perf: Fix scaling vs. perf_event_enable()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
272325c4 89task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
272325c4 113static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
fae3fde6
PZ
127static inline struct perf_cpu_context *
128__get_cpu_context(struct perf_event_context *ctx)
129{
130 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131}
132
133static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 struct perf_event_context *ctx)
0017960f 135{
fae3fde6
PZ
136 raw_spin_lock(&cpuctx->ctx.lock);
137 if (ctx)
138 raw_spin_lock(&ctx->lock);
139}
140
141static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 struct perf_event_context *ctx)
143{
144 if (ctx)
145 raw_spin_unlock(&ctx->lock);
146 raw_spin_unlock(&cpuctx->ctx.lock);
147}
148
63b6da39
PZ
149#define TASK_TOMBSTONE ((void *)-1L)
150
151static bool is_kernel_event(struct perf_event *event)
152{
f47c02c0 153 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
154}
155
39a43640
PZ
156/*
157 * On task ctx scheduling...
158 *
159 * When !ctx->nr_events a task context will not be scheduled. This means
160 * we can disable the scheduler hooks (for performance) without leaving
161 * pending task ctx state.
162 *
163 * This however results in two special cases:
164 *
165 * - removing the last event from a task ctx; this is relatively straight
166 * forward and is done in __perf_remove_from_context.
167 *
168 * - adding the first event to a task ctx; this is tricky because we cannot
169 * rely on ctx->is_active and therefore cannot use event_function_call().
170 * See perf_install_in_context().
171 *
172 * This is because we need a ctx->lock serialized variable (ctx->is_active)
173 * to reliably determine if a particular task/context is scheduled in. The
174 * task_curr() use in task_function_call() is racy in that a remote context
175 * switch is not a single atomic operation.
176 *
177 * As is, the situation is 'safe' because we set rq->curr before we do the
178 * actual context switch. This means that task_curr() will fail early, but
179 * we'll continue spinning on ctx->is_active until we've passed
180 * perf_event_task_sched_out().
181 *
182 * Without this ctx->lock serialized variable we could have race where we find
183 * the task (and hence the context) would not be active while in fact they are.
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39
PZ
214 if (ctx->task != current) {
215 ret = -EAGAIN;
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
279again:
63b6da39
PZ
280 if (task == TASK_TOMBSTONE)
281 return;
282
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task != TASK_TOMBSTONE) {
293 if (ctx->is_active) {
294 raw_spin_unlock_irq(&ctx->lock);
295 goto again;
296 }
297 func(event, NULL, ctx, data);
0017960f 298 }
0017960f
PZ
299 raw_spin_unlock_irq(&ctx->lock);
300}
301
e5d1367f
SE
302#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
303 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
304 PERF_FLAG_PID_CGROUP |\
305 PERF_FLAG_FD_CLOEXEC)
e5d1367f 306
bce38cd5
SE
307/*
308 * branch priv levels that need permission checks
309 */
310#define PERF_SAMPLE_BRANCH_PERM_PLM \
311 (PERF_SAMPLE_BRANCH_KERNEL |\
312 PERF_SAMPLE_BRANCH_HV)
313
0b3fcf17
SE
314enum event_type_t {
315 EVENT_FLEXIBLE = 0x1,
316 EVENT_PINNED = 0x2,
3cbaa590 317 EVENT_TIME = 0x4,
0b3fcf17
SE
318 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
319};
320
e5d1367f
SE
321/*
322 * perf_sched_events : >0 events exist
323 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
324 */
9107c89e
PZ
325
326static void perf_sched_delayed(struct work_struct *work);
327DEFINE_STATIC_KEY_FALSE(perf_sched_events);
328static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
329static DEFINE_MUTEX(perf_sched_mutex);
330static atomic_t perf_sched_count;
331
e5d1367f 332static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 333static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 334
cdd6c482
IM
335static atomic_t nr_mmap_events __read_mostly;
336static atomic_t nr_comm_events __read_mostly;
337static atomic_t nr_task_events __read_mostly;
948b26b6 338static atomic_t nr_freq_events __read_mostly;
45ac1403 339static atomic_t nr_switch_events __read_mostly;
9ee318a7 340
108b02cf
PZ
341static LIST_HEAD(pmus);
342static DEFINE_MUTEX(pmus_lock);
343static struct srcu_struct pmus_srcu;
344
0764771d 345/*
cdd6c482 346 * perf event paranoia level:
0fbdea19
IM
347 * -1 - not paranoid at all
348 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 349 * 1 - disallow cpu events for unpriv
0fbdea19 350 * 2 - disallow kernel profiling for unpriv
0764771d 351 */
cdd6c482 352int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 353
20443384
FW
354/* Minimum for 512 kiB + 1 user control page */
355int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
356
357/*
cdd6c482 358 * max perf event sample rate
df58ab24 359 */
14c63f17
DH
360#define DEFAULT_MAX_SAMPLE_RATE 100000
361#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
362#define DEFAULT_CPU_TIME_MAX_PERCENT 25
363
364int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
365
366static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
367static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
368
d9494cb4
PZ
369static int perf_sample_allowed_ns __read_mostly =
370 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 371
18ab2cd3 372static void update_perf_cpu_limits(void)
14c63f17
DH
373{
374 u64 tmp = perf_sample_period_ns;
375
376 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 377 do_div(tmp, 100);
d9494cb4 378 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 379}
163ec435 380
9e630205
SE
381static int perf_rotate_context(struct perf_cpu_context *cpuctx);
382
163ec435
PZ
383int perf_proc_update_handler(struct ctl_table *table, int write,
384 void __user *buffer, size_t *lenp,
385 loff_t *ppos)
386{
723478c8 387 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
388
389 if (ret || !write)
390 return ret;
391
392 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
393 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
394 update_perf_cpu_limits();
395
396 return 0;
397}
398
399int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
400
401int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
402 void __user *buffer, size_t *lenp,
403 loff_t *ppos)
404{
405 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
406
407 if (ret || !write)
408 return ret;
409
410 update_perf_cpu_limits();
163ec435
PZ
411
412 return 0;
413}
1ccd1549 414
14c63f17
DH
415/*
416 * perf samples are done in some very critical code paths (NMIs).
417 * If they take too much CPU time, the system can lock up and not
418 * get any real work done. This will drop the sample rate when
419 * we detect that events are taking too long.
420 */
421#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 422static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 423
6a02ad66 424static void perf_duration_warn(struct irq_work *w)
14c63f17 425{
6a02ad66 426 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 427 u64 avg_local_sample_len;
e5302920 428 u64 local_samples_len;
6a02ad66 429
4a32fea9 430 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
431 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
432
433 printk_ratelimited(KERN_WARNING
434 "perf interrupt took too long (%lld > %lld), lowering "
435 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 436 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
437 sysctl_perf_event_sample_rate);
438}
439
440static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
441
442void perf_sample_event_took(u64 sample_len_ns)
443{
d9494cb4 444 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
445 u64 avg_local_sample_len;
446 u64 local_samples_len;
14c63f17 447
d9494cb4 448 if (allowed_ns == 0)
14c63f17
DH
449 return;
450
451 /* decay the counter by 1 average sample */
4a32fea9 452 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
453 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
454 local_samples_len += sample_len_ns;
4a32fea9 455 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
456
457 /*
458 * note: this will be biased artifically low until we have
459 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
460 * from having to maintain a count.
461 */
462 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
463
d9494cb4 464 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
465 return;
466
467 if (max_samples_per_tick <= 1)
468 return;
469
470 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
471 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
472 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
473
14c63f17 474 update_perf_cpu_limits();
6a02ad66 475
cd578abb
PZ
476 if (!irq_work_queue(&perf_duration_work)) {
477 early_printk("perf interrupt took too long (%lld > %lld), lowering "
478 "kernel.perf_event_max_sample_rate to %d\n",
479 avg_local_sample_len, allowed_ns >> 1,
480 sysctl_perf_event_sample_rate);
481 }
14c63f17
DH
482}
483
cdd6c482 484static atomic64_t perf_event_id;
a96bbc16 485
0b3fcf17
SE
486static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
487 enum event_type_t event_type);
488
489static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
490 enum event_type_t event_type,
491 struct task_struct *task);
492
493static void update_context_time(struct perf_event_context *ctx);
494static u64 perf_event_time(struct perf_event *event);
0b3fcf17 495
cdd6c482 496void __weak perf_event_print_debug(void) { }
0793a61d 497
84c79910 498extern __weak const char *perf_pmu_name(void)
0793a61d 499{
84c79910 500 return "pmu";
0793a61d
TG
501}
502
0b3fcf17
SE
503static inline u64 perf_clock(void)
504{
505 return local_clock();
506}
507
34f43927
PZ
508static inline u64 perf_event_clock(struct perf_event *event)
509{
510 return event->clock();
511}
512
e5d1367f
SE
513#ifdef CONFIG_CGROUP_PERF
514
e5d1367f
SE
515static inline bool
516perf_cgroup_match(struct perf_event *event)
517{
518 struct perf_event_context *ctx = event->ctx;
519 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
520
ef824fa1
TH
521 /* @event doesn't care about cgroup */
522 if (!event->cgrp)
523 return true;
524
525 /* wants specific cgroup scope but @cpuctx isn't associated with any */
526 if (!cpuctx->cgrp)
527 return false;
528
529 /*
530 * Cgroup scoping is recursive. An event enabled for a cgroup is
531 * also enabled for all its descendant cgroups. If @cpuctx's
532 * cgroup is a descendant of @event's (the test covers identity
533 * case), it's a match.
534 */
535 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
536 event->cgrp->css.cgroup);
e5d1367f
SE
537}
538
e5d1367f
SE
539static inline void perf_detach_cgroup(struct perf_event *event)
540{
4e2ba650 541 css_put(&event->cgrp->css);
e5d1367f
SE
542 event->cgrp = NULL;
543}
544
545static inline int is_cgroup_event(struct perf_event *event)
546{
547 return event->cgrp != NULL;
548}
549
550static inline u64 perf_cgroup_event_time(struct perf_event *event)
551{
552 struct perf_cgroup_info *t;
553
554 t = per_cpu_ptr(event->cgrp->info, event->cpu);
555 return t->time;
556}
557
558static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
559{
560 struct perf_cgroup_info *info;
561 u64 now;
562
563 now = perf_clock();
564
565 info = this_cpu_ptr(cgrp->info);
566
567 info->time += now - info->timestamp;
568 info->timestamp = now;
569}
570
571static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
572{
573 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
574 if (cgrp_out)
575 __update_cgrp_time(cgrp_out);
576}
577
578static inline void update_cgrp_time_from_event(struct perf_event *event)
579{
3f7cce3c
SE
580 struct perf_cgroup *cgrp;
581
e5d1367f 582 /*
3f7cce3c
SE
583 * ensure we access cgroup data only when needed and
584 * when we know the cgroup is pinned (css_get)
e5d1367f 585 */
3f7cce3c 586 if (!is_cgroup_event(event))
e5d1367f
SE
587 return;
588
614e4c4e 589 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
590 /*
591 * Do not update time when cgroup is not active
592 */
593 if (cgrp == event->cgrp)
594 __update_cgrp_time(event->cgrp);
e5d1367f
SE
595}
596
597static inline void
3f7cce3c
SE
598perf_cgroup_set_timestamp(struct task_struct *task,
599 struct perf_event_context *ctx)
e5d1367f
SE
600{
601 struct perf_cgroup *cgrp;
602 struct perf_cgroup_info *info;
603
3f7cce3c
SE
604 /*
605 * ctx->lock held by caller
606 * ensure we do not access cgroup data
607 * unless we have the cgroup pinned (css_get)
608 */
609 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
610 return;
611
614e4c4e 612 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 613 info = this_cpu_ptr(cgrp->info);
3f7cce3c 614 info->timestamp = ctx->timestamp;
e5d1367f
SE
615}
616
617#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
618#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
619
620/*
621 * reschedule events based on the cgroup constraint of task.
622 *
623 * mode SWOUT : schedule out everything
624 * mode SWIN : schedule in based on cgroup for next
625 */
18ab2cd3 626static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
627{
628 struct perf_cpu_context *cpuctx;
629 struct pmu *pmu;
630 unsigned long flags;
631
632 /*
633 * disable interrupts to avoid geting nr_cgroup
634 * changes via __perf_event_disable(). Also
635 * avoids preemption.
636 */
637 local_irq_save(flags);
638
639 /*
640 * we reschedule only in the presence of cgroup
641 * constrained events.
642 */
e5d1367f
SE
643
644 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 645 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
646 if (cpuctx->unique_pmu != pmu)
647 continue; /* ensure we process each cpuctx once */
e5d1367f 648
e5d1367f
SE
649 /*
650 * perf_cgroup_events says at least one
651 * context on this CPU has cgroup events.
652 *
653 * ctx->nr_cgroups reports the number of cgroup
654 * events for a context.
655 */
656 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
657 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
658 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
659
660 if (mode & PERF_CGROUP_SWOUT) {
661 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
662 /*
663 * must not be done before ctxswout due
664 * to event_filter_match() in event_sched_out()
665 */
666 cpuctx->cgrp = NULL;
667 }
668
669 if (mode & PERF_CGROUP_SWIN) {
e566b76e 670 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
671 /*
672 * set cgrp before ctxsw in to allow
673 * event_filter_match() to not have to pass
674 * task around
614e4c4e
SE
675 * we pass the cpuctx->ctx to perf_cgroup_from_task()
676 * because cgorup events are only per-cpu
e5d1367f 677 */
614e4c4e 678 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
679 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
680 }
facc4307
PZ
681 perf_pmu_enable(cpuctx->ctx.pmu);
682 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 683 }
e5d1367f
SE
684 }
685
e5d1367f
SE
686 local_irq_restore(flags);
687}
688
a8d757ef
SE
689static inline void perf_cgroup_sched_out(struct task_struct *task,
690 struct task_struct *next)
e5d1367f 691{
a8d757ef
SE
692 struct perf_cgroup *cgrp1;
693 struct perf_cgroup *cgrp2 = NULL;
694
ddaaf4e2 695 rcu_read_lock();
a8d757ef
SE
696 /*
697 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
698 * we do not need to pass the ctx here because we know
699 * we are holding the rcu lock
a8d757ef 700 */
614e4c4e 701 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 702 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
703
704 /*
705 * only schedule out current cgroup events if we know
706 * that we are switching to a different cgroup. Otherwise,
707 * do no touch the cgroup events.
708 */
709 if (cgrp1 != cgrp2)
710 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
711
712 rcu_read_unlock();
e5d1367f
SE
713}
714
a8d757ef
SE
715static inline void perf_cgroup_sched_in(struct task_struct *prev,
716 struct task_struct *task)
e5d1367f 717{
a8d757ef
SE
718 struct perf_cgroup *cgrp1;
719 struct perf_cgroup *cgrp2 = NULL;
720
ddaaf4e2 721 rcu_read_lock();
a8d757ef
SE
722 /*
723 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
724 * we do not need to pass the ctx here because we know
725 * we are holding the rcu lock
a8d757ef 726 */
614e4c4e 727 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 728 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
729
730 /*
731 * only need to schedule in cgroup events if we are changing
732 * cgroup during ctxsw. Cgroup events were not scheduled
733 * out of ctxsw out if that was not the case.
734 */
735 if (cgrp1 != cgrp2)
736 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
737
738 rcu_read_unlock();
e5d1367f
SE
739}
740
741static inline int perf_cgroup_connect(int fd, struct perf_event *event,
742 struct perf_event_attr *attr,
743 struct perf_event *group_leader)
744{
745 struct perf_cgroup *cgrp;
746 struct cgroup_subsys_state *css;
2903ff01
AV
747 struct fd f = fdget(fd);
748 int ret = 0;
e5d1367f 749
2903ff01 750 if (!f.file)
e5d1367f
SE
751 return -EBADF;
752
b583043e 753 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 754 &perf_event_cgrp_subsys);
3db272c0
LZ
755 if (IS_ERR(css)) {
756 ret = PTR_ERR(css);
757 goto out;
758 }
e5d1367f
SE
759
760 cgrp = container_of(css, struct perf_cgroup, css);
761 event->cgrp = cgrp;
762
763 /*
764 * all events in a group must monitor
765 * the same cgroup because a task belongs
766 * to only one perf cgroup at a time
767 */
768 if (group_leader && group_leader->cgrp != cgrp) {
769 perf_detach_cgroup(event);
770 ret = -EINVAL;
e5d1367f 771 }
3db272c0 772out:
2903ff01 773 fdput(f);
e5d1367f
SE
774 return ret;
775}
776
777static inline void
778perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
779{
780 struct perf_cgroup_info *t;
781 t = per_cpu_ptr(event->cgrp->info, event->cpu);
782 event->shadow_ctx_time = now - t->timestamp;
783}
784
785static inline void
786perf_cgroup_defer_enabled(struct perf_event *event)
787{
788 /*
789 * when the current task's perf cgroup does not match
790 * the event's, we need to remember to call the
791 * perf_mark_enable() function the first time a task with
792 * a matching perf cgroup is scheduled in.
793 */
794 if (is_cgroup_event(event) && !perf_cgroup_match(event))
795 event->cgrp_defer_enabled = 1;
796}
797
798static inline void
799perf_cgroup_mark_enabled(struct perf_event *event,
800 struct perf_event_context *ctx)
801{
802 struct perf_event *sub;
803 u64 tstamp = perf_event_time(event);
804
805 if (!event->cgrp_defer_enabled)
806 return;
807
808 event->cgrp_defer_enabled = 0;
809
810 event->tstamp_enabled = tstamp - event->total_time_enabled;
811 list_for_each_entry(sub, &event->sibling_list, group_entry) {
812 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
813 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
814 sub->cgrp_defer_enabled = 0;
815 }
816 }
817}
818#else /* !CONFIG_CGROUP_PERF */
819
820static inline bool
821perf_cgroup_match(struct perf_event *event)
822{
823 return true;
824}
825
826static inline void perf_detach_cgroup(struct perf_event *event)
827{}
828
829static inline int is_cgroup_event(struct perf_event *event)
830{
831 return 0;
832}
833
834static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
835{
836 return 0;
837}
838
839static inline void update_cgrp_time_from_event(struct perf_event *event)
840{
841}
842
843static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
844{
845}
846
a8d757ef
SE
847static inline void perf_cgroup_sched_out(struct task_struct *task,
848 struct task_struct *next)
e5d1367f
SE
849{
850}
851
a8d757ef
SE
852static inline void perf_cgroup_sched_in(struct task_struct *prev,
853 struct task_struct *task)
e5d1367f
SE
854{
855}
856
857static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
858 struct perf_event_attr *attr,
859 struct perf_event *group_leader)
860{
861 return -EINVAL;
862}
863
864static inline void
3f7cce3c
SE
865perf_cgroup_set_timestamp(struct task_struct *task,
866 struct perf_event_context *ctx)
e5d1367f
SE
867{
868}
869
870void
871perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
872{
873}
874
875static inline void
876perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
877{
878}
879
880static inline u64 perf_cgroup_event_time(struct perf_event *event)
881{
882 return 0;
883}
884
885static inline void
886perf_cgroup_defer_enabled(struct perf_event *event)
887{
888}
889
890static inline void
891perf_cgroup_mark_enabled(struct perf_event *event,
892 struct perf_event_context *ctx)
893{
894}
895#endif
896
9e630205
SE
897/*
898 * set default to be dependent on timer tick just
899 * like original code
900 */
901#define PERF_CPU_HRTIMER (1000 / HZ)
902/*
903 * function must be called with interrupts disbled
904 */
272325c4 905static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
906{
907 struct perf_cpu_context *cpuctx;
9e630205
SE
908 int rotations = 0;
909
910 WARN_ON(!irqs_disabled());
911
912 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
913 rotations = perf_rotate_context(cpuctx);
914
4cfafd30
PZ
915 raw_spin_lock(&cpuctx->hrtimer_lock);
916 if (rotations)
9e630205 917 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
918 else
919 cpuctx->hrtimer_active = 0;
920 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 921
4cfafd30 922 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
923}
924
272325c4 925static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 926{
272325c4 927 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 928 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 929 u64 interval;
9e630205
SE
930
931 /* no multiplexing needed for SW PMU */
932 if (pmu->task_ctx_nr == perf_sw_context)
933 return;
934
62b85639
SE
935 /*
936 * check default is sane, if not set then force to
937 * default interval (1/tick)
938 */
272325c4
PZ
939 interval = pmu->hrtimer_interval_ms;
940 if (interval < 1)
941 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 942
272325c4 943 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 944
4cfafd30
PZ
945 raw_spin_lock_init(&cpuctx->hrtimer_lock);
946 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 947 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
948}
949
272325c4 950static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 951{
272325c4 952 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 953 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 954 unsigned long flags;
9e630205
SE
955
956 /* not for SW PMU */
957 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 958 return 0;
9e630205 959
4cfafd30
PZ
960 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
961 if (!cpuctx->hrtimer_active) {
962 cpuctx->hrtimer_active = 1;
963 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
964 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
965 }
966 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 967
272325c4 968 return 0;
9e630205
SE
969}
970
33696fc0 971void perf_pmu_disable(struct pmu *pmu)
9e35ad38 972{
33696fc0
PZ
973 int *count = this_cpu_ptr(pmu->pmu_disable_count);
974 if (!(*count)++)
975 pmu->pmu_disable(pmu);
9e35ad38 976}
9e35ad38 977
33696fc0 978void perf_pmu_enable(struct pmu *pmu)
9e35ad38 979{
33696fc0
PZ
980 int *count = this_cpu_ptr(pmu->pmu_disable_count);
981 if (!--(*count))
982 pmu->pmu_enable(pmu);
9e35ad38 983}
9e35ad38 984
2fde4f94 985static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
986
987/*
2fde4f94
MR
988 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
989 * perf_event_task_tick() are fully serialized because they're strictly cpu
990 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
991 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 992 */
2fde4f94 993static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 994{
2fde4f94 995 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 996
e9d2b064 997 WARN_ON(!irqs_disabled());
b5ab4cd5 998
2fde4f94
MR
999 WARN_ON(!list_empty(&ctx->active_ctx_list));
1000
1001 list_add(&ctx->active_ctx_list, head);
1002}
1003
1004static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1005{
1006 WARN_ON(!irqs_disabled());
1007
1008 WARN_ON(list_empty(&ctx->active_ctx_list));
1009
1010 list_del_init(&ctx->active_ctx_list);
9e35ad38 1011}
9e35ad38 1012
cdd6c482 1013static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1014{
e5289d4a 1015 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1016}
1017
4af57ef2
YZ
1018static void free_ctx(struct rcu_head *head)
1019{
1020 struct perf_event_context *ctx;
1021
1022 ctx = container_of(head, struct perf_event_context, rcu_head);
1023 kfree(ctx->task_ctx_data);
1024 kfree(ctx);
1025}
1026
cdd6c482 1027static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1028{
564c2b21
PM
1029 if (atomic_dec_and_test(&ctx->refcount)) {
1030 if (ctx->parent_ctx)
1031 put_ctx(ctx->parent_ctx);
63b6da39 1032 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1033 put_task_struct(ctx->task);
4af57ef2 1034 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1035 }
a63eaf34
PM
1036}
1037
f63a8daa
PZ
1038/*
1039 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1040 * perf_pmu_migrate_context() we need some magic.
1041 *
1042 * Those places that change perf_event::ctx will hold both
1043 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1044 *
8b10c5e2
PZ
1045 * Lock ordering is by mutex address. There are two other sites where
1046 * perf_event_context::mutex nests and those are:
1047 *
1048 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1049 * perf_event_exit_event()
1050 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1051 *
1052 * - perf_event_init_context() [ parent, 0 ]
1053 * inherit_task_group()
1054 * inherit_group()
1055 * inherit_event()
1056 * perf_event_alloc()
1057 * perf_init_event()
1058 * perf_try_init_event() [ child , 1 ]
1059 *
1060 * While it appears there is an obvious deadlock here -- the parent and child
1061 * nesting levels are inverted between the two. This is in fact safe because
1062 * life-time rules separate them. That is an exiting task cannot fork, and a
1063 * spawning task cannot (yet) exit.
1064 *
1065 * But remember that that these are parent<->child context relations, and
1066 * migration does not affect children, therefore these two orderings should not
1067 * interact.
f63a8daa
PZ
1068 *
1069 * The change in perf_event::ctx does not affect children (as claimed above)
1070 * because the sys_perf_event_open() case will install a new event and break
1071 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1072 * concerned with cpuctx and that doesn't have children.
1073 *
1074 * The places that change perf_event::ctx will issue:
1075 *
1076 * perf_remove_from_context();
1077 * synchronize_rcu();
1078 * perf_install_in_context();
1079 *
1080 * to affect the change. The remove_from_context() + synchronize_rcu() should
1081 * quiesce the event, after which we can install it in the new location. This
1082 * means that only external vectors (perf_fops, prctl) can perturb the event
1083 * while in transit. Therefore all such accessors should also acquire
1084 * perf_event_context::mutex to serialize against this.
1085 *
1086 * However; because event->ctx can change while we're waiting to acquire
1087 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1088 * function.
1089 *
1090 * Lock order:
1091 * task_struct::perf_event_mutex
1092 * perf_event_context::mutex
f63a8daa 1093 * perf_event::child_mutex;
07c4a776 1094 * perf_event_context::lock
f63a8daa
PZ
1095 * perf_event::mmap_mutex
1096 * mmap_sem
1097 */
a83fe28e
PZ
1098static struct perf_event_context *
1099perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1100{
1101 struct perf_event_context *ctx;
1102
1103again:
1104 rcu_read_lock();
1105 ctx = ACCESS_ONCE(event->ctx);
1106 if (!atomic_inc_not_zero(&ctx->refcount)) {
1107 rcu_read_unlock();
1108 goto again;
1109 }
1110 rcu_read_unlock();
1111
a83fe28e 1112 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1113 if (event->ctx != ctx) {
1114 mutex_unlock(&ctx->mutex);
1115 put_ctx(ctx);
1116 goto again;
1117 }
1118
1119 return ctx;
1120}
1121
a83fe28e
PZ
1122static inline struct perf_event_context *
1123perf_event_ctx_lock(struct perf_event *event)
1124{
1125 return perf_event_ctx_lock_nested(event, 0);
1126}
1127
f63a8daa
PZ
1128static void perf_event_ctx_unlock(struct perf_event *event,
1129 struct perf_event_context *ctx)
1130{
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133}
1134
211de6eb
PZ
1135/*
1136 * This must be done under the ctx->lock, such as to serialize against
1137 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1138 * calling scheduler related locks and ctx->lock nests inside those.
1139 */
1140static __must_check struct perf_event_context *
1141unclone_ctx(struct perf_event_context *ctx)
71a851b4 1142{
211de6eb
PZ
1143 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1144
1145 lockdep_assert_held(&ctx->lock);
1146
1147 if (parent_ctx)
71a851b4 1148 ctx->parent_ctx = NULL;
5a3126d4 1149 ctx->generation++;
211de6eb
PZ
1150
1151 return parent_ctx;
71a851b4
PZ
1152}
1153
6844c09d
ACM
1154static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1155{
1156 /*
1157 * only top level events have the pid namespace they were created in
1158 */
1159 if (event->parent)
1160 event = event->parent;
1161
1162 return task_tgid_nr_ns(p, event->ns);
1163}
1164
1165static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1166{
1167 /*
1168 * only top level events have the pid namespace they were created in
1169 */
1170 if (event->parent)
1171 event = event->parent;
1172
1173 return task_pid_nr_ns(p, event->ns);
1174}
1175
7f453c24 1176/*
cdd6c482 1177 * If we inherit events we want to return the parent event id
7f453c24
PZ
1178 * to userspace.
1179 */
cdd6c482 1180static u64 primary_event_id(struct perf_event *event)
7f453c24 1181{
cdd6c482 1182 u64 id = event->id;
7f453c24 1183
cdd6c482
IM
1184 if (event->parent)
1185 id = event->parent->id;
7f453c24
PZ
1186
1187 return id;
1188}
1189
25346b93 1190/*
cdd6c482 1191 * Get the perf_event_context for a task and lock it.
63b6da39 1192 *
25346b93
PM
1193 * This has to cope with with the fact that until it is locked,
1194 * the context could get moved to another task.
1195 */
cdd6c482 1196static struct perf_event_context *
8dc85d54 1197perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1198{
cdd6c482 1199 struct perf_event_context *ctx;
25346b93 1200
9ed6060d 1201retry:
058ebd0e
PZ
1202 /*
1203 * One of the few rules of preemptible RCU is that one cannot do
1204 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1205 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1206 * rcu_read_unlock_special().
1207 *
1208 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1209 * side critical section has interrupts disabled.
058ebd0e 1210 */
2fd59077 1211 local_irq_save(*flags);
058ebd0e 1212 rcu_read_lock();
8dc85d54 1213 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1214 if (ctx) {
1215 /*
1216 * If this context is a clone of another, it might
1217 * get swapped for another underneath us by
cdd6c482 1218 * perf_event_task_sched_out, though the
25346b93
PM
1219 * rcu_read_lock() protects us from any context
1220 * getting freed. Lock the context and check if it
1221 * got swapped before we could get the lock, and retry
1222 * if so. If we locked the right context, then it
1223 * can't get swapped on us any more.
1224 */
2fd59077 1225 raw_spin_lock(&ctx->lock);
8dc85d54 1226 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1227 raw_spin_unlock(&ctx->lock);
058ebd0e 1228 rcu_read_unlock();
2fd59077 1229 local_irq_restore(*flags);
25346b93
PM
1230 goto retry;
1231 }
b49a9e7e 1232
63b6da39
PZ
1233 if (ctx->task == TASK_TOMBSTONE ||
1234 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1235 raw_spin_unlock(&ctx->lock);
b49a9e7e 1236 ctx = NULL;
828b6f0e
PZ
1237 } else {
1238 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1239 }
25346b93
PM
1240 }
1241 rcu_read_unlock();
2fd59077
PM
1242 if (!ctx)
1243 local_irq_restore(*flags);
25346b93
PM
1244 return ctx;
1245}
1246
1247/*
1248 * Get the context for a task and increment its pin_count so it
1249 * can't get swapped to another task. This also increments its
1250 * reference count so that the context can't get freed.
1251 */
8dc85d54
PZ
1252static struct perf_event_context *
1253perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1254{
cdd6c482 1255 struct perf_event_context *ctx;
25346b93
PM
1256 unsigned long flags;
1257
8dc85d54 1258 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1259 if (ctx) {
1260 ++ctx->pin_count;
e625cce1 1261 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1262 }
1263 return ctx;
1264}
1265
cdd6c482 1266static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1267{
1268 unsigned long flags;
1269
e625cce1 1270 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1271 --ctx->pin_count;
e625cce1 1272 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1273}
1274
f67218c3
PZ
1275/*
1276 * Update the record of the current time in a context.
1277 */
1278static void update_context_time(struct perf_event_context *ctx)
1279{
1280 u64 now = perf_clock();
1281
1282 ctx->time += now - ctx->timestamp;
1283 ctx->timestamp = now;
1284}
1285
4158755d
SE
1286static u64 perf_event_time(struct perf_event *event)
1287{
1288 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1289
1290 if (is_cgroup_event(event))
1291 return perf_cgroup_event_time(event);
1292
4158755d
SE
1293 return ctx ? ctx->time : 0;
1294}
1295
f67218c3
PZ
1296/*
1297 * Update the total_time_enabled and total_time_running fields for a event.
1298 */
1299static void update_event_times(struct perf_event *event)
1300{
1301 struct perf_event_context *ctx = event->ctx;
1302 u64 run_end;
1303
3cbaa590
PZ
1304 lockdep_assert_held(&ctx->lock);
1305
f67218c3
PZ
1306 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1307 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1308 return;
3cbaa590 1309
e5d1367f
SE
1310 /*
1311 * in cgroup mode, time_enabled represents
1312 * the time the event was enabled AND active
1313 * tasks were in the monitored cgroup. This is
1314 * independent of the activity of the context as
1315 * there may be a mix of cgroup and non-cgroup events.
1316 *
1317 * That is why we treat cgroup events differently
1318 * here.
1319 */
1320 if (is_cgroup_event(event))
46cd6a7f 1321 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1322 else if (ctx->is_active)
1323 run_end = ctx->time;
acd1d7c1
PZ
1324 else
1325 run_end = event->tstamp_stopped;
1326
1327 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1328
1329 if (event->state == PERF_EVENT_STATE_INACTIVE)
1330 run_end = event->tstamp_stopped;
1331 else
4158755d 1332 run_end = perf_event_time(event);
f67218c3
PZ
1333
1334 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1335
f67218c3
PZ
1336}
1337
96c21a46
PZ
1338/*
1339 * Update total_time_enabled and total_time_running for all events in a group.
1340 */
1341static void update_group_times(struct perf_event *leader)
1342{
1343 struct perf_event *event;
1344
1345 update_event_times(leader);
1346 list_for_each_entry(event, &leader->sibling_list, group_entry)
1347 update_event_times(event);
1348}
1349
889ff015
FW
1350static struct list_head *
1351ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1352{
1353 if (event->attr.pinned)
1354 return &ctx->pinned_groups;
1355 else
1356 return &ctx->flexible_groups;
1357}
1358
fccc714b 1359/*
cdd6c482 1360 * Add a event from the lists for its context.
fccc714b
PZ
1361 * Must be called with ctx->mutex and ctx->lock held.
1362 */
04289bb9 1363static void
cdd6c482 1364list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1365{
c994d613
PZ
1366 lockdep_assert_held(&ctx->lock);
1367
8a49542c
PZ
1368 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1369 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1370
1371 /*
8a49542c
PZ
1372 * If we're a stand alone event or group leader, we go to the context
1373 * list, group events are kept attached to the group so that
1374 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1375 */
8a49542c 1376 if (event->group_leader == event) {
889ff015
FW
1377 struct list_head *list;
1378
d6f962b5
FW
1379 if (is_software_event(event))
1380 event->group_flags |= PERF_GROUP_SOFTWARE;
1381
889ff015
FW
1382 list = ctx_group_list(event, ctx);
1383 list_add_tail(&event->group_entry, list);
5c148194 1384 }
592903cd 1385
08309379 1386 if (is_cgroup_event(event))
e5d1367f 1387 ctx->nr_cgroups++;
e5d1367f 1388
cdd6c482
IM
1389 list_add_rcu(&event->event_entry, &ctx->event_list);
1390 ctx->nr_events++;
1391 if (event->attr.inherit_stat)
bfbd3381 1392 ctx->nr_stat++;
5a3126d4
PZ
1393
1394 ctx->generation++;
04289bb9
IM
1395}
1396
0231bb53
JO
1397/*
1398 * Initialize event state based on the perf_event_attr::disabled.
1399 */
1400static inline void perf_event__state_init(struct perf_event *event)
1401{
1402 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1403 PERF_EVENT_STATE_INACTIVE;
1404}
1405
a723968c 1406static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1407{
1408 int entry = sizeof(u64); /* value */
1409 int size = 0;
1410 int nr = 1;
1411
1412 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1413 size += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1416 size += sizeof(u64);
1417
1418 if (event->attr.read_format & PERF_FORMAT_ID)
1419 entry += sizeof(u64);
1420
1421 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1422 nr += nr_siblings;
c320c7b7
ACM
1423 size += sizeof(u64);
1424 }
1425
1426 size += entry * nr;
1427 event->read_size = size;
1428}
1429
a723968c 1430static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1431{
1432 struct perf_sample_data *data;
c320c7b7
ACM
1433 u16 size = 0;
1434
c320c7b7
ACM
1435 if (sample_type & PERF_SAMPLE_IP)
1436 size += sizeof(data->ip);
1437
6844c09d
ACM
1438 if (sample_type & PERF_SAMPLE_ADDR)
1439 size += sizeof(data->addr);
1440
1441 if (sample_type & PERF_SAMPLE_PERIOD)
1442 size += sizeof(data->period);
1443
c3feedf2
AK
1444 if (sample_type & PERF_SAMPLE_WEIGHT)
1445 size += sizeof(data->weight);
1446
6844c09d
ACM
1447 if (sample_type & PERF_SAMPLE_READ)
1448 size += event->read_size;
1449
d6be9ad6
SE
1450 if (sample_type & PERF_SAMPLE_DATA_SRC)
1451 size += sizeof(data->data_src.val);
1452
fdfbbd07
AK
1453 if (sample_type & PERF_SAMPLE_TRANSACTION)
1454 size += sizeof(data->txn);
1455
6844c09d
ACM
1456 event->header_size = size;
1457}
1458
a723968c
PZ
1459/*
1460 * Called at perf_event creation and when events are attached/detached from a
1461 * group.
1462 */
1463static void perf_event__header_size(struct perf_event *event)
1464{
1465 __perf_event_read_size(event,
1466 event->group_leader->nr_siblings);
1467 __perf_event_header_size(event, event->attr.sample_type);
1468}
1469
6844c09d
ACM
1470static void perf_event__id_header_size(struct perf_event *event)
1471{
1472 struct perf_sample_data *data;
1473 u64 sample_type = event->attr.sample_type;
1474 u16 size = 0;
1475
c320c7b7
ACM
1476 if (sample_type & PERF_SAMPLE_TID)
1477 size += sizeof(data->tid_entry);
1478
1479 if (sample_type & PERF_SAMPLE_TIME)
1480 size += sizeof(data->time);
1481
ff3d527c
AH
1482 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1483 size += sizeof(data->id);
1484
c320c7b7
ACM
1485 if (sample_type & PERF_SAMPLE_ID)
1486 size += sizeof(data->id);
1487
1488 if (sample_type & PERF_SAMPLE_STREAM_ID)
1489 size += sizeof(data->stream_id);
1490
1491 if (sample_type & PERF_SAMPLE_CPU)
1492 size += sizeof(data->cpu_entry);
1493
6844c09d 1494 event->id_header_size = size;
c320c7b7
ACM
1495}
1496
a723968c
PZ
1497static bool perf_event_validate_size(struct perf_event *event)
1498{
1499 /*
1500 * The values computed here will be over-written when we actually
1501 * attach the event.
1502 */
1503 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1504 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1505 perf_event__id_header_size(event);
1506
1507 /*
1508 * Sum the lot; should not exceed the 64k limit we have on records.
1509 * Conservative limit to allow for callchains and other variable fields.
1510 */
1511 if (event->read_size + event->header_size +
1512 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1513 return false;
1514
1515 return true;
1516}
1517
8a49542c
PZ
1518static void perf_group_attach(struct perf_event *event)
1519{
c320c7b7 1520 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1521
74c3337c
PZ
1522 /*
1523 * We can have double attach due to group movement in perf_event_open.
1524 */
1525 if (event->attach_state & PERF_ATTACH_GROUP)
1526 return;
1527
8a49542c
PZ
1528 event->attach_state |= PERF_ATTACH_GROUP;
1529
1530 if (group_leader == event)
1531 return;
1532
652884fe
PZ
1533 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1534
8a49542c
PZ
1535 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1536 !is_software_event(event))
1537 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1538
1539 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1540 group_leader->nr_siblings++;
c320c7b7
ACM
1541
1542 perf_event__header_size(group_leader);
1543
1544 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1545 perf_event__header_size(pos);
8a49542c
PZ
1546}
1547
a63eaf34 1548/*
cdd6c482 1549 * Remove a event from the lists for its context.
fccc714b 1550 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1551 */
04289bb9 1552static void
cdd6c482 1553list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1554{
68cacd29 1555 struct perf_cpu_context *cpuctx;
652884fe
PZ
1556
1557 WARN_ON_ONCE(event->ctx != ctx);
1558 lockdep_assert_held(&ctx->lock);
1559
8a49542c
PZ
1560 /*
1561 * We can have double detach due to exit/hot-unplug + close.
1562 */
1563 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1564 return;
8a49542c
PZ
1565
1566 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1567
68cacd29 1568 if (is_cgroup_event(event)) {
e5d1367f 1569 ctx->nr_cgroups--;
70a01657
PZ
1570 /*
1571 * Because cgroup events are always per-cpu events, this will
1572 * always be called from the right CPU.
1573 */
68cacd29
SE
1574 cpuctx = __get_cpu_context(ctx);
1575 /*
70a01657
PZ
1576 * If there are no more cgroup events then clear cgrp to avoid
1577 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1578 */
1579 if (!ctx->nr_cgroups)
1580 cpuctx->cgrp = NULL;
1581 }
e5d1367f 1582
cdd6c482
IM
1583 ctx->nr_events--;
1584 if (event->attr.inherit_stat)
bfbd3381 1585 ctx->nr_stat--;
8bc20959 1586
cdd6c482 1587 list_del_rcu(&event->event_entry);
04289bb9 1588
8a49542c
PZ
1589 if (event->group_leader == event)
1590 list_del_init(&event->group_entry);
5c148194 1591
96c21a46 1592 update_group_times(event);
b2e74a26
SE
1593
1594 /*
1595 * If event was in error state, then keep it
1596 * that way, otherwise bogus counts will be
1597 * returned on read(). The only way to get out
1598 * of error state is by explicit re-enabling
1599 * of the event
1600 */
1601 if (event->state > PERF_EVENT_STATE_OFF)
1602 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1603
1604 ctx->generation++;
050735b0
PZ
1605}
1606
8a49542c 1607static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1608{
1609 struct perf_event *sibling, *tmp;
8a49542c
PZ
1610 struct list_head *list = NULL;
1611
1612 /*
1613 * We can have double detach due to exit/hot-unplug + close.
1614 */
1615 if (!(event->attach_state & PERF_ATTACH_GROUP))
1616 return;
1617
1618 event->attach_state &= ~PERF_ATTACH_GROUP;
1619
1620 /*
1621 * If this is a sibling, remove it from its group.
1622 */
1623 if (event->group_leader != event) {
1624 list_del_init(&event->group_entry);
1625 event->group_leader->nr_siblings--;
c320c7b7 1626 goto out;
8a49542c
PZ
1627 }
1628
1629 if (!list_empty(&event->group_entry))
1630 list = &event->group_entry;
2e2af50b 1631
04289bb9 1632 /*
cdd6c482
IM
1633 * If this was a group event with sibling events then
1634 * upgrade the siblings to singleton events by adding them
8a49542c 1635 * to whatever list we are on.
04289bb9 1636 */
cdd6c482 1637 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1638 if (list)
1639 list_move_tail(&sibling->group_entry, list);
04289bb9 1640 sibling->group_leader = sibling;
d6f962b5
FW
1641
1642 /* Inherit group flags from the previous leader */
1643 sibling->group_flags = event->group_flags;
652884fe
PZ
1644
1645 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1646 }
c320c7b7
ACM
1647
1648out:
1649 perf_event__header_size(event->group_leader);
1650
1651 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1652 perf_event__header_size(tmp);
04289bb9
IM
1653}
1654
fadfe7be
JO
1655static bool is_orphaned_event(struct perf_event *event)
1656{
a69b0ca4 1657 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1658}
1659
66eb579e
MR
1660static inline int pmu_filter_match(struct perf_event *event)
1661{
1662 struct pmu *pmu = event->pmu;
1663 return pmu->filter_match ? pmu->filter_match(event) : 1;
1664}
1665
fa66f07a
SE
1666static inline int
1667event_filter_match(struct perf_event *event)
1668{
e5d1367f 1669 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1670 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1671}
1672
9ffcfa6f
SE
1673static void
1674event_sched_out(struct perf_event *event,
3b6f9e5c 1675 struct perf_cpu_context *cpuctx,
cdd6c482 1676 struct perf_event_context *ctx)
3b6f9e5c 1677{
4158755d 1678 u64 tstamp = perf_event_time(event);
fa66f07a 1679 u64 delta;
652884fe
PZ
1680
1681 WARN_ON_ONCE(event->ctx != ctx);
1682 lockdep_assert_held(&ctx->lock);
1683
fa66f07a
SE
1684 /*
1685 * An event which could not be activated because of
1686 * filter mismatch still needs to have its timings
1687 * maintained, otherwise bogus information is return
1688 * via read() for time_enabled, time_running:
1689 */
1690 if (event->state == PERF_EVENT_STATE_INACTIVE
1691 && !event_filter_match(event)) {
e5d1367f 1692 delta = tstamp - event->tstamp_stopped;
fa66f07a 1693 event->tstamp_running += delta;
4158755d 1694 event->tstamp_stopped = tstamp;
fa66f07a
SE
1695 }
1696
cdd6c482 1697 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1698 return;
3b6f9e5c 1699
44377277
AS
1700 perf_pmu_disable(event->pmu);
1701
28a967c3
PZ
1702 event->tstamp_stopped = tstamp;
1703 event->pmu->del(event, 0);
1704 event->oncpu = -1;
cdd6c482
IM
1705 event->state = PERF_EVENT_STATE_INACTIVE;
1706 if (event->pending_disable) {
1707 event->pending_disable = 0;
1708 event->state = PERF_EVENT_STATE_OFF;
970892a9 1709 }
3b6f9e5c 1710
cdd6c482 1711 if (!is_software_event(event))
3b6f9e5c 1712 cpuctx->active_oncpu--;
2fde4f94
MR
1713 if (!--ctx->nr_active)
1714 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1715 if (event->attr.freq && event->attr.sample_freq)
1716 ctx->nr_freq--;
cdd6c482 1717 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1718 cpuctx->exclusive = 0;
44377277
AS
1719
1720 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1721}
1722
d859e29f 1723static void
cdd6c482 1724group_sched_out(struct perf_event *group_event,
d859e29f 1725 struct perf_cpu_context *cpuctx,
cdd6c482 1726 struct perf_event_context *ctx)
d859e29f 1727{
cdd6c482 1728 struct perf_event *event;
fa66f07a 1729 int state = group_event->state;
d859e29f 1730
cdd6c482 1731 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1732
1733 /*
1734 * Schedule out siblings (if any):
1735 */
cdd6c482
IM
1736 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1737 event_sched_out(event, cpuctx, ctx);
d859e29f 1738
fa66f07a 1739 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1740 cpuctx->exclusive = 0;
1741}
1742
45a0e07a 1743#define DETACH_GROUP 0x01UL
0017960f 1744
0793a61d 1745/*
cdd6c482 1746 * Cross CPU call to remove a performance event
0793a61d 1747 *
cdd6c482 1748 * We disable the event on the hardware level first. After that we
0793a61d
TG
1749 * remove it from the context list.
1750 */
fae3fde6
PZ
1751static void
1752__perf_remove_from_context(struct perf_event *event,
1753 struct perf_cpu_context *cpuctx,
1754 struct perf_event_context *ctx,
1755 void *info)
0793a61d 1756{
45a0e07a 1757 unsigned long flags = (unsigned long)info;
0793a61d 1758
cdd6c482 1759 event_sched_out(event, cpuctx, ctx);
45a0e07a 1760 if (flags & DETACH_GROUP)
46ce0fe9 1761 perf_group_detach(event);
cdd6c482 1762 list_del_event(event, ctx);
39a43640
PZ
1763
1764 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1765 ctx->is_active = 0;
39a43640
PZ
1766 if (ctx->task) {
1767 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1768 cpuctx->task_ctx = NULL;
1769 }
64ce3126 1770 }
0793a61d
TG
1771}
1772
0793a61d 1773/*
cdd6c482 1774 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1775 *
cdd6c482
IM
1776 * If event->ctx is a cloned context, callers must make sure that
1777 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1778 * remains valid. This is OK when called from perf_release since
1779 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1780 * When called from perf_event_exit_task, it's OK because the
c93f7669 1781 * context has been detached from its task.
0793a61d 1782 */
45a0e07a 1783static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1784{
fae3fde6 1785 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1786
45a0e07a 1787 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1788}
1789
d859e29f 1790/*
cdd6c482 1791 * Cross CPU call to disable a performance event
d859e29f 1792 */
fae3fde6
PZ
1793static void __perf_event_disable(struct perf_event *event,
1794 struct perf_cpu_context *cpuctx,
1795 struct perf_event_context *ctx,
1796 void *info)
7b648018 1797{
fae3fde6
PZ
1798 if (event->state < PERF_EVENT_STATE_INACTIVE)
1799 return;
7b648018 1800
fae3fde6
PZ
1801 update_context_time(ctx);
1802 update_cgrp_time_from_event(event);
1803 update_group_times(event);
1804 if (event == event->group_leader)
1805 group_sched_out(event, cpuctx, ctx);
1806 else
1807 event_sched_out(event, cpuctx, ctx);
1808 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1809}
1810
d859e29f 1811/*
cdd6c482 1812 * Disable a event.
c93f7669 1813 *
cdd6c482
IM
1814 * If event->ctx is a cloned context, callers must make sure that
1815 * every task struct that event->ctx->task could possibly point to
c93f7669 1816 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1817 * perf_event_for_each_child or perf_event_for_each because they
1818 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1819 * goes to exit will block in perf_event_exit_event().
1820 *
cdd6c482 1821 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1822 * is the current context on this CPU and preemption is disabled,
cdd6c482 1823 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1824 */
f63a8daa 1825static void _perf_event_disable(struct perf_event *event)
d859e29f 1826{
cdd6c482 1827 struct perf_event_context *ctx = event->ctx;
d859e29f 1828
e625cce1 1829 raw_spin_lock_irq(&ctx->lock);
7b648018 1830 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1831 raw_spin_unlock_irq(&ctx->lock);
7b648018 1832 return;
53cfbf59 1833 }
e625cce1 1834 raw_spin_unlock_irq(&ctx->lock);
7b648018 1835
fae3fde6
PZ
1836 event_function_call(event, __perf_event_disable, NULL);
1837}
1838
1839void perf_event_disable_local(struct perf_event *event)
1840{
1841 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1842}
f63a8daa
PZ
1843
1844/*
1845 * Strictly speaking kernel users cannot create groups and therefore this
1846 * interface does not need the perf_event_ctx_lock() magic.
1847 */
1848void perf_event_disable(struct perf_event *event)
1849{
1850 struct perf_event_context *ctx;
1851
1852 ctx = perf_event_ctx_lock(event);
1853 _perf_event_disable(event);
1854 perf_event_ctx_unlock(event, ctx);
1855}
dcfce4a0 1856EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1857
e5d1367f
SE
1858static void perf_set_shadow_time(struct perf_event *event,
1859 struct perf_event_context *ctx,
1860 u64 tstamp)
1861{
1862 /*
1863 * use the correct time source for the time snapshot
1864 *
1865 * We could get by without this by leveraging the
1866 * fact that to get to this function, the caller
1867 * has most likely already called update_context_time()
1868 * and update_cgrp_time_xx() and thus both timestamp
1869 * are identical (or very close). Given that tstamp is,
1870 * already adjusted for cgroup, we could say that:
1871 * tstamp - ctx->timestamp
1872 * is equivalent to
1873 * tstamp - cgrp->timestamp.
1874 *
1875 * Then, in perf_output_read(), the calculation would
1876 * work with no changes because:
1877 * - event is guaranteed scheduled in
1878 * - no scheduled out in between
1879 * - thus the timestamp would be the same
1880 *
1881 * But this is a bit hairy.
1882 *
1883 * So instead, we have an explicit cgroup call to remain
1884 * within the time time source all along. We believe it
1885 * is cleaner and simpler to understand.
1886 */
1887 if (is_cgroup_event(event))
1888 perf_cgroup_set_shadow_time(event, tstamp);
1889 else
1890 event->shadow_ctx_time = tstamp - ctx->timestamp;
1891}
1892
4fe757dd
PZ
1893#define MAX_INTERRUPTS (~0ULL)
1894
1895static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1896static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1897
235c7fc7 1898static int
9ffcfa6f 1899event_sched_in(struct perf_event *event,
235c7fc7 1900 struct perf_cpu_context *cpuctx,
6e37738a 1901 struct perf_event_context *ctx)
235c7fc7 1902{
4158755d 1903 u64 tstamp = perf_event_time(event);
44377277 1904 int ret = 0;
4158755d 1905
63342411
PZ
1906 lockdep_assert_held(&ctx->lock);
1907
cdd6c482 1908 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1909 return 0;
1910
cdd6c482 1911 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1912 event->oncpu = smp_processor_id();
4fe757dd
PZ
1913
1914 /*
1915 * Unthrottle events, since we scheduled we might have missed several
1916 * ticks already, also for a heavily scheduling task there is little
1917 * guarantee it'll get a tick in a timely manner.
1918 */
1919 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1920 perf_log_throttle(event, 1);
1921 event->hw.interrupts = 0;
1922 }
1923
235c7fc7
IM
1924 /*
1925 * The new state must be visible before we turn it on in the hardware:
1926 */
1927 smp_wmb();
1928
44377277
AS
1929 perf_pmu_disable(event->pmu);
1930
72f669c0
SL
1931 perf_set_shadow_time(event, ctx, tstamp);
1932
ec0d7729
AS
1933 perf_log_itrace_start(event);
1934
a4eaf7f1 1935 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1936 event->state = PERF_EVENT_STATE_INACTIVE;
1937 event->oncpu = -1;
44377277
AS
1938 ret = -EAGAIN;
1939 goto out;
235c7fc7
IM
1940 }
1941
00a2916f
PZ
1942 event->tstamp_running += tstamp - event->tstamp_stopped;
1943
cdd6c482 1944 if (!is_software_event(event))
3b6f9e5c 1945 cpuctx->active_oncpu++;
2fde4f94
MR
1946 if (!ctx->nr_active++)
1947 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1948 if (event->attr.freq && event->attr.sample_freq)
1949 ctx->nr_freq++;
235c7fc7 1950
cdd6c482 1951 if (event->attr.exclusive)
3b6f9e5c
PM
1952 cpuctx->exclusive = 1;
1953
44377277
AS
1954out:
1955 perf_pmu_enable(event->pmu);
1956
1957 return ret;
235c7fc7
IM
1958}
1959
6751b71e 1960static int
cdd6c482 1961group_sched_in(struct perf_event *group_event,
6751b71e 1962 struct perf_cpu_context *cpuctx,
6e37738a 1963 struct perf_event_context *ctx)
6751b71e 1964{
6bde9b6c 1965 struct perf_event *event, *partial_group = NULL;
4a234593 1966 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1967 u64 now = ctx->time;
1968 bool simulate = false;
6751b71e 1969
cdd6c482 1970 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1971 return 0;
1972
fbbe0701 1973 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1974
9ffcfa6f 1975 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1976 pmu->cancel_txn(pmu);
272325c4 1977 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1978 return -EAGAIN;
90151c35 1979 }
6751b71e
PM
1980
1981 /*
1982 * Schedule in siblings as one group (if any):
1983 */
cdd6c482 1984 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1985 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1986 partial_group = event;
6751b71e
PM
1987 goto group_error;
1988 }
1989 }
1990
9ffcfa6f 1991 if (!pmu->commit_txn(pmu))
6e85158c 1992 return 0;
9ffcfa6f 1993
6751b71e
PM
1994group_error:
1995 /*
1996 * Groups can be scheduled in as one unit only, so undo any
1997 * partial group before returning:
d7842da4
SE
1998 * The events up to the failed event are scheduled out normally,
1999 * tstamp_stopped will be updated.
2000 *
2001 * The failed events and the remaining siblings need to have
2002 * their timings updated as if they had gone thru event_sched_in()
2003 * and event_sched_out(). This is required to get consistent timings
2004 * across the group. This also takes care of the case where the group
2005 * could never be scheduled by ensuring tstamp_stopped is set to mark
2006 * the time the event was actually stopped, such that time delta
2007 * calculation in update_event_times() is correct.
6751b71e 2008 */
cdd6c482
IM
2009 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2010 if (event == partial_group)
d7842da4
SE
2011 simulate = true;
2012
2013 if (simulate) {
2014 event->tstamp_running += now - event->tstamp_stopped;
2015 event->tstamp_stopped = now;
2016 } else {
2017 event_sched_out(event, cpuctx, ctx);
2018 }
6751b71e 2019 }
9ffcfa6f 2020 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2021
ad5133b7 2022 pmu->cancel_txn(pmu);
90151c35 2023
272325c4 2024 perf_mux_hrtimer_restart(cpuctx);
9e630205 2025
6751b71e
PM
2026 return -EAGAIN;
2027}
2028
3b6f9e5c 2029/*
cdd6c482 2030 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2031 */
cdd6c482 2032static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2033 struct perf_cpu_context *cpuctx,
2034 int can_add_hw)
2035{
2036 /*
cdd6c482 2037 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2038 */
d6f962b5 2039 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2040 return 1;
2041 /*
2042 * If an exclusive group is already on, no other hardware
cdd6c482 2043 * events can go on.
3b6f9e5c
PM
2044 */
2045 if (cpuctx->exclusive)
2046 return 0;
2047 /*
2048 * If this group is exclusive and there are already
cdd6c482 2049 * events on the CPU, it can't go on.
3b6f9e5c 2050 */
cdd6c482 2051 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2052 return 0;
2053 /*
2054 * Otherwise, try to add it if all previous groups were able
2055 * to go on.
2056 */
2057 return can_add_hw;
2058}
2059
cdd6c482
IM
2060static void add_event_to_ctx(struct perf_event *event,
2061 struct perf_event_context *ctx)
53cfbf59 2062{
4158755d
SE
2063 u64 tstamp = perf_event_time(event);
2064
cdd6c482 2065 list_add_event(event, ctx);
8a49542c 2066 perf_group_attach(event);
4158755d
SE
2067 event->tstamp_enabled = tstamp;
2068 event->tstamp_running = tstamp;
2069 event->tstamp_stopped = tstamp;
53cfbf59
PM
2070}
2071
bd2afa49
PZ
2072static void ctx_sched_out(struct perf_event_context *ctx,
2073 struct perf_cpu_context *cpuctx,
2074 enum event_type_t event_type);
2c29ef0f
PZ
2075static void
2076ctx_sched_in(struct perf_event_context *ctx,
2077 struct perf_cpu_context *cpuctx,
2078 enum event_type_t event_type,
2079 struct task_struct *task);
fe4b04fa 2080
bd2afa49
PZ
2081static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2082 struct perf_event_context *ctx)
2083{
2084 if (!cpuctx->task_ctx)
2085 return;
2086
2087 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2088 return;
2089
2090 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2091}
2092
dce5855b
PZ
2093static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2094 struct perf_event_context *ctx,
2095 struct task_struct *task)
2096{
2097 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2098 if (ctx)
2099 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2100 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2101 if (ctx)
2102 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2103}
2104
3e349507
PZ
2105static void ctx_resched(struct perf_cpu_context *cpuctx,
2106 struct perf_event_context *task_ctx)
0017960f 2107{
3e349507
PZ
2108 perf_pmu_disable(cpuctx->ctx.pmu);
2109 if (task_ctx)
2110 task_ctx_sched_out(cpuctx, task_ctx);
2111 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2112 perf_event_sched_in(cpuctx, task_ctx, current);
2113 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2114}
2115
0793a61d 2116/*
cdd6c482 2117 * Cross CPU call to install and enable a performance event
682076ae
PZ
2118 *
2119 * Must be called with ctx->mutex held
0793a61d 2120 */
fe4b04fa 2121static int __perf_install_in_context(void *info)
0793a61d 2122{
39a43640 2123 struct perf_event_context *ctx = info;
108b02cf 2124 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2125 struct perf_event_context *task_ctx = cpuctx->task_ctx;
0793a61d 2126
63b6da39 2127 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2128 if (ctx->task) {
b58f6b0d 2129 raw_spin_lock(&ctx->lock);
39a43640
PZ
2130 /*
2131 * If we hit the 'wrong' task, we've since scheduled and
2132 * everything should be sorted, nothing to do!
2133 */
b58f6b0d 2134 task_ctx = ctx;
39a43640 2135 if (ctx->task != current)
63b6da39 2136 goto unlock;
b58f6b0d 2137
39a43640
PZ
2138 /*
2139 * If task_ctx is set, it had better be to us.
2140 */
2141 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2142 } else if (task_ctx) {
2143 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2144 }
b58f6b0d 2145
39a43640 2146 ctx_resched(cpuctx, task_ctx);
63b6da39 2147unlock:
2c29ef0f 2148 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2149
2150 return 0;
0793a61d
TG
2151}
2152
2153/*
cdd6c482 2154 * Attach a performance event to a context
0793a61d
TG
2155 */
2156static void
cdd6c482
IM
2157perf_install_in_context(struct perf_event_context *ctx,
2158 struct perf_event *event,
0793a61d
TG
2159 int cpu)
2160{
39a43640
PZ
2161 struct task_struct *task = NULL;
2162
fe4b04fa
PZ
2163 lockdep_assert_held(&ctx->mutex);
2164
c3f00c70 2165 event->ctx = ctx;
0cda4c02
YZ
2166 if (event->cpu != -1)
2167 event->cpu = cpu;
c3f00c70 2168
39a43640
PZ
2169 /*
2170 * Installing events is tricky because we cannot rely on ctx->is_active
2171 * to be set in case this is the nr_events 0 -> 1 transition.
2172 *
2173 * So what we do is we add the event to the list here, which will allow
2174 * a future context switch to DTRT and then send a racy IPI. If the IPI
2175 * fails to hit the right task, this means a context switch must have
2176 * happened and that will have taken care of business.
2177 */
2178 raw_spin_lock_irq(&ctx->lock);
63b6da39 2179 task = ctx->task;
84c4e620 2180
63b6da39 2181 /*
84c4e620
PZ
2182 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
2183 * ctx gets destroyed, we must not install an event into it.
2184 *
2185 * This is normally tested for after we acquire the mutex, so this is
2186 * a sanity check.
63b6da39 2187 */
84c4e620 2188 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
63b6da39
PZ
2189 raw_spin_unlock_irq(&ctx->lock);
2190 return;
2191 }
6f932e5b
PZ
2192
2193 if (ctx->is_active) {
2194 update_context_time(ctx);
2195 update_cgrp_time_from_event(event);
2196 }
2197
39a43640 2198 add_event_to_ctx(event, ctx);
39a43640
PZ
2199 raw_spin_unlock_irq(&ctx->lock);
2200
2201 if (task)
2202 task_function_call(task, __perf_install_in_context, ctx);
2203 else
2204 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2205}
2206
fa289bec 2207/*
cdd6c482 2208 * Put a event into inactive state and update time fields.
fa289bec
PM
2209 * Enabling the leader of a group effectively enables all
2210 * the group members that aren't explicitly disabled, so we
2211 * have to update their ->tstamp_enabled also.
2212 * Note: this works for group members as well as group leaders
2213 * since the non-leader members' sibling_lists will be empty.
2214 */
1d9b482e 2215static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2216{
cdd6c482 2217 struct perf_event *sub;
4158755d 2218 u64 tstamp = perf_event_time(event);
fa289bec 2219
cdd6c482 2220 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2221 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2222 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2223 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2224 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2225 }
fa289bec
PM
2226}
2227
d859e29f 2228/*
cdd6c482 2229 * Cross CPU call to enable a performance event
d859e29f 2230 */
fae3fde6
PZ
2231static void __perf_event_enable(struct perf_event *event,
2232 struct perf_cpu_context *cpuctx,
2233 struct perf_event_context *ctx,
2234 void *info)
04289bb9 2235{
cdd6c482 2236 struct perf_event *leader = event->group_leader;
fae3fde6 2237 struct perf_event_context *task_ctx;
04289bb9 2238
6e801e01
PZ
2239 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2240 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2241 return;
3cbed429 2242
bd2afa49
PZ
2243 if (ctx->is_active)
2244 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2245
1d9b482e 2246 __perf_event_mark_enabled(event);
04289bb9 2247
fae3fde6
PZ
2248 if (!ctx->is_active)
2249 return;
2250
e5d1367f 2251 if (!event_filter_match(event)) {
bd2afa49 2252 if (is_cgroup_event(event))
e5d1367f 2253 perf_cgroup_defer_enabled(event);
bd2afa49 2254 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2255 return;
e5d1367f 2256 }
f4c4176f 2257
04289bb9 2258 /*
cdd6c482 2259 * If the event is in a group and isn't the group leader,
d859e29f 2260 * then don't put it on unless the group is on.
04289bb9 2261 */
bd2afa49
PZ
2262 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2263 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2264 return;
bd2afa49 2265 }
fe4b04fa 2266
fae3fde6
PZ
2267 task_ctx = cpuctx->task_ctx;
2268 if (ctx->task)
2269 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2270
fae3fde6 2271 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2272}
2273
d859e29f 2274/*
cdd6c482 2275 * Enable a event.
c93f7669 2276 *
cdd6c482
IM
2277 * If event->ctx is a cloned context, callers must make sure that
2278 * every task struct that event->ctx->task could possibly point to
c93f7669 2279 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2280 * perf_event_for_each_child or perf_event_for_each as described
2281 * for perf_event_disable.
d859e29f 2282 */
f63a8daa 2283static void _perf_event_enable(struct perf_event *event)
d859e29f 2284{
cdd6c482 2285 struct perf_event_context *ctx = event->ctx;
d859e29f 2286
7b648018 2287 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2288 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2290 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2291 return;
2292 }
2293
d859e29f 2294 /*
cdd6c482 2295 * If the event is in error state, clear that first.
7b648018
PZ
2296 *
2297 * That way, if we see the event in error state below, we know that it
2298 * has gone back into error state, as distinct from the task having
2299 * been scheduled away before the cross-call arrived.
d859e29f 2300 */
cdd6c482
IM
2301 if (event->state == PERF_EVENT_STATE_ERROR)
2302 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2303 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2304
fae3fde6 2305 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2306}
f63a8daa
PZ
2307
2308/*
2309 * See perf_event_disable();
2310 */
2311void perf_event_enable(struct perf_event *event)
2312{
2313 struct perf_event_context *ctx;
2314
2315 ctx = perf_event_ctx_lock(event);
2316 _perf_event_enable(event);
2317 perf_event_ctx_unlock(event, ctx);
2318}
dcfce4a0 2319EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2320
f63a8daa 2321static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2322{
2023b359 2323 /*
cdd6c482 2324 * not supported on inherited events
2023b359 2325 */
2e939d1d 2326 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2327 return -EINVAL;
2328
cdd6c482 2329 atomic_add(refresh, &event->event_limit);
f63a8daa 2330 _perf_event_enable(event);
2023b359
PZ
2331
2332 return 0;
79f14641 2333}
f63a8daa
PZ
2334
2335/*
2336 * See perf_event_disable()
2337 */
2338int perf_event_refresh(struct perf_event *event, int refresh)
2339{
2340 struct perf_event_context *ctx;
2341 int ret;
2342
2343 ctx = perf_event_ctx_lock(event);
2344 ret = _perf_event_refresh(event, refresh);
2345 perf_event_ctx_unlock(event, ctx);
2346
2347 return ret;
2348}
26ca5c11 2349EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2350
5b0311e1
FW
2351static void ctx_sched_out(struct perf_event_context *ctx,
2352 struct perf_cpu_context *cpuctx,
2353 enum event_type_t event_type)
235c7fc7 2354{
db24d33e 2355 int is_active = ctx->is_active;
c994d613 2356 struct perf_event *event;
235c7fc7 2357
c994d613 2358 lockdep_assert_held(&ctx->lock);
235c7fc7 2359
39a43640
PZ
2360 if (likely(!ctx->nr_events)) {
2361 /*
2362 * See __perf_remove_from_context().
2363 */
2364 WARN_ON_ONCE(ctx->is_active);
2365 if (ctx->task)
2366 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2367 return;
39a43640
PZ
2368 }
2369
db24d33e 2370 ctx->is_active &= ~event_type;
3cbaa590
PZ
2371 if (!(ctx->is_active & EVENT_ALL))
2372 ctx->is_active = 0;
2373
63e30d3e
PZ
2374 if (ctx->task) {
2375 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2376 if (!ctx->is_active)
2377 cpuctx->task_ctx = NULL;
2378 }
facc4307 2379
3cbaa590
PZ
2380 is_active ^= ctx->is_active; /* changed bits */
2381
2382 if (is_active & EVENT_TIME) {
2383 /* update (and stop) ctx time */
2384 update_context_time(ctx);
2385 update_cgrp_time_from_cpuctx(cpuctx);
2386 }
2387
2388 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2389 return;
5b0311e1 2390
075e0b00 2391 perf_pmu_disable(ctx->pmu);
3cbaa590 2392 if (is_active & EVENT_PINNED) {
889ff015
FW
2393 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2394 group_sched_out(event, cpuctx, ctx);
9ed6060d 2395 }
889ff015 2396
3cbaa590 2397 if (is_active & EVENT_FLEXIBLE) {
889ff015 2398 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2399 group_sched_out(event, cpuctx, ctx);
9ed6060d 2400 }
1b9a644f 2401 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2402}
2403
564c2b21 2404/*
5a3126d4
PZ
2405 * Test whether two contexts are equivalent, i.e. whether they have both been
2406 * cloned from the same version of the same context.
2407 *
2408 * Equivalence is measured using a generation number in the context that is
2409 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2410 * and list_del_event().
564c2b21 2411 */
cdd6c482
IM
2412static int context_equiv(struct perf_event_context *ctx1,
2413 struct perf_event_context *ctx2)
564c2b21 2414{
211de6eb
PZ
2415 lockdep_assert_held(&ctx1->lock);
2416 lockdep_assert_held(&ctx2->lock);
2417
5a3126d4
PZ
2418 /* Pinning disables the swap optimization */
2419 if (ctx1->pin_count || ctx2->pin_count)
2420 return 0;
2421
2422 /* If ctx1 is the parent of ctx2 */
2423 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2424 return 1;
2425
2426 /* If ctx2 is the parent of ctx1 */
2427 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2428 return 1;
2429
2430 /*
2431 * If ctx1 and ctx2 have the same parent; we flatten the parent
2432 * hierarchy, see perf_event_init_context().
2433 */
2434 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2435 ctx1->parent_gen == ctx2->parent_gen)
2436 return 1;
2437
2438 /* Unmatched */
2439 return 0;
564c2b21
PM
2440}
2441
cdd6c482
IM
2442static void __perf_event_sync_stat(struct perf_event *event,
2443 struct perf_event *next_event)
bfbd3381
PZ
2444{
2445 u64 value;
2446
cdd6c482 2447 if (!event->attr.inherit_stat)
bfbd3381
PZ
2448 return;
2449
2450 /*
cdd6c482 2451 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2452 * because we're in the middle of a context switch and have IRQs
2453 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2454 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2455 * don't need to use it.
2456 */
cdd6c482
IM
2457 switch (event->state) {
2458 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2459 event->pmu->read(event);
2460 /* fall-through */
bfbd3381 2461
cdd6c482
IM
2462 case PERF_EVENT_STATE_INACTIVE:
2463 update_event_times(event);
bfbd3381
PZ
2464 break;
2465
2466 default:
2467 break;
2468 }
2469
2470 /*
cdd6c482 2471 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2472 * values when we flip the contexts.
2473 */
e7850595
PZ
2474 value = local64_read(&next_event->count);
2475 value = local64_xchg(&event->count, value);
2476 local64_set(&next_event->count, value);
bfbd3381 2477
cdd6c482
IM
2478 swap(event->total_time_enabled, next_event->total_time_enabled);
2479 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2480
bfbd3381 2481 /*
19d2e755 2482 * Since we swizzled the values, update the user visible data too.
bfbd3381 2483 */
cdd6c482
IM
2484 perf_event_update_userpage(event);
2485 perf_event_update_userpage(next_event);
bfbd3381
PZ
2486}
2487
cdd6c482
IM
2488static void perf_event_sync_stat(struct perf_event_context *ctx,
2489 struct perf_event_context *next_ctx)
bfbd3381 2490{
cdd6c482 2491 struct perf_event *event, *next_event;
bfbd3381
PZ
2492
2493 if (!ctx->nr_stat)
2494 return;
2495
02ffdbc8
PZ
2496 update_context_time(ctx);
2497
cdd6c482
IM
2498 event = list_first_entry(&ctx->event_list,
2499 struct perf_event, event_entry);
bfbd3381 2500
cdd6c482
IM
2501 next_event = list_first_entry(&next_ctx->event_list,
2502 struct perf_event, event_entry);
bfbd3381 2503
cdd6c482
IM
2504 while (&event->event_entry != &ctx->event_list &&
2505 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2506
cdd6c482 2507 __perf_event_sync_stat(event, next_event);
bfbd3381 2508
cdd6c482
IM
2509 event = list_next_entry(event, event_entry);
2510 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2511 }
2512}
2513
fe4b04fa
PZ
2514static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2515 struct task_struct *next)
0793a61d 2516{
8dc85d54 2517 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2518 struct perf_event_context *next_ctx;
5a3126d4 2519 struct perf_event_context *parent, *next_parent;
108b02cf 2520 struct perf_cpu_context *cpuctx;
c93f7669 2521 int do_switch = 1;
0793a61d 2522
108b02cf
PZ
2523 if (likely(!ctx))
2524 return;
10989fb2 2525
108b02cf
PZ
2526 cpuctx = __get_cpu_context(ctx);
2527 if (!cpuctx->task_ctx)
0793a61d
TG
2528 return;
2529
c93f7669 2530 rcu_read_lock();
8dc85d54 2531 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2532 if (!next_ctx)
2533 goto unlock;
2534
2535 parent = rcu_dereference(ctx->parent_ctx);
2536 next_parent = rcu_dereference(next_ctx->parent_ctx);
2537
2538 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2539 if (!parent && !next_parent)
5a3126d4
PZ
2540 goto unlock;
2541
2542 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2543 /*
2544 * Looks like the two contexts are clones, so we might be
2545 * able to optimize the context switch. We lock both
2546 * contexts and check that they are clones under the
2547 * lock (including re-checking that neither has been
2548 * uncloned in the meantime). It doesn't matter which
2549 * order we take the locks because no other cpu could
2550 * be trying to lock both of these tasks.
2551 */
e625cce1
TG
2552 raw_spin_lock(&ctx->lock);
2553 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2554 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2555 WRITE_ONCE(ctx->task, next);
2556 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2557
2558 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2559
63b6da39
PZ
2560 /*
2561 * RCU_INIT_POINTER here is safe because we've not
2562 * modified the ctx and the above modification of
2563 * ctx->task and ctx->task_ctx_data are immaterial
2564 * since those values are always verified under
2565 * ctx->lock which we're now holding.
2566 */
2567 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2568 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2569
c93f7669 2570 do_switch = 0;
bfbd3381 2571
cdd6c482 2572 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2573 }
e625cce1
TG
2574 raw_spin_unlock(&next_ctx->lock);
2575 raw_spin_unlock(&ctx->lock);
564c2b21 2576 }
5a3126d4 2577unlock:
c93f7669 2578 rcu_read_unlock();
564c2b21 2579
c93f7669 2580 if (do_switch) {
facc4307 2581 raw_spin_lock(&ctx->lock);
8833d0e2 2582 task_ctx_sched_out(cpuctx, ctx);
facc4307 2583 raw_spin_unlock(&ctx->lock);
c93f7669 2584 }
0793a61d
TG
2585}
2586
ba532500
YZ
2587void perf_sched_cb_dec(struct pmu *pmu)
2588{
2589 this_cpu_dec(perf_sched_cb_usages);
2590}
2591
2592void perf_sched_cb_inc(struct pmu *pmu)
2593{
2594 this_cpu_inc(perf_sched_cb_usages);
2595}
2596
2597/*
2598 * This function provides the context switch callback to the lower code
2599 * layer. It is invoked ONLY when the context switch callback is enabled.
2600 */
2601static void perf_pmu_sched_task(struct task_struct *prev,
2602 struct task_struct *next,
2603 bool sched_in)
2604{
2605 struct perf_cpu_context *cpuctx;
2606 struct pmu *pmu;
2607 unsigned long flags;
2608
2609 if (prev == next)
2610 return;
2611
2612 local_irq_save(flags);
2613
2614 rcu_read_lock();
2615
2616 list_for_each_entry_rcu(pmu, &pmus, entry) {
2617 if (pmu->sched_task) {
2618 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2619
2620 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2621
2622 perf_pmu_disable(pmu);
2623
2624 pmu->sched_task(cpuctx->task_ctx, sched_in);
2625
2626 perf_pmu_enable(pmu);
2627
2628 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2629 }
2630 }
2631
2632 rcu_read_unlock();
2633
2634 local_irq_restore(flags);
2635}
2636
45ac1403
AH
2637static void perf_event_switch(struct task_struct *task,
2638 struct task_struct *next_prev, bool sched_in);
2639
8dc85d54
PZ
2640#define for_each_task_context_nr(ctxn) \
2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642
2643/*
2644 * Called from scheduler to remove the events of the current task,
2645 * with interrupts disabled.
2646 *
2647 * We stop each event and update the event value in event->count.
2648 *
2649 * This does not protect us against NMI, but disable()
2650 * sets the disabled bit in the control field of event _before_
2651 * accessing the event control register. If a NMI hits, then it will
2652 * not restart the event.
2653 */
ab0cce56
JO
2654void __perf_event_task_sched_out(struct task_struct *task,
2655 struct task_struct *next)
8dc85d54
PZ
2656{
2657 int ctxn;
2658
ba532500
YZ
2659 if (__this_cpu_read(perf_sched_cb_usages))
2660 perf_pmu_sched_task(task, next, false);
2661
45ac1403
AH
2662 if (atomic_read(&nr_switch_events))
2663 perf_event_switch(task, next, false);
2664
8dc85d54
PZ
2665 for_each_task_context_nr(ctxn)
2666 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2667
2668 /*
2669 * if cgroup events exist on this CPU, then we need
2670 * to check if we have to switch out PMU state.
2671 * cgroup event are system-wide mode only
2672 */
4a32fea9 2673 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2674 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
db24d33e 2751 int is_active = ctx->is_active;
c994d613
PZ
2752 u64 now;
2753
2754 lockdep_assert_held(&ctx->lock);
e5d1367f 2755
5b0311e1 2756 if (likely(!ctx->nr_events))
facc4307 2757 return;
5b0311e1 2758
3cbaa590 2759 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2760 if (ctx->task) {
2761 if (!is_active)
2762 cpuctx->task_ctx = ctx;
2763 else
2764 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2765 }
2766
3cbaa590
PZ
2767 is_active ^= ctx->is_active; /* changed bits */
2768
2769 if (is_active & EVENT_TIME) {
2770 /* start ctx time */
2771 now = perf_clock();
2772 ctx->timestamp = now;
2773 perf_cgroup_set_timestamp(task, ctx);
2774 }
2775
5b0311e1
FW
2776 /*
2777 * First go through the list and put on any pinned groups
2778 * in order to give them the best chance of going on.
2779 */
3cbaa590 2780 if (is_active & EVENT_PINNED)
6e37738a 2781 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2782
2783 /* Then walk through the lower prio flexible groups */
3cbaa590 2784 if (is_active & EVENT_FLEXIBLE)
6e37738a 2785 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2786}
2787
329c0e01 2788static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2789 enum event_type_t event_type,
2790 struct task_struct *task)
329c0e01
FW
2791{
2792 struct perf_event_context *ctx = &cpuctx->ctx;
2793
e5d1367f 2794 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2795}
2796
e5d1367f
SE
2797static void perf_event_context_sched_in(struct perf_event_context *ctx,
2798 struct task_struct *task)
235c7fc7 2799{
108b02cf 2800 struct perf_cpu_context *cpuctx;
235c7fc7 2801
108b02cf 2802 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2803 if (cpuctx->task_ctx == ctx)
2804 return;
2805
facc4307 2806 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2807 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2808 /*
2809 * We want to keep the following priority order:
2810 * cpu pinned (that don't need to move), task pinned,
2811 * cpu flexible, task flexible.
2812 */
2813 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2814 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2815 perf_pmu_enable(ctx->pmu);
2816 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2817}
2818
8dc85d54
PZ
2819/*
2820 * Called from scheduler to add the events of the current task
2821 * with interrupts disabled.
2822 *
2823 * We restore the event value and then enable it.
2824 *
2825 * This does not protect us against NMI, but enable()
2826 * sets the enabled bit in the control field of event _before_
2827 * accessing the event control register. If a NMI hits, then it will
2828 * keep the event running.
2829 */
ab0cce56
JO
2830void __perf_event_task_sched_in(struct task_struct *prev,
2831 struct task_struct *task)
8dc85d54
PZ
2832{
2833 struct perf_event_context *ctx;
2834 int ctxn;
2835
7e41d177
PZ
2836 /*
2837 * If cgroup events exist on this CPU, then we need to check if we have
2838 * to switch in PMU state; cgroup event are system-wide mode only.
2839 *
2840 * Since cgroup events are CPU events, we must schedule these in before
2841 * we schedule in the task events.
2842 */
2843 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2844 perf_cgroup_sched_in(prev, task);
2845
8dc85d54
PZ
2846 for_each_task_context_nr(ctxn) {
2847 ctx = task->perf_event_ctxp[ctxn];
2848 if (likely(!ctx))
2849 continue;
2850
e5d1367f 2851 perf_event_context_sched_in(ctx, task);
8dc85d54 2852 }
d010b332 2853
45ac1403
AH
2854 if (atomic_read(&nr_switch_events))
2855 perf_event_switch(task, prev, true);
2856
ba532500
YZ
2857 if (__this_cpu_read(perf_sched_cb_usages))
2858 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2859}
2860
abd50713
PZ
2861static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2862{
2863 u64 frequency = event->attr.sample_freq;
2864 u64 sec = NSEC_PER_SEC;
2865 u64 divisor, dividend;
2866
2867 int count_fls, nsec_fls, frequency_fls, sec_fls;
2868
2869 count_fls = fls64(count);
2870 nsec_fls = fls64(nsec);
2871 frequency_fls = fls64(frequency);
2872 sec_fls = 30;
2873
2874 /*
2875 * We got @count in @nsec, with a target of sample_freq HZ
2876 * the target period becomes:
2877 *
2878 * @count * 10^9
2879 * period = -------------------
2880 * @nsec * sample_freq
2881 *
2882 */
2883
2884 /*
2885 * Reduce accuracy by one bit such that @a and @b converge
2886 * to a similar magnitude.
2887 */
fe4b04fa 2888#define REDUCE_FLS(a, b) \
abd50713
PZ
2889do { \
2890 if (a##_fls > b##_fls) { \
2891 a >>= 1; \
2892 a##_fls--; \
2893 } else { \
2894 b >>= 1; \
2895 b##_fls--; \
2896 } \
2897} while (0)
2898
2899 /*
2900 * Reduce accuracy until either term fits in a u64, then proceed with
2901 * the other, so that finally we can do a u64/u64 division.
2902 */
2903 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2904 REDUCE_FLS(nsec, frequency);
2905 REDUCE_FLS(sec, count);
2906 }
2907
2908 if (count_fls + sec_fls > 64) {
2909 divisor = nsec * frequency;
2910
2911 while (count_fls + sec_fls > 64) {
2912 REDUCE_FLS(count, sec);
2913 divisor >>= 1;
2914 }
2915
2916 dividend = count * sec;
2917 } else {
2918 dividend = count * sec;
2919
2920 while (nsec_fls + frequency_fls > 64) {
2921 REDUCE_FLS(nsec, frequency);
2922 dividend >>= 1;
2923 }
2924
2925 divisor = nsec * frequency;
2926 }
2927
f6ab91ad
PZ
2928 if (!divisor)
2929 return dividend;
2930
abd50713
PZ
2931 return div64_u64(dividend, divisor);
2932}
2933
e050e3f0
SE
2934static DEFINE_PER_CPU(int, perf_throttled_count);
2935static DEFINE_PER_CPU(u64, perf_throttled_seq);
2936
f39d47ff 2937static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2938{
cdd6c482 2939 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2940 s64 period, sample_period;
bd2b5b12
PZ
2941 s64 delta;
2942
abd50713 2943 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2944
2945 delta = (s64)(period - hwc->sample_period);
2946 delta = (delta + 7) / 8; /* low pass filter */
2947
2948 sample_period = hwc->sample_period + delta;
2949
2950 if (!sample_period)
2951 sample_period = 1;
2952
bd2b5b12 2953 hwc->sample_period = sample_period;
abd50713 2954
e7850595 2955 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2956 if (disable)
2957 event->pmu->stop(event, PERF_EF_UPDATE);
2958
e7850595 2959 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2960
2961 if (disable)
2962 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2963 }
bd2b5b12
PZ
2964}
2965
e050e3f0
SE
2966/*
2967 * combine freq adjustment with unthrottling to avoid two passes over the
2968 * events. At the same time, make sure, having freq events does not change
2969 * the rate of unthrottling as that would introduce bias.
2970 */
2971static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2972 int needs_unthr)
60db5e09 2973{
cdd6c482
IM
2974 struct perf_event *event;
2975 struct hw_perf_event *hwc;
e050e3f0 2976 u64 now, period = TICK_NSEC;
abd50713 2977 s64 delta;
60db5e09 2978
e050e3f0
SE
2979 /*
2980 * only need to iterate over all events iff:
2981 * - context have events in frequency mode (needs freq adjust)
2982 * - there are events to unthrottle on this cpu
2983 */
2984 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2985 return;
2986
e050e3f0 2987 raw_spin_lock(&ctx->lock);
f39d47ff 2988 perf_pmu_disable(ctx->pmu);
e050e3f0 2989
03541f8b 2990 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2991 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2992 continue;
2993
5632ab12 2994 if (!event_filter_match(event))
5d27c23d
PZ
2995 continue;
2996
44377277
AS
2997 perf_pmu_disable(event->pmu);
2998
cdd6c482 2999 hwc = &event->hw;
6a24ed6c 3000
ae23bff1 3001 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3002 hwc->interrupts = 0;
cdd6c482 3003 perf_log_throttle(event, 1);
a4eaf7f1 3004 event->pmu->start(event, 0);
a78ac325
PZ
3005 }
3006
cdd6c482 3007 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3008 goto next;
60db5e09 3009
e050e3f0
SE
3010 /*
3011 * stop the event and update event->count
3012 */
3013 event->pmu->stop(event, PERF_EF_UPDATE);
3014
e7850595 3015 now = local64_read(&event->count);
abd50713
PZ
3016 delta = now - hwc->freq_count_stamp;
3017 hwc->freq_count_stamp = now;
60db5e09 3018
e050e3f0
SE
3019 /*
3020 * restart the event
3021 * reload only if value has changed
f39d47ff
SE
3022 * we have stopped the event so tell that
3023 * to perf_adjust_period() to avoid stopping it
3024 * twice.
e050e3f0 3025 */
abd50713 3026 if (delta > 0)
f39d47ff 3027 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3028
3029 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3030 next:
3031 perf_pmu_enable(event->pmu);
60db5e09 3032 }
e050e3f0 3033
f39d47ff 3034 perf_pmu_enable(ctx->pmu);
e050e3f0 3035 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3036}
3037
235c7fc7 3038/*
cdd6c482 3039 * Round-robin a context's events:
235c7fc7 3040 */
cdd6c482 3041static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3042{
dddd3379
TG
3043 /*
3044 * Rotate the first entry last of non-pinned groups. Rotation might be
3045 * disabled by the inheritance code.
3046 */
3047 if (!ctx->rotate_disable)
3048 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3049}
3050
9e630205 3051static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3052{
8dc85d54 3053 struct perf_event_context *ctx = NULL;
2fde4f94 3054 int rotate = 0;
7fc23a53 3055
b5ab4cd5 3056 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3057 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3058 rotate = 1;
3059 }
235c7fc7 3060
8dc85d54 3061 ctx = cpuctx->task_ctx;
b5ab4cd5 3062 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3063 if (ctx->nr_events != ctx->nr_active)
3064 rotate = 1;
3065 }
9717e6cd 3066
e050e3f0 3067 if (!rotate)
0f5a2601
PZ
3068 goto done;
3069
facc4307 3070 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3071 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3072
e050e3f0
SE
3073 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3074 if (ctx)
3075 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3076
e050e3f0
SE
3077 rotate_ctx(&cpuctx->ctx);
3078 if (ctx)
3079 rotate_ctx(ctx);
235c7fc7 3080
e050e3f0 3081 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3082
0f5a2601
PZ
3083 perf_pmu_enable(cpuctx->ctx.pmu);
3084 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3085done:
9e630205
SE
3086
3087 return rotate;
e9d2b064
PZ
3088}
3089
026249ef
FW
3090#ifdef CONFIG_NO_HZ_FULL
3091bool perf_event_can_stop_tick(void)
3092{
948b26b6 3093 if (atomic_read(&nr_freq_events) ||
d84153d6 3094 __this_cpu_read(perf_throttled_count))
026249ef 3095 return false;
d84153d6
FW
3096 else
3097 return true;
026249ef
FW
3098}
3099#endif
3100
e9d2b064
PZ
3101void perf_event_task_tick(void)
3102{
2fde4f94
MR
3103 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3104 struct perf_event_context *ctx, *tmp;
e050e3f0 3105 int throttled;
b5ab4cd5 3106
e9d2b064
PZ
3107 WARN_ON(!irqs_disabled());
3108
e050e3f0
SE
3109 __this_cpu_inc(perf_throttled_seq);
3110 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3111
2fde4f94 3112 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3113 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3114}
3115
889ff015
FW
3116static int event_enable_on_exec(struct perf_event *event,
3117 struct perf_event_context *ctx)
3118{
3119 if (!event->attr.enable_on_exec)
3120 return 0;
3121
3122 event->attr.enable_on_exec = 0;
3123 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3124 return 0;
3125
1d9b482e 3126 __perf_event_mark_enabled(event);
889ff015
FW
3127
3128 return 1;
3129}
3130
57e7986e 3131/*
cdd6c482 3132 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3133 * This expects task == current.
3134 */
c1274499 3135static void perf_event_enable_on_exec(int ctxn)
57e7986e 3136{
c1274499 3137 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3138 struct perf_cpu_context *cpuctx;
cdd6c482 3139 struct perf_event *event;
57e7986e
PM
3140 unsigned long flags;
3141 int enabled = 0;
3142
3143 local_irq_save(flags);
c1274499 3144 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3145 if (!ctx || !ctx->nr_events)
57e7986e
PM
3146 goto out;
3147
3e349507
PZ
3148 cpuctx = __get_cpu_context(ctx);
3149 perf_ctx_lock(cpuctx, ctx);
7fce2509 3150 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3151 list_for_each_entry(event, &ctx->event_list, event_entry)
3152 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3153
3154 /*
3e349507 3155 * Unclone and reschedule this context if we enabled any event.
57e7986e 3156 */
3e349507 3157 if (enabled) {
211de6eb 3158 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3159 ctx_resched(cpuctx, ctx);
3160 }
3161 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3162
9ed6060d 3163out:
57e7986e 3164 local_irq_restore(flags);
211de6eb
PZ
3165
3166 if (clone_ctx)
3167 put_ctx(clone_ctx);
57e7986e
PM
3168}
3169
e041e328
PZ
3170void perf_event_exec(void)
3171{
e041e328
PZ
3172 int ctxn;
3173
3174 rcu_read_lock();
c1274499
PZ
3175 for_each_task_context_nr(ctxn)
3176 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3177 rcu_read_unlock();
3178}
3179
0492d4c5
PZ
3180struct perf_read_data {
3181 struct perf_event *event;
3182 bool group;
7d88962e 3183 int ret;
0492d4c5
PZ
3184};
3185
0793a61d 3186/*
cdd6c482 3187 * Cross CPU call to read the hardware event
0793a61d 3188 */
cdd6c482 3189static void __perf_event_read(void *info)
0793a61d 3190{
0492d4c5
PZ
3191 struct perf_read_data *data = info;
3192 struct perf_event *sub, *event = data->event;
cdd6c482 3193 struct perf_event_context *ctx = event->ctx;
108b02cf 3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3195 struct pmu *pmu = event->pmu;
621a01ea 3196
e1ac3614
PM
3197 /*
3198 * If this is a task context, we need to check whether it is
3199 * the current task context of this cpu. If not it has been
3200 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3201 * event->count would have been updated to a recent sample
3202 * when the event was scheduled out.
e1ac3614
PM
3203 */
3204 if (ctx->task && cpuctx->task_ctx != ctx)
3205 return;
3206
e625cce1 3207 raw_spin_lock(&ctx->lock);
e5d1367f 3208 if (ctx->is_active) {
542e72fc 3209 update_context_time(ctx);
e5d1367f
SE
3210 update_cgrp_time_from_event(event);
3211 }
0492d4c5 3212
cdd6c482 3213 update_event_times(event);
4a00c16e
SB
3214 if (event->state != PERF_EVENT_STATE_ACTIVE)
3215 goto unlock;
0492d4c5 3216
4a00c16e
SB
3217 if (!data->group) {
3218 pmu->read(event);
3219 data->ret = 0;
0492d4c5 3220 goto unlock;
4a00c16e
SB
3221 }
3222
3223 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3224
3225 pmu->read(event);
0492d4c5
PZ
3226
3227 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3228 update_event_times(sub);
4a00c16e
SB
3229 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3230 /*
3231 * Use sibling's PMU rather than @event's since
3232 * sibling could be on different (eg: software) PMU.
3233 */
0492d4c5 3234 sub->pmu->read(sub);
4a00c16e 3235 }
0492d4c5 3236 }
4a00c16e
SB
3237
3238 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3239
3240unlock:
e625cce1 3241 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3242}
3243
b5e58793
PZ
3244static inline u64 perf_event_count(struct perf_event *event)
3245{
eacd3ecc
MF
3246 if (event->pmu->count)
3247 return event->pmu->count(event);
3248
3249 return __perf_event_count(event);
b5e58793
PZ
3250}
3251
ffe8690c
KX
3252/*
3253 * NMI-safe method to read a local event, that is an event that
3254 * is:
3255 * - either for the current task, or for this CPU
3256 * - does not have inherit set, for inherited task events
3257 * will not be local and we cannot read them atomically
3258 * - must not have a pmu::count method
3259 */
3260u64 perf_event_read_local(struct perf_event *event)
3261{
3262 unsigned long flags;
3263 u64 val;
3264
3265 /*
3266 * Disabling interrupts avoids all counter scheduling (context
3267 * switches, timer based rotation and IPIs).
3268 */
3269 local_irq_save(flags);
3270
3271 /* If this is a per-task event, it must be for current */
3272 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3273 event->hw.target != current);
3274
3275 /* If this is a per-CPU event, it must be for this CPU */
3276 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3277 event->cpu != smp_processor_id());
3278
3279 /*
3280 * It must not be an event with inherit set, we cannot read
3281 * all child counters from atomic context.
3282 */
3283 WARN_ON_ONCE(event->attr.inherit);
3284
3285 /*
3286 * It must not have a pmu::count method, those are not
3287 * NMI safe.
3288 */
3289 WARN_ON_ONCE(event->pmu->count);
3290
3291 /*
3292 * If the event is currently on this CPU, its either a per-task event,
3293 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3294 * oncpu == -1).
3295 */
3296 if (event->oncpu == smp_processor_id())
3297 event->pmu->read(event);
3298
3299 val = local64_read(&event->count);
3300 local_irq_restore(flags);
3301
3302 return val;
3303}
3304
7d88962e 3305static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3306{
7d88962e
SB
3307 int ret = 0;
3308
0793a61d 3309 /*
cdd6c482
IM
3310 * If event is enabled and currently active on a CPU, update the
3311 * value in the event structure:
0793a61d 3312 */
cdd6c482 3313 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3314 struct perf_read_data data = {
3315 .event = event,
3316 .group = group,
7d88962e 3317 .ret = 0,
0492d4c5 3318 };
cdd6c482 3319 smp_call_function_single(event->oncpu,
0492d4c5 3320 __perf_event_read, &data, 1);
7d88962e 3321 ret = data.ret;
cdd6c482 3322 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3323 struct perf_event_context *ctx = event->ctx;
3324 unsigned long flags;
3325
e625cce1 3326 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3327 /*
3328 * may read while context is not active
3329 * (e.g., thread is blocked), in that case
3330 * we cannot update context time
3331 */
e5d1367f 3332 if (ctx->is_active) {
c530ccd9 3333 update_context_time(ctx);
e5d1367f
SE
3334 update_cgrp_time_from_event(event);
3335 }
0492d4c5
PZ
3336 if (group)
3337 update_group_times(event);
3338 else
3339 update_event_times(event);
e625cce1 3340 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3341 }
7d88962e
SB
3342
3343 return ret;
0793a61d
TG
3344}
3345
a63eaf34 3346/*
cdd6c482 3347 * Initialize the perf_event context in a task_struct:
a63eaf34 3348 */
eb184479 3349static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3350{
e625cce1 3351 raw_spin_lock_init(&ctx->lock);
a63eaf34 3352 mutex_init(&ctx->mutex);
2fde4f94 3353 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3354 INIT_LIST_HEAD(&ctx->pinned_groups);
3355 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3356 INIT_LIST_HEAD(&ctx->event_list);
3357 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3358}
3359
3360static struct perf_event_context *
3361alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3362{
3363 struct perf_event_context *ctx;
3364
3365 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3366 if (!ctx)
3367 return NULL;
3368
3369 __perf_event_init_context(ctx);
3370 if (task) {
3371 ctx->task = task;
3372 get_task_struct(task);
0793a61d 3373 }
eb184479
PZ
3374 ctx->pmu = pmu;
3375
3376 return ctx;
a63eaf34
PM
3377}
3378
2ebd4ffb
MH
3379static struct task_struct *
3380find_lively_task_by_vpid(pid_t vpid)
3381{
3382 struct task_struct *task;
3383 int err;
0793a61d
TG
3384
3385 rcu_read_lock();
2ebd4ffb 3386 if (!vpid)
0793a61d
TG
3387 task = current;
3388 else
2ebd4ffb 3389 task = find_task_by_vpid(vpid);
0793a61d
TG
3390 if (task)
3391 get_task_struct(task);
3392 rcu_read_unlock();
3393
3394 if (!task)
3395 return ERR_PTR(-ESRCH);
3396
0793a61d 3397 /* Reuse ptrace permission checks for now. */
c93f7669 3398 err = -EACCES;
caaee623 3399 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3400 goto errout;
3401
2ebd4ffb
MH
3402 return task;
3403errout:
3404 put_task_struct(task);
3405 return ERR_PTR(err);
3406
3407}
3408
fe4b04fa
PZ
3409/*
3410 * Returns a matching context with refcount and pincount.
3411 */
108b02cf 3412static struct perf_event_context *
4af57ef2
YZ
3413find_get_context(struct pmu *pmu, struct task_struct *task,
3414 struct perf_event *event)
0793a61d 3415{
211de6eb 3416 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3417 struct perf_cpu_context *cpuctx;
4af57ef2 3418 void *task_ctx_data = NULL;
25346b93 3419 unsigned long flags;
8dc85d54 3420 int ctxn, err;
4af57ef2 3421 int cpu = event->cpu;
0793a61d 3422
22a4ec72 3423 if (!task) {
cdd6c482 3424 /* Must be root to operate on a CPU event: */
0764771d 3425 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3426 return ERR_PTR(-EACCES);
3427
0793a61d 3428 /*
cdd6c482 3429 * We could be clever and allow to attach a event to an
0793a61d
TG
3430 * offline CPU and activate it when the CPU comes up, but
3431 * that's for later.
3432 */
f6325e30 3433 if (!cpu_online(cpu))
0793a61d
TG
3434 return ERR_PTR(-ENODEV);
3435
108b02cf 3436 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3437 ctx = &cpuctx->ctx;
c93f7669 3438 get_ctx(ctx);
fe4b04fa 3439 ++ctx->pin_count;
0793a61d 3440
0793a61d
TG
3441 return ctx;
3442 }
3443
8dc85d54
PZ
3444 err = -EINVAL;
3445 ctxn = pmu->task_ctx_nr;
3446 if (ctxn < 0)
3447 goto errout;
3448
4af57ef2
YZ
3449 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3450 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3451 if (!task_ctx_data) {
3452 err = -ENOMEM;
3453 goto errout;
3454 }
3455 }
3456
9ed6060d 3457retry:
8dc85d54 3458 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3459 if (ctx) {
211de6eb 3460 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3461 ++ctx->pin_count;
4af57ef2
YZ
3462
3463 if (task_ctx_data && !ctx->task_ctx_data) {
3464 ctx->task_ctx_data = task_ctx_data;
3465 task_ctx_data = NULL;
3466 }
e625cce1 3467 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3468
3469 if (clone_ctx)
3470 put_ctx(clone_ctx);
9137fb28 3471 } else {
eb184479 3472 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3473 err = -ENOMEM;
3474 if (!ctx)
3475 goto errout;
eb184479 3476
4af57ef2
YZ
3477 if (task_ctx_data) {
3478 ctx->task_ctx_data = task_ctx_data;
3479 task_ctx_data = NULL;
3480 }
3481
dbe08d82
ON
3482 err = 0;
3483 mutex_lock(&task->perf_event_mutex);
3484 /*
3485 * If it has already passed perf_event_exit_task().
3486 * we must see PF_EXITING, it takes this mutex too.
3487 */
3488 if (task->flags & PF_EXITING)
3489 err = -ESRCH;
3490 else if (task->perf_event_ctxp[ctxn])
3491 err = -EAGAIN;
fe4b04fa 3492 else {
9137fb28 3493 get_ctx(ctx);
fe4b04fa 3494 ++ctx->pin_count;
dbe08d82 3495 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3496 }
dbe08d82
ON
3497 mutex_unlock(&task->perf_event_mutex);
3498
3499 if (unlikely(err)) {
9137fb28 3500 put_ctx(ctx);
dbe08d82
ON
3501
3502 if (err == -EAGAIN)
3503 goto retry;
3504 goto errout;
a63eaf34
PM
3505 }
3506 }
3507
4af57ef2 3508 kfree(task_ctx_data);
0793a61d 3509 return ctx;
c93f7669 3510
9ed6060d 3511errout:
4af57ef2 3512 kfree(task_ctx_data);
c93f7669 3513 return ERR_PTR(err);
0793a61d
TG
3514}
3515
6fb2915d 3516static void perf_event_free_filter(struct perf_event *event);
2541517c 3517static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3518
cdd6c482 3519static void free_event_rcu(struct rcu_head *head)
592903cd 3520{
cdd6c482 3521 struct perf_event *event;
592903cd 3522
cdd6c482
IM
3523 event = container_of(head, struct perf_event, rcu_head);
3524 if (event->ns)
3525 put_pid_ns(event->ns);
6fb2915d 3526 perf_event_free_filter(event);
cdd6c482 3527 kfree(event);
592903cd
PZ
3528}
3529
b69cf536
PZ
3530static void ring_buffer_attach(struct perf_event *event,
3531 struct ring_buffer *rb);
925d519a 3532
4beb31f3 3533static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3534{
4beb31f3
FW
3535 if (event->parent)
3536 return;
3537
4beb31f3
FW
3538 if (is_cgroup_event(event))
3539 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3540}
925d519a 3541
4beb31f3
FW
3542static void unaccount_event(struct perf_event *event)
3543{
25432ae9
PZ
3544 bool dec = false;
3545
4beb31f3
FW
3546 if (event->parent)
3547 return;
3548
3549 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3550 dec = true;
4beb31f3
FW
3551 if (event->attr.mmap || event->attr.mmap_data)
3552 atomic_dec(&nr_mmap_events);
3553 if (event->attr.comm)
3554 atomic_dec(&nr_comm_events);
3555 if (event->attr.task)
3556 atomic_dec(&nr_task_events);
948b26b6
FW
3557 if (event->attr.freq)
3558 atomic_dec(&nr_freq_events);
45ac1403 3559 if (event->attr.context_switch) {
25432ae9 3560 dec = true;
45ac1403
AH
3561 atomic_dec(&nr_switch_events);
3562 }
4beb31f3 3563 if (is_cgroup_event(event))
25432ae9 3564 dec = true;
4beb31f3 3565 if (has_branch_stack(event))
25432ae9
PZ
3566 dec = true;
3567
9107c89e
PZ
3568 if (dec) {
3569 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3570 schedule_delayed_work(&perf_sched_work, HZ);
3571 }
4beb31f3
FW
3572
3573 unaccount_event_cpu(event, event->cpu);
3574}
925d519a 3575
9107c89e
PZ
3576static void perf_sched_delayed(struct work_struct *work)
3577{
3578 mutex_lock(&perf_sched_mutex);
3579 if (atomic_dec_and_test(&perf_sched_count))
3580 static_branch_disable(&perf_sched_events);
3581 mutex_unlock(&perf_sched_mutex);
3582}
3583
bed5b25a
AS
3584/*
3585 * The following implement mutual exclusion of events on "exclusive" pmus
3586 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3587 * at a time, so we disallow creating events that might conflict, namely:
3588 *
3589 * 1) cpu-wide events in the presence of per-task events,
3590 * 2) per-task events in the presence of cpu-wide events,
3591 * 3) two matching events on the same context.
3592 *
3593 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3594 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3595 */
3596static int exclusive_event_init(struct perf_event *event)
3597{
3598 struct pmu *pmu = event->pmu;
3599
3600 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3601 return 0;
3602
3603 /*
3604 * Prevent co-existence of per-task and cpu-wide events on the
3605 * same exclusive pmu.
3606 *
3607 * Negative pmu::exclusive_cnt means there are cpu-wide
3608 * events on this "exclusive" pmu, positive means there are
3609 * per-task events.
3610 *
3611 * Since this is called in perf_event_alloc() path, event::ctx
3612 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3613 * to mean "per-task event", because unlike other attach states it
3614 * never gets cleared.
3615 */
3616 if (event->attach_state & PERF_ATTACH_TASK) {
3617 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3618 return -EBUSY;
3619 } else {
3620 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3621 return -EBUSY;
3622 }
3623
3624 return 0;
3625}
3626
3627static void exclusive_event_destroy(struct perf_event *event)
3628{
3629 struct pmu *pmu = event->pmu;
3630
3631 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3632 return;
3633
3634 /* see comment in exclusive_event_init() */
3635 if (event->attach_state & PERF_ATTACH_TASK)
3636 atomic_dec(&pmu->exclusive_cnt);
3637 else
3638 atomic_inc(&pmu->exclusive_cnt);
3639}
3640
3641static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3642{
3643 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3644 (e1->cpu == e2->cpu ||
3645 e1->cpu == -1 ||
3646 e2->cpu == -1))
3647 return true;
3648 return false;
3649}
3650
3651/* Called under the same ctx::mutex as perf_install_in_context() */
3652static bool exclusive_event_installable(struct perf_event *event,
3653 struct perf_event_context *ctx)
3654{
3655 struct perf_event *iter_event;
3656 struct pmu *pmu = event->pmu;
3657
3658 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3659 return true;
3660
3661 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3662 if (exclusive_event_match(iter_event, event))
3663 return false;
3664 }
3665
3666 return true;
3667}
3668
683ede43 3669static void _free_event(struct perf_event *event)
f1600952 3670{
e360adbe 3671 irq_work_sync(&event->pending);
925d519a 3672
4beb31f3 3673 unaccount_event(event);
9ee318a7 3674
76369139 3675 if (event->rb) {
9bb5d40c
PZ
3676 /*
3677 * Can happen when we close an event with re-directed output.
3678 *
3679 * Since we have a 0 refcount, perf_mmap_close() will skip
3680 * over us; possibly making our ring_buffer_put() the last.
3681 */
3682 mutex_lock(&event->mmap_mutex);
b69cf536 3683 ring_buffer_attach(event, NULL);
9bb5d40c 3684 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3685 }
3686
e5d1367f
SE
3687 if (is_cgroup_event(event))
3688 perf_detach_cgroup(event);
3689
a0733e69
PZ
3690 if (!event->parent) {
3691 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3692 put_callchain_buffers();
3693 }
3694
3695 perf_event_free_bpf_prog(event);
3696
3697 if (event->destroy)
3698 event->destroy(event);
3699
3700 if (event->ctx)
3701 put_ctx(event->ctx);
3702
3703 if (event->pmu) {
3704 exclusive_event_destroy(event);
3705 module_put(event->pmu->module);
3706 }
3707
3708 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3709}
3710
683ede43
PZ
3711/*
3712 * Used to free events which have a known refcount of 1, such as in error paths
3713 * where the event isn't exposed yet and inherited events.
3714 */
3715static void free_event(struct perf_event *event)
0793a61d 3716{
683ede43
PZ
3717 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3718 "unexpected event refcount: %ld; ptr=%p\n",
3719 atomic_long_read(&event->refcount), event)) {
3720 /* leak to avoid use-after-free */
3721 return;
3722 }
0793a61d 3723
683ede43 3724 _free_event(event);
0793a61d
TG
3725}
3726
a66a3052 3727/*
f8697762 3728 * Remove user event from the owner task.
a66a3052 3729 */
f8697762 3730static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3731{
8882135b 3732 struct task_struct *owner;
fb0459d7 3733
8882135b 3734 rcu_read_lock();
8882135b 3735 /*
f47c02c0
PZ
3736 * Matches the smp_store_release() in perf_event_exit_task(). If we
3737 * observe !owner it means the list deletion is complete and we can
3738 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3739 * owner->perf_event_mutex.
3740 */
f47c02c0 3741 owner = lockless_dereference(event->owner);
8882135b
PZ
3742 if (owner) {
3743 /*
3744 * Since delayed_put_task_struct() also drops the last
3745 * task reference we can safely take a new reference
3746 * while holding the rcu_read_lock().
3747 */
3748 get_task_struct(owner);
3749 }
3750 rcu_read_unlock();
3751
3752 if (owner) {
f63a8daa
PZ
3753 /*
3754 * If we're here through perf_event_exit_task() we're already
3755 * holding ctx->mutex which would be an inversion wrt. the
3756 * normal lock order.
3757 *
3758 * However we can safely take this lock because its the child
3759 * ctx->mutex.
3760 */
3761 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3762
8882135b
PZ
3763 /*
3764 * We have to re-check the event->owner field, if it is cleared
3765 * we raced with perf_event_exit_task(), acquiring the mutex
3766 * ensured they're done, and we can proceed with freeing the
3767 * event.
3768 */
f47c02c0 3769 if (event->owner) {
8882135b 3770 list_del_init(&event->owner_entry);
f47c02c0
PZ
3771 smp_store_release(&event->owner, NULL);
3772 }
8882135b
PZ
3773 mutex_unlock(&owner->perf_event_mutex);
3774 put_task_struct(owner);
3775 }
f8697762
JO
3776}
3777
f8697762
JO
3778static void put_event(struct perf_event *event)
3779{
f8697762
JO
3780 if (!atomic_long_dec_and_test(&event->refcount))
3781 return;
3782
c6e5b732
PZ
3783 _free_event(event);
3784}
3785
3786/*
3787 * Kill an event dead; while event:refcount will preserve the event
3788 * object, it will not preserve its functionality. Once the last 'user'
3789 * gives up the object, we'll destroy the thing.
3790 */
3791int perf_event_release_kernel(struct perf_event *event)
3792{
a4f4bb6d 3793 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3794 struct perf_event *child, *tmp;
3795
a4f4bb6d
PZ
3796 /*
3797 * If we got here through err_file: fput(event_file); we will not have
3798 * attached to a context yet.
3799 */
3800 if (!ctx) {
3801 WARN_ON_ONCE(event->attach_state &
3802 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3803 goto no_ctx;
3804 }
3805
f8697762
JO
3806 if (!is_kernel_event(event))
3807 perf_remove_from_owner(event);
8882135b 3808
5fa7c8ec 3809 ctx = perf_event_ctx_lock(event);
a83fe28e 3810 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3811 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3812
a69b0ca4 3813 raw_spin_lock_irq(&ctx->lock);
683ede43 3814 /*
a69b0ca4
PZ
3815 * Mark this even as STATE_DEAD, there is no external reference to it
3816 * anymore.
683ede43 3817 *
a69b0ca4
PZ
3818 * Anybody acquiring event->child_mutex after the below loop _must_
3819 * also see this, most importantly inherit_event() which will avoid
3820 * placing more children on the list.
683ede43 3821 *
c6e5b732
PZ
3822 * Thus this guarantees that we will in fact observe and kill _ALL_
3823 * child events.
683ede43 3824 */
a69b0ca4
PZ
3825 event->state = PERF_EVENT_STATE_DEAD;
3826 raw_spin_unlock_irq(&ctx->lock);
3827
3828 perf_event_ctx_unlock(event, ctx);
683ede43 3829
c6e5b732
PZ
3830again:
3831 mutex_lock(&event->child_mutex);
3832 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3833
c6e5b732
PZ
3834 /*
3835 * Cannot change, child events are not migrated, see the
3836 * comment with perf_event_ctx_lock_nested().
3837 */
3838 ctx = lockless_dereference(child->ctx);
3839 /*
3840 * Since child_mutex nests inside ctx::mutex, we must jump
3841 * through hoops. We start by grabbing a reference on the ctx.
3842 *
3843 * Since the event cannot get freed while we hold the
3844 * child_mutex, the context must also exist and have a !0
3845 * reference count.
3846 */
3847 get_ctx(ctx);
3848
3849 /*
3850 * Now that we have a ctx ref, we can drop child_mutex, and
3851 * acquire ctx::mutex without fear of it going away. Then we
3852 * can re-acquire child_mutex.
3853 */
3854 mutex_unlock(&event->child_mutex);
3855 mutex_lock(&ctx->mutex);
3856 mutex_lock(&event->child_mutex);
3857
3858 /*
3859 * Now that we hold ctx::mutex and child_mutex, revalidate our
3860 * state, if child is still the first entry, it didn't get freed
3861 * and we can continue doing so.
3862 */
3863 tmp = list_first_entry_or_null(&event->child_list,
3864 struct perf_event, child_list);
3865 if (tmp == child) {
3866 perf_remove_from_context(child, DETACH_GROUP);
3867 list_del(&child->child_list);
3868 free_event(child);
3869 /*
3870 * This matches the refcount bump in inherit_event();
3871 * this can't be the last reference.
3872 */
3873 put_event(event);
3874 }
3875
3876 mutex_unlock(&event->child_mutex);
3877 mutex_unlock(&ctx->mutex);
3878 put_ctx(ctx);
3879 goto again;
3880 }
3881 mutex_unlock(&event->child_mutex);
3882
a4f4bb6d
PZ
3883no_ctx:
3884 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3885 return 0;
3886}
3887EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3888
8b10c5e2
PZ
3889/*
3890 * Called when the last reference to the file is gone.
3891 */
a6fa941d
AV
3892static int perf_release(struct inode *inode, struct file *file)
3893{
c6e5b732 3894 perf_event_release_kernel(file->private_data);
a6fa941d 3895 return 0;
fb0459d7 3896}
fb0459d7 3897
59ed446f 3898u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3899{
cdd6c482 3900 struct perf_event *child;
e53c0994
PZ
3901 u64 total = 0;
3902
59ed446f
PZ
3903 *enabled = 0;
3904 *running = 0;
3905
6f10581a 3906 mutex_lock(&event->child_mutex);
01add3ea 3907
7d88962e 3908 (void)perf_event_read(event, false);
01add3ea
SB
3909 total += perf_event_count(event);
3910
59ed446f
PZ
3911 *enabled += event->total_time_enabled +
3912 atomic64_read(&event->child_total_time_enabled);
3913 *running += event->total_time_running +
3914 atomic64_read(&event->child_total_time_running);
3915
3916 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3917 (void)perf_event_read(child, false);
01add3ea 3918 total += perf_event_count(child);
59ed446f
PZ
3919 *enabled += child->total_time_enabled;
3920 *running += child->total_time_running;
3921 }
6f10581a 3922 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3923
3924 return total;
3925}
fb0459d7 3926EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3927
7d88962e 3928static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3929 u64 read_format, u64 *values)
3dab77fb 3930{
fa8c2693
PZ
3931 struct perf_event *sub;
3932 int n = 1; /* skip @nr */
7d88962e 3933 int ret;
f63a8daa 3934
7d88962e
SB
3935 ret = perf_event_read(leader, true);
3936 if (ret)
3937 return ret;
abf4868b 3938
fa8c2693
PZ
3939 /*
3940 * Since we co-schedule groups, {enabled,running} times of siblings
3941 * will be identical to those of the leader, so we only publish one
3942 * set.
3943 */
3944 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3945 values[n++] += leader->total_time_enabled +
3946 atomic64_read(&leader->child_total_time_enabled);
3947 }
3dab77fb 3948
fa8c2693
PZ
3949 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3950 values[n++] += leader->total_time_running +
3951 atomic64_read(&leader->child_total_time_running);
3952 }
3953
3954 /*
3955 * Write {count,id} tuples for every sibling.
3956 */
3957 values[n++] += perf_event_count(leader);
abf4868b
PZ
3958 if (read_format & PERF_FORMAT_ID)
3959 values[n++] = primary_event_id(leader);
3dab77fb 3960
fa8c2693
PZ
3961 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3962 values[n++] += perf_event_count(sub);
3963 if (read_format & PERF_FORMAT_ID)
3964 values[n++] = primary_event_id(sub);
3965 }
7d88962e
SB
3966
3967 return 0;
fa8c2693 3968}
3dab77fb 3969
fa8c2693
PZ
3970static int perf_read_group(struct perf_event *event,
3971 u64 read_format, char __user *buf)
3972{
3973 struct perf_event *leader = event->group_leader, *child;
3974 struct perf_event_context *ctx = leader->ctx;
7d88962e 3975 int ret;
fa8c2693 3976 u64 *values;
3dab77fb 3977
fa8c2693 3978 lockdep_assert_held(&ctx->mutex);
3dab77fb 3979
fa8c2693
PZ
3980 values = kzalloc(event->read_size, GFP_KERNEL);
3981 if (!values)
3982 return -ENOMEM;
3dab77fb 3983
fa8c2693
PZ
3984 values[0] = 1 + leader->nr_siblings;
3985
3986 /*
3987 * By locking the child_mutex of the leader we effectively
3988 * lock the child list of all siblings.. XXX explain how.
3989 */
3990 mutex_lock(&leader->child_mutex);
abf4868b 3991
7d88962e
SB
3992 ret = __perf_read_group_add(leader, read_format, values);
3993 if (ret)
3994 goto unlock;
3995
3996 list_for_each_entry(child, &leader->child_list, child_list) {
3997 ret = __perf_read_group_add(child, read_format, values);
3998 if (ret)
3999 goto unlock;
4000 }
abf4868b 4001
fa8c2693 4002 mutex_unlock(&leader->child_mutex);
abf4868b 4003
7d88962e 4004 ret = event->read_size;
fa8c2693
PZ
4005 if (copy_to_user(buf, values, event->read_size))
4006 ret = -EFAULT;
7d88962e 4007 goto out;
fa8c2693 4008
7d88962e
SB
4009unlock:
4010 mutex_unlock(&leader->child_mutex);
4011out:
fa8c2693 4012 kfree(values);
abf4868b 4013 return ret;
3dab77fb
PZ
4014}
4015
b15f495b 4016static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4017 u64 read_format, char __user *buf)
4018{
59ed446f 4019 u64 enabled, running;
3dab77fb
PZ
4020 u64 values[4];
4021 int n = 0;
4022
59ed446f
PZ
4023 values[n++] = perf_event_read_value(event, &enabled, &running);
4024 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4025 values[n++] = enabled;
4026 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4027 values[n++] = running;
3dab77fb 4028 if (read_format & PERF_FORMAT_ID)
cdd6c482 4029 values[n++] = primary_event_id(event);
3dab77fb
PZ
4030
4031 if (copy_to_user(buf, values, n * sizeof(u64)))
4032 return -EFAULT;
4033
4034 return n * sizeof(u64);
4035}
4036
dc633982
JO
4037static bool is_event_hup(struct perf_event *event)
4038{
4039 bool no_children;
4040
a69b0ca4 4041 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4042 return false;
4043
4044 mutex_lock(&event->child_mutex);
4045 no_children = list_empty(&event->child_list);
4046 mutex_unlock(&event->child_mutex);
4047 return no_children;
4048}
4049
0793a61d 4050/*
cdd6c482 4051 * Read the performance event - simple non blocking version for now
0793a61d
TG
4052 */
4053static ssize_t
b15f495b 4054__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4055{
cdd6c482 4056 u64 read_format = event->attr.read_format;
3dab77fb 4057 int ret;
0793a61d 4058
3b6f9e5c 4059 /*
cdd6c482 4060 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4061 * error state (i.e. because it was pinned but it couldn't be
4062 * scheduled on to the CPU at some point).
4063 */
cdd6c482 4064 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4065 return 0;
4066
c320c7b7 4067 if (count < event->read_size)
3dab77fb
PZ
4068 return -ENOSPC;
4069
cdd6c482 4070 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4071 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4072 ret = perf_read_group(event, read_format, buf);
3dab77fb 4073 else
b15f495b 4074 ret = perf_read_one(event, read_format, buf);
0793a61d 4075
3dab77fb 4076 return ret;
0793a61d
TG
4077}
4078
0793a61d
TG
4079static ssize_t
4080perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4081{
cdd6c482 4082 struct perf_event *event = file->private_data;
f63a8daa
PZ
4083 struct perf_event_context *ctx;
4084 int ret;
0793a61d 4085
f63a8daa 4086 ctx = perf_event_ctx_lock(event);
b15f495b 4087 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4088 perf_event_ctx_unlock(event, ctx);
4089
4090 return ret;
0793a61d
TG
4091}
4092
4093static unsigned int perf_poll(struct file *file, poll_table *wait)
4094{
cdd6c482 4095 struct perf_event *event = file->private_data;
76369139 4096 struct ring_buffer *rb;
61b67684 4097 unsigned int events = POLLHUP;
c7138f37 4098
e708d7ad 4099 poll_wait(file, &event->waitq, wait);
179033b3 4100
dc633982 4101 if (is_event_hup(event))
179033b3 4102 return events;
c7138f37 4103
10c6db11 4104 /*
9bb5d40c
PZ
4105 * Pin the event->rb by taking event->mmap_mutex; otherwise
4106 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4107 */
4108 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4109 rb = event->rb;
4110 if (rb)
76369139 4111 events = atomic_xchg(&rb->poll, 0);
10c6db11 4112 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4113 return events;
4114}
4115
f63a8daa 4116static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4117{
7d88962e 4118 (void)perf_event_read(event, false);
e7850595 4119 local64_set(&event->count, 0);
cdd6c482 4120 perf_event_update_userpage(event);
3df5edad
PZ
4121}
4122
c93f7669 4123/*
cdd6c482
IM
4124 * Holding the top-level event's child_mutex means that any
4125 * descendant process that has inherited this event will block
8ba289b8 4126 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4127 * task existence requirements of perf_event_enable/disable.
c93f7669 4128 */
cdd6c482
IM
4129static void perf_event_for_each_child(struct perf_event *event,
4130 void (*func)(struct perf_event *))
3df5edad 4131{
cdd6c482 4132 struct perf_event *child;
3df5edad 4133
cdd6c482 4134 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4135
cdd6c482
IM
4136 mutex_lock(&event->child_mutex);
4137 func(event);
4138 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4139 func(child);
cdd6c482 4140 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4141}
4142
cdd6c482
IM
4143static void perf_event_for_each(struct perf_event *event,
4144 void (*func)(struct perf_event *))
3df5edad 4145{
cdd6c482
IM
4146 struct perf_event_context *ctx = event->ctx;
4147 struct perf_event *sibling;
3df5edad 4148
f63a8daa
PZ
4149 lockdep_assert_held(&ctx->mutex);
4150
cdd6c482 4151 event = event->group_leader;
75f937f2 4152
cdd6c482 4153 perf_event_for_each_child(event, func);
cdd6c482 4154 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4155 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4156}
4157
fae3fde6
PZ
4158static void __perf_event_period(struct perf_event *event,
4159 struct perf_cpu_context *cpuctx,
4160 struct perf_event_context *ctx,
4161 void *info)
c7999c6f 4162{
fae3fde6 4163 u64 value = *((u64 *)info);
c7999c6f 4164 bool active;
08247e31 4165
cdd6c482 4166 if (event->attr.freq) {
cdd6c482 4167 event->attr.sample_freq = value;
08247e31 4168 } else {
cdd6c482
IM
4169 event->attr.sample_period = value;
4170 event->hw.sample_period = value;
08247e31 4171 }
bad7192b
PZ
4172
4173 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4174 if (active) {
4175 perf_pmu_disable(ctx->pmu);
4176 event->pmu->stop(event, PERF_EF_UPDATE);
4177 }
4178
4179 local64_set(&event->hw.period_left, 0);
4180
4181 if (active) {
4182 event->pmu->start(event, PERF_EF_RELOAD);
4183 perf_pmu_enable(ctx->pmu);
4184 }
c7999c6f
PZ
4185}
4186
4187static int perf_event_period(struct perf_event *event, u64 __user *arg)
4188{
c7999c6f
PZ
4189 u64 value;
4190
4191 if (!is_sampling_event(event))
4192 return -EINVAL;
4193
4194 if (copy_from_user(&value, arg, sizeof(value)))
4195 return -EFAULT;
4196
4197 if (!value)
4198 return -EINVAL;
4199
4200 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4201 return -EINVAL;
4202
fae3fde6 4203 event_function_call(event, __perf_event_period, &value);
08247e31 4204
c7999c6f 4205 return 0;
08247e31
PZ
4206}
4207
ac9721f3
PZ
4208static const struct file_operations perf_fops;
4209
2903ff01 4210static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4211{
2903ff01
AV
4212 struct fd f = fdget(fd);
4213 if (!f.file)
4214 return -EBADF;
ac9721f3 4215
2903ff01
AV
4216 if (f.file->f_op != &perf_fops) {
4217 fdput(f);
4218 return -EBADF;
ac9721f3 4219 }
2903ff01
AV
4220 *p = f;
4221 return 0;
ac9721f3
PZ
4222}
4223
4224static int perf_event_set_output(struct perf_event *event,
4225 struct perf_event *output_event);
6fb2915d 4226static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4227static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4228
f63a8daa 4229static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4230{
cdd6c482 4231 void (*func)(struct perf_event *);
3df5edad 4232 u32 flags = arg;
d859e29f
PM
4233
4234 switch (cmd) {
cdd6c482 4235 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4236 func = _perf_event_enable;
d859e29f 4237 break;
cdd6c482 4238 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4239 func = _perf_event_disable;
79f14641 4240 break;
cdd6c482 4241 case PERF_EVENT_IOC_RESET:
f63a8daa 4242 func = _perf_event_reset;
6de6a7b9 4243 break;
3df5edad 4244
cdd6c482 4245 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4246 return _perf_event_refresh(event, arg);
08247e31 4247
cdd6c482
IM
4248 case PERF_EVENT_IOC_PERIOD:
4249 return perf_event_period(event, (u64 __user *)arg);
08247e31 4250
cf4957f1
JO
4251 case PERF_EVENT_IOC_ID:
4252 {
4253 u64 id = primary_event_id(event);
4254
4255 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4256 return -EFAULT;
4257 return 0;
4258 }
4259
cdd6c482 4260 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4261 {
ac9721f3 4262 int ret;
ac9721f3 4263 if (arg != -1) {
2903ff01
AV
4264 struct perf_event *output_event;
4265 struct fd output;
4266 ret = perf_fget_light(arg, &output);
4267 if (ret)
4268 return ret;
4269 output_event = output.file->private_data;
4270 ret = perf_event_set_output(event, output_event);
4271 fdput(output);
4272 } else {
4273 ret = perf_event_set_output(event, NULL);
ac9721f3 4274 }
ac9721f3
PZ
4275 return ret;
4276 }
a4be7c27 4277
6fb2915d
LZ
4278 case PERF_EVENT_IOC_SET_FILTER:
4279 return perf_event_set_filter(event, (void __user *)arg);
4280
2541517c
AS
4281 case PERF_EVENT_IOC_SET_BPF:
4282 return perf_event_set_bpf_prog(event, arg);
4283
d859e29f 4284 default:
3df5edad 4285 return -ENOTTY;
d859e29f 4286 }
3df5edad
PZ
4287
4288 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4289 perf_event_for_each(event, func);
3df5edad 4290 else
cdd6c482 4291 perf_event_for_each_child(event, func);
3df5edad
PZ
4292
4293 return 0;
d859e29f
PM
4294}
4295
f63a8daa
PZ
4296static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4297{
4298 struct perf_event *event = file->private_data;
4299 struct perf_event_context *ctx;
4300 long ret;
4301
4302 ctx = perf_event_ctx_lock(event);
4303 ret = _perf_ioctl(event, cmd, arg);
4304 perf_event_ctx_unlock(event, ctx);
4305
4306 return ret;
4307}
4308
b3f20785
PM
4309#ifdef CONFIG_COMPAT
4310static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4311 unsigned long arg)
4312{
4313 switch (_IOC_NR(cmd)) {
4314 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4315 case _IOC_NR(PERF_EVENT_IOC_ID):
4316 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4317 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4318 cmd &= ~IOCSIZE_MASK;
4319 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4320 }
4321 break;
4322 }
4323 return perf_ioctl(file, cmd, arg);
4324}
4325#else
4326# define perf_compat_ioctl NULL
4327#endif
4328
cdd6c482 4329int perf_event_task_enable(void)
771d7cde 4330{
f63a8daa 4331 struct perf_event_context *ctx;
cdd6c482 4332 struct perf_event *event;
771d7cde 4333
cdd6c482 4334 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4335 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4336 ctx = perf_event_ctx_lock(event);
4337 perf_event_for_each_child(event, _perf_event_enable);
4338 perf_event_ctx_unlock(event, ctx);
4339 }
cdd6c482 4340 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4341
4342 return 0;
4343}
4344
cdd6c482 4345int perf_event_task_disable(void)
771d7cde 4346{
f63a8daa 4347 struct perf_event_context *ctx;
cdd6c482 4348 struct perf_event *event;
771d7cde 4349
cdd6c482 4350 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4351 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4352 ctx = perf_event_ctx_lock(event);
4353 perf_event_for_each_child(event, _perf_event_disable);
4354 perf_event_ctx_unlock(event, ctx);
4355 }
cdd6c482 4356 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4357
4358 return 0;
4359}
4360
cdd6c482 4361static int perf_event_index(struct perf_event *event)
194002b2 4362{
a4eaf7f1
PZ
4363 if (event->hw.state & PERF_HES_STOPPED)
4364 return 0;
4365
cdd6c482 4366 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4367 return 0;
4368
35edc2a5 4369 return event->pmu->event_idx(event);
194002b2
PZ
4370}
4371
c4794295 4372static void calc_timer_values(struct perf_event *event,
e3f3541c 4373 u64 *now,
7f310a5d
EM
4374 u64 *enabled,
4375 u64 *running)
c4794295 4376{
e3f3541c 4377 u64 ctx_time;
c4794295 4378
e3f3541c
PZ
4379 *now = perf_clock();
4380 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4381 *enabled = ctx_time - event->tstamp_enabled;
4382 *running = ctx_time - event->tstamp_running;
4383}
4384
fa731587
PZ
4385static void perf_event_init_userpage(struct perf_event *event)
4386{
4387 struct perf_event_mmap_page *userpg;
4388 struct ring_buffer *rb;
4389
4390 rcu_read_lock();
4391 rb = rcu_dereference(event->rb);
4392 if (!rb)
4393 goto unlock;
4394
4395 userpg = rb->user_page;
4396
4397 /* Allow new userspace to detect that bit 0 is deprecated */
4398 userpg->cap_bit0_is_deprecated = 1;
4399 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4400 userpg->data_offset = PAGE_SIZE;
4401 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4402
4403unlock:
4404 rcu_read_unlock();
4405}
4406
c1317ec2
AL
4407void __weak arch_perf_update_userpage(
4408 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4409{
4410}
4411
38ff667b
PZ
4412/*
4413 * Callers need to ensure there can be no nesting of this function, otherwise
4414 * the seqlock logic goes bad. We can not serialize this because the arch
4415 * code calls this from NMI context.
4416 */
cdd6c482 4417void perf_event_update_userpage(struct perf_event *event)
37d81828 4418{
cdd6c482 4419 struct perf_event_mmap_page *userpg;
76369139 4420 struct ring_buffer *rb;
e3f3541c 4421 u64 enabled, running, now;
38ff667b
PZ
4422
4423 rcu_read_lock();
5ec4c599
PZ
4424 rb = rcu_dereference(event->rb);
4425 if (!rb)
4426 goto unlock;
4427
0d641208
EM
4428 /*
4429 * compute total_time_enabled, total_time_running
4430 * based on snapshot values taken when the event
4431 * was last scheduled in.
4432 *
4433 * we cannot simply called update_context_time()
4434 * because of locking issue as we can be called in
4435 * NMI context
4436 */
e3f3541c 4437 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4438
76369139 4439 userpg = rb->user_page;
7b732a75
PZ
4440 /*
4441 * Disable preemption so as to not let the corresponding user-space
4442 * spin too long if we get preempted.
4443 */
4444 preempt_disable();
37d81828 4445 ++userpg->lock;
92f22a38 4446 barrier();
cdd6c482 4447 userpg->index = perf_event_index(event);
b5e58793 4448 userpg->offset = perf_event_count(event);
365a4038 4449 if (userpg->index)
e7850595 4450 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4451
0d641208 4452 userpg->time_enabled = enabled +
cdd6c482 4453 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4454
0d641208 4455 userpg->time_running = running +
cdd6c482 4456 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4457
c1317ec2 4458 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4459
92f22a38 4460 barrier();
37d81828 4461 ++userpg->lock;
7b732a75 4462 preempt_enable();
38ff667b 4463unlock:
7b732a75 4464 rcu_read_unlock();
37d81828
PM
4465}
4466
906010b2
PZ
4467static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4468{
4469 struct perf_event *event = vma->vm_file->private_data;
76369139 4470 struct ring_buffer *rb;
906010b2
PZ
4471 int ret = VM_FAULT_SIGBUS;
4472
4473 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4474 if (vmf->pgoff == 0)
4475 ret = 0;
4476 return ret;
4477 }
4478
4479 rcu_read_lock();
76369139
FW
4480 rb = rcu_dereference(event->rb);
4481 if (!rb)
906010b2
PZ
4482 goto unlock;
4483
4484 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4485 goto unlock;
4486
76369139 4487 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4488 if (!vmf->page)
4489 goto unlock;
4490
4491 get_page(vmf->page);
4492 vmf->page->mapping = vma->vm_file->f_mapping;
4493 vmf->page->index = vmf->pgoff;
4494
4495 ret = 0;
4496unlock:
4497 rcu_read_unlock();
4498
4499 return ret;
4500}
4501
10c6db11
PZ
4502static void ring_buffer_attach(struct perf_event *event,
4503 struct ring_buffer *rb)
4504{
b69cf536 4505 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4506 unsigned long flags;
4507
b69cf536
PZ
4508 if (event->rb) {
4509 /*
4510 * Should be impossible, we set this when removing
4511 * event->rb_entry and wait/clear when adding event->rb_entry.
4512 */
4513 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4514
b69cf536 4515 old_rb = event->rb;
b69cf536
PZ
4516 spin_lock_irqsave(&old_rb->event_lock, flags);
4517 list_del_rcu(&event->rb_entry);
4518 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4519
2f993cf0
ON
4520 event->rcu_batches = get_state_synchronize_rcu();
4521 event->rcu_pending = 1;
b69cf536 4522 }
10c6db11 4523
b69cf536 4524 if (rb) {
2f993cf0
ON
4525 if (event->rcu_pending) {
4526 cond_synchronize_rcu(event->rcu_batches);
4527 event->rcu_pending = 0;
4528 }
4529
b69cf536
PZ
4530 spin_lock_irqsave(&rb->event_lock, flags);
4531 list_add_rcu(&event->rb_entry, &rb->event_list);
4532 spin_unlock_irqrestore(&rb->event_lock, flags);
4533 }
4534
4535 rcu_assign_pointer(event->rb, rb);
4536
4537 if (old_rb) {
4538 ring_buffer_put(old_rb);
4539 /*
4540 * Since we detached before setting the new rb, so that we
4541 * could attach the new rb, we could have missed a wakeup.
4542 * Provide it now.
4543 */
4544 wake_up_all(&event->waitq);
4545 }
10c6db11
PZ
4546}
4547
4548static void ring_buffer_wakeup(struct perf_event *event)
4549{
4550 struct ring_buffer *rb;
4551
4552 rcu_read_lock();
4553 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4554 if (rb) {
4555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4556 wake_up_all(&event->waitq);
4557 }
10c6db11
PZ
4558 rcu_read_unlock();
4559}
4560
fdc26706 4561struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4562{
76369139 4563 struct ring_buffer *rb;
7b732a75 4564
ac9721f3 4565 rcu_read_lock();
76369139
FW
4566 rb = rcu_dereference(event->rb);
4567 if (rb) {
4568 if (!atomic_inc_not_zero(&rb->refcount))
4569 rb = NULL;
ac9721f3
PZ
4570 }
4571 rcu_read_unlock();
4572
76369139 4573 return rb;
ac9721f3
PZ
4574}
4575
fdc26706 4576void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4577{
76369139 4578 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4579 return;
7b732a75 4580
9bb5d40c 4581 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4582
76369139 4583 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4584}
4585
4586static void perf_mmap_open(struct vm_area_struct *vma)
4587{
cdd6c482 4588 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4589
cdd6c482 4590 atomic_inc(&event->mmap_count);
9bb5d40c 4591 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4592
45bfb2e5
PZ
4593 if (vma->vm_pgoff)
4594 atomic_inc(&event->rb->aux_mmap_count);
4595
1e0fb9ec
AL
4596 if (event->pmu->event_mapped)
4597 event->pmu->event_mapped(event);
7b732a75
PZ
4598}
4599
9bb5d40c
PZ
4600/*
4601 * A buffer can be mmap()ed multiple times; either directly through the same
4602 * event, or through other events by use of perf_event_set_output().
4603 *
4604 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4605 * the buffer here, where we still have a VM context. This means we need
4606 * to detach all events redirecting to us.
4607 */
7b732a75
PZ
4608static void perf_mmap_close(struct vm_area_struct *vma)
4609{
cdd6c482 4610 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4611
b69cf536 4612 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4613 struct user_struct *mmap_user = rb->mmap_user;
4614 int mmap_locked = rb->mmap_locked;
4615 unsigned long size = perf_data_size(rb);
789f90fc 4616
1e0fb9ec
AL
4617 if (event->pmu->event_unmapped)
4618 event->pmu->event_unmapped(event);
4619
45bfb2e5
PZ
4620 /*
4621 * rb->aux_mmap_count will always drop before rb->mmap_count and
4622 * event->mmap_count, so it is ok to use event->mmap_mutex to
4623 * serialize with perf_mmap here.
4624 */
4625 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4626 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4627 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4628 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4629
4630 rb_free_aux(rb);
4631 mutex_unlock(&event->mmap_mutex);
4632 }
4633
9bb5d40c
PZ
4634 atomic_dec(&rb->mmap_count);
4635
4636 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4637 goto out_put;
9bb5d40c 4638
b69cf536 4639 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4640 mutex_unlock(&event->mmap_mutex);
4641
4642 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4643 if (atomic_read(&rb->mmap_count))
4644 goto out_put;
ac9721f3 4645
9bb5d40c
PZ
4646 /*
4647 * No other mmap()s, detach from all other events that might redirect
4648 * into the now unreachable buffer. Somewhat complicated by the
4649 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4650 */
4651again:
4652 rcu_read_lock();
4653 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4654 if (!atomic_long_inc_not_zero(&event->refcount)) {
4655 /*
4656 * This event is en-route to free_event() which will
4657 * detach it and remove it from the list.
4658 */
4659 continue;
4660 }
4661 rcu_read_unlock();
789f90fc 4662
9bb5d40c
PZ
4663 mutex_lock(&event->mmap_mutex);
4664 /*
4665 * Check we didn't race with perf_event_set_output() which can
4666 * swizzle the rb from under us while we were waiting to
4667 * acquire mmap_mutex.
4668 *
4669 * If we find a different rb; ignore this event, a next
4670 * iteration will no longer find it on the list. We have to
4671 * still restart the iteration to make sure we're not now
4672 * iterating the wrong list.
4673 */
b69cf536
PZ
4674 if (event->rb == rb)
4675 ring_buffer_attach(event, NULL);
4676
cdd6c482 4677 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4678 put_event(event);
ac9721f3 4679
9bb5d40c
PZ
4680 /*
4681 * Restart the iteration; either we're on the wrong list or
4682 * destroyed its integrity by doing a deletion.
4683 */
4684 goto again;
7b732a75 4685 }
9bb5d40c
PZ
4686 rcu_read_unlock();
4687
4688 /*
4689 * It could be there's still a few 0-ref events on the list; they'll
4690 * get cleaned up by free_event() -- they'll also still have their
4691 * ref on the rb and will free it whenever they are done with it.
4692 *
4693 * Aside from that, this buffer is 'fully' detached and unmapped,
4694 * undo the VM accounting.
4695 */
4696
4697 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4698 vma->vm_mm->pinned_vm -= mmap_locked;
4699 free_uid(mmap_user);
4700
b69cf536 4701out_put:
9bb5d40c 4702 ring_buffer_put(rb); /* could be last */
37d81828
PM
4703}
4704
f0f37e2f 4705static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4706 .open = perf_mmap_open,
45bfb2e5 4707 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4708 .fault = perf_mmap_fault,
4709 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4710};
4711
4712static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4713{
cdd6c482 4714 struct perf_event *event = file->private_data;
22a4f650 4715 unsigned long user_locked, user_lock_limit;
789f90fc 4716 struct user_struct *user = current_user();
22a4f650 4717 unsigned long locked, lock_limit;
45bfb2e5 4718 struct ring_buffer *rb = NULL;
7b732a75
PZ
4719 unsigned long vma_size;
4720 unsigned long nr_pages;
45bfb2e5 4721 long user_extra = 0, extra = 0;
d57e34fd 4722 int ret = 0, flags = 0;
37d81828 4723
c7920614
PZ
4724 /*
4725 * Don't allow mmap() of inherited per-task counters. This would
4726 * create a performance issue due to all children writing to the
76369139 4727 * same rb.
c7920614
PZ
4728 */
4729 if (event->cpu == -1 && event->attr.inherit)
4730 return -EINVAL;
4731
43a21ea8 4732 if (!(vma->vm_flags & VM_SHARED))
37d81828 4733 return -EINVAL;
7b732a75
PZ
4734
4735 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4736
4737 if (vma->vm_pgoff == 0) {
4738 nr_pages = (vma_size / PAGE_SIZE) - 1;
4739 } else {
4740 /*
4741 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4742 * mapped, all subsequent mappings should have the same size
4743 * and offset. Must be above the normal perf buffer.
4744 */
4745 u64 aux_offset, aux_size;
4746
4747 if (!event->rb)
4748 return -EINVAL;
4749
4750 nr_pages = vma_size / PAGE_SIZE;
4751
4752 mutex_lock(&event->mmap_mutex);
4753 ret = -EINVAL;
4754
4755 rb = event->rb;
4756 if (!rb)
4757 goto aux_unlock;
4758
4759 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4760 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4761
4762 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4763 goto aux_unlock;
4764
4765 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4766 goto aux_unlock;
4767
4768 /* already mapped with a different offset */
4769 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4770 goto aux_unlock;
4771
4772 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4773 goto aux_unlock;
4774
4775 /* already mapped with a different size */
4776 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4777 goto aux_unlock;
4778
4779 if (!is_power_of_2(nr_pages))
4780 goto aux_unlock;
4781
4782 if (!atomic_inc_not_zero(&rb->mmap_count))
4783 goto aux_unlock;
4784
4785 if (rb_has_aux(rb)) {
4786 atomic_inc(&rb->aux_mmap_count);
4787 ret = 0;
4788 goto unlock;
4789 }
4790
4791 atomic_set(&rb->aux_mmap_count, 1);
4792 user_extra = nr_pages;
4793
4794 goto accounting;
4795 }
7b732a75 4796
7730d865 4797 /*
76369139 4798 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4799 * can do bitmasks instead of modulo.
4800 */
2ed11312 4801 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4802 return -EINVAL;
4803
7b732a75 4804 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4805 return -EINVAL;
4806
cdd6c482 4807 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4808again:
cdd6c482 4809 mutex_lock(&event->mmap_mutex);
76369139 4810 if (event->rb) {
9bb5d40c 4811 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4812 ret = -EINVAL;
9bb5d40c
PZ
4813 goto unlock;
4814 }
4815
4816 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4817 /*
4818 * Raced against perf_mmap_close() through
4819 * perf_event_set_output(). Try again, hope for better
4820 * luck.
4821 */
4822 mutex_unlock(&event->mmap_mutex);
4823 goto again;
4824 }
4825
ebb3c4c4
PZ
4826 goto unlock;
4827 }
4828
789f90fc 4829 user_extra = nr_pages + 1;
45bfb2e5
PZ
4830
4831accounting:
cdd6c482 4832 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4833
4834 /*
4835 * Increase the limit linearly with more CPUs:
4836 */
4837 user_lock_limit *= num_online_cpus();
4838
789f90fc 4839 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4840
789f90fc
PZ
4841 if (user_locked > user_lock_limit)
4842 extra = user_locked - user_lock_limit;
7b732a75 4843
78d7d407 4844 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4845 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4846 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4847
459ec28a
IM
4848 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4849 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4850 ret = -EPERM;
4851 goto unlock;
4852 }
7b732a75 4853
45bfb2e5 4854 WARN_ON(!rb && event->rb);
906010b2 4855
d57e34fd 4856 if (vma->vm_flags & VM_WRITE)
76369139 4857 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4858
76369139 4859 if (!rb) {
45bfb2e5
PZ
4860 rb = rb_alloc(nr_pages,
4861 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4862 event->cpu, flags);
26cb63ad 4863
45bfb2e5
PZ
4864 if (!rb) {
4865 ret = -ENOMEM;
4866 goto unlock;
4867 }
43a21ea8 4868
45bfb2e5
PZ
4869 atomic_set(&rb->mmap_count, 1);
4870 rb->mmap_user = get_current_user();
4871 rb->mmap_locked = extra;
26cb63ad 4872
45bfb2e5 4873 ring_buffer_attach(event, rb);
ac9721f3 4874
45bfb2e5
PZ
4875 perf_event_init_userpage(event);
4876 perf_event_update_userpage(event);
4877 } else {
1a594131
AS
4878 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4879 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4880 if (!ret)
4881 rb->aux_mmap_locked = extra;
4882 }
9a0f05cb 4883
ebb3c4c4 4884unlock:
45bfb2e5
PZ
4885 if (!ret) {
4886 atomic_long_add(user_extra, &user->locked_vm);
4887 vma->vm_mm->pinned_vm += extra;
4888
ac9721f3 4889 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4890 } else if (rb) {
4891 atomic_dec(&rb->mmap_count);
4892 }
4893aux_unlock:
cdd6c482 4894 mutex_unlock(&event->mmap_mutex);
37d81828 4895
9bb5d40c
PZ
4896 /*
4897 * Since pinned accounting is per vm we cannot allow fork() to copy our
4898 * vma.
4899 */
26cb63ad 4900 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4901 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4902
1e0fb9ec
AL
4903 if (event->pmu->event_mapped)
4904 event->pmu->event_mapped(event);
4905
7b732a75 4906 return ret;
37d81828
PM
4907}
4908
3c446b3d
PZ
4909static int perf_fasync(int fd, struct file *filp, int on)
4910{
496ad9aa 4911 struct inode *inode = file_inode(filp);
cdd6c482 4912 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4913 int retval;
4914
5955102c 4915 inode_lock(inode);
cdd6c482 4916 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4917 inode_unlock(inode);
3c446b3d
PZ
4918
4919 if (retval < 0)
4920 return retval;
4921
4922 return 0;
4923}
4924
0793a61d 4925static const struct file_operations perf_fops = {
3326c1ce 4926 .llseek = no_llseek,
0793a61d
TG
4927 .release = perf_release,
4928 .read = perf_read,
4929 .poll = perf_poll,
d859e29f 4930 .unlocked_ioctl = perf_ioctl,
b3f20785 4931 .compat_ioctl = perf_compat_ioctl,
37d81828 4932 .mmap = perf_mmap,
3c446b3d 4933 .fasync = perf_fasync,
0793a61d
TG
4934};
4935
925d519a 4936/*
cdd6c482 4937 * Perf event wakeup
925d519a
PZ
4938 *
4939 * If there's data, ensure we set the poll() state and publish everything
4940 * to user-space before waking everybody up.
4941 */
4942
fed66e2c
PZ
4943static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4944{
4945 /* only the parent has fasync state */
4946 if (event->parent)
4947 event = event->parent;
4948 return &event->fasync;
4949}
4950
cdd6c482 4951void perf_event_wakeup(struct perf_event *event)
925d519a 4952{
10c6db11 4953 ring_buffer_wakeup(event);
4c9e2542 4954
cdd6c482 4955 if (event->pending_kill) {
fed66e2c 4956 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4957 event->pending_kill = 0;
4c9e2542 4958 }
925d519a
PZ
4959}
4960
e360adbe 4961static void perf_pending_event(struct irq_work *entry)
79f14641 4962{
cdd6c482
IM
4963 struct perf_event *event = container_of(entry,
4964 struct perf_event, pending);
d525211f
PZ
4965 int rctx;
4966
4967 rctx = perf_swevent_get_recursion_context();
4968 /*
4969 * If we 'fail' here, that's OK, it means recursion is already disabled
4970 * and we won't recurse 'further'.
4971 */
79f14641 4972
cdd6c482
IM
4973 if (event->pending_disable) {
4974 event->pending_disable = 0;
fae3fde6 4975 perf_event_disable_local(event);
79f14641
PZ
4976 }
4977
cdd6c482
IM
4978 if (event->pending_wakeup) {
4979 event->pending_wakeup = 0;
4980 perf_event_wakeup(event);
79f14641 4981 }
d525211f
PZ
4982
4983 if (rctx >= 0)
4984 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4985}
4986
39447b38
ZY
4987/*
4988 * We assume there is only KVM supporting the callbacks.
4989 * Later on, we might change it to a list if there is
4990 * another virtualization implementation supporting the callbacks.
4991 */
4992struct perf_guest_info_callbacks *perf_guest_cbs;
4993
4994int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4995{
4996 perf_guest_cbs = cbs;
4997 return 0;
4998}
4999EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5000
5001int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5002{
5003 perf_guest_cbs = NULL;
5004 return 0;
5005}
5006EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5007
4018994f
JO
5008static void
5009perf_output_sample_regs(struct perf_output_handle *handle,
5010 struct pt_regs *regs, u64 mask)
5011{
5012 int bit;
5013
5014 for_each_set_bit(bit, (const unsigned long *) &mask,
5015 sizeof(mask) * BITS_PER_BYTE) {
5016 u64 val;
5017
5018 val = perf_reg_value(regs, bit);
5019 perf_output_put(handle, val);
5020 }
5021}
5022
60e2364e 5023static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5024 struct pt_regs *regs,
5025 struct pt_regs *regs_user_copy)
4018994f 5026{
88a7c26a
AL
5027 if (user_mode(regs)) {
5028 regs_user->abi = perf_reg_abi(current);
2565711f 5029 regs_user->regs = regs;
88a7c26a
AL
5030 } else if (current->mm) {
5031 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5032 } else {
5033 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5034 regs_user->regs = NULL;
4018994f
JO
5035 }
5036}
5037
60e2364e
SE
5038static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5039 struct pt_regs *regs)
5040{
5041 regs_intr->regs = regs;
5042 regs_intr->abi = perf_reg_abi(current);
5043}
5044
5045
c5ebcedb
JO
5046/*
5047 * Get remaining task size from user stack pointer.
5048 *
5049 * It'd be better to take stack vma map and limit this more
5050 * precisly, but there's no way to get it safely under interrupt,
5051 * so using TASK_SIZE as limit.
5052 */
5053static u64 perf_ustack_task_size(struct pt_regs *regs)
5054{
5055 unsigned long addr = perf_user_stack_pointer(regs);
5056
5057 if (!addr || addr >= TASK_SIZE)
5058 return 0;
5059
5060 return TASK_SIZE - addr;
5061}
5062
5063static u16
5064perf_sample_ustack_size(u16 stack_size, u16 header_size,
5065 struct pt_regs *regs)
5066{
5067 u64 task_size;
5068
5069 /* No regs, no stack pointer, no dump. */
5070 if (!regs)
5071 return 0;
5072
5073 /*
5074 * Check if we fit in with the requested stack size into the:
5075 * - TASK_SIZE
5076 * If we don't, we limit the size to the TASK_SIZE.
5077 *
5078 * - remaining sample size
5079 * If we don't, we customize the stack size to
5080 * fit in to the remaining sample size.
5081 */
5082
5083 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5084 stack_size = min(stack_size, (u16) task_size);
5085
5086 /* Current header size plus static size and dynamic size. */
5087 header_size += 2 * sizeof(u64);
5088
5089 /* Do we fit in with the current stack dump size? */
5090 if ((u16) (header_size + stack_size) < header_size) {
5091 /*
5092 * If we overflow the maximum size for the sample,
5093 * we customize the stack dump size to fit in.
5094 */
5095 stack_size = USHRT_MAX - header_size - sizeof(u64);
5096 stack_size = round_up(stack_size, sizeof(u64));
5097 }
5098
5099 return stack_size;
5100}
5101
5102static void
5103perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5104 struct pt_regs *regs)
5105{
5106 /* Case of a kernel thread, nothing to dump */
5107 if (!regs) {
5108 u64 size = 0;
5109 perf_output_put(handle, size);
5110 } else {
5111 unsigned long sp;
5112 unsigned int rem;
5113 u64 dyn_size;
5114
5115 /*
5116 * We dump:
5117 * static size
5118 * - the size requested by user or the best one we can fit
5119 * in to the sample max size
5120 * data
5121 * - user stack dump data
5122 * dynamic size
5123 * - the actual dumped size
5124 */
5125
5126 /* Static size. */
5127 perf_output_put(handle, dump_size);
5128
5129 /* Data. */
5130 sp = perf_user_stack_pointer(regs);
5131 rem = __output_copy_user(handle, (void *) sp, dump_size);
5132 dyn_size = dump_size - rem;
5133
5134 perf_output_skip(handle, rem);
5135
5136 /* Dynamic size. */
5137 perf_output_put(handle, dyn_size);
5138 }
5139}
5140
c980d109
ACM
5141static void __perf_event_header__init_id(struct perf_event_header *header,
5142 struct perf_sample_data *data,
5143 struct perf_event *event)
6844c09d
ACM
5144{
5145 u64 sample_type = event->attr.sample_type;
5146
5147 data->type = sample_type;
5148 header->size += event->id_header_size;
5149
5150 if (sample_type & PERF_SAMPLE_TID) {
5151 /* namespace issues */
5152 data->tid_entry.pid = perf_event_pid(event, current);
5153 data->tid_entry.tid = perf_event_tid(event, current);
5154 }
5155
5156 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5157 data->time = perf_event_clock(event);
6844c09d 5158
ff3d527c 5159 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5160 data->id = primary_event_id(event);
5161
5162 if (sample_type & PERF_SAMPLE_STREAM_ID)
5163 data->stream_id = event->id;
5164
5165 if (sample_type & PERF_SAMPLE_CPU) {
5166 data->cpu_entry.cpu = raw_smp_processor_id();
5167 data->cpu_entry.reserved = 0;
5168 }
5169}
5170
76369139
FW
5171void perf_event_header__init_id(struct perf_event_header *header,
5172 struct perf_sample_data *data,
5173 struct perf_event *event)
c980d109
ACM
5174{
5175 if (event->attr.sample_id_all)
5176 __perf_event_header__init_id(header, data, event);
5177}
5178
5179static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5180 struct perf_sample_data *data)
5181{
5182 u64 sample_type = data->type;
5183
5184 if (sample_type & PERF_SAMPLE_TID)
5185 perf_output_put(handle, data->tid_entry);
5186
5187 if (sample_type & PERF_SAMPLE_TIME)
5188 perf_output_put(handle, data->time);
5189
5190 if (sample_type & PERF_SAMPLE_ID)
5191 perf_output_put(handle, data->id);
5192
5193 if (sample_type & PERF_SAMPLE_STREAM_ID)
5194 perf_output_put(handle, data->stream_id);
5195
5196 if (sample_type & PERF_SAMPLE_CPU)
5197 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5198
5199 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5200 perf_output_put(handle, data->id);
c980d109
ACM
5201}
5202
76369139
FW
5203void perf_event__output_id_sample(struct perf_event *event,
5204 struct perf_output_handle *handle,
5205 struct perf_sample_data *sample)
c980d109
ACM
5206{
5207 if (event->attr.sample_id_all)
5208 __perf_event__output_id_sample(handle, sample);
5209}
5210
3dab77fb 5211static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5212 struct perf_event *event,
5213 u64 enabled, u64 running)
3dab77fb 5214{
cdd6c482 5215 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5216 u64 values[4];
5217 int n = 0;
5218
b5e58793 5219 values[n++] = perf_event_count(event);
3dab77fb 5220 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5221 values[n++] = enabled +
cdd6c482 5222 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5223 }
5224 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5225 values[n++] = running +
cdd6c482 5226 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5227 }
5228 if (read_format & PERF_FORMAT_ID)
cdd6c482 5229 values[n++] = primary_event_id(event);
3dab77fb 5230
76369139 5231 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5232}
5233
5234/*
cdd6c482 5235 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5236 */
5237static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5238 struct perf_event *event,
5239 u64 enabled, u64 running)
3dab77fb 5240{
cdd6c482
IM
5241 struct perf_event *leader = event->group_leader, *sub;
5242 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5243 u64 values[5];
5244 int n = 0;
5245
5246 values[n++] = 1 + leader->nr_siblings;
5247
5248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5249 values[n++] = enabled;
3dab77fb
PZ
5250
5251 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5252 values[n++] = running;
3dab77fb 5253
cdd6c482 5254 if (leader != event)
3dab77fb
PZ
5255 leader->pmu->read(leader);
5256
b5e58793 5257 values[n++] = perf_event_count(leader);
3dab77fb 5258 if (read_format & PERF_FORMAT_ID)
cdd6c482 5259 values[n++] = primary_event_id(leader);
3dab77fb 5260
76369139 5261 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5262
65abc865 5263 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5264 n = 0;
5265
6f5ab001
JO
5266 if ((sub != event) &&
5267 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5268 sub->pmu->read(sub);
5269
b5e58793 5270 values[n++] = perf_event_count(sub);
3dab77fb 5271 if (read_format & PERF_FORMAT_ID)
cdd6c482 5272 values[n++] = primary_event_id(sub);
3dab77fb 5273
76369139 5274 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5275 }
5276}
5277
eed01528
SE
5278#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5279 PERF_FORMAT_TOTAL_TIME_RUNNING)
5280
3dab77fb 5281static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5282 struct perf_event *event)
3dab77fb 5283{
e3f3541c 5284 u64 enabled = 0, running = 0, now;
eed01528
SE
5285 u64 read_format = event->attr.read_format;
5286
5287 /*
5288 * compute total_time_enabled, total_time_running
5289 * based on snapshot values taken when the event
5290 * was last scheduled in.
5291 *
5292 * we cannot simply called update_context_time()
5293 * because of locking issue as we are called in
5294 * NMI context
5295 */
c4794295 5296 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5297 calc_timer_values(event, &now, &enabled, &running);
eed01528 5298
cdd6c482 5299 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5300 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5301 else
eed01528 5302 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5303}
5304
5622f295
MM
5305void perf_output_sample(struct perf_output_handle *handle,
5306 struct perf_event_header *header,
5307 struct perf_sample_data *data,
cdd6c482 5308 struct perf_event *event)
5622f295
MM
5309{
5310 u64 sample_type = data->type;
5311
5312 perf_output_put(handle, *header);
5313
ff3d527c
AH
5314 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5315 perf_output_put(handle, data->id);
5316
5622f295
MM
5317 if (sample_type & PERF_SAMPLE_IP)
5318 perf_output_put(handle, data->ip);
5319
5320 if (sample_type & PERF_SAMPLE_TID)
5321 perf_output_put(handle, data->tid_entry);
5322
5323 if (sample_type & PERF_SAMPLE_TIME)
5324 perf_output_put(handle, data->time);
5325
5326 if (sample_type & PERF_SAMPLE_ADDR)
5327 perf_output_put(handle, data->addr);
5328
5329 if (sample_type & PERF_SAMPLE_ID)
5330 perf_output_put(handle, data->id);
5331
5332 if (sample_type & PERF_SAMPLE_STREAM_ID)
5333 perf_output_put(handle, data->stream_id);
5334
5335 if (sample_type & PERF_SAMPLE_CPU)
5336 perf_output_put(handle, data->cpu_entry);
5337
5338 if (sample_type & PERF_SAMPLE_PERIOD)
5339 perf_output_put(handle, data->period);
5340
5341 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5342 perf_output_read(handle, event);
5622f295
MM
5343
5344 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5345 if (data->callchain) {
5346 int size = 1;
5347
5348 if (data->callchain)
5349 size += data->callchain->nr;
5350
5351 size *= sizeof(u64);
5352
76369139 5353 __output_copy(handle, data->callchain, size);
5622f295
MM
5354 } else {
5355 u64 nr = 0;
5356 perf_output_put(handle, nr);
5357 }
5358 }
5359
5360 if (sample_type & PERF_SAMPLE_RAW) {
5361 if (data->raw) {
fa128e6a
AS
5362 u32 raw_size = data->raw->size;
5363 u32 real_size = round_up(raw_size + sizeof(u32),
5364 sizeof(u64)) - sizeof(u32);
5365 u64 zero = 0;
5366
5367 perf_output_put(handle, real_size);
5368 __output_copy(handle, data->raw->data, raw_size);
5369 if (real_size - raw_size)
5370 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5371 } else {
5372 struct {
5373 u32 size;
5374 u32 data;
5375 } raw = {
5376 .size = sizeof(u32),
5377 .data = 0,
5378 };
5379 perf_output_put(handle, raw);
5380 }
5381 }
a7ac67ea 5382
bce38cd5
SE
5383 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5384 if (data->br_stack) {
5385 size_t size;
5386
5387 size = data->br_stack->nr
5388 * sizeof(struct perf_branch_entry);
5389
5390 perf_output_put(handle, data->br_stack->nr);
5391 perf_output_copy(handle, data->br_stack->entries, size);
5392 } else {
5393 /*
5394 * we always store at least the value of nr
5395 */
5396 u64 nr = 0;
5397 perf_output_put(handle, nr);
5398 }
5399 }
4018994f
JO
5400
5401 if (sample_type & PERF_SAMPLE_REGS_USER) {
5402 u64 abi = data->regs_user.abi;
5403
5404 /*
5405 * If there are no regs to dump, notice it through
5406 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5407 */
5408 perf_output_put(handle, abi);
5409
5410 if (abi) {
5411 u64 mask = event->attr.sample_regs_user;
5412 perf_output_sample_regs(handle,
5413 data->regs_user.regs,
5414 mask);
5415 }
5416 }
c5ebcedb 5417
a5cdd40c 5418 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5419 perf_output_sample_ustack(handle,
5420 data->stack_user_size,
5421 data->regs_user.regs);
a5cdd40c 5422 }
c3feedf2
AK
5423
5424 if (sample_type & PERF_SAMPLE_WEIGHT)
5425 perf_output_put(handle, data->weight);
d6be9ad6
SE
5426
5427 if (sample_type & PERF_SAMPLE_DATA_SRC)
5428 perf_output_put(handle, data->data_src.val);
a5cdd40c 5429
fdfbbd07
AK
5430 if (sample_type & PERF_SAMPLE_TRANSACTION)
5431 perf_output_put(handle, data->txn);
5432
60e2364e
SE
5433 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5434 u64 abi = data->regs_intr.abi;
5435 /*
5436 * If there are no regs to dump, notice it through
5437 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5438 */
5439 perf_output_put(handle, abi);
5440
5441 if (abi) {
5442 u64 mask = event->attr.sample_regs_intr;
5443
5444 perf_output_sample_regs(handle,
5445 data->regs_intr.regs,
5446 mask);
5447 }
5448 }
5449
a5cdd40c
PZ
5450 if (!event->attr.watermark) {
5451 int wakeup_events = event->attr.wakeup_events;
5452
5453 if (wakeup_events) {
5454 struct ring_buffer *rb = handle->rb;
5455 int events = local_inc_return(&rb->events);
5456
5457 if (events >= wakeup_events) {
5458 local_sub(wakeup_events, &rb->events);
5459 local_inc(&rb->wakeup);
5460 }
5461 }
5462 }
5622f295
MM
5463}
5464
5465void perf_prepare_sample(struct perf_event_header *header,
5466 struct perf_sample_data *data,
cdd6c482 5467 struct perf_event *event,
5622f295 5468 struct pt_regs *regs)
7b732a75 5469{
cdd6c482 5470 u64 sample_type = event->attr.sample_type;
7b732a75 5471
cdd6c482 5472 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5473 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5474
5475 header->misc = 0;
5476 header->misc |= perf_misc_flags(regs);
6fab0192 5477
c980d109 5478 __perf_event_header__init_id(header, data, event);
6844c09d 5479
c320c7b7 5480 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5481 data->ip = perf_instruction_pointer(regs);
5482
b23f3325 5483 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5484 int size = 1;
394ee076 5485
e6dab5ff 5486 data->callchain = perf_callchain(event, regs);
5622f295
MM
5487
5488 if (data->callchain)
5489 size += data->callchain->nr;
5490
5491 header->size += size * sizeof(u64);
394ee076
PZ
5492 }
5493
3a43ce68 5494 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5495 int size = sizeof(u32);
5496
5497 if (data->raw)
5498 size += data->raw->size;
5499 else
5500 size += sizeof(u32);
5501
fa128e6a 5502 header->size += round_up(size, sizeof(u64));
7f453c24 5503 }
bce38cd5
SE
5504
5505 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5506 int size = sizeof(u64); /* nr */
5507 if (data->br_stack) {
5508 size += data->br_stack->nr
5509 * sizeof(struct perf_branch_entry);
5510 }
5511 header->size += size;
5512 }
4018994f 5513
2565711f 5514 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5515 perf_sample_regs_user(&data->regs_user, regs,
5516 &data->regs_user_copy);
2565711f 5517
4018994f
JO
5518 if (sample_type & PERF_SAMPLE_REGS_USER) {
5519 /* regs dump ABI info */
5520 int size = sizeof(u64);
5521
4018994f
JO
5522 if (data->regs_user.regs) {
5523 u64 mask = event->attr.sample_regs_user;
5524 size += hweight64(mask) * sizeof(u64);
5525 }
5526
5527 header->size += size;
5528 }
c5ebcedb
JO
5529
5530 if (sample_type & PERF_SAMPLE_STACK_USER) {
5531 /*
5532 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5533 * processed as the last one or have additional check added
5534 * in case new sample type is added, because we could eat
5535 * up the rest of the sample size.
5536 */
c5ebcedb
JO
5537 u16 stack_size = event->attr.sample_stack_user;
5538 u16 size = sizeof(u64);
5539
c5ebcedb 5540 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5541 data->regs_user.regs);
c5ebcedb
JO
5542
5543 /*
5544 * If there is something to dump, add space for the dump
5545 * itself and for the field that tells the dynamic size,
5546 * which is how many have been actually dumped.
5547 */
5548 if (stack_size)
5549 size += sizeof(u64) + stack_size;
5550
5551 data->stack_user_size = stack_size;
5552 header->size += size;
5553 }
60e2364e
SE
5554
5555 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5556 /* regs dump ABI info */
5557 int size = sizeof(u64);
5558
5559 perf_sample_regs_intr(&data->regs_intr, regs);
5560
5561 if (data->regs_intr.regs) {
5562 u64 mask = event->attr.sample_regs_intr;
5563
5564 size += hweight64(mask) * sizeof(u64);
5565 }
5566
5567 header->size += size;
5568 }
5622f295 5569}
7f453c24 5570
21509084
YZ
5571void perf_event_output(struct perf_event *event,
5572 struct perf_sample_data *data,
5573 struct pt_regs *regs)
5622f295
MM
5574{
5575 struct perf_output_handle handle;
5576 struct perf_event_header header;
689802b2 5577
927c7a9e
FW
5578 /* protect the callchain buffers */
5579 rcu_read_lock();
5580
cdd6c482 5581 perf_prepare_sample(&header, data, event, regs);
5c148194 5582
a7ac67ea 5583 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5584 goto exit;
0322cd6e 5585
cdd6c482 5586 perf_output_sample(&handle, &header, data, event);
f413cdb8 5587
8a057d84 5588 perf_output_end(&handle);
927c7a9e
FW
5589
5590exit:
5591 rcu_read_unlock();
0322cd6e
PZ
5592}
5593
38b200d6 5594/*
cdd6c482 5595 * read event_id
38b200d6
PZ
5596 */
5597
5598struct perf_read_event {
5599 struct perf_event_header header;
5600
5601 u32 pid;
5602 u32 tid;
38b200d6
PZ
5603};
5604
5605static void
cdd6c482 5606perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5607 struct task_struct *task)
5608{
5609 struct perf_output_handle handle;
c980d109 5610 struct perf_sample_data sample;
dfc65094 5611 struct perf_read_event read_event = {
38b200d6 5612 .header = {
cdd6c482 5613 .type = PERF_RECORD_READ,
38b200d6 5614 .misc = 0,
c320c7b7 5615 .size = sizeof(read_event) + event->read_size,
38b200d6 5616 },
cdd6c482
IM
5617 .pid = perf_event_pid(event, task),
5618 .tid = perf_event_tid(event, task),
38b200d6 5619 };
3dab77fb 5620 int ret;
38b200d6 5621
c980d109 5622 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5623 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5624 if (ret)
5625 return;
5626
dfc65094 5627 perf_output_put(&handle, read_event);
cdd6c482 5628 perf_output_read(&handle, event);
c980d109 5629 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5630
38b200d6
PZ
5631 perf_output_end(&handle);
5632}
5633
52d857a8
JO
5634typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5635
5636static void
5637perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5638 perf_event_aux_output_cb output,
5639 void *data)
5640{
5641 struct perf_event *event;
5642
5643 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5644 if (event->state < PERF_EVENT_STATE_INACTIVE)
5645 continue;
5646 if (!event_filter_match(event))
5647 continue;
67516844 5648 output(event, data);
52d857a8
JO
5649 }
5650}
5651
4e93ad60
JO
5652static void
5653perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5654 struct perf_event_context *task_ctx)
5655{
5656 rcu_read_lock();
5657 preempt_disable();
5658 perf_event_aux_ctx(task_ctx, output, data);
5659 preempt_enable();
5660 rcu_read_unlock();
5661}
5662
52d857a8 5663static void
67516844 5664perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5665 struct perf_event_context *task_ctx)
5666{
5667 struct perf_cpu_context *cpuctx;
5668 struct perf_event_context *ctx;
5669 struct pmu *pmu;
5670 int ctxn;
5671
4e93ad60
JO
5672 /*
5673 * If we have task_ctx != NULL we only notify
5674 * the task context itself. The task_ctx is set
5675 * only for EXIT events before releasing task
5676 * context.
5677 */
5678 if (task_ctx) {
5679 perf_event_aux_task_ctx(output, data, task_ctx);
5680 return;
5681 }
5682
52d857a8
JO
5683 rcu_read_lock();
5684 list_for_each_entry_rcu(pmu, &pmus, entry) {
5685 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5686 if (cpuctx->unique_pmu != pmu)
5687 goto next;
67516844 5688 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5689 ctxn = pmu->task_ctx_nr;
5690 if (ctxn < 0)
5691 goto next;
5692 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5693 if (ctx)
67516844 5694 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5695next:
5696 put_cpu_ptr(pmu->pmu_cpu_context);
5697 }
52d857a8
JO
5698 rcu_read_unlock();
5699}
5700
60313ebe 5701/*
9f498cc5
PZ
5702 * task tracking -- fork/exit
5703 *
13d7a241 5704 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5705 */
5706
9f498cc5 5707struct perf_task_event {
3a80b4a3 5708 struct task_struct *task;
cdd6c482 5709 struct perf_event_context *task_ctx;
60313ebe
PZ
5710
5711 struct {
5712 struct perf_event_header header;
5713
5714 u32 pid;
5715 u32 ppid;
9f498cc5
PZ
5716 u32 tid;
5717 u32 ptid;
393b2ad8 5718 u64 time;
cdd6c482 5719 } event_id;
60313ebe
PZ
5720};
5721
67516844
JO
5722static int perf_event_task_match(struct perf_event *event)
5723{
13d7a241
SE
5724 return event->attr.comm || event->attr.mmap ||
5725 event->attr.mmap2 || event->attr.mmap_data ||
5726 event->attr.task;
67516844
JO
5727}
5728
cdd6c482 5729static void perf_event_task_output(struct perf_event *event,
52d857a8 5730 void *data)
60313ebe 5731{
52d857a8 5732 struct perf_task_event *task_event = data;
60313ebe 5733 struct perf_output_handle handle;
c980d109 5734 struct perf_sample_data sample;
9f498cc5 5735 struct task_struct *task = task_event->task;
c980d109 5736 int ret, size = task_event->event_id.header.size;
8bb39f9a 5737
67516844
JO
5738 if (!perf_event_task_match(event))
5739 return;
5740
c980d109 5741 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5742
c980d109 5743 ret = perf_output_begin(&handle, event,
a7ac67ea 5744 task_event->event_id.header.size);
ef60777c 5745 if (ret)
c980d109 5746 goto out;
60313ebe 5747
cdd6c482
IM
5748 task_event->event_id.pid = perf_event_pid(event, task);
5749 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5750
cdd6c482
IM
5751 task_event->event_id.tid = perf_event_tid(event, task);
5752 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5753
34f43927
PZ
5754 task_event->event_id.time = perf_event_clock(event);
5755
cdd6c482 5756 perf_output_put(&handle, task_event->event_id);
393b2ad8 5757
c980d109
ACM
5758 perf_event__output_id_sample(event, &handle, &sample);
5759
60313ebe 5760 perf_output_end(&handle);
c980d109
ACM
5761out:
5762 task_event->event_id.header.size = size;
60313ebe
PZ
5763}
5764
cdd6c482
IM
5765static void perf_event_task(struct task_struct *task,
5766 struct perf_event_context *task_ctx,
3a80b4a3 5767 int new)
60313ebe 5768{
9f498cc5 5769 struct perf_task_event task_event;
60313ebe 5770
cdd6c482
IM
5771 if (!atomic_read(&nr_comm_events) &&
5772 !atomic_read(&nr_mmap_events) &&
5773 !atomic_read(&nr_task_events))
60313ebe
PZ
5774 return;
5775
9f498cc5 5776 task_event = (struct perf_task_event){
3a80b4a3
PZ
5777 .task = task,
5778 .task_ctx = task_ctx,
cdd6c482 5779 .event_id = {
60313ebe 5780 .header = {
cdd6c482 5781 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5782 .misc = 0,
cdd6c482 5783 .size = sizeof(task_event.event_id),
60313ebe 5784 },
573402db
PZ
5785 /* .pid */
5786 /* .ppid */
9f498cc5
PZ
5787 /* .tid */
5788 /* .ptid */
34f43927 5789 /* .time */
60313ebe
PZ
5790 },
5791 };
5792
67516844 5793 perf_event_aux(perf_event_task_output,
52d857a8
JO
5794 &task_event,
5795 task_ctx);
9f498cc5
PZ
5796}
5797
cdd6c482 5798void perf_event_fork(struct task_struct *task)
9f498cc5 5799{
cdd6c482 5800 perf_event_task(task, NULL, 1);
60313ebe
PZ
5801}
5802
8d1b2d93
PZ
5803/*
5804 * comm tracking
5805 */
5806
5807struct perf_comm_event {
22a4f650
IM
5808 struct task_struct *task;
5809 char *comm;
8d1b2d93
PZ
5810 int comm_size;
5811
5812 struct {
5813 struct perf_event_header header;
5814
5815 u32 pid;
5816 u32 tid;
cdd6c482 5817 } event_id;
8d1b2d93
PZ
5818};
5819
67516844
JO
5820static int perf_event_comm_match(struct perf_event *event)
5821{
5822 return event->attr.comm;
5823}
5824
cdd6c482 5825static void perf_event_comm_output(struct perf_event *event,
52d857a8 5826 void *data)
8d1b2d93 5827{
52d857a8 5828 struct perf_comm_event *comm_event = data;
8d1b2d93 5829 struct perf_output_handle handle;
c980d109 5830 struct perf_sample_data sample;
cdd6c482 5831 int size = comm_event->event_id.header.size;
c980d109
ACM
5832 int ret;
5833
67516844
JO
5834 if (!perf_event_comm_match(event))
5835 return;
5836
c980d109
ACM
5837 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5838 ret = perf_output_begin(&handle, event,
a7ac67ea 5839 comm_event->event_id.header.size);
8d1b2d93
PZ
5840
5841 if (ret)
c980d109 5842 goto out;
8d1b2d93 5843
cdd6c482
IM
5844 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5845 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5846
cdd6c482 5847 perf_output_put(&handle, comm_event->event_id);
76369139 5848 __output_copy(&handle, comm_event->comm,
8d1b2d93 5849 comm_event->comm_size);
c980d109
ACM
5850
5851 perf_event__output_id_sample(event, &handle, &sample);
5852
8d1b2d93 5853 perf_output_end(&handle);
c980d109
ACM
5854out:
5855 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5856}
5857
cdd6c482 5858static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5859{
413ee3b4 5860 char comm[TASK_COMM_LEN];
8d1b2d93 5861 unsigned int size;
8d1b2d93 5862
413ee3b4 5863 memset(comm, 0, sizeof(comm));
96b02d78 5864 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5865 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5866
5867 comm_event->comm = comm;
5868 comm_event->comm_size = size;
5869
cdd6c482 5870 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5871
67516844 5872 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5873 comm_event,
5874 NULL);
8d1b2d93
PZ
5875}
5876
82b89778 5877void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5878{
9ee318a7
PZ
5879 struct perf_comm_event comm_event;
5880
cdd6c482 5881 if (!atomic_read(&nr_comm_events))
9ee318a7 5882 return;
a63eaf34 5883
9ee318a7 5884 comm_event = (struct perf_comm_event){
8d1b2d93 5885 .task = task,
573402db
PZ
5886 /* .comm */
5887 /* .comm_size */
cdd6c482 5888 .event_id = {
573402db 5889 .header = {
cdd6c482 5890 .type = PERF_RECORD_COMM,
82b89778 5891 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5892 /* .size */
5893 },
5894 /* .pid */
5895 /* .tid */
8d1b2d93
PZ
5896 },
5897 };
5898
cdd6c482 5899 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5900}
5901
0a4a9391
PZ
5902/*
5903 * mmap tracking
5904 */
5905
5906struct perf_mmap_event {
089dd79d
PZ
5907 struct vm_area_struct *vma;
5908
5909 const char *file_name;
5910 int file_size;
13d7a241
SE
5911 int maj, min;
5912 u64 ino;
5913 u64 ino_generation;
f972eb63 5914 u32 prot, flags;
0a4a9391
PZ
5915
5916 struct {
5917 struct perf_event_header header;
5918
5919 u32 pid;
5920 u32 tid;
5921 u64 start;
5922 u64 len;
5923 u64 pgoff;
cdd6c482 5924 } event_id;
0a4a9391
PZ
5925};
5926
67516844
JO
5927static int perf_event_mmap_match(struct perf_event *event,
5928 void *data)
5929{
5930 struct perf_mmap_event *mmap_event = data;
5931 struct vm_area_struct *vma = mmap_event->vma;
5932 int executable = vma->vm_flags & VM_EXEC;
5933
5934 return (!executable && event->attr.mmap_data) ||
13d7a241 5935 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5936}
5937
cdd6c482 5938static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5939 void *data)
0a4a9391 5940{
52d857a8 5941 struct perf_mmap_event *mmap_event = data;
0a4a9391 5942 struct perf_output_handle handle;
c980d109 5943 struct perf_sample_data sample;
cdd6c482 5944 int size = mmap_event->event_id.header.size;
c980d109 5945 int ret;
0a4a9391 5946
67516844
JO
5947 if (!perf_event_mmap_match(event, data))
5948 return;
5949
13d7a241
SE
5950 if (event->attr.mmap2) {
5951 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5952 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5953 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5954 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5955 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5956 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5957 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5958 }
5959
c980d109
ACM
5960 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5961 ret = perf_output_begin(&handle, event,
a7ac67ea 5962 mmap_event->event_id.header.size);
0a4a9391 5963 if (ret)
c980d109 5964 goto out;
0a4a9391 5965
cdd6c482
IM
5966 mmap_event->event_id.pid = perf_event_pid(event, current);
5967 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5968
cdd6c482 5969 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5970
5971 if (event->attr.mmap2) {
5972 perf_output_put(&handle, mmap_event->maj);
5973 perf_output_put(&handle, mmap_event->min);
5974 perf_output_put(&handle, mmap_event->ino);
5975 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5976 perf_output_put(&handle, mmap_event->prot);
5977 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5978 }
5979
76369139 5980 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5981 mmap_event->file_size);
c980d109
ACM
5982
5983 perf_event__output_id_sample(event, &handle, &sample);
5984
78d613eb 5985 perf_output_end(&handle);
c980d109
ACM
5986out:
5987 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5988}
5989
cdd6c482 5990static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5991{
089dd79d
PZ
5992 struct vm_area_struct *vma = mmap_event->vma;
5993 struct file *file = vma->vm_file;
13d7a241
SE
5994 int maj = 0, min = 0;
5995 u64 ino = 0, gen = 0;
f972eb63 5996 u32 prot = 0, flags = 0;
0a4a9391
PZ
5997 unsigned int size;
5998 char tmp[16];
5999 char *buf = NULL;
2c42cfbf 6000 char *name;
413ee3b4 6001
0a4a9391 6002 if (file) {
13d7a241
SE
6003 struct inode *inode;
6004 dev_t dev;
3ea2f2b9 6005
2c42cfbf 6006 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6007 if (!buf) {
c7e548b4
ON
6008 name = "//enomem";
6009 goto cpy_name;
0a4a9391 6010 }
413ee3b4 6011 /*
3ea2f2b9 6012 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6013 * need to add enough zero bytes after the string to handle
6014 * the 64bit alignment we do later.
6015 */
9bf39ab2 6016 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6017 if (IS_ERR(name)) {
c7e548b4
ON
6018 name = "//toolong";
6019 goto cpy_name;
0a4a9391 6020 }
13d7a241
SE
6021 inode = file_inode(vma->vm_file);
6022 dev = inode->i_sb->s_dev;
6023 ino = inode->i_ino;
6024 gen = inode->i_generation;
6025 maj = MAJOR(dev);
6026 min = MINOR(dev);
f972eb63
PZ
6027
6028 if (vma->vm_flags & VM_READ)
6029 prot |= PROT_READ;
6030 if (vma->vm_flags & VM_WRITE)
6031 prot |= PROT_WRITE;
6032 if (vma->vm_flags & VM_EXEC)
6033 prot |= PROT_EXEC;
6034
6035 if (vma->vm_flags & VM_MAYSHARE)
6036 flags = MAP_SHARED;
6037 else
6038 flags = MAP_PRIVATE;
6039
6040 if (vma->vm_flags & VM_DENYWRITE)
6041 flags |= MAP_DENYWRITE;
6042 if (vma->vm_flags & VM_MAYEXEC)
6043 flags |= MAP_EXECUTABLE;
6044 if (vma->vm_flags & VM_LOCKED)
6045 flags |= MAP_LOCKED;
6046 if (vma->vm_flags & VM_HUGETLB)
6047 flags |= MAP_HUGETLB;
6048
c7e548b4 6049 goto got_name;
0a4a9391 6050 } else {
fbe26abe
JO
6051 if (vma->vm_ops && vma->vm_ops->name) {
6052 name = (char *) vma->vm_ops->name(vma);
6053 if (name)
6054 goto cpy_name;
6055 }
6056
2c42cfbf 6057 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6058 if (name)
6059 goto cpy_name;
089dd79d 6060
32c5fb7e 6061 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6062 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6063 name = "[heap]";
6064 goto cpy_name;
32c5fb7e
ON
6065 }
6066 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6067 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6068 name = "[stack]";
6069 goto cpy_name;
089dd79d
PZ
6070 }
6071
c7e548b4
ON
6072 name = "//anon";
6073 goto cpy_name;
0a4a9391
PZ
6074 }
6075
c7e548b4
ON
6076cpy_name:
6077 strlcpy(tmp, name, sizeof(tmp));
6078 name = tmp;
0a4a9391 6079got_name:
2c42cfbf
PZ
6080 /*
6081 * Since our buffer works in 8 byte units we need to align our string
6082 * size to a multiple of 8. However, we must guarantee the tail end is
6083 * zero'd out to avoid leaking random bits to userspace.
6084 */
6085 size = strlen(name)+1;
6086 while (!IS_ALIGNED(size, sizeof(u64)))
6087 name[size++] = '\0';
0a4a9391
PZ
6088
6089 mmap_event->file_name = name;
6090 mmap_event->file_size = size;
13d7a241
SE
6091 mmap_event->maj = maj;
6092 mmap_event->min = min;
6093 mmap_event->ino = ino;
6094 mmap_event->ino_generation = gen;
f972eb63
PZ
6095 mmap_event->prot = prot;
6096 mmap_event->flags = flags;
0a4a9391 6097
2fe85427
SE
6098 if (!(vma->vm_flags & VM_EXEC))
6099 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6100
cdd6c482 6101 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6102
67516844 6103 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6104 mmap_event,
6105 NULL);
665c2142 6106
0a4a9391
PZ
6107 kfree(buf);
6108}
6109
3af9e859 6110void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6111{
9ee318a7
PZ
6112 struct perf_mmap_event mmap_event;
6113
cdd6c482 6114 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6115 return;
6116
6117 mmap_event = (struct perf_mmap_event){
089dd79d 6118 .vma = vma,
573402db
PZ
6119 /* .file_name */
6120 /* .file_size */
cdd6c482 6121 .event_id = {
573402db 6122 .header = {
cdd6c482 6123 .type = PERF_RECORD_MMAP,
39447b38 6124 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6125 /* .size */
6126 },
6127 /* .pid */
6128 /* .tid */
089dd79d
PZ
6129 .start = vma->vm_start,
6130 .len = vma->vm_end - vma->vm_start,
3a0304e9 6131 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6132 },
13d7a241
SE
6133 /* .maj (attr_mmap2 only) */
6134 /* .min (attr_mmap2 only) */
6135 /* .ino (attr_mmap2 only) */
6136 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6137 /* .prot (attr_mmap2 only) */
6138 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6139 };
6140
cdd6c482 6141 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6142}
6143
68db7e98
AS
6144void perf_event_aux_event(struct perf_event *event, unsigned long head,
6145 unsigned long size, u64 flags)
6146{
6147 struct perf_output_handle handle;
6148 struct perf_sample_data sample;
6149 struct perf_aux_event {
6150 struct perf_event_header header;
6151 u64 offset;
6152 u64 size;
6153 u64 flags;
6154 } rec = {
6155 .header = {
6156 .type = PERF_RECORD_AUX,
6157 .misc = 0,
6158 .size = sizeof(rec),
6159 },
6160 .offset = head,
6161 .size = size,
6162 .flags = flags,
6163 };
6164 int ret;
6165
6166 perf_event_header__init_id(&rec.header, &sample, event);
6167 ret = perf_output_begin(&handle, event, rec.header.size);
6168
6169 if (ret)
6170 return;
6171
6172 perf_output_put(&handle, rec);
6173 perf_event__output_id_sample(event, &handle, &sample);
6174
6175 perf_output_end(&handle);
6176}
6177
f38b0dbb
KL
6178/*
6179 * Lost/dropped samples logging
6180 */
6181void perf_log_lost_samples(struct perf_event *event, u64 lost)
6182{
6183 struct perf_output_handle handle;
6184 struct perf_sample_data sample;
6185 int ret;
6186
6187 struct {
6188 struct perf_event_header header;
6189 u64 lost;
6190 } lost_samples_event = {
6191 .header = {
6192 .type = PERF_RECORD_LOST_SAMPLES,
6193 .misc = 0,
6194 .size = sizeof(lost_samples_event),
6195 },
6196 .lost = lost,
6197 };
6198
6199 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6200
6201 ret = perf_output_begin(&handle, event,
6202 lost_samples_event.header.size);
6203 if (ret)
6204 return;
6205
6206 perf_output_put(&handle, lost_samples_event);
6207 perf_event__output_id_sample(event, &handle, &sample);
6208 perf_output_end(&handle);
6209}
6210
45ac1403
AH
6211/*
6212 * context_switch tracking
6213 */
6214
6215struct perf_switch_event {
6216 struct task_struct *task;
6217 struct task_struct *next_prev;
6218
6219 struct {
6220 struct perf_event_header header;
6221 u32 next_prev_pid;
6222 u32 next_prev_tid;
6223 } event_id;
6224};
6225
6226static int perf_event_switch_match(struct perf_event *event)
6227{
6228 return event->attr.context_switch;
6229}
6230
6231static void perf_event_switch_output(struct perf_event *event, void *data)
6232{
6233 struct perf_switch_event *se = data;
6234 struct perf_output_handle handle;
6235 struct perf_sample_data sample;
6236 int ret;
6237
6238 if (!perf_event_switch_match(event))
6239 return;
6240
6241 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6242 if (event->ctx->task) {
6243 se->event_id.header.type = PERF_RECORD_SWITCH;
6244 se->event_id.header.size = sizeof(se->event_id.header);
6245 } else {
6246 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6247 se->event_id.header.size = sizeof(se->event_id);
6248 se->event_id.next_prev_pid =
6249 perf_event_pid(event, se->next_prev);
6250 se->event_id.next_prev_tid =
6251 perf_event_tid(event, se->next_prev);
6252 }
6253
6254 perf_event_header__init_id(&se->event_id.header, &sample, event);
6255
6256 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6257 if (ret)
6258 return;
6259
6260 if (event->ctx->task)
6261 perf_output_put(&handle, se->event_id.header);
6262 else
6263 perf_output_put(&handle, se->event_id);
6264
6265 perf_event__output_id_sample(event, &handle, &sample);
6266
6267 perf_output_end(&handle);
6268}
6269
6270static void perf_event_switch(struct task_struct *task,
6271 struct task_struct *next_prev, bool sched_in)
6272{
6273 struct perf_switch_event switch_event;
6274
6275 /* N.B. caller checks nr_switch_events != 0 */
6276
6277 switch_event = (struct perf_switch_event){
6278 .task = task,
6279 .next_prev = next_prev,
6280 .event_id = {
6281 .header = {
6282 /* .type */
6283 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6284 /* .size */
6285 },
6286 /* .next_prev_pid */
6287 /* .next_prev_tid */
6288 },
6289 };
6290
6291 perf_event_aux(perf_event_switch_output,
6292 &switch_event,
6293 NULL);
6294}
6295
a78ac325
PZ
6296/*
6297 * IRQ throttle logging
6298 */
6299
cdd6c482 6300static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6301{
6302 struct perf_output_handle handle;
c980d109 6303 struct perf_sample_data sample;
a78ac325
PZ
6304 int ret;
6305
6306 struct {
6307 struct perf_event_header header;
6308 u64 time;
cca3f454 6309 u64 id;
7f453c24 6310 u64 stream_id;
a78ac325
PZ
6311 } throttle_event = {
6312 .header = {
cdd6c482 6313 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6314 .misc = 0,
6315 .size = sizeof(throttle_event),
6316 },
34f43927 6317 .time = perf_event_clock(event),
cdd6c482
IM
6318 .id = primary_event_id(event),
6319 .stream_id = event->id,
a78ac325
PZ
6320 };
6321
966ee4d6 6322 if (enable)
cdd6c482 6323 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6324
c980d109
ACM
6325 perf_event_header__init_id(&throttle_event.header, &sample, event);
6326
6327 ret = perf_output_begin(&handle, event,
a7ac67ea 6328 throttle_event.header.size);
a78ac325
PZ
6329 if (ret)
6330 return;
6331
6332 perf_output_put(&handle, throttle_event);
c980d109 6333 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6334 perf_output_end(&handle);
6335}
6336
ec0d7729
AS
6337static void perf_log_itrace_start(struct perf_event *event)
6338{
6339 struct perf_output_handle handle;
6340 struct perf_sample_data sample;
6341 struct perf_aux_event {
6342 struct perf_event_header header;
6343 u32 pid;
6344 u32 tid;
6345 } rec;
6346 int ret;
6347
6348 if (event->parent)
6349 event = event->parent;
6350
6351 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6352 event->hw.itrace_started)
6353 return;
6354
ec0d7729
AS
6355 rec.header.type = PERF_RECORD_ITRACE_START;
6356 rec.header.misc = 0;
6357 rec.header.size = sizeof(rec);
6358 rec.pid = perf_event_pid(event, current);
6359 rec.tid = perf_event_tid(event, current);
6360
6361 perf_event_header__init_id(&rec.header, &sample, event);
6362 ret = perf_output_begin(&handle, event, rec.header.size);
6363
6364 if (ret)
6365 return;
6366
6367 perf_output_put(&handle, rec);
6368 perf_event__output_id_sample(event, &handle, &sample);
6369
6370 perf_output_end(&handle);
6371}
6372
f6c7d5fe 6373/*
cdd6c482 6374 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6375 */
6376
a8b0ca17 6377static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6378 int throttle, struct perf_sample_data *data,
6379 struct pt_regs *regs)
f6c7d5fe 6380{
cdd6c482
IM
6381 int events = atomic_read(&event->event_limit);
6382 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6383 u64 seq;
79f14641
PZ
6384 int ret = 0;
6385
96398826
PZ
6386 /*
6387 * Non-sampling counters might still use the PMI to fold short
6388 * hardware counters, ignore those.
6389 */
6390 if (unlikely(!is_sampling_event(event)))
6391 return 0;
6392
e050e3f0
SE
6393 seq = __this_cpu_read(perf_throttled_seq);
6394 if (seq != hwc->interrupts_seq) {
6395 hwc->interrupts_seq = seq;
6396 hwc->interrupts = 1;
6397 } else {
6398 hwc->interrupts++;
6399 if (unlikely(throttle
6400 && hwc->interrupts >= max_samples_per_tick)) {
6401 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6402 hwc->interrupts = MAX_INTERRUPTS;
6403 perf_log_throttle(event, 0);
d84153d6 6404 tick_nohz_full_kick();
a78ac325
PZ
6405 ret = 1;
6406 }
e050e3f0 6407 }
60db5e09 6408
cdd6c482 6409 if (event->attr.freq) {
def0a9b2 6410 u64 now = perf_clock();
abd50713 6411 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6412
abd50713 6413 hwc->freq_time_stamp = now;
bd2b5b12 6414
abd50713 6415 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6416 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6417 }
6418
2023b359
PZ
6419 /*
6420 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6421 * events
2023b359
PZ
6422 */
6423
cdd6c482
IM
6424 event->pending_kill = POLL_IN;
6425 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6426 ret = 1;
cdd6c482 6427 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6428 event->pending_disable = 1;
6429 irq_work_queue(&event->pending);
79f14641
PZ
6430 }
6431
453f19ee 6432 if (event->overflow_handler)
a8b0ca17 6433 event->overflow_handler(event, data, regs);
453f19ee 6434 else
a8b0ca17 6435 perf_event_output(event, data, regs);
453f19ee 6436
fed66e2c 6437 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6438 event->pending_wakeup = 1;
6439 irq_work_queue(&event->pending);
f506b3dc
PZ
6440 }
6441
79f14641 6442 return ret;
f6c7d5fe
PZ
6443}
6444
a8b0ca17 6445int perf_event_overflow(struct perf_event *event,
5622f295
MM
6446 struct perf_sample_data *data,
6447 struct pt_regs *regs)
850bc73f 6448{
a8b0ca17 6449 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6450}
6451
15dbf27c 6452/*
cdd6c482 6453 * Generic software event infrastructure
15dbf27c
PZ
6454 */
6455
b28ab83c
PZ
6456struct swevent_htable {
6457 struct swevent_hlist *swevent_hlist;
6458 struct mutex hlist_mutex;
6459 int hlist_refcount;
6460
6461 /* Recursion avoidance in each contexts */
6462 int recursion[PERF_NR_CONTEXTS];
6463};
6464
6465static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6466
7b4b6658 6467/*
cdd6c482
IM
6468 * We directly increment event->count and keep a second value in
6469 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6470 * is kept in the range [-sample_period, 0] so that we can use the
6471 * sign as trigger.
6472 */
6473
ab573844 6474u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6475{
cdd6c482 6476 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6477 u64 period = hwc->last_period;
6478 u64 nr, offset;
6479 s64 old, val;
6480
6481 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6482
6483again:
e7850595 6484 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6485 if (val < 0)
6486 return 0;
15dbf27c 6487
7b4b6658
PZ
6488 nr = div64_u64(period + val, period);
6489 offset = nr * period;
6490 val -= offset;
e7850595 6491 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6492 goto again;
15dbf27c 6493
7b4b6658 6494 return nr;
15dbf27c
PZ
6495}
6496
0cff784a 6497static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6498 struct perf_sample_data *data,
5622f295 6499 struct pt_regs *regs)
15dbf27c 6500{
cdd6c482 6501 struct hw_perf_event *hwc = &event->hw;
850bc73f 6502 int throttle = 0;
15dbf27c 6503
0cff784a
PZ
6504 if (!overflow)
6505 overflow = perf_swevent_set_period(event);
15dbf27c 6506
7b4b6658
PZ
6507 if (hwc->interrupts == MAX_INTERRUPTS)
6508 return;
15dbf27c 6509
7b4b6658 6510 for (; overflow; overflow--) {
a8b0ca17 6511 if (__perf_event_overflow(event, throttle,
5622f295 6512 data, regs)) {
7b4b6658
PZ
6513 /*
6514 * We inhibit the overflow from happening when
6515 * hwc->interrupts == MAX_INTERRUPTS.
6516 */
6517 break;
6518 }
cf450a73 6519 throttle = 1;
7b4b6658 6520 }
15dbf27c
PZ
6521}
6522
a4eaf7f1 6523static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6524 struct perf_sample_data *data,
5622f295 6525 struct pt_regs *regs)
7b4b6658 6526{
cdd6c482 6527 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6528
e7850595 6529 local64_add(nr, &event->count);
d6d020e9 6530
0cff784a
PZ
6531 if (!regs)
6532 return;
6533
6c7e550f 6534 if (!is_sampling_event(event))
7b4b6658 6535 return;
d6d020e9 6536
5d81e5cf
AV
6537 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6538 data->period = nr;
6539 return perf_swevent_overflow(event, 1, data, regs);
6540 } else
6541 data->period = event->hw.last_period;
6542
0cff784a 6543 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6544 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6545
e7850595 6546 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6547 return;
df1a132b 6548
a8b0ca17 6549 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6550}
6551
f5ffe02e
FW
6552static int perf_exclude_event(struct perf_event *event,
6553 struct pt_regs *regs)
6554{
a4eaf7f1 6555 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6556 return 1;
a4eaf7f1 6557
f5ffe02e
FW
6558 if (regs) {
6559 if (event->attr.exclude_user && user_mode(regs))
6560 return 1;
6561
6562 if (event->attr.exclude_kernel && !user_mode(regs))
6563 return 1;
6564 }
6565
6566 return 0;
6567}
6568
cdd6c482 6569static int perf_swevent_match(struct perf_event *event,
1c432d89 6570 enum perf_type_id type,
6fb2915d
LZ
6571 u32 event_id,
6572 struct perf_sample_data *data,
6573 struct pt_regs *regs)
15dbf27c 6574{
cdd6c482 6575 if (event->attr.type != type)
a21ca2ca 6576 return 0;
f5ffe02e 6577
cdd6c482 6578 if (event->attr.config != event_id)
15dbf27c
PZ
6579 return 0;
6580
f5ffe02e
FW
6581 if (perf_exclude_event(event, regs))
6582 return 0;
15dbf27c
PZ
6583
6584 return 1;
6585}
6586
76e1d904
FW
6587static inline u64 swevent_hash(u64 type, u32 event_id)
6588{
6589 u64 val = event_id | (type << 32);
6590
6591 return hash_64(val, SWEVENT_HLIST_BITS);
6592}
6593
49f135ed
FW
6594static inline struct hlist_head *
6595__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6596{
49f135ed
FW
6597 u64 hash = swevent_hash(type, event_id);
6598
6599 return &hlist->heads[hash];
6600}
76e1d904 6601
49f135ed
FW
6602/* For the read side: events when they trigger */
6603static inline struct hlist_head *
b28ab83c 6604find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6605{
6606 struct swevent_hlist *hlist;
76e1d904 6607
b28ab83c 6608 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6609 if (!hlist)
6610 return NULL;
6611
49f135ed
FW
6612 return __find_swevent_head(hlist, type, event_id);
6613}
6614
6615/* For the event head insertion and removal in the hlist */
6616static inline struct hlist_head *
b28ab83c 6617find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6618{
6619 struct swevent_hlist *hlist;
6620 u32 event_id = event->attr.config;
6621 u64 type = event->attr.type;
6622
6623 /*
6624 * Event scheduling is always serialized against hlist allocation
6625 * and release. Which makes the protected version suitable here.
6626 * The context lock guarantees that.
6627 */
b28ab83c 6628 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6629 lockdep_is_held(&event->ctx->lock));
6630 if (!hlist)
6631 return NULL;
6632
6633 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6634}
6635
6636static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6637 u64 nr,
76e1d904
FW
6638 struct perf_sample_data *data,
6639 struct pt_regs *regs)
15dbf27c 6640{
4a32fea9 6641 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6642 struct perf_event *event;
76e1d904 6643 struct hlist_head *head;
15dbf27c 6644
76e1d904 6645 rcu_read_lock();
b28ab83c 6646 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6647 if (!head)
6648 goto end;
6649
b67bfe0d 6650 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6651 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6652 perf_swevent_event(event, nr, data, regs);
15dbf27c 6653 }
76e1d904
FW
6654end:
6655 rcu_read_unlock();
15dbf27c
PZ
6656}
6657
86038c5e
PZI
6658DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6659
4ed7c92d 6660int perf_swevent_get_recursion_context(void)
96f6d444 6661{
4a32fea9 6662 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6663
b28ab83c 6664 return get_recursion_context(swhash->recursion);
96f6d444 6665}
645e8cc0 6666EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6667
fa9f90be 6668inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6669{
4a32fea9 6670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6671
b28ab83c 6672 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6673}
15dbf27c 6674
86038c5e 6675void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6676{
a4234bfc 6677 struct perf_sample_data data;
4ed7c92d 6678
86038c5e 6679 if (WARN_ON_ONCE(!regs))
4ed7c92d 6680 return;
a4234bfc 6681
fd0d000b 6682 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6683 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6684}
6685
6686void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6687{
6688 int rctx;
6689
6690 preempt_disable_notrace();
6691 rctx = perf_swevent_get_recursion_context();
6692 if (unlikely(rctx < 0))
6693 goto fail;
6694
6695 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6696
6697 perf_swevent_put_recursion_context(rctx);
86038c5e 6698fail:
1c024eca 6699 preempt_enable_notrace();
b8e83514
PZ
6700}
6701
cdd6c482 6702static void perf_swevent_read(struct perf_event *event)
15dbf27c 6703{
15dbf27c
PZ
6704}
6705
a4eaf7f1 6706static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6707{
4a32fea9 6708 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6709 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6710 struct hlist_head *head;
6711
6c7e550f 6712 if (is_sampling_event(event)) {
7b4b6658 6713 hwc->last_period = hwc->sample_period;
cdd6c482 6714 perf_swevent_set_period(event);
7b4b6658 6715 }
76e1d904 6716
a4eaf7f1
PZ
6717 hwc->state = !(flags & PERF_EF_START);
6718
b28ab83c 6719 head = find_swevent_head(swhash, event);
12ca6ad2 6720 if (WARN_ON_ONCE(!head))
76e1d904
FW
6721 return -EINVAL;
6722
6723 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6724 perf_event_update_userpage(event);
76e1d904 6725
15dbf27c
PZ
6726 return 0;
6727}
6728
a4eaf7f1 6729static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6730{
76e1d904 6731 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6732}
6733
a4eaf7f1 6734static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6735{
a4eaf7f1 6736 event->hw.state = 0;
d6d020e9 6737}
aa9c4c0f 6738
a4eaf7f1 6739static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6740{
a4eaf7f1 6741 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6742}
6743
49f135ed
FW
6744/* Deref the hlist from the update side */
6745static inline struct swevent_hlist *
b28ab83c 6746swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6747{
b28ab83c
PZ
6748 return rcu_dereference_protected(swhash->swevent_hlist,
6749 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6750}
6751
b28ab83c 6752static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6753{
b28ab83c 6754 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6755
49f135ed 6756 if (!hlist)
76e1d904
FW
6757 return;
6758
70691d4a 6759 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6760 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6761}
6762
6763static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6764{
b28ab83c 6765 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6766
b28ab83c 6767 mutex_lock(&swhash->hlist_mutex);
76e1d904 6768
b28ab83c
PZ
6769 if (!--swhash->hlist_refcount)
6770 swevent_hlist_release(swhash);
76e1d904 6771
b28ab83c 6772 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6773}
6774
6775static void swevent_hlist_put(struct perf_event *event)
6776{
6777 int cpu;
6778
76e1d904
FW
6779 for_each_possible_cpu(cpu)
6780 swevent_hlist_put_cpu(event, cpu);
6781}
6782
6783static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6784{
b28ab83c 6785 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6786 int err = 0;
6787
b28ab83c 6788 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6789 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6790 struct swevent_hlist *hlist;
6791
6792 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6793 if (!hlist) {
6794 err = -ENOMEM;
6795 goto exit;
6796 }
b28ab83c 6797 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6798 }
b28ab83c 6799 swhash->hlist_refcount++;
9ed6060d 6800exit:
b28ab83c 6801 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6802
6803 return err;
6804}
6805
6806static int swevent_hlist_get(struct perf_event *event)
6807{
6808 int err;
6809 int cpu, failed_cpu;
6810
76e1d904
FW
6811 get_online_cpus();
6812 for_each_possible_cpu(cpu) {
6813 err = swevent_hlist_get_cpu(event, cpu);
6814 if (err) {
6815 failed_cpu = cpu;
6816 goto fail;
6817 }
6818 }
6819 put_online_cpus();
6820
6821 return 0;
9ed6060d 6822fail:
76e1d904
FW
6823 for_each_possible_cpu(cpu) {
6824 if (cpu == failed_cpu)
6825 break;
6826 swevent_hlist_put_cpu(event, cpu);
6827 }
6828
6829 put_online_cpus();
6830 return err;
6831}
6832
c5905afb 6833struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6834
b0a873eb
PZ
6835static void sw_perf_event_destroy(struct perf_event *event)
6836{
6837 u64 event_id = event->attr.config;
95476b64 6838
b0a873eb
PZ
6839 WARN_ON(event->parent);
6840
c5905afb 6841 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6842 swevent_hlist_put(event);
6843}
6844
6845static int perf_swevent_init(struct perf_event *event)
6846{
8176cced 6847 u64 event_id = event->attr.config;
b0a873eb
PZ
6848
6849 if (event->attr.type != PERF_TYPE_SOFTWARE)
6850 return -ENOENT;
6851
2481c5fa
SE
6852 /*
6853 * no branch sampling for software events
6854 */
6855 if (has_branch_stack(event))
6856 return -EOPNOTSUPP;
6857
b0a873eb
PZ
6858 switch (event_id) {
6859 case PERF_COUNT_SW_CPU_CLOCK:
6860 case PERF_COUNT_SW_TASK_CLOCK:
6861 return -ENOENT;
6862
6863 default:
6864 break;
6865 }
6866
ce677831 6867 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6868 return -ENOENT;
6869
6870 if (!event->parent) {
6871 int err;
6872
6873 err = swevent_hlist_get(event);
6874 if (err)
6875 return err;
6876
c5905afb 6877 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6878 event->destroy = sw_perf_event_destroy;
6879 }
6880
6881 return 0;
6882}
6883
6884static struct pmu perf_swevent = {
89a1e187 6885 .task_ctx_nr = perf_sw_context,
95476b64 6886
34f43927
PZ
6887 .capabilities = PERF_PMU_CAP_NO_NMI,
6888
b0a873eb 6889 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6890 .add = perf_swevent_add,
6891 .del = perf_swevent_del,
6892 .start = perf_swevent_start,
6893 .stop = perf_swevent_stop,
1c024eca 6894 .read = perf_swevent_read,
1c024eca
PZ
6895};
6896
b0a873eb
PZ
6897#ifdef CONFIG_EVENT_TRACING
6898
1c024eca
PZ
6899static int perf_tp_filter_match(struct perf_event *event,
6900 struct perf_sample_data *data)
6901{
6902 void *record = data->raw->data;
6903
b71b437e
PZ
6904 /* only top level events have filters set */
6905 if (event->parent)
6906 event = event->parent;
6907
1c024eca
PZ
6908 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6909 return 1;
6910 return 0;
6911}
6912
6913static int perf_tp_event_match(struct perf_event *event,
6914 struct perf_sample_data *data,
6915 struct pt_regs *regs)
6916{
a0f7d0f7
FW
6917 if (event->hw.state & PERF_HES_STOPPED)
6918 return 0;
580d607c
PZ
6919 /*
6920 * All tracepoints are from kernel-space.
6921 */
6922 if (event->attr.exclude_kernel)
1c024eca
PZ
6923 return 0;
6924
6925 if (!perf_tp_filter_match(event, data))
6926 return 0;
6927
6928 return 1;
6929}
6930
6931void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6932 struct pt_regs *regs, struct hlist_head *head, int rctx,
6933 struct task_struct *task)
95476b64
FW
6934{
6935 struct perf_sample_data data;
1c024eca 6936 struct perf_event *event;
1c024eca 6937
95476b64
FW
6938 struct perf_raw_record raw = {
6939 .size = entry_size,
6940 .data = record,
6941 };
6942
fd0d000b 6943 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6944 data.raw = &raw;
6945
b67bfe0d 6946 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6947 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6948 perf_swevent_event(event, count, &data, regs);
4f41c013 6949 }
ecc55f84 6950
e6dab5ff
AV
6951 /*
6952 * If we got specified a target task, also iterate its context and
6953 * deliver this event there too.
6954 */
6955 if (task && task != current) {
6956 struct perf_event_context *ctx;
6957 struct trace_entry *entry = record;
6958
6959 rcu_read_lock();
6960 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6961 if (!ctx)
6962 goto unlock;
6963
6964 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6965 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6966 continue;
6967 if (event->attr.config != entry->type)
6968 continue;
6969 if (perf_tp_event_match(event, &data, regs))
6970 perf_swevent_event(event, count, &data, regs);
6971 }
6972unlock:
6973 rcu_read_unlock();
6974 }
6975
ecc55f84 6976 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6977}
6978EXPORT_SYMBOL_GPL(perf_tp_event);
6979
cdd6c482 6980static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6981{
1c024eca 6982 perf_trace_destroy(event);
e077df4f
PZ
6983}
6984
b0a873eb 6985static int perf_tp_event_init(struct perf_event *event)
e077df4f 6986{
76e1d904
FW
6987 int err;
6988
b0a873eb
PZ
6989 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6990 return -ENOENT;
6991
2481c5fa
SE
6992 /*
6993 * no branch sampling for tracepoint events
6994 */
6995 if (has_branch_stack(event))
6996 return -EOPNOTSUPP;
6997
1c024eca
PZ
6998 err = perf_trace_init(event);
6999 if (err)
b0a873eb 7000 return err;
e077df4f 7001
cdd6c482 7002 event->destroy = tp_perf_event_destroy;
e077df4f 7003
b0a873eb
PZ
7004 return 0;
7005}
7006
7007static struct pmu perf_tracepoint = {
89a1e187
PZ
7008 .task_ctx_nr = perf_sw_context,
7009
b0a873eb 7010 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7011 .add = perf_trace_add,
7012 .del = perf_trace_del,
7013 .start = perf_swevent_start,
7014 .stop = perf_swevent_stop,
b0a873eb 7015 .read = perf_swevent_read,
b0a873eb
PZ
7016};
7017
7018static inline void perf_tp_register(void)
7019{
2e80a82a 7020 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7021}
6fb2915d
LZ
7022
7023static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7024{
7025 char *filter_str;
7026 int ret;
7027
7028 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7029 return -EINVAL;
7030
7031 filter_str = strndup_user(arg, PAGE_SIZE);
7032 if (IS_ERR(filter_str))
7033 return PTR_ERR(filter_str);
7034
7035 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7036
7037 kfree(filter_str);
7038 return ret;
7039}
7040
7041static void perf_event_free_filter(struct perf_event *event)
7042{
7043 ftrace_profile_free_filter(event);
7044}
7045
2541517c
AS
7046static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7047{
7048 struct bpf_prog *prog;
7049
7050 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7051 return -EINVAL;
7052
7053 if (event->tp_event->prog)
7054 return -EEXIST;
7055
04a22fae
WN
7056 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7057 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7058 return -EINVAL;
7059
7060 prog = bpf_prog_get(prog_fd);
7061 if (IS_ERR(prog))
7062 return PTR_ERR(prog);
7063
6c373ca8 7064 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7065 /* valid fd, but invalid bpf program type */
7066 bpf_prog_put(prog);
7067 return -EINVAL;
7068 }
7069
7070 event->tp_event->prog = prog;
7071
7072 return 0;
7073}
7074
7075static void perf_event_free_bpf_prog(struct perf_event *event)
7076{
7077 struct bpf_prog *prog;
7078
7079 if (!event->tp_event)
7080 return;
7081
7082 prog = event->tp_event->prog;
7083 if (prog) {
7084 event->tp_event->prog = NULL;
7085 bpf_prog_put(prog);
7086 }
7087}
7088
e077df4f 7089#else
6fb2915d 7090
b0a873eb 7091static inline void perf_tp_register(void)
e077df4f 7092{
e077df4f 7093}
6fb2915d
LZ
7094
7095static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7096{
7097 return -ENOENT;
7098}
7099
7100static void perf_event_free_filter(struct perf_event *event)
7101{
7102}
7103
2541517c
AS
7104static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7105{
7106 return -ENOENT;
7107}
7108
7109static void perf_event_free_bpf_prog(struct perf_event *event)
7110{
7111}
07b139c8 7112#endif /* CONFIG_EVENT_TRACING */
e077df4f 7113
24f1e32c 7114#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7115void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7116{
f5ffe02e
FW
7117 struct perf_sample_data sample;
7118 struct pt_regs *regs = data;
7119
fd0d000b 7120 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7121
a4eaf7f1 7122 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7123 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7124}
7125#endif
7126
b0a873eb
PZ
7127/*
7128 * hrtimer based swevent callback
7129 */
f29ac756 7130
b0a873eb 7131static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7132{
b0a873eb
PZ
7133 enum hrtimer_restart ret = HRTIMER_RESTART;
7134 struct perf_sample_data data;
7135 struct pt_regs *regs;
7136 struct perf_event *event;
7137 u64 period;
f29ac756 7138
b0a873eb 7139 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7140
7141 if (event->state != PERF_EVENT_STATE_ACTIVE)
7142 return HRTIMER_NORESTART;
7143
b0a873eb 7144 event->pmu->read(event);
f344011c 7145
fd0d000b 7146 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7147 regs = get_irq_regs();
7148
7149 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7150 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7151 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7152 ret = HRTIMER_NORESTART;
7153 }
24f1e32c 7154
b0a873eb
PZ
7155 period = max_t(u64, 10000, event->hw.sample_period);
7156 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7157
b0a873eb 7158 return ret;
f29ac756
PZ
7159}
7160
b0a873eb 7161static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7162{
b0a873eb 7163 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7164 s64 period;
7165
7166 if (!is_sampling_event(event))
7167 return;
f5ffe02e 7168
5d508e82
FBH
7169 period = local64_read(&hwc->period_left);
7170 if (period) {
7171 if (period < 0)
7172 period = 10000;
fa407f35 7173
5d508e82
FBH
7174 local64_set(&hwc->period_left, 0);
7175 } else {
7176 period = max_t(u64, 10000, hwc->sample_period);
7177 }
3497d206
TG
7178 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7179 HRTIMER_MODE_REL_PINNED);
24f1e32c 7180}
b0a873eb
PZ
7181
7182static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7183{
b0a873eb
PZ
7184 struct hw_perf_event *hwc = &event->hw;
7185
6c7e550f 7186 if (is_sampling_event(event)) {
b0a873eb 7187 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7188 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7189
7190 hrtimer_cancel(&hwc->hrtimer);
7191 }
24f1e32c
FW
7192}
7193
ba3dd36c
PZ
7194static void perf_swevent_init_hrtimer(struct perf_event *event)
7195{
7196 struct hw_perf_event *hwc = &event->hw;
7197
7198 if (!is_sampling_event(event))
7199 return;
7200
7201 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7202 hwc->hrtimer.function = perf_swevent_hrtimer;
7203
7204 /*
7205 * Since hrtimers have a fixed rate, we can do a static freq->period
7206 * mapping and avoid the whole period adjust feedback stuff.
7207 */
7208 if (event->attr.freq) {
7209 long freq = event->attr.sample_freq;
7210
7211 event->attr.sample_period = NSEC_PER_SEC / freq;
7212 hwc->sample_period = event->attr.sample_period;
7213 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7214 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7215 event->attr.freq = 0;
7216 }
7217}
7218
b0a873eb
PZ
7219/*
7220 * Software event: cpu wall time clock
7221 */
7222
7223static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7224{
b0a873eb
PZ
7225 s64 prev;
7226 u64 now;
7227
a4eaf7f1 7228 now = local_clock();
b0a873eb
PZ
7229 prev = local64_xchg(&event->hw.prev_count, now);
7230 local64_add(now - prev, &event->count);
24f1e32c 7231}
24f1e32c 7232
a4eaf7f1 7233static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7234{
a4eaf7f1 7235 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7236 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7237}
7238
a4eaf7f1 7239static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7240{
b0a873eb
PZ
7241 perf_swevent_cancel_hrtimer(event);
7242 cpu_clock_event_update(event);
7243}
f29ac756 7244
a4eaf7f1
PZ
7245static int cpu_clock_event_add(struct perf_event *event, int flags)
7246{
7247 if (flags & PERF_EF_START)
7248 cpu_clock_event_start(event, flags);
6a694a60 7249 perf_event_update_userpage(event);
a4eaf7f1
PZ
7250
7251 return 0;
7252}
7253
7254static void cpu_clock_event_del(struct perf_event *event, int flags)
7255{
7256 cpu_clock_event_stop(event, flags);
7257}
7258
b0a873eb
PZ
7259static void cpu_clock_event_read(struct perf_event *event)
7260{
7261 cpu_clock_event_update(event);
7262}
f344011c 7263
b0a873eb
PZ
7264static int cpu_clock_event_init(struct perf_event *event)
7265{
7266 if (event->attr.type != PERF_TYPE_SOFTWARE)
7267 return -ENOENT;
7268
7269 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7270 return -ENOENT;
7271
2481c5fa
SE
7272 /*
7273 * no branch sampling for software events
7274 */
7275 if (has_branch_stack(event))
7276 return -EOPNOTSUPP;
7277
ba3dd36c
PZ
7278 perf_swevent_init_hrtimer(event);
7279
b0a873eb 7280 return 0;
f29ac756
PZ
7281}
7282
b0a873eb 7283static struct pmu perf_cpu_clock = {
89a1e187
PZ
7284 .task_ctx_nr = perf_sw_context,
7285
34f43927
PZ
7286 .capabilities = PERF_PMU_CAP_NO_NMI,
7287
b0a873eb 7288 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7289 .add = cpu_clock_event_add,
7290 .del = cpu_clock_event_del,
7291 .start = cpu_clock_event_start,
7292 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7293 .read = cpu_clock_event_read,
7294};
7295
7296/*
7297 * Software event: task time clock
7298 */
7299
7300static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7301{
b0a873eb
PZ
7302 u64 prev;
7303 s64 delta;
5c92d124 7304
b0a873eb
PZ
7305 prev = local64_xchg(&event->hw.prev_count, now);
7306 delta = now - prev;
7307 local64_add(delta, &event->count);
7308}
5c92d124 7309
a4eaf7f1 7310static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7311{
a4eaf7f1 7312 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7313 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7314}
7315
a4eaf7f1 7316static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7317{
7318 perf_swevent_cancel_hrtimer(event);
7319 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7320}
7321
7322static int task_clock_event_add(struct perf_event *event, int flags)
7323{
7324 if (flags & PERF_EF_START)
7325 task_clock_event_start(event, flags);
6a694a60 7326 perf_event_update_userpage(event);
b0a873eb 7327
a4eaf7f1
PZ
7328 return 0;
7329}
7330
7331static void task_clock_event_del(struct perf_event *event, int flags)
7332{
7333 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7334}
7335
7336static void task_clock_event_read(struct perf_event *event)
7337{
768a06e2
PZ
7338 u64 now = perf_clock();
7339 u64 delta = now - event->ctx->timestamp;
7340 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7341
7342 task_clock_event_update(event, time);
7343}
7344
7345static int task_clock_event_init(struct perf_event *event)
6fb2915d 7346{
b0a873eb
PZ
7347 if (event->attr.type != PERF_TYPE_SOFTWARE)
7348 return -ENOENT;
7349
7350 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7351 return -ENOENT;
7352
2481c5fa
SE
7353 /*
7354 * no branch sampling for software events
7355 */
7356 if (has_branch_stack(event))
7357 return -EOPNOTSUPP;
7358
ba3dd36c
PZ
7359 perf_swevent_init_hrtimer(event);
7360
b0a873eb 7361 return 0;
6fb2915d
LZ
7362}
7363
b0a873eb 7364static struct pmu perf_task_clock = {
89a1e187
PZ
7365 .task_ctx_nr = perf_sw_context,
7366
34f43927
PZ
7367 .capabilities = PERF_PMU_CAP_NO_NMI,
7368
b0a873eb 7369 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7370 .add = task_clock_event_add,
7371 .del = task_clock_event_del,
7372 .start = task_clock_event_start,
7373 .stop = task_clock_event_stop,
b0a873eb
PZ
7374 .read = task_clock_event_read,
7375};
6fb2915d 7376
ad5133b7 7377static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7378{
e077df4f 7379}
6fb2915d 7380
fbbe0701
SB
7381static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7382{
7383}
7384
ad5133b7 7385static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7386{
ad5133b7 7387 return 0;
6fb2915d
LZ
7388}
7389
18ab2cd3 7390static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7391
7392static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7393{
fbbe0701
SB
7394 __this_cpu_write(nop_txn_flags, flags);
7395
7396 if (flags & ~PERF_PMU_TXN_ADD)
7397 return;
7398
ad5133b7 7399 perf_pmu_disable(pmu);
6fb2915d
LZ
7400}
7401
ad5133b7
PZ
7402static int perf_pmu_commit_txn(struct pmu *pmu)
7403{
fbbe0701
SB
7404 unsigned int flags = __this_cpu_read(nop_txn_flags);
7405
7406 __this_cpu_write(nop_txn_flags, 0);
7407
7408 if (flags & ~PERF_PMU_TXN_ADD)
7409 return 0;
7410
ad5133b7
PZ
7411 perf_pmu_enable(pmu);
7412 return 0;
7413}
e077df4f 7414
ad5133b7 7415static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7416{
fbbe0701
SB
7417 unsigned int flags = __this_cpu_read(nop_txn_flags);
7418
7419 __this_cpu_write(nop_txn_flags, 0);
7420
7421 if (flags & ~PERF_PMU_TXN_ADD)
7422 return;
7423
ad5133b7 7424 perf_pmu_enable(pmu);
24f1e32c
FW
7425}
7426
35edc2a5
PZ
7427static int perf_event_idx_default(struct perf_event *event)
7428{
c719f560 7429 return 0;
35edc2a5
PZ
7430}
7431
8dc85d54
PZ
7432/*
7433 * Ensures all contexts with the same task_ctx_nr have the same
7434 * pmu_cpu_context too.
7435 */
9e317041 7436static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7437{
8dc85d54 7438 struct pmu *pmu;
b326e956 7439
8dc85d54
PZ
7440 if (ctxn < 0)
7441 return NULL;
24f1e32c 7442
8dc85d54
PZ
7443 list_for_each_entry(pmu, &pmus, entry) {
7444 if (pmu->task_ctx_nr == ctxn)
7445 return pmu->pmu_cpu_context;
7446 }
24f1e32c 7447
8dc85d54 7448 return NULL;
24f1e32c
FW
7449}
7450
51676957 7451static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7452{
51676957
PZ
7453 int cpu;
7454
7455 for_each_possible_cpu(cpu) {
7456 struct perf_cpu_context *cpuctx;
7457
7458 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7459
3f1f3320
PZ
7460 if (cpuctx->unique_pmu == old_pmu)
7461 cpuctx->unique_pmu = pmu;
51676957
PZ
7462 }
7463}
7464
7465static void free_pmu_context(struct pmu *pmu)
7466{
7467 struct pmu *i;
f5ffe02e 7468
8dc85d54 7469 mutex_lock(&pmus_lock);
0475f9ea 7470 /*
8dc85d54 7471 * Like a real lame refcount.
0475f9ea 7472 */
51676957
PZ
7473 list_for_each_entry(i, &pmus, entry) {
7474 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7475 update_pmu_context(i, pmu);
8dc85d54 7476 goto out;
51676957 7477 }
8dc85d54 7478 }
d6d020e9 7479
51676957 7480 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7481out:
7482 mutex_unlock(&pmus_lock);
24f1e32c 7483}
2e80a82a 7484static struct idr pmu_idr;
d6d020e9 7485
abe43400
PZ
7486static ssize_t
7487type_show(struct device *dev, struct device_attribute *attr, char *page)
7488{
7489 struct pmu *pmu = dev_get_drvdata(dev);
7490
7491 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7492}
90826ca7 7493static DEVICE_ATTR_RO(type);
abe43400 7494
62b85639
SE
7495static ssize_t
7496perf_event_mux_interval_ms_show(struct device *dev,
7497 struct device_attribute *attr,
7498 char *page)
7499{
7500 struct pmu *pmu = dev_get_drvdata(dev);
7501
7502 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7503}
7504
272325c4
PZ
7505static DEFINE_MUTEX(mux_interval_mutex);
7506
62b85639
SE
7507static ssize_t
7508perf_event_mux_interval_ms_store(struct device *dev,
7509 struct device_attribute *attr,
7510 const char *buf, size_t count)
7511{
7512 struct pmu *pmu = dev_get_drvdata(dev);
7513 int timer, cpu, ret;
7514
7515 ret = kstrtoint(buf, 0, &timer);
7516 if (ret)
7517 return ret;
7518
7519 if (timer < 1)
7520 return -EINVAL;
7521
7522 /* same value, noting to do */
7523 if (timer == pmu->hrtimer_interval_ms)
7524 return count;
7525
272325c4 7526 mutex_lock(&mux_interval_mutex);
62b85639
SE
7527 pmu->hrtimer_interval_ms = timer;
7528
7529 /* update all cpuctx for this PMU */
272325c4
PZ
7530 get_online_cpus();
7531 for_each_online_cpu(cpu) {
62b85639
SE
7532 struct perf_cpu_context *cpuctx;
7533 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7534 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7535
272325c4
PZ
7536 cpu_function_call(cpu,
7537 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7538 }
272325c4
PZ
7539 put_online_cpus();
7540 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7541
7542 return count;
7543}
90826ca7 7544static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7545
90826ca7
GKH
7546static struct attribute *pmu_dev_attrs[] = {
7547 &dev_attr_type.attr,
7548 &dev_attr_perf_event_mux_interval_ms.attr,
7549 NULL,
abe43400 7550};
90826ca7 7551ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7552
7553static int pmu_bus_running;
7554static struct bus_type pmu_bus = {
7555 .name = "event_source",
90826ca7 7556 .dev_groups = pmu_dev_groups,
abe43400
PZ
7557};
7558
7559static void pmu_dev_release(struct device *dev)
7560{
7561 kfree(dev);
7562}
7563
7564static int pmu_dev_alloc(struct pmu *pmu)
7565{
7566 int ret = -ENOMEM;
7567
7568 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7569 if (!pmu->dev)
7570 goto out;
7571
0c9d42ed 7572 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7573 device_initialize(pmu->dev);
7574 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7575 if (ret)
7576 goto free_dev;
7577
7578 dev_set_drvdata(pmu->dev, pmu);
7579 pmu->dev->bus = &pmu_bus;
7580 pmu->dev->release = pmu_dev_release;
7581 ret = device_add(pmu->dev);
7582 if (ret)
7583 goto free_dev;
7584
7585out:
7586 return ret;
7587
7588free_dev:
7589 put_device(pmu->dev);
7590 goto out;
7591}
7592
547e9fd7 7593static struct lock_class_key cpuctx_mutex;
facc4307 7594static struct lock_class_key cpuctx_lock;
547e9fd7 7595
03d8e80b 7596int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7597{
108b02cf 7598 int cpu, ret;
24f1e32c 7599
b0a873eb 7600 mutex_lock(&pmus_lock);
33696fc0
PZ
7601 ret = -ENOMEM;
7602 pmu->pmu_disable_count = alloc_percpu(int);
7603 if (!pmu->pmu_disable_count)
7604 goto unlock;
f29ac756 7605
2e80a82a
PZ
7606 pmu->type = -1;
7607 if (!name)
7608 goto skip_type;
7609 pmu->name = name;
7610
7611 if (type < 0) {
0e9c3be2
TH
7612 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7613 if (type < 0) {
7614 ret = type;
2e80a82a
PZ
7615 goto free_pdc;
7616 }
7617 }
7618 pmu->type = type;
7619
abe43400
PZ
7620 if (pmu_bus_running) {
7621 ret = pmu_dev_alloc(pmu);
7622 if (ret)
7623 goto free_idr;
7624 }
7625
2e80a82a 7626skip_type:
8dc85d54
PZ
7627 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7628 if (pmu->pmu_cpu_context)
7629 goto got_cpu_context;
f29ac756 7630
c4814202 7631 ret = -ENOMEM;
108b02cf
PZ
7632 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7633 if (!pmu->pmu_cpu_context)
abe43400 7634 goto free_dev;
f344011c 7635
108b02cf
PZ
7636 for_each_possible_cpu(cpu) {
7637 struct perf_cpu_context *cpuctx;
7638
7639 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7640 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7641 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7642 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7643 cpuctx->ctx.pmu = pmu;
9e630205 7644
272325c4 7645 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7646
3f1f3320 7647 cpuctx->unique_pmu = pmu;
108b02cf 7648 }
76e1d904 7649
8dc85d54 7650got_cpu_context:
ad5133b7
PZ
7651 if (!pmu->start_txn) {
7652 if (pmu->pmu_enable) {
7653 /*
7654 * If we have pmu_enable/pmu_disable calls, install
7655 * transaction stubs that use that to try and batch
7656 * hardware accesses.
7657 */
7658 pmu->start_txn = perf_pmu_start_txn;
7659 pmu->commit_txn = perf_pmu_commit_txn;
7660 pmu->cancel_txn = perf_pmu_cancel_txn;
7661 } else {
fbbe0701 7662 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7663 pmu->commit_txn = perf_pmu_nop_int;
7664 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7665 }
5c92d124 7666 }
15dbf27c 7667
ad5133b7
PZ
7668 if (!pmu->pmu_enable) {
7669 pmu->pmu_enable = perf_pmu_nop_void;
7670 pmu->pmu_disable = perf_pmu_nop_void;
7671 }
7672
35edc2a5
PZ
7673 if (!pmu->event_idx)
7674 pmu->event_idx = perf_event_idx_default;
7675
b0a873eb 7676 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7677 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7678 ret = 0;
7679unlock:
b0a873eb
PZ
7680 mutex_unlock(&pmus_lock);
7681
33696fc0 7682 return ret;
108b02cf 7683
abe43400
PZ
7684free_dev:
7685 device_del(pmu->dev);
7686 put_device(pmu->dev);
7687
2e80a82a
PZ
7688free_idr:
7689 if (pmu->type >= PERF_TYPE_MAX)
7690 idr_remove(&pmu_idr, pmu->type);
7691
108b02cf
PZ
7692free_pdc:
7693 free_percpu(pmu->pmu_disable_count);
7694 goto unlock;
f29ac756 7695}
c464c76e 7696EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7697
b0a873eb 7698void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7699{
b0a873eb
PZ
7700 mutex_lock(&pmus_lock);
7701 list_del_rcu(&pmu->entry);
7702 mutex_unlock(&pmus_lock);
5c92d124 7703
0475f9ea 7704 /*
cde8e884
PZ
7705 * We dereference the pmu list under both SRCU and regular RCU, so
7706 * synchronize against both of those.
0475f9ea 7707 */
b0a873eb 7708 synchronize_srcu(&pmus_srcu);
cde8e884 7709 synchronize_rcu();
d6d020e9 7710
33696fc0 7711 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7712 if (pmu->type >= PERF_TYPE_MAX)
7713 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7714 device_del(pmu->dev);
7715 put_device(pmu->dev);
51676957 7716 free_pmu_context(pmu);
b0a873eb 7717}
c464c76e 7718EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7719
cc34b98b
MR
7720static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7721{
ccd41c86 7722 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7723 int ret;
7724
7725 if (!try_module_get(pmu->module))
7726 return -ENODEV;
ccd41c86
PZ
7727
7728 if (event->group_leader != event) {
8b10c5e2
PZ
7729 /*
7730 * This ctx->mutex can nest when we're called through
7731 * inheritance. See the perf_event_ctx_lock_nested() comment.
7732 */
7733 ctx = perf_event_ctx_lock_nested(event->group_leader,
7734 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7735 BUG_ON(!ctx);
7736 }
7737
cc34b98b
MR
7738 event->pmu = pmu;
7739 ret = pmu->event_init(event);
ccd41c86
PZ
7740
7741 if (ctx)
7742 perf_event_ctx_unlock(event->group_leader, ctx);
7743
cc34b98b
MR
7744 if (ret)
7745 module_put(pmu->module);
7746
7747 return ret;
7748}
7749
18ab2cd3 7750static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7751{
7752 struct pmu *pmu = NULL;
7753 int idx;
940c5b29 7754 int ret;
b0a873eb
PZ
7755
7756 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7757
7758 rcu_read_lock();
7759 pmu = idr_find(&pmu_idr, event->attr.type);
7760 rcu_read_unlock();
940c5b29 7761 if (pmu) {
cc34b98b 7762 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7763 if (ret)
7764 pmu = ERR_PTR(ret);
2e80a82a 7765 goto unlock;
940c5b29 7766 }
2e80a82a 7767
b0a873eb 7768 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7769 ret = perf_try_init_event(pmu, event);
b0a873eb 7770 if (!ret)
e5f4d339 7771 goto unlock;
76e1d904 7772
b0a873eb
PZ
7773 if (ret != -ENOENT) {
7774 pmu = ERR_PTR(ret);
e5f4d339 7775 goto unlock;
f344011c 7776 }
5c92d124 7777 }
e5f4d339
PZ
7778 pmu = ERR_PTR(-ENOENT);
7779unlock:
b0a873eb 7780 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7781
4aeb0b42 7782 return pmu;
5c92d124
IM
7783}
7784
4beb31f3
FW
7785static void account_event_cpu(struct perf_event *event, int cpu)
7786{
7787 if (event->parent)
7788 return;
7789
4beb31f3
FW
7790 if (is_cgroup_event(event))
7791 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7792}
7793
766d6c07
FW
7794static void account_event(struct perf_event *event)
7795{
25432ae9
PZ
7796 bool inc = false;
7797
4beb31f3
FW
7798 if (event->parent)
7799 return;
7800
766d6c07 7801 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7802 inc = true;
766d6c07
FW
7803 if (event->attr.mmap || event->attr.mmap_data)
7804 atomic_inc(&nr_mmap_events);
7805 if (event->attr.comm)
7806 atomic_inc(&nr_comm_events);
7807 if (event->attr.task)
7808 atomic_inc(&nr_task_events);
948b26b6
FW
7809 if (event->attr.freq) {
7810 if (atomic_inc_return(&nr_freq_events) == 1)
7811 tick_nohz_full_kick_all();
7812 }
45ac1403
AH
7813 if (event->attr.context_switch) {
7814 atomic_inc(&nr_switch_events);
25432ae9 7815 inc = true;
45ac1403 7816 }
4beb31f3 7817 if (has_branch_stack(event))
25432ae9 7818 inc = true;
4beb31f3 7819 if (is_cgroup_event(event))
25432ae9
PZ
7820 inc = true;
7821
9107c89e
PZ
7822 if (inc) {
7823 if (atomic_inc_not_zero(&perf_sched_count))
7824 goto enabled;
7825
7826 mutex_lock(&perf_sched_mutex);
7827 if (!atomic_read(&perf_sched_count)) {
7828 static_branch_enable(&perf_sched_events);
7829 /*
7830 * Guarantee that all CPUs observe they key change and
7831 * call the perf scheduling hooks before proceeding to
7832 * install events that need them.
7833 */
7834 synchronize_sched();
7835 }
7836 /*
7837 * Now that we have waited for the sync_sched(), allow further
7838 * increments to by-pass the mutex.
7839 */
7840 atomic_inc(&perf_sched_count);
7841 mutex_unlock(&perf_sched_mutex);
7842 }
7843enabled:
4beb31f3
FW
7844
7845 account_event_cpu(event, event->cpu);
766d6c07
FW
7846}
7847
0793a61d 7848/*
cdd6c482 7849 * Allocate and initialize a event structure
0793a61d 7850 */
cdd6c482 7851static struct perf_event *
c3f00c70 7852perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7853 struct task_struct *task,
7854 struct perf_event *group_leader,
7855 struct perf_event *parent_event,
4dc0da86 7856 perf_overflow_handler_t overflow_handler,
79dff51e 7857 void *context, int cgroup_fd)
0793a61d 7858{
51b0fe39 7859 struct pmu *pmu;
cdd6c482
IM
7860 struct perf_event *event;
7861 struct hw_perf_event *hwc;
90983b16 7862 long err = -EINVAL;
0793a61d 7863
66832eb4
ON
7864 if ((unsigned)cpu >= nr_cpu_ids) {
7865 if (!task || cpu != -1)
7866 return ERR_PTR(-EINVAL);
7867 }
7868
c3f00c70 7869 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7870 if (!event)
d5d2bc0d 7871 return ERR_PTR(-ENOMEM);
0793a61d 7872
04289bb9 7873 /*
cdd6c482 7874 * Single events are their own group leaders, with an
04289bb9
IM
7875 * empty sibling list:
7876 */
7877 if (!group_leader)
cdd6c482 7878 group_leader = event;
04289bb9 7879
cdd6c482
IM
7880 mutex_init(&event->child_mutex);
7881 INIT_LIST_HEAD(&event->child_list);
fccc714b 7882
cdd6c482
IM
7883 INIT_LIST_HEAD(&event->group_entry);
7884 INIT_LIST_HEAD(&event->event_entry);
7885 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7886 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7887 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7888 INIT_HLIST_NODE(&event->hlist_entry);
7889
10c6db11 7890
cdd6c482 7891 init_waitqueue_head(&event->waitq);
e360adbe 7892 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7893
cdd6c482 7894 mutex_init(&event->mmap_mutex);
7b732a75 7895
a6fa941d 7896 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7897 event->cpu = cpu;
7898 event->attr = *attr;
7899 event->group_leader = group_leader;
7900 event->pmu = NULL;
cdd6c482 7901 event->oncpu = -1;
a96bbc16 7902
cdd6c482 7903 event->parent = parent_event;
b84fbc9f 7904
17cf22c3 7905 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7906 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7907
cdd6c482 7908 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7909
d580ff86
PZ
7910 if (task) {
7911 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7912 /*
50f16a8b
PZ
7913 * XXX pmu::event_init needs to know what task to account to
7914 * and we cannot use the ctx information because we need the
7915 * pmu before we get a ctx.
d580ff86 7916 */
50f16a8b 7917 event->hw.target = task;
d580ff86
PZ
7918 }
7919
34f43927
PZ
7920 event->clock = &local_clock;
7921 if (parent_event)
7922 event->clock = parent_event->clock;
7923
4dc0da86 7924 if (!overflow_handler && parent_event) {
b326e956 7925 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7926 context = parent_event->overflow_handler_context;
7927 }
66832eb4 7928
b326e956 7929 event->overflow_handler = overflow_handler;
4dc0da86 7930 event->overflow_handler_context = context;
97eaf530 7931
0231bb53 7932 perf_event__state_init(event);
a86ed508 7933
4aeb0b42 7934 pmu = NULL;
b8e83514 7935
cdd6c482 7936 hwc = &event->hw;
bd2b5b12 7937 hwc->sample_period = attr->sample_period;
0d48696f 7938 if (attr->freq && attr->sample_freq)
bd2b5b12 7939 hwc->sample_period = 1;
eced1dfc 7940 hwc->last_period = hwc->sample_period;
bd2b5b12 7941
e7850595 7942 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7943
2023b359 7944 /*
cdd6c482 7945 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7946 */
3dab77fb 7947 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7948 goto err_ns;
a46a2300
YZ
7949
7950 if (!has_branch_stack(event))
7951 event->attr.branch_sample_type = 0;
2023b359 7952
79dff51e
MF
7953 if (cgroup_fd != -1) {
7954 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7955 if (err)
7956 goto err_ns;
7957 }
7958
b0a873eb 7959 pmu = perf_init_event(event);
4aeb0b42 7960 if (!pmu)
90983b16
FW
7961 goto err_ns;
7962 else if (IS_ERR(pmu)) {
4aeb0b42 7963 err = PTR_ERR(pmu);
90983b16 7964 goto err_ns;
621a01ea 7965 }
d5d2bc0d 7966
bed5b25a
AS
7967 err = exclusive_event_init(event);
7968 if (err)
7969 goto err_pmu;
7970
cdd6c482 7971 if (!event->parent) {
927c7a9e
FW
7972 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7973 err = get_callchain_buffers();
90983b16 7974 if (err)
bed5b25a 7975 goto err_per_task;
d010b332 7976 }
f344011c 7977 }
9ee318a7 7978
cdd6c482 7979 return event;
90983b16 7980
bed5b25a
AS
7981err_per_task:
7982 exclusive_event_destroy(event);
7983
90983b16
FW
7984err_pmu:
7985 if (event->destroy)
7986 event->destroy(event);
c464c76e 7987 module_put(pmu->module);
90983b16 7988err_ns:
79dff51e
MF
7989 if (is_cgroup_event(event))
7990 perf_detach_cgroup(event);
90983b16
FW
7991 if (event->ns)
7992 put_pid_ns(event->ns);
7993 kfree(event);
7994
7995 return ERR_PTR(err);
0793a61d
TG
7996}
7997
cdd6c482
IM
7998static int perf_copy_attr(struct perf_event_attr __user *uattr,
7999 struct perf_event_attr *attr)
974802ea 8000{
974802ea 8001 u32 size;
cdf8073d 8002 int ret;
974802ea
PZ
8003
8004 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8005 return -EFAULT;
8006
8007 /*
8008 * zero the full structure, so that a short copy will be nice.
8009 */
8010 memset(attr, 0, sizeof(*attr));
8011
8012 ret = get_user(size, &uattr->size);
8013 if (ret)
8014 return ret;
8015
8016 if (size > PAGE_SIZE) /* silly large */
8017 goto err_size;
8018
8019 if (!size) /* abi compat */
8020 size = PERF_ATTR_SIZE_VER0;
8021
8022 if (size < PERF_ATTR_SIZE_VER0)
8023 goto err_size;
8024
8025 /*
8026 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8027 * ensure all the unknown bits are 0 - i.e. new
8028 * user-space does not rely on any kernel feature
8029 * extensions we dont know about yet.
974802ea
PZ
8030 */
8031 if (size > sizeof(*attr)) {
cdf8073d
IS
8032 unsigned char __user *addr;
8033 unsigned char __user *end;
8034 unsigned char val;
974802ea 8035
cdf8073d
IS
8036 addr = (void __user *)uattr + sizeof(*attr);
8037 end = (void __user *)uattr + size;
974802ea 8038
cdf8073d 8039 for (; addr < end; addr++) {
974802ea
PZ
8040 ret = get_user(val, addr);
8041 if (ret)
8042 return ret;
8043 if (val)
8044 goto err_size;
8045 }
b3e62e35 8046 size = sizeof(*attr);
974802ea
PZ
8047 }
8048
8049 ret = copy_from_user(attr, uattr, size);
8050 if (ret)
8051 return -EFAULT;
8052
cd757645 8053 if (attr->__reserved_1)
974802ea
PZ
8054 return -EINVAL;
8055
8056 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8057 return -EINVAL;
8058
8059 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8060 return -EINVAL;
8061
bce38cd5
SE
8062 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8063 u64 mask = attr->branch_sample_type;
8064
8065 /* only using defined bits */
8066 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8067 return -EINVAL;
8068
8069 /* at least one branch bit must be set */
8070 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8071 return -EINVAL;
8072
bce38cd5
SE
8073 /* propagate priv level, when not set for branch */
8074 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8075
8076 /* exclude_kernel checked on syscall entry */
8077 if (!attr->exclude_kernel)
8078 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8079
8080 if (!attr->exclude_user)
8081 mask |= PERF_SAMPLE_BRANCH_USER;
8082
8083 if (!attr->exclude_hv)
8084 mask |= PERF_SAMPLE_BRANCH_HV;
8085 /*
8086 * adjust user setting (for HW filter setup)
8087 */
8088 attr->branch_sample_type = mask;
8089 }
e712209a
SE
8090 /* privileged levels capture (kernel, hv): check permissions */
8091 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8092 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8093 return -EACCES;
bce38cd5 8094 }
4018994f 8095
c5ebcedb 8096 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8097 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8098 if (ret)
8099 return ret;
8100 }
8101
8102 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8103 if (!arch_perf_have_user_stack_dump())
8104 return -ENOSYS;
8105
8106 /*
8107 * We have __u32 type for the size, but so far
8108 * we can only use __u16 as maximum due to the
8109 * __u16 sample size limit.
8110 */
8111 if (attr->sample_stack_user >= USHRT_MAX)
8112 ret = -EINVAL;
8113 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8114 ret = -EINVAL;
8115 }
4018994f 8116
60e2364e
SE
8117 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8118 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8119out:
8120 return ret;
8121
8122err_size:
8123 put_user(sizeof(*attr), &uattr->size);
8124 ret = -E2BIG;
8125 goto out;
8126}
8127
ac9721f3
PZ
8128static int
8129perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8130{
b69cf536 8131 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8132 int ret = -EINVAL;
8133
ac9721f3 8134 if (!output_event)
a4be7c27
PZ
8135 goto set;
8136
ac9721f3
PZ
8137 /* don't allow circular references */
8138 if (event == output_event)
a4be7c27
PZ
8139 goto out;
8140
0f139300
PZ
8141 /*
8142 * Don't allow cross-cpu buffers
8143 */
8144 if (output_event->cpu != event->cpu)
8145 goto out;
8146
8147 /*
76369139 8148 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8149 */
8150 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8151 goto out;
8152
34f43927
PZ
8153 /*
8154 * Mixing clocks in the same buffer is trouble you don't need.
8155 */
8156 if (output_event->clock != event->clock)
8157 goto out;
8158
45bfb2e5
PZ
8159 /*
8160 * If both events generate aux data, they must be on the same PMU
8161 */
8162 if (has_aux(event) && has_aux(output_event) &&
8163 event->pmu != output_event->pmu)
8164 goto out;
8165
a4be7c27 8166set:
cdd6c482 8167 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8168 /* Can't redirect output if we've got an active mmap() */
8169 if (atomic_read(&event->mmap_count))
8170 goto unlock;
a4be7c27 8171
ac9721f3 8172 if (output_event) {
76369139
FW
8173 /* get the rb we want to redirect to */
8174 rb = ring_buffer_get(output_event);
8175 if (!rb)
ac9721f3 8176 goto unlock;
a4be7c27
PZ
8177 }
8178
b69cf536 8179 ring_buffer_attach(event, rb);
9bb5d40c 8180
a4be7c27 8181 ret = 0;
ac9721f3
PZ
8182unlock:
8183 mutex_unlock(&event->mmap_mutex);
8184
a4be7c27 8185out:
a4be7c27
PZ
8186 return ret;
8187}
8188
f63a8daa
PZ
8189static void mutex_lock_double(struct mutex *a, struct mutex *b)
8190{
8191 if (b < a)
8192 swap(a, b);
8193
8194 mutex_lock(a);
8195 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8196}
8197
34f43927
PZ
8198static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8199{
8200 bool nmi_safe = false;
8201
8202 switch (clk_id) {
8203 case CLOCK_MONOTONIC:
8204 event->clock = &ktime_get_mono_fast_ns;
8205 nmi_safe = true;
8206 break;
8207
8208 case CLOCK_MONOTONIC_RAW:
8209 event->clock = &ktime_get_raw_fast_ns;
8210 nmi_safe = true;
8211 break;
8212
8213 case CLOCK_REALTIME:
8214 event->clock = &ktime_get_real_ns;
8215 break;
8216
8217 case CLOCK_BOOTTIME:
8218 event->clock = &ktime_get_boot_ns;
8219 break;
8220
8221 case CLOCK_TAI:
8222 event->clock = &ktime_get_tai_ns;
8223 break;
8224
8225 default:
8226 return -EINVAL;
8227 }
8228
8229 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8230 return -EINVAL;
8231
8232 return 0;
8233}
8234
0793a61d 8235/**
cdd6c482 8236 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8237 *
cdd6c482 8238 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8239 * @pid: target pid
9f66a381 8240 * @cpu: target cpu
cdd6c482 8241 * @group_fd: group leader event fd
0793a61d 8242 */
cdd6c482
IM
8243SYSCALL_DEFINE5(perf_event_open,
8244 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8245 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8246{
b04243ef
PZ
8247 struct perf_event *group_leader = NULL, *output_event = NULL;
8248 struct perf_event *event, *sibling;
cdd6c482 8249 struct perf_event_attr attr;
f63a8daa 8250 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8251 struct file *event_file = NULL;
2903ff01 8252 struct fd group = {NULL, 0};
38a81da2 8253 struct task_struct *task = NULL;
89a1e187 8254 struct pmu *pmu;
ea635c64 8255 int event_fd;
b04243ef 8256 int move_group = 0;
dc86cabe 8257 int err;
a21b0b35 8258 int f_flags = O_RDWR;
79dff51e 8259 int cgroup_fd = -1;
0793a61d 8260
2743a5b0 8261 /* for future expandability... */
e5d1367f 8262 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8263 return -EINVAL;
8264
dc86cabe
IM
8265 err = perf_copy_attr(attr_uptr, &attr);
8266 if (err)
8267 return err;
eab656ae 8268
0764771d
PZ
8269 if (!attr.exclude_kernel) {
8270 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8271 return -EACCES;
8272 }
8273
df58ab24 8274 if (attr.freq) {
cdd6c482 8275 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8276 return -EINVAL;
0819b2e3
PZ
8277 } else {
8278 if (attr.sample_period & (1ULL << 63))
8279 return -EINVAL;
df58ab24
PZ
8280 }
8281
e5d1367f
SE
8282 /*
8283 * In cgroup mode, the pid argument is used to pass the fd
8284 * opened to the cgroup directory in cgroupfs. The cpu argument
8285 * designates the cpu on which to monitor threads from that
8286 * cgroup.
8287 */
8288 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8289 return -EINVAL;
8290
a21b0b35
YD
8291 if (flags & PERF_FLAG_FD_CLOEXEC)
8292 f_flags |= O_CLOEXEC;
8293
8294 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8295 if (event_fd < 0)
8296 return event_fd;
8297
ac9721f3 8298 if (group_fd != -1) {
2903ff01
AV
8299 err = perf_fget_light(group_fd, &group);
8300 if (err)
d14b12d7 8301 goto err_fd;
2903ff01 8302 group_leader = group.file->private_data;
ac9721f3
PZ
8303 if (flags & PERF_FLAG_FD_OUTPUT)
8304 output_event = group_leader;
8305 if (flags & PERF_FLAG_FD_NO_GROUP)
8306 group_leader = NULL;
8307 }
8308
e5d1367f 8309 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8310 task = find_lively_task_by_vpid(pid);
8311 if (IS_ERR(task)) {
8312 err = PTR_ERR(task);
8313 goto err_group_fd;
8314 }
8315 }
8316
1f4ee503
PZ
8317 if (task && group_leader &&
8318 group_leader->attr.inherit != attr.inherit) {
8319 err = -EINVAL;
8320 goto err_task;
8321 }
8322
fbfc623f
YZ
8323 get_online_cpus();
8324
79dff51e
MF
8325 if (flags & PERF_FLAG_PID_CGROUP)
8326 cgroup_fd = pid;
8327
4dc0da86 8328 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8329 NULL, NULL, cgroup_fd);
d14b12d7
SE
8330 if (IS_ERR(event)) {
8331 err = PTR_ERR(event);
1f4ee503 8332 goto err_cpus;
d14b12d7
SE
8333 }
8334
53b25335
VW
8335 if (is_sampling_event(event)) {
8336 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8337 err = -ENOTSUPP;
8338 goto err_alloc;
8339 }
8340 }
8341
766d6c07
FW
8342 account_event(event);
8343
89a1e187
PZ
8344 /*
8345 * Special case software events and allow them to be part of
8346 * any hardware group.
8347 */
8348 pmu = event->pmu;
b04243ef 8349
34f43927
PZ
8350 if (attr.use_clockid) {
8351 err = perf_event_set_clock(event, attr.clockid);
8352 if (err)
8353 goto err_alloc;
8354 }
8355
b04243ef
PZ
8356 if (group_leader &&
8357 (is_software_event(event) != is_software_event(group_leader))) {
8358 if (is_software_event(event)) {
8359 /*
8360 * If event and group_leader are not both a software
8361 * event, and event is, then group leader is not.
8362 *
8363 * Allow the addition of software events to !software
8364 * groups, this is safe because software events never
8365 * fail to schedule.
8366 */
8367 pmu = group_leader->pmu;
8368 } else if (is_software_event(group_leader) &&
8369 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8370 /*
8371 * In case the group is a pure software group, and we
8372 * try to add a hardware event, move the whole group to
8373 * the hardware context.
8374 */
8375 move_group = 1;
8376 }
8377 }
89a1e187
PZ
8378
8379 /*
8380 * Get the target context (task or percpu):
8381 */
4af57ef2 8382 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8383 if (IS_ERR(ctx)) {
8384 err = PTR_ERR(ctx);
c6be5a5c 8385 goto err_alloc;
89a1e187
PZ
8386 }
8387
bed5b25a
AS
8388 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8389 err = -EBUSY;
8390 goto err_context;
8391 }
8392
fd1edb3a
PZ
8393 if (task) {
8394 put_task_struct(task);
8395 task = NULL;
8396 }
8397
ccff286d 8398 /*
cdd6c482 8399 * Look up the group leader (we will attach this event to it):
04289bb9 8400 */
ac9721f3 8401 if (group_leader) {
dc86cabe 8402 err = -EINVAL;
04289bb9 8403
04289bb9 8404 /*
ccff286d
IM
8405 * Do not allow a recursive hierarchy (this new sibling
8406 * becoming part of another group-sibling):
8407 */
8408 if (group_leader->group_leader != group_leader)
c3f00c70 8409 goto err_context;
34f43927
PZ
8410
8411 /* All events in a group should have the same clock */
8412 if (group_leader->clock != event->clock)
8413 goto err_context;
8414
ccff286d
IM
8415 /*
8416 * Do not allow to attach to a group in a different
8417 * task or CPU context:
04289bb9 8418 */
b04243ef 8419 if (move_group) {
c3c87e77
PZ
8420 /*
8421 * Make sure we're both on the same task, or both
8422 * per-cpu events.
8423 */
8424 if (group_leader->ctx->task != ctx->task)
8425 goto err_context;
8426
8427 /*
8428 * Make sure we're both events for the same CPU;
8429 * grouping events for different CPUs is broken; since
8430 * you can never concurrently schedule them anyhow.
8431 */
8432 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8433 goto err_context;
8434 } else {
8435 if (group_leader->ctx != ctx)
8436 goto err_context;
8437 }
8438
3b6f9e5c
PM
8439 /*
8440 * Only a group leader can be exclusive or pinned
8441 */
0d48696f 8442 if (attr.exclusive || attr.pinned)
c3f00c70 8443 goto err_context;
ac9721f3
PZ
8444 }
8445
8446 if (output_event) {
8447 err = perf_event_set_output(event, output_event);
8448 if (err)
c3f00c70 8449 goto err_context;
ac9721f3 8450 }
0793a61d 8451
a21b0b35
YD
8452 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8453 f_flags);
ea635c64
AV
8454 if (IS_ERR(event_file)) {
8455 err = PTR_ERR(event_file);
c3f00c70 8456 goto err_context;
ea635c64 8457 }
9b51f66d 8458
b04243ef 8459 if (move_group) {
f63a8daa 8460 gctx = group_leader->ctx;
f55fc2a5 8461 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8462 if (gctx->task == TASK_TOMBSTONE) {
8463 err = -ESRCH;
8464 goto err_locked;
8465 }
f55fc2a5
PZ
8466 } else {
8467 mutex_lock(&ctx->mutex);
8468 }
8469
84c4e620
PZ
8470 if (ctx->task == TASK_TOMBSTONE) {
8471 err = -ESRCH;
8472 goto err_locked;
8473 }
8474
a723968c
PZ
8475 if (!perf_event_validate_size(event)) {
8476 err = -E2BIG;
8477 goto err_locked;
8478 }
8479
f55fc2a5
PZ
8480 /*
8481 * Must be under the same ctx::mutex as perf_install_in_context(),
8482 * because we need to serialize with concurrent event creation.
8483 */
8484 if (!exclusive_event_installable(event, ctx)) {
8485 /* exclusive and group stuff are assumed mutually exclusive */
8486 WARN_ON_ONCE(move_group);
f63a8daa 8487
f55fc2a5
PZ
8488 err = -EBUSY;
8489 goto err_locked;
8490 }
f63a8daa 8491
f55fc2a5
PZ
8492 WARN_ON_ONCE(ctx->parent_ctx);
8493
8494 if (move_group) {
f63a8daa
PZ
8495 /*
8496 * See perf_event_ctx_lock() for comments on the details
8497 * of swizzling perf_event::ctx.
8498 */
45a0e07a 8499 perf_remove_from_context(group_leader, 0);
0231bb53 8500
b04243ef
PZ
8501 list_for_each_entry(sibling, &group_leader->sibling_list,
8502 group_entry) {
45a0e07a 8503 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8504 put_ctx(gctx);
8505 }
b04243ef 8506
f63a8daa
PZ
8507 /*
8508 * Wait for everybody to stop referencing the events through
8509 * the old lists, before installing it on new lists.
8510 */
0cda4c02 8511 synchronize_rcu();
f63a8daa 8512
8f95b435
PZI
8513 /*
8514 * Install the group siblings before the group leader.
8515 *
8516 * Because a group leader will try and install the entire group
8517 * (through the sibling list, which is still in-tact), we can
8518 * end up with siblings installed in the wrong context.
8519 *
8520 * By installing siblings first we NO-OP because they're not
8521 * reachable through the group lists.
8522 */
b04243ef
PZ
8523 list_for_each_entry(sibling, &group_leader->sibling_list,
8524 group_entry) {
8f95b435 8525 perf_event__state_init(sibling);
9fc81d87 8526 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8527 get_ctx(ctx);
8528 }
8f95b435
PZI
8529
8530 /*
8531 * Removing from the context ends up with disabled
8532 * event. What we want here is event in the initial
8533 * startup state, ready to be add into new context.
8534 */
8535 perf_event__state_init(group_leader);
8536 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8537 get_ctx(ctx);
b04243ef 8538
f55fc2a5
PZ
8539 /*
8540 * Now that all events are installed in @ctx, nothing
8541 * references @gctx anymore, so drop the last reference we have
8542 * on it.
8543 */
8544 put_ctx(gctx);
bed5b25a
AS
8545 }
8546
f73e22ab
PZ
8547 /*
8548 * Precalculate sample_data sizes; do while holding ctx::mutex such
8549 * that we're serialized against further additions and before
8550 * perf_install_in_context() which is the point the event is active and
8551 * can use these values.
8552 */
8553 perf_event__header_size(event);
8554 perf_event__id_header_size(event);
8555
78cd2c74
PZ
8556 event->owner = current;
8557
e2d37cd2 8558 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8559 perf_unpin_context(ctx);
f63a8daa 8560
f55fc2a5 8561 if (move_group)
f63a8daa 8562 mutex_unlock(&gctx->mutex);
d859e29f 8563 mutex_unlock(&ctx->mutex);
9b51f66d 8564
fbfc623f
YZ
8565 put_online_cpus();
8566
cdd6c482
IM
8567 mutex_lock(&current->perf_event_mutex);
8568 list_add_tail(&event->owner_entry, &current->perf_event_list);
8569 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8570
8a49542c
PZ
8571 /*
8572 * Drop the reference on the group_event after placing the
8573 * new event on the sibling_list. This ensures destruction
8574 * of the group leader will find the pointer to itself in
8575 * perf_group_detach().
8576 */
2903ff01 8577 fdput(group);
ea635c64
AV
8578 fd_install(event_fd, event_file);
8579 return event_fd;
0793a61d 8580
f55fc2a5
PZ
8581err_locked:
8582 if (move_group)
8583 mutex_unlock(&gctx->mutex);
8584 mutex_unlock(&ctx->mutex);
8585/* err_file: */
8586 fput(event_file);
c3f00c70 8587err_context:
fe4b04fa 8588 perf_unpin_context(ctx);
ea635c64 8589 put_ctx(ctx);
c6be5a5c 8590err_alloc:
13005627
PZ
8591 /*
8592 * If event_file is set, the fput() above will have called ->release()
8593 * and that will take care of freeing the event.
8594 */
8595 if (!event_file)
8596 free_event(event);
1f4ee503 8597err_cpus:
fbfc623f 8598 put_online_cpus();
1f4ee503 8599err_task:
e7d0bc04
PZ
8600 if (task)
8601 put_task_struct(task);
89a1e187 8602err_group_fd:
2903ff01 8603 fdput(group);
ea635c64
AV
8604err_fd:
8605 put_unused_fd(event_fd);
dc86cabe 8606 return err;
0793a61d
TG
8607}
8608
fb0459d7
AV
8609/**
8610 * perf_event_create_kernel_counter
8611 *
8612 * @attr: attributes of the counter to create
8613 * @cpu: cpu in which the counter is bound
38a81da2 8614 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8615 */
8616struct perf_event *
8617perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8618 struct task_struct *task,
4dc0da86
AK
8619 perf_overflow_handler_t overflow_handler,
8620 void *context)
fb0459d7 8621{
fb0459d7 8622 struct perf_event_context *ctx;
c3f00c70 8623 struct perf_event *event;
fb0459d7 8624 int err;
d859e29f 8625
fb0459d7
AV
8626 /*
8627 * Get the target context (task or percpu):
8628 */
d859e29f 8629
4dc0da86 8630 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8631 overflow_handler, context, -1);
c3f00c70
PZ
8632 if (IS_ERR(event)) {
8633 err = PTR_ERR(event);
8634 goto err;
8635 }
d859e29f 8636
f8697762 8637 /* Mark owner so we could distinguish it from user events. */
63b6da39 8638 event->owner = TASK_TOMBSTONE;
f8697762 8639
766d6c07
FW
8640 account_event(event);
8641
4af57ef2 8642 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8643 if (IS_ERR(ctx)) {
8644 err = PTR_ERR(ctx);
c3f00c70 8645 goto err_free;
d859e29f 8646 }
fb0459d7 8647
fb0459d7
AV
8648 WARN_ON_ONCE(ctx->parent_ctx);
8649 mutex_lock(&ctx->mutex);
84c4e620
PZ
8650 if (ctx->task == TASK_TOMBSTONE) {
8651 err = -ESRCH;
8652 goto err_unlock;
8653 }
8654
bed5b25a 8655 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8656 err = -EBUSY;
84c4e620 8657 goto err_unlock;
bed5b25a
AS
8658 }
8659
fb0459d7 8660 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8661 perf_unpin_context(ctx);
fb0459d7
AV
8662 mutex_unlock(&ctx->mutex);
8663
fb0459d7
AV
8664 return event;
8665
84c4e620
PZ
8666err_unlock:
8667 mutex_unlock(&ctx->mutex);
8668 perf_unpin_context(ctx);
8669 put_ctx(ctx);
c3f00c70
PZ
8670err_free:
8671 free_event(event);
8672err:
c6567f64 8673 return ERR_PTR(err);
9b51f66d 8674}
fb0459d7 8675EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8676
0cda4c02
YZ
8677void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8678{
8679 struct perf_event_context *src_ctx;
8680 struct perf_event_context *dst_ctx;
8681 struct perf_event *event, *tmp;
8682 LIST_HEAD(events);
8683
8684 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8685 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8686
f63a8daa
PZ
8687 /*
8688 * See perf_event_ctx_lock() for comments on the details
8689 * of swizzling perf_event::ctx.
8690 */
8691 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8692 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8693 event_entry) {
45a0e07a 8694 perf_remove_from_context(event, 0);
9a545de0 8695 unaccount_event_cpu(event, src_cpu);
0cda4c02 8696 put_ctx(src_ctx);
9886167d 8697 list_add(&event->migrate_entry, &events);
0cda4c02 8698 }
0cda4c02 8699
8f95b435
PZI
8700 /*
8701 * Wait for the events to quiesce before re-instating them.
8702 */
0cda4c02
YZ
8703 synchronize_rcu();
8704
8f95b435
PZI
8705 /*
8706 * Re-instate events in 2 passes.
8707 *
8708 * Skip over group leaders and only install siblings on this first
8709 * pass, siblings will not get enabled without a leader, however a
8710 * leader will enable its siblings, even if those are still on the old
8711 * context.
8712 */
8713 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8714 if (event->group_leader == event)
8715 continue;
8716
8717 list_del(&event->migrate_entry);
8718 if (event->state >= PERF_EVENT_STATE_OFF)
8719 event->state = PERF_EVENT_STATE_INACTIVE;
8720 account_event_cpu(event, dst_cpu);
8721 perf_install_in_context(dst_ctx, event, dst_cpu);
8722 get_ctx(dst_ctx);
8723 }
8724
8725 /*
8726 * Once all the siblings are setup properly, install the group leaders
8727 * to make it go.
8728 */
9886167d
PZ
8729 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8730 list_del(&event->migrate_entry);
0cda4c02
YZ
8731 if (event->state >= PERF_EVENT_STATE_OFF)
8732 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8733 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8734 perf_install_in_context(dst_ctx, event, dst_cpu);
8735 get_ctx(dst_ctx);
8736 }
8737 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8738 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8739}
8740EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8741
cdd6c482 8742static void sync_child_event(struct perf_event *child_event,
38b200d6 8743 struct task_struct *child)
d859e29f 8744{
cdd6c482 8745 struct perf_event *parent_event = child_event->parent;
8bc20959 8746 u64 child_val;
d859e29f 8747
cdd6c482
IM
8748 if (child_event->attr.inherit_stat)
8749 perf_event_read_event(child_event, child);
38b200d6 8750
b5e58793 8751 child_val = perf_event_count(child_event);
d859e29f
PM
8752
8753 /*
8754 * Add back the child's count to the parent's count:
8755 */
a6e6dea6 8756 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8757 atomic64_add(child_event->total_time_enabled,
8758 &parent_event->child_total_time_enabled);
8759 atomic64_add(child_event->total_time_running,
8760 &parent_event->child_total_time_running);
d859e29f
PM
8761}
8762
9b51f66d 8763static void
8ba289b8
PZ
8764perf_event_exit_event(struct perf_event *child_event,
8765 struct perf_event_context *child_ctx,
8766 struct task_struct *child)
9b51f66d 8767{
8ba289b8
PZ
8768 struct perf_event *parent_event = child_event->parent;
8769
1903d50c
PZ
8770 /*
8771 * Do not destroy the 'original' grouping; because of the context
8772 * switch optimization the original events could've ended up in a
8773 * random child task.
8774 *
8775 * If we were to destroy the original group, all group related
8776 * operations would cease to function properly after this random
8777 * child dies.
8778 *
8779 * Do destroy all inherited groups, we don't care about those
8780 * and being thorough is better.
8781 */
32132a3d
PZ
8782 raw_spin_lock_irq(&child_ctx->lock);
8783 WARN_ON_ONCE(child_ctx->is_active);
8784
8ba289b8 8785 if (parent_event)
32132a3d
PZ
8786 perf_group_detach(child_event);
8787 list_del_event(child_event, child_ctx);
a69b0ca4 8788 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8789 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8790
9b51f66d 8791 /*
8ba289b8 8792 * Parent events are governed by their filedesc, retain them.
9b51f66d 8793 */
8ba289b8 8794 if (!parent_event) {
179033b3 8795 perf_event_wakeup(child_event);
8ba289b8 8796 return;
4bcf349a 8797 }
8ba289b8
PZ
8798 /*
8799 * Child events can be cleaned up.
8800 */
8801
8802 sync_child_event(child_event, child);
8803
8804 /*
8805 * Remove this event from the parent's list
8806 */
8807 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8808 mutex_lock(&parent_event->child_mutex);
8809 list_del_init(&child_event->child_list);
8810 mutex_unlock(&parent_event->child_mutex);
8811
8812 /*
8813 * Kick perf_poll() for is_event_hup().
8814 */
8815 perf_event_wakeup(parent_event);
8816 free_event(child_event);
8817 put_event(parent_event);
9b51f66d
IM
8818}
8819
8dc85d54 8820static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8821{
211de6eb 8822 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8823 struct perf_event *child_event, *next;
63b6da39
PZ
8824
8825 WARN_ON_ONCE(child != current);
9b51f66d 8826
6a3351b6 8827 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8828 if (!child_ctx)
9b51f66d
IM
8829 return;
8830
ad3a37de 8831 /*
6a3351b6
PZ
8832 * In order to reduce the amount of tricky in ctx tear-down, we hold
8833 * ctx::mutex over the entire thing. This serializes against almost
8834 * everything that wants to access the ctx.
8835 *
8836 * The exception is sys_perf_event_open() /
8837 * perf_event_create_kernel_count() which does find_get_context()
8838 * without ctx::mutex (it cannot because of the move_group double mutex
8839 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8840 */
6a3351b6 8841 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8842
8843 /*
6a3351b6
PZ
8844 * In a single ctx::lock section, de-schedule the events and detach the
8845 * context from the task such that we cannot ever get it scheduled back
8846 * in.
c93f7669 8847 */
6a3351b6 8848 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8849 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8850
71a851b4 8851 /*
63b6da39
PZ
8852 * Now that the context is inactive, destroy the task <-> ctx relation
8853 * and mark the context dead.
71a851b4 8854 */
63b6da39
PZ
8855 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8856 put_ctx(child_ctx); /* cannot be last */
8857 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8858 put_task_struct(current); /* cannot be last */
4a1c0f26 8859
211de6eb 8860 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8861 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8862
211de6eb
PZ
8863 if (clone_ctx)
8864 put_ctx(clone_ctx);
4a1c0f26 8865
9f498cc5 8866 /*
cdd6c482
IM
8867 * Report the task dead after unscheduling the events so that we
8868 * won't get any samples after PERF_RECORD_EXIT. We can however still
8869 * get a few PERF_RECORD_READ events.
9f498cc5 8870 */
cdd6c482 8871 perf_event_task(child, child_ctx, 0);
a63eaf34 8872
ebf905fc 8873 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8874 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8875
a63eaf34
PM
8876 mutex_unlock(&child_ctx->mutex);
8877
8878 put_ctx(child_ctx);
9b51f66d
IM
8879}
8880
8dc85d54
PZ
8881/*
8882 * When a child task exits, feed back event values to parent events.
8883 */
8884void perf_event_exit_task(struct task_struct *child)
8885{
8882135b 8886 struct perf_event *event, *tmp;
8dc85d54
PZ
8887 int ctxn;
8888
8882135b
PZ
8889 mutex_lock(&child->perf_event_mutex);
8890 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8891 owner_entry) {
8892 list_del_init(&event->owner_entry);
8893
8894 /*
8895 * Ensure the list deletion is visible before we clear
8896 * the owner, closes a race against perf_release() where
8897 * we need to serialize on the owner->perf_event_mutex.
8898 */
f47c02c0 8899 smp_store_release(&event->owner, NULL);
8882135b
PZ
8900 }
8901 mutex_unlock(&child->perf_event_mutex);
8902
8dc85d54
PZ
8903 for_each_task_context_nr(ctxn)
8904 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8905
8906 /*
8907 * The perf_event_exit_task_context calls perf_event_task
8908 * with child's task_ctx, which generates EXIT events for
8909 * child contexts and sets child->perf_event_ctxp[] to NULL.
8910 * At this point we need to send EXIT events to cpu contexts.
8911 */
8912 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8913}
8914
889ff015
FW
8915static void perf_free_event(struct perf_event *event,
8916 struct perf_event_context *ctx)
8917{
8918 struct perf_event *parent = event->parent;
8919
8920 if (WARN_ON_ONCE(!parent))
8921 return;
8922
8923 mutex_lock(&parent->child_mutex);
8924 list_del_init(&event->child_list);
8925 mutex_unlock(&parent->child_mutex);
8926
a6fa941d 8927 put_event(parent);
889ff015 8928
652884fe 8929 raw_spin_lock_irq(&ctx->lock);
8a49542c 8930 perf_group_detach(event);
889ff015 8931 list_del_event(event, ctx);
652884fe 8932 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8933 free_event(event);
8934}
8935
bbbee908 8936/*
652884fe 8937 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8938 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8939 *
8940 * Not all locks are strictly required, but take them anyway to be nice and
8941 * help out with the lockdep assertions.
bbbee908 8942 */
cdd6c482 8943void perf_event_free_task(struct task_struct *task)
bbbee908 8944{
8dc85d54 8945 struct perf_event_context *ctx;
cdd6c482 8946 struct perf_event *event, *tmp;
8dc85d54 8947 int ctxn;
bbbee908 8948
8dc85d54
PZ
8949 for_each_task_context_nr(ctxn) {
8950 ctx = task->perf_event_ctxp[ctxn];
8951 if (!ctx)
8952 continue;
bbbee908 8953
8dc85d54 8954 mutex_lock(&ctx->mutex);
bbbee908 8955again:
8dc85d54
PZ
8956 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8957 group_entry)
8958 perf_free_event(event, ctx);
bbbee908 8959
8dc85d54
PZ
8960 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8961 group_entry)
8962 perf_free_event(event, ctx);
bbbee908 8963
8dc85d54
PZ
8964 if (!list_empty(&ctx->pinned_groups) ||
8965 !list_empty(&ctx->flexible_groups))
8966 goto again;
bbbee908 8967
8dc85d54 8968 mutex_unlock(&ctx->mutex);
bbbee908 8969
8dc85d54
PZ
8970 put_ctx(ctx);
8971 }
889ff015
FW
8972}
8973
4e231c79
PZ
8974void perf_event_delayed_put(struct task_struct *task)
8975{
8976 int ctxn;
8977
8978 for_each_task_context_nr(ctxn)
8979 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8980}
8981
e03e7ee3 8982struct file *perf_event_get(unsigned int fd)
ffe8690c 8983{
e03e7ee3 8984 struct file *file;
ffe8690c 8985
e03e7ee3
AS
8986 file = fget_raw(fd);
8987 if (!file)
8988 return ERR_PTR(-EBADF);
ffe8690c 8989
e03e7ee3
AS
8990 if (file->f_op != &perf_fops) {
8991 fput(file);
8992 return ERR_PTR(-EBADF);
8993 }
ffe8690c 8994
e03e7ee3 8995 return file;
ffe8690c
KX
8996}
8997
8998const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8999{
9000 if (!event)
9001 return ERR_PTR(-EINVAL);
9002
9003 return &event->attr;
9004}
9005
97dee4f3
PZ
9006/*
9007 * inherit a event from parent task to child task:
9008 */
9009static struct perf_event *
9010inherit_event(struct perf_event *parent_event,
9011 struct task_struct *parent,
9012 struct perf_event_context *parent_ctx,
9013 struct task_struct *child,
9014 struct perf_event *group_leader,
9015 struct perf_event_context *child_ctx)
9016{
1929def9 9017 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9018 struct perf_event *child_event;
cee010ec 9019 unsigned long flags;
97dee4f3
PZ
9020
9021 /*
9022 * Instead of creating recursive hierarchies of events,
9023 * we link inherited events back to the original parent,
9024 * which has a filp for sure, which we use as the reference
9025 * count:
9026 */
9027 if (parent_event->parent)
9028 parent_event = parent_event->parent;
9029
9030 child_event = perf_event_alloc(&parent_event->attr,
9031 parent_event->cpu,
d580ff86 9032 child,
97dee4f3 9033 group_leader, parent_event,
79dff51e 9034 NULL, NULL, -1);
97dee4f3
PZ
9035 if (IS_ERR(child_event))
9036 return child_event;
a6fa941d 9037
c6e5b732
PZ
9038 /*
9039 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9040 * must be under the same lock in order to serialize against
9041 * perf_event_release_kernel(), such that either we must observe
9042 * is_orphaned_event() or they will observe us on the child_list.
9043 */
9044 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9045 if (is_orphaned_event(parent_event) ||
9046 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9047 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9048 free_event(child_event);
9049 return NULL;
9050 }
9051
97dee4f3
PZ
9052 get_ctx(child_ctx);
9053
9054 /*
9055 * Make the child state follow the state of the parent event,
9056 * not its attr.disabled bit. We hold the parent's mutex,
9057 * so we won't race with perf_event_{en, dis}able_family.
9058 */
1929def9 9059 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9060 child_event->state = PERF_EVENT_STATE_INACTIVE;
9061 else
9062 child_event->state = PERF_EVENT_STATE_OFF;
9063
9064 if (parent_event->attr.freq) {
9065 u64 sample_period = parent_event->hw.sample_period;
9066 struct hw_perf_event *hwc = &child_event->hw;
9067
9068 hwc->sample_period = sample_period;
9069 hwc->last_period = sample_period;
9070
9071 local64_set(&hwc->period_left, sample_period);
9072 }
9073
9074 child_event->ctx = child_ctx;
9075 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9076 child_event->overflow_handler_context
9077 = parent_event->overflow_handler_context;
97dee4f3 9078
614b6780
TG
9079 /*
9080 * Precalculate sample_data sizes
9081 */
9082 perf_event__header_size(child_event);
6844c09d 9083 perf_event__id_header_size(child_event);
614b6780 9084
97dee4f3
PZ
9085 /*
9086 * Link it up in the child's context:
9087 */
cee010ec 9088 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9089 add_event_to_ctx(child_event, child_ctx);
cee010ec 9090 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9091
97dee4f3
PZ
9092 /*
9093 * Link this into the parent event's child list
9094 */
97dee4f3
PZ
9095 list_add_tail(&child_event->child_list, &parent_event->child_list);
9096 mutex_unlock(&parent_event->child_mutex);
9097
9098 return child_event;
9099}
9100
9101static int inherit_group(struct perf_event *parent_event,
9102 struct task_struct *parent,
9103 struct perf_event_context *parent_ctx,
9104 struct task_struct *child,
9105 struct perf_event_context *child_ctx)
9106{
9107 struct perf_event *leader;
9108 struct perf_event *sub;
9109 struct perf_event *child_ctr;
9110
9111 leader = inherit_event(parent_event, parent, parent_ctx,
9112 child, NULL, child_ctx);
9113 if (IS_ERR(leader))
9114 return PTR_ERR(leader);
9115 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9116 child_ctr = inherit_event(sub, parent, parent_ctx,
9117 child, leader, child_ctx);
9118 if (IS_ERR(child_ctr))
9119 return PTR_ERR(child_ctr);
9120 }
9121 return 0;
889ff015
FW
9122}
9123
9124static int
9125inherit_task_group(struct perf_event *event, struct task_struct *parent,
9126 struct perf_event_context *parent_ctx,
8dc85d54 9127 struct task_struct *child, int ctxn,
889ff015
FW
9128 int *inherited_all)
9129{
9130 int ret;
8dc85d54 9131 struct perf_event_context *child_ctx;
889ff015
FW
9132
9133 if (!event->attr.inherit) {
9134 *inherited_all = 0;
9135 return 0;
bbbee908
PZ
9136 }
9137
fe4b04fa 9138 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9139 if (!child_ctx) {
9140 /*
9141 * This is executed from the parent task context, so
9142 * inherit events that have been marked for cloning.
9143 * First allocate and initialize a context for the
9144 * child.
9145 */
bbbee908 9146
734df5ab 9147 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9148 if (!child_ctx)
9149 return -ENOMEM;
bbbee908 9150
8dc85d54 9151 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9152 }
9153
9154 ret = inherit_group(event, parent, parent_ctx,
9155 child, child_ctx);
9156
9157 if (ret)
9158 *inherited_all = 0;
9159
9160 return ret;
bbbee908
PZ
9161}
9162
9b51f66d 9163/*
cdd6c482 9164 * Initialize the perf_event context in task_struct
9b51f66d 9165 */
985c8dcb 9166static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9167{
889ff015 9168 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9169 struct perf_event_context *cloned_ctx;
9170 struct perf_event *event;
9b51f66d 9171 struct task_struct *parent = current;
564c2b21 9172 int inherited_all = 1;
dddd3379 9173 unsigned long flags;
6ab423e0 9174 int ret = 0;
9b51f66d 9175
8dc85d54 9176 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9177 return 0;
9178
ad3a37de 9179 /*
25346b93
PM
9180 * If the parent's context is a clone, pin it so it won't get
9181 * swapped under us.
ad3a37de 9182 */
8dc85d54 9183 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9184 if (!parent_ctx)
9185 return 0;
25346b93 9186
ad3a37de
PM
9187 /*
9188 * No need to check if parent_ctx != NULL here; since we saw
9189 * it non-NULL earlier, the only reason for it to become NULL
9190 * is if we exit, and since we're currently in the middle of
9191 * a fork we can't be exiting at the same time.
9192 */
ad3a37de 9193
9b51f66d
IM
9194 /*
9195 * Lock the parent list. No need to lock the child - not PID
9196 * hashed yet and not running, so nobody can access it.
9197 */
d859e29f 9198 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9199
9200 /*
9201 * We dont have to disable NMIs - we are only looking at
9202 * the list, not manipulating it:
9203 */
889ff015 9204 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9205 ret = inherit_task_group(event, parent, parent_ctx,
9206 child, ctxn, &inherited_all);
889ff015
FW
9207 if (ret)
9208 break;
9209 }
b93f7978 9210
dddd3379
TG
9211 /*
9212 * We can't hold ctx->lock when iterating the ->flexible_group list due
9213 * to allocations, but we need to prevent rotation because
9214 * rotate_ctx() will change the list from interrupt context.
9215 */
9216 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9217 parent_ctx->rotate_disable = 1;
9218 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9219
889ff015 9220 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9221 ret = inherit_task_group(event, parent, parent_ctx,
9222 child, ctxn, &inherited_all);
889ff015 9223 if (ret)
9b51f66d 9224 break;
564c2b21
PM
9225 }
9226
dddd3379
TG
9227 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9228 parent_ctx->rotate_disable = 0;
dddd3379 9229
8dc85d54 9230 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9231
05cbaa28 9232 if (child_ctx && inherited_all) {
564c2b21
PM
9233 /*
9234 * Mark the child context as a clone of the parent
9235 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9236 *
9237 * Note that if the parent is a clone, the holding of
9238 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9239 */
c5ed5145 9240 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9241 if (cloned_ctx) {
9242 child_ctx->parent_ctx = cloned_ctx;
25346b93 9243 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9244 } else {
9245 child_ctx->parent_ctx = parent_ctx;
9246 child_ctx->parent_gen = parent_ctx->generation;
9247 }
9248 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9249 }
9250
c5ed5145 9251 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9252 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9253
25346b93 9254 perf_unpin_context(parent_ctx);
fe4b04fa 9255 put_ctx(parent_ctx);
ad3a37de 9256
6ab423e0 9257 return ret;
9b51f66d
IM
9258}
9259
8dc85d54
PZ
9260/*
9261 * Initialize the perf_event context in task_struct
9262 */
9263int perf_event_init_task(struct task_struct *child)
9264{
9265 int ctxn, ret;
9266
8550d7cb
ON
9267 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9268 mutex_init(&child->perf_event_mutex);
9269 INIT_LIST_HEAD(&child->perf_event_list);
9270
8dc85d54
PZ
9271 for_each_task_context_nr(ctxn) {
9272 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9273 if (ret) {
9274 perf_event_free_task(child);
8dc85d54 9275 return ret;
6c72e350 9276 }
8dc85d54
PZ
9277 }
9278
9279 return 0;
9280}
9281
220b140b
PM
9282static void __init perf_event_init_all_cpus(void)
9283{
b28ab83c 9284 struct swevent_htable *swhash;
220b140b 9285 int cpu;
220b140b
PM
9286
9287 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9288 swhash = &per_cpu(swevent_htable, cpu);
9289 mutex_init(&swhash->hlist_mutex);
2fde4f94 9290 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9291 }
9292}
9293
0db0628d 9294static void perf_event_init_cpu(int cpu)
0793a61d 9295{
108b02cf 9296 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9297
b28ab83c 9298 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9299 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9300 struct swevent_hlist *hlist;
9301
b28ab83c
PZ
9302 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9303 WARN_ON(!hlist);
9304 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9305 }
b28ab83c 9306 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9307}
9308
2965faa5 9309#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9310static void __perf_event_exit_context(void *__info)
0793a61d 9311{
108b02cf 9312 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9313 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9314 struct perf_event *event;
0793a61d 9315
fae3fde6
PZ
9316 raw_spin_lock(&ctx->lock);
9317 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9318 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9319 raw_spin_unlock(&ctx->lock);
0793a61d 9320}
108b02cf
PZ
9321
9322static void perf_event_exit_cpu_context(int cpu)
9323{
9324 struct perf_event_context *ctx;
9325 struct pmu *pmu;
9326 int idx;
9327
9328 idx = srcu_read_lock(&pmus_srcu);
9329 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9330 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9331
9332 mutex_lock(&ctx->mutex);
9333 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9334 mutex_unlock(&ctx->mutex);
9335 }
9336 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9337}
9338
cdd6c482 9339static void perf_event_exit_cpu(int cpu)
0793a61d 9340{
e3703f8c 9341 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9342}
9343#else
cdd6c482 9344static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9345#endif
9346
c277443c
PZ
9347static int
9348perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9349{
9350 int cpu;
9351
9352 for_each_online_cpu(cpu)
9353 perf_event_exit_cpu(cpu);
9354
9355 return NOTIFY_OK;
9356}
9357
9358/*
9359 * Run the perf reboot notifier at the very last possible moment so that
9360 * the generic watchdog code runs as long as possible.
9361 */
9362static struct notifier_block perf_reboot_notifier = {
9363 .notifier_call = perf_reboot,
9364 .priority = INT_MIN,
9365};
9366
0db0628d 9367static int
0793a61d
TG
9368perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9369{
9370 unsigned int cpu = (long)hcpu;
9371
4536e4d1 9372 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9373
9374 case CPU_UP_PREPARE:
cdd6c482 9375 perf_event_init_cpu(cpu);
0793a61d
TG
9376 break;
9377
9378 case CPU_DOWN_PREPARE:
cdd6c482 9379 perf_event_exit_cpu(cpu);
0793a61d 9380 break;
0793a61d
TG
9381 default:
9382 break;
9383 }
9384
9385 return NOTIFY_OK;
9386}
9387
cdd6c482 9388void __init perf_event_init(void)
0793a61d 9389{
3c502e7a
JW
9390 int ret;
9391
2e80a82a
PZ
9392 idr_init(&pmu_idr);
9393
220b140b 9394 perf_event_init_all_cpus();
b0a873eb 9395 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9396 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9397 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9398 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9399 perf_tp_register();
9400 perf_cpu_notifier(perf_cpu_notify);
c277443c 9401 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9402
9403 ret = init_hw_breakpoint();
9404 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9405
b01c3a00
JO
9406 /*
9407 * Build time assertion that we keep the data_head at the intended
9408 * location. IOW, validation we got the __reserved[] size right.
9409 */
9410 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9411 != 1024);
0793a61d 9412}
abe43400 9413
fd979c01
CS
9414ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9415 char *page)
9416{
9417 struct perf_pmu_events_attr *pmu_attr =
9418 container_of(attr, struct perf_pmu_events_attr, attr);
9419
9420 if (pmu_attr->event_str)
9421 return sprintf(page, "%s\n", pmu_attr->event_str);
9422
9423 return 0;
9424}
9425
abe43400
PZ
9426static int __init perf_event_sysfs_init(void)
9427{
9428 struct pmu *pmu;
9429 int ret;
9430
9431 mutex_lock(&pmus_lock);
9432
9433 ret = bus_register(&pmu_bus);
9434 if (ret)
9435 goto unlock;
9436
9437 list_for_each_entry(pmu, &pmus, entry) {
9438 if (!pmu->name || pmu->type < 0)
9439 continue;
9440
9441 ret = pmu_dev_alloc(pmu);
9442 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9443 }
9444 pmu_bus_running = 1;
9445 ret = 0;
9446
9447unlock:
9448 mutex_unlock(&pmus_lock);
9449
9450 return ret;
9451}
9452device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9453
9454#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9455static struct cgroup_subsys_state *
9456perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9457{
9458 struct perf_cgroup *jc;
e5d1367f 9459
1b15d055 9460 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9461 if (!jc)
9462 return ERR_PTR(-ENOMEM);
9463
e5d1367f
SE
9464 jc->info = alloc_percpu(struct perf_cgroup_info);
9465 if (!jc->info) {
9466 kfree(jc);
9467 return ERR_PTR(-ENOMEM);
9468 }
9469
e5d1367f
SE
9470 return &jc->css;
9471}
9472
eb95419b 9473static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9474{
eb95419b
TH
9475 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9476
e5d1367f
SE
9477 free_percpu(jc->info);
9478 kfree(jc);
9479}
9480
9481static int __perf_cgroup_move(void *info)
9482{
9483 struct task_struct *task = info;
ddaaf4e2 9484 rcu_read_lock();
e5d1367f 9485 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9486 rcu_read_unlock();
e5d1367f
SE
9487 return 0;
9488}
9489
1f7dd3e5 9490static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9491{
bb9d97b6 9492 struct task_struct *task;
1f7dd3e5 9493 struct cgroup_subsys_state *css;
bb9d97b6 9494
1f7dd3e5 9495 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9496 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9497}
9498
073219e9 9499struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9500 .css_alloc = perf_cgroup_css_alloc,
9501 .css_free = perf_cgroup_css_free,
bb9d97b6 9502 .attach = perf_cgroup_attach,
e5d1367f
SE
9503};
9504#endif /* CONFIG_CGROUP_PERF */