}
3702
3703/* Called under the same ctx::mutex as perf_install_in_context() */
3704static bool exclusive_event_installable(struct perf_event *event,
3705 struct perf_event_context *ctx)
3706{
3707 struct perf_event *iter_event;
3708 struct pmu *pmu = event->pmu;
3709
3710 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3711 return true;
3712
3713 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3714 if (exclusive_event_match(iter_event, event))
3715 return false;
3716 }
3717
3718 return true;
3719}
3720
683ede43 3721static void _free_event(struct perf_event *event)
f1600952 3722{
e360adbe 3723 irq_work_sync(&event->pending);
925d519a 3724
4beb31f3 3725 unaccount_event(event);
9ee318a7 3726
76369139 3727 if (event->rb) {
9bb5d40c
PZ
3728 /*
3729 * Can happen when we close an event with re-directed output.
3730 *
3731 * Since we have a 0 refcount, perf_mmap_close() will skip
3732 * over us; possibly making our ring_buffer_put() the last.
3733 */
3734 mutex_lock(&event->mmap_mutex);
b69cf536 3735 ring_buffer_attach(event, NULL);
9bb5d40c 3736 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3737 }
3738
e5d1367f
SE
3739 if (is_cgroup_event(event))
3740 perf_detach_cgroup(event);
3741
a0733e69
PZ
3742 if (!event->parent) {
3743 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3744 put_callchain_buffers();
3745 }
3746
3747 perf_event_free_bpf_prog(event);
3748
3749 if (event->destroy)
3750 event->destroy(event);
3751
3752 if (event->ctx)
3753 put_ctx(event->ctx);
3754
3755 if (event->pmu) {
3756 exclusive_event_destroy(event);
3757 module_put(event->pmu->module);
3758 }
3759
3760 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3761}
3762
683ede43
PZ
3763/*
3764 * Used to free events which have a known refcount of 1, such as in error paths
3765 * where the event isn't exposed yet and inherited events.
3766 */
3767static void free_event(struct perf_event *event)
0793a61d 3768{
683ede43
PZ
3769 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3770 "unexpected event refcount: %ld; ptr=%p\n",
3771 atomic_long_read(&event->refcount), event)) {
3772 /* leak to avoid use-after-free */
3773 return;
3774 }
0793a61d 3775
683ede43 3776 _free_event(event);
0793a61d
TG
3777}
3778
a66a3052 3779/*
f8697762 3780 * Remove user event from the owner task.
a66a3052 3781 */
f8697762 3782static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3783{
8882135b 3784 struct task_struct *owner;
fb0459d7 3785
8882135b 3786 rcu_read_lock();
8882135b 3787 /*
f47c02c0
PZ
3788 * Matches the smp_store_release() in perf_event_exit_task(). If we
3789 * observe !owner it means the list deletion is complete and we can
3790 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3791 * owner->perf_event_mutex.
3792 */
f47c02c0 3793 owner = lockless_dereference(event->owner);
8882135b
PZ
3794 if (owner) {
3795 /*
3796 * Since delayed_put_task_struct() also drops the last
3797 * task reference we can safely take a new reference
3798 * while holding the rcu_read_lock().
3799 */
3800 get_task_struct(owner);
3801 }
3802 rcu_read_unlock();
3803
3804 if (owner) {
f63a8daa
PZ
3805 /*
3806 * If we're here through perf_event_exit_task() we're already
3807 * holding ctx->mutex which would be an inversion wrt. the
3808 * normal lock order.
3809 *
3810 * However we can safely take this lock because its the child
3811 * ctx->mutex.
3812 */
3813 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3814
8882135b
PZ
3815 /*
3816 * We have to re-check the event->owner field, if it is cleared
3817 * we raced with perf_event_exit_task(), acquiring the mutex
3818 * ensured they're done, and we can proceed with freeing the
3819 * event.
3820 */
f47c02c0 3821 if (event->owner) {
8882135b 3822 list_del_init(&event->owner_entry);
f47c02c0
PZ
3823 smp_store_release(&event->owner, NULL);
3824 }
8882135b
PZ
3825 mutex_unlock(&owner->perf_event_mutex);
3826 put_task_struct(owner);
3827 }
f8697762
JO
3828}
3829
f8697762
JO
3830static void put_event(struct perf_event *event)
3831{
f8697762
JO
3832 if (!atomic_long_dec_and_test(&event->refcount))
3833 return;
3834
c6e5b732
PZ
3835 _free_event(event);
3836}
3837
3838/*
3839 * Kill an event dead; while event:refcount will preserve the event
3840 * object, it will not preserve its functionality. Once the last 'user'
3841 * gives up the object, we'll destroy the thing.
3842 */
3843int perf_event_release_kernel(struct perf_event *event)
3844{
a4f4bb6d 3845 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3846 struct perf_event *child, *tmp;
3847
a4f4bb6d
PZ
3848 /*
3849 * If we got here through err_file: fput(event_file); we will not have
3850 * attached to a context yet.
3851 */
3852 if (!ctx) {
3853 WARN_ON_ONCE(event->attach_state &
3854 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3855 goto no_ctx;
3856 }
3857
f8697762
JO
3858 if (!is_kernel_event(event))
3859 perf_remove_from_owner(event);
8882135b 3860
5fa7c8ec 3861 ctx = perf_event_ctx_lock(event);
a83fe28e 3862 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3863 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3864
a69b0ca4 3865 raw_spin_lock_irq(&ctx->lock);
683ede43 3866 /*
a69b0ca4
PZ
3867 * Mark this even as STATE_DEAD, there is no external reference to it
3868 * anymore.
683ede43 3869 *
a69b0ca4
PZ
3870 * Anybody acquiring event->child_mutex after the below loop _must_
3871 * also see this, most importantly inherit_event() which will avoid
3872 * placing more children on the list.
683ede43 3873 *
c6e5b732
PZ
3874 * Thus this guarantees that we will in fact observe and kill _ALL_
3875 * child events.
683ede43 3876 */
a69b0ca4
PZ
3877 event->state = PERF_EVENT_STATE_DEAD;
3878 raw_spin_unlock_irq(&ctx->lock);
3879
3880 perf_event_ctx_unlock(event, ctx);
683ede43 3881
c6e5b732
PZ
3882again:
3883 mutex_lock(&event->child_mutex);
3884 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3885
c6e5b732
PZ
3886 /*
3887 * Cannot change, child events are not migrated, see the
3888 * comment with perf_event_ctx_lock_nested().
3889 */
3890 ctx = lockless_dereference(child->ctx);
3891 /*
3892 * Since child_mutex nests inside ctx::mutex, we must jump
3893 * through hoops. We start by grabbing a reference on the ctx.
3894 *
3895 * Since the event cannot get freed while we hold the
3896 * child_mutex, the context must also exist and have a !0
3897 * reference count.
3898 */
3899 get_ctx(ctx);
3900
3901 /*
3902 * Now that we have a ctx ref, we can drop child_mutex, and
3903 * acquire ctx::mutex without fear of it going away. Then we
3904 * can re-acquire child_mutex.
3905 */
3906 mutex_unlock(&event->child_mutex);
3907 mutex_lock(&ctx->mutex);
3908 mutex_lock(&event->child_mutex);
3909
3910 /*
3911 * Now that we hold ctx::mutex and child_mutex, revalidate our
3912 * state, if child is still the first entry, it didn't get freed
3913 * and we can continue doing so.
3914 */
3915 tmp = list_first_entry_or_null(&event->child_list,
3916 struct perf_event, child_list);
3917 if (tmp == child) {
3918 perf_remove_from_context(child, DETACH_GROUP);
3919 list_del(&child->child_list);
3920 free_event(child);
3921 /*
3922 * This matches the refcount bump in inherit_event();
3923 * this can't be the last reference.
3924 */
3925 put_event(event);
3926 }
3927
3928 mutex_unlock(&event->child_mutex);
3929 mutex_unlock(&ctx->mutex);
3930 put_ctx(ctx);
3931 goto again;
3932 }
3933 mutex_unlock(&event->child_mutex);
3934
a4f4bb6d
PZ
3935no_ctx:
3936 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3937 return 0;
3938}
3939EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3940
8b10c5e2
PZ
3941/*
3942 * Called when the last reference to the file is gone.
3943 */
a6fa941d
AV
3944static int perf_release(struct inode *inode, struct file *file)
3945{
c6e5b732 3946 perf_event_release_kernel(file->private_data);
a6fa941d 3947 return 0;
fb0459d7 3948}
fb0459d7 3949
59ed446f 3950u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3951{
cdd6c482 3952 struct perf_event *child;
e53c0994
PZ
3953 u64 total = 0;
3954
59ed446f
PZ
3955 *enabled = 0;
3956 *running = 0;
3957
6f10581a 3958 mutex_lock(&event->child_mutex);
01add3ea 3959
7d88962e 3960 (void)perf_event_read(event, false);
01add3ea
SB
3961 total += perf_event_count(event);
3962
59ed446f
PZ
3963 *enabled += event->total_time_enabled +
3964 atomic64_read(&event->child_total_time_enabled);
3965 *running += event->total_time_running +
3966 atomic64_read(&event->child_total_time_running);
3967
3968 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3969 (void)perf_event_read(child, false);
01add3ea 3970 total += perf_event_count(child);
59ed446f
PZ
3971 *enabled += child->total_time_enabled;
3972 *running += child->total_time_running;
3973 }
6f10581a 3974 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3975
3976 return total;
3977}
fb0459d7 3978EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3979
7d88962e 3980static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3981 u64 read_format, u64 *values)
3dab77fb 3982{
fa8c2693
PZ
3983 struct perf_event *sub;
3984 int n = 1; /* skip @nr */
7d88962e 3985 int ret;
f63a8daa 3986
7d88962e
SB
3987 ret = perf_event_read(leader, true);
3988 if (ret)
3989 return ret;
abf4868b 3990
fa8c2693
PZ
3991 /*
3992 * Since we co-schedule groups, {enabled,running} times of siblings
3993 * will be identical to those of the leader, so we only publish one
3994 * set.
3995 */
3996 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3997 values[n++] += leader->total_time_enabled +
3998 atomic64_read(&leader->child_total_time_enabled);
3999 }
3dab77fb 4000
fa8c2693
PZ
4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4002 values[n++] += leader->total_time_running +
4003 atomic64_read(&leader->child_total_time_running);
4004 }
4005
4006 /*
4007 * Write {count,id} tuples for every sibling.
4008 */
4009 values[n++] += perf_event_count(leader);
abf4868b
PZ
4010 if (read_format & PERF_FORMAT_ID)
4011 values[n++] = primary_event_id(leader);
3dab77fb 4012
fa8c2693
PZ
4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 values[n++] += perf_event_count(sub);
4015 if (read_format & PERF_FORMAT_ID)
4016 values[n++] = primary_event_id(sub);
4017 }
7d88962e
SB
4018
4019 return 0;
fa8c2693 4020}
3dab77fb 4021
fa8c2693
PZ
4022static int perf_read_group(struct perf_event *event,
4023 u64 read_format, char __user *buf)
4024{
4025 struct perf_event *leader = event->group_leader, *child;
4026 struct perf_event_context *ctx = leader->ctx;
7d88962e 4027 int ret;
fa8c2693 4028 u64 *values;
3dab77fb 4029
fa8c2693 4030 lockdep_assert_held(&ctx->mutex);
3dab77fb 4031
fa8c2693
PZ
4032 values = kzalloc(event->read_size, GFP_KERNEL);
4033 if (!values)
4034 return -ENOMEM;
3dab77fb 4035
fa8c2693
PZ
4036 values[0] = 1 + leader->nr_siblings;
4037
4038 /*
4039 * By locking the child_mutex of the leader we effectively
4040 * lock the child list of all siblings.. XXX explain how.
4041 */
4042 mutex_lock(&leader->child_mutex);
abf4868b 4043
7d88962e
SB
4044 ret = __perf_read_group_add(leader, read_format, values);
4045 if (ret)
4046 goto unlock;
4047
4048 list_for_each_entry(child, &leader->child_list, child_list) {
4049 ret = __perf_read_group_add(child, read_format, values);
4050 if (ret)
4051 goto unlock;
4052 }
abf4868b 4053
fa8c2693 4054 mutex_unlock(&leader->child_mutex);
abf4868b 4055
7d88962e 4056 ret = event->read_size;
fa8c2693
PZ
4057 if (copy_to_user(buf, values, event->read_size))
4058 ret = -EFAULT;
7d88962e 4059 goto out;
fa8c2693 4060
7d88962e
SB
4061unlock:
4062 mutex_unlock(&leader->child_mutex);
4063out:
fa8c2693 4064 kfree(values);
abf4868b 4065 return ret;
3dab77fb
PZ
4066}
4067
b15f495b 4068static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4069 u64 read_format, char __user *buf)
4070{
59ed446f 4071 u64 enabled, running;
3dab77fb
PZ
4072 u64 values[4];
4073 int n = 0;
4074
59ed446f
PZ
4075 values[n++] = perf_event_read_value(event, &enabled, &running);
4076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4077 values[n++] = enabled;
4078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4079 values[n++] = running;
3dab77fb 4080 if (read_format & PERF_FORMAT_ID)
cdd6c482 4081 values[n++] = primary_event_id(event);
3dab77fb
PZ
4082
4083 if (copy_to_user(buf, values, n * sizeof(u64)))
4084 return -EFAULT;
4085
4086 return n * sizeof(u64);
4087}
4088
dc633982
JO
4089static bool is_event_hup(struct perf_event *event)
4090{
4091 bool no_children;
4092
a69b0ca4 4093 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4094 return false;
4095
4096 mutex_lock(&event->child_mutex);
4097 no_children = list_empty(&event->child_list);
4098 mutex_unlock(&event->child_mutex);
4099 return no_children;
4100}
4101
0793a61d 4102/*
cdd6c482 4103 * Read the performance event - simple non blocking version for now
0793a61d
TG
4104 */
4105static ssize_t
b15f495b 4106__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4107{
cdd6c482 4108 u64 read_format = event->attr.read_format;
3dab77fb 4109 int ret;
0793a61d 4110
3b6f9e5c 4111 /*
cdd6c482 4112 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4113 * error state (i.e. because it was pinned but it couldn't be
4114 * scheduled on to the CPU at some point).
4115 */
cdd6c482 4116 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4117 return 0;
4118
c320c7b7 4119 if (count < event->read_size)
3dab77fb
PZ
4120 return -ENOSPC;
4121
cdd6c482 4122 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4123 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4124 ret = perf_read_group(event, read_format, buf);
3dab77fb 4125 else
b15f495b 4126 ret = perf_read_one(event, read_format, buf);
0793a61d 4127
3dab77fb 4128 return ret;
0793a61d
TG
4129}
4130
0793a61d
TG
4131static ssize_t
4132perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4133{
cdd6c482 4134 struct perf_event *event = file->private_data;
f63a8daa
PZ
4135 struct perf_event_context *ctx;
4136 int ret;
0793a61d 4137
f63a8daa 4138 ctx = perf_event_ctx_lock(event);
b15f495b 4139 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4140 perf_event_ctx_unlock(event, ctx);
4141
4142 return ret;
0793a61d
TG
4143}
4144
4145static unsigned int perf_poll(struct file *file, poll_table *wait)
4146{
cdd6c482 4147 struct perf_event *event = file->private_data;
76369139 4148 struct ring_buffer *rb;
61b67684 4149 unsigned int events = POLLHUP;
c7138f37 4150
e708d7ad 4151 poll_wait(file, &event->waitq, wait);
179033b3 4152
dc633982 4153 if (is_event_hup(event))
179033b3 4154 return events;
c7138f37 4155
10c6db11 4156 /*
9bb5d40c
PZ
4157 * Pin the event->rb by taking event->mmap_mutex; otherwise
4158 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4159 */
4160 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4161 rb = event->rb;
4162 if (rb)
76369139 4163 events = atomic_xchg(&rb->poll, 0);
10c6db11 4164 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4165 return events;
4166}
4167
f63a8daa 4168static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4169{
7d88962e 4170 (void)perf_event_read(event, false);
e7850595 4171 local64_set(&event->count, 0);
cdd6c482 4172 perf_event_update_userpage(event);
3df5edad
PZ
4173}
4174
c93f7669 4175/*
cdd6c482
IM
4176 * Holding the top-level event's child_mutex means that any
4177 * descendant process that has inherited this event will block
8ba289b8 4178 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4179 * task existence requirements of perf_event_enable/disable.
c93f7669 4180 */
cdd6c482
IM
4181static void perf_event_for_each_child(struct perf_event *event,
4182 void (*func)(struct perf_event *))
3df5edad 4183{
cdd6c482 4184 struct perf_event *child;
3df5edad 4185
cdd6c482 4186 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4187
cdd6c482
IM
4188 mutex_lock(&event->child_mutex);
4189 func(event);
4190 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4191 func(child);
cdd6c482 4192 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4193}
4194
cdd6c482
IM
4195static void perf_event_for_each(struct perf_event *event,
4196 void (*func)(struct perf_event *))
3df5edad 4197{
cdd6c482
IM
4198 struct perf_event_context *ctx = event->ctx;
4199 struct perf_event *sibling;
3df5edad 4200
f63a8daa
PZ
4201 lockdep_assert_held(&ctx->mutex);
4202
cdd6c482 4203 event = event->group_leader;
75f937f2 4204
cdd6c482 4205 perf_event_for_each_child(event, func);
cdd6c482 4206 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4207 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4208}
4209
fae3fde6
PZ
4210static void __perf_event_period(struct perf_event *event,
4211 struct perf_cpu_context *cpuctx,
4212 struct perf_event_context *ctx,
4213 void *info)
c7999c6f 4214{
fae3fde6 4215 u64 value = *((u64 *)info);
c7999c6f 4216 bool active;
08247e31 4217
cdd6c482 4218 if (event->attr.freq) {
cdd6c482 4219 event->attr.sample_freq = value;
08247e31 4220 } else {
cdd6c482
IM
4221 event->attr.sample_period = value;
4222 event->hw.sample_period = value;
08247e31 4223 }
bad7192b
PZ
4224
4225 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4226 if (active) {
4227 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4228 /*
4229 * We could be throttled; unthrottle now to avoid the tick
4230 * trying to unthrottle while we already re-started the event.
4231 */
4232 if (event->hw.interrupts == MAX_INTERRUPTS) {
4233 event->hw.interrupts = 0;
4234 perf_log_throttle(event, 1);
4235 }
bad7192b
PZ
4236 event->pmu->stop(event, PERF_EF_UPDATE);
4237 }
4238
4239 local64_set(&event->hw.period_left, 0);
4240
4241 if (active) {
4242 event->pmu->start(event, PERF_EF_RELOAD);
4243 perf_pmu_enable(ctx->pmu);
4244 }
c7999c6f
PZ
4245}
4246
4247static int perf_event_period(struct perf_event *event, u64 __user *arg)
4248{
c7999c6f
PZ
4249 u64 value;
4250
4251 if (!is_sampling_event(event))
4252 return -EINVAL;
4253
4254 if (copy_from_user(&value, arg, sizeof(value)))
4255 return -EFAULT;
4256
4257 if (!value)
4258 return -EINVAL;
4259
4260 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4261 return -EINVAL;
4262
fae3fde6 4263 event_function_call(event, __perf_event_period, &value);
08247e31 4264
c7999c6f 4265 return 0;
08247e31
PZ
4266}
4267
ac9721f3
PZ
4268static const struct file_operations perf_fops;
4269
2903ff01 4270static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4271{
2903ff01
AV
4272 struct fd f = fdget(fd);
4273 if (!f.file)
4274 return -EBADF;
ac9721f3 4275
2903ff01
AV
4276 if (f.file->f_op != &perf_fops) {
4277 fdput(f);
4278 return -EBADF;
ac9721f3 4279 }
2903ff01
AV
4280 *p = f;
4281 return 0;
ac9721f3
PZ
4282}
4283
4284static int perf_event_set_output(struct perf_event *event,
4285 struct perf_event *output_event);
6fb2915d 4286static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4287static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4288
f63a8daa 4289static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4290{
cdd6c482 4291 void (*func)(struct perf_event *);
3df5edad 4292 u32 flags = arg;
d859e29f
PM
4293
4294 switch (cmd) {
cdd6c482 4295 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4296 func = _perf_event_enable;
d859e29f 4297 break;
cdd6c482 4298 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4299 func = _perf_event_disable;
79f14641 4300 break;
cdd6c482 4301 case PERF_EVENT_IOC_RESET:
f63a8daa 4302 func = _perf_event_reset;
6de6a7b9 4303 break;
3df5edad 4304
cdd6c482 4305 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4306 return _perf_event_refresh(event, arg);
08247e31 4307
cdd6c482
IM
4308 case PERF_EVENT_IOC_PERIOD:
4309 return perf_event_period(event, (u64 __user *)arg);
08247e31 4310
cf4957f1
JO
4311 case PERF_EVENT_IOC_ID:
4312 {
4313 u64 id = primary_event_id(event);
4314
4315 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4316 return -EFAULT;
4317 return 0;
4318 }
4319
cdd6c482 4320 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4321 {
ac9721f3 4322 int ret;
ac9721f3 4323 if (arg != -1) {
2903ff01
AV
4324 struct perf_event *output_event;
4325 struct fd output;
4326 ret = perf_fget_light(arg, &output);
4327 if (ret)
4328 return ret;
4329 output_event = output.file->private_data;
4330 ret = perf_event_set_output(event, output_event);
4331 fdput(output);
4332 } else {
4333 ret = perf_event_set_output(event, NULL);
ac9721f3 4334 }
ac9721f3
PZ
4335 return ret;
4336 }
a4be7c27 4337
6fb2915d
LZ
4338 case PERF_EVENT_IOC_SET_FILTER:
4339 return perf_event_set_filter(event, (void __user *)arg);
4340
2541517c
AS
4341 case PERF_EVENT_IOC_SET_BPF:
4342 return perf_event_set_bpf_prog(event, arg);
4343
d859e29f 4344 default:
3df5edad 4345 return -ENOTTY;
d859e29f 4346 }
3df5edad
PZ
4347
4348 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4349 perf_event_for_each(event, func);
3df5edad 4350 else
cdd6c482 4351 perf_event_for_each_child(event, func);
3df5edad
PZ
4352
4353 return 0;
d859e29f
PM
4354}
4355
f63a8daa
PZ
4356static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4357{
4358 struct perf_event *event = file->private_data;
4359 struct perf_event_context *ctx;
4360 long ret;
4361
4362 ctx = perf_event_ctx_lock(event);
4363 ret = _perf_ioctl(event, cmd, arg);
4364 perf_event_ctx_unlock(event, ctx);
4365
4366 return ret;
4367}
4368
b3f20785
PM
4369#ifdef CONFIG_COMPAT
4370static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4371 unsigned long arg)
4372{
4373 switch (_IOC_NR(cmd)) {
4374 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4375 case _IOC_NR(PERF_EVENT_IOC_ID):
4376 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4377 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4378 cmd &= ~IOCSIZE_MASK;
4379 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4380 }
4381 break;
4382 }
4383 return perf_ioctl(file, cmd, arg);
4384}
4385#else
4386# define perf_compat_ioctl NULL
4387#endif
4388
cdd6c482 4389int perf_event_task_enable(void)
771d7cde 4390{
f63a8daa 4391 struct perf_event_context *ctx;
cdd6c482 4392 struct perf_event *event;
771d7cde 4393
cdd6c482 4394 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4395 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4396 ctx = perf_event_ctx_lock(event);
4397 perf_event_for_each_child(event, _perf_event_enable);
4398 perf_event_ctx_unlock(event, ctx);
4399 }
cdd6c482 4400 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4401
4402 return 0;
4403}
4404
cdd6c482 4405int perf_event_task_disable(void)
771d7cde 4406{
f63a8daa 4407 struct perf_event_context *ctx;
cdd6c482 4408 struct perf_event *event;
771d7cde 4409
cdd6c482 4410 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4411 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4412 ctx = perf_event_ctx_lock(event);
4413 perf_event_for_each_child(event, _perf_event_disable);
4414 perf_event_ctx_unlock(event, ctx);
4415 }
cdd6c482 4416 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4417
4418 return 0;
4419}
4420
cdd6c482 4421static int perf_event_index(struct perf_event *event)
194002b2 4422{
a4eaf7f1
PZ
4423 if (event->hw.state & PERF_HES_STOPPED)
4424 return 0;
4425
cdd6c482 4426 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4427 return 0;
4428
35edc2a5 4429 return event->pmu->event_idx(event);
194002b2
PZ
4430}
4431
c4794295 4432static void calc_timer_values(struct perf_event *event,
e3f3541c 4433 u64 *now,
7f310a5d
EM
4434 u64 *enabled,
4435 u64 *running)
c4794295 4436{
e3f3541c 4437 u64 ctx_time;
c4794295 4438
e3f3541c
PZ
4439 *now = perf_clock();
4440 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4441 *enabled = ctx_time - event->tstamp_enabled;
4442 *running = ctx_time - event->tstamp_running;
4443}
4444
fa731587
PZ
4445static void perf_event_init_userpage(struct perf_event *event)
4446{
4447 struct perf_event_mmap_page *userpg;
4448 struct ring_buffer *rb;
4449
4450 rcu_read_lock();
4451 rb = rcu_dereference(event->rb);
4452 if (!rb)
4453 goto unlock;
4454
4455 userpg = rb->user_page;
4456
4457 /* Allow new userspace to detect that bit 0 is deprecated */
4458 userpg->cap_bit0_is_deprecated = 1;
4459 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4460 userpg->data_offset = PAGE_SIZE;
4461 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4462
4463unlock:
4464 rcu_read_unlock();
4465}
4466
c1317ec2
AL
4467void __weak arch_perf_update_userpage(
4468 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4469{
4470}
4471
38ff667b
PZ
4472/*
4473 * Callers need to ensure there can be no nesting of this function, otherwise
4474 * the seqlock logic goes bad. We can not serialize this because the arch
4475 * code calls this from NMI context.
4476 */
cdd6c482 4477void perf_event_update_userpage(struct perf_event *event)
37d81828 4478{
cdd6c482 4479 struct perf_event_mmap_page *userpg;
76369139 4480 struct ring_buffer *rb;
e3f3541c 4481 u64 enabled, running, now;
38ff667b
PZ
4482
4483 rcu_read_lock();
5ec4c599
PZ
4484 rb = rcu_dereference(event->rb);
4485 if (!rb)
4486 goto unlock;
4487
0d641208
EM
4488 /*
4489 * compute total_time_enabled, total_time_running
4490 * based on snapshot values taken when the event
4491 * was last scheduled in.
4492 *
4493 * we cannot simply called update_context_time()
4494 * because of locking issue as we can be called in
4495 * NMI context
4496 */
e3f3541c 4497 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4498
76369139 4499 userpg = rb->user_page;
7b732a75
PZ
4500 /*
4501 * Disable preemption so as to not let the corresponding user-space
4502 * spin too long if we get preempted.
4503 */
4504 preempt_disable();
37d81828 4505 ++userpg->lock;
92f22a38 4506 barrier();
cdd6c482 4507 userpg->index = perf_event_index(event);
b5e58793 4508 userpg->offset = perf_event_count(event);
365a4038 4509 if (userpg->index)
e7850595 4510 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4511
0d641208 4512 userpg->time_enabled = enabled +
cdd6c482 4513 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4514
0d641208 4515 userpg->time_running = running +
cdd6c482 4516 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4517
c1317ec2 4518 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4519
92f22a38 4520 barrier();
37d81828 4521 ++userpg->lock;
7b732a75 4522 preempt_enable();
38ff667b 4523unlock:
7b732a75 4524 rcu_read_unlock();
37d81828
PM
4525}
4526
906010b2
PZ
4527static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4528{
4529 struct perf_event *event = vma->vm_file->private_data;
76369139 4530 struct ring_buffer *rb;
906010b2
PZ
4531 int ret = VM_FAULT_SIGBUS;
4532
4533 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4534 if (vmf->pgoff == 0)
4535 ret = 0;
4536 return ret;
4537 }
4538
4539 rcu_read_lock();
76369139
FW
4540 rb = rcu_dereference(event->rb);
4541 if (!rb)
906010b2
PZ
4542 goto unlock;
4543
4544 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4545 goto unlock;
4546
76369139 4547 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4548 if (!vmf->page)
4549 goto unlock;
4550
4551 get_page(vmf->page);
4552 vmf->page->mapping = vma->vm_file->f_mapping;
4553 vmf->page->index = vmf->pgoff;
4554
4555 ret = 0;
4556unlock:
4557 rcu_read_unlock();
4558
4559 return ret;
4560}
4561
10c6db11
PZ
4562static void ring_buffer_attach(struct perf_event *event,
4563 struct ring_buffer *rb)
4564{
b69cf536 4565 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4566 unsigned long flags;
4567
b69cf536
PZ
4568 if (event->rb) {
4569 /*
4570 * Should be impossible, we set this when removing
4571 * event->rb_entry and wait/clear when adding event->rb_entry.
4572 */
4573 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4574
b69cf536 4575 old_rb = event->rb;
b69cf536
PZ
4576 spin_lock_irqsave(&old_rb->event_lock, flags);
4577 list_del_rcu(&event->rb_entry);
4578 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4579
2f993cf0
ON
4580 event->rcu_batches = get_state_synchronize_rcu();
4581 event->rcu_pending = 1;
b69cf536 4582 }
10c6db11 4583
b69cf536 4584 if (rb) {
2f993cf0
ON
4585 if (event->rcu_pending) {
4586 cond_synchronize_rcu(event->rcu_batches);
4587 event->rcu_pending = 0;
4588 }
4589
b69cf536
PZ
4590 spin_lock_irqsave(&rb->event_lock, flags);
4591 list_add_rcu(&event->rb_entry, &rb->event_list);
4592 spin_unlock_irqrestore(&rb->event_lock, flags);
4593 }
4594
4595 rcu_assign_pointer(event->rb, rb);
4596
4597 if (old_rb) {
4598 ring_buffer_put(old_rb);
4599 /*
4600 * Since we detached before setting the new rb, so that we
4601 * could attach the new rb, we could have missed a wakeup.
4602 * Provide it now.
4603 */
4604 wake_up_all(&event->waitq);
4605 }
10c6db11
PZ
4606}
4607
4608static void ring_buffer_wakeup(struct perf_event *event)
4609{
4610 struct ring_buffer *rb;
4611
4612 rcu_read_lock();
4613 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4614 if (rb) {
4615 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4616 wake_up_all(&event->waitq);
4617 }
10c6db11
PZ
4618 rcu_read_unlock();
4619}
4620
fdc26706 4621struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4622{
76369139 4623 struct ring_buffer *rb;
7b732a75 4624
ac9721f3 4625 rcu_read_lock();
76369139
FW
4626 rb = rcu_dereference(event->rb);
4627 if (rb) {
4628 if (!atomic_inc_not_zero(&rb->refcount))
4629 rb = NULL;
ac9721f3
PZ
4630 }
4631 rcu_read_unlock();
4632
76369139 4633 return rb;
ac9721f3
PZ
4634}
4635
fdc26706 4636void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4637{
76369139 4638 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4639 return;
7b732a75 4640
9bb5d40c 4641 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4642
76369139 4643 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4644}
4645
4646static void perf_mmap_open(struct vm_area_struct *vma)
4647{
cdd6c482 4648 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4649
cdd6c482 4650 atomic_inc(&event->mmap_count);
9bb5d40c 4651 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4652
45bfb2e5
PZ
4653 if (vma->vm_pgoff)
4654 atomic_inc(&event->rb->aux_mmap_count);
4655
1e0fb9ec
AL
4656 if (event->pmu->event_mapped)
4657 event->pmu->event_mapped(event);
7b732a75
PZ
4658}
4659
9bb5d40c
PZ
4660/*
4661 * A buffer can be mmap()ed multiple times; either directly through the same
4662 * event, or through other events by use of perf_event_set_output().
4663 *
4664 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4665 * the buffer here, where we still have a VM context. This means we need
4666 * to detach all events redirecting to us.
4667 */
7b732a75
PZ
4668static void perf_mmap_close(struct vm_area_struct *vma)
4669{
cdd6c482 4670 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4671
b69cf536 4672 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4673 struct user_struct *mmap_user = rb->mmap_user;
4674 int mmap_locked = rb->mmap_locked;
4675 unsigned long size = perf_data_size(rb);
789f90fc 4676
1e0fb9ec
AL
4677 if (event->pmu->event_unmapped)
4678 event->pmu->event_unmapped(event);
4679
45bfb2e5
PZ
4680 /*
4681 * rb->aux_mmap_count will always drop before rb->mmap_count and
4682 * event->mmap_count, so it is ok to use event->mmap_mutex to
4683 * serialize with perf_mmap here.
4684 */
4685 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4686 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4687 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4688 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4689
4690 rb_free_aux(rb);
4691 mutex_unlock(&event->mmap_mutex);
4692 }
4693
9bb5d40c
PZ
4694 atomic_dec(&rb->mmap_count);
4695
4696 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4697 goto out_put;
9bb5d40c 4698
b69cf536 4699 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4700 mutex_unlock(&event->mmap_mutex);
4701
4702 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4703 if (atomic_read(&rb->mmap_count))
4704 goto out_put;
ac9721f3 4705
9bb5d40c
PZ
4706 /*
4707 * No other mmap()s, detach from all other events that might redirect
4708 * into the now unreachable buffer. Somewhat complicated by the
4709 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4710 */
4711again:
4712 rcu_read_lock();
4713 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4714 if (!atomic_long_inc_not_zero(&event->refcount)) {
4715 /*
4716 * This event is en-route to free_event() which will
4717 * detach it and remove it from the list.
4718 */
4719 continue;
4720 }
4721 rcu_read_unlock();
789f90fc 4722
9bb5d40c
PZ
4723 mutex_lock(&event->mmap_mutex);
4724 /*
4725 * Check we didn't race with perf_event_set_output() which can
4726 * swizzle the rb from under us while we were waiting to
4727 * acquire mmap_mutex.
4728 *
4729 * If we find a different rb; ignore this event, a next
4730 * iteration will no longer find it on the list. We have to
4731 * still restart the iteration to make sure we're not now
4732 * iterating the wrong list.
4733 */
b69cf536
PZ
4734 if (event->rb == rb)
4735 ring_buffer_attach(event, NULL);
4736
cdd6c482 4737 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4738 put_event(event);
ac9721f3 4739
9bb5d40c
PZ
4740 /*
4741 * Restart the iteration; either we're on the wrong list or
4742 * destroyed its integrity by doing a deletion.
4743 */
4744 goto again;
7b732a75 4745 }
9bb5d40c
PZ
4746 rcu_read_unlock();
4747
4748 /*
4749 * It could be there's still a few 0-ref events on the list; they'll
4750 * get cleaned up by free_event() -- they'll also still have their
4751 * ref on the rb and will free it whenever they are done with it.
4752 *
4753 * Aside from that, this buffer is 'fully' detached and unmapped,
4754 * undo the VM accounting.
4755 */
4756
4757 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4758 vma->vm_mm->pinned_vm -= mmap_locked;
4759 free_uid(mmap_user);
4760
b69cf536 4761out_put:
9bb5d40c 4762 ring_buffer_put(rb); /* could be last */
37d81828
PM
4763}
4764
f0f37e2f 4765static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4766 .open = perf_mmap_open,
45bfb2e5 4767 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4768 .fault = perf_mmap_fault,
4769 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4770};
4771
4772static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4773{
cdd6c482 4774 struct perf_event *event = file->private_data;
22a4f650 4775 unsigned long user_locked, user_lock_limit;
789f90fc 4776 struct user_struct *user = current_user();
22a4f650 4777 unsigned long locked, lock_limit;
45bfb2e5 4778 struct ring_buffer *rb = NULL;
7b732a75
PZ
4779 unsigned long vma_size;
4780 unsigned long nr_pages;
45bfb2e5 4781 long user_extra = 0, extra = 0;
d57e34fd 4782 int ret = 0, flags = 0;
37d81828 4783
c7920614
PZ
4784 /*
4785 * Don't allow mmap() of inherited per-task counters. This would
4786 * create a performance issue due to all children writing to the
76369139 4787 * same rb.
c7920614
PZ
4788 */
4789 if (event->cpu == -1 && event->attr.inherit)
4790 return -EINVAL;
4791
43a21ea8 4792 if (!(vma->vm_flags & VM_SHARED))
37d81828 4793 return -EINVAL;
7b732a75
PZ
4794
4795 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4796
4797 if (vma->vm_pgoff == 0) {
4798 nr_pages = (vma_size / PAGE_SIZE) - 1;
4799 } else {
4800 /*
4801 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4802 * mapped, all subsequent mappings should have the same size
4803 * and offset. Must be above the normal perf buffer.
4804 */
4805 u64 aux_offset, aux_size;
4806
4807 if (!event->rb)
4808 return -EINVAL;
4809
4810 nr_pages = vma_size / PAGE_SIZE;
4811
4812 mutex_lock(&event->mmap_mutex);
4813 ret = -EINVAL;
4814
4815 rb = event->rb;
4816 if (!rb)
4817 goto aux_unlock;
4818
4819 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4820 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4821
4822 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4823 goto aux_unlock;
4824
4825 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4826 goto aux_unlock;
4827
4828 /* already mapped with a different offset */
4829 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4830 goto aux_unlock;
4831
4832 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4833 goto aux_unlock;
4834
4835 /* already mapped with a different size */
4836 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4837 goto aux_unlock;
4838
4839 if (!is_power_of_2(nr_pages))
4840 goto aux_unlock;
4841
4842 if (!atomic_inc_not_zero(&rb->mmap_count))
4843 goto aux_unlock;
4844
4845 if (rb_has_aux(rb)) {
4846 atomic_inc(&rb->aux_mmap_count);
4847 ret = 0;
4848 goto unlock;
4849 }
4850
4851 atomic_set(&rb->aux_mmap_count, 1);
4852 user_extra = nr_pages;
4853
4854 goto accounting;
4855 }
7b732a75 4856
7730d865 4857 /*
76369139 4858 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4859 * can do bitmasks instead of modulo.
4860 */
2ed11312 4861 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4862 return -EINVAL;
4863
7b732a75 4864 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4865 return -EINVAL;
4866
cdd6c482 4867 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4868again:
cdd6c482 4869 mutex_lock(&event->mmap_mutex);
76369139 4870 if (event->rb) {
9bb5d40c 4871 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4872 ret = -EINVAL;
9bb5d40c
PZ
4873 goto unlock;
4874 }
4875
4876 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4877 /*
4878 * Raced against perf_mmap_close() through
4879 * perf_event_set_output(). Try again, hope for better
4880 * luck.
4881 */
4882 mutex_unlock(&event->mmap_mutex);
4883 goto again;
4884 }
4885
ebb3c4c4
PZ
4886 goto unlock;
4887 }
4888
789f90fc 4889 user_extra = nr_pages + 1;
45bfb2e5
PZ
4890
4891accounting:
cdd6c482 4892 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4893
4894 /*
4895 * Increase the limit linearly with more CPUs:
4896 */
4897 user_lock_limit *= num_online_cpus();
4898
789f90fc 4899 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4900
789f90fc
PZ
4901 if (user_locked > user_lock_limit)
4902 extra = user_locked - user_lock_limit;
7b732a75 4903
78d7d407 4904 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4905 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4906 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4907
459ec28a
IM
4908 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4909 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4910 ret = -EPERM;
4911 goto unlock;
4912 }
7b732a75 4913
45bfb2e5 4914 WARN_ON(!rb && event->rb);
906010b2 4915
d57e34fd 4916 if (vma->vm_flags & VM_WRITE)
76369139 4917 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4918
76369139 4919 if (!rb) {
45bfb2e5
PZ
4920 rb = rb_alloc(nr_pages,
4921 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4922 event->cpu, flags);
26cb63ad 4923
45bfb2e5
PZ
4924 if (!rb) {
4925 ret = -ENOMEM;
4926 goto unlock;
4927 }
43a21ea8 4928
45bfb2e5
PZ
4929 atomic_set(&rb->mmap_count, 1);
4930 rb->mmap_user = get_current_user();
4931 rb->mmap_locked = extra;
26cb63ad 4932
45bfb2e5 4933 ring_buffer_attach(event, rb);
ac9721f3 4934
45bfb2e5
PZ
4935 perf_event_init_userpage(event);
4936 perf_event_update_userpage(event);
4937 } else {
1a594131
AS
4938 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4939 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4940 if (!ret)
4941 rb->aux_mmap_locked = extra;
4942 }
9a0f05cb 4943
ebb3c4c4 4944unlock:
45bfb2e5
PZ
4945 if (!ret) {
4946 atomic_long_add(user_extra, &user->locked_vm);
4947 vma->vm_mm->pinned_vm += extra;
4948
ac9721f3 4949 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4950 } else if (rb) {
4951 atomic_dec(&rb->mmap_count);
4952 }
4953aux_unlock:
cdd6c482 4954 mutex_unlock(&event->mmap_mutex);
37d81828 4955
9bb5d40c
PZ
4956 /*
4957 * Since pinned accounting is per vm we cannot allow fork() to copy our
4958 * vma.
4959 */
26cb63ad 4960 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4961 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4962
1e0fb9ec
AL
4963 if (event->pmu->event_mapped)
4964 event->pmu->event_mapped(event);
4965
7b732a75 4966 return ret;
37d81828
PM
4967}
4968
3c446b3d
PZ
4969static int perf_fasync(int fd, struct file *filp, int on)
4970{
496ad9aa 4971 struct inode *inode = file_inode(filp);
cdd6c482 4972 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4973 int retval;
4974
5955102c 4975 inode_lock(inode);
cdd6c482 4976 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4977 inode_unlock(inode);
3c446b3d
PZ
4978
4979 if (retval < 0)
4980 return retval;
4981
4982 return 0;
4983}
4984
0793a61d 4985static const struct file_operations perf_fops = {
3326c1ce 4986 .llseek = no_llseek,
0793a61d
TG
4987 .release = perf_release,
4988 .read = perf_read,
4989 .poll = perf_poll,
d859e29f 4990 .unlocked_ioctl = perf_ioctl,
b3f20785 4991 .compat_ioctl = perf_compat_ioctl,
37d81828 4992 .mmap = perf_mmap,
3c446b3d 4993 .fasync = perf_fasync,
0793a61d
TG
4994};
4995
925d519a 4996/*
cdd6c482 4997 * Perf event wakeup
925d519a
PZ
4998 *
4999 * If there's data, ensure we set the poll() state and publish everything
5000 * to user-space before waking everybody up.
5001 */
5002
fed66e2c
PZ
5003static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5004{
5005 /* only the parent has fasync state */
5006 if (event->parent)
5007 event = event->parent;
5008 return &event->fasync;
5009}
5010
cdd6c482 5011void perf_event_wakeup(struct perf_event *event)
925d519a 5012{
10c6db11 5013 ring_buffer_wakeup(event);
4c9e2542 5014
cdd6c482 5015 if (event->pending_kill) {
fed66e2c 5016 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5017 event->pending_kill = 0;
4c9e2542 5018 }
925d519a
PZ
5019}
5020
e360adbe 5021static void perf_pending_event(struct irq_work *entry)
79f14641 5022{
cdd6c482
IM
5023 struct perf_event *event = container_of(entry,
5024 struct perf_event, pending);
d525211f
PZ
5025 int rctx;
5026
5027 rctx = perf_swevent_get_recursion_context();
5028 /*
5029 * If we 'fail' here, that's OK, it means recursion is already disabled
5030 * and we won't recurse 'further'.
5031 */
79f14641 5032
cdd6c482
IM
5033 if (event->pending_disable) {
5034 event->pending_disable = 0;
fae3fde6 5035 perf_event_disable_local(event);
79f14641
PZ
5036 }
5037
cdd6c482
IM
5038 if (event->pending_wakeup) {
5039 event->pending_wakeup = 0;
5040 perf_event_wakeup(event);
79f14641 5041 }
d525211f
PZ
5042
5043 if (rctx >= 0)
5044 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5045}
5046
39447b38
ZY
5047/*
5048 * We assume there is only KVM supporting the callbacks.
5049 * Later on, we might change it to a list if there is
5050 * another virtualization implementation supporting the callbacks.
5051 */
5052struct perf_guest_info_callbacks *perf_guest_cbs;
5053
5054int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5055{
5056 perf_guest_cbs = cbs;
5057 return 0;
5058}
5059EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5060
5061int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5062{
5063 perf_guest_cbs = NULL;
5064 return 0;
5065}
5066EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5067
4018994f
JO
5068static void
5069perf_output_sample_regs(struct perf_output_handle *handle,
5070 struct pt_regs *regs, u64 mask)
5071{
5072 int bit;
5073
5074 for_each_set_bit(bit, (const unsigned long *) &mask,
5075 sizeof(mask) * BITS_PER_BYTE) {
5076 u64 val;
5077
5078 val = perf_reg_value(regs, bit);
5079 perf_output_put(handle, val);
5080 }
5081}
5082
60e2364e 5083static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5084 struct pt_regs *regs,
5085 struct pt_regs *regs_user_copy)
4018994f 5086{
88a7c26a
AL
5087 if (user_mode(regs)) {
5088 regs_user->abi = perf_reg_abi(current);
2565711f 5089 regs_user->regs = regs;
88a7c26a
AL
5090 } else if (current->mm) {
5091 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5092 } else {
5093 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5094 regs_user->regs = NULL;
4018994f
JO
5095 }
5096}
5097
60e2364e
SE
5098static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5099 struct pt_regs *regs)
5100{
5101 regs_intr->regs = regs;
5102 regs_intr->abi = perf_reg_abi(current);
5103}
5104
5105
c5ebcedb
JO
5106/*
5107 * Get remaining task size from user stack pointer.
5108 *
5109 * It'd be better to take stack vma map and limit this more
5110 * precisly, but there's no way to get it safely under interrupt,
5111 * so using TASK_SIZE as limit.
5112 */
5113static u64 perf_ustack_task_size(struct pt_regs *regs)
5114{
5115 unsigned long addr = perf_user_stack_pointer(regs);
5116
5117 if (!addr || addr >= TASK_SIZE)
5118 return 0;
5119
5120 return TASK_SIZE - addr;
5121}
5122
5123static u16
5124perf_sample_ustack_size(u16 stack_size, u16 header_size,
5125 struct pt_regs *regs)
5126{
5127 u64 task_size;
5128
5129 /* No regs, no stack pointer, no dump. */
5130 if (!regs)
5131 return 0;
5132
5133 /*
5134 * Check if we fit in with the requested stack size into the:
5135 * - TASK_SIZE
5136 * If we don't, we limit the size to the TASK_SIZE.
5137 *
5138 * - remaining sample size
5139 * If we don't, we customize the stack size to
5140 * fit in to the remaining sample size.
5141 */
5142
5143 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5144 stack_size = min(stack_size, (u16) task_size);
5145
5146 /* Current header size plus static size and dynamic size. */
5147 header_size += 2 * sizeof(u64);
5148
5149 /* Do we fit in with the current stack dump size? */
5150 if ((u16) (header_size + stack_size) < header_size) {
5151 /*
5152 * If we overflow the maximum size for the sample,
5153 * we customize the stack dump size to fit in.
5154 */
5155 stack_size = USHRT_MAX - header_size - sizeof(u64);
5156 stack_size = round_up(stack_size, sizeof(u64));
5157 }
5158
5159 return stack_size;
5160}
5161
5162static void
5163perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5164 struct pt_regs *regs)
5165{
5166 /* Case of a kernel thread, nothing to dump */
5167 if (!regs) {
5168 u64 size = 0;
5169 perf_output_put(handle, size);
5170 } else {
5171 unsigned long sp;
5172 unsigned int rem;
5173 u64 dyn_size;
5174
5175 /*
5176 * We dump:
5177 * static size
5178 * - the size requested by user or the best one we can fit
5179 * in to the sample max size
5180 * data
5181 * - user stack dump data
5182 * dynamic size
5183 * - the actual dumped size
5184 */
5185
5186 /* Static size. */
5187 perf_output_put(handle, dump_size);
5188
5189 /* Data. */
5190 sp = perf_user_stack_pointer(regs);
5191 rem = __output_copy_user(handle, (void *) sp, dump_size);
5192 dyn_size = dump_size - rem;
5193
5194 perf_output_skip(handle, rem);
5195
5196 /* Dynamic size. */
5197 perf_output_put(handle, dyn_size);
5198 }
5199}
5200
c980d109
ACM
5201static void __perf_event_header__init_id(struct perf_event_header *header,
5202 struct perf_sample_data *data,
5203 struct perf_event *event)
6844c09d
ACM
5204{
5205 u64 sample_type = event->attr.sample_type;
5206
5207 data->type = sample_type;
5208 header->size += event->id_header_size;
5209
5210 if (sample_type & PERF_SAMPLE_TID) {
5211 /* namespace issues */
5212 data->tid_entry.pid = perf_event_pid(event, current);
5213 data->tid_entry.tid = perf_event_tid(event, current);
5214 }
5215
5216 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5217 data->time = perf_event_clock(event);
6844c09d 5218
ff3d527c 5219 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5220 data->id = primary_event_id(event);
5221
5222 if (sample_type & PERF_SAMPLE_STREAM_ID)
5223 data->stream_id = event->id;
5224
5225 if (sample_type & PERF_SAMPLE_CPU) {
5226 data->cpu_entry.cpu = raw_smp_processor_id();
5227 data->cpu_entry.reserved = 0;
5228 }
5229}
5230
76369139
FW
5231void perf_event_header__init_id(struct perf_event_header *header,
5232 struct perf_sample_data *data,
5233 struct perf_event *event)
c980d109
ACM
5234{
5235 if (event->attr.sample_id_all)
5236 __perf_event_header__init_id(header, data, event);
5237}
5238
5239static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5240 struct perf_sample_data *data)
5241{
5242 u64 sample_type = data->type;
5243
5244 if (sample_type & PERF_SAMPLE_TID)
5245 perf_output_put(handle, data->tid_entry);
5246
5247 if (sample_type & PERF_SAMPLE_TIME)
5248 perf_output_put(handle, data->time);
5249
5250 if (sample_type & PERF_SAMPLE_ID)
5251 perf_output_put(handle, data->id);
5252
5253 if (sample_type & PERF_SAMPLE_STREAM_ID)
5254 perf_output_put(handle, data->stream_id);
5255
5256 if (sample_type & PERF_SAMPLE_CPU)
5257 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5258
5259 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5260 perf_output_put(handle, data->id);
c980d109
ACM
5261}
5262
76369139
FW
5263void perf_event__output_id_sample(struct perf_event *event,
5264 struct perf_output_handle *handle,
5265 struct perf_sample_data *sample)
c980d109
ACM
5266{
5267 if (event->attr.sample_id_all)
5268 __perf_event__output_id_sample(handle, sample);
5269}
5270
3dab77fb 5271static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5272 struct perf_event *event,
5273 u64 enabled, u64 running)
3dab77fb 5274{
cdd6c482 5275 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5276 u64 values[4];
5277 int n = 0;
5278
b5e58793 5279 values[n++] = perf_event_count(event);
3dab77fb 5280 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5281 values[n++] = enabled +
cdd6c482 5282 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5283 }
5284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5285 values[n++] = running +
cdd6c482 5286 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5287 }
5288 if (read_format & PERF_FORMAT_ID)
cdd6c482 5289 values[n++] = primary_event_id(event);
3dab77fb 5290
76369139 5291 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5292}
5293
5294/*
cdd6c482 5295 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5296 */
5297static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5298 struct perf_event *event,
5299 u64 enabled, u64 running)
3dab77fb 5300{
cdd6c482
IM
5301 struct perf_event *leader = event->group_leader, *sub;
5302 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5303 u64 values[5];
5304 int n = 0;
5305
5306 values[n++] = 1 + leader->nr_siblings;
5307
5308 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5309 values[n++] = enabled;
3dab77fb
PZ
5310
5311 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5312 values[n++] = running;
3dab77fb 5313
cdd6c482 5314 if (leader != event)
3dab77fb
PZ
5315 leader->pmu->read(leader);
5316
b5e58793 5317 values[n++] = perf_event_count(leader);
3dab77fb 5318 if (read_format & PERF_FORMAT_ID)
cdd6c482 5319 values[n++] = primary_event_id(leader);
3dab77fb 5320
76369139 5321 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5322
65abc865 5323 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5324 n = 0;
5325
6f5ab001
JO
5326 if ((sub != event) &&
5327 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5328 sub->pmu->read(sub);
5329
b5e58793 5330 values[n++] = perf_event_count(sub);
3dab77fb 5331 if (read_format & PERF_FORMAT_ID)
cdd6c482 5332 values[n++] = primary_event_id(sub);
3dab77fb 5333
76369139 5334 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5335 }
5336}
5337
eed01528
SE
5338#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5339 PERF_FORMAT_TOTAL_TIME_RUNNING)
5340
3dab77fb 5341static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5342 struct perf_event *event)
3dab77fb 5343{
e3f3541c 5344 u64 enabled = 0, running = 0, now;
eed01528
SE
5345 u64 read_format = event->attr.read_format;
5346
5347 /*
5348 * compute total_time_enabled, total_time_running
5349 * based on snapshot values taken when the event
5350 * was last scheduled in.
5351 *
5352 * we cannot simply called update_context_time()
5353 * because of locking issue as we are called in
5354 * NMI context
5355 */
c4794295 5356 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5357 calc_timer_values(event, &now, &enabled, &running);
eed01528 5358
cdd6c482 5359 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5360 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5361 else
eed01528 5362 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5363}
5364
5622f295
MM
5365void perf_output_sample(struct perf_output_handle *handle,
5366 struct perf_event_header *header,
5367 struct perf_sample_data *data,
cdd6c482 5368 struct perf_event *event)
5622f295
MM
5369{
5370 u64 sample_type = data->type;
5371
5372 perf_output_put(handle, *header);
5373
ff3d527c
AH
5374 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5375 perf_output_put(handle, data->id);
5376
5622f295
MM
5377 if (sample_type & PERF_SAMPLE_IP)
5378 perf_output_put(handle, data->ip);
5379
5380 if (sample_type & PERF_SAMPLE_TID)
5381 perf_output_put(handle, data->tid_entry);
5382
5383 if (sample_type & PERF_SAMPLE_TIME)
5384 perf_output_put(handle, data->time);
5385
5386 if (sample_type & PERF_SAMPLE_ADDR)
5387 perf_output_put(handle, data->addr);
5388
5389 if (sample_type & PERF_SAMPLE_ID)
5390 perf_output_put(handle, data->id);
5391
5392 if (sample_type & PERF_SAMPLE_STREAM_ID)
5393 perf_output_put(handle, data->stream_id);
5394
5395 if (sample_type & PERF_SAMPLE_CPU)
5396 perf_output_put(handle, data->cpu_entry);
5397
5398 if (sample_type & PERF_SAMPLE_PERIOD)
5399 perf_output_put(handle, data->period);
5400
5401 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5402 perf_output_read(handle, event);
5622f295
MM
5403
5404 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405 if (data->callchain) {
5406 int size = 1;
5407
5408 if (data->callchain)
5409 size += data->callchain->nr;
5410
5411 size *= sizeof(u64);
5412
76369139 5413 __output_copy(handle, data->callchain, size);
5622f295
MM
5414 } else {
5415 u64 nr = 0;
5416 perf_output_put(handle, nr);
5417 }
5418 }
5419
5420 if (sample_type & PERF_SAMPLE_RAW) {
5421 if (data->raw) {
fa128e6a
AS
5422 u32 raw_size = data->raw->size;
5423 u32 real_size = round_up(raw_size + sizeof(u32),
5424 sizeof(u64)) - sizeof(u32);
5425 u64 zero = 0;
5426
5427 perf_output_put(handle, real_size);
5428 __output_copy(handle, data->raw->data, raw_size);
5429 if (real_size - raw_size)
5430 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5431 } else {
5432 struct {
5433 u32 size;
5434 u32 data;
5435 } raw = {
5436 .size = sizeof(u32),
5437 .data = 0,
5438 };
5439 perf_output_put(handle, raw);
5440 }
5441 }
a7ac67ea 5442
bce38cd5
SE
5443 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5444 if (data->br_stack) {
5445 size_t size;
5446
5447 size = data->br_stack->nr
5448 * sizeof(struct perf_branch_entry);
5449
5450 perf_output_put(handle, data->br_stack->nr);
5451 perf_output_copy(handle, data->br_stack->entries, size);
5452 } else {
5453 /*
5454 * we always store at least the value of nr
5455 */
5456 u64 nr = 0;
5457 perf_output_put(handle, nr);
5458 }
5459 }
4018994f
JO
5460
5461 if (sample_type & PERF_SAMPLE_REGS_USER) {
5462 u64 abi = data->regs_user.abi;
5463
5464 /*
5465 * If there are no regs to dump, notice it through
5466 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5467 */
5468 perf_output_put(handle, abi);
5469
5470 if (abi) {
5471 u64 mask = event->attr.sample_regs_user;
5472 perf_output_sample_regs(handle,
5473 data->regs_user.regs,
5474 mask);
5475 }
5476 }
c5ebcedb 5477
a5cdd40c 5478 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5479 perf_output_sample_ustack(handle,
5480 data->stack_user_size,
5481 data->regs_user.regs);
a5cdd40c 5482 }
c3feedf2
AK
5483
5484 if (sample_type & PERF_SAMPLE_WEIGHT)
5485 perf_output_put(handle, data->weight);
d6be9ad6
SE
5486
5487 if (sample_type & PERF_SAMPLE_DATA_SRC)
5488 perf_output_put(handle, data->data_src.val);
a5cdd40c 5489
fdfbbd07
AK
5490 if (sample_type & PERF_SAMPLE_TRANSACTION)
5491 perf_output_put(handle, data->txn);
5492
60e2364e
SE
5493 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5494 u64 abi = data->regs_intr.abi;
5495 /*
5496 * If there are no regs to dump, notice it through
5497 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5498 */
5499 perf_output_put(handle, abi);
5500
5501 if (abi) {
5502 u64 mask = event->attr.sample_regs_intr;
5503
5504 perf_output_sample_regs(handle,
5505 data->regs_intr.regs,
5506 mask);
5507 }
5508 }
5509
a5cdd40c
PZ
5510 if (!event->attr.watermark) {
5511 int wakeup_events = event->attr.wakeup_events;
5512
5513 if (wakeup_events) {
5514 struct ring_buffer *rb = handle->rb;
5515 int events = local_inc_return(&rb->events);
5516
5517 if (events >= wakeup_events) {
5518 local_sub(wakeup_events, &rb->events);
5519 local_inc(&rb->wakeup);
5520 }
5521 }
5522 }
5622f295
MM
5523}
5524
5525void perf_prepare_sample(struct perf_event_header *header,
5526 struct perf_sample_data *data,
cdd6c482 5527 struct perf_event *event,
5622f295 5528 struct pt_regs *regs)
7b732a75 5529{
cdd6c482 5530 u64 sample_type = event->attr.sample_type;
7b732a75 5531
cdd6c482 5532 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5533 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5534
5535 header->misc = 0;
5536 header->misc |= perf_misc_flags(regs);
6fab0192 5537
c980d109 5538 __perf_event_header__init_id(header, data, event);
6844c09d 5539
c320c7b7 5540 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5541 data->ip = perf_instruction_pointer(regs);
5542
b23f3325 5543 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5544 int size = 1;
394ee076 5545
e6dab5ff 5546 data->callchain = perf_callchain(event, regs);
5622f295
MM
5547
5548 if (data->callchain)
5549 size += data->callchain->nr;
5550
5551 header->size += size * sizeof(u64);
394ee076
PZ
5552 }
5553
3a43ce68 5554 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5555 int size = sizeof(u32);
5556
5557 if (data->raw)
5558 size += data->raw->size;
5559 else
5560 size += sizeof(u32);
5561
fa128e6a 5562 header->size += round_up(size, sizeof(u64));
7f453c24 5563 }
bce38cd5
SE
5564
5565 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5566 int size = sizeof(u64); /* nr */
5567 if (data->br_stack) {
5568 size += data->br_stack->nr
5569 * sizeof(struct perf_branch_entry);
5570 }
5571 header->size += size;
5572 }
4018994f 5573
2565711f 5574 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5575 perf_sample_regs_user(&data->regs_user, regs,
5576 &data->regs_user_copy);
2565711f 5577
4018994f
JO
5578 if (sample_type & PERF_SAMPLE_REGS_USER) {
5579 /* regs dump ABI info */
5580 int size = sizeof(u64);
5581
4018994f
JO
5582 if (data->regs_user.regs) {
5583 u64 mask = event->attr.sample_regs_user;
5584 size += hweight64(mask) * sizeof(u64);
5585 }
5586
5587 header->size += size;
5588 }
c5ebcedb
JO
5589
5590 if (sample_type & PERF_SAMPLE_STACK_USER) {
5591 /*
5592 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5593 * processed as the last one or have additional check added
5594 * in case new sample type is added, because we could eat
5595 * up the rest of the sample size.
5596 */
c5ebcedb
JO
5597 u16 stack_size = event->attr.sample_stack_user;
5598 u16 size = sizeof(u64);
5599
c5ebcedb 5600 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5601 data->regs_user.regs);
c5ebcedb
JO
5602
5603 /*
5604 * If there is something to dump, add space for the dump
5605 * itself and for the field that tells the dynamic size,
5606 * which is how many have been actually dumped.
5607 */
5608 if (stack_size)
5609 size += sizeof(u64) + stack_size;
5610
5611 data->stack_user_size = stack_size;
5612 header->size += size;
5613 }
60e2364e
SE
5614
5615 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5616 /* regs dump ABI info */
5617 int size = sizeof(u64);
5618
5619 perf_sample_regs_intr(&data->regs_intr, regs);
5620
5621 if (data->regs_intr.regs) {
5622 u64 mask = event->attr.sample_regs_intr;
5623
5624 size += hweight64(mask) * sizeof(u64);
5625 }
5626
5627 header->size += size;
5628 }
5622f295 5629}
7f453c24 5630
21509084
YZ
5631void perf_event_output(struct perf_event *event,
5632 struct perf_sample_data *data,
5633 struct pt_regs *regs)
5622f295
MM
5634{
5635 struct perf_output_handle handle;
5636 struct perf_event_header header;
689802b2 5637
927c7a9e
FW
5638 /* protect the callchain buffers */
5639 rcu_read_lock();
5640
cdd6c482 5641 perf_prepare_sample(&header, data, event, regs);
5c148194 5642
a7ac67ea 5643 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5644 goto exit;
0322cd6e 5645
cdd6c482 5646 perf_output_sample(&handle, &header, data, event);
f413cdb8 5647
8a057d84 5648 perf_output_end(&handle);
927c7a9e
FW
5649
5650exit:
5651 rcu_read_unlock();
0322cd6e
PZ
5652}
5653
38b200d6 5654/*
cdd6c482 5655 * read event_id
38b200d6
PZ
5656 */
5657
5658struct perf_read_event {
5659 struct perf_event_header header;
5660
5661 u32 pid;
5662 u32 tid;
38b200d6
PZ
5663};
5664
5665static void
cdd6c482 5666perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5667 struct task_struct *task)
5668{
5669 struct perf_output_handle handle;
c980d109 5670 struct perf_sample_data sample;
dfc65094 5671 struct perf_read_event read_event = {
38b200d6 5672 .header = {
cdd6c482 5673 .type = PERF_RECORD_READ,
38b200d6 5674 .misc = 0,
c320c7b7 5675 .size = sizeof(read_event) + event->read_size,
38b200d6 5676 },
cdd6c482
IM
5677 .pid = perf_event_pid(event, task),
5678 .tid = perf_event_tid(event, task),
38b200d6 5679 };
3dab77fb 5680 int ret;
38b200d6 5681
c980d109 5682 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5683 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5684 if (ret)
5685 return;
5686
dfc65094 5687 perf_output_put(&handle, read_event);
cdd6c482 5688 perf_output_read(&handle, event);
c980d109 5689 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5690
38b200d6
PZ
5691 perf_output_end(&handle);
5692}
5693
52d857a8
JO
5694typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5695
5696static void
5697perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5698 perf_event_aux_output_cb output,
5699 void *data)
5700{
5701 struct perf_event *event;
5702
5703 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5704 if (event->state < PERF_EVENT_STATE_INACTIVE)
5705 continue;
5706 if (!event_filter_match(event))
5707 continue;
67516844 5708 output(event, data);
52d857a8
JO
5709 }
5710}
5711
4e93ad60
JO
5712static void
5713perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5714 struct perf_event_context *task_ctx)
5715{
5716 rcu_read_lock();
5717 preempt_disable();
5718 perf_event_aux_ctx(task_ctx, output, data);
5719 preempt_enable();
5720 rcu_read_unlock();
5721}
5722
52d857a8 5723static void
67516844 5724perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5725 struct perf_event_context *task_ctx)
5726{
5727 struct perf_cpu_context *cpuctx;
5728 struct perf_event_context *ctx;
5729 struct pmu *pmu;
5730 int ctxn;
5731
4e93ad60
JO
5732 /*
5733 * If we have task_ctx != NULL we only notify
5734 * the task context itself. The task_ctx is set
5735 * only for EXIT events before releasing task
5736 * context.
5737 */
5738 if (task_ctx) {
5739 perf_event_aux_task_ctx(output, data, task_ctx);
5740 return;
5741 }
5742
52d857a8
JO
5743 rcu_read_lock();
5744 list_for_each_entry_rcu(pmu, &pmus, entry) {
5745 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5746 if (cpuctx->unique_pmu != pmu)
5747 goto next;
67516844 5748 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5749 ctxn = pmu->task_ctx_nr;
5750 if (ctxn < 0)
5751 goto next;
5752 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5753 if (ctx)
67516844 5754 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5755next:
5756 put_cpu_ptr(pmu->pmu_cpu_context);
5757 }
52d857a8
JO
5758 rcu_read_unlock();
5759}
5760
60313ebe 5761/*
9f498cc5
PZ
5762 * task tracking -- fork/exit
5763 *
13d7a241 5764 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5765 */
5766
9f498cc5 5767struct perf_task_event {
3a80b4a3 5768 struct task_struct *task;
cdd6c482 5769 struct perf_event_context *task_ctx;
60313ebe
PZ
5770
5771 struct {
5772 struct perf_event_header header;
5773
5774 u32 pid;
5775 u32 ppid;
9f498cc5
PZ
5776 u32 tid;
5777 u32 ptid;
393b2ad8 5778 u64 time;
cdd6c482 5779 } event_id;
60313ebe
PZ
5780};
5781
67516844
JO
5782static int perf_event_task_match(struct perf_event *event)
5783{
13d7a241
SE
5784 return event->attr.comm || event->attr.mmap ||
5785 event->attr.mmap2 || event->attr.mmap_data ||
5786 event->attr.task;
67516844
JO
5787}
5788
cdd6c482 5789static void perf_event_task_output(struct perf_event *event,
52d857a8 5790 void *data)
60313ebe 5791{
52d857a8 5792 struct perf_task_event *task_event = data;
60313ebe 5793 struct perf_output_handle handle;
c980d109 5794 struct perf_sample_data sample;
9f498cc5 5795 struct task_struct *task = task_event->task;
c980d109 5796 int ret, size = task_event->event_id.header.size;
8bb39f9a 5797
67516844
JO
5798 if (!perf_event_task_match(event))
5799 return;
5800
c980d109 5801 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5802
c980d109 5803 ret = perf_output_begin(&handle, event,
a7ac67ea 5804 task_event->event_id.header.size);
ef60777c 5805 if (ret)
c980d109 5806 goto out;
60313ebe 5807
cdd6c482
IM
5808 task_event->event_id.pid = perf_event_pid(event, task);
5809 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5810
cdd6c482
IM
5811 task_event->event_id.tid = perf_event_tid(event, task);
5812 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5813
34f43927
PZ
5814 task_event->event_id.time = perf_event_clock(event);
5815
cdd6c482 5816 perf_output_put(&handle, task_event->event_id);
393b2ad8 5817
c980d109
ACM
5818 perf_event__output_id_sample(event, &handle, &sample);
5819
60313ebe 5820 perf_output_end(&handle);
c980d109
ACM
5821out:
5822 task_event->event_id.header.size = size;
60313ebe
PZ
5823}
5824
cdd6c482
IM
5825static void perf_event_task(struct task_struct *task,
5826 struct perf_event_context *task_ctx,
3a80b4a3 5827 int new)
60313ebe 5828{
9f498cc5 5829 struct perf_task_event task_event;
60313ebe 5830
cdd6c482
IM
5831 if (!atomic_read(&nr_comm_events) &&
5832 !atomic_read(&nr_mmap_events) &&
5833 !atomic_read(&nr_task_events))
60313ebe
PZ
5834 return;
5835
9f498cc5 5836 task_event = (struct perf_task_event){
3a80b4a3
PZ
5837 .task = task,
5838 .task_ctx = task_ctx,
cdd6c482 5839 .event_id = {
60313ebe 5840 .header = {
cdd6c482 5841 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5842 .misc = 0,
cdd6c482 5843 .size = sizeof(task_event.event_id),
60313ebe 5844 },
573402db
PZ
5845 /* .pid */
5846 /* .ppid */
9f498cc5
PZ
5847 /* .tid */
5848 /* .ptid */
34f43927 5849 /* .time */
60313ebe
PZ
5850 },
5851 };
5852
67516844 5853 perf_event_aux(perf_event_task_output,
52d857a8
JO
5854 &task_event,
5855 task_ctx);
9f498cc5
PZ
5856}
5857
cdd6c482 5858void perf_event_fork(struct task_struct *task)
9f498cc5 5859{
cdd6c482 5860 perf_event_task(task, NULL, 1);
60313ebe
PZ
5861}
5862
8d1b2d93
PZ
5863/*
5864 * comm tracking
5865 */
5866
5867struct perf_comm_event {
22a4f650
IM
5868 struct task_struct *task;
5869 char *comm;
8d1b2d93
PZ
5870 int comm_size;
5871
5872 struct {
5873 struct perf_event_header header;
5874
5875 u32 pid;
5876 u32 tid;
cdd6c482 5877 } event_id;
8d1b2d93
PZ
5878};
5879
67516844
JO
5880static int perf_event_comm_match(struct perf_event *event)
5881{
5882 return event->attr.comm;
5883}
5884
cdd6c482 5885static void perf_event_comm_output(struct perf_event *event,
52d857a8 5886 void *data)
8d1b2d93 5887{
52d857a8 5888 struct perf_comm_event *comm_event = data;
8d1b2d93 5889 struct perf_output_handle handle;
c980d109 5890 struct perf_sample_data sample;
cdd6c482 5891 int size = comm_event->event_id.header.size;
c980d109
ACM
5892 int ret;
5893
67516844
JO
5894 if (!perf_event_comm_match(event))
5895 return;
5896
c980d109
ACM
5897 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5898 ret = perf_output_begin(&handle, event,
a7ac67ea 5899 comm_event->event_id.header.size);
8d1b2d93
PZ
5900
5901 if (ret)
c980d109 5902 goto out;
8d1b2d93 5903
cdd6c482
IM
5904 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5905 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5906
cdd6c482 5907 perf_output_put(&handle, comm_event->event_id);
76369139 5908 __output_copy(&handle, comm_event->comm,
8d1b2d93 5909 comm_event->comm_size);
c980d109
ACM
5910
5911 perf_event__output_id_sample(event, &handle, &sample);
5912
8d1b2d93 5913 perf_output_end(&handle);
c980d109
ACM
5914out:
5915 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5916}
5917
cdd6c482 5918static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5919{
413ee3b4 5920 char comm[TASK_COMM_LEN];
8d1b2d93 5921 unsigned int size;
8d1b2d93 5922
413ee3b4 5923 memset(comm, 0, sizeof(comm));
96b02d78 5924 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5925 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5926
5927 comm_event->comm = comm;
5928 comm_event->comm_size = size;
5929
cdd6c482 5930 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5931
67516844 5932 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5933 comm_event,
5934 NULL);
8d1b2d93
PZ
5935}
5936
82b89778 5937void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5938{
9ee318a7
PZ
5939 struct perf_comm_event comm_event;
5940
cdd6c482 5941 if (!atomic_read(&nr_comm_events))
9ee318a7 5942 return;
a63eaf34 5943
9ee318a7 5944 comm_event = (struct perf_comm_event){
8d1b2d93 5945 .task = task,
573402db
PZ
5946 /* .comm */
5947 /* .comm_size */
cdd6c482 5948 .event_id = {
573402db 5949 .header = {
cdd6c482 5950 .type = PERF_RECORD_COMM,
82b89778 5951 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5952 /* .size */
5953 },
5954 /* .pid */
5955 /* .tid */
8d1b2d93
PZ
5956 },
5957 };
5958
cdd6c482 5959 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5960}
5961
0a4a9391
PZ
5962/*
5963 * mmap tracking
5964 */
5965
5966struct perf_mmap_event {
089dd79d
PZ
5967 struct vm_area_struct *vma;
5968
5969 const char *file_name;
5970 int file_size;
13d7a241
SE
5971 int maj, min;
5972 u64 ino;
5973 u64 ino_generation;
f972eb63 5974 u32 prot, flags;
0a4a9391
PZ
5975
5976 struct {
5977 struct perf_event_header header;
5978
5979 u32 pid;
5980 u32 tid;
5981 u64 start;
5982 u64 len;
5983 u64 pgoff;
cdd6c482 5984 } event_id;
0a4a9391
PZ
5985};
5986
67516844
JO
5987static int perf_event_mmap_match(struct perf_event *event,
5988 void *data)
5989{
5990 struct perf_mmap_event *mmap_event = data;
5991 struct vm_area_struct *vma = mmap_event->vma;
5992 int executable = vma->vm_flags & VM_EXEC;
5993
5994 return (!executable && event->attr.mmap_data) ||
13d7a241 5995 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5996}
5997
cdd6c482 5998static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5999 void *data)
0a4a9391 6000{
52d857a8 6001 struct perf_mmap_event *mmap_event = data;
0a4a9391 6002 struct perf_output_handle handle;
c980d109 6003 struct perf_sample_data sample;
cdd6c482 6004 int size = mmap_event->event_id.header.size;
c980d109 6005 int ret;
0a4a9391 6006
67516844
JO
6007 if (!perf_event_mmap_match(event, data))
6008 return;
6009
13d7a241
SE
6010 if (event->attr.mmap2) {
6011 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6012 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6013 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6014 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6015 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6016 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6017 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6018 }
6019
c980d109
ACM
6020 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6021 ret = perf_output_begin(&handle, event,
a7ac67ea 6022 mmap_event->event_id.header.size);
0a4a9391 6023 if (ret)
c980d109 6024 goto out;
0a4a9391 6025
cdd6c482
IM
6026 mmap_event->event_id.pid = perf_event_pid(event, current);
6027 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6028
cdd6c482 6029 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6030
6031 if (event->attr.mmap2) {
6032 perf_output_put(&handle, mmap_event->maj);
6033 perf_output_put(&handle, mmap_event->min);
6034 perf_output_put(&handle, mmap_event->ino);
6035 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6036 perf_output_put(&handle, mmap_event->prot);
6037 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6038 }
6039
76369139 6040 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6041 mmap_event->file_size);
c980d109
ACM
6042
6043 perf_event__output_id_sample(event, &handle, &sample);
6044
78d613eb 6045 perf_output_end(&handle);
c980d109
ACM
6046out:
6047 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6048}
6049
cdd6c482 6050static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6051{
089dd79d
PZ
6052 struct vm_area_struct *vma = mmap_event->vma;
6053 struct file *file = vma->vm_file;
13d7a241
SE
6054 int maj = 0, min = 0;
6055 u64 ino = 0, gen = 0;
f972eb63 6056 u32 prot = 0, flags = 0;
0a4a9391
PZ
6057 unsigned int size;
6058 char tmp[16];
6059 char *buf = NULL;
2c42cfbf 6060 char *name;
413ee3b4 6061
0a4a9391 6062 if (file) {
13d7a241
SE
6063 struct inode *inode;
6064 dev_t dev;
3ea2f2b9 6065
2c42cfbf 6066 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6067 if (!buf) {
c7e548b4
ON
6068 name = "//enomem";
6069 goto cpy_name;
0a4a9391 6070 }
413ee3b4 6071 /*
3ea2f2b9 6072 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6073 * need to add enough zero bytes after the string to handle
6074 * the 64bit alignment we do later.
6075 */
9bf39ab2 6076 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6077 if (IS_ERR(name)) {
c7e548b4
ON
6078 name = "//toolong";
6079 goto cpy_name;
0a4a9391 6080 }
13d7a241
SE
6081 inode = file_inode(vma->vm_file);
6082 dev = inode->i_sb->s_dev;
6083 ino = inode->i_ino;
6084 gen = inode->i_generation;
6085 maj = MAJOR(dev);
6086 min = MINOR(dev);
f972eb63
PZ
6087
6088 if (vma->vm_flags & VM_READ)
6089 prot |= PROT_READ;
6090 if (vma->vm_flags & VM_WRITE)
6091 prot |= PROT_WRITE;
6092 if (vma->vm_flags & VM_EXEC)
6093 prot |= PROT_EXEC;
6094
6095 if (vma->vm_flags & VM_MAYSHARE)
6096 flags = MAP_SHARED;
6097 else
6098 flags = MAP_PRIVATE;
6099
6100 if (vma->vm_flags & VM_DENYWRITE)
6101 flags |= MAP_DENYWRITE;
6102 if (vma->vm_flags & VM_MAYEXEC)
6103 flags |= MAP_EXECUTABLE;
6104 if (vma->vm_flags & VM_LOCKED)
6105 flags |= MAP_LOCKED;
6106 if (vma->vm_flags & VM_HUGETLB)
6107 flags |= MAP_HUGETLB;
6108
c7e548b4 6109 goto got_name;
0a4a9391 6110 } else {
fbe26abe
JO
6111 if (vma->vm_ops && vma->vm_ops->name) {
6112 name = (char *) vma->vm_ops->name(vma);
6113 if (name)
6114 goto cpy_name;
6115 }
6116
2c42cfbf 6117 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6118 if (name)
6119 goto cpy_name;
089dd79d 6120
32c5fb7e 6121 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6122 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6123 name = "[heap]";
6124 goto cpy_name;
32c5fb7e
ON
6125 }
6126 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6127 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6128 name = "[stack]";
6129 goto cpy_name;
089dd79d
PZ
6130 }
6131
c7e548b4
ON
6132 name = "//anon";
6133 goto cpy_name;
0a4a9391
PZ
6134 }
6135
c7e548b4
ON
6136cpy_name:
6137 strlcpy(tmp, name, sizeof(tmp));
6138 name = tmp;
0a4a9391 6139got_name:
2c42cfbf
PZ
6140 /*
6141 * Since our buffer works in 8 byte units we need to align our string
6142 * size to a multiple of 8. However, we must guarantee the tail end is
6143 * zero'd out to avoid leaking random bits to userspace.
6144 */
6145 size = strlen(name)+1;
6146 while (!IS_ALIGNED(size, sizeof(u64)))
6147 name[size++] = '\0';
0a4a9391
PZ
6148
6149 mmap_event->file_name = name;
6150 mmap_event->file_size = size;
13d7a241
SE
6151 mmap_event->maj = maj;
6152 mmap_event->min = min;
6153 mmap_event->ino = ino;
6154 mmap_event->ino_generation = gen;
f972eb63
PZ
6155 mmap_event->prot = prot;
6156 mmap_event->flags = flags;
0a4a9391 6157
2fe85427
SE
6158 if (!(vma->vm_flags & VM_EXEC))
6159 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6160
cdd6c482 6161 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6162
67516844 6163 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6164 mmap_event,
6165 NULL);
665c2142 6166
0a4a9391
PZ
6167 kfree(buf);
6168}
6169
3af9e859 6170void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6171{
9ee318a7
PZ
6172 struct perf_mmap_event mmap_event;
6173
cdd6c482 6174 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6175 return;
6176
6177 mmap_event = (struct perf_mmap_event){
089dd79d 6178 .vma = vma,
573402db
PZ
6179 /* .file_name */
6180 /* .file_size */
cdd6c482 6181 .event_id = {
573402db 6182 .header = {
cdd6c482 6183 .type = PERF_RECORD_MMAP,
39447b38 6184 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6185 /* .size */
6186 },
6187 /* .pid */
6188 /* .tid */
089dd79d
PZ
6189 .start = vma->vm_start,
6190 .len = vma->vm_end - vma->vm_start,
3a0304e9 6191 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6192 },
13d7a241
SE
6193 /* .maj (attr_mmap2 only) */
6194 /* .min (attr_mmap2 only) */
6195 /* .ino (attr_mmap2 only) */
6196 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6197 /* .prot (attr_mmap2 only) */
6198 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6199 };
6200
cdd6c482 6201 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6202}
6203
68db7e98
AS
6204void perf_event_aux_event(struct perf_event *event, unsigned long head,
6205 unsigned long size, u64 flags)
6206{
6207 struct perf_output_handle handle;
6208 struct perf_sample_data sample;
6209 struct perf_aux_event {
6210 struct perf_event_header header;
6211 u64 offset;
6212 u64 size;
6213 u64 flags;
6214 } rec = {
6215 .header = {
6216 .type = PERF_RECORD_AUX,
6217 .misc = 0,
6218 .size = sizeof(rec),
6219 },
6220 .offset = head,
6221 .size = size,
6222 .flags = flags,
6223 };
6224 int ret;
6225
6226 perf_event_header__init_id(&rec.header, &sample, event);
6227 ret = perf_output_begin(&handle, event, rec.header.size);
6228
6229 if (ret)
6230 return;
6231
6232 perf_output_put(&handle, rec);
6233 perf_event__output_id_sample(event, &handle, &sample);
6234
6235 perf_output_end(&handle);
6236}
6237
f38b0dbb
KL
6238/*
6239 * Lost/dropped samples logging
6240 */
6241void perf_log_lost_samples(struct perf_event *event, u64 lost)
6242{
6243 struct perf_output_handle handle;
6244 struct perf_sample_data sample;
6245 int ret;
6246
6247 struct {
6248 struct perf_event_header header;
6249 u64 lost;
6250 } lost_samples_event = {
6251 .header = {
6252 .type = PERF_RECORD_LOST_SAMPLES,
6253 .misc = 0,
6254 .size = sizeof(lost_samples_event),
6255 },
6256 .lost = lost,
6257 };
6258
6259 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6260
6261 ret = perf_output_begin(&handle, event,
6262 lost_samples_event.header.size);
6263 if (ret)
6264 return;
6265
6266 perf_output_put(&handle, lost_samples_event);
6267 perf_event__output_id_sample(event, &handle, &sample);
6268 perf_output_end(&handle);
6269}
6270
45ac1403
AH
6271/*
6272 * context_switch tracking
6273 */
6274
6275struct perf_switch_event {
6276 struct task_struct *task;
6277 struct task_struct *next_prev;
6278
6279 struct {
6280 struct perf_event_header header;
6281 u32 next_prev_pid;
6282 u32 next_prev_tid;
6283 } event_id;
6284};
6285
6286static int perf_event_switch_match(struct perf_event *event)
6287{
6288 return event->attr.context_switch;
6289}
6290
6291static void perf_event_switch_output(struct perf_event *event, void *data)
6292{
6293 struct perf_switch_event *se = data;
6294 struct perf_output_handle handle;
6295 struct perf_sample_data sample;
6296 int ret;
6297
6298 if (!perf_event_switch_match(event))
6299 return;
6300
6301 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6302 if (event->ctx->task) {
6303 se->event_id.header.type = PERF_RECORD_SWITCH;
6304 se->event_id.header.size = sizeof(se->event_id.header);
6305 } else {
6306 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6307 se->event_id.header.size = sizeof(se->event_id);
6308 se->event_id.next_prev_pid =
6309 perf_event_pid(event, se->next_prev);
6310 se->event_id.next_prev_tid =
6311 perf_event_tid(event, se->next_prev);
6312 }
6313
6314 perf_event_header__init_id(&se->event_id.header, &sample, event);
6315
6316 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6317 if (ret)
6318 return;
6319
6320 if (event->ctx->task)
6321 perf_output_put(&handle, se->event_id.header);
6322 else
6323 perf_output_put(&handle, se->event_id);
6324
6325 perf_event__output_id_sample(event, &handle, &sample);
6326
6327 perf_output_end(&handle);
6328}
6329
6330static void perf_event_switch(struct task_struct *task,
6331 struct task_struct *next_prev, bool sched_in)
6332{
6333 struct perf_switch_event switch_event;
6334
6335 /* N.B. caller checks nr_switch_events != 0 */
6336
6337 switch_event = (struct perf_switch_event){
6338 .task = task,
6339 .next_prev = next_prev,
6340 .event_id = {
6341 .header = {
6342 /* .type */
6343 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6344 /* .size */
6345 },
6346 /* .next_prev_pid */
6347 /* .next_prev_tid */
6348 },
6349 };
6350
6351 perf_event_aux(perf_event_switch_output,
6352 &switch_event,
6353 NULL);
6354}
6355
a78ac325
PZ
6356/*
6357 * IRQ throttle logging
6358 */
6359
cdd6c482 6360static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6361{
6362 struct perf_output_handle handle;
c980d109 6363 struct perf_sample_data sample;
a78ac325
PZ
6364 int ret;
6365
6366 struct {
6367 struct perf_event_header header;
6368 u64 time;
cca3f454 6369 u64 id;
7f453c24 6370 u64 stream_id;
a78ac325
PZ
6371 } throttle_event = {
6372 .header = {
cdd6c482 6373 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6374 .misc = 0,
6375 .size = sizeof(throttle_event),
6376 },
34f43927 6377 .time = perf_event_clock(event),
cdd6c482
IM
6378 .id = primary_event_id(event),
6379 .stream_id = event->id,
a78ac325
PZ
6380 };
6381
966ee4d6 6382 if (enable)
cdd6c482 6383 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6384
c980d109
ACM
6385 perf_event_header__init_id(&throttle_event.header, &sample, event);
6386
6387 ret = perf_output_begin(&handle, event,
a7ac67ea 6388 throttle_event.header.size);
a78ac325
PZ
6389 if (ret)
6390 return;
6391
6392 perf_output_put(&handle, throttle_event);
c980d109 6393 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6394 perf_output_end(&handle);
6395}
6396
ec0d7729
AS
6397static void perf_log_itrace_start(struct perf_event *event)
6398{
6399 struct perf_output_handle handle;
6400 struct perf_sample_data sample;
6401 struct perf_aux_event {
6402 struct perf_event_header header;
6403 u32 pid;
6404 u32 tid;
6405 } rec;
6406 int ret;
6407
6408 if (event->parent)
6409 event = event->parent;
6410
6411 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6412 event->hw.itrace_started)
6413 return;
6414
ec0d7729
AS
6415 rec.header.type = PERF_RECORD_ITRACE_START;
6416 rec.header.misc = 0;
6417 rec.header.size = sizeof(rec);
6418 rec.pid = perf_event_pid(event, current);
6419 rec.tid = perf_event_tid(event, current);
6420
6421 perf_event_header__init_id(&rec.header, &sample, event);
6422 ret = perf_output_begin(&handle, event, rec.header.size);
6423
6424 if (ret)
6425 return;
6426
6427 perf_output_put(&handle, rec);
6428 perf_event__output_id_sample(event, &handle, &sample);
6429
6430 perf_output_end(&handle);
6431}
6432
f6c7d5fe 6433/*
cdd6c482 6434 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6435 */
6436
a8b0ca17 6437static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6438 int throttle, struct perf_sample_data *data,
6439 struct pt_regs *regs)
f6c7d5fe 6440{
cdd6c482
IM
6441 int events = atomic_read(&event->event_limit);
6442 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6443 u64 seq;
79f14641
PZ
6444 int ret = 0;
6445
96398826
PZ
6446 /*
6447 * Non-sampling counters might still use the PMI to fold short
6448 * hardware counters, ignore those.
6449 */
6450 if (unlikely(!is_sampling_event(event)))
6451 return 0;
6452
e050e3f0
SE
6453 seq = __this_cpu_read(perf_throttled_seq);
6454 if (seq != hwc->interrupts_seq) {
6455 hwc->interrupts_seq = seq;
6456 hwc->interrupts = 1;
6457 } else {
6458 hwc->interrupts++;
6459 if (unlikely(throttle
6460 && hwc->interrupts >= max_samples_per_tick)) {
6461 __this_cpu_inc(perf_throttled_count);
555e0c1e 6462 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6463 hwc->interrupts = MAX_INTERRUPTS;
6464 perf_log_throttle(event, 0);
a78ac325
PZ
6465 ret = 1;
6466 }
e050e3f0 6467 }
60db5e09 6468
cdd6c482 6469 if (event->attr.freq) {
def0a9b2 6470 u64 now = perf_clock();
abd50713 6471 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6472
abd50713 6473 hwc->freq_time_stamp = now;
bd2b5b12 6474
abd50713 6475 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6476 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6477 }
6478
2023b359
PZ
6479 /*
6480 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6481 * events
2023b359
PZ
6482 */
6483
cdd6c482
IM
6484 event->pending_kill = POLL_IN;
6485 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6486 ret = 1;
cdd6c482 6487 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6488 event->pending_disable = 1;
6489 irq_work_queue(&event->pending);
79f14641
PZ
6490 }
6491
453f19ee 6492 if (event->overflow_handler)
a8b0ca17 6493 event->overflow_handler(event, data, regs);
453f19ee 6494 else
a8b0ca17 6495 perf_event_output(event, data, regs);
453f19ee 6496
fed66e2c 6497 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6498 event->pending_wakeup = 1;
6499 irq_work_queue(&event->pending);
f506b3dc
PZ
6500 }
6501
79f14641 6502 return ret;
f6c7d5fe
PZ
6503}
6504
a8b0ca17 6505int perf_event_overflow(struct perf_event *event,
5622f295
MM
6506 struct perf_sample_data *data,
6507 struct pt_regs *regs)
850bc73f 6508{
a8b0ca17 6509 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6510}
6511
15dbf27c 6512/*
cdd6c482 6513 * Generic software event infrastructure
15dbf27c
PZ
6514 */
6515
b28ab83c
PZ
6516struct swevent_htable {
6517 struct swevent_hlist *swevent_hlist;
6518 struct mutex hlist_mutex;
6519 int hlist_refcount;
6520
6521 /* Recursion avoidance in each contexts */
6522 int recursion[PERF_NR_CONTEXTS];
6523};
6524
6525static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6526
7b4b6658 6527/*
cdd6c482
IM
6528 * We directly increment event->count and keep a second value in
6529 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6530 * is kept in the range [-sample_period, 0] so that we can use the
6531 * sign as trigger.
6532 */
6533
ab573844 6534u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6535{
cdd6c482 6536 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6537 u64 period = hwc->last_period;
6538 u64 nr, offset;
6539 s64 old, val;
6540
6541 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6542
6543again:
e7850595 6544 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6545 if (val < 0)
6546 return 0;
15dbf27c 6547
7b4b6658
PZ
6548 nr = div64_u64(period + val, period);
6549 offset = nr * period;
6550 val -= offset;
e7850595 6551 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6552 goto again;
15dbf27c 6553
7b4b6658 6554 return nr;
15dbf27c
PZ
6555}
6556
0cff784a 6557static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6558 struct perf_sample_data *data,
5622f295 6559 struct pt_regs *regs)
15dbf27c 6560{
cdd6c482 6561 struct hw_perf_event *hwc = &event->hw;
850bc73f 6562 int throttle = 0;
15dbf27c 6563
0cff784a
PZ
6564 if (!overflow)
6565 overflow = perf_swevent_set_period(event);
15dbf27c 6566
7b4b6658
PZ
6567 if (hwc->interrupts == MAX_INTERRUPTS)
6568 return;
15dbf27c 6569
7b4b6658 6570 for (; overflow; overflow--) {
a8b0ca17 6571 if (__perf_event_overflow(event, throttle,
5622f295 6572 data, regs)) {
7b4b6658
PZ
6573 /*
6574 * We inhibit the overflow from happening when
6575 * hwc->interrupts == MAX_INTERRUPTS.
6576 */
6577 break;
6578 }
cf450a73 6579 throttle = 1;
7b4b6658 6580 }
15dbf27c
PZ
6581}
6582
a4eaf7f1 6583static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6584 struct perf_sample_data *data,
5622f295 6585 struct pt_regs *regs)
7b4b6658 6586{
cdd6c482 6587 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6588
e7850595 6589 local64_add(nr, &event->count);
d6d020e9 6590
0cff784a
PZ
6591 if (!regs)
6592 return;
6593
6c7e550f 6594 if (!is_sampling_event(event))
7b4b6658 6595 return;
d6d020e9 6596
5d81e5cf
AV
6597 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6598 data->period = nr;
6599 return perf_swevent_overflow(event, 1, data, regs);
6600 } else
6601 data->period = event->hw.last_period;
6602
0cff784a 6603 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6604 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6605
e7850595 6606 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6607 return;
df1a132b 6608
a8b0ca17 6609 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6610}
6611
f5ffe02e
FW
6612static int perf_exclude_event(struct perf_event *event,
6613 struct pt_regs *regs)
6614{
a4eaf7f1 6615 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6616 return 1;
a4eaf7f1 6617
f5ffe02e
FW
6618 if (regs) {
6619 if (event->attr.exclude_user && user_mode(regs))
6620 return 1;
6621
6622 if (event->attr.exclude_kernel && !user_mode(regs))
6623 return 1;
6624 }
6625
6626 return 0;
6627}
6628
cdd6c482 6629static int perf_swevent_match(struct perf_event *event,
1c432d89 6630 enum perf_type_id type,
6fb2915d
LZ
6631 u32 event_id,
6632 struct perf_sample_data *data,
6633 struct pt_regs *regs)
15dbf27c 6634{
cdd6c482 6635 if (event->attr.type != type)
a21ca2ca 6636 return 0;
f5ffe02e 6637
cdd6c482 6638 if (event->attr.config != event_id)
15dbf27c
PZ
6639 return 0;
6640
f5ffe02e
FW
6641 if (perf_exclude_event(event, regs))
6642 return 0;
15dbf27c
PZ
6643
6644 return 1;
6645}
6646
76e1d904
FW
6647static inline u64 swevent_hash(u64 type, u32 event_id)
6648{
6649 u64 val = event_id | (type << 32);
6650
6651 return hash_64(val, SWEVENT_HLIST_BITS);
6652}
6653
49f135ed
FW
6654static inline struct hlist_head *
6655__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6656{
49f135ed
FW
6657 u64 hash = swevent_hash(type, event_id);
6658
6659 return &hlist->heads[hash];
6660}
76e1d904 6661
49f135ed
FW
6662/* For the read side: events when they trigger */
6663static inline struct hlist_head *
b28ab83c 6664find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6665{
6666 struct swevent_hlist *hlist;
76e1d904 6667
b28ab83c 6668 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6669 if (!hlist)
6670 return NULL;
6671
49f135ed
FW
6672 return __find_swevent_head(hlist, type, event_id);
6673}
6674
6675/* For the event head insertion and removal in the hlist */
6676static inline struct hlist_head *
b28ab83c 6677find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6678{
6679 struct swevent_hlist *hlist;
6680 u32 event_id = event->attr.config;
6681 u64 type = event->attr.type;
6682
6683 /*
6684 * Event scheduling is always serialized against hlist allocation
6685 * and release. Which makes the protected version suitable here.
6686 * The context lock guarantees that.
6687 */
b28ab83c 6688 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6689 lockdep_is_held(&event->ctx->lock));
6690 if (!hlist)
6691 return NULL;
6692
6693 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6694}
6695
6696static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6697 u64 nr,
76e1d904
FW
6698 struct perf_sample_data *data,
6699 struct pt_regs *regs)
15dbf27c 6700{
4a32fea9 6701 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6702 struct perf_event *event;
76e1d904 6703 struct hlist_head *head;
15dbf27c 6704
76e1d904 6705 rcu_read_lock();
b28ab83c 6706 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6707 if (!head)
6708 goto end;
6709
b67bfe0d 6710 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6711 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6712 perf_swevent_event(event, nr, data, regs);
15dbf27c 6713 }
76e1d904
FW
6714end:
6715 rcu_read_unlock();
15dbf27c
PZ
6716}
6717
86038c5e
PZI
6718DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6719
4ed7c92d 6720int perf_swevent_get_recursion_context(void)
96f6d444 6721{
4a32fea9 6722 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6723
b28ab83c 6724 return get_recursion_context(swhash->recursion);
96f6d444 6725}
645e8cc0 6726EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6727
fa9f90be 6728inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6729{
4a32fea9 6730 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6731
b28ab83c 6732 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6733}
15dbf27c 6734
86038c5e 6735void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6736{
a4234bfc 6737 struct perf_sample_data data;
4ed7c92d 6738
86038c5e 6739 if (WARN_ON_ONCE(!regs))
4ed7c92d 6740 return;
a4234bfc 6741
fd0d000b 6742 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6743 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6744}
6745
6746void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6747{
6748 int rctx;
6749
6750 preempt_disable_notrace();
6751 rctx = perf_swevent_get_recursion_context();
6752 if (unlikely(rctx < 0))
6753 goto fail;
6754
6755 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6756
6757 perf_swevent_put_recursion_context(rctx);
86038c5e 6758fail:
1c024eca 6759 preempt_enable_notrace();
b8e83514
PZ
6760}
6761
cdd6c482 6762static void perf_swevent_read(struct perf_event *event)
15dbf27c 6763{
15dbf27c
PZ
6764}
6765
a4eaf7f1 6766static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6767{
4a32fea9 6768 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6769 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6770 struct hlist_head *head;
6771
6c7e550f 6772 if (is_sampling_event(event)) {
7b4b6658 6773 hwc->last_period = hwc->sample_period;
cdd6c482 6774 perf_swevent_set_period(event);
7b4b6658 6775 }
76e1d904 6776
a4eaf7f1
PZ
6777 hwc->state = !(flags & PERF_EF_START);
6778
b28ab83c 6779 head = find_swevent_head(swhash, event);
12ca6ad2 6780 if (WARN_ON_ONCE(!head))
76e1d904
FW
6781 return -EINVAL;
6782
6783 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6784 perf_event_update_userpage(event);
76e1d904 6785
15dbf27c
PZ
6786 return 0;
6787}
6788
a4eaf7f1 6789static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6790{
76e1d904 6791 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6792}
6793
a4eaf7f1 6794static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6795{
a4eaf7f1 6796 event->hw.state = 0;
d6d020e9 6797}
aa9c4c0f 6798
a4eaf7f1 6799static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6800{
a4eaf7f1 6801 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6802}
6803
49f135ed
FW
6804/* Deref the hlist from the update side */
6805static inline struct swevent_hlist *
b28ab83c 6806swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6807{
b28ab83c
PZ
6808 return rcu_dereference_protected(swhash->swevent_hlist,
6809 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6810}
6811
b28ab83c 6812static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6813{
b28ab83c 6814 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6815
49f135ed 6816 if (!hlist)
76e1d904
FW
6817 return;
6818
70691d4a 6819 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6820 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6821}
6822
3b364d7b 6823static void swevent_hlist_put_cpu(int cpu)
76e1d904 6824{
b28ab83c 6825 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6826
b28ab83c 6827 mutex_lock(&swhash->hlist_mutex);
76e1d904 6828
b28ab83c
PZ
6829 if (!--swhash->hlist_refcount)
6830 swevent_hlist_release(swhash);
76e1d904 6831
b28ab83c 6832 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6833}
6834
3b364d7b 6835static void swevent_hlist_put(void)
76e1d904
FW
6836{
6837 int cpu;
6838
76e1d904 6839 for_each_possible_cpu(cpu)
3b364d7b 6840 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6841}
6842
3b364d7b 6843static int swevent_hlist_get_cpu(int cpu)
76e1d904 6844{
b28ab83c 6845 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6846 int err = 0;
6847
b28ab83c 6848 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6849 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6850 struct swevent_hlist *hlist;
6851
6852 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6853 if (!hlist) {
6854 err = -ENOMEM;
6855 goto exit;
6856 }
b28ab83c 6857 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6858 }
b28ab83c 6859 swhash->hlist_refcount++;
9ed6060d 6860exit:
b28ab83c 6861 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6862
6863 return err;
6864}
6865
3b364d7b 6866static int swevent_hlist_get(void)
76e1d904 6867{
3b364d7b 6868 int err, cpu, failed_cpu;
76e1d904 6869
76e1d904
FW
6870 get_online_cpus();
6871 for_each_possible_cpu(cpu) {
3b364d7b 6872 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
6873 if (err) {
6874 failed_cpu = cpu;
6875 goto fail;
6876 }
6877 }
6878 put_online_cpus();
6879
6880 return 0;
9ed6060d 6881fail:
76e1d904
FW
6882 for_each_possible_cpu(cpu) {
6883 if (cpu == failed_cpu)
6884 break;
3b364d7b 6885 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6886 }
6887
6888 put_online_cpus();
6889 return err;
6890}
6891
c5905afb 6892struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6893
b0a873eb
PZ
6894static void sw_perf_event_destroy(struct perf_event *event)
6895{
6896 u64 event_id = event->attr.config;
95476b64 6897
b0a873eb
PZ
6898 WARN_ON(event->parent);
6899
c5905afb 6900 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 6901 swevent_hlist_put();
b0a873eb
PZ
6902}
6903
6904static int perf_swevent_init(struct perf_event *event)
6905{
8176cced 6906 u64 event_id = event->attr.config;
b0a873eb
PZ
6907
6908 if (event->attr.type != PERF_TYPE_SOFTWARE)
6909 return -ENOENT;
6910
2481c5fa
SE
6911 /*
6912 * no branch sampling for software events
6913 */
6914 if (has_branch_stack(event))
6915 return -EOPNOTSUPP;
6916
b0a873eb
PZ
6917 switch (event_id) {
6918 case PERF_COUNT_SW_CPU_CLOCK:
6919 case PERF_COUNT_SW_TASK_CLOCK:
6920 return -ENOENT;
6921
6922 default:
6923 break;
6924 }
6925
ce677831 6926 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6927 return -ENOENT;
6928
6929 if (!event->parent) {
6930 int err;
6931
3b364d7b 6932 err = swevent_hlist_get();
b0a873eb
PZ
6933 if (err)
6934 return err;
6935
c5905afb 6936 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6937 event->destroy = sw_perf_event_destroy;
6938 }
6939
6940 return 0;
6941}
6942
6943static struct pmu perf_swevent = {
89a1e187 6944 .task_ctx_nr = perf_sw_context,
95476b64 6945
34f43927
PZ
6946 .capabilities = PERF_PMU_CAP_NO_NMI,
6947
b0a873eb 6948 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6949 .add = perf_swevent_add,
6950 .del = perf_swevent_del,
6951 .start = perf_swevent_start,
6952 .stop = perf_swevent_stop,
1c024eca 6953 .read = perf_swevent_read,
1c024eca
PZ
6954};
6955
b0a873eb
PZ
6956#ifdef CONFIG_EVENT_TRACING
6957
1c024eca
PZ
6958static int perf_tp_filter_match(struct perf_event *event,
6959 struct perf_sample_data *data)
6960{
6961 void *record = data->raw->data;
6962
b71b437e
PZ
6963 /* only top level events have filters set */
6964 if (event->parent)
6965 event = event->parent;
6966
1c024eca
PZ
6967 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6968 return 1;
6969 return 0;
6970}
6971
6972static int perf_tp_event_match(struct perf_event *event,
6973 struct perf_sample_data *data,
6974 struct pt_regs *regs)
6975{
a0f7d0f7
FW
6976 if (event->hw.state & PERF_HES_STOPPED)
6977 return 0;
580d607c
PZ
6978 /*
6979 * All tracepoints are from kernel-space.
6980 */
6981 if (event->attr.exclude_kernel)
1c024eca
PZ
6982 return 0;
6983
6984 if (!perf_tp_filter_match(event, data))
6985 return 0;
6986
6987 return 1;
6988}
6989
6990void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6991 struct pt_regs *regs, struct hlist_head *head, int rctx,
6992 struct task_struct *task)
95476b64
FW
6993{
6994 struct perf_sample_data data;
1c024eca 6995 struct perf_event *event;
1c024eca 6996
95476b64
FW
6997 struct perf_raw_record raw = {
6998 .size = entry_size,
6999 .data = record,
7000 };
7001
fd0d000b 7002 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7003 data.raw = &raw;
7004
b67bfe0d 7005 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7006 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7007 perf_swevent_event(event, count, &data, regs);
4f41c013 7008 }
ecc55f84 7009
e6dab5ff
AV
7010 /*
7011 * If we got specified a target task, also iterate its context and
7012 * deliver this event there too.
7013 */
7014 if (task && task != current) {
7015 struct perf_event_context *ctx;
7016 struct trace_entry *entry = record;
7017
7018 rcu_read_lock();
7019 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7020 if (!ctx)
7021 goto unlock;
7022
7023 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7024 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7025 continue;
7026 if (event->attr.config != entry->type)
7027 continue;
7028 if (perf_tp_event_match(event, &data, regs))
7029 perf_swevent_event(event, count, &data, regs);
7030 }
7031unlock:
7032 rcu_read_unlock();
7033 }
7034
ecc55f84 7035 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7036}
7037EXPORT_SYMBOL_GPL(perf_tp_event);
7038
cdd6c482 7039static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7040{
1c024eca 7041 perf_trace_destroy(event);
e077df4f
PZ
7042}
7043
b0a873eb 7044static int perf_tp_event_init(struct perf_event *event)
e077df4f 7045{
76e1d904
FW
7046 int err;
7047
b0a873eb
PZ
7048 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7049 return -ENOENT;
7050
2481c5fa
SE
7051 /*
7052 * no branch sampling for tracepoint events
7053 */
7054 if (has_branch_stack(event))
7055 return -EOPNOTSUPP;
7056
1c024eca
PZ
7057 err = perf_trace_init(event);
7058 if (err)
b0a873eb 7059 return err;
e077df4f 7060
cdd6c482 7061 event->destroy = tp_perf_event_destroy;
e077df4f 7062
b0a873eb
PZ
7063 return 0;
7064}
7065
7066static struct pmu perf_tracepoint = {
89a1e187
PZ
7067 .task_ctx_nr = perf_sw_context,
7068
b0a873eb 7069 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7070 .add = perf_trace_add,
7071 .del = perf_trace_del,
7072 .start = perf_swevent_start,
7073 .stop = perf_swevent_stop,
b0a873eb 7074 .read = perf_swevent_read,
b0a873eb
PZ
7075};
7076
7077static inline void perf_tp_register(void)
7078{
2e80a82a 7079 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7080}
6fb2915d
LZ
7081
7082static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7083{
7084 char *filter_str;
7085 int ret;
7086
7087 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7088 return -EINVAL;
7089
7090 filter_str = strndup_user(arg, PAGE_SIZE);
7091 if (IS_ERR(filter_str))
7092 return PTR_ERR(filter_str);
7093
7094 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7095
7096 kfree(filter_str);
7097 return ret;
7098}
7099
7100static void perf_event_free_filter(struct perf_event *event)
7101{
7102 ftrace_profile_free_filter(event);
7103}
7104
2541517c
AS
7105static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7106{
7107 struct bpf_prog *prog;
7108
7109 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7110 return -EINVAL;
7111
7112 if (event->tp_event->prog)
7113 return -EEXIST;
7114
04a22fae
WN
7115 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7116 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7117 return -EINVAL;
7118
7119 prog = bpf_prog_get(prog_fd);
7120 if (IS_ERR(prog))
7121 return PTR_ERR(prog);
7122
6c373ca8 7123 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7124 /* valid fd, but invalid bpf program type */
7125 bpf_prog_put(prog);
7126 return -EINVAL;
7127 }
7128
7129 event->tp_event->prog = prog;
7130
7131 return 0;
7132}
7133
7134static void perf_event_free_bpf_prog(struct perf_event *event)
7135{
7136 struct bpf_prog *prog;
7137
7138 if (!event->tp_event)
7139 return;
7140
7141 prog = event->tp_event->prog;
7142 if (prog) {
7143 event->tp_event->prog = NULL;
7144 bpf_prog_put(prog);
7145 }
7146}
7147
e077df4f 7148#else
6fb2915d 7149
b0a873eb 7150static inline void perf_tp_register(void)
e077df4f 7151{
e077df4f 7152}
6fb2915d
LZ
7153
7154static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7155{
7156 return -ENOENT;
7157}
7158
7159static void perf_event_free_filter(struct perf_event *event)
7160{
7161}
7162
2541517c
AS
7163static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7164{
7165 return -ENOENT;
7166}
7167
7168static void perf_event_free_bpf_prog(struct perf_event *event)
7169{
7170}
07b139c8 7171#endif /* CONFIG_EVENT_TRACING */
e077df4f 7172
24f1e32c 7173#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7174void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7175{
f5ffe02e
FW
7176 struct perf_sample_data sample;
7177 struct pt_regs *regs = data;
7178
fd0d000b 7179 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7180
a4eaf7f1 7181 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7182 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7183}
7184#endif
7185
b0a873eb
PZ
7186/*
7187 * hrtimer based swevent callback
7188 */
f29ac756 7189
b0a873eb 7190static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7191{
b0a873eb
PZ
7192 enum hrtimer_restart ret = HRTIMER_RESTART;
7193 struct perf_sample_data data;
7194 struct pt_regs *regs;
7195 struct perf_event *event;
7196 u64 period;
f29ac756 7197
b0a873eb 7198 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7199
7200 if (event->state != PERF_EVENT_STATE_ACTIVE)
7201 return HRTIMER_NORESTART;
7202
b0a873eb 7203 event->pmu->read(event);
f344011c 7204
fd0d000b 7205 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7206 regs = get_irq_regs();
7207
7208 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7209 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7210 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7211 ret = HRTIMER_NORESTART;
7212 }
24f1e32c 7213
b0a873eb
PZ
7214 period = max_t(u64, 10000, event->hw.sample_period);
7215 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7216
b0a873eb 7217 return ret;
f29ac756
PZ
7218}
7219
b0a873eb 7220static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7221{
b0a873eb 7222 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7223 s64 period;
7224
7225 if (!is_sampling_event(event))
7226 return;
f5ffe02e 7227
5d508e82
FBH
7228 period = local64_read(&hwc->period_left);
7229 if (period) {
7230 if (period < 0)
7231 period = 10000;
fa407f35 7232
5d508e82
FBH
7233 local64_set(&hwc->period_left, 0);
7234 } else {
7235 period = max_t(u64, 10000, hwc->sample_period);
7236 }
3497d206
TG
7237 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7238 HRTIMER_MODE_REL_PINNED);
24f1e32c 7239}
b0a873eb
PZ
7240
7241static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7242{
b0a873eb
PZ
7243 struct hw_perf_event *hwc = &event->hw;
7244
6c7e550f 7245 if (is_sampling_event(event)) {
b0a873eb 7246 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7247 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7248
7249 hrtimer_cancel(&hwc->hrtimer);
7250 }
24f1e32c
FW
7251}
7252
ba3dd36c
PZ
7253static void perf_swevent_init_hrtimer(struct perf_event *event)
7254{
7255 struct hw_perf_event *hwc = &event->hw;
7256
7257 if (!is_sampling_event(event))
7258 return;
7259
7260 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7261 hwc->hrtimer.function = perf_swevent_hrtimer;
7262
7263 /*
7264 * Since hrtimers have a fixed rate, we can do a static freq->period
7265 * mapping and avoid the whole period adjust feedback stuff.
7266 */
7267 if (event->attr.freq) {
7268 long freq = event->attr.sample_freq;
7269
7270 event->attr.sample_period = NSEC_PER_SEC / freq;
7271 hwc->sample_period = event->attr.sample_period;
7272 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7273 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7274 event->attr.freq = 0;
7275 }
7276}
7277
b0a873eb
PZ
7278/*
7279 * Software event: cpu wall time clock
7280 */
7281
7282static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7283{
b0a873eb
PZ
7284 s64 prev;
7285 u64 now;
7286
a4eaf7f1 7287 now = local_clock();
b0a873eb
PZ
7288 prev = local64_xchg(&event->hw.prev_count, now);
7289 local64_add(now - prev, &event->count);
24f1e32c 7290}
24f1e32c 7291
a4eaf7f1 7292static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7293{
a4eaf7f1 7294 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7295 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7296}
7297
a4eaf7f1 7298static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7299{
b0a873eb
PZ
7300 perf_swevent_cancel_hrtimer(event);
7301 cpu_clock_event_update(event);
7302}
f29ac756 7303
a4eaf7f1
PZ
7304static int cpu_clock_event_add(struct perf_event *event, int flags)
7305{
7306 if (flags & PERF_EF_START)
7307 cpu_clock_event_start(event, flags);
6a694a60 7308 perf_event_update_userpage(event);
a4eaf7f1
PZ
7309
7310 return 0;
7311}
7312
7313static void cpu_clock_event_del(struct perf_event *event, int flags)
7314{
7315 cpu_clock_event_stop(event, flags);
7316}
7317
b0a873eb
PZ
7318static void cpu_clock_event_read(struct perf_event *event)
7319{
7320 cpu_clock_event_update(event);
7321}
f344011c 7322
b0a873eb
PZ
7323static int cpu_clock_event_init(struct perf_event *event)
7324{
7325 if (event->attr.type != PERF_TYPE_SOFTWARE)
7326 return -ENOENT;
7327
7328 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7329 return -ENOENT;
7330
2481c5fa
SE
7331 /*
7332 * no branch sampling for software events
7333 */
7334 if (has_branch_stack(event))
7335 return -EOPNOTSUPP;
7336
ba3dd36c
PZ
7337 perf_swevent_init_hrtimer(event);
7338
b0a873eb 7339 return 0;
f29ac756
PZ
7340}
7341
b0a873eb 7342static struct pmu perf_cpu_clock = {
89a1e187
PZ
7343 .task_ctx_nr = perf_sw_context,
7344
34f43927
PZ
7345 .capabilities = PERF_PMU_CAP_NO_NMI,
7346
b0a873eb 7347 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7348 .add = cpu_clock_event_add,
7349 .del = cpu_clock_event_del,
7350 .start = cpu_clock_event_start,
7351 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7352 .read = cpu_clock_event_read,
7353};
7354
7355/*
7356 * Software event: task time clock
7357 */
7358
7359static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7360{
b0a873eb
PZ
7361 u64 prev;
7362 s64 delta;
5c92d124 7363
b0a873eb
PZ
7364 prev = local64_xchg(&event->hw.prev_count, now);
7365 delta = now - prev;
7366 local64_add(delta, &event->count);
7367}
5c92d124 7368
a4eaf7f1 7369static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7370{
a4eaf7f1 7371 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7372 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7373}
7374
a4eaf7f1 7375static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7376{
7377 perf_swevent_cancel_hrtimer(event);
7378 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7379}
7380
7381static int task_clock_event_add(struct perf_event *event, int flags)
7382{
7383 if (flags & PERF_EF_START)
7384 task_clock_event_start(event, flags);
6a694a60 7385 perf_event_update_userpage(event);
b0a873eb 7386
a4eaf7f1
PZ
7387 return 0;
7388}
7389
7390static void task_clock_event_del(struct perf_event *event, int flags)
7391{
7392 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7393}
7394
7395static void task_clock_event_read(struct perf_event *event)
7396{
768a06e2
PZ
7397 u64 now = perf_clock();
7398 u64 delta = now - event->ctx->timestamp;
7399 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7400
7401 task_clock_event_update(event, time);
7402}
7403
7404static int task_clock_event_init(struct perf_event *event)
6fb2915d 7405{
b0a873eb
PZ
7406 if (event->attr.type != PERF_TYPE_SOFTWARE)
7407 return -ENOENT;
7408
7409 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7410 return -ENOENT;
7411
2481c5fa
SE
7412 /*
7413 * no branch sampling for software events
7414 */
7415 if (has_branch_stack(event))
7416 return -EOPNOTSUPP;
7417
ba3dd36c
PZ
7418 perf_swevent_init_hrtimer(event);
7419
b0a873eb 7420 return 0;
6fb2915d
LZ
7421}
7422
b0a873eb 7423static struct pmu perf_task_clock = {
89a1e187
PZ
7424 .task_ctx_nr = perf_sw_context,
7425
34f43927
PZ
7426 .capabilities = PERF_PMU_CAP_NO_NMI,
7427
b0a873eb 7428 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7429 .add = task_clock_event_add,
7430 .del = task_clock_event_del,
7431 .start = task_clock_event_start,
7432 .stop = task_clock_event_stop,
b0a873eb
PZ
7433 .read = task_clock_event_read,
7434};
6fb2915d 7435
ad5133b7 7436static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7437{
e077df4f 7438}
6fb2915d 7439
fbbe0701
SB
7440static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7441{
7442}
7443
ad5133b7 7444static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7445{
ad5133b7 7446 return 0;
6fb2915d
LZ
7447}
7448
18ab2cd3 7449static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7450
7451static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7452{
fbbe0701
SB
7453 __this_cpu_write(nop_txn_flags, flags);
7454
7455 if (flags & ~PERF_PMU_TXN_ADD)
7456 return;
7457
ad5133b7 7458 perf_pmu_disable(pmu);
6fb2915d
LZ
7459}
7460
ad5133b7
PZ
7461static int perf_pmu_commit_txn(struct pmu *pmu)
7462{
fbbe0701
SB
7463 unsigned int flags = __this_cpu_read(nop_txn_flags);
7464
7465 __this_cpu_write(nop_txn_flags, 0);
7466
7467 if (flags & ~PERF_PMU_TXN_ADD)
7468 return 0;
7469
ad5133b7
PZ
7470 perf_pmu_enable(pmu);
7471 return 0;
7472}
e077df4f 7473
ad5133b7 7474static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7475{
fbbe0701
SB
7476 unsigned int flags = __this_cpu_read(nop_txn_flags);
7477
7478 __this_cpu_write(nop_txn_flags, 0);
7479
7480 if (flags & ~PERF_PMU_TXN_ADD)
7481 return;
7482
ad5133b7 7483 perf_pmu_enable(pmu);
24f1e32c
FW
7484}
7485
35edc2a5
PZ
7486static int perf_event_idx_default(struct perf_event *event)
7487{
c719f560 7488 return 0;
35edc2a5
PZ
7489}
7490
8dc85d54
PZ
7491/*
7492 * Ensures all contexts with the same task_ctx_nr have the same
7493 * pmu_cpu_context too.
7494 */
9e317041 7495static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7496{
8dc85d54 7497 struct pmu *pmu;
b326e956 7498
8dc85d54
PZ
7499 if (ctxn < 0)
7500 return NULL;
24f1e32c 7501
8dc85d54
PZ
7502 list_for_each_entry(pmu, &pmus, entry) {
7503 if (pmu->task_ctx_nr == ctxn)
7504 return pmu->pmu_cpu_context;
7505 }
24f1e32c 7506
8dc85d54 7507 return NULL;
24f1e32c
FW
7508}
7509
51676957 7510static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7511{
51676957
PZ
7512 int cpu;
7513
7514 for_each_possible_cpu(cpu) {
7515 struct perf_cpu_context *cpuctx;
7516
7517 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7518
3f1f3320
PZ
7519 if (cpuctx->unique_pmu == old_pmu)
7520 cpuctx->unique_pmu = pmu;
51676957
PZ
7521 }
7522}
7523
7524static void free_pmu_context(struct pmu *pmu)
7525{
7526 struct pmu *i;
f5ffe02e 7527
8dc85d54 7528 mutex_lock(&pmus_lock);
0475f9ea 7529 /*
8dc85d54 7530 * Like a real lame refcount.
0475f9ea 7531 */
51676957
PZ
7532 list_for_each_entry(i, &pmus, entry) {
7533 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7534 update_pmu_context(i, pmu);
8dc85d54 7535 goto out;
51676957 7536 }
8dc85d54 7537 }
d6d020e9 7538
51676957 7539 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7540out:
7541 mutex_unlock(&pmus_lock);
24f1e32c 7542}
2e80a82a 7543static struct idr pmu_idr;
d6d020e9 7544
abe43400
PZ
7545static ssize_t
7546type_show(struct device *dev, struct device_attribute *attr, char *page)
7547{
7548 struct pmu *pmu = dev_get_drvdata(dev);
7549
7550 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7551}
90826ca7 7552static DEVICE_ATTR_RO(type);
abe43400 7553
62b85639
SE
7554static ssize_t
7555perf_event_mux_interval_ms_show(struct device *dev,
7556 struct device_attribute *attr,
7557 char *page)
7558{
7559 struct pmu *pmu = dev_get_drvdata(dev);
7560
7561 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7562}
7563
272325c4
PZ
7564static DEFINE_MUTEX(mux_interval_mutex);
7565
62b85639
SE
7566static ssize_t
7567perf_event_mux_interval_ms_store(struct device *dev,
7568 struct device_attribute *attr,
7569 const char *buf, size_t count)
7570{
7571 struct pmu *pmu = dev_get_drvdata(dev);
7572 int timer, cpu, ret;
7573
7574 ret = kstrtoint(buf, 0, &timer);
7575 if (ret)
7576 return ret;
7577
7578 if (timer < 1)
7579 return -EINVAL;
7580
7581 /* same value, noting to do */
7582 if (timer == pmu->hrtimer_interval_ms)
7583 return count;
7584
272325c4 7585 mutex_lock(&mux_interval_mutex);
62b85639
SE
7586 pmu->hrtimer_interval_ms = timer;
7587
7588 /* update all cpuctx for this PMU */
272325c4
PZ
7589 get_online_cpus();
7590 for_each_online_cpu(cpu) {
62b85639
SE
7591 struct perf_cpu_context *cpuctx;
7592 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7593 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7594
272325c4
PZ
7595 cpu_function_call(cpu,
7596 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7597 }
272325c4
PZ
7598 put_online_cpus();
7599 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7600
7601 return count;
7602}
90826ca7 7603static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7604
90826ca7
GKH
7605static struct attribute *pmu_dev_attrs[] = {
7606 &dev_attr_type.attr,
7607 &dev_attr_perf_event_mux_interval_ms.attr,
7608 NULL,
abe43400 7609};
90826ca7 7610ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7611
7612static int pmu_bus_running;
7613static struct bus_type pmu_bus = {
7614 .name = "event_source",
90826ca7 7615 .dev_groups = pmu_dev_groups,
abe43400
PZ
7616};
7617
7618static void pmu_dev_release(struct device *dev)
7619{
7620 kfree(dev);
7621}
7622
7623static int pmu_dev_alloc(struct pmu *pmu)
7624{
7625 int ret = -ENOMEM;
7626
7627 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7628 if (!pmu->dev)
7629 goto out;
7630
0c9d42ed 7631 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7632 device_initialize(pmu->dev);
7633 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7634 if (ret)
7635 goto free_dev;
7636
7637 dev_set_drvdata(pmu->dev, pmu);
7638 pmu->dev->bus = &pmu_bus;
7639 pmu->dev->release = pmu_dev_release;
7640 ret = device_add(pmu->dev);
7641 if (ret)
7642 goto free_dev;
7643
7644out:
7645 return ret;
7646
7647free_dev:
7648 put_device(pmu->dev);
7649 goto out;
7650}
7651
547e9fd7 7652static struct lock_class_key cpuctx_mutex;
facc4307 7653static struct lock_class_key cpuctx_lock;
547e9fd7 7654
03d8e80b 7655int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7656{
108b02cf 7657 int cpu, ret;
24f1e32c 7658
b0a873eb 7659 mutex_lock(&pmus_lock);
33696fc0
PZ
7660 ret = -ENOMEM;
7661 pmu->pmu_disable_count = alloc_percpu(int);
7662 if (!pmu->pmu_disable_count)
7663 goto unlock;
f29ac756 7664
2e80a82a
PZ
7665 pmu->type = -1;
7666 if (!name)
7667 goto skip_type;
7668 pmu->name = name;
7669
7670 if (type < 0) {
0e9c3be2
TH
7671 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7672 if (type < 0) {
7673 ret = type;
2e80a82a
PZ
7674 goto free_pdc;
7675 }
7676 }
7677 pmu->type = type;
7678
abe43400
PZ
7679 if (pmu_bus_running) {
7680 ret = pmu_dev_alloc(pmu);
7681 if (ret)
7682 goto free_idr;
7683 }
7684
2e80a82a 7685skip_type:
8dc85d54
PZ
7686 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7687 if (pmu->pmu_cpu_context)
7688 goto got_cpu_context;
f29ac756 7689
c4814202 7690 ret = -ENOMEM;
108b02cf
PZ
7691 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7692 if (!pmu->pmu_cpu_context)
abe43400 7693 goto free_dev;
f344011c 7694
108b02cf
PZ
7695 for_each_possible_cpu(cpu) {
7696 struct perf_cpu_context *cpuctx;
7697
7698 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7699 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7700 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7701 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7702 cpuctx->ctx.pmu = pmu;
9e630205 7703
272325c4 7704 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7705
3f1f3320 7706 cpuctx->unique_pmu = pmu;
108b02cf 7707 }
76e1d904 7708
8dc85d54 7709got_cpu_context:
ad5133b7
PZ
7710 if (!pmu->start_txn) {
7711 if (pmu->pmu_enable) {
7712 /*
7713 * If we have pmu_enable/pmu_disable calls, install
7714 * transaction stubs that use that to try and batch
7715 * hardware accesses.
7716 */
7717 pmu->start_txn = perf_pmu_start_txn;
7718 pmu->commit_txn = perf_pmu_commit_txn;
7719 pmu->cancel_txn = perf_pmu_cancel_txn;
7720 } else {
fbbe0701 7721 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7722 pmu->commit_txn = perf_pmu_nop_int;
7723 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7724 }
5c92d124 7725 }
15dbf27c 7726
ad5133b7
PZ
7727 if (!pmu->pmu_enable) {
7728 pmu->pmu_enable = perf_pmu_nop_void;
7729 pmu->pmu_disable = perf_pmu_nop_void;
7730 }
7731
35edc2a5
PZ
7732 if (!pmu->event_idx)
7733 pmu->event_idx = perf_event_idx_default;
7734
b0a873eb 7735 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7736 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7737 ret = 0;
7738unlock:
b0a873eb
PZ
7739 mutex_unlock(&pmus_lock);
7740
33696fc0 7741 return ret;
108b02cf 7742
abe43400
PZ
7743free_dev:
7744 device_del(pmu->dev);
7745 put_device(pmu->dev);
7746
2e80a82a
PZ
7747free_idr:
7748 if (pmu->type >= PERF_TYPE_MAX)
7749 idr_remove(&pmu_idr, pmu->type);
7750
108b02cf
PZ
7751free_pdc:
7752 free_percpu(pmu->pmu_disable_count);
7753 goto unlock;
f29ac756 7754}
c464c76e 7755EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7756
b0a873eb 7757void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7758{
b0a873eb
PZ
7759 mutex_lock(&pmus_lock);
7760 list_del_rcu(&pmu->entry);
7761 mutex_unlock(&pmus_lock);
5c92d124 7762
0475f9ea 7763 /*
cde8e884
PZ
7764 * We dereference the pmu list under both SRCU and regular RCU, so
7765 * synchronize against both of those.
0475f9ea 7766 */
b0a873eb 7767 synchronize_srcu(&pmus_srcu);
cde8e884 7768 synchronize_rcu();
d6d020e9 7769
33696fc0 7770 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7771 if (pmu->type >= PERF_TYPE_MAX)
7772 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7773 device_del(pmu->dev);
7774 put_device(pmu->dev);
51676957 7775 free_pmu_context(pmu);
b0a873eb 7776}
c464c76e 7777EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7778
cc34b98b
MR
7779static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7780{
ccd41c86 7781 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7782 int ret;
7783
7784 if (!try_module_get(pmu->module))
7785 return -ENODEV;
ccd41c86
PZ
7786
7787 if (event->group_leader != event) {
8b10c5e2
PZ
7788 /*
7789 * This ctx->mutex can nest when we're called through
7790 * inheritance. See the perf_event_ctx_lock_nested() comment.
7791 */
7792 ctx = perf_event_ctx_lock_nested(event->group_leader,
7793 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7794 BUG_ON(!ctx);
7795 }
7796
cc34b98b
MR
7797 event->pmu = pmu;
7798 ret = pmu->event_init(event);
ccd41c86
PZ
7799
7800 if (ctx)
7801 perf_event_ctx_unlock(event->group_leader, ctx);
7802
cc34b98b
MR
7803 if (ret)
7804 module_put(pmu->module);
7805
7806 return ret;
7807}
7808
18ab2cd3 7809static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7810{
7811 struct pmu *pmu = NULL;
7812 int idx;
940c5b29 7813 int ret;
b0a873eb
PZ
7814
7815 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7816
7817 rcu_read_lock();
7818 pmu = idr_find(&pmu_idr, event->attr.type);
7819 rcu_read_unlock();
940c5b29 7820 if (pmu) {
cc34b98b 7821 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7822 if (ret)
7823 pmu = ERR_PTR(ret);
2e80a82a 7824 goto unlock;
940c5b29 7825 }
2e80a82a 7826
b0a873eb 7827 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7828 ret = perf_try_init_event(pmu, event);
b0a873eb 7829 if (!ret)
e5f4d339 7830 goto unlock;
76e1d904 7831
b0a873eb
PZ
7832 if (ret != -ENOENT) {
7833 pmu = ERR_PTR(ret);
e5f4d339 7834 goto unlock;
f344011c 7835 }
5c92d124 7836 }
e5f4d339
PZ
7837 pmu = ERR_PTR(-ENOENT);
7838unlock:
b0a873eb 7839 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7840
4aeb0b42 7841 return pmu;
5c92d124
IM
7842}
7843
4beb31f3
FW
7844static void account_event_cpu(struct perf_event *event, int cpu)
7845{
7846 if (event->parent)
7847 return;
7848
4beb31f3
FW
7849 if (is_cgroup_event(event))
7850 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7851}
7852
555e0c1e
FW
7853/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7854static void account_freq_event_nohz(void)
7855{
7856#ifdef CONFIG_NO_HZ_FULL
7857 /* Lock so we don't race with concurrent unaccount */
7858 spin_lock(&nr_freq_lock);
7859 if (atomic_inc_return(&nr_freq_events) == 1)
7860 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7861 spin_unlock(&nr_freq_lock);
7862#endif
7863}
7864
7865static void account_freq_event(void)
7866{
7867 if (tick_nohz_full_enabled())
7868 account_freq_event_nohz();
7869 else
7870 atomic_inc(&nr_freq_events);
7871}
7872
7873
766d6c07
FW
7874static void account_event(struct perf_event *event)
7875{
25432ae9
PZ
7876 bool inc = false;
7877
4beb31f3
FW
7878 if (event->parent)
7879 return;
7880
766d6c07 7881 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7882 inc = true;
766d6c07
FW
7883 if (event->attr.mmap || event->attr.mmap_data)
7884 atomic_inc(&nr_mmap_events);
7885 if (event->attr.comm)
7886 atomic_inc(&nr_comm_events);
7887 if (event->attr.task)
7888 atomic_inc(&nr_task_events);
555e0c1e
FW
7889 if (event->attr.freq)
7890 account_freq_event();
45ac1403
AH
7891 if (event->attr.context_switch) {
7892 atomic_inc(&nr_switch_events);
25432ae9 7893 inc = true;
45ac1403 7894 }
4beb31f3 7895 if (has_branch_stack(event))
25432ae9 7896 inc = true;
4beb31f3 7897 if (is_cgroup_event(event))
25432ae9
PZ
7898 inc = true;
7899
9107c89e
PZ
7900 if (inc) {
7901 if (atomic_inc_not_zero(&perf_sched_count))
7902 goto enabled;
7903
7904 mutex_lock(&perf_sched_mutex);
7905 if (!atomic_read(&perf_sched_count)) {
7906 static_branch_enable(&perf_sched_events);
7907 /*
7908 * Guarantee that all CPUs observe they key change and
7909 * call the perf scheduling hooks before proceeding to
7910 * install events that need them.
7911 */
7912 synchronize_sched();
7913 }
7914 /*
7915 * Now that we have waited for the sync_sched(), allow further
7916 * increments to by-pass the mutex.
7917 */
7918 atomic_inc(&perf_sched_count);
7919 mutex_unlock(&perf_sched_mutex);
7920 }
7921enabled:
4beb31f3
FW
7922
7923 account_event_cpu(event, event->cpu);
766d6c07
FW
7924}
7925
0793a61d 7926/*
cdd6c482 7927 * Allocate and initialize a event structure
0793a61d 7928 */
cdd6c482 7929static struct perf_event *
c3f00c70 7930perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7931 struct task_struct *task,
7932 struct perf_event *group_leader,
7933 struct perf_event *parent_event,
4dc0da86 7934 perf_overflow_handler_t overflow_handler,
79dff51e 7935 void *context, int cgroup_fd)
0793a61d 7936{
51b0fe39 7937 struct pmu *pmu;
cdd6c482
IM
7938 struct perf_event *event;
7939 struct hw_perf_event *hwc;
90983b16 7940 long err = -EINVAL;
0793a61d 7941
66832eb4
ON
7942 if ((unsigned)cpu >= nr_cpu_ids) {
7943 if (!task || cpu != -1)
7944 return ERR_PTR(-EINVAL);
7945 }
7946
c3f00c70 7947 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7948 if (!event)
d5d2bc0d 7949 return ERR_PTR(-ENOMEM);
0793a61d 7950
04289bb9 7951 /*
cdd6c482 7952 * Single events are their own group leaders, with an
04289bb9
IM
7953 * empty sibling list:
7954 */
7955 if (!group_leader)
cdd6c482 7956 group_leader = event;
04289bb9 7957
cdd6c482
IM
7958 mutex_init(&event->child_mutex);
7959 INIT_LIST_HEAD(&event->child_list);
fccc714b 7960
cdd6c482
IM
7961 INIT_LIST_HEAD(&event->group_entry);
7962 INIT_LIST_HEAD(&event->event_entry);
7963 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7964 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7965 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7966 INIT_HLIST_NODE(&event->hlist_entry);
7967
10c6db11 7968
cdd6c482 7969 init_waitqueue_head(&event->waitq);
e360adbe 7970 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7971
cdd6c482 7972 mutex_init(&event->mmap_mutex);
7b732a75 7973
a6fa941d 7974 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7975 event->cpu = cpu;
7976 event->attr = *attr;
7977 event->group_leader = group_leader;
7978 event->pmu = NULL;
cdd6c482 7979 event->oncpu = -1;
a96bbc16 7980
cdd6c482 7981 event->parent = parent_event;
b84fbc9f 7982
17cf22c3 7983 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7984 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7985
cdd6c482 7986 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7987
d580ff86
PZ
7988 if (task) {
7989 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7990 /*
50f16a8b
PZ
7991 * XXX pmu::event_init needs to know what task to account to
7992 * and we cannot use the ctx information because we need the
7993 * pmu before we get a ctx.
d580ff86 7994 */
50f16a8b 7995 event->hw.target = task;
d580ff86
PZ
7996 }
7997
34f43927
PZ
7998 event->clock = &local_clock;
7999 if (parent_event)
8000 event->clock = parent_event->clock;
8001
4dc0da86 8002 if (!overflow_handler && parent_event) {
b326e956 8003 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8004 context = parent_event->overflow_handler_context;
8005 }
66832eb4 8006
b326e956 8007 event->overflow_handler = overflow_handler;
4dc0da86 8008 event->overflow_handler_context = context;
97eaf530 8009
0231bb53 8010 perf_event__state_init(event);
a86ed508 8011
4aeb0b42 8012 pmu = NULL;
b8e83514 8013
cdd6c482 8014 hwc = &event->hw;
bd2b5b12 8015 hwc->sample_period = attr->sample_period;
0d48696f 8016 if (attr->freq && attr->sample_freq)
bd2b5b12 8017 hwc->sample_period = 1;
eced1dfc 8018 hwc->last_period = hwc->sample_period;
bd2b5b12 8019
e7850595 8020 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8021
2023b359 8022 /*
cdd6c482 8023 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8024 */
3dab77fb 8025 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8026 goto err_ns;
a46a2300
YZ
8027
8028 if (!has_branch_stack(event))
8029 event->attr.branch_sample_type = 0;
2023b359 8030
79dff51e
MF
8031 if (cgroup_fd != -1) {
8032 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8033 if (err)
8034 goto err_ns;
8035 }
8036
b0a873eb 8037 pmu = perf_init_event(event);
4aeb0b42 8038 if (!pmu)
90983b16
FW
8039 goto err_ns;
8040 else if (IS_ERR(pmu)) {
4aeb0b42 8041 err = PTR_ERR(pmu);
90983b16 8042 goto err_ns;
621a01ea 8043 }
d5d2bc0d 8044
bed5b25a
AS
8045 err = exclusive_event_init(event);
8046 if (err)
8047 goto err_pmu;
8048
cdd6c482 8049 if (!event->parent) {
927c7a9e
FW
8050 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8051 err = get_callchain_buffers();
90983b16 8052 if (err)
bed5b25a 8053 goto err_per_task;
d010b332 8054 }
f344011c 8055 }
9ee318a7 8056
927a5570
AS
8057 /* symmetric to unaccount_event() in _free_event() */
8058 account_event(event);
8059
cdd6c482 8060 return event;
90983b16 8061
bed5b25a
AS
8062err_per_task:
8063 exclusive_event_destroy(event);
8064
90983b16
FW
8065err_pmu:
8066 if (event->destroy)
8067 event->destroy(event);
c464c76e 8068 module_put(pmu->module);
90983b16 8069err_ns:
79dff51e
MF
8070 if (is_cgroup_event(event))
8071 perf_detach_cgroup(event);
90983b16
FW
8072 if (event->ns)
8073 put_pid_ns(event->ns);
8074 kfree(event);
8075
8076 return ERR_PTR(err);
0793a61d
TG
8077}
8078
cdd6c482
IM
8079static int perf_copy_attr(struct perf_event_attr __user *uattr,
8080 struct perf_event_attr *attr)
974802ea 8081{
974802ea 8082 u32 size;
cdf8073d 8083 int ret;
974802ea
PZ
8084
8085 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8086 return -EFAULT;
8087
8088 /*
8089 * zero the full structure, so that a short copy will be nice.
8090 */
8091 memset(attr, 0, sizeof(*attr));
8092
8093 ret = get_user(size, &uattr->size);
8094 if (ret)
8095 return ret;
8096
8097 if (size > PAGE_SIZE) /* silly large */
8098 goto err_size;
8099
8100 if (!size) /* abi compat */
8101 size = PERF_ATTR_SIZE_VER0;
8102
8103 if (size < PERF_ATTR_SIZE_VER0)
8104 goto err_size;
8105
8106 /*
8107 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8108 * ensure all the unknown bits are 0 - i.e. new
8109 * user-space does not rely on any kernel feature
8110 * extensions we dont know about yet.
974802ea
PZ
8111 */
8112 if (size > sizeof(*attr)) {
cdf8073d
IS
8113 unsigned char __user *addr;
8114 unsigned char __user *end;
8115 unsigned char val;
974802ea 8116
cdf8073d
IS
8117 addr = (void __user *)uattr + sizeof(*attr);
8118 end = (void __user *)uattr + size;
974802ea 8119
cdf8073d 8120 for (; addr < end; addr++) {
974802ea
PZ
8121 ret = get_user(val, addr);
8122 if (ret)
8123 return ret;
8124 if (val)
8125 goto err_size;
8126 }
b3e62e35 8127 size = sizeof(*attr);
974802ea
PZ
8128 }
8129
8130 ret = copy_from_user(attr, uattr, size);
8131 if (ret)
8132 return -EFAULT;
8133
cd757645 8134 if (attr->__reserved_1)
974802ea
PZ
8135 return -EINVAL;
8136
8137 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8138 return -EINVAL;
8139
8140 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8141 return -EINVAL;
8142
bce38cd5
SE
8143 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8144 u64 mask = attr->branch_sample_type;
8145
8146 /* only using defined bits */
8147 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8148 return -EINVAL;
8149
8150 /* at least one branch bit must be set */
8151 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8152 return -EINVAL;
8153
bce38cd5
SE
8154 /* propagate priv level, when not set for branch */
8155 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8156
8157 /* exclude_kernel checked on syscall entry */
8158 if (!attr->exclude_kernel)
8159 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8160
8161 if (!attr->exclude_user)
8162 mask |= PERF_SAMPLE_BRANCH_USER;
8163
8164 if (!attr->exclude_hv)
8165 mask |= PERF_SAMPLE_BRANCH_HV;
8166 /*
8167 * adjust user setting (for HW filter setup)
8168 */
8169 attr->branch_sample_type = mask;
8170 }
e712209a
SE
8171 /* privileged levels capture (kernel, hv): check permissions */
8172 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8173 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8174 return -EACCES;
bce38cd5 8175 }
4018994f 8176
c5ebcedb 8177 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8178 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8179 if (ret)
8180 return ret;
8181 }
8182
8183 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8184 if (!arch_perf_have_user_stack_dump())
8185 return -ENOSYS;
8186
8187 /*
8188 * We have __u32 type for the size, but so far
8189 * we can only use __u16 as maximum due to the
8190 * __u16 sample size limit.
8191 */
8192 if (attr->sample_stack_user >= USHRT_MAX)
8193 ret = -EINVAL;
8194 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8195 ret = -EINVAL;
8196 }
4018994f 8197
60e2364e
SE
8198 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8199 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8200out:
8201 return ret;
8202
8203err_size:
8204 put_user(sizeof(*attr), &uattr->size);
8205 ret = -E2BIG;
8206 goto out;
8207}
8208
ac9721f3
PZ
8209static int
8210perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8211{
b69cf536 8212 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8213 int ret = -EINVAL;
8214
ac9721f3 8215 if (!output_event)
a4be7c27
PZ
8216 goto set;
8217
ac9721f3
PZ
8218 /* don't allow circular references */
8219 if (event == output_event)
a4be7c27
PZ
8220 goto out;
8221
0f139300
PZ
8222 /*
8223 * Don't allow cross-cpu buffers
8224 */
8225 if (output_event->cpu != event->cpu)
8226 goto out;
8227
8228 /*
76369139 8229 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8230 */
8231 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8232 goto out;
8233
34f43927
PZ
8234 /*
8235 * Mixing clocks in the same buffer is trouble you don't need.
8236 */
8237 if (output_event->clock != event->clock)
8238 goto out;
8239
45bfb2e5
PZ
8240 /*
8241 * If both events generate aux data, they must be on the same PMU
8242 */
8243 if (has_aux(event) && has_aux(output_event) &&
8244 event->pmu != output_event->pmu)
8245 goto out;
8246
a4be7c27 8247set:
cdd6c482 8248 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8249 /* Can't redirect output if we've got an active mmap() */
8250 if (atomic_read(&event->mmap_count))
8251 goto unlock;
a4be7c27 8252
ac9721f3 8253 if (output_event) {
76369139
FW
8254 /* get the rb we want to redirect to */
8255 rb = ring_buffer_get(output_event);
8256 if (!rb)
ac9721f3 8257 goto unlock;
a4be7c27
PZ
8258 }
8259
b69cf536 8260 ring_buffer_attach(event, rb);
9bb5d40c 8261
a4be7c27 8262 ret = 0;
ac9721f3
PZ
8263unlock:
8264 mutex_unlock(&event->mmap_mutex);
8265
a4be7c27 8266out:
a4be7c27
PZ
8267 return ret;
8268}
8269
f63a8daa
PZ
8270static void mutex_lock_double(struct mutex *a, struct mutex *b)
8271{
8272 if (b < a)
8273 swap(a, b);
8274
8275 mutex_lock(a);
8276 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8277}
8278
34f43927
PZ
8279static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8280{
8281 bool nmi_safe = false;
8282
8283 switch (clk_id) {
8284 case CLOCK_MONOTONIC:
8285 event->clock = &ktime_get_mono_fast_ns;
8286 nmi_safe = true;
8287 break;
8288
8289 case CLOCK_MONOTONIC_RAW:
8290 event->clock = &ktime_get_raw_fast_ns;
8291 nmi_safe = true;
8292 break;
8293
8294 case CLOCK_REALTIME:
8295 event->clock = &ktime_get_real_ns;
8296 break;
8297
8298 case CLOCK_BOOTTIME:
8299 event->clock = &ktime_get_boot_ns;
8300 break;
8301
8302 case CLOCK_TAI:
8303 event->clock = &ktime_get_tai_ns;
8304 break;
8305
8306 default:
8307 return -EINVAL;
8308 }
8309
8310 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8311 return -EINVAL;
8312
8313 return 0;
8314}
8315
0793a61d 8316/**
cdd6c482 8317 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8318 *
cdd6c482 8319 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8320 * @pid: target pid
9f66a381 8321 * @cpu: target cpu
cdd6c482 8322 * @group_fd: group leader event fd
0793a61d 8323 */
cdd6c482
IM
8324SYSCALL_DEFINE5(perf_event_open,
8325 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8326 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8327{
b04243ef
PZ
8328 struct perf_event *group_leader = NULL, *output_event = NULL;
8329 struct perf_event *event, *sibling;
cdd6c482 8330 struct perf_event_attr attr;
f63a8daa 8331 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8332 struct file *event_file = NULL;
2903ff01 8333 struct fd group = {NULL, 0};
38a81da2 8334 struct task_struct *task = NULL;
89a1e187 8335 struct pmu *pmu;
ea635c64 8336 int event_fd;
b04243ef 8337 int move_group = 0;
dc86cabe 8338 int err;
a21b0b35 8339 int f_flags = O_RDWR;
79dff51e 8340 int cgroup_fd = -1;
0793a61d 8341
2743a5b0 8342 /* for future expandability... */
e5d1367f 8343 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8344 return -EINVAL;
8345
dc86cabe
IM
8346 err = perf_copy_attr(attr_uptr, &attr);
8347 if (err)
8348 return err;
eab656ae 8349
0764771d
PZ
8350 if (!attr.exclude_kernel) {
8351 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8352 return -EACCES;
8353 }
8354
df58ab24 8355 if (attr.freq) {
cdd6c482 8356 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8357 return -EINVAL;
0819b2e3
PZ
8358 } else {
8359 if (attr.sample_period & (1ULL << 63))
8360 return -EINVAL;
df58ab24
PZ
8361 }
8362
e5d1367f
SE
8363 /*
8364 * In cgroup mode, the pid argument is used to pass the fd
8365 * opened to the cgroup directory in cgroupfs. The cpu argument
8366 * designates the cpu on which to monitor threads from that
8367 * cgroup.
8368 */
8369 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8370 return -EINVAL;
8371
a21b0b35
YD
8372 if (flags & PERF_FLAG_FD_CLOEXEC)
8373 f_flags |= O_CLOEXEC;
8374
8375 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8376 if (event_fd < 0)
8377 return event_fd;
8378
ac9721f3 8379 if (group_fd != -1) {
2903ff01
AV
8380 err = perf_fget_light(group_fd, &group);
8381 if (err)
d14b12d7 8382 goto err_fd;
2903ff01 8383 group_leader = group.file->private_data;
ac9721f3
PZ
8384 if (flags & PERF_FLAG_FD_OUTPUT)
8385 output_event = group_leader;
8386 if (flags & PERF_FLAG_FD_NO_GROUP)
8387 group_leader = NULL;
8388 }
8389
e5d1367f 8390 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8391 task = find_lively_task_by_vpid(pid);
8392 if (IS_ERR(task)) {
8393 err = PTR_ERR(task);
8394 goto err_group_fd;
8395 }
8396 }
8397
1f4ee503
PZ
8398 if (task && group_leader &&
8399 group_leader->attr.inherit != attr.inherit) {
8400 err = -EINVAL;
8401 goto err_task;
8402 }
8403
fbfc623f
YZ
8404 get_online_cpus();
8405
79dff51e
MF
8406 if (flags & PERF_FLAG_PID_CGROUP)
8407 cgroup_fd = pid;
8408
4dc0da86 8409 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8410 NULL, NULL, cgroup_fd);
d14b12d7
SE
8411 if (IS_ERR(event)) {
8412 err = PTR_ERR(event);
1f4ee503 8413 goto err_cpus;
d14b12d7
SE
8414 }
8415
53b25335
VW
8416 if (is_sampling_event(event)) {
8417 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8418 err = -ENOTSUPP;
8419 goto err_alloc;
8420 }
8421 }
8422
89a1e187
PZ
8423 /*
8424 * Special case software events and allow them to be part of
8425 * any hardware group.
8426 */
8427 pmu = event->pmu;
b04243ef 8428
34f43927
PZ
8429 if (attr.use_clockid) {
8430 err = perf_event_set_clock(event, attr.clockid);
8431 if (err)
8432 goto err_alloc;
8433 }
8434
b04243ef
PZ
8435 if (group_leader &&
8436 (is_software_event(event) != is_software_event(group_leader))) {
8437 if (is_software_event(event)) {
8438 /*
8439 * If event and group_leader are not both a software
8440 * event, and event is, then group leader is not.
8441 *
8442 * Allow the addition of software events to !software
8443 * groups, this is safe because software events never
8444 * fail to schedule.
8445 */
8446 pmu = group_leader->pmu;
8447 } else if (is_software_event(group_leader) &&
8448 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8449 /*
8450 * In case the group is a pure software group, and we
8451 * try to add a hardware event, move the whole group to
8452 * the hardware context.
8453 */
8454 move_group = 1;
8455 }
8456 }
89a1e187
PZ
8457
8458 /*
8459 * Get the target context (task or percpu):
8460 */
4af57ef2 8461 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8462 if (IS_ERR(ctx)) {
8463 err = PTR_ERR(ctx);
c6be5a5c 8464 goto err_alloc;
89a1e187
PZ
8465 }
8466
bed5b25a
AS
8467 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8468 err = -EBUSY;
8469 goto err_context;
8470 }
8471
fd1edb3a
PZ
8472 if (task) {
8473 put_task_struct(task);
8474 task = NULL;
8475 }
8476
ccff286d 8477 /*
cdd6c482 8478 * Look up the group leader (we will attach this event to it):
04289bb9 8479 */
ac9721f3 8480 if (group_leader) {
dc86cabe 8481 err = -EINVAL;
04289bb9 8482
04289bb9 8483 /*
ccff286d
IM
8484 * Do not allow a recursive hierarchy (this new sibling
8485 * becoming part of another group-sibling):
8486 */
8487 if (group_leader->group_leader != group_leader)
c3f00c70 8488 goto err_context;
34f43927
PZ
8489
8490 /* All events in a group should have the same clock */
8491 if (group_leader->clock != event->clock)
8492 goto err_context;
8493
ccff286d
IM
8494 /*
8495 * Do not allow to attach to a group in a different
8496 * task or CPU context:
04289bb9 8497 */
b04243ef 8498 if (move_group) {
c3c87e77
PZ
8499 /*
8500 * Make sure we're both on the same task, or both
8501 * per-cpu events.
8502 */
8503 if (group_leader->ctx->task != ctx->task)
8504 goto err_context;
8505
8506 /*
8507 * Make sure we're both events for the same CPU;
8508 * grouping events for different CPUs is broken; since
8509 * you can never concurrently schedule them anyhow.
8510 */
8511 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8512 goto err_context;
8513 } else {
8514 if (group_leader->ctx != ctx)
8515 goto err_context;
8516 }
8517
3b6f9e5c
PM
8518 /*
8519 * Only a group leader can be exclusive or pinned
8520 */
0d48696f 8521 if (attr.exclusive || attr.pinned)
c3f00c70 8522 goto err_context;
ac9721f3
PZ
8523 }
8524
8525 if (output_event) {
8526 err = perf_event_set_output(event, output_event);
8527 if (err)
c3f00c70 8528 goto err_context;
ac9721f3 8529 }
0793a61d 8530
a21b0b35
YD
8531 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8532 f_flags);
ea635c64
AV
8533 if (IS_ERR(event_file)) {
8534 err = PTR_ERR(event_file);
c3f00c70 8535 goto err_context;
ea635c64 8536 }
9b51f66d 8537
b04243ef 8538 if (move_group) {
f63a8daa 8539 gctx = group_leader->ctx;
f55fc2a5 8540 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8541 if (gctx->task == TASK_TOMBSTONE) {
8542 err = -ESRCH;
8543 goto err_locked;
8544 }
f55fc2a5
PZ
8545 } else {
8546 mutex_lock(&ctx->mutex);
8547 }
8548
84c4e620
PZ
8549 if (ctx->task == TASK_TOMBSTONE) {
8550 err = -ESRCH;
8551 goto err_locked;
8552 }
8553
a723968c
PZ
8554 if (!perf_event_validate_size(event)) {
8555 err = -E2BIG;
8556 goto err_locked;
8557 }
8558
f55fc2a5
PZ
8559 /*
8560 * Must be under the same ctx::mutex as perf_install_in_context(),
8561 * because we need to serialize with concurrent event creation.
8562 */
8563 if (!exclusive_event_installable(event, ctx)) {
8564 /* exclusive and group stuff are assumed mutually exclusive */
8565 WARN_ON_ONCE(move_group);
f63a8daa 8566
f55fc2a5
PZ
8567 err = -EBUSY;
8568 goto err_locked;
8569 }
f63a8daa 8570
f55fc2a5
PZ
8571 WARN_ON_ONCE(ctx->parent_ctx);
8572
8573 if (move_group) {
f63a8daa
PZ
8574 /*
8575 * See perf_event_ctx_lock() for comments on the details
8576 * of swizzling perf_event::ctx.
8577 */
45a0e07a 8578 perf_remove_from_context(group_leader, 0);
0231bb53 8579
b04243ef
PZ
8580 list_for_each_entry(sibling, &group_leader->sibling_list,
8581 group_entry) {
45a0e07a 8582 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8583 put_ctx(gctx);
8584 }
b04243ef 8585
f63a8daa
PZ
8586 /*
8587 * Wait for everybody to stop referencing the events through
8588 * the old lists, before installing it on new lists.
8589 */
0cda4c02 8590 synchronize_rcu();
f63a8daa 8591
8f95b435
PZI
8592 /*
8593 * Install the group siblings before the group leader.
8594 *
8595 * Because a group leader will try and install the entire group
8596 * (through the sibling list, which is still in-tact), we can
8597 * end up with siblings installed in the wrong context.
8598 *
8599 * By installing siblings first we NO-OP because they're not
8600 * reachable through the group lists.
8601 */
b04243ef
PZ
8602 list_for_each_entry(sibling, &group_leader->sibling_list,
8603 group_entry) {
8f95b435 8604 perf_event__state_init(sibling);
9fc81d87 8605 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8606 get_ctx(ctx);
8607 }
8f95b435
PZI
8608
8609 /*
8610 * Removing from the context ends up with disabled
8611 * event. What we want here is event in the initial
8612 * startup state, ready to be add into new context.
8613 */
8614 perf_event__state_init(group_leader);
8615 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8616 get_ctx(ctx);
b04243ef 8617
f55fc2a5
PZ
8618 /*
8619 * Now that all events are installed in @ctx, nothing
8620 * references @gctx anymore, so drop the last reference we have
8621 * on it.
8622 */
8623 put_ctx(gctx);
bed5b25a
AS
8624 }
8625
f73e22ab
PZ
8626 /*
8627 * Precalculate sample_data sizes; do while holding ctx::mutex such
8628 * that we're serialized against further additions and before
8629 * perf_install_in_context() which is the point the event is active and
8630 * can use these values.
8631 */
8632 perf_event__header_size(event);
8633 perf_event__id_header_size(event);
8634
78cd2c74
PZ
8635 event->owner = current;
8636
e2d37cd2 8637 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8638 perf_unpin_context(ctx);
f63a8daa 8639
f55fc2a5 8640 if (move_group)
f63a8daa 8641 mutex_unlock(&gctx->mutex);
d859e29f 8642 mutex_unlock(&ctx->mutex);
9b51f66d 8643
fbfc623f
YZ
8644 put_online_cpus();
8645
cdd6c482
IM
8646 mutex_lock(&current->perf_event_mutex);
8647 list_add_tail(&event->owner_entry, &current->perf_event_list);
8648 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8649
8a49542c
PZ
8650 /*
8651 * Drop the reference on the group_event after placing the
8652 * new event on the sibling_list. This ensures destruction
8653 * of the group leader will find the pointer to itself in
8654 * perf_group_detach().
8655 */
2903ff01 8656 fdput(group);
ea635c64
AV
8657 fd_install(event_fd, event_file);
8658 return event_fd;
0793a61d 8659
f55fc2a5
PZ
8660err_locked:
8661 if (move_group)
8662 mutex_unlock(&gctx->mutex);
8663 mutex_unlock(&ctx->mutex);
8664/* err_file: */
8665 fput(event_file);
c3f00c70 8666err_context:
fe4b04fa 8667 perf_unpin_context(ctx);
ea635c64 8668 put_ctx(ctx);
c6be5a5c 8669err_alloc:
13005627
PZ
8670 /*
8671 * If event_file is set, the fput() above will have called ->release()
8672 * and that will take care of freeing the event.
8673 */
8674 if (!event_file)
8675 free_event(event);
1f4ee503 8676err_cpus:
fbfc623f 8677 put_online_cpus();
1f4ee503 8678err_task:
e7d0bc04
PZ
8679 if (task)
8680 put_task_struct(task);
89a1e187 8681err_group_fd:
2903ff01 8682 fdput(group);
ea635c64
AV
8683err_fd:
8684 put_unused_fd(event_fd);
dc86cabe 8685 return err;
0793a61d
TG
8686}
8687
fb0459d7
AV
8688/**
8689 * perf_event_create_kernel_counter
8690 *
8691 * @attr: attributes of the counter to create
8692 * @cpu: cpu in which the counter is bound
38a81da2 8693 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8694 */
8695struct perf_event *
8696perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8697 struct task_struct *task,
4dc0da86
AK
8698 perf_overflow_handler_t overflow_handler,
8699 void *context)
fb0459d7 8700{
fb0459d7 8701 struct perf_event_context *ctx;
c3f00c70 8702 struct perf_event *event;
fb0459d7 8703 int err;
d859e29f 8704
fb0459d7
AV
8705 /*
8706 * Get the target context (task or percpu):
8707 */
d859e29f 8708
4dc0da86 8709 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8710 overflow_handler, context, -1);
c3f00c70
PZ
8711 if (IS_ERR(event)) {
8712 err = PTR_ERR(event);
8713 goto err;
8714 }
d859e29f 8715
f8697762 8716 /* Mark owner so we could distinguish it from user events. */
63b6da39 8717 event->owner = TASK_TOMBSTONE;
f8697762 8718
4af57ef2 8719 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8720 if (IS_ERR(ctx)) {
8721 err = PTR_ERR(ctx);
c3f00c70 8722 goto err_free;
d859e29f 8723 }
fb0459d7 8724
fb0459d7
AV
8725 WARN_ON_ONCE(ctx->parent_ctx);
8726 mutex_lock(&ctx->mutex);
84c4e620
PZ
8727 if (ctx->task == TASK_TOMBSTONE) {
8728 err = -ESRCH;
8729 goto err_unlock;
8730 }
8731
bed5b25a 8732 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8733 err = -EBUSY;
84c4e620 8734 goto err_unlock;
bed5b25a
AS
8735 }
8736
fb0459d7 8737 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8738 perf_unpin_context(ctx);
fb0459d7
AV
8739 mutex_unlock(&ctx->mutex);
8740
fb0459d7
AV
8741 return event;
8742
84c4e620
PZ
8743err_unlock:
8744 mutex_unlock(&ctx->mutex);
8745 perf_unpin_context(ctx);
8746 put_ctx(ctx);
c3f00c70
PZ
8747err_free:
8748 free_event(event);
8749err:
c6567f64 8750 return ERR_PTR(err);
9b51f66d 8751}
fb0459d7 8752EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8753
0cda4c02
YZ
8754void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8755{
8756 struct perf_event_context *src_ctx;
8757 struct perf_event_context *dst_ctx;
8758 struct perf_event *event, *tmp;
8759 LIST_HEAD(events);
8760
8761 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8762 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8763
f63a8daa
PZ
8764 /*
8765 * See perf_event_ctx_lock() for comments on the details
8766 * of swizzling perf_event::ctx.
8767 */
8768 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8769 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8770 event_entry) {
45a0e07a 8771 perf_remove_from_context(event, 0);
9a545de0 8772 unaccount_event_cpu(event, src_cpu);
0cda4c02 8773 put_ctx(src_ctx);
9886167d 8774 list_add(&event->migrate_entry, &events);
0cda4c02 8775 }
0cda4c02 8776
8f95b435
PZI
8777 /*
8778 * Wait for the events to quiesce before re-instating them.
8779 */
0cda4c02
YZ
8780 synchronize_rcu();
8781
8f95b435
PZI
8782 /*
8783 * Re-instate events in 2 passes.
8784 *
8785 * Skip over group leaders and only install siblings on this first
8786 * pass, siblings will not get enabled without a leader, however a
8787 * leader will enable its siblings, even if those are still on the old
8788 * context.
8789 */
8790 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8791 if (event->group_leader == event)
8792 continue;
8793
8794 list_del(&event->migrate_entry);
8795 if (event->state >= PERF_EVENT_STATE_OFF)
8796 event->state = PERF_EVENT_STATE_INACTIVE;
8797 account_event_cpu(event, dst_cpu);
8798 perf_install_in_context(dst_ctx, event, dst_cpu);
8799 get_ctx(dst_ctx);
8800 }
8801
8802 /*
8803 * Once all the siblings are setup properly, install the group leaders
8804 * to make it go.
8805 */
9886167d
PZ
8806 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8807 list_del(&event->migrate_entry);
0cda4c02
YZ
8808 if (event->state >= PERF_EVENT_STATE_OFF)
8809 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8810 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8811 perf_install_in_context(dst_ctx, event, dst_cpu);
8812 get_ctx(dst_ctx);
8813 }
8814 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8815 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8816}
8817EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8818
cdd6c482 8819static void sync_child_event(struct perf_event *child_event,
38b200d6 8820 struct task_struct *child)
d859e29f 8821{
cdd6c482 8822 struct perf_event *parent_event = child_event->parent;
8bc20959 8823 u64 child_val;
d859e29f 8824
cdd6c482
IM
8825 if (child_event->attr.inherit_stat)
8826 perf_event_read_event(child_event, child);
38b200d6 8827
b5e58793 8828 child_val = perf_event_count(child_event);
d859e29f
PM
8829
8830 /*
8831 * Add back the child's count to the parent's count:
8832 */
a6e6dea6 8833 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8834 atomic64_add(child_event->total_time_enabled,
8835 &parent_event->child_total_time_enabled);
8836 atomic64_add(child_event->total_time_running,
8837 &parent_event->child_total_time_running);
d859e29f
PM
8838}
8839
9b51f66d 8840static void
8ba289b8
PZ
8841perf_event_exit_event(struct perf_event *child_event,
8842 struct perf_event_context *child_ctx,
8843 struct task_struct *child)
9b51f66d 8844{
8ba289b8
PZ
8845 struct perf_event *parent_event = child_event->parent;
8846
1903d50c
PZ
8847 /*
8848 * Do not destroy the 'original' grouping; because of the context
8849 * switch optimization the original events could've ended up in a
8850 * random child task.
8851 *
8852 * If we were to destroy the original group, all group related
8853 * operations would cease to function properly after this random
8854 * child dies.
8855 *
8856 * Do destroy all inherited groups, we don't care about those
8857 * and being thorough is better.
8858 */
32132a3d
PZ
8859 raw_spin_lock_irq(&child_ctx->lock);
8860 WARN_ON_ONCE(child_ctx->is_active);
8861
8ba289b8 8862 if (parent_event)
32132a3d
PZ
8863 perf_group_detach(child_event);
8864 list_del_event(child_event, child_ctx);
a69b0ca4 8865 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8866 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8867
9b51f66d 8868 /*
8ba289b8 8869 * Parent events are governed by their filedesc, retain them.
9b51f66d 8870 */
8ba289b8 8871 if (!parent_event) {
179033b3 8872 perf_event_wakeup(child_event);
8ba289b8 8873 return;
4bcf349a 8874 }
8ba289b8
PZ
8875 /*
8876 * Child events can be cleaned up.
8877 */
8878
8879 sync_child_event(child_event, child);
8880
8881 /*
8882 * Remove this event from the parent's list
8883 */
8884 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8885 mutex_lock(&parent_event->child_mutex);
8886 list_del_init(&child_event->child_list);
8887 mutex_unlock(&parent_event->child_mutex);
8888
8889 /*
8890 * Kick perf_poll() for is_event_hup().
8891 */
8892 perf_event_wakeup(parent_event);
8893 free_event(child_event);
8894 put_event(parent_event);
9b51f66d
IM
8895}
8896
8dc85d54 8897static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8898{
211de6eb 8899 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8900 struct perf_event *child_event, *next;
63b6da39
PZ
8901
8902 WARN_ON_ONCE(child != current);
9b51f66d 8903
6a3351b6 8904 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8905 if (!child_ctx)
9b51f66d
IM
8906 return;
8907
ad3a37de 8908 /*
6a3351b6
PZ
8909 * In order to reduce the amount of tricky in ctx tear-down, we hold
8910 * ctx::mutex over the entire thing. This serializes against almost
8911 * everything that wants to access the ctx.
8912 *
8913 * The exception is sys_perf_event_open() /
8914 * perf_event_create_kernel_count() which does find_get_context()
8915 * without ctx::mutex (it cannot because of the move_group double mutex
8916 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8917 */
6a3351b6 8918 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8919
8920 /*
6a3351b6
PZ
8921 * In a single ctx::lock section, de-schedule the events and detach the
8922 * context from the task such that we cannot ever get it scheduled back
8923 * in.
c93f7669 8924 */
6a3351b6 8925 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8926 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8927
71a851b4 8928 /*
63b6da39
PZ
8929 * Now that the context is inactive, destroy the task <-> ctx relation
8930 * and mark the context dead.
71a851b4 8931 */
63b6da39
PZ
8932 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8933 put_ctx(child_ctx); /* cannot be last */
8934 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8935 put_task_struct(current); /* cannot be last */
4a1c0f26 8936
211de6eb 8937 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8938 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8939
211de6eb
PZ
8940 if (clone_ctx)
8941 put_ctx(clone_ctx);
4a1c0f26 8942
9f498cc5 8943 /*
cdd6c482
IM
8944 * Report the task dead after unscheduling the events so that we
8945 * won't get any samples after PERF_RECORD_EXIT. We can however still
8946 * get a few PERF_RECORD_READ events.
9f498cc5 8947 */
cdd6c482 8948 perf_event_task(child, child_ctx, 0);
a63eaf34 8949
ebf905fc 8950 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8951 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8952
a63eaf34
PM
8953 mutex_unlock(&child_ctx->mutex);
8954
8955 put_ctx(child_ctx);
9b51f66d
IM
8956}
8957
8dc85d54
PZ
8958/*
8959 * When a child task exits, feed back event values to parent events.
8960 */
8961void perf_event_exit_task(struct task_struct *child)
8962{
8882135b 8963 struct perf_event *event, *tmp;
8dc85d54
PZ
8964 int ctxn;
8965
8882135b
PZ
8966 mutex_lock(&child->perf_event_mutex);
8967 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8968 owner_entry) {
8969 list_del_init(&event->owner_entry);
8970
8971 /*
8972 * Ensure the list deletion is visible before we clear
8973 * the owner, closes a race against perf_release() where
8974 * we need to serialize on the owner->perf_event_mutex.
8975 */
f47c02c0 8976 smp_store_release(&event->owner, NULL);
8882135b
PZ
8977 }
8978 mutex_unlock(&child->perf_event_mutex);
8979
8dc85d54
PZ
8980 for_each_task_context_nr(ctxn)
8981 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8982
8983 /*
8984 * The perf_event_exit_task_context calls perf_event_task
8985 * with child's task_ctx, which generates EXIT events for
8986 * child contexts and sets child->perf_event_ctxp[] to NULL.
8987 * At this point we need to send EXIT events to cpu contexts.
8988 */
8989 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8990}
8991
889ff015
FW
8992static void perf_free_event(struct perf_event *event,
8993 struct perf_event_context *ctx)
8994{
8995 struct perf_event *parent = event->parent;
8996
8997 if (WARN_ON_ONCE(!parent))
8998 return;
8999
9000 mutex_lock(&parent->child_mutex);
9001 list_del_init(&event->child_list);
9002 mutex_unlock(&parent->child_mutex);
9003
a6fa941d 9004 put_event(parent);
889ff015 9005
652884fe 9006 raw_spin_lock_irq(&ctx->lock);
8a49542c 9007 perf_group_detach(event);
889ff015 9008 list_del_event(event, ctx);
652884fe 9009 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9010 free_event(event);
9011}
9012
bbbee908 9013/*
652884fe 9014 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9015 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9016 *
9017 * Not all locks are strictly required, but take them anyway to be nice and
9018 * help out with the lockdep assertions.
bbbee908 9019 */
cdd6c482 9020void perf_event_free_task(struct task_struct *task)
bbbee908 9021{
8dc85d54 9022 struct perf_event_context *ctx;
cdd6c482 9023 struct perf_event *event, *tmp;
8dc85d54 9024 int ctxn;
bbbee908 9025
8dc85d54
PZ
9026 for_each_task_context_nr(ctxn) {
9027 ctx = task->perf_event_ctxp[ctxn];
9028 if (!ctx)
9029 continue;
bbbee908 9030
8dc85d54 9031 mutex_lock(&ctx->mutex);
bbbee908 9032again:
8dc85d54
PZ
9033 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9034 group_entry)
9035 perf_free_event(event, ctx);
bbbee908 9036
8dc85d54
PZ
9037 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9038 group_entry)
9039 perf_free_event(event, ctx);
bbbee908 9040
8dc85d54
PZ
9041 if (!list_empty(&ctx->pinned_groups) ||
9042 !list_empty(&ctx->flexible_groups))
9043 goto again;
bbbee908 9044
8dc85d54 9045 mutex_unlock(&ctx->mutex);
bbbee908 9046
8dc85d54
PZ
9047 put_ctx(ctx);
9048 }
889ff015
FW
9049}
9050
4e231c79
PZ
9051void perf_event_delayed_put(struct task_struct *task)
9052{
9053 int ctxn;
9054
9055 for_each_task_context_nr(ctxn)
9056 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9057}
9058
e03e7ee3 9059struct file *perf_event_get(unsigned int fd)
ffe8690c 9060{
e03e7ee3 9061 struct file *file;
ffe8690c 9062
e03e7ee3
AS
9063 file = fget_raw(fd);
9064 if (!file)
9065 return ERR_PTR(-EBADF);
ffe8690c 9066
e03e7ee3
AS
9067 if (file->f_op != &perf_fops) {
9068 fput(file);
9069 return ERR_PTR(-EBADF);
9070 }
ffe8690c 9071
e03e7ee3 9072 return file;
ffe8690c
KX
9073}
9074
9075const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9076{
9077 if (!event)
9078 return ERR_PTR(-EINVAL);
9079
9080 return &event->attr;
9081}
9082
97dee4f3
PZ
9083/*
9084 * inherit a event from parent task to child task:
9085 */
9086static struct perf_event *
9087inherit_event(struct perf_event *parent_event,
9088 struct task_struct *parent,
9089 struct perf_event_context *parent_ctx,
9090 struct task_struct *child,
9091 struct perf_event *group_leader,
9092 struct perf_event_context *child_ctx)
9093{
1929def9 9094 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9095 struct perf_event *child_event;
cee010ec 9096 unsigned long flags;
97dee4f3
PZ
9097
9098 /*
9099 * Instead of creating recursive hierarchies of events,
9100 * we link inherited events back to the original parent,
9101 * which has a filp for sure, which we use as the reference
9102 * count:
9103 */
9104 if (parent_event->parent)
9105 parent_event = parent_event->parent;
9106
9107 child_event = perf_event_alloc(&parent_event->attr,
9108 parent_event->cpu,
d580ff86 9109 child,
97dee4f3 9110 group_leader, parent_event,
79dff51e 9111 NULL, NULL, -1);
97dee4f3
PZ
9112 if (IS_ERR(child_event))
9113 return child_event;
a6fa941d 9114
c6e5b732
PZ
9115 /*
9116 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9117 * must be under the same lock in order to serialize against
9118 * perf_event_release_kernel(), such that either we must observe
9119 * is_orphaned_event() or they will observe us on the child_list.
9120 */
9121 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9122 if (is_orphaned_event(parent_event) ||
9123 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9124 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9125 free_event(child_event);
9126 return NULL;
9127 }
9128
97dee4f3
PZ
9129 get_ctx(child_ctx);
9130
9131 /*
9132 * Make the child state follow the state of the parent event,
9133 * not its attr.disabled bit. We hold the parent's mutex,
9134 * so we won't race with perf_event_{en, dis}able_family.
9135 */
1929def9 9136 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9137 child_event->state = PERF_EVENT_STATE_INACTIVE;
9138 else
9139 child_event->state = PERF_EVENT_STATE_OFF;
9140
9141 if (parent_event->attr.freq) {
9142 u64 sample_period = parent_event->hw.sample_period;
9143 struct hw_perf_event *hwc = &child_event->hw;
9144
9145 hwc->sample_period = sample_period;
9146 hwc->last_period = sample_period;
9147
9148 local64_set(&hwc->period_left, sample_period);
9149 }
9150
9151 child_event->ctx = child_ctx;
9152 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9153 child_event->overflow_handler_context
9154 = parent_event->overflow_handler_context;
97dee4f3 9155
614b6780
TG
9156 /*
9157 * Precalculate sample_data sizes
9158 */
9159 perf_event__header_size(child_event);
6844c09d 9160 perf_event__id_header_size(child_event);
614b6780 9161
97dee4f3
PZ
9162 /*
9163 * Link it up in the child's context:
9164 */
cee010ec 9165 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9166 add_event_to_ctx(child_event, child_ctx);
cee010ec 9167 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9168
97dee4f3
PZ
9169 /*
9170 * Link this into the parent event's child list
9171 */
97dee4f3
PZ
9172 list_add_tail(&child_event->child_list, &parent_event->child_list);
9173 mutex_unlock(&parent_event->child_mutex);
9174
9175 return child_event;
9176}
9177
9178static int inherit_group(struct perf_event *parent_event,
9179 struct task_struct *parent,
9180 struct perf_event_context *parent_ctx,
9181 struct task_struct *child,
9182 struct perf_event_context *child_ctx)
9183{
9184 struct perf_event *leader;
9185 struct perf_event *sub;
9186 struct perf_event *child_ctr;
9187
9188 leader = inherit_event(parent_event, parent, parent_ctx,
9189 child, NULL, child_ctx);
9190 if (IS_ERR(leader))
9191 return PTR_ERR(leader);
9192 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9193 child_ctr = inherit_event(sub, parent, parent_ctx,
9194 child, leader, child_ctx);
9195 if (IS_ERR(child_ctr))
9196 return PTR_ERR(child_ctr);
9197 }
9198 return 0;
889ff015
FW
9199}
9200
9201static int
9202inherit_task_group(struct perf_event *event, struct task_struct *parent,
9203 struct perf_event_context *parent_ctx,
8dc85d54 9204 struct task_struct *child, int ctxn,
889ff015
FW
9205 int *inherited_all)
9206{
9207 int ret;
8dc85d54 9208 struct perf_event_context *child_ctx;
889ff015
FW
9209
9210 if (!event->attr.inherit) {
9211 *inherited_all = 0;
9212 return 0;
bbbee908
PZ
9213 }
9214
fe4b04fa 9215 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9216 if (!child_ctx) {
9217 /*
9218 * This is executed from the parent task context, so
9219 * inherit events that have been marked for cloning.
9220 * First allocate and initialize a context for the
9221 * child.
9222 */
bbbee908 9223
734df5ab 9224 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9225 if (!child_ctx)
9226 return -ENOMEM;
bbbee908 9227
8dc85d54 9228 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9229 }
9230
9231 ret = inherit_group(event, parent, parent_ctx,
9232 child, child_ctx);
9233
9234 if (ret)
9235 *inherited_all = 0;
9236
9237 return ret;
bbbee908
PZ
9238}
9239
9b51f66d 9240/*
cdd6c482 9241 * Initialize the perf_event context in task_struct
9b51f66d 9242 */
985c8dcb 9243static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9244{
889ff015 9245 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9246 struct perf_event_context *cloned_ctx;
9247 struct perf_event *event;
9b51f66d 9248 struct task_struct *parent = current;
564c2b21 9249 int inherited_all = 1;
dddd3379 9250 unsigned long flags;
6ab423e0 9251 int ret = 0;
9b51f66d 9252
8dc85d54 9253 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9254 return 0;
9255
ad3a37de 9256 /*
25346b93
PM
9257 * If the parent's context is a clone, pin it so it won't get
9258 * swapped under us.
ad3a37de 9259 */
8dc85d54 9260 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9261 if (!parent_ctx)
9262 return 0;
25346b93 9263
ad3a37de
PM
9264 /*
9265 * No need to check if parent_ctx != NULL here; since we saw
9266 * it non-NULL earlier, the only reason for it to become NULL
9267 * is if we exit, and since we're currently in the middle of
9268 * a fork we can't be exiting at the same time.
9269 */
ad3a37de 9270
9b51f66d
IM
9271 /*
9272 * Lock the parent list. No need to lock the child - not PID
9273 * hashed yet and not running, so nobody can access it.
9274 */
d859e29f 9275 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9276
9277 /*
9278 * We dont have to disable NMIs - we are only looking at
9279 * the list, not manipulating it:
9280 */
889ff015 9281 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9282 ret = inherit_task_group(event, parent, parent_ctx,
9283 child, ctxn, &inherited_all);
889ff015
FW
9284 if (ret)
9285 break;
9286 }
b93f7978 9287
dddd3379
TG
9288 /*
9289 * We can't hold ctx->lock when iterating the ->flexible_group list due
9290 * to allocations, but we need to prevent rotation because
9291 * rotate_ctx() will change the list from interrupt context.
9292 */
9293 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9294 parent_ctx->rotate_disable = 1;
9295 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9296
889ff015 9297 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9298 ret = inherit_task_group(event, parent, parent_ctx,
9299 child, ctxn, &inherited_all);
889ff015 9300 if (ret)
9b51f66d 9301 break;
564c2b21
PM
9302 }
9303
dddd3379
TG
9304 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9305 parent_ctx->rotate_disable = 0;
dddd3379 9306
8dc85d54 9307 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9308
05cbaa28 9309 if (child_ctx && inherited_all) {
564c2b21
PM
9310 /*
9311 * Mark the child context as a clone of the parent
9312 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9313 *
9314 * Note that if the parent is a clone, the holding of
9315 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9316 */
c5ed5145 9317 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9318 if (cloned_ctx) {
9319 child_ctx->parent_ctx = cloned_ctx;
25346b93 9320 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9321 } else {
9322 child_ctx->parent_ctx = parent_ctx;
9323 child_ctx->parent_gen = parent_ctx->generation;
9324 }
9325 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9326 }
9327
c5ed5145 9328 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9329 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9330
25346b93 9331 perf_unpin_context(parent_ctx);
fe4b04fa 9332 put_ctx(parent_ctx);
ad3a37de 9333
6ab423e0 9334 return ret;
9b51f66d
IM
9335}
9336
8dc85d54
PZ
9337/*
9338 * Initialize the perf_event context in task_struct
9339 */
9340int perf_event_init_task(struct task_struct *child)
9341{
9342 int ctxn, ret;
9343
8550d7cb
ON
9344 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9345 mutex_init(&child->perf_event_mutex);
9346 INIT_LIST_HEAD(&child->perf_event_list);
9347
8dc85d54
PZ
9348 for_each_task_context_nr(ctxn) {
9349 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9350 if (ret) {
9351 perf_event_free_task(child);
8dc85d54 9352 return ret;
6c72e350 9353 }
8dc85d54
PZ
9354 }
9355
9356 return 0;
9357}
9358
220b140b
PM
9359static void __init perf_event_init_all_cpus(void)
9360{
b28ab83c 9361 struct swevent_htable *swhash;
220b140b 9362 int cpu;
220b140b
PM
9363
9364 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9365 swhash = &per_cpu(swevent_htable, cpu);
9366 mutex_init(&swhash->hlist_mutex);
2fde4f94 9367 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9368 }
9369}
9370
0db0628d 9371static void perf_event_init_cpu(int cpu)
0793a61d 9372{
108b02cf 9373 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9374
b28ab83c 9375 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9376 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9377 struct swevent_hlist *hlist;
9378
b28ab83c
PZ
9379 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9380 WARN_ON(!hlist);
9381 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9382 }
b28ab83c 9383 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9384}
9385
2965faa5 9386#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9387static void __perf_event_exit_context(void *__info)
0793a61d 9388{
108b02cf 9389 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9390 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9391 struct perf_event *event;
0793a61d 9392
fae3fde6
PZ
9393 raw_spin_lock(&ctx->lock);
9394 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9395 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9396 raw_spin_unlock(&ctx->lock);
0793a61d 9397}
108b02cf
PZ
9398
9399static void perf_event_exit_cpu_context(int cpu)
9400{
9401 struct perf_event_context *ctx;
9402 struct pmu *pmu;
9403 int idx;
9404
9405 idx = srcu_read_lock(&pmus_srcu);
9406 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9407 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9408
9409 mutex_lock(&ctx->mutex);
9410 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9411 mutex_unlock(&ctx->mutex);
9412 }
9413 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9414}
9415
cdd6c482 9416static void perf_event_exit_cpu(int cpu)
0793a61d 9417{
e3703f8c 9418 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9419}
9420#else
cdd6c482 9421static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9422#endif
9423
c277443c
PZ
9424static int
9425perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9426{
9427 int cpu;
9428
9429 for_each_online_cpu(cpu)
9430 perf_event_exit_cpu(cpu);
9431
9432 return NOTIFY_OK;
9433}
9434
9435/*
9436 * Run the perf reboot notifier at the very last possible moment so that
9437 * the generic watchdog code runs as long as possible.
9438 */
9439static struct notifier_block perf_reboot_notifier = {
9440 .notifier_call = perf_reboot,
9441 .priority = INT_MIN,
9442};
9443
0db0628d 9444static int
0793a61d
TG
9445perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9446{
9447 unsigned int cpu = (long)hcpu;
9448
4536e4d1 9449 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9450
9451 case CPU_UP_PREPARE:
1dcaac1c
PZ
9452 /*
9453 * This must be done before the CPU comes alive, because the
9454 * moment we can run tasks we can encounter (software) events.
9455 *
9456 * Specifically, someone can have inherited events on kthreadd
9457 * or a pre-existing worker thread that gets re-bound.
9458 */
cdd6c482 9459 perf_event_init_cpu(cpu);
0793a61d
TG
9460 break;
9461
9462 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9463 /*
9464 * This must be done before the CPU dies because after that an
9465 * active event might want to IPI the CPU and that'll not work
9466 * so great for dead CPUs.
9467 *
9468 * XXX smp_call_function_single() return -ENXIO without a warn
9469 * so we could possibly deal with this.
9470 *
9471 * This is safe against new events arriving because
9472 * sys_perf_event_open() serializes against hotplug using
9473 * get_online_cpus().
9474 */
cdd6c482 9475 perf_event_exit_cpu(cpu);
0793a61d 9476 break;
0793a61d
TG
9477 default:
9478 break;
9479 }
9480
9481 return NOTIFY_OK;
9482}
9483
cdd6c482 9484void __init perf_event_init(void)
0793a61d 9485{
3c502e7a
JW
9486 int ret;
9487
2e80a82a
PZ
9488 idr_init(&pmu_idr);
9489
220b140b 9490 perf_event_init_all_cpus();
b0a873eb 9491 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9492 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9493 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9494 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9495 perf_tp_register();
9496 perf_cpu_notifier(perf_cpu_notify);
c277443c 9497 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9498
9499 ret = init_hw_breakpoint();
9500 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9501
b01c3a00
JO
9502 /*
9503 * Build time assertion that we keep the data_head at the intended
9504 * location. IOW, validation we got the __reserved[] size right.
9505 */
9506 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9507 != 1024);
0793a61d 9508}
abe43400 9509
fd979c01
CS
9510ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9511 char *page)
9512{
9513 struct perf_pmu_events_attr *pmu_attr =
9514 container_of(attr, struct perf_pmu_events_attr, attr);
9515
9516 if (pmu_attr->event_str)
9517 return sprintf(page, "%s\n", pmu_attr->event_str);
9518
9519 return 0;
9520}
675965b0 9521EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9522
abe43400
PZ
9523static int __init perf_event_sysfs_init(void)
9524{
9525 struct pmu *pmu;
9526 int ret;
9527
9528 mutex_lock(&pmus_lock);
9529
9530 ret = bus_register(&pmu_bus);
9531 if (ret)
9532 goto unlock;
9533
9534 list_for_each_entry(pmu, &pmus, entry) {
9535 if (!pmu->name || pmu->type < 0)
9536 continue;
9537
9538 ret = pmu_dev_alloc(pmu);
9539 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9540 }
9541 pmu_bus_running = 1;
9542 ret = 0;
9543
9544unlock:
9545 mutex_unlock(&pmus_lock);
9546
9547 return ret;
9548}
9549device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9550
9551#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9552static struct cgroup_subsys_state *
9553perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9554{
9555 struct perf_cgroup *jc;
e5d1367f 9556
1b15d055 9557 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9558 if (!jc)
9559 return ERR_PTR(-ENOMEM);
9560
e5d1367f
SE
9561 jc->info = alloc_percpu(struct perf_cgroup_info);
9562 if (!jc->info) {
9563 kfree(jc);
9564 return ERR_PTR(-ENOMEM);
9565 }
9566
e5d1367f
SE
9567 return &jc->css;
9568}
9569
eb95419b 9570static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9571{
eb95419b
TH
9572 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9573
e5d1367f
SE
9574 free_percpu(jc->info);
9575 kfree(jc);
9576}
9577
9578static int __perf_cgroup_move(void *info)
9579{
9580 struct task_struct *task = info;
ddaaf4e2 9581 rcu_read_lock();
e5d1367f 9582 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9583 rcu_read_unlock();
e5d1367f
SE
9584 return 0;
9585}
9586
1f7dd3e5 9587static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9588{
bb9d97b6 9589 struct task_struct *task;
1f7dd3e5 9590 struct cgroup_subsys_state *css;
bb9d97b6 9591
1f7dd3e5 9592 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9593 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9594}
9595
073219e9 9596struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9597 .css_alloc = perf_cgroup_css_alloc,
9598 .css_free = perf_cgroup_css_free,
bb9d97b6 9599 .attach = perf_cgroup_attach,
e5d1367f
SE
9600};
9601#endif /* CONFIG_CGROUP_PERF */