perf: Add a pmu capability for "exclusive" events
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e
IM
55 struct task_struct *p;
56 int (*func)(void *info);
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
f8697762
JO
127#define EVENT_OWNER_KERNEL ((void *) -1)
128
129static bool is_kernel_event(struct perf_event *event)
130{
131 return event->owner == EVENT_OWNER_KERNEL;
132}
133
e5d1367f
SE
134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
e5d1367f 138
bce38cd5
SE
139/*
140 * branch priv levels that need permission checks
141 */
142#define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
145
0b3fcf17
SE
146enum event_type_t {
147 EVENT_FLEXIBLE = 0x1,
148 EVENT_PINNED = 0x2,
149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150};
151
e5d1367f
SE
152/*
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155 */
c5905afb 156struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 159
cdd6c482
IM
160static atomic_t nr_mmap_events __read_mostly;
161static atomic_t nr_comm_events __read_mostly;
162static atomic_t nr_task_events __read_mostly;
948b26b6 163static atomic_t nr_freq_events __read_mostly;
9ee318a7 164
108b02cf
PZ
165static LIST_HEAD(pmus);
166static DEFINE_MUTEX(pmus_lock);
167static struct srcu_struct pmus_srcu;
168
0764771d 169/*
cdd6c482 170 * perf event paranoia level:
0fbdea19
IM
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 173 * 1 - disallow cpu events for unpriv
0fbdea19 174 * 2 - disallow kernel profiling for unpriv
0764771d 175 */
cdd6c482 176int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 177
20443384
FW
178/* Minimum for 512 kiB + 1 user control page */
179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
180
181/*
cdd6c482 182 * max perf event sample rate
df58ab24 183 */
14c63f17
DH
184#define DEFAULT_MAX_SAMPLE_RATE 100000
185#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186#define DEFAULT_CPU_TIME_MAX_PERCENT 25
187
188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
189
190static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
192
d9494cb4
PZ
193static int perf_sample_allowed_ns __read_mostly =
194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
195
196void update_perf_cpu_limits(void)
197{
198 u64 tmp = perf_sample_period_ns;
199
200 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 201 do_div(tmp, 100);
d9494cb4 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 203}
163ec435 204
9e630205
SE
205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206
163ec435
PZ
207int perf_proc_update_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
210{
723478c8 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
212
213 if (ret || !write)
214 return ret;
215
216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 update_perf_cpu_limits();
219
220 return 0;
221}
222
223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224
225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 void __user *buffer, size_t *lenp,
227 loff_t *ppos)
228{
229 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230
231 if (ret || !write)
232 return ret;
233
234 update_perf_cpu_limits();
163ec435
PZ
235
236 return 0;
237}
1ccd1549 238
14c63f17
DH
239/*
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
244 */
245#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 246static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 247
6a02ad66 248static void perf_duration_warn(struct irq_work *w)
14c63f17 249{
6a02ad66 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 251 u64 avg_local_sample_len;
e5302920 252 u64 local_samples_len;
6a02ad66 253
4a32fea9 254 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 260 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
261 sysctl_perf_event_sample_rate);
262}
263
264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265
266void perf_sample_event_took(u64 sample_len_ns)
267{
d9494cb4 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
269 u64 avg_local_sample_len;
270 u64 local_samples_len;
14c63f17 271
d9494cb4 272 if (allowed_ns == 0)
14c63f17
DH
273 return;
274
275 /* decay the counter by 1 average sample */
4a32fea9 276 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 local_samples_len += sample_len_ns;
4a32fea9 279 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
280
281 /*
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
285 */
286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287
d9494cb4 288 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
289 return;
290
291 if (max_samples_per_tick <= 1)
292 return;
293
294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297
14c63f17 298 update_perf_cpu_limits();
6a02ad66 299
cd578abb
PZ
300 if (!irq_work_queue(&perf_duration_work)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len, allowed_ns >> 1,
304 sysctl_perf_event_sample_rate);
305 }
14c63f17
DH
306}
307
cdd6c482 308static atomic64_t perf_event_id;
a96bbc16 309
0b3fcf17
SE
310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 enum event_type_t event_type);
312
313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
314 enum event_type_t event_type,
315 struct task_struct *task);
316
317static void update_context_time(struct perf_event_context *ctx);
318static u64 perf_event_time(struct perf_event *event);
0b3fcf17 319
cdd6c482 320void __weak perf_event_print_debug(void) { }
0793a61d 321
84c79910 322extern __weak const char *perf_pmu_name(void)
0793a61d 323{
84c79910 324 return "pmu";
0793a61d
TG
325}
326
0b3fcf17
SE
327static inline u64 perf_clock(void)
328{
329 return local_clock();
330}
331
34f43927
PZ
332static inline u64 perf_event_clock(struct perf_event *event)
333{
334 return event->clock();
335}
336
e5d1367f
SE
337static inline struct perf_cpu_context *
338__get_cpu_context(struct perf_event_context *ctx)
339{
340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341}
342
facc4307
PZ
343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 struct perf_event_context *ctx)
345{
346 raw_spin_lock(&cpuctx->ctx.lock);
347 if (ctx)
348 raw_spin_lock(&ctx->lock);
349}
350
351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
353{
354 if (ctx)
355 raw_spin_unlock(&ctx->lock);
356 raw_spin_unlock(&cpuctx->ctx.lock);
357}
358
e5d1367f
SE
359#ifdef CONFIG_CGROUP_PERF
360
e5d1367f
SE
361static inline bool
362perf_cgroup_match(struct perf_event *event)
363{
364 struct perf_event_context *ctx = event->ctx;
365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366
ef824fa1
TH
367 /* @event doesn't care about cgroup */
368 if (!event->cgrp)
369 return true;
370
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
372 if (!cpuctx->cgrp)
373 return false;
374
375 /*
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
380 */
381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 event->cgrp->css.cgroup);
e5d1367f
SE
383}
384
e5d1367f
SE
385static inline void perf_detach_cgroup(struct perf_event *event)
386{
4e2ba650 387 css_put(&event->cgrp->css);
e5d1367f
SE
388 event->cgrp = NULL;
389}
390
391static inline int is_cgroup_event(struct perf_event *event)
392{
393 return event->cgrp != NULL;
394}
395
396static inline u64 perf_cgroup_event_time(struct perf_event *event)
397{
398 struct perf_cgroup_info *t;
399
400 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 return t->time;
402}
403
404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405{
406 struct perf_cgroup_info *info;
407 u64 now;
408
409 now = perf_clock();
410
411 info = this_cpu_ptr(cgrp->info);
412
413 info->time += now - info->timestamp;
414 info->timestamp = now;
415}
416
417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418{
419 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 if (cgrp_out)
421 __update_cgrp_time(cgrp_out);
422}
423
424static inline void update_cgrp_time_from_event(struct perf_event *event)
425{
3f7cce3c
SE
426 struct perf_cgroup *cgrp;
427
e5d1367f 428 /*
3f7cce3c
SE
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
e5d1367f 431 */
3f7cce3c 432 if (!is_cgroup_event(event))
e5d1367f
SE
433 return;
434
3f7cce3c
SE
435 cgrp = perf_cgroup_from_task(current);
436 /*
437 * Do not update time when cgroup is not active
438 */
439 if (cgrp == event->cgrp)
440 __update_cgrp_time(event->cgrp);
e5d1367f
SE
441}
442
443static inline void
3f7cce3c
SE
444perf_cgroup_set_timestamp(struct task_struct *task,
445 struct perf_event_context *ctx)
e5d1367f
SE
446{
447 struct perf_cgroup *cgrp;
448 struct perf_cgroup_info *info;
449
3f7cce3c
SE
450 /*
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
454 */
455 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
456 return;
457
458 cgrp = perf_cgroup_from_task(task);
459 info = this_cpu_ptr(cgrp->info);
3f7cce3c 460 info->timestamp = ctx->timestamp;
e5d1367f
SE
461}
462
463#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
465
466/*
467 * reschedule events based on the cgroup constraint of task.
468 *
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
471 */
472void perf_cgroup_switch(struct task_struct *task, int mode)
473{
474 struct perf_cpu_context *cpuctx;
475 struct pmu *pmu;
476 unsigned long flags;
477
478 /*
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
481 * avoids preemption.
482 */
483 local_irq_save(flags);
484
485 /*
486 * we reschedule only in the presence of cgroup
487 * constrained events.
488 */
489 rcu_read_lock();
490
491 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
493 if (cpuctx->unique_pmu != pmu)
494 continue; /* ensure we process each cpuctx once */
e5d1367f 495
e5d1367f
SE
496 /*
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
499 *
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
502 */
503 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
504 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
506
507 if (mode & PERF_CGROUP_SWOUT) {
508 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 /*
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
512 */
513 cpuctx->cgrp = NULL;
514 }
515
516 if (mode & PERF_CGROUP_SWIN) {
e566b76e 517 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
518 /*
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
521 * task around
e5d1367f
SE
522 */
523 cpuctx->cgrp = perf_cgroup_from_task(task);
524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 }
facc4307
PZ
526 perf_pmu_enable(cpuctx->ctx.pmu);
527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 528 }
e5d1367f
SE
529 }
530
531 rcu_read_unlock();
532
533 local_irq_restore(flags);
534}
535
a8d757ef
SE
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
e5d1367f 538{
a8d757ef
SE
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
541
542 /*
543 * we come here when we know perf_cgroup_events > 0
544 */
545 cgrp1 = perf_cgroup_from_task(task);
546
547 /*
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
550 */
551 if (next)
552 cgrp2 = perf_cgroup_from_task(next);
553
554 /*
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
558 */
559 if (cgrp1 != cgrp2)
560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
561}
562
a8d757ef
SE
563static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 struct task_struct *task)
e5d1367f 565{
a8d757ef
SE
566 struct perf_cgroup *cgrp1;
567 struct perf_cgroup *cgrp2 = NULL;
568
569 /*
570 * we come here when we know perf_cgroup_events > 0
571 */
572 cgrp1 = perf_cgroup_from_task(task);
573
574 /* prev can never be NULL */
575 cgrp2 = perf_cgroup_from_task(prev);
576
577 /*
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
581 */
582 if (cgrp1 != cgrp2)
583 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
584}
585
586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 struct perf_event_attr *attr,
588 struct perf_event *group_leader)
589{
590 struct perf_cgroup *cgrp;
591 struct cgroup_subsys_state *css;
2903ff01
AV
592 struct fd f = fdget(fd);
593 int ret = 0;
e5d1367f 594
2903ff01 595 if (!f.file)
e5d1367f
SE
596 return -EBADF;
597
b583043e 598 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 599 &perf_event_cgrp_subsys);
3db272c0
LZ
600 if (IS_ERR(css)) {
601 ret = PTR_ERR(css);
602 goto out;
603 }
e5d1367f
SE
604
605 cgrp = container_of(css, struct perf_cgroup, css);
606 event->cgrp = cgrp;
607
608 /*
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
612 */
613 if (group_leader && group_leader->cgrp != cgrp) {
614 perf_detach_cgroup(event);
615 ret = -EINVAL;
e5d1367f 616 }
3db272c0 617out:
2903ff01 618 fdput(f);
e5d1367f
SE
619 return ret;
620}
621
622static inline void
623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624{
625 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 event->shadow_ctx_time = now - t->timestamp;
628}
629
630static inline void
631perf_cgroup_defer_enabled(struct perf_event *event)
632{
633 /*
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
638 */
639 if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 event->cgrp_defer_enabled = 1;
641}
642
643static inline void
644perf_cgroup_mark_enabled(struct perf_event *event,
645 struct perf_event_context *ctx)
646{
647 struct perf_event *sub;
648 u64 tstamp = perf_event_time(event);
649
650 if (!event->cgrp_defer_enabled)
651 return;
652
653 event->cgrp_defer_enabled = 0;
654
655 event->tstamp_enabled = tstamp - event->total_time_enabled;
656 list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 sub->cgrp_defer_enabled = 0;
660 }
661 }
662}
663#else /* !CONFIG_CGROUP_PERF */
664
665static inline bool
666perf_cgroup_match(struct perf_event *event)
667{
668 return true;
669}
670
671static inline void perf_detach_cgroup(struct perf_event *event)
672{}
673
674static inline int is_cgroup_event(struct perf_event *event)
675{
676 return 0;
677}
678
679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680{
681 return 0;
682}
683
684static inline void update_cgrp_time_from_event(struct perf_event *event)
685{
686}
687
688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689{
690}
691
a8d757ef
SE
692static inline void perf_cgroup_sched_out(struct task_struct *task,
693 struct task_struct *next)
e5d1367f
SE
694{
695}
696
a8d757ef
SE
697static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 struct task_struct *task)
e5d1367f
SE
699{
700}
701
702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 struct perf_event_attr *attr,
704 struct perf_event *group_leader)
705{
706 return -EINVAL;
707}
708
709static inline void
3f7cce3c
SE
710perf_cgroup_set_timestamp(struct task_struct *task,
711 struct perf_event_context *ctx)
e5d1367f
SE
712{
713}
714
715void
716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717{
718}
719
720static inline void
721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722{
723}
724
725static inline u64 perf_cgroup_event_time(struct perf_event *event)
726{
727 return 0;
728}
729
730static inline void
731perf_cgroup_defer_enabled(struct perf_event *event)
732{
733}
734
735static inline void
736perf_cgroup_mark_enabled(struct perf_event *event,
737 struct perf_event_context *ctx)
738{
739}
740#endif
741
9e630205
SE
742/*
743 * set default to be dependent on timer tick just
744 * like original code
745 */
746#define PERF_CPU_HRTIMER (1000 / HZ)
747/*
748 * function must be called with interrupts disbled
749 */
750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751{
752 struct perf_cpu_context *cpuctx;
753 enum hrtimer_restart ret = HRTIMER_NORESTART;
754 int rotations = 0;
755
756 WARN_ON(!irqs_disabled());
757
758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759
760 rotations = perf_rotate_context(cpuctx);
761
762 /*
763 * arm timer if needed
764 */
765 if (rotations) {
766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 ret = HRTIMER_RESTART;
768 }
769
770 return ret;
771}
772
773/* CPU is going down */
774void perf_cpu_hrtimer_cancel(int cpu)
775{
776 struct perf_cpu_context *cpuctx;
777 struct pmu *pmu;
778 unsigned long flags;
779
780 if (WARN_ON(cpu != smp_processor_id()))
781 return;
782
783 local_irq_save(flags);
784
785 rcu_read_lock();
786
787 list_for_each_entry_rcu(pmu, &pmus, entry) {
788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789
790 if (pmu->task_ctx_nr == perf_sw_context)
791 continue;
792
793 hrtimer_cancel(&cpuctx->hrtimer);
794 }
795
796 rcu_read_unlock();
797
798 local_irq_restore(flags);
799}
800
801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802{
803 struct hrtimer *hr = &cpuctx->hrtimer;
804 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 805 int timer;
9e630205
SE
806
807 /* no multiplexing needed for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
809 return;
810
62b85639
SE
811 /*
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
814 */
815 timer = pmu->hrtimer_interval_ms;
816 if (timer < 1)
817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818
819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
820
821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 hr->function = perf_cpu_hrtimer_handler;
823}
824
825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
829
830 /* not for SW PMU */
831 if (pmu->task_ctx_nr == perf_sw_context)
832 return;
833
834 if (hrtimer_active(hr))
835 return;
836
837 if (!hrtimer_callback_running(hr))
838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 0, HRTIMER_MODE_REL_PINNED, 0);
840}
841
33696fc0 842void perf_pmu_disable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!(*count)++)
846 pmu->pmu_disable(pmu);
9e35ad38 847}
9e35ad38 848
33696fc0 849void perf_pmu_enable(struct pmu *pmu)
9e35ad38 850{
33696fc0
PZ
851 int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 if (!--(*count))
853 pmu->pmu_enable(pmu);
9e35ad38 854}
9e35ad38 855
2fde4f94 856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
857
858/*
2fde4f94
MR
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 863 */
2fde4f94 864static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 865{
2fde4f94 866 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 867
e9d2b064 868 WARN_ON(!irqs_disabled());
b5ab4cd5 869
2fde4f94
MR
870 WARN_ON(!list_empty(&ctx->active_ctx_list));
871
872 list_add(&ctx->active_ctx_list, head);
873}
874
875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876{
877 WARN_ON(!irqs_disabled());
878
879 WARN_ON(list_empty(&ctx->active_ctx_list));
880
881 list_del_init(&ctx->active_ctx_list);
9e35ad38 882}
9e35ad38 883
cdd6c482 884static void get_ctx(struct perf_event_context *ctx)
a63eaf34 885{
e5289d4a 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
887}
888
4af57ef2
YZ
889static void free_ctx(struct rcu_head *head)
890{
891 struct perf_event_context *ctx;
892
893 ctx = container_of(head, struct perf_event_context, rcu_head);
894 kfree(ctx->task_ctx_data);
895 kfree(ctx);
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
4af57ef2 905 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 906 }
a63eaf34
PM
907}
908
f63a8daa
PZ
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
920 *
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
925 *
926 * The places that change perf_event::ctx will issue:
927 *
928 * perf_remove_from_context();
929 * synchronize_rcu();
930 * perf_install_in_context();
931 *
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
937 *
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940 * function.
941 *
942 * Lock order:
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
948 * mmap_sem
949 */
a83fe28e
PZ
950static struct perf_event_context *
951perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
952{
953 struct perf_event_context *ctx;
954
955again:
956 rcu_read_lock();
957 ctx = ACCESS_ONCE(event->ctx);
958 if (!atomic_inc_not_zero(&ctx->refcount)) {
959 rcu_read_unlock();
960 goto again;
961 }
962 rcu_read_unlock();
963
a83fe28e 964 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
965 if (event->ctx != ctx) {
966 mutex_unlock(&ctx->mutex);
967 put_ctx(ctx);
968 goto again;
969 }
970
971 return ctx;
972}
973
a83fe28e
PZ
974static inline struct perf_event_context *
975perf_event_ctx_lock(struct perf_event *event)
976{
977 return perf_event_ctx_lock_nested(event, 0);
978}
979
f63a8daa
PZ
980static void perf_event_ctx_unlock(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983 mutex_unlock(&ctx->mutex);
984 put_ctx(ctx);
985}
986
211de6eb
PZ
987/*
988 * This must be done under the ctx->lock, such as to serialize against
989 * context_equiv(), therefore we cannot call put_ctx() since that might end up
990 * calling scheduler related locks and ctx->lock nests inside those.
991 */
992static __must_check struct perf_event_context *
993unclone_ctx(struct perf_event_context *ctx)
71a851b4 994{
211de6eb
PZ
995 struct perf_event_context *parent_ctx = ctx->parent_ctx;
996
997 lockdep_assert_held(&ctx->lock);
998
999 if (parent_ctx)
71a851b4 1000 ctx->parent_ctx = NULL;
5a3126d4 1001 ctx->generation++;
211de6eb
PZ
1002
1003 return parent_ctx;
71a851b4
PZ
1004}
1005
6844c09d
ACM
1006static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1007{
1008 /*
1009 * only top level events have the pid namespace they were created in
1010 */
1011 if (event->parent)
1012 event = event->parent;
1013
1014 return task_tgid_nr_ns(p, event->ns);
1015}
1016
1017static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1018{
1019 /*
1020 * only top level events have the pid namespace they were created in
1021 */
1022 if (event->parent)
1023 event = event->parent;
1024
1025 return task_pid_nr_ns(p, event->ns);
1026}
1027
7f453c24 1028/*
cdd6c482 1029 * If we inherit events we want to return the parent event id
7f453c24
PZ
1030 * to userspace.
1031 */
cdd6c482 1032static u64 primary_event_id(struct perf_event *event)
7f453c24 1033{
cdd6c482 1034 u64 id = event->id;
7f453c24 1035
cdd6c482
IM
1036 if (event->parent)
1037 id = event->parent->id;
7f453c24
PZ
1038
1039 return id;
1040}
1041
25346b93 1042/*
cdd6c482 1043 * Get the perf_event_context for a task and lock it.
25346b93
PM
1044 * This has to cope with with the fact that until it is locked,
1045 * the context could get moved to another task.
1046 */
cdd6c482 1047static struct perf_event_context *
8dc85d54 1048perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1049{
cdd6c482 1050 struct perf_event_context *ctx;
25346b93 1051
9ed6060d 1052retry:
058ebd0e
PZ
1053 /*
1054 * One of the few rules of preemptible RCU is that one cannot do
1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1056 * part of the read side critical section was preemptible -- see
1057 * rcu_read_unlock_special().
1058 *
1059 * Since ctx->lock nests under rq->lock we must ensure the entire read
1060 * side critical section is non-preemptible.
1061 */
1062 preempt_disable();
1063 rcu_read_lock();
8dc85d54 1064 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1065 if (ctx) {
1066 /*
1067 * If this context is a clone of another, it might
1068 * get swapped for another underneath us by
cdd6c482 1069 * perf_event_task_sched_out, though the
25346b93
PM
1070 * rcu_read_lock() protects us from any context
1071 * getting freed. Lock the context and check if it
1072 * got swapped before we could get the lock, and retry
1073 * if so. If we locked the right context, then it
1074 * can't get swapped on us any more.
1075 */
e625cce1 1076 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1077 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1079 rcu_read_unlock();
1080 preempt_enable();
25346b93
PM
1081 goto retry;
1082 }
b49a9e7e
PZ
1083
1084 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1085 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1086 ctx = NULL;
1087 }
25346b93
PM
1088 }
1089 rcu_read_unlock();
058ebd0e 1090 preempt_enable();
25346b93
PM
1091 return ctx;
1092}
1093
1094/*
1095 * Get the context for a task and increment its pin_count so it
1096 * can't get swapped to another task. This also increments its
1097 * reference count so that the context can't get freed.
1098 */
8dc85d54
PZ
1099static struct perf_event_context *
1100perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1101{
cdd6c482 1102 struct perf_event_context *ctx;
25346b93
PM
1103 unsigned long flags;
1104
8dc85d54 1105 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1106 if (ctx) {
1107 ++ctx->pin_count;
e625cce1 1108 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1109 }
1110 return ctx;
1111}
1112
cdd6c482 1113static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1114{
1115 unsigned long flags;
1116
e625cce1 1117 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1118 --ctx->pin_count;
e625cce1 1119 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1120}
1121
f67218c3
PZ
1122/*
1123 * Update the record of the current time in a context.
1124 */
1125static void update_context_time(struct perf_event_context *ctx)
1126{
1127 u64 now = perf_clock();
1128
1129 ctx->time += now - ctx->timestamp;
1130 ctx->timestamp = now;
1131}
1132
4158755d
SE
1133static u64 perf_event_time(struct perf_event *event)
1134{
1135 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1136
1137 if (is_cgroup_event(event))
1138 return perf_cgroup_event_time(event);
1139
4158755d
SE
1140 return ctx ? ctx->time : 0;
1141}
1142
f67218c3
PZ
1143/*
1144 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1145 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1146 */
1147static void update_event_times(struct perf_event *event)
1148{
1149 struct perf_event_context *ctx = event->ctx;
1150 u64 run_end;
1151
1152 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1153 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1154 return;
e5d1367f
SE
1155 /*
1156 * in cgroup mode, time_enabled represents
1157 * the time the event was enabled AND active
1158 * tasks were in the monitored cgroup. This is
1159 * independent of the activity of the context as
1160 * there may be a mix of cgroup and non-cgroup events.
1161 *
1162 * That is why we treat cgroup events differently
1163 * here.
1164 */
1165 if (is_cgroup_event(event))
46cd6a7f 1166 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1167 else if (ctx->is_active)
1168 run_end = ctx->time;
acd1d7c1
PZ
1169 else
1170 run_end = event->tstamp_stopped;
1171
1172 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1173
1174 if (event->state == PERF_EVENT_STATE_INACTIVE)
1175 run_end = event->tstamp_stopped;
1176 else
4158755d 1177 run_end = perf_event_time(event);
f67218c3
PZ
1178
1179 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1180
f67218c3
PZ
1181}
1182
96c21a46
PZ
1183/*
1184 * Update total_time_enabled and total_time_running for all events in a group.
1185 */
1186static void update_group_times(struct perf_event *leader)
1187{
1188 struct perf_event *event;
1189
1190 update_event_times(leader);
1191 list_for_each_entry(event, &leader->sibling_list, group_entry)
1192 update_event_times(event);
1193}
1194
889ff015
FW
1195static struct list_head *
1196ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1197{
1198 if (event->attr.pinned)
1199 return &ctx->pinned_groups;
1200 else
1201 return &ctx->flexible_groups;
1202}
1203
fccc714b 1204/*
cdd6c482 1205 * Add a event from the lists for its context.
fccc714b
PZ
1206 * Must be called with ctx->mutex and ctx->lock held.
1207 */
04289bb9 1208static void
cdd6c482 1209list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1210{
8a49542c
PZ
1211 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1212 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1213
1214 /*
8a49542c
PZ
1215 * If we're a stand alone event or group leader, we go to the context
1216 * list, group events are kept attached to the group so that
1217 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1218 */
8a49542c 1219 if (event->group_leader == event) {
889ff015
FW
1220 struct list_head *list;
1221
d6f962b5
FW
1222 if (is_software_event(event))
1223 event->group_flags |= PERF_GROUP_SOFTWARE;
1224
889ff015
FW
1225 list = ctx_group_list(event, ctx);
1226 list_add_tail(&event->group_entry, list);
5c148194 1227 }
592903cd 1228
08309379 1229 if (is_cgroup_event(event))
e5d1367f 1230 ctx->nr_cgroups++;
e5d1367f 1231
cdd6c482
IM
1232 list_add_rcu(&event->event_entry, &ctx->event_list);
1233 ctx->nr_events++;
1234 if (event->attr.inherit_stat)
bfbd3381 1235 ctx->nr_stat++;
5a3126d4
PZ
1236
1237 ctx->generation++;
04289bb9
IM
1238}
1239
0231bb53
JO
1240/*
1241 * Initialize event state based on the perf_event_attr::disabled.
1242 */
1243static inline void perf_event__state_init(struct perf_event *event)
1244{
1245 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1246 PERF_EVENT_STATE_INACTIVE;
1247}
1248
c320c7b7
ACM
1249/*
1250 * Called at perf_event creation and when events are attached/detached from a
1251 * group.
1252 */
1253static void perf_event__read_size(struct perf_event *event)
1254{
1255 int entry = sizeof(u64); /* value */
1256 int size = 0;
1257 int nr = 1;
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_ID)
1266 entry += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1269 nr += event->group_leader->nr_siblings;
1270 size += sizeof(u64);
1271 }
1272
1273 size += entry * nr;
1274 event->read_size = size;
1275}
1276
1277static void perf_event__header_size(struct perf_event *event)
1278{
1279 struct perf_sample_data *data;
1280 u64 sample_type = event->attr.sample_type;
1281 u16 size = 0;
1282
1283 perf_event__read_size(event);
1284
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
c3feedf2
AK
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
6844c09d
ACM
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
d6be9ad6
SE
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
fdfbbd07
AK
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
6844c09d
ACM
1306 event->header_size = size;
1307}
1308
1309static void perf_event__id_header_size(struct perf_event *event)
1310{
1311 struct perf_sample_data *data;
1312 u64 sample_type = event->attr.sample_type;
1313 u16 size = 0;
1314
c320c7b7
ACM
1315 if (sample_type & PERF_SAMPLE_TID)
1316 size += sizeof(data->tid_entry);
1317
1318 if (sample_type & PERF_SAMPLE_TIME)
1319 size += sizeof(data->time);
1320
ff3d527c
AH
1321 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1322 size += sizeof(data->id);
1323
c320c7b7
ACM
1324 if (sample_type & PERF_SAMPLE_ID)
1325 size += sizeof(data->id);
1326
1327 if (sample_type & PERF_SAMPLE_STREAM_ID)
1328 size += sizeof(data->stream_id);
1329
1330 if (sample_type & PERF_SAMPLE_CPU)
1331 size += sizeof(data->cpu_entry);
1332
6844c09d 1333 event->id_header_size = size;
c320c7b7
ACM
1334}
1335
8a49542c
PZ
1336static void perf_group_attach(struct perf_event *event)
1337{
c320c7b7 1338 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1339
74c3337c
PZ
1340 /*
1341 * We can have double attach due to group movement in perf_event_open.
1342 */
1343 if (event->attach_state & PERF_ATTACH_GROUP)
1344 return;
1345
8a49542c
PZ
1346 event->attach_state |= PERF_ATTACH_GROUP;
1347
1348 if (group_leader == event)
1349 return;
1350
652884fe
PZ
1351 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1352
8a49542c
PZ
1353 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1354 !is_software_event(event))
1355 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1356
1357 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1358 group_leader->nr_siblings++;
c320c7b7
ACM
1359
1360 perf_event__header_size(group_leader);
1361
1362 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1363 perf_event__header_size(pos);
8a49542c
PZ
1364}
1365
a63eaf34 1366/*
cdd6c482 1367 * Remove a event from the lists for its context.
fccc714b 1368 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1369 */
04289bb9 1370static void
cdd6c482 1371list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1372{
68cacd29 1373 struct perf_cpu_context *cpuctx;
652884fe
PZ
1374
1375 WARN_ON_ONCE(event->ctx != ctx);
1376 lockdep_assert_held(&ctx->lock);
1377
8a49542c
PZ
1378 /*
1379 * We can have double detach due to exit/hot-unplug + close.
1380 */
1381 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1382 return;
8a49542c
PZ
1383
1384 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1385
68cacd29 1386 if (is_cgroup_event(event)) {
e5d1367f 1387 ctx->nr_cgroups--;
68cacd29
SE
1388 cpuctx = __get_cpu_context(ctx);
1389 /*
1390 * if there are no more cgroup events
1391 * then cler cgrp to avoid stale pointer
1392 * in update_cgrp_time_from_cpuctx()
1393 */
1394 if (!ctx->nr_cgroups)
1395 cpuctx->cgrp = NULL;
1396 }
e5d1367f 1397
cdd6c482
IM
1398 ctx->nr_events--;
1399 if (event->attr.inherit_stat)
bfbd3381 1400 ctx->nr_stat--;
8bc20959 1401
cdd6c482 1402 list_del_rcu(&event->event_entry);
04289bb9 1403
8a49542c
PZ
1404 if (event->group_leader == event)
1405 list_del_init(&event->group_entry);
5c148194 1406
96c21a46 1407 update_group_times(event);
b2e74a26
SE
1408
1409 /*
1410 * If event was in error state, then keep it
1411 * that way, otherwise bogus counts will be
1412 * returned on read(). The only way to get out
1413 * of error state is by explicit re-enabling
1414 * of the event
1415 */
1416 if (event->state > PERF_EVENT_STATE_OFF)
1417 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1418
1419 ctx->generation++;
050735b0
PZ
1420}
1421
8a49542c 1422static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1423{
1424 struct perf_event *sibling, *tmp;
8a49542c
PZ
1425 struct list_head *list = NULL;
1426
1427 /*
1428 * We can have double detach due to exit/hot-unplug + close.
1429 */
1430 if (!(event->attach_state & PERF_ATTACH_GROUP))
1431 return;
1432
1433 event->attach_state &= ~PERF_ATTACH_GROUP;
1434
1435 /*
1436 * If this is a sibling, remove it from its group.
1437 */
1438 if (event->group_leader != event) {
1439 list_del_init(&event->group_entry);
1440 event->group_leader->nr_siblings--;
c320c7b7 1441 goto out;
8a49542c
PZ
1442 }
1443
1444 if (!list_empty(&event->group_entry))
1445 list = &event->group_entry;
2e2af50b 1446
04289bb9 1447 /*
cdd6c482
IM
1448 * If this was a group event with sibling events then
1449 * upgrade the siblings to singleton events by adding them
8a49542c 1450 * to whatever list we are on.
04289bb9 1451 */
cdd6c482 1452 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1453 if (list)
1454 list_move_tail(&sibling->group_entry, list);
04289bb9 1455 sibling->group_leader = sibling;
d6f962b5
FW
1456
1457 /* Inherit group flags from the previous leader */
1458 sibling->group_flags = event->group_flags;
652884fe
PZ
1459
1460 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1461 }
c320c7b7
ACM
1462
1463out:
1464 perf_event__header_size(event->group_leader);
1465
1466 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1467 perf_event__header_size(tmp);
04289bb9
IM
1468}
1469
fadfe7be
JO
1470/*
1471 * User event without the task.
1472 */
1473static bool is_orphaned_event(struct perf_event *event)
1474{
1475 return event && !is_kernel_event(event) && !event->owner;
1476}
1477
1478/*
1479 * Event has a parent but parent's task finished and it's
1480 * alive only because of children holding refference.
1481 */
1482static bool is_orphaned_child(struct perf_event *event)
1483{
1484 return is_orphaned_event(event->parent);
1485}
1486
1487static void orphans_remove_work(struct work_struct *work);
1488
1489static void schedule_orphans_remove(struct perf_event_context *ctx)
1490{
1491 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1492 return;
1493
1494 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1495 get_ctx(ctx);
1496 ctx->orphans_remove_sched = true;
1497 }
1498}
1499
1500static int __init perf_workqueue_init(void)
1501{
1502 perf_wq = create_singlethread_workqueue("perf");
1503 WARN(!perf_wq, "failed to create perf workqueue\n");
1504 return perf_wq ? 0 : -1;
1505}
1506
1507core_initcall(perf_workqueue_init);
1508
fa66f07a
SE
1509static inline int
1510event_filter_match(struct perf_event *event)
1511{
e5d1367f
SE
1512 return (event->cpu == -1 || event->cpu == smp_processor_id())
1513 && perf_cgroup_match(event);
fa66f07a
SE
1514}
1515
9ffcfa6f
SE
1516static void
1517event_sched_out(struct perf_event *event,
3b6f9e5c 1518 struct perf_cpu_context *cpuctx,
cdd6c482 1519 struct perf_event_context *ctx)
3b6f9e5c 1520{
4158755d 1521 u64 tstamp = perf_event_time(event);
fa66f07a 1522 u64 delta;
652884fe
PZ
1523
1524 WARN_ON_ONCE(event->ctx != ctx);
1525 lockdep_assert_held(&ctx->lock);
1526
fa66f07a
SE
1527 /*
1528 * An event which could not be activated because of
1529 * filter mismatch still needs to have its timings
1530 * maintained, otherwise bogus information is return
1531 * via read() for time_enabled, time_running:
1532 */
1533 if (event->state == PERF_EVENT_STATE_INACTIVE
1534 && !event_filter_match(event)) {
e5d1367f 1535 delta = tstamp - event->tstamp_stopped;
fa66f07a 1536 event->tstamp_running += delta;
4158755d 1537 event->tstamp_stopped = tstamp;
fa66f07a
SE
1538 }
1539
cdd6c482 1540 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1541 return;
3b6f9e5c 1542
44377277
AS
1543 perf_pmu_disable(event->pmu);
1544
cdd6c482
IM
1545 event->state = PERF_EVENT_STATE_INACTIVE;
1546 if (event->pending_disable) {
1547 event->pending_disable = 0;
1548 event->state = PERF_EVENT_STATE_OFF;
970892a9 1549 }
4158755d 1550 event->tstamp_stopped = tstamp;
a4eaf7f1 1551 event->pmu->del(event, 0);
cdd6c482 1552 event->oncpu = -1;
3b6f9e5c 1553
cdd6c482 1554 if (!is_software_event(event))
3b6f9e5c 1555 cpuctx->active_oncpu--;
2fde4f94
MR
1556 if (!--ctx->nr_active)
1557 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1558 if (event->attr.freq && event->attr.sample_freq)
1559 ctx->nr_freq--;
cdd6c482 1560 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1561 cpuctx->exclusive = 0;
44377277 1562
fadfe7be
JO
1563 if (is_orphaned_child(event))
1564 schedule_orphans_remove(ctx);
1565
44377277 1566 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1567}
1568
d859e29f 1569static void
cdd6c482 1570group_sched_out(struct perf_event *group_event,
d859e29f 1571 struct perf_cpu_context *cpuctx,
cdd6c482 1572 struct perf_event_context *ctx)
d859e29f 1573{
cdd6c482 1574 struct perf_event *event;
fa66f07a 1575 int state = group_event->state;
d859e29f 1576
cdd6c482 1577 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1578
1579 /*
1580 * Schedule out siblings (if any):
1581 */
cdd6c482
IM
1582 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1583 event_sched_out(event, cpuctx, ctx);
d859e29f 1584
fa66f07a 1585 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1586 cpuctx->exclusive = 0;
1587}
1588
46ce0fe9
PZ
1589struct remove_event {
1590 struct perf_event *event;
1591 bool detach_group;
1592};
1593
0793a61d 1594/*
cdd6c482 1595 * Cross CPU call to remove a performance event
0793a61d 1596 *
cdd6c482 1597 * We disable the event on the hardware level first. After that we
0793a61d
TG
1598 * remove it from the context list.
1599 */
fe4b04fa 1600static int __perf_remove_from_context(void *info)
0793a61d 1601{
46ce0fe9
PZ
1602 struct remove_event *re = info;
1603 struct perf_event *event = re->event;
cdd6c482 1604 struct perf_event_context *ctx = event->ctx;
108b02cf 1605 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1606
e625cce1 1607 raw_spin_lock(&ctx->lock);
cdd6c482 1608 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1609 if (re->detach_group)
1610 perf_group_detach(event);
cdd6c482 1611 list_del_event(event, ctx);
64ce3126
PZ
1612 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1613 ctx->is_active = 0;
1614 cpuctx->task_ctx = NULL;
1615 }
e625cce1 1616 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1617
1618 return 0;
0793a61d
TG
1619}
1620
1621
1622/*
cdd6c482 1623 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1624 *
cdd6c482 1625 * CPU events are removed with a smp call. For task events we only
0793a61d 1626 * call when the task is on a CPU.
c93f7669 1627 *
cdd6c482
IM
1628 * If event->ctx is a cloned context, callers must make sure that
1629 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1630 * remains valid. This is OK when called from perf_release since
1631 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1632 * When called from perf_event_exit_task, it's OK because the
c93f7669 1633 * context has been detached from its task.
0793a61d 1634 */
46ce0fe9 1635static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1636{
cdd6c482 1637 struct perf_event_context *ctx = event->ctx;
0793a61d 1638 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1639 struct remove_event re = {
1640 .event = event,
1641 .detach_group = detach_group,
1642 };
0793a61d 1643
fe4b04fa
PZ
1644 lockdep_assert_held(&ctx->mutex);
1645
0793a61d
TG
1646 if (!task) {
1647 /*
226424ee
MR
1648 * Per cpu events are removed via an smp call. The removal can
1649 * fail if the CPU is currently offline, but in that case we
1650 * already called __perf_remove_from_context from
1651 * perf_event_exit_cpu.
0793a61d 1652 */
46ce0fe9 1653 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1654 return;
1655 }
1656
1657retry:
46ce0fe9 1658 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1659 return;
0793a61d 1660
e625cce1 1661 raw_spin_lock_irq(&ctx->lock);
0793a61d 1662 /*
fe4b04fa
PZ
1663 * If we failed to find a running task, but find the context active now
1664 * that we've acquired the ctx->lock, retry.
0793a61d 1665 */
fe4b04fa 1666 if (ctx->is_active) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
0793a61d
TG
1673 goto retry;
1674 }
1675
1676 /*
fe4b04fa
PZ
1677 * Since the task isn't running, its safe to remove the event, us
1678 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1679 */
46ce0fe9
PZ
1680 if (detach_group)
1681 perf_group_detach(event);
fe4b04fa 1682 list_del_event(event, ctx);
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1684}
1685
d859e29f 1686/*
cdd6c482 1687 * Cross CPU call to disable a performance event
d859e29f 1688 */
500ad2d8 1689int __perf_event_disable(void *info)
d859e29f 1690{
cdd6c482 1691 struct perf_event *event = info;
cdd6c482 1692 struct perf_event_context *ctx = event->ctx;
108b02cf 1693 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1694
1695 /*
cdd6c482
IM
1696 * If this is a per-task event, need to check whether this
1697 * event's task is the current task on this cpu.
fe4b04fa
PZ
1698 *
1699 * Can trigger due to concurrent perf_event_context_sched_out()
1700 * flipping contexts around.
d859e29f 1701 */
665c2142 1702 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1703 return -EINVAL;
d859e29f 1704
e625cce1 1705 raw_spin_lock(&ctx->lock);
d859e29f
PM
1706
1707 /*
cdd6c482 1708 * If the event is on, turn it off.
d859e29f
PM
1709 * If it is in error state, leave it in error state.
1710 */
cdd6c482 1711 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1712 update_context_time(ctx);
e5d1367f 1713 update_cgrp_time_from_event(event);
cdd6c482
IM
1714 update_group_times(event);
1715 if (event == event->group_leader)
1716 group_sched_out(event, cpuctx, ctx);
d859e29f 1717 else
cdd6c482
IM
1718 event_sched_out(event, cpuctx, ctx);
1719 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1720 }
1721
e625cce1 1722 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1723
1724 return 0;
d859e29f
PM
1725}
1726
1727/*
cdd6c482 1728 * Disable a event.
c93f7669 1729 *
cdd6c482
IM
1730 * If event->ctx is a cloned context, callers must make sure that
1731 * every task struct that event->ctx->task could possibly point to
c93f7669 1732 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1733 * perf_event_for_each_child or perf_event_for_each because they
1734 * hold the top-level event's child_mutex, so any descendant that
1735 * goes to exit will block in sync_child_event.
1736 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1737 * is the current context on this CPU and preemption is disabled,
cdd6c482 1738 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1739 */
f63a8daa 1740static void _perf_event_disable(struct perf_event *event)
d859e29f 1741{
cdd6c482 1742 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1743 struct task_struct *task = ctx->task;
1744
1745 if (!task) {
1746 /*
cdd6c482 1747 * Disable the event on the cpu that it's on
d859e29f 1748 */
fe4b04fa 1749 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1750 return;
1751 }
1752
9ed6060d 1753retry:
fe4b04fa
PZ
1754 if (!task_function_call(task, __perf_event_disable, event))
1755 return;
d859e29f 1756
e625cce1 1757 raw_spin_lock_irq(&ctx->lock);
d859e29f 1758 /*
cdd6c482 1759 * If the event is still active, we need to retry the cross-call.
d859e29f 1760 */
cdd6c482 1761 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1762 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1763 /*
1764 * Reload the task pointer, it might have been changed by
1765 * a concurrent perf_event_context_sched_out().
1766 */
1767 task = ctx->task;
d859e29f
PM
1768 goto retry;
1769 }
1770
1771 /*
1772 * Since we have the lock this context can't be scheduled
1773 * in, so we can change the state safely.
1774 */
cdd6c482
IM
1775 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 update_group_times(event);
1777 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1778 }
e625cce1 1779 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1780}
f63a8daa
PZ
1781
1782/*
1783 * Strictly speaking kernel users cannot create groups and therefore this
1784 * interface does not need the perf_event_ctx_lock() magic.
1785 */
1786void perf_event_disable(struct perf_event *event)
1787{
1788 struct perf_event_context *ctx;
1789
1790 ctx = perf_event_ctx_lock(event);
1791 _perf_event_disable(event);
1792 perf_event_ctx_unlock(event, ctx);
1793}
dcfce4a0 1794EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1795
e5d1367f
SE
1796static void perf_set_shadow_time(struct perf_event *event,
1797 struct perf_event_context *ctx,
1798 u64 tstamp)
1799{
1800 /*
1801 * use the correct time source for the time snapshot
1802 *
1803 * We could get by without this by leveraging the
1804 * fact that to get to this function, the caller
1805 * has most likely already called update_context_time()
1806 * and update_cgrp_time_xx() and thus both timestamp
1807 * are identical (or very close). Given that tstamp is,
1808 * already adjusted for cgroup, we could say that:
1809 * tstamp - ctx->timestamp
1810 * is equivalent to
1811 * tstamp - cgrp->timestamp.
1812 *
1813 * Then, in perf_output_read(), the calculation would
1814 * work with no changes because:
1815 * - event is guaranteed scheduled in
1816 * - no scheduled out in between
1817 * - thus the timestamp would be the same
1818 *
1819 * But this is a bit hairy.
1820 *
1821 * So instead, we have an explicit cgroup call to remain
1822 * within the time time source all along. We believe it
1823 * is cleaner and simpler to understand.
1824 */
1825 if (is_cgroup_event(event))
1826 perf_cgroup_set_shadow_time(event, tstamp);
1827 else
1828 event->shadow_ctx_time = tstamp - ctx->timestamp;
1829}
1830
4fe757dd
PZ
1831#define MAX_INTERRUPTS (~0ULL)
1832
1833static void perf_log_throttle(struct perf_event *event, int enable);
1834
235c7fc7 1835static int
9ffcfa6f 1836event_sched_in(struct perf_event *event,
235c7fc7 1837 struct perf_cpu_context *cpuctx,
6e37738a 1838 struct perf_event_context *ctx)
235c7fc7 1839{
4158755d 1840 u64 tstamp = perf_event_time(event);
44377277 1841 int ret = 0;
4158755d 1842
63342411
PZ
1843 lockdep_assert_held(&ctx->lock);
1844
cdd6c482 1845 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1846 return 0;
1847
cdd6c482 1848 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1849 event->oncpu = smp_processor_id();
4fe757dd
PZ
1850
1851 /*
1852 * Unthrottle events, since we scheduled we might have missed several
1853 * ticks already, also for a heavily scheduling task there is little
1854 * guarantee it'll get a tick in a timely manner.
1855 */
1856 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1857 perf_log_throttle(event, 1);
1858 event->hw.interrupts = 0;
1859 }
1860
235c7fc7
IM
1861 /*
1862 * The new state must be visible before we turn it on in the hardware:
1863 */
1864 smp_wmb();
1865
44377277
AS
1866 perf_pmu_disable(event->pmu);
1867
72f669c0
SL
1868 event->tstamp_running += tstamp - event->tstamp_stopped;
1869
1870 perf_set_shadow_time(event, ctx, tstamp);
1871
a4eaf7f1 1872 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1873 event->state = PERF_EVENT_STATE_INACTIVE;
1874 event->oncpu = -1;
44377277
AS
1875 ret = -EAGAIN;
1876 goto out;
235c7fc7
IM
1877 }
1878
cdd6c482 1879 if (!is_software_event(event))
3b6f9e5c 1880 cpuctx->active_oncpu++;
2fde4f94
MR
1881 if (!ctx->nr_active++)
1882 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1883 if (event->attr.freq && event->attr.sample_freq)
1884 ctx->nr_freq++;
235c7fc7 1885
cdd6c482 1886 if (event->attr.exclusive)
3b6f9e5c
PM
1887 cpuctx->exclusive = 1;
1888
fadfe7be
JO
1889 if (is_orphaned_child(event))
1890 schedule_orphans_remove(ctx);
1891
44377277
AS
1892out:
1893 perf_pmu_enable(event->pmu);
1894
1895 return ret;
235c7fc7
IM
1896}
1897
6751b71e 1898static int
cdd6c482 1899group_sched_in(struct perf_event *group_event,
6751b71e 1900 struct perf_cpu_context *cpuctx,
6e37738a 1901 struct perf_event_context *ctx)
6751b71e 1902{
6bde9b6c 1903 struct perf_event *event, *partial_group = NULL;
4a234593 1904 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1905 u64 now = ctx->time;
1906 bool simulate = false;
6751b71e 1907
cdd6c482 1908 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1909 return 0;
1910
ad5133b7 1911 pmu->start_txn(pmu);
6bde9b6c 1912
9ffcfa6f 1913 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1914 pmu->cancel_txn(pmu);
9e630205 1915 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1916 return -EAGAIN;
90151c35 1917 }
6751b71e
PM
1918
1919 /*
1920 * Schedule in siblings as one group (if any):
1921 */
cdd6c482 1922 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1923 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1924 partial_group = event;
6751b71e
PM
1925 goto group_error;
1926 }
1927 }
1928
9ffcfa6f 1929 if (!pmu->commit_txn(pmu))
6e85158c 1930 return 0;
9ffcfa6f 1931
6751b71e
PM
1932group_error:
1933 /*
1934 * Groups can be scheduled in as one unit only, so undo any
1935 * partial group before returning:
d7842da4
SE
1936 * The events up to the failed event are scheduled out normally,
1937 * tstamp_stopped will be updated.
1938 *
1939 * The failed events and the remaining siblings need to have
1940 * their timings updated as if they had gone thru event_sched_in()
1941 * and event_sched_out(). This is required to get consistent timings
1942 * across the group. This also takes care of the case where the group
1943 * could never be scheduled by ensuring tstamp_stopped is set to mark
1944 * the time the event was actually stopped, such that time delta
1945 * calculation in update_event_times() is correct.
6751b71e 1946 */
cdd6c482
IM
1947 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1948 if (event == partial_group)
d7842da4
SE
1949 simulate = true;
1950
1951 if (simulate) {
1952 event->tstamp_running += now - event->tstamp_stopped;
1953 event->tstamp_stopped = now;
1954 } else {
1955 event_sched_out(event, cpuctx, ctx);
1956 }
6751b71e 1957 }
9ffcfa6f 1958 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1959
ad5133b7 1960 pmu->cancel_txn(pmu);
90151c35 1961
9e630205
SE
1962 perf_cpu_hrtimer_restart(cpuctx);
1963
6751b71e
PM
1964 return -EAGAIN;
1965}
1966
3b6f9e5c 1967/*
cdd6c482 1968 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1969 */
cdd6c482 1970static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1971 struct perf_cpu_context *cpuctx,
1972 int can_add_hw)
1973{
1974 /*
cdd6c482 1975 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1976 */
d6f962b5 1977 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1978 return 1;
1979 /*
1980 * If an exclusive group is already on, no other hardware
cdd6c482 1981 * events can go on.
3b6f9e5c
PM
1982 */
1983 if (cpuctx->exclusive)
1984 return 0;
1985 /*
1986 * If this group is exclusive and there are already
cdd6c482 1987 * events on the CPU, it can't go on.
3b6f9e5c 1988 */
cdd6c482 1989 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1990 return 0;
1991 /*
1992 * Otherwise, try to add it if all previous groups were able
1993 * to go on.
1994 */
1995 return can_add_hw;
1996}
1997
cdd6c482
IM
1998static void add_event_to_ctx(struct perf_event *event,
1999 struct perf_event_context *ctx)
53cfbf59 2000{
4158755d
SE
2001 u64 tstamp = perf_event_time(event);
2002
cdd6c482 2003 list_add_event(event, ctx);
8a49542c 2004 perf_group_attach(event);
4158755d
SE
2005 event->tstamp_enabled = tstamp;
2006 event->tstamp_running = tstamp;
2007 event->tstamp_stopped = tstamp;
53cfbf59
PM
2008}
2009
2c29ef0f
PZ
2010static void task_ctx_sched_out(struct perf_event_context *ctx);
2011static void
2012ctx_sched_in(struct perf_event_context *ctx,
2013 struct perf_cpu_context *cpuctx,
2014 enum event_type_t event_type,
2015 struct task_struct *task);
fe4b04fa 2016
dce5855b
PZ
2017static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2018 struct perf_event_context *ctx,
2019 struct task_struct *task)
2020{
2021 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2022 if (ctx)
2023 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2024 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2025 if (ctx)
2026 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2027}
2028
0793a61d 2029/*
cdd6c482 2030 * Cross CPU call to install and enable a performance event
682076ae
PZ
2031 *
2032 * Must be called with ctx->mutex held
0793a61d 2033 */
fe4b04fa 2034static int __perf_install_in_context(void *info)
0793a61d 2035{
cdd6c482
IM
2036 struct perf_event *event = info;
2037 struct perf_event_context *ctx = event->ctx;
108b02cf 2038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2039 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2040 struct task_struct *task = current;
2041
b58f6b0d 2042 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2043 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2044
2045 /*
2c29ef0f 2046 * If there was an active task_ctx schedule it out.
0793a61d 2047 */
b58f6b0d 2048 if (task_ctx)
2c29ef0f 2049 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2050
2051 /*
2052 * If the context we're installing events in is not the
2053 * active task_ctx, flip them.
2054 */
2055 if (ctx->task && task_ctx != ctx) {
2056 if (task_ctx)
2057 raw_spin_unlock(&task_ctx->lock);
2058 raw_spin_lock(&ctx->lock);
2059 task_ctx = ctx;
2060 }
2061
2062 if (task_ctx) {
2063 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2064 task = task_ctx->task;
2065 }
b58f6b0d 2066
2c29ef0f 2067 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2068
4af4998b 2069 update_context_time(ctx);
e5d1367f
SE
2070 /*
2071 * update cgrp time only if current cgrp
2072 * matches event->cgrp. Must be done before
2073 * calling add_event_to_ctx()
2074 */
2075 update_cgrp_time_from_event(event);
0793a61d 2076
cdd6c482 2077 add_event_to_ctx(event, ctx);
0793a61d 2078
d859e29f 2079 /*
2c29ef0f 2080 * Schedule everything back in
d859e29f 2081 */
dce5855b 2082 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2083
2084 perf_pmu_enable(cpuctx->ctx.pmu);
2085 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2086
2087 return 0;
0793a61d
TG
2088}
2089
2090/*
cdd6c482 2091 * Attach a performance event to a context
0793a61d 2092 *
cdd6c482
IM
2093 * First we add the event to the list with the hardware enable bit
2094 * in event->hw_config cleared.
0793a61d 2095 *
cdd6c482 2096 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2097 * call to enable it in the task context. The task might have been
2098 * scheduled away, but we check this in the smp call again.
2099 */
2100static void
cdd6c482
IM
2101perf_install_in_context(struct perf_event_context *ctx,
2102 struct perf_event *event,
0793a61d
TG
2103 int cpu)
2104{
2105 struct task_struct *task = ctx->task;
2106
fe4b04fa
PZ
2107 lockdep_assert_held(&ctx->mutex);
2108
c3f00c70 2109 event->ctx = ctx;
0cda4c02
YZ
2110 if (event->cpu != -1)
2111 event->cpu = cpu;
c3f00c70 2112
0793a61d
TG
2113 if (!task) {
2114 /*
cdd6c482 2115 * Per cpu events are installed via an smp call and
af901ca1 2116 * the install is always successful.
0793a61d 2117 */
fe4b04fa 2118 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2119 return;
2120 }
2121
0793a61d 2122retry:
fe4b04fa
PZ
2123 if (!task_function_call(task, __perf_install_in_context, event))
2124 return;
0793a61d 2125
e625cce1 2126 raw_spin_lock_irq(&ctx->lock);
0793a61d 2127 /*
fe4b04fa
PZ
2128 * If we failed to find a running task, but find the context active now
2129 * that we've acquired the ctx->lock, retry.
0793a61d 2130 */
fe4b04fa 2131 if (ctx->is_active) {
e625cce1 2132 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2133 /*
2134 * Reload the task pointer, it might have been changed by
2135 * a concurrent perf_event_context_sched_out().
2136 */
2137 task = ctx->task;
0793a61d
TG
2138 goto retry;
2139 }
2140
2141 /*
fe4b04fa
PZ
2142 * Since the task isn't running, its safe to add the event, us holding
2143 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2144 */
fe4b04fa 2145 add_event_to_ctx(event, ctx);
e625cce1 2146 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2147}
2148
fa289bec 2149/*
cdd6c482 2150 * Put a event into inactive state and update time fields.
fa289bec
PM
2151 * Enabling the leader of a group effectively enables all
2152 * the group members that aren't explicitly disabled, so we
2153 * have to update their ->tstamp_enabled also.
2154 * Note: this works for group members as well as group leaders
2155 * since the non-leader members' sibling_lists will be empty.
2156 */
1d9b482e 2157static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2158{
cdd6c482 2159 struct perf_event *sub;
4158755d 2160 u64 tstamp = perf_event_time(event);
fa289bec 2161
cdd6c482 2162 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2163 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2164 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2165 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2166 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2167 }
fa289bec
PM
2168}
2169
d859e29f 2170/*
cdd6c482 2171 * Cross CPU call to enable a performance event
d859e29f 2172 */
fe4b04fa 2173static int __perf_event_enable(void *info)
04289bb9 2174{
cdd6c482 2175 struct perf_event *event = info;
cdd6c482
IM
2176 struct perf_event_context *ctx = event->ctx;
2177 struct perf_event *leader = event->group_leader;
108b02cf 2178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2179 int err;
04289bb9 2180
06f41796
JO
2181 /*
2182 * There's a time window between 'ctx->is_active' check
2183 * in perf_event_enable function and this place having:
2184 * - IRQs on
2185 * - ctx->lock unlocked
2186 *
2187 * where the task could be killed and 'ctx' deactivated
2188 * by perf_event_exit_task.
2189 */
2190 if (!ctx->is_active)
fe4b04fa 2191 return -EINVAL;
3cbed429 2192
e625cce1 2193 raw_spin_lock(&ctx->lock);
4af4998b 2194 update_context_time(ctx);
d859e29f 2195
cdd6c482 2196 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2197 goto unlock;
e5d1367f
SE
2198
2199 /*
2200 * set current task's cgroup time reference point
2201 */
3f7cce3c 2202 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2203
1d9b482e 2204 __perf_event_mark_enabled(event);
04289bb9 2205
e5d1367f
SE
2206 if (!event_filter_match(event)) {
2207 if (is_cgroup_event(event))
2208 perf_cgroup_defer_enabled(event);
f4c4176f 2209 goto unlock;
e5d1367f 2210 }
f4c4176f 2211
04289bb9 2212 /*
cdd6c482 2213 * If the event is in a group and isn't the group leader,
d859e29f 2214 * then don't put it on unless the group is on.
04289bb9 2215 */
cdd6c482 2216 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2217 goto unlock;
3b6f9e5c 2218
cdd6c482 2219 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2220 err = -EEXIST;
e758a33d 2221 } else {
cdd6c482 2222 if (event == leader)
6e37738a 2223 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2224 else
6e37738a 2225 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2226 }
d859e29f
PM
2227
2228 if (err) {
2229 /*
cdd6c482 2230 * If this event can't go on and it's part of a
d859e29f
PM
2231 * group, then the whole group has to come off.
2232 */
9e630205 2233 if (leader != event) {
d859e29f 2234 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2235 perf_cpu_hrtimer_restart(cpuctx);
2236 }
0d48696f 2237 if (leader->attr.pinned) {
53cfbf59 2238 update_group_times(leader);
cdd6c482 2239 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2240 }
d859e29f
PM
2241 }
2242
9ed6060d 2243unlock:
e625cce1 2244 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2245
2246 return 0;
d859e29f
PM
2247}
2248
2249/*
cdd6c482 2250 * Enable a event.
c93f7669 2251 *
cdd6c482
IM
2252 * If event->ctx is a cloned context, callers must make sure that
2253 * every task struct that event->ctx->task could possibly point to
c93f7669 2254 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2255 * perf_event_for_each_child or perf_event_for_each as described
2256 * for perf_event_disable.
d859e29f 2257 */
f63a8daa 2258static void _perf_event_enable(struct perf_event *event)
d859e29f 2259{
cdd6c482 2260 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2261 struct task_struct *task = ctx->task;
2262
2263 if (!task) {
2264 /*
cdd6c482 2265 * Enable the event on the cpu that it's on
d859e29f 2266 */
fe4b04fa 2267 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2268 return;
2269 }
2270
e625cce1 2271 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2272 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2273 goto out;
2274
2275 /*
cdd6c482
IM
2276 * If the event is in error state, clear that first.
2277 * That way, if we see the event in error state below, we
d859e29f
PM
2278 * know that it has gone back into error state, as distinct
2279 * from the task having been scheduled away before the
2280 * cross-call arrived.
2281 */
cdd6c482
IM
2282 if (event->state == PERF_EVENT_STATE_ERROR)
2283 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2284
9ed6060d 2285retry:
fe4b04fa 2286 if (!ctx->is_active) {
1d9b482e 2287 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2288 goto out;
2289 }
2290
e625cce1 2291 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2292
2293 if (!task_function_call(task, __perf_event_enable, event))
2294 return;
d859e29f 2295
e625cce1 2296 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2297
2298 /*
cdd6c482 2299 * If the context is active and the event is still off,
d859e29f
PM
2300 * we need to retry the cross-call.
2301 */
fe4b04fa
PZ
2302 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2303 /*
2304 * task could have been flipped by a concurrent
2305 * perf_event_context_sched_out()
2306 */
2307 task = ctx->task;
d859e29f 2308 goto retry;
fe4b04fa 2309 }
fa289bec 2310
9ed6060d 2311out:
e625cce1 2312 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2313}
f63a8daa
PZ
2314
2315/*
2316 * See perf_event_disable();
2317 */
2318void perf_event_enable(struct perf_event *event)
2319{
2320 struct perf_event_context *ctx;
2321
2322 ctx = perf_event_ctx_lock(event);
2323 _perf_event_enable(event);
2324 perf_event_ctx_unlock(event, ctx);
2325}
dcfce4a0 2326EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2327
f63a8daa 2328static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2329{
2023b359 2330 /*
cdd6c482 2331 * not supported on inherited events
2023b359 2332 */
2e939d1d 2333 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2334 return -EINVAL;
2335
cdd6c482 2336 atomic_add(refresh, &event->event_limit);
f63a8daa 2337 _perf_event_enable(event);
2023b359
PZ
2338
2339 return 0;
79f14641 2340}
f63a8daa
PZ
2341
2342/*
2343 * See perf_event_disable()
2344 */
2345int perf_event_refresh(struct perf_event *event, int refresh)
2346{
2347 struct perf_event_context *ctx;
2348 int ret;
2349
2350 ctx = perf_event_ctx_lock(event);
2351 ret = _perf_event_refresh(event, refresh);
2352 perf_event_ctx_unlock(event, ctx);
2353
2354 return ret;
2355}
26ca5c11 2356EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2357
5b0311e1
FW
2358static void ctx_sched_out(struct perf_event_context *ctx,
2359 struct perf_cpu_context *cpuctx,
2360 enum event_type_t event_type)
235c7fc7 2361{
cdd6c482 2362 struct perf_event *event;
db24d33e 2363 int is_active = ctx->is_active;
235c7fc7 2364
db24d33e 2365 ctx->is_active &= ~event_type;
cdd6c482 2366 if (likely(!ctx->nr_events))
facc4307
PZ
2367 return;
2368
4af4998b 2369 update_context_time(ctx);
e5d1367f 2370 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2371 if (!ctx->nr_active)
facc4307 2372 return;
5b0311e1 2373
075e0b00 2374 perf_pmu_disable(ctx->pmu);
db24d33e 2375 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2376 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2377 group_sched_out(event, cpuctx, ctx);
9ed6060d 2378 }
889ff015 2379
db24d33e 2380 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2381 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2382 group_sched_out(event, cpuctx, ctx);
9ed6060d 2383 }
1b9a644f 2384 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2385}
2386
564c2b21 2387/*
5a3126d4
PZ
2388 * Test whether two contexts are equivalent, i.e. whether they have both been
2389 * cloned from the same version of the same context.
2390 *
2391 * Equivalence is measured using a generation number in the context that is
2392 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2393 * and list_del_event().
564c2b21 2394 */
cdd6c482
IM
2395static int context_equiv(struct perf_event_context *ctx1,
2396 struct perf_event_context *ctx2)
564c2b21 2397{
211de6eb
PZ
2398 lockdep_assert_held(&ctx1->lock);
2399 lockdep_assert_held(&ctx2->lock);
2400
5a3126d4
PZ
2401 /* Pinning disables the swap optimization */
2402 if (ctx1->pin_count || ctx2->pin_count)
2403 return 0;
2404
2405 /* If ctx1 is the parent of ctx2 */
2406 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2407 return 1;
2408
2409 /* If ctx2 is the parent of ctx1 */
2410 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2411 return 1;
2412
2413 /*
2414 * If ctx1 and ctx2 have the same parent; we flatten the parent
2415 * hierarchy, see perf_event_init_context().
2416 */
2417 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2418 ctx1->parent_gen == ctx2->parent_gen)
2419 return 1;
2420
2421 /* Unmatched */
2422 return 0;
564c2b21
PM
2423}
2424
cdd6c482
IM
2425static void __perf_event_sync_stat(struct perf_event *event,
2426 struct perf_event *next_event)
bfbd3381
PZ
2427{
2428 u64 value;
2429
cdd6c482 2430 if (!event->attr.inherit_stat)
bfbd3381
PZ
2431 return;
2432
2433 /*
cdd6c482 2434 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2435 * because we're in the middle of a context switch and have IRQs
2436 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2437 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2438 * don't need to use it.
2439 */
cdd6c482
IM
2440 switch (event->state) {
2441 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2442 event->pmu->read(event);
2443 /* fall-through */
bfbd3381 2444
cdd6c482
IM
2445 case PERF_EVENT_STATE_INACTIVE:
2446 update_event_times(event);
bfbd3381
PZ
2447 break;
2448
2449 default:
2450 break;
2451 }
2452
2453 /*
cdd6c482 2454 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2455 * values when we flip the contexts.
2456 */
e7850595
PZ
2457 value = local64_read(&next_event->count);
2458 value = local64_xchg(&event->count, value);
2459 local64_set(&next_event->count, value);
bfbd3381 2460
cdd6c482
IM
2461 swap(event->total_time_enabled, next_event->total_time_enabled);
2462 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2463
bfbd3381 2464 /*
19d2e755 2465 * Since we swizzled the values, update the user visible data too.
bfbd3381 2466 */
cdd6c482
IM
2467 perf_event_update_userpage(event);
2468 perf_event_update_userpage(next_event);
bfbd3381
PZ
2469}
2470
cdd6c482
IM
2471static void perf_event_sync_stat(struct perf_event_context *ctx,
2472 struct perf_event_context *next_ctx)
bfbd3381 2473{
cdd6c482 2474 struct perf_event *event, *next_event;
bfbd3381
PZ
2475
2476 if (!ctx->nr_stat)
2477 return;
2478
02ffdbc8
PZ
2479 update_context_time(ctx);
2480
cdd6c482
IM
2481 event = list_first_entry(&ctx->event_list,
2482 struct perf_event, event_entry);
bfbd3381 2483
cdd6c482
IM
2484 next_event = list_first_entry(&next_ctx->event_list,
2485 struct perf_event, event_entry);
bfbd3381 2486
cdd6c482
IM
2487 while (&event->event_entry != &ctx->event_list &&
2488 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2489
cdd6c482 2490 __perf_event_sync_stat(event, next_event);
bfbd3381 2491
cdd6c482
IM
2492 event = list_next_entry(event, event_entry);
2493 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2494 }
2495}
2496
fe4b04fa
PZ
2497static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2498 struct task_struct *next)
0793a61d 2499{
8dc85d54 2500 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2501 struct perf_event_context *next_ctx;
5a3126d4 2502 struct perf_event_context *parent, *next_parent;
108b02cf 2503 struct perf_cpu_context *cpuctx;
c93f7669 2504 int do_switch = 1;
0793a61d 2505
108b02cf
PZ
2506 if (likely(!ctx))
2507 return;
10989fb2 2508
108b02cf
PZ
2509 cpuctx = __get_cpu_context(ctx);
2510 if (!cpuctx->task_ctx)
0793a61d
TG
2511 return;
2512
c93f7669 2513 rcu_read_lock();
8dc85d54 2514 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2515 if (!next_ctx)
2516 goto unlock;
2517
2518 parent = rcu_dereference(ctx->parent_ctx);
2519 next_parent = rcu_dereference(next_ctx->parent_ctx);
2520
2521 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2522 if (!parent && !next_parent)
5a3126d4
PZ
2523 goto unlock;
2524
2525 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2526 /*
2527 * Looks like the two contexts are clones, so we might be
2528 * able to optimize the context switch. We lock both
2529 * contexts and check that they are clones under the
2530 * lock (including re-checking that neither has been
2531 * uncloned in the meantime). It doesn't matter which
2532 * order we take the locks because no other cpu could
2533 * be trying to lock both of these tasks.
2534 */
e625cce1
TG
2535 raw_spin_lock(&ctx->lock);
2536 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2537 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2538 /*
2539 * XXX do we need a memory barrier of sorts
cdd6c482 2540 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2541 */
8dc85d54
PZ
2542 task->perf_event_ctxp[ctxn] = next_ctx;
2543 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2544 ctx->task = next;
2545 next_ctx->task = task;
5a158c3c
YZ
2546
2547 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2548
c93f7669 2549 do_switch = 0;
bfbd3381 2550
cdd6c482 2551 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2552 }
e625cce1
TG
2553 raw_spin_unlock(&next_ctx->lock);
2554 raw_spin_unlock(&ctx->lock);
564c2b21 2555 }
5a3126d4 2556unlock:
c93f7669 2557 rcu_read_unlock();
564c2b21 2558
c93f7669 2559 if (do_switch) {
facc4307 2560 raw_spin_lock(&ctx->lock);
5b0311e1 2561 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2562 cpuctx->task_ctx = NULL;
facc4307 2563 raw_spin_unlock(&ctx->lock);
c93f7669 2564 }
0793a61d
TG
2565}
2566
ba532500
YZ
2567void perf_sched_cb_dec(struct pmu *pmu)
2568{
2569 this_cpu_dec(perf_sched_cb_usages);
2570}
2571
2572void perf_sched_cb_inc(struct pmu *pmu)
2573{
2574 this_cpu_inc(perf_sched_cb_usages);
2575}
2576
2577/*
2578 * This function provides the context switch callback to the lower code
2579 * layer. It is invoked ONLY when the context switch callback is enabled.
2580 */
2581static void perf_pmu_sched_task(struct task_struct *prev,
2582 struct task_struct *next,
2583 bool sched_in)
2584{
2585 struct perf_cpu_context *cpuctx;
2586 struct pmu *pmu;
2587 unsigned long flags;
2588
2589 if (prev == next)
2590 return;
2591
2592 local_irq_save(flags);
2593
2594 rcu_read_lock();
2595
2596 list_for_each_entry_rcu(pmu, &pmus, entry) {
2597 if (pmu->sched_task) {
2598 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2599
2600 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2601
2602 perf_pmu_disable(pmu);
2603
2604 pmu->sched_task(cpuctx->task_ctx, sched_in);
2605
2606 perf_pmu_enable(pmu);
2607
2608 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2609 }
2610 }
2611
2612 rcu_read_unlock();
2613
2614 local_irq_restore(flags);
2615}
2616
8dc85d54
PZ
2617#define for_each_task_context_nr(ctxn) \
2618 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2619
2620/*
2621 * Called from scheduler to remove the events of the current task,
2622 * with interrupts disabled.
2623 *
2624 * We stop each event and update the event value in event->count.
2625 *
2626 * This does not protect us against NMI, but disable()
2627 * sets the disabled bit in the control field of event _before_
2628 * accessing the event control register. If a NMI hits, then it will
2629 * not restart the event.
2630 */
ab0cce56
JO
2631void __perf_event_task_sched_out(struct task_struct *task,
2632 struct task_struct *next)
8dc85d54
PZ
2633{
2634 int ctxn;
2635
ba532500
YZ
2636 if (__this_cpu_read(perf_sched_cb_usages))
2637 perf_pmu_sched_task(task, next, false);
2638
8dc85d54
PZ
2639 for_each_task_context_nr(ctxn)
2640 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2641
2642 /*
2643 * if cgroup events exist on this CPU, then we need
2644 * to check if we have to switch out PMU state.
2645 * cgroup event are system-wide mode only
2646 */
4a32fea9 2647 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2648 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2649}
2650
04dc2dbb 2651static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2652{
108b02cf 2653 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2654
a63eaf34
PM
2655 if (!cpuctx->task_ctx)
2656 return;
012b84da
IM
2657
2658 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2659 return;
2660
04dc2dbb 2661 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2662 cpuctx->task_ctx = NULL;
2663}
2664
5b0311e1
FW
2665/*
2666 * Called with IRQs disabled
2667 */
2668static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2669 enum event_type_t event_type)
2670{
2671 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2672}
2673
235c7fc7 2674static void
5b0311e1 2675ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2676 struct perf_cpu_context *cpuctx)
0793a61d 2677{
cdd6c482 2678 struct perf_event *event;
0793a61d 2679
889ff015
FW
2680 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2681 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2682 continue;
5632ab12 2683 if (!event_filter_match(event))
3b6f9e5c
PM
2684 continue;
2685
e5d1367f
SE
2686 /* may need to reset tstamp_enabled */
2687 if (is_cgroup_event(event))
2688 perf_cgroup_mark_enabled(event, ctx);
2689
8c9ed8e1 2690 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2691 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2692
2693 /*
2694 * If this pinned group hasn't been scheduled,
2695 * put it in error state.
2696 */
cdd6c482
IM
2697 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2698 update_group_times(event);
2699 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2700 }
3b6f9e5c 2701 }
5b0311e1
FW
2702}
2703
2704static void
2705ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2706 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2707{
2708 struct perf_event *event;
2709 int can_add_hw = 1;
3b6f9e5c 2710
889ff015
FW
2711 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2712 /* Ignore events in OFF or ERROR state */
2713 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2714 continue;
04289bb9
IM
2715 /*
2716 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2717 * of events:
04289bb9 2718 */
5632ab12 2719 if (!event_filter_match(event))
0793a61d
TG
2720 continue;
2721
e5d1367f
SE
2722 /* may need to reset tstamp_enabled */
2723 if (is_cgroup_event(event))
2724 perf_cgroup_mark_enabled(event, ctx);
2725
9ed6060d 2726 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2727 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2728 can_add_hw = 0;
9ed6060d 2729 }
0793a61d 2730 }
5b0311e1
FW
2731}
2732
2733static void
2734ctx_sched_in(struct perf_event_context *ctx,
2735 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2736 enum event_type_t event_type,
2737 struct task_struct *task)
5b0311e1 2738{
e5d1367f 2739 u64 now;
db24d33e 2740 int is_active = ctx->is_active;
e5d1367f 2741
db24d33e 2742 ctx->is_active |= event_type;
5b0311e1 2743 if (likely(!ctx->nr_events))
facc4307 2744 return;
5b0311e1 2745
e5d1367f
SE
2746 now = perf_clock();
2747 ctx->timestamp = now;
3f7cce3c 2748 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2749 /*
2750 * First go through the list and put on any pinned groups
2751 * in order to give them the best chance of going on.
2752 */
db24d33e 2753 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2754 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2755
2756 /* Then walk through the lower prio flexible groups */
db24d33e 2757 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2758 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2759}
2760
329c0e01 2761static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2762 enum event_type_t event_type,
2763 struct task_struct *task)
329c0e01
FW
2764{
2765 struct perf_event_context *ctx = &cpuctx->ctx;
2766
e5d1367f 2767 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2768}
2769
e5d1367f
SE
2770static void perf_event_context_sched_in(struct perf_event_context *ctx,
2771 struct task_struct *task)
235c7fc7 2772{
108b02cf 2773 struct perf_cpu_context *cpuctx;
235c7fc7 2774
108b02cf 2775 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2776 if (cpuctx->task_ctx == ctx)
2777 return;
2778
facc4307 2779 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2780 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2781 /*
2782 * We want to keep the following priority order:
2783 * cpu pinned (that don't need to move), task pinned,
2784 * cpu flexible, task flexible.
2785 */
2786 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787
1d5f003f
GN
2788 if (ctx->nr_events)
2789 cpuctx->task_ctx = ctx;
9b33fa6b 2790
86b47c25
GN
2791 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2792
facc4307
PZ
2793 perf_pmu_enable(ctx->pmu);
2794 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2795}
2796
8dc85d54
PZ
2797/*
2798 * Called from scheduler to add the events of the current task
2799 * with interrupts disabled.
2800 *
2801 * We restore the event value and then enable it.
2802 *
2803 * This does not protect us against NMI, but enable()
2804 * sets the enabled bit in the control field of event _before_
2805 * accessing the event control register. If a NMI hits, then it will
2806 * keep the event running.
2807 */
ab0cce56
JO
2808void __perf_event_task_sched_in(struct task_struct *prev,
2809 struct task_struct *task)
8dc85d54
PZ
2810{
2811 struct perf_event_context *ctx;
2812 int ctxn;
2813
2814 for_each_task_context_nr(ctxn) {
2815 ctx = task->perf_event_ctxp[ctxn];
2816 if (likely(!ctx))
2817 continue;
2818
e5d1367f 2819 perf_event_context_sched_in(ctx, task);
8dc85d54 2820 }
e5d1367f
SE
2821 /*
2822 * if cgroup events exist on this CPU, then we need
2823 * to check if we have to switch in PMU state.
2824 * cgroup event are system-wide mode only
2825 */
4a32fea9 2826 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2827 perf_cgroup_sched_in(prev, task);
d010b332 2828
ba532500
YZ
2829 if (__this_cpu_read(perf_sched_cb_usages))
2830 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2831}
2832
abd50713
PZ
2833static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2834{
2835 u64 frequency = event->attr.sample_freq;
2836 u64 sec = NSEC_PER_SEC;
2837 u64 divisor, dividend;
2838
2839 int count_fls, nsec_fls, frequency_fls, sec_fls;
2840
2841 count_fls = fls64(count);
2842 nsec_fls = fls64(nsec);
2843 frequency_fls = fls64(frequency);
2844 sec_fls = 30;
2845
2846 /*
2847 * We got @count in @nsec, with a target of sample_freq HZ
2848 * the target period becomes:
2849 *
2850 * @count * 10^9
2851 * period = -------------------
2852 * @nsec * sample_freq
2853 *
2854 */
2855
2856 /*
2857 * Reduce accuracy by one bit such that @a and @b converge
2858 * to a similar magnitude.
2859 */
fe4b04fa 2860#define REDUCE_FLS(a, b) \
abd50713
PZ
2861do { \
2862 if (a##_fls > b##_fls) { \
2863 a >>= 1; \
2864 a##_fls--; \
2865 } else { \
2866 b >>= 1; \
2867 b##_fls--; \
2868 } \
2869} while (0)
2870
2871 /*
2872 * Reduce accuracy until either term fits in a u64, then proceed with
2873 * the other, so that finally we can do a u64/u64 division.
2874 */
2875 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2876 REDUCE_FLS(nsec, frequency);
2877 REDUCE_FLS(sec, count);
2878 }
2879
2880 if (count_fls + sec_fls > 64) {
2881 divisor = nsec * frequency;
2882
2883 while (count_fls + sec_fls > 64) {
2884 REDUCE_FLS(count, sec);
2885 divisor >>= 1;
2886 }
2887
2888 dividend = count * sec;
2889 } else {
2890 dividend = count * sec;
2891
2892 while (nsec_fls + frequency_fls > 64) {
2893 REDUCE_FLS(nsec, frequency);
2894 dividend >>= 1;
2895 }
2896
2897 divisor = nsec * frequency;
2898 }
2899
f6ab91ad
PZ
2900 if (!divisor)
2901 return dividend;
2902
abd50713
PZ
2903 return div64_u64(dividend, divisor);
2904}
2905
e050e3f0
SE
2906static DEFINE_PER_CPU(int, perf_throttled_count);
2907static DEFINE_PER_CPU(u64, perf_throttled_seq);
2908
f39d47ff 2909static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2910{
cdd6c482 2911 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2912 s64 period, sample_period;
bd2b5b12
PZ
2913 s64 delta;
2914
abd50713 2915 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2916
2917 delta = (s64)(period - hwc->sample_period);
2918 delta = (delta + 7) / 8; /* low pass filter */
2919
2920 sample_period = hwc->sample_period + delta;
2921
2922 if (!sample_period)
2923 sample_period = 1;
2924
bd2b5b12 2925 hwc->sample_period = sample_period;
abd50713 2926
e7850595 2927 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2928 if (disable)
2929 event->pmu->stop(event, PERF_EF_UPDATE);
2930
e7850595 2931 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2932
2933 if (disable)
2934 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2935 }
bd2b5b12
PZ
2936}
2937
e050e3f0
SE
2938/*
2939 * combine freq adjustment with unthrottling to avoid two passes over the
2940 * events. At the same time, make sure, having freq events does not change
2941 * the rate of unthrottling as that would introduce bias.
2942 */
2943static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2944 int needs_unthr)
60db5e09 2945{
cdd6c482
IM
2946 struct perf_event *event;
2947 struct hw_perf_event *hwc;
e050e3f0 2948 u64 now, period = TICK_NSEC;
abd50713 2949 s64 delta;
60db5e09 2950
e050e3f0
SE
2951 /*
2952 * only need to iterate over all events iff:
2953 * - context have events in frequency mode (needs freq adjust)
2954 * - there are events to unthrottle on this cpu
2955 */
2956 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2957 return;
2958
e050e3f0 2959 raw_spin_lock(&ctx->lock);
f39d47ff 2960 perf_pmu_disable(ctx->pmu);
e050e3f0 2961
03541f8b 2962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2963 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2964 continue;
2965
5632ab12 2966 if (!event_filter_match(event))
5d27c23d
PZ
2967 continue;
2968
44377277
AS
2969 perf_pmu_disable(event->pmu);
2970
cdd6c482 2971 hwc = &event->hw;
6a24ed6c 2972
ae23bff1 2973 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2974 hwc->interrupts = 0;
cdd6c482 2975 perf_log_throttle(event, 1);
a4eaf7f1 2976 event->pmu->start(event, 0);
a78ac325
PZ
2977 }
2978
cdd6c482 2979 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2980 goto next;
60db5e09 2981
e050e3f0
SE
2982 /*
2983 * stop the event and update event->count
2984 */
2985 event->pmu->stop(event, PERF_EF_UPDATE);
2986
e7850595 2987 now = local64_read(&event->count);
abd50713
PZ
2988 delta = now - hwc->freq_count_stamp;
2989 hwc->freq_count_stamp = now;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * restart the event
2993 * reload only if value has changed
f39d47ff
SE
2994 * we have stopped the event so tell that
2995 * to perf_adjust_period() to avoid stopping it
2996 * twice.
e050e3f0 2997 */
abd50713 2998 if (delta > 0)
f39d47ff 2999 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3000
3001 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3002 next:
3003 perf_pmu_enable(event->pmu);
60db5e09 3004 }
e050e3f0 3005
f39d47ff 3006 perf_pmu_enable(ctx->pmu);
e050e3f0 3007 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3008}
3009
235c7fc7 3010/*
cdd6c482 3011 * Round-robin a context's events:
235c7fc7 3012 */
cdd6c482 3013static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3014{
dddd3379
TG
3015 /*
3016 * Rotate the first entry last of non-pinned groups. Rotation might be
3017 * disabled by the inheritance code.
3018 */
3019 if (!ctx->rotate_disable)
3020 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3021}
3022
9e630205 3023static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3024{
8dc85d54 3025 struct perf_event_context *ctx = NULL;
2fde4f94 3026 int rotate = 0;
7fc23a53 3027
b5ab4cd5 3028 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3029 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3030 rotate = 1;
3031 }
235c7fc7 3032
8dc85d54 3033 ctx = cpuctx->task_ctx;
b5ab4cd5 3034 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3035 if (ctx->nr_events != ctx->nr_active)
3036 rotate = 1;
3037 }
9717e6cd 3038
e050e3f0 3039 if (!rotate)
0f5a2601
PZ
3040 goto done;
3041
facc4307 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3043 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3044
e050e3f0
SE
3045 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3046 if (ctx)
3047 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3048
e050e3f0
SE
3049 rotate_ctx(&cpuctx->ctx);
3050 if (ctx)
3051 rotate_ctx(ctx);
235c7fc7 3052
e050e3f0 3053 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3054
0f5a2601
PZ
3055 perf_pmu_enable(cpuctx->ctx.pmu);
3056 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3057done:
9e630205
SE
3058
3059 return rotate;
e9d2b064
PZ
3060}
3061
026249ef
FW
3062#ifdef CONFIG_NO_HZ_FULL
3063bool perf_event_can_stop_tick(void)
3064{
948b26b6 3065 if (atomic_read(&nr_freq_events) ||
d84153d6 3066 __this_cpu_read(perf_throttled_count))
026249ef 3067 return false;
d84153d6
FW
3068 else
3069 return true;
026249ef
FW
3070}
3071#endif
3072
e9d2b064
PZ
3073void perf_event_task_tick(void)
3074{
2fde4f94
MR
3075 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3076 struct perf_event_context *ctx, *tmp;
e050e3f0 3077 int throttled;
b5ab4cd5 3078
e9d2b064
PZ
3079 WARN_ON(!irqs_disabled());
3080
e050e3f0
SE
3081 __this_cpu_inc(perf_throttled_seq);
3082 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3083
2fde4f94 3084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3085 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3086}
3087
889ff015
FW
3088static int event_enable_on_exec(struct perf_event *event,
3089 struct perf_event_context *ctx)
3090{
3091 if (!event->attr.enable_on_exec)
3092 return 0;
3093
3094 event->attr.enable_on_exec = 0;
3095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3096 return 0;
3097
1d9b482e 3098 __perf_event_mark_enabled(event);
889ff015
FW
3099
3100 return 1;
3101}
3102
57e7986e 3103/*
cdd6c482 3104 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3105 * This expects task == current.
3106 */
8dc85d54 3107static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3108{
211de6eb 3109 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3110 struct perf_event *event;
57e7986e
PM
3111 unsigned long flags;
3112 int enabled = 0;
889ff015 3113 int ret;
57e7986e
PM
3114
3115 local_irq_save(flags);
cdd6c482 3116 if (!ctx || !ctx->nr_events)
57e7986e
PM
3117 goto out;
3118
e566b76e
SE
3119 /*
3120 * We must ctxsw out cgroup events to avoid conflict
3121 * when invoking perf_task_event_sched_in() later on
3122 * in this function. Otherwise we end up trying to
3123 * ctxswin cgroup events which are already scheduled
3124 * in.
3125 */
a8d757ef 3126 perf_cgroup_sched_out(current, NULL);
57e7986e 3127
e625cce1 3128 raw_spin_lock(&ctx->lock);
04dc2dbb 3129 task_ctx_sched_out(ctx);
57e7986e 3130
b79387ef 3131 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3132 ret = event_enable_on_exec(event, ctx);
3133 if (ret)
3134 enabled = 1;
57e7986e
PM
3135 }
3136
3137 /*
cdd6c482 3138 * Unclone this context if we enabled any event.
57e7986e 3139 */
71a851b4 3140 if (enabled)
211de6eb 3141 clone_ctx = unclone_ctx(ctx);
57e7986e 3142
e625cce1 3143 raw_spin_unlock(&ctx->lock);
57e7986e 3144
e566b76e
SE
3145 /*
3146 * Also calls ctxswin for cgroup events, if any:
3147 */
e5d1367f 3148 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3149out:
57e7986e 3150 local_irq_restore(flags);
211de6eb
PZ
3151
3152 if (clone_ctx)
3153 put_ctx(clone_ctx);
57e7986e
PM
3154}
3155
e041e328
PZ
3156void perf_event_exec(void)
3157{
3158 struct perf_event_context *ctx;
3159 int ctxn;
3160
3161 rcu_read_lock();
3162 for_each_task_context_nr(ctxn) {
3163 ctx = current->perf_event_ctxp[ctxn];
3164 if (!ctx)
3165 continue;
3166
3167 perf_event_enable_on_exec(ctx);
3168 }
3169 rcu_read_unlock();
3170}
3171
0793a61d 3172/*
cdd6c482 3173 * Cross CPU call to read the hardware event
0793a61d 3174 */
cdd6c482 3175static void __perf_event_read(void *info)
0793a61d 3176{
cdd6c482
IM
3177 struct perf_event *event = info;
3178 struct perf_event_context *ctx = event->ctx;
108b02cf 3179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3180
e1ac3614
PM
3181 /*
3182 * If this is a task context, we need to check whether it is
3183 * the current task context of this cpu. If not it has been
3184 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3185 * event->count would have been updated to a recent sample
3186 * when the event was scheduled out.
e1ac3614
PM
3187 */
3188 if (ctx->task && cpuctx->task_ctx != ctx)
3189 return;
3190
e625cce1 3191 raw_spin_lock(&ctx->lock);
e5d1367f 3192 if (ctx->is_active) {
542e72fc 3193 update_context_time(ctx);
e5d1367f
SE
3194 update_cgrp_time_from_event(event);
3195 }
cdd6c482 3196 update_event_times(event);
542e72fc
PZ
3197 if (event->state == PERF_EVENT_STATE_ACTIVE)
3198 event->pmu->read(event);
e625cce1 3199 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3200}
3201
b5e58793
PZ
3202static inline u64 perf_event_count(struct perf_event *event)
3203{
eacd3ecc
MF
3204 if (event->pmu->count)
3205 return event->pmu->count(event);
3206
3207 return __perf_event_count(event);
b5e58793
PZ
3208}
3209
cdd6c482 3210static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3211{
3212 /*
cdd6c482
IM
3213 * If event is enabled and currently active on a CPU, update the
3214 * value in the event structure:
0793a61d 3215 */
cdd6c482
IM
3216 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3217 smp_call_function_single(event->oncpu,
3218 __perf_event_read, event, 1);
3219 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3220 struct perf_event_context *ctx = event->ctx;
3221 unsigned long flags;
3222
e625cce1 3223 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3224 /*
3225 * may read while context is not active
3226 * (e.g., thread is blocked), in that case
3227 * we cannot update context time
3228 */
e5d1367f 3229 if (ctx->is_active) {
c530ccd9 3230 update_context_time(ctx);
e5d1367f
SE
3231 update_cgrp_time_from_event(event);
3232 }
cdd6c482 3233 update_event_times(event);
e625cce1 3234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3235 }
3236
b5e58793 3237 return perf_event_count(event);
0793a61d
TG
3238}
3239
a63eaf34 3240/*
cdd6c482 3241 * Initialize the perf_event context in a task_struct:
a63eaf34 3242 */
eb184479 3243static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3244{
e625cce1 3245 raw_spin_lock_init(&ctx->lock);
a63eaf34 3246 mutex_init(&ctx->mutex);
2fde4f94 3247 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3248 INIT_LIST_HEAD(&ctx->pinned_groups);
3249 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3250 INIT_LIST_HEAD(&ctx->event_list);
3251 atomic_set(&ctx->refcount, 1);
fadfe7be 3252 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3253}
3254
3255static struct perf_event_context *
3256alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3257{
3258 struct perf_event_context *ctx;
3259
3260 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3261 if (!ctx)
3262 return NULL;
3263
3264 __perf_event_init_context(ctx);
3265 if (task) {
3266 ctx->task = task;
3267 get_task_struct(task);
0793a61d 3268 }
eb184479
PZ
3269 ctx->pmu = pmu;
3270
3271 return ctx;
a63eaf34
PM
3272}
3273
2ebd4ffb
MH
3274static struct task_struct *
3275find_lively_task_by_vpid(pid_t vpid)
3276{
3277 struct task_struct *task;
3278 int err;
0793a61d
TG
3279
3280 rcu_read_lock();
2ebd4ffb 3281 if (!vpid)
0793a61d
TG
3282 task = current;
3283 else
2ebd4ffb 3284 task = find_task_by_vpid(vpid);
0793a61d
TG
3285 if (task)
3286 get_task_struct(task);
3287 rcu_read_unlock();
3288
3289 if (!task)
3290 return ERR_PTR(-ESRCH);
3291
0793a61d 3292 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3293 err = -EACCES;
3294 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3295 goto errout;
3296
2ebd4ffb
MH
3297 return task;
3298errout:
3299 put_task_struct(task);
3300 return ERR_PTR(err);
3301
3302}
3303
fe4b04fa
PZ
3304/*
3305 * Returns a matching context with refcount and pincount.
3306 */
108b02cf 3307static struct perf_event_context *
4af57ef2
YZ
3308find_get_context(struct pmu *pmu, struct task_struct *task,
3309 struct perf_event *event)
0793a61d 3310{
211de6eb 3311 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3312 struct perf_cpu_context *cpuctx;
4af57ef2 3313 void *task_ctx_data = NULL;
25346b93 3314 unsigned long flags;
8dc85d54 3315 int ctxn, err;
4af57ef2 3316 int cpu = event->cpu;
0793a61d 3317
22a4ec72 3318 if (!task) {
cdd6c482 3319 /* Must be root to operate on a CPU event: */
0764771d 3320 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3321 return ERR_PTR(-EACCES);
3322
0793a61d 3323 /*
cdd6c482 3324 * We could be clever and allow to attach a event to an
0793a61d
TG
3325 * offline CPU and activate it when the CPU comes up, but
3326 * that's for later.
3327 */
f6325e30 3328 if (!cpu_online(cpu))
0793a61d
TG
3329 return ERR_PTR(-ENODEV);
3330
108b02cf 3331 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3332 ctx = &cpuctx->ctx;
c93f7669 3333 get_ctx(ctx);
fe4b04fa 3334 ++ctx->pin_count;
0793a61d 3335
0793a61d
TG
3336 return ctx;
3337 }
3338
8dc85d54
PZ
3339 err = -EINVAL;
3340 ctxn = pmu->task_ctx_nr;
3341 if (ctxn < 0)
3342 goto errout;
3343
4af57ef2
YZ
3344 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3345 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3346 if (!task_ctx_data) {
3347 err = -ENOMEM;
3348 goto errout;
3349 }
3350 }
3351
9ed6060d 3352retry:
8dc85d54 3353 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3354 if (ctx) {
211de6eb 3355 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3356 ++ctx->pin_count;
4af57ef2
YZ
3357
3358 if (task_ctx_data && !ctx->task_ctx_data) {
3359 ctx->task_ctx_data = task_ctx_data;
3360 task_ctx_data = NULL;
3361 }
e625cce1 3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
9137fb28 3366 } else {
eb184479 3367 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
eb184479 3371
4af57ef2
YZ
3372 if (task_ctx_data) {
3373 ctx->task_ctx_data = task_ctx_data;
3374 task_ctx_data = NULL;
3375 }
3376
dbe08d82
ON
3377 err = 0;
3378 mutex_lock(&task->perf_event_mutex);
3379 /*
3380 * If it has already passed perf_event_exit_task().
3381 * we must see PF_EXITING, it takes this mutex too.
3382 */
3383 if (task->flags & PF_EXITING)
3384 err = -ESRCH;
3385 else if (task->perf_event_ctxp[ctxn])
3386 err = -EAGAIN;
fe4b04fa 3387 else {
9137fb28 3388 get_ctx(ctx);
fe4b04fa 3389 ++ctx->pin_count;
dbe08d82 3390 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3391 }
dbe08d82
ON
3392 mutex_unlock(&task->perf_event_mutex);
3393
3394 if (unlikely(err)) {
9137fb28 3395 put_ctx(ctx);
dbe08d82
ON
3396
3397 if (err == -EAGAIN)
3398 goto retry;
3399 goto errout;
a63eaf34
PM
3400 }
3401 }
3402
4af57ef2 3403 kfree(task_ctx_data);
0793a61d 3404 return ctx;
c93f7669 3405
9ed6060d 3406errout:
4af57ef2 3407 kfree(task_ctx_data);
c93f7669 3408 return ERR_PTR(err);
0793a61d
TG
3409}
3410
6fb2915d 3411static void perf_event_free_filter(struct perf_event *event);
2541517c 3412static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3413
cdd6c482 3414static void free_event_rcu(struct rcu_head *head)
592903cd 3415{
cdd6c482 3416 struct perf_event *event;
592903cd 3417
cdd6c482
IM
3418 event = container_of(head, struct perf_event, rcu_head);
3419 if (event->ns)
3420 put_pid_ns(event->ns);
6fb2915d 3421 perf_event_free_filter(event);
2541517c 3422 perf_event_free_bpf_prog(event);
cdd6c482 3423 kfree(event);
592903cd
PZ
3424}
3425
76369139 3426static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3427static void ring_buffer_attach(struct perf_event *event,
3428 struct ring_buffer *rb);
925d519a 3429
4beb31f3 3430static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3431{
4beb31f3
FW
3432 if (event->parent)
3433 return;
3434
4beb31f3
FW
3435 if (is_cgroup_event(event))
3436 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3437}
925d519a 3438
4beb31f3
FW
3439static void unaccount_event(struct perf_event *event)
3440{
3441 if (event->parent)
3442 return;
3443
3444 if (event->attach_state & PERF_ATTACH_TASK)
3445 static_key_slow_dec_deferred(&perf_sched_events);
3446 if (event->attr.mmap || event->attr.mmap_data)
3447 atomic_dec(&nr_mmap_events);
3448 if (event->attr.comm)
3449 atomic_dec(&nr_comm_events);
3450 if (event->attr.task)
3451 atomic_dec(&nr_task_events);
948b26b6
FW
3452 if (event->attr.freq)
3453 atomic_dec(&nr_freq_events);
4beb31f3
FW
3454 if (is_cgroup_event(event))
3455 static_key_slow_dec_deferred(&perf_sched_events);
3456 if (has_branch_stack(event))
3457 static_key_slow_dec_deferred(&perf_sched_events);
3458
3459 unaccount_event_cpu(event, event->cpu);
3460}
925d519a 3461
bed5b25a
AS
3462/*
3463 * The following implement mutual exclusion of events on "exclusive" pmus
3464 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3465 * at a time, so we disallow creating events that might conflict, namely:
3466 *
3467 * 1) cpu-wide events in the presence of per-task events,
3468 * 2) per-task events in the presence of cpu-wide events,
3469 * 3) two matching events on the same context.
3470 *
3471 * The former two cases are handled in the allocation path (perf_event_alloc(),
3472 * __free_event()), the latter -- before the first perf_install_in_context().
3473 */
3474static int exclusive_event_init(struct perf_event *event)
3475{
3476 struct pmu *pmu = event->pmu;
3477
3478 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3479 return 0;
3480
3481 /*
3482 * Prevent co-existence of per-task and cpu-wide events on the
3483 * same exclusive pmu.
3484 *
3485 * Negative pmu::exclusive_cnt means there are cpu-wide
3486 * events on this "exclusive" pmu, positive means there are
3487 * per-task events.
3488 *
3489 * Since this is called in perf_event_alloc() path, event::ctx
3490 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3491 * to mean "per-task event", because unlike other attach states it
3492 * never gets cleared.
3493 */
3494 if (event->attach_state & PERF_ATTACH_TASK) {
3495 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3496 return -EBUSY;
3497 } else {
3498 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3499 return -EBUSY;
3500 }
3501
3502 return 0;
3503}
3504
3505static void exclusive_event_destroy(struct perf_event *event)
3506{
3507 struct pmu *pmu = event->pmu;
3508
3509 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3510 return;
3511
3512 /* see comment in exclusive_event_init() */
3513 if (event->attach_state & PERF_ATTACH_TASK)
3514 atomic_dec(&pmu->exclusive_cnt);
3515 else
3516 atomic_inc(&pmu->exclusive_cnt);
3517}
3518
3519static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3520{
3521 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3522 (e1->cpu == e2->cpu ||
3523 e1->cpu == -1 ||
3524 e2->cpu == -1))
3525 return true;
3526 return false;
3527}
3528
3529/* Called under the same ctx::mutex as perf_install_in_context() */
3530static bool exclusive_event_installable(struct perf_event *event,
3531 struct perf_event_context *ctx)
3532{
3533 struct perf_event *iter_event;
3534 struct pmu *pmu = event->pmu;
3535
3536 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3537 return true;
3538
3539 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3540 if (exclusive_event_match(iter_event, event))
3541 return false;
3542 }
3543
3544 return true;
3545}
3546
766d6c07
FW
3547static void __free_event(struct perf_event *event)
3548{
cdd6c482 3549 if (!event->parent) {
927c7a9e
FW
3550 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3551 put_callchain_buffers();
f344011c 3552 }
9ee318a7 3553
766d6c07
FW
3554 if (event->destroy)
3555 event->destroy(event);
3556
3557 if (event->ctx)
3558 put_ctx(event->ctx);
3559
bed5b25a
AS
3560 if (event->pmu) {
3561 exclusive_event_destroy(event);
c464c76e 3562 module_put(event->pmu->module);
bed5b25a 3563 }
c464c76e 3564
766d6c07
FW
3565 call_rcu(&event->rcu_head, free_event_rcu);
3566}
683ede43
PZ
3567
3568static void _free_event(struct perf_event *event)
f1600952 3569{
e360adbe 3570 irq_work_sync(&event->pending);
925d519a 3571
4beb31f3 3572 unaccount_event(event);
9ee318a7 3573
76369139 3574 if (event->rb) {
9bb5d40c
PZ
3575 /*
3576 * Can happen when we close an event with re-directed output.
3577 *
3578 * Since we have a 0 refcount, perf_mmap_close() will skip
3579 * over us; possibly making our ring_buffer_put() the last.
3580 */
3581 mutex_lock(&event->mmap_mutex);
b69cf536 3582 ring_buffer_attach(event, NULL);
9bb5d40c 3583 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3584 }
3585
e5d1367f
SE
3586 if (is_cgroup_event(event))
3587 perf_detach_cgroup(event);
3588
766d6c07 3589 __free_event(event);
f1600952
PZ
3590}
3591
683ede43
PZ
3592/*
3593 * Used to free events which have a known refcount of 1, such as in error paths
3594 * where the event isn't exposed yet and inherited events.
3595 */
3596static void free_event(struct perf_event *event)
0793a61d 3597{
683ede43
PZ
3598 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3599 "unexpected event refcount: %ld; ptr=%p\n",
3600 atomic_long_read(&event->refcount), event)) {
3601 /* leak to avoid use-after-free */
3602 return;
3603 }
0793a61d 3604
683ede43 3605 _free_event(event);
0793a61d
TG
3606}
3607
a66a3052 3608/*
f8697762 3609 * Remove user event from the owner task.
a66a3052 3610 */
f8697762 3611static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3612{
8882135b 3613 struct task_struct *owner;
fb0459d7 3614
8882135b
PZ
3615 rcu_read_lock();
3616 owner = ACCESS_ONCE(event->owner);
3617 /*
3618 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3619 * !owner it means the list deletion is complete and we can indeed
3620 * free this event, otherwise we need to serialize on
3621 * owner->perf_event_mutex.
3622 */
3623 smp_read_barrier_depends();
3624 if (owner) {
3625 /*
3626 * Since delayed_put_task_struct() also drops the last
3627 * task reference we can safely take a new reference
3628 * while holding the rcu_read_lock().
3629 */
3630 get_task_struct(owner);
3631 }
3632 rcu_read_unlock();
3633
3634 if (owner) {
f63a8daa
PZ
3635 /*
3636 * If we're here through perf_event_exit_task() we're already
3637 * holding ctx->mutex which would be an inversion wrt. the
3638 * normal lock order.
3639 *
3640 * However we can safely take this lock because its the child
3641 * ctx->mutex.
3642 */
3643 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3644
8882135b
PZ
3645 /*
3646 * We have to re-check the event->owner field, if it is cleared
3647 * we raced with perf_event_exit_task(), acquiring the mutex
3648 * ensured they're done, and we can proceed with freeing the
3649 * event.
3650 */
3651 if (event->owner)
3652 list_del_init(&event->owner_entry);
3653 mutex_unlock(&owner->perf_event_mutex);
3654 put_task_struct(owner);
3655 }
f8697762
JO
3656}
3657
3658/*
3659 * Called when the last reference to the file is gone.
3660 */
3661static void put_event(struct perf_event *event)
3662{
a83fe28e 3663 struct perf_event_context *ctx;
f8697762
JO
3664
3665 if (!atomic_long_dec_and_test(&event->refcount))
3666 return;
3667
3668 if (!is_kernel_event(event))
3669 perf_remove_from_owner(event);
8882135b 3670
683ede43
PZ
3671 /*
3672 * There are two ways this annotation is useful:
3673 *
3674 * 1) there is a lock recursion from perf_event_exit_task
3675 * see the comment there.
3676 *
3677 * 2) there is a lock-inversion with mmap_sem through
3678 * perf_event_read_group(), which takes faults while
3679 * holding ctx->mutex, however this is called after
3680 * the last filedesc died, so there is no possibility
3681 * to trigger the AB-BA case.
3682 */
a83fe28e
PZ
3683 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3684 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3685 perf_remove_from_context(event, true);
d415a7f1 3686 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3687
3688 _free_event(event);
a6fa941d
AV
3689}
3690
683ede43
PZ
3691int perf_event_release_kernel(struct perf_event *event)
3692{
3693 put_event(event);
3694 return 0;
3695}
3696EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3697
a6fa941d
AV
3698static int perf_release(struct inode *inode, struct file *file)
3699{
3700 put_event(file->private_data);
3701 return 0;
fb0459d7 3702}
fb0459d7 3703
fadfe7be
JO
3704/*
3705 * Remove all orphanes events from the context.
3706 */
3707static void orphans_remove_work(struct work_struct *work)
3708{
3709 struct perf_event_context *ctx;
3710 struct perf_event *event, *tmp;
3711
3712 ctx = container_of(work, struct perf_event_context,
3713 orphans_remove.work);
3714
3715 mutex_lock(&ctx->mutex);
3716 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3717 struct perf_event *parent_event = event->parent;
3718
3719 if (!is_orphaned_child(event))
3720 continue;
3721
3722 perf_remove_from_context(event, true);
3723
3724 mutex_lock(&parent_event->child_mutex);
3725 list_del_init(&event->child_list);
3726 mutex_unlock(&parent_event->child_mutex);
3727
3728 free_event(event);
3729 put_event(parent_event);
3730 }
3731
3732 raw_spin_lock_irq(&ctx->lock);
3733 ctx->orphans_remove_sched = false;
3734 raw_spin_unlock_irq(&ctx->lock);
3735 mutex_unlock(&ctx->mutex);
3736
3737 put_ctx(ctx);
3738}
3739
59ed446f 3740u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3741{
cdd6c482 3742 struct perf_event *child;
e53c0994
PZ
3743 u64 total = 0;
3744
59ed446f
PZ
3745 *enabled = 0;
3746 *running = 0;
3747
6f10581a 3748 mutex_lock(&event->child_mutex);
cdd6c482 3749 total += perf_event_read(event);
59ed446f
PZ
3750 *enabled += event->total_time_enabled +
3751 atomic64_read(&event->child_total_time_enabled);
3752 *running += event->total_time_running +
3753 atomic64_read(&event->child_total_time_running);
3754
3755 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3756 total += perf_event_read(child);
59ed446f
PZ
3757 *enabled += child->total_time_enabled;
3758 *running += child->total_time_running;
3759 }
6f10581a 3760 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3761
3762 return total;
3763}
fb0459d7 3764EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3765
cdd6c482 3766static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3767 u64 read_format, char __user *buf)
3768{
cdd6c482 3769 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3770 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3771 int n = 0, size = 0, ret;
59ed446f 3772 u64 count, enabled, running;
f63a8daa
PZ
3773 u64 values[5];
3774
3775 lockdep_assert_held(&ctx->mutex);
abf4868b 3776
59ed446f 3777 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3778
3779 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3780 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3781 values[n++] = enabled;
3782 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3783 values[n++] = running;
abf4868b
PZ
3784 values[n++] = count;
3785 if (read_format & PERF_FORMAT_ID)
3786 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3787
3788 size = n * sizeof(u64);
3789
3790 if (copy_to_user(buf, values, size))
f63a8daa 3791 return -EFAULT;
3dab77fb 3792
6f10581a 3793 ret = size;
3dab77fb 3794
65abc865 3795 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3796 n = 0;
3dab77fb 3797
59ed446f 3798 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3799 if (read_format & PERF_FORMAT_ID)
3800 values[n++] = primary_event_id(sub);
3801
3802 size = n * sizeof(u64);
3803
184d3da8 3804 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3805 return -EFAULT;
6f10581a 3806 }
abf4868b
PZ
3807
3808 ret += size;
3dab77fb
PZ
3809 }
3810
abf4868b 3811 return ret;
3dab77fb
PZ
3812}
3813
cdd6c482 3814static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3815 u64 read_format, char __user *buf)
3816{
59ed446f 3817 u64 enabled, running;
3dab77fb
PZ
3818 u64 values[4];
3819 int n = 0;
3820
59ed446f
PZ
3821 values[n++] = perf_event_read_value(event, &enabled, &running);
3822 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3823 values[n++] = enabled;
3824 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3825 values[n++] = running;
3dab77fb 3826 if (read_format & PERF_FORMAT_ID)
cdd6c482 3827 values[n++] = primary_event_id(event);
3dab77fb
PZ
3828
3829 if (copy_to_user(buf, values, n * sizeof(u64)))
3830 return -EFAULT;
3831
3832 return n * sizeof(u64);
3833}
3834
dc633982
JO
3835static bool is_event_hup(struct perf_event *event)
3836{
3837 bool no_children;
3838
3839 if (event->state != PERF_EVENT_STATE_EXIT)
3840 return false;
3841
3842 mutex_lock(&event->child_mutex);
3843 no_children = list_empty(&event->child_list);
3844 mutex_unlock(&event->child_mutex);
3845 return no_children;
3846}
3847
0793a61d 3848/*
cdd6c482 3849 * Read the performance event - simple non blocking version for now
0793a61d
TG
3850 */
3851static ssize_t
cdd6c482 3852perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3853{
cdd6c482 3854 u64 read_format = event->attr.read_format;
3dab77fb 3855 int ret;
0793a61d 3856
3b6f9e5c 3857 /*
cdd6c482 3858 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3859 * error state (i.e. because it was pinned but it couldn't be
3860 * scheduled on to the CPU at some point).
3861 */
cdd6c482 3862 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3863 return 0;
3864
c320c7b7 3865 if (count < event->read_size)
3dab77fb
PZ
3866 return -ENOSPC;
3867
cdd6c482 3868 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3869 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3870 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3871 else
cdd6c482 3872 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3873
3dab77fb 3874 return ret;
0793a61d
TG
3875}
3876
0793a61d
TG
3877static ssize_t
3878perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3879{
cdd6c482 3880 struct perf_event *event = file->private_data;
f63a8daa
PZ
3881 struct perf_event_context *ctx;
3882 int ret;
0793a61d 3883
f63a8daa
PZ
3884 ctx = perf_event_ctx_lock(event);
3885 ret = perf_read_hw(event, buf, count);
3886 perf_event_ctx_unlock(event, ctx);
3887
3888 return ret;
0793a61d
TG
3889}
3890
3891static unsigned int perf_poll(struct file *file, poll_table *wait)
3892{
cdd6c482 3893 struct perf_event *event = file->private_data;
76369139 3894 struct ring_buffer *rb;
61b67684 3895 unsigned int events = POLLHUP;
c7138f37 3896
e708d7ad 3897 poll_wait(file, &event->waitq, wait);
179033b3 3898
dc633982 3899 if (is_event_hup(event))
179033b3 3900 return events;
c7138f37 3901
10c6db11 3902 /*
9bb5d40c
PZ
3903 * Pin the event->rb by taking event->mmap_mutex; otherwise
3904 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3905 */
3906 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3907 rb = event->rb;
3908 if (rb)
76369139 3909 events = atomic_xchg(&rb->poll, 0);
10c6db11 3910 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3911 return events;
3912}
3913
f63a8daa 3914static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3915{
cdd6c482 3916 (void)perf_event_read(event);
e7850595 3917 local64_set(&event->count, 0);
cdd6c482 3918 perf_event_update_userpage(event);
3df5edad
PZ
3919}
3920
c93f7669 3921/*
cdd6c482
IM
3922 * Holding the top-level event's child_mutex means that any
3923 * descendant process that has inherited this event will block
3924 * in sync_child_event if it goes to exit, thus satisfying the
3925 * task existence requirements of perf_event_enable/disable.
c93f7669 3926 */
cdd6c482
IM
3927static void perf_event_for_each_child(struct perf_event *event,
3928 void (*func)(struct perf_event *))
3df5edad 3929{
cdd6c482 3930 struct perf_event *child;
3df5edad 3931
cdd6c482 3932 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3933
cdd6c482
IM
3934 mutex_lock(&event->child_mutex);
3935 func(event);
3936 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3937 func(child);
cdd6c482 3938 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3939}
3940
cdd6c482
IM
3941static void perf_event_for_each(struct perf_event *event,
3942 void (*func)(struct perf_event *))
3df5edad 3943{
cdd6c482
IM
3944 struct perf_event_context *ctx = event->ctx;
3945 struct perf_event *sibling;
3df5edad 3946
f63a8daa
PZ
3947 lockdep_assert_held(&ctx->mutex);
3948
cdd6c482 3949 event = event->group_leader;
75f937f2 3950
cdd6c482 3951 perf_event_for_each_child(event, func);
cdd6c482 3952 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3953 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3954}
3955
cdd6c482 3956static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3957{
cdd6c482 3958 struct perf_event_context *ctx = event->ctx;
bad7192b 3959 int ret = 0, active;
08247e31
PZ
3960 u64 value;
3961
6c7e550f 3962 if (!is_sampling_event(event))
08247e31
PZ
3963 return -EINVAL;
3964
ad0cf347 3965 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3966 return -EFAULT;
3967
3968 if (!value)
3969 return -EINVAL;
3970
e625cce1 3971 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3972 if (event->attr.freq) {
3973 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3974 ret = -EINVAL;
3975 goto unlock;
3976 }
3977
cdd6c482 3978 event->attr.sample_freq = value;
08247e31 3979 } else {
cdd6c482
IM
3980 event->attr.sample_period = value;
3981 event->hw.sample_period = value;
08247e31 3982 }
bad7192b
PZ
3983
3984 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3985 if (active) {
3986 perf_pmu_disable(ctx->pmu);
3987 event->pmu->stop(event, PERF_EF_UPDATE);
3988 }
3989
3990 local64_set(&event->hw.period_left, 0);
3991
3992 if (active) {
3993 event->pmu->start(event, PERF_EF_RELOAD);
3994 perf_pmu_enable(ctx->pmu);
3995 }
3996
08247e31 3997unlock:
e625cce1 3998 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3999
4000 return ret;
4001}
4002
ac9721f3
PZ
4003static const struct file_operations perf_fops;
4004
2903ff01 4005static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4006{
2903ff01
AV
4007 struct fd f = fdget(fd);
4008 if (!f.file)
4009 return -EBADF;
ac9721f3 4010
2903ff01
AV
4011 if (f.file->f_op != &perf_fops) {
4012 fdput(f);
4013 return -EBADF;
ac9721f3 4014 }
2903ff01
AV
4015 *p = f;
4016 return 0;
ac9721f3
PZ
4017}
4018
4019static int perf_event_set_output(struct perf_event *event,
4020 struct perf_event *output_event);
6fb2915d 4021static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4022static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4023
f63a8daa 4024static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4025{
cdd6c482 4026 void (*func)(struct perf_event *);
3df5edad 4027 u32 flags = arg;
d859e29f
PM
4028
4029 switch (cmd) {
cdd6c482 4030 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4031 func = _perf_event_enable;
d859e29f 4032 break;
cdd6c482 4033 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4034 func = _perf_event_disable;
79f14641 4035 break;
cdd6c482 4036 case PERF_EVENT_IOC_RESET:
f63a8daa 4037 func = _perf_event_reset;
6de6a7b9 4038 break;
3df5edad 4039
cdd6c482 4040 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4041 return _perf_event_refresh(event, arg);
08247e31 4042
cdd6c482
IM
4043 case PERF_EVENT_IOC_PERIOD:
4044 return perf_event_period(event, (u64 __user *)arg);
08247e31 4045
cf4957f1
JO
4046 case PERF_EVENT_IOC_ID:
4047 {
4048 u64 id = primary_event_id(event);
4049
4050 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4051 return -EFAULT;
4052 return 0;
4053 }
4054
cdd6c482 4055 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4056 {
ac9721f3 4057 int ret;
ac9721f3 4058 if (arg != -1) {
2903ff01
AV
4059 struct perf_event *output_event;
4060 struct fd output;
4061 ret = perf_fget_light(arg, &output);
4062 if (ret)
4063 return ret;
4064 output_event = output.file->private_data;
4065 ret = perf_event_set_output(event, output_event);
4066 fdput(output);
4067 } else {
4068 ret = perf_event_set_output(event, NULL);
ac9721f3 4069 }
ac9721f3
PZ
4070 return ret;
4071 }
a4be7c27 4072
6fb2915d
LZ
4073 case PERF_EVENT_IOC_SET_FILTER:
4074 return perf_event_set_filter(event, (void __user *)arg);
4075
2541517c
AS
4076 case PERF_EVENT_IOC_SET_BPF:
4077 return perf_event_set_bpf_prog(event, arg);
4078
d859e29f 4079 default:
3df5edad 4080 return -ENOTTY;
d859e29f 4081 }
3df5edad
PZ
4082
4083 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4084 perf_event_for_each(event, func);
3df5edad 4085 else
cdd6c482 4086 perf_event_for_each_child(event, func);
3df5edad
PZ
4087
4088 return 0;
d859e29f
PM
4089}
4090
f63a8daa
PZ
4091static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4092{
4093 struct perf_event *event = file->private_data;
4094 struct perf_event_context *ctx;
4095 long ret;
4096
4097 ctx = perf_event_ctx_lock(event);
4098 ret = _perf_ioctl(event, cmd, arg);
4099 perf_event_ctx_unlock(event, ctx);
4100
4101 return ret;
4102}
4103
b3f20785
PM
4104#ifdef CONFIG_COMPAT
4105static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4106 unsigned long arg)
4107{
4108 switch (_IOC_NR(cmd)) {
4109 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4110 case _IOC_NR(PERF_EVENT_IOC_ID):
4111 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4112 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4113 cmd &= ~IOCSIZE_MASK;
4114 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4115 }
4116 break;
4117 }
4118 return perf_ioctl(file, cmd, arg);
4119}
4120#else
4121# define perf_compat_ioctl NULL
4122#endif
4123
cdd6c482 4124int perf_event_task_enable(void)
771d7cde 4125{
f63a8daa 4126 struct perf_event_context *ctx;
cdd6c482 4127 struct perf_event *event;
771d7cde 4128
cdd6c482 4129 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4130 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4131 ctx = perf_event_ctx_lock(event);
4132 perf_event_for_each_child(event, _perf_event_enable);
4133 perf_event_ctx_unlock(event, ctx);
4134 }
cdd6c482 4135 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4136
4137 return 0;
4138}
4139
cdd6c482 4140int perf_event_task_disable(void)
771d7cde 4141{
f63a8daa 4142 struct perf_event_context *ctx;
cdd6c482 4143 struct perf_event *event;
771d7cde 4144
cdd6c482 4145 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4146 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4147 ctx = perf_event_ctx_lock(event);
4148 perf_event_for_each_child(event, _perf_event_disable);
4149 perf_event_ctx_unlock(event, ctx);
4150 }
cdd6c482 4151 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4152
4153 return 0;
4154}
4155
cdd6c482 4156static int perf_event_index(struct perf_event *event)
194002b2 4157{
a4eaf7f1
PZ
4158 if (event->hw.state & PERF_HES_STOPPED)
4159 return 0;
4160
cdd6c482 4161 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4162 return 0;
4163
35edc2a5 4164 return event->pmu->event_idx(event);
194002b2
PZ
4165}
4166
c4794295 4167static void calc_timer_values(struct perf_event *event,
e3f3541c 4168 u64 *now,
7f310a5d
EM
4169 u64 *enabled,
4170 u64 *running)
c4794295 4171{
e3f3541c 4172 u64 ctx_time;
c4794295 4173
e3f3541c
PZ
4174 *now = perf_clock();
4175 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4176 *enabled = ctx_time - event->tstamp_enabled;
4177 *running = ctx_time - event->tstamp_running;
4178}
4179
fa731587
PZ
4180static void perf_event_init_userpage(struct perf_event *event)
4181{
4182 struct perf_event_mmap_page *userpg;
4183 struct ring_buffer *rb;
4184
4185 rcu_read_lock();
4186 rb = rcu_dereference(event->rb);
4187 if (!rb)
4188 goto unlock;
4189
4190 userpg = rb->user_page;
4191
4192 /* Allow new userspace to detect that bit 0 is deprecated */
4193 userpg->cap_bit0_is_deprecated = 1;
4194 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4195 userpg->data_offset = PAGE_SIZE;
4196 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4197
4198unlock:
4199 rcu_read_unlock();
4200}
4201
c1317ec2
AL
4202void __weak arch_perf_update_userpage(
4203 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4204{
4205}
4206
38ff667b
PZ
4207/*
4208 * Callers need to ensure there can be no nesting of this function, otherwise
4209 * the seqlock logic goes bad. We can not serialize this because the arch
4210 * code calls this from NMI context.
4211 */
cdd6c482 4212void perf_event_update_userpage(struct perf_event *event)
37d81828 4213{
cdd6c482 4214 struct perf_event_mmap_page *userpg;
76369139 4215 struct ring_buffer *rb;
e3f3541c 4216 u64 enabled, running, now;
38ff667b
PZ
4217
4218 rcu_read_lock();
5ec4c599
PZ
4219 rb = rcu_dereference(event->rb);
4220 if (!rb)
4221 goto unlock;
4222
0d641208
EM
4223 /*
4224 * compute total_time_enabled, total_time_running
4225 * based on snapshot values taken when the event
4226 * was last scheduled in.
4227 *
4228 * we cannot simply called update_context_time()
4229 * because of locking issue as we can be called in
4230 * NMI context
4231 */
e3f3541c 4232 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4233
76369139 4234 userpg = rb->user_page;
7b732a75
PZ
4235 /*
4236 * Disable preemption so as to not let the corresponding user-space
4237 * spin too long if we get preempted.
4238 */
4239 preempt_disable();
37d81828 4240 ++userpg->lock;
92f22a38 4241 barrier();
cdd6c482 4242 userpg->index = perf_event_index(event);
b5e58793 4243 userpg->offset = perf_event_count(event);
365a4038 4244 if (userpg->index)
e7850595 4245 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4246
0d641208 4247 userpg->time_enabled = enabled +
cdd6c482 4248 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4249
0d641208 4250 userpg->time_running = running +
cdd6c482 4251 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4252
c1317ec2 4253 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4254
92f22a38 4255 barrier();
37d81828 4256 ++userpg->lock;
7b732a75 4257 preempt_enable();
38ff667b 4258unlock:
7b732a75 4259 rcu_read_unlock();
37d81828
PM
4260}
4261
906010b2
PZ
4262static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4263{
4264 struct perf_event *event = vma->vm_file->private_data;
76369139 4265 struct ring_buffer *rb;
906010b2
PZ
4266 int ret = VM_FAULT_SIGBUS;
4267
4268 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4269 if (vmf->pgoff == 0)
4270 ret = 0;
4271 return ret;
4272 }
4273
4274 rcu_read_lock();
76369139
FW
4275 rb = rcu_dereference(event->rb);
4276 if (!rb)
906010b2
PZ
4277 goto unlock;
4278
4279 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4280 goto unlock;
4281
76369139 4282 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4283 if (!vmf->page)
4284 goto unlock;
4285
4286 get_page(vmf->page);
4287 vmf->page->mapping = vma->vm_file->f_mapping;
4288 vmf->page->index = vmf->pgoff;
4289
4290 ret = 0;
4291unlock:
4292 rcu_read_unlock();
4293
4294 return ret;
4295}
4296
10c6db11
PZ
4297static void ring_buffer_attach(struct perf_event *event,
4298 struct ring_buffer *rb)
4299{
b69cf536 4300 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4301 unsigned long flags;
4302
b69cf536
PZ
4303 if (event->rb) {
4304 /*
4305 * Should be impossible, we set this when removing
4306 * event->rb_entry and wait/clear when adding event->rb_entry.
4307 */
4308 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4309
b69cf536
PZ
4310 old_rb = event->rb;
4311 event->rcu_batches = get_state_synchronize_rcu();
4312 event->rcu_pending = 1;
10c6db11 4313
b69cf536
PZ
4314 spin_lock_irqsave(&old_rb->event_lock, flags);
4315 list_del_rcu(&event->rb_entry);
4316 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4317 }
10c6db11 4318
b69cf536
PZ
4319 if (event->rcu_pending && rb) {
4320 cond_synchronize_rcu(event->rcu_batches);
4321 event->rcu_pending = 0;
4322 }
10c6db11 4323
b69cf536
PZ
4324 if (rb) {
4325 spin_lock_irqsave(&rb->event_lock, flags);
4326 list_add_rcu(&event->rb_entry, &rb->event_list);
4327 spin_unlock_irqrestore(&rb->event_lock, flags);
4328 }
4329
4330 rcu_assign_pointer(event->rb, rb);
4331
4332 if (old_rb) {
4333 ring_buffer_put(old_rb);
4334 /*
4335 * Since we detached before setting the new rb, so that we
4336 * could attach the new rb, we could have missed a wakeup.
4337 * Provide it now.
4338 */
4339 wake_up_all(&event->waitq);
4340 }
10c6db11
PZ
4341}
4342
4343static void ring_buffer_wakeup(struct perf_event *event)
4344{
4345 struct ring_buffer *rb;
4346
4347 rcu_read_lock();
4348 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4349 if (rb) {
4350 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4351 wake_up_all(&event->waitq);
4352 }
10c6db11
PZ
4353 rcu_read_unlock();
4354}
4355
76369139 4356static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4357{
76369139 4358 struct ring_buffer *rb;
906010b2 4359
76369139
FW
4360 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4361 rb_free(rb);
7b732a75
PZ
4362}
4363
76369139 4364static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4365{
76369139 4366 struct ring_buffer *rb;
7b732a75 4367
ac9721f3 4368 rcu_read_lock();
76369139
FW
4369 rb = rcu_dereference(event->rb);
4370 if (rb) {
4371 if (!atomic_inc_not_zero(&rb->refcount))
4372 rb = NULL;
ac9721f3
PZ
4373 }
4374 rcu_read_unlock();
4375
76369139 4376 return rb;
ac9721f3
PZ
4377}
4378
76369139 4379static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4380{
76369139 4381 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4382 return;
7b732a75 4383
9bb5d40c 4384 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4385
76369139 4386 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4387}
4388
4389static void perf_mmap_open(struct vm_area_struct *vma)
4390{
cdd6c482 4391 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4392
cdd6c482 4393 atomic_inc(&event->mmap_count);
9bb5d40c 4394 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4395
45bfb2e5
PZ
4396 if (vma->vm_pgoff)
4397 atomic_inc(&event->rb->aux_mmap_count);
4398
1e0fb9ec
AL
4399 if (event->pmu->event_mapped)
4400 event->pmu->event_mapped(event);
7b732a75
PZ
4401}
4402
9bb5d40c
PZ
4403/*
4404 * A buffer can be mmap()ed multiple times; either directly through the same
4405 * event, or through other events by use of perf_event_set_output().
4406 *
4407 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4408 * the buffer here, where we still have a VM context. This means we need
4409 * to detach all events redirecting to us.
4410 */
7b732a75
PZ
4411static void perf_mmap_close(struct vm_area_struct *vma)
4412{
cdd6c482 4413 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4414
b69cf536 4415 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4416 struct user_struct *mmap_user = rb->mmap_user;
4417 int mmap_locked = rb->mmap_locked;
4418 unsigned long size = perf_data_size(rb);
789f90fc 4419
1e0fb9ec
AL
4420 if (event->pmu->event_unmapped)
4421 event->pmu->event_unmapped(event);
4422
45bfb2e5
PZ
4423 /*
4424 * rb->aux_mmap_count will always drop before rb->mmap_count and
4425 * event->mmap_count, so it is ok to use event->mmap_mutex to
4426 * serialize with perf_mmap here.
4427 */
4428 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4429 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4430 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4431 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4432
4433 rb_free_aux(rb);
4434 mutex_unlock(&event->mmap_mutex);
4435 }
4436
9bb5d40c
PZ
4437 atomic_dec(&rb->mmap_count);
4438
4439 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4440 goto out_put;
9bb5d40c 4441
b69cf536 4442 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4443 mutex_unlock(&event->mmap_mutex);
4444
4445 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4446 if (atomic_read(&rb->mmap_count))
4447 goto out_put;
ac9721f3 4448
9bb5d40c
PZ
4449 /*
4450 * No other mmap()s, detach from all other events that might redirect
4451 * into the now unreachable buffer. Somewhat complicated by the
4452 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4453 */
4454again:
4455 rcu_read_lock();
4456 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4457 if (!atomic_long_inc_not_zero(&event->refcount)) {
4458 /*
4459 * This event is en-route to free_event() which will
4460 * detach it and remove it from the list.
4461 */
4462 continue;
4463 }
4464 rcu_read_unlock();
789f90fc 4465
9bb5d40c
PZ
4466 mutex_lock(&event->mmap_mutex);
4467 /*
4468 * Check we didn't race with perf_event_set_output() which can
4469 * swizzle the rb from under us while we were waiting to
4470 * acquire mmap_mutex.
4471 *
4472 * If we find a different rb; ignore this event, a next
4473 * iteration will no longer find it on the list. We have to
4474 * still restart the iteration to make sure we're not now
4475 * iterating the wrong list.
4476 */
b69cf536
PZ
4477 if (event->rb == rb)
4478 ring_buffer_attach(event, NULL);
4479
cdd6c482 4480 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4481 put_event(event);
ac9721f3 4482
9bb5d40c
PZ
4483 /*
4484 * Restart the iteration; either we're on the wrong list or
4485 * destroyed its integrity by doing a deletion.
4486 */
4487 goto again;
7b732a75 4488 }
9bb5d40c
PZ
4489 rcu_read_unlock();
4490
4491 /*
4492 * It could be there's still a few 0-ref events on the list; they'll
4493 * get cleaned up by free_event() -- they'll also still have their
4494 * ref on the rb and will free it whenever they are done with it.
4495 *
4496 * Aside from that, this buffer is 'fully' detached and unmapped,
4497 * undo the VM accounting.
4498 */
4499
4500 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4501 vma->vm_mm->pinned_vm -= mmap_locked;
4502 free_uid(mmap_user);
4503
b69cf536 4504out_put:
9bb5d40c 4505 ring_buffer_put(rb); /* could be last */
37d81828
PM
4506}
4507
f0f37e2f 4508static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4509 .open = perf_mmap_open,
45bfb2e5 4510 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4511 .fault = perf_mmap_fault,
4512 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4513};
4514
4515static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4516{
cdd6c482 4517 struct perf_event *event = file->private_data;
22a4f650 4518 unsigned long user_locked, user_lock_limit;
789f90fc 4519 struct user_struct *user = current_user();
22a4f650 4520 unsigned long locked, lock_limit;
45bfb2e5 4521 struct ring_buffer *rb = NULL;
7b732a75
PZ
4522 unsigned long vma_size;
4523 unsigned long nr_pages;
45bfb2e5 4524 long user_extra = 0, extra = 0;
d57e34fd 4525 int ret = 0, flags = 0;
37d81828 4526
c7920614
PZ
4527 /*
4528 * Don't allow mmap() of inherited per-task counters. This would
4529 * create a performance issue due to all children writing to the
76369139 4530 * same rb.
c7920614
PZ
4531 */
4532 if (event->cpu == -1 && event->attr.inherit)
4533 return -EINVAL;
4534
43a21ea8 4535 if (!(vma->vm_flags & VM_SHARED))
37d81828 4536 return -EINVAL;
7b732a75
PZ
4537
4538 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4539
4540 if (vma->vm_pgoff == 0) {
4541 nr_pages = (vma_size / PAGE_SIZE) - 1;
4542 } else {
4543 /*
4544 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4545 * mapped, all subsequent mappings should have the same size
4546 * and offset. Must be above the normal perf buffer.
4547 */
4548 u64 aux_offset, aux_size;
4549
4550 if (!event->rb)
4551 return -EINVAL;
4552
4553 nr_pages = vma_size / PAGE_SIZE;
4554
4555 mutex_lock(&event->mmap_mutex);
4556 ret = -EINVAL;
4557
4558 rb = event->rb;
4559 if (!rb)
4560 goto aux_unlock;
4561
4562 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4563 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4564
4565 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4566 goto aux_unlock;
4567
4568 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4569 goto aux_unlock;
4570
4571 /* already mapped with a different offset */
4572 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4573 goto aux_unlock;
4574
4575 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4576 goto aux_unlock;
4577
4578 /* already mapped with a different size */
4579 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4580 goto aux_unlock;
4581
4582 if (!is_power_of_2(nr_pages))
4583 goto aux_unlock;
4584
4585 if (!atomic_inc_not_zero(&rb->mmap_count))
4586 goto aux_unlock;
4587
4588 if (rb_has_aux(rb)) {
4589 atomic_inc(&rb->aux_mmap_count);
4590 ret = 0;
4591 goto unlock;
4592 }
4593
4594 atomic_set(&rb->aux_mmap_count, 1);
4595 user_extra = nr_pages;
4596
4597 goto accounting;
4598 }
7b732a75 4599
7730d865 4600 /*
76369139 4601 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4602 * can do bitmasks instead of modulo.
4603 */
2ed11312 4604 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4605 return -EINVAL;
4606
7b732a75 4607 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4608 return -EINVAL;
4609
cdd6c482 4610 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4611again:
cdd6c482 4612 mutex_lock(&event->mmap_mutex);
76369139 4613 if (event->rb) {
9bb5d40c 4614 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4615 ret = -EINVAL;
9bb5d40c
PZ
4616 goto unlock;
4617 }
4618
4619 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4620 /*
4621 * Raced against perf_mmap_close() through
4622 * perf_event_set_output(). Try again, hope for better
4623 * luck.
4624 */
4625 mutex_unlock(&event->mmap_mutex);
4626 goto again;
4627 }
4628
ebb3c4c4
PZ
4629 goto unlock;
4630 }
4631
789f90fc 4632 user_extra = nr_pages + 1;
45bfb2e5
PZ
4633
4634accounting:
cdd6c482 4635 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4636
4637 /*
4638 * Increase the limit linearly with more CPUs:
4639 */
4640 user_lock_limit *= num_online_cpus();
4641
789f90fc 4642 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4643
789f90fc
PZ
4644 if (user_locked > user_lock_limit)
4645 extra = user_locked - user_lock_limit;
7b732a75 4646
78d7d407 4647 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4648 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4649 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4650
459ec28a
IM
4651 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4652 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4653 ret = -EPERM;
4654 goto unlock;
4655 }
7b732a75 4656
45bfb2e5 4657 WARN_ON(!rb && event->rb);
906010b2 4658
d57e34fd 4659 if (vma->vm_flags & VM_WRITE)
76369139 4660 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4661
76369139 4662 if (!rb) {
45bfb2e5
PZ
4663 rb = rb_alloc(nr_pages,
4664 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4665 event->cpu, flags);
26cb63ad 4666
45bfb2e5
PZ
4667 if (!rb) {
4668 ret = -ENOMEM;
4669 goto unlock;
4670 }
43a21ea8 4671
45bfb2e5
PZ
4672 atomic_set(&rb->mmap_count, 1);
4673 rb->mmap_user = get_current_user();
4674 rb->mmap_locked = extra;
26cb63ad 4675
45bfb2e5 4676 ring_buffer_attach(event, rb);
ac9721f3 4677
45bfb2e5
PZ
4678 perf_event_init_userpage(event);
4679 perf_event_update_userpage(event);
4680 } else {
4681 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, flags);
4682 if (!ret)
4683 rb->aux_mmap_locked = extra;
4684 }
9a0f05cb 4685
ebb3c4c4 4686unlock:
45bfb2e5
PZ
4687 if (!ret) {
4688 atomic_long_add(user_extra, &user->locked_vm);
4689 vma->vm_mm->pinned_vm += extra;
4690
ac9721f3 4691 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4692 } else if (rb) {
4693 atomic_dec(&rb->mmap_count);
4694 }
4695aux_unlock:
cdd6c482 4696 mutex_unlock(&event->mmap_mutex);
37d81828 4697
9bb5d40c
PZ
4698 /*
4699 * Since pinned accounting is per vm we cannot allow fork() to copy our
4700 * vma.
4701 */
26cb63ad 4702 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4703 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4704
1e0fb9ec
AL
4705 if (event->pmu->event_mapped)
4706 event->pmu->event_mapped(event);
4707
7b732a75 4708 return ret;
37d81828
PM
4709}
4710
3c446b3d
PZ
4711static int perf_fasync(int fd, struct file *filp, int on)
4712{
496ad9aa 4713 struct inode *inode = file_inode(filp);
cdd6c482 4714 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4715 int retval;
4716
4717 mutex_lock(&inode->i_mutex);
cdd6c482 4718 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4719 mutex_unlock(&inode->i_mutex);
4720
4721 if (retval < 0)
4722 return retval;
4723
4724 return 0;
4725}
4726
0793a61d 4727static const struct file_operations perf_fops = {
3326c1ce 4728 .llseek = no_llseek,
0793a61d
TG
4729 .release = perf_release,
4730 .read = perf_read,
4731 .poll = perf_poll,
d859e29f 4732 .unlocked_ioctl = perf_ioctl,
b3f20785 4733 .compat_ioctl = perf_compat_ioctl,
37d81828 4734 .mmap = perf_mmap,
3c446b3d 4735 .fasync = perf_fasync,
0793a61d
TG
4736};
4737
925d519a 4738/*
cdd6c482 4739 * Perf event wakeup
925d519a
PZ
4740 *
4741 * If there's data, ensure we set the poll() state and publish everything
4742 * to user-space before waking everybody up.
4743 */
4744
cdd6c482 4745void perf_event_wakeup(struct perf_event *event)
925d519a 4746{
10c6db11 4747 ring_buffer_wakeup(event);
4c9e2542 4748
cdd6c482
IM
4749 if (event->pending_kill) {
4750 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4751 event->pending_kill = 0;
4c9e2542 4752 }
925d519a
PZ
4753}
4754
e360adbe 4755static void perf_pending_event(struct irq_work *entry)
79f14641 4756{
cdd6c482
IM
4757 struct perf_event *event = container_of(entry,
4758 struct perf_event, pending);
d525211f
PZ
4759 int rctx;
4760
4761 rctx = perf_swevent_get_recursion_context();
4762 /*
4763 * If we 'fail' here, that's OK, it means recursion is already disabled
4764 * and we won't recurse 'further'.
4765 */
79f14641 4766
cdd6c482
IM
4767 if (event->pending_disable) {
4768 event->pending_disable = 0;
4769 __perf_event_disable(event);
79f14641
PZ
4770 }
4771
cdd6c482
IM
4772 if (event->pending_wakeup) {
4773 event->pending_wakeup = 0;
4774 perf_event_wakeup(event);
79f14641 4775 }
d525211f
PZ
4776
4777 if (rctx >= 0)
4778 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4779}
4780
39447b38
ZY
4781/*
4782 * We assume there is only KVM supporting the callbacks.
4783 * Later on, we might change it to a list if there is
4784 * another virtualization implementation supporting the callbacks.
4785 */
4786struct perf_guest_info_callbacks *perf_guest_cbs;
4787
4788int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4789{
4790 perf_guest_cbs = cbs;
4791 return 0;
4792}
4793EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4794
4795int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4796{
4797 perf_guest_cbs = NULL;
4798 return 0;
4799}
4800EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4801
4018994f
JO
4802static void
4803perf_output_sample_regs(struct perf_output_handle *handle,
4804 struct pt_regs *regs, u64 mask)
4805{
4806 int bit;
4807
4808 for_each_set_bit(bit, (const unsigned long *) &mask,
4809 sizeof(mask) * BITS_PER_BYTE) {
4810 u64 val;
4811
4812 val = perf_reg_value(regs, bit);
4813 perf_output_put(handle, val);
4814 }
4815}
4816
60e2364e 4817static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4818 struct pt_regs *regs,
4819 struct pt_regs *regs_user_copy)
4018994f 4820{
88a7c26a
AL
4821 if (user_mode(regs)) {
4822 regs_user->abi = perf_reg_abi(current);
2565711f 4823 regs_user->regs = regs;
88a7c26a
AL
4824 } else if (current->mm) {
4825 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4826 } else {
4827 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4828 regs_user->regs = NULL;
4018994f
JO
4829 }
4830}
4831
60e2364e
SE
4832static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4833 struct pt_regs *regs)
4834{
4835 regs_intr->regs = regs;
4836 regs_intr->abi = perf_reg_abi(current);
4837}
4838
4839
c5ebcedb
JO
4840/*
4841 * Get remaining task size from user stack pointer.
4842 *
4843 * It'd be better to take stack vma map and limit this more
4844 * precisly, but there's no way to get it safely under interrupt,
4845 * so using TASK_SIZE as limit.
4846 */
4847static u64 perf_ustack_task_size(struct pt_regs *regs)
4848{
4849 unsigned long addr = perf_user_stack_pointer(regs);
4850
4851 if (!addr || addr >= TASK_SIZE)
4852 return 0;
4853
4854 return TASK_SIZE - addr;
4855}
4856
4857static u16
4858perf_sample_ustack_size(u16 stack_size, u16 header_size,
4859 struct pt_regs *regs)
4860{
4861 u64 task_size;
4862
4863 /* No regs, no stack pointer, no dump. */
4864 if (!regs)
4865 return 0;
4866
4867 /*
4868 * Check if we fit in with the requested stack size into the:
4869 * - TASK_SIZE
4870 * If we don't, we limit the size to the TASK_SIZE.
4871 *
4872 * - remaining sample size
4873 * If we don't, we customize the stack size to
4874 * fit in to the remaining sample size.
4875 */
4876
4877 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4878 stack_size = min(stack_size, (u16) task_size);
4879
4880 /* Current header size plus static size and dynamic size. */
4881 header_size += 2 * sizeof(u64);
4882
4883 /* Do we fit in with the current stack dump size? */
4884 if ((u16) (header_size + stack_size) < header_size) {
4885 /*
4886 * If we overflow the maximum size for the sample,
4887 * we customize the stack dump size to fit in.
4888 */
4889 stack_size = USHRT_MAX - header_size - sizeof(u64);
4890 stack_size = round_up(stack_size, sizeof(u64));
4891 }
4892
4893 return stack_size;
4894}
4895
4896static void
4897perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4898 struct pt_regs *regs)
4899{
4900 /* Case of a kernel thread, nothing to dump */
4901 if (!regs) {
4902 u64 size = 0;
4903 perf_output_put(handle, size);
4904 } else {
4905 unsigned long sp;
4906 unsigned int rem;
4907 u64 dyn_size;
4908
4909 /*
4910 * We dump:
4911 * static size
4912 * - the size requested by user or the best one we can fit
4913 * in to the sample max size
4914 * data
4915 * - user stack dump data
4916 * dynamic size
4917 * - the actual dumped size
4918 */
4919
4920 /* Static size. */
4921 perf_output_put(handle, dump_size);
4922
4923 /* Data. */
4924 sp = perf_user_stack_pointer(regs);
4925 rem = __output_copy_user(handle, (void *) sp, dump_size);
4926 dyn_size = dump_size - rem;
4927
4928 perf_output_skip(handle, rem);
4929
4930 /* Dynamic size. */
4931 perf_output_put(handle, dyn_size);
4932 }
4933}
4934
c980d109
ACM
4935static void __perf_event_header__init_id(struct perf_event_header *header,
4936 struct perf_sample_data *data,
4937 struct perf_event *event)
6844c09d
ACM
4938{
4939 u64 sample_type = event->attr.sample_type;
4940
4941 data->type = sample_type;
4942 header->size += event->id_header_size;
4943
4944 if (sample_type & PERF_SAMPLE_TID) {
4945 /* namespace issues */
4946 data->tid_entry.pid = perf_event_pid(event, current);
4947 data->tid_entry.tid = perf_event_tid(event, current);
4948 }
4949
4950 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4951 data->time = perf_event_clock(event);
6844c09d 4952
ff3d527c 4953 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4954 data->id = primary_event_id(event);
4955
4956 if (sample_type & PERF_SAMPLE_STREAM_ID)
4957 data->stream_id = event->id;
4958
4959 if (sample_type & PERF_SAMPLE_CPU) {
4960 data->cpu_entry.cpu = raw_smp_processor_id();
4961 data->cpu_entry.reserved = 0;
4962 }
4963}
4964
76369139
FW
4965void perf_event_header__init_id(struct perf_event_header *header,
4966 struct perf_sample_data *data,
4967 struct perf_event *event)
c980d109
ACM
4968{
4969 if (event->attr.sample_id_all)
4970 __perf_event_header__init_id(header, data, event);
4971}
4972
4973static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4974 struct perf_sample_data *data)
4975{
4976 u64 sample_type = data->type;
4977
4978 if (sample_type & PERF_SAMPLE_TID)
4979 perf_output_put(handle, data->tid_entry);
4980
4981 if (sample_type & PERF_SAMPLE_TIME)
4982 perf_output_put(handle, data->time);
4983
4984 if (sample_type & PERF_SAMPLE_ID)
4985 perf_output_put(handle, data->id);
4986
4987 if (sample_type & PERF_SAMPLE_STREAM_ID)
4988 perf_output_put(handle, data->stream_id);
4989
4990 if (sample_type & PERF_SAMPLE_CPU)
4991 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4992
4993 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4994 perf_output_put(handle, data->id);
c980d109
ACM
4995}
4996
76369139
FW
4997void perf_event__output_id_sample(struct perf_event *event,
4998 struct perf_output_handle *handle,
4999 struct perf_sample_data *sample)
c980d109
ACM
5000{
5001 if (event->attr.sample_id_all)
5002 __perf_event__output_id_sample(handle, sample);
5003}
5004
3dab77fb 5005static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5006 struct perf_event *event,
5007 u64 enabled, u64 running)
3dab77fb 5008{
cdd6c482 5009 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5010 u64 values[4];
5011 int n = 0;
5012
b5e58793 5013 values[n++] = perf_event_count(event);
3dab77fb 5014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5015 values[n++] = enabled +
cdd6c482 5016 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5017 }
5018 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5019 values[n++] = running +
cdd6c482 5020 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5021 }
5022 if (read_format & PERF_FORMAT_ID)
cdd6c482 5023 values[n++] = primary_event_id(event);
3dab77fb 5024
76369139 5025 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5026}
5027
5028/*
cdd6c482 5029 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5030 */
5031static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5032 struct perf_event *event,
5033 u64 enabled, u64 running)
3dab77fb 5034{
cdd6c482
IM
5035 struct perf_event *leader = event->group_leader, *sub;
5036 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5037 u64 values[5];
5038 int n = 0;
5039
5040 values[n++] = 1 + leader->nr_siblings;
5041
5042 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5043 values[n++] = enabled;
3dab77fb
PZ
5044
5045 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5046 values[n++] = running;
3dab77fb 5047
cdd6c482 5048 if (leader != event)
3dab77fb
PZ
5049 leader->pmu->read(leader);
5050
b5e58793 5051 values[n++] = perf_event_count(leader);
3dab77fb 5052 if (read_format & PERF_FORMAT_ID)
cdd6c482 5053 values[n++] = primary_event_id(leader);
3dab77fb 5054
76369139 5055 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5056
65abc865 5057 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5058 n = 0;
5059
6f5ab001
JO
5060 if ((sub != event) &&
5061 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5062 sub->pmu->read(sub);
5063
b5e58793 5064 values[n++] = perf_event_count(sub);
3dab77fb 5065 if (read_format & PERF_FORMAT_ID)
cdd6c482 5066 values[n++] = primary_event_id(sub);
3dab77fb 5067
76369139 5068 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5069 }
5070}
5071
eed01528
SE
5072#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5073 PERF_FORMAT_TOTAL_TIME_RUNNING)
5074
3dab77fb 5075static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5076 struct perf_event *event)
3dab77fb 5077{
e3f3541c 5078 u64 enabled = 0, running = 0, now;
eed01528
SE
5079 u64 read_format = event->attr.read_format;
5080
5081 /*
5082 * compute total_time_enabled, total_time_running
5083 * based on snapshot values taken when the event
5084 * was last scheduled in.
5085 *
5086 * we cannot simply called update_context_time()
5087 * because of locking issue as we are called in
5088 * NMI context
5089 */
c4794295 5090 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5091 calc_timer_values(event, &now, &enabled, &running);
eed01528 5092
cdd6c482 5093 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5094 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5095 else
eed01528 5096 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5097}
5098
5622f295
MM
5099void perf_output_sample(struct perf_output_handle *handle,
5100 struct perf_event_header *header,
5101 struct perf_sample_data *data,
cdd6c482 5102 struct perf_event *event)
5622f295
MM
5103{
5104 u64 sample_type = data->type;
5105
5106 perf_output_put(handle, *header);
5107
ff3d527c
AH
5108 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5109 perf_output_put(handle, data->id);
5110
5622f295
MM
5111 if (sample_type & PERF_SAMPLE_IP)
5112 perf_output_put(handle, data->ip);
5113
5114 if (sample_type & PERF_SAMPLE_TID)
5115 perf_output_put(handle, data->tid_entry);
5116
5117 if (sample_type & PERF_SAMPLE_TIME)
5118 perf_output_put(handle, data->time);
5119
5120 if (sample_type & PERF_SAMPLE_ADDR)
5121 perf_output_put(handle, data->addr);
5122
5123 if (sample_type & PERF_SAMPLE_ID)
5124 perf_output_put(handle, data->id);
5125
5126 if (sample_type & PERF_SAMPLE_STREAM_ID)
5127 perf_output_put(handle, data->stream_id);
5128
5129 if (sample_type & PERF_SAMPLE_CPU)
5130 perf_output_put(handle, data->cpu_entry);
5131
5132 if (sample_type & PERF_SAMPLE_PERIOD)
5133 perf_output_put(handle, data->period);
5134
5135 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5136 perf_output_read(handle, event);
5622f295
MM
5137
5138 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5139 if (data->callchain) {
5140 int size = 1;
5141
5142 if (data->callchain)
5143 size += data->callchain->nr;
5144
5145 size *= sizeof(u64);
5146
76369139 5147 __output_copy(handle, data->callchain, size);
5622f295
MM
5148 } else {
5149 u64 nr = 0;
5150 perf_output_put(handle, nr);
5151 }
5152 }
5153
5154 if (sample_type & PERF_SAMPLE_RAW) {
5155 if (data->raw) {
5156 perf_output_put(handle, data->raw->size);
76369139
FW
5157 __output_copy(handle, data->raw->data,
5158 data->raw->size);
5622f295
MM
5159 } else {
5160 struct {
5161 u32 size;
5162 u32 data;
5163 } raw = {
5164 .size = sizeof(u32),
5165 .data = 0,
5166 };
5167 perf_output_put(handle, raw);
5168 }
5169 }
a7ac67ea 5170
bce38cd5
SE
5171 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5172 if (data->br_stack) {
5173 size_t size;
5174
5175 size = data->br_stack->nr
5176 * sizeof(struct perf_branch_entry);
5177
5178 perf_output_put(handle, data->br_stack->nr);
5179 perf_output_copy(handle, data->br_stack->entries, size);
5180 } else {
5181 /*
5182 * we always store at least the value of nr
5183 */
5184 u64 nr = 0;
5185 perf_output_put(handle, nr);
5186 }
5187 }
4018994f
JO
5188
5189 if (sample_type & PERF_SAMPLE_REGS_USER) {
5190 u64 abi = data->regs_user.abi;
5191
5192 /*
5193 * If there are no regs to dump, notice it through
5194 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5195 */
5196 perf_output_put(handle, abi);
5197
5198 if (abi) {
5199 u64 mask = event->attr.sample_regs_user;
5200 perf_output_sample_regs(handle,
5201 data->regs_user.regs,
5202 mask);
5203 }
5204 }
c5ebcedb 5205
a5cdd40c 5206 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5207 perf_output_sample_ustack(handle,
5208 data->stack_user_size,
5209 data->regs_user.regs);
a5cdd40c 5210 }
c3feedf2
AK
5211
5212 if (sample_type & PERF_SAMPLE_WEIGHT)
5213 perf_output_put(handle, data->weight);
d6be9ad6
SE
5214
5215 if (sample_type & PERF_SAMPLE_DATA_SRC)
5216 perf_output_put(handle, data->data_src.val);
a5cdd40c 5217
fdfbbd07
AK
5218 if (sample_type & PERF_SAMPLE_TRANSACTION)
5219 perf_output_put(handle, data->txn);
5220
60e2364e
SE
5221 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5222 u64 abi = data->regs_intr.abi;
5223 /*
5224 * If there are no regs to dump, notice it through
5225 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5226 */
5227 perf_output_put(handle, abi);
5228
5229 if (abi) {
5230 u64 mask = event->attr.sample_regs_intr;
5231
5232 perf_output_sample_regs(handle,
5233 data->regs_intr.regs,
5234 mask);
5235 }
5236 }
5237
a5cdd40c
PZ
5238 if (!event->attr.watermark) {
5239 int wakeup_events = event->attr.wakeup_events;
5240
5241 if (wakeup_events) {
5242 struct ring_buffer *rb = handle->rb;
5243 int events = local_inc_return(&rb->events);
5244
5245 if (events >= wakeup_events) {
5246 local_sub(wakeup_events, &rb->events);
5247 local_inc(&rb->wakeup);
5248 }
5249 }
5250 }
5622f295
MM
5251}
5252
5253void perf_prepare_sample(struct perf_event_header *header,
5254 struct perf_sample_data *data,
cdd6c482 5255 struct perf_event *event,
5622f295 5256 struct pt_regs *regs)
7b732a75 5257{
cdd6c482 5258 u64 sample_type = event->attr.sample_type;
7b732a75 5259
cdd6c482 5260 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5261 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5262
5263 header->misc = 0;
5264 header->misc |= perf_misc_flags(regs);
6fab0192 5265
c980d109 5266 __perf_event_header__init_id(header, data, event);
6844c09d 5267
c320c7b7 5268 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5269 data->ip = perf_instruction_pointer(regs);
5270
b23f3325 5271 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5272 int size = 1;
394ee076 5273
e6dab5ff 5274 data->callchain = perf_callchain(event, regs);
5622f295
MM
5275
5276 if (data->callchain)
5277 size += data->callchain->nr;
5278
5279 header->size += size * sizeof(u64);
394ee076
PZ
5280 }
5281
3a43ce68 5282 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5283 int size = sizeof(u32);
5284
5285 if (data->raw)
5286 size += data->raw->size;
5287 else
5288 size += sizeof(u32);
5289
5290 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5291 header->size += size;
7f453c24 5292 }
bce38cd5
SE
5293
5294 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5295 int size = sizeof(u64); /* nr */
5296 if (data->br_stack) {
5297 size += data->br_stack->nr
5298 * sizeof(struct perf_branch_entry);
5299 }
5300 header->size += size;
5301 }
4018994f 5302
2565711f 5303 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5304 perf_sample_regs_user(&data->regs_user, regs,
5305 &data->regs_user_copy);
2565711f 5306
4018994f
JO
5307 if (sample_type & PERF_SAMPLE_REGS_USER) {
5308 /* regs dump ABI info */
5309 int size = sizeof(u64);
5310
4018994f
JO
5311 if (data->regs_user.regs) {
5312 u64 mask = event->attr.sample_regs_user;
5313 size += hweight64(mask) * sizeof(u64);
5314 }
5315
5316 header->size += size;
5317 }
c5ebcedb
JO
5318
5319 if (sample_type & PERF_SAMPLE_STACK_USER) {
5320 /*
5321 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5322 * processed as the last one or have additional check added
5323 * in case new sample type is added, because we could eat
5324 * up the rest of the sample size.
5325 */
c5ebcedb
JO
5326 u16 stack_size = event->attr.sample_stack_user;
5327 u16 size = sizeof(u64);
5328
c5ebcedb 5329 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5330 data->regs_user.regs);
c5ebcedb
JO
5331
5332 /*
5333 * If there is something to dump, add space for the dump
5334 * itself and for the field that tells the dynamic size,
5335 * which is how many have been actually dumped.
5336 */
5337 if (stack_size)
5338 size += sizeof(u64) + stack_size;
5339
5340 data->stack_user_size = stack_size;
5341 header->size += size;
5342 }
60e2364e
SE
5343
5344 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5345 /* regs dump ABI info */
5346 int size = sizeof(u64);
5347
5348 perf_sample_regs_intr(&data->regs_intr, regs);
5349
5350 if (data->regs_intr.regs) {
5351 u64 mask = event->attr.sample_regs_intr;
5352
5353 size += hweight64(mask) * sizeof(u64);
5354 }
5355
5356 header->size += size;
5357 }
5622f295 5358}
7f453c24 5359
a8b0ca17 5360static void perf_event_output(struct perf_event *event,
5622f295
MM
5361 struct perf_sample_data *data,
5362 struct pt_regs *regs)
5363{
5364 struct perf_output_handle handle;
5365 struct perf_event_header header;
689802b2 5366
927c7a9e
FW
5367 /* protect the callchain buffers */
5368 rcu_read_lock();
5369
cdd6c482 5370 perf_prepare_sample(&header, data, event, regs);
5c148194 5371
a7ac67ea 5372 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5373 goto exit;
0322cd6e 5374
cdd6c482 5375 perf_output_sample(&handle, &header, data, event);
f413cdb8 5376
8a057d84 5377 perf_output_end(&handle);
927c7a9e
FW
5378
5379exit:
5380 rcu_read_unlock();
0322cd6e
PZ
5381}
5382
38b200d6 5383/*
cdd6c482 5384 * read event_id
38b200d6
PZ
5385 */
5386
5387struct perf_read_event {
5388 struct perf_event_header header;
5389
5390 u32 pid;
5391 u32 tid;
38b200d6
PZ
5392};
5393
5394static void
cdd6c482 5395perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5396 struct task_struct *task)
5397{
5398 struct perf_output_handle handle;
c980d109 5399 struct perf_sample_data sample;
dfc65094 5400 struct perf_read_event read_event = {
38b200d6 5401 .header = {
cdd6c482 5402 .type = PERF_RECORD_READ,
38b200d6 5403 .misc = 0,
c320c7b7 5404 .size = sizeof(read_event) + event->read_size,
38b200d6 5405 },
cdd6c482
IM
5406 .pid = perf_event_pid(event, task),
5407 .tid = perf_event_tid(event, task),
38b200d6 5408 };
3dab77fb 5409 int ret;
38b200d6 5410
c980d109 5411 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5412 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5413 if (ret)
5414 return;
5415
dfc65094 5416 perf_output_put(&handle, read_event);
cdd6c482 5417 perf_output_read(&handle, event);
c980d109 5418 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5419
38b200d6
PZ
5420 perf_output_end(&handle);
5421}
5422
52d857a8
JO
5423typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5424
5425static void
5426perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5427 perf_event_aux_output_cb output,
5428 void *data)
5429{
5430 struct perf_event *event;
5431
5432 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5433 if (event->state < PERF_EVENT_STATE_INACTIVE)
5434 continue;
5435 if (!event_filter_match(event))
5436 continue;
67516844 5437 output(event, data);
52d857a8
JO
5438 }
5439}
5440
5441static void
67516844 5442perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5443 struct perf_event_context *task_ctx)
5444{
5445 struct perf_cpu_context *cpuctx;
5446 struct perf_event_context *ctx;
5447 struct pmu *pmu;
5448 int ctxn;
5449
5450 rcu_read_lock();
5451 list_for_each_entry_rcu(pmu, &pmus, entry) {
5452 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5453 if (cpuctx->unique_pmu != pmu)
5454 goto next;
67516844 5455 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5456 if (task_ctx)
5457 goto next;
5458 ctxn = pmu->task_ctx_nr;
5459 if (ctxn < 0)
5460 goto next;
5461 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5462 if (ctx)
67516844 5463 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5464next:
5465 put_cpu_ptr(pmu->pmu_cpu_context);
5466 }
5467
5468 if (task_ctx) {
5469 preempt_disable();
67516844 5470 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5471 preempt_enable();
5472 }
5473 rcu_read_unlock();
5474}
5475
60313ebe 5476/*
9f498cc5
PZ
5477 * task tracking -- fork/exit
5478 *
13d7a241 5479 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5480 */
5481
9f498cc5 5482struct perf_task_event {
3a80b4a3 5483 struct task_struct *task;
cdd6c482 5484 struct perf_event_context *task_ctx;
60313ebe
PZ
5485
5486 struct {
5487 struct perf_event_header header;
5488
5489 u32 pid;
5490 u32 ppid;
9f498cc5
PZ
5491 u32 tid;
5492 u32 ptid;
393b2ad8 5493 u64 time;
cdd6c482 5494 } event_id;
60313ebe
PZ
5495};
5496
67516844
JO
5497static int perf_event_task_match(struct perf_event *event)
5498{
13d7a241
SE
5499 return event->attr.comm || event->attr.mmap ||
5500 event->attr.mmap2 || event->attr.mmap_data ||
5501 event->attr.task;
67516844
JO
5502}
5503
cdd6c482 5504static void perf_event_task_output(struct perf_event *event,
52d857a8 5505 void *data)
60313ebe 5506{
52d857a8 5507 struct perf_task_event *task_event = data;
60313ebe 5508 struct perf_output_handle handle;
c980d109 5509 struct perf_sample_data sample;
9f498cc5 5510 struct task_struct *task = task_event->task;
c980d109 5511 int ret, size = task_event->event_id.header.size;
8bb39f9a 5512
67516844
JO
5513 if (!perf_event_task_match(event))
5514 return;
5515
c980d109 5516 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5517
c980d109 5518 ret = perf_output_begin(&handle, event,
a7ac67ea 5519 task_event->event_id.header.size);
ef60777c 5520 if (ret)
c980d109 5521 goto out;
60313ebe 5522
cdd6c482
IM
5523 task_event->event_id.pid = perf_event_pid(event, task);
5524 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5525
cdd6c482
IM
5526 task_event->event_id.tid = perf_event_tid(event, task);
5527 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5528
34f43927
PZ
5529 task_event->event_id.time = perf_event_clock(event);
5530
cdd6c482 5531 perf_output_put(&handle, task_event->event_id);
393b2ad8 5532
c980d109
ACM
5533 perf_event__output_id_sample(event, &handle, &sample);
5534
60313ebe 5535 perf_output_end(&handle);
c980d109
ACM
5536out:
5537 task_event->event_id.header.size = size;
60313ebe
PZ
5538}
5539
cdd6c482
IM
5540static void perf_event_task(struct task_struct *task,
5541 struct perf_event_context *task_ctx,
3a80b4a3 5542 int new)
60313ebe 5543{
9f498cc5 5544 struct perf_task_event task_event;
60313ebe 5545
cdd6c482
IM
5546 if (!atomic_read(&nr_comm_events) &&
5547 !atomic_read(&nr_mmap_events) &&
5548 !atomic_read(&nr_task_events))
60313ebe
PZ
5549 return;
5550
9f498cc5 5551 task_event = (struct perf_task_event){
3a80b4a3
PZ
5552 .task = task,
5553 .task_ctx = task_ctx,
cdd6c482 5554 .event_id = {
60313ebe 5555 .header = {
cdd6c482 5556 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5557 .misc = 0,
cdd6c482 5558 .size = sizeof(task_event.event_id),
60313ebe 5559 },
573402db
PZ
5560 /* .pid */
5561 /* .ppid */
9f498cc5
PZ
5562 /* .tid */
5563 /* .ptid */
34f43927 5564 /* .time */
60313ebe
PZ
5565 },
5566 };
5567
67516844 5568 perf_event_aux(perf_event_task_output,
52d857a8
JO
5569 &task_event,
5570 task_ctx);
9f498cc5
PZ
5571}
5572
cdd6c482 5573void perf_event_fork(struct task_struct *task)
9f498cc5 5574{
cdd6c482 5575 perf_event_task(task, NULL, 1);
60313ebe
PZ
5576}
5577
8d1b2d93
PZ
5578/*
5579 * comm tracking
5580 */
5581
5582struct perf_comm_event {
22a4f650
IM
5583 struct task_struct *task;
5584 char *comm;
8d1b2d93
PZ
5585 int comm_size;
5586
5587 struct {
5588 struct perf_event_header header;
5589
5590 u32 pid;
5591 u32 tid;
cdd6c482 5592 } event_id;
8d1b2d93
PZ
5593};
5594
67516844
JO
5595static int perf_event_comm_match(struct perf_event *event)
5596{
5597 return event->attr.comm;
5598}
5599
cdd6c482 5600static void perf_event_comm_output(struct perf_event *event,
52d857a8 5601 void *data)
8d1b2d93 5602{
52d857a8 5603 struct perf_comm_event *comm_event = data;
8d1b2d93 5604 struct perf_output_handle handle;
c980d109 5605 struct perf_sample_data sample;
cdd6c482 5606 int size = comm_event->event_id.header.size;
c980d109
ACM
5607 int ret;
5608
67516844
JO
5609 if (!perf_event_comm_match(event))
5610 return;
5611
c980d109
ACM
5612 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5613 ret = perf_output_begin(&handle, event,
a7ac67ea 5614 comm_event->event_id.header.size);
8d1b2d93
PZ
5615
5616 if (ret)
c980d109 5617 goto out;
8d1b2d93 5618
cdd6c482
IM
5619 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5620 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5621
cdd6c482 5622 perf_output_put(&handle, comm_event->event_id);
76369139 5623 __output_copy(&handle, comm_event->comm,
8d1b2d93 5624 comm_event->comm_size);
c980d109
ACM
5625
5626 perf_event__output_id_sample(event, &handle, &sample);
5627
8d1b2d93 5628 perf_output_end(&handle);
c980d109
ACM
5629out:
5630 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5631}
5632
cdd6c482 5633static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5634{
413ee3b4 5635 char comm[TASK_COMM_LEN];
8d1b2d93 5636 unsigned int size;
8d1b2d93 5637
413ee3b4 5638 memset(comm, 0, sizeof(comm));
96b02d78 5639 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5640 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5641
5642 comm_event->comm = comm;
5643 comm_event->comm_size = size;
5644
cdd6c482 5645 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5646
67516844 5647 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5648 comm_event,
5649 NULL);
8d1b2d93
PZ
5650}
5651
82b89778 5652void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5653{
9ee318a7
PZ
5654 struct perf_comm_event comm_event;
5655
cdd6c482 5656 if (!atomic_read(&nr_comm_events))
9ee318a7 5657 return;
a63eaf34 5658
9ee318a7 5659 comm_event = (struct perf_comm_event){
8d1b2d93 5660 .task = task,
573402db
PZ
5661 /* .comm */
5662 /* .comm_size */
cdd6c482 5663 .event_id = {
573402db 5664 .header = {
cdd6c482 5665 .type = PERF_RECORD_COMM,
82b89778 5666 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5667 /* .size */
5668 },
5669 /* .pid */
5670 /* .tid */
8d1b2d93
PZ
5671 },
5672 };
5673
cdd6c482 5674 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5675}
5676
0a4a9391
PZ
5677/*
5678 * mmap tracking
5679 */
5680
5681struct perf_mmap_event {
089dd79d
PZ
5682 struct vm_area_struct *vma;
5683
5684 const char *file_name;
5685 int file_size;
13d7a241
SE
5686 int maj, min;
5687 u64 ino;
5688 u64 ino_generation;
f972eb63 5689 u32 prot, flags;
0a4a9391
PZ
5690
5691 struct {
5692 struct perf_event_header header;
5693
5694 u32 pid;
5695 u32 tid;
5696 u64 start;
5697 u64 len;
5698 u64 pgoff;
cdd6c482 5699 } event_id;
0a4a9391
PZ
5700};
5701
67516844
JO
5702static int perf_event_mmap_match(struct perf_event *event,
5703 void *data)
5704{
5705 struct perf_mmap_event *mmap_event = data;
5706 struct vm_area_struct *vma = mmap_event->vma;
5707 int executable = vma->vm_flags & VM_EXEC;
5708
5709 return (!executable && event->attr.mmap_data) ||
13d7a241 5710 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5711}
5712
cdd6c482 5713static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5714 void *data)
0a4a9391 5715{
52d857a8 5716 struct perf_mmap_event *mmap_event = data;
0a4a9391 5717 struct perf_output_handle handle;
c980d109 5718 struct perf_sample_data sample;
cdd6c482 5719 int size = mmap_event->event_id.header.size;
c980d109 5720 int ret;
0a4a9391 5721
67516844
JO
5722 if (!perf_event_mmap_match(event, data))
5723 return;
5724
13d7a241
SE
5725 if (event->attr.mmap2) {
5726 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5727 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5728 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5729 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5730 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5731 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5732 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5733 }
5734
c980d109
ACM
5735 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5736 ret = perf_output_begin(&handle, event,
a7ac67ea 5737 mmap_event->event_id.header.size);
0a4a9391 5738 if (ret)
c980d109 5739 goto out;
0a4a9391 5740
cdd6c482
IM
5741 mmap_event->event_id.pid = perf_event_pid(event, current);
5742 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5743
cdd6c482 5744 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5745
5746 if (event->attr.mmap2) {
5747 perf_output_put(&handle, mmap_event->maj);
5748 perf_output_put(&handle, mmap_event->min);
5749 perf_output_put(&handle, mmap_event->ino);
5750 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5751 perf_output_put(&handle, mmap_event->prot);
5752 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5753 }
5754
76369139 5755 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5756 mmap_event->file_size);
c980d109
ACM
5757
5758 perf_event__output_id_sample(event, &handle, &sample);
5759
78d613eb 5760 perf_output_end(&handle);
c980d109
ACM
5761out:
5762 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5763}
5764
cdd6c482 5765static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5766{
089dd79d
PZ
5767 struct vm_area_struct *vma = mmap_event->vma;
5768 struct file *file = vma->vm_file;
13d7a241
SE
5769 int maj = 0, min = 0;
5770 u64 ino = 0, gen = 0;
f972eb63 5771 u32 prot = 0, flags = 0;
0a4a9391
PZ
5772 unsigned int size;
5773 char tmp[16];
5774 char *buf = NULL;
2c42cfbf 5775 char *name;
413ee3b4 5776
0a4a9391 5777 if (file) {
13d7a241
SE
5778 struct inode *inode;
5779 dev_t dev;
3ea2f2b9 5780
2c42cfbf 5781 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5782 if (!buf) {
c7e548b4
ON
5783 name = "//enomem";
5784 goto cpy_name;
0a4a9391 5785 }
413ee3b4 5786 /*
3ea2f2b9 5787 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5788 * need to add enough zero bytes after the string to handle
5789 * the 64bit alignment we do later.
5790 */
3ea2f2b9 5791 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5792 if (IS_ERR(name)) {
c7e548b4
ON
5793 name = "//toolong";
5794 goto cpy_name;
0a4a9391 5795 }
13d7a241
SE
5796 inode = file_inode(vma->vm_file);
5797 dev = inode->i_sb->s_dev;
5798 ino = inode->i_ino;
5799 gen = inode->i_generation;
5800 maj = MAJOR(dev);
5801 min = MINOR(dev);
f972eb63
PZ
5802
5803 if (vma->vm_flags & VM_READ)
5804 prot |= PROT_READ;
5805 if (vma->vm_flags & VM_WRITE)
5806 prot |= PROT_WRITE;
5807 if (vma->vm_flags & VM_EXEC)
5808 prot |= PROT_EXEC;
5809
5810 if (vma->vm_flags & VM_MAYSHARE)
5811 flags = MAP_SHARED;
5812 else
5813 flags = MAP_PRIVATE;
5814
5815 if (vma->vm_flags & VM_DENYWRITE)
5816 flags |= MAP_DENYWRITE;
5817 if (vma->vm_flags & VM_MAYEXEC)
5818 flags |= MAP_EXECUTABLE;
5819 if (vma->vm_flags & VM_LOCKED)
5820 flags |= MAP_LOCKED;
5821 if (vma->vm_flags & VM_HUGETLB)
5822 flags |= MAP_HUGETLB;
5823
c7e548b4 5824 goto got_name;
0a4a9391 5825 } else {
fbe26abe
JO
5826 if (vma->vm_ops && vma->vm_ops->name) {
5827 name = (char *) vma->vm_ops->name(vma);
5828 if (name)
5829 goto cpy_name;
5830 }
5831
2c42cfbf 5832 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5833 if (name)
5834 goto cpy_name;
089dd79d 5835
32c5fb7e 5836 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5837 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5838 name = "[heap]";
5839 goto cpy_name;
32c5fb7e
ON
5840 }
5841 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5842 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5843 name = "[stack]";
5844 goto cpy_name;
089dd79d
PZ
5845 }
5846
c7e548b4
ON
5847 name = "//anon";
5848 goto cpy_name;
0a4a9391
PZ
5849 }
5850
c7e548b4
ON
5851cpy_name:
5852 strlcpy(tmp, name, sizeof(tmp));
5853 name = tmp;
0a4a9391 5854got_name:
2c42cfbf
PZ
5855 /*
5856 * Since our buffer works in 8 byte units we need to align our string
5857 * size to a multiple of 8. However, we must guarantee the tail end is
5858 * zero'd out to avoid leaking random bits to userspace.
5859 */
5860 size = strlen(name)+1;
5861 while (!IS_ALIGNED(size, sizeof(u64)))
5862 name[size++] = '\0';
0a4a9391
PZ
5863
5864 mmap_event->file_name = name;
5865 mmap_event->file_size = size;
13d7a241
SE
5866 mmap_event->maj = maj;
5867 mmap_event->min = min;
5868 mmap_event->ino = ino;
5869 mmap_event->ino_generation = gen;
f972eb63
PZ
5870 mmap_event->prot = prot;
5871 mmap_event->flags = flags;
0a4a9391 5872
2fe85427
SE
5873 if (!(vma->vm_flags & VM_EXEC))
5874 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5875
cdd6c482 5876 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5877
67516844 5878 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5879 mmap_event,
5880 NULL);
665c2142 5881
0a4a9391
PZ
5882 kfree(buf);
5883}
5884
3af9e859 5885void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5886{
9ee318a7
PZ
5887 struct perf_mmap_event mmap_event;
5888
cdd6c482 5889 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5890 return;
5891
5892 mmap_event = (struct perf_mmap_event){
089dd79d 5893 .vma = vma,
573402db
PZ
5894 /* .file_name */
5895 /* .file_size */
cdd6c482 5896 .event_id = {
573402db 5897 .header = {
cdd6c482 5898 .type = PERF_RECORD_MMAP,
39447b38 5899 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5900 /* .size */
5901 },
5902 /* .pid */
5903 /* .tid */
089dd79d
PZ
5904 .start = vma->vm_start,
5905 .len = vma->vm_end - vma->vm_start,
3a0304e9 5906 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5907 },
13d7a241
SE
5908 /* .maj (attr_mmap2 only) */
5909 /* .min (attr_mmap2 only) */
5910 /* .ino (attr_mmap2 only) */
5911 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5912 /* .prot (attr_mmap2 only) */
5913 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5914 };
5915
cdd6c482 5916 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5917}
5918
a78ac325
PZ
5919/*
5920 * IRQ throttle logging
5921 */
5922
cdd6c482 5923static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5924{
5925 struct perf_output_handle handle;
c980d109 5926 struct perf_sample_data sample;
a78ac325
PZ
5927 int ret;
5928
5929 struct {
5930 struct perf_event_header header;
5931 u64 time;
cca3f454 5932 u64 id;
7f453c24 5933 u64 stream_id;
a78ac325
PZ
5934 } throttle_event = {
5935 .header = {
cdd6c482 5936 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5937 .misc = 0,
5938 .size = sizeof(throttle_event),
5939 },
34f43927 5940 .time = perf_event_clock(event),
cdd6c482
IM
5941 .id = primary_event_id(event),
5942 .stream_id = event->id,
a78ac325
PZ
5943 };
5944
966ee4d6 5945 if (enable)
cdd6c482 5946 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5947
c980d109
ACM
5948 perf_event_header__init_id(&throttle_event.header, &sample, event);
5949
5950 ret = perf_output_begin(&handle, event,
a7ac67ea 5951 throttle_event.header.size);
a78ac325
PZ
5952 if (ret)
5953 return;
5954
5955 perf_output_put(&handle, throttle_event);
c980d109 5956 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5957 perf_output_end(&handle);
5958}
5959
f6c7d5fe 5960/*
cdd6c482 5961 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5962 */
5963
a8b0ca17 5964static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5965 int throttle, struct perf_sample_data *data,
5966 struct pt_regs *regs)
f6c7d5fe 5967{
cdd6c482
IM
5968 int events = atomic_read(&event->event_limit);
5969 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5970 u64 seq;
79f14641
PZ
5971 int ret = 0;
5972
96398826
PZ
5973 /*
5974 * Non-sampling counters might still use the PMI to fold short
5975 * hardware counters, ignore those.
5976 */
5977 if (unlikely(!is_sampling_event(event)))
5978 return 0;
5979
e050e3f0
SE
5980 seq = __this_cpu_read(perf_throttled_seq);
5981 if (seq != hwc->interrupts_seq) {
5982 hwc->interrupts_seq = seq;
5983 hwc->interrupts = 1;
5984 } else {
5985 hwc->interrupts++;
5986 if (unlikely(throttle
5987 && hwc->interrupts >= max_samples_per_tick)) {
5988 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5989 hwc->interrupts = MAX_INTERRUPTS;
5990 perf_log_throttle(event, 0);
d84153d6 5991 tick_nohz_full_kick();
a78ac325
PZ
5992 ret = 1;
5993 }
e050e3f0 5994 }
60db5e09 5995
cdd6c482 5996 if (event->attr.freq) {
def0a9b2 5997 u64 now = perf_clock();
abd50713 5998 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5999
abd50713 6000 hwc->freq_time_stamp = now;
bd2b5b12 6001
abd50713 6002 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6003 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6004 }
6005
2023b359
PZ
6006 /*
6007 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6008 * events
2023b359
PZ
6009 */
6010
cdd6c482
IM
6011 event->pending_kill = POLL_IN;
6012 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6013 ret = 1;
cdd6c482 6014 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6015 event->pending_disable = 1;
6016 irq_work_queue(&event->pending);
79f14641
PZ
6017 }
6018
453f19ee 6019 if (event->overflow_handler)
a8b0ca17 6020 event->overflow_handler(event, data, regs);
453f19ee 6021 else
a8b0ca17 6022 perf_event_output(event, data, regs);
453f19ee 6023
f506b3dc 6024 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
6025 event->pending_wakeup = 1;
6026 irq_work_queue(&event->pending);
f506b3dc
PZ
6027 }
6028
79f14641 6029 return ret;
f6c7d5fe
PZ
6030}
6031
a8b0ca17 6032int perf_event_overflow(struct perf_event *event,
5622f295
MM
6033 struct perf_sample_data *data,
6034 struct pt_regs *regs)
850bc73f 6035{
a8b0ca17 6036 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6037}
6038
15dbf27c 6039/*
cdd6c482 6040 * Generic software event infrastructure
15dbf27c
PZ
6041 */
6042
b28ab83c
PZ
6043struct swevent_htable {
6044 struct swevent_hlist *swevent_hlist;
6045 struct mutex hlist_mutex;
6046 int hlist_refcount;
6047
6048 /* Recursion avoidance in each contexts */
6049 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6050
6051 /* Keeps track of cpu being initialized/exited */
6052 bool online;
b28ab83c
PZ
6053};
6054
6055static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6056
7b4b6658 6057/*
cdd6c482
IM
6058 * We directly increment event->count and keep a second value in
6059 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6060 * is kept in the range [-sample_period, 0] so that we can use the
6061 * sign as trigger.
6062 */
6063
ab573844 6064u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6065{
cdd6c482 6066 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6067 u64 period = hwc->last_period;
6068 u64 nr, offset;
6069 s64 old, val;
6070
6071 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6072
6073again:
e7850595 6074 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6075 if (val < 0)
6076 return 0;
15dbf27c 6077
7b4b6658
PZ
6078 nr = div64_u64(period + val, period);
6079 offset = nr * period;
6080 val -= offset;
e7850595 6081 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6082 goto again;
15dbf27c 6083
7b4b6658 6084 return nr;
15dbf27c
PZ
6085}
6086
0cff784a 6087static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6088 struct perf_sample_data *data,
5622f295 6089 struct pt_regs *regs)
15dbf27c 6090{
cdd6c482 6091 struct hw_perf_event *hwc = &event->hw;
850bc73f 6092 int throttle = 0;
15dbf27c 6093
0cff784a
PZ
6094 if (!overflow)
6095 overflow = perf_swevent_set_period(event);
15dbf27c 6096
7b4b6658
PZ
6097 if (hwc->interrupts == MAX_INTERRUPTS)
6098 return;
15dbf27c 6099
7b4b6658 6100 for (; overflow; overflow--) {
a8b0ca17 6101 if (__perf_event_overflow(event, throttle,
5622f295 6102 data, regs)) {
7b4b6658
PZ
6103 /*
6104 * We inhibit the overflow from happening when
6105 * hwc->interrupts == MAX_INTERRUPTS.
6106 */
6107 break;
6108 }
cf450a73 6109 throttle = 1;
7b4b6658 6110 }
15dbf27c
PZ
6111}
6112
a4eaf7f1 6113static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6114 struct perf_sample_data *data,
5622f295 6115 struct pt_regs *regs)
7b4b6658 6116{
cdd6c482 6117 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6118
e7850595 6119 local64_add(nr, &event->count);
d6d020e9 6120
0cff784a
PZ
6121 if (!regs)
6122 return;
6123
6c7e550f 6124 if (!is_sampling_event(event))
7b4b6658 6125 return;
d6d020e9 6126
5d81e5cf
AV
6127 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6128 data->period = nr;
6129 return perf_swevent_overflow(event, 1, data, regs);
6130 } else
6131 data->period = event->hw.last_period;
6132
0cff784a 6133 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6134 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6135
e7850595 6136 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6137 return;
df1a132b 6138
a8b0ca17 6139 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6140}
6141
f5ffe02e
FW
6142static int perf_exclude_event(struct perf_event *event,
6143 struct pt_regs *regs)
6144{
a4eaf7f1 6145 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6146 return 1;
a4eaf7f1 6147
f5ffe02e
FW
6148 if (regs) {
6149 if (event->attr.exclude_user && user_mode(regs))
6150 return 1;
6151
6152 if (event->attr.exclude_kernel && !user_mode(regs))
6153 return 1;
6154 }
6155
6156 return 0;
6157}
6158
cdd6c482 6159static int perf_swevent_match(struct perf_event *event,
1c432d89 6160 enum perf_type_id type,
6fb2915d
LZ
6161 u32 event_id,
6162 struct perf_sample_data *data,
6163 struct pt_regs *regs)
15dbf27c 6164{
cdd6c482 6165 if (event->attr.type != type)
a21ca2ca 6166 return 0;
f5ffe02e 6167
cdd6c482 6168 if (event->attr.config != event_id)
15dbf27c
PZ
6169 return 0;
6170
f5ffe02e
FW
6171 if (perf_exclude_event(event, regs))
6172 return 0;
15dbf27c
PZ
6173
6174 return 1;
6175}
6176
76e1d904
FW
6177static inline u64 swevent_hash(u64 type, u32 event_id)
6178{
6179 u64 val = event_id | (type << 32);
6180
6181 return hash_64(val, SWEVENT_HLIST_BITS);
6182}
6183
49f135ed
FW
6184static inline struct hlist_head *
6185__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6186{
49f135ed
FW
6187 u64 hash = swevent_hash(type, event_id);
6188
6189 return &hlist->heads[hash];
6190}
76e1d904 6191
49f135ed
FW
6192/* For the read side: events when they trigger */
6193static inline struct hlist_head *
b28ab83c 6194find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6195{
6196 struct swevent_hlist *hlist;
76e1d904 6197
b28ab83c 6198 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6199 if (!hlist)
6200 return NULL;
6201
49f135ed
FW
6202 return __find_swevent_head(hlist, type, event_id);
6203}
6204
6205/* For the event head insertion and removal in the hlist */
6206static inline struct hlist_head *
b28ab83c 6207find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6208{
6209 struct swevent_hlist *hlist;
6210 u32 event_id = event->attr.config;
6211 u64 type = event->attr.type;
6212
6213 /*
6214 * Event scheduling is always serialized against hlist allocation
6215 * and release. Which makes the protected version suitable here.
6216 * The context lock guarantees that.
6217 */
b28ab83c 6218 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6219 lockdep_is_held(&event->ctx->lock));
6220 if (!hlist)
6221 return NULL;
6222
6223 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6224}
6225
6226static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6227 u64 nr,
76e1d904
FW
6228 struct perf_sample_data *data,
6229 struct pt_regs *regs)
15dbf27c 6230{
4a32fea9 6231 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6232 struct perf_event *event;
76e1d904 6233 struct hlist_head *head;
15dbf27c 6234
76e1d904 6235 rcu_read_lock();
b28ab83c 6236 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6237 if (!head)
6238 goto end;
6239
b67bfe0d 6240 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6241 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6242 perf_swevent_event(event, nr, data, regs);
15dbf27c 6243 }
76e1d904
FW
6244end:
6245 rcu_read_unlock();
15dbf27c
PZ
6246}
6247
86038c5e
PZI
6248DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6249
4ed7c92d 6250int perf_swevent_get_recursion_context(void)
96f6d444 6251{
4a32fea9 6252 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6253
b28ab83c 6254 return get_recursion_context(swhash->recursion);
96f6d444 6255}
645e8cc0 6256EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6257
fa9f90be 6258inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6259{
4a32fea9 6260 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6261
b28ab83c 6262 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6263}
15dbf27c 6264
86038c5e 6265void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6266{
a4234bfc 6267 struct perf_sample_data data;
4ed7c92d 6268
86038c5e 6269 if (WARN_ON_ONCE(!regs))
4ed7c92d 6270 return;
a4234bfc 6271
fd0d000b 6272 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6273 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6274}
6275
6276void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6277{
6278 int rctx;
6279
6280 preempt_disable_notrace();
6281 rctx = perf_swevent_get_recursion_context();
6282 if (unlikely(rctx < 0))
6283 goto fail;
6284
6285 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6286
6287 perf_swevent_put_recursion_context(rctx);
86038c5e 6288fail:
1c024eca 6289 preempt_enable_notrace();
b8e83514
PZ
6290}
6291
cdd6c482 6292static void perf_swevent_read(struct perf_event *event)
15dbf27c 6293{
15dbf27c
PZ
6294}
6295
a4eaf7f1 6296static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6297{
4a32fea9 6298 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6299 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6300 struct hlist_head *head;
6301
6c7e550f 6302 if (is_sampling_event(event)) {
7b4b6658 6303 hwc->last_period = hwc->sample_period;
cdd6c482 6304 perf_swevent_set_period(event);
7b4b6658 6305 }
76e1d904 6306
a4eaf7f1
PZ
6307 hwc->state = !(flags & PERF_EF_START);
6308
b28ab83c 6309 head = find_swevent_head(swhash, event);
39af6b16
JO
6310 if (!head) {
6311 /*
6312 * We can race with cpu hotplug code. Do not
6313 * WARN if the cpu just got unplugged.
6314 */
6315 WARN_ON_ONCE(swhash->online);
76e1d904 6316 return -EINVAL;
39af6b16 6317 }
76e1d904
FW
6318
6319 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6320 perf_event_update_userpage(event);
76e1d904 6321
15dbf27c
PZ
6322 return 0;
6323}
6324
a4eaf7f1 6325static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6326{
76e1d904 6327 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6328}
6329
a4eaf7f1 6330static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6331{
a4eaf7f1 6332 event->hw.state = 0;
d6d020e9 6333}
aa9c4c0f 6334
a4eaf7f1 6335static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6336{
a4eaf7f1 6337 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6338}
6339
49f135ed
FW
6340/* Deref the hlist from the update side */
6341static inline struct swevent_hlist *
b28ab83c 6342swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6343{
b28ab83c
PZ
6344 return rcu_dereference_protected(swhash->swevent_hlist,
6345 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6346}
6347
b28ab83c 6348static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6349{
b28ab83c 6350 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6351
49f135ed 6352 if (!hlist)
76e1d904
FW
6353 return;
6354
70691d4a 6355 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6356 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6357}
6358
6359static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6360{
b28ab83c 6361 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6362
b28ab83c 6363 mutex_lock(&swhash->hlist_mutex);
76e1d904 6364
b28ab83c
PZ
6365 if (!--swhash->hlist_refcount)
6366 swevent_hlist_release(swhash);
76e1d904 6367
b28ab83c 6368 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6369}
6370
6371static void swevent_hlist_put(struct perf_event *event)
6372{
6373 int cpu;
6374
76e1d904
FW
6375 for_each_possible_cpu(cpu)
6376 swevent_hlist_put_cpu(event, cpu);
6377}
6378
6379static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6380{
b28ab83c 6381 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6382 int err = 0;
6383
b28ab83c 6384 mutex_lock(&swhash->hlist_mutex);
76e1d904 6385
b28ab83c 6386 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6387 struct swevent_hlist *hlist;
6388
6389 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6390 if (!hlist) {
6391 err = -ENOMEM;
6392 goto exit;
6393 }
b28ab83c 6394 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6395 }
b28ab83c 6396 swhash->hlist_refcount++;
9ed6060d 6397exit:
b28ab83c 6398 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6399
6400 return err;
6401}
6402
6403static int swevent_hlist_get(struct perf_event *event)
6404{
6405 int err;
6406 int cpu, failed_cpu;
6407
76e1d904
FW
6408 get_online_cpus();
6409 for_each_possible_cpu(cpu) {
6410 err = swevent_hlist_get_cpu(event, cpu);
6411 if (err) {
6412 failed_cpu = cpu;
6413 goto fail;
6414 }
6415 }
6416 put_online_cpus();
6417
6418 return 0;
9ed6060d 6419fail:
76e1d904
FW
6420 for_each_possible_cpu(cpu) {
6421 if (cpu == failed_cpu)
6422 break;
6423 swevent_hlist_put_cpu(event, cpu);
6424 }
6425
6426 put_online_cpus();
6427 return err;
6428}
6429
c5905afb 6430struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6431
b0a873eb
PZ
6432static void sw_perf_event_destroy(struct perf_event *event)
6433{
6434 u64 event_id = event->attr.config;
95476b64 6435
b0a873eb
PZ
6436 WARN_ON(event->parent);
6437
c5905afb 6438 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6439 swevent_hlist_put(event);
6440}
6441
6442static int perf_swevent_init(struct perf_event *event)
6443{
8176cced 6444 u64 event_id = event->attr.config;
b0a873eb
PZ
6445
6446 if (event->attr.type != PERF_TYPE_SOFTWARE)
6447 return -ENOENT;
6448
2481c5fa
SE
6449 /*
6450 * no branch sampling for software events
6451 */
6452 if (has_branch_stack(event))
6453 return -EOPNOTSUPP;
6454
b0a873eb
PZ
6455 switch (event_id) {
6456 case PERF_COUNT_SW_CPU_CLOCK:
6457 case PERF_COUNT_SW_TASK_CLOCK:
6458 return -ENOENT;
6459
6460 default:
6461 break;
6462 }
6463
ce677831 6464 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6465 return -ENOENT;
6466
6467 if (!event->parent) {
6468 int err;
6469
6470 err = swevent_hlist_get(event);
6471 if (err)
6472 return err;
6473
c5905afb 6474 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6475 event->destroy = sw_perf_event_destroy;
6476 }
6477
6478 return 0;
6479}
6480
6481static struct pmu perf_swevent = {
89a1e187 6482 .task_ctx_nr = perf_sw_context,
95476b64 6483
34f43927
PZ
6484 .capabilities = PERF_PMU_CAP_NO_NMI,
6485
b0a873eb 6486 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6487 .add = perf_swevent_add,
6488 .del = perf_swevent_del,
6489 .start = perf_swevent_start,
6490 .stop = perf_swevent_stop,
1c024eca 6491 .read = perf_swevent_read,
1c024eca
PZ
6492};
6493
b0a873eb
PZ
6494#ifdef CONFIG_EVENT_TRACING
6495
1c024eca
PZ
6496static int perf_tp_filter_match(struct perf_event *event,
6497 struct perf_sample_data *data)
6498{
6499 void *record = data->raw->data;
6500
6501 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6502 return 1;
6503 return 0;
6504}
6505
6506static int perf_tp_event_match(struct perf_event *event,
6507 struct perf_sample_data *data,
6508 struct pt_regs *regs)
6509{
a0f7d0f7
FW
6510 if (event->hw.state & PERF_HES_STOPPED)
6511 return 0;
580d607c
PZ
6512 /*
6513 * All tracepoints are from kernel-space.
6514 */
6515 if (event->attr.exclude_kernel)
1c024eca
PZ
6516 return 0;
6517
6518 if (!perf_tp_filter_match(event, data))
6519 return 0;
6520
6521 return 1;
6522}
6523
6524void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6525 struct pt_regs *regs, struct hlist_head *head, int rctx,
6526 struct task_struct *task)
95476b64
FW
6527{
6528 struct perf_sample_data data;
1c024eca 6529 struct perf_event *event;
1c024eca 6530
95476b64
FW
6531 struct perf_raw_record raw = {
6532 .size = entry_size,
6533 .data = record,
6534 };
6535
fd0d000b 6536 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6537 data.raw = &raw;
6538
b67bfe0d 6539 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6540 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6541 perf_swevent_event(event, count, &data, regs);
4f41c013 6542 }
ecc55f84 6543
e6dab5ff
AV
6544 /*
6545 * If we got specified a target task, also iterate its context and
6546 * deliver this event there too.
6547 */
6548 if (task && task != current) {
6549 struct perf_event_context *ctx;
6550 struct trace_entry *entry = record;
6551
6552 rcu_read_lock();
6553 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6554 if (!ctx)
6555 goto unlock;
6556
6557 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6558 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6559 continue;
6560 if (event->attr.config != entry->type)
6561 continue;
6562 if (perf_tp_event_match(event, &data, regs))
6563 perf_swevent_event(event, count, &data, regs);
6564 }
6565unlock:
6566 rcu_read_unlock();
6567 }
6568
ecc55f84 6569 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6570}
6571EXPORT_SYMBOL_GPL(perf_tp_event);
6572
cdd6c482 6573static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6574{
1c024eca 6575 perf_trace_destroy(event);
e077df4f
PZ
6576}
6577
b0a873eb 6578static int perf_tp_event_init(struct perf_event *event)
e077df4f 6579{
76e1d904
FW
6580 int err;
6581
b0a873eb
PZ
6582 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6583 return -ENOENT;
6584
2481c5fa
SE
6585 /*
6586 * no branch sampling for tracepoint events
6587 */
6588 if (has_branch_stack(event))
6589 return -EOPNOTSUPP;
6590
1c024eca
PZ
6591 err = perf_trace_init(event);
6592 if (err)
b0a873eb 6593 return err;
e077df4f 6594
cdd6c482 6595 event->destroy = tp_perf_event_destroy;
e077df4f 6596
b0a873eb
PZ
6597 return 0;
6598}
6599
6600static struct pmu perf_tracepoint = {
89a1e187
PZ
6601 .task_ctx_nr = perf_sw_context,
6602
b0a873eb 6603 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6604 .add = perf_trace_add,
6605 .del = perf_trace_del,
6606 .start = perf_swevent_start,
6607 .stop = perf_swevent_stop,
b0a873eb 6608 .read = perf_swevent_read,
b0a873eb
PZ
6609};
6610
6611static inline void perf_tp_register(void)
6612{
2e80a82a 6613 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6614}
6fb2915d
LZ
6615
6616static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6617{
6618 char *filter_str;
6619 int ret;
6620
6621 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6622 return -EINVAL;
6623
6624 filter_str = strndup_user(arg, PAGE_SIZE);
6625 if (IS_ERR(filter_str))
6626 return PTR_ERR(filter_str);
6627
6628 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6629
6630 kfree(filter_str);
6631 return ret;
6632}
6633
6634static void perf_event_free_filter(struct perf_event *event)
6635{
6636 ftrace_profile_free_filter(event);
6637}
6638
2541517c
AS
6639static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6640{
6641 struct bpf_prog *prog;
6642
6643 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6644 return -EINVAL;
6645
6646 if (event->tp_event->prog)
6647 return -EEXIST;
6648
6649 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6650 /* bpf programs can only be attached to kprobes */
6651 return -EINVAL;
6652
6653 prog = bpf_prog_get(prog_fd);
6654 if (IS_ERR(prog))
6655 return PTR_ERR(prog);
6656
6657 if (prog->aux->prog_type != BPF_PROG_TYPE_KPROBE) {
6658 /* valid fd, but invalid bpf program type */
6659 bpf_prog_put(prog);
6660 return -EINVAL;
6661 }
6662
6663 event->tp_event->prog = prog;
6664
6665 return 0;
6666}
6667
6668static void perf_event_free_bpf_prog(struct perf_event *event)
6669{
6670 struct bpf_prog *prog;
6671
6672 if (!event->tp_event)
6673 return;
6674
6675 prog = event->tp_event->prog;
6676 if (prog) {
6677 event->tp_event->prog = NULL;
6678 bpf_prog_put(prog);
6679 }
6680}
6681
e077df4f 6682#else
6fb2915d 6683
b0a873eb 6684static inline void perf_tp_register(void)
e077df4f 6685{
e077df4f 6686}
6fb2915d
LZ
6687
6688static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6689{
6690 return -ENOENT;
6691}
6692
6693static void perf_event_free_filter(struct perf_event *event)
6694{
6695}
6696
2541517c
AS
6697static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6698{
6699 return -ENOENT;
6700}
6701
6702static void perf_event_free_bpf_prog(struct perf_event *event)
6703{
6704}
07b139c8 6705#endif /* CONFIG_EVENT_TRACING */
e077df4f 6706
24f1e32c 6707#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6708void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6709{
f5ffe02e
FW
6710 struct perf_sample_data sample;
6711 struct pt_regs *regs = data;
6712
fd0d000b 6713 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6714
a4eaf7f1 6715 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6716 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6717}
6718#endif
6719
b0a873eb
PZ
6720/*
6721 * hrtimer based swevent callback
6722 */
f29ac756 6723
b0a873eb 6724static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6725{
b0a873eb
PZ
6726 enum hrtimer_restart ret = HRTIMER_RESTART;
6727 struct perf_sample_data data;
6728 struct pt_regs *regs;
6729 struct perf_event *event;
6730 u64 period;
f29ac756 6731
b0a873eb 6732 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6733
6734 if (event->state != PERF_EVENT_STATE_ACTIVE)
6735 return HRTIMER_NORESTART;
6736
b0a873eb 6737 event->pmu->read(event);
f344011c 6738
fd0d000b 6739 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6740 regs = get_irq_regs();
6741
6742 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6743 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6744 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6745 ret = HRTIMER_NORESTART;
6746 }
24f1e32c 6747
b0a873eb
PZ
6748 period = max_t(u64, 10000, event->hw.sample_period);
6749 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6750
b0a873eb 6751 return ret;
f29ac756
PZ
6752}
6753
b0a873eb 6754static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6755{
b0a873eb 6756 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6757 s64 period;
6758
6759 if (!is_sampling_event(event))
6760 return;
f5ffe02e 6761
5d508e82
FBH
6762 period = local64_read(&hwc->period_left);
6763 if (period) {
6764 if (period < 0)
6765 period = 10000;
fa407f35 6766
5d508e82
FBH
6767 local64_set(&hwc->period_left, 0);
6768 } else {
6769 period = max_t(u64, 10000, hwc->sample_period);
6770 }
6771 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6772 ns_to_ktime(period), 0,
b5ab4cd5 6773 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6774}
b0a873eb
PZ
6775
6776static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6777{
b0a873eb
PZ
6778 struct hw_perf_event *hwc = &event->hw;
6779
6c7e550f 6780 if (is_sampling_event(event)) {
b0a873eb 6781 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6782 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6783
6784 hrtimer_cancel(&hwc->hrtimer);
6785 }
24f1e32c
FW
6786}
6787
ba3dd36c
PZ
6788static void perf_swevent_init_hrtimer(struct perf_event *event)
6789{
6790 struct hw_perf_event *hwc = &event->hw;
6791
6792 if (!is_sampling_event(event))
6793 return;
6794
6795 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6796 hwc->hrtimer.function = perf_swevent_hrtimer;
6797
6798 /*
6799 * Since hrtimers have a fixed rate, we can do a static freq->period
6800 * mapping and avoid the whole period adjust feedback stuff.
6801 */
6802 if (event->attr.freq) {
6803 long freq = event->attr.sample_freq;
6804
6805 event->attr.sample_period = NSEC_PER_SEC / freq;
6806 hwc->sample_period = event->attr.sample_period;
6807 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6808 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6809 event->attr.freq = 0;
6810 }
6811}
6812
b0a873eb
PZ
6813/*
6814 * Software event: cpu wall time clock
6815 */
6816
6817static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6818{
b0a873eb
PZ
6819 s64 prev;
6820 u64 now;
6821
a4eaf7f1 6822 now = local_clock();
b0a873eb
PZ
6823 prev = local64_xchg(&event->hw.prev_count, now);
6824 local64_add(now - prev, &event->count);
24f1e32c 6825}
24f1e32c 6826
a4eaf7f1 6827static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6828{
a4eaf7f1 6829 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6830 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6831}
6832
a4eaf7f1 6833static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6834{
b0a873eb
PZ
6835 perf_swevent_cancel_hrtimer(event);
6836 cpu_clock_event_update(event);
6837}
f29ac756 6838
a4eaf7f1
PZ
6839static int cpu_clock_event_add(struct perf_event *event, int flags)
6840{
6841 if (flags & PERF_EF_START)
6842 cpu_clock_event_start(event, flags);
6a694a60 6843 perf_event_update_userpage(event);
a4eaf7f1
PZ
6844
6845 return 0;
6846}
6847
6848static void cpu_clock_event_del(struct perf_event *event, int flags)
6849{
6850 cpu_clock_event_stop(event, flags);
6851}
6852
b0a873eb
PZ
6853static void cpu_clock_event_read(struct perf_event *event)
6854{
6855 cpu_clock_event_update(event);
6856}
f344011c 6857
b0a873eb
PZ
6858static int cpu_clock_event_init(struct perf_event *event)
6859{
6860 if (event->attr.type != PERF_TYPE_SOFTWARE)
6861 return -ENOENT;
6862
6863 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6864 return -ENOENT;
6865
2481c5fa
SE
6866 /*
6867 * no branch sampling for software events
6868 */
6869 if (has_branch_stack(event))
6870 return -EOPNOTSUPP;
6871
ba3dd36c
PZ
6872 perf_swevent_init_hrtimer(event);
6873
b0a873eb 6874 return 0;
f29ac756
PZ
6875}
6876
b0a873eb 6877static struct pmu perf_cpu_clock = {
89a1e187
PZ
6878 .task_ctx_nr = perf_sw_context,
6879
34f43927
PZ
6880 .capabilities = PERF_PMU_CAP_NO_NMI,
6881
b0a873eb 6882 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6883 .add = cpu_clock_event_add,
6884 .del = cpu_clock_event_del,
6885 .start = cpu_clock_event_start,
6886 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6887 .read = cpu_clock_event_read,
6888};
6889
6890/*
6891 * Software event: task time clock
6892 */
6893
6894static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6895{
b0a873eb
PZ
6896 u64 prev;
6897 s64 delta;
5c92d124 6898
b0a873eb
PZ
6899 prev = local64_xchg(&event->hw.prev_count, now);
6900 delta = now - prev;
6901 local64_add(delta, &event->count);
6902}
5c92d124 6903
a4eaf7f1 6904static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6905{
a4eaf7f1 6906 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6907 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6908}
6909
a4eaf7f1 6910static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6911{
6912 perf_swevent_cancel_hrtimer(event);
6913 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6914}
6915
6916static int task_clock_event_add(struct perf_event *event, int flags)
6917{
6918 if (flags & PERF_EF_START)
6919 task_clock_event_start(event, flags);
6a694a60 6920 perf_event_update_userpage(event);
b0a873eb 6921
a4eaf7f1
PZ
6922 return 0;
6923}
6924
6925static void task_clock_event_del(struct perf_event *event, int flags)
6926{
6927 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6928}
6929
6930static void task_clock_event_read(struct perf_event *event)
6931{
768a06e2
PZ
6932 u64 now = perf_clock();
6933 u64 delta = now - event->ctx->timestamp;
6934 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6935
6936 task_clock_event_update(event, time);
6937}
6938
6939static int task_clock_event_init(struct perf_event *event)
6fb2915d 6940{
b0a873eb
PZ
6941 if (event->attr.type != PERF_TYPE_SOFTWARE)
6942 return -ENOENT;
6943
6944 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6945 return -ENOENT;
6946
2481c5fa
SE
6947 /*
6948 * no branch sampling for software events
6949 */
6950 if (has_branch_stack(event))
6951 return -EOPNOTSUPP;
6952
ba3dd36c
PZ
6953 perf_swevent_init_hrtimer(event);
6954
b0a873eb 6955 return 0;
6fb2915d
LZ
6956}
6957
b0a873eb 6958static struct pmu perf_task_clock = {
89a1e187
PZ
6959 .task_ctx_nr = perf_sw_context,
6960
34f43927
PZ
6961 .capabilities = PERF_PMU_CAP_NO_NMI,
6962
b0a873eb 6963 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6964 .add = task_clock_event_add,
6965 .del = task_clock_event_del,
6966 .start = task_clock_event_start,
6967 .stop = task_clock_event_stop,
b0a873eb
PZ
6968 .read = task_clock_event_read,
6969};
6fb2915d 6970
ad5133b7 6971static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6972{
e077df4f 6973}
6fb2915d 6974
ad5133b7 6975static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6976{
ad5133b7 6977 return 0;
6fb2915d
LZ
6978}
6979
ad5133b7 6980static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6981{
ad5133b7 6982 perf_pmu_disable(pmu);
6fb2915d
LZ
6983}
6984
ad5133b7
PZ
6985static int perf_pmu_commit_txn(struct pmu *pmu)
6986{
6987 perf_pmu_enable(pmu);
6988 return 0;
6989}
e077df4f 6990
ad5133b7 6991static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6992{
ad5133b7 6993 perf_pmu_enable(pmu);
24f1e32c
FW
6994}
6995
35edc2a5
PZ
6996static int perf_event_idx_default(struct perf_event *event)
6997{
c719f560 6998 return 0;
35edc2a5
PZ
6999}
7000
8dc85d54
PZ
7001/*
7002 * Ensures all contexts with the same task_ctx_nr have the same
7003 * pmu_cpu_context too.
7004 */
9e317041 7005static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7006{
8dc85d54 7007 struct pmu *pmu;
b326e956 7008
8dc85d54
PZ
7009 if (ctxn < 0)
7010 return NULL;
24f1e32c 7011
8dc85d54
PZ
7012 list_for_each_entry(pmu, &pmus, entry) {
7013 if (pmu->task_ctx_nr == ctxn)
7014 return pmu->pmu_cpu_context;
7015 }
24f1e32c 7016
8dc85d54 7017 return NULL;
24f1e32c
FW
7018}
7019
51676957 7020static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7021{
51676957
PZ
7022 int cpu;
7023
7024 for_each_possible_cpu(cpu) {
7025 struct perf_cpu_context *cpuctx;
7026
7027 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7028
3f1f3320
PZ
7029 if (cpuctx->unique_pmu == old_pmu)
7030 cpuctx->unique_pmu = pmu;
51676957
PZ
7031 }
7032}
7033
7034static void free_pmu_context(struct pmu *pmu)
7035{
7036 struct pmu *i;
f5ffe02e 7037
8dc85d54 7038 mutex_lock(&pmus_lock);
0475f9ea 7039 /*
8dc85d54 7040 * Like a real lame refcount.
0475f9ea 7041 */
51676957
PZ
7042 list_for_each_entry(i, &pmus, entry) {
7043 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7044 update_pmu_context(i, pmu);
8dc85d54 7045 goto out;
51676957 7046 }
8dc85d54 7047 }
d6d020e9 7048
51676957 7049 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7050out:
7051 mutex_unlock(&pmus_lock);
24f1e32c 7052}
2e80a82a 7053static struct idr pmu_idr;
d6d020e9 7054
abe43400
PZ
7055static ssize_t
7056type_show(struct device *dev, struct device_attribute *attr, char *page)
7057{
7058 struct pmu *pmu = dev_get_drvdata(dev);
7059
7060 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7061}
90826ca7 7062static DEVICE_ATTR_RO(type);
abe43400 7063
62b85639
SE
7064static ssize_t
7065perf_event_mux_interval_ms_show(struct device *dev,
7066 struct device_attribute *attr,
7067 char *page)
7068{
7069 struct pmu *pmu = dev_get_drvdata(dev);
7070
7071 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7072}
7073
7074static ssize_t
7075perf_event_mux_interval_ms_store(struct device *dev,
7076 struct device_attribute *attr,
7077 const char *buf, size_t count)
7078{
7079 struct pmu *pmu = dev_get_drvdata(dev);
7080 int timer, cpu, ret;
7081
7082 ret = kstrtoint(buf, 0, &timer);
7083 if (ret)
7084 return ret;
7085
7086 if (timer < 1)
7087 return -EINVAL;
7088
7089 /* same value, noting to do */
7090 if (timer == pmu->hrtimer_interval_ms)
7091 return count;
7092
7093 pmu->hrtimer_interval_ms = timer;
7094
7095 /* update all cpuctx for this PMU */
7096 for_each_possible_cpu(cpu) {
7097 struct perf_cpu_context *cpuctx;
7098 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7099 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7100
7101 if (hrtimer_active(&cpuctx->hrtimer))
7102 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7103 }
7104
7105 return count;
7106}
90826ca7 7107static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7108
90826ca7
GKH
7109static struct attribute *pmu_dev_attrs[] = {
7110 &dev_attr_type.attr,
7111 &dev_attr_perf_event_mux_interval_ms.attr,
7112 NULL,
abe43400 7113};
90826ca7 7114ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7115
7116static int pmu_bus_running;
7117static struct bus_type pmu_bus = {
7118 .name = "event_source",
90826ca7 7119 .dev_groups = pmu_dev_groups,
abe43400
PZ
7120};
7121
7122static void pmu_dev_release(struct device *dev)
7123{
7124 kfree(dev);
7125}
7126
7127static int pmu_dev_alloc(struct pmu *pmu)
7128{
7129 int ret = -ENOMEM;
7130
7131 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7132 if (!pmu->dev)
7133 goto out;
7134
0c9d42ed 7135 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7136 device_initialize(pmu->dev);
7137 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7138 if (ret)
7139 goto free_dev;
7140
7141 dev_set_drvdata(pmu->dev, pmu);
7142 pmu->dev->bus = &pmu_bus;
7143 pmu->dev->release = pmu_dev_release;
7144 ret = device_add(pmu->dev);
7145 if (ret)
7146 goto free_dev;
7147
7148out:
7149 return ret;
7150
7151free_dev:
7152 put_device(pmu->dev);
7153 goto out;
7154}
7155
547e9fd7 7156static struct lock_class_key cpuctx_mutex;
facc4307 7157static struct lock_class_key cpuctx_lock;
547e9fd7 7158
03d8e80b 7159int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7160{
108b02cf 7161 int cpu, ret;
24f1e32c 7162
b0a873eb 7163 mutex_lock(&pmus_lock);
33696fc0
PZ
7164 ret = -ENOMEM;
7165 pmu->pmu_disable_count = alloc_percpu(int);
7166 if (!pmu->pmu_disable_count)
7167 goto unlock;
f29ac756 7168
2e80a82a
PZ
7169 pmu->type = -1;
7170 if (!name)
7171 goto skip_type;
7172 pmu->name = name;
7173
7174 if (type < 0) {
0e9c3be2
TH
7175 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7176 if (type < 0) {
7177 ret = type;
2e80a82a
PZ
7178 goto free_pdc;
7179 }
7180 }
7181 pmu->type = type;
7182
abe43400
PZ
7183 if (pmu_bus_running) {
7184 ret = pmu_dev_alloc(pmu);
7185 if (ret)
7186 goto free_idr;
7187 }
7188
2e80a82a 7189skip_type:
8dc85d54
PZ
7190 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7191 if (pmu->pmu_cpu_context)
7192 goto got_cpu_context;
f29ac756 7193
c4814202 7194 ret = -ENOMEM;
108b02cf
PZ
7195 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7196 if (!pmu->pmu_cpu_context)
abe43400 7197 goto free_dev;
f344011c 7198
108b02cf
PZ
7199 for_each_possible_cpu(cpu) {
7200 struct perf_cpu_context *cpuctx;
7201
7202 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7203 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7204 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7205 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7206 cpuctx->ctx.pmu = pmu;
9e630205
SE
7207
7208 __perf_cpu_hrtimer_init(cpuctx, cpu);
7209
3f1f3320 7210 cpuctx->unique_pmu = pmu;
108b02cf 7211 }
76e1d904 7212
8dc85d54 7213got_cpu_context:
ad5133b7
PZ
7214 if (!pmu->start_txn) {
7215 if (pmu->pmu_enable) {
7216 /*
7217 * If we have pmu_enable/pmu_disable calls, install
7218 * transaction stubs that use that to try and batch
7219 * hardware accesses.
7220 */
7221 pmu->start_txn = perf_pmu_start_txn;
7222 pmu->commit_txn = perf_pmu_commit_txn;
7223 pmu->cancel_txn = perf_pmu_cancel_txn;
7224 } else {
7225 pmu->start_txn = perf_pmu_nop_void;
7226 pmu->commit_txn = perf_pmu_nop_int;
7227 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7228 }
5c92d124 7229 }
15dbf27c 7230
ad5133b7
PZ
7231 if (!pmu->pmu_enable) {
7232 pmu->pmu_enable = perf_pmu_nop_void;
7233 pmu->pmu_disable = perf_pmu_nop_void;
7234 }
7235
35edc2a5
PZ
7236 if (!pmu->event_idx)
7237 pmu->event_idx = perf_event_idx_default;
7238
b0a873eb 7239 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7240 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7241 ret = 0;
7242unlock:
b0a873eb
PZ
7243 mutex_unlock(&pmus_lock);
7244
33696fc0 7245 return ret;
108b02cf 7246
abe43400
PZ
7247free_dev:
7248 device_del(pmu->dev);
7249 put_device(pmu->dev);
7250
2e80a82a
PZ
7251free_idr:
7252 if (pmu->type >= PERF_TYPE_MAX)
7253 idr_remove(&pmu_idr, pmu->type);
7254
108b02cf
PZ
7255free_pdc:
7256 free_percpu(pmu->pmu_disable_count);
7257 goto unlock;
f29ac756 7258}
c464c76e 7259EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7260
b0a873eb 7261void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7262{
b0a873eb
PZ
7263 mutex_lock(&pmus_lock);
7264 list_del_rcu(&pmu->entry);
7265 mutex_unlock(&pmus_lock);
5c92d124 7266
0475f9ea 7267 /*
cde8e884
PZ
7268 * We dereference the pmu list under both SRCU and regular RCU, so
7269 * synchronize against both of those.
0475f9ea 7270 */
b0a873eb 7271 synchronize_srcu(&pmus_srcu);
cde8e884 7272 synchronize_rcu();
d6d020e9 7273
33696fc0 7274 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7275 if (pmu->type >= PERF_TYPE_MAX)
7276 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7277 device_del(pmu->dev);
7278 put_device(pmu->dev);
51676957 7279 free_pmu_context(pmu);
b0a873eb 7280}
c464c76e 7281EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7282
cc34b98b
MR
7283static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7284{
ccd41c86 7285 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7286 int ret;
7287
7288 if (!try_module_get(pmu->module))
7289 return -ENODEV;
ccd41c86
PZ
7290
7291 if (event->group_leader != event) {
7292 ctx = perf_event_ctx_lock(event->group_leader);
7293 BUG_ON(!ctx);
7294 }
7295
cc34b98b
MR
7296 event->pmu = pmu;
7297 ret = pmu->event_init(event);
ccd41c86
PZ
7298
7299 if (ctx)
7300 perf_event_ctx_unlock(event->group_leader, ctx);
7301
cc34b98b
MR
7302 if (ret)
7303 module_put(pmu->module);
7304
7305 return ret;
7306}
7307
b0a873eb
PZ
7308struct pmu *perf_init_event(struct perf_event *event)
7309{
7310 struct pmu *pmu = NULL;
7311 int idx;
940c5b29 7312 int ret;
b0a873eb
PZ
7313
7314 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7315
7316 rcu_read_lock();
7317 pmu = idr_find(&pmu_idr, event->attr.type);
7318 rcu_read_unlock();
940c5b29 7319 if (pmu) {
cc34b98b 7320 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7321 if (ret)
7322 pmu = ERR_PTR(ret);
2e80a82a 7323 goto unlock;
940c5b29 7324 }
2e80a82a 7325
b0a873eb 7326 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7327 ret = perf_try_init_event(pmu, event);
b0a873eb 7328 if (!ret)
e5f4d339 7329 goto unlock;
76e1d904 7330
b0a873eb
PZ
7331 if (ret != -ENOENT) {
7332 pmu = ERR_PTR(ret);
e5f4d339 7333 goto unlock;
f344011c 7334 }
5c92d124 7335 }
e5f4d339
PZ
7336 pmu = ERR_PTR(-ENOENT);
7337unlock:
b0a873eb 7338 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7339
4aeb0b42 7340 return pmu;
5c92d124
IM
7341}
7342
4beb31f3
FW
7343static void account_event_cpu(struct perf_event *event, int cpu)
7344{
7345 if (event->parent)
7346 return;
7347
4beb31f3
FW
7348 if (is_cgroup_event(event))
7349 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7350}
7351
766d6c07
FW
7352static void account_event(struct perf_event *event)
7353{
4beb31f3
FW
7354 if (event->parent)
7355 return;
7356
766d6c07
FW
7357 if (event->attach_state & PERF_ATTACH_TASK)
7358 static_key_slow_inc(&perf_sched_events.key);
7359 if (event->attr.mmap || event->attr.mmap_data)
7360 atomic_inc(&nr_mmap_events);
7361 if (event->attr.comm)
7362 atomic_inc(&nr_comm_events);
7363 if (event->attr.task)
7364 atomic_inc(&nr_task_events);
948b26b6
FW
7365 if (event->attr.freq) {
7366 if (atomic_inc_return(&nr_freq_events) == 1)
7367 tick_nohz_full_kick_all();
7368 }
4beb31f3 7369 if (has_branch_stack(event))
766d6c07 7370 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7371 if (is_cgroup_event(event))
766d6c07 7372 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7373
7374 account_event_cpu(event, event->cpu);
766d6c07
FW
7375}
7376
0793a61d 7377/*
cdd6c482 7378 * Allocate and initialize a event structure
0793a61d 7379 */
cdd6c482 7380static struct perf_event *
c3f00c70 7381perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7382 struct task_struct *task,
7383 struct perf_event *group_leader,
7384 struct perf_event *parent_event,
4dc0da86 7385 perf_overflow_handler_t overflow_handler,
79dff51e 7386 void *context, int cgroup_fd)
0793a61d 7387{
51b0fe39 7388 struct pmu *pmu;
cdd6c482
IM
7389 struct perf_event *event;
7390 struct hw_perf_event *hwc;
90983b16 7391 long err = -EINVAL;
0793a61d 7392
66832eb4
ON
7393 if ((unsigned)cpu >= nr_cpu_ids) {
7394 if (!task || cpu != -1)
7395 return ERR_PTR(-EINVAL);
7396 }
7397
c3f00c70 7398 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7399 if (!event)
d5d2bc0d 7400 return ERR_PTR(-ENOMEM);
0793a61d 7401
04289bb9 7402 /*
cdd6c482 7403 * Single events are their own group leaders, with an
04289bb9
IM
7404 * empty sibling list:
7405 */
7406 if (!group_leader)
cdd6c482 7407 group_leader = event;
04289bb9 7408
cdd6c482
IM
7409 mutex_init(&event->child_mutex);
7410 INIT_LIST_HEAD(&event->child_list);
fccc714b 7411
cdd6c482
IM
7412 INIT_LIST_HEAD(&event->group_entry);
7413 INIT_LIST_HEAD(&event->event_entry);
7414 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7415 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7416 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7417 INIT_HLIST_NODE(&event->hlist_entry);
7418
10c6db11 7419
cdd6c482 7420 init_waitqueue_head(&event->waitq);
e360adbe 7421 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7422
cdd6c482 7423 mutex_init(&event->mmap_mutex);
7b732a75 7424
a6fa941d 7425 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7426 event->cpu = cpu;
7427 event->attr = *attr;
7428 event->group_leader = group_leader;
7429 event->pmu = NULL;
cdd6c482 7430 event->oncpu = -1;
a96bbc16 7431
cdd6c482 7432 event->parent = parent_event;
b84fbc9f 7433
17cf22c3 7434 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7435 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7436
cdd6c482 7437 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7438
d580ff86
PZ
7439 if (task) {
7440 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7441 /*
50f16a8b
PZ
7442 * XXX pmu::event_init needs to know what task to account to
7443 * and we cannot use the ctx information because we need the
7444 * pmu before we get a ctx.
d580ff86 7445 */
50f16a8b 7446 event->hw.target = task;
d580ff86
PZ
7447 }
7448
34f43927
PZ
7449 event->clock = &local_clock;
7450 if (parent_event)
7451 event->clock = parent_event->clock;
7452
4dc0da86 7453 if (!overflow_handler && parent_event) {
b326e956 7454 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7455 context = parent_event->overflow_handler_context;
7456 }
66832eb4 7457
b326e956 7458 event->overflow_handler = overflow_handler;
4dc0da86 7459 event->overflow_handler_context = context;
97eaf530 7460
0231bb53 7461 perf_event__state_init(event);
a86ed508 7462
4aeb0b42 7463 pmu = NULL;
b8e83514 7464
cdd6c482 7465 hwc = &event->hw;
bd2b5b12 7466 hwc->sample_period = attr->sample_period;
0d48696f 7467 if (attr->freq && attr->sample_freq)
bd2b5b12 7468 hwc->sample_period = 1;
eced1dfc 7469 hwc->last_period = hwc->sample_period;
bd2b5b12 7470
e7850595 7471 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7472
2023b359 7473 /*
cdd6c482 7474 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7475 */
3dab77fb 7476 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7477 goto err_ns;
a46a2300
YZ
7478
7479 if (!has_branch_stack(event))
7480 event->attr.branch_sample_type = 0;
2023b359 7481
79dff51e
MF
7482 if (cgroup_fd != -1) {
7483 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7484 if (err)
7485 goto err_ns;
7486 }
7487
b0a873eb 7488 pmu = perf_init_event(event);
4aeb0b42 7489 if (!pmu)
90983b16
FW
7490 goto err_ns;
7491 else if (IS_ERR(pmu)) {
4aeb0b42 7492 err = PTR_ERR(pmu);
90983b16 7493 goto err_ns;
621a01ea 7494 }
d5d2bc0d 7495
bed5b25a
AS
7496 err = exclusive_event_init(event);
7497 if (err)
7498 goto err_pmu;
7499
cdd6c482 7500 if (!event->parent) {
927c7a9e
FW
7501 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7502 err = get_callchain_buffers();
90983b16 7503 if (err)
bed5b25a 7504 goto err_per_task;
d010b332 7505 }
f344011c 7506 }
9ee318a7 7507
cdd6c482 7508 return event;
90983b16 7509
bed5b25a
AS
7510err_per_task:
7511 exclusive_event_destroy(event);
7512
90983b16
FW
7513err_pmu:
7514 if (event->destroy)
7515 event->destroy(event);
c464c76e 7516 module_put(pmu->module);
90983b16 7517err_ns:
79dff51e
MF
7518 if (is_cgroup_event(event))
7519 perf_detach_cgroup(event);
90983b16
FW
7520 if (event->ns)
7521 put_pid_ns(event->ns);
7522 kfree(event);
7523
7524 return ERR_PTR(err);
0793a61d
TG
7525}
7526
cdd6c482
IM
7527static int perf_copy_attr(struct perf_event_attr __user *uattr,
7528 struct perf_event_attr *attr)
974802ea 7529{
974802ea 7530 u32 size;
cdf8073d 7531 int ret;
974802ea
PZ
7532
7533 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7534 return -EFAULT;
7535
7536 /*
7537 * zero the full structure, so that a short copy will be nice.
7538 */
7539 memset(attr, 0, sizeof(*attr));
7540
7541 ret = get_user(size, &uattr->size);
7542 if (ret)
7543 return ret;
7544
7545 if (size > PAGE_SIZE) /* silly large */
7546 goto err_size;
7547
7548 if (!size) /* abi compat */
7549 size = PERF_ATTR_SIZE_VER0;
7550
7551 if (size < PERF_ATTR_SIZE_VER0)
7552 goto err_size;
7553
7554 /*
7555 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7556 * ensure all the unknown bits are 0 - i.e. new
7557 * user-space does not rely on any kernel feature
7558 * extensions we dont know about yet.
974802ea
PZ
7559 */
7560 if (size > sizeof(*attr)) {
cdf8073d
IS
7561 unsigned char __user *addr;
7562 unsigned char __user *end;
7563 unsigned char val;
974802ea 7564
cdf8073d
IS
7565 addr = (void __user *)uattr + sizeof(*attr);
7566 end = (void __user *)uattr + size;
974802ea 7567
cdf8073d 7568 for (; addr < end; addr++) {
974802ea
PZ
7569 ret = get_user(val, addr);
7570 if (ret)
7571 return ret;
7572 if (val)
7573 goto err_size;
7574 }
b3e62e35 7575 size = sizeof(*attr);
974802ea
PZ
7576 }
7577
7578 ret = copy_from_user(attr, uattr, size);
7579 if (ret)
7580 return -EFAULT;
7581
cd757645 7582 if (attr->__reserved_1)
974802ea
PZ
7583 return -EINVAL;
7584
7585 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7586 return -EINVAL;
7587
7588 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7589 return -EINVAL;
7590
bce38cd5
SE
7591 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7592 u64 mask = attr->branch_sample_type;
7593
7594 /* only using defined bits */
7595 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7596 return -EINVAL;
7597
7598 /* at least one branch bit must be set */
7599 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7600 return -EINVAL;
7601
bce38cd5
SE
7602 /* propagate priv level, when not set for branch */
7603 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7604
7605 /* exclude_kernel checked on syscall entry */
7606 if (!attr->exclude_kernel)
7607 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7608
7609 if (!attr->exclude_user)
7610 mask |= PERF_SAMPLE_BRANCH_USER;
7611
7612 if (!attr->exclude_hv)
7613 mask |= PERF_SAMPLE_BRANCH_HV;
7614 /*
7615 * adjust user setting (for HW filter setup)
7616 */
7617 attr->branch_sample_type = mask;
7618 }
e712209a
SE
7619 /* privileged levels capture (kernel, hv): check permissions */
7620 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7621 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7622 return -EACCES;
bce38cd5 7623 }
4018994f 7624
c5ebcedb 7625 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7626 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7627 if (ret)
7628 return ret;
7629 }
7630
7631 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7632 if (!arch_perf_have_user_stack_dump())
7633 return -ENOSYS;
7634
7635 /*
7636 * We have __u32 type for the size, but so far
7637 * we can only use __u16 as maximum due to the
7638 * __u16 sample size limit.
7639 */
7640 if (attr->sample_stack_user >= USHRT_MAX)
7641 ret = -EINVAL;
7642 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7643 ret = -EINVAL;
7644 }
4018994f 7645
60e2364e
SE
7646 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7647 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7648out:
7649 return ret;
7650
7651err_size:
7652 put_user(sizeof(*attr), &uattr->size);
7653 ret = -E2BIG;
7654 goto out;
7655}
7656
ac9721f3
PZ
7657static int
7658perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7659{
b69cf536 7660 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7661 int ret = -EINVAL;
7662
ac9721f3 7663 if (!output_event)
a4be7c27
PZ
7664 goto set;
7665
ac9721f3
PZ
7666 /* don't allow circular references */
7667 if (event == output_event)
a4be7c27
PZ
7668 goto out;
7669
0f139300
PZ
7670 /*
7671 * Don't allow cross-cpu buffers
7672 */
7673 if (output_event->cpu != event->cpu)
7674 goto out;
7675
7676 /*
76369139 7677 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7678 */
7679 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7680 goto out;
7681
34f43927
PZ
7682 /*
7683 * Mixing clocks in the same buffer is trouble you don't need.
7684 */
7685 if (output_event->clock != event->clock)
7686 goto out;
7687
45bfb2e5
PZ
7688 /*
7689 * If both events generate aux data, they must be on the same PMU
7690 */
7691 if (has_aux(event) && has_aux(output_event) &&
7692 event->pmu != output_event->pmu)
7693 goto out;
7694
a4be7c27 7695set:
cdd6c482 7696 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7697 /* Can't redirect output if we've got an active mmap() */
7698 if (atomic_read(&event->mmap_count))
7699 goto unlock;
a4be7c27 7700
ac9721f3 7701 if (output_event) {
76369139
FW
7702 /* get the rb we want to redirect to */
7703 rb = ring_buffer_get(output_event);
7704 if (!rb)
ac9721f3 7705 goto unlock;
a4be7c27
PZ
7706 }
7707
b69cf536 7708 ring_buffer_attach(event, rb);
9bb5d40c 7709
a4be7c27 7710 ret = 0;
ac9721f3
PZ
7711unlock:
7712 mutex_unlock(&event->mmap_mutex);
7713
a4be7c27 7714out:
a4be7c27
PZ
7715 return ret;
7716}
7717
f63a8daa
PZ
7718static void mutex_lock_double(struct mutex *a, struct mutex *b)
7719{
7720 if (b < a)
7721 swap(a, b);
7722
7723 mutex_lock(a);
7724 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7725}
7726
34f43927
PZ
7727static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7728{
7729 bool nmi_safe = false;
7730
7731 switch (clk_id) {
7732 case CLOCK_MONOTONIC:
7733 event->clock = &ktime_get_mono_fast_ns;
7734 nmi_safe = true;
7735 break;
7736
7737 case CLOCK_MONOTONIC_RAW:
7738 event->clock = &ktime_get_raw_fast_ns;
7739 nmi_safe = true;
7740 break;
7741
7742 case CLOCK_REALTIME:
7743 event->clock = &ktime_get_real_ns;
7744 break;
7745
7746 case CLOCK_BOOTTIME:
7747 event->clock = &ktime_get_boot_ns;
7748 break;
7749
7750 case CLOCK_TAI:
7751 event->clock = &ktime_get_tai_ns;
7752 break;
7753
7754 default:
7755 return -EINVAL;
7756 }
7757
7758 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7759 return -EINVAL;
7760
7761 return 0;
7762}
7763
0793a61d 7764/**
cdd6c482 7765 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7766 *
cdd6c482 7767 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7768 * @pid: target pid
9f66a381 7769 * @cpu: target cpu
cdd6c482 7770 * @group_fd: group leader event fd
0793a61d 7771 */
cdd6c482
IM
7772SYSCALL_DEFINE5(perf_event_open,
7773 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7774 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7775{
b04243ef
PZ
7776 struct perf_event *group_leader = NULL, *output_event = NULL;
7777 struct perf_event *event, *sibling;
cdd6c482 7778 struct perf_event_attr attr;
f63a8daa 7779 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7780 struct file *event_file = NULL;
2903ff01 7781 struct fd group = {NULL, 0};
38a81da2 7782 struct task_struct *task = NULL;
89a1e187 7783 struct pmu *pmu;
ea635c64 7784 int event_fd;
b04243ef 7785 int move_group = 0;
dc86cabe 7786 int err;
a21b0b35 7787 int f_flags = O_RDWR;
79dff51e 7788 int cgroup_fd = -1;
0793a61d 7789
2743a5b0 7790 /* for future expandability... */
e5d1367f 7791 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7792 return -EINVAL;
7793
dc86cabe
IM
7794 err = perf_copy_attr(attr_uptr, &attr);
7795 if (err)
7796 return err;
eab656ae 7797
0764771d
PZ
7798 if (!attr.exclude_kernel) {
7799 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7800 return -EACCES;
7801 }
7802
df58ab24 7803 if (attr.freq) {
cdd6c482 7804 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7805 return -EINVAL;
0819b2e3
PZ
7806 } else {
7807 if (attr.sample_period & (1ULL << 63))
7808 return -EINVAL;
df58ab24
PZ
7809 }
7810
e5d1367f
SE
7811 /*
7812 * In cgroup mode, the pid argument is used to pass the fd
7813 * opened to the cgroup directory in cgroupfs. The cpu argument
7814 * designates the cpu on which to monitor threads from that
7815 * cgroup.
7816 */
7817 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7818 return -EINVAL;
7819
a21b0b35
YD
7820 if (flags & PERF_FLAG_FD_CLOEXEC)
7821 f_flags |= O_CLOEXEC;
7822
7823 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7824 if (event_fd < 0)
7825 return event_fd;
7826
ac9721f3 7827 if (group_fd != -1) {
2903ff01
AV
7828 err = perf_fget_light(group_fd, &group);
7829 if (err)
d14b12d7 7830 goto err_fd;
2903ff01 7831 group_leader = group.file->private_data;
ac9721f3
PZ
7832 if (flags & PERF_FLAG_FD_OUTPUT)
7833 output_event = group_leader;
7834 if (flags & PERF_FLAG_FD_NO_GROUP)
7835 group_leader = NULL;
7836 }
7837
e5d1367f 7838 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7839 task = find_lively_task_by_vpid(pid);
7840 if (IS_ERR(task)) {
7841 err = PTR_ERR(task);
7842 goto err_group_fd;
7843 }
7844 }
7845
1f4ee503
PZ
7846 if (task && group_leader &&
7847 group_leader->attr.inherit != attr.inherit) {
7848 err = -EINVAL;
7849 goto err_task;
7850 }
7851
fbfc623f
YZ
7852 get_online_cpus();
7853
79dff51e
MF
7854 if (flags & PERF_FLAG_PID_CGROUP)
7855 cgroup_fd = pid;
7856
4dc0da86 7857 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 7858 NULL, NULL, cgroup_fd);
d14b12d7
SE
7859 if (IS_ERR(event)) {
7860 err = PTR_ERR(event);
1f4ee503 7861 goto err_cpus;
d14b12d7
SE
7862 }
7863
53b25335
VW
7864 if (is_sampling_event(event)) {
7865 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7866 err = -ENOTSUPP;
7867 goto err_alloc;
7868 }
7869 }
7870
766d6c07
FW
7871 account_event(event);
7872
89a1e187
PZ
7873 /*
7874 * Special case software events and allow them to be part of
7875 * any hardware group.
7876 */
7877 pmu = event->pmu;
b04243ef 7878
34f43927
PZ
7879 if (attr.use_clockid) {
7880 err = perf_event_set_clock(event, attr.clockid);
7881 if (err)
7882 goto err_alloc;
7883 }
7884
b04243ef
PZ
7885 if (group_leader &&
7886 (is_software_event(event) != is_software_event(group_leader))) {
7887 if (is_software_event(event)) {
7888 /*
7889 * If event and group_leader are not both a software
7890 * event, and event is, then group leader is not.
7891 *
7892 * Allow the addition of software events to !software
7893 * groups, this is safe because software events never
7894 * fail to schedule.
7895 */
7896 pmu = group_leader->pmu;
7897 } else if (is_software_event(group_leader) &&
7898 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7899 /*
7900 * In case the group is a pure software group, and we
7901 * try to add a hardware event, move the whole group to
7902 * the hardware context.
7903 */
7904 move_group = 1;
7905 }
7906 }
89a1e187
PZ
7907
7908 /*
7909 * Get the target context (task or percpu):
7910 */
4af57ef2 7911 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
7912 if (IS_ERR(ctx)) {
7913 err = PTR_ERR(ctx);
c6be5a5c 7914 goto err_alloc;
89a1e187
PZ
7915 }
7916
bed5b25a
AS
7917 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
7918 err = -EBUSY;
7919 goto err_context;
7920 }
7921
fd1edb3a
PZ
7922 if (task) {
7923 put_task_struct(task);
7924 task = NULL;
7925 }
7926
ccff286d 7927 /*
cdd6c482 7928 * Look up the group leader (we will attach this event to it):
04289bb9 7929 */
ac9721f3 7930 if (group_leader) {
dc86cabe 7931 err = -EINVAL;
04289bb9 7932
04289bb9 7933 /*
ccff286d
IM
7934 * Do not allow a recursive hierarchy (this new sibling
7935 * becoming part of another group-sibling):
7936 */
7937 if (group_leader->group_leader != group_leader)
c3f00c70 7938 goto err_context;
34f43927
PZ
7939
7940 /* All events in a group should have the same clock */
7941 if (group_leader->clock != event->clock)
7942 goto err_context;
7943
ccff286d
IM
7944 /*
7945 * Do not allow to attach to a group in a different
7946 * task or CPU context:
04289bb9 7947 */
b04243ef 7948 if (move_group) {
c3c87e77
PZ
7949 /*
7950 * Make sure we're both on the same task, or both
7951 * per-cpu events.
7952 */
7953 if (group_leader->ctx->task != ctx->task)
7954 goto err_context;
7955
7956 /*
7957 * Make sure we're both events for the same CPU;
7958 * grouping events for different CPUs is broken; since
7959 * you can never concurrently schedule them anyhow.
7960 */
7961 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7962 goto err_context;
7963 } else {
7964 if (group_leader->ctx != ctx)
7965 goto err_context;
7966 }
7967
3b6f9e5c
PM
7968 /*
7969 * Only a group leader can be exclusive or pinned
7970 */
0d48696f 7971 if (attr.exclusive || attr.pinned)
c3f00c70 7972 goto err_context;
ac9721f3
PZ
7973 }
7974
7975 if (output_event) {
7976 err = perf_event_set_output(event, output_event);
7977 if (err)
c3f00c70 7978 goto err_context;
ac9721f3 7979 }
0793a61d 7980
a21b0b35
YD
7981 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7982 f_flags);
ea635c64
AV
7983 if (IS_ERR(event_file)) {
7984 err = PTR_ERR(event_file);
c3f00c70 7985 goto err_context;
ea635c64 7986 }
9b51f66d 7987
b04243ef 7988 if (move_group) {
f63a8daa
PZ
7989 gctx = group_leader->ctx;
7990
7991 /*
7992 * See perf_event_ctx_lock() for comments on the details
7993 * of swizzling perf_event::ctx.
7994 */
7995 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7996
46ce0fe9 7997 perf_remove_from_context(group_leader, false);
0231bb53 7998
b04243ef
PZ
7999 list_for_each_entry(sibling, &group_leader->sibling_list,
8000 group_entry) {
46ce0fe9 8001 perf_remove_from_context(sibling, false);
b04243ef
PZ
8002 put_ctx(gctx);
8003 }
f63a8daa
PZ
8004 } else {
8005 mutex_lock(&ctx->mutex);
ea635c64 8006 }
9b51f66d 8007
ad3a37de 8008 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8009
8010 if (move_group) {
f63a8daa
PZ
8011 /*
8012 * Wait for everybody to stop referencing the events through
8013 * the old lists, before installing it on new lists.
8014 */
0cda4c02 8015 synchronize_rcu();
f63a8daa 8016
8f95b435
PZI
8017 /*
8018 * Install the group siblings before the group leader.
8019 *
8020 * Because a group leader will try and install the entire group
8021 * (through the sibling list, which is still in-tact), we can
8022 * end up with siblings installed in the wrong context.
8023 *
8024 * By installing siblings first we NO-OP because they're not
8025 * reachable through the group lists.
8026 */
b04243ef
PZ
8027 list_for_each_entry(sibling, &group_leader->sibling_list,
8028 group_entry) {
8f95b435 8029 perf_event__state_init(sibling);
9fc81d87 8030 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8031 get_ctx(ctx);
8032 }
8f95b435
PZI
8033
8034 /*
8035 * Removing from the context ends up with disabled
8036 * event. What we want here is event in the initial
8037 * startup state, ready to be add into new context.
8038 */
8039 perf_event__state_init(group_leader);
8040 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8041 get_ctx(ctx);
b04243ef
PZ
8042 }
8043
bed5b25a
AS
8044 if (!exclusive_event_installable(event, ctx)) {
8045 err = -EBUSY;
8046 mutex_unlock(&ctx->mutex);
8047 fput(event_file);
8048 goto err_context;
8049 }
8050
e2d37cd2 8051 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8052 perf_unpin_context(ctx);
f63a8daa
PZ
8053
8054 if (move_group) {
8055 mutex_unlock(&gctx->mutex);
8056 put_ctx(gctx);
8057 }
d859e29f 8058 mutex_unlock(&ctx->mutex);
9b51f66d 8059
fbfc623f
YZ
8060 put_online_cpus();
8061
cdd6c482 8062 event->owner = current;
8882135b 8063
cdd6c482
IM
8064 mutex_lock(&current->perf_event_mutex);
8065 list_add_tail(&event->owner_entry, &current->perf_event_list);
8066 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8067
c320c7b7
ACM
8068 /*
8069 * Precalculate sample_data sizes
8070 */
8071 perf_event__header_size(event);
6844c09d 8072 perf_event__id_header_size(event);
c320c7b7 8073
8a49542c
PZ
8074 /*
8075 * Drop the reference on the group_event after placing the
8076 * new event on the sibling_list. This ensures destruction
8077 * of the group leader will find the pointer to itself in
8078 * perf_group_detach().
8079 */
2903ff01 8080 fdput(group);
ea635c64
AV
8081 fd_install(event_fd, event_file);
8082 return event_fd;
0793a61d 8083
c3f00c70 8084err_context:
fe4b04fa 8085 perf_unpin_context(ctx);
ea635c64 8086 put_ctx(ctx);
c6be5a5c 8087err_alloc:
ea635c64 8088 free_event(event);
1f4ee503 8089err_cpus:
fbfc623f 8090 put_online_cpus();
1f4ee503 8091err_task:
e7d0bc04
PZ
8092 if (task)
8093 put_task_struct(task);
89a1e187 8094err_group_fd:
2903ff01 8095 fdput(group);
ea635c64
AV
8096err_fd:
8097 put_unused_fd(event_fd);
dc86cabe 8098 return err;
0793a61d
TG
8099}
8100
fb0459d7
AV
8101/**
8102 * perf_event_create_kernel_counter
8103 *
8104 * @attr: attributes of the counter to create
8105 * @cpu: cpu in which the counter is bound
38a81da2 8106 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8107 */
8108struct perf_event *
8109perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8110 struct task_struct *task,
4dc0da86
AK
8111 perf_overflow_handler_t overflow_handler,
8112 void *context)
fb0459d7 8113{
fb0459d7 8114 struct perf_event_context *ctx;
c3f00c70 8115 struct perf_event *event;
fb0459d7 8116 int err;
d859e29f 8117
fb0459d7
AV
8118 /*
8119 * Get the target context (task or percpu):
8120 */
d859e29f 8121
4dc0da86 8122 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8123 overflow_handler, context, -1);
c3f00c70
PZ
8124 if (IS_ERR(event)) {
8125 err = PTR_ERR(event);
8126 goto err;
8127 }
d859e29f 8128
f8697762
JO
8129 /* Mark owner so we could distinguish it from user events. */
8130 event->owner = EVENT_OWNER_KERNEL;
8131
766d6c07
FW
8132 account_event(event);
8133
4af57ef2 8134 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8135 if (IS_ERR(ctx)) {
8136 err = PTR_ERR(ctx);
c3f00c70 8137 goto err_free;
d859e29f 8138 }
fb0459d7 8139
fb0459d7
AV
8140 WARN_ON_ONCE(ctx->parent_ctx);
8141 mutex_lock(&ctx->mutex);
bed5b25a
AS
8142 if (!exclusive_event_installable(event, ctx)) {
8143 mutex_unlock(&ctx->mutex);
8144 perf_unpin_context(ctx);
8145 put_ctx(ctx);
8146 err = -EBUSY;
8147 goto err_free;
8148 }
8149
fb0459d7 8150 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8151 perf_unpin_context(ctx);
fb0459d7
AV
8152 mutex_unlock(&ctx->mutex);
8153
fb0459d7
AV
8154 return event;
8155
c3f00c70
PZ
8156err_free:
8157 free_event(event);
8158err:
c6567f64 8159 return ERR_PTR(err);
9b51f66d 8160}
fb0459d7 8161EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8162
0cda4c02
YZ
8163void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8164{
8165 struct perf_event_context *src_ctx;
8166 struct perf_event_context *dst_ctx;
8167 struct perf_event *event, *tmp;
8168 LIST_HEAD(events);
8169
8170 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8171 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8172
f63a8daa
PZ
8173 /*
8174 * See perf_event_ctx_lock() for comments on the details
8175 * of swizzling perf_event::ctx.
8176 */
8177 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8178 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8179 event_entry) {
46ce0fe9 8180 perf_remove_from_context(event, false);
9a545de0 8181 unaccount_event_cpu(event, src_cpu);
0cda4c02 8182 put_ctx(src_ctx);
9886167d 8183 list_add(&event->migrate_entry, &events);
0cda4c02 8184 }
0cda4c02 8185
8f95b435
PZI
8186 /*
8187 * Wait for the events to quiesce before re-instating them.
8188 */
0cda4c02
YZ
8189 synchronize_rcu();
8190
8f95b435
PZI
8191 /*
8192 * Re-instate events in 2 passes.
8193 *
8194 * Skip over group leaders and only install siblings on this first
8195 * pass, siblings will not get enabled without a leader, however a
8196 * leader will enable its siblings, even if those are still on the old
8197 * context.
8198 */
8199 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8200 if (event->group_leader == event)
8201 continue;
8202
8203 list_del(&event->migrate_entry);
8204 if (event->state >= PERF_EVENT_STATE_OFF)
8205 event->state = PERF_EVENT_STATE_INACTIVE;
8206 account_event_cpu(event, dst_cpu);
8207 perf_install_in_context(dst_ctx, event, dst_cpu);
8208 get_ctx(dst_ctx);
8209 }
8210
8211 /*
8212 * Once all the siblings are setup properly, install the group leaders
8213 * to make it go.
8214 */
9886167d
PZ
8215 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8216 list_del(&event->migrate_entry);
0cda4c02
YZ
8217 if (event->state >= PERF_EVENT_STATE_OFF)
8218 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8219 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8220 perf_install_in_context(dst_ctx, event, dst_cpu);
8221 get_ctx(dst_ctx);
8222 }
8223 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8224 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8225}
8226EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8227
cdd6c482 8228static void sync_child_event(struct perf_event *child_event,
38b200d6 8229 struct task_struct *child)
d859e29f 8230{
cdd6c482 8231 struct perf_event *parent_event = child_event->parent;
8bc20959 8232 u64 child_val;
d859e29f 8233
cdd6c482
IM
8234 if (child_event->attr.inherit_stat)
8235 perf_event_read_event(child_event, child);
38b200d6 8236
b5e58793 8237 child_val = perf_event_count(child_event);
d859e29f
PM
8238
8239 /*
8240 * Add back the child's count to the parent's count:
8241 */
a6e6dea6 8242 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8243 atomic64_add(child_event->total_time_enabled,
8244 &parent_event->child_total_time_enabled);
8245 atomic64_add(child_event->total_time_running,
8246 &parent_event->child_total_time_running);
d859e29f
PM
8247
8248 /*
cdd6c482 8249 * Remove this event from the parent's list
d859e29f 8250 */
cdd6c482
IM
8251 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8252 mutex_lock(&parent_event->child_mutex);
8253 list_del_init(&child_event->child_list);
8254 mutex_unlock(&parent_event->child_mutex);
d859e29f 8255
dc633982
JO
8256 /*
8257 * Make sure user/parent get notified, that we just
8258 * lost one event.
8259 */
8260 perf_event_wakeup(parent_event);
8261
d859e29f 8262 /*
cdd6c482 8263 * Release the parent event, if this was the last
d859e29f
PM
8264 * reference to it.
8265 */
a6fa941d 8266 put_event(parent_event);
d859e29f
PM
8267}
8268
9b51f66d 8269static void
cdd6c482
IM
8270__perf_event_exit_task(struct perf_event *child_event,
8271 struct perf_event_context *child_ctx,
38b200d6 8272 struct task_struct *child)
9b51f66d 8273{
1903d50c
PZ
8274 /*
8275 * Do not destroy the 'original' grouping; because of the context
8276 * switch optimization the original events could've ended up in a
8277 * random child task.
8278 *
8279 * If we were to destroy the original group, all group related
8280 * operations would cease to function properly after this random
8281 * child dies.
8282 *
8283 * Do destroy all inherited groups, we don't care about those
8284 * and being thorough is better.
8285 */
8286 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8287
9b51f66d 8288 /*
38b435b1 8289 * It can happen that the parent exits first, and has events
9b51f66d 8290 * that are still around due to the child reference. These
38b435b1 8291 * events need to be zapped.
9b51f66d 8292 */
38b435b1 8293 if (child_event->parent) {
cdd6c482
IM
8294 sync_child_event(child_event, child);
8295 free_event(child_event);
179033b3
JO
8296 } else {
8297 child_event->state = PERF_EVENT_STATE_EXIT;
8298 perf_event_wakeup(child_event);
4bcf349a 8299 }
9b51f66d
IM
8300}
8301
8dc85d54 8302static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8303{
ebf905fc 8304 struct perf_event *child_event, *next;
211de6eb 8305 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8306 unsigned long flags;
9b51f66d 8307
8dc85d54 8308 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8309 perf_event_task(child, NULL, 0);
9b51f66d 8310 return;
9f498cc5 8311 }
9b51f66d 8312
a63eaf34 8313 local_irq_save(flags);
ad3a37de
PM
8314 /*
8315 * We can't reschedule here because interrupts are disabled,
8316 * and either child is current or it is a task that can't be
8317 * scheduled, so we are now safe from rescheduling changing
8318 * our context.
8319 */
806839b2 8320 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8321
8322 /*
8323 * Take the context lock here so that if find_get_context is
cdd6c482 8324 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8325 * incremented the context's refcount before we do put_ctx below.
8326 */
e625cce1 8327 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8328 task_ctx_sched_out(child_ctx);
8dc85d54 8329 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8330
71a851b4
PZ
8331 /*
8332 * If this context is a clone; unclone it so it can't get
8333 * swapped to another process while we're removing all
cdd6c482 8334 * the events from it.
71a851b4 8335 */
211de6eb 8336 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8337 update_context_time(child_ctx);
e625cce1 8338 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8339
211de6eb
PZ
8340 if (clone_ctx)
8341 put_ctx(clone_ctx);
4a1c0f26 8342
9f498cc5 8343 /*
cdd6c482
IM
8344 * Report the task dead after unscheduling the events so that we
8345 * won't get any samples after PERF_RECORD_EXIT. We can however still
8346 * get a few PERF_RECORD_READ events.
9f498cc5 8347 */
cdd6c482 8348 perf_event_task(child, child_ctx, 0);
a63eaf34 8349
66fff224
PZ
8350 /*
8351 * We can recurse on the same lock type through:
8352 *
cdd6c482
IM
8353 * __perf_event_exit_task()
8354 * sync_child_event()
a6fa941d
AV
8355 * put_event()
8356 * mutex_lock(&ctx->mutex)
66fff224
PZ
8357 *
8358 * But since its the parent context it won't be the same instance.
8359 */
a0507c84 8360 mutex_lock(&child_ctx->mutex);
a63eaf34 8361
ebf905fc 8362 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8363 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8364
a63eaf34
PM
8365 mutex_unlock(&child_ctx->mutex);
8366
8367 put_ctx(child_ctx);
9b51f66d
IM
8368}
8369
8dc85d54
PZ
8370/*
8371 * When a child task exits, feed back event values to parent events.
8372 */
8373void perf_event_exit_task(struct task_struct *child)
8374{
8882135b 8375 struct perf_event *event, *tmp;
8dc85d54
PZ
8376 int ctxn;
8377
8882135b
PZ
8378 mutex_lock(&child->perf_event_mutex);
8379 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8380 owner_entry) {
8381 list_del_init(&event->owner_entry);
8382
8383 /*
8384 * Ensure the list deletion is visible before we clear
8385 * the owner, closes a race against perf_release() where
8386 * we need to serialize on the owner->perf_event_mutex.
8387 */
8388 smp_wmb();
8389 event->owner = NULL;
8390 }
8391 mutex_unlock(&child->perf_event_mutex);
8392
8dc85d54
PZ
8393 for_each_task_context_nr(ctxn)
8394 perf_event_exit_task_context(child, ctxn);
8395}
8396
889ff015
FW
8397static void perf_free_event(struct perf_event *event,
8398 struct perf_event_context *ctx)
8399{
8400 struct perf_event *parent = event->parent;
8401
8402 if (WARN_ON_ONCE(!parent))
8403 return;
8404
8405 mutex_lock(&parent->child_mutex);
8406 list_del_init(&event->child_list);
8407 mutex_unlock(&parent->child_mutex);
8408
a6fa941d 8409 put_event(parent);
889ff015 8410
652884fe 8411 raw_spin_lock_irq(&ctx->lock);
8a49542c 8412 perf_group_detach(event);
889ff015 8413 list_del_event(event, ctx);
652884fe 8414 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8415 free_event(event);
8416}
8417
bbbee908 8418/*
652884fe 8419 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8420 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8421 *
8422 * Not all locks are strictly required, but take them anyway to be nice and
8423 * help out with the lockdep assertions.
bbbee908 8424 */
cdd6c482 8425void perf_event_free_task(struct task_struct *task)
bbbee908 8426{
8dc85d54 8427 struct perf_event_context *ctx;
cdd6c482 8428 struct perf_event *event, *tmp;
8dc85d54 8429 int ctxn;
bbbee908 8430
8dc85d54
PZ
8431 for_each_task_context_nr(ctxn) {
8432 ctx = task->perf_event_ctxp[ctxn];
8433 if (!ctx)
8434 continue;
bbbee908 8435
8dc85d54 8436 mutex_lock(&ctx->mutex);
bbbee908 8437again:
8dc85d54
PZ
8438 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8439 group_entry)
8440 perf_free_event(event, ctx);
bbbee908 8441
8dc85d54
PZ
8442 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8443 group_entry)
8444 perf_free_event(event, ctx);
bbbee908 8445
8dc85d54
PZ
8446 if (!list_empty(&ctx->pinned_groups) ||
8447 !list_empty(&ctx->flexible_groups))
8448 goto again;
bbbee908 8449
8dc85d54 8450 mutex_unlock(&ctx->mutex);
bbbee908 8451
8dc85d54
PZ
8452 put_ctx(ctx);
8453 }
889ff015
FW
8454}
8455
4e231c79
PZ
8456void perf_event_delayed_put(struct task_struct *task)
8457{
8458 int ctxn;
8459
8460 for_each_task_context_nr(ctxn)
8461 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8462}
8463
97dee4f3
PZ
8464/*
8465 * inherit a event from parent task to child task:
8466 */
8467static struct perf_event *
8468inherit_event(struct perf_event *parent_event,
8469 struct task_struct *parent,
8470 struct perf_event_context *parent_ctx,
8471 struct task_struct *child,
8472 struct perf_event *group_leader,
8473 struct perf_event_context *child_ctx)
8474{
1929def9 8475 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8476 struct perf_event *child_event;
cee010ec 8477 unsigned long flags;
97dee4f3
PZ
8478
8479 /*
8480 * Instead of creating recursive hierarchies of events,
8481 * we link inherited events back to the original parent,
8482 * which has a filp for sure, which we use as the reference
8483 * count:
8484 */
8485 if (parent_event->parent)
8486 parent_event = parent_event->parent;
8487
8488 child_event = perf_event_alloc(&parent_event->attr,
8489 parent_event->cpu,
d580ff86 8490 child,
97dee4f3 8491 group_leader, parent_event,
79dff51e 8492 NULL, NULL, -1);
97dee4f3
PZ
8493 if (IS_ERR(child_event))
8494 return child_event;
a6fa941d 8495
fadfe7be
JO
8496 if (is_orphaned_event(parent_event) ||
8497 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8498 free_event(child_event);
8499 return NULL;
8500 }
8501
97dee4f3
PZ
8502 get_ctx(child_ctx);
8503
8504 /*
8505 * Make the child state follow the state of the parent event,
8506 * not its attr.disabled bit. We hold the parent's mutex,
8507 * so we won't race with perf_event_{en, dis}able_family.
8508 */
1929def9 8509 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8510 child_event->state = PERF_EVENT_STATE_INACTIVE;
8511 else
8512 child_event->state = PERF_EVENT_STATE_OFF;
8513
8514 if (parent_event->attr.freq) {
8515 u64 sample_period = parent_event->hw.sample_period;
8516 struct hw_perf_event *hwc = &child_event->hw;
8517
8518 hwc->sample_period = sample_period;
8519 hwc->last_period = sample_period;
8520
8521 local64_set(&hwc->period_left, sample_period);
8522 }
8523
8524 child_event->ctx = child_ctx;
8525 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8526 child_event->overflow_handler_context
8527 = parent_event->overflow_handler_context;
97dee4f3 8528
614b6780
TG
8529 /*
8530 * Precalculate sample_data sizes
8531 */
8532 perf_event__header_size(child_event);
6844c09d 8533 perf_event__id_header_size(child_event);
614b6780 8534
97dee4f3
PZ
8535 /*
8536 * Link it up in the child's context:
8537 */
cee010ec 8538 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8539 add_event_to_ctx(child_event, child_ctx);
cee010ec 8540 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8541
97dee4f3
PZ
8542 /*
8543 * Link this into the parent event's child list
8544 */
8545 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8546 mutex_lock(&parent_event->child_mutex);
8547 list_add_tail(&child_event->child_list, &parent_event->child_list);
8548 mutex_unlock(&parent_event->child_mutex);
8549
8550 return child_event;
8551}
8552
8553static int inherit_group(struct perf_event *parent_event,
8554 struct task_struct *parent,
8555 struct perf_event_context *parent_ctx,
8556 struct task_struct *child,
8557 struct perf_event_context *child_ctx)
8558{
8559 struct perf_event *leader;
8560 struct perf_event *sub;
8561 struct perf_event *child_ctr;
8562
8563 leader = inherit_event(parent_event, parent, parent_ctx,
8564 child, NULL, child_ctx);
8565 if (IS_ERR(leader))
8566 return PTR_ERR(leader);
8567 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8568 child_ctr = inherit_event(sub, parent, parent_ctx,
8569 child, leader, child_ctx);
8570 if (IS_ERR(child_ctr))
8571 return PTR_ERR(child_ctr);
8572 }
8573 return 0;
889ff015
FW
8574}
8575
8576static int
8577inherit_task_group(struct perf_event *event, struct task_struct *parent,
8578 struct perf_event_context *parent_ctx,
8dc85d54 8579 struct task_struct *child, int ctxn,
889ff015
FW
8580 int *inherited_all)
8581{
8582 int ret;
8dc85d54 8583 struct perf_event_context *child_ctx;
889ff015
FW
8584
8585 if (!event->attr.inherit) {
8586 *inherited_all = 0;
8587 return 0;
bbbee908
PZ
8588 }
8589
fe4b04fa 8590 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8591 if (!child_ctx) {
8592 /*
8593 * This is executed from the parent task context, so
8594 * inherit events that have been marked for cloning.
8595 * First allocate and initialize a context for the
8596 * child.
8597 */
bbbee908 8598
734df5ab 8599 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8600 if (!child_ctx)
8601 return -ENOMEM;
bbbee908 8602
8dc85d54 8603 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8604 }
8605
8606 ret = inherit_group(event, parent, parent_ctx,
8607 child, child_ctx);
8608
8609 if (ret)
8610 *inherited_all = 0;
8611
8612 return ret;
bbbee908
PZ
8613}
8614
9b51f66d 8615/*
cdd6c482 8616 * Initialize the perf_event context in task_struct
9b51f66d 8617 */
985c8dcb 8618static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8619{
889ff015 8620 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8621 struct perf_event_context *cloned_ctx;
8622 struct perf_event *event;
9b51f66d 8623 struct task_struct *parent = current;
564c2b21 8624 int inherited_all = 1;
dddd3379 8625 unsigned long flags;
6ab423e0 8626 int ret = 0;
9b51f66d 8627
8dc85d54 8628 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8629 return 0;
8630
ad3a37de 8631 /*
25346b93
PM
8632 * If the parent's context is a clone, pin it so it won't get
8633 * swapped under us.
ad3a37de 8634 */
8dc85d54 8635 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8636 if (!parent_ctx)
8637 return 0;
25346b93 8638
ad3a37de
PM
8639 /*
8640 * No need to check if parent_ctx != NULL here; since we saw
8641 * it non-NULL earlier, the only reason for it to become NULL
8642 * is if we exit, and since we're currently in the middle of
8643 * a fork we can't be exiting at the same time.
8644 */
ad3a37de 8645
9b51f66d
IM
8646 /*
8647 * Lock the parent list. No need to lock the child - not PID
8648 * hashed yet and not running, so nobody can access it.
8649 */
d859e29f 8650 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8651
8652 /*
8653 * We dont have to disable NMIs - we are only looking at
8654 * the list, not manipulating it:
8655 */
889ff015 8656 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8657 ret = inherit_task_group(event, parent, parent_ctx,
8658 child, ctxn, &inherited_all);
889ff015
FW
8659 if (ret)
8660 break;
8661 }
b93f7978 8662
dddd3379
TG
8663 /*
8664 * We can't hold ctx->lock when iterating the ->flexible_group list due
8665 * to allocations, but we need to prevent rotation because
8666 * rotate_ctx() will change the list from interrupt context.
8667 */
8668 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8669 parent_ctx->rotate_disable = 1;
8670 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8671
889ff015 8672 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8673 ret = inherit_task_group(event, parent, parent_ctx,
8674 child, ctxn, &inherited_all);
889ff015 8675 if (ret)
9b51f66d 8676 break;
564c2b21
PM
8677 }
8678
dddd3379
TG
8679 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8680 parent_ctx->rotate_disable = 0;
dddd3379 8681
8dc85d54 8682 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8683
05cbaa28 8684 if (child_ctx && inherited_all) {
564c2b21
PM
8685 /*
8686 * Mark the child context as a clone of the parent
8687 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8688 *
8689 * Note that if the parent is a clone, the holding of
8690 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8691 */
c5ed5145 8692 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8693 if (cloned_ctx) {
8694 child_ctx->parent_ctx = cloned_ctx;
25346b93 8695 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8696 } else {
8697 child_ctx->parent_ctx = parent_ctx;
8698 child_ctx->parent_gen = parent_ctx->generation;
8699 }
8700 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8701 }
8702
c5ed5145 8703 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8704 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8705
25346b93 8706 perf_unpin_context(parent_ctx);
fe4b04fa 8707 put_ctx(parent_ctx);
ad3a37de 8708
6ab423e0 8709 return ret;
9b51f66d
IM
8710}
8711
8dc85d54
PZ
8712/*
8713 * Initialize the perf_event context in task_struct
8714 */
8715int perf_event_init_task(struct task_struct *child)
8716{
8717 int ctxn, ret;
8718
8550d7cb
ON
8719 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8720 mutex_init(&child->perf_event_mutex);
8721 INIT_LIST_HEAD(&child->perf_event_list);
8722
8dc85d54
PZ
8723 for_each_task_context_nr(ctxn) {
8724 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8725 if (ret) {
8726 perf_event_free_task(child);
8dc85d54 8727 return ret;
6c72e350 8728 }
8dc85d54
PZ
8729 }
8730
8731 return 0;
8732}
8733
220b140b
PM
8734static void __init perf_event_init_all_cpus(void)
8735{
b28ab83c 8736 struct swevent_htable *swhash;
220b140b 8737 int cpu;
220b140b
PM
8738
8739 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8740 swhash = &per_cpu(swevent_htable, cpu);
8741 mutex_init(&swhash->hlist_mutex);
2fde4f94 8742 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8743 }
8744}
8745
0db0628d 8746static void perf_event_init_cpu(int cpu)
0793a61d 8747{
108b02cf 8748 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8749
b28ab83c 8750 mutex_lock(&swhash->hlist_mutex);
39af6b16 8751 swhash->online = true;
4536e4d1 8752 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8753 struct swevent_hlist *hlist;
8754
b28ab83c
PZ
8755 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8756 WARN_ON(!hlist);
8757 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8758 }
b28ab83c 8759 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8760}
8761
c277443c 8762#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8763static void __perf_event_exit_context(void *__info)
0793a61d 8764{
226424ee 8765 struct remove_event re = { .detach_group = true };
108b02cf 8766 struct perf_event_context *ctx = __info;
0793a61d 8767
e3703f8c 8768 rcu_read_lock();
46ce0fe9
PZ
8769 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8770 __perf_remove_from_context(&re);
e3703f8c 8771 rcu_read_unlock();
0793a61d 8772}
108b02cf
PZ
8773
8774static void perf_event_exit_cpu_context(int cpu)
8775{
8776 struct perf_event_context *ctx;
8777 struct pmu *pmu;
8778 int idx;
8779
8780 idx = srcu_read_lock(&pmus_srcu);
8781 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8782 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8783
8784 mutex_lock(&ctx->mutex);
8785 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8786 mutex_unlock(&ctx->mutex);
8787 }
8788 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8789}
8790
cdd6c482 8791static void perf_event_exit_cpu(int cpu)
0793a61d 8792{
b28ab83c 8793 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8794
e3703f8c
PZ
8795 perf_event_exit_cpu_context(cpu);
8796
b28ab83c 8797 mutex_lock(&swhash->hlist_mutex);
39af6b16 8798 swhash->online = false;
b28ab83c
PZ
8799 swevent_hlist_release(swhash);
8800 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8801}
8802#else
cdd6c482 8803static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8804#endif
8805
c277443c
PZ
8806static int
8807perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8808{
8809 int cpu;
8810
8811 for_each_online_cpu(cpu)
8812 perf_event_exit_cpu(cpu);
8813
8814 return NOTIFY_OK;
8815}
8816
8817/*
8818 * Run the perf reboot notifier at the very last possible moment so that
8819 * the generic watchdog code runs as long as possible.
8820 */
8821static struct notifier_block perf_reboot_notifier = {
8822 .notifier_call = perf_reboot,
8823 .priority = INT_MIN,
8824};
8825
0db0628d 8826static int
0793a61d
TG
8827perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8828{
8829 unsigned int cpu = (long)hcpu;
8830
4536e4d1 8831 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8832
8833 case CPU_UP_PREPARE:
5e11637e 8834 case CPU_DOWN_FAILED:
cdd6c482 8835 perf_event_init_cpu(cpu);
0793a61d
TG
8836 break;
8837
5e11637e 8838 case CPU_UP_CANCELED:
0793a61d 8839 case CPU_DOWN_PREPARE:
cdd6c482 8840 perf_event_exit_cpu(cpu);
0793a61d 8841 break;
0793a61d
TG
8842 default:
8843 break;
8844 }
8845
8846 return NOTIFY_OK;
8847}
8848
cdd6c482 8849void __init perf_event_init(void)
0793a61d 8850{
3c502e7a
JW
8851 int ret;
8852
2e80a82a
PZ
8853 idr_init(&pmu_idr);
8854
220b140b 8855 perf_event_init_all_cpus();
b0a873eb 8856 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8857 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8858 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8859 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8860 perf_tp_register();
8861 perf_cpu_notifier(perf_cpu_notify);
c277443c 8862 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8863
8864 ret = init_hw_breakpoint();
8865 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8866
8867 /* do not patch jump label more than once per second */
8868 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8869
8870 /*
8871 * Build time assertion that we keep the data_head at the intended
8872 * location. IOW, validation we got the __reserved[] size right.
8873 */
8874 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8875 != 1024);
0793a61d 8876}
abe43400 8877
fd979c01
CS
8878ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8879 char *page)
8880{
8881 struct perf_pmu_events_attr *pmu_attr =
8882 container_of(attr, struct perf_pmu_events_attr, attr);
8883
8884 if (pmu_attr->event_str)
8885 return sprintf(page, "%s\n", pmu_attr->event_str);
8886
8887 return 0;
8888}
8889
abe43400
PZ
8890static int __init perf_event_sysfs_init(void)
8891{
8892 struct pmu *pmu;
8893 int ret;
8894
8895 mutex_lock(&pmus_lock);
8896
8897 ret = bus_register(&pmu_bus);
8898 if (ret)
8899 goto unlock;
8900
8901 list_for_each_entry(pmu, &pmus, entry) {
8902 if (!pmu->name || pmu->type < 0)
8903 continue;
8904
8905 ret = pmu_dev_alloc(pmu);
8906 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8907 }
8908 pmu_bus_running = 1;
8909 ret = 0;
8910
8911unlock:
8912 mutex_unlock(&pmus_lock);
8913
8914 return ret;
8915}
8916device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8917
8918#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8919static struct cgroup_subsys_state *
8920perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8921{
8922 struct perf_cgroup *jc;
e5d1367f 8923
1b15d055 8924 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8925 if (!jc)
8926 return ERR_PTR(-ENOMEM);
8927
e5d1367f
SE
8928 jc->info = alloc_percpu(struct perf_cgroup_info);
8929 if (!jc->info) {
8930 kfree(jc);
8931 return ERR_PTR(-ENOMEM);
8932 }
8933
e5d1367f
SE
8934 return &jc->css;
8935}
8936
eb95419b 8937static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8938{
eb95419b
TH
8939 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8940
e5d1367f
SE
8941 free_percpu(jc->info);
8942 kfree(jc);
8943}
8944
8945static int __perf_cgroup_move(void *info)
8946{
8947 struct task_struct *task = info;
8948 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8949 return 0;
8950}
8951
eb95419b
TH
8952static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8953 struct cgroup_taskset *tset)
e5d1367f 8954{
bb9d97b6
TH
8955 struct task_struct *task;
8956
924f0d9a 8957 cgroup_taskset_for_each(task, tset)
bb9d97b6 8958 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8959}
8960
eb95419b
TH
8961static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8962 struct cgroup_subsys_state *old_css,
761b3ef5 8963 struct task_struct *task)
e5d1367f
SE
8964{
8965 /*
8966 * cgroup_exit() is called in the copy_process() failure path.
8967 * Ignore this case since the task hasn't ran yet, this avoids
8968 * trying to poke a half freed task state from generic code.
8969 */
8970 if (!(task->flags & PF_EXITING))
8971 return;
8972
bb9d97b6 8973 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8974}
8975
073219e9 8976struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8977 .css_alloc = perf_cgroup_css_alloc,
8978 .css_free = perf_cgroup_css_free,
e7e7ee2e 8979 .exit = perf_cgroup_exit,
bb9d97b6 8980 .attach = perf_cgroup_attach,
e5d1367f
SE
8981};
8982#endif /* CONFIG_CGROUP_PERF */