Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
9ee318a7 148
108b02cf
PZ
149static LIST_HEAD(pmus);
150static DEFINE_MUTEX(pmus_lock);
151static struct srcu_struct pmus_srcu;
152
0764771d 153/*
cdd6c482 154 * perf event paranoia level:
0fbdea19
IM
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 157 * 1 - disallow cpu events for unpriv
0fbdea19 158 * 2 - disallow kernel profiling for unpriv
0764771d 159 */
cdd6c482 160int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 161
20443384
FW
162/* Minimum for 512 kiB + 1 user control page */
163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
164
165/*
cdd6c482 166 * max perf event sample rate
df58ab24 167 */
14c63f17
DH
168#define DEFAULT_MAX_SAMPLE_RATE 100000
169#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170#define DEFAULT_CPU_TIME_MAX_PERCENT 25
171
172int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
173
174static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
176
177static atomic_t perf_sample_allowed_ns __read_mostly =
178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179
180void update_perf_cpu_limits(void)
181{
182 u64 tmp = perf_sample_period_ns;
183
184 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 185 do_div(tmp, 100);
14c63f17
DH
186 atomic_set(&perf_sample_allowed_ns, tmp);
187}
163ec435 188
9e630205
SE
189static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190
163ec435
PZ
191int perf_proc_update_handler(struct ctl_table *table, int write,
192 void __user *buffer, size_t *lenp,
193 loff_t *ppos)
194{
195 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196
197 if (ret || !write)
198 return ret;
199
200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 update_perf_cpu_limits();
203
204 return 0;
205}
206
207int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208
209int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212{
213 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214
215 if (ret || !write)
216 return ret;
217
218 update_perf_cpu_limits();
163ec435
PZ
219
220 return 0;
221}
1ccd1549 222
14c63f17
DH
223/*
224 * perf samples are done in some very critical code paths (NMIs).
225 * If they take too much CPU time, the system can lock up and not
226 * get any real work done. This will drop the sample rate when
227 * we detect that events are taking too long.
228 */
229#define NR_ACCUMULATED_SAMPLES 128
230DEFINE_PER_CPU(u64, running_sample_length);
231
232void perf_sample_event_took(u64 sample_len_ns)
233{
234 u64 avg_local_sample_len;
e5302920 235 u64 local_samples_len;
14c63f17
DH
236
237 if (atomic_read(&perf_sample_allowed_ns) == 0)
238 return;
239
240 /* decay the counter by 1 average sample */
241 local_samples_len = __get_cpu_var(running_sample_length);
242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 local_samples_len += sample_len_ns;
244 __get_cpu_var(running_sample_length) = local_samples_len;
245
246 /*
247 * note: this will be biased artifically low until we have
248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
249 * from having to maintain a count.
250 */
251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252
253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 return;
255
256 if (max_samples_per_tick <= 1)
257 return;
258
259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262
263 printk_ratelimited(KERN_WARNING
264 "perf samples too long (%lld > %d), lowering "
265 "kernel.perf_event_max_sample_rate to %d\n",
266 avg_local_sample_len,
267 atomic_read(&perf_sample_allowed_ns),
268 sysctl_perf_event_sample_rate);
269
270 update_perf_cpu_limits();
271}
272
cdd6c482 273static atomic64_t perf_event_id;
a96bbc16 274
0b3fcf17
SE
275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 enum event_type_t event_type);
277
278static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
279 enum event_type_t event_type,
280 struct task_struct *task);
281
282static void update_context_time(struct perf_event_context *ctx);
283static u64 perf_event_time(struct perf_event *event);
0b3fcf17 284
cdd6c482 285void __weak perf_event_print_debug(void) { }
0793a61d 286
84c79910 287extern __weak const char *perf_pmu_name(void)
0793a61d 288{
84c79910 289 return "pmu";
0793a61d
TG
290}
291
0b3fcf17
SE
292static inline u64 perf_clock(void)
293{
294 return local_clock();
295}
296
e5d1367f
SE
297static inline struct perf_cpu_context *
298__get_cpu_context(struct perf_event_context *ctx)
299{
300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301}
302
facc4307
PZ
303static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 struct perf_event_context *ctx)
305{
306 raw_spin_lock(&cpuctx->ctx.lock);
307 if (ctx)
308 raw_spin_lock(&ctx->lock);
309}
310
311static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (ctx)
315 raw_spin_unlock(&ctx->lock);
316 raw_spin_unlock(&cpuctx->ctx.lock);
317}
318
e5d1367f
SE
319#ifdef CONFIG_CGROUP_PERF
320
877c6856
LZ
321/*
322 * perf_cgroup_info keeps track of time_enabled for a cgroup.
323 * This is a per-cpu dynamically allocated data structure.
324 */
325struct perf_cgroup_info {
326 u64 time;
327 u64 timestamp;
328};
329
330struct perf_cgroup {
331 struct cgroup_subsys_state css;
86e213e1 332 struct perf_cgroup_info __percpu *info;
877c6856
LZ
333};
334
3f7cce3c
SE
335/*
336 * Must ensure cgroup is pinned (css_get) before calling
337 * this function. In other words, we cannot call this function
338 * if there is no cgroup event for the current CPU context.
339 */
e5d1367f
SE
340static inline struct perf_cgroup *
341perf_cgroup_from_task(struct task_struct *task)
342{
343 return container_of(task_subsys_state(task, perf_subsys_id),
344 struct perf_cgroup, css);
345}
346
347static inline bool
348perf_cgroup_match(struct perf_event *event)
349{
350 struct perf_event_context *ctx = event->ctx;
351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352
ef824fa1
TH
353 /* @event doesn't care about cgroup */
354 if (!event->cgrp)
355 return true;
356
357 /* wants specific cgroup scope but @cpuctx isn't associated with any */
358 if (!cpuctx->cgrp)
359 return false;
360
361 /*
362 * Cgroup scoping is recursive. An event enabled for a cgroup is
363 * also enabled for all its descendant cgroups. If @cpuctx's
364 * cgroup is a descendant of @event's (the test covers identity
365 * case), it's a match.
366 */
367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 event->cgrp->css.cgroup);
e5d1367f
SE
369}
370
9c5da09d 371static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 372{
9c5da09d 373 return css_tryget(&event->cgrp->css);
e5d1367f
SE
374}
375
376static inline void perf_put_cgroup(struct perf_event *event)
377{
378 css_put(&event->cgrp->css);
379}
380
381static inline void perf_detach_cgroup(struct perf_event *event)
382{
383 perf_put_cgroup(event);
384 event->cgrp = NULL;
385}
386
387static inline int is_cgroup_event(struct perf_event *event)
388{
389 return event->cgrp != NULL;
390}
391
392static inline u64 perf_cgroup_event_time(struct perf_event *event)
393{
394 struct perf_cgroup_info *t;
395
396 t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 return t->time;
398}
399
400static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401{
402 struct perf_cgroup_info *info;
403 u64 now;
404
405 now = perf_clock();
406
407 info = this_cpu_ptr(cgrp->info);
408
409 info->time += now - info->timestamp;
410 info->timestamp = now;
411}
412
413static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414{
415 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 if (cgrp_out)
417 __update_cgrp_time(cgrp_out);
418}
419
420static inline void update_cgrp_time_from_event(struct perf_event *event)
421{
3f7cce3c
SE
422 struct perf_cgroup *cgrp;
423
e5d1367f 424 /*
3f7cce3c
SE
425 * ensure we access cgroup data only when needed and
426 * when we know the cgroup is pinned (css_get)
e5d1367f 427 */
3f7cce3c 428 if (!is_cgroup_event(event))
e5d1367f
SE
429 return;
430
3f7cce3c
SE
431 cgrp = perf_cgroup_from_task(current);
432 /*
433 * Do not update time when cgroup is not active
434 */
435 if (cgrp == event->cgrp)
436 __update_cgrp_time(event->cgrp);
e5d1367f
SE
437}
438
439static inline void
3f7cce3c
SE
440perf_cgroup_set_timestamp(struct task_struct *task,
441 struct perf_event_context *ctx)
e5d1367f
SE
442{
443 struct perf_cgroup *cgrp;
444 struct perf_cgroup_info *info;
445
3f7cce3c
SE
446 /*
447 * ctx->lock held by caller
448 * ensure we do not access cgroup data
449 * unless we have the cgroup pinned (css_get)
450 */
451 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
452 return;
453
454 cgrp = perf_cgroup_from_task(task);
455 info = this_cpu_ptr(cgrp->info);
3f7cce3c 456 info->timestamp = ctx->timestamp;
e5d1367f
SE
457}
458
459#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
460#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
461
462/*
463 * reschedule events based on the cgroup constraint of task.
464 *
465 * mode SWOUT : schedule out everything
466 * mode SWIN : schedule in based on cgroup for next
467 */
468void perf_cgroup_switch(struct task_struct *task, int mode)
469{
470 struct perf_cpu_context *cpuctx;
471 struct pmu *pmu;
472 unsigned long flags;
473
474 /*
475 * disable interrupts to avoid geting nr_cgroup
476 * changes via __perf_event_disable(). Also
477 * avoids preemption.
478 */
479 local_irq_save(flags);
480
481 /*
482 * we reschedule only in the presence of cgroup
483 * constrained events.
484 */
485 rcu_read_lock();
486
487 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
489 if (cpuctx->unique_pmu != pmu)
490 continue; /* ensure we process each cpuctx once */
e5d1367f 491
e5d1367f
SE
492 /*
493 * perf_cgroup_events says at least one
494 * context on this CPU has cgroup events.
495 *
496 * ctx->nr_cgroups reports the number of cgroup
497 * events for a context.
498 */
499 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
502
503 if (mode & PERF_CGROUP_SWOUT) {
504 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 /*
506 * must not be done before ctxswout due
507 * to event_filter_match() in event_sched_out()
508 */
509 cpuctx->cgrp = NULL;
510 }
511
512 if (mode & PERF_CGROUP_SWIN) {
e566b76e 513 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
514 /*
515 * set cgrp before ctxsw in to allow
516 * event_filter_match() to not have to pass
517 * task around
e5d1367f
SE
518 */
519 cpuctx->cgrp = perf_cgroup_from_task(task);
520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 }
facc4307
PZ
522 perf_pmu_enable(cpuctx->ctx.pmu);
523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 524 }
e5d1367f
SE
525 }
526
527 rcu_read_unlock();
528
529 local_irq_restore(flags);
530}
531
a8d757ef
SE
532static inline void perf_cgroup_sched_out(struct task_struct *task,
533 struct task_struct *next)
e5d1367f 534{
a8d757ef
SE
535 struct perf_cgroup *cgrp1;
536 struct perf_cgroup *cgrp2 = NULL;
537
538 /*
539 * we come here when we know perf_cgroup_events > 0
540 */
541 cgrp1 = perf_cgroup_from_task(task);
542
543 /*
544 * next is NULL when called from perf_event_enable_on_exec()
545 * that will systematically cause a cgroup_switch()
546 */
547 if (next)
548 cgrp2 = perf_cgroup_from_task(next);
549
550 /*
551 * only schedule out current cgroup events if we know
552 * that we are switching to a different cgroup. Otherwise,
553 * do no touch the cgroup events.
554 */
555 if (cgrp1 != cgrp2)
556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
557}
558
a8d757ef
SE
559static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 struct task_struct *task)
e5d1367f 561{
a8d757ef
SE
562 struct perf_cgroup *cgrp1;
563 struct perf_cgroup *cgrp2 = NULL;
564
565 /*
566 * we come here when we know perf_cgroup_events > 0
567 */
568 cgrp1 = perf_cgroup_from_task(task);
569
570 /* prev can never be NULL */
571 cgrp2 = perf_cgroup_from_task(prev);
572
573 /*
574 * only need to schedule in cgroup events if we are changing
575 * cgroup during ctxsw. Cgroup events were not scheduled
576 * out of ctxsw out if that was not the case.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
580}
581
582static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 struct perf_event_attr *attr,
584 struct perf_event *group_leader)
585{
586 struct perf_cgroup *cgrp;
587 struct cgroup_subsys_state *css;
2903ff01
AV
588 struct fd f = fdget(fd);
589 int ret = 0;
e5d1367f 590
2903ff01 591 if (!f.file)
e5d1367f
SE
592 return -EBADF;
593
2903ff01 594 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
595 if (IS_ERR(css)) {
596 ret = PTR_ERR(css);
597 goto out;
598 }
e5d1367f
SE
599
600 cgrp = container_of(css, struct perf_cgroup, css);
601 event->cgrp = cgrp;
602
f75e18cb 603 /* must be done before we fput() the file */
9c5da09d
SQ
604 if (!perf_tryget_cgroup(event)) {
605 event->cgrp = NULL;
606 ret = -ENOENT;
607 goto out;
608 }
f75e18cb 609
e5d1367f
SE
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
e5d1367f 618 }
3db272c0 619out:
2903ff01 620 fdput(f);
e5d1367f
SE
621 return ret;
622}
623
624static inline void
625perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626{
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630}
631
632static inline void
633perf_cgroup_defer_enabled(struct perf_event *event)
634{
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643}
644
645static inline void
646perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648{
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664}
665#else /* !CONFIG_CGROUP_PERF */
666
667static inline bool
668perf_cgroup_match(struct perf_event *event)
669{
670 return true;
671}
672
673static inline void perf_detach_cgroup(struct perf_event *event)
674{}
675
676static inline int is_cgroup_event(struct perf_event *event)
677{
678 return 0;
679}
680
681static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682{
683 return 0;
684}
685
686static inline void update_cgrp_time_from_event(struct perf_event *event)
687{
688}
689
690static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691{
692}
693
a8d757ef
SE
694static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
e5d1367f
SE
696{
697}
698
a8d757ef
SE
699static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
e5d1367f
SE
701{
702}
703
704static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707{
708 return -EINVAL;
709}
710
711static inline void
3f7cce3c
SE
712perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
e5d1367f
SE
714{
715}
716
717void
718perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719{
720}
721
722static inline void
723perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724{
725}
726
727static inline u64 perf_cgroup_event_time(struct perf_event *event)
728{
729 return 0;
730}
731
732static inline void
733perf_cgroup_defer_enabled(struct perf_event *event)
734{
735}
736
737static inline void
738perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740{
741}
742#endif
743
9e630205
SE
744/*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748#define PERF_CPU_HRTIMER (1000 / HZ)
749/*
750 * function must be called with interrupts disbled
751 */
752static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753{
754 struct perf_cpu_context *cpuctx;
755 enum hrtimer_restart ret = HRTIMER_NORESTART;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761
762 rotations = perf_rotate_context(cpuctx);
763
764 /*
765 * arm timer if needed
766 */
767 if (rotations) {
768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 ret = HRTIMER_RESTART;
770 }
771
772 return ret;
773}
774
775/* CPU is going down */
776void perf_cpu_hrtimer_cancel(int cpu)
777{
778 struct perf_cpu_context *cpuctx;
779 struct pmu *pmu;
780 unsigned long flags;
781
782 if (WARN_ON(cpu != smp_processor_id()))
783 return;
784
785 local_irq_save(flags);
786
787 rcu_read_lock();
788
789 list_for_each_entry_rcu(pmu, &pmus, entry) {
790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791
792 if (pmu->task_ctx_nr == perf_sw_context)
793 continue;
794
795 hrtimer_cancel(&cpuctx->hrtimer);
796 }
797
798 rcu_read_unlock();
799
800 local_irq_restore(flags);
801}
802
803static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804{
805 struct hrtimer *hr = &cpuctx->hrtimer;
806 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 807 int timer;
9e630205
SE
808
809 /* no multiplexing needed for SW PMU */
810 if (pmu->task_ctx_nr == perf_sw_context)
811 return;
812
62b85639
SE
813 /*
814 * check default is sane, if not set then force to
815 * default interval (1/tick)
816 */
817 timer = pmu->hrtimer_interval_ms;
818 if (timer < 1)
819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820
821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
822
823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 hr->function = perf_cpu_hrtimer_handler;
825}
826
827static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828{
829 struct hrtimer *hr = &cpuctx->hrtimer;
830 struct pmu *pmu = cpuctx->ctx.pmu;
831
832 /* not for SW PMU */
833 if (pmu->task_ctx_nr == perf_sw_context)
834 return;
835
836 if (hrtimer_active(hr))
837 return;
838
839 if (!hrtimer_callback_running(hr))
840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 0, HRTIMER_MODE_REL_PINNED, 0);
842}
843
33696fc0 844void perf_pmu_disable(struct pmu *pmu)
9e35ad38 845{
33696fc0
PZ
846 int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 if (!(*count)++)
848 pmu->pmu_disable(pmu);
9e35ad38 849}
9e35ad38 850
33696fc0 851void perf_pmu_enable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!--(*count))
855 pmu->pmu_enable(pmu);
9e35ad38 856}
9e35ad38 857
e9d2b064
PZ
858static DEFINE_PER_CPU(struct list_head, rotation_list);
859
860/*
861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862 * because they're strictly cpu affine and rotate_start is called with IRQs
863 * disabled, while rotate_context is called from IRQ context.
864 */
108b02cf 865static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 866{
108b02cf 867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 868 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 869
e9d2b064 870 WARN_ON(!irqs_disabled());
b5ab4cd5 871
12351ef8
FW
872 if (list_empty(&cpuctx->rotation_list)) {
873 int was_empty = list_empty(head);
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
875 if (was_empty)
876 tick_nohz_full_kick();
877 }
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902}
903
6844c09d
ACM
904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905{
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913}
914
915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916{
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924}
925
7f453c24 926/*
cdd6c482 927 * If we inherit events we want to return the parent event id
7f453c24
PZ
928 * to userspace.
929 */
cdd6c482 930static u64 primary_event_id(struct perf_event *event)
7f453c24 931{
cdd6c482 932 u64 id = event->id;
7f453c24 933
cdd6c482
IM
934 if (event->parent)
935 id = event->parent->id;
7f453c24
PZ
936
937 return id;
938}
939
25346b93 940/*
cdd6c482 941 * Get the perf_event_context for a task and lock it.
25346b93
PM
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
cdd6c482 945static struct perf_event_context *
8dc85d54 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 947{
cdd6c482 948 struct perf_event_context *ctx;
25346b93
PM
949
950 rcu_read_lock();
9ed6060d 951retry:
8dc85d54 952 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
953 if (ctx) {
954 /*
955 * If this context is a clone of another, it might
956 * get swapped for another underneath us by
cdd6c482 957 * perf_event_task_sched_out, though the
25346b93
PM
958 * rcu_read_lock() protects us from any context
959 * getting freed. Lock the context and check if it
960 * got swapped before we could get the lock, and retry
961 * if so. If we locked the right context, then it
962 * can't get swapped on us any more.
963 */
e625cce1 964 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 965 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 966 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
967 goto retry;
968 }
b49a9e7e
PZ
969
970 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 971 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
972 ctx = NULL;
973 }
25346b93
PM
974 }
975 rcu_read_unlock();
976 return ctx;
977}
978
979/*
980 * Get the context for a task and increment its pin_count so it
981 * can't get swapped to another task. This also increments its
982 * reference count so that the context can't get freed.
983 */
8dc85d54
PZ
984static struct perf_event_context *
985perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 986{
cdd6c482 987 struct perf_event_context *ctx;
25346b93
PM
988 unsigned long flags;
989
8dc85d54 990 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
991 if (ctx) {
992 ++ctx->pin_count;
e625cce1 993 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
994 }
995 return ctx;
996}
997
cdd6c482 998static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
999{
1000 unsigned long flags;
1001
e625cce1 1002 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1003 --ctx->pin_count;
e625cce1 1004 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1005}
1006
f67218c3
PZ
1007/*
1008 * Update the record of the current time in a context.
1009 */
1010static void update_context_time(struct perf_event_context *ctx)
1011{
1012 u64 now = perf_clock();
1013
1014 ctx->time += now - ctx->timestamp;
1015 ctx->timestamp = now;
1016}
1017
4158755d
SE
1018static u64 perf_event_time(struct perf_event *event)
1019{
1020 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1021
1022 if (is_cgroup_event(event))
1023 return perf_cgroup_event_time(event);
1024
4158755d
SE
1025 return ctx ? ctx->time : 0;
1026}
1027
f67218c3
PZ
1028/*
1029 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1030 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1031 */
1032static void update_event_times(struct perf_event *event)
1033{
1034 struct perf_event_context *ctx = event->ctx;
1035 u64 run_end;
1036
1037 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1038 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1039 return;
e5d1367f
SE
1040 /*
1041 * in cgroup mode, time_enabled represents
1042 * the time the event was enabled AND active
1043 * tasks were in the monitored cgroup. This is
1044 * independent of the activity of the context as
1045 * there may be a mix of cgroup and non-cgroup events.
1046 *
1047 * That is why we treat cgroup events differently
1048 * here.
1049 */
1050 if (is_cgroup_event(event))
46cd6a7f 1051 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1052 else if (ctx->is_active)
1053 run_end = ctx->time;
acd1d7c1
PZ
1054 else
1055 run_end = event->tstamp_stopped;
1056
1057 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1058
1059 if (event->state == PERF_EVENT_STATE_INACTIVE)
1060 run_end = event->tstamp_stopped;
1061 else
4158755d 1062 run_end = perf_event_time(event);
f67218c3
PZ
1063
1064 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1065
f67218c3
PZ
1066}
1067
96c21a46
PZ
1068/*
1069 * Update total_time_enabled and total_time_running for all events in a group.
1070 */
1071static void update_group_times(struct perf_event *leader)
1072{
1073 struct perf_event *event;
1074
1075 update_event_times(leader);
1076 list_for_each_entry(event, &leader->sibling_list, group_entry)
1077 update_event_times(event);
1078}
1079
889ff015
FW
1080static struct list_head *
1081ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1082{
1083 if (event->attr.pinned)
1084 return &ctx->pinned_groups;
1085 else
1086 return &ctx->flexible_groups;
1087}
1088
fccc714b 1089/*
cdd6c482 1090 * Add a event from the lists for its context.
fccc714b
PZ
1091 * Must be called with ctx->mutex and ctx->lock held.
1092 */
04289bb9 1093static void
cdd6c482 1094list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1095{
8a49542c
PZ
1096 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1097 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1098
1099 /*
8a49542c
PZ
1100 * If we're a stand alone event or group leader, we go to the context
1101 * list, group events are kept attached to the group so that
1102 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1103 */
8a49542c 1104 if (event->group_leader == event) {
889ff015
FW
1105 struct list_head *list;
1106
d6f962b5
FW
1107 if (is_software_event(event))
1108 event->group_flags |= PERF_GROUP_SOFTWARE;
1109
889ff015
FW
1110 list = ctx_group_list(event, ctx);
1111 list_add_tail(&event->group_entry, list);
5c148194 1112 }
592903cd 1113
08309379 1114 if (is_cgroup_event(event))
e5d1367f 1115 ctx->nr_cgroups++;
e5d1367f 1116
d010b332
SE
1117 if (has_branch_stack(event))
1118 ctx->nr_branch_stack++;
1119
cdd6c482 1120 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1121 if (!ctx->nr_events)
108b02cf 1122 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1123 ctx->nr_events++;
1124 if (event->attr.inherit_stat)
bfbd3381 1125 ctx->nr_stat++;
04289bb9
IM
1126}
1127
0231bb53
JO
1128/*
1129 * Initialize event state based on the perf_event_attr::disabled.
1130 */
1131static inline void perf_event__state_init(struct perf_event *event)
1132{
1133 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1134 PERF_EVENT_STATE_INACTIVE;
1135}
1136
c320c7b7
ACM
1137/*
1138 * Called at perf_event creation and when events are attached/detached from a
1139 * group.
1140 */
1141static void perf_event__read_size(struct perf_event *event)
1142{
1143 int entry = sizeof(u64); /* value */
1144 int size = 0;
1145 int nr = 1;
1146
1147 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1148 size += sizeof(u64);
1149
1150 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1151 size += sizeof(u64);
1152
1153 if (event->attr.read_format & PERF_FORMAT_ID)
1154 entry += sizeof(u64);
1155
1156 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1157 nr += event->group_leader->nr_siblings;
1158 size += sizeof(u64);
1159 }
1160
1161 size += entry * nr;
1162 event->read_size = size;
1163}
1164
1165static void perf_event__header_size(struct perf_event *event)
1166{
1167 struct perf_sample_data *data;
1168 u64 sample_type = event->attr.sample_type;
1169 u16 size = 0;
1170
1171 perf_event__read_size(event);
1172
1173 if (sample_type & PERF_SAMPLE_IP)
1174 size += sizeof(data->ip);
1175
6844c09d
ACM
1176 if (sample_type & PERF_SAMPLE_ADDR)
1177 size += sizeof(data->addr);
1178
1179 if (sample_type & PERF_SAMPLE_PERIOD)
1180 size += sizeof(data->period);
1181
c3feedf2
AK
1182 if (sample_type & PERF_SAMPLE_WEIGHT)
1183 size += sizeof(data->weight);
1184
6844c09d
ACM
1185 if (sample_type & PERF_SAMPLE_READ)
1186 size += event->read_size;
1187
d6be9ad6
SE
1188 if (sample_type & PERF_SAMPLE_DATA_SRC)
1189 size += sizeof(data->data_src.val);
1190
6844c09d
ACM
1191 event->header_size = size;
1192}
1193
1194static void perf_event__id_header_size(struct perf_event *event)
1195{
1196 struct perf_sample_data *data;
1197 u64 sample_type = event->attr.sample_type;
1198 u16 size = 0;
1199
c320c7b7
ACM
1200 if (sample_type & PERF_SAMPLE_TID)
1201 size += sizeof(data->tid_entry);
1202
1203 if (sample_type & PERF_SAMPLE_TIME)
1204 size += sizeof(data->time);
1205
c320c7b7
ACM
1206 if (sample_type & PERF_SAMPLE_ID)
1207 size += sizeof(data->id);
1208
1209 if (sample_type & PERF_SAMPLE_STREAM_ID)
1210 size += sizeof(data->stream_id);
1211
1212 if (sample_type & PERF_SAMPLE_CPU)
1213 size += sizeof(data->cpu_entry);
1214
6844c09d 1215 event->id_header_size = size;
c320c7b7
ACM
1216}
1217
8a49542c
PZ
1218static void perf_group_attach(struct perf_event *event)
1219{
c320c7b7 1220 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1221
74c3337c
PZ
1222 /*
1223 * We can have double attach due to group movement in perf_event_open.
1224 */
1225 if (event->attach_state & PERF_ATTACH_GROUP)
1226 return;
1227
8a49542c
PZ
1228 event->attach_state |= PERF_ATTACH_GROUP;
1229
1230 if (group_leader == event)
1231 return;
1232
1233 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1234 !is_software_event(event))
1235 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1236
1237 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1238 group_leader->nr_siblings++;
c320c7b7
ACM
1239
1240 perf_event__header_size(group_leader);
1241
1242 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1243 perf_event__header_size(pos);
8a49542c
PZ
1244}
1245
a63eaf34 1246/*
cdd6c482 1247 * Remove a event from the lists for its context.
fccc714b 1248 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1249 */
04289bb9 1250static void
cdd6c482 1251list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1252{
68cacd29 1253 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1254 /*
1255 * We can have double detach due to exit/hot-unplug + close.
1256 */
1257 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1258 return;
8a49542c
PZ
1259
1260 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1261
68cacd29 1262 if (is_cgroup_event(event)) {
e5d1367f 1263 ctx->nr_cgroups--;
68cacd29
SE
1264 cpuctx = __get_cpu_context(ctx);
1265 /*
1266 * if there are no more cgroup events
1267 * then cler cgrp to avoid stale pointer
1268 * in update_cgrp_time_from_cpuctx()
1269 */
1270 if (!ctx->nr_cgroups)
1271 cpuctx->cgrp = NULL;
1272 }
e5d1367f 1273
d010b332
SE
1274 if (has_branch_stack(event))
1275 ctx->nr_branch_stack--;
1276
cdd6c482
IM
1277 ctx->nr_events--;
1278 if (event->attr.inherit_stat)
bfbd3381 1279 ctx->nr_stat--;
8bc20959 1280
cdd6c482 1281 list_del_rcu(&event->event_entry);
04289bb9 1282
8a49542c
PZ
1283 if (event->group_leader == event)
1284 list_del_init(&event->group_entry);
5c148194 1285
96c21a46 1286 update_group_times(event);
b2e74a26
SE
1287
1288 /*
1289 * If event was in error state, then keep it
1290 * that way, otherwise bogus counts will be
1291 * returned on read(). The only way to get out
1292 * of error state is by explicit re-enabling
1293 * of the event
1294 */
1295 if (event->state > PERF_EVENT_STATE_OFF)
1296 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1297}
1298
8a49542c 1299static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1300{
1301 struct perf_event *sibling, *tmp;
8a49542c
PZ
1302 struct list_head *list = NULL;
1303
1304 /*
1305 * We can have double detach due to exit/hot-unplug + close.
1306 */
1307 if (!(event->attach_state & PERF_ATTACH_GROUP))
1308 return;
1309
1310 event->attach_state &= ~PERF_ATTACH_GROUP;
1311
1312 /*
1313 * If this is a sibling, remove it from its group.
1314 */
1315 if (event->group_leader != event) {
1316 list_del_init(&event->group_entry);
1317 event->group_leader->nr_siblings--;
c320c7b7 1318 goto out;
8a49542c
PZ
1319 }
1320
1321 if (!list_empty(&event->group_entry))
1322 list = &event->group_entry;
2e2af50b 1323
04289bb9 1324 /*
cdd6c482
IM
1325 * If this was a group event with sibling events then
1326 * upgrade the siblings to singleton events by adding them
8a49542c 1327 * to whatever list we are on.
04289bb9 1328 */
cdd6c482 1329 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1330 if (list)
1331 list_move_tail(&sibling->group_entry, list);
04289bb9 1332 sibling->group_leader = sibling;
d6f962b5
FW
1333
1334 /* Inherit group flags from the previous leader */
1335 sibling->group_flags = event->group_flags;
04289bb9 1336 }
c320c7b7
ACM
1337
1338out:
1339 perf_event__header_size(event->group_leader);
1340
1341 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1342 perf_event__header_size(tmp);
04289bb9
IM
1343}
1344
fa66f07a
SE
1345static inline int
1346event_filter_match(struct perf_event *event)
1347{
e5d1367f
SE
1348 return (event->cpu == -1 || event->cpu == smp_processor_id())
1349 && perf_cgroup_match(event);
fa66f07a
SE
1350}
1351
9ffcfa6f
SE
1352static void
1353event_sched_out(struct perf_event *event,
3b6f9e5c 1354 struct perf_cpu_context *cpuctx,
cdd6c482 1355 struct perf_event_context *ctx)
3b6f9e5c 1356{
4158755d 1357 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1358 u64 delta;
1359 /*
1360 * An event which could not be activated because of
1361 * filter mismatch still needs to have its timings
1362 * maintained, otherwise bogus information is return
1363 * via read() for time_enabled, time_running:
1364 */
1365 if (event->state == PERF_EVENT_STATE_INACTIVE
1366 && !event_filter_match(event)) {
e5d1367f 1367 delta = tstamp - event->tstamp_stopped;
fa66f07a 1368 event->tstamp_running += delta;
4158755d 1369 event->tstamp_stopped = tstamp;
fa66f07a
SE
1370 }
1371
cdd6c482 1372 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1373 return;
3b6f9e5c 1374
cdd6c482
IM
1375 event->state = PERF_EVENT_STATE_INACTIVE;
1376 if (event->pending_disable) {
1377 event->pending_disable = 0;
1378 event->state = PERF_EVENT_STATE_OFF;
970892a9 1379 }
4158755d 1380 event->tstamp_stopped = tstamp;
a4eaf7f1 1381 event->pmu->del(event, 0);
cdd6c482 1382 event->oncpu = -1;
3b6f9e5c 1383
cdd6c482 1384 if (!is_software_event(event))
3b6f9e5c
PM
1385 cpuctx->active_oncpu--;
1386 ctx->nr_active--;
0f5a2601
PZ
1387 if (event->attr.freq && event->attr.sample_freq)
1388 ctx->nr_freq--;
cdd6c482 1389 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1390 cpuctx->exclusive = 0;
1391}
1392
d859e29f 1393static void
cdd6c482 1394group_sched_out(struct perf_event *group_event,
d859e29f 1395 struct perf_cpu_context *cpuctx,
cdd6c482 1396 struct perf_event_context *ctx)
d859e29f 1397{
cdd6c482 1398 struct perf_event *event;
fa66f07a 1399 int state = group_event->state;
d859e29f 1400
cdd6c482 1401 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1402
1403 /*
1404 * Schedule out siblings (if any):
1405 */
cdd6c482
IM
1406 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1407 event_sched_out(event, cpuctx, ctx);
d859e29f 1408
fa66f07a 1409 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1410 cpuctx->exclusive = 0;
1411}
1412
0793a61d 1413/*
cdd6c482 1414 * Cross CPU call to remove a performance event
0793a61d 1415 *
cdd6c482 1416 * We disable the event on the hardware level first. After that we
0793a61d
TG
1417 * remove it from the context list.
1418 */
fe4b04fa 1419static int __perf_remove_from_context(void *info)
0793a61d 1420{
cdd6c482
IM
1421 struct perf_event *event = info;
1422 struct perf_event_context *ctx = event->ctx;
108b02cf 1423 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1424
e625cce1 1425 raw_spin_lock(&ctx->lock);
cdd6c482 1426 event_sched_out(event, cpuctx, ctx);
cdd6c482 1427 list_del_event(event, ctx);
64ce3126
PZ
1428 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1429 ctx->is_active = 0;
1430 cpuctx->task_ctx = NULL;
1431 }
e625cce1 1432 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1433
1434 return 0;
0793a61d
TG
1435}
1436
1437
1438/*
cdd6c482 1439 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1440 *
cdd6c482 1441 * CPU events are removed with a smp call. For task events we only
0793a61d 1442 * call when the task is on a CPU.
c93f7669 1443 *
cdd6c482
IM
1444 * If event->ctx is a cloned context, callers must make sure that
1445 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1446 * remains valid. This is OK when called from perf_release since
1447 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1448 * When called from perf_event_exit_task, it's OK because the
c93f7669 1449 * context has been detached from its task.
0793a61d 1450 */
fe4b04fa 1451static void perf_remove_from_context(struct perf_event *event)
0793a61d 1452{
cdd6c482 1453 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1454 struct task_struct *task = ctx->task;
1455
fe4b04fa
PZ
1456 lockdep_assert_held(&ctx->mutex);
1457
0793a61d
TG
1458 if (!task) {
1459 /*
cdd6c482 1460 * Per cpu events are removed via an smp call and
af901ca1 1461 * the removal is always successful.
0793a61d 1462 */
fe4b04fa 1463 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1464 return;
1465 }
1466
1467retry:
fe4b04fa
PZ
1468 if (!task_function_call(task, __perf_remove_from_context, event))
1469 return;
0793a61d 1470
e625cce1 1471 raw_spin_lock_irq(&ctx->lock);
0793a61d 1472 /*
fe4b04fa
PZ
1473 * If we failed to find a running task, but find the context active now
1474 * that we've acquired the ctx->lock, retry.
0793a61d 1475 */
fe4b04fa 1476 if (ctx->is_active) {
e625cce1 1477 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1478 goto retry;
1479 }
1480
1481 /*
fe4b04fa
PZ
1482 * Since the task isn't running, its safe to remove the event, us
1483 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1484 */
fe4b04fa 1485 list_del_event(event, ctx);
e625cce1 1486 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1487}
1488
d859e29f 1489/*
cdd6c482 1490 * Cross CPU call to disable a performance event
d859e29f 1491 */
500ad2d8 1492int __perf_event_disable(void *info)
d859e29f 1493{
cdd6c482 1494 struct perf_event *event = info;
cdd6c482 1495 struct perf_event_context *ctx = event->ctx;
108b02cf 1496 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1497
1498 /*
cdd6c482
IM
1499 * If this is a per-task event, need to check whether this
1500 * event's task is the current task on this cpu.
fe4b04fa
PZ
1501 *
1502 * Can trigger due to concurrent perf_event_context_sched_out()
1503 * flipping contexts around.
d859e29f 1504 */
665c2142 1505 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1506 return -EINVAL;
d859e29f 1507
e625cce1 1508 raw_spin_lock(&ctx->lock);
d859e29f
PM
1509
1510 /*
cdd6c482 1511 * If the event is on, turn it off.
d859e29f
PM
1512 * If it is in error state, leave it in error state.
1513 */
cdd6c482 1514 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1515 update_context_time(ctx);
e5d1367f 1516 update_cgrp_time_from_event(event);
cdd6c482
IM
1517 update_group_times(event);
1518 if (event == event->group_leader)
1519 group_sched_out(event, cpuctx, ctx);
d859e29f 1520 else
cdd6c482
IM
1521 event_sched_out(event, cpuctx, ctx);
1522 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1523 }
1524
e625cce1 1525 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1526
1527 return 0;
d859e29f
PM
1528}
1529
1530/*
cdd6c482 1531 * Disable a event.
c93f7669 1532 *
cdd6c482
IM
1533 * If event->ctx is a cloned context, callers must make sure that
1534 * every task struct that event->ctx->task could possibly point to
c93f7669 1535 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1536 * perf_event_for_each_child or perf_event_for_each because they
1537 * hold the top-level event's child_mutex, so any descendant that
1538 * goes to exit will block in sync_child_event.
1539 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1540 * is the current context on this CPU and preemption is disabled,
cdd6c482 1541 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1542 */
44234adc 1543void perf_event_disable(struct perf_event *event)
d859e29f 1544{
cdd6c482 1545 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1546 struct task_struct *task = ctx->task;
1547
1548 if (!task) {
1549 /*
cdd6c482 1550 * Disable the event on the cpu that it's on
d859e29f 1551 */
fe4b04fa 1552 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1553 return;
1554 }
1555
9ed6060d 1556retry:
fe4b04fa
PZ
1557 if (!task_function_call(task, __perf_event_disable, event))
1558 return;
d859e29f 1559
e625cce1 1560 raw_spin_lock_irq(&ctx->lock);
d859e29f 1561 /*
cdd6c482 1562 * If the event is still active, we need to retry the cross-call.
d859e29f 1563 */
cdd6c482 1564 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1565 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1566 /*
1567 * Reload the task pointer, it might have been changed by
1568 * a concurrent perf_event_context_sched_out().
1569 */
1570 task = ctx->task;
d859e29f
PM
1571 goto retry;
1572 }
1573
1574 /*
1575 * Since we have the lock this context can't be scheduled
1576 * in, so we can change the state safely.
1577 */
cdd6c482
IM
1578 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1579 update_group_times(event);
1580 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1581 }
e625cce1 1582 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1583}
dcfce4a0 1584EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1585
e5d1367f
SE
1586static void perf_set_shadow_time(struct perf_event *event,
1587 struct perf_event_context *ctx,
1588 u64 tstamp)
1589{
1590 /*
1591 * use the correct time source for the time snapshot
1592 *
1593 * We could get by without this by leveraging the
1594 * fact that to get to this function, the caller
1595 * has most likely already called update_context_time()
1596 * and update_cgrp_time_xx() and thus both timestamp
1597 * are identical (or very close). Given that tstamp is,
1598 * already adjusted for cgroup, we could say that:
1599 * tstamp - ctx->timestamp
1600 * is equivalent to
1601 * tstamp - cgrp->timestamp.
1602 *
1603 * Then, in perf_output_read(), the calculation would
1604 * work with no changes because:
1605 * - event is guaranteed scheduled in
1606 * - no scheduled out in between
1607 * - thus the timestamp would be the same
1608 *
1609 * But this is a bit hairy.
1610 *
1611 * So instead, we have an explicit cgroup call to remain
1612 * within the time time source all along. We believe it
1613 * is cleaner and simpler to understand.
1614 */
1615 if (is_cgroup_event(event))
1616 perf_cgroup_set_shadow_time(event, tstamp);
1617 else
1618 event->shadow_ctx_time = tstamp - ctx->timestamp;
1619}
1620
4fe757dd
PZ
1621#define MAX_INTERRUPTS (~0ULL)
1622
1623static void perf_log_throttle(struct perf_event *event, int enable);
1624
235c7fc7 1625static int
9ffcfa6f 1626event_sched_in(struct perf_event *event,
235c7fc7 1627 struct perf_cpu_context *cpuctx,
6e37738a 1628 struct perf_event_context *ctx)
235c7fc7 1629{
4158755d
SE
1630 u64 tstamp = perf_event_time(event);
1631
cdd6c482 1632 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1633 return 0;
1634
cdd6c482 1635 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1636 event->oncpu = smp_processor_id();
4fe757dd
PZ
1637
1638 /*
1639 * Unthrottle events, since we scheduled we might have missed several
1640 * ticks already, also for a heavily scheduling task there is little
1641 * guarantee it'll get a tick in a timely manner.
1642 */
1643 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1644 perf_log_throttle(event, 1);
1645 event->hw.interrupts = 0;
1646 }
1647
235c7fc7
IM
1648 /*
1649 * The new state must be visible before we turn it on in the hardware:
1650 */
1651 smp_wmb();
1652
a4eaf7f1 1653 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1654 event->state = PERF_EVENT_STATE_INACTIVE;
1655 event->oncpu = -1;
235c7fc7
IM
1656 return -EAGAIN;
1657 }
1658
4158755d 1659 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1660
e5d1367f 1661 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1662
cdd6c482 1663 if (!is_software_event(event))
3b6f9e5c 1664 cpuctx->active_oncpu++;
235c7fc7 1665 ctx->nr_active++;
0f5a2601
PZ
1666 if (event->attr.freq && event->attr.sample_freq)
1667 ctx->nr_freq++;
235c7fc7 1668
cdd6c482 1669 if (event->attr.exclusive)
3b6f9e5c
PM
1670 cpuctx->exclusive = 1;
1671
235c7fc7
IM
1672 return 0;
1673}
1674
6751b71e 1675static int
cdd6c482 1676group_sched_in(struct perf_event *group_event,
6751b71e 1677 struct perf_cpu_context *cpuctx,
6e37738a 1678 struct perf_event_context *ctx)
6751b71e 1679{
6bde9b6c 1680 struct perf_event *event, *partial_group = NULL;
51b0fe39 1681 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1682 u64 now = ctx->time;
1683 bool simulate = false;
6751b71e 1684
cdd6c482 1685 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1686 return 0;
1687
ad5133b7 1688 pmu->start_txn(pmu);
6bde9b6c 1689
9ffcfa6f 1690 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1691 pmu->cancel_txn(pmu);
9e630205 1692 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1693 return -EAGAIN;
90151c35 1694 }
6751b71e
PM
1695
1696 /*
1697 * Schedule in siblings as one group (if any):
1698 */
cdd6c482 1699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1700 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1701 partial_group = event;
6751b71e
PM
1702 goto group_error;
1703 }
1704 }
1705
9ffcfa6f 1706 if (!pmu->commit_txn(pmu))
6e85158c 1707 return 0;
9ffcfa6f 1708
6751b71e
PM
1709group_error:
1710 /*
1711 * Groups can be scheduled in as one unit only, so undo any
1712 * partial group before returning:
d7842da4
SE
1713 * The events up to the failed event are scheduled out normally,
1714 * tstamp_stopped will be updated.
1715 *
1716 * The failed events and the remaining siblings need to have
1717 * their timings updated as if they had gone thru event_sched_in()
1718 * and event_sched_out(). This is required to get consistent timings
1719 * across the group. This also takes care of the case where the group
1720 * could never be scheduled by ensuring tstamp_stopped is set to mark
1721 * the time the event was actually stopped, such that time delta
1722 * calculation in update_event_times() is correct.
6751b71e 1723 */
cdd6c482
IM
1724 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1725 if (event == partial_group)
d7842da4
SE
1726 simulate = true;
1727
1728 if (simulate) {
1729 event->tstamp_running += now - event->tstamp_stopped;
1730 event->tstamp_stopped = now;
1731 } else {
1732 event_sched_out(event, cpuctx, ctx);
1733 }
6751b71e 1734 }
9ffcfa6f 1735 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1736
ad5133b7 1737 pmu->cancel_txn(pmu);
90151c35 1738
9e630205
SE
1739 perf_cpu_hrtimer_restart(cpuctx);
1740
6751b71e
PM
1741 return -EAGAIN;
1742}
1743
3b6f9e5c 1744/*
cdd6c482 1745 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1746 */
cdd6c482 1747static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1748 struct perf_cpu_context *cpuctx,
1749 int can_add_hw)
1750{
1751 /*
cdd6c482 1752 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1753 */
d6f962b5 1754 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1755 return 1;
1756 /*
1757 * If an exclusive group is already on, no other hardware
cdd6c482 1758 * events can go on.
3b6f9e5c
PM
1759 */
1760 if (cpuctx->exclusive)
1761 return 0;
1762 /*
1763 * If this group is exclusive and there are already
cdd6c482 1764 * events on the CPU, it can't go on.
3b6f9e5c 1765 */
cdd6c482 1766 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1767 return 0;
1768 /*
1769 * Otherwise, try to add it if all previous groups were able
1770 * to go on.
1771 */
1772 return can_add_hw;
1773}
1774
cdd6c482
IM
1775static void add_event_to_ctx(struct perf_event *event,
1776 struct perf_event_context *ctx)
53cfbf59 1777{
4158755d
SE
1778 u64 tstamp = perf_event_time(event);
1779
cdd6c482 1780 list_add_event(event, ctx);
8a49542c 1781 perf_group_attach(event);
4158755d
SE
1782 event->tstamp_enabled = tstamp;
1783 event->tstamp_running = tstamp;
1784 event->tstamp_stopped = tstamp;
53cfbf59
PM
1785}
1786
2c29ef0f
PZ
1787static void task_ctx_sched_out(struct perf_event_context *ctx);
1788static void
1789ctx_sched_in(struct perf_event_context *ctx,
1790 struct perf_cpu_context *cpuctx,
1791 enum event_type_t event_type,
1792 struct task_struct *task);
fe4b04fa 1793
dce5855b
PZ
1794static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1795 struct perf_event_context *ctx,
1796 struct task_struct *task)
1797{
1798 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1799 if (ctx)
1800 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1801 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1802 if (ctx)
1803 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1804}
1805
0793a61d 1806/*
cdd6c482 1807 * Cross CPU call to install and enable a performance event
682076ae
PZ
1808 *
1809 * Must be called with ctx->mutex held
0793a61d 1810 */
fe4b04fa 1811static int __perf_install_in_context(void *info)
0793a61d 1812{
cdd6c482
IM
1813 struct perf_event *event = info;
1814 struct perf_event_context *ctx = event->ctx;
108b02cf 1815 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1816 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1817 struct task_struct *task = current;
1818
b58f6b0d 1819 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1820 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1821
1822 /*
2c29ef0f 1823 * If there was an active task_ctx schedule it out.
0793a61d 1824 */
b58f6b0d 1825 if (task_ctx)
2c29ef0f 1826 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1827
1828 /*
1829 * If the context we're installing events in is not the
1830 * active task_ctx, flip them.
1831 */
1832 if (ctx->task && task_ctx != ctx) {
1833 if (task_ctx)
1834 raw_spin_unlock(&task_ctx->lock);
1835 raw_spin_lock(&ctx->lock);
1836 task_ctx = ctx;
1837 }
1838
1839 if (task_ctx) {
1840 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1841 task = task_ctx->task;
1842 }
b58f6b0d 1843
2c29ef0f 1844 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1845
4af4998b 1846 update_context_time(ctx);
e5d1367f
SE
1847 /*
1848 * update cgrp time only if current cgrp
1849 * matches event->cgrp. Must be done before
1850 * calling add_event_to_ctx()
1851 */
1852 update_cgrp_time_from_event(event);
0793a61d 1853
cdd6c482 1854 add_event_to_ctx(event, ctx);
0793a61d 1855
d859e29f 1856 /*
2c29ef0f 1857 * Schedule everything back in
d859e29f 1858 */
dce5855b 1859 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1860
1861 perf_pmu_enable(cpuctx->ctx.pmu);
1862 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1863
1864 return 0;
0793a61d
TG
1865}
1866
1867/*
cdd6c482 1868 * Attach a performance event to a context
0793a61d 1869 *
cdd6c482
IM
1870 * First we add the event to the list with the hardware enable bit
1871 * in event->hw_config cleared.
0793a61d 1872 *
cdd6c482 1873 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1874 * call to enable it in the task context. The task might have been
1875 * scheduled away, but we check this in the smp call again.
1876 */
1877static void
cdd6c482
IM
1878perf_install_in_context(struct perf_event_context *ctx,
1879 struct perf_event *event,
0793a61d
TG
1880 int cpu)
1881{
1882 struct task_struct *task = ctx->task;
1883
fe4b04fa
PZ
1884 lockdep_assert_held(&ctx->mutex);
1885
c3f00c70 1886 event->ctx = ctx;
0cda4c02
YZ
1887 if (event->cpu != -1)
1888 event->cpu = cpu;
c3f00c70 1889
0793a61d
TG
1890 if (!task) {
1891 /*
cdd6c482 1892 * Per cpu events are installed via an smp call and
af901ca1 1893 * the install is always successful.
0793a61d 1894 */
fe4b04fa 1895 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1896 return;
1897 }
1898
0793a61d 1899retry:
fe4b04fa
PZ
1900 if (!task_function_call(task, __perf_install_in_context, event))
1901 return;
0793a61d 1902
e625cce1 1903 raw_spin_lock_irq(&ctx->lock);
0793a61d 1904 /*
fe4b04fa
PZ
1905 * If we failed to find a running task, but find the context active now
1906 * that we've acquired the ctx->lock, retry.
0793a61d 1907 */
fe4b04fa 1908 if (ctx->is_active) {
e625cce1 1909 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1910 goto retry;
1911 }
1912
1913 /*
fe4b04fa
PZ
1914 * Since the task isn't running, its safe to add the event, us holding
1915 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1916 */
fe4b04fa 1917 add_event_to_ctx(event, ctx);
e625cce1 1918 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1919}
1920
fa289bec 1921/*
cdd6c482 1922 * Put a event into inactive state and update time fields.
fa289bec
PM
1923 * Enabling the leader of a group effectively enables all
1924 * the group members that aren't explicitly disabled, so we
1925 * have to update their ->tstamp_enabled also.
1926 * Note: this works for group members as well as group leaders
1927 * since the non-leader members' sibling_lists will be empty.
1928 */
1d9b482e 1929static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1930{
cdd6c482 1931 struct perf_event *sub;
4158755d 1932 u64 tstamp = perf_event_time(event);
fa289bec 1933
cdd6c482 1934 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1935 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1936 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1937 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1938 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1939 }
fa289bec
PM
1940}
1941
d859e29f 1942/*
cdd6c482 1943 * Cross CPU call to enable a performance event
d859e29f 1944 */
fe4b04fa 1945static int __perf_event_enable(void *info)
04289bb9 1946{
cdd6c482 1947 struct perf_event *event = info;
cdd6c482
IM
1948 struct perf_event_context *ctx = event->ctx;
1949 struct perf_event *leader = event->group_leader;
108b02cf 1950 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1951 int err;
04289bb9 1952
fe4b04fa
PZ
1953 if (WARN_ON_ONCE(!ctx->is_active))
1954 return -EINVAL;
3cbed429 1955
e625cce1 1956 raw_spin_lock(&ctx->lock);
4af4998b 1957 update_context_time(ctx);
d859e29f 1958
cdd6c482 1959 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1960 goto unlock;
e5d1367f
SE
1961
1962 /*
1963 * set current task's cgroup time reference point
1964 */
3f7cce3c 1965 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1966
1d9b482e 1967 __perf_event_mark_enabled(event);
04289bb9 1968
e5d1367f
SE
1969 if (!event_filter_match(event)) {
1970 if (is_cgroup_event(event))
1971 perf_cgroup_defer_enabled(event);
f4c4176f 1972 goto unlock;
e5d1367f 1973 }
f4c4176f 1974
04289bb9 1975 /*
cdd6c482 1976 * If the event is in a group and isn't the group leader,
d859e29f 1977 * then don't put it on unless the group is on.
04289bb9 1978 */
cdd6c482 1979 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1980 goto unlock;
3b6f9e5c 1981
cdd6c482 1982 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1983 err = -EEXIST;
e758a33d 1984 } else {
cdd6c482 1985 if (event == leader)
6e37738a 1986 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1987 else
6e37738a 1988 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1989 }
d859e29f
PM
1990
1991 if (err) {
1992 /*
cdd6c482 1993 * If this event can't go on and it's part of a
d859e29f
PM
1994 * group, then the whole group has to come off.
1995 */
9e630205 1996 if (leader != event) {
d859e29f 1997 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
1998 perf_cpu_hrtimer_restart(cpuctx);
1999 }
0d48696f 2000 if (leader->attr.pinned) {
53cfbf59 2001 update_group_times(leader);
cdd6c482 2002 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2003 }
d859e29f
PM
2004 }
2005
9ed6060d 2006unlock:
e625cce1 2007 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2008
2009 return 0;
d859e29f
PM
2010}
2011
2012/*
cdd6c482 2013 * Enable a event.
c93f7669 2014 *
cdd6c482
IM
2015 * If event->ctx is a cloned context, callers must make sure that
2016 * every task struct that event->ctx->task could possibly point to
c93f7669 2017 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2018 * perf_event_for_each_child or perf_event_for_each as described
2019 * for perf_event_disable.
d859e29f 2020 */
44234adc 2021void perf_event_enable(struct perf_event *event)
d859e29f 2022{
cdd6c482 2023 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2024 struct task_struct *task = ctx->task;
2025
2026 if (!task) {
2027 /*
cdd6c482 2028 * Enable the event on the cpu that it's on
d859e29f 2029 */
fe4b04fa 2030 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2031 return;
2032 }
2033
e625cce1 2034 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2035 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2036 goto out;
2037
2038 /*
cdd6c482
IM
2039 * If the event is in error state, clear that first.
2040 * That way, if we see the event in error state below, we
d859e29f
PM
2041 * know that it has gone back into error state, as distinct
2042 * from the task having been scheduled away before the
2043 * cross-call arrived.
2044 */
cdd6c482
IM
2045 if (event->state == PERF_EVENT_STATE_ERROR)
2046 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2047
9ed6060d 2048retry:
fe4b04fa 2049 if (!ctx->is_active) {
1d9b482e 2050 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2051 goto out;
2052 }
2053
e625cce1 2054 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2055
2056 if (!task_function_call(task, __perf_event_enable, event))
2057 return;
d859e29f 2058
e625cce1 2059 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2060
2061 /*
cdd6c482 2062 * If the context is active and the event is still off,
d859e29f
PM
2063 * we need to retry the cross-call.
2064 */
fe4b04fa
PZ
2065 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2066 /*
2067 * task could have been flipped by a concurrent
2068 * perf_event_context_sched_out()
2069 */
2070 task = ctx->task;
d859e29f 2071 goto retry;
fe4b04fa 2072 }
fa289bec 2073
9ed6060d 2074out:
e625cce1 2075 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2076}
dcfce4a0 2077EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2078
26ca5c11 2079int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2080{
2023b359 2081 /*
cdd6c482 2082 * not supported on inherited events
2023b359 2083 */
2e939d1d 2084 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2085 return -EINVAL;
2086
cdd6c482
IM
2087 atomic_add(refresh, &event->event_limit);
2088 perf_event_enable(event);
2023b359
PZ
2089
2090 return 0;
79f14641 2091}
26ca5c11 2092EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2093
5b0311e1
FW
2094static void ctx_sched_out(struct perf_event_context *ctx,
2095 struct perf_cpu_context *cpuctx,
2096 enum event_type_t event_type)
235c7fc7 2097{
cdd6c482 2098 struct perf_event *event;
db24d33e 2099 int is_active = ctx->is_active;
235c7fc7 2100
db24d33e 2101 ctx->is_active &= ~event_type;
cdd6c482 2102 if (likely(!ctx->nr_events))
facc4307
PZ
2103 return;
2104
4af4998b 2105 update_context_time(ctx);
e5d1367f 2106 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2107 if (!ctx->nr_active)
facc4307 2108 return;
5b0311e1 2109
075e0b00 2110 perf_pmu_disable(ctx->pmu);
db24d33e 2111 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2112 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2113 group_sched_out(event, cpuctx, ctx);
9ed6060d 2114 }
889ff015 2115
db24d33e 2116 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2117 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2118 group_sched_out(event, cpuctx, ctx);
9ed6060d 2119 }
1b9a644f 2120 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2121}
2122
564c2b21
PM
2123/*
2124 * Test whether two contexts are equivalent, i.e. whether they
2125 * have both been cloned from the same version of the same context
cdd6c482
IM
2126 * and they both have the same number of enabled events.
2127 * If the number of enabled events is the same, then the set
2128 * of enabled events should be the same, because these are both
2129 * inherited contexts, therefore we can't access individual events
564c2b21 2130 * in them directly with an fd; we can only enable/disable all
cdd6c482 2131 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2132 * via ioctl, which will have the same effect on both contexts.
2133 */
cdd6c482
IM
2134static int context_equiv(struct perf_event_context *ctx1,
2135 struct perf_event_context *ctx2)
564c2b21
PM
2136{
2137 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2138 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2139 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2140}
2141
cdd6c482
IM
2142static void __perf_event_sync_stat(struct perf_event *event,
2143 struct perf_event *next_event)
bfbd3381
PZ
2144{
2145 u64 value;
2146
cdd6c482 2147 if (!event->attr.inherit_stat)
bfbd3381
PZ
2148 return;
2149
2150 /*
cdd6c482 2151 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2152 * because we're in the middle of a context switch and have IRQs
2153 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2154 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2155 * don't need to use it.
2156 */
cdd6c482
IM
2157 switch (event->state) {
2158 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2159 event->pmu->read(event);
2160 /* fall-through */
bfbd3381 2161
cdd6c482
IM
2162 case PERF_EVENT_STATE_INACTIVE:
2163 update_event_times(event);
bfbd3381
PZ
2164 break;
2165
2166 default:
2167 break;
2168 }
2169
2170 /*
cdd6c482 2171 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2172 * values when we flip the contexts.
2173 */
e7850595
PZ
2174 value = local64_read(&next_event->count);
2175 value = local64_xchg(&event->count, value);
2176 local64_set(&next_event->count, value);
bfbd3381 2177
cdd6c482
IM
2178 swap(event->total_time_enabled, next_event->total_time_enabled);
2179 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2180
bfbd3381 2181 /*
19d2e755 2182 * Since we swizzled the values, update the user visible data too.
bfbd3381 2183 */
cdd6c482
IM
2184 perf_event_update_userpage(event);
2185 perf_event_update_userpage(next_event);
bfbd3381
PZ
2186}
2187
2188#define list_next_entry(pos, member) \
2189 list_entry(pos->member.next, typeof(*pos), member)
2190
cdd6c482
IM
2191static void perf_event_sync_stat(struct perf_event_context *ctx,
2192 struct perf_event_context *next_ctx)
bfbd3381 2193{
cdd6c482 2194 struct perf_event *event, *next_event;
bfbd3381
PZ
2195
2196 if (!ctx->nr_stat)
2197 return;
2198
02ffdbc8
PZ
2199 update_context_time(ctx);
2200
cdd6c482
IM
2201 event = list_first_entry(&ctx->event_list,
2202 struct perf_event, event_entry);
bfbd3381 2203
cdd6c482
IM
2204 next_event = list_first_entry(&next_ctx->event_list,
2205 struct perf_event, event_entry);
bfbd3381 2206
cdd6c482
IM
2207 while (&event->event_entry != &ctx->event_list &&
2208 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2209
cdd6c482 2210 __perf_event_sync_stat(event, next_event);
bfbd3381 2211
cdd6c482
IM
2212 event = list_next_entry(event, event_entry);
2213 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2214 }
2215}
2216
fe4b04fa
PZ
2217static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2218 struct task_struct *next)
0793a61d 2219{
8dc85d54 2220 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2221 struct perf_event_context *next_ctx;
2222 struct perf_event_context *parent;
108b02cf 2223 struct perf_cpu_context *cpuctx;
c93f7669 2224 int do_switch = 1;
0793a61d 2225
108b02cf
PZ
2226 if (likely(!ctx))
2227 return;
10989fb2 2228
108b02cf
PZ
2229 cpuctx = __get_cpu_context(ctx);
2230 if (!cpuctx->task_ctx)
0793a61d
TG
2231 return;
2232
c93f7669
PM
2233 rcu_read_lock();
2234 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2235 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2236 if (parent && next_ctx &&
2237 rcu_dereference(next_ctx->parent_ctx) == parent) {
2238 /*
2239 * Looks like the two contexts are clones, so we might be
2240 * able to optimize the context switch. We lock both
2241 * contexts and check that they are clones under the
2242 * lock (including re-checking that neither has been
2243 * uncloned in the meantime). It doesn't matter which
2244 * order we take the locks because no other cpu could
2245 * be trying to lock both of these tasks.
2246 */
e625cce1
TG
2247 raw_spin_lock(&ctx->lock);
2248 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2249 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2250 /*
2251 * XXX do we need a memory barrier of sorts
cdd6c482 2252 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2253 */
8dc85d54
PZ
2254 task->perf_event_ctxp[ctxn] = next_ctx;
2255 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2256 ctx->task = next;
2257 next_ctx->task = task;
2258 do_switch = 0;
bfbd3381 2259
cdd6c482 2260 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2261 }
e625cce1
TG
2262 raw_spin_unlock(&next_ctx->lock);
2263 raw_spin_unlock(&ctx->lock);
564c2b21 2264 }
c93f7669 2265 rcu_read_unlock();
564c2b21 2266
c93f7669 2267 if (do_switch) {
facc4307 2268 raw_spin_lock(&ctx->lock);
5b0311e1 2269 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2270 cpuctx->task_ctx = NULL;
facc4307 2271 raw_spin_unlock(&ctx->lock);
c93f7669 2272 }
0793a61d
TG
2273}
2274
8dc85d54
PZ
2275#define for_each_task_context_nr(ctxn) \
2276 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2277
2278/*
2279 * Called from scheduler to remove the events of the current task,
2280 * with interrupts disabled.
2281 *
2282 * We stop each event and update the event value in event->count.
2283 *
2284 * This does not protect us against NMI, but disable()
2285 * sets the disabled bit in the control field of event _before_
2286 * accessing the event control register. If a NMI hits, then it will
2287 * not restart the event.
2288 */
ab0cce56
JO
2289void __perf_event_task_sched_out(struct task_struct *task,
2290 struct task_struct *next)
8dc85d54
PZ
2291{
2292 int ctxn;
2293
8dc85d54
PZ
2294 for_each_task_context_nr(ctxn)
2295 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2296
2297 /*
2298 * if cgroup events exist on this CPU, then we need
2299 * to check if we have to switch out PMU state.
2300 * cgroup event are system-wide mode only
2301 */
2302 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2303 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2304}
2305
04dc2dbb 2306static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2307{
108b02cf 2308 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2309
a63eaf34
PM
2310 if (!cpuctx->task_ctx)
2311 return;
012b84da
IM
2312
2313 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2314 return;
2315
04dc2dbb 2316 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2317 cpuctx->task_ctx = NULL;
2318}
2319
5b0311e1
FW
2320/*
2321 * Called with IRQs disabled
2322 */
2323static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2324 enum event_type_t event_type)
2325{
2326 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2327}
2328
235c7fc7 2329static void
5b0311e1 2330ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2331 struct perf_cpu_context *cpuctx)
0793a61d 2332{
cdd6c482 2333 struct perf_event *event;
0793a61d 2334
889ff015
FW
2335 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2336 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2337 continue;
5632ab12 2338 if (!event_filter_match(event))
3b6f9e5c
PM
2339 continue;
2340
e5d1367f
SE
2341 /* may need to reset tstamp_enabled */
2342 if (is_cgroup_event(event))
2343 perf_cgroup_mark_enabled(event, ctx);
2344
8c9ed8e1 2345 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2346 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2347
2348 /*
2349 * If this pinned group hasn't been scheduled,
2350 * put it in error state.
2351 */
cdd6c482
IM
2352 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2353 update_group_times(event);
2354 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2355 }
3b6f9e5c 2356 }
5b0311e1
FW
2357}
2358
2359static void
2360ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2361 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2362{
2363 struct perf_event *event;
2364 int can_add_hw = 1;
3b6f9e5c 2365
889ff015
FW
2366 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2367 /* Ignore events in OFF or ERROR state */
2368 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2369 continue;
04289bb9
IM
2370 /*
2371 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2372 * of events:
04289bb9 2373 */
5632ab12 2374 if (!event_filter_match(event))
0793a61d
TG
2375 continue;
2376
e5d1367f
SE
2377 /* may need to reset tstamp_enabled */
2378 if (is_cgroup_event(event))
2379 perf_cgroup_mark_enabled(event, ctx);
2380
9ed6060d 2381 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2382 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2383 can_add_hw = 0;
9ed6060d 2384 }
0793a61d 2385 }
5b0311e1
FW
2386}
2387
2388static void
2389ctx_sched_in(struct perf_event_context *ctx,
2390 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2391 enum event_type_t event_type,
2392 struct task_struct *task)
5b0311e1 2393{
e5d1367f 2394 u64 now;
db24d33e 2395 int is_active = ctx->is_active;
e5d1367f 2396
db24d33e 2397 ctx->is_active |= event_type;
5b0311e1 2398 if (likely(!ctx->nr_events))
facc4307 2399 return;
5b0311e1 2400
e5d1367f
SE
2401 now = perf_clock();
2402 ctx->timestamp = now;
3f7cce3c 2403 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2404 /*
2405 * First go through the list and put on any pinned groups
2406 * in order to give them the best chance of going on.
2407 */
db24d33e 2408 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2409 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2410
2411 /* Then walk through the lower prio flexible groups */
db24d33e 2412 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2413 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2414}
2415
329c0e01 2416static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2417 enum event_type_t event_type,
2418 struct task_struct *task)
329c0e01
FW
2419{
2420 struct perf_event_context *ctx = &cpuctx->ctx;
2421
e5d1367f 2422 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2423}
2424
e5d1367f
SE
2425static void perf_event_context_sched_in(struct perf_event_context *ctx,
2426 struct task_struct *task)
235c7fc7 2427{
108b02cf 2428 struct perf_cpu_context *cpuctx;
235c7fc7 2429
108b02cf 2430 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2431 if (cpuctx->task_ctx == ctx)
2432 return;
2433
facc4307 2434 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2435 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2436 /*
2437 * We want to keep the following priority order:
2438 * cpu pinned (that don't need to move), task pinned,
2439 * cpu flexible, task flexible.
2440 */
2441 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2442
1d5f003f
GN
2443 if (ctx->nr_events)
2444 cpuctx->task_ctx = ctx;
9b33fa6b 2445
86b47c25
GN
2446 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2447
facc4307
PZ
2448 perf_pmu_enable(ctx->pmu);
2449 perf_ctx_unlock(cpuctx, ctx);
2450
b5ab4cd5
PZ
2451 /*
2452 * Since these rotations are per-cpu, we need to ensure the
2453 * cpu-context we got scheduled on is actually rotating.
2454 */
108b02cf 2455 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2456}
2457
d010b332
SE
2458/*
2459 * When sampling the branck stack in system-wide, it may be necessary
2460 * to flush the stack on context switch. This happens when the branch
2461 * stack does not tag its entries with the pid of the current task.
2462 * Otherwise it becomes impossible to associate a branch entry with a
2463 * task. This ambiguity is more likely to appear when the branch stack
2464 * supports priv level filtering and the user sets it to monitor only
2465 * at the user level (which could be a useful measurement in system-wide
2466 * mode). In that case, the risk is high of having a branch stack with
2467 * branch from multiple tasks. Flushing may mean dropping the existing
2468 * entries or stashing them somewhere in the PMU specific code layer.
2469 *
2470 * This function provides the context switch callback to the lower code
2471 * layer. It is invoked ONLY when there is at least one system-wide context
2472 * with at least one active event using taken branch sampling.
2473 */
2474static void perf_branch_stack_sched_in(struct task_struct *prev,
2475 struct task_struct *task)
2476{
2477 struct perf_cpu_context *cpuctx;
2478 struct pmu *pmu;
2479 unsigned long flags;
2480
2481 /* no need to flush branch stack if not changing task */
2482 if (prev == task)
2483 return;
2484
2485 local_irq_save(flags);
2486
2487 rcu_read_lock();
2488
2489 list_for_each_entry_rcu(pmu, &pmus, entry) {
2490 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2491
2492 /*
2493 * check if the context has at least one
2494 * event using PERF_SAMPLE_BRANCH_STACK
2495 */
2496 if (cpuctx->ctx.nr_branch_stack > 0
2497 && pmu->flush_branch_stack) {
2498
2499 pmu = cpuctx->ctx.pmu;
2500
2501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2502
2503 perf_pmu_disable(pmu);
2504
2505 pmu->flush_branch_stack();
2506
2507 perf_pmu_enable(pmu);
2508
2509 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2510 }
2511 }
2512
2513 rcu_read_unlock();
2514
2515 local_irq_restore(flags);
2516}
2517
8dc85d54
PZ
2518/*
2519 * Called from scheduler to add the events of the current task
2520 * with interrupts disabled.
2521 *
2522 * We restore the event value and then enable it.
2523 *
2524 * This does not protect us against NMI, but enable()
2525 * sets the enabled bit in the control field of event _before_
2526 * accessing the event control register. If a NMI hits, then it will
2527 * keep the event running.
2528 */
ab0cce56
JO
2529void __perf_event_task_sched_in(struct task_struct *prev,
2530 struct task_struct *task)
8dc85d54
PZ
2531{
2532 struct perf_event_context *ctx;
2533 int ctxn;
2534
2535 for_each_task_context_nr(ctxn) {
2536 ctx = task->perf_event_ctxp[ctxn];
2537 if (likely(!ctx))
2538 continue;
2539
e5d1367f 2540 perf_event_context_sched_in(ctx, task);
8dc85d54 2541 }
e5d1367f
SE
2542 /*
2543 * if cgroup events exist on this CPU, then we need
2544 * to check if we have to switch in PMU state.
2545 * cgroup event are system-wide mode only
2546 */
2547 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2548 perf_cgroup_sched_in(prev, task);
d010b332
SE
2549
2550 /* check for system-wide branch_stack events */
2551 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2552 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2553}
2554
abd50713
PZ
2555static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2556{
2557 u64 frequency = event->attr.sample_freq;
2558 u64 sec = NSEC_PER_SEC;
2559 u64 divisor, dividend;
2560
2561 int count_fls, nsec_fls, frequency_fls, sec_fls;
2562
2563 count_fls = fls64(count);
2564 nsec_fls = fls64(nsec);
2565 frequency_fls = fls64(frequency);
2566 sec_fls = 30;
2567
2568 /*
2569 * We got @count in @nsec, with a target of sample_freq HZ
2570 * the target period becomes:
2571 *
2572 * @count * 10^9
2573 * period = -------------------
2574 * @nsec * sample_freq
2575 *
2576 */
2577
2578 /*
2579 * Reduce accuracy by one bit such that @a and @b converge
2580 * to a similar magnitude.
2581 */
fe4b04fa 2582#define REDUCE_FLS(a, b) \
abd50713
PZ
2583do { \
2584 if (a##_fls > b##_fls) { \
2585 a >>= 1; \
2586 a##_fls--; \
2587 } else { \
2588 b >>= 1; \
2589 b##_fls--; \
2590 } \
2591} while (0)
2592
2593 /*
2594 * Reduce accuracy until either term fits in a u64, then proceed with
2595 * the other, so that finally we can do a u64/u64 division.
2596 */
2597 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2598 REDUCE_FLS(nsec, frequency);
2599 REDUCE_FLS(sec, count);
2600 }
2601
2602 if (count_fls + sec_fls > 64) {
2603 divisor = nsec * frequency;
2604
2605 while (count_fls + sec_fls > 64) {
2606 REDUCE_FLS(count, sec);
2607 divisor >>= 1;
2608 }
2609
2610 dividend = count * sec;
2611 } else {
2612 dividend = count * sec;
2613
2614 while (nsec_fls + frequency_fls > 64) {
2615 REDUCE_FLS(nsec, frequency);
2616 dividend >>= 1;
2617 }
2618
2619 divisor = nsec * frequency;
2620 }
2621
f6ab91ad
PZ
2622 if (!divisor)
2623 return dividend;
2624
abd50713
PZ
2625 return div64_u64(dividend, divisor);
2626}
2627
e050e3f0
SE
2628static DEFINE_PER_CPU(int, perf_throttled_count);
2629static DEFINE_PER_CPU(u64, perf_throttled_seq);
2630
f39d47ff 2631static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2632{
cdd6c482 2633 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2634 s64 period, sample_period;
bd2b5b12
PZ
2635 s64 delta;
2636
abd50713 2637 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2638
2639 delta = (s64)(period - hwc->sample_period);
2640 delta = (delta + 7) / 8; /* low pass filter */
2641
2642 sample_period = hwc->sample_period + delta;
2643
2644 if (!sample_period)
2645 sample_period = 1;
2646
bd2b5b12 2647 hwc->sample_period = sample_period;
abd50713 2648
e7850595 2649 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2650 if (disable)
2651 event->pmu->stop(event, PERF_EF_UPDATE);
2652
e7850595 2653 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2654
2655 if (disable)
2656 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2657 }
bd2b5b12
PZ
2658}
2659
e050e3f0
SE
2660/*
2661 * combine freq adjustment with unthrottling to avoid two passes over the
2662 * events. At the same time, make sure, having freq events does not change
2663 * the rate of unthrottling as that would introduce bias.
2664 */
2665static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2666 int needs_unthr)
60db5e09 2667{
cdd6c482
IM
2668 struct perf_event *event;
2669 struct hw_perf_event *hwc;
e050e3f0 2670 u64 now, period = TICK_NSEC;
abd50713 2671 s64 delta;
60db5e09 2672
e050e3f0
SE
2673 /*
2674 * only need to iterate over all events iff:
2675 * - context have events in frequency mode (needs freq adjust)
2676 * - there are events to unthrottle on this cpu
2677 */
2678 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2679 return;
2680
e050e3f0 2681 raw_spin_lock(&ctx->lock);
f39d47ff 2682 perf_pmu_disable(ctx->pmu);
e050e3f0 2683
03541f8b 2684 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2685 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2686 continue;
2687
5632ab12 2688 if (!event_filter_match(event))
5d27c23d
PZ
2689 continue;
2690
cdd6c482 2691 hwc = &event->hw;
6a24ed6c 2692
e050e3f0
SE
2693 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2694 hwc->interrupts = 0;
cdd6c482 2695 perf_log_throttle(event, 1);
a4eaf7f1 2696 event->pmu->start(event, 0);
a78ac325
PZ
2697 }
2698
cdd6c482 2699 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2700 continue;
2701
e050e3f0
SE
2702 /*
2703 * stop the event and update event->count
2704 */
2705 event->pmu->stop(event, PERF_EF_UPDATE);
2706
e7850595 2707 now = local64_read(&event->count);
abd50713
PZ
2708 delta = now - hwc->freq_count_stamp;
2709 hwc->freq_count_stamp = now;
60db5e09 2710
e050e3f0
SE
2711 /*
2712 * restart the event
2713 * reload only if value has changed
f39d47ff
SE
2714 * we have stopped the event so tell that
2715 * to perf_adjust_period() to avoid stopping it
2716 * twice.
e050e3f0 2717 */
abd50713 2718 if (delta > 0)
f39d47ff 2719 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2720
2721 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2722 }
e050e3f0 2723
f39d47ff 2724 perf_pmu_enable(ctx->pmu);
e050e3f0 2725 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2726}
2727
235c7fc7 2728/*
cdd6c482 2729 * Round-robin a context's events:
235c7fc7 2730 */
cdd6c482 2731static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2732{
dddd3379
TG
2733 /*
2734 * Rotate the first entry last of non-pinned groups. Rotation might be
2735 * disabled by the inheritance code.
2736 */
2737 if (!ctx->rotate_disable)
2738 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2739}
2740
b5ab4cd5 2741/*
e9d2b064
PZ
2742 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2743 * because they're strictly cpu affine and rotate_start is called with IRQs
2744 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2745 */
9e630205 2746static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2747{
8dc85d54 2748 struct perf_event_context *ctx = NULL;
e050e3f0 2749 int rotate = 0, remove = 1;
7fc23a53 2750
b5ab4cd5 2751 if (cpuctx->ctx.nr_events) {
e9d2b064 2752 remove = 0;
b5ab4cd5
PZ
2753 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2754 rotate = 1;
2755 }
235c7fc7 2756
8dc85d54 2757 ctx = cpuctx->task_ctx;
b5ab4cd5 2758 if (ctx && ctx->nr_events) {
e9d2b064 2759 remove = 0;
b5ab4cd5
PZ
2760 if (ctx->nr_events != ctx->nr_active)
2761 rotate = 1;
2762 }
9717e6cd 2763
e050e3f0 2764 if (!rotate)
0f5a2601
PZ
2765 goto done;
2766
facc4307 2767 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2768 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2769
e050e3f0
SE
2770 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2771 if (ctx)
2772 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2773
e050e3f0
SE
2774 rotate_ctx(&cpuctx->ctx);
2775 if (ctx)
2776 rotate_ctx(ctx);
235c7fc7 2777
e050e3f0 2778 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2779
0f5a2601
PZ
2780 perf_pmu_enable(cpuctx->ctx.pmu);
2781 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2782done:
e9d2b064
PZ
2783 if (remove)
2784 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2785
2786 return rotate;
e9d2b064
PZ
2787}
2788
026249ef
FW
2789#ifdef CONFIG_NO_HZ_FULL
2790bool perf_event_can_stop_tick(void)
2791{
2792 if (list_empty(&__get_cpu_var(rotation_list)))
2793 return true;
2794 else
2795 return false;
2796}
2797#endif
2798
e9d2b064
PZ
2799void perf_event_task_tick(void)
2800{
2801 struct list_head *head = &__get_cpu_var(rotation_list);
2802 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2803 struct perf_event_context *ctx;
2804 int throttled;
b5ab4cd5 2805
e9d2b064
PZ
2806 WARN_ON(!irqs_disabled());
2807
e050e3f0
SE
2808 __this_cpu_inc(perf_throttled_seq);
2809 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2810
e9d2b064 2811 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2812 ctx = &cpuctx->ctx;
2813 perf_adjust_freq_unthr_context(ctx, throttled);
2814
2815 ctx = cpuctx->task_ctx;
2816 if (ctx)
2817 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2818 }
0793a61d
TG
2819}
2820
889ff015
FW
2821static int event_enable_on_exec(struct perf_event *event,
2822 struct perf_event_context *ctx)
2823{
2824 if (!event->attr.enable_on_exec)
2825 return 0;
2826
2827 event->attr.enable_on_exec = 0;
2828 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2829 return 0;
2830
1d9b482e 2831 __perf_event_mark_enabled(event);
889ff015
FW
2832
2833 return 1;
2834}
2835
57e7986e 2836/*
cdd6c482 2837 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2838 * This expects task == current.
2839 */
8dc85d54 2840static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2841{
cdd6c482 2842 struct perf_event *event;
57e7986e
PM
2843 unsigned long flags;
2844 int enabled = 0;
889ff015 2845 int ret;
57e7986e
PM
2846
2847 local_irq_save(flags);
cdd6c482 2848 if (!ctx || !ctx->nr_events)
57e7986e
PM
2849 goto out;
2850
e566b76e
SE
2851 /*
2852 * We must ctxsw out cgroup events to avoid conflict
2853 * when invoking perf_task_event_sched_in() later on
2854 * in this function. Otherwise we end up trying to
2855 * ctxswin cgroup events which are already scheduled
2856 * in.
2857 */
a8d757ef 2858 perf_cgroup_sched_out(current, NULL);
57e7986e 2859
e625cce1 2860 raw_spin_lock(&ctx->lock);
04dc2dbb 2861 task_ctx_sched_out(ctx);
57e7986e 2862
b79387ef 2863 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2864 ret = event_enable_on_exec(event, ctx);
2865 if (ret)
2866 enabled = 1;
57e7986e
PM
2867 }
2868
2869 /*
cdd6c482 2870 * Unclone this context if we enabled any event.
57e7986e 2871 */
71a851b4
PZ
2872 if (enabled)
2873 unclone_ctx(ctx);
57e7986e 2874
e625cce1 2875 raw_spin_unlock(&ctx->lock);
57e7986e 2876
e566b76e
SE
2877 /*
2878 * Also calls ctxswin for cgroup events, if any:
2879 */
e5d1367f 2880 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2881out:
57e7986e
PM
2882 local_irq_restore(flags);
2883}
2884
0793a61d 2885/*
cdd6c482 2886 * Cross CPU call to read the hardware event
0793a61d 2887 */
cdd6c482 2888static void __perf_event_read(void *info)
0793a61d 2889{
cdd6c482
IM
2890 struct perf_event *event = info;
2891 struct perf_event_context *ctx = event->ctx;
108b02cf 2892 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2893
e1ac3614
PM
2894 /*
2895 * If this is a task context, we need to check whether it is
2896 * the current task context of this cpu. If not it has been
2897 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2898 * event->count would have been updated to a recent sample
2899 * when the event was scheduled out.
e1ac3614
PM
2900 */
2901 if (ctx->task && cpuctx->task_ctx != ctx)
2902 return;
2903
e625cce1 2904 raw_spin_lock(&ctx->lock);
e5d1367f 2905 if (ctx->is_active) {
542e72fc 2906 update_context_time(ctx);
e5d1367f
SE
2907 update_cgrp_time_from_event(event);
2908 }
cdd6c482 2909 update_event_times(event);
542e72fc
PZ
2910 if (event->state == PERF_EVENT_STATE_ACTIVE)
2911 event->pmu->read(event);
e625cce1 2912 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2913}
2914
b5e58793
PZ
2915static inline u64 perf_event_count(struct perf_event *event)
2916{
e7850595 2917 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2918}
2919
cdd6c482 2920static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2921{
2922 /*
cdd6c482
IM
2923 * If event is enabled and currently active on a CPU, update the
2924 * value in the event structure:
0793a61d 2925 */
cdd6c482
IM
2926 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2927 smp_call_function_single(event->oncpu,
2928 __perf_event_read, event, 1);
2929 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2930 struct perf_event_context *ctx = event->ctx;
2931 unsigned long flags;
2932
e625cce1 2933 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2934 /*
2935 * may read while context is not active
2936 * (e.g., thread is blocked), in that case
2937 * we cannot update context time
2938 */
e5d1367f 2939 if (ctx->is_active) {
c530ccd9 2940 update_context_time(ctx);
e5d1367f
SE
2941 update_cgrp_time_from_event(event);
2942 }
cdd6c482 2943 update_event_times(event);
e625cce1 2944 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2945 }
2946
b5e58793 2947 return perf_event_count(event);
0793a61d
TG
2948}
2949
a63eaf34 2950/*
cdd6c482 2951 * Initialize the perf_event context in a task_struct:
a63eaf34 2952 */
eb184479 2953static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2954{
e625cce1 2955 raw_spin_lock_init(&ctx->lock);
a63eaf34 2956 mutex_init(&ctx->mutex);
889ff015
FW
2957 INIT_LIST_HEAD(&ctx->pinned_groups);
2958 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2959 INIT_LIST_HEAD(&ctx->event_list);
2960 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2961}
2962
2963static struct perf_event_context *
2964alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2965{
2966 struct perf_event_context *ctx;
2967
2968 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2969 if (!ctx)
2970 return NULL;
2971
2972 __perf_event_init_context(ctx);
2973 if (task) {
2974 ctx->task = task;
2975 get_task_struct(task);
0793a61d 2976 }
eb184479
PZ
2977 ctx->pmu = pmu;
2978
2979 return ctx;
a63eaf34
PM
2980}
2981
2ebd4ffb
MH
2982static struct task_struct *
2983find_lively_task_by_vpid(pid_t vpid)
2984{
2985 struct task_struct *task;
2986 int err;
0793a61d
TG
2987
2988 rcu_read_lock();
2ebd4ffb 2989 if (!vpid)
0793a61d
TG
2990 task = current;
2991 else
2ebd4ffb 2992 task = find_task_by_vpid(vpid);
0793a61d
TG
2993 if (task)
2994 get_task_struct(task);
2995 rcu_read_unlock();
2996
2997 if (!task)
2998 return ERR_PTR(-ESRCH);
2999
0793a61d 3000 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3001 err = -EACCES;
3002 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3003 goto errout;
3004
2ebd4ffb
MH
3005 return task;
3006errout:
3007 put_task_struct(task);
3008 return ERR_PTR(err);
3009
3010}
3011
fe4b04fa
PZ
3012/*
3013 * Returns a matching context with refcount and pincount.
3014 */
108b02cf 3015static struct perf_event_context *
38a81da2 3016find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3017{
cdd6c482 3018 struct perf_event_context *ctx;
22a4f650 3019 struct perf_cpu_context *cpuctx;
25346b93 3020 unsigned long flags;
8dc85d54 3021 int ctxn, err;
0793a61d 3022
22a4ec72 3023 if (!task) {
cdd6c482 3024 /* Must be root to operate on a CPU event: */
0764771d 3025 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3026 return ERR_PTR(-EACCES);
3027
0793a61d 3028 /*
cdd6c482 3029 * We could be clever and allow to attach a event to an
0793a61d
TG
3030 * offline CPU and activate it when the CPU comes up, but
3031 * that's for later.
3032 */
f6325e30 3033 if (!cpu_online(cpu))
0793a61d
TG
3034 return ERR_PTR(-ENODEV);
3035
108b02cf 3036 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3037 ctx = &cpuctx->ctx;
c93f7669 3038 get_ctx(ctx);
fe4b04fa 3039 ++ctx->pin_count;
0793a61d 3040
0793a61d
TG
3041 return ctx;
3042 }
3043
8dc85d54
PZ
3044 err = -EINVAL;
3045 ctxn = pmu->task_ctx_nr;
3046 if (ctxn < 0)
3047 goto errout;
3048
9ed6060d 3049retry:
8dc85d54 3050 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3051 if (ctx) {
71a851b4 3052 unclone_ctx(ctx);
fe4b04fa 3053 ++ctx->pin_count;
e625cce1 3054 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3055 } else {
eb184479 3056 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3057 err = -ENOMEM;
3058 if (!ctx)
3059 goto errout;
eb184479 3060
dbe08d82
ON
3061 err = 0;
3062 mutex_lock(&task->perf_event_mutex);
3063 /*
3064 * If it has already passed perf_event_exit_task().
3065 * we must see PF_EXITING, it takes this mutex too.
3066 */
3067 if (task->flags & PF_EXITING)
3068 err = -ESRCH;
3069 else if (task->perf_event_ctxp[ctxn])
3070 err = -EAGAIN;
fe4b04fa 3071 else {
9137fb28 3072 get_ctx(ctx);
fe4b04fa 3073 ++ctx->pin_count;
dbe08d82 3074 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3075 }
dbe08d82
ON
3076 mutex_unlock(&task->perf_event_mutex);
3077
3078 if (unlikely(err)) {
9137fb28 3079 put_ctx(ctx);
dbe08d82
ON
3080
3081 if (err == -EAGAIN)
3082 goto retry;
3083 goto errout;
a63eaf34
PM
3084 }
3085 }
3086
0793a61d 3087 return ctx;
c93f7669 3088
9ed6060d 3089errout:
c93f7669 3090 return ERR_PTR(err);
0793a61d
TG
3091}
3092
6fb2915d
LZ
3093static void perf_event_free_filter(struct perf_event *event);
3094
cdd6c482 3095static void free_event_rcu(struct rcu_head *head)
592903cd 3096{
cdd6c482 3097 struct perf_event *event;
592903cd 3098
cdd6c482
IM
3099 event = container_of(head, struct perf_event, rcu_head);
3100 if (event->ns)
3101 put_pid_ns(event->ns);
6fb2915d 3102 perf_event_free_filter(event);
cdd6c482 3103 kfree(event);
592903cd
PZ
3104}
3105
76369139 3106static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3107static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3108
cdd6c482 3109static void free_event(struct perf_event *event)
f1600952 3110{
e360adbe 3111 irq_work_sync(&event->pending);
925d519a 3112
cdd6c482 3113 if (!event->parent) {
82cd6def 3114 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 3115 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 3116 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
3117 atomic_dec(&nr_mmap_events);
3118 if (event->attr.comm)
3119 atomic_dec(&nr_comm_events);
3120 if (event->attr.task)
3121 atomic_dec(&nr_task_events);
927c7a9e
FW
3122 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3123 put_callchain_buffers();
08309379
PZ
3124 if (is_cgroup_event(event)) {
3125 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 3126 static_key_slow_dec_deferred(&perf_sched_events);
08309379 3127 }
d010b332
SE
3128
3129 if (has_branch_stack(event)) {
3130 static_key_slow_dec_deferred(&perf_sched_events);
3131 /* is system-wide event */
9bb5d40c 3132 if (!(event->attach_state & PERF_ATTACH_TASK)) {
d010b332
SE
3133 atomic_dec(&per_cpu(perf_branch_stack_events,
3134 event->cpu));
9bb5d40c 3135 }
d010b332 3136 }
f344011c 3137 }
9ee318a7 3138
76369139 3139 if (event->rb) {
9bb5d40c
PZ
3140 struct ring_buffer *rb;
3141
3142 /*
3143 * Can happen when we close an event with re-directed output.
3144 *
3145 * Since we have a 0 refcount, perf_mmap_close() will skip
3146 * over us; possibly making our ring_buffer_put() the last.
3147 */
3148 mutex_lock(&event->mmap_mutex);
3149 rb = event->rb;
3150 if (rb) {
3151 rcu_assign_pointer(event->rb, NULL);
3152 ring_buffer_detach(event, rb);
3153 ring_buffer_put(rb); /* could be last */
3154 }
3155 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3156 }
3157
e5d1367f
SE
3158 if (is_cgroup_event(event))
3159 perf_detach_cgroup(event);
3160
cdd6c482
IM
3161 if (event->destroy)
3162 event->destroy(event);
e077df4f 3163
0c67b408
PZ
3164 if (event->ctx)
3165 put_ctx(event->ctx);
3166
cdd6c482 3167 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3168}
3169
a66a3052 3170int perf_event_release_kernel(struct perf_event *event)
0793a61d 3171{
cdd6c482 3172 struct perf_event_context *ctx = event->ctx;
0793a61d 3173
ad3a37de 3174 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3175 /*
3176 * There are two ways this annotation is useful:
3177 *
3178 * 1) there is a lock recursion from perf_event_exit_task
3179 * see the comment there.
3180 *
3181 * 2) there is a lock-inversion with mmap_sem through
3182 * perf_event_read_group(), which takes faults while
3183 * holding ctx->mutex, however this is called after
3184 * the last filedesc died, so there is no possibility
3185 * to trigger the AB-BA case.
3186 */
3187 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3188 raw_spin_lock_irq(&ctx->lock);
8a49542c 3189 perf_group_detach(event);
050735b0 3190 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3191 perf_remove_from_context(event);
d859e29f 3192 mutex_unlock(&ctx->mutex);
0793a61d 3193
cdd6c482 3194 free_event(event);
0793a61d
TG
3195
3196 return 0;
3197}
a66a3052 3198EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3199
a66a3052
PZ
3200/*
3201 * Called when the last reference to the file is gone.
3202 */
a6fa941d 3203static void put_event(struct perf_event *event)
fb0459d7 3204{
8882135b 3205 struct task_struct *owner;
fb0459d7 3206
a6fa941d
AV
3207 if (!atomic_long_dec_and_test(&event->refcount))
3208 return;
fb0459d7 3209
8882135b
PZ
3210 rcu_read_lock();
3211 owner = ACCESS_ONCE(event->owner);
3212 /*
3213 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3214 * !owner it means the list deletion is complete and we can indeed
3215 * free this event, otherwise we need to serialize on
3216 * owner->perf_event_mutex.
3217 */
3218 smp_read_barrier_depends();
3219 if (owner) {
3220 /*
3221 * Since delayed_put_task_struct() also drops the last
3222 * task reference we can safely take a new reference
3223 * while holding the rcu_read_lock().
3224 */
3225 get_task_struct(owner);
3226 }
3227 rcu_read_unlock();
3228
3229 if (owner) {
3230 mutex_lock(&owner->perf_event_mutex);
3231 /*
3232 * We have to re-check the event->owner field, if it is cleared
3233 * we raced with perf_event_exit_task(), acquiring the mutex
3234 * ensured they're done, and we can proceed with freeing the
3235 * event.
3236 */
3237 if (event->owner)
3238 list_del_init(&event->owner_entry);
3239 mutex_unlock(&owner->perf_event_mutex);
3240 put_task_struct(owner);
3241 }
3242
a6fa941d
AV
3243 perf_event_release_kernel(event);
3244}
3245
3246static int perf_release(struct inode *inode, struct file *file)
3247{
3248 put_event(file->private_data);
3249 return 0;
fb0459d7 3250}
fb0459d7 3251
59ed446f 3252u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3253{
cdd6c482 3254 struct perf_event *child;
e53c0994
PZ
3255 u64 total = 0;
3256
59ed446f
PZ
3257 *enabled = 0;
3258 *running = 0;
3259
6f10581a 3260 mutex_lock(&event->child_mutex);
cdd6c482 3261 total += perf_event_read(event);
59ed446f
PZ
3262 *enabled += event->total_time_enabled +
3263 atomic64_read(&event->child_total_time_enabled);
3264 *running += event->total_time_running +
3265 atomic64_read(&event->child_total_time_running);
3266
3267 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3268 total += perf_event_read(child);
59ed446f
PZ
3269 *enabled += child->total_time_enabled;
3270 *running += child->total_time_running;
3271 }
6f10581a 3272 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3273
3274 return total;
3275}
fb0459d7 3276EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3277
cdd6c482 3278static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3279 u64 read_format, char __user *buf)
3280{
cdd6c482 3281 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3282 int n = 0, size = 0, ret = -EFAULT;
3283 struct perf_event_context *ctx = leader->ctx;
abf4868b 3284 u64 values[5];
59ed446f 3285 u64 count, enabled, running;
abf4868b 3286
6f10581a 3287 mutex_lock(&ctx->mutex);
59ed446f 3288 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3289
3290 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3291 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3292 values[n++] = enabled;
3293 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3294 values[n++] = running;
abf4868b
PZ
3295 values[n++] = count;
3296 if (read_format & PERF_FORMAT_ID)
3297 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3298
3299 size = n * sizeof(u64);
3300
3301 if (copy_to_user(buf, values, size))
6f10581a 3302 goto unlock;
3dab77fb 3303
6f10581a 3304 ret = size;
3dab77fb 3305
65abc865 3306 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3307 n = 0;
3dab77fb 3308
59ed446f 3309 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3310 if (read_format & PERF_FORMAT_ID)
3311 values[n++] = primary_event_id(sub);
3312
3313 size = n * sizeof(u64);
3314
184d3da8 3315 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3316 ret = -EFAULT;
3317 goto unlock;
3318 }
abf4868b
PZ
3319
3320 ret += size;
3dab77fb 3321 }
6f10581a
PZ
3322unlock:
3323 mutex_unlock(&ctx->mutex);
3dab77fb 3324
abf4868b 3325 return ret;
3dab77fb
PZ
3326}
3327
cdd6c482 3328static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3329 u64 read_format, char __user *buf)
3330{
59ed446f 3331 u64 enabled, running;
3dab77fb
PZ
3332 u64 values[4];
3333 int n = 0;
3334
59ed446f
PZ
3335 values[n++] = perf_event_read_value(event, &enabled, &running);
3336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3337 values[n++] = enabled;
3338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3339 values[n++] = running;
3dab77fb 3340 if (read_format & PERF_FORMAT_ID)
cdd6c482 3341 values[n++] = primary_event_id(event);
3dab77fb
PZ
3342
3343 if (copy_to_user(buf, values, n * sizeof(u64)))
3344 return -EFAULT;
3345
3346 return n * sizeof(u64);
3347}
3348
0793a61d 3349/*
cdd6c482 3350 * Read the performance event - simple non blocking version for now
0793a61d
TG
3351 */
3352static ssize_t
cdd6c482 3353perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3354{
cdd6c482 3355 u64 read_format = event->attr.read_format;
3dab77fb 3356 int ret;
0793a61d 3357
3b6f9e5c 3358 /*
cdd6c482 3359 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3360 * error state (i.e. because it was pinned but it couldn't be
3361 * scheduled on to the CPU at some point).
3362 */
cdd6c482 3363 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3364 return 0;
3365
c320c7b7 3366 if (count < event->read_size)
3dab77fb
PZ
3367 return -ENOSPC;
3368
cdd6c482 3369 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3370 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3371 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3372 else
cdd6c482 3373 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3374
3dab77fb 3375 return ret;
0793a61d
TG
3376}
3377
0793a61d
TG
3378static ssize_t
3379perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3380{
cdd6c482 3381 struct perf_event *event = file->private_data;
0793a61d 3382
cdd6c482 3383 return perf_read_hw(event, buf, count);
0793a61d
TG
3384}
3385
3386static unsigned int perf_poll(struct file *file, poll_table *wait)
3387{
cdd6c482 3388 struct perf_event *event = file->private_data;
76369139 3389 struct ring_buffer *rb;
c33a0bc4 3390 unsigned int events = POLL_HUP;
c7138f37 3391
10c6db11 3392 /*
9bb5d40c
PZ
3393 * Pin the event->rb by taking event->mmap_mutex; otherwise
3394 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3395 */
3396 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3397 rb = event->rb;
3398 if (rb)
76369139 3399 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3400 mutex_unlock(&event->mmap_mutex);
3401
cdd6c482 3402 poll_wait(file, &event->waitq, wait);
0793a61d 3403
0793a61d
TG
3404 return events;
3405}
3406
cdd6c482 3407static void perf_event_reset(struct perf_event *event)
6de6a7b9 3408{
cdd6c482 3409 (void)perf_event_read(event);
e7850595 3410 local64_set(&event->count, 0);
cdd6c482 3411 perf_event_update_userpage(event);
3df5edad
PZ
3412}
3413
c93f7669 3414/*
cdd6c482
IM
3415 * Holding the top-level event's child_mutex means that any
3416 * descendant process that has inherited this event will block
3417 * in sync_child_event if it goes to exit, thus satisfying the
3418 * task existence requirements of perf_event_enable/disable.
c93f7669 3419 */
cdd6c482
IM
3420static void perf_event_for_each_child(struct perf_event *event,
3421 void (*func)(struct perf_event *))
3df5edad 3422{
cdd6c482 3423 struct perf_event *child;
3df5edad 3424
cdd6c482
IM
3425 WARN_ON_ONCE(event->ctx->parent_ctx);
3426 mutex_lock(&event->child_mutex);
3427 func(event);
3428 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3429 func(child);
cdd6c482 3430 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3431}
3432
cdd6c482
IM
3433static void perf_event_for_each(struct perf_event *event,
3434 void (*func)(struct perf_event *))
3df5edad 3435{
cdd6c482
IM
3436 struct perf_event_context *ctx = event->ctx;
3437 struct perf_event *sibling;
3df5edad 3438
75f937f2
PZ
3439 WARN_ON_ONCE(ctx->parent_ctx);
3440 mutex_lock(&ctx->mutex);
cdd6c482 3441 event = event->group_leader;
75f937f2 3442
cdd6c482 3443 perf_event_for_each_child(event, func);
cdd6c482 3444 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3445 perf_event_for_each_child(sibling, func);
75f937f2 3446 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3447}
3448
cdd6c482 3449static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3450{
cdd6c482 3451 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3452 int ret = 0;
3453 u64 value;
3454
6c7e550f 3455 if (!is_sampling_event(event))
08247e31
PZ
3456 return -EINVAL;
3457
ad0cf347 3458 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3459 return -EFAULT;
3460
3461 if (!value)
3462 return -EINVAL;
3463
e625cce1 3464 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3465 if (event->attr.freq) {
3466 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3467 ret = -EINVAL;
3468 goto unlock;
3469 }
3470
cdd6c482 3471 event->attr.sample_freq = value;
08247e31 3472 } else {
cdd6c482
IM
3473 event->attr.sample_period = value;
3474 event->hw.sample_period = value;
08247e31
PZ
3475 }
3476unlock:
e625cce1 3477 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3478
3479 return ret;
3480}
3481
ac9721f3
PZ
3482static const struct file_operations perf_fops;
3483
2903ff01 3484static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3485{
2903ff01
AV
3486 struct fd f = fdget(fd);
3487 if (!f.file)
3488 return -EBADF;
ac9721f3 3489
2903ff01
AV
3490 if (f.file->f_op != &perf_fops) {
3491 fdput(f);
3492 return -EBADF;
ac9721f3 3493 }
2903ff01
AV
3494 *p = f;
3495 return 0;
ac9721f3
PZ
3496}
3497
3498static int perf_event_set_output(struct perf_event *event,
3499 struct perf_event *output_event);
6fb2915d 3500static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3501
d859e29f
PM
3502static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3503{
cdd6c482
IM
3504 struct perf_event *event = file->private_data;
3505 void (*func)(struct perf_event *);
3df5edad 3506 u32 flags = arg;
d859e29f
PM
3507
3508 switch (cmd) {
cdd6c482
IM
3509 case PERF_EVENT_IOC_ENABLE:
3510 func = perf_event_enable;
d859e29f 3511 break;
cdd6c482
IM
3512 case PERF_EVENT_IOC_DISABLE:
3513 func = perf_event_disable;
79f14641 3514 break;
cdd6c482
IM
3515 case PERF_EVENT_IOC_RESET:
3516 func = perf_event_reset;
6de6a7b9 3517 break;
3df5edad 3518
cdd6c482
IM
3519 case PERF_EVENT_IOC_REFRESH:
3520 return perf_event_refresh(event, arg);
08247e31 3521
cdd6c482
IM
3522 case PERF_EVENT_IOC_PERIOD:
3523 return perf_event_period(event, (u64 __user *)arg);
08247e31 3524
cdd6c482 3525 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3526 {
ac9721f3 3527 int ret;
ac9721f3 3528 if (arg != -1) {
2903ff01
AV
3529 struct perf_event *output_event;
3530 struct fd output;
3531 ret = perf_fget_light(arg, &output);
3532 if (ret)
3533 return ret;
3534 output_event = output.file->private_data;
3535 ret = perf_event_set_output(event, output_event);
3536 fdput(output);
3537 } else {
3538 ret = perf_event_set_output(event, NULL);
ac9721f3 3539 }
ac9721f3
PZ
3540 return ret;
3541 }
a4be7c27 3542
6fb2915d
LZ
3543 case PERF_EVENT_IOC_SET_FILTER:
3544 return perf_event_set_filter(event, (void __user *)arg);
3545
d859e29f 3546 default:
3df5edad 3547 return -ENOTTY;
d859e29f 3548 }
3df5edad
PZ
3549
3550 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3551 perf_event_for_each(event, func);
3df5edad 3552 else
cdd6c482 3553 perf_event_for_each_child(event, func);
3df5edad
PZ
3554
3555 return 0;
d859e29f
PM
3556}
3557
cdd6c482 3558int perf_event_task_enable(void)
771d7cde 3559{
cdd6c482 3560 struct perf_event *event;
771d7cde 3561
cdd6c482
IM
3562 mutex_lock(&current->perf_event_mutex);
3563 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3564 perf_event_for_each_child(event, perf_event_enable);
3565 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3566
3567 return 0;
3568}
3569
cdd6c482 3570int perf_event_task_disable(void)
771d7cde 3571{
cdd6c482 3572 struct perf_event *event;
771d7cde 3573
cdd6c482
IM
3574 mutex_lock(&current->perf_event_mutex);
3575 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3576 perf_event_for_each_child(event, perf_event_disable);
3577 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3578
3579 return 0;
3580}
3581
cdd6c482 3582static int perf_event_index(struct perf_event *event)
194002b2 3583{
a4eaf7f1
PZ
3584 if (event->hw.state & PERF_HES_STOPPED)
3585 return 0;
3586
cdd6c482 3587 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3588 return 0;
3589
35edc2a5 3590 return event->pmu->event_idx(event);
194002b2
PZ
3591}
3592
c4794295 3593static void calc_timer_values(struct perf_event *event,
e3f3541c 3594 u64 *now,
7f310a5d
EM
3595 u64 *enabled,
3596 u64 *running)
c4794295 3597{
e3f3541c 3598 u64 ctx_time;
c4794295 3599
e3f3541c
PZ
3600 *now = perf_clock();
3601 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3602 *enabled = ctx_time - event->tstamp_enabled;
3603 *running = ctx_time - event->tstamp_running;
3604}
3605
c7206205 3606void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3607{
3608}
3609
38ff667b
PZ
3610/*
3611 * Callers need to ensure there can be no nesting of this function, otherwise
3612 * the seqlock logic goes bad. We can not serialize this because the arch
3613 * code calls this from NMI context.
3614 */
cdd6c482 3615void perf_event_update_userpage(struct perf_event *event)
37d81828 3616{
cdd6c482 3617 struct perf_event_mmap_page *userpg;
76369139 3618 struct ring_buffer *rb;
e3f3541c 3619 u64 enabled, running, now;
38ff667b
PZ
3620
3621 rcu_read_lock();
0d641208
EM
3622 /*
3623 * compute total_time_enabled, total_time_running
3624 * based on snapshot values taken when the event
3625 * was last scheduled in.
3626 *
3627 * we cannot simply called update_context_time()
3628 * because of locking issue as we can be called in
3629 * NMI context
3630 */
e3f3541c 3631 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3632 rb = rcu_dereference(event->rb);
3633 if (!rb)
38ff667b
PZ
3634 goto unlock;
3635
76369139 3636 userpg = rb->user_page;
37d81828 3637
7b732a75
PZ
3638 /*
3639 * Disable preemption so as to not let the corresponding user-space
3640 * spin too long if we get preempted.
3641 */
3642 preempt_disable();
37d81828 3643 ++userpg->lock;
92f22a38 3644 barrier();
cdd6c482 3645 userpg->index = perf_event_index(event);
b5e58793 3646 userpg->offset = perf_event_count(event);
365a4038 3647 if (userpg->index)
e7850595 3648 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3649
0d641208 3650 userpg->time_enabled = enabled +
cdd6c482 3651 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3652
0d641208 3653 userpg->time_running = running +
cdd6c482 3654 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3655
c7206205 3656 arch_perf_update_userpage(userpg, now);
e3f3541c 3657
92f22a38 3658 barrier();
37d81828 3659 ++userpg->lock;
7b732a75 3660 preempt_enable();
38ff667b 3661unlock:
7b732a75 3662 rcu_read_unlock();
37d81828
PM
3663}
3664
906010b2
PZ
3665static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3666{
3667 struct perf_event *event = vma->vm_file->private_data;
76369139 3668 struct ring_buffer *rb;
906010b2
PZ
3669 int ret = VM_FAULT_SIGBUS;
3670
3671 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3672 if (vmf->pgoff == 0)
3673 ret = 0;
3674 return ret;
3675 }
3676
3677 rcu_read_lock();
76369139
FW
3678 rb = rcu_dereference(event->rb);
3679 if (!rb)
906010b2
PZ
3680 goto unlock;
3681
3682 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3683 goto unlock;
3684
76369139 3685 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3686 if (!vmf->page)
3687 goto unlock;
3688
3689 get_page(vmf->page);
3690 vmf->page->mapping = vma->vm_file->f_mapping;
3691 vmf->page->index = vmf->pgoff;
3692
3693 ret = 0;
3694unlock:
3695 rcu_read_unlock();
3696
3697 return ret;
3698}
3699
10c6db11
PZ
3700static void ring_buffer_attach(struct perf_event *event,
3701 struct ring_buffer *rb)
3702{
3703 unsigned long flags;
3704
3705 if (!list_empty(&event->rb_entry))
3706 return;
3707
3708 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3709 if (list_empty(&event->rb_entry))
3710 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3711 spin_unlock_irqrestore(&rb->event_lock, flags);
3712}
3713
9bb5d40c 3714static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3715{
3716 unsigned long flags;
3717
3718 if (list_empty(&event->rb_entry))
3719 return;
3720
3721 spin_lock_irqsave(&rb->event_lock, flags);
3722 list_del_init(&event->rb_entry);
3723 wake_up_all(&event->waitq);
3724 spin_unlock_irqrestore(&rb->event_lock, flags);
3725}
3726
3727static void ring_buffer_wakeup(struct perf_event *event)
3728{
3729 struct ring_buffer *rb;
3730
3731 rcu_read_lock();
3732 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3733 if (rb) {
3734 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3735 wake_up_all(&event->waitq);
3736 }
10c6db11
PZ
3737 rcu_read_unlock();
3738}
3739
76369139 3740static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3741{
76369139 3742 struct ring_buffer *rb;
906010b2 3743
76369139
FW
3744 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3745 rb_free(rb);
7b732a75
PZ
3746}
3747
76369139 3748static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3749{
76369139 3750 struct ring_buffer *rb;
7b732a75 3751
ac9721f3 3752 rcu_read_lock();
76369139
FW
3753 rb = rcu_dereference(event->rb);
3754 if (rb) {
3755 if (!atomic_inc_not_zero(&rb->refcount))
3756 rb = NULL;
ac9721f3
PZ
3757 }
3758 rcu_read_unlock();
3759
76369139 3760 return rb;
ac9721f3
PZ
3761}
3762
76369139 3763static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3764{
76369139 3765 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3766 return;
7b732a75 3767
9bb5d40c 3768 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3769
76369139 3770 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3771}
3772
3773static void perf_mmap_open(struct vm_area_struct *vma)
3774{
cdd6c482 3775 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3776
cdd6c482 3777 atomic_inc(&event->mmap_count);
9bb5d40c 3778 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3779}
3780
9bb5d40c
PZ
3781/*
3782 * A buffer can be mmap()ed multiple times; either directly through the same
3783 * event, or through other events by use of perf_event_set_output().
3784 *
3785 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3786 * the buffer here, where we still have a VM context. This means we need
3787 * to detach all events redirecting to us.
3788 */
7b732a75
PZ
3789static void perf_mmap_close(struct vm_area_struct *vma)
3790{
cdd6c482 3791 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3792
9bb5d40c
PZ
3793 struct ring_buffer *rb = event->rb;
3794 struct user_struct *mmap_user = rb->mmap_user;
3795 int mmap_locked = rb->mmap_locked;
3796 unsigned long size = perf_data_size(rb);
789f90fc 3797
9bb5d40c
PZ
3798 atomic_dec(&rb->mmap_count);
3799
3800 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3801 return;
3802
3803 /* Detach current event from the buffer. */
3804 rcu_assign_pointer(event->rb, NULL);
3805 ring_buffer_detach(event, rb);
3806 mutex_unlock(&event->mmap_mutex);
3807
3808 /* If there's still other mmap()s of this buffer, we're done. */
3809 if (atomic_read(&rb->mmap_count)) {
3810 ring_buffer_put(rb); /* can't be last */
3811 return;
3812 }
ac9721f3 3813
9bb5d40c
PZ
3814 /*
3815 * No other mmap()s, detach from all other events that might redirect
3816 * into the now unreachable buffer. Somewhat complicated by the
3817 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3818 */
3819again:
3820 rcu_read_lock();
3821 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3822 if (!atomic_long_inc_not_zero(&event->refcount)) {
3823 /*
3824 * This event is en-route to free_event() which will
3825 * detach it and remove it from the list.
3826 */
3827 continue;
3828 }
3829 rcu_read_unlock();
789f90fc 3830
9bb5d40c
PZ
3831 mutex_lock(&event->mmap_mutex);
3832 /*
3833 * Check we didn't race with perf_event_set_output() which can
3834 * swizzle the rb from under us while we were waiting to
3835 * acquire mmap_mutex.
3836 *
3837 * If we find a different rb; ignore this event, a next
3838 * iteration will no longer find it on the list. We have to
3839 * still restart the iteration to make sure we're not now
3840 * iterating the wrong list.
3841 */
3842 if (event->rb == rb) {
3843 rcu_assign_pointer(event->rb, NULL);
3844 ring_buffer_detach(event, rb);
3845 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3846 }
cdd6c482 3847 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3848 put_event(event);
ac9721f3 3849
9bb5d40c
PZ
3850 /*
3851 * Restart the iteration; either we're on the wrong list or
3852 * destroyed its integrity by doing a deletion.
3853 */
3854 goto again;
7b732a75 3855 }
9bb5d40c
PZ
3856 rcu_read_unlock();
3857
3858 /*
3859 * It could be there's still a few 0-ref events on the list; they'll
3860 * get cleaned up by free_event() -- they'll also still have their
3861 * ref on the rb and will free it whenever they are done with it.
3862 *
3863 * Aside from that, this buffer is 'fully' detached and unmapped,
3864 * undo the VM accounting.
3865 */
3866
3867 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3868 vma->vm_mm->pinned_vm -= mmap_locked;
3869 free_uid(mmap_user);
3870
3871 ring_buffer_put(rb); /* could be last */
37d81828
PM
3872}
3873
f0f37e2f 3874static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3875 .open = perf_mmap_open,
3876 .close = perf_mmap_close,
3877 .fault = perf_mmap_fault,
3878 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3879};
3880
3881static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3882{
cdd6c482 3883 struct perf_event *event = file->private_data;
22a4f650 3884 unsigned long user_locked, user_lock_limit;
789f90fc 3885 struct user_struct *user = current_user();
22a4f650 3886 unsigned long locked, lock_limit;
76369139 3887 struct ring_buffer *rb;
7b732a75
PZ
3888 unsigned long vma_size;
3889 unsigned long nr_pages;
789f90fc 3890 long user_extra, extra;
d57e34fd 3891 int ret = 0, flags = 0;
37d81828 3892
c7920614
PZ
3893 /*
3894 * Don't allow mmap() of inherited per-task counters. This would
3895 * create a performance issue due to all children writing to the
76369139 3896 * same rb.
c7920614
PZ
3897 */
3898 if (event->cpu == -1 && event->attr.inherit)
3899 return -EINVAL;
3900
43a21ea8 3901 if (!(vma->vm_flags & VM_SHARED))
37d81828 3902 return -EINVAL;
7b732a75
PZ
3903
3904 vma_size = vma->vm_end - vma->vm_start;
3905 nr_pages = (vma_size / PAGE_SIZE) - 1;
3906
7730d865 3907 /*
76369139 3908 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3909 * can do bitmasks instead of modulo.
3910 */
3911 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3912 return -EINVAL;
3913
7b732a75 3914 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3915 return -EINVAL;
3916
7b732a75
PZ
3917 if (vma->vm_pgoff != 0)
3918 return -EINVAL;
37d81828 3919
cdd6c482 3920 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3921again:
cdd6c482 3922 mutex_lock(&event->mmap_mutex);
76369139 3923 if (event->rb) {
9bb5d40c 3924 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3925 ret = -EINVAL;
9bb5d40c
PZ
3926 goto unlock;
3927 }
3928
3929 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3930 /*
3931 * Raced against perf_mmap_close() through
3932 * perf_event_set_output(). Try again, hope for better
3933 * luck.
3934 */
3935 mutex_unlock(&event->mmap_mutex);
3936 goto again;
3937 }
3938
ebb3c4c4
PZ
3939 goto unlock;
3940 }
3941
789f90fc 3942 user_extra = nr_pages + 1;
cdd6c482 3943 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3944
3945 /*
3946 * Increase the limit linearly with more CPUs:
3947 */
3948 user_lock_limit *= num_online_cpus();
3949
789f90fc 3950 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3951
789f90fc
PZ
3952 extra = 0;
3953 if (user_locked > user_lock_limit)
3954 extra = user_locked - user_lock_limit;
7b732a75 3955
78d7d407 3956 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3957 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3958 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3959
459ec28a
IM
3960 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3961 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3962 ret = -EPERM;
3963 goto unlock;
3964 }
7b732a75 3965
76369139 3966 WARN_ON(event->rb);
906010b2 3967
d57e34fd 3968 if (vma->vm_flags & VM_WRITE)
76369139 3969 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3970
4ec8363d
VW
3971 rb = rb_alloc(nr_pages,
3972 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3973 event->cpu, flags);
3974
76369139 3975 if (!rb) {
ac9721f3 3976 ret = -ENOMEM;
ebb3c4c4 3977 goto unlock;
ac9721f3 3978 }
26cb63ad 3979
9bb5d40c 3980 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
3981 rb->mmap_locked = extra;
3982 rb->mmap_user = get_current_user();
43a21ea8 3983
ac9721f3 3984 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
3985 vma->vm_mm->pinned_vm += extra;
3986
9bb5d40c 3987 ring_buffer_attach(event, rb);
26cb63ad 3988 rcu_assign_pointer(event->rb, rb);
ac9721f3 3989
9a0f05cb
PZ
3990 perf_event_update_userpage(event);
3991
ebb3c4c4 3992unlock:
ac9721f3
PZ
3993 if (!ret)
3994 atomic_inc(&event->mmap_count);
cdd6c482 3995 mutex_unlock(&event->mmap_mutex);
37d81828 3996
9bb5d40c
PZ
3997 /*
3998 * Since pinned accounting is per vm we cannot allow fork() to copy our
3999 * vma.
4000 */
26cb63ad 4001 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4002 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4003
4004 return ret;
37d81828
PM
4005}
4006
3c446b3d
PZ
4007static int perf_fasync(int fd, struct file *filp, int on)
4008{
496ad9aa 4009 struct inode *inode = file_inode(filp);
cdd6c482 4010 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4011 int retval;
4012
4013 mutex_lock(&inode->i_mutex);
cdd6c482 4014 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4015 mutex_unlock(&inode->i_mutex);
4016
4017 if (retval < 0)
4018 return retval;
4019
4020 return 0;
4021}
4022
0793a61d 4023static const struct file_operations perf_fops = {
3326c1ce 4024 .llseek = no_llseek,
0793a61d
TG
4025 .release = perf_release,
4026 .read = perf_read,
4027 .poll = perf_poll,
d859e29f
PM
4028 .unlocked_ioctl = perf_ioctl,
4029 .compat_ioctl = perf_ioctl,
37d81828 4030 .mmap = perf_mmap,
3c446b3d 4031 .fasync = perf_fasync,
0793a61d
TG
4032};
4033
925d519a 4034/*
cdd6c482 4035 * Perf event wakeup
925d519a
PZ
4036 *
4037 * If there's data, ensure we set the poll() state and publish everything
4038 * to user-space before waking everybody up.
4039 */
4040
cdd6c482 4041void perf_event_wakeup(struct perf_event *event)
925d519a 4042{
10c6db11 4043 ring_buffer_wakeup(event);
4c9e2542 4044
cdd6c482
IM
4045 if (event->pending_kill) {
4046 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4047 event->pending_kill = 0;
4c9e2542 4048 }
925d519a
PZ
4049}
4050
e360adbe 4051static void perf_pending_event(struct irq_work *entry)
79f14641 4052{
cdd6c482
IM
4053 struct perf_event *event = container_of(entry,
4054 struct perf_event, pending);
79f14641 4055
cdd6c482
IM
4056 if (event->pending_disable) {
4057 event->pending_disable = 0;
4058 __perf_event_disable(event);
79f14641
PZ
4059 }
4060
cdd6c482
IM
4061 if (event->pending_wakeup) {
4062 event->pending_wakeup = 0;
4063 perf_event_wakeup(event);
79f14641
PZ
4064 }
4065}
4066
39447b38
ZY
4067/*
4068 * We assume there is only KVM supporting the callbacks.
4069 * Later on, we might change it to a list if there is
4070 * another virtualization implementation supporting the callbacks.
4071 */
4072struct perf_guest_info_callbacks *perf_guest_cbs;
4073
4074int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4075{
4076 perf_guest_cbs = cbs;
4077 return 0;
4078}
4079EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4080
4081int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4082{
4083 perf_guest_cbs = NULL;
4084 return 0;
4085}
4086EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4087
4018994f
JO
4088static void
4089perf_output_sample_regs(struct perf_output_handle *handle,
4090 struct pt_regs *regs, u64 mask)
4091{
4092 int bit;
4093
4094 for_each_set_bit(bit, (const unsigned long *) &mask,
4095 sizeof(mask) * BITS_PER_BYTE) {
4096 u64 val;
4097
4098 val = perf_reg_value(regs, bit);
4099 perf_output_put(handle, val);
4100 }
4101}
4102
4103static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4104 struct pt_regs *regs)
4105{
4106 if (!user_mode(regs)) {
4107 if (current->mm)
4108 regs = task_pt_regs(current);
4109 else
4110 regs = NULL;
4111 }
4112
4113 if (regs) {
4114 regs_user->regs = regs;
4115 regs_user->abi = perf_reg_abi(current);
4116 }
4117}
4118
c5ebcedb
JO
4119/*
4120 * Get remaining task size from user stack pointer.
4121 *
4122 * It'd be better to take stack vma map and limit this more
4123 * precisly, but there's no way to get it safely under interrupt,
4124 * so using TASK_SIZE as limit.
4125 */
4126static u64 perf_ustack_task_size(struct pt_regs *regs)
4127{
4128 unsigned long addr = perf_user_stack_pointer(regs);
4129
4130 if (!addr || addr >= TASK_SIZE)
4131 return 0;
4132
4133 return TASK_SIZE - addr;
4134}
4135
4136static u16
4137perf_sample_ustack_size(u16 stack_size, u16 header_size,
4138 struct pt_regs *regs)
4139{
4140 u64 task_size;
4141
4142 /* No regs, no stack pointer, no dump. */
4143 if (!regs)
4144 return 0;
4145
4146 /*
4147 * Check if we fit in with the requested stack size into the:
4148 * - TASK_SIZE
4149 * If we don't, we limit the size to the TASK_SIZE.
4150 *
4151 * - remaining sample size
4152 * If we don't, we customize the stack size to
4153 * fit in to the remaining sample size.
4154 */
4155
4156 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4157 stack_size = min(stack_size, (u16) task_size);
4158
4159 /* Current header size plus static size and dynamic size. */
4160 header_size += 2 * sizeof(u64);
4161
4162 /* Do we fit in with the current stack dump size? */
4163 if ((u16) (header_size + stack_size) < header_size) {
4164 /*
4165 * If we overflow the maximum size for the sample,
4166 * we customize the stack dump size to fit in.
4167 */
4168 stack_size = USHRT_MAX - header_size - sizeof(u64);
4169 stack_size = round_up(stack_size, sizeof(u64));
4170 }
4171
4172 return stack_size;
4173}
4174
4175static void
4176perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4177 struct pt_regs *regs)
4178{
4179 /* Case of a kernel thread, nothing to dump */
4180 if (!regs) {
4181 u64 size = 0;
4182 perf_output_put(handle, size);
4183 } else {
4184 unsigned long sp;
4185 unsigned int rem;
4186 u64 dyn_size;
4187
4188 /*
4189 * We dump:
4190 * static size
4191 * - the size requested by user or the best one we can fit
4192 * in to the sample max size
4193 * data
4194 * - user stack dump data
4195 * dynamic size
4196 * - the actual dumped size
4197 */
4198
4199 /* Static size. */
4200 perf_output_put(handle, dump_size);
4201
4202 /* Data. */
4203 sp = perf_user_stack_pointer(regs);
4204 rem = __output_copy_user(handle, (void *) sp, dump_size);
4205 dyn_size = dump_size - rem;
4206
4207 perf_output_skip(handle, rem);
4208
4209 /* Dynamic size. */
4210 perf_output_put(handle, dyn_size);
4211 }
4212}
4213
c980d109
ACM
4214static void __perf_event_header__init_id(struct perf_event_header *header,
4215 struct perf_sample_data *data,
4216 struct perf_event *event)
6844c09d
ACM
4217{
4218 u64 sample_type = event->attr.sample_type;
4219
4220 data->type = sample_type;
4221 header->size += event->id_header_size;
4222
4223 if (sample_type & PERF_SAMPLE_TID) {
4224 /* namespace issues */
4225 data->tid_entry.pid = perf_event_pid(event, current);
4226 data->tid_entry.tid = perf_event_tid(event, current);
4227 }
4228
4229 if (sample_type & PERF_SAMPLE_TIME)
4230 data->time = perf_clock();
4231
4232 if (sample_type & PERF_SAMPLE_ID)
4233 data->id = primary_event_id(event);
4234
4235 if (sample_type & PERF_SAMPLE_STREAM_ID)
4236 data->stream_id = event->id;
4237
4238 if (sample_type & PERF_SAMPLE_CPU) {
4239 data->cpu_entry.cpu = raw_smp_processor_id();
4240 data->cpu_entry.reserved = 0;
4241 }
4242}
4243
76369139
FW
4244void perf_event_header__init_id(struct perf_event_header *header,
4245 struct perf_sample_data *data,
4246 struct perf_event *event)
c980d109
ACM
4247{
4248 if (event->attr.sample_id_all)
4249 __perf_event_header__init_id(header, data, event);
4250}
4251
4252static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4253 struct perf_sample_data *data)
4254{
4255 u64 sample_type = data->type;
4256
4257 if (sample_type & PERF_SAMPLE_TID)
4258 perf_output_put(handle, data->tid_entry);
4259
4260 if (sample_type & PERF_SAMPLE_TIME)
4261 perf_output_put(handle, data->time);
4262
4263 if (sample_type & PERF_SAMPLE_ID)
4264 perf_output_put(handle, data->id);
4265
4266 if (sample_type & PERF_SAMPLE_STREAM_ID)
4267 perf_output_put(handle, data->stream_id);
4268
4269 if (sample_type & PERF_SAMPLE_CPU)
4270 perf_output_put(handle, data->cpu_entry);
4271}
4272
76369139
FW
4273void perf_event__output_id_sample(struct perf_event *event,
4274 struct perf_output_handle *handle,
4275 struct perf_sample_data *sample)
c980d109
ACM
4276{
4277 if (event->attr.sample_id_all)
4278 __perf_event__output_id_sample(handle, sample);
4279}
4280
3dab77fb 4281static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4282 struct perf_event *event,
4283 u64 enabled, u64 running)
3dab77fb 4284{
cdd6c482 4285 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4286 u64 values[4];
4287 int n = 0;
4288
b5e58793 4289 values[n++] = perf_event_count(event);
3dab77fb 4290 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4291 values[n++] = enabled +
cdd6c482 4292 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4293 }
4294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4295 values[n++] = running +
cdd6c482 4296 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4297 }
4298 if (read_format & PERF_FORMAT_ID)
cdd6c482 4299 values[n++] = primary_event_id(event);
3dab77fb 4300
76369139 4301 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4302}
4303
4304/*
cdd6c482 4305 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4306 */
4307static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4308 struct perf_event *event,
4309 u64 enabled, u64 running)
3dab77fb 4310{
cdd6c482
IM
4311 struct perf_event *leader = event->group_leader, *sub;
4312 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4313 u64 values[5];
4314 int n = 0;
4315
4316 values[n++] = 1 + leader->nr_siblings;
4317
4318 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4319 values[n++] = enabled;
3dab77fb
PZ
4320
4321 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4322 values[n++] = running;
3dab77fb 4323
cdd6c482 4324 if (leader != event)
3dab77fb
PZ
4325 leader->pmu->read(leader);
4326
b5e58793 4327 values[n++] = perf_event_count(leader);
3dab77fb 4328 if (read_format & PERF_FORMAT_ID)
cdd6c482 4329 values[n++] = primary_event_id(leader);
3dab77fb 4330
76369139 4331 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4332
65abc865 4333 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4334 n = 0;
4335
cdd6c482 4336 if (sub != event)
3dab77fb
PZ
4337 sub->pmu->read(sub);
4338
b5e58793 4339 values[n++] = perf_event_count(sub);
3dab77fb 4340 if (read_format & PERF_FORMAT_ID)
cdd6c482 4341 values[n++] = primary_event_id(sub);
3dab77fb 4342
76369139 4343 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4344 }
4345}
4346
eed01528
SE
4347#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4348 PERF_FORMAT_TOTAL_TIME_RUNNING)
4349
3dab77fb 4350static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4351 struct perf_event *event)
3dab77fb 4352{
e3f3541c 4353 u64 enabled = 0, running = 0, now;
eed01528
SE
4354 u64 read_format = event->attr.read_format;
4355
4356 /*
4357 * compute total_time_enabled, total_time_running
4358 * based on snapshot values taken when the event
4359 * was last scheduled in.
4360 *
4361 * we cannot simply called update_context_time()
4362 * because of locking issue as we are called in
4363 * NMI context
4364 */
c4794295 4365 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4366 calc_timer_values(event, &now, &enabled, &running);
eed01528 4367
cdd6c482 4368 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4369 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4370 else
eed01528 4371 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4372}
4373
5622f295
MM
4374void perf_output_sample(struct perf_output_handle *handle,
4375 struct perf_event_header *header,
4376 struct perf_sample_data *data,
cdd6c482 4377 struct perf_event *event)
5622f295
MM
4378{
4379 u64 sample_type = data->type;
4380
4381 perf_output_put(handle, *header);
4382
4383 if (sample_type & PERF_SAMPLE_IP)
4384 perf_output_put(handle, data->ip);
4385
4386 if (sample_type & PERF_SAMPLE_TID)
4387 perf_output_put(handle, data->tid_entry);
4388
4389 if (sample_type & PERF_SAMPLE_TIME)
4390 perf_output_put(handle, data->time);
4391
4392 if (sample_type & PERF_SAMPLE_ADDR)
4393 perf_output_put(handle, data->addr);
4394
4395 if (sample_type & PERF_SAMPLE_ID)
4396 perf_output_put(handle, data->id);
4397
4398 if (sample_type & PERF_SAMPLE_STREAM_ID)
4399 perf_output_put(handle, data->stream_id);
4400
4401 if (sample_type & PERF_SAMPLE_CPU)
4402 perf_output_put(handle, data->cpu_entry);
4403
4404 if (sample_type & PERF_SAMPLE_PERIOD)
4405 perf_output_put(handle, data->period);
4406
4407 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4408 perf_output_read(handle, event);
5622f295
MM
4409
4410 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4411 if (data->callchain) {
4412 int size = 1;
4413
4414 if (data->callchain)
4415 size += data->callchain->nr;
4416
4417 size *= sizeof(u64);
4418
76369139 4419 __output_copy(handle, data->callchain, size);
5622f295
MM
4420 } else {
4421 u64 nr = 0;
4422 perf_output_put(handle, nr);
4423 }
4424 }
4425
4426 if (sample_type & PERF_SAMPLE_RAW) {
4427 if (data->raw) {
4428 perf_output_put(handle, data->raw->size);
76369139
FW
4429 __output_copy(handle, data->raw->data,
4430 data->raw->size);
5622f295
MM
4431 } else {
4432 struct {
4433 u32 size;
4434 u32 data;
4435 } raw = {
4436 .size = sizeof(u32),
4437 .data = 0,
4438 };
4439 perf_output_put(handle, raw);
4440 }
4441 }
a7ac67ea
PZ
4442
4443 if (!event->attr.watermark) {
4444 int wakeup_events = event->attr.wakeup_events;
4445
4446 if (wakeup_events) {
4447 struct ring_buffer *rb = handle->rb;
4448 int events = local_inc_return(&rb->events);
4449
4450 if (events >= wakeup_events) {
4451 local_sub(wakeup_events, &rb->events);
4452 local_inc(&rb->wakeup);
4453 }
4454 }
4455 }
bce38cd5
SE
4456
4457 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4458 if (data->br_stack) {
4459 size_t size;
4460
4461 size = data->br_stack->nr
4462 * sizeof(struct perf_branch_entry);
4463
4464 perf_output_put(handle, data->br_stack->nr);
4465 perf_output_copy(handle, data->br_stack->entries, size);
4466 } else {
4467 /*
4468 * we always store at least the value of nr
4469 */
4470 u64 nr = 0;
4471 perf_output_put(handle, nr);
4472 }
4473 }
4018994f
JO
4474
4475 if (sample_type & PERF_SAMPLE_REGS_USER) {
4476 u64 abi = data->regs_user.abi;
4477
4478 /*
4479 * If there are no regs to dump, notice it through
4480 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4481 */
4482 perf_output_put(handle, abi);
4483
4484 if (abi) {
4485 u64 mask = event->attr.sample_regs_user;
4486 perf_output_sample_regs(handle,
4487 data->regs_user.regs,
4488 mask);
4489 }
4490 }
c5ebcedb
JO
4491
4492 if (sample_type & PERF_SAMPLE_STACK_USER)
4493 perf_output_sample_ustack(handle,
4494 data->stack_user_size,
4495 data->regs_user.regs);
c3feedf2
AK
4496
4497 if (sample_type & PERF_SAMPLE_WEIGHT)
4498 perf_output_put(handle, data->weight);
d6be9ad6
SE
4499
4500 if (sample_type & PERF_SAMPLE_DATA_SRC)
4501 perf_output_put(handle, data->data_src.val);
5622f295
MM
4502}
4503
4504void perf_prepare_sample(struct perf_event_header *header,
4505 struct perf_sample_data *data,
cdd6c482 4506 struct perf_event *event,
5622f295 4507 struct pt_regs *regs)
7b732a75 4508{
cdd6c482 4509 u64 sample_type = event->attr.sample_type;
7b732a75 4510
cdd6c482 4511 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4512 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4513
4514 header->misc = 0;
4515 header->misc |= perf_misc_flags(regs);
6fab0192 4516
c980d109 4517 __perf_event_header__init_id(header, data, event);
6844c09d 4518
c320c7b7 4519 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4520 data->ip = perf_instruction_pointer(regs);
4521
b23f3325 4522 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4523 int size = 1;
394ee076 4524
e6dab5ff 4525 data->callchain = perf_callchain(event, regs);
5622f295
MM
4526
4527 if (data->callchain)
4528 size += data->callchain->nr;
4529
4530 header->size += size * sizeof(u64);
394ee076
PZ
4531 }
4532
3a43ce68 4533 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4534 int size = sizeof(u32);
4535
4536 if (data->raw)
4537 size += data->raw->size;
4538 else
4539 size += sizeof(u32);
4540
4541 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4542 header->size += size;
7f453c24 4543 }
bce38cd5
SE
4544
4545 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4546 int size = sizeof(u64); /* nr */
4547 if (data->br_stack) {
4548 size += data->br_stack->nr
4549 * sizeof(struct perf_branch_entry);
4550 }
4551 header->size += size;
4552 }
4018994f
JO
4553
4554 if (sample_type & PERF_SAMPLE_REGS_USER) {
4555 /* regs dump ABI info */
4556 int size = sizeof(u64);
4557
4558 perf_sample_regs_user(&data->regs_user, regs);
4559
4560 if (data->regs_user.regs) {
4561 u64 mask = event->attr.sample_regs_user;
4562 size += hweight64(mask) * sizeof(u64);
4563 }
4564
4565 header->size += size;
4566 }
c5ebcedb
JO
4567
4568 if (sample_type & PERF_SAMPLE_STACK_USER) {
4569 /*
4570 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4571 * processed as the last one or have additional check added
4572 * in case new sample type is added, because we could eat
4573 * up the rest of the sample size.
4574 */
4575 struct perf_regs_user *uregs = &data->regs_user;
4576 u16 stack_size = event->attr.sample_stack_user;
4577 u16 size = sizeof(u64);
4578
4579 if (!uregs->abi)
4580 perf_sample_regs_user(uregs, regs);
4581
4582 stack_size = perf_sample_ustack_size(stack_size, header->size,
4583 uregs->regs);
4584
4585 /*
4586 * If there is something to dump, add space for the dump
4587 * itself and for the field that tells the dynamic size,
4588 * which is how many have been actually dumped.
4589 */
4590 if (stack_size)
4591 size += sizeof(u64) + stack_size;
4592
4593 data->stack_user_size = stack_size;
4594 header->size += size;
4595 }
5622f295 4596}
7f453c24 4597
a8b0ca17 4598static void perf_event_output(struct perf_event *event,
5622f295
MM
4599 struct perf_sample_data *data,
4600 struct pt_regs *regs)
4601{
4602 struct perf_output_handle handle;
4603 struct perf_event_header header;
689802b2 4604
927c7a9e
FW
4605 /* protect the callchain buffers */
4606 rcu_read_lock();
4607
cdd6c482 4608 perf_prepare_sample(&header, data, event, regs);
5c148194 4609
a7ac67ea 4610 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4611 goto exit;
0322cd6e 4612
cdd6c482 4613 perf_output_sample(&handle, &header, data, event);
f413cdb8 4614
8a057d84 4615 perf_output_end(&handle);
927c7a9e
FW
4616
4617exit:
4618 rcu_read_unlock();
0322cd6e
PZ
4619}
4620
38b200d6 4621/*
cdd6c482 4622 * read event_id
38b200d6
PZ
4623 */
4624
4625struct perf_read_event {
4626 struct perf_event_header header;
4627
4628 u32 pid;
4629 u32 tid;
38b200d6
PZ
4630};
4631
4632static void
cdd6c482 4633perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4634 struct task_struct *task)
4635{
4636 struct perf_output_handle handle;
c980d109 4637 struct perf_sample_data sample;
dfc65094 4638 struct perf_read_event read_event = {
38b200d6 4639 .header = {
cdd6c482 4640 .type = PERF_RECORD_READ,
38b200d6 4641 .misc = 0,
c320c7b7 4642 .size = sizeof(read_event) + event->read_size,
38b200d6 4643 },
cdd6c482
IM
4644 .pid = perf_event_pid(event, task),
4645 .tid = perf_event_tid(event, task),
38b200d6 4646 };
3dab77fb 4647 int ret;
38b200d6 4648
c980d109 4649 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4650 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4651 if (ret)
4652 return;
4653
dfc65094 4654 perf_output_put(&handle, read_event);
cdd6c482 4655 perf_output_read(&handle, event);
c980d109 4656 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4657
38b200d6
PZ
4658 perf_output_end(&handle);
4659}
4660
52d857a8
JO
4661typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4662typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4663
4664static void
4665perf_event_aux_ctx(struct perf_event_context *ctx,
4666 perf_event_aux_match_cb match,
4667 perf_event_aux_output_cb output,
4668 void *data)
4669{
4670 struct perf_event *event;
4671
4672 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4673 if (event->state < PERF_EVENT_STATE_INACTIVE)
4674 continue;
4675 if (!event_filter_match(event))
4676 continue;
4677 if (match(event, data))
4678 output(event, data);
4679 }
4680}
4681
4682static void
4683perf_event_aux(perf_event_aux_match_cb match,
4684 perf_event_aux_output_cb output,
4685 void *data,
4686 struct perf_event_context *task_ctx)
4687{
4688 struct perf_cpu_context *cpuctx;
4689 struct perf_event_context *ctx;
4690 struct pmu *pmu;
4691 int ctxn;
4692
4693 rcu_read_lock();
4694 list_for_each_entry_rcu(pmu, &pmus, entry) {
4695 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4696 if (cpuctx->unique_pmu != pmu)
4697 goto next;
4698 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4699 if (task_ctx)
4700 goto next;
4701 ctxn = pmu->task_ctx_nr;
4702 if (ctxn < 0)
4703 goto next;
4704 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4705 if (ctx)
4706 perf_event_aux_ctx(ctx, match, output, data);
4707next:
4708 put_cpu_ptr(pmu->pmu_cpu_context);
4709 }
4710
4711 if (task_ctx) {
4712 preempt_disable();
4713 perf_event_aux_ctx(task_ctx, match, output, data);
4714 preempt_enable();
4715 }
4716 rcu_read_unlock();
4717}
4718
60313ebe 4719/*
9f498cc5
PZ
4720 * task tracking -- fork/exit
4721 *
3af9e859 4722 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4723 */
4724
9f498cc5 4725struct perf_task_event {
3a80b4a3 4726 struct task_struct *task;
cdd6c482 4727 struct perf_event_context *task_ctx;
60313ebe
PZ
4728
4729 struct {
4730 struct perf_event_header header;
4731
4732 u32 pid;
4733 u32 ppid;
9f498cc5
PZ
4734 u32 tid;
4735 u32 ptid;
393b2ad8 4736 u64 time;
cdd6c482 4737 } event_id;
60313ebe
PZ
4738};
4739
cdd6c482 4740static void perf_event_task_output(struct perf_event *event,
52d857a8 4741 void *data)
60313ebe 4742{
52d857a8 4743 struct perf_task_event *task_event = data;
60313ebe 4744 struct perf_output_handle handle;
c980d109 4745 struct perf_sample_data sample;
9f498cc5 4746 struct task_struct *task = task_event->task;
c980d109 4747 int ret, size = task_event->event_id.header.size;
8bb39f9a 4748
c980d109 4749 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4750
c980d109 4751 ret = perf_output_begin(&handle, event,
a7ac67ea 4752 task_event->event_id.header.size);
ef60777c 4753 if (ret)
c980d109 4754 goto out;
60313ebe 4755
cdd6c482
IM
4756 task_event->event_id.pid = perf_event_pid(event, task);
4757 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4758
cdd6c482
IM
4759 task_event->event_id.tid = perf_event_tid(event, task);
4760 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4761
cdd6c482 4762 perf_output_put(&handle, task_event->event_id);
393b2ad8 4763
c980d109
ACM
4764 perf_event__output_id_sample(event, &handle, &sample);
4765
60313ebe 4766 perf_output_end(&handle);
c980d109
ACM
4767out:
4768 task_event->event_id.header.size = size;
60313ebe
PZ
4769}
4770
52d857a8
JO
4771static int perf_event_task_match(struct perf_event *event,
4772 void *data __maybe_unused)
60313ebe 4773{
52d857a8
JO
4774 return event->attr.comm || event->attr.mmap ||
4775 event->attr.mmap_data || event->attr.task;
60313ebe
PZ
4776}
4777
cdd6c482
IM
4778static void perf_event_task(struct task_struct *task,
4779 struct perf_event_context *task_ctx,
3a80b4a3 4780 int new)
60313ebe 4781{
9f498cc5 4782 struct perf_task_event task_event;
60313ebe 4783
cdd6c482
IM
4784 if (!atomic_read(&nr_comm_events) &&
4785 !atomic_read(&nr_mmap_events) &&
4786 !atomic_read(&nr_task_events))
60313ebe
PZ
4787 return;
4788
9f498cc5 4789 task_event = (struct perf_task_event){
3a80b4a3
PZ
4790 .task = task,
4791 .task_ctx = task_ctx,
cdd6c482 4792 .event_id = {
60313ebe 4793 .header = {
cdd6c482 4794 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4795 .misc = 0,
cdd6c482 4796 .size = sizeof(task_event.event_id),
60313ebe 4797 },
573402db
PZ
4798 /* .pid */
4799 /* .ppid */
9f498cc5
PZ
4800 /* .tid */
4801 /* .ptid */
6f93d0a7 4802 .time = perf_clock(),
60313ebe
PZ
4803 },
4804 };
4805
52d857a8
JO
4806 perf_event_aux(perf_event_task_match,
4807 perf_event_task_output,
4808 &task_event,
4809 task_ctx);
9f498cc5
PZ
4810}
4811
cdd6c482 4812void perf_event_fork(struct task_struct *task)
9f498cc5 4813{
cdd6c482 4814 perf_event_task(task, NULL, 1);
60313ebe
PZ
4815}
4816
8d1b2d93
PZ
4817/*
4818 * comm tracking
4819 */
4820
4821struct perf_comm_event {
22a4f650
IM
4822 struct task_struct *task;
4823 char *comm;
8d1b2d93
PZ
4824 int comm_size;
4825
4826 struct {
4827 struct perf_event_header header;
4828
4829 u32 pid;
4830 u32 tid;
cdd6c482 4831 } event_id;
8d1b2d93
PZ
4832};
4833
cdd6c482 4834static void perf_event_comm_output(struct perf_event *event,
52d857a8 4835 void *data)
8d1b2d93 4836{
52d857a8 4837 struct perf_comm_event *comm_event = data;
8d1b2d93 4838 struct perf_output_handle handle;
c980d109 4839 struct perf_sample_data sample;
cdd6c482 4840 int size = comm_event->event_id.header.size;
c980d109
ACM
4841 int ret;
4842
4843 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4844 ret = perf_output_begin(&handle, event,
a7ac67ea 4845 comm_event->event_id.header.size);
8d1b2d93
PZ
4846
4847 if (ret)
c980d109 4848 goto out;
8d1b2d93 4849
cdd6c482
IM
4850 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4851 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4852
cdd6c482 4853 perf_output_put(&handle, comm_event->event_id);
76369139 4854 __output_copy(&handle, comm_event->comm,
8d1b2d93 4855 comm_event->comm_size);
c980d109
ACM
4856
4857 perf_event__output_id_sample(event, &handle, &sample);
4858
8d1b2d93 4859 perf_output_end(&handle);
c980d109
ACM
4860out:
4861 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4862}
4863
52d857a8
JO
4864static int perf_event_comm_match(struct perf_event *event,
4865 void *data __maybe_unused)
8d1b2d93 4866{
52d857a8 4867 return event->attr.comm;
8d1b2d93
PZ
4868}
4869
cdd6c482 4870static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4871{
413ee3b4 4872 char comm[TASK_COMM_LEN];
8d1b2d93 4873 unsigned int size;
8d1b2d93 4874
413ee3b4 4875 memset(comm, 0, sizeof(comm));
96b02d78 4876 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4877 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4878
4879 comm_event->comm = comm;
4880 comm_event->comm_size = size;
4881
cdd6c482 4882 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4883
52d857a8
JO
4884 perf_event_aux(perf_event_comm_match,
4885 perf_event_comm_output,
4886 comm_event,
4887 NULL);
8d1b2d93
PZ
4888}
4889
cdd6c482 4890void perf_event_comm(struct task_struct *task)
8d1b2d93 4891{
9ee318a7 4892 struct perf_comm_event comm_event;
8dc85d54
PZ
4893 struct perf_event_context *ctx;
4894 int ctxn;
9ee318a7 4895
c79aa0d9 4896 rcu_read_lock();
8dc85d54
PZ
4897 for_each_task_context_nr(ctxn) {
4898 ctx = task->perf_event_ctxp[ctxn];
4899 if (!ctx)
4900 continue;
9ee318a7 4901
8dc85d54
PZ
4902 perf_event_enable_on_exec(ctx);
4903 }
c79aa0d9 4904 rcu_read_unlock();
9ee318a7 4905
cdd6c482 4906 if (!atomic_read(&nr_comm_events))
9ee318a7 4907 return;
a63eaf34 4908
9ee318a7 4909 comm_event = (struct perf_comm_event){
8d1b2d93 4910 .task = task,
573402db
PZ
4911 /* .comm */
4912 /* .comm_size */
cdd6c482 4913 .event_id = {
573402db 4914 .header = {
cdd6c482 4915 .type = PERF_RECORD_COMM,
573402db
PZ
4916 .misc = 0,
4917 /* .size */
4918 },
4919 /* .pid */
4920 /* .tid */
8d1b2d93
PZ
4921 },
4922 };
4923
cdd6c482 4924 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4925}
4926
0a4a9391
PZ
4927/*
4928 * mmap tracking
4929 */
4930
4931struct perf_mmap_event {
089dd79d
PZ
4932 struct vm_area_struct *vma;
4933
4934 const char *file_name;
4935 int file_size;
0a4a9391
PZ
4936
4937 struct {
4938 struct perf_event_header header;
4939
4940 u32 pid;
4941 u32 tid;
4942 u64 start;
4943 u64 len;
4944 u64 pgoff;
cdd6c482 4945 } event_id;
0a4a9391
PZ
4946};
4947
cdd6c482 4948static void perf_event_mmap_output(struct perf_event *event,
52d857a8 4949 void *data)
0a4a9391 4950{
52d857a8 4951 struct perf_mmap_event *mmap_event = data;
0a4a9391 4952 struct perf_output_handle handle;
c980d109 4953 struct perf_sample_data sample;
cdd6c482 4954 int size = mmap_event->event_id.header.size;
c980d109 4955 int ret;
0a4a9391 4956
c980d109
ACM
4957 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4958 ret = perf_output_begin(&handle, event,
a7ac67ea 4959 mmap_event->event_id.header.size);
0a4a9391 4960 if (ret)
c980d109 4961 goto out;
0a4a9391 4962
cdd6c482
IM
4963 mmap_event->event_id.pid = perf_event_pid(event, current);
4964 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4965
cdd6c482 4966 perf_output_put(&handle, mmap_event->event_id);
76369139 4967 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4968 mmap_event->file_size);
c980d109
ACM
4969
4970 perf_event__output_id_sample(event, &handle, &sample);
4971
78d613eb 4972 perf_output_end(&handle);
c980d109
ACM
4973out:
4974 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4975}
4976
cdd6c482 4977static int perf_event_mmap_match(struct perf_event *event,
52d857a8 4978 void *data)
0a4a9391 4979{
52d857a8
JO
4980 struct perf_mmap_event *mmap_event = data;
4981 struct vm_area_struct *vma = mmap_event->vma;
4982 int executable = vma->vm_flags & VM_EXEC;
0a4a9391 4983
52d857a8
JO
4984 return (!executable && event->attr.mmap_data) ||
4985 (executable && event->attr.mmap);
0a4a9391
PZ
4986}
4987
cdd6c482 4988static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 4989{
089dd79d
PZ
4990 struct vm_area_struct *vma = mmap_event->vma;
4991 struct file *file = vma->vm_file;
0a4a9391
PZ
4992 unsigned int size;
4993 char tmp[16];
4994 char *buf = NULL;
089dd79d 4995 const char *name;
0a4a9391 4996
413ee3b4
AB
4997 memset(tmp, 0, sizeof(tmp));
4998
0a4a9391 4999 if (file) {
413ee3b4 5000 /*
76369139 5001 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5002 * need to add enough zero bytes after the string to handle
5003 * the 64bit alignment we do later.
5004 */
5005 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5006 if (!buf) {
5007 name = strncpy(tmp, "//enomem", sizeof(tmp));
5008 goto got_name;
5009 }
d3d21c41 5010 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5011 if (IS_ERR(name)) {
5012 name = strncpy(tmp, "//toolong", sizeof(tmp));
5013 goto got_name;
5014 }
5015 } else {
413ee3b4
AB
5016 if (arch_vma_name(mmap_event->vma)) {
5017 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5018 sizeof(tmp) - 1);
5019 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5020 goto got_name;
413ee3b4 5021 }
089dd79d
PZ
5022
5023 if (!vma->vm_mm) {
5024 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5025 goto got_name;
3af9e859
EM
5026 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5027 vma->vm_end >= vma->vm_mm->brk) {
5028 name = strncpy(tmp, "[heap]", sizeof(tmp));
5029 goto got_name;
5030 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5031 vma->vm_end >= vma->vm_mm->start_stack) {
5032 name = strncpy(tmp, "[stack]", sizeof(tmp));
5033 goto got_name;
089dd79d
PZ
5034 }
5035
0a4a9391
PZ
5036 name = strncpy(tmp, "//anon", sizeof(tmp));
5037 goto got_name;
5038 }
5039
5040got_name:
888fcee0 5041 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5042
5043 mmap_event->file_name = name;
5044 mmap_event->file_size = size;
5045
2fe85427
SE
5046 if (!(vma->vm_flags & VM_EXEC))
5047 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5048
cdd6c482 5049 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5050
52d857a8
JO
5051 perf_event_aux(perf_event_mmap_match,
5052 perf_event_mmap_output,
5053 mmap_event,
5054 NULL);
665c2142 5055
0a4a9391
PZ
5056 kfree(buf);
5057}
5058
3af9e859 5059void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5060{
9ee318a7
PZ
5061 struct perf_mmap_event mmap_event;
5062
cdd6c482 5063 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5064 return;
5065
5066 mmap_event = (struct perf_mmap_event){
089dd79d 5067 .vma = vma,
573402db
PZ
5068 /* .file_name */
5069 /* .file_size */
cdd6c482 5070 .event_id = {
573402db 5071 .header = {
cdd6c482 5072 .type = PERF_RECORD_MMAP,
39447b38 5073 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5074 /* .size */
5075 },
5076 /* .pid */
5077 /* .tid */
089dd79d
PZ
5078 .start = vma->vm_start,
5079 .len = vma->vm_end - vma->vm_start,
3a0304e9 5080 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5081 },
5082 };
5083
cdd6c482 5084 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5085}
5086
a78ac325
PZ
5087/*
5088 * IRQ throttle logging
5089 */
5090
cdd6c482 5091static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5092{
5093 struct perf_output_handle handle;
c980d109 5094 struct perf_sample_data sample;
a78ac325
PZ
5095 int ret;
5096
5097 struct {
5098 struct perf_event_header header;
5099 u64 time;
cca3f454 5100 u64 id;
7f453c24 5101 u64 stream_id;
a78ac325
PZ
5102 } throttle_event = {
5103 .header = {
cdd6c482 5104 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5105 .misc = 0,
5106 .size = sizeof(throttle_event),
5107 },
def0a9b2 5108 .time = perf_clock(),
cdd6c482
IM
5109 .id = primary_event_id(event),
5110 .stream_id = event->id,
a78ac325
PZ
5111 };
5112
966ee4d6 5113 if (enable)
cdd6c482 5114 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5115
c980d109
ACM
5116 perf_event_header__init_id(&throttle_event.header, &sample, event);
5117
5118 ret = perf_output_begin(&handle, event,
a7ac67ea 5119 throttle_event.header.size);
a78ac325
PZ
5120 if (ret)
5121 return;
5122
5123 perf_output_put(&handle, throttle_event);
c980d109 5124 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5125 perf_output_end(&handle);
5126}
5127
f6c7d5fe 5128/*
cdd6c482 5129 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5130 */
5131
a8b0ca17 5132static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5133 int throttle, struct perf_sample_data *data,
5134 struct pt_regs *regs)
f6c7d5fe 5135{
cdd6c482
IM
5136 int events = atomic_read(&event->event_limit);
5137 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5138 u64 seq;
79f14641
PZ
5139 int ret = 0;
5140
96398826
PZ
5141 /*
5142 * Non-sampling counters might still use the PMI to fold short
5143 * hardware counters, ignore those.
5144 */
5145 if (unlikely(!is_sampling_event(event)))
5146 return 0;
5147
e050e3f0
SE
5148 seq = __this_cpu_read(perf_throttled_seq);
5149 if (seq != hwc->interrupts_seq) {
5150 hwc->interrupts_seq = seq;
5151 hwc->interrupts = 1;
5152 } else {
5153 hwc->interrupts++;
5154 if (unlikely(throttle
5155 && hwc->interrupts >= max_samples_per_tick)) {
5156 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5157 hwc->interrupts = MAX_INTERRUPTS;
5158 perf_log_throttle(event, 0);
a78ac325
PZ
5159 ret = 1;
5160 }
e050e3f0 5161 }
60db5e09 5162
cdd6c482 5163 if (event->attr.freq) {
def0a9b2 5164 u64 now = perf_clock();
abd50713 5165 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5166
abd50713 5167 hwc->freq_time_stamp = now;
bd2b5b12 5168
abd50713 5169 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5170 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5171 }
5172
2023b359
PZ
5173 /*
5174 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5175 * events
2023b359
PZ
5176 */
5177
cdd6c482
IM
5178 event->pending_kill = POLL_IN;
5179 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5180 ret = 1;
cdd6c482 5181 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5182 event->pending_disable = 1;
5183 irq_work_queue(&event->pending);
79f14641
PZ
5184 }
5185
453f19ee 5186 if (event->overflow_handler)
a8b0ca17 5187 event->overflow_handler(event, data, regs);
453f19ee 5188 else
a8b0ca17 5189 perf_event_output(event, data, regs);
453f19ee 5190
f506b3dc 5191 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5192 event->pending_wakeup = 1;
5193 irq_work_queue(&event->pending);
f506b3dc
PZ
5194 }
5195
79f14641 5196 return ret;
f6c7d5fe
PZ
5197}
5198
a8b0ca17 5199int perf_event_overflow(struct perf_event *event,
5622f295
MM
5200 struct perf_sample_data *data,
5201 struct pt_regs *regs)
850bc73f 5202{
a8b0ca17 5203 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5204}
5205
15dbf27c 5206/*
cdd6c482 5207 * Generic software event infrastructure
15dbf27c
PZ
5208 */
5209
b28ab83c
PZ
5210struct swevent_htable {
5211 struct swevent_hlist *swevent_hlist;
5212 struct mutex hlist_mutex;
5213 int hlist_refcount;
5214
5215 /* Recursion avoidance in each contexts */
5216 int recursion[PERF_NR_CONTEXTS];
5217};
5218
5219static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5220
7b4b6658 5221/*
cdd6c482
IM
5222 * We directly increment event->count and keep a second value in
5223 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5224 * is kept in the range [-sample_period, 0] so that we can use the
5225 * sign as trigger.
5226 */
5227
ab573844 5228u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5229{
cdd6c482 5230 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5231 u64 period = hwc->last_period;
5232 u64 nr, offset;
5233 s64 old, val;
5234
5235 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5236
5237again:
e7850595 5238 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5239 if (val < 0)
5240 return 0;
15dbf27c 5241
7b4b6658
PZ
5242 nr = div64_u64(period + val, period);
5243 offset = nr * period;
5244 val -= offset;
e7850595 5245 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5246 goto again;
15dbf27c 5247
7b4b6658 5248 return nr;
15dbf27c
PZ
5249}
5250
0cff784a 5251static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5252 struct perf_sample_data *data,
5622f295 5253 struct pt_regs *regs)
15dbf27c 5254{
cdd6c482 5255 struct hw_perf_event *hwc = &event->hw;
850bc73f 5256 int throttle = 0;
15dbf27c 5257
0cff784a
PZ
5258 if (!overflow)
5259 overflow = perf_swevent_set_period(event);
15dbf27c 5260
7b4b6658
PZ
5261 if (hwc->interrupts == MAX_INTERRUPTS)
5262 return;
15dbf27c 5263
7b4b6658 5264 for (; overflow; overflow--) {
a8b0ca17 5265 if (__perf_event_overflow(event, throttle,
5622f295 5266 data, regs)) {
7b4b6658
PZ
5267 /*
5268 * We inhibit the overflow from happening when
5269 * hwc->interrupts == MAX_INTERRUPTS.
5270 */
5271 break;
5272 }
cf450a73 5273 throttle = 1;
7b4b6658 5274 }
15dbf27c
PZ
5275}
5276
a4eaf7f1 5277static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5278 struct perf_sample_data *data,
5622f295 5279 struct pt_regs *regs)
7b4b6658 5280{
cdd6c482 5281 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5282
e7850595 5283 local64_add(nr, &event->count);
d6d020e9 5284
0cff784a
PZ
5285 if (!regs)
5286 return;
5287
6c7e550f 5288 if (!is_sampling_event(event))
7b4b6658 5289 return;
d6d020e9 5290
5d81e5cf
AV
5291 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5292 data->period = nr;
5293 return perf_swevent_overflow(event, 1, data, regs);
5294 } else
5295 data->period = event->hw.last_period;
5296
0cff784a 5297 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5298 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5299
e7850595 5300 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5301 return;
df1a132b 5302
a8b0ca17 5303 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5304}
5305
f5ffe02e
FW
5306static int perf_exclude_event(struct perf_event *event,
5307 struct pt_regs *regs)
5308{
a4eaf7f1 5309 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5310 return 1;
a4eaf7f1 5311
f5ffe02e
FW
5312 if (regs) {
5313 if (event->attr.exclude_user && user_mode(regs))
5314 return 1;
5315
5316 if (event->attr.exclude_kernel && !user_mode(regs))
5317 return 1;
5318 }
5319
5320 return 0;
5321}
5322
cdd6c482 5323static int perf_swevent_match(struct perf_event *event,
1c432d89 5324 enum perf_type_id type,
6fb2915d
LZ
5325 u32 event_id,
5326 struct perf_sample_data *data,
5327 struct pt_regs *regs)
15dbf27c 5328{
cdd6c482 5329 if (event->attr.type != type)
a21ca2ca 5330 return 0;
f5ffe02e 5331
cdd6c482 5332 if (event->attr.config != event_id)
15dbf27c
PZ
5333 return 0;
5334
f5ffe02e
FW
5335 if (perf_exclude_event(event, regs))
5336 return 0;
15dbf27c
PZ
5337
5338 return 1;
5339}
5340
76e1d904
FW
5341static inline u64 swevent_hash(u64 type, u32 event_id)
5342{
5343 u64 val = event_id | (type << 32);
5344
5345 return hash_64(val, SWEVENT_HLIST_BITS);
5346}
5347
49f135ed
FW
5348static inline struct hlist_head *
5349__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5350{
49f135ed
FW
5351 u64 hash = swevent_hash(type, event_id);
5352
5353 return &hlist->heads[hash];
5354}
76e1d904 5355
49f135ed
FW
5356/* For the read side: events when they trigger */
5357static inline struct hlist_head *
b28ab83c 5358find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5359{
5360 struct swevent_hlist *hlist;
76e1d904 5361
b28ab83c 5362 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5363 if (!hlist)
5364 return NULL;
5365
49f135ed
FW
5366 return __find_swevent_head(hlist, type, event_id);
5367}
5368
5369/* For the event head insertion and removal in the hlist */
5370static inline struct hlist_head *
b28ab83c 5371find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5372{
5373 struct swevent_hlist *hlist;
5374 u32 event_id = event->attr.config;
5375 u64 type = event->attr.type;
5376
5377 /*
5378 * Event scheduling is always serialized against hlist allocation
5379 * and release. Which makes the protected version suitable here.
5380 * The context lock guarantees that.
5381 */
b28ab83c 5382 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5383 lockdep_is_held(&event->ctx->lock));
5384 if (!hlist)
5385 return NULL;
5386
5387 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5388}
5389
5390static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5391 u64 nr,
76e1d904
FW
5392 struct perf_sample_data *data,
5393 struct pt_regs *regs)
15dbf27c 5394{
b28ab83c 5395 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5396 struct perf_event *event;
76e1d904 5397 struct hlist_head *head;
15dbf27c 5398
76e1d904 5399 rcu_read_lock();
b28ab83c 5400 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5401 if (!head)
5402 goto end;
5403
b67bfe0d 5404 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5405 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5406 perf_swevent_event(event, nr, data, regs);
15dbf27c 5407 }
76e1d904
FW
5408end:
5409 rcu_read_unlock();
15dbf27c
PZ
5410}
5411
4ed7c92d 5412int perf_swevent_get_recursion_context(void)
96f6d444 5413{
b28ab83c 5414 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5415
b28ab83c 5416 return get_recursion_context(swhash->recursion);
96f6d444 5417}
645e8cc0 5418EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5419
fa9f90be 5420inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5421{
b28ab83c 5422 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5423
b28ab83c 5424 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5425}
15dbf27c 5426
a8b0ca17 5427void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5428{
a4234bfc 5429 struct perf_sample_data data;
4ed7c92d
PZ
5430 int rctx;
5431
1c024eca 5432 preempt_disable_notrace();
4ed7c92d
PZ
5433 rctx = perf_swevent_get_recursion_context();
5434 if (rctx < 0)
5435 return;
a4234bfc 5436
fd0d000b 5437 perf_sample_data_init(&data, addr, 0);
92bf309a 5438
a8b0ca17 5439 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5440
5441 perf_swevent_put_recursion_context(rctx);
1c024eca 5442 preempt_enable_notrace();
b8e83514
PZ
5443}
5444
cdd6c482 5445static void perf_swevent_read(struct perf_event *event)
15dbf27c 5446{
15dbf27c
PZ
5447}
5448
a4eaf7f1 5449static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5450{
b28ab83c 5451 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5452 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5453 struct hlist_head *head;
5454
6c7e550f 5455 if (is_sampling_event(event)) {
7b4b6658 5456 hwc->last_period = hwc->sample_period;
cdd6c482 5457 perf_swevent_set_period(event);
7b4b6658 5458 }
76e1d904 5459
a4eaf7f1
PZ
5460 hwc->state = !(flags & PERF_EF_START);
5461
b28ab83c 5462 head = find_swevent_head(swhash, event);
76e1d904
FW
5463 if (WARN_ON_ONCE(!head))
5464 return -EINVAL;
5465
5466 hlist_add_head_rcu(&event->hlist_entry, head);
5467
15dbf27c
PZ
5468 return 0;
5469}
5470
a4eaf7f1 5471static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5472{
76e1d904 5473 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5474}
5475
a4eaf7f1 5476static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5477{
a4eaf7f1 5478 event->hw.state = 0;
d6d020e9 5479}
aa9c4c0f 5480
a4eaf7f1 5481static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5482{
a4eaf7f1 5483 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5484}
5485
49f135ed
FW
5486/* Deref the hlist from the update side */
5487static inline struct swevent_hlist *
b28ab83c 5488swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5489{
b28ab83c
PZ
5490 return rcu_dereference_protected(swhash->swevent_hlist,
5491 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5492}
5493
b28ab83c 5494static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5495{
b28ab83c 5496 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5497
49f135ed 5498 if (!hlist)
76e1d904
FW
5499 return;
5500
b28ab83c 5501 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5502 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5503}
5504
5505static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5506{
b28ab83c 5507 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5508
b28ab83c 5509 mutex_lock(&swhash->hlist_mutex);
76e1d904 5510
b28ab83c
PZ
5511 if (!--swhash->hlist_refcount)
5512 swevent_hlist_release(swhash);
76e1d904 5513
b28ab83c 5514 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5515}
5516
5517static void swevent_hlist_put(struct perf_event *event)
5518{
5519 int cpu;
5520
5521 if (event->cpu != -1) {
5522 swevent_hlist_put_cpu(event, event->cpu);
5523 return;
5524 }
5525
5526 for_each_possible_cpu(cpu)
5527 swevent_hlist_put_cpu(event, cpu);
5528}
5529
5530static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5531{
b28ab83c 5532 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5533 int err = 0;
5534
b28ab83c 5535 mutex_lock(&swhash->hlist_mutex);
76e1d904 5536
b28ab83c 5537 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5538 struct swevent_hlist *hlist;
5539
5540 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5541 if (!hlist) {
5542 err = -ENOMEM;
5543 goto exit;
5544 }
b28ab83c 5545 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5546 }
b28ab83c 5547 swhash->hlist_refcount++;
9ed6060d 5548exit:
b28ab83c 5549 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5550
5551 return err;
5552}
5553
5554static int swevent_hlist_get(struct perf_event *event)
5555{
5556 int err;
5557 int cpu, failed_cpu;
5558
5559 if (event->cpu != -1)
5560 return swevent_hlist_get_cpu(event, event->cpu);
5561
5562 get_online_cpus();
5563 for_each_possible_cpu(cpu) {
5564 err = swevent_hlist_get_cpu(event, cpu);
5565 if (err) {
5566 failed_cpu = cpu;
5567 goto fail;
5568 }
5569 }
5570 put_online_cpus();
5571
5572 return 0;
9ed6060d 5573fail:
76e1d904
FW
5574 for_each_possible_cpu(cpu) {
5575 if (cpu == failed_cpu)
5576 break;
5577 swevent_hlist_put_cpu(event, cpu);
5578 }
5579
5580 put_online_cpus();
5581 return err;
5582}
5583
c5905afb 5584struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5585
b0a873eb
PZ
5586static void sw_perf_event_destroy(struct perf_event *event)
5587{
5588 u64 event_id = event->attr.config;
95476b64 5589
b0a873eb
PZ
5590 WARN_ON(event->parent);
5591
c5905afb 5592 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5593 swevent_hlist_put(event);
5594}
5595
5596static int perf_swevent_init(struct perf_event *event)
5597{
8176cced 5598 u64 event_id = event->attr.config;
b0a873eb
PZ
5599
5600 if (event->attr.type != PERF_TYPE_SOFTWARE)
5601 return -ENOENT;
5602
2481c5fa
SE
5603 /*
5604 * no branch sampling for software events
5605 */
5606 if (has_branch_stack(event))
5607 return -EOPNOTSUPP;
5608
b0a873eb
PZ
5609 switch (event_id) {
5610 case PERF_COUNT_SW_CPU_CLOCK:
5611 case PERF_COUNT_SW_TASK_CLOCK:
5612 return -ENOENT;
5613
5614 default:
5615 break;
5616 }
5617
ce677831 5618 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5619 return -ENOENT;
5620
5621 if (!event->parent) {
5622 int err;
5623
5624 err = swevent_hlist_get(event);
5625 if (err)
5626 return err;
5627
c5905afb 5628 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5629 event->destroy = sw_perf_event_destroy;
5630 }
5631
5632 return 0;
5633}
5634
35edc2a5
PZ
5635static int perf_swevent_event_idx(struct perf_event *event)
5636{
5637 return 0;
5638}
5639
b0a873eb 5640static struct pmu perf_swevent = {
89a1e187 5641 .task_ctx_nr = perf_sw_context,
95476b64 5642
b0a873eb 5643 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5644 .add = perf_swevent_add,
5645 .del = perf_swevent_del,
5646 .start = perf_swevent_start,
5647 .stop = perf_swevent_stop,
1c024eca 5648 .read = perf_swevent_read,
35edc2a5
PZ
5649
5650 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5651};
5652
b0a873eb
PZ
5653#ifdef CONFIG_EVENT_TRACING
5654
1c024eca
PZ
5655static int perf_tp_filter_match(struct perf_event *event,
5656 struct perf_sample_data *data)
5657{
5658 void *record = data->raw->data;
5659
5660 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5661 return 1;
5662 return 0;
5663}
5664
5665static int perf_tp_event_match(struct perf_event *event,
5666 struct perf_sample_data *data,
5667 struct pt_regs *regs)
5668{
a0f7d0f7
FW
5669 if (event->hw.state & PERF_HES_STOPPED)
5670 return 0;
580d607c
PZ
5671 /*
5672 * All tracepoints are from kernel-space.
5673 */
5674 if (event->attr.exclude_kernel)
1c024eca
PZ
5675 return 0;
5676
5677 if (!perf_tp_filter_match(event, data))
5678 return 0;
5679
5680 return 1;
5681}
5682
5683void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5684 struct pt_regs *regs, struct hlist_head *head, int rctx,
5685 struct task_struct *task)
95476b64
FW
5686{
5687 struct perf_sample_data data;
1c024eca 5688 struct perf_event *event;
1c024eca 5689
95476b64
FW
5690 struct perf_raw_record raw = {
5691 .size = entry_size,
5692 .data = record,
5693 };
5694
fd0d000b 5695 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5696 data.raw = &raw;
5697
b67bfe0d 5698 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5699 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5700 perf_swevent_event(event, count, &data, regs);
4f41c013 5701 }
ecc55f84 5702
e6dab5ff
AV
5703 /*
5704 * If we got specified a target task, also iterate its context and
5705 * deliver this event there too.
5706 */
5707 if (task && task != current) {
5708 struct perf_event_context *ctx;
5709 struct trace_entry *entry = record;
5710
5711 rcu_read_lock();
5712 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5713 if (!ctx)
5714 goto unlock;
5715
5716 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5717 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5718 continue;
5719 if (event->attr.config != entry->type)
5720 continue;
5721 if (perf_tp_event_match(event, &data, regs))
5722 perf_swevent_event(event, count, &data, regs);
5723 }
5724unlock:
5725 rcu_read_unlock();
5726 }
5727
ecc55f84 5728 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5729}
5730EXPORT_SYMBOL_GPL(perf_tp_event);
5731
cdd6c482 5732static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5733{
1c024eca 5734 perf_trace_destroy(event);
e077df4f
PZ
5735}
5736
b0a873eb 5737static int perf_tp_event_init(struct perf_event *event)
e077df4f 5738{
76e1d904
FW
5739 int err;
5740
b0a873eb
PZ
5741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5742 return -ENOENT;
5743
2481c5fa
SE
5744 /*
5745 * no branch sampling for tracepoint events
5746 */
5747 if (has_branch_stack(event))
5748 return -EOPNOTSUPP;
5749
1c024eca
PZ
5750 err = perf_trace_init(event);
5751 if (err)
b0a873eb 5752 return err;
e077df4f 5753
cdd6c482 5754 event->destroy = tp_perf_event_destroy;
e077df4f 5755
b0a873eb
PZ
5756 return 0;
5757}
5758
5759static struct pmu perf_tracepoint = {
89a1e187
PZ
5760 .task_ctx_nr = perf_sw_context,
5761
b0a873eb 5762 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5763 .add = perf_trace_add,
5764 .del = perf_trace_del,
5765 .start = perf_swevent_start,
5766 .stop = perf_swevent_stop,
b0a873eb 5767 .read = perf_swevent_read,
35edc2a5
PZ
5768
5769 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5770};
5771
5772static inline void perf_tp_register(void)
5773{
2e80a82a 5774 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5775}
6fb2915d
LZ
5776
5777static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5778{
5779 char *filter_str;
5780 int ret;
5781
5782 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5783 return -EINVAL;
5784
5785 filter_str = strndup_user(arg, PAGE_SIZE);
5786 if (IS_ERR(filter_str))
5787 return PTR_ERR(filter_str);
5788
5789 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5790
5791 kfree(filter_str);
5792 return ret;
5793}
5794
5795static void perf_event_free_filter(struct perf_event *event)
5796{
5797 ftrace_profile_free_filter(event);
5798}
5799
e077df4f 5800#else
6fb2915d 5801
b0a873eb 5802static inline void perf_tp_register(void)
e077df4f 5803{
e077df4f 5804}
6fb2915d
LZ
5805
5806static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5807{
5808 return -ENOENT;
5809}
5810
5811static void perf_event_free_filter(struct perf_event *event)
5812{
5813}
5814
07b139c8 5815#endif /* CONFIG_EVENT_TRACING */
e077df4f 5816
24f1e32c 5817#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5818void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5819{
f5ffe02e
FW
5820 struct perf_sample_data sample;
5821 struct pt_regs *regs = data;
5822
fd0d000b 5823 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5824
a4eaf7f1 5825 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5826 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5827}
5828#endif
5829
b0a873eb
PZ
5830/*
5831 * hrtimer based swevent callback
5832 */
f29ac756 5833
b0a873eb 5834static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5835{
b0a873eb
PZ
5836 enum hrtimer_restart ret = HRTIMER_RESTART;
5837 struct perf_sample_data data;
5838 struct pt_regs *regs;
5839 struct perf_event *event;
5840 u64 period;
f29ac756 5841
b0a873eb 5842 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5843
5844 if (event->state != PERF_EVENT_STATE_ACTIVE)
5845 return HRTIMER_NORESTART;
5846
b0a873eb 5847 event->pmu->read(event);
f344011c 5848
fd0d000b 5849 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5850 regs = get_irq_regs();
5851
5852 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5853 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5854 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5855 ret = HRTIMER_NORESTART;
5856 }
24f1e32c 5857
b0a873eb
PZ
5858 period = max_t(u64, 10000, event->hw.sample_period);
5859 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5860
b0a873eb 5861 return ret;
f29ac756
PZ
5862}
5863
b0a873eb 5864static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5865{
b0a873eb 5866 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5867 s64 period;
5868
5869 if (!is_sampling_event(event))
5870 return;
f5ffe02e 5871
5d508e82
FBH
5872 period = local64_read(&hwc->period_left);
5873 if (period) {
5874 if (period < 0)
5875 period = 10000;
fa407f35 5876
5d508e82
FBH
5877 local64_set(&hwc->period_left, 0);
5878 } else {
5879 period = max_t(u64, 10000, hwc->sample_period);
5880 }
5881 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5882 ns_to_ktime(period), 0,
b5ab4cd5 5883 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5884}
b0a873eb
PZ
5885
5886static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5887{
b0a873eb
PZ
5888 struct hw_perf_event *hwc = &event->hw;
5889
6c7e550f 5890 if (is_sampling_event(event)) {
b0a873eb 5891 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5892 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5893
5894 hrtimer_cancel(&hwc->hrtimer);
5895 }
24f1e32c
FW
5896}
5897
ba3dd36c
PZ
5898static void perf_swevent_init_hrtimer(struct perf_event *event)
5899{
5900 struct hw_perf_event *hwc = &event->hw;
5901
5902 if (!is_sampling_event(event))
5903 return;
5904
5905 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5906 hwc->hrtimer.function = perf_swevent_hrtimer;
5907
5908 /*
5909 * Since hrtimers have a fixed rate, we can do a static freq->period
5910 * mapping and avoid the whole period adjust feedback stuff.
5911 */
5912 if (event->attr.freq) {
5913 long freq = event->attr.sample_freq;
5914
5915 event->attr.sample_period = NSEC_PER_SEC / freq;
5916 hwc->sample_period = event->attr.sample_period;
5917 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5918 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5919 event->attr.freq = 0;
5920 }
5921}
5922
b0a873eb
PZ
5923/*
5924 * Software event: cpu wall time clock
5925 */
5926
5927static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5928{
b0a873eb
PZ
5929 s64 prev;
5930 u64 now;
5931
a4eaf7f1 5932 now = local_clock();
b0a873eb
PZ
5933 prev = local64_xchg(&event->hw.prev_count, now);
5934 local64_add(now - prev, &event->count);
24f1e32c 5935}
24f1e32c 5936
a4eaf7f1 5937static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5938{
a4eaf7f1 5939 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5940 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5941}
5942
a4eaf7f1 5943static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5944{
b0a873eb
PZ
5945 perf_swevent_cancel_hrtimer(event);
5946 cpu_clock_event_update(event);
5947}
f29ac756 5948
a4eaf7f1
PZ
5949static int cpu_clock_event_add(struct perf_event *event, int flags)
5950{
5951 if (flags & PERF_EF_START)
5952 cpu_clock_event_start(event, flags);
5953
5954 return 0;
5955}
5956
5957static void cpu_clock_event_del(struct perf_event *event, int flags)
5958{
5959 cpu_clock_event_stop(event, flags);
5960}
5961
b0a873eb
PZ
5962static void cpu_clock_event_read(struct perf_event *event)
5963{
5964 cpu_clock_event_update(event);
5965}
f344011c 5966
b0a873eb
PZ
5967static int cpu_clock_event_init(struct perf_event *event)
5968{
5969 if (event->attr.type != PERF_TYPE_SOFTWARE)
5970 return -ENOENT;
5971
5972 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5973 return -ENOENT;
5974
2481c5fa
SE
5975 /*
5976 * no branch sampling for software events
5977 */
5978 if (has_branch_stack(event))
5979 return -EOPNOTSUPP;
5980
ba3dd36c
PZ
5981 perf_swevent_init_hrtimer(event);
5982
b0a873eb 5983 return 0;
f29ac756
PZ
5984}
5985
b0a873eb 5986static struct pmu perf_cpu_clock = {
89a1e187
PZ
5987 .task_ctx_nr = perf_sw_context,
5988
b0a873eb 5989 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5990 .add = cpu_clock_event_add,
5991 .del = cpu_clock_event_del,
5992 .start = cpu_clock_event_start,
5993 .stop = cpu_clock_event_stop,
b0a873eb 5994 .read = cpu_clock_event_read,
35edc2a5
PZ
5995
5996 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5997};
5998
5999/*
6000 * Software event: task time clock
6001 */
6002
6003static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6004{
b0a873eb
PZ
6005 u64 prev;
6006 s64 delta;
5c92d124 6007
b0a873eb
PZ
6008 prev = local64_xchg(&event->hw.prev_count, now);
6009 delta = now - prev;
6010 local64_add(delta, &event->count);
6011}
5c92d124 6012
a4eaf7f1 6013static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6014{
a4eaf7f1 6015 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6016 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6017}
6018
a4eaf7f1 6019static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6020{
6021 perf_swevent_cancel_hrtimer(event);
6022 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6023}
6024
6025static int task_clock_event_add(struct perf_event *event, int flags)
6026{
6027 if (flags & PERF_EF_START)
6028 task_clock_event_start(event, flags);
b0a873eb 6029
a4eaf7f1
PZ
6030 return 0;
6031}
6032
6033static void task_clock_event_del(struct perf_event *event, int flags)
6034{
6035 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6036}
6037
6038static void task_clock_event_read(struct perf_event *event)
6039{
768a06e2
PZ
6040 u64 now = perf_clock();
6041 u64 delta = now - event->ctx->timestamp;
6042 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6043
6044 task_clock_event_update(event, time);
6045}
6046
6047static int task_clock_event_init(struct perf_event *event)
6fb2915d 6048{
b0a873eb
PZ
6049 if (event->attr.type != PERF_TYPE_SOFTWARE)
6050 return -ENOENT;
6051
6052 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6053 return -ENOENT;
6054
2481c5fa
SE
6055 /*
6056 * no branch sampling for software events
6057 */
6058 if (has_branch_stack(event))
6059 return -EOPNOTSUPP;
6060
ba3dd36c
PZ
6061 perf_swevent_init_hrtimer(event);
6062
b0a873eb 6063 return 0;
6fb2915d
LZ
6064}
6065
b0a873eb 6066static struct pmu perf_task_clock = {
89a1e187
PZ
6067 .task_ctx_nr = perf_sw_context,
6068
b0a873eb 6069 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6070 .add = task_clock_event_add,
6071 .del = task_clock_event_del,
6072 .start = task_clock_event_start,
6073 .stop = task_clock_event_stop,
b0a873eb 6074 .read = task_clock_event_read,
35edc2a5
PZ
6075
6076 .event_idx = perf_swevent_event_idx,
b0a873eb 6077};
6fb2915d 6078
ad5133b7 6079static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6080{
e077df4f 6081}
6fb2915d 6082
ad5133b7 6083static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6084{
ad5133b7 6085 return 0;
6fb2915d
LZ
6086}
6087
ad5133b7 6088static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6089{
ad5133b7 6090 perf_pmu_disable(pmu);
6fb2915d
LZ
6091}
6092
ad5133b7
PZ
6093static int perf_pmu_commit_txn(struct pmu *pmu)
6094{
6095 perf_pmu_enable(pmu);
6096 return 0;
6097}
e077df4f 6098
ad5133b7 6099static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6100{
ad5133b7 6101 perf_pmu_enable(pmu);
24f1e32c
FW
6102}
6103
35edc2a5
PZ
6104static int perf_event_idx_default(struct perf_event *event)
6105{
6106 return event->hw.idx + 1;
6107}
6108
8dc85d54
PZ
6109/*
6110 * Ensures all contexts with the same task_ctx_nr have the same
6111 * pmu_cpu_context too.
6112 */
6113static void *find_pmu_context(int ctxn)
24f1e32c 6114{
8dc85d54 6115 struct pmu *pmu;
b326e956 6116
8dc85d54
PZ
6117 if (ctxn < 0)
6118 return NULL;
24f1e32c 6119
8dc85d54
PZ
6120 list_for_each_entry(pmu, &pmus, entry) {
6121 if (pmu->task_ctx_nr == ctxn)
6122 return pmu->pmu_cpu_context;
6123 }
24f1e32c 6124
8dc85d54 6125 return NULL;
24f1e32c
FW
6126}
6127
51676957 6128static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6129{
51676957
PZ
6130 int cpu;
6131
6132 for_each_possible_cpu(cpu) {
6133 struct perf_cpu_context *cpuctx;
6134
6135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6136
3f1f3320
PZ
6137 if (cpuctx->unique_pmu == old_pmu)
6138 cpuctx->unique_pmu = pmu;
51676957
PZ
6139 }
6140}
6141
6142static void free_pmu_context(struct pmu *pmu)
6143{
6144 struct pmu *i;
f5ffe02e 6145
8dc85d54 6146 mutex_lock(&pmus_lock);
0475f9ea 6147 /*
8dc85d54 6148 * Like a real lame refcount.
0475f9ea 6149 */
51676957
PZ
6150 list_for_each_entry(i, &pmus, entry) {
6151 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6152 update_pmu_context(i, pmu);
8dc85d54 6153 goto out;
51676957 6154 }
8dc85d54 6155 }
d6d020e9 6156
51676957 6157 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6158out:
6159 mutex_unlock(&pmus_lock);
24f1e32c 6160}
2e80a82a 6161static struct idr pmu_idr;
d6d020e9 6162
abe43400
PZ
6163static ssize_t
6164type_show(struct device *dev, struct device_attribute *attr, char *page)
6165{
6166 struct pmu *pmu = dev_get_drvdata(dev);
6167
6168 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6169}
6170
62b85639
SE
6171static ssize_t
6172perf_event_mux_interval_ms_show(struct device *dev,
6173 struct device_attribute *attr,
6174 char *page)
6175{
6176 struct pmu *pmu = dev_get_drvdata(dev);
6177
6178 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6179}
6180
6181static ssize_t
6182perf_event_mux_interval_ms_store(struct device *dev,
6183 struct device_attribute *attr,
6184 const char *buf, size_t count)
6185{
6186 struct pmu *pmu = dev_get_drvdata(dev);
6187 int timer, cpu, ret;
6188
6189 ret = kstrtoint(buf, 0, &timer);
6190 if (ret)
6191 return ret;
6192
6193 if (timer < 1)
6194 return -EINVAL;
6195
6196 /* same value, noting to do */
6197 if (timer == pmu->hrtimer_interval_ms)
6198 return count;
6199
6200 pmu->hrtimer_interval_ms = timer;
6201
6202 /* update all cpuctx for this PMU */
6203 for_each_possible_cpu(cpu) {
6204 struct perf_cpu_context *cpuctx;
6205 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6206 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6207
6208 if (hrtimer_active(&cpuctx->hrtimer))
6209 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6210 }
6211
6212 return count;
6213}
6214
6215#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)
6216
abe43400 6217static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6218 __ATTR_RO(type),
6219 __ATTR_RW(perf_event_mux_interval_ms),
6220 __ATTR_NULL,
abe43400
PZ
6221};
6222
6223static int pmu_bus_running;
6224static struct bus_type pmu_bus = {
6225 .name = "event_source",
6226 .dev_attrs = pmu_dev_attrs,
6227};
6228
6229static void pmu_dev_release(struct device *dev)
6230{
6231 kfree(dev);
6232}
6233
6234static int pmu_dev_alloc(struct pmu *pmu)
6235{
6236 int ret = -ENOMEM;
6237
6238 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6239 if (!pmu->dev)
6240 goto out;
6241
0c9d42ed 6242 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6243 device_initialize(pmu->dev);
6244 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6245 if (ret)
6246 goto free_dev;
6247
6248 dev_set_drvdata(pmu->dev, pmu);
6249 pmu->dev->bus = &pmu_bus;
6250 pmu->dev->release = pmu_dev_release;
6251 ret = device_add(pmu->dev);
6252 if (ret)
6253 goto free_dev;
6254
6255out:
6256 return ret;
6257
6258free_dev:
6259 put_device(pmu->dev);
6260 goto out;
6261}
6262
547e9fd7 6263static struct lock_class_key cpuctx_mutex;
facc4307 6264static struct lock_class_key cpuctx_lock;
547e9fd7 6265
03d8e80b 6266int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6267{
108b02cf 6268 int cpu, ret;
24f1e32c 6269
b0a873eb 6270 mutex_lock(&pmus_lock);
33696fc0
PZ
6271 ret = -ENOMEM;
6272 pmu->pmu_disable_count = alloc_percpu(int);
6273 if (!pmu->pmu_disable_count)
6274 goto unlock;
f29ac756 6275
2e80a82a
PZ
6276 pmu->type = -1;
6277 if (!name)
6278 goto skip_type;
6279 pmu->name = name;
6280
6281 if (type < 0) {
0e9c3be2
TH
6282 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6283 if (type < 0) {
6284 ret = type;
2e80a82a
PZ
6285 goto free_pdc;
6286 }
6287 }
6288 pmu->type = type;
6289
abe43400
PZ
6290 if (pmu_bus_running) {
6291 ret = pmu_dev_alloc(pmu);
6292 if (ret)
6293 goto free_idr;
6294 }
6295
2e80a82a 6296skip_type:
8dc85d54
PZ
6297 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6298 if (pmu->pmu_cpu_context)
6299 goto got_cpu_context;
f29ac756 6300
c4814202 6301 ret = -ENOMEM;
108b02cf
PZ
6302 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6303 if (!pmu->pmu_cpu_context)
abe43400 6304 goto free_dev;
f344011c 6305
108b02cf
PZ
6306 for_each_possible_cpu(cpu) {
6307 struct perf_cpu_context *cpuctx;
6308
6309 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6310 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6311 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6312 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6313 cpuctx->ctx.type = cpu_context;
108b02cf 6314 cpuctx->ctx.pmu = pmu;
9e630205
SE
6315
6316 __perf_cpu_hrtimer_init(cpuctx, cpu);
6317
e9d2b064 6318 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6319 cpuctx->unique_pmu = pmu;
108b02cf 6320 }
76e1d904 6321
8dc85d54 6322got_cpu_context:
ad5133b7
PZ
6323 if (!pmu->start_txn) {
6324 if (pmu->pmu_enable) {
6325 /*
6326 * If we have pmu_enable/pmu_disable calls, install
6327 * transaction stubs that use that to try and batch
6328 * hardware accesses.
6329 */
6330 pmu->start_txn = perf_pmu_start_txn;
6331 pmu->commit_txn = perf_pmu_commit_txn;
6332 pmu->cancel_txn = perf_pmu_cancel_txn;
6333 } else {
6334 pmu->start_txn = perf_pmu_nop_void;
6335 pmu->commit_txn = perf_pmu_nop_int;
6336 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6337 }
5c92d124 6338 }
15dbf27c 6339
ad5133b7
PZ
6340 if (!pmu->pmu_enable) {
6341 pmu->pmu_enable = perf_pmu_nop_void;
6342 pmu->pmu_disable = perf_pmu_nop_void;
6343 }
6344
35edc2a5
PZ
6345 if (!pmu->event_idx)
6346 pmu->event_idx = perf_event_idx_default;
6347
b0a873eb 6348 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6349 ret = 0;
6350unlock:
b0a873eb
PZ
6351 mutex_unlock(&pmus_lock);
6352
33696fc0 6353 return ret;
108b02cf 6354
abe43400
PZ
6355free_dev:
6356 device_del(pmu->dev);
6357 put_device(pmu->dev);
6358
2e80a82a
PZ
6359free_idr:
6360 if (pmu->type >= PERF_TYPE_MAX)
6361 idr_remove(&pmu_idr, pmu->type);
6362
108b02cf
PZ
6363free_pdc:
6364 free_percpu(pmu->pmu_disable_count);
6365 goto unlock;
f29ac756
PZ
6366}
6367
b0a873eb 6368void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6369{
b0a873eb
PZ
6370 mutex_lock(&pmus_lock);
6371 list_del_rcu(&pmu->entry);
6372 mutex_unlock(&pmus_lock);
5c92d124 6373
0475f9ea 6374 /*
cde8e884
PZ
6375 * We dereference the pmu list under both SRCU and regular RCU, so
6376 * synchronize against both of those.
0475f9ea 6377 */
b0a873eb 6378 synchronize_srcu(&pmus_srcu);
cde8e884 6379 synchronize_rcu();
d6d020e9 6380
33696fc0 6381 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6382 if (pmu->type >= PERF_TYPE_MAX)
6383 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6384 device_del(pmu->dev);
6385 put_device(pmu->dev);
51676957 6386 free_pmu_context(pmu);
b0a873eb 6387}
d6d020e9 6388
b0a873eb
PZ
6389struct pmu *perf_init_event(struct perf_event *event)
6390{
6391 struct pmu *pmu = NULL;
6392 int idx;
940c5b29 6393 int ret;
b0a873eb
PZ
6394
6395 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6396
6397 rcu_read_lock();
6398 pmu = idr_find(&pmu_idr, event->attr.type);
6399 rcu_read_unlock();
940c5b29 6400 if (pmu) {
7e5b2a01 6401 event->pmu = pmu;
940c5b29
LM
6402 ret = pmu->event_init(event);
6403 if (ret)
6404 pmu = ERR_PTR(ret);
2e80a82a 6405 goto unlock;
940c5b29 6406 }
2e80a82a 6407
b0a873eb 6408 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6409 event->pmu = pmu;
940c5b29 6410 ret = pmu->event_init(event);
b0a873eb 6411 if (!ret)
e5f4d339 6412 goto unlock;
76e1d904 6413
b0a873eb
PZ
6414 if (ret != -ENOENT) {
6415 pmu = ERR_PTR(ret);
e5f4d339 6416 goto unlock;
f344011c 6417 }
5c92d124 6418 }
e5f4d339
PZ
6419 pmu = ERR_PTR(-ENOENT);
6420unlock:
b0a873eb 6421 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6422
4aeb0b42 6423 return pmu;
5c92d124
IM
6424}
6425
0793a61d 6426/*
cdd6c482 6427 * Allocate and initialize a event structure
0793a61d 6428 */
cdd6c482 6429static struct perf_event *
c3f00c70 6430perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6431 struct task_struct *task,
6432 struct perf_event *group_leader,
6433 struct perf_event *parent_event,
4dc0da86
AK
6434 perf_overflow_handler_t overflow_handler,
6435 void *context)
0793a61d 6436{
51b0fe39 6437 struct pmu *pmu;
cdd6c482
IM
6438 struct perf_event *event;
6439 struct hw_perf_event *hwc;
d5d2bc0d 6440 long err;
0793a61d 6441
66832eb4
ON
6442 if ((unsigned)cpu >= nr_cpu_ids) {
6443 if (!task || cpu != -1)
6444 return ERR_PTR(-EINVAL);
6445 }
6446
c3f00c70 6447 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6448 if (!event)
d5d2bc0d 6449 return ERR_PTR(-ENOMEM);
0793a61d 6450
04289bb9 6451 /*
cdd6c482 6452 * Single events are their own group leaders, with an
04289bb9
IM
6453 * empty sibling list:
6454 */
6455 if (!group_leader)
cdd6c482 6456 group_leader = event;
04289bb9 6457
cdd6c482
IM
6458 mutex_init(&event->child_mutex);
6459 INIT_LIST_HEAD(&event->child_list);
fccc714b 6460
cdd6c482
IM
6461 INIT_LIST_HEAD(&event->group_entry);
6462 INIT_LIST_HEAD(&event->event_entry);
6463 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6464 INIT_LIST_HEAD(&event->rb_entry);
6465
cdd6c482 6466 init_waitqueue_head(&event->waitq);
e360adbe 6467 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6468
cdd6c482 6469 mutex_init(&event->mmap_mutex);
7b732a75 6470
a6fa941d 6471 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6472 event->cpu = cpu;
6473 event->attr = *attr;
6474 event->group_leader = group_leader;
6475 event->pmu = NULL;
cdd6c482 6476 event->oncpu = -1;
a96bbc16 6477
cdd6c482 6478 event->parent = parent_event;
b84fbc9f 6479
17cf22c3 6480 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6481 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6482
cdd6c482 6483 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6484
d580ff86
PZ
6485 if (task) {
6486 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6487
6488 if (attr->type == PERF_TYPE_TRACEPOINT)
6489 event->hw.tp_target = task;
d580ff86
PZ
6490#ifdef CONFIG_HAVE_HW_BREAKPOINT
6491 /*
6492 * hw_breakpoint is a bit difficult here..
6493 */
f22c1bb6 6494 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6495 event->hw.bp_target = task;
6496#endif
6497 }
6498
4dc0da86 6499 if (!overflow_handler && parent_event) {
b326e956 6500 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6501 context = parent_event->overflow_handler_context;
6502 }
66832eb4 6503
b326e956 6504 event->overflow_handler = overflow_handler;
4dc0da86 6505 event->overflow_handler_context = context;
97eaf530 6506
0231bb53 6507 perf_event__state_init(event);
a86ed508 6508
4aeb0b42 6509 pmu = NULL;
b8e83514 6510
cdd6c482 6511 hwc = &event->hw;
bd2b5b12 6512 hwc->sample_period = attr->sample_period;
0d48696f 6513 if (attr->freq && attr->sample_freq)
bd2b5b12 6514 hwc->sample_period = 1;
eced1dfc 6515 hwc->last_period = hwc->sample_period;
bd2b5b12 6516
e7850595 6517 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6518
2023b359 6519 /*
cdd6c482 6520 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6521 */
3dab77fb 6522 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6523 goto done;
6524
b0a873eb 6525 pmu = perf_init_event(event);
974802ea 6526
d5d2bc0d
PM
6527done:
6528 err = 0;
4aeb0b42 6529 if (!pmu)
d5d2bc0d 6530 err = -EINVAL;
4aeb0b42
RR
6531 else if (IS_ERR(pmu))
6532 err = PTR_ERR(pmu);
5c92d124 6533
d5d2bc0d 6534 if (err) {
cdd6c482
IM
6535 if (event->ns)
6536 put_pid_ns(event->ns);
6537 kfree(event);
d5d2bc0d 6538 return ERR_PTR(err);
621a01ea 6539 }
d5d2bc0d 6540
cdd6c482 6541 if (!event->parent) {
82cd6def 6542 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6543 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6544 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6545 atomic_inc(&nr_mmap_events);
6546 if (event->attr.comm)
6547 atomic_inc(&nr_comm_events);
6548 if (event->attr.task)
6549 atomic_inc(&nr_task_events);
927c7a9e
FW
6550 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6551 err = get_callchain_buffers();
6552 if (err) {
6553 free_event(event);
6554 return ERR_PTR(err);
6555 }
6556 }
d010b332
SE
6557 if (has_branch_stack(event)) {
6558 static_key_slow_inc(&perf_sched_events.key);
6559 if (!(event->attach_state & PERF_ATTACH_TASK))
6560 atomic_inc(&per_cpu(perf_branch_stack_events,
6561 event->cpu));
6562 }
f344011c 6563 }
9ee318a7 6564
cdd6c482 6565 return event;
0793a61d
TG
6566}
6567
cdd6c482
IM
6568static int perf_copy_attr(struct perf_event_attr __user *uattr,
6569 struct perf_event_attr *attr)
974802ea 6570{
974802ea 6571 u32 size;
cdf8073d 6572 int ret;
974802ea
PZ
6573
6574 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6575 return -EFAULT;
6576
6577 /*
6578 * zero the full structure, so that a short copy will be nice.
6579 */
6580 memset(attr, 0, sizeof(*attr));
6581
6582 ret = get_user(size, &uattr->size);
6583 if (ret)
6584 return ret;
6585
6586 if (size > PAGE_SIZE) /* silly large */
6587 goto err_size;
6588
6589 if (!size) /* abi compat */
6590 size = PERF_ATTR_SIZE_VER0;
6591
6592 if (size < PERF_ATTR_SIZE_VER0)
6593 goto err_size;
6594
6595 /*
6596 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6597 * ensure all the unknown bits are 0 - i.e. new
6598 * user-space does not rely on any kernel feature
6599 * extensions we dont know about yet.
974802ea
PZ
6600 */
6601 if (size > sizeof(*attr)) {
cdf8073d
IS
6602 unsigned char __user *addr;
6603 unsigned char __user *end;
6604 unsigned char val;
974802ea 6605
cdf8073d
IS
6606 addr = (void __user *)uattr + sizeof(*attr);
6607 end = (void __user *)uattr + size;
974802ea 6608
cdf8073d 6609 for (; addr < end; addr++) {
974802ea
PZ
6610 ret = get_user(val, addr);
6611 if (ret)
6612 return ret;
6613 if (val)
6614 goto err_size;
6615 }
b3e62e35 6616 size = sizeof(*attr);
974802ea
PZ
6617 }
6618
6619 ret = copy_from_user(attr, uattr, size);
6620 if (ret)
6621 return -EFAULT;
6622
cd757645 6623 if (attr->__reserved_1)
974802ea
PZ
6624 return -EINVAL;
6625
6626 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6627 return -EINVAL;
6628
6629 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6630 return -EINVAL;
6631
bce38cd5
SE
6632 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6633 u64 mask = attr->branch_sample_type;
6634
6635 /* only using defined bits */
6636 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6637 return -EINVAL;
6638
6639 /* at least one branch bit must be set */
6640 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6641 return -EINVAL;
6642
bce38cd5
SE
6643 /* propagate priv level, when not set for branch */
6644 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6645
6646 /* exclude_kernel checked on syscall entry */
6647 if (!attr->exclude_kernel)
6648 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6649
6650 if (!attr->exclude_user)
6651 mask |= PERF_SAMPLE_BRANCH_USER;
6652
6653 if (!attr->exclude_hv)
6654 mask |= PERF_SAMPLE_BRANCH_HV;
6655 /*
6656 * adjust user setting (for HW filter setup)
6657 */
6658 attr->branch_sample_type = mask;
6659 }
e712209a
SE
6660 /* privileged levels capture (kernel, hv): check permissions */
6661 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6662 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6663 return -EACCES;
bce38cd5 6664 }
4018994f 6665
c5ebcedb 6666 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6667 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6668 if (ret)
6669 return ret;
6670 }
6671
6672 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6673 if (!arch_perf_have_user_stack_dump())
6674 return -ENOSYS;
6675
6676 /*
6677 * We have __u32 type for the size, but so far
6678 * we can only use __u16 as maximum due to the
6679 * __u16 sample size limit.
6680 */
6681 if (attr->sample_stack_user >= USHRT_MAX)
6682 ret = -EINVAL;
6683 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6684 ret = -EINVAL;
6685 }
4018994f 6686
974802ea
PZ
6687out:
6688 return ret;
6689
6690err_size:
6691 put_user(sizeof(*attr), &uattr->size);
6692 ret = -E2BIG;
6693 goto out;
6694}
6695
ac9721f3
PZ
6696static int
6697perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6698{
76369139 6699 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6700 int ret = -EINVAL;
6701
ac9721f3 6702 if (!output_event)
a4be7c27
PZ
6703 goto set;
6704
ac9721f3
PZ
6705 /* don't allow circular references */
6706 if (event == output_event)
a4be7c27
PZ
6707 goto out;
6708
0f139300
PZ
6709 /*
6710 * Don't allow cross-cpu buffers
6711 */
6712 if (output_event->cpu != event->cpu)
6713 goto out;
6714
6715 /*
76369139 6716 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6717 */
6718 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6719 goto out;
6720
a4be7c27 6721set:
cdd6c482 6722 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6723 /* Can't redirect output if we've got an active mmap() */
6724 if (atomic_read(&event->mmap_count))
6725 goto unlock;
a4be7c27 6726
9bb5d40c
PZ
6727 old_rb = event->rb;
6728
ac9721f3 6729 if (output_event) {
76369139
FW
6730 /* get the rb we want to redirect to */
6731 rb = ring_buffer_get(output_event);
6732 if (!rb)
ac9721f3 6733 goto unlock;
a4be7c27
PZ
6734 }
6735
10c6db11
PZ
6736 if (old_rb)
6737 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6738
6739 if (rb)
6740 ring_buffer_attach(event, rb);
6741
6742 rcu_assign_pointer(event->rb, rb);
6743
6744 if (old_rb) {
6745 ring_buffer_put(old_rb);
6746 /*
6747 * Since we detached before setting the new rb, so that we
6748 * could attach the new rb, we could have missed a wakeup.
6749 * Provide it now.
6750 */
6751 wake_up_all(&event->waitq);
6752 }
6753
a4be7c27 6754 ret = 0;
ac9721f3
PZ
6755unlock:
6756 mutex_unlock(&event->mmap_mutex);
6757
a4be7c27 6758out:
a4be7c27
PZ
6759 return ret;
6760}
6761
0793a61d 6762/**
cdd6c482 6763 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6764 *
cdd6c482 6765 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6766 * @pid: target pid
9f66a381 6767 * @cpu: target cpu
cdd6c482 6768 * @group_fd: group leader event fd
0793a61d 6769 */
cdd6c482
IM
6770SYSCALL_DEFINE5(perf_event_open,
6771 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6772 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6773{
b04243ef
PZ
6774 struct perf_event *group_leader = NULL, *output_event = NULL;
6775 struct perf_event *event, *sibling;
cdd6c482
IM
6776 struct perf_event_attr attr;
6777 struct perf_event_context *ctx;
6778 struct file *event_file = NULL;
2903ff01 6779 struct fd group = {NULL, 0};
38a81da2 6780 struct task_struct *task = NULL;
89a1e187 6781 struct pmu *pmu;
ea635c64 6782 int event_fd;
b04243ef 6783 int move_group = 0;
dc86cabe 6784 int err;
0793a61d 6785
2743a5b0 6786 /* for future expandability... */
e5d1367f 6787 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6788 return -EINVAL;
6789
dc86cabe
IM
6790 err = perf_copy_attr(attr_uptr, &attr);
6791 if (err)
6792 return err;
eab656ae 6793
0764771d
PZ
6794 if (!attr.exclude_kernel) {
6795 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6796 return -EACCES;
6797 }
6798
df58ab24 6799 if (attr.freq) {
cdd6c482 6800 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6801 return -EINVAL;
6802 }
6803
e5d1367f
SE
6804 /*
6805 * In cgroup mode, the pid argument is used to pass the fd
6806 * opened to the cgroup directory in cgroupfs. The cpu argument
6807 * designates the cpu on which to monitor threads from that
6808 * cgroup.
6809 */
6810 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6811 return -EINVAL;
6812
ab72a702 6813 event_fd = get_unused_fd();
ea635c64
AV
6814 if (event_fd < 0)
6815 return event_fd;
6816
ac9721f3 6817 if (group_fd != -1) {
2903ff01
AV
6818 err = perf_fget_light(group_fd, &group);
6819 if (err)
d14b12d7 6820 goto err_fd;
2903ff01 6821 group_leader = group.file->private_data;
ac9721f3
PZ
6822 if (flags & PERF_FLAG_FD_OUTPUT)
6823 output_event = group_leader;
6824 if (flags & PERF_FLAG_FD_NO_GROUP)
6825 group_leader = NULL;
6826 }
6827
e5d1367f 6828 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6829 task = find_lively_task_by_vpid(pid);
6830 if (IS_ERR(task)) {
6831 err = PTR_ERR(task);
6832 goto err_group_fd;
6833 }
6834 }
6835
fbfc623f
YZ
6836 get_online_cpus();
6837
4dc0da86
AK
6838 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6839 NULL, NULL);
d14b12d7
SE
6840 if (IS_ERR(event)) {
6841 err = PTR_ERR(event);
c6be5a5c 6842 goto err_task;
d14b12d7
SE
6843 }
6844
e5d1367f
SE
6845 if (flags & PERF_FLAG_PID_CGROUP) {
6846 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6847 if (err)
6848 goto err_alloc;
08309379
PZ
6849 /*
6850 * one more event:
6851 * - that has cgroup constraint on event->cpu
6852 * - that may need work on context switch
6853 */
6854 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6855 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6856 }
6857
89a1e187
PZ
6858 /*
6859 * Special case software events and allow them to be part of
6860 * any hardware group.
6861 */
6862 pmu = event->pmu;
b04243ef
PZ
6863
6864 if (group_leader &&
6865 (is_software_event(event) != is_software_event(group_leader))) {
6866 if (is_software_event(event)) {
6867 /*
6868 * If event and group_leader are not both a software
6869 * event, and event is, then group leader is not.
6870 *
6871 * Allow the addition of software events to !software
6872 * groups, this is safe because software events never
6873 * fail to schedule.
6874 */
6875 pmu = group_leader->pmu;
6876 } else if (is_software_event(group_leader) &&
6877 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6878 /*
6879 * In case the group is a pure software group, and we
6880 * try to add a hardware event, move the whole group to
6881 * the hardware context.
6882 */
6883 move_group = 1;
6884 }
6885 }
89a1e187
PZ
6886
6887 /*
6888 * Get the target context (task or percpu):
6889 */
e2d37cd2 6890 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6891 if (IS_ERR(ctx)) {
6892 err = PTR_ERR(ctx);
c6be5a5c 6893 goto err_alloc;
89a1e187
PZ
6894 }
6895
fd1edb3a
PZ
6896 if (task) {
6897 put_task_struct(task);
6898 task = NULL;
6899 }
6900
ccff286d 6901 /*
cdd6c482 6902 * Look up the group leader (we will attach this event to it):
04289bb9 6903 */
ac9721f3 6904 if (group_leader) {
dc86cabe 6905 err = -EINVAL;
04289bb9 6906
04289bb9 6907 /*
ccff286d
IM
6908 * Do not allow a recursive hierarchy (this new sibling
6909 * becoming part of another group-sibling):
6910 */
6911 if (group_leader->group_leader != group_leader)
c3f00c70 6912 goto err_context;
ccff286d
IM
6913 /*
6914 * Do not allow to attach to a group in a different
6915 * task or CPU context:
04289bb9 6916 */
b04243ef
PZ
6917 if (move_group) {
6918 if (group_leader->ctx->type != ctx->type)
6919 goto err_context;
6920 } else {
6921 if (group_leader->ctx != ctx)
6922 goto err_context;
6923 }
6924
3b6f9e5c
PM
6925 /*
6926 * Only a group leader can be exclusive or pinned
6927 */
0d48696f 6928 if (attr.exclusive || attr.pinned)
c3f00c70 6929 goto err_context;
ac9721f3
PZ
6930 }
6931
6932 if (output_event) {
6933 err = perf_event_set_output(event, output_event);
6934 if (err)
c3f00c70 6935 goto err_context;
ac9721f3 6936 }
0793a61d 6937
ea635c64
AV
6938 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6939 if (IS_ERR(event_file)) {
6940 err = PTR_ERR(event_file);
c3f00c70 6941 goto err_context;
ea635c64 6942 }
9b51f66d 6943
b04243ef
PZ
6944 if (move_group) {
6945 struct perf_event_context *gctx = group_leader->ctx;
6946
6947 mutex_lock(&gctx->mutex);
fe4b04fa 6948 perf_remove_from_context(group_leader);
0231bb53
JO
6949
6950 /*
6951 * Removing from the context ends up with disabled
6952 * event. What we want here is event in the initial
6953 * startup state, ready to be add into new context.
6954 */
6955 perf_event__state_init(group_leader);
b04243ef
PZ
6956 list_for_each_entry(sibling, &group_leader->sibling_list,
6957 group_entry) {
fe4b04fa 6958 perf_remove_from_context(sibling);
0231bb53 6959 perf_event__state_init(sibling);
b04243ef
PZ
6960 put_ctx(gctx);
6961 }
6962 mutex_unlock(&gctx->mutex);
6963 put_ctx(gctx);
ea635c64 6964 }
9b51f66d 6965
ad3a37de 6966 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6967 mutex_lock(&ctx->mutex);
b04243ef
PZ
6968
6969 if (move_group) {
0cda4c02 6970 synchronize_rcu();
e2d37cd2 6971 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6972 get_ctx(ctx);
6973 list_for_each_entry(sibling, &group_leader->sibling_list,
6974 group_entry) {
e2d37cd2 6975 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6976 get_ctx(ctx);
6977 }
6978 }
6979
e2d37cd2 6980 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6981 ++ctx->generation;
fe4b04fa 6982 perf_unpin_context(ctx);
d859e29f 6983 mutex_unlock(&ctx->mutex);
9b51f66d 6984
fbfc623f
YZ
6985 put_online_cpus();
6986
cdd6c482 6987 event->owner = current;
8882135b 6988
cdd6c482
IM
6989 mutex_lock(&current->perf_event_mutex);
6990 list_add_tail(&event->owner_entry, &current->perf_event_list);
6991 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6992
c320c7b7
ACM
6993 /*
6994 * Precalculate sample_data sizes
6995 */
6996 perf_event__header_size(event);
6844c09d 6997 perf_event__id_header_size(event);
c320c7b7 6998
8a49542c
PZ
6999 /*
7000 * Drop the reference on the group_event after placing the
7001 * new event on the sibling_list. This ensures destruction
7002 * of the group leader will find the pointer to itself in
7003 * perf_group_detach().
7004 */
2903ff01 7005 fdput(group);
ea635c64
AV
7006 fd_install(event_fd, event_file);
7007 return event_fd;
0793a61d 7008
c3f00c70 7009err_context:
fe4b04fa 7010 perf_unpin_context(ctx);
ea635c64 7011 put_ctx(ctx);
c6be5a5c 7012err_alloc:
ea635c64 7013 free_event(event);
e7d0bc04 7014err_task:
fbfc623f 7015 put_online_cpus();
e7d0bc04
PZ
7016 if (task)
7017 put_task_struct(task);
89a1e187 7018err_group_fd:
2903ff01 7019 fdput(group);
ea635c64
AV
7020err_fd:
7021 put_unused_fd(event_fd);
dc86cabe 7022 return err;
0793a61d
TG
7023}
7024
fb0459d7
AV
7025/**
7026 * perf_event_create_kernel_counter
7027 *
7028 * @attr: attributes of the counter to create
7029 * @cpu: cpu in which the counter is bound
38a81da2 7030 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7031 */
7032struct perf_event *
7033perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7034 struct task_struct *task,
4dc0da86
AK
7035 perf_overflow_handler_t overflow_handler,
7036 void *context)
fb0459d7 7037{
fb0459d7 7038 struct perf_event_context *ctx;
c3f00c70 7039 struct perf_event *event;
fb0459d7 7040 int err;
d859e29f 7041
fb0459d7
AV
7042 /*
7043 * Get the target context (task or percpu):
7044 */
d859e29f 7045
4dc0da86
AK
7046 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7047 overflow_handler, context);
c3f00c70
PZ
7048 if (IS_ERR(event)) {
7049 err = PTR_ERR(event);
7050 goto err;
7051 }
d859e29f 7052
38a81da2 7053 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7054 if (IS_ERR(ctx)) {
7055 err = PTR_ERR(ctx);
c3f00c70 7056 goto err_free;
d859e29f 7057 }
fb0459d7 7058
fb0459d7
AV
7059 WARN_ON_ONCE(ctx->parent_ctx);
7060 mutex_lock(&ctx->mutex);
7061 perf_install_in_context(ctx, event, cpu);
7062 ++ctx->generation;
fe4b04fa 7063 perf_unpin_context(ctx);
fb0459d7
AV
7064 mutex_unlock(&ctx->mutex);
7065
fb0459d7
AV
7066 return event;
7067
c3f00c70
PZ
7068err_free:
7069 free_event(event);
7070err:
c6567f64 7071 return ERR_PTR(err);
9b51f66d 7072}
fb0459d7 7073EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7074
0cda4c02
YZ
7075void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7076{
7077 struct perf_event_context *src_ctx;
7078 struct perf_event_context *dst_ctx;
7079 struct perf_event *event, *tmp;
7080 LIST_HEAD(events);
7081
7082 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7083 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7084
7085 mutex_lock(&src_ctx->mutex);
7086 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7087 event_entry) {
7088 perf_remove_from_context(event);
7089 put_ctx(src_ctx);
7090 list_add(&event->event_entry, &events);
7091 }
7092 mutex_unlock(&src_ctx->mutex);
7093
7094 synchronize_rcu();
7095
7096 mutex_lock(&dst_ctx->mutex);
7097 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7098 list_del(&event->event_entry);
7099 if (event->state >= PERF_EVENT_STATE_OFF)
7100 event->state = PERF_EVENT_STATE_INACTIVE;
7101 perf_install_in_context(dst_ctx, event, dst_cpu);
7102 get_ctx(dst_ctx);
7103 }
7104 mutex_unlock(&dst_ctx->mutex);
7105}
7106EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7107
cdd6c482 7108static void sync_child_event(struct perf_event *child_event,
38b200d6 7109 struct task_struct *child)
d859e29f 7110{
cdd6c482 7111 struct perf_event *parent_event = child_event->parent;
8bc20959 7112 u64 child_val;
d859e29f 7113
cdd6c482
IM
7114 if (child_event->attr.inherit_stat)
7115 perf_event_read_event(child_event, child);
38b200d6 7116
b5e58793 7117 child_val = perf_event_count(child_event);
d859e29f
PM
7118
7119 /*
7120 * Add back the child's count to the parent's count:
7121 */
a6e6dea6 7122 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7123 atomic64_add(child_event->total_time_enabled,
7124 &parent_event->child_total_time_enabled);
7125 atomic64_add(child_event->total_time_running,
7126 &parent_event->child_total_time_running);
d859e29f
PM
7127
7128 /*
cdd6c482 7129 * Remove this event from the parent's list
d859e29f 7130 */
cdd6c482
IM
7131 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7132 mutex_lock(&parent_event->child_mutex);
7133 list_del_init(&child_event->child_list);
7134 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7135
7136 /*
cdd6c482 7137 * Release the parent event, if this was the last
d859e29f
PM
7138 * reference to it.
7139 */
a6fa941d 7140 put_event(parent_event);
d859e29f
PM
7141}
7142
9b51f66d 7143static void
cdd6c482
IM
7144__perf_event_exit_task(struct perf_event *child_event,
7145 struct perf_event_context *child_ctx,
38b200d6 7146 struct task_struct *child)
9b51f66d 7147{
38b435b1
PZ
7148 if (child_event->parent) {
7149 raw_spin_lock_irq(&child_ctx->lock);
7150 perf_group_detach(child_event);
7151 raw_spin_unlock_irq(&child_ctx->lock);
7152 }
9b51f66d 7153
fe4b04fa 7154 perf_remove_from_context(child_event);
0cc0c027 7155
9b51f66d 7156 /*
38b435b1 7157 * It can happen that the parent exits first, and has events
9b51f66d 7158 * that are still around due to the child reference. These
38b435b1 7159 * events need to be zapped.
9b51f66d 7160 */
38b435b1 7161 if (child_event->parent) {
cdd6c482
IM
7162 sync_child_event(child_event, child);
7163 free_event(child_event);
4bcf349a 7164 }
9b51f66d
IM
7165}
7166
8dc85d54 7167static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7168{
cdd6c482
IM
7169 struct perf_event *child_event, *tmp;
7170 struct perf_event_context *child_ctx;
a63eaf34 7171 unsigned long flags;
9b51f66d 7172
8dc85d54 7173 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7174 perf_event_task(child, NULL, 0);
9b51f66d 7175 return;
9f498cc5 7176 }
9b51f66d 7177
a63eaf34 7178 local_irq_save(flags);
ad3a37de
PM
7179 /*
7180 * We can't reschedule here because interrupts are disabled,
7181 * and either child is current or it is a task that can't be
7182 * scheduled, so we are now safe from rescheduling changing
7183 * our context.
7184 */
806839b2 7185 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7186
7187 /*
7188 * Take the context lock here so that if find_get_context is
cdd6c482 7189 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7190 * incremented the context's refcount before we do put_ctx below.
7191 */
e625cce1 7192 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7193 task_ctx_sched_out(child_ctx);
8dc85d54 7194 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7195 /*
7196 * If this context is a clone; unclone it so it can't get
7197 * swapped to another process while we're removing all
cdd6c482 7198 * the events from it.
71a851b4
PZ
7199 */
7200 unclone_ctx(child_ctx);
5e942bb3 7201 update_context_time(child_ctx);
e625cce1 7202 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7203
7204 /*
cdd6c482
IM
7205 * Report the task dead after unscheduling the events so that we
7206 * won't get any samples after PERF_RECORD_EXIT. We can however still
7207 * get a few PERF_RECORD_READ events.
9f498cc5 7208 */
cdd6c482 7209 perf_event_task(child, child_ctx, 0);
a63eaf34 7210
66fff224
PZ
7211 /*
7212 * We can recurse on the same lock type through:
7213 *
cdd6c482
IM
7214 * __perf_event_exit_task()
7215 * sync_child_event()
a6fa941d
AV
7216 * put_event()
7217 * mutex_lock(&ctx->mutex)
66fff224
PZ
7218 *
7219 * But since its the parent context it won't be the same instance.
7220 */
a0507c84 7221 mutex_lock(&child_ctx->mutex);
a63eaf34 7222
8bc20959 7223again:
889ff015
FW
7224 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7225 group_entry)
7226 __perf_event_exit_task(child_event, child_ctx, child);
7227
7228 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7229 group_entry)
cdd6c482 7230 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7231
7232 /*
cdd6c482 7233 * If the last event was a group event, it will have appended all
8bc20959
PZ
7234 * its siblings to the list, but we obtained 'tmp' before that which
7235 * will still point to the list head terminating the iteration.
7236 */
889ff015
FW
7237 if (!list_empty(&child_ctx->pinned_groups) ||
7238 !list_empty(&child_ctx->flexible_groups))
8bc20959 7239 goto again;
a63eaf34
PM
7240
7241 mutex_unlock(&child_ctx->mutex);
7242
7243 put_ctx(child_ctx);
9b51f66d
IM
7244}
7245
8dc85d54
PZ
7246/*
7247 * When a child task exits, feed back event values to parent events.
7248 */
7249void perf_event_exit_task(struct task_struct *child)
7250{
8882135b 7251 struct perf_event *event, *tmp;
8dc85d54
PZ
7252 int ctxn;
7253
8882135b
PZ
7254 mutex_lock(&child->perf_event_mutex);
7255 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7256 owner_entry) {
7257 list_del_init(&event->owner_entry);
7258
7259 /*
7260 * Ensure the list deletion is visible before we clear
7261 * the owner, closes a race against perf_release() where
7262 * we need to serialize on the owner->perf_event_mutex.
7263 */
7264 smp_wmb();
7265 event->owner = NULL;
7266 }
7267 mutex_unlock(&child->perf_event_mutex);
7268
8dc85d54
PZ
7269 for_each_task_context_nr(ctxn)
7270 perf_event_exit_task_context(child, ctxn);
7271}
7272
889ff015
FW
7273static void perf_free_event(struct perf_event *event,
7274 struct perf_event_context *ctx)
7275{
7276 struct perf_event *parent = event->parent;
7277
7278 if (WARN_ON_ONCE(!parent))
7279 return;
7280
7281 mutex_lock(&parent->child_mutex);
7282 list_del_init(&event->child_list);
7283 mutex_unlock(&parent->child_mutex);
7284
a6fa941d 7285 put_event(parent);
889ff015 7286
8a49542c 7287 perf_group_detach(event);
889ff015
FW
7288 list_del_event(event, ctx);
7289 free_event(event);
7290}
7291
bbbee908
PZ
7292/*
7293 * free an unexposed, unused context as created by inheritance by
8dc85d54 7294 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7295 */
cdd6c482 7296void perf_event_free_task(struct task_struct *task)
bbbee908 7297{
8dc85d54 7298 struct perf_event_context *ctx;
cdd6c482 7299 struct perf_event *event, *tmp;
8dc85d54 7300 int ctxn;
bbbee908 7301
8dc85d54
PZ
7302 for_each_task_context_nr(ctxn) {
7303 ctx = task->perf_event_ctxp[ctxn];
7304 if (!ctx)
7305 continue;
bbbee908 7306
8dc85d54 7307 mutex_lock(&ctx->mutex);
bbbee908 7308again:
8dc85d54
PZ
7309 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7310 group_entry)
7311 perf_free_event(event, ctx);
bbbee908 7312
8dc85d54
PZ
7313 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7314 group_entry)
7315 perf_free_event(event, ctx);
bbbee908 7316
8dc85d54
PZ
7317 if (!list_empty(&ctx->pinned_groups) ||
7318 !list_empty(&ctx->flexible_groups))
7319 goto again;
bbbee908 7320
8dc85d54 7321 mutex_unlock(&ctx->mutex);
bbbee908 7322
8dc85d54
PZ
7323 put_ctx(ctx);
7324 }
889ff015
FW
7325}
7326
4e231c79
PZ
7327void perf_event_delayed_put(struct task_struct *task)
7328{
7329 int ctxn;
7330
7331 for_each_task_context_nr(ctxn)
7332 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7333}
7334
97dee4f3
PZ
7335/*
7336 * inherit a event from parent task to child task:
7337 */
7338static struct perf_event *
7339inherit_event(struct perf_event *parent_event,
7340 struct task_struct *parent,
7341 struct perf_event_context *parent_ctx,
7342 struct task_struct *child,
7343 struct perf_event *group_leader,
7344 struct perf_event_context *child_ctx)
7345{
7346 struct perf_event *child_event;
cee010ec 7347 unsigned long flags;
97dee4f3
PZ
7348
7349 /*
7350 * Instead of creating recursive hierarchies of events,
7351 * we link inherited events back to the original parent,
7352 * which has a filp for sure, which we use as the reference
7353 * count:
7354 */
7355 if (parent_event->parent)
7356 parent_event = parent_event->parent;
7357
7358 child_event = perf_event_alloc(&parent_event->attr,
7359 parent_event->cpu,
d580ff86 7360 child,
97dee4f3 7361 group_leader, parent_event,
4dc0da86 7362 NULL, NULL);
97dee4f3
PZ
7363 if (IS_ERR(child_event))
7364 return child_event;
a6fa941d
AV
7365
7366 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7367 free_event(child_event);
7368 return NULL;
7369 }
7370
97dee4f3
PZ
7371 get_ctx(child_ctx);
7372
7373 /*
7374 * Make the child state follow the state of the parent event,
7375 * not its attr.disabled bit. We hold the parent's mutex,
7376 * so we won't race with perf_event_{en, dis}able_family.
7377 */
7378 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7379 child_event->state = PERF_EVENT_STATE_INACTIVE;
7380 else
7381 child_event->state = PERF_EVENT_STATE_OFF;
7382
7383 if (parent_event->attr.freq) {
7384 u64 sample_period = parent_event->hw.sample_period;
7385 struct hw_perf_event *hwc = &child_event->hw;
7386
7387 hwc->sample_period = sample_period;
7388 hwc->last_period = sample_period;
7389
7390 local64_set(&hwc->period_left, sample_period);
7391 }
7392
7393 child_event->ctx = child_ctx;
7394 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7395 child_event->overflow_handler_context
7396 = parent_event->overflow_handler_context;
97dee4f3 7397
614b6780
TG
7398 /*
7399 * Precalculate sample_data sizes
7400 */
7401 perf_event__header_size(child_event);
6844c09d 7402 perf_event__id_header_size(child_event);
614b6780 7403
97dee4f3
PZ
7404 /*
7405 * Link it up in the child's context:
7406 */
cee010ec 7407 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7408 add_event_to_ctx(child_event, child_ctx);
cee010ec 7409 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7410
97dee4f3
PZ
7411 /*
7412 * Link this into the parent event's child list
7413 */
7414 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7415 mutex_lock(&parent_event->child_mutex);
7416 list_add_tail(&child_event->child_list, &parent_event->child_list);
7417 mutex_unlock(&parent_event->child_mutex);
7418
7419 return child_event;
7420}
7421
7422static int inherit_group(struct perf_event *parent_event,
7423 struct task_struct *parent,
7424 struct perf_event_context *parent_ctx,
7425 struct task_struct *child,
7426 struct perf_event_context *child_ctx)
7427{
7428 struct perf_event *leader;
7429 struct perf_event *sub;
7430 struct perf_event *child_ctr;
7431
7432 leader = inherit_event(parent_event, parent, parent_ctx,
7433 child, NULL, child_ctx);
7434 if (IS_ERR(leader))
7435 return PTR_ERR(leader);
7436 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7437 child_ctr = inherit_event(sub, parent, parent_ctx,
7438 child, leader, child_ctx);
7439 if (IS_ERR(child_ctr))
7440 return PTR_ERR(child_ctr);
7441 }
7442 return 0;
889ff015
FW
7443}
7444
7445static int
7446inherit_task_group(struct perf_event *event, struct task_struct *parent,
7447 struct perf_event_context *parent_ctx,
8dc85d54 7448 struct task_struct *child, int ctxn,
889ff015
FW
7449 int *inherited_all)
7450{
7451 int ret;
8dc85d54 7452 struct perf_event_context *child_ctx;
889ff015
FW
7453
7454 if (!event->attr.inherit) {
7455 *inherited_all = 0;
7456 return 0;
bbbee908
PZ
7457 }
7458
fe4b04fa 7459 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7460 if (!child_ctx) {
7461 /*
7462 * This is executed from the parent task context, so
7463 * inherit events that have been marked for cloning.
7464 * First allocate and initialize a context for the
7465 * child.
7466 */
bbbee908 7467
eb184479 7468 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7469 if (!child_ctx)
7470 return -ENOMEM;
bbbee908 7471
8dc85d54 7472 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7473 }
7474
7475 ret = inherit_group(event, parent, parent_ctx,
7476 child, child_ctx);
7477
7478 if (ret)
7479 *inherited_all = 0;
7480
7481 return ret;
bbbee908
PZ
7482}
7483
9b51f66d 7484/*
cdd6c482 7485 * Initialize the perf_event context in task_struct
9b51f66d 7486 */
8dc85d54 7487int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7488{
889ff015 7489 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7490 struct perf_event_context *cloned_ctx;
7491 struct perf_event *event;
9b51f66d 7492 struct task_struct *parent = current;
564c2b21 7493 int inherited_all = 1;
dddd3379 7494 unsigned long flags;
6ab423e0 7495 int ret = 0;
9b51f66d 7496
8dc85d54 7497 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7498 return 0;
7499
ad3a37de 7500 /*
25346b93
PM
7501 * If the parent's context is a clone, pin it so it won't get
7502 * swapped under us.
ad3a37de 7503 */
8dc85d54 7504 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7505
ad3a37de
PM
7506 /*
7507 * No need to check if parent_ctx != NULL here; since we saw
7508 * it non-NULL earlier, the only reason for it to become NULL
7509 * is if we exit, and since we're currently in the middle of
7510 * a fork we can't be exiting at the same time.
7511 */
ad3a37de 7512
9b51f66d
IM
7513 /*
7514 * Lock the parent list. No need to lock the child - not PID
7515 * hashed yet and not running, so nobody can access it.
7516 */
d859e29f 7517 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7518
7519 /*
7520 * We dont have to disable NMIs - we are only looking at
7521 * the list, not manipulating it:
7522 */
889ff015 7523 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7524 ret = inherit_task_group(event, parent, parent_ctx,
7525 child, ctxn, &inherited_all);
889ff015
FW
7526 if (ret)
7527 break;
7528 }
b93f7978 7529
dddd3379
TG
7530 /*
7531 * We can't hold ctx->lock when iterating the ->flexible_group list due
7532 * to allocations, but we need to prevent rotation because
7533 * rotate_ctx() will change the list from interrupt context.
7534 */
7535 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7536 parent_ctx->rotate_disable = 1;
7537 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7538
889ff015 7539 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7540 ret = inherit_task_group(event, parent, parent_ctx,
7541 child, ctxn, &inherited_all);
889ff015 7542 if (ret)
9b51f66d 7543 break;
564c2b21
PM
7544 }
7545
dddd3379
TG
7546 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7547 parent_ctx->rotate_disable = 0;
dddd3379 7548
8dc85d54 7549 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7550
05cbaa28 7551 if (child_ctx && inherited_all) {
564c2b21
PM
7552 /*
7553 * Mark the child context as a clone of the parent
7554 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7555 *
7556 * Note that if the parent is a clone, the holding of
7557 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7558 */
c5ed5145 7559 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7560 if (cloned_ctx) {
7561 child_ctx->parent_ctx = cloned_ctx;
25346b93 7562 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7563 } else {
7564 child_ctx->parent_ctx = parent_ctx;
7565 child_ctx->parent_gen = parent_ctx->generation;
7566 }
7567 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7568 }
7569
c5ed5145 7570 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7571 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7572
25346b93 7573 perf_unpin_context(parent_ctx);
fe4b04fa 7574 put_ctx(parent_ctx);
ad3a37de 7575
6ab423e0 7576 return ret;
9b51f66d
IM
7577}
7578
8dc85d54
PZ
7579/*
7580 * Initialize the perf_event context in task_struct
7581 */
7582int perf_event_init_task(struct task_struct *child)
7583{
7584 int ctxn, ret;
7585
8550d7cb
ON
7586 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7587 mutex_init(&child->perf_event_mutex);
7588 INIT_LIST_HEAD(&child->perf_event_list);
7589
8dc85d54
PZ
7590 for_each_task_context_nr(ctxn) {
7591 ret = perf_event_init_context(child, ctxn);
7592 if (ret)
7593 return ret;
7594 }
7595
7596 return 0;
7597}
7598
220b140b
PM
7599static void __init perf_event_init_all_cpus(void)
7600{
b28ab83c 7601 struct swevent_htable *swhash;
220b140b 7602 int cpu;
220b140b
PM
7603
7604 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7605 swhash = &per_cpu(swevent_htable, cpu);
7606 mutex_init(&swhash->hlist_mutex);
e9d2b064 7607 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7608 }
7609}
7610
cdd6c482 7611static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7612{
108b02cf 7613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7614
b28ab83c 7615 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7616 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7617 struct swevent_hlist *hlist;
7618
b28ab83c
PZ
7619 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7620 WARN_ON(!hlist);
7621 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7622 }
b28ab83c 7623 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7624}
7625
c277443c 7626#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7627static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7628{
e9d2b064
PZ
7629 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7630
7631 WARN_ON(!irqs_disabled());
7632
7633 list_del_init(&cpuctx->rotation_list);
7634}
7635
108b02cf 7636static void __perf_event_exit_context(void *__info)
0793a61d 7637{
108b02cf 7638 struct perf_event_context *ctx = __info;
cdd6c482 7639 struct perf_event *event, *tmp;
0793a61d 7640
108b02cf 7641 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7642
889ff015 7643 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7644 __perf_remove_from_context(event);
889ff015 7645 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7646 __perf_remove_from_context(event);
0793a61d 7647}
108b02cf
PZ
7648
7649static void perf_event_exit_cpu_context(int cpu)
7650{
7651 struct perf_event_context *ctx;
7652 struct pmu *pmu;
7653 int idx;
7654
7655 idx = srcu_read_lock(&pmus_srcu);
7656 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7657 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7658
7659 mutex_lock(&ctx->mutex);
7660 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7661 mutex_unlock(&ctx->mutex);
7662 }
7663 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7664}
7665
cdd6c482 7666static void perf_event_exit_cpu(int cpu)
0793a61d 7667{
b28ab83c 7668 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7669
b28ab83c
PZ
7670 mutex_lock(&swhash->hlist_mutex);
7671 swevent_hlist_release(swhash);
7672 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7673
108b02cf 7674 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7675}
7676#else
cdd6c482 7677static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7678#endif
7679
c277443c
PZ
7680static int
7681perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7682{
7683 int cpu;
7684
7685 for_each_online_cpu(cpu)
7686 perf_event_exit_cpu(cpu);
7687
7688 return NOTIFY_OK;
7689}
7690
7691/*
7692 * Run the perf reboot notifier at the very last possible moment so that
7693 * the generic watchdog code runs as long as possible.
7694 */
7695static struct notifier_block perf_reboot_notifier = {
7696 .notifier_call = perf_reboot,
7697 .priority = INT_MIN,
7698};
7699
0793a61d
TG
7700static int __cpuinit
7701perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7702{
7703 unsigned int cpu = (long)hcpu;
7704
4536e4d1 7705 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7706
7707 case CPU_UP_PREPARE:
5e11637e 7708 case CPU_DOWN_FAILED:
cdd6c482 7709 perf_event_init_cpu(cpu);
0793a61d
TG
7710 break;
7711
5e11637e 7712 case CPU_UP_CANCELED:
0793a61d 7713 case CPU_DOWN_PREPARE:
cdd6c482 7714 perf_event_exit_cpu(cpu);
0793a61d 7715 break;
0793a61d
TG
7716 default:
7717 break;
7718 }
7719
7720 return NOTIFY_OK;
7721}
7722
cdd6c482 7723void __init perf_event_init(void)
0793a61d 7724{
3c502e7a
JW
7725 int ret;
7726
2e80a82a
PZ
7727 idr_init(&pmu_idr);
7728
220b140b 7729 perf_event_init_all_cpus();
b0a873eb 7730 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7731 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7732 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7733 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7734 perf_tp_register();
7735 perf_cpu_notifier(perf_cpu_notify);
c277443c 7736 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7737
7738 ret = init_hw_breakpoint();
7739 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7740
7741 /* do not patch jump label more than once per second */
7742 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7743
7744 /*
7745 * Build time assertion that we keep the data_head at the intended
7746 * location. IOW, validation we got the __reserved[] size right.
7747 */
7748 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7749 != 1024);
0793a61d 7750}
abe43400
PZ
7751
7752static int __init perf_event_sysfs_init(void)
7753{
7754 struct pmu *pmu;
7755 int ret;
7756
7757 mutex_lock(&pmus_lock);
7758
7759 ret = bus_register(&pmu_bus);
7760 if (ret)
7761 goto unlock;
7762
7763 list_for_each_entry(pmu, &pmus, entry) {
7764 if (!pmu->name || pmu->type < 0)
7765 continue;
7766
7767 ret = pmu_dev_alloc(pmu);
7768 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7769 }
7770 pmu_bus_running = 1;
7771 ret = 0;
7772
7773unlock:
7774 mutex_unlock(&pmus_lock);
7775
7776 return ret;
7777}
7778device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7779
7780#ifdef CONFIG_CGROUP_PERF
92fb9748 7781static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7782{
7783 struct perf_cgroup *jc;
e5d1367f 7784
1b15d055 7785 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7786 if (!jc)
7787 return ERR_PTR(-ENOMEM);
7788
e5d1367f
SE
7789 jc->info = alloc_percpu(struct perf_cgroup_info);
7790 if (!jc->info) {
7791 kfree(jc);
7792 return ERR_PTR(-ENOMEM);
7793 }
7794
e5d1367f
SE
7795 return &jc->css;
7796}
7797
92fb9748 7798static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7799{
7800 struct perf_cgroup *jc;
7801 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7802 struct perf_cgroup, css);
7803 free_percpu(jc->info);
7804 kfree(jc);
7805}
7806
7807static int __perf_cgroup_move(void *info)
7808{
7809 struct task_struct *task = info;
7810 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7811 return 0;
7812}
7813
761b3ef5 7814static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7815{
bb9d97b6
TH
7816 struct task_struct *task;
7817
7818 cgroup_taskset_for_each(task, cgrp, tset)
7819 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7820}
7821
761b3ef5
LZ
7822static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7823 struct task_struct *task)
e5d1367f
SE
7824{
7825 /*
7826 * cgroup_exit() is called in the copy_process() failure path.
7827 * Ignore this case since the task hasn't ran yet, this avoids
7828 * trying to poke a half freed task state from generic code.
7829 */
7830 if (!(task->flags & PF_EXITING))
7831 return;
7832
bb9d97b6 7833 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7834}
7835
7836struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7837 .name = "perf_event",
7838 .subsys_id = perf_subsys_id,
92fb9748
TH
7839 .css_alloc = perf_cgroup_css_alloc,
7840 .css_free = perf_cgroup_css_free,
e7e7ee2e 7841 .exit = perf_cgroup_exit,
bb9d97b6 7842 .attach = perf_cgroup_attach,
e5d1367f
SE
7843};
7844#endif /* CONFIG_CGROUP_PERF */