perf/core: Extend perf_event_aux_ctx() to optionally iterate through more events
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
b303e7c1
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100 ||
416 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
417 printk(KERN_WARNING
418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 WRITE_ONCE(perf_sample_allowed_ns, 0);
420 } else {
421 update_perf_cpu_limits();
422 }
163ec435
PZ
423
424 return 0;
425}
1ccd1549 426
14c63f17
DH
427/*
428 * perf samples are done in some very critical code paths (NMIs).
429 * If they take too much CPU time, the system can lock up and not
430 * get any real work done. This will drop the sample rate when
431 * we detect that events are taking too long.
432 */
433#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 434static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 435
91a612ee
PZ
436static u64 __report_avg;
437static u64 __report_allowed;
438
6a02ad66 439static void perf_duration_warn(struct irq_work *w)
14c63f17 440{
6a02ad66 441 printk_ratelimited(KERN_WARNING
91a612ee
PZ
442 "perf: interrupt took too long (%lld > %lld), lowering "
443 "kernel.perf_event_max_sample_rate to %d\n",
444 __report_avg, __report_allowed,
445 sysctl_perf_event_sample_rate);
6a02ad66
PZ
446}
447
448static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
449
450void perf_sample_event_took(u64 sample_len_ns)
451{
91a612ee
PZ
452 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
453 u64 running_len;
454 u64 avg_len;
455 u32 max;
14c63f17 456
91a612ee 457 if (max_len == 0)
14c63f17
DH
458 return;
459
91a612ee
PZ
460 /* Decay the counter by 1 average sample. */
461 running_len = __this_cpu_read(running_sample_length);
462 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
463 running_len += sample_len_ns;
464 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
465
466 /*
91a612ee
PZ
467 * Note: this will be biased artifically low until we have
468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
469 * from having to maintain a count.
470 */
91a612ee
PZ
471 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
472 if (avg_len <= max_len)
14c63f17
DH
473 return;
474
91a612ee
PZ
475 __report_avg = avg_len;
476 __report_allowed = max_len;
14c63f17 477
91a612ee
PZ
478 /*
479 * Compute a throttle threshold 25% below the current duration.
480 */
481 avg_len += avg_len / 4;
482 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
483 if (avg_len < max)
484 max /= (u32)avg_len;
485 else
486 max = 1;
14c63f17 487
91a612ee
PZ
488 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
489 WRITE_ONCE(max_samples_per_tick, max);
490
491 sysctl_perf_event_sample_rate = max * HZ;
492 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 493
cd578abb 494 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 495 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 496 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 497 __report_avg, __report_allowed,
cd578abb
PZ
498 sysctl_perf_event_sample_rate);
499 }
14c63f17
DH
500}
501
cdd6c482 502static atomic64_t perf_event_id;
a96bbc16 503
0b3fcf17
SE
504static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
505 enum event_type_t event_type);
506
507static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
508 enum event_type_t event_type,
509 struct task_struct *task);
510
511static void update_context_time(struct perf_event_context *ctx);
512static u64 perf_event_time(struct perf_event *event);
0b3fcf17 513
cdd6c482 514void __weak perf_event_print_debug(void) { }
0793a61d 515
84c79910 516extern __weak const char *perf_pmu_name(void)
0793a61d 517{
84c79910 518 return "pmu";
0793a61d
TG
519}
520
0b3fcf17
SE
521static inline u64 perf_clock(void)
522{
523 return local_clock();
524}
525
34f43927
PZ
526static inline u64 perf_event_clock(struct perf_event *event)
527{
528 return event->clock();
529}
530
e5d1367f
SE
531#ifdef CONFIG_CGROUP_PERF
532
e5d1367f
SE
533static inline bool
534perf_cgroup_match(struct perf_event *event)
535{
536 struct perf_event_context *ctx = event->ctx;
537 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
538
ef824fa1
TH
539 /* @event doesn't care about cgroup */
540 if (!event->cgrp)
541 return true;
542
543 /* wants specific cgroup scope but @cpuctx isn't associated with any */
544 if (!cpuctx->cgrp)
545 return false;
546
547 /*
548 * Cgroup scoping is recursive. An event enabled for a cgroup is
549 * also enabled for all its descendant cgroups. If @cpuctx's
550 * cgroup is a descendant of @event's (the test covers identity
551 * case), it's a match.
552 */
553 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
554 event->cgrp->css.cgroup);
e5d1367f
SE
555}
556
e5d1367f
SE
557static inline void perf_detach_cgroup(struct perf_event *event)
558{
4e2ba650 559 css_put(&event->cgrp->css);
e5d1367f
SE
560 event->cgrp = NULL;
561}
562
563static inline int is_cgroup_event(struct perf_event *event)
564{
565 return event->cgrp != NULL;
566}
567
568static inline u64 perf_cgroup_event_time(struct perf_event *event)
569{
570 struct perf_cgroup_info *t;
571
572 t = per_cpu_ptr(event->cgrp->info, event->cpu);
573 return t->time;
574}
575
576static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
577{
578 struct perf_cgroup_info *info;
579 u64 now;
580
581 now = perf_clock();
582
583 info = this_cpu_ptr(cgrp->info);
584
585 info->time += now - info->timestamp;
586 info->timestamp = now;
587}
588
589static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
590{
591 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
592 if (cgrp_out)
593 __update_cgrp_time(cgrp_out);
594}
595
596static inline void update_cgrp_time_from_event(struct perf_event *event)
597{
3f7cce3c
SE
598 struct perf_cgroup *cgrp;
599
e5d1367f 600 /*
3f7cce3c
SE
601 * ensure we access cgroup data only when needed and
602 * when we know the cgroup is pinned (css_get)
e5d1367f 603 */
3f7cce3c 604 if (!is_cgroup_event(event))
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
608 /*
609 * Do not update time when cgroup is not active
610 */
611 if (cgrp == event->cgrp)
612 __update_cgrp_time(event->cgrp);
e5d1367f
SE
613}
614
615static inline void
3f7cce3c
SE
616perf_cgroup_set_timestamp(struct task_struct *task,
617 struct perf_event_context *ctx)
e5d1367f
SE
618{
619 struct perf_cgroup *cgrp;
620 struct perf_cgroup_info *info;
621
3f7cce3c
SE
622 /*
623 * ctx->lock held by caller
624 * ensure we do not access cgroup data
625 * unless we have the cgroup pinned (css_get)
626 */
627 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
628 return;
629
614e4c4e 630 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 631 info = this_cpu_ptr(cgrp->info);
3f7cce3c 632 info->timestamp = ctx->timestamp;
e5d1367f
SE
633}
634
635#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
636#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
637
638/*
639 * reschedule events based on the cgroup constraint of task.
640 *
641 * mode SWOUT : schedule out everything
642 * mode SWIN : schedule in based on cgroup for next
643 */
18ab2cd3 644static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
645{
646 struct perf_cpu_context *cpuctx;
647 struct pmu *pmu;
648 unsigned long flags;
649
650 /*
651 * disable interrupts to avoid geting nr_cgroup
652 * changes via __perf_event_disable(). Also
653 * avoids preemption.
654 */
655 local_irq_save(flags);
656
657 /*
658 * we reschedule only in the presence of cgroup
659 * constrained events.
660 */
e5d1367f
SE
661
662 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 663 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
664 if (cpuctx->unique_pmu != pmu)
665 continue; /* ensure we process each cpuctx once */
e5d1367f 666
e5d1367f
SE
667 /*
668 * perf_cgroup_events says at least one
669 * context on this CPU has cgroup events.
670 *
671 * ctx->nr_cgroups reports the number of cgroup
672 * events for a context.
673 */
674 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
675 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
676 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
677
678 if (mode & PERF_CGROUP_SWOUT) {
679 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
680 /*
681 * must not be done before ctxswout due
682 * to event_filter_match() in event_sched_out()
683 */
684 cpuctx->cgrp = NULL;
685 }
686
687 if (mode & PERF_CGROUP_SWIN) {
e566b76e 688 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
689 /*
690 * set cgrp before ctxsw in to allow
691 * event_filter_match() to not have to pass
692 * task around
614e4c4e
SE
693 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 * because cgorup events are only per-cpu
e5d1367f 695 */
614e4c4e 696 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
697 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
698 }
facc4307
PZ
699 perf_pmu_enable(cpuctx->ctx.pmu);
700 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 701 }
e5d1367f
SE
702 }
703
e5d1367f
SE
704 local_irq_restore(flags);
705}
706
a8d757ef
SE
707static inline void perf_cgroup_sched_out(struct task_struct *task,
708 struct task_struct *next)
e5d1367f 709{
a8d757ef
SE
710 struct perf_cgroup *cgrp1;
711 struct perf_cgroup *cgrp2 = NULL;
712
ddaaf4e2 713 rcu_read_lock();
a8d757ef
SE
714 /*
715 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
716 * we do not need to pass the ctx here because we know
717 * we are holding the rcu lock
a8d757ef 718 */
614e4c4e 719 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 720 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
721
722 /*
723 * only schedule out current cgroup events if we know
724 * that we are switching to a different cgroup. Otherwise,
725 * do no touch the cgroup events.
726 */
727 if (cgrp1 != cgrp2)
728 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
729
730 rcu_read_unlock();
e5d1367f
SE
731}
732
a8d757ef
SE
733static inline void perf_cgroup_sched_in(struct task_struct *prev,
734 struct task_struct *task)
e5d1367f 735{
a8d757ef
SE
736 struct perf_cgroup *cgrp1;
737 struct perf_cgroup *cgrp2 = NULL;
738
ddaaf4e2 739 rcu_read_lock();
a8d757ef
SE
740 /*
741 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
742 * we do not need to pass the ctx here because we know
743 * we are holding the rcu lock
a8d757ef 744 */
614e4c4e 745 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 746 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
747
748 /*
749 * only need to schedule in cgroup events if we are changing
750 * cgroup during ctxsw. Cgroup events were not scheduled
751 * out of ctxsw out if that was not the case.
752 */
753 if (cgrp1 != cgrp2)
754 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
755
756 rcu_read_unlock();
e5d1367f
SE
757}
758
759static inline int perf_cgroup_connect(int fd, struct perf_event *event,
760 struct perf_event_attr *attr,
761 struct perf_event *group_leader)
762{
763 struct perf_cgroup *cgrp;
764 struct cgroup_subsys_state *css;
2903ff01
AV
765 struct fd f = fdget(fd);
766 int ret = 0;
e5d1367f 767
2903ff01 768 if (!f.file)
e5d1367f
SE
769 return -EBADF;
770
b583043e 771 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 772 &perf_event_cgrp_subsys);
3db272c0
LZ
773 if (IS_ERR(css)) {
774 ret = PTR_ERR(css);
775 goto out;
776 }
e5d1367f
SE
777
778 cgrp = container_of(css, struct perf_cgroup, css);
779 event->cgrp = cgrp;
780
781 /*
782 * all events in a group must monitor
783 * the same cgroup because a task belongs
784 * to only one perf cgroup at a time
785 */
786 if (group_leader && group_leader->cgrp != cgrp) {
787 perf_detach_cgroup(event);
788 ret = -EINVAL;
e5d1367f 789 }
3db272c0 790out:
2903ff01 791 fdput(f);
e5d1367f
SE
792 return ret;
793}
794
795static inline void
796perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
797{
798 struct perf_cgroup_info *t;
799 t = per_cpu_ptr(event->cgrp->info, event->cpu);
800 event->shadow_ctx_time = now - t->timestamp;
801}
802
803static inline void
804perf_cgroup_defer_enabled(struct perf_event *event)
805{
806 /*
807 * when the current task's perf cgroup does not match
808 * the event's, we need to remember to call the
809 * perf_mark_enable() function the first time a task with
810 * a matching perf cgroup is scheduled in.
811 */
812 if (is_cgroup_event(event) && !perf_cgroup_match(event))
813 event->cgrp_defer_enabled = 1;
814}
815
816static inline void
817perf_cgroup_mark_enabled(struct perf_event *event,
818 struct perf_event_context *ctx)
819{
820 struct perf_event *sub;
821 u64 tstamp = perf_event_time(event);
822
823 if (!event->cgrp_defer_enabled)
824 return;
825
826 event->cgrp_defer_enabled = 0;
827
828 event->tstamp_enabled = tstamp - event->total_time_enabled;
829 list_for_each_entry(sub, &event->sibling_list, group_entry) {
830 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
831 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
832 sub->cgrp_defer_enabled = 0;
833 }
834 }
835}
836#else /* !CONFIG_CGROUP_PERF */
837
838static inline bool
839perf_cgroup_match(struct perf_event *event)
840{
841 return true;
842}
843
844static inline void perf_detach_cgroup(struct perf_event *event)
845{}
846
847static inline int is_cgroup_event(struct perf_event *event)
848{
849 return 0;
850}
851
852static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
853{
854 return 0;
855}
856
857static inline void update_cgrp_time_from_event(struct perf_event *event)
858{
859}
860
861static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
862{
863}
864
a8d757ef
SE
865static inline void perf_cgroup_sched_out(struct task_struct *task,
866 struct task_struct *next)
e5d1367f
SE
867{
868}
869
a8d757ef
SE
870static inline void perf_cgroup_sched_in(struct task_struct *prev,
871 struct task_struct *task)
e5d1367f
SE
872{
873}
874
875static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
876 struct perf_event_attr *attr,
877 struct perf_event *group_leader)
878{
879 return -EINVAL;
880}
881
882static inline void
3f7cce3c
SE
883perf_cgroup_set_timestamp(struct task_struct *task,
884 struct perf_event_context *ctx)
e5d1367f
SE
885{
886}
887
888void
889perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
890{
891}
892
893static inline void
894perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
895{
896}
897
898static inline u64 perf_cgroup_event_time(struct perf_event *event)
899{
900 return 0;
901}
902
903static inline void
904perf_cgroup_defer_enabled(struct perf_event *event)
905{
906}
907
908static inline void
909perf_cgroup_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911{
912}
913#endif
914
9e630205
SE
915/*
916 * set default to be dependent on timer tick just
917 * like original code
918 */
919#define PERF_CPU_HRTIMER (1000 / HZ)
920/*
921 * function must be called with interrupts disbled
922 */
272325c4 923static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
924{
925 struct perf_cpu_context *cpuctx;
9e630205
SE
926 int rotations = 0;
927
928 WARN_ON(!irqs_disabled());
929
930 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
931 rotations = perf_rotate_context(cpuctx);
932
4cfafd30
PZ
933 raw_spin_lock(&cpuctx->hrtimer_lock);
934 if (rotations)
9e630205 935 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
936 else
937 cpuctx->hrtimer_active = 0;
938 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 939
4cfafd30 940 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
941}
942
272325c4 943static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 944{
272325c4 945 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 946 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 947 u64 interval;
9e630205
SE
948
949 /* no multiplexing needed for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
951 return;
952
62b85639
SE
953 /*
954 * check default is sane, if not set then force to
955 * default interval (1/tick)
956 */
272325c4
PZ
957 interval = pmu->hrtimer_interval_ms;
958 if (interval < 1)
959 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 960
272325c4 961 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 962
4cfafd30
PZ
963 raw_spin_lock_init(&cpuctx->hrtimer_lock);
964 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 965 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
966}
967
272325c4 968static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 969{
272325c4 970 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 971 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 972 unsigned long flags;
9e630205
SE
973
974 /* not for SW PMU */
975 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 976 return 0;
9e630205 977
4cfafd30
PZ
978 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
979 if (!cpuctx->hrtimer_active) {
980 cpuctx->hrtimer_active = 1;
981 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
982 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
983 }
984 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 985
272325c4 986 return 0;
9e630205
SE
987}
988
33696fc0 989void perf_pmu_disable(struct pmu *pmu)
9e35ad38 990{
33696fc0
PZ
991 int *count = this_cpu_ptr(pmu->pmu_disable_count);
992 if (!(*count)++)
993 pmu->pmu_disable(pmu);
9e35ad38 994}
9e35ad38 995
33696fc0 996void perf_pmu_enable(struct pmu *pmu)
9e35ad38 997{
33696fc0
PZ
998 int *count = this_cpu_ptr(pmu->pmu_disable_count);
999 if (!--(*count))
1000 pmu->pmu_enable(pmu);
9e35ad38 1001}
9e35ad38 1002
2fde4f94 1003static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1004
1005/*
2fde4f94
MR
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1010 */
2fde4f94 1011static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1012{
2fde4f94 1013 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1014
e9d2b064 1015 WARN_ON(!irqs_disabled());
b5ab4cd5 1016
2fde4f94
MR
1017 WARN_ON(!list_empty(&ctx->active_ctx_list));
1018
1019 list_add(&ctx->active_ctx_list, head);
1020}
1021
1022static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023{
1024 WARN_ON(!irqs_disabled());
1025
1026 WARN_ON(list_empty(&ctx->active_ctx_list));
1027
1028 list_del_init(&ctx->active_ctx_list);
9e35ad38 1029}
9e35ad38 1030
cdd6c482 1031static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1032{
e5289d4a 1033 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1034}
1035
4af57ef2
YZ
1036static void free_ctx(struct rcu_head *head)
1037{
1038 struct perf_event_context *ctx;
1039
1040 ctx = container_of(head, struct perf_event_context, rcu_head);
1041 kfree(ctx->task_ctx_data);
1042 kfree(ctx);
1043}
1044
cdd6c482 1045static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1046{
564c2b21
PM
1047 if (atomic_dec_and_test(&ctx->refcount)) {
1048 if (ctx->parent_ctx)
1049 put_ctx(ctx->parent_ctx);
63b6da39 1050 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1051 put_task_struct(ctx->task);
4af57ef2 1052 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1053 }
a63eaf34
PM
1054}
1055
f63a8daa
PZ
1056/*
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1059 *
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062 *
8b10c5e2
PZ
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1065 *
1066 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1067 * perf_event_exit_event()
1068 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1069 *
1070 * - perf_event_init_context() [ parent, 0 ]
1071 * inherit_task_group()
1072 * inherit_group()
1073 * inherit_event()
1074 * perf_event_alloc()
1075 * perf_init_event()
1076 * perf_try_init_event() [ child , 1 ]
1077 *
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1082 *
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1085 * interact.
f63a8daa
PZ
1086 *
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1091 *
1092 * The places that change perf_event::ctx will issue:
1093 *
1094 * perf_remove_from_context();
1095 * synchronize_rcu();
1096 * perf_install_in_context();
1097 *
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1103 *
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106 * function.
1107 *
1108 * Lock order:
79c9ce57 1109 * cred_guard_mutex
f63a8daa
PZ
1110 * task_struct::perf_event_mutex
1111 * perf_event_context::mutex
f63a8daa 1112 * perf_event::child_mutex;
07c4a776 1113 * perf_event_context::lock
f63a8daa
PZ
1114 * perf_event::mmap_mutex
1115 * mmap_sem
1116 */
a83fe28e
PZ
1117static struct perf_event_context *
1118perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1119{
1120 struct perf_event_context *ctx;
1121
1122again:
1123 rcu_read_lock();
1124 ctx = ACCESS_ONCE(event->ctx);
1125 if (!atomic_inc_not_zero(&ctx->refcount)) {
1126 rcu_read_unlock();
1127 goto again;
1128 }
1129 rcu_read_unlock();
1130
a83fe28e 1131 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1132 if (event->ctx != ctx) {
1133 mutex_unlock(&ctx->mutex);
1134 put_ctx(ctx);
1135 goto again;
1136 }
1137
1138 return ctx;
1139}
1140
a83fe28e
PZ
1141static inline struct perf_event_context *
1142perf_event_ctx_lock(struct perf_event *event)
1143{
1144 return perf_event_ctx_lock_nested(event, 0);
1145}
1146
f63a8daa
PZ
1147static void perf_event_ctx_unlock(struct perf_event *event,
1148 struct perf_event_context *ctx)
1149{
1150 mutex_unlock(&ctx->mutex);
1151 put_ctx(ctx);
1152}
1153
211de6eb
PZ
1154/*
1155 * This must be done under the ctx->lock, such as to serialize against
1156 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1157 * calling scheduler related locks and ctx->lock nests inside those.
1158 */
1159static __must_check struct perf_event_context *
1160unclone_ctx(struct perf_event_context *ctx)
71a851b4 1161{
211de6eb
PZ
1162 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1163
1164 lockdep_assert_held(&ctx->lock);
1165
1166 if (parent_ctx)
71a851b4 1167 ctx->parent_ctx = NULL;
5a3126d4 1168 ctx->generation++;
211de6eb
PZ
1169
1170 return parent_ctx;
71a851b4
PZ
1171}
1172
6844c09d
ACM
1173static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1174{
1175 /*
1176 * only top level events have the pid namespace they were created in
1177 */
1178 if (event->parent)
1179 event = event->parent;
1180
1181 return task_tgid_nr_ns(p, event->ns);
1182}
1183
1184static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1185{
1186 /*
1187 * only top level events have the pid namespace they were created in
1188 */
1189 if (event->parent)
1190 event = event->parent;
1191
1192 return task_pid_nr_ns(p, event->ns);
1193}
1194
7f453c24 1195/*
cdd6c482 1196 * If we inherit events we want to return the parent event id
7f453c24
PZ
1197 * to userspace.
1198 */
cdd6c482 1199static u64 primary_event_id(struct perf_event *event)
7f453c24 1200{
cdd6c482 1201 u64 id = event->id;
7f453c24 1202
cdd6c482
IM
1203 if (event->parent)
1204 id = event->parent->id;
7f453c24
PZ
1205
1206 return id;
1207}
1208
25346b93 1209/*
cdd6c482 1210 * Get the perf_event_context for a task and lock it.
63b6da39 1211 *
25346b93
PM
1212 * This has to cope with with the fact that until it is locked,
1213 * the context could get moved to another task.
1214 */
cdd6c482 1215static struct perf_event_context *
8dc85d54 1216perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1217{
cdd6c482 1218 struct perf_event_context *ctx;
25346b93 1219
9ed6060d 1220retry:
058ebd0e
PZ
1221 /*
1222 * One of the few rules of preemptible RCU is that one cannot do
1223 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1224 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1225 * rcu_read_unlock_special().
1226 *
1227 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1228 * side critical section has interrupts disabled.
058ebd0e 1229 */
2fd59077 1230 local_irq_save(*flags);
058ebd0e 1231 rcu_read_lock();
8dc85d54 1232 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1233 if (ctx) {
1234 /*
1235 * If this context is a clone of another, it might
1236 * get swapped for another underneath us by
cdd6c482 1237 * perf_event_task_sched_out, though the
25346b93
PM
1238 * rcu_read_lock() protects us from any context
1239 * getting freed. Lock the context and check if it
1240 * got swapped before we could get the lock, and retry
1241 * if so. If we locked the right context, then it
1242 * can't get swapped on us any more.
1243 */
2fd59077 1244 raw_spin_lock(&ctx->lock);
8dc85d54 1245 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1246 raw_spin_unlock(&ctx->lock);
058ebd0e 1247 rcu_read_unlock();
2fd59077 1248 local_irq_restore(*flags);
25346b93
PM
1249 goto retry;
1250 }
b49a9e7e 1251
63b6da39
PZ
1252 if (ctx->task == TASK_TOMBSTONE ||
1253 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1254 raw_spin_unlock(&ctx->lock);
b49a9e7e 1255 ctx = NULL;
828b6f0e
PZ
1256 } else {
1257 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1258 }
25346b93
PM
1259 }
1260 rcu_read_unlock();
2fd59077
PM
1261 if (!ctx)
1262 local_irq_restore(*flags);
25346b93
PM
1263 return ctx;
1264}
1265
1266/*
1267 * Get the context for a task and increment its pin_count so it
1268 * can't get swapped to another task. This also increments its
1269 * reference count so that the context can't get freed.
1270 */
8dc85d54
PZ
1271static struct perf_event_context *
1272perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1273{
cdd6c482 1274 struct perf_event_context *ctx;
25346b93
PM
1275 unsigned long flags;
1276
8dc85d54 1277 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1278 if (ctx) {
1279 ++ctx->pin_count;
e625cce1 1280 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1281 }
1282 return ctx;
1283}
1284
cdd6c482 1285static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1286{
1287 unsigned long flags;
1288
e625cce1 1289 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1290 --ctx->pin_count;
e625cce1 1291 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1292}
1293
f67218c3
PZ
1294/*
1295 * Update the record of the current time in a context.
1296 */
1297static void update_context_time(struct perf_event_context *ctx)
1298{
1299 u64 now = perf_clock();
1300
1301 ctx->time += now - ctx->timestamp;
1302 ctx->timestamp = now;
1303}
1304
4158755d
SE
1305static u64 perf_event_time(struct perf_event *event)
1306{
1307 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1308
1309 if (is_cgroup_event(event))
1310 return perf_cgroup_event_time(event);
1311
4158755d
SE
1312 return ctx ? ctx->time : 0;
1313}
1314
f67218c3
PZ
1315/*
1316 * Update the total_time_enabled and total_time_running fields for a event.
1317 */
1318static void update_event_times(struct perf_event *event)
1319{
1320 struct perf_event_context *ctx = event->ctx;
1321 u64 run_end;
1322
3cbaa590
PZ
1323 lockdep_assert_held(&ctx->lock);
1324
f67218c3
PZ
1325 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1326 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1327 return;
3cbaa590 1328
e5d1367f
SE
1329 /*
1330 * in cgroup mode, time_enabled represents
1331 * the time the event was enabled AND active
1332 * tasks were in the monitored cgroup. This is
1333 * independent of the activity of the context as
1334 * there may be a mix of cgroup and non-cgroup events.
1335 *
1336 * That is why we treat cgroup events differently
1337 * here.
1338 */
1339 if (is_cgroup_event(event))
46cd6a7f 1340 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1341 else if (ctx->is_active)
1342 run_end = ctx->time;
acd1d7c1
PZ
1343 else
1344 run_end = event->tstamp_stopped;
1345
1346 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1347
1348 if (event->state == PERF_EVENT_STATE_INACTIVE)
1349 run_end = event->tstamp_stopped;
1350 else
4158755d 1351 run_end = perf_event_time(event);
f67218c3
PZ
1352
1353 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1354
f67218c3
PZ
1355}
1356
96c21a46
PZ
1357/*
1358 * Update total_time_enabled and total_time_running for all events in a group.
1359 */
1360static void update_group_times(struct perf_event *leader)
1361{
1362 struct perf_event *event;
1363
1364 update_event_times(leader);
1365 list_for_each_entry(event, &leader->sibling_list, group_entry)
1366 update_event_times(event);
1367}
1368
889ff015
FW
1369static struct list_head *
1370ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1371{
1372 if (event->attr.pinned)
1373 return &ctx->pinned_groups;
1374 else
1375 return &ctx->flexible_groups;
1376}
1377
fccc714b 1378/*
cdd6c482 1379 * Add a event from the lists for its context.
fccc714b
PZ
1380 * Must be called with ctx->mutex and ctx->lock held.
1381 */
04289bb9 1382static void
cdd6c482 1383list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1384{
c994d613
PZ
1385 lockdep_assert_held(&ctx->lock);
1386
8a49542c
PZ
1387 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1388 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1389
1390 /*
8a49542c
PZ
1391 * If we're a stand alone event or group leader, we go to the context
1392 * list, group events are kept attached to the group so that
1393 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1394 */
8a49542c 1395 if (event->group_leader == event) {
889ff015
FW
1396 struct list_head *list;
1397
d6f962b5
FW
1398 if (is_software_event(event))
1399 event->group_flags |= PERF_GROUP_SOFTWARE;
1400
889ff015
FW
1401 list = ctx_group_list(event, ctx);
1402 list_add_tail(&event->group_entry, list);
5c148194 1403 }
592903cd 1404
08309379 1405 if (is_cgroup_event(event))
e5d1367f 1406 ctx->nr_cgroups++;
e5d1367f 1407
cdd6c482
IM
1408 list_add_rcu(&event->event_entry, &ctx->event_list);
1409 ctx->nr_events++;
1410 if (event->attr.inherit_stat)
bfbd3381 1411 ctx->nr_stat++;
5a3126d4
PZ
1412
1413 ctx->generation++;
04289bb9
IM
1414}
1415
0231bb53
JO
1416/*
1417 * Initialize event state based on the perf_event_attr::disabled.
1418 */
1419static inline void perf_event__state_init(struct perf_event *event)
1420{
1421 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1422 PERF_EVENT_STATE_INACTIVE;
1423}
1424
a723968c 1425static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1426{
1427 int entry = sizeof(u64); /* value */
1428 int size = 0;
1429 int nr = 1;
1430
1431 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1432 size += sizeof(u64);
1433
1434 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1435 size += sizeof(u64);
1436
1437 if (event->attr.read_format & PERF_FORMAT_ID)
1438 entry += sizeof(u64);
1439
1440 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1441 nr += nr_siblings;
c320c7b7
ACM
1442 size += sizeof(u64);
1443 }
1444
1445 size += entry * nr;
1446 event->read_size = size;
1447}
1448
a723968c 1449static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1450{
1451 struct perf_sample_data *data;
c320c7b7
ACM
1452 u16 size = 0;
1453
c320c7b7
ACM
1454 if (sample_type & PERF_SAMPLE_IP)
1455 size += sizeof(data->ip);
1456
6844c09d
ACM
1457 if (sample_type & PERF_SAMPLE_ADDR)
1458 size += sizeof(data->addr);
1459
1460 if (sample_type & PERF_SAMPLE_PERIOD)
1461 size += sizeof(data->period);
1462
c3feedf2
AK
1463 if (sample_type & PERF_SAMPLE_WEIGHT)
1464 size += sizeof(data->weight);
1465
6844c09d
ACM
1466 if (sample_type & PERF_SAMPLE_READ)
1467 size += event->read_size;
1468
d6be9ad6
SE
1469 if (sample_type & PERF_SAMPLE_DATA_SRC)
1470 size += sizeof(data->data_src.val);
1471
fdfbbd07
AK
1472 if (sample_type & PERF_SAMPLE_TRANSACTION)
1473 size += sizeof(data->txn);
1474
6844c09d
ACM
1475 event->header_size = size;
1476}
1477
a723968c
PZ
1478/*
1479 * Called at perf_event creation and when events are attached/detached from a
1480 * group.
1481 */
1482static void perf_event__header_size(struct perf_event *event)
1483{
1484 __perf_event_read_size(event,
1485 event->group_leader->nr_siblings);
1486 __perf_event_header_size(event, event->attr.sample_type);
1487}
1488
6844c09d
ACM
1489static void perf_event__id_header_size(struct perf_event *event)
1490{
1491 struct perf_sample_data *data;
1492 u64 sample_type = event->attr.sample_type;
1493 u16 size = 0;
1494
c320c7b7
ACM
1495 if (sample_type & PERF_SAMPLE_TID)
1496 size += sizeof(data->tid_entry);
1497
1498 if (sample_type & PERF_SAMPLE_TIME)
1499 size += sizeof(data->time);
1500
ff3d527c
AH
1501 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1502 size += sizeof(data->id);
1503
c320c7b7
ACM
1504 if (sample_type & PERF_SAMPLE_ID)
1505 size += sizeof(data->id);
1506
1507 if (sample_type & PERF_SAMPLE_STREAM_ID)
1508 size += sizeof(data->stream_id);
1509
1510 if (sample_type & PERF_SAMPLE_CPU)
1511 size += sizeof(data->cpu_entry);
1512
6844c09d 1513 event->id_header_size = size;
c320c7b7
ACM
1514}
1515
a723968c
PZ
1516static bool perf_event_validate_size(struct perf_event *event)
1517{
1518 /*
1519 * The values computed here will be over-written when we actually
1520 * attach the event.
1521 */
1522 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1523 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1524 perf_event__id_header_size(event);
1525
1526 /*
1527 * Sum the lot; should not exceed the 64k limit we have on records.
1528 * Conservative limit to allow for callchains and other variable fields.
1529 */
1530 if (event->read_size + event->header_size +
1531 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1532 return false;
1533
1534 return true;
1535}
1536
8a49542c
PZ
1537static void perf_group_attach(struct perf_event *event)
1538{
c320c7b7 1539 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1540
74c3337c
PZ
1541 /*
1542 * We can have double attach due to group movement in perf_event_open.
1543 */
1544 if (event->attach_state & PERF_ATTACH_GROUP)
1545 return;
1546
8a49542c
PZ
1547 event->attach_state |= PERF_ATTACH_GROUP;
1548
1549 if (group_leader == event)
1550 return;
1551
652884fe
PZ
1552 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1553
8a49542c
PZ
1554 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1555 !is_software_event(event))
1556 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1557
1558 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1559 group_leader->nr_siblings++;
c320c7b7
ACM
1560
1561 perf_event__header_size(group_leader);
1562
1563 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1564 perf_event__header_size(pos);
8a49542c
PZ
1565}
1566
a63eaf34 1567/*
cdd6c482 1568 * Remove a event from the lists for its context.
fccc714b 1569 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1570 */
04289bb9 1571static void
cdd6c482 1572list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1573{
68cacd29 1574 struct perf_cpu_context *cpuctx;
652884fe
PZ
1575
1576 WARN_ON_ONCE(event->ctx != ctx);
1577 lockdep_assert_held(&ctx->lock);
1578
8a49542c
PZ
1579 /*
1580 * We can have double detach due to exit/hot-unplug + close.
1581 */
1582 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1583 return;
8a49542c
PZ
1584
1585 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1586
68cacd29 1587 if (is_cgroup_event(event)) {
e5d1367f 1588 ctx->nr_cgroups--;
70a01657
PZ
1589 /*
1590 * Because cgroup events are always per-cpu events, this will
1591 * always be called from the right CPU.
1592 */
68cacd29
SE
1593 cpuctx = __get_cpu_context(ctx);
1594 /*
70a01657
PZ
1595 * If there are no more cgroup events then clear cgrp to avoid
1596 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1597 */
1598 if (!ctx->nr_cgroups)
1599 cpuctx->cgrp = NULL;
1600 }
e5d1367f 1601
cdd6c482
IM
1602 ctx->nr_events--;
1603 if (event->attr.inherit_stat)
bfbd3381 1604 ctx->nr_stat--;
8bc20959 1605
cdd6c482 1606 list_del_rcu(&event->event_entry);
04289bb9 1607
8a49542c
PZ
1608 if (event->group_leader == event)
1609 list_del_init(&event->group_entry);
5c148194 1610
96c21a46 1611 update_group_times(event);
b2e74a26
SE
1612
1613 /*
1614 * If event was in error state, then keep it
1615 * that way, otherwise bogus counts will be
1616 * returned on read(). The only way to get out
1617 * of error state is by explicit re-enabling
1618 * of the event
1619 */
1620 if (event->state > PERF_EVENT_STATE_OFF)
1621 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1622
1623 ctx->generation++;
050735b0
PZ
1624}
1625
8a49542c 1626static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1627{
1628 struct perf_event *sibling, *tmp;
8a49542c
PZ
1629 struct list_head *list = NULL;
1630
1631 /*
1632 * We can have double detach due to exit/hot-unplug + close.
1633 */
1634 if (!(event->attach_state & PERF_ATTACH_GROUP))
1635 return;
1636
1637 event->attach_state &= ~PERF_ATTACH_GROUP;
1638
1639 /*
1640 * If this is a sibling, remove it from its group.
1641 */
1642 if (event->group_leader != event) {
1643 list_del_init(&event->group_entry);
1644 event->group_leader->nr_siblings--;
c320c7b7 1645 goto out;
8a49542c
PZ
1646 }
1647
1648 if (!list_empty(&event->group_entry))
1649 list = &event->group_entry;
2e2af50b 1650
04289bb9 1651 /*
cdd6c482
IM
1652 * If this was a group event with sibling events then
1653 * upgrade the siblings to singleton events by adding them
8a49542c 1654 * to whatever list we are on.
04289bb9 1655 */
cdd6c482 1656 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1657 if (list)
1658 list_move_tail(&sibling->group_entry, list);
04289bb9 1659 sibling->group_leader = sibling;
d6f962b5
FW
1660
1661 /* Inherit group flags from the previous leader */
1662 sibling->group_flags = event->group_flags;
652884fe
PZ
1663
1664 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1665 }
c320c7b7
ACM
1666
1667out:
1668 perf_event__header_size(event->group_leader);
1669
1670 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1671 perf_event__header_size(tmp);
04289bb9
IM
1672}
1673
fadfe7be
JO
1674static bool is_orphaned_event(struct perf_event *event)
1675{
a69b0ca4 1676 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1677}
1678
66eb579e
MR
1679static inline int pmu_filter_match(struct perf_event *event)
1680{
1681 struct pmu *pmu = event->pmu;
1682 return pmu->filter_match ? pmu->filter_match(event) : 1;
1683}
1684
fa66f07a
SE
1685static inline int
1686event_filter_match(struct perf_event *event)
1687{
e5d1367f 1688 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1689 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1690}
1691
9ffcfa6f
SE
1692static void
1693event_sched_out(struct perf_event *event,
3b6f9e5c 1694 struct perf_cpu_context *cpuctx,
cdd6c482 1695 struct perf_event_context *ctx)
3b6f9e5c 1696{
4158755d 1697 u64 tstamp = perf_event_time(event);
fa66f07a 1698 u64 delta;
652884fe
PZ
1699
1700 WARN_ON_ONCE(event->ctx != ctx);
1701 lockdep_assert_held(&ctx->lock);
1702
fa66f07a
SE
1703 /*
1704 * An event which could not be activated because of
1705 * filter mismatch still needs to have its timings
1706 * maintained, otherwise bogus information is return
1707 * via read() for time_enabled, time_running:
1708 */
1709 if (event->state == PERF_EVENT_STATE_INACTIVE
1710 && !event_filter_match(event)) {
e5d1367f 1711 delta = tstamp - event->tstamp_stopped;
fa66f07a 1712 event->tstamp_running += delta;
4158755d 1713 event->tstamp_stopped = tstamp;
fa66f07a
SE
1714 }
1715
cdd6c482 1716 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1717 return;
3b6f9e5c 1718
44377277
AS
1719 perf_pmu_disable(event->pmu);
1720
28a967c3
PZ
1721 event->tstamp_stopped = tstamp;
1722 event->pmu->del(event, 0);
1723 event->oncpu = -1;
cdd6c482
IM
1724 event->state = PERF_EVENT_STATE_INACTIVE;
1725 if (event->pending_disable) {
1726 event->pending_disable = 0;
1727 event->state = PERF_EVENT_STATE_OFF;
970892a9 1728 }
3b6f9e5c 1729
cdd6c482 1730 if (!is_software_event(event))
3b6f9e5c 1731 cpuctx->active_oncpu--;
2fde4f94
MR
1732 if (!--ctx->nr_active)
1733 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1734 if (event->attr.freq && event->attr.sample_freq)
1735 ctx->nr_freq--;
cdd6c482 1736 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1737 cpuctx->exclusive = 0;
44377277
AS
1738
1739 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1740}
1741
d859e29f 1742static void
cdd6c482 1743group_sched_out(struct perf_event *group_event,
d859e29f 1744 struct perf_cpu_context *cpuctx,
cdd6c482 1745 struct perf_event_context *ctx)
d859e29f 1746{
cdd6c482 1747 struct perf_event *event;
fa66f07a 1748 int state = group_event->state;
d859e29f 1749
cdd6c482 1750 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1751
1752 /*
1753 * Schedule out siblings (if any):
1754 */
cdd6c482
IM
1755 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1756 event_sched_out(event, cpuctx, ctx);
d859e29f 1757
fa66f07a 1758 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1759 cpuctx->exclusive = 0;
1760}
1761
45a0e07a 1762#define DETACH_GROUP 0x01UL
0017960f 1763
0793a61d 1764/*
cdd6c482 1765 * Cross CPU call to remove a performance event
0793a61d 1766 *
cdd6c482 1767 * We disable the event on the hardware level first. After that we
0793a61d
TG
1768 * remove it from the context list.
1769 */
fae3fde6
PZ
1770static void
1771__perf_remove_from_context(struct perf_event *event,
1772 struct perf_cpu_context *cpuctx,
1773 struct perf_event_context *ctx,
1774 void *info)
0793a61d 1775{
45a0e07a 1776 unsigned long flags = (unsigned long)info;
0793a61d 1777
cdd6c482 1778 event_sched_out(event, cpuctx, ctx);
45a0e07a 1779 if (flags & DETACH_GROUP)
46ce0fe9 1780 perf_group_detach(event);
cdd6c482 1781 list_del_event(event, ctx);
39a43640
PZ
1782
1783 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1784 ctx->is_active = 0;
39a43640
PZ
1785 if (ctx->task) {
1786 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1787 cpuctx->task_ctx = NULL;
1788 }
64ce3126 1789 }
0793a61d
TG
1790}
1791
0793a61d 1792/*
cdd6c482 1793 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1794 *
cdd6c482
IM
1795 * If event->ctx is a cloned context, callers must make sure that
1796 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1797 * remains valid. This is OK when called from perf_release since
1798 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1799 * When called from perf_event_exit_task, it's OK because the
c93f7669 1800 * context has been detached from its task.
0793a61d 1801 */
45a0e07a 1802static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1803{
fae3fde6 1804 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1805
45a0e07a 1806 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1807}
1808
d859e29f 1809/*
cdd6c482 1810 * Cross CPU call to disable a performance event
d859e29f 1811 */
fae3fde6
PZ
1812static void __perf_event_disable(struct perf_event *event,
1813 struct perf_cpu_context *cpuctx,
1814 struct perf_event_context *ctx,
1815 void *info)
7b648018 1816{
fae3fde6
PZ
1817 if (event->state < PERF_EVENT_STATE_INACTIVE)
1818 return;
7b648018 1819
fae3fde6
PZ
1820 update_context_time(ctx);
1821 update_cgrp_time_from_event(event);
1822 update_group_times(event);
1823 if (event == event->group_leader)
1824 group_sched_out(event, cpuctx, ctx);
1825 else
1826 event_sched_out(event, cpuctx, ctx);
1827 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1828}
1829
d859e29f 1830/*
cdd6c482 1831 * Disable a event.
c93f7669 1832 *
cdd6c482
IM
1833 * If event->ctx is a cloned context, callers must make sure that
1834 * every task struct that event->ctx->task could possibly point to
c93f7669 1835 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1836 * perf_event_for_each_child or perf_event_for_each because they
1837 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1838 * goes to exit will block in perf_event_exit_event().
1839 *
cdd6c482 1840 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1841 * is the current context on this CPU and preemption is disabled,
cdd6c482 1842 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1843 */
f63a8daa 1844static void _perf_event_disable(struct perf_event *event)
d859e29f 1845{
cdd6c482 1846 struct perf_event_context *ctx = event->ctx;
d859e29f 1847
e625cce1 1848 raw_spin_lock_irq(&ctx->lock);
7b648018 1849 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1850 raw_spin_unlock_irq(&ctx->lock);
7b648018 1851 return;
53cfbf59 1852 }
e625cce1 1853 raw_spin_unlock_irq(&ctx->lock);
7b648018 1854
fae3fde6
PZ
1855 event_function_call(event, __perf_event_disable, NULL);
1856}
1857
1858void perf_event_disable_local(struct perf_event *event)
1859{
1860 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1861}
f63a8daa
PZ
1862
1863/*
1864 * Strictly speaking kernel users cannot create groups and therefore this
1865 * interface does not need the perf_event_ctx_lock() magic.
1866 */
1867void perf_event_disable(struct perf_event *event)
1868{
1869 struct perf_event_context *ctx;
1870
1871 ctx = perf_event_ctx_lock(event);
1872 _perf_event_disable(event);
1873 perf_event_ctx_unlock(event, ctx);
1874}
dcfce4a0 1875EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1876
e5d1367f
SE
1877static void perf_set_shadow_time(struct perf_event *event,
1878 struct perf_event_context *ctx,
1879 u64 tstamp)
1880{
1881 /*
1882 * use the correct time source for the time snapshot
1883 *
1884 * We could get by without this by leveraging the
1885 * fact that to get to this function, the caller
1886 * has most likely already called update_context_time()
1887 * and update_cgrp_time_xx() and thus both timestamp
1888 * are identical (or very close). Given that tstamp is,
1889 * already adjusted for cgroup, we could say that:
1890 * tstamp - ctx->timestamp
1891 * is equivalent to
1892 * tstamp - cgrp->timestamp.
1893 *
1894 * Then, in perf_output_read(), the calculation would
1895 * work with no changes because:
1896 * - event is guaranteed scheduled in
1897 * - no scheduled out in between
1898 * - thus the timestamp would be the same
1899 *
1900 * But this is a bit hairy.
1901 *
1902 * So instead, we have an explicit cgroup call to remain
1903 * within the time time source all along. We believe it
1904 * is cleaner and simpler to understand.
1905 */
1906 if (is_cgroup_event(event))
1907 perf_cgroup_set_shadow_time(event, tstamp);
1908 else
1909 event->shadow_ctx_time = tstamp - ctx->timestamp;
1910}
1911
4fe757dd
PZ
1912#define MAX_INTERRUPTS (~0ULL)
1913
1914static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1915static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1916
235c7fc7 1917static int
9ffcfa6f 1918event_sched_in(struct perf_event *event,
235c7fc7 1919 struct perf_cpu_context *cpuctx,
6e37738a 1920 struct perf_event_context *ctx)
235c7fc7 1921{
4158755d 1922 u64 tstamp = perf_event_time(event);
44377277 1923 int ret = 0;
4158755d 1924
63342411
PZ
1925 lockdep_assert_held(&ctx->lock);
1926
cdd6c482 1927 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1928 return 0;
1929
95ff4ca2
AS
1930 WRITE_ONCE(event->oncpu, smp_processor_id());
1931 /*
1932 * Order event::oncpu write to happen before the ACTIVE state
1933 * is visible.
1934 */
1935 smp_wmb();
1936 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1937
1938 /*
1939 * Unthrottle events, since we scheduled we might have missed several
1940 * ticks already, also for a heavily scheduling task there is little
1941 * guarantee it'll get a tick in a timely manner.
1942 */
1943 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1944 perf_log_throttle(event, 1);
1945 event->hw.interrupts = 0;
1946 }
1947
235c7fc7
IM
1948 /*
1949 * The new state must be visible before we turn it on in the hardware:
1950 */
1951 smp_wmb();
1952
44377277
AS
1953 perf_pmu_disable(event->pmu);
1954
72f669c0
SL
1955 perf_set_shadow_time(event, ctx, tstamp);
1956
ec0d7729
AS
1957 perf_log_itrace_start(event);
1958
a4eaf7f1 1959 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1960 event->state = PERF_EVENT_STATE_INACTIVE;
1961 event->oncpu = -1;
44377277
AS
1962 ret = -EAGAIN;
1963 goto out;
235c7fc7
IM
1964 }
1965
00a2916f
PZ
1966 event->tstamp_running += tstamp - event->tstamp_stopped;
1967
cdd6c482 1968 if (!is_software_event(event))
3b6f9e5c 1969 cpuctx->active_oncpu++;
2fde4f94
MR
1970 if (!ctx->nr_active++)
1971 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1972 if (event->attr.freq && event->attr.sample_freq)
1973 ctx->nr_freq++;
235c7fc7 1974
cdd6c482 1975 if (event->attr.exclusive)
3b6f9e5c
PM
1976 cpuctx->exclusive = 1;
1977
44377277
AS
1978out:
1979 perf_pmu_enable(event->pmu);
1980
1981 return ret;
235c7fc7
IM
1982}
1983
6751b71e 1984static int
cdd6c482 1985group_sched_in(struct perf_event *group_event,
6751b71e 1986 struct perf_cpu_context *cpuctx,
6e37738a 1987 struct perf_event_context *ctx)
6751b71e 1988{
6bde9b6c 1989 struct perf_event *event, *partial_group = NULL;
4a234593 1990 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1991 u64 now = ctx->time;
1992 bool simulate = false;
6751b71e 1993
cdd6c482 1994 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1995 return 0;
1996
fbbe0701 1997 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1998
9ffcfa6f 1999 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2000 pmu->cancel_txn(pmu);
272325c4 2001 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2002 return -EAGAIN;
90151c35 2003 }
6751b71e
PM
2004
2005 /*
2006 * Schedule in siblings as one group (if any):
2007 */
cdd6c482 2008 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2009 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2010 partial_group = event;
6751b71e
PM
2011 goto group_error;
2012 }
2013 }
2014
9ffcfa6f 2015 if (!pmu->commit_txn(pmu))
6e85158c 2016 return 0;
9ffcfa6f 2017
6751b71e
PM
2018group_error:
2019 /*
2020 * Groups can be scheduled in as one unit only, so undo any
2021 * partial group before returning:
d7842da4
SE
2022 * The events up to the failed event are scheduled out normally,
2023 * tstamp_stopped will be updated.
2024 *
2025 * The failed events and the remaining siblings need to have
2026 * their timings updated as if they had gone thru event_sched_in()
2027 * and event_sched_out(). This is required to get consistent timings
2028 * across the group. This also takes care of the case where the group
2029 * could never be scheduled by ensuring tstamp_stopped is set to mark
2030 * the time the event was actually stopped, such that time delta
2031 * calculation in update_event_times() is correct.
6751b71e 2032 */
cdd6c482
IM
2033 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2034 if (event == partial_group)
d7842da4
SE
2035 simulate = true;
2036
2037 if (simulate) {
2038 event->tstamp_running += now - event->tstamp_stopped;
2039 event->tstamp_stopped = now;
2040 } else {
2041 event_sched_out(event, cpuctx, ctx);
2042 }
6751b71e 2043 }
9ffcfa6f 2044 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2045
ad5133b7 2046 pmu->cancel_txn(pmu);
90151c35 2047
272325c4 2048 perf_mux_hrtimer_restart(cpuctx);
9e630205 2049
6751b71e
PM
2050 return -EAGAIN;
2051}
2052
3b6f9e5c 2053/*
cdd6c482 2054 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2055 */
cdd6c482 2056static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2057 struct perf_cpu_context *cpuctx,
2058 int can_add_hw)
2059{
2060 /*
cdd6c482 2061 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2062 */
d6f962b5 2063 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2064 return 1;
2065 /*
2066 * If an exclusive group is already on, no other hardware
cdd6c482 2067 * events can go on.
3b6f9e5c
PM
2068 */
2069 if (cpuctx->exclusive)
2070 return 0;
2071 /*
2072 * If this group is exclusive and there are already
cdd6c482 2073 * events on the CPU, it can't go on.
3b6f9e5c 2074 */
cdd6c482 2075 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2076 return 0;
2077 /*
2078 * Otherwise, try to add it if all previous groups were able
2079 * to go on.
2080 */
2081 return can_add_hw;
2082}
2083
cdd6c482
IM
2084static void add_event_to_ctx(struct perf_event *event,
2085 struct perf_event_context *ctx)
53cfbf59 2086{
4158755d
SE
2087 u64 tstamp = perf_event_time(event);
2088
cdd6c482 2089 list_add_event(event, ctx);
8a49542c 2090 perf_group_attach(event);
4158755d
SE
2091 event->tstamp_enabled = tstamp;
2092 event->tstamp_running = tstamp;
2093 event->tstamp_stopped = tstamp;
53cfbf59
PM
2094}
2095
bd2afa49
PZ
2096static void ctx_sched_out(struct perf_event_context *ctx,
2097 struct perf_cpu_context *cpuctx,
2098 enum event_type_t event_type);
2c29ef0f
PZ
2099static void
2100ctx_sched_in(struct perf_event_context *ctx,
2101 struct perf_cpu_context *cpuctx,
2102 enum event_type_t event_type,
2103 struct task_struct *task);
fe4b04fa 2104
bd2afa49
PZ
2105static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2106 struct perf_event_context *ctx)
2107{
2108 if (!cpuctx->task_ctx)
2109 return;
2110
2111 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2112 return;
2113
2114 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2115}
2116
dce5855b
PZ
2117static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2118 struct perf_event_context *ctx,
2119 struct task_struct *task)
2120{
2121 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2122 if (ctx)
2123 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2124 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2125 if (ctx)
2126 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2127}
2128
3e349507
PZ
2129static void ctx_resched(struct perf_cpu_context *cpuctx,
2130 struct perf_event_context *task_ctx)
0017960f 2131{
3e349507
PZ
2132 perf_pmu_disable(cpuctx->ctx.pmu);
2133 if (task_ctx)
2134 task_ctx_sched_out(cpuctx, task_ctx);
2135 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2136 perf_event_sched_in(cpuctx, task_ctx, current);
2137 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2138}
2139
0793a61d 2140/*
cdd6c482 2141 * Cross CPU call to install and enable a performance event
682076ae 2142 *
a096309b
PZ
2143 * Very similar to remote_function() + event_function() but cannot assume that
2144 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2145 */
fe4b04fa 2146static int __perf_install_in_context(void *info)
0793a61d 2147{
a096309b
PZ
2148 struct perf_event *event = info;
2149 struct perf_event_context *ctx = event->ctx;
108b02cf 2150 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2151 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2152 bool activate = true;
2153 int ret = 0;
0793a61d 2154
63b6da39 2155 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2156 if (ctx->task) {
b58f6b0d
PZ
2157 raw_spin_lock(&ctx->lock);
2158 task_ctx = ctx;
a096309b
PZ
2159
2160 /* If we're on the wrong CPU, try again */
2161 if (task_cpu(ctx->task) != smp_processor_id()) {
2162 ret = -ESRCH;
63b6da39 2163 goto unlock;
a096309b 2164 }
b58f6b0d 2165
39a43640 2166 /*
a096309b
PZ
2167 * If we're on the right CPU, see if the task we target is
2168 * current, if not we don't have to activate the ctx, a future
2169 * context switch will do that for us.
39a43640 2170 */
a096309b
PZ
2171 if (ctx->task != current)
2172 activate = false;
2173 else
2174 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2175
63b6da39
PZ
2176 } else if (task_ctx) {
2177 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2178 }
b58f6b0d 2179
a096309b
PZ
2180 if (activate) {
2181 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2182 add_event_to_ctx(event, ctx);
2183 ctx_resched(cpuctx, task_ctx);
2184 } else {
2185 add_event_to_ctx(event, ctx);
2186 }
2187
63b6da39 2188unlock:
2c29ef0f 2189 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2190
a096309b 2191 return ret;
0793a61d
TG
2192}
2193
2194/*
a096309b
PZ
2195 * Attach a performance event to a context.
2196 *
2197 * Very similar to event_function_call, see comment there.
0793a61d
TG
2198 */
2199static void
cdd6c482
IM
2200perf_install_in_context(struct perf_event_context *ctx,
2201 struct perf_event *event,
0793a61d
TG
2202 int cpu)
2203{
a096309b 2204 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2205
fe4b04fa
PZ
2206 lockdep_assert_held(&ctx->mutex);
2207
c3f00c70 2208 event->ctx = ctx;
0cda4c02
YZ
2209 if (event->cpu != -1)
2210 event->cpu = cpu;
c3f00c70 2211
a096309b
PZ
2212 if (!task) {
2213 cpu_function_call(cpu, __perf_install_in_context, event);
2214 return;
2215 }
2216
2217 /*
2218 * Should not happen, we validate the ctx is still alive before calling.
2219 */
2220 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2221 return;
2222
39a43640
PZ
2223 /*
2224 * Installing events is tricky because we cannot rely on ctx->is_active
2225 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2226 */
a096309b 2227again:
63b6da39 2228 /*
a096309b
PZ
2229 * Cannot use task_function_call() because we need to run on the task's
2230 * CPU regardless of whether its current or not.
63b6da39 2231 */
a096309b
PZ
2232 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2233 return;
2234
2235 raw_spin_lock_irq(&ctx->lock);
2236 task = ctx->task;
84c4e620 2237 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2238 /*
2239 * Cannot happen because we already checked above (which also
2240 * cannot happen), and we hold ctx->mutex, which serializes us
2241 * against perf_event_exit_task_context().
2242 */
63b6da39
PZ
2243 raw_spin_unlock_irq(&ctx->lock);
2244 return;
2245 }
39a43640 2246 raw_spin_unlock_irq(&ctx->lock);
39a43640 2247 /*
a096309b
PZ
2248 * Since !ctx->is_active doesn't mean anything, we must IPI
2249 * unconditionally.
39a43640 2250 */
a096309b 2251 goto again;
0793a61d
TG
2252}
2253
fa289bec 2254/*
cdd6c482 2255 * Put a event into inactive state and update time fields.
fa289bec
PM
2256 * Enabling the leader of a group effectively enables all
2257 * the group members that aren't explicitly disabled, so we
2258 * have to update their ->tstamp_enabled also.
2259 * Note: this works for group members as well as group leaders
2260 * since the non-leader members' sibling_lists will be empty.
2261 */
1d9b482e 2262static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2263{
cdd6c482 2264 struct perf_event *sub;
4158755d 2265 u64 tstamp = perf_event_time(event);
fa289bec 2266
cdd6c482 2267 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2268 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2269 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2270 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2271 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2272 }
fa289bec
PM
2273}
2274
d859e29f 2275/*
cdd6c482 2276 * Cross CPU call to enable a performance event
d859e29f 2277 */
fae3fde6
PZ
2278static void __perf_event_enable(struct perf_event *event,
2279 struct perf_cpu_context *cpuctx,
2280 struct perf_event_context *ctx,
2281 void *info)
04289bb9 2282{
cdd6c482 2283 struct perf_event *leader = event->group_leader;
fae3fde6 2284 struct perf_event_context *task_ctx;
04289bb9 2285
6e801e01
PZ
2286 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2287 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2288 return;
3cbed429 2289
bd2afa49
PZ
2290 if (ctx->is_active)
2291 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2292
1d9b482e 2293 __perf_event_mark_enabled(event);
04289bb9 2294
fae3fde6
PZ
2295 if (!ctx->is_active)
2296 return;
2297
e5d1367f 2298 if (!event_filter_match(event)) {
bd2afa49 2299 if (is_cgroup_event(event))
e5d1367f 2300 perf_cgroup_defer_enabled(event);
bd2afa49 2301 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2302 return;
e5d1367f 2303 }
f4c4176f 2304
04289bb9 2305 /*
cdd6c482 2306 * If the event is in a group and isn't the group leader,
d859e29f 2307 * then don't put it on unless the group is on.
04289bb9 2308 */
bd2afa49
PZ
2309 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2310 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2311 return;
bd2afa49 2312 }
fe4b04fa 2313
fae3fde6
PZ
2314 task_ctx = cpuctx->task_ctx;
2315 if (ctx->task)
2316 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2317
fae3fde6 2318 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2319}
2320
d859e29f 2321/*
cdd6c482 2322 * Enable a event.
c93f7669 2323 *
cdd6c482
IM
2324 * If event->ctx is a cloned context, callers must make sure that
2325 * every task struct that event->ctx->task could possibly point to
c93f7669 2326 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2327 * perf_event_for_each_child or perf_event_for_each as described
2328 * for perf_event_disable.
d859e29f 2329 */
f63a8daa 2330static void _perf_event_enable(struct perf_event *event)
d859e29f 2331{
cdd6c482 2332 struct perf_event_context *ctx = event->ctx;
d859e29f 2333
7b648018 2334 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2335 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2336 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2337 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2338 return;
2339 }
2340
d859e29f 2341 /*
cdd6c482 2342 * If the event is in error state, clear that first.
7b648018
PZ
2343 *
2344 * That way, if we see the event in error state below, we know that it
2345 * has gone back into error state, as distinct from the task having
2346 * been scheduled away before the cross-call arrived.
d859e29f 2347 */
cdd6c482
IM
2348 if (event->state == PERF_EVENT_STATE_ERROR)
2349 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2350 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2351
fae3fde6 2352 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2353}
f63a8daa
PZ
2354
2355/*
2356 * See perf_event_disable();
2357 */
2358void perf_event_enable(struct perf_event *event)
2359{
2360 struct perf_event_context *ctx;
2361
2362 ctx = perf_event_ctx_lock(event);
2363 _perf_event_enable(event);
2364 perf_event_ctx_unlock(event, ctx);
2365}
dcfce4a0 2366EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2367
95ff4ca2
AS
2368static int __perf_event_stop(void *info)
2369{
2370 struct perf_event *event = info;
2371
2372 /* for AUX events, our job is done if the event is already inactive */
2373 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2374 return 0;
2375
2376 /* matches smp_wmb() in event_sched_in() */
2377 smp_rmb();
2378
2379 /*
2380 * There is a window with interrupts enabled before we get here,
2381 * so we need to check again lest we try to stop another CPU's event.
2382 */
2383 if (READ_ONCE(event->oncpu) != smp_processor_id())
2384 return -EAGAIN;
2385
2386 event->pmu->stop(event, PERF_EF_UPDATE);
2387
2388 return 0;
2389}
2390
f63a8daa 2391static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2392{
2023b359 2393 /*
cdd6c482 2394 * not supported on inherited events
2023b359 2395 */
2e939d1d 2396 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2397 return -EINVAL;
2398
cdd6c482 2399 atomic_add(refresh, &event->event_limit);
f63a8daa 2400 _perf_event_enable(event);
2023b359
PZ
2401
2402 return 0;
79f14641 2403}
f63a8daa
PZ
2404
2405/*
2406 * See perf_event_disable()
2407 */
2408int perf_event_refresh(struct perf_event *event, int refresh)
2409{
2410 struct perf_event_context *ctx;
2411 int ret;
2412
2413 ctx = perf_event_ctx_lock(event);
2414 ret = _perf_event_refresh(event, refresh);
2415 perf_event_ctx_unlock(event, ctx);
2416
2417 return ret;
2418}
26ca5c11 2419EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2420
5b0311e1
FW
2421static void ctx_sched_out(struct perf_event_context *ctx,
2422 struct perf_cpu_context *cpuctx,
2423 enum event_type_t event_type)
235c7fc7 2424{
db24d33e 2425 int is_active = ctx->is_active;
c994d613 2426 struct perf_event *event;
235c7fc7 2427
c994d613 2428 lockdep_assert_held(&ctx->lock);
235c7fc7 2429
39a43640
PZ
2430 if (likely(!ctx->nr_events)) {
2431 /*
2432 * See __perf_remove_from_context().
2433 */
2434 WARN_ON_ONCE(ctx->is_active);
2435 if (ctx->task)
2436 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2437 return;
39a43640
PZ
2438 }
2439
db24d33e 2440 ctx->is_active &= ~event_type;
3cbaa590
PZ
2441 if (!(ctx->is_active & EVENT_ALL))
2442 ctx->is_active = 0;
2443
63e30d3e
PZ
2444 if (ctx->task) {
2445 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2446 if (!ctx->is_active)
2447 cpuctx->task_ctx = NULL;
2448 }
facc4307 2449
8fdc6539
PZ
2450 /*
2451 * Always update time if it was set; not only when it changes.
2452 * Otherwise we can 'forget' to update time for any but the last
2453 * context we sched out. For example:
2454 *
2455 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2456 * ctx_sched_out(.event_type = EVENT_PINNED)
2457 *
2458 * would only update time for the pinned events.
2459 */
3cbaa590
PZ
2460 if (is_active & EVENT_TIME) {
2461 /* update (and stop) ctx time */
2462 update_context_time(ctx);
2463 update_cgrp_time_from_cpuctx(cpuctx);
2464 }
2465
8fdc6539
PZ
2466 is_active ^= ctx->is_active; /* changed bits */
2467
3cbaa590 2468 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2469 return;
5b0311e1 2470
075e0b00 2471 perf_pmu_disable(ctx->pmu);
3cbaa590 2472 if (is_active & EVENT_PINNED) {
889ff015
FW
2473 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2474 group_sched_out(event, cpuctx, ctx);
9ed6060d 2475 }
889ff015 2476
3cbaa590 2477 if (is_active & EVENT_FLEXIBLE) {
889ff015 2478 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2479 group_sched_out(event, cpuctx, ctx);
9ed6060d 2480 }
1b9a644f 2481 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2482}
2483
564c2b21 2484/*
5a3126d4
PZ
2485 * Test whether two contexts are equivalent, i.e. whether they have both been
2486 * cloned from the same version of the same context.
2487 *
2488 * Equivalence is measured using a generation number in the context that is
2489 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2490 * and list_del_event().
564c2b21 2491 */
cdd6c482
IM
2492static int context_equiv(struct perf_event_context *ctx1,
2493 struct perf_event_context *ctx2)
564c2b21 2494{
211de6eb
PZ
2495 lockdep_assert_held(&ctx1->lock);
2496 lockdep_assert_held(&ctx2->lock);
2497
5a3126d4
PZ
2498 /* Pinning disables the swap optimization */
2499 if (ctx1->pin_count || ctx2->pin_count)
2500 return 0;
2501
2502 /* If ctx1 is the parent of ctx2 */
2503 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2504 return 1;
2505
2506 /* If ctx2 is the parent of ctx1 */
2507 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2508 return 1;
2509
2510 /*
2511 * If ctx1 and ctx2 have the same parent; we flatten the parent
2512 * hierarchy, see perf_event_init_context().
2513 */
2514 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2515 ctx1->parent_gen == ctx2->parent_gen)
2516 return 1;
2517
2518 /* Unmatched */
2519 return 0;
564c2b21
PM
2520}
2521
cdd6c482
IM
2522static void __perf_event_sync_stat(struct perf_event *event,
2523 struct perf_event *next_event)
bfbd3381
PZ
2524{
2525 u64 value;
2526
cdd6c482 2527 if (!event->attr.inherit_stat)
bfbd3381
PZ
2528 return;
2529
2530 /*
cdd6c482 2531 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2532 * because we're in the middle of a context switch and have IRQs
2533 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2534 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2535 * don't need to use it.
2536 */
cdd6c482
IM
2537 switch (event->state) {
2538 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2539 event->pmu->read(event);
2540 /* fall-through */
bfbd3381 2541
cdd6c482
IM
2542 case PERF_EVENT_STATE_INACTIVE:
2543 update_event_times(event);
bfbd3381
PZ
2544 break;
2545
2546 default:
2547 break;
2548 }
2549
2550 /*
cdd6c482 2551 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2552 * values when we flip the contexts.
2553 */
e7850595
PZ
2554 value = local64_read(&next_event->count);
2555 value = local64_xchg(&event->count, value);
2556 local64_set(&next_event->count, value);
bfbd3381 2557
cdd6c482
IM
2558 swap(event->total_time_enabled, next_event->total_time_enabled);
2559 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2560
bfbd3381 2561 /*
19d2e755 2562 * Since we swizzled the values, update the user visible data too.
bfbd3381 2563 */
cdd6c482
IM
2564 perf_event_update_userpage(event);
2565 perf_event_update_userpage(next_event);
bfbd3381
PZ
2566}
2567
cdd6c482
IM
2568static void perf_event_sync_stat(struct perf_event_context *ctx,
2569 struct perf_event_context *next_ctx)
bfbd3381 2570{
cdd6c482 2571 struct perf_event *event, *next_event;
bfbd3381
PZ
2572
2573 if (!ctx->nr_stat)
2574 return;
2575
02ffdbc8
PZ
2576 update_context_time(ctx);
2577
cdd6c482
IM
2578 event = list_first_entry(&ctx->event_list,
2579 struct perf_event, event_entry);
bfbd3381 2580
cdd6c482
IM
2581 next_event = list_first_entry(&next_ctx->event_list,
2582 struct perf_event, event_entry);
bfbd3381 2583
cdd6c482
IM
2584 while (&event->event_entry != &ctx->event_list &&
2585 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2586
cdd6c482 2587 __perf_event_sync_stat(event, next_event);
bfbd3381 2588
cdd6c482
IM
2589 event = list_next_entry(event, event_entry);
2590 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2591 }
2592}
2593
fe4b04fa
PZ
2594static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2595 struct task_struct *next)
0793a61d 2596{
8dc85d54 2597 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2598 struct perf_event_context *next_ctx;
5a3126d4 2599 struct perf_event_context *parent, *next_parent;
108b02cf 2600 struct perf_cpu_context *cpuctx;
c93f7669 2601 int do_switch = 1;
0793a61d 2602
108b02cf
PZ
2603 if (likely(!ctx))
2604 return;
10989fb2 2605
108b02cf
PZ
2606 cpuctx = __get_cpu_context(ctx);
2607 if (!cpuctx->task_ctx)
0793a61d
TG
2608 return;
2609
c93f7669 2610 rcu_read_lock();
8dc85d54 2611 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2612 if (!next_ctx)
2613 goto unlock;
2614
2615 parent = rcu_dereference(ctx->parent_ctx);
2616 next_parent = rcu_dereference(next_ctx->parent_ctx);
2617
2618 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2619 if (!parent && !next_parent)
5a3126d4
PZ
2620 goto unlock;
2621
2622 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2623 /*
2624 * Looks like the two contexts are clones, so we might be
2625 * able to optimize the context switch. We lock both
2626 * contexts and check that they are clones under the
2627 * lock (including re-checking that neither has been
2628 * uncloned in the meantime). It doesn't matter which
2629 * order we take the locks because no other cpu could
2630 * be trying to lock both of these tasks.
2631 */
e625cce1
TG
2632 raw_spin_lock(&ctx->lock);
2633 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2634 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2635 WRITE_ONCE(ctx->task, next);
2636 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2637
2638 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2639
63b6da39
PZ
2640 /*
2641 * RCU_INIT_POINTER here is safe because we've not
2642 * modified the ctx and the above modification of
2643 * ctx->task and ctx->task_ctx_data are immaterial
2644 * since those values are always verified under
2645 * ctx->lock which we're now holding.
2646 */
2647 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2648 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2649
c93f7669 2650 do_switch = 0;
bfbd3381 2651
cdd6c482 2652 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2653 }
e625cce1
TG
2654 raw_spin_unlock(&next_ctx->lock);
2655 raw_spin_unlock(&ctx->lock);
564c2b21 2656 }
5a3126d4 2657unlock:
c93f7669 2658 rcu_read_unlock();
564c2b21 2659
c93f7669 2660 if (do_switch) {
facc4307 2661 raw_spin_lock(&ctx->lock);
8833d0e2 2662 task_ctx_sched_out(cpuctx, ctx);
facc4307 2663 raw_spin_unlock(&ctx->lock);
c93f7669 2664 }
0793a61d
TG
2665}
2666
ba532500
YZ
2667void perf_sched_cb_dec(struct pmu *pmu)
2668{
2669 this_cpu_dec(perf_sched_cb_usages);
2670}
2671
2672void perf_sched_cb_inc(struct pmu *pmu)
2673{
2674 this_cpu_inc(perf_sched_cb_usages);
2675}
2676
2677/*
2678 * This function provides the context switch callback to the lower code
2679 * layer. It is invoked ONLY when the context switch callback is enabled.
2680 */
2681static void perf_pmu_sched_task(struct task_struct *prev,
2682 struct task_struct *next,
2683 bool sched_in)
2684{
2685 struct perf_cpu_context *cpuctx;
2686 struct pmu *pmu;
2687 unsigned long flags;
2688
2689 if (prev == next)
2690 return;
2691
2692 local_irq_save(flags);
2693
2694 rcu_read_lock();
2695
2696 list_for_each_entry_rcu(pmu, &pmus, entry) {
2697 if (pmu->sched_task) {
2698 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2699
2700 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2701
2702 perf_pmu_disable(pmu);
2703
2704 pmu->sched_task(cpuctx->task_ctx, sched_in);
2705
2706 perf_pmu_enable(pmu);
2707
2708 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2709 }
2710 }
2711
2712 rcu_read_unlock();
2713
2714 local_irq_restore(flags);
2715}
2716
45ac1403
AH
2717static void perf_event_switch(struct task_struct *task,
2718 struct task_struct *next_prev, bool sched_in);
2719
8dc85d54
PZ
2720#define for_each_task_context_nr(ctxn) \
2721 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2722
2723/*
2724 * Called from scheduler to remove the events of the current task,
2725 * with interrupts disabled.
2726 *
2727 * We stop each event and update the event value in event->count.
2728 *
2729 * This does not protect us against NMI, but disable()
2730 * sets the disabled bit in the control field of event _before_
2731 * accessing the event control register. If a NMI hits, then it will
2732 * not restart the event.
2733 */
ab0cce56
JO
2734void __perf_event_task_sched_out(struct task_struct *task,
2735 struct task_struct *next)
8dc85d54
PZ
2736{
2737 int ctxn;
2738
ba532500
YZ
2739 if (__this_cpu_read(perf_sched_cb_usages))
2740 perf_pmu_sched_task(task, next, false);
2741
45ac1403
AH
2742 if (atomic_read(&nr_switch_events))
2743 perf_event_switch(task, next, false);
2744
8dc85d54
PZ
2745 for_each_task_context_nr(ctxn)
2746 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2747
2748 /*
2749 * if cgroup events exist on this CPU, then we need
2750 * to check if we have to switch out PMU state.
2751 * cgroup event are system-wide mode only
2752 */
4a32fea9 2753 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2754 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2755}
2756
5b0311e1
FW
2757/*
2758 * Called with IRQs disabled
2759 */
2760static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2761 enum event_type_t event_type)
2762{
2763 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2764}
2765
235c7fc7 2766static void
5b0311e1 2767ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2768 struct perf_cpu_context *cpuctx)
0793a61d 2769{
cdd6c482 2770 struct perf_event *event;
0793a61d 2771
889ff015
FW
2772 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2773 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2774 continue;
5632ab12 2775 if (!event_filter_match(event))
3b6f9e5c
PM
2776 continue;
2777
e5d1367f
SE
2778 /* may need to reset tstamp_enabled */
2779 if (is_cgroup_event(event))
2780 perf_cgroup_mark_enabled(event, ctx);
2781
8c9ed8e1 2782 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2783 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2784
2785 /*
2786 * If this pinned group hasn't been scheduled,
2787 * put it in error state.
2788 */
cdd6c482
IM
2789 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2790 update_group_times(event);
2791 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2792 }
3b6f9e5c 2793 }
5b0311e1
FW
2794}
2795
2796static void
2797ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2798 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2799{
2800 struct perf_event *event;
2801 int can_add_hw = 1;
3b6f9e5c 2802
889ff015
FW
2803 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2804 /* Ignore events in OFF or ERROR state */
2805 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2806 continue;
04289bb9
IM
2807 /*
2808 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2809 * of events:
04289bb9 2810 */
5632ab12 2811 if (!event_filter_match(event))
0793a61d
TG
2812 continue;
2813
e5d1367f
SE
2814 /* may need to reset tstamp_enabled */
2815 if (is_cgroup_event(event))
2816 perf_cgroup_mark_enabled(event, ctx);
2817
9ed6060d 2818 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2819 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2820 can_add_hw = 0;
9ed6060d 2821 }
0793a61d 2822 }
5b0311e1
FW
2823}
2824
2825static void
2826ctx_sched_in(struct perf_event_context *ctx,
2827 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2828 enum event_type_t event_type,
2829 struct task_struct *task)
5b0311e1 2830{
db24d33e 2831 int is_active = ctx->is_active;
c994d613
PZ
2832 u64 now;
2833
2834 lockdep_assert_held(&ctx->lock);
e5d1367f 2835
5b0311e1 2836 if (likely(!ctx->nr_events))
facc4307 2837 return;
5b0311e1 2838
3cbaa590 2839 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2840 if (ctx->task) {
2841 if (!is_active)
2842 cpuctx->task_ctx = ctx;
2843 else
2844 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2845 }
2846
3cbaa590
PZ
2847 is_active ^= ctx->is_active; /* changed bits */
2848
2849 if (is_active & EVENT_TIME) {
2850 /* start ctx time */
2851 now = perf_clock();
2852 ctx->timestamp = now;
2853 perf_cgroup_set_timestamp(task, ctx);
2854 }
2855
5b0311e1
FW
2856 /*
2857 * First go through the list and put on any pinned groups
2858 * in order to give them the best chance of going on.
2859 */
3cbaa590 2860 if (is_active & EVENT_PINNED)
6e37738a 2861 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2862
2863 /* Then walk through the lower prio flexible groups */
3cbaa590 2864 if (is_active & EVENT_FLEXIBLE)
6e37738a 2865 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2866}
2867
329c0e01 2868static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2869 enum event_type_t event_type,
2870 struct task_struct *task)
329c0e01
FW
2871{
2872 struct perf_event_context *ctx = &cpuctx->ctx;
2873
e5d1367f 2874 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2875}
2876
e5d1367f
SE
2877static void perf_event_context_sched_in(struct perf_event_context *ctx,
2878 struct task_struct *task)
235c7fc7 2879{
108b02cf 2880 struct perf_cpu_context *cpuctx;
235c7fc7 2881
108b02cf 2882 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2883 if (cpuctx->task_ctx == ctx)
2884 return;
2885
facc4307 2886 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2887 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2888 /*
2889 * We want to keep the following priority order:
2890 * cpu pinned (that don't need to move), task pinned,
2891 * cpu flexible, task flexible.
2892 */
2893 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2894 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2895 perf_pmu_enable(ctx->pmu);
2896 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2897}
2898
8dc85d54
PZ
2899/*
2900 * Called from scheduler to add the events of the current task
2901 * with interrupts disabled.
2902 *
2903 * We restore the event value and then enable it.
2904 *
2905 * This does not protect us against NMI, but enable()
2906 * sets the enabled bit in the control field of event _before_
2907 * accessing the event control register. If a NMI hits, then it will
2908 * keep the event running.
2909 */
ab0cce56
JO
2910void __perf_event_task_sched_in(struct task_struct *prev,
2911 struct task_struct *task)
8dc85d54
PZ
2912{
2913 struct perf_event_context *ctx;
2914 int ctxn;
2915
7e41d177
PZ
2916 /*
2917 * If cgroup events exist on this CPU, then we need to check if we have
2918 * to switch in PMU state; cgroup event are system-wide mode only.
2919 *
2920 * Since cgroup events are CPU events, we must schedule these in before
2921 * we schedule in the task events.
2922 */
2923 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2924 perf_cgroup_sched_in(prev, task);
2925
8dc85d54
PZ
2926 for_each_task_context_nr(ctxn) {
2927 ctx = task->perf_event_ctxp[ctxn];
2928 if (likely(!ctx))
2929 continue;
2930
e5d1367f 2931 perf_event_context_sched_in(ctx, task);
8dc85d54 2932 }
d010b332 2933
45ac1403
AH
2934 if (atomic_read(&nr_switch_events))
2935 perf_event_switch(task, prev, true);
2936
ba532500
YZ
2937 if (__this_cpu_read(perf_sched_cb_usages))
2938 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2939}
2940
abd50713
PZ
2941static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2942{
2943 u64 frequency = event->attr.sample_freq;
2944 u64 sec = NSEC_PER_SEC;
2945 u64 divisor, dividend;
2946
2947 int count_fls, nsec_fls, frequency_fls, sec_fls;
2948
2949 count_fls = fls64(count);
2950 nsec_fls = fls64(nsec);
2951 frequency_fls = fls64(frequency);
2952 sec_fls = 30;
2953
2954 /*
2955 * We got @count in @nsec, with a target of sample_freq HZ
2956 * the target period becomes:
2957 *
2958 * @count * 10^9
2959 * period = -------------------
2960 * @nsec * sample_freq
2961 *
2962 */
2963
2964 /*
2965 * Reduce accuracy by one bit such that @a and @b converge
2966 * to a similar magnitude.
2967 */
fe4b04fa 2968#define REDUCE_FLS(a, b) \
abd50713
PZ
2969do { \
2970 if (a##_fls > b##_fls) { \
2971 a >>= 1; \
2972 a##_fls--; \
2973 } else { \
2974 b >>= 1; \
2975 b##_fls--; \
2976 } \
2977} while (0)
2978
2979 /*
2980 * Reduce accuracy until either term fits in a u64, then proceed with
2981 * the other, so that finally we can do a u64/u64 division.
2982 */
2983 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2984 REDUCE_FLS(nsec, frequency);
2985 REDUCE_FLS(sec, count);
2986 }
2987
2988 if (count_fls + sec_fls > 64) {
2989 divisor = nsec * frequency;
2990
2991 while (count_fls + sec_fls > 64) {
2992 REDUCE_FLS(count, sec);
2993 divisor >>= 1;
2994 }
2995
2996 dividend = count * sec;
2997 } else {
2998 dividend = count * sec;
2999
3000 while (nsec_fls + frequency_fls > 64) {
3001 REDUCE_FLS(nsec, frequency);
3002 dividend >>= 1;
3003 }
3004
3005 divisor = nsec * frequency;
3006 }
3007
f6ab91ad
PZ
3008 if (!divisor)
3009 return dividend;
3010
abd50713
PZ
3011 return div64_u64(dividend, divisor);
3012}
3013
e050e3f0
SE
3014static DEFINE_PER_CPU(int, perf_throttled_count);
3015static DEFINE_PER_CPU(u64, perf_throttled_seq);
3016
f39d47ff 3017static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3018{
cdd6c482 3019 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3020 s64 period, sample_period;
bd2b5b12
PZ
3021 s64 delta;
3022
abd50713 3023 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3024
3025 delta = (s64)(period - hwc->sample_period);
3026 delta = (delta + 7) / 8; /* low pass filter */
3027
3028 sample_period = hwc->sample_period + delta;
3029
3030 if (!sample_period)
3031 sample_period = 1;
3032
bd2b5b12 3033 hwc->sample_period = sample_period;
abd50713 3034
e7850595 3035 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3036 if (disable)
3037 event->pmu->stop(event, PERF_EF_UPDATE);
3038
e7850595 3039 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3040
3041 if (disable)
3042 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3043 }
bd2b5b12
PZ
3044}
3045
e050e3f0
SE
3046/*
3047 * combine freq adjustment with unthrottling to avoid two passes over the
3048 * events. At the same time, make sure, having freq events does not change
3049 * the rate of unthrottling as that would introduce bias.
3050 */
3051static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3052 int needs_unthr)
60db5e09 3053{
cdd6c482
IM
3054 struct perf_event *event;
3055 struct hw_perf_event *hwc;
e050e3f0 3056 u64 now, period = TICK_NSEC;
abd50713 3057 s64 delta;
60db5e09 3058
e050e3f0
SE
3059 /*
3060 * only need to iterate over all events iff:
3061 * - context have events in frequency mode (needs freq adjust)
3062 * - there are events to unthrottle on this cpu
3063 */
3064 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3065 return;
3066
e050e3f0 3067 raw_spin_lock(&ctx->lock);
f39d47ff 3068 perf_pmu_disable(ctx->pmu);
e050e3f0 3069
03541f8b 3070 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3071 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3072 continue;
3073
5632ab12 3074 if (!event_filter_match(event))
5d27c23d
PZ
3075 continue;
3076
44377277
AS
3077 perf_pmu_disable(event->pmu);
3078
cdd6c482 3079 hwc = &event->hw;
6a24ed6c 3080
ae23bff1 3081 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3082 hwc->interrupts = 0;
cdd6c482 3083 perf_log_throttle(event, 1);
a4eaf7f1 3084 event->pmu->start(event, 0);
a78ac325
PZ
3085 }
3086
cdd6c482 3087 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3088 goto next;
60db5e09 3089
e050e3f0
SE
3090 /*
3091 * stop the event and update event->count
3092 */
3093 event->pmu->stop(event, PERF_EF_UPDATE);
3094
e7850595 3095 now = local64_read(&event->count);
abd50713
PZ
3096 delta = now - hwc->freq_count_stamp;
3097 hwc->freq_count_stamp = now;
60db5e09 3098
e050e3f0
SE
3099 /*
3100 * restart the event
3101 * reload only if value has changed
f39d47ff
SE
3102 * we have stopped the event so tell that
3103 * to perf_adjust_period() to avoid stopping it
3104 * twice.
e050e3f0 3105 */
abd50713 3106 if (delta > 0)
f39d47ff 3107 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3108
3109 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3110 next:
3111 perf_pmu_enable(event->pmu);
60db5e09 3112 }
e050e3f0 3113
f39d47ff 3114 perf_pmu_enable(ctx->pmu);
e050e3f0 3115 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3116}
3117
235c7fc7 3118/*
cdd6c482 3119 * Round-robin a context's events:
235c7fc7 3120 */
cdd6c482 3121static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3122{
dddd3379
TG
3123 /*
3124 * Rotate the first entry last of non-pinned groups. Rotation might be
3125 * disabled by the inheritance code.
3126 */
3127 if (!ctx->rotate_disable)
3128 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3129}
3130
9e630205 3131static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3132{
8dc85d54 3133 struct perf_event_context *ctx = NULL;
2fde4f94 3134 int rotate = 0;
7fc23a53 3135
b5ab4cd5 3136 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3137 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3138 rotate = 1;
3139 }
235c7fc7 3140
8dc85d54 3141 ctx = cpuctx->task_ctx;
b5ab4cd5 3142 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3143 if (ctx->nr_events != ctx->nr_active)
3144 rotate = 1;
3145 }
9717e6cd 3146
e050e3f0 3147 if (!rotate)
0f5a2601
PZ
3148 goto done;
3149
facc4307 3150 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3151 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3152
e050e3f0
SE
3153 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3154 if (ctx)
3155 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3156
e050e3f0
SE
3157 rotate_ctx(&cpuctx->ctx);
3158 if (ctx)
3159 rotate_ctx(ctx);
235c7fc7 3160
e050e3f0 3161 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3162
0f5a2601
PZ
3163 perf_pmu_enable(cpuctx->ctx.pmu);
3164 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3165done:
9e630205
SE
3166
3167 return rotate;
e9d2b064
PZ
3168}
3169
3170void perf_event_task_tick(void)
3171{
2fde4f94
MR
3172 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3173 struct perf_event_context *ctx, *tmp;
e050e3f0 3174 int throttled;
b5ab4cd5 3175
e9d2b064
PZ
3176 WARN_ON(!irqs_disabled());
3177
e050e3f0
SE
3178 __this_cpu_inc(perf_throttled_seq);
3179 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3180 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3181
2fde4f94 3182 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3183 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3184}
3185
889ff015
FW
3186static int event_enable_on_exec(struct perf_event *event,
3187 struct perf_event_context *ctx)
3188{
3189 if (!event->attr.enable_on_exec)
3190 return 0;
3191
3192 event->attr.enable_on_exec = 0;
3193 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3194 return 0;
3195
1d9b482e 3196 __perf_event_mark_enabled(event);
889ff015
FW
3197
3198 return 1;
3199}
3200
57e7986e 3201/*
cdd6c482 3202 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3203 * This expects task == current.
3204 */
c1274499 3205static void perf_event_enable_on_exec(int ctxn)
57e7986e 3206{
c1274499 3207 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3208 struct perf_cpu_context *cpuctx;
cdd6c482 3209 struct perf_event *event;
57e7986e
PM
3210 unsigned long flags;
3211 int enabled = 0;
3212
3213 local_irq_save(flags);
c1274499 3214 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3215 if (!ctx || !ctx->nr_events)
57e7986e
PM
3216 goto out;
3217
3e349507
PZ
3218 cpuctx = __get_cpu_context(ctx);
3219 perf_ctx_lock(cpuctx, ctx);
7fce2509 3220 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3221 list_for_each_entry(event, &ctx->event_list, event_entry)
3222 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3223
3224 /*
3e349507 3225 * Unclone and reschedule this context if we enabled any event.
57e7986e 3226 */
3e349507 3227 if (enabled) {
211de6eb 3228 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3229 ctx_resched(cpuctx, ctx);
3230 }
3231 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3232
9ed6060d 3233out:
57e7986e 3234 local_irq_restore(flags);
211de6eb
PZ
3235
3236 if (clone_ctx)
3237 put_ctx(clone_ctx);
57e7986e
PM
3238}
3239
e041e328
PZ
3240void perf_event_exec(void)
3241{
e041e328
PZ
3242 int ctxn;
3243
3244 rcu_read_lock();
c1274499
PZ
3245 for_each_task_context_nr(ctxn)
3246 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3247 rcu_read_unlock();
3248}
3249
0492d4c5
PZ
3250struct perf_read_data {
3251 struct perf_event *event;
3252 bool group;
7d88962e 3253 int ret;
0492d4c5
PZ
3254};
3255
0793a61d 3256/*
cdd6c482 3257 * Cross CPU call to read the hardware event
0793a61d 3258 */
cdd6c482 3259static void __perf_event_read(void *info)
0793a61d 3260{
0492d4c5
PZ
3261 struct perf_read_data *data = info;
3262 struct perf_event *sub, *event = data->event;
cdd6c482 3263 struct perf_event_context *ctx = event->ctx;
108b02cf 3264 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3265 struct pmu *pmu = event->pmu;
621a01ea 3266
e1ac3614
PM
3267 /*
3268 * If this is a task context, we need to check whether it is
3269 * the current task context of this cpu. If not it has been
3270 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3271 * event->count would have been updated to a recent sample
3272 * when the event was scheduled out.
e1ac3614
PM
3273 */
3274 if (ctx->task && cpuctx->task_ctx != ctx)
3275 return;
3276
e625cce1 3277 raw_spin_lock(&ctx->lock);
e5d1367f 3278 if (ctx->is_active) {
542e72fc 3279 update_context_time(ctx);
e5d1367f
SE
3280 update_cgrp_time_from_event(event);
3281 }
0492d4c5 3282
cdd6c482 3283 update_event_times(event);
4a00c16e
SB
3284 if (event->state != PERF_EVENT_STATE_ACTIVE)
3285 goto unlock;
0492d4c5 3286
4a00c16e
SB
3287 if (!data->group) {
3288 pmu->read(event);
3289 data->ret = 0;
0492d4c5 3290 goto unlock;
4a00c16e
SB
3291 }
3292
3293 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3294
3295 pmu->read(event);
0492d4c5
PZ
3296
3297 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3298 update_event_times(sub);
4a00c16e
SB
3299 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3300 /*
3301 * Use sibling's PMU rather than @event's since
3302 * sibling could be on different (eg: software) PMU.
3303 */
0492d4c5 3304 sub->pmu->read(sub);
4a00c16e 3305 }
0492d4c5 3306 }
4a00c16e
SB
3307
3308 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3309
3310unlock:
e625cce1 3311 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3312}
3313
b5e58793
PZ
3314static inline u64 perf_event_count(struct perf_event *event)
3315{
eacd3ecc
MF
3316 if (event->pmu->count)
3317 return event->pmu->count(event);
3318
3319 return __perf_event_count(event);
b5e58793
PZ
3320}
3321
ffe8690c
KX
3322/*
3323 * NMI-safe method to read a local event, that is an event that
3324 * is:
3325 * - either for the current task, or for this CPU
3326 * - does not have inherit set, for inherited task events
3327 * will not be local and we cannot read them atomically
3328 * - must not have a pmu::count method
3329 */
3330u64 perf_event_read_local(struct perf_event *event)
3331{
3332 unsigned long flags;
3333 u64 val;
3334
3335 /*
3336 * Disabling interrupts avoids all counter scheduling (context
3337 * switches, timer based rotation and IPIs).
3338 */
3339 local_irq_save(flags);
3340
3341 /* If this is a per-task event, it must be for current */
3342 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3343 event->hw.target != current);
3344
3345 /* If this is a per-CPU event, it must be for this CPU */
3346 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3347 event->cpu != smp_processor_id());
3348
3349 /*
3350 * It must not be an event with inherit set, we cannot read
3351 * all child counters from atomic context.
3352 */
3353 WARN_ON_ONCE(event->attr.inherit);
3354
3355 /*
3356 * It must not have a pmu::count method, those are not
3357 * NMI safe.
3358 */
3359 WARN_ON_ONCE(event->pmu->count);
3360
3361 /*
3362 * If the event is currently on this CPU, its either a per-task event,
3363 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3364 * oncpu == -1).
3365 */
3366 if (event->oncpu == smp_processor_id())
3367 event->pmu->read(event);
3368
3369 val = local64_read(&event->count);
3370 local_irq_restore(flags);
3371
3372 return val;
3373}
3374
7d88962e 3375static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3376{
7d88962e
SB
3377 int ret = 0;
3378
0793a61d 3379 /*
cdd6c482
IM
3380 * If event is enabled and currently active on a CPU, update the
3381 * value in the event structure:
0793a61d 3382 */
cdd6c482 3383 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3384 struct perf_read_data data = {
3385 .event = event,
3386 .group = group,
7d88962e 3387 .ret = 0,
0492d4c5 3388 };
cdd6c482 3389 smp_call_function_single(event->oncpu,
0492d4c5 3390 __perf_event_read, &data, 1);
7d88962e 3391 ret = data.ret;
cdd6c482 3392 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3393 struct perf_event_context *ctx = event->ctx;
3394 unsigned long flags;
3395
e625cce1 3396 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3397 /*
3398 * may read while context is not active
3399 * (e.g., thread is blocked), in that case
3400 * we cannot update context time
3401 */
e5d1367f 3402 if (ctx->is_active) {
c530ccd9 3403 update_context_time(ctx);
e5d1367f
SE
3404 update_cgrp_time_from_event(event);
3405 }
0492d4c5
PZ
3406 if (group)
3407 update_group_times(event);
3408 else
3409 update_event_times(event);
e625cce1 3410 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3411 }
7d88962e
SB
3412
3413 return ret;
0793a61d
TG
3414}
3415
a63eaf34 3416/*
cdd6c482 3417 * Initialize the perf_event context in a task_struct:
a63eaf34 3418 */
eb184479 3419static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3420{
e625cce1 3421 raw_spin_lock_init(&ctx->lock);
a63eaf34 3422 mutex_init(&ctx->mutex);
2fde4f94 3423 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3424 INIT_LIST_HEAD(&ctx->pinned_groups);
3425 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3426 INIT_LIST_HEAD(&ctx->event_list);
3427 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3428}
3429
3430static struct perf_event_context *
3431alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3432{
3433 struct perf_event_context *ctx;
3434
3435 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3436 if (!ctx)
3437 return NULL;
3438
3439 __perf_event_init_context(ctx);
3440 if (task) {
3441 ctx->task = task;
3442 get_task_struct(task);
0793a61d 3443 }
eb184479
PZ
3444 ctx->pmu = pmu;
3445
3446 return ctx;
a63eaf34
PM
3447}
3448
2ebd4ffb
MH
3449static struct task_struct *
3450find_lively_task_by_vpid(pid_t vpid)
3451{
3452 struct task_struct *task;
0793a61d
TG
3453
3454 rcu_read_lock();
2ebd4ffb 3455 if (!vpid)
0793a61d
TG
3456 task = current;
3457 else
2ebd4ffb 3458 task = find_task_by_vpid(vpid);
0793a61d
TG
3459 if (task)
3460 get_task_struct(task);
3461 rcu_read_unlock();
3462
3463 if (!task)
3464 return ERR_PTR(-ESRCH);
3465
2ebd4ffb 3466 return task;
2ebd4ffb
MH
3467}
3468
fe4b04fa
PZ
3469/*
3470 * Returns a matching context with refcount and pincount.
3471 */
108b02cf 3472static struct perf_event_context *
4af57ef2
YZ
3473find_get_context(struct pmu *pmu, struct task_struct *task,
3474 struct perf_event *event)
0793a61d 3475{
211de6eb 3476 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3477 struct perf_cpu_context *cpuctx;
4af57ef2 3478 void *task_ctx_data = NULL;
25346b93 3479 unsigned long flags;
8dc85d54 3480 int ctxn, err;
4af57ef2 3481 int cpu = event->cpu;
0793a61d 3482
22a4ec72 3483 if (!task) {
cdd6c482 3484 /* Must be root to operate on a CPU event: */
0764771d 3485 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3486 return ERR_PTR(-EACCES);
3487
0793a61d 3488 /*
cdd6c482 3489 * We could be clever and allow to attach a event to an
0793a61d
TG
3490 * offline CPU and activate it when the CPU comes up, but
3491 * that's for later.
3492 */
f6325e30 3493 if (!cpu_online(cpu))
0793a61d
TG
3494 return ERR_PTR(-ENODEV);
3495
108b02cf 3496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3497 ctx = &cpuctx->ctx;
c93f7669 3498 get_ctx(ctx);
fe4b04fa 3499 ++ctx->pin_count;
0793a61d 3500
0793a61d
TG
3501 return ctx;
3502 }
3503
8dc85d54
PZ
3504 err = -EINVAL;
3505 ctxn = pmu->task_ctx_nr;
3506 if (ctxn < 0)
3507 goto errout;
3508
4af57ef2
YZ
3509 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3510 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3511 if (!task_ctx_data) {
3512 err = -ENOMEM;
3513 goto errout;
3514 }
3515 }
3516
9ed6060d 3517retry:
8dc85d54 3518 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3519 if (ctx) {
211de6eb 3520 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3521 ++ctx->pin_count;
4af57ef2
YZ
3522
3523 if (task_ctx_data && !ctx->task_ctx_data) {
3524 ctx->task_ctx_data = task_ctx_data;
3525 task_ctx_data = NULL;
3526 }
e625cce1 3527 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3528
3529 if (clone_ctx)
3530 put_ctx(clone_ctx);
9137fb28 3531 } else {
eb184479 3532 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3533 err = -ENOMEM;
3534 if (!ctx)
3535 goto errout;
eb184479 3536
4af57ef2
YZ
3537 if (task_ctx_data) {
3538 ctx->task_ctx_data = task_ctx_data;
3539 task_ctx_data = NULL;
3540 }
3541
dbe08d82
ON
3542 err = 0;
3543 mutex_lock(&task->perf_event_mutex);
3544 /*
3545 * If it has already passed perf_event_exit_task().
3546 * we must see PF_EXITING, it takes this mutex too.
3547 */
3548 if (task->flags & PF_EXITING)
3549 err = -ESRCH;
3550 else if (task->perf_event_ctxp[ctxn])
3551 err = -EAGAIN;
fe4b04fa 3552 else {
9137fb28 3553 get_ctx(ctx);
fe4b04fa 3554 ++ctx->pin_count;
dbe08d82 3555 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3556 }
dbe08d82
ON
3557 mutex_unlock(&task->perf_event_mutex);
3558
3559 if (unlikely(err)) {
9137fb28 3560 put_ctx(ctx);
dbe08d82
ON
3561
3562 if (err == -EAGAIN)
3563 goto retry;
3564 goto errout;
a63eaf34
PM
3565 }
3566 }
3567
4af57ef2 3568 kfree(task_ctx_data);
0793a61d 3569 return ctx;
c93f7669 3570
9ed6060d 3571errout:
4af57ef2 3572 kfree(task_ctx_data);
c93f7669 3573 return ERR_PTR(err);
0793a61d
TG
3574}
3575
6fb2915d 3576static void perf_event_free_filter(struct perf_event *event);
2541517c 3577static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3578
cdd6c482 3579static void free_event_rcu(struct rcu_head *head)
592903cd 3580{
cdd6c482 3581 struct perf_event *event;
592903cd 3582
cdd6c482
IM
3583 event = container_of(head, struct perf_event, rcu_head);
3584 if (event->ns)
3585 put_pid_ns(event->ns);
6fb2915d 3586 perf_event_free_filter(event);
cdd6c482 3587 kfree(event);
592903cd
PZ
3588}
3589
b69cf536
PZ
3590static void ring_buffer_attach(struct perf_event *event,
3591 struct ring_buffer *rb);
925d519a 3592
4beb31f3 3593static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3594{
4beb31f3
FW
3595 if (event->parent)
3596 return;
3597
4beb31f3
FW
3598 if (is_cgroup_event(event))
3599 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3600}
925d519a 3601
555e0c1e
FW
3602#ifdef CONFIG_NO_HZ_FULL
3603static DEFINE_SPINLOCK(nr_freq_lock);
3604#endif
3605
3606static void unaccount_freq_event_nohz(void)
3607{
3608#ifdef CONFIG_NO_HZ_FULL
3609 spin_lock(&nr_freq_lock);
3610 if (atomic_dec_and_test(&nr_freq_events))
3611 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3612 spin_unlock(&nr_freq_lock);
3613#endif
3614}
3615
3616static void unaccount_freq_event(void)
3617{
3618 if (tick_nohz_full_enabled())
3619 unaccount_freq_event_nohz();
3620 else
3621 atomic_dec(&nr_freq_events);
3622}
3623
4beb31f3
FW
3624static void unaccount_event(struct perf_event *event)
3625{
25432ae9
PZ
3626 bool dec = false;
3627
4beb31f3
FW
3628 if (event->parent)
3629 return;
3630
3631 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3632 dec = true;
4beb31f3
FW
3633 if (event->attr.mmap || event->attr.mmap_data)
3634 atomic_dec(&nr_mmap_events);
3635 if (event->attr.comm)
3636 atomic_dec(&nr_comm_events);
3637 if (event->attr.task)
3638 atomic_dec(&nr_task_events);
948b26b6 3639 if (event->attr.freq)
555e0c1e 3640 unaccount_freq_event();
45ac1403 3641 if (event->attr.context_switch) {
25432ae9 3642 dec = true;
45ac1403
AH
3643 atomic_dec(&nr_switch_events);
3644 }
4beb31f3 3645 if (is_cgroup_event(event))
25432ae9 3646 dec = true;
4beb31f3 3647 if (has_branch_stack(event))
25432ae9
PZ
3648 dec = true;
3649
9107c89e
PZ
3650 if (dec) {
3651 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3652 schedule_delayed_work(&perf_sched_work, HZ);
3653 }
4beb31f3
FW
3654
3655 unaccount_event_cpu(event, event->cpu);
3656}
925d519a 3657
9107c89e
PZ
3658static void perf_sched_delayed(struct work_struct *work)
3659{
3660 mutex_lock(&perf_sched_mutex);
3661 if (atomic_dec_and_test(&perf_sched_count))
3662 static_branch_disable(&perf_sched_events);
3663 mutex_unlock(&perf_sched_mutex);
3664}
3665
bed5b25a
AS
3666/*
3667 * The following implement mutual exclusion of events on "exclusive" pmus
3668 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3669 * at a time, so we disallow creating events that might conflict, namely:
3670 *
3671 * 1) cpu-wide events in the presence of per-task events,
3672 * 2) per-task events in the presence of cpu-wide events,
3673 * 3) two matching events on the same context.
3674 *
3675 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3676 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3677 */
3678static int exclusive_event_init(struct perf_event *event)
3679{
3680 struct pmu *pmu = event->pmu;
3681
3682 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3683 return 0;
3684
3685 /*
3686 * Prevent co-existence of per-task and cpu-wide events on the
3687 * same exclusive pmu.
3688 *
3689 * Negative pmu::exclusive_cnt means there are cpu-wide
3690 * events on this "exclusive" pmu, positive means there are
3691 * per-task events.
3692 *
3693 * Since this is called in perf_event_alloc() path, event::ctx
3694 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3695 * to mean "per-task event", because unlike other attach states it
3696 * never gets cleared.
3697 */
3698 if (event->attach_state & PERF_ATTACH_TASK) {
3699 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3700 return -EBUSY;
3701 } else {
3702 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3703 return -EBUSY;
3704 }
3705
3706 return 0;
3707}
3708
3709static void exclusive_event_destroy(struct perf_event *event)
3710{
3711 struct pmu *pmu = event->pmu;
3712
3713 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3714 return;
3715
3716 /* see comment in exclusive_event_init() */
3717 if (event->attach_state & PERF_ATTACH_TASK)
3718 atomic_dec(&pmu->exclusive_cnt);
3719 else
3720 atomic_inc(&pmu->exclusive_cnt);
3721}
3722
3723static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3724{
3725 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3726 (e1->cpu == e2->cpu ||
3727 e1->cpu == -1 ||
3728 e2->cpu == -1))
3729 return true;
3730 return false;
3731}
3732
3733/* Called under the same ctx::mutex as perf_install_in_context() */
3734static bool exclusive_event_installable(struct perf_event *event,
3735 struct perf_event_context *ctx)
3736{
3737 struct perf_event *iter_event;
3738 struct pmu *pmu = event->pmu;
3739
3740 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3741 return true;
3742
3743 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3744 if (exclusive_event_match(iter_event, event))
3745 return false;
3746 }
3747
3748 return true;
3749}
3750
683ede43 3751static void _free_event(struct perf_event *event)
f1600952 3752{
e360adbe 3753 irq_work_sync(&event->pending);
925d519a 3754
4beb31f3 3755 unaccount_event(event);
9ee318a7 3756
76369139 3757 if (event->rb) {
9bb5d40c
PZ
3758 /*
3759 * Can happen when we close an event with re-directed output.
3760 *
3761 * Since we have a 0 refcount, perf_mmap_close() will skip
3762 * over us; possibly making our ring_buffer_put() the last.
3763 */
3764 mutex_lock(&event->mmap_mutex);
b69cf536 3765 ring_buffer_attach(event, NULL);
9bb5d40c 3766 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3767 }
3768
e5d1367f
SE
3769 if (is_cgroup_event(event))
3770 perf_detach_cgroup(event);
3771
a0733e69
PZ
3772 if (!event->parent) {
3773 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3774 put_callchain_buffers();
3775 }
3776
3777 perf_event_free_bpf_prog(event);
3778
3779 if (event->destroy)
3780 event->destroy(event);
3781
3782 if (event->ctx)
3783 put_ctx(event->ctx);
3784
3785 if (event->pmu) {
3786 exclusive_event_destroy(event);
3787 module_put(event->pmu->module);
3788 }
3789
3790 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3791}
3792
683ede43
PZ
3793/*
3794 * Used to free events which have a known refcount of 1, such as in error paths
3795 * where the event isn't exposed yet and inherited events.
3796 */
3797static void free_event(struct perf_event *event)
0793a61d 3798{
683ede43
PZ
3799 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3800 "unexpected event refcount: %ld; ptr=%p\n",
3801 atomic_long_read(&event->refcount), event)) {
3802 /* leak to avoid use-after-free */
3803 return;
3804 }
0793a61d 3805
683ede43 3806 _free_event(event);
0793a61d
TG
3807}
3808
a66a3052 3809/*
f8697762 3810 * Remove user event from the owner task.
a66a3052 3811 */
f8697762 3812static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3813{
8882135b 3814 struct task_struct *owner;
fb0459d7 3815
8882135b 3816 rcu_read_lock();
8882135b 3817 /*
f47c02c0
PZ
3818 * Matches the smp_store_release() in perf_event_exit_task(). If we
3819 * observe !owner it means the list deletion is complete and we can
3820 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3821 * owner->perf_event_mutex.
3822 */
f47c02c0 3823 owner = lockless_dereference(event->owner);
8882135b
PZ
3824 if (owner) {
3825 /*
3826 * Since delayed_put_task_struct() also drops the last
3827 * task reference we can safely take a new reference
3828 * while holding the rcu_read_lock().
3829 */
3830 get_task_struct(owner);
3831 }
3832 rcu_read_unlock();
3833
3834 if (owner) {
f63a8daa
PZ
3835 /*
3836 * If we're here through perf_event_exit_task() we're already
3837 * holding ctx->mutex which would be an inversion wrt. the
3838 * normal lock order.
3839 *
3840 * However we can safely take this lock because its the child
3841 * ctx->mutex.
3842 */
3843 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3844
8882135b
PZ
3845 /*
3846 * We have to re-check the event->owner field, if it is cleared
3847 * we raced with perf_event_exit_task(), acquiring the mutex
3848 * ensured they're done, and we can proceed with freeing the
3849 * event.
3850 */
f47c02c0 3851 if (event->owner) {
8882135b 3852 list_del_init(&event->owner_entry);
f47c02c0
PZ
3853 smp_store_release(&event->owner, NULL);
3854 }
8882135b
PZ
3855 mutex_unlock(&owner->perf_event_mutex);
3856 put_task_struct(owner);
3857 }
f8697762
JO
3858}
3859
f8697762
JO
3860static void put_event(struct perf_event *event)
3861{
f8697762
JO
3862 if (!atomic_long_dec_and_test(&event->refcount))
3863 return;
3864
c6e5b732
PZ
3865 _free_event(event);
3866}
3867
3868/*
3869 * Kill an event dead; while event:refcount will preserve the event
3870 * object, it will not preserve its functionality. Once the last 'user'
3871 * gives up the object, we'll destroy the thing.
3872 */
3873int perf_event_release_kernel(struct perf_event *event)
3874{
a4f4bb6d 3875 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3876 struct perf_event *child, *tmp;
3877
a4f4bb6d
PZ
3878 /*
3879 * If we got here through err_file: fput(event_file); we will not have
3880 * attached to a context yet.
3881 */
3882 if (!ctx) {
3883 WARN_ON_ONCE(event->attach_state &
3884 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3885 goto no_ctx;
3886 }
3887
f8697762
JO
3888 if (!is_kernel_event(event))
3889 perf_remove_from_owner(event);
8882135b 3890
5fa7c8ec 3891 ctx = perf_event_ctx_lock(event);
a83fe28e 3892 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3893 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3894
a69b0ca4 3895 raw_spin_lock_irq(&ctx->lock);
683ede43 3896 /*
a69b0ca4
PZ
3897 * Mark this even as STATE_DEAD, there is no external reference to it
3898 * anymore.
683ede43 3899 *
a69b0ca4
PZ
3900 * Anybody acquiring event->child_mutex after the below loop _must_
3901 * also see this, most importantly inherit_event() which will avoid
3902 * placing more children on the list.
683ede43 3903 *
c6e5b732
PZ
3904 * Thus this guarantees that we will in fact observe and kill _ALL_
3905 * child events.
683ede43 3906 */
a69b0ca4
PZ
3907 event->state = PERF_EVENT_STATE_DEAD;
3908 raw_spin_unlock_irq(&ctx->lock);
3909
3910 perf_event_ctx_unlock(event, ctx);
683ede43 3911
c6e5b732
PZ
3912again:
3913 mutex_lock(&event->child_mutex);
3914 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3915
c6e5b732
PZ
3916 /*
3917 * Cannot change, child events are not migrated, see the
3918 * comment with perf_event_ctx_lock_nested().
3919 */
3920 ctx = lockless_dereference(child->ctx);
3921 /*
3922 * Since child_mutex nests inside ctx::mutex, we must jump
3923 * through hoops. We start by grabbing a reference on the ctx.
3924 *
3925 * Since the event cannot get freed while we hold the
3926 * child_mutex, the context must also exist and have a !0
3927 * reference count.
3928 */
3929 get_ctx(ctx);
3930
3931 /*
3932 * Now that we have a ctx ref, we can drop child_mutex, and
3933 * acquire ctx::mutex without fear of it going away. Then we
3934 * can re-acquire child_mutex.
3935 */
3936 mutex_unlock(&event->child_mutex);
3937 mutex_lock(&ctx->mutex);
3938 mutex_lock(&event->child_mutex);
3939
3940 /*
3941 * Now that we hold ctx::mutex and child_mutex, revalidate our
3942 * state, if child is still the first entry, it didn't get freed
3943 * and we can continue doing so.
3944 */
3945 tmp = list_first_entry_or_null(&event->child_list,
3946 struct perf_event, child_list);
3947 if (tmp == child) {
3948 perf_remove_from_context(child, DETACH_GROUP);
3949 list_del(&child->child_list);
3950 free_event(child);
3951 /*
3952 * This matches the refcount bump in inherit_event();
3953 * this can't be the last reference.
3954 */
3955 put_event(event);
3956 }
3957
3958 mutex_unlock(&event->child_mutex);
3959 mutex_unlock(&ctx->mutex);
3960 put_ctx(ctx);
3961 goto again;
3962 }
3963 mutex_unlock(&event->child_mutex);
3964
a4f4bb6d
PZ
3965no_ctx:
3966 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3967 return 0;
3968}
3969EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3970
8b10c5e2
PZ
3971/*
3972 * Called when the last reference to the file is gone.
3973 */
a6fa941d
AV
3974static int perf_release(struct inode *inode, struct file *file)
3975{
c6e5b732 3976 perf_event_release_kernel(file->private_data);
a6fa941d 3977 return 0;
fb0459d7 3978}
fb0459d7 3979
59ed446f 3980u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3981{
cdd6c482 3982 struct perf_event *child;
e53c0994
PZ
3983 u64 total = 0;
3984
59ed446f
PZ
3985 *enabled = 0;
3986 *running = 0;
3987
6f10581a 3988 mutex_lock(&event->child_mutex);
01add3ea 3989
7d88962e 3990 (void)perf_event_read(event, false);
01add3ea
SB
3991 total += perf_event_count(event);
3992
59ed446f
PZ
3993 *enabled += event->total_time_enabled +
3994 atomic64_read(&event->child_total_time_enabled);
3995 *running += event->total_time_running +
3996 atomic64_read(&event->child_total_time_running);
3997
3998 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3999 (void)perf_event_read(child, false);
01add3ea 4000 total += perf_event_count(child);
59ed446f
PZ
4001 *enabled += child->total_time_enabled;
4002 *running += child->total_time_running;
4003 }
6f10581a 4004 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4005
4006 return total;
4007}
fb0459d7 4008EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4009
7d88962e 4010static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4011 u64 read_format, u64 *values)
3dab77fb 4012{
fa8c2693
PZ
4013 struct perf_event *sub;
4014 int n = 1; /* skip @nr */
7d88962e 4015 int ret;
f63a8daa 4016
7d88962e
SB
4017 ret = perf_event_read(leader, true);
4018 if (ret)
4019 return ret;
abf4868b 4020
fa8c2693
PZ
4021 /*
4022 * Since we co-schedule groups, {enabled,running} times of siblings
4023 * will be identical to those of the leader, so we only publish one
4024 * set.
4025 */
4026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4027 values[n++] += leader->total_time_enabled +
4028 atomic64_read(&leader->child_total_time_enabled);
4029 }
3dab77fb 4030
fa8c2693
PZ
4031 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4032 values[n++] += leader->total_time_running +
4033 atomic64_read(&leader->child_total_time_running);
4034 }
4035
4036 /*
4037 * Write {count,id} tuples for every sibling.
4038 */
4039 values[n++] += perf_event_count(leader);
abf4868b
PZ
4040 if (read_format & PERF_FORMAT_ID)
4041 values[n++] = primary_event_id(leader);
3dab77fb 4042
fa8c2693
PZ
4043 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4044 values[n++] += perf_event_count(sub);
4045 if (read_format & PERF_FORMAT_ID)
4046 values[n++] = primary_event_id(sub);
4047 }
7d88962e
SB
4048
4049 return 0;
fa8c2693 4050}
3dab77fb 4051
fa8c2693
PZ
4052static int perf_read_group(struct perf_event *event,
4053 u64 read_format, char __user *buf)
4054{
4055 struct perf_event *leader = event->group_leader, *child;
4056 struct perf_event_context *ctx = leader->ctx;
7d88962e 4057 int ret;
fa8c2693 4058 u64 *values;
3dab77fb 4059
fa8c2693 4060 lockdep_assert_held(&ctx->mutex);
3dab77fb 4061
fa8c2693
PZ
4062 values = kzalloc(event->read_size, GFP_KERNEL);
4063 if (!values)
4064 return -ENOMEM;
3dab77fb 4065
fa8c2693
PZ
4066 values[0] = 1 + leader->nr_siblings;
4067
4068 /*
4069 * By locking the child_mutex of the leader we effectively
4070 * lock the child list of all siblings.. XXX explain how.
4071 */
4072 mutex_lock(&leader->child_mutex);
abf4868b 4073
7d88962e
SB
4074 ret = __perf_read_group_add(leader, read_format, values);
4075 if (ret)
4076 goto unlock;
4077
4078 list_for_each_entry(child, &leader->child_list, child_list) {
4079 ret = __perf_read_group_add(child, read_format, values);
4080 if (ret)
4081 goto unlock;
4082 }
abf4868b 4083
fa8c2693 4084 mutex_unlock(&leader->child_mutex);
abf4868b 4085
7d88962e 4086 ret = event->read_size;
fa8c2693
PZ
4087 if (copy_to_user(buf, values, event->read_size))
4088 ret = -EFAULT;
7d88962e 4089 goto out;
fa8c2693 4090
7d88962e
SB
4091unlock:
4092 mutex_unlock(&leader->child_mutex);
4093out:
fa8c2693 4094 kfree(values);
abf4868b 4095 return ret;
3dab77fb
PZ
4096}
4097
b15f495b 4098static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4099 u64 read_format, char __user *buf)
4100{
59ed446f 4101 u64 enabled, running;
3dab77fb
PZ
4102 u64 values[4];
4103 int n = 0;
4104
59ed446f
PZ
4105 values[n++] = perf_event_read_value(event, &enabled, &running);
4106 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4107 values[n++] = enabled;
4108 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4109 values[n++] = running;
3dab77fb 4110 if (read_format & PERF_FORMAT_ID)
cdd6c482 4111 values[n++] = primary_event_id(event);
3dab77fb
PZ
4112
4113 if (copy_to_user(buf, values, n * sizeof(u64)))
4114 return -EFAULT;
4115
4116 return n * sizeof(u64);
4117}
4118
dc633982
JO
4119static bool is_event_hup(struct perf_event *event)
4120{
4121 bool no_children;
4122
a69b0ca4 4123 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4124 return false;
4125
4126 mutex_lock(&event->child_mutex);
4127 no_children = list_empty(&event->child_list);
4128 mutex_unlock(&event->child_mutex);
4129 return no_children;
4130}
4131
0793a61d 4132/*
cdd6c482 4133 * Read the performance event - simple non blocking version for now
0793a61d
TG
4134 */
4135static ssize_t
b15f495b 4136__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4137{
cdd6c482 4138 u64 read_format = event->attr.read_format;
3dab77fb 4139 int ret;
0793a61d 4140
3b6f9e5c 4141 /*
cdd6c482 4142 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4143 * error state (i.e. because it was pinned but it couldn't be
4144 * scheduled on to the CPU at some point).
4145 */
cdd6c482 4146 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4147 return 0;
4148
c320c7b7 4149 if (count < event->read_size)
3dab77fb
PZ
4150 return -ENOSPC;
4151
cdd6c482 4152 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4153 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4154 ret = perf_read_group(event, read_format, buf);
3dab77fb 4155 else
b15f495b 4156 ret = perf_read_one(event, read_format, buf);
0793a61d 4157
3dab77fb 4158 return ret;
0793a61d
TG
4159}
4160
0793a61d
TG
4161static ssize_t
4162perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4163{
cdd6c482 4164 struct perf_event *event = file->private_data;
f63a8daa
PZ
4165 struct perf_event_context *ctx;
4166 int ret;
0793a61d 4167
f63a8daa 4168 ctx = perf_event_ctx_lock(event);
b15f495b 4169 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4170 perf_event_ctx_unlock(event, ctx);
4171
4172 return ret;
0793a61d
TG
4173}
4174
4175static unsigned int perf_poll(struct file *file, poll_table *wait)
4176{
cdd6c482 4177 struct perf_event *event = file->private_data;
76369139 4178 struct ring_buffer *rb;
61b67684 4179 unsigned int events = POLLHUP;
c7138f37 4180
e708d7ad 4181 poll_wait(file, &event->waitq, wait);
179033b3 4182
dc633982 4183 if (is_event_hup(event))
179033b3 4184 return events;
c7138f37 4185
10c6db11 4186 /*
9bb5d40c
PZ
4187 * Pin the event->rb by taking event->mmap_mutex; otherwise
4188 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4189 */
4190 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4191 rb = event->rb;
4192 if (rb)
76369139 4193 events = atomic_xchg(&rb->poll, 0);
10c6db11 4194 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4195 return events;
4196}
4197
f63a8daa 4198static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4199{
7d88962e 4200 (void)perf_event_read(event, false);
e7850595 4201 local64_set(&event->count, 0);
cdd6c482 4202 perf_event_update_userpage(event);
3df5edad
PZ
4203}
4204
c93f7669 4205/*
cdd6c482
IM
4206 * Holding the top-level event's child_mutex means that any
4207 * descendant process that has inherited this event will block
8ba289b8 4208 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4209 * task existence requirements of perf_event_enable/disable.
c93f7669 4210 */
cdd6c482
IM
4211static void perf_event_for_each_child(struct perf_event *event,
4212 void (*func)(struct perf_event *))
3df5edad 4213{
cdd6c482 4214 struct perf_event *child;
3df5edad 4215
cdd6c482 4216 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4217
cdd6c482
IM
4218 mutex_lock(&event->child_mutex);
4219 func(event);
4220 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4221 func(child);
cdd6c482 4222 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4223}
4224
cdd6c482
IM
4225static void perf_event_for_each(struct perf_event *event,
4226 void (*func)(struct perf_event *))
3df5edad 4227{
cdd6c482
IM
4228 struct perf_event_context *ctx = event->ctx;
4229 struct perf_event *sibling;
3df5edad 4230
f63a8daa
PZ
4231 lockdep_assert_held(&ctx->mutex);
4232
cdd6c482 4233 event = event->group_leader;
75f937f2 4234
cdd6c482 4235 perf_event_for_each_child(event, func);
cdd6c482 4236 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4237 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4238}
4239
fae3fde6
PZ
4240static void __perf_event_period(struct perf_event *event,
4241 struct perf_cpu_context *cpuctx,
4242 struct perf_event_context *ctx,
4243 void *info)
c7999c6f 4244{
fae3fde6 4245 u64 value = *((u64 *)info);
c7999c6f 4246 bool active;
08247e31 4247
cdd6c482 4248 if (event->attr.freq) {
cdd6c482 4249 event->attr.sample_freq = value;
08247e31 4250 } else {
cdd6c482
IM
4251 event->attr.sample_period = value;
4252 event->hw.sample_period = value;
08247e31 4253 }
bad7192b
PZ
4254
4255 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4256 if (active) {
4257 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4258 /*
4259 * We could be throttled; unthrottle now to avoid the tick
4260 * trying to unthrottle while we already re-started the event.
4261 */
4262 if (event->hw.interrupts == MAX_INTERRUPTS) {
4263 event->hw.interrupts = 0;
4264 perf_log_throttle(event, 1);
4265 }
bad7192b
PZ
4266 event->pmu->stop(event, PERF_EF_UPDATE);
4267 }
4268
4269 local64_set(&event->hw.period_left, 0);
4270
4271 if (active) {
4272 event->pmu->start(event, PERF_EF_RELOAD);
4273 perf_pmu_enable(ctx->pmu);
4274 }
c7999c6f
PZ
4275}
4276
4277static int perf_event_period(struct perf_event *event, u64 __user *arg)
4278{
c7999c6f
PZ
4279 u64 value;
4280
4281 if (!is_sampling_event(event))
4282 return -EINVAL;
4283
4284 if (copy_from_user(&value, arg, sizeof(value)))
4285 return -EFAULT;
4286
4287 if (!value)
4288 return -EINVAL;
4289
4290 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4291 return -EINVAL;
4292
fae3fde6 4293 event_function_call(event, __perf_event_period, &value);
08247e31 4294
c7999c6f 4295 return 0;
08247e31
PZ
4296}
4297
ac9721f3
PZ
4298static const struct file_operations perf_fops;
4299
2903ff01 4300static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4301{
2903ff01
AV
4302 struct fd f = fdget(fd);
4303 if (!f.file)
4304 return -EBADF;
ac9721f3 4305
2903ff01
AV
4306 if (f.file->f_op != &perf_fops) {
4307 fdput(f);
4308 return -EBADF;
ac9721f3 4309 }
2903ff01
AV
4310 *p = f;
4311 return 0;
ac9721f3
PZ
4312}
4313
4314static int perf_event_set_output(struct perf_event *event,
4315 struct perf_event *output_event);
6fb2915d 4316static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4317static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4318
f63a8daa 4319static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4320{
cdd6c482 4321 void (*func)(struct perf_event *);
3df5edad 4322 u32 flags = arg;
d859e29f
PM
4323
4324 switch (cmd) {
cdd6c482 4325 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4326 func = _perf_event_enable;
d859e29f 4327 break;
cdd6c482 4328 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4329 func = _perf_event_disable;
79f14641 4330 break;
cdd6c482 4331 case PERF_EVENT_IOC_RESET:
f63a8daa 4332 func = _perf_event_reset;
6de6a7b9 4333 break;
3df5edad 4334
cdd6c482 4335 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4336 return _perf_event_refresh(event, arg);
08247e31 4337
cdd6c482
IM
4338 case PERF_EVENT_IOC_PERIOD:
4339 return perf_event_period(event, (u64 __user *)arg);
08247e31 4340
cf4957f1
JO
4341 case PERF_EVENT_IOC_ID:
4342 {
4343 u64 id = primary_event_id(event);
4344
4345 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4346 return -EFAULT;
4347 return 0;
4348 }
4349
cdd6c482 4350 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4351 {
ac9721f3 4352 int ret;
ac9721f3 4353 if (arg != -1) {
2903ff01
AV
4354 struct perf_event *output_event;
4355 struct fd output;
4356 ret = perf_fget_light(arg, &output);
4357 if (ret)
4358 return ret;
4359 output_event = output.file->private_data;
4360 ret = perf_event_set_output(event, output_event);
4361 fdput(output);
4362 } else {
4363 ret = perf_event_set_output(event, NULL);
ac9721f3 4364 }
ac9721f3
PZ
4365 return ret;
4366 }
a4be7c27 4367
6fb2915d
LZ
4368 case PERF_EVENT_IOC_SET_FILTER:
4369 return perf_event_set_filter(event, (void __user *)arg);
4370
2541517c
AS
4371 case PERF_EVENT_IOC_SET_BPF:
4372 return perf_event_set_bpf_prog(event, arg);
4373
86e7972f
WN
4374 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4375 struct ring_buffer *rb;
4376
4377 rcu_read_lock();
4378 rb = rcu_dereference(event->rb);
4379 if (!rb || !rb->nr_pages) {
4380 rcu_read_unlock();
4381 return -EINVAL;
4382 }
4383 rb_toggle_paused(rb, !!arg);
4384 rcu_read_unlock();
4385 return 0;
4386 }
d859e29f 4387 default:
3df5edad 4388 return -ENOTTY;
d859e29f 4389 }
3df5edad
PZ
4390
4391 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4392 perf_event_for_each(event, func);
3df5edad 4393 else
cdd6c482 4394 perf_event_for_each_child(event, func);
3df5edad
PZ
4395
4396 return 0;
d859e29f
PM
4397}
4398
f63a8daa
PZ
4399static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4400{
4401 struct perf_event *event = file->private_data;
4402 struct perf_event_context *ctx;
4403 long ret;
4404
4405 ctx = perf_event_ctx_lock(event);
4406 ret = _perf_ioctl(event, cmd, arg);
4407 perf_event_ctx_unlock(event, ctx);
4408
4409 return ret;
4410}
4411
b3f20785
PM
4412#ifdef CONFIG_COMPAT
4413static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4414 unsigned long arg)
4415{
4416 switch (_IOC_NR(cmd)) {
4417 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4418 case _IOC_NR(PERF_EVENT_IOC_ID):
4419 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4420 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4421 cmd &= ~IOCSIZE_MASK;
4422 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4423 }
4424 break;
4425 }
4426 return perf_ioctl(file, cmd, arg);
4427}
4428#else
4429# define perf_compat_ioctl NULL
4430#endif
4431
cdd6c482 4432int perf_event_task_enable(void)
771d7cde 4433{
f63a8daa 4434 struct perf_event_context *ctx;
cdd6c482 4435 struct perf_event *event;
771d7cde 4436
cdd6c482 4437 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4438 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4439 ctx = perf_event_ctx_lock(event);
4440 perf_event_for_each_child(event, _perf_event_enable);
4441 perf_event_ctx_unlock(event, ctx);
4442 }
cdd6c482 4443 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4444
4445 return 0;
4446}
4447
cdd6c482 4448int perf_event_task_disable(void)
771d7cde 4449{
f63a8daa 4450 struct perf_event_context *ctx;
cdd6c482 4451 struct perf_event *event;
771d7cde 4452
cdd6c482 4453 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4454 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4455 ctx = perf_event_ctx_lock(event);
4456 perf_event_for_each_child(event, _perf_event_disable);
4457 perf_event_ctx_unlock(event, ctx);
4458 }
cdd6c482 4459 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4460
4461 return 0;
4462}
4463
cdd6c482 4464static int perf_event_index(struct perf_event *event)
194002b2 4465{
a4eaf7f1
PZ
4466 if (event->hw.state & PERF_HES_STOPPED)
4467 return 0;
4468
cdd6c482 4469 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4470 return 0;
4471
35edc2a5 4472 return event->pmu->event_idx(event);
194002b2
PZ
4473}
4474
c4794295 4475static void calc_timer_values(struct perf_event *event,
e3f3541c 4476 u64 *now,
7f310a5d
EM
4477 u64 *enabled,
4478 u64 *running)
c4794295 4479{
e3f3541c 4480 u64 ctx_time;
c4794295 4481
e3f3541c
PZ
4482 *now = perf_clock();
4483 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4484 *enabled = ctx_time - event->tstamp_enabled;
4485 *running = ctx_time - event->tstamp_running;
4486}
4487
fa731587
PZ
4488static void perf_event_init_userpage(struct perf_event *event)
4489{
4490 struct perf_event_mmap_page *userpg;
4491 struct ring_buffer *rb;
4492
4493 rcu_read_lock();
4494 rb = rcu_dereference(event->rb);
4495 if (!rb)
4496 goto unlock;
4497
4498 userpg = rb->user_page;
4499
4500 /* Allow new userspace to detect that bit 0 is deprecated */
4501 userpg->cap_bit0_is_deprecated = 1;
4502 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4503 userpg->data_offset = PAGE_SIZE;
4504 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4505
4506unlock:
4507 rcu_read_unlock();
4508}
4509
c1317ec2
AL
4510void __weak arch_perf_update_userpage(
4511 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4512{
4513}
4514
38ff667b
PZ
4515/*
4516 * Callers need to ensure there can be no nesting of this function, otherwise
4517 * the seqlock logic goes bad. We can not serialize this because the arch
4518 * code calls this from NMI context.
4519 */
cdd6c482 4520void perf_event_update_userpage(struct perf_event *event)
37d81828 4521{
cdd6c482 4522 struct perf_event_mmap_page *userpg;
76369139 4523 struct ring_buffer *rb;
e3f3541c 4524 u64 enabled, running, now;
38ff667b
PZ
4525
4526 rcu_read_lock();
5ec4c599
PZ
4527 rb = rcu_dereference(event->rb);
4528 if (!rb)
4529 goto unlock;
4530
0d641208
EM
4531 /*
4532 * compute total_time_enabled, total_time_running
4533 * based on snapshot values taken when the event
4534 * was last scheduled in.
4535 *
4536 * we cannot simply called update_context_time()
4537 * because of locking issue as we can be called in
4538 * NMI context
4539 */
e3f3541c 4540 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4541
76369139 4542 userpg = rb->user_page;
7b732a75
PZ
4543 /*
4544 * Disable preemption so as to not let the corresponding user-space
4545 * spin too long if we get preempted.
4546 */
4547 preempt_disable();
37d81828 4548 ++userpg->lock;
92f22a38 4549 barrier();
cdd6c482 4550 userpg->index = perf_event_index(event);
b5e58793 4551 userpg->offset = perf_event_count(event);
365a4038 4552 if (userpg->index)
e7850595 4553 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4554
0d641208 4555 userpg->time_enabled = enabled +
cdd6c482 4556 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4557
0d641208 4558 userpg->time_running = running +
cdd6c482 4559 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4560
c1317ec2 4561 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4562
92f22a38 4563 barrier();
37d81828 4564 ++userpg->lock;
7b732a75 4565 preempt_enable();
38ff667b 4566unlock:
7b732a75 4567 rcu_read_unlock();
37d81828
PM
4568}
4569
906010b2
PZ
4570static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4571{
4572 struct perf_event *event = vma->vm_file->private_data;
76369139 4573 struct ring_buffer *rb;
906010b2
PZ
4574 int ret = VM_FAULT_SIGBUS;
4575
4576 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4577 if (vmf->pgoff == 0)
4578 ret = 0;
4579 return ret;
4580 }
4581
4582 rcu_read_lock();
76369139
FW
4583 rb = rcu_dereference(event->rb);
4584 if (!rb)
906010b2
PZ
4585 goto unlock;
4586
4587 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4588 goto unlock;
4589
76369139 4590 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4591 if (!vmf->page)
4592 goto unlock;
4593
4594 get_page(vmf->page);
4595 vmf->page->mapping = vma->vm_file->f_mapping;
4596 vmf->page->index = vmf->pgoff;
4597
4598 ret = 0;
4599unlock:
4600 rcu_read_unlock();
4601
4602 return ret;
4603}
4604
10c6db11
PZ
4605static void ring_buffer_attach(struct perf_event *event,
4606 struct ring_buffer *rb)
4607{
b69cf536 4608 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4609 unsigned long flags;
4610
b69cf536
PZ
4611 if (event->rb) {
4612 /*
4613 * Should be impossible, we set this when removing
4614 * event->rb_entry and wait/clear when adding event->rb_entry.
4615 */
4616 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4617
b69cf536 4618 old_rb = event->rb;
b69cf536
PZ
4619 spin_lock_irqsave(&old_rb->event_lock, flags);
4620 list_del_rcu(&event->rb_entry);
4621 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4622
2f993cf0
ON
4623 event->rcu_batches = get_state_synchronize_rcu();
4624 event->rcu_pending = 1;
b69cf536 4625 }
10c6db11 4626
b69cf536 4627 if (rb) {
2f993cf0
ON
4628 if (event->rcu_pending) {
4629 cond_synchronize_rcu(event->rcu_batches);
4630 event->rcu_pending = 0;
4631 }
4632
b69cf536
PZ
4633 spin_lock_irqsave(&rb->event_lock, flags);
4634 list_add_rcu(&event->rb_entry, &rb->event_list);
4635 spin_unlock_irqrestore(&rb->event_lock, flags);
4636 }
4637
4638 rcu_assign_pointer(event->rb, rb);
4639
4640 if (old_rb) {
4641 ring_buffer_put(old_rb);
4642 /*
4643 * Since we detached before setting the new rb, so that we
4644 * could attach the new rb, we could have missed a wakeup.
4645 * Provide it now.
4646 */
4647 wake_up_all(&event->waitq);
4648 }
10c6db11
PZ
4649}
4650
4651static void ring_buffer_wakeup(struct perf_event *event)
4652{
4653 struct ring_buffer *rb;
4654
4655 rcu_read_lock();
4656 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4657 if (rb) {
4658 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4659 wake_up_all(&event->waitq);
4660 }
10c6db11
PZ
4661 rcu_read_unlock();
4662}
4663
fdc26706 4664struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4665{
76369139 4666 struct ring_buffer *rb;
7b732a75 4667
ac9721f3 4668 rcu_read_lock();
76369139
FW
4669 rb = rcu_dereference(event->rb);
4670 if (rb) {
4671 if (!atomic_inc_not_zero(&rb->refcount))
4672 rb = NULL;
ac9721f3
PZ
4673 }
4674 rcu_read_unlock();
4675
76369139 4676 return rb;
ac9721f3
PZ
4677}
4678
fdc26706 4679void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4680{
76369139 4681 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4682 return;
7b732a75 4683
9bb5d40c 4684 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4685
76369139 4686 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4687}
4688
4689static void perf_mmap_open(struct vm_area_struct *vma)
4690{
cdd6c482 4691 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4692
cdd6c482 4693 atomic_inc(&event->mmap_count);
9bb5d40c 4694 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4695
45bfb2e5
PZ
4696 if (vma->vm_pgoff)
4697 atomic_inc(&event->rb->aux_mmap_count);
4698
1e0fb9ec
AL
4699 if (event->pmu->event_mapped)
4700 event->pmu->event_mapped(event);
7b732a75
PZ
4701}
4702
95ff4ca2
AS
4703static void perf_pmu_output_stop(struct perf_event *event);
4704
9bb5d40c
PZ
4705/*
4706 * A buffer can be mmap()ed multiple times; either directly through the same
4707 * event, or through other events by use of perf_event_set_output().
4708 *
4709 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4710 * the buffer here, where we still have a VM context. This means we need
4711 * to detach all events redirecting to us.
4712 */
7b732a75
PZ
4713static void perf_mmap_close(struct vm_area_struct *vma)
4714{
cdd6c482 4715 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4716
b69cf536 4717 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4718 struct user_struct *mmap_user = rb->mmap_user;
4719 int mmap_locked = rb->mmap_locked;
4720 unsigned long size = perf_data_size(rb);
789f90fc 4721
1e0fb9ec
AL
4722 if (event->pmu->event_unmapped)
4723 event->pmu->event_unmapped(event);
4724
45bfb2e5
PZ
4725 /*
4726 * rb->aux_mmap_count will always drop before rb->mmap_count and
4727 * event->mmap_count, so it is ok to use event->mmap_mutex to
4728 * serialize with perf_mmap here.
4729 */
4730 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4731 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4732 /*
4733 * Stop all AUX events that are writing to this buffer,
4734 * so that we can free its AUX pages and corresponding PMU
4735 * data. Note that after rb::aux_mmap_count dropped to zero,
4736 * they won't start any more (see perf_aux_output_begin()).
4737 */
4738 perf_pmu_output_stop(event);
4739
4740 /* now it's safe to free the pages */
45bfb2e5
PZ
4741 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4742 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4743
95ff4ca2 4744 /* this has to be the last one */
45bfb2e5 4745 rb_free_aux(rb);
95ff4ca2
AS
4746 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4747
45bfb2e5
PZ
4748 mutex_unlock(&event->mmap_mutex);
4749 }
4750
9bb5d40c
PZ
4751 atomic_dec(&rb->mmap_count);
4752
4753 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4754 goto out_put;
9bb5d40c 4755
b69cf536 4756 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4757 mutex_unlock(&event->mmap_mutex);
4758
4759 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4760 if (atomic_read(&rb->mmap_count))
4761 goto out_put;
ac9721f3 4762
9bb5d40c
PZ
4763 /*
4764 * No other mmap()s, detach from all other events that might redirect
4765 * into the now unreachable buffer. Somewhat complicated by the
4766 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4767 */
4768again:
4769 rcu_read_lock();
4770 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4771 if (!atomic_long_inc_not_zero(&event->refcount)) {
4772 /*
4773 * This event is en-route to free_event() which will
4774 * detach it and remove it from the list.
4775 */
4776 continue;
4777 }
4778 rcu_read_unlock();
789f90fc 4779
9bb5d40c
PZ
4780 mutex_lock(&event->mmap_mutex);
4781 /*
4782 * Check we didn't race with perf_event_set_output() which can
4783 * swizzle the rb from under us while we were waiting to
4784 * acquire mmap_mutex.
4785 *
4786 * If we find a different rb; ignore this event, a next
4787 * iteration will no longer find it on the list. We have to
4788 * still restart the iteration to make sure we're not now
4789 * iterating the wrong list.
4790 */
b69cf536
PZ
4791 if (event->rb == rb)
4792 ring_buffer_attach(event, NULL);
4793
cdd6c482 4794 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4795 put_event(event);
ac9721f3 4796
9bb5d40c
PZ
4797 /*
4798 * Restart the iteration; either we're on the wrong list or
4799 * destroyed its integrity by doing a deletion.
4800 */
4801 goto again;
7b732a75 4802 }
9bb5d40c
PZ
4803 rcu_read_unlock();
4804
4805 /*
4806 * It could be there's still a few 0-ref events on the list; they'll
4807 * get cleaned up by free_event() -- they'll also still have their
4808 * ref on the rb and will free it whenever they are done with it.
4809 *
4810 * Aside from that, this buffer is 'fully' detached and unmapped,
4811 * undo the VM accounting.
4812 */
4813
4814 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4815 vma->vm_mm->pinned_vm -= mmap_locked;
4816 free_uid(mmap_user);
4817
b69cf536 4818out_put:
9bb5d40c 4819 ring_buffer_put(rb); /* could be last */
37d81828
PM
4820}
4821
f0f37e2f 4822static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4823 .open = perf_mmap_open,
45bfb2e5 4824 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4825 .fault = perf_mmap_fault,
4826 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4827};
4828
4829static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4830{
cdd6c482 4831 struct perf_event *event = file->private_data;
22a4f650 4832 unsigned long user_locked, user_lock_limit;
789f90fc 4833 struct user_struct *user = current_user();
22a4f650 4834 unsigned long locked, lock_limit;
45bfb2e5 4835 struct ring_buffer *rb = NULL;
7b732a75
PZ
4836 unsigned long vma_size;
4837 unsigned long nr_pages;
45bfb2e5 4838 long user_extra = 0, extra = 0;
d57e34fd 4839 int ret = 0, flags = 0;
37d81828 4840
c7920614
PZ
4841 /*
4842 * Don't allow mmap() of inherited per-task counters. This would
4843 * create a performance issue due to all children writing to the
76369139 4844 * same rb.
c7920614
PZ
4845 */
4846 if (event->cpu == -1 && event->attr.inherit)
4847 return -EINVAL;
4848
43a21ea8 4849 if (!(vma->vm_flags & VM_SHARED))
37d81828 4850 return -EINVAL;
7b732a75
PZ
4851
4852 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4853
4854 if (vma->vm_pgoff == 0) {
4855 nr_pages = (vma_size / PAGE_SIZE) - 1;
4856 } else {
4857 /*
4858 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4859 * mapped, all subsequent mappings should have the same size
4860 * and offset. Must be above the normal perf buffer.
4861 */
4862 u64 aux_offset, aux_size;
4863
4864 if (!event->rb)
4865 return -EINVAL;
4866
4867 nr_pages = vma_size / PAGE_SIZE;
4868
4869 mutex_lock(&event->mmap_mutex);
4870 ret = -EINVAL;
4871
4872 rb = event->rb;
4873 if (!rb)
4874 goto aux_unlock;
4875
4876 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4877 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4878
4879 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4880 goto aux_unlock;
4881
4882 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4883 goto aux_unlock;
4884
4885 /* already mapped with a different offset */
4886 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4887 goto aux_unlock;
4888
4889 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4890 goto aux_unlock;
4891
4892 /* already mapped with a different size */
4893 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4894 goto aux_unlock;
4895
4896 if (!is_power_of_2(nr_pages))
4897 goto aux_unlock;
4898
4899 if (!atomic_inc_not_zero(&rb->mmap_count))
4900 goto aux_unlock;
4901
4902 if (rb_has_aux(rb)) {
4903 atomic_inc(&rb->aux_mmap_count);
4904 ret = 0;
4905 goto unlock;
4906 }
4907
4908 atomic_set(&rb->aux_mmap_count, 1);
4909 user_extra = nr_pages;
4910
4911 goto accounting;
4912 }
7b732a75 4913
7730d865 4914 /*
76369139 4915 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4916 * can do bitmasks instead of modulo.
4917 */
2ed11312 4918 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4919 return -EINVAL;
4920
7b732a75 4921 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4922 return -EINVAL;
4923
cdd6c482 4924 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4925again:
cdd6c482 4926 mutex_lock(&event->mmap_mutex);
76369139 4927 if (event->rb) {
9bb5d40c 4928 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4929 ret = -EINVAL;
9bb5d40c
PZ
4930 goto unlock;
4931 }
4932
4933 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4934 /*
4935 * Raced against perf_mmap_close() through
4936 * perf_event_set_output(). Try again, hope for better
4937 * luck.
4938 */
4939 mutex_unlock(&event->mmap_mutex);
4940 goto again;
4941 }
4942
ebb3c4c4
PZ
4943 goto unlock;
4944 }
4945
789f90fc 4946 user_extra = nr_pages + 1;
45bfb2e5
PZ
4947
4948accounting:
cdd6c482 4949 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4950
4951 /*
4952 * Increase the limit linearly with more CPUs:
4953 */
4954 user_lock_limit *= num_online_cpus();
4955
789f90fc 4956 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4957
789f90fc
PZ
4958 if (user_locked > user_lock_limit)
4959 extra = user_locked - user_lock_limit;
7b732a75 4960
78d7d407 4961 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4962 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4963 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4964
459ec28a
IM
4965 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4966 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4967 ret = -EPERM;
4968 goto unlock;
4969 }
7b732a75 4970
45bfb2e5 4971 WARN_ON(!rb && event->rb);
906010b2 4972
d57e34fd 4973 if (vma->vm_flags & VM_WRITE)
76369139 4974 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4975
76369139 4976 if (!rb) {
45bfb2e5
PZ
4977 rb = rb_alloc(nr_pages,
4978 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4979 event->cpu, flags);
26cb63ad 4980
45bfb2e5
PZ
4981 if (!rb) {
4982 ret = -ENOMEM;
4983 goto unlock;
4984 }
43a21ea8 4985
45bfb2e5
PZ
4986 atomic_set(&rb->mmap_count, 1);
4987 rb->mmap_user = get_current_user();
4988 rb->mmap_locked = extra;
26cb63ad 4989
45bfb2e5 4990 ring_buffer_attach(event, rb);
ac9721f3 4991
45bfb2e5
PZ
4992 perf_event_init_userpage(event);
4993 perf_event_update_userpage(event);
4994 } else {
1a594131
AS
4995 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4996 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4997 if (!ret)
4998 rb->aux_mmap_locked = extra;
4999 }
9a0f05cb 5000
ebb3c4c4 5001unlock:
45bfb2e5
PZ
5002 if (!ret) {
5003 atomic_long_add(user_extra, &user->locked_vm);
5004 vma->vm_mm->pinned_vm += extra;
5005
ac9721f3 5006 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5007 } else if (rb) {
5008 atomic_dec(&rb->mmap_count);
5009 }
5010aux_unlock:
cdd6c482 5011 mutex_unlock(&event->mmap_mutex);
37d81828 5012
9bb5d40c
PZ
5013 /*
5014 * Since pinned accounting is per vm we cannot allow fork() to copy our
5015 * vma.
5016 */
26cb63ad 5017 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5018 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5019
1e0fb9ec
AL
5020 if (event->pmu->event_mapped)
5021 event->pmu->event_mapped(event);
5022
7b732a75 5023 return ret;
37d81828
PM
5024}
5025
3c446b3d
PZ
5026static int perf_fasync(int fd, struct file *filp, int on)
5027{
496ad9aa 5028 struct inode *inode = file_inode(filp);
cdd6c482 5029 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5030 int retval;
5031
5955102c 5032 inode_lock(inode);
cdd6c482 5033 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5034 inode_unlock(inode);
3c446b3d
PZ
5035
5036 if (retval < 0)
5037 return retval;
5038
5039 return 0;
5040}
5041
0793a61d 5042static const struct file_operations perf_fops = {
3326c1ce 5043 .llseek = no_llseek,
0793a61d
TG
5044 .release = perf_release,
5045 .read = perf_read,
5046 .poll = perf_poll,
d859e29f 5047 .unlocked_ioctl = perf_ioctl,
b3f20785 5048 .compat_ioctl = perf_compat_ioctl,
37d81828 5049 .mmap = perf_mmap,
3c446b3d 5050 .fasync = perf_fasync,
0793a61d
TG
5051};
5052
925d519a 5053/*
cdd6c482 5054 * Perf event wakeup
925d519a
PZ
5055 *
5056 * If there's data, ensure we set the poll() state and publish everything
5057 * to user-space before waking everybody up.
5058 */
5059
fed66e2c
PZ
5060static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5061{
5062 /* only the parent has fasync state */
5063 if (event->parent)
5064 event = event->parent;
5065 return &event->fasync;
5066}
5067
cdd6c482 5068void perf_event_wakeup(struct perf_event *event)
925d519a 5069{
10c6db11 5070 ring_buffer_wakeup(event);
4c9e2542 5071
cdd6c482 5072 if (event->pending_kill) {
fed66e2c 5073 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5074 event->pending_kill = 0;
4c9e2542 5075 }
925d519a
PZ
5076}
5077
e360adbe 5078static void perf_pending_event(struct irq_work *entry)
79f14641 5079{
cdd6c482
IM
5080 struct perf_event *event = container_of(entry,
5081 struct perf_event, pending);
d525211f
PZ
5082 int rctx;
5083
5084 rctx = perf_swevent_get_recursion_context();
5085 /*
5086 * If we 'fail' here, that's OK, it means recursion is already disabled
5087 * and we won't recurse 'further'.
5088 */
79f14641 5089
cdd6c482
IM
5090 if (event->pending_disable) {
5091 event->pending_disable = 0;
fae3fde6 5092 perf_event_disable_local(event);
79f14641
PZ
5093 }
5094
cdd6c482
IM
5095 if (event->pending_wakeup) {
5096 event->pending_wakeup = 0;
5097 perf_event_wakeup(event);
79f14641 5098 }
d525211f
PZ
5099
5100 if (rctx >= 0)
5101 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5102}
5103
39447b38
ZY
5104/*
5105 * We assume there is only KVM supporting the callbacks.
5106 * Later on, we might change it to a list if there is
5107 * another virtualization implementation supporting the callbacks.
5108 */
5109struct perf_guest_info_callbacks *perf_guest_cbs;
5110
5111int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5112{
5113 perf_guest_cbs = cbs;
5114 return 0;
5115}
5116EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5117
5118int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5119{
5120 perf_guest_cbs = NULL;
5121 return 0;
5122}
5123EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5124
4018994f
JO
5125static void
5126perf_output_sample_regs(struct perf_output_handle *handle,
5127 struct pt_regs *regs, u64 mask)
5128{
5129 int bit;
5130
5131 for_each_set_bit(bit, (const unsigned long *) &mask,
5132 sizeof(mask) * BITS_PER_BYTE) {
5133 u64 val;
5134
5135 val = perf_reg_value(regs, bit);
5136 perf_output_put(handle, val);
5137 }
5138}
5139
60e2364e 5140static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5141 struct pt_regs *regs,
5142 struct pt_regs *regs_user_copy)
4018994f 5143{
88a7c26a
AL
5144 if (user_mode(regs)) {
5145 regs_user->abi = perf_reg_abi(current);
2565711f 5146 regs_user->regs = regs;
88a7c26a
AL
5147 } else if (current->mm) {
5148 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5149 } else {
5150 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5151 regs_user->regs = NULL;
4018994f
JO
5152 }
5153}
5154
60e2364e
SE
5155static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5156 struct pt_regs *regs)
5157{
5158 regs_intr->regs = regs;
5159 regs_intr->abi = perf_reg_abi(current);
5160}
5161
5162
c5ebcedb
JO
5163/*
5164 * Get remaining task size from user stack pointer.
5165 *
5166 * It'd be better to take stack vma map and limit this more
5167 * precisly, but there's no way to get it safely under interrupt,
5168 * so using TASK_SIZE as limit.
5169 */
5170static u64 perf_ustack_task_size(struct pt_regs *regs)
5171{
5172 unsigned long addr = perf_user_stack_pointer(regs);
5173
5174 if (!addr || addr >= TASK_SIZE)
5175 return 0;
5176
5177 return TASK_SIZE - addr;
5178}
5179
5180static u16
5181perf_sample_ustack_size(u16 stack_size, u16 header_size,
5182 struct pt_regs *regs)
5183{
5184 u64 task_size;
5185
5186 /* No regs, no stack pointer, no dump. */
5187 if (!regs)
5188 return 0;
5189
5190 /*
5191 * Check if we fit in with the requested stack size into the:
5192 * - TASK_SIZE
5193 * If we don't, we limit the size to the TASK_SIZE.
5194 *
5195 * - remaining sample size
5196 * If we don't, we customize the stack size to
5197 * fit in to the remaining sample size.
5198 */
5199
5200 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5201 stack_size = min(stack_size, (u16) task_size);
5202
5203 /* Current header size plus static size and dynamic size. */
5204 header_size += 2 * sizeof(u64);
5205
5206 /* Do we fit in with the current stack dump size? */
5207 if ((u16) (header_size + stack_size) < header_size) {
5208 /*
5209 * If we overflow the maximum size for the sample,
5210 * we customize the stack dump size to fit in.
5211 */
5212 stack_size = USHRT_MAX - header_size - sizeof(u64);
5213 stack_size = round_up(stack_size, sizeof(u64));
5214 }
5215
5216 return stack_size;
5217}
5218
5219static void
5220perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5221 struct pt_regs *regs)
5222{
5223 /* Case of a kernel thread, nothing to dump */
5224 if (!regs) {
5225 u64 size = 0;
5226 perf_output_put(handle, size);
5227 } else {
5228 unsigned long sp;
5229 unsigned int rem;
5230 u64 dyn_size;
5231
5232 /*
5233 * We dump:
5234 * static size
5235 * - the size requested by user or the best one we can fit
5236 * in to the sample max size
5237 * data
5238 * - user stack dump data
5239 * dynamic size
5240 * - the actual dumped size
5241 */
5242
5243 /* Static size. */
5244 perf_output_put(handle, dump_size);
5245
5246 /* Data. */
5247 sp = perf_user_stack_pointer(regs);
5248 rem = __output_copy_user(handle, (void *) sp, dump_size);
5249 dyn_size = dump_size - rem;
5250
5251 perf_output_skip(handle, rem);
5252
5253 /* Dynamic size. */
5254 perf_output_put(handle, dyn_size);
5255 }
5256}
5257
c980d109
ACM
5258static void __perf_event_header__init_id(struct perf_event_header *header,
5259 struct perf_sample_data *data,
5260 struct perf_event *event)
6844c09d
ACM
5261{
5262 u64 sample_type = event->attr.sample_type;
5263
5264 data->type = sample_type;
5265 header->size += event->id_header_size;
5266
5267 if (sample_type & PERF_SAMPLE_TID) {
5268 /* namespace issues */
5269 data->tid_entry.pid = perf_event_pid(event, current);
5270 data->tid_entry.tid = perf_event_tid(event, current);
5271 }
5272
5273 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5274 data->time = perf_event_clock(event);
6844c09d 5275
ff3d527c 5276 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5277 data->id = primary_event_id(event);
5278
5279 if (sample_type & PERF_SAMPLE_STREAM_ID)
5280 data->stream_id = event->id;
5281
5282 if (sample_type & PERF_SAMPLE_CPU) {
5283 data->cpu_entry.cpu = raw_smp_processor_id();
5284 data->cpu_entry.reserved = 0;
5285 }
5286}
5287
76369139
FW
5288void perf_event_header__init_id(struct perf_event_header *header,
5289 struct perf_sample_data *data,
5290 struct perf_event *event)
c980d109
ACM
5291{
5292 if (event->attr.sample_id_all)
5293 __perf_event_header__init_id(header, data, event);
5294}
5295
5296static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5297 struct perf_sample_data *data)
5298{
5299 u64 sample_type = data->type;
5300
5301 if (sample_type & PERF_SAMPLE_TID)
5302 perf_output_put(handle, data->tid_entry);
5303
5304 if (sample_type & PERF_SAMPLE_TIME)
5305 perf_output_put(handle, data->time);
5306
5307 if (sample_type & PERF_SAMPLE_ID)
5308 perf_output_put(handle, data->id);
5309
5310 if (sample_type & PERF_SAMPLE_STREAM_ID)
5311 perf_output_put(handle, data->stream_id);
5312
5313 if (sample_type & PERF_SAMPLE_CPU)
5314 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5315
5316 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5317 perf_output_put(handle, data->id);
c980d109
ACM
5318}
5319
76369139
FW
5320void perf_event__output_id_sample(struct perf_event *event,
5321 struct perf_output_handle *handle,
5322 struct perf_sample_data *sample)
c980d109
ACM
5323{
5324 if (event->attr.sample_id_all)
5325 __perf_event__output_id_sample(handle, sample);
5326}
5327
3dab77fb 5328static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5329 struct perf_event *event,
5330 u64 enabled, u64 running)
3dab77fb 5331{
cdd6c482 5332 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5333 u64 values[4];
5334 int n = 0;
5335
b5e58793 5336 values[n++] = perf_event_count(event);
3dab77fb 5337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5338 values[n++] = enabled +
cdd6c482 5339 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5340 }
5341 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5342 values[n++] = running +
cdd6c482 5343 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5344 }
5345 if (read_format & PERF_FORMAT_ID)
cdd6c482 5346 values[n++] = primary_event_id(event);
3dab77fb 5347
76369139 5348 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5349}
5350
5351/*
cdd6c482 5352 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5353 */
5354static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5355 struct perf_event *event,
5356 u64 enabled, u64 running)
3dab77fb 5357{
cdd6c482
IM
5358 struct perf_event *leader = event->group_leader, *sub;
5359 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5360 u64 values[5];
5361 int n = 0;
5362
5363 values[n++] = 1 + leader->nr_siblings;
5364
5365 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5366 values[n++] = enabled;
3dab77fb
PZ
5367
5368 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5369 values[n++] = running;
3dab77fb 5370
cdd6c482 5371 if (leader != event)
3dab77fb
PZ
5372 leader->pmu->read(leader);
5373
b5e58793 5374 values[n++] = perf_event_count(leader);
3dab77fb 5375 if (read_format & PERF_FORMAT_ID)
cdd6c482 5376 values[n++] = primary_event_id(leader);
3dab77fb 5377
76369139 5378 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5379
65abc865 5380 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5381 n = 0;
5382
6f5ab001
JO
5383 if ((sub != event) &&
5384 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5385 sub->pmu->read(sub);
5386
b5e58793 5387 values[n++] = perf_event_count(sub);
3dab77fb 5388 if (read_format & PERF_FORMAT_ID)
cdd6c482 5389 values[n++] = primary_event_id(sub);
3dab77fb 5390
76369139 5391 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5392 }
5393}
5394
eed01528
SE
5395#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5396 PERF_FORMAT_TOTAL_TIME_RUNNING)
5397
3dab77fb 5398static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5399 struct perf_event *event)
3dab77fb 5400{
e3f3541c 5401 u64 enabled = 0, running = 0, now;
eed01528
SE
5402 u64 read_format = event->attr.read_format;
5403
5404 /*
5405 * compute total_time_enabled, total_time_running
5406 * based on snapshot values taken when the event
5407 * was last scheduled in.
5408 *
5409 * we cannot simply called update_context_time()
5410 * because of locking issue as we are called in
5411 * NMI context
5412 */
c4794295 5413 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5414 calc_timer_values(event, &now, &enabled, &running);
eed01528 5415
cdd6c482 5416 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5417 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5418 else
eed01528 5419 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5420}
5421
5622f295
MM
5422void perf_output_sample(struct perf_output_handle *handle,
5423 struct perf_event_header *header,
5424 struct perf_sample_data *data,
cdd6c482 5425 struct perf_event *event)
5622f295
MM
5426{
5427 u64 sample_type = data->type;
5428
5429 perf_output_put(handle, *header);
5430
ff3d527c
AH
5431 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5432 perf_output_put(handle, data->id);
5433
5622f295
MM
5434 if (sample_type & PERF_SAMPLE_IP)
5435 perf_output_put(handle, data->ip);
5436
5437 if (sample_type & PERF_SAMPLE_TID)
5438 perf_output_put(handle, data->tid_entry);
5439
5440 if (sample_type & PERF_SAMPLE_TIME)
5441 perf_output_put(handle, data->time);
5442
5443 if (sample_type & PERF_SAMPLE_ADDR)
5444 perf_output_put(handle, data->addr);
5445
5446 if (sample_type & PERF_SAMPLE_ID)
5447 perf_output_put(handle, data->id);
5448
5449 if (sample_type & PERF_SAMPLE_STREAM_ID)
5450 perf_output_put(handle, data->stream_id);
5451
5452 if (sample_type & PERF_SAMPLE_CPU)
5453 perf_output_put(handle, data->cpu_entry);
5454
5455 if (sample_type & PERF_SAMPLE_PERIOD)
5456 perf_output_put(handle, data->period);
5457
5458 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5459 perf_output_read(handle, event);
5622f295
MM
5460
5461 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5462 if (data->callchain) {
5463 int size = 1;
5464
5465 if (data->callchain)
5466 size += data->callchain->nr;
5467
5468 size *= sizeof(u64);
5469
76369139 5470 __output_copy(handle, data->callchain, size);
5622f295
MM
5471 } else {
5472 u64 nr = 0;
5473 perf_output_put(handle, nr);
5474 }
5475 }
5476
5477 if (sample_type & PERF_SAMPLE_RAW) {
5478 if (data->raw) {
fa128e6a
AS
5479 u32 raw_size = data->raw->size;
5480 u32 real_size = round_up(raw_size + sizeof(u32),
5481 sizeof(u64)) - sizeof(u32);
5482 u64 zero = 0;
5483
5484 perf_output_put(handle, real_size);
5485 __output_copy(handle, data->raw->data, raw_size);
5486 if (real_size - raw_size)
5487 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5488 } else {
5489 struct {
5490 u32 size;
5491 u32 data;
5492 } raw = {
5493 .size = sizeof(u32),
5494 .data = 0,
5495 };
5496 perf_output_put(handle, raw);
5497 }
5498 }
a7ac67ea 5499
bce38cd5
SE
5500 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5501 if (data->br_stack) {
5502 size_t size;
5503
5504 size = data->br_stack->nr
5505 * sizeof(struct perf_branch_entry);
5506
5507 perf_output_put(handle, data->br_stack->nr);
5508 perf_output_copy(handle, data->br_stack->entries, size);
5509 } else {
5510 /*
5511 * we always store at least the value of nr
5512 */
5513 u64 nr = 0;
5514 perf_output_put(handle, nr);
5515 }
5516 }
4018994f
JO
5517
5518 if (sample_type & PERF_SAMPLE_REGS_USER) {
5519 u64 abi = data->regs_user.abi;
5520
5521 /*
5522 * If there are no regs to dump, notice it through
5523 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5524 */
5525 perf_output_put(handle, abi);
5526
5527 if (abi) {
5528 u64 mask = event->attr.sample_regs_user;
5529 perf_output_sample_regs(handle,
5530 data->regs_user.regs,
5531 mask);
5532 }
5533 }
c5ebcedb 5534
a5cdd40c 5535 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5536 perf_output_sample_ustack(handle,
5537 data->stack_user_size,
5538 data->regs_user.regs);
a5cdd40c 5539 }
c3feedf2
AK
5540
5541 if (sample_type & PERF_SAMPLE_WEIGHT)
5542 perf_output_put(handle, data->weight);
d6be9ad6
SE
5543
5544 if (sample_type & PERF_SAMPLE_DATA_SRC)
5545 perf_output_put(handle, data->data_src.val);
a5cdd40c 5546
fdfbbd07
AK
5547 if (sample_type & PERF_SAMPLE_TRANSACTION)
5548 perf_output_put(handle, data->txn);
5549
60e2364e
SE
5550 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5551 u64 abi = data->regs_intr.abi;
5552 /*
5553 * If there are no regs to dump, notice it through
5554 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5555 */
5556 perf_output_put(handle, abi);
5557
5558 if (abi) {
5559 u64 mask = event->attr.sample_regs_intr;
5560
5561 perf_output_sample_regs(handle,
5562 data->regs_intr.regs,
5563 mask);
5564 }
5565 }
5566
a5cdd40c
PZ
5567 if (!event->attr.watermark) {
5568 int wakeup_events = event->attr.wakeup_events;
5569
5570 if (wakeup_events) {
5571 struct ring_buffer *rb = handle->rb;
5572 int events = local_inc_return(&rb->events);
5573
5574 if (events >= wakeup_events) {
5575 local_sub(wakeup_events, &rb->events);
5576 local_inc(&rb->wakeup);
5577 }
5578 }
5579 }
5622f295
MM
5580}
5581
5582void perf_prepare_sample(struct perf_event_header *header,
5583 struct perf_sample_data *data,
cdd6c482 5584 struct perf_event *event,
5622f295 5585 struct pt_regs *regs)
7b732a75 5586{
cdd6c482 5587 u64 sample_type = event->attr.sample_type;
7b732a75 5588
cdd6c482 5589 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5590 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5591
5592 header->misc = 0;
5593 header->misc |= perf_misc_flags(regs);
6fab0192 5594
c980d109 5595 __perf_event_header__init_id(header, data, event);
6844c09d 5596
c320c7b7 5597 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5598 data->ip = perf_instruction_pointer(regs);
5599
b23f3325 5600 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5601 int size = 1;
394ee076 5602
e6dab5ff 5603 data->callchain = perf_callchain(event, regs);
5622f295
MM
5604
5605 if (data->callchain)
5606 size += data->callchain->nr;
5607
5608 header->size += size * sizeof(u64);
394ee076
PZ
5609 }
5610
3a43ce68 5611 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5612 int size = sizeof(u32);
5613
5614 if (data->raw)
5615 size += data->raw->size;
5616 else
5617 size += sizeof(u32);
5618
fa128e6a 5619 header->size += round_up(size, sizeof(u64));
7f453c24 5620 }
bce38cd5
SE
5621
5622 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5623 int size = sizeof(u64); /* nr */
5624 if (data->br_stack) {
5625 size += data->br_stack->nr
5626 * sizeof(struct perf_branch_entry);
5627 }
5628 header->size += size;
5629 }
4018994f 5630
2565711f 5631 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5632 perf_sample_regs_user(&data->regs_user, regs,
5633 &data->regs_user_copy);
2565711f 5634
4018994f
JO
5635 if (sample_type & PERF_SAMPLE_REGS_USER) {
5636 /* regs dump ABI info */
5637 int size = sizeof(u64);
5638
4018994f
JO
5639 if (data->regs_user.regs) {
5640 u64 mask = event->attr.sample_regs_user;
5641 size += hweight64(mask) * sizeof(u64);
5642 }
5643
5644 header->size += size;
5645 }
c5ebcedb
JO
5646
5647 if (sample_type & PERF_SAMPLE_STACK_USER) {
5648 /*
5649 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5650 * processed as the last one or have additional check added
5651 * in case new sample type is added, because we could eat
5652 * up the rest of the sample size.
5653 */
c5ebcedb
JO
5654 u16 stack_size = event->attr.sample_stack_user;
5655 u16 size = sizeof(u64);
5656
c5ebcedb 5657 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5658 data->regs_user.regs);
c5ebcedb
JO
5659
5660 /*
5661 * If there is something to dump, add space for the dump
5662 * itself and for the field that tells the dynamic size,
5663 * which is how many have been actually dumped.
5664 */
5665 if (stack_size)
5666 size += sizeof(u64) + stack_size;
5667
5668 data->stack_user_size = stack_size;
5669 header->size += size;
5670 }
60e2364e
SE
5671
5672 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5673 /* regs dump ABI info */
5674 int size = sizeof(u64);
5675
5676 perf_sample_regs_intr(&data->regs_intr, regs);
5677
5678 if (data->regs_intr.regs) {
5679 u64 mask = event->attr.sample_regs_intr;
5680
5681 size += hweight64(mask) * sizeof(u64);
5682 }
5683
5684 header->size += size;
5685 }
5622f295 5686}
7f453c24 5687
9ecda41a
WN
5688static void __always_inline
5689__perf_event_output(struct perf_event *event,
5690 struct perf_sample_data *data,
5691 struct pt_regs *regs,
5692 int (*output_begin)(struct perf_output_handle *,
5693 struct perf_event *,
5694 unsigned int))
5622f295
MM
5695{
5696 struct perf_output_handle handle;
5697 struct perf_event_header header;
689802b2 5698
927c7a9e
FW
5699 /* protect the callchain buffers */
5700 rcu_read_lock();
5701
cdd6c482 5702 perf_prepare_sample(&header, data, event, regs);
5c148194 5703
9ecda41a 5704 if (output_begin(&handle, event, header.size))
927c7a9e 5705 goto exit;
0322cd6e 5706
cdd6c482 5707 perf_output_sample(&handle, &header, data, event);
f413cdb8 5708
8a057d84 5709 perf_output_end(&handle);
927c7a9e
FW
5710
5711exit:
5712 rcu_read_unlock();
0322cd6e
PZ
5713}
5714
9ecda41a
WN
5715void
5716perf_event_output_forward(struct perf_event *event,
5717 struct perf_sample_data *data,
5718 struct pt_regs *regs)
5719{
5720 __perf_event_output(event, data, regs, perf_output_begin_forward);
5721}
5722
5723void
5724perf_event_output_backward(struct perf_event *event,
5725 struct perf_sample_data *data,
5726 struct pt_regs *regs)
5727{
5728 __perf_event_output(event, data, regs, perf_output_begin_backward);
5729}
5730
5731void
5732perf_event_output(struct perf_event *event,
5733 struct perf_sample_data *data,
5734 struct pt_regs *regs)
5735{
5736 __perf_event_output(event, data, regs, perf_output_begin);
5737}
5738
38b200d6 5739/*
cdd6c482 5740 * read event_id
38b200d6
PZ
5741 */
5742
5743struct perf_read_event {
5744 struct perf_event_header header;
5745
5746 u32 pid;
5747 u32 tid;
38b200d6
PZ
5748};
5749
5750static void
cdd6c482 5751perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5752 struct task_struct *task)
5753{
5754 struct perf_output_handle handle;
c980d109 5755 struct perf_sample_data sample;
dfc65094 5756 struct perf_read_event read_event = {
38b200d6 5757 .header = {
cdd6c482 5758 .type = PERF_RECORD_READ,
38b200d6 5759 .misc = 0,
c320c7b7 5760 .size = sizeof(read_event) + event->read_size,
38b200d6 5761 },
cdd6c482
IM
5762 .pid = perf_event_pid(event, task),
5763 .tid = perf_event_tid(event, task),
38b200d6 5764 };
3dab77fb 5765 int ret;
38b200d6 5766
c980d109 5767 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5768 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5769 if (ret)
5770 return;
5771
dfc65094 5772 perf_output_put(&handle, read_event);
cdd6c482 5773 perf_output_read(&handle, event);
c980d109 5774 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5775
38b200d6
PZ
5776 perf_output_end(&handle);
5777}
5778
52d857a8
JO
5779typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5780
5781static void
5782perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8 5783 perf_event_aux_output_cb output,
b73e4fef 5784 void *data, bool all)
52d857a8
JO
5785{
5786 struct perf_event *event;
5787
5788 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
5789 if (!all) {
5790 if (event->state < PERF_EVENT_STATE_INACTIVE)
5791 continue;
5792 if (!event_filter_match(event))
5793 continue;
5794 }
5795
67516844 5796 output(event, data);
52d857a8
JO
5797 }
5798}
5799
4e93ad60
JO
5800static void
5801perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5802 struct perf_event_context *task_ctx)
5803{
5804 rcu_read_lock();
5805 preempt_disable();
b73e4fef 5806 perf_event_aux_ctx(task_ctx, output, data, false);
4e93ad60
JO
5807 preempt_enable();
5808 rcu_read_unlock();
5809}
5810
52d857a8 5811static void
67516844 5812perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5813 struct perf_event_context *task_ctx)
5814{
5815 struct perf_cpu_context *cpuctx;
5816 struct perf_event_context *ctx;
5817 struct pmu *pmu;
5818 int ctxn;
5819
4e93ad60
JO
5820 /*
5821 * If we have task_ctx != NULL we only notify
5822 * the task context itself. The task_ctx is set
5823 * only for EXIT events before releasing task
5824 * context.
5825 */
5826 if (task_ctx) {
5827 perf_event_aux_task_ctx(output, data, task_ctx);
5828 return;
5829 }
5830
52d857a8
JO
5831 rcu_read_lock();
5832 list_for_each_entry_rcu(pmu, &pmus, entry) {
5833 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5834 if (cpuctx->unique_pmu != pmu)
5835 goto next;
b73e4fef 5836 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
52d857a8
JO
5837 ctxn = pmu->task_ctx_nr;
5838 if (ctxn < 0)
5839 goto next;
5840 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5841 if (ctx)
b73e4fef 5842 perf_event_aux_ctx(ctx, output, data, false);
52d857a8
JO
5843next:
5844 put_cpu_ptr(pmu->pmu_cpu_context);
5845 }
52d857a8 5846 rcu_read_unlock();
95ff4ca2
AS
5847}
5848
5849struct remote_output {
5850 struct ring_buffer *rb;
5851 int err;
5852};
5853
5854static void __perf_event_output_stop(struct perf_event *event, void *data)
5855{
5856 struct perf_event *parent = event->parent;
5857 struct remote_output *ro = data;
5858 struct ring_buffer *rb = ro->rb;
5859
5860 if (!has_aux(event))
5861 return;
5862
5863 if (!parent)
5864 parent = event;
5865
5866 /*
5867 * In case of inheritance, it will be the parent that links to the
5868 * ring-buffer, but it will be the child that's actually using it:
5869 */
5870 if (rcu_dereference(parent->rb) == rb)
5871 ro->err = __perf_event_stop(event);
5872}
5873
5874static int __perf_pmu_output_stop(void *info)
5875{
5876 struct perf_event *event = info;
5877 struct pmu *pmu = event->pmu;
5878 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5879 struct remote_output ro = {
5880 .rb = event->rb,
5881 };
5882
5883 rcu_read_lock();
b73e4fef 5884 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2
AS
5885 if (cpuctx->task_ctx)
5886 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 5887 &ro, false);
95ff4ca2
AS
5888 rcu_read_unlock();
5889
5890 return ro.err;
5891}
5892
5893static void perf_pmu_output_stop(struct perf_event *event)
5894{
5895 struct perf_event *iter;
5896 int err, cpu;
5897
5898restart:
5899 rcu_read_lock();
5900 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
5901 /*
5902 * For per-CPU events, we need to make sure that neither they
5903 * nor their children are running; for cpu==-1 events it's
5904 * sufficient to stop the event itself if it's active, since
5905 * it can't have children.
5906 */
5907 cpu = iter->cpu;
5908 if (cpu == -1)
5909 cpu = READ_ONCE(iter->oncpu);
5910
5911 if (cpu == -1)
5912 continue;
5913
5914 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
5915 if (err == -EAGAIN) {
5916 rcu_read_unlock();
5917 goto restart;
5918 }
5919 }
5920 rcu_read_unlock();
52d857a8
JO
5921}
5922
60313ebe 5923/*
9f498cc5
PZ
5924 * task tracking -- fork/exit
5925 *
13d7a241 5926 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5927 */
5928
9f498cc5 5929struct perf_task_event {
3a80b4a3 5930 struct task_struct *task;
cdd6c482 5931 struct perf_event_context *task_ctx;
60313ebe
PZ
5932
5933 struct {
5934 struct perf_event_header header;
5935
5936 u32 pid;
5937 u32 ppid;
9f498cc5
PZ
5938 u32 tid;
5939 u32 ptid;
393b2ad8 5940 u64 time;
cdd6c482 5941 } event_id;
60313ebe
PZ
5942};
5943
67516844
JO
5944static int perf_event_task_match(struct perf_event *event)
5945{
13d7a241
SE
5946 return event->attr.comm || event->attr.mmap ||
5947 event->attr.mmap2 || event->attr.mmap_data ||
5948 event->attr.task;
67516844
JO
5949}
5950
cdd6c482 5951static void perf_event_task_output(struct perf_event *event,
52d857a8 5952 void *data)
60313ebe 5953{
52d857a8 5954 struct perf_task_event *task_event = data;
60313ebe 5955 struct perf_output_handle handle;
c980d109 5956 struct perf_sample_data sample;
9f498cc5 5957 struct task_struct *task = task_event->task;
c980d109 5958 int ret, size = task_event->event_id.header.size;
8bb39f9a 5959
67516844
JO
5960 if (!perf_event_task_match(event))
5961 return;
5962
c980d109 5963 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5964
c980d109 5965 ret = perf_output_begin(&handle, event,
a7ac67ea 5966 task_event->event_id.header.size);
ef60777c 5967 if (ret)
c980d109 5968 goto out;
60313ebe 5969
cdd6c482
IM
5970 task_event->event_id.pid = perf_event_pid(event, task);
5971 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5972
cdd6c482
IM
5973 task_event->event_id.tid = perf_event_tid(event, task);
5974 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5975
34f43927
PZ
5976 task_event->event_id.time = perf_event_clock(event);
5977
cdd6c482 5978 perf_output_put(&handle, task_event->event_id);
393b2ad8 5979
c980d109
ACM
5980 perf_event__output_id_sample(event, &handle, &sample);
5981
60313ebe 5982 perf_output_end(&handle);
c980d109
ACM
5983out:
5984 task_event->event_id.header.size = size;
60313ebe
PZ
5985}
5986
cdd6c482
IM
5987static void perf_event_task(struct task_struct *task,
5988 struct perf_event_context *task_ctx,
3a80b4a3 5989 int new)
60313ebe 5990{
9f498cc5 5991 struct perf_task_event task_event;
60313ebe 5992
cdd6c482
IM
5993 if (!atomic_read(&nr_comm_events) &&
5994 !atomic_read(&nr_mmap_events) &&
5995 !atomic_read(&nr_task_events))
60313ebe
PZ
5996 return;
5997
9f498cc5 5998 task_event = (struct perf_task_event){
3a80b4a3
PZ
5999 .task = task,
6000 .task_ctx = task_ctx,
cdd6c482 6001 .event_id = {
60313ebe 6002 .header = {
cdd6c482 6003 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6004 .misc = 0,
cdd6c482 6005 .size = sizeof(task_event.event_id),
60313ebe 6006 },
573402db
PZ
6007 /* .pid */
6008 /* .ppid */
9f498cc5
PZ
6009 /* .tid */
6010 /* .ptid */
34f43927 6011 /* .time */
60313ebe
PZ
6012 },
6013 };
6014
67516844 6015 perf_event_aux(perf_event_task_output,
52d857a8
JO
6016 &task_event,
6017 task_ctx);
9f498cc5
PZ
6018}
6019
cdd6c482 6020void perf_event_fork(struct task_struct *task)
9f498cc5 6021{
cdd6c482 6022 perf_event_task(task, NULL, 1);
60313ebe
PZ
6023}
6024
8d1b2d93
PZ
6025/*
6026 * comm tracking
6027 */
6028
6029struct perf_comm_event {
22a4f650
IM
6030 struct task_struct *task;
6031 char *comm;
8d1b2d93
PZ
6032 int comm_size;
6033
6034 struct {
6035 struct perf_event_header header;
6036
6037 u32 pid;
6038 u32 tid;
cdd6c482 6039 } event_id;
8d1b2d93
PZ
6040};
6041
67516844
JO
6042static int perf_event_comm_match(struct perf_event *event)
6043{
6044 return event->attr.comm;
6045}
6046
cdd6c482 6047static void perf_event_comm_output(struct perf_event *event,
52d857a8 6048 void *data)
8d1b2d93 6049{
52d857a8 6050 struct perf_comm_event *comm_event = data;
8d1b2d93 6051 struct perf_output_handle handle;
c980d109 6052 struct perf_sample_data sample;
cdd6c482 6053 int size = comm_event->event_id.header.size;
c980d109
ACM
6054 int ret;
6055
67516844
JO
6056 if (!perf_event_comm_match(event))
6057 return;
6058
c980d109
ACM
6059 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6060 ret = perf_output_begin(&handle, event,
a7ac67ea 6061 comm_event->event_id.header.size);
8d1b2d93
PZ
6062
6063 if (ret)
c980d109 6064 goto out;
8d1b2d93 6065
cdd6c482
IM
6066 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6067 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6068
cdd6c482 6069 perf_output_put(&handle, comm_event->event_id);
76369139 6070 __output_copy(&handle, comm_event->comm,
8d1b2d93 6071 comm_event->comm_size);
c980d109
ACM
6072
6073 perf_event__output_id_sample(event, &handle, &sample);
6074
8d1b2d93 6075 perf_output_end(&handle);
c980d109
ACM
6076out:
6077 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6078}
6079
cdd6c482 6080static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6081{
413ee3b4 6082 char comm[TASK_COMM_LEN];
8d1b2d93 6083 unsigned int size;
8d1b2d93 6084
413ee3b4 6085 memset(comm, 0, sizeof(comm));
96b02d78 6086 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6087 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6088
6089 comm_event->comm = comm;
6090 comm_event->comm_size = size;
6091
cdd6c482 6092 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6093
67516844 6094 perf_event_aux(perf_event_comm_output,
52d857a8
JO
6095 comm_event,
6096 NULL);
8d1b2d93
PZ
6097}
6098
82b89778 6099void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6100{
9ee318a7
PZ
6101 struct perf_comm_event comm_event;
6102
cdd6c482 6103 if (!atomic_read(&nr_comm_events))
9ee318a7 6104 return;
a63eaf34 6105
9ee318a7 6106 comm_event = (struct perf_comm_event){
8d1b2d93 6107 .task = task,
573402db
PZ
6108 /* .comm */
6109 /* .comm_size */
cdd6c482 6110 .event_id = {
573402db 6111 .header = {
cdd6c482 6112 .type = PERF_RECORD_COMM,
82b89778 6113 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6114 /* .size */
6115 },
6116 /* .pid */
6117 /* .tid */
8d1b2d93
PZ
6118 },
6119 };
6120
cdd6c482 6121 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6122}
6123
0a4a9391
PZ
6124/*
6125 * mmap tracking
6126 */
6127
6128struct perf_mmap_event {
089dd79d
PZ
6129 struct vm_area_struct *vma;
6130
6131 const char *file_name;
6132 int file_size;
13d7a241
SE
6133 int maj, min;
6134 u64 ino;
6135 u64 ino_generation;
f972eb63 6136 u32 prot, flags;
0a4a9391
PZ
6137
6138 struct {
6139 struct perf_event_header header;
6140
6141 u32 pid;
6142 u32 tid;
6143 u64 start;
6144 u64 len;
6145 u64 pgoff;
cdd6c482 6146 } event_id;
0a4a9391
PZ
6147};
6148
67516844
JO
6149static int perf_event_mmap_match(struct perf_event *event,
6150 void *data)
6151{
6152 struct perf_mmap_event *mmap_event = data;
6153 struct vm_area_struct *vma = mmap_event->vma;
6154 int executable = vma->vm_flags & VM_EXEC;
6155
6156 return (!executable && event->attr.mmap_data) ||
13d7a241 6157 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6158}
6159
cdd6c482 6160static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6161 void *data)
0a4a9391 6162{
52d857a8 6163 struct perf_mmap_event *mmap_event = data;
0a4a9391 6164 struct perf_output_handle handle;
c980d109 6165 struct perf_sample_data sample;
cdd6c482 6166 int size = mmap_event->event_id.header.size;
c980d109 6167 int ret;
0a4a9391 6168
67516844
JO
6169 if (!perf_event_mmap_match(event, data))
6170 return;
6171
13d7a241
SE
6172 if (event->attr.mmap2) {
6173 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6174 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6175 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6176 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6177 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6178 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6179 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6180 }
6181
c980d109
ACM
6182 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6183 ret = perf_output_begin(&handle, event,
a7ac67ea 6184 mmap_event->event_id.header.size);
0a4a9391 6185 if (ret)
c980d109 6186 goto out;
0a4a9391 6187
cdd6c482
IM
6188 mmap_event->event_id.pid = perf_event_pid(event, current);
6189 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6190
cdd6c482 6191 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6192
6193 if (event->attr.mmap2) {
6194 perf_output_put(&handle, mmap_event->maj);
6195 perf_output_put(&handle, mmap_event->min);
6196 perf_output_put(&handle, mmap_event->ino);
6197 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6198 perf_output_put(&handle, mmap_event->prot);
6199 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6200 }
6201
76369139 6202 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6203 mmap_event->file_size);
c980d109
ACM
6204
6205 perf_event__output_id_sample(event, &handle, &sample);
6206
78d613eb 6207 perf_output_end(&handle);
c980d109
ACM
6208out:
6209 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6210}
6211
cdd6c482 6212static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6213{
089dd79d
PZ
6214 struct vm_area_struct *vma = mmap_event->vma;
6215 struct file *file = vma->vm_file;
13d7a241
SE
6216 int maj = 0, min = 0;
6217 u64 ino = 0, gen = 0;
f972eb63 6218 u32 prot = 0, flags = 0;
0a4a9391
PZ
6219 unsigned int size;
6220 char tmp[16];
6221 char *buf = NULL;
2c42cfbf 6222 char *name;
413ee3b4 6223
0a4a9391 6224 if (file) {
13d7a241
SE
6225 struct inode *inode;
6226 dev_t dev;
3ea2f2b9 6227
2c42cfbf 6228 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6229 if (!buf) {
c7e548b4
ON
6230 name = "//enomem";
6231 goto cpy_name;
0a4a9391 6232 }
413ee3b4 6233 /*
3ea2f2b9 6234 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6235 * need to add enough zero bytes after the string to handle
6236 * the 64bit alignment we do later.
6237 */
9bf39ab2 6238 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6239 if (IS_ERR(name)) {
c7e548b4
ON
6240 name = "//toolong";
6241 goto cpy_name;
0a4a9391 6242 }
13d7a241
SE
6243 inode = file_inode(vma->vm_file);
6244 dev = inode->i_sb->s_dev;
6245 ino = inode->i_ino;
6246 gen = inode->i_generation;
6247 maj = MAJOR(dev);
6248 min = MINOR(dev);
f972eb63
PZ
6249
6250 if (vma->vm_flags & VM_READ)
6251 prot |= PROT_READ;
6252 if (vma->vm_flags & VM_WRITE)
6253 prot |= PROT_WRITE;
6254 if (vma->vm_flags & VM_EXEC)
6255 prot |= PROT_EXEC;
6256
6257 if (vma->vm_flags & VM_MAYSHARE)
6258 flags = MAP_SHARED;
6259 else
6260 flags = MAP_PRIVATE;
6261
6262 if (vma->vm_flags & VM_DENYWRITE)
6263 flags |= MAP_DENYWRITE;
6264 if (vma->vm_flags & VM_MAYEXEC)
6265 flags |= MAP_EXECUTABLE;
6266 if (vma->vm_flags & VM_LOCKED)
6267 flags |= MAP_LOCKED;
6268 if (vma->vm_flags & VM_HUGETLB)
6269 flags |= MAP_HUGETLB;
6270
c7e548b4 6271 goto got_name;
0a4a9391 6272 } else {
fbe26abe
JO
6273 if (vma->vm_ops && vma->vm_ops->name) {
6274 name = (char *) vma->vm_ops->name(vma);
6275 if (name)
6276 goto cpy_name;
6277 }
6278
2c42cfbf 6279 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6280 if (name)
6281 goto cpy_name;
089dd79d 6282
32c5fb7e 6283 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6284 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6285 name = "[heap]";
6286 goto cpy_name;
32c5fb7e
ON
6287 }
6288 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6289 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6290 name = "[stack]";
6291 goto cpy_name;
089dd79d
PZ
6292 }
6293
c7e548b4
ON
6294 name = "//anon";
6295 goto cpy_name;
0a4a9391
PZ
6296 }
6297
c7e548b4
ON
6298cpy_name:
6299 strlcpy(tmp, name, sizeof(tmp));
6300 name = tmp;
0a4a9391 6301got_name:
2c42cfbf
PZ
6302 /*
6303 * Since our buffer works in 8 byte units we need to align our string
6304 * size to a multiple of 8. However, we must guarantee the tail end is
6305 * zero'd out to avoid leaking random bits to userspace.
6306 */
6307 size = strlen(name)+1;
6308 while (!IS_ALIGNED(size, sizeof(u64)))
6309 name[size++] = '\0';
0a4a9391
PZ
6310
6311 mmap_event->file_name = name;
6312 mmap_event->file_size = size;
13d7a241
SE
6313 mmap_event->maj = maj;
6314 mmap_event->min = min;
6315 mmap_event->ino = ino;
6316 mmap_event->ino_generation = gen;
f972eb63
PZ
6317 mmap_event->prot = prot;
6318 mmap_event->flags = flags;
0a4a9391 6319
2fe85427
SE
6320 if (!(vma->vm_flags & VM_EXEC))
6321 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6322
cdd6c482 6323 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6324
67516844 6325 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6326 mmap_event,
6327 NULL);
665c2142 6328
0a4a9391
PZ
6329 kfree(buf);
6330}
6331
3af9e859 6332void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6333{
9ee318a7
PZ
6334 struct perf_mmap_event mmap_event;
6335
cdd6c482 6336 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6337 return;
6338
6339 mmap_event = (struct perf_mmap_event){
089dd79d 6340 .vma = vma,
573402db
PZ
6341 /* .file_name */
6342 /* .file_size */
cdd6c482 6343 .event_id = {
573402db 6344 .header = {
cdd6c482 6345 .type = PERF_RECORD_MMAP,
39447b38 6346 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6347 /* .size */
6348 },
6349 /* .pid */
6350 /* .tid */
089dd79d
PZ
6351 .start = vma->vm_start,
6352 .len = vma->vm_end - vma->vm_start,
3a0304e9 6353 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6354 },
13d7a241
SE
6355 /* .maj (attr_mmap2 only) */
6356 /* .min (attr_mmap2 only) */
6357 /* .ino (attr_mmap2 only) */
6358 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6359 /* .prot (attr_mmap2 only) */
6360 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6361 };
6362
cdd6c482 6363 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6364}
6365
68db7e98
AS
6366void perf_event_aux_event(struct perf_event *event, unsigned long head,
6367 unsigned long size, u64 flags)
6368{
6369 struct perf_output_handle handle;
6370 struct perf_sample_data sample;
6371 struct perf_aux_event {
6372 struct perf_event_header header;
6373 u64 offset;
6374 u64 size;
6375 u64 flags;
6376 } rec = {
6377 .header = {
6378 .type = PERF_RECORD_AUX,
6379 .misc = 0,
6380 .size = sizeof(rec),
6381 },
6382 .offset = head,
6383 .size = size,
6384 .flags = flags,
6385 };
6386 int ret;
6387
6388 perf_event_header__init_id(&rec.header, &sample, event);
6389 ret = perf_output_begin(&handle, event, rec.header.size);
6390
6391 if (ret)
6392 return;
6393
6394 perf_output_put(&handle, rec);
6395 perf_event__output_id_sample(event, &handle, &sample);
6396
6397 perf_output_end(&handle);
6398}
6399
f38b0dbb
KL
6400/*
6401 * Lost/dropped samples logging
6402 */
6403void perf_log_lost_samples(struct perf_event *event, u64 lost)
6404{
6405 struct perf_output_handle handle;
6406 struct perf_sample_data sample;
6407 int ret;
6408
6409 struct {
6410 struct perf_event_header header;
6411 u64 lost;
6412 } lost_samples_event = {
6413 .header = {
6414 .type = PERF_RECORD_LOST_SAMPLES,
6415 .misc = 0,
6416 .size = sizeof(lost_samples_event),
6417 },
6418 .lost = lost,
6419 };
6420
6421 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6422
6423 ret = perf_output_begin(&handle, event,
6424 lost_samples_event.header.size);
6425 if (ret)
6426 return;
6427
6428 perf_output_put(&handle, lost_samples_event);
6429 perf_event__output_id_sample(event, &handle, &sample);
6430 perf_output_end(&handle);
6431}
6432
45ac1403
AH
6433/*
6434 * context_switch tracking
6435 */
6436
6437struct perf_switch_event {
6438 struct task_struct *task;
6439 struct task_struct *next_prev;
6440
6441 struct {
6442 struct perf_event_header header;
6443 u32 next_prev_pid;
6444 u32 next_prev_tid;
6445 } event_id;
6446};
6447
6448static int perf_event_switch_match(struct perf_event *event)
6449{
6450 return event->attr.context_switch;
6451}
6452
6453static void perf_event_switch_output(struct perf_event *event, void *data)
6454{
6455 struct perf_switch_event *se = data;
6456 struct perf_output_handle handle;
6457 struct perf_sample_data sample;
6458 int ret;
6459
6460 if (!perf_event_switch_match(event))
6461 return;
6462
6463 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6464 if (event->ctx->task) {
6465 se->event_id.header.type = PERF_RECORD_SWITCH;
6466 se->event_id.header.size = sizeof(se->event_id.header);
6467 } else {
6468 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6469 se->event_id.header.size = sizeof(se->event_id);
6470 se->event_id.next_prev_pid =
6471 perf_event_pid(event, se->next_prev);
6472 se->event_id.next_prev_tid =
6473 perf_event_tid(event, se->next_prev);
6474 }
6475
6476 perf_event_header__init_id(&se->event_id.header, &sample, event);
6477
6478 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6479 if (ret)
6480 return;
6481
6482 if (event->ctx->task)
6483 perf_output_put(&handle, se->event_id.header);
6484 else
6485 perf_output_put(&handle, se->event_id);
6486
6487 perf_event__output_id_sample(event, &handle, &sample);
6488
6489 perf_output_end(&handle);
6490}
6491
6492static void perf_event_switch(struct task_struct *task,
6493 struct task_struct *next_prev, bool sched_in)
6494{
6495 struct perf_switch_event switch_event;
6496
6497 /* N.B. caller checks nr_switch_events != 0 */
6498
6499 switch_event = (struct perf_switch_event){
6500 .task = task,
6501 .next_prev = next_prev,
6502 .event_id = {
6503 .header = {
6504 /* .type */
6505 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6506 /* .size */
6507 },
6508 /* .next_prev_pid */
6509 /* .next_prev_tid */
6510 },
6511 };
6512
6513 perf_event_aux(perf_event_switch_output,
6514 &switch_event,
6515 NULL);
6516}
6517
a78ac325
PZ
6518/*
6519 * IRQ throttle logging
6520 */
6521
cdd6c482 6522static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6523{
6524 struct perf_output_handle handle;
c980d109 6525 struct perf_sample_data sample;
a78ac325
PZ
6526 int ret;
6527
6528 struct {
6529 struct perf_event_header header;
6530 u64 time;
cca3f454 6531 u64 id;
7f453c24 6532 u64 stream_id;
a78ac325
PZ
6533 } throttle_event = {
6534 .header = {
cdd6c482 6535 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6536 .misc = 0,
6537 .size = sizeof(throttle_event),
6538 },
34f43927 6539 .time = perf_event_clock(event),
cdd6c482
IM
6540 .id = primary_event_id(event),
6541 .stream_id = event->id,
a78ac325
PZ
6542 };
6543
966ee4d6 6544 if (enable)
cdd6c482 6545 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6546
c980d109
ACM
6547 perf_event_header__init_id(&throttle_event.header, &sample, event);
6548
6549 ret = perf_output_begin(&handle, event,
a7ac67ea 6550 throttle_event.header.size);
a78ac325
PZ
6551 if (ret)
6552 return;
6553
6554 perf_output_put(&handle, throttle_event);
c980d109 6555 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6556 perf_output_end(&handle);
6557}
6558
ec0d7729
AS
6559static void perf_log_itrace_start(struct perf_event *event)
6560{
6561 struct perf_output_handle handle;
6562 struct perf_sample_data sample;
6563 struct perf_aux_event {
6564 struct perf_event_header header;
6565 u32 pid;
6566 u32 tid;
6567 } rec;
6568 int ret;
6569
6570 if (event->parent)
6571 event = event->parent;
6572
6573 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6574 event->hw.itrace_started)
6575 return;
6576
ec0d7729
AS
6577 rec.header.type = PERF_RECORD_ITRACE_START;
6578 rec.header.misc = 0;
6579 rec.header.size = sizeof(rec);
6580 rec.pid = perf_event_pid(event, current);
6581 rec.tid = perf_event_tid(event, current);
6582
6583 perf_event_header__init_id(&rec.header, &sample, event);
6584 ret = perf_output_begin(&handle, event, rec.header.size);
6585
6586 if (ret)
6587 return;
6588
6589 perf_output_put(&handle, rec);
6590 perf_event__output_id_sample(event, &handle, &sample);
6591
6592 perf_output_end(&handle);
6593}
6594
f6c7d5fe 6595/*
cdd6c482 6596 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6597 */
6598
a8b0ca17 6599static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6600 int throttle, struct perf_sample_data *data,
6601 struct pt_regs *regs)
f6c7d5fe 6602{
cdd6c482
IM
6603 int events = atomic_read(&event->event_limit);
6604 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6605 u64 seq;
79f14641
PZ
6606 int ret = 0;
6607
96398826
PZ
6608 /*
6609 * Non-sampling counters might still use the PMI to fold short
6610 * hardware counters, ignore those.
6611 */
6612 if (unlikely(!is_sampling_event(event)))
6613 return 0;
6614
e050e3f0
SE
6615 seq = __this_cpu_read(perf_throttled_seq);
6616 if (seq != hwc->interrupts_seq) {
6617 hwc->interrupts_seq = seq;
6618 hwc->interrupts = 1;
6619 } else {
6620 hwc->interrupts++;
6621 if (unlikely(throttle
6622 && hwc->interrupts >= max_samples_per_tick)) {
6623 __this_cpu_inc(perf_throttled_count);
555e0c1e 6624 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6625 hwc->interrupts = MAX_INTERRUPTS;
6626 perf_log_throttle(event, 0);
a78ac325
PZ
6627 ret = 1;
6628 }
e050e3f0 6629 }
60db5e09 6630
cdd6c482 6631 if (event->attr.freq) {
def0a9b2 6632 u64 now = perf_clock();
abd50713 6633 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6634
abd50713 6635 hwc->freq_time_stamp = now;
bd2b5b12 6636
abd50713 6637 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6638 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6639 }
6640
2023b359
PZ
6641 /*
6642 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6643 * events
2023b359
PZ
6644 */
6645
cdd6c482
IM
6646 event->pending_kill = POLL_IN;
6647 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6648 ret = 1;
cdd6c482 6649 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6650 event->pending_disable = 1;
6651 irq_work_queue(&event->pending);
79f14641
PZ
6652 }
6653
1879445d 6654 event->overflow_handler(event, data, regs);
453f19ee 6655
fed66e2c 6656 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6657 event->pending_wakeup = 1;
6658 irq_work_queue(&event->pending);
f506b3dc
PZ
6659 }
6660
79f14641 6661 return ret;
f6c7d5fe
PZ
6662}
6663
a8b0ca17 6664int perf_event_overflow(struct perf_event *event,
5622f295
MM
6665 struct perf_sample_data *data,
6666 struct pt_regs *regs)
850bc73f 6667{
a8b0ca17 6668 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6669}
6670
15dbf27c 6671/*
cdd6c482 6672 * Generic software event infrastructure
15dbf27c
PZ
6673 */
6674
b28ab83c
PZ
6675struct swevent_htable {
6676 struct swevent_hlist *swevent_hlist;
6677 struct mutex hlist_mutex;
6678 int hlist_refcount;
6679
6680 /* Recursion avoidance in each contexts */
6681 int recursion[PERF_NR_CONTEXTS];
6682};
6683
6684static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6685
7b4b6658 6686/*
cdd6c482
IM
6687 * We directly increment event->count and keep a second value in
6688 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6689 * is kept in the range [-sample_period, 0] so that we can use the
6690 * sign as trigger.
6691 */
6692
ab573844 6693u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6694{
cdd6c482 6695 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6696 u64 period = hwc->last_period;
6697 u64 nr, offset;
6698 s64 old, val;
6699
6700 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6701
6702again:
e7850595 6703 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6704 if (val < 0)
6705 return 0;
15dbf27c 6706
7b4b6658
PZ
6707 nr = div64_u64(period + val, period);
6708 offset = nr * period;
6709 val -= offset;
e7850595 6710 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6711 goto again;
15dbf27c 6712
7b4b6658 6713 return nr;
15dbf27c
PZ
6714}
6715
0cff784a 6716static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6717 struct perf_sample_data *data,
5622f295 6718 struct pt_regs *regs)
15dbf27c 6719{
cdd6c482 6720 struct hw_perf_event *hwc = &event->hw;
850bc73f 6721 int throttle = 0;
15dbf27c 6722
0cff784a
PZ
6723 if (!overflow)
6724 overflow = perf_swevent_set_period(event);
15dbf27c 6725
7b4b6658
PZ
6726 if (hwc->interrupts == MAX_INTERRUPTS)
6727 return;
15dbf27c 6728
7b4b6658 6729 for (; overflow; overflow--) {
a8b0ca17 6730 if (__perf_event_overflow(event, throttle,
5622f295 6731 data, regs)) {
7b4b6658
PZ
6732 /*
6733 * We inhibit the overflow from happening when
6734 * hwc->interrupts == MAX_INTERRUPTS.
6735 */
6736 break;
6737 }
cf450a73 6738 throttle = 1;
7b4b6658 6739 }
15dbf27c
PZ
6740}
6741
a4eaf7f1 6742static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6743 struct perf_sample_data *data,
5622f295 6744 struct pt_regs *regs)
7b4b6658 6745{
cdd6c482 6746 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6747
e7850595 6748 local64_add(nr, &event->count);
d6d020e9 6749
0cff784a
PZ
6750 if (!regs)
6751 return;
6752
6c7e550f 6753 if (!is_sampling_event(event))
7b4b6658 6754 return;
d6d020e9 6755
5d81e5cf
AV
6756 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6757 data->period = nr;
6758 return perf_swevent_overflow(event, 1, data, regs);
6759 } else
6760 data->period = event->hw.last_period;
6761
0cff784a 6762 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6763 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6764
e7850595 6765 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6766 return;
df1a132b 6767
a8b0ca17 6768 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6769}
6770
f5ffe02e
FW
6771static int perf_exclude_event(struct perf_event *event,
6772 struct pt_regs *regs)
6773{
a4eaf7f1 6774 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6775 return 1;
a4eaf7f1 6776
f5ffe02e
FW
6777 if (regs) {
6778 if (event->attr.exclude_user && user_mode(regs))
6779 return 1;
6780
6781 if (event->attr.exclude_kernel && !user_mode(regs))
6782 return 1;
6783 }
6784
6785 return 0;
6786}
6787
cdd6c482 6788static int perf_swevent_match(struct perf_event *event,
1c432d89 6789 enum perf_type_id type,
6fb2915d
LZ
6790 u32 event_id,
6791 struct perf_sample_data *data,
6792 struct pt_regs *regs)
15dbf27c 6793{
cdd6c482 6794 if (event->attr.type != type)
a21ca2ca 6795 return 0;
f5ffe02e 6796
cdd6c482 6797 if (event->attr.config != event_id)
15dbf27c
PZ
6798 return 0;
6799
f5ffe02e
FW
6800 if (perf_exclude_event(event, regs))
6801 return 0;
15dbf27c
PZ
6802
6803 return 1;
6804}
6805
76e1d904
FW
6806static inline u64 swevent_hash(u64 type, u32 event_id)
6807{
6808 u64 val = event_id | (type << 32);
6809
6810 return hash_64(val, SWEVENT_HLIST_BITS);
6811}
6812
49f135ed
FW
6813static inline struct hlist_head *
6814__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6815{
49f135ed
FW
6816 u64 hash = swevent_hash(type, event_id);
6817
6818 return &hlist->heads[hash];
6819}
76e1d904 6820
49f135ed
FW
6821/* For the read side: events when they trigger */
6822static inline struct hlist_head *
b28ab83c 6823find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6824{
6825 struct swevent_hlist *hlist;
76e1d904 6826
b28ab83c 6827 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6828 if (!hlist)
6829 return NULL;
6830
49f135ed
FW
6831 return __find_swevent_head(hlist, type, event_id);
6832}
6833
6834/* For the event head insertion and removal in the hlist */
6835static inline struct hlist_head *
b28ab83c 6836find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6837{
6838 struct swevent_hlist *hlist;
6839 u32 event_id = event->attr.config;
6840 u64 type = event->attr.type;
6841
6842 /*
6843 * Event scheduling is always serialized against hlist allocation
6844 * and release. Which makes the protected version suitable here.
6845 * The context lock guarantees that.
6846 */
b28ab83c 6847 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6848 lockdep_is_held(&event->ctx->lock));
6849 if (!hlist)
6850 return NULL;
6851
6852 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6853}
6854
6855static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6856 u64 nr,
76e1d904
FW
6857 struct perf_sample_data *data,
6858 struct pt_regs *regs)
15dbf27c 6859{
4a32fea9 6860 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6861 struct perf_event *event;
76e1d904 6862 struct hlist_head *head;
15dbf27c 6863
76e1d904 6864 rcu_read_lock();
b28ab83c 6865 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6866 if (!head)
6867 goto end;
6868
b67bfe0d 6869 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6870 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6871 perf_swevent_event(event, nr, data, regs);
15dbf27c 6872 }
76e1d904
FW
6873end:
6874 rcu_read_unlock();
15dbf27c
PZ
6875}
6876
86038c5e
PZI
6877DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6878
4ed7c92d 6879int perf_swevent_get_recursion_context(void)
96f6d444 6880{
4a32fea9 6881 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6882
b28ab83c 6883 return get_recursion_context(swhash->recursion);
96f6d444 6884}
645e8cc0 6885EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6886
fa9f90be 6887inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6888{
4a32fea9 6889 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6890
b28ab83c 6891 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6892}
15dbf27c 6893
86038c5e 6894void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6895{
a4234bfc 6896 struct perf_sample_data data;
4ed7c92d 6897
86038c5e 6898 if (WARN_ON_ONCE(!regs))
4ed7c92d 6899 return;
a4234bfc 6900
fd0d000b 6901 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6902 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6903}
6904
6905void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6906{
6907 int rctx;
6908
6909 preempt_disable_notrace();
6910 rctx = perf_swevent_get_recursion_context();
6911 if (unlikely(rctx < 0))
6912 goto fail;
6913
6914 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6915
6916 perf_swevent_put_recursion_context(rctx);
86038c5e 6917fail:
1c024eca 6918 preempt_enable_notrace();
b8e83514
PZ
6919}
6920
cdd6c482 6921static void perf_swevent_read(struct perf_event *event)
15dbf27c 6922{
15dbf27c
PZ
6923}
6924
a4eaf7f1 6925static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6926{
4a32fea9 6927 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6928 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6929 struct hlist_head *head;
6930
6c7e550f 6931 if (is_sampling_event(event)) {
7b4b6658 6932 hwc->last_period = hwc->sample_period;
cdd6c482 6933 perf_swevent_set_period(event);
7b4b6658 6934 }
76e1d904 6935
a4eaf7f1
PZ
6936 hwc->state = !(flags & PERF_EF_START);
6937
b28ab83c 6938 head = find_swevent_head(swhash, event);
12ca6ad2 6939 if (WARN_ON_ONCE(!head))
76e1d904
FW
6940 return -EINVAL;
6941
6942 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6943 perf_event_update_userpage(event);
76e1d904 6944
15dbf27c
PZ
6945 return 0;
6946}
6947
a4eaf7f1 6948static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6949{
76e1d904 6950 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6951}
6952
a4eaf7f1 6953static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6954{
a4eaf7f1 6955 event->hw.state = 0;
d6d020e9 6956}
aa9c4c0f 6957
a4eaf7f1 6958static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6959{
a4eaf7f1 6960 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6961}
6962
49f135ed
FW
6963/* Deref the hlist from the update side */
6964static inline struct swevent_hlist *
b28ab83c 6965swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6966{
b28ab83c
PZ
6967 return rcu_dereference_protected(swhash->swevent_hlist,
6968 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6969}
6970
b28ab83c 6971static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6972{
b28ab83c 6973 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6974
49f135ed 6975 if (!hlist)
76e1d904
FW
6976 return;
6977
70691d4a 6978 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6979 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6980}
6981
3b364d7b 6982static void swevent_hlist_put_cpu(int cpu)
76e1d904 6983{
b28ab83c 6984 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6985
b28ab83c 6986 mutex_lock(&swhash->hlist_mutex);
76e1d904 6987
b28ab83c
PZ
6988 if (!--swhash->hlist_refcount)
6989 swevent_hlist_release(swhash);
76e1d904 6990
b28ab83c 6991 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6992}
6993
3b364d7b 6994static void swevent_hlist_put(void)
76e1d904
FW
6995{
6996 int cpu;
6997
76e1d904 6998 for_each_possible_cpu(cpu)
3b364d7b 6999 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7000}
7001
3b364d7b 7002static int swevent_hlist_get_cpu(int cpu)
76e1d904 7003{
b28ab83c 7004 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7005 int err = 0;
7006
b28ab83c 7007 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7008 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7009 struct swevent_hlist *hlist;
7010
7011 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7012 if (!hlist) {
7013 err = -ENOMEM;
7014 goto exit;
7015 }
b28ab83c 7016 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7017 }
b28ab83c 7018 swhash->hlist_refcount++;
9ed6060d 7019exit:
b28ab83c 7020 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7021
7022 return err;
7023}
7024
3b364d7b 7025static int swevent_hlist_get(void)
76e1d904 7026{
3b364d7b 7027 int err, cpu, failed_cpu;
76e1d904 7028
76e1d904
FW
7029 get_online_cpus();
7030 for_each_possible_cpu(cpu) {
3b364d7b 7031 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7032 if (err) {
7033 failed_cpu = cpu;
7034 goto fail;
7035 }
7036 }
7037 put_online_cpus();
7038
7039 return 0;
9ed6060d 7040fail:
76e1d904
FW
7041 for_each_possible_cpu(cpu) {
7042 if (cpu == failed_cpu)
7043 break;
3b364d7b 7044 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7045 }
7046
7047 put_online_cpus();
7048 return err;
7049}
7050
c5905afb 7051struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7052
b0a873eb
PZ
7053static void sw_perf_event_destroy(struct perf_event *event)
7054{
7055 u64 event_id = event->attr.config;
95476b64 7056
b0a873eb
PZ
7057 WARN_ON(event->parent);
7058
c5905afb 7059 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7060 swevent_hlist_put();
b0a873eb
PZ
7061}
7062
7063static int perf_swevent_init(struct perf_event *event)
7064{
8176cced 7065 u64 event_id = event->attr.config;
b0a873eb
PZ
7066
7067 if (event->attr.type != PERF_TYPE_SOFTWARE)
7068 return -ENOENT;
7069
2481c5fa
SE
7070 /*
7071 * no branch sampling for software events
7072 */
7073 if (has_branch_stack(event))
7074 return -EOPNOTSUPP;
7075
b0a873eb
PZ
7076 switch (event_id) {
7077 case PERF_COUNT_SW_CPU_CLOCK:
7078 case PERF_COUNT_SW_TASK_CLOCK:
7079 return -ENOENT;
7080
7081 default:
7082 break;
7083 }
7084
ce677831 7085 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7086 return -ENOENT;
7087
7088 if (!event->parent) {
7089 int err;
7090
3b364d7b 7091 err = swevent_hlist_get();
b0a873eb
PZ
7092 if (err)
7093 return err;
7094
c5905afb 7095 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7096 event->destroy = sw_perf_event_destroy;
7097 }
7098
7099 return 0;
7100}
7101
7102static struct pmu perf_swevent = {
89a1e187 7103 .task_ctx_nr = perf_sw_context,
95476b64 7104
34f43927
PZ
7105 .capabilities = PERF_PMU_CAP_NO_NMI,
7106
b0a873eb 7107 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7108 .add = perf_swevent_add,
7109 .del = perf_swevent_del,
7110 .start = perf_swevent_start,
7111 .stop = perf_swevent_stop,
1c024eca 7112 .read = perf_swevent_read,
1c024eca
PZ
7113};
7114
b0a873eb
PZ
7115#ifdef CONFIG_EVENT_TRACING
7116
1c024eca
PZ
7117static int perf_tp_filter_match(struct perf_event *event,
7118 struct perf_sample_data *data)
7119{
7120 void *record = data->raw->data;
7121
b71b437e
PZ
7122 /* only top level events have filters set */
7123 if (event->parent)
7124 event = event->parent;
7125
1c024eca
PZ
7126 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7127 return 1;
7128 return 0;
7129}
7130
7131static int perf_tp_event_match(struct perf_event *event,
7132 struct perf_sample_data *data,
7133 struct pt_regs *regs)
7134{
a0f7d0f7
FW
7135 if (event->hw.state & PERF_HES_STOPPED)
7136 return 0;
580d607c
PZ
7137 /*
7138 * All tracepoints are from kernel-space.
7139 */
7140 if (event->attr.exclude_kernel)
1c024eca
PZ
7141 return 0;
7142
7143 if (!perf_tp_filter_match(event, data))
7144 return 0;
7145
7146 return 1;
7147}
7148
7149void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7150 struct pt_regs *regs, struct hlist_head *head, int rctx,
7151 struct task_struct *task)
95476b64
FW
7152{
7153 struct perf_sample_data data;
1c024eca 7154 struct perf_event *event;
1c024eca 7155
95476b64
FW
7156 struct perf_raw_record raw = {
7157 .size = entry_size,
7158 .data = record,
7159 };
7160
fd0d000b 7161 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7162 data.raw = &raw;
7163
b67bfe0d 7164 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7165 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7166 perf_swevent_event(event, count, &data, regs);
4f41c013 7167 }
ecc55f84 7168
e6dab5ff
AV
7169 /*
7170 * If we got specified a target task, also iterate its context and
7171 * deliver this event there too.
7172 */
7173 if (task && task != current) {
7174 struct perf_event_context *ctx;
7175 struct trace_entry *entry = record;
7176
7177 rcu_read_lock();
7178 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7179 if (!ctx)
7180 goto unlock;
7181
7182 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7183 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7184 continue;
7185 if (event->attr.config != entry->type)
7186 continue;
7187 if (perf_tp_event_match(event, &data, regs))
7188 perf_swevent_event(event, count, &data, regs);
7189 }
7190unlock:
7191 rcu_read_unlock();
7192 }
7193
ecc55f84 7194 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7195}
7196EXPORT_SYMBOL_GPL(perf_tp_event);
7197
cdd6c482 7198static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7199{
1c024eca 7200 perf_trace_destroy(event);
e077df4f
PZ
7201}
7202
b0a873eb 7203static int perf_tp_event_init(struct perf_event *event)
e077df4f 7204{
76e1d904
FW
7205 int err;
7206
b0a873eb
PZ
7207 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7208 return -ENOENT;
7209
2481c5fa
SE
7210 /*
7211 * no branch sampling for tracepoint events
7212 */
7213 if (has_branch_stack(event))
7214 return -EOPNOTSUPP;
7215
1c024eca
PZ
7216 err = perf_trace_init(event);
7217 if (err)
b0a873eb 7218 return err;
e077df4f 7219
cdd6c482 7220 event->destroy = tp_perf_event_destroy;
e077df4f 7221
b0a873eb
PZ
7222 return 0;
7223}
7224
7225static struct pmu perf_tracepoint = {
89a1e187
PZ
7226 .task_ctx_nr = perf_sw_context,
7227
b0a873eb 7228 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7229 .add = perf_trace_add,
7230 .del = perf_trace_del,
7231 .start = perf_swevent_start,
7232 .stop = perf_swevent_stop,
b0a873eb 7233 .read = perf_swevent_read,
b0a873eb
PZ
7234};
7235
7236static inline void perf_tp_register(void)
7237{
2e80a82a 7238 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7239}
6fb2915d 7240
6fb2915d
LZ
7241static void perf_event_free_filter(struct perf_event *event)
7242{
7243 ftrace_profile_free_filter(event);
7244}
7245
2541517c
AS
7246static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7247{
7248 struct bpf_prog *prog;
7249
7250 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7251 return -EINVAL;
7252
7253 if (event->tp_event->prog)
7254 return -EEXIST;
7255
04a22fae
WN
7256 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7257 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7258 return -EINVAL;
7259
7260 prog = bpf_prog_get(prog_fd);
7261 if (IS_ERR(prog))
7262 return PTR_ERR(prog);
7263
6c373ca8 7264 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7265 /* valid fd, but invalid bpf program type */
7266 bpf_prog_put(prog);
7267 return -EINVAL;
7268 }
7269
7270 event->tp_event->prog = prog;
7271
7272 return 0;
7273}
7274
7275static void perf_event_free_bpf_prog(struct perf_event *event)
7276{
7277 struct bpf_prog *prog;
7278
7279 if (!event->tp_event)
7280 return;
7281
7282 prog = event->tp_event->prog;
7283 if (prog) {
7284 event->tp_event->prog = NULL;
7285 bpf_prog_put(prog);
7286 }
7287}
7288
e077df4f 7289#else
6fb2915d 7290
b0a873eb 7291static inline void perf_tp_register(void)
e077df4f 7292{
e077df4f 7293}
6fb2915d 7294
6fb2915d
LZ
7295static void perf_event_free_filter(struct perf_event *event)
7296{
7297}
7298
2541517c
AS
7299static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7300{
7301 return -ENOENT;
7302}
7303
7304static void perf_event_free_bpf_prog(struct perf_event *event)
7305{
7306}
07b139c8 7307#endif /* CONFIG_EVENT_TRACING */
e077df4f 7308
24f1e32c 7309#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7310void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7311{
f5ffe02e
FW
7312 struct perf_sample_data sample;
7313 struct pt_regs *regs = data;
7314
fd0d000b 7315 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7316
a4eaf7f1 7317 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7318 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7319}
7320#endif
7321
c796bbbe
AS
7322static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7323{
7324 char *filter_str;
7325 int ret = -EINVAL;
7326
7327 if (event->attr.type != PERF_TYPE_TRACEPOINT ||
7328 !IS_ENABLED(CONFIG_EVENT_TRACING))
7329 return -EINVAL;
7330
7331 filter_str = strndup_user(arg, PAGE_SIZE);
7332 if (IS_ERR(filter_str))
7333 return PTR_ERR(filter_str);
7334
7335 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7336 event->attr.type == PERF_TYPE_TRACEPOINT)
7337 ret = ftrace_profile_set_filter(event, event->attr.config,
7338 filter_str);
7339
7340 kfree(filter_str);
7341 return ret;
7342}
7343
b0a873eb
PZ
7344/*
7345 * hrtimer based swevent callback
7346 */
f29ac756 7347
b0a873eb 7348static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7349{
b0a873eb
PZ
7350 enum hrtimer_restart ret = HRTIMER_RESTART;
7351 struct perf_sample_data data;
7352 struct pt_regs *regs;
7353 struct perf_event *event;
7354 u64 period;
f29ac756 7355
b0a873eb 7356 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7357
7358 if (event->state != PERF_EVENT_STATE_ACTIVE)
7359 return HRTIMER_NORESTART;
7360
b0a873eb 7361 event->pmu->read(event);
f344011c 7362
fd0d000b 7363 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7364 regs = get_irq_regs();
7365
7366 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7367 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7368 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7369 ret = HRTIMER_NORESTART;
7370 }
24f1e32c 7371
b0a873eb
PZ
7372 period = max_t(u64, 10000, event->hw.sample_period);
7373 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7374
b0a873eb 7375 return ret;
f29ac756
PZ
7376}
7377
b0a873eb 7378static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7379{
b0a873eb 7380 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7381 s64 period;
7382
7383 if (!is_sampling_event(event))
7384 return;
f5ffe02e 7385
5d508e82
FBH
7386 period = local64_read(&hwc->period_left);
7387 if (period) {
7388 if (period < 0)
7389 period = 10000;
fa407f35 7390
5d508e82
FBH
7391 local64_set(&hwc->period_left, 0);
7392 } else {
7393 period = max_t(u64, 10000, hwc->sample_period);
7394 }
3497d206
TG
7395 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7396 HRTIMER_MODE_REL_PINNED);
24f1e32c 7397}
b0a873eb
PZ
7398
7399static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7400{
b0a873eb
PZ
7401 struct hw_perf_event *hwc = &event->hw;
7402
6c7e550f 7403 if (is_sampling_event(event)) {
b0a873eb 7404 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7405 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7406
7407 hrtimer_cancel(&hwc->hrtimer);
7408 }
24f1e32c
FW
7409}
7410
ba3dd36c
PZ
7411static void perf_swevent_init_hrtimer(struct perf_event *event)
7412{
7413 struct hw_perf_event *hwc = &event->hw;
7414
7415 if (!is_sampling_event(event))
7416 return;
7417
7418 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7419 hwc->hrtimer.function = perf_swevent_hrtimer;
7420
7421 /*
7422 * Since hrtimers have a fixed rate, we can do a static freq->period
7423 * mapping and avoid the whole period adjust feedback stuff.
7424 */
7425 if (event->attr.freq) {
7426 long freq = event->attr.sample_freq;
7427
7428 event->attr.sample_period = NSEC_PER_SEC / freq;
7429 hwc->sample_period = event->attr.sample_period;
7430 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7431 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7432 event->attr.freq = 0;
7433 }
7434}
7435
b0a873eb
PZ
7436/*
7437 * Software event: cpu wall time clock
7438 */
7439
7440static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7441{
b0a873eb
PZ
7442 s64 prev;
7443 u64 now;
7444
a4eaf7f1 7445 now = local_clock();
b0a873eb
PZ
7446 prev = local64_xchg(&event->hw.prev_count, now);
7447 local64_add(now - prev, &event->count);
24f1e32c 7448}
24f1e32c 7449
a4eaf7f1 7450static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7451{
a4eaf7f1 7452 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7453 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7454}
7455
a4eaf7f1 7456static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7457{
b0a873eb
PZ
7458 perf_swevent_cancel_hrtimer(event);
7459 cpu_clock_event_update(event);
7460}
f29ac756 7461
a4eaf7f1
PZ
7462static int cpu_clock_event_add(struct perf_event *event, int flags)
7463{
7464 if (flags & PERF_EF_START)
7465 cpu_clock_event_start(event, flags);
6a694a60 7466 perf_event_update_userpage(event);
a4eaf7f1
PZ
7467
7468 return 0;
7469}
7470
7471static void cpu_clock_event_del(struct perf_event *event, int flags)
7472{
7473 cpu_clock_event_stop(event, flags);
7474}
7475
b0a873eb
PZ
7476static void cpu_clock_event_read(struct perf_event *event)
7477{
7478 cpu_clock_event_update(event);
7479}
f344011c 7480
b0a873eb
PZ
7481static int cpu_clock_event_init(struct perf_event *event)
7482{
7483 if (event->attr.type != PERF_TYPE_SOFTWARE)
7484 return -ENOENT;
7485
7486 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7487 return -ENOENT;
7488
2481c5fa
SE
7489 /*
7490 * no branch sampling for software events
7491 */
7492 if (has_branch_stack(event))
7493 return -EOPNOTSUPP;
7494
ba3dd36c
PZ
7495 perf_swevent_init_hrtimer(event);
7496
b0a873eb 7497 return 0;
f29ac756
PZ
7498}
7499
b0a873eb 7500static struct pmu perf_cpu_clock = {
89a1e187
PZ
7501 .task_ctx_nr = perf_sw_context,
7502
34f43927
PZ
7503 .capabilities = PERF_PMU_CAP_NO_NMI,
7504
b0a873eb 7505 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7506 .add = cpu_clock_event_add,
7507 .del = cpu_clock_event_del,
7508 .start = cpu_clock_event_start,
7509 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7510 .read = cpu_clock_event_read,
7511};
7512
7513/*
7514 * Software event: task time clock
7515 */
7516
7517static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7518{
b0a873eb
PZ
7519 u64 prev;
7520 s64 delta;
5c92d124 7521
b0a873eb
PZ
7522 prev = local64_xchg(&event->hw.prev_count, now);
7523 delta = now - prev;
7524 local64_add(delta, &event->count);
7525}
5c92d124 7526
a4eaf7f1 7527static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7528{
a4eaf7f1 7529 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7530 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7531}
7532
a4eaf7f1 7533static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7534{
7535 perf_swevent_cancel_hrtimer(event);
7536 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7537}
7538
7539static int task_clock_event_add(struct perf_event *event, int flags)
7540{
7541 if (flags & PERF_EF_START)
7542 task_clock_event_start(event, flags);
6a694a60 7543 perf_event_update_userpage(event);
b0a873eb 7544
a4eaf7f1
PZ
7545 return 0;
7546}
7547
7548static void task_clock_event_del(struct perf_event *event, int flags)
7549{
7550 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7551}
7552
7553static void task_clock_event_read(struct perf_event *event)
7554{
768a06e2
PZ
7555 u64 now = perf_clock();
7556 u64 delta = now - event->ctx->timestamp;
7557 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7558
7559 task_clock_event_update(event, time);
7560}
7561
7562static int task_clock_event_init(struct perf_event *event)
6fb2915d 7563{
b0a873eb
PZ
7564 if (event->attr.type != PERF_TYPE_SOFTWARE)
7565 return -ENOENT;
7566
7567 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7568 return -ENOENT;
7569
2481c5fa
SE
7570 /*
7571 * no branch sampling for software events
7572 */
7573 if (has_branch_stack(event))
7574 return -EOPNOTSUPP;
7575
ba3dd36c
PZ
7576 perf_swevent_init_hrtimer(event);
7577
b0a873eb 7578 return 0;
6fb2915d
LZ
7579}
7580
b0a873eb 7581static struct pmu perf_task_clock = {
89a1e187
PZ
7582 .task_ctx_nr = perf_sw_context,
7583
34f43927
PZ
7584 .capabilities = PERF_PMU_CAP_NO_NMI,
7585
b0a873eb 7586 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7587 .add = task_clock_event_add,
7588 .del = task_clock_event_del,
7589 .start = task_clock_event_start,
7590 .stop = task_clock_event_stop,
b0a873eb
PZ
7591 .read = task_clock_event_read,
7592};
6fb2915d 7593
ad5133b7 7594static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7595{
e077df4f 7596}
6fb2915d 7597
fbbe0701
SB
7598static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7599{
7600}
7601
ad5133b7 7602static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7603{
ad5133b7 7604 return 0;
6fb2915d
LZ
7605}
7606
18ab2cd3 7607static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7608
7609static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7610{
fbbe0701
SB
7611 __this_cpu_write(nop_txn_flags, flags);
7612
7613 if (flags & ~PERF_PMU_TXN_ADD)
7614 return;
7615
ad5133b7 7616 perf_pmu_disable(pmu);
6fb2915d
LZ
7617}
7618
ad5133b7
PZ
7619static int perf_pmu_commit_txn(struct pmu *pmu)
7620{
fbbe0701
SB
7621 unsigned int flags = __this_cpu_read(nop_txn_flags);
7622
7623 __this_cpu_write(nop_txn_flags, 0);
7624
7625 if (flags & ~PERF_PMU_TXN_ADD)
7626 return 0;
7627
ad5133b7
PZ
7628 perf_pmu_enable(pmu);
7629 return 0;
7630}
e077df4f 7631
ad5133b7 7632static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7633{
fbbe0701
SB
7634 unsigned int flags = __this_cpu_read(nop_txn_flags);
7635
7636 __this_cpu_write(nop_txn_flags, 0);
7637
7638 if (flags & ~PERF_PMU_TXN_ADD)
7639 return;
7640
ad5133b7 7641 perf_pmu_enable(pmu);
24f1e32c
FW
7642}
7643
35edc2a5
PZ
7644static int perf_event_idx_default(struct perf_event *event)
7645{
c719f560 7646 return 0;
35edc2a5
PZ
7647}
7648
8dc85d54
PZ
7649/*
7650 * Ensures all contexts with the same task_ctx_nr have the same
7651 * pmu_cpu_context too.
7652 */
9e317041 7653static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7654{
8dc85d54 7655 struct pmu *pmu;
b326e956 7656
8dc85d54
PZ
7657 if (ctxn < 0)
7658 return NULL;
24f1e32c 7659
8dc85d54
PZ
7660 list_for_each_entry(pmu, &pmus, entry) {
7661 if (pmu->task_ctx_nr == ctxn)
7662 return pmu->pmu_cpu_context;
7663 }
24f1e32c 7664
8dc85d54 7665 return NULL;
24f1e32c
FW
7666}
7667
51676957 7668static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7669{
51676957
PZ
7670 int cpu;
7671
7672 for_each_possible_cpu(cpu) {
7673 struct perf_cpu_context *cpuctx;
7674
7675 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7676
3f1f3320
PZ
7677 if (cpuctx->unique_pmu == old_pmu)
7678 cpuctx->unique_pmu = pmu;
51676957
PZ
7679 }
7680}
7681
7682static void free_pmu_context(struct pmu *pmu)
7683{
7684 struct pmu *i;
f5ffe02e 7685
8dc85d54 7686 mutex_lock(&pmus_lock);
0475f9ea 7687 /*
8dc85d54 7688 * Like a real lame refcount.
0475f9ea 7689 */
51676957
PZ
7690 list_for_each_entry(i, &pmus, entry) {
7691 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7692 update_pmu_context(i, pmu);
8dc85d54 7693 goto out;
51676957 7694 }
8dc85d54 7695 }
d6d020e9 7696
51676957 7697 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7698out:
7699 mutex_unlock(&pmus_lock);
24f1e32c 7700}
2e80a82a 7701static struct idr pmu_idr;
d6d020e9 7702
abe43400
PZ
7703static ssize_t
7704type_show(struct device *dev, struct device_attribute *attr, char *page)
7705{
7706 struct pmu *pmu = dev_get_drvdata(dev);
7707
7708 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7709}
90826ca7 7710static DEVICE_ATTR_RO(type);
abe43400 7711
62b85639
SE
7712static ssize_t
7713perf_event_mux_interval_ms_show(struct device *dev,
7714 struct device_attribute *attr,
7715 char *page)
7716{
7717 struct pmu *pmu = dev_get_drvdata(dev);
7718
7719 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7720}
7721
272325c4
PZ
7722static DEFINE_MUTEX(mux_interval_mutex);
7723
62b85639
SE
7724static ssize_t
7725perf_event_mux_interval_ms_store(struct device *dev,
7726 struct device_attribute *attr,
7727 const char *buf, size_t count)
7728{
7729 struct pmu *pmu = dev_get_drvdata(dev);
7730 int timer, cpu, ret;
7731
7732 ret = kstrtoint(buf, 0, &timer);
7733 if (ret)
7734 return ret;
7735
7736 if (timer < 1)
7737 return -EINVAL;
7738
7739 /* same value, noting to do */
7740 if (timer == pmu->hrtimer_interval_ms)
7741 return count;
7742
272325c4 7743 mutex_lock(&mux_interval_mutex);
62b85639
SE
7744 pmu->hrtimer_interval_ms = timer;
7745
7746 /* update all cpuctx for this PMU */
272325c4
PZ
7747 get_online_cpus();
7748 for_each_online_cpu(cpu) {
62b85639
SE
7749 struct perf_cpu_context *cpuctx;
7750 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7751 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7752
272325c4
PZ
7753 cpu_function_call(cpu,
7754 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7755 }
272325c4
PZ
7756 put_online_cpus();
7757 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7758
7759 return count;
7760}
90826ca7 7761static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7762
90826ca7
GKH
7763static struct attribute *pmu_dev_attrs[] = {
7764 &dev_attr_type.attr,
7765 &dev_attr_perf_event_mux_interval_ms.attr,
7766 NULL,
abe43400 7767};
90826ca7 7768ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7769
7770static int pmu_bus_running;
7771static struct bus_type pmu_bus = {
7772 .name = "event_source",
90826ca7 7773 .dev_groups = pmu_dev_groups,
abe43400
PZ
7774};
7775
7776static void pmu_dev_release(struct device *dev)
7777{
7778 kfree(dev);
7779}
7780
7781static int pmu_dev_alloc(struct pmu *pmu)
7782{
7783 int ret = -ENOMEM;
7784
7785 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7786 if (!pmu->dev)
7787 goto out;
7788
0c9d42ed 7789 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7790 device_initialize(pmu->dev);
7791 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7792 if (ret)
7793 goto free_dev;
7794
7795 dev_set_drvdata(pmu->dev, pmu);
7796 pmu->dev->bus = &pmu_bus;
7797 pmu->dev->release = pmu_dev_release;
7798 ret = device_add(pmu->dev);
7799 if (ret)
7800 goto free_dev;
7801
7802out:
7803 return ret;
7804
7805free_dev:
7806 put_device(pmu->dev);
7807 goto out;
7808}
7809
547e9fd7 7810static struct lock_class_key cpuctx_mutex;
facc4307 7811static struct lock_class_key cpuctx_lock;
547e9fd7 7812
03d8e80b 7813int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7814{
108b02cf 7815 int cpu, ret;
24f1e32c 7816
b0a873eb 7817 mutex_lock(&pmus_lock);
33696fc0
PZ
7818 ret = -ENOMEM;
7819 pmu->pmu_disable_count = alloc_percpu(int);
7820 if (!pmu->pmu_disable_count)
7821 goto unlock;
f29ac756 7822
2e80a82a
PZ
7823 pmu->type = -1;
7824 if (!name)
7825 goto skip_type;
7826 pmu->name = name;
7827
7828 if (type < 0) {
0e9c3be2
TH
7829 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7830 if (type < 0) {
7831 ret = type;
2e80a82a
PZ
7832 goto free_pdc;
7833 }
7834 }
7835 pmu->type = type;
7836
abe43400
PZ
7837 if (pmu_bus_running) {
7838 ret = pmu_dev_alloc(pmu);
7839 if (ret)
7840 goto free_idr;
7841 }
7842
2e80a82a 7843skip_type:
26657848
PZ
7844 if (pmu->task_ctx_nr == perf_hw_context) {
7845 static int hw_context_taken = 0;
7846
7847 if (WARN_ON_ONCE(hw_context_taken))
7848 pmu->task_ctx_nr = perf_invalid_context;
7849
7850 hw_context_taken = 1;
7851 }
7852
8dc85d54
PZ
7853 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7854 if (pmu->pmu_cpu_context)
7855 goto got_cpu_context;
f29ac756 7856
c4814202 7857 ret = -ENOMEM;
108b02cf
PZ
7858 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7859 if (!pmu->pmu_cpu_context)
abe43400 7860 goto free_dev;
f344011c 7861
108b02cf
PZ
7862 for_each_possible_cpu(cpu) {
7863 struct perf_cpu_context *cpuctx;
7864
7865 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7866 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7867 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7868 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7869 cpuctx->ctx.pmu = pmu;
9e630205 7870
272325c4 7871 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7872
3f1f3320 7873 cpuctx->unique_pmu = pmu;
108b02cf 7874 }
76e1d904 7875
8dc85d54 7876got_cpu_context:
ad5133b7
PZ
7877 if (!pmu->start_txn) {
7878 if (pmu->pmu_enable) {
7879 /*
7880 * If we have pmu_enable/pmu_disable calls, install
7881 * transaction stubs that use that to try and batch
7882 * hardware accesses.
7883 */
7884 pmu->start_txn = perf_pmu_start_txn;
7885 pmu->commit_txn = perf_pmu_commit_txn;
7886 pmu->cancel_txn = perf_pmu_cancel_txn;
7887 } else {
fbbe0701 7888 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7889 pmu->commit_txn = perf_pmu_nop_int;
7890 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7891 }
5c92d124 7892 }
15dbf27c 7893
ad5133b7
PZ
7894 if (!pmu->pmu_enable) {
7895 pmu->pmu_enable = perf_pmu_nop_void;
7896 pmu->pmu_disable = perf_pmu_nop_void;
7897 }
7898
35edc2a5
PZ
7899 if (!pmu->event_idx)
7900 pmu->event_idx = perf_event_idx_default;
7901
b0a873eb 7902 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7903 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7904 ret = 0;
7905unlock:
b0a873eb
PZ
7906 mutex_unlock(&pmus_lock);
7907
33696fc0 7908 return ret;
108b02cf 7909
abe43400
PZ
7910free_dev:
7911 device_del(pmu->dev);
7912 put_device(pmu->dev);
7913
2e80a82a
PZ
7914free_idr:
7915 if (pmu->type >= PERF_TYPE_MAX)
7916 idr_remove(&pmu_idr, pmu->type);
7917
108b02cf
PZ
7918free_pdc:
7919 free_percpu(pmu->pmu_disable_count);
7920 goto unlock;
f29ac756 7921}
c464c76e 7922EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7923
b0a873eb 7924void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7925{
b0a873eb
PZ
7926 mutex_lock(&pmus_lock);
7927 list_del_rcu(&pmu->entry);
7928 mutex_unlock(&pmus_lock);
5c92d124 7929
0475f9ea 7930 /*
cde8e884
PZ
7931 * We dereference the pmu list under both SRCU and regular RCU, so
7932 * synchronize against both of those.
0475f9ea 7933 */
b0a873eb 7934 synchronize_srcu(&pmus_srcu);
cde8e884 7935 synchronize_rcu();
d6d020e9 7936
33696fc0 7937 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7938 if (pmu->type >= PERF_TYPE_MAX)
7939 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7940 device_del(pmu->dev);
7941 put_device(pmu->dev);
51676957 7942 free_pmu_context(pmu);
b0a873eb 7943}
c464c76e 7944EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7945
cc34b98b
MR
7946static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7947{
ccd41c86 7948 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7949 int ret;
7950
7951 if (!try_module_get(pmu->module))
7952 return -ENODEV;
ccd41c86
PZ
7953
7954 if (event->group_leader != event) {
8b10c5e2
PZ
7955 /*
7956 * This ctx->mutex can nest when we're called through
7957 * inheritance. See the perf_event_ctx_lock_nested() comment.
7958 */
7959 ctx = perf_event_ctx_lock_nested(event->group_leader,
7960 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7961 BUG_ON(!ctx);
7962 }
7963
cc34b98b
MR
7964 event->pmu = pmu;
7965 ret = pmu->event_init(event);
ccd41c86
PZ
7966
7967 if (ctx)
7968 perf_event_ctx_unlock(event->group_leader, ctx);
7969
cc34b98b
MR
7970 if (ret)
7971 module_put(pmu->module);
7972
7973 return ret;
7974}
7975
18ab2cd3 7976static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7977{
7978 struct pmu *pmu = NULL;
7979 int idx;
940c5b29 7980 int ret;
b0a873eb
PZ
7981
7982 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7983
7984 rcu_read_lock();
7985 pmu = idr_find(&pmu_idr, event->attr.type);
7986 rcu_read_unlock();
940c5b29 7987 if (pmu) {
cc34b98b 7988 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7989 if (ret)
7990 pmu = ERR_PTR(ret);
2e80a82a 7991 goto unlock;
940c5b29 7992 }
2e80a82a 7993
b0a873eb 7994 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7995 ret = perf_try_init_event(pmu, event);
b0a873eb 7996 if (!ret)
e5f4d339 7997 goto unlock;
76e1d904 7998
b0a873eb
PZ
7999 if (ret != -ENOENT) {
8000 pmu = ERR_PTR(ret);
e5f4d339 8001 goto unlock;
f344011c 8002 }
5c92d124 8003 }
e5f4d339
PZ
8004 pmu = ERR_PTR(-ENOENT);
8005unlock:
b0a873eb 8006 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8007
4aeb0b42 8008 return pmu;
5c92d124
IM
8009}
8010
4beb31f3
FW
8011static void account_event_cpu(struct perf_event *event, int cpu)
8012{
8013 if (event->parent)
8014 return;
8015
4beb31f3
FW
8016 if (is_cgroup_event(event))
8017 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8018}
8019
555e0c1e
FW
8020/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8021static void account_freq_event_nohz(void)
8022{
8023#ifdef CONFIG_NO_HZ_FULL
8024 /* Lock so we don't race with concurrent unaccount */
8025 spin_lock(&nr_freq_lock);
8026 if (atomic_inc_return(&nr_freq_events) == 1)
8027 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8028 spin_unlock(&nr_freq_lock);
8029#endif
8030}
8031
8032static void account_freq_event(void)
8033{
8034 if (tick_nohz_full_enabled())
8035 account_freq_event_nohz();
8036 else
8037 atomic_inc(&nr_freq_events);
8038}
8039
8040
766d6c07
FW
8041static void account_event(struct perf_event *event)
8042{
25432ae9
PZ
8043 bool inc = false;
8044
4beb31f3
FW
8045 if (event->parent)
8046 return;
8047
766d6c07 8048 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8049 inc = true;
766d6c07
FW
8050 if (event->attr.mmap || event->attr.mmap_data)
8051 atomic_inc(&nr_mmap_events);
8052 if (event->attr.comm)
8053 atomic_inc(&nr_comm_events);
8054 if (event->attr.task)
8055 atomic_inc(&nr_task_events);
555e0c1e
FW
8056 if (event->attr.freq)
8057 account_freq_event();
45ac1403
AH
8058 if (event->attr.context_switch) {
8059 atomic_inc(&nr_switch_events);
25432ae9 8060 inc = true;
45ac1403 8061 }
4beb31f3 8062 if (has_branch_stack(event))
25432ae9 8063 inc = true;
4beb31f3 8064 if (is_cgroup_event(event))
25432ae9
PZ
8065 inc = true;
8066
9107c89e
PZ
8067 if (inc) {
8068 if (atomic_inc_not_zero(&perf_sched_count))
8069 goto enabled;
8070
8071 mutex_lock(&perf_sched_mutex);
8072 if (!atomic_read(&perf_sched_count)) {
8073 static_branch_enable(&perf_sched_events);
8074 /*
8075 * Guarantee that all CPUs observe they key change and
8076 * call the perf scheduling hooks before proceeding to
8077 * install events that need them.
8078 */
8079 synchronize_sched();
8080 }
8081 /*
8082 * Now that we have waited for the sync_sched(), allow further
8083 * increments to by-pass the mutex.
8084 */
8085 atomic_inc(&perf_sched_count);
8086 mutex_unlock(&perf_sched_mutex);
8087 }
8088enabled:
4beb31f3
FW
8089
8090 account_event_cpu(event, event->cpu);
766d6c07
FW
8091}
8092
0793a61d 8093/*
cdd6c482 8094 * Allocate and initialize a event structure
0793a61d 8095 */
cdd6c482 8096static struct perf_event *
c3f00c70 8097perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8098 struct task_struct *task,
8099 struct perf_event *group_leader,
8100 struct perf_event *parent_event,
4dc0da86 8101 perf_overflow_handler_t overflow_handler,
79dff51e 8102 void *context, int cgroup_fd)
0793a61d 8103{
51b0fe39 8104 struct pmu *pmu;
cdd6c482
IM
8105 struct perf_event *event;
8106 struct hw_perf_event *hwc;
90983b16 8107 long err = -EINVAL;
0793a61d 8108
66832eb4
ON
8109 if ((unsigned)cpu >= nr_cpu_ids) {
8110 if (!task || cpu != -1)
8111 return ERR_PTR(-EINVAL);
8112 }
8113
c3f00c70 8114 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8115 if (!event)
d5d2bc0d 8116 return ERR_PTR(-ENOMEM);
0793a61d 8117
04289bb9 8118 /*
cdd6c482 8119 * Single events are their own group leaders, with an
04289bb9
IM
8120 * empty sibling list:
8121 */
8122 if (!group_leader)
cdd6c482 8123 group_leader = event;
04289bb9 8124
cdd6c482
IM
8125 mutex_init(&event->child_mutex);
8126 INIT_LIST_HEAD(&event->child_list);
fccc714b 8127
cdd6c482
IM
8128 INIT_LIST_HEAD(&event->group_entry);
8129 INIT_LIST_HEAD(&event->event_entry);
8130 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8131 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8132 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
8133 INIT_HLIST_NODE(&event->hlist_entry);
8134
10c6db11 8135
cdd6c482 8136 init_waitqueue_head(&event->waitq);
e360adbe 8137 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8138
cdd6c482 8139 mutex_init(&event->mmap_mutex);
7b732a75 8140
a6fa941d 8141 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8142 event->cpu = cpu;
8143 event->attr = *attr;
8144 event->group_leader = group_leader;
8145 event->pmu = NULL;
cdd6c482 8146 event->oncpu = -1;
a96bbc16 8147
cdd6c482 8148 event->parent = parent_event;
b84fbc9f 8149
17cf22c3 8150 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8151 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8152
cdd6c482 8153 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8154
d580ff86
PZ
8155 if (task) {
8156 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8157 /*
50f16a8b
PZ
8158 * XXX pmu::event_init needs to know what task to account to
8159 * and we cannot use the ctx information because we need the
8160 * pmu before we get a ctx.
d580ff86 8161 */
50f16a8b 8162 event->hw.target = task;
d580ff86
PZ
8163 }
8164
34f43927
PZ
8165 event->clock = &local_clock;
8166 if (parent_event)
8167 event->clock = parent_event->clock;
8168
4dc0da86 8169 if (!overflow_handler && parent_event) {
b326e956 8170 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8171 context = parent_event->overflow_handler_context;
8172 }
66832eb4 8173
1879445d
WN
8174 if (overflow_handler) {
8175 event->overflow_handler = overflow_handler;
8176 event->overflow_handler_context = context;
9ecda41a
WN
8177 } else if (is_write_backward(event)){
8178 event->overflow_handler = perf_event_output_backward;
8179 event->overflow_handler_context = NULL;
1879445d 8180 } else {
9ecda41a 8181 event->overflow_handler = perf_event_output_forward;
1879445d
WN
8182 event->overflow_handler_context = NULL;
8183 }
97eaf530 8184
0231bb53 8185 perf_event__state_init(event);
a86ed508 8186
4aeb0b42 8187 pmu = NULL;
b8e83514 8188
cdd6c482 8189 hwc = &event->hw;
bd2b5b12 8190 hwc->sample_period = attr->sample_period;
0d48696f 8191 if (attr->freq && attr->sample_freq)
bd2b5b12 8192 hwc->sample_period = 1;
eced1dfc 8193 hwc->last_period = hwc->sample_period;
bd2b5b12 8194
e7850595 8195 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8196
2023b359 8197 /*
cdd6c482 8198 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8199 */
3dab77fb 8200 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8201 goto err_ns;
a46a2300
YZ
8202
8203 if (!has_branch_stack(event))
8204 event->attr.branch_sample_type = 0;
2023b359 8205
79dff51e
MF
8206 if (cgroup_fd != -1) {
8207 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8208 if (err)
8209 goto err_ns;
8210 }
8211
b0a873eb 8212 pmu = perf_init_event(event);
4aeb0b42 8213 if (!pmu)
90983b16
FW
8214 goto err_ns;
8215 else if (IS_ERR(pmu)) {
4aeb0b42 8216 err = PTR_ERR(pmu);
90983b16 8217 goto err_ns;
621a01ea 8218 }
d5d2bc0d 8219
bed5b25a
AS
8220 err = exclusive_event_init(event);
8221 if (err)
8222 goto err_pmu;
8223
cdd6c482 8224 if (!event->parent) {
927c7a9e
FW
8225 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8226 err = get_callchain_buffers();
90983b16 8227 if (err)
bed5b25a 8228 goto err_per_task;
d010b332 8229 }
f344011c 8230 }
9ee318a7 8231
927a5570
AS
8232 /* symmetric to unaccount_event() in _free_event() */
8233 account_event(event);
8234
cdd6c482 8235 return event;
90983b16 8236
bed5b25a
AS
8237err_per_task:
8238 exclusive_event_destroy(event);
8239
90983b16
FW
8240err_pmu:
8241 if (event->destroy)
8242 event->destroy(event);
c464c76e 8243 module_put(pmu->module);
90983b16 8244err_ns:
79dff51e
MF
8245 if (is_cgroup_event(event))
8246 perf_detach_cgroup(event);
90983b16
FW
8247 if (event->ns)
8248 put_pid_ns(event->ns);
8249 kfree(event);
8250
8251 return ERR_PTR(err);
0793a61d
TG
8252}
8253
cdd6c482
IM
8254static int perf_copy_attr(struct perf_event_attr __user *uattr,
8255 struct perf_event_attr *attr)
974802ea 8256{
974802ea 8257 u32 size;
cdf8073d 8258 int ret;
974802ea
PZ
8259
8260 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8261 return -EFAULT;
8262
8263 /*
8264 * zero the full structure, so that a short copy will be nice.
8265 */
8266 memset(attr, 0, sizeof(*attr));
8267
8268 ret = get_user(size, &uattr->size);
8269 if (ret)
8270 return ret;
8271
8272 if (size > PAGE_SIZE) /* silly large */
8273 goto err_size;
8274
8275 if (!size) /* abi compat */
8276 size = PERF_ATTR_SIZE_VER0;
8277
8278 if (size < PERF_ATTR_SIZE_VER0)
8279 goto err_size;
8280
8281 /*
8282 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8283 * ensure all the unknown bits are 0 - i.e. new
8284 * user-space does not rely on any kernel feature
8285 * extensions we dont know about yet.
974802ea
PZ
8286 */
8287 if (size > sizeof(*attr)) {
cdf8073d
IS
8288 unsigned char __user *addr;
8289 unsigned char __user *end;
8290 unsigned char val;
974802ea 8291
cdf8073d
IS
8292 addr = (void __user *)uattr + sizeof(*attr);
8293 end = (void __user *)uattr + size;
974802ea 8294
cdf8073d 8295 for (; addr < end; addr++) {
974802ea
PZ
8296 ret = get_user(val, addr);
8297 if (ret)
8298 return ret;
8299 if (val)
8300 goto err_size;
8301 }
b3e62e35 8302 size = sizeof(*attr);
974802ea
PZ
8303 }
8304
8305 ret = copy_from_user(attr, uattr, size);
8306 if (ret)
8307 return -EFAULT;
8308
cd757645 8309 if (attr->__reserved_1)
974802ea
PZ
8310 return -EINVAL;
8311
8312 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8313 return -EINVAL;
8314
8315 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8316 return -EINVAL;
8317
bce38cd5
SE
8318 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8319 u64 mask = attr->branch_sample_type;
8320
8321 /* only using defined bits */
8322 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8323 return -EINVAL;
8324
8325 /* at least one branch bit must be set */
8326 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8327 return -EINVAL;
8328
bce38cd5
SE
8329 /* propagate priv level, when not set for branch */
8330 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8331
8332 /* exclude_kernel checked on syscall entry */
8333 if (!attr->exclude_kernel)
8334 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8335
8336 if (!attr->exclude_user)
8337 mask |= PERF_SAMPLE_BRANCH_USER;
8338
8339 if (!attr->exclude_hv)
8340 mask |= PERF_SAMPLE_BRANCH_HV;
8341 /*
8342 * adjust user setting (for HW filter setup)
8343 */
8344 attr->branch_sample_type = mask;
8345 }
e712209a
SE
8346 /* privileged levels capture (kernel, hv): check permissions */
8347 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8348 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8349 return -EACCES;
bce38cd5 8350 }
4018994f 8351
c5ebcedb 8352 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8353 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8354 if (ret)
8355 return ret;
8356 }
8357
8358 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8359 if (!arch_perf_have_user_stack_dump())
8360 return -ENOSYS;
8361
8362 /*
8363 * We have __u32 type for the size, but so far
8364 * we can only use __u16 as maximum due to the
8365 * __u16 sample size limit.
8366 */
8367 if (attr->sample_stack_user >= USHRT_MAX)
8368 ret = -EINVAL;
8369 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8370 ret = -EINVAL;
8371 }
4018994f 8372
60e2364e
SE
8373 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8374 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8375out:
8376 return ret;
8377
8378err_size:
8379 put_user(sizeof(*attr), &uattr->size);
8380 ret = -E2BIG;
8381 goto out;
8382}
8383
ac9721f3
PZ
8384static int
8385perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8386{
b69cf536 8387 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8388 int ret = -EINVAL;
8389
ac9721f3 8390 if (!output_event)
a4be7c27
PZ
8391 goto set;
8392
ac9721f3
PZ
8393 /* don't allow circular references */
8394 if (event == output_event)
a4be7c27
PZ
8395 goto out;
8396
0f139300
PZ
8397 /*
8398 * Don't allow cross-cpu buffers
8399 */
8400 if (output_event->cpu != event->cpu)
8401 goto out;
8402
8403 /*
76369139 8404 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8405 */
8406 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8407 goto out;
8408
34f43927
PZ
8409 /*
8410 * Mixing clocks in the same buffer is trouble you don't need.
8411 */
8412 if (output_event->clock != event->clock)
8413 goto out;
8414
9ecda41a
WN
8415 /*
8416 * Either writing ring buffer from beginning or from end.
8417 * Mixing is not allowed.
8418 */
8419 if (is_write_backward(output_event) != is_write_backward(event))
8420 goto out;
8421
45bfb2e5
PZ
8422 /*
8423 * If both events generate aux data, they must be on the same PMU
8424 */
8425 if (has_aux(event) && has_aux(output_event) &&
8426 event->pmu != output_event->pmu)
8427 goto out;
8428
a4be7c27 8429set:
cdd6c482 8430 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8431 /* Can't redirect output if we've got an active mmap() */
8432 if (atomic_read(&event->mmap_count))
8433 goto unlock;
a4be7c27 8434
ac9721f3 8435 if (output_event) {
76369139
FW
8436 /* get the rb we want to redirect to */
8437 rb = ring_buffer_get(output_event);
8438 if (!rb)
ac9721f3 8439 goto unlock;
a4be7c27
PZ
8440 }
8441
b69cf536 8442 ring_buffer_attach(event, rb);
9bb5d40c 8443
a4be7c27 8444 ret = 0;
ac9721f3
PZ
8445unlock:
8446 mutex_unlock(&event->mmap_mutex);
8447
a4be7c27 8448out:
a4be7c27
PZ
8449 return ret;
8450}
8451
f63a8daa
PZ
8452static void mutex_lock_double(struct mutex *a, struct mutex *b)
8453{
8454 if (b < a)
8455 swap(a, b);
8456
8457 mutex_lock(a);
8458 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8459}
8460
34f43927
PZ
8461static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8462{
8463 bool nmi_safe = false;
8464
8465 switch (clk_id) {
8466 case CLOCK_MONOTONIC:
8467 event->clock = &ktime_get_mono_fast_ns;
8468 nmi_safe = true;
8469 break;
8470
8471 case CLOCK_MONOTONIC_RAW:
8472 event->clock = &ktime_get_raw_fast_ns;
8473 nmi_safe = true;
8474 break;
8475
8476 case CLOCK_REALTIME:
8477 event->clock = &ktime_get_real_ns;
8478 break;
8479
8480 case CLOCK_BOOTTIME:
8481 event->clock = &ktime_get_boot_ns;
8482 break;
8483
8484 case CLOCK_TAI:
8485 event->clock = &ktime_get_tai_ns;
8486 break;
8487
8488 default:
8489 return -EINVAL;
8490 }
8491
8492 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8493 return -EINVAL;
8494
8495 return 0;
8496}
8497
0793a61d 8498/**
cdd6c482 8499 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8500 *
cdd6c482 8501 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8502 * @pid: target pid
9f66a381 8503 * @cpu: target cpu
cdd6c482 8504 * @group_fd: group leader event fd
0793a61d 8505 */
cdd6c482
IM
8506SYSCALL_DEFINE5(perf_event_open,
8507 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8508 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8509{
b04243ef
PZ
8510 struct perf_event *group_leader = NULL, *output_event = NULL;
8511 struct perf_event *event, *sibling;
cdd6c482 8512 struct perf_event_attr attr;
f63a8daa 8513 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8514 struct file *event_file = NULL;
2903ff01 8515 struct fd group = {NULL, 0};
38a81da2 8516 struct task_struct *task = NULL;
89a1e187 8517 struct pmu *pmu;
ea635c64 8518 int event_fd;
b04243ef 8519 int move_group = 0;
dc86cabe 8520 int err;
a21b0b35 8521 int f_flags = O_RDWR;
79dff51e 8522 int cgroup_fd = -1;
0793a61d 8523
2743a5b0 8524 /* for future expandability... */
e5d1367f 8525 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8526 return -EINVAL;
8527
dc86cabe
IM
8528 err = perf_copy_attr(attr_uptr, &attr);
8529 if (err)
8530 return err;
eab656ae 8531
0764771d
PZ
8532 if (!attr.exclude_kernel) {
8533 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8534 return -EACCES;
8535 }
8536
df58ab24 8537 if (attr.freq) {
cdd6c482 8538 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8539 return -EINVAL;
0819b2e3
PZ
8540 } else {
8541 if (attr.sample_period & (1ULL << 63))
8542 return -EINVAL;
df58ab24
PZ
8543 }
8544
e5d1367f
SE
8545 /*
8546 * In cgroup mode, the pid argument is used to pass the fd
8547 * opened to the cgroup directory in cgroupfs. The cpu argument
8548 * designates the cpu on which to monitor threads from that
8549 * cgroup.
8550 */
8551 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8552 return -EINVAL;
8553
a21b0b35
YD
8554 if (flags & PERF_FLAG_FD_CLOEXEC)
8555 f_flags |= O_CLOEXEC;
8556
8557 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8558 if (event_fd < 0)
8559 return event_fd;
8560
ac9721f3 8561 if (group_fd != -1) {
2903ff01
AV
8562 err = perf_fget_light(group_fd, &group);
8563 if (err)
d14b12d7 8564 goto err_fd;
2903ff01 8565 group_leader = group.file->private_data;
ac9721f3
PZ
8566 if (flags & PERF_FLAG_FD_OUTPUT)
8567 output_event = group_leader;
8568 if (flags & PERF_FLAG_FD_NO_GROUP)
8569 group_leader = NULL;
8570 }
8571
e5d1367f 8572 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8573 task = find_lively_task_by_vpid(pid);
8574 if (IS_ERR(task)) {
8575 err = PTR_ERR(task);
8576 goto err_group_fd;
8577 }
8578 }
8579
1f4ee503
PZ
8580 if (task && group_leader &&
8581 group_leader->attr.inherit != attr.inherit) {
8582 err = -EINVAL;
8583 goto err_task;
8584 }
8585
fbfc623f
YZ
8586 get_online_cpus();
8587
79c9ce57
PZ
8588 if (task) {
8589 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
8590 if (err)
8591 goto err_cpus;
8592
8593 /*
8594 * Reuse ptrace permission checks for now.
8595 *
8596 * We must hold cred_guard_mutex across this and any potential
8597 * perf_install_in_context() call for this new event to
8598 * serialize against exec() altering our credentials (and the
8599 * perf_event_exit_task() that could imply).
8600 */
8601 err = -EACCES;
8602 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
8603 goto err_cred;
8604 }
8605
79dff51e
MF
8606 if (flags & PERF_FLAG_PID_CGROUP)
8607 cgroup_fd = pid;
8608
4dc0da86 8609 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8610 NULL, NULL, cgroup_fd);
d14b12d7
SE
8611 if (IS_ERR(event)) {
8612 err = PTR_ERR(event);
79c9ce57 8613 goto err_cred;
d14b12d7
SE
8614 }
8615
53b25335
VW
8616 if (is_sampling_event(event)) {
8617 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8618 err = -ENOTSUPP;
8619 goto err_alloc;
8620 }
8621 }
8622
89a1e187
PZ
8623 /*
8624 * Special case software events and allow them to be part of
8625 * any hardware group.
8626 */
8627 pmu = event->pmu;
b04243ef 8628
34f43927
PZ
8629 if (attr.use_clockid) {
8630 err = perf_event_set_clock(event, attr.clockid);
8631 if (err)
8632 goto err_alloc;
8633 }
8634
b04243ef
PZ
8635 if (group_leader &&
8636 (is_software_event(event) != is_software_event(group_leader))) {
8637 if (is_software_event(event)) {
8638 /*
8639 * If event and group_leader are not both a software
8640 * event, and event is, then group leader is not.
8641 *
8642 * Allow the addition of software events to !software
8643 * groups, this is safe because software events never
8644 * fail to schedule.
8645 */
8646 pmu = group_leader->pmu;
8647 } else if (is_software_event(group_leader) &&
8648 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8649 /*
8650 * In case the group is a pure software group, and we
8651 * try to add a hardware event, move the whole group to
8652 * the hardware context.
8653 */
8654 move_group = 1;
8655 }
8656 }
89a1e187
PZ
8657
8658 /*
8659 * Get the target context (task or percpu):
8660 */
4af57ef2 8661 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8662 if (IS_ERR(ctx)) {
8663 err = PTR_ERR(ctx);
c6be5a5c 8664 goto err_alloc;
89a1e187
PZ
8665 }
8666
bed5b25a
AS
8667 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8668 err = -EBUSY;
8669 goto err_context;
8670 }
8671
ccff286d 8672 /*
cdd6c482 8673 * Look up the group leader (we will attach this event to it):
04289bb9 8674 */
ac9721f3 8675 if (group_leader) {
dc86cabe 8676 err = -EINVAL;
04289bb9 8677
04289bb9 8678 /*
ccff286d
IM
8679 * Do not allow a recursive hierarchy (this new sibling
8680 * becoming part of another group-sibling):
8681 */
8682 if (group_leader->group_leader != group_leader)
c3f00c70 8683 goto err_context;
34f43927
PZ
8684
8685 /* All events in a group should have the same clock */
8686 if (group_leader->clock != event->clock)
8687 goto err_context;
8688
ccff286d
IM
8689 /*
8690 * Do not allow to attach to a group in a different
8691 * task or CPU context:
04289bb9 8692 */
b04243ef 8693 if (move_group) {
c3c87e77
PZ
8694 /*
8695 * Make sure we're both on the same task, or both
8696 * per-cpu events.
8697 */
8698 if (group_leader->ctx->task != ctx->task)
8699 goto err_context;
8700
8701 /*
8702 * Make sure we're both events for the same CPU;
8703 * grouping events for different CPUs is broken; since
8704 * you can never concurrently schedule them anyhow.
8705 */
8706 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8707 goto err_context;
8708 } else {
8709 if (group_leader->ctx != ctx)
8710 goto err_context;
8711 }
8712
3b6f9e5c
PM
8713 /*
8714 * Only a group leader can be exclusive or pinned
8715 */
0d48696f 8716 if (attr.exclusive || attr.pinned)
c3f00c70 8717 goto err_context;
ac9721f3
PZ
8718 }
8719
8720 if (output_event) {
8721 err = perf_event_set_output(event, output_event);
8722 if (err)
c3f00c70 8723 goto err_context;
ac9721f3 8724 }
0793a61d 8725
a21b0b35
YD
8726 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8727 f_flags);
ea635c64
AV
8728 if (IS_ERR(event_file)) {
8729 err = PTR_ERR(event_file);
201c2f85 8730 event_file = NULL;
c3f00c70 8731 goto err_context;
ea635c64 8732 }
9b51f66d 8733
b04243ef 8734 if (move_group) {
f63a8daa 8735 gctx = group_leader->ctx;
f55fc2a5 8736 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8737 if (gctx->task == TASK_TOMBSTONE) {
8738 err = -ESRCH;
8739 goto err_locked;
8740 }
f55fc2a5
PZ
8741 } else {
8742 mutex_lock(&ctx->mutex);
8743 }
8744
84c4e620
PZ
8745 if (ctx->task == TASK_TOMBSTONE) {
8746 err = -ESRCH;
8747 goto err_locked;
8748 }
8749
a723968c
PZ
8750 if (!perf_event_validate_size(event)) {
8751 err = -E2BIG;
8752 goto err_locked;
8753 }
8754
f55fc2a5
PZ
8755 /*
8756 * Must be under the same ctx::mutex as perf_install_in_context(),
8757 * because we need to serialize with concurrent event creation.
8758 */
8759 if (!exclusive_event_installable(event, ctx)) {
8760 /* exclusive and group stuff are assumed mutually exclusive */
8761 WARN_ON_ONCE(move_group);
f63a8daa 8762
f55fc2a5
PZ
8763 err = -EBUSY;
8764 goto err_locked;
8765 }
f63a8daa 8766
f55fc2a5
PZ
8767 WARN_ON_ONCE(ctx->parent_ctx);
8768
79c9ce57
PZ
8769 /*
8770 * This is the point on no return; we cannot fail hereafter. This is
8771 * where we start modifying current state.
8772 */
8773
f55fc2a5 8774 if (move_group) {
f63a8daa
PZ
8775 /*
8776 * See perf_event_ctx_lock() for comments on the details
8777 * of swizzling perf_event::ctx.
8778 */
45a0e07a 8779 perf_remove_from_context(group_leader, 0);
0231bb53 8780
b04243ef
PZ
8781 list_for_each_entry(sibling, &group_leader->sibling_list,
8782 group_entry) {
45a0e07a 8783 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8784 put_ctx(gctx);
8785 }
b04243ef 8786
f63a8daa
PZ
8787 /*
8788 * Wait for everybody to stop referencing the events through
8789 * the old lists, before installing it on new lists.
8790 */
0cda4c02 8791 synchronize_rcu();
f63a8daa 8792
8f95b435
PZI
8793 /*
8794 * Install the group siblings before the group leader.
8795 *
8796 * Because a group leader will try and install the entire group
8797 * (through the sibling list, which is still in-tact), we can
8798 * end up with siblings installed in the wrong context.
8799 *
8800 * By installing siblings first we NO-OP because they're not
8801 * reachable through the group lists.
8802 */
b04243ef
PZ
8803 list_for_each_entry(sibling, &group_leader->sibling_list,
8804 group_entry) {
8f95b435 8805 perf_event__state_init(sibling);
9fc81d87 8806 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8807 get_ctx(ctx);
8808 }
8f95b435
PZI
8809
8810 /*
8811 * Removing from the context ends up with disabled
8812 * event. What we want here is event in the initial
8813 * startup state, ready to be add into new context.
8814 */
8815 perf_event__state_init(group_leader);
8816 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8817 get_ctx(ctx);
b04243ef 8818
f55fc2a5
PZ
8819 /*
8820 * Now that all events are installed in @ctx, nothing
8821 * references @gctx anymore, so drop the last reference we have
8822 * on it.
8823 */
8824 put_ctx(gctx);
bed5b25a
AS
8825 }
8826
f73e22ab
PZ
8827 /*
8828 * Precalculate sample_data sizes; do while holding ctx::mutex such
8829 * that we're serialized against further additions and before
8830 * perf_install_in_context() which is the point the event is active and
8831 * can use these values.
8832 */
8833 perf_event__header_size(event);
8834 perf_event__id_header_size(event);
8835
78cd2c74
PZ
8836 event->owner = current;
8837
e2d37cd2 8838 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8839 perf_unpin_context(ctx);
f63a8daa 8840
f55fc2a5 8841 if (move_group)
f63a8daa 8842 mutex_unlock(&gctx->mutex);
d859e29f 8843 mutex_unlock(&ctx->mutex);
9b51f66d 8844
79c9ce57
PZ
8845 if (task) {
8846 mutex_unlock(&task->signal->cred_guard_mutex);
8847 put_task_struct(task);
8848 }
8849
fbfc623f
YZ
8850 put_online_cpus();
8851
cdd6c482
IM
8852 mutex_lock(&current->perf_event_mutex);
8853 list_add_tail(&event->owner_entry, &current->perf_event_list);
8854 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8855
8a49542c
PZ
8856 /*
8857 * Drop the reference on the group_event after placing the
8858 * new event on the sibling_list. This ensures destruction
8859 * of the group leader will find the pointer to itself in
8860 * perf_group_detach().
8861 */
2903ff01 8862 fdput(group);
ea635c64
AV
8863 fd_install(event_fd, event_file);
8864 return event_fd;
0793a61d 8865
f55fc2a5
PZ
8866err_locked:
8867 if (move_group)
8868 mutex_unlock(&gctx->mutex);
8869 mutex_unlock(&ctx->mutex);
8870/* err_file: */
8871 fput(event_file);
c3f00c70 8872err_context:
fe4b04fa 8873 perf_unpin_context(ctx);
ea635c64 8874 put_ctx(ctx);
c6be5a5c 8875err_alloc:
13005627
PZ
8876 /*
8877 * If event_file is set, the fput() above will have called ->release()
8878 * and that will take care of freeing the event.
8879 */
8880 if (!event_file)
8881 free_event(event);
79c9ce57
PZ
8882err_cred:
8883 if (task)
8884 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 8885err_cpus:
fbfc623f 8886 put_online_cpus();
1f4ee503 8887err_task:
e7d0bc04
PZ
8888 if (task)
8889 put_task_struct(task);
89a1e187 8890err_group_fd:
2903ff01 8891 fdput(group);
ea635c64
AV
8892err_fd:
8893 put_unused_fd(event_fd);
dc86cabe 8894 return err;
0793a61d
TG
8895}
8896
fb0459d7
AV
8897/**
8898 * perf_event_create_kernel_counter
8899 *
8900 * @attr: attributes of the counter to create
8901 * @cpu: cpu in which the counter is bound
38a81da2 8902 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8903 */
8904struct perf_event *
8905perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8906 struct task_struct *task,
4dc0da86
AK
8907 perf_overflow_handler_t overflow_handler,
8908 void *context)
fb0459d7 8909{
fb0459d7 8910 struct perf_event_context *ctx;
c3f00c70 8911 struct perf_event *event;
fb0459d7 8912 int err;
d859e29f 8913
fb0459d7
AV
8914 /*
8915 * Get the target context (task or percpu):
8916 */
d859e29f 8917
4dc0da86 8918 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8919 overflow_handler, context, -1);
c3f00c70
PZ
8920 if (IS_ERR(event)) {
8921 err = PTR_ERR(event);
8922 goto err;
8923 }
d859e29f 8924
f8697762 8925 /* Mark owner so we could distinguish it from user events. */
63b6da39 8926 event->owner = TASK_TOMBSTONE;
f8697762 8927
4af57ef2 8928 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8929 if (IS_ERR(ctx)) {
8930 err = PTR_ERR(ctx);
c3f00c70 8931 goto err_free;
d859e29f 8932 }
fb0459d7 8933
fb0459d7
AV
8934 WARN_ON_ONCE(ctx->parent_ctx);
8935 mutex_lock(&ctx->mutex);
84c4e620
PZ
8936 if (ctx->task == TASK_TOMBSTONE) {
8937 err = -ESRCH;
8938 goto err_unlock;
8939 }
8940
bed5b25a 8941 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8942 err = -EBUSY;
84c4e620 8943 goto err_unlock;
bed5b25a
AS
8944 }
8945
fb0459d7 8946 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8947 perf_unpin_context(ctx);
fb0459d7
AV
8948 mutex_unlock(&ctx->mutex);
8949
fb0459d7
AV
8950 return event;
8951
84c4e620
PZ
8952err_unlock:
8953 mutex_unlock(&ctx->mutex);
8954 perf_unpin_context(ctx);
8955 put_ctx(ctx);
c3f00c70
PZ
8956err_free:
8957 free_event(event);
8958err:
c6567f64 8959 return ERR_PTR(err);
9b51f66d 8960}
fb0459d7 8961EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8962
0cda4c02
YZ
8963void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8964{
8965 struct perf_event_context *src_ctx;
8966 struct perf_event_context *dst_ctx;
8967 struct perf_event *event, *tmp;
8968 LIST_HEAD(events);
8969
8970 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8971 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8972
f63a8daa
PZ
8973 /*
8974 * See perf_event_ctx_lock() for comments on the details
8975 * of swizzling perf_event::ctx.
8976 */
8977 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8978 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8979 event_entry) {
45a0e07a 8980 perf_remove_from_context(event, 0);
9a545de0 8981 unaccount_event_cpu(event, src_cpu);
0cda4c02 8982 put_ctx(src_ctx);
9886167d 8983 list_add(&event->migrate_entry, &events);
0cda4c02 8984 }
0cda4c02 8985
8f95b435
PZI
8986 /*
8987 * Wait for the events to quiesce before re-instating them.
8988 */
0cda4c02
YZ
8989 synchronize_rcu();
8990
8f95b435
PZI
8991 /*
8992 * Re-instate events in 2 passes.
8993 *
8994 * Skip over group leaders and only install siblings on this first
8995 * pass, siblings will not get enabled without a leader, however a
8996 * leader will enable its siblings, even if those are still on the old
8997 * context.
8998 */
8999 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9000 if (event->group_leader == event)
9001 continue;
9002
9003 list_del(&event->migrate_entry);
9004 if (event->state >= PERF_EVENT_STATE_OFF)
9005 event->state = PERF_EVENT_STATE_INACTIVE;
9006 account_event_cpu(event, dst_cpu);
9007 perf_install_in_context(dst_ctx, event, dst_cpu);
9008 get_ctx(dst_ctx);
9009 }
9010
9011 /*
9012 * Once all the siblings are setup properly, install the group leaders
9013 * to make it go.
9014 */
9886167d
PZ
9015 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9016 list_del(&event->migrate_entry);
0cda4c02
YZ
9017 if (event->state >= PERF_EVENT_STATE_OFF)
9018 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9019 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9020 perf_install_in_context(dst_ctx, event, dst_cpu);
9021 get_ctx(dst_ctx);
9022 }
9023 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9024 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9025}
9026EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9027
cdd6c482 9028static void sync_child_event(struct perf_event *child_event,
38b200d6 9029 struct task_struct *child)
d859e29f 9030{
cdd6c482 9031 struct perf_event *parent_event = child_event->parent;
8bc20959 9032 u64 child_val;
d859e29f 9033
cdd6c482
IM
9034 if (child_event->attr.inherit_stat)
9035 perf_event_read_event(child_event, child);
38b200d6 9036
b5e58793 9037 child_val = perf_event_count(child_event);
d859e29f
PM
9038
9039 /*
9040 * Add back the child's count to the parent's count:
9041 */
a6e6dea6 9042 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9043 atomic64_add(child_event->total_time_enabled,
9044 &parent_event->child_total_time_enabled);
9045 atomic64_add(child_event->total_time_running,
9046 &parent_event->child_total_time_running);
d859e29f
PM
9047}
9048
9b51f66d 9049static void
8ba289b8
PZ
9050perf_event_exit_event(struct perf_event *child_event,
9051 struct perf_event_context *child_ctx,
9052 struct task_struct *child)
9b51f66d 9053{
8ba289b8
PZ
9054 struct perf_event *parent_event = child_event->parent;
9055
1903d50c
PZ
9056 /*
9057 * Do not destroy the 'original' grouping; because of the context
9058 * switch optimization the original events could've ended up in a
9059 * random child task.
9060 *
9061 * If we were to destroy the original group, all group related
9062 * operations would cease to function properly after this random
9063 * child dies.
9064 *
9065 * Do destroy all inherited groups, we don't care about those
9066 * and being thorough is better.
9067 */
32132a3d
PZ
9068 raw_spin_lock_irq(&child_ctx->lock);
9069 WARN_ON_ONCE(child_ctx->is_active);
9070
8ba289b8 9071 if (parent_event)
32132a3d
PZ
9072 perf_group_detach(child_event);
9073 list_del_event(child_event, child_ctx);
a69b0ca4 9074 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9075 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9076
9b51f66d 9077 /*
8ba289b8 9078 * Parent events are governed by their filedesc, retain them.
9b51f66d 9079 */
8ba289b8 9080 if (!parent_event) {
179033b3 9081 perf_event_wakeup(child_event);
8ba289b8 9082 return;
4bcf349a 9083 }
8ba289b8
PZ
9084 /*
9085 * Child events can be cleaned up.
9086 */
9087
9088 sync_child_event(child_event, child);
9089
9090 /*
9091 * Remove this event from the parent's list
9092 */
9093 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9094 mutex_lock(&parent_event->child_mutex);
9095 list_del_init(&child_event->child_list);
9096 mutex_unlock(&parent_event->child_mutex);
9097
9098 /*
9099 * Kick perf_poll() for is_event_hup().
9100 */
9101 perf_event_wakeup(parent_event);
9102 free_event(child_event);
9103 put_event(parent_event);
9b51f66d
IM
9104}
9105
8dc85d54 9106static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9107{
211de6eb 9108 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9109 struct perf_event *child_event, *next;
63b6da39
PZ
9110
9111 WARN_ON_ONCE(child != current);
9b51f66d 9112
6a3351b6 9113 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9114 if (!child_ctx)
9b51f66d
IM
9115 return;
9116
ad3a37de 9117 /*
6a3351b6
PZ
9118 * In order to reduce the amount of tricky in ctx tear-down, we hold
9119 * ctx::mutex over the entire thing. This serializes against almost
9120 * everything that wants to access the ctx.
9121 *
9122 * The exception is sys_perf_event_open() /
9123 * perf_event_create_kernel_count() which does find_get_context()
9124 * without ctx::mutex (it cannot because of the move_group double mutex
9125 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9126 */
6a3351b6 9127 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9128
9129 /*
6a3351b6
PZ
9130 * In a single ctx::lock section, de-schedule the events and detach the
9131 * context from the task such that we cannot ever get it scheduled back
9132 * in.
c93f7669 9133 */
6a3351b6 9134 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9135 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9136
71a851b4 9137 /*
63b6da39
PZ
9138 * Now that the context is inactive, destroy the task <-> ctx relation
9139 * and mark the context dead.
71a851b4 9140 */
63b6da39
PZ
9141 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9142 put_ctx(child_ctx); /* cannot be last */
9143 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9144 put_task_struct(current); /* cannot be last */
4a1c0f26 9145
211de6eb 9146 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9147 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9148
211de6eb
PZ
9149 if (clone_ctx)
9150 put_ctx(clone_ctx);
4a1c0f26 9151
9f498cc5 9152 /*
cdd6c482
IM
9153 * Report the task dead after unscheduling the events so that we
9154 * won't get any samples after PERF_RECORD_EXIT. We can however still
9155 * get a few PERF_RECORD_READ events.
9f498cc5 9156 */
cdd6c482 9157 perf_event_task(child, child_ctx, 0);
a63eaf34 9158
ebf905fc 9159 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9160 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9161
a63eaf34
PM
9162 mutex_unlock(&child_ctx->mutex);
9163
9164 put_ctx(child_ctx);
9b51f66d
IM
9165}
9166
8dc85d54
PZ
9167/*
9168 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
9169 *
9170 * Can be called with cred_guard_mutex held when called from
9171 * install_exec_creds().
8dc85d54
PZ
9172 */
9173void perf_event_exit_task(struct task_struct *child)
9174{
8882135b 9175 struct perf_event *event, *tmp;
8dc85d54
PZ
9176 int ctxn;
9177
8882135b
PZ
9178 mutex_lock(&child->perf_event_mutex);
9179 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9180 owner_entry) {
9181 list_del_init(&event->owner_entry);
9182
9183 /*
9184 * Ensure the list deletion is visible before we clear
9185 * the owner, closes a race against perf_release() where
9186 * we need to serialize on the owner->perf_event_mutex.
9187 */
f47c02c0 9188 smp_store_release(&event->owner, NULL);
8882135b
PZ
9189 }
9190 mutex_unlock(&child->perf_event_mutex);
9191
8dc85d54
PZ
9192 for_each_task_context_nr(ctxn)
9193 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9194
9195 /*
9196 * The perf_event_exit_task_context calls perf_event_task
9197 * with child's task_ctx, which generates EXIT events for
9198 * child contexts and sets child->perf_event_ctxp[] to NULL.
9199 * At this point we need to send EXIT events to cpu contexts.
9200 */
9201 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9202}
9203
889ff015
FW
9204static void perf_free_event(struct perf_event *event,
9205 struct perf_event_context *ctx)
9206{
9207 struct perf_event *parent = event->parent;
9208
9209 if (WARN_ON_ONCE(!parent))
9210 return;
9211
9212 mutex_lock(&parent->child_mutex);
9213 list_del_init(&event->child_list);
9214 mutex_unlock(&parent->child_mutex);
9215
a6fa941d 9216 put_event(parent);
889ff015 9217
652884fe 9218 raw_spin_lock_irq(&ctx->lock);
8a49542c 9219 perf_group_detach(event);
889ff015 9220 list_del_event(event, ctx);
652884fe 9221 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9222 free_event(event);
9223}
9224
bbbee908 9225/*
652884fe 9226 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9227 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9228 *
9229 * Not all locks are strictly required, but take them anyway to be nice and
9230 * help out with the lockdep assertions.
bbbee908 9231 */
cdd6c482 9232void perf_event_free_task(struct task_struct *task)
bbbee908 9233{
8dc85d54 9234 struct perf_event_context *ctx;
cdd6c482 9235 struct perf_event *event, *tmp;
8dc85d54 9236 int ctxn;
bbbee908 9237
8dc85d54
PZ
9238 for_each_task_context_nr(ctxn) {
9239 ctx = task->perf_event_ctxp[ctxn];
9240 if (!ctx)
9241 continue;
bbbee908 9242
8dc85d54 9243 mutex_lock(&ctx->mutex);
bbbee908 9244again:
8dc85d54
PZ
9245 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9246 group_entry)
9247 perf_free_event(event, ctx);
bbbee908 9248
8dc85d54
PZ
9249 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9250 group_entry)
9251 perf_free_event(event, ctx);
bbbee908 9252
8dc85d54
PZ
9253 if (!list_empty(&ctx->pinned_groups) ||
9254 !list_empty(&ctx->flexible_groups))
9255 goto again;
bbbee908 9256
8dc85d54 9257 mutex_unlock(&ctx->mutex);
bbbee908 9258
8dc85d54
PZ
9259 put_ctx(ctx);
9260 }
889ff015
FW
9261}
9262
4e231c79
PZ
9263void perf_event_delayed_put(struct task_struct *task)
9264{
9265 int ctxn;
9266
9267 for_each_task_context_nr(ctxn)
9268 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9269}
9270
e03e7ee3 9271struct file *perf_event_get(unsigned int fd)
ffe8690c 9272{
e03e7ee3 9273 struct file *file;
ffe8690c 9274
e03e7ee3
AS
9275 file = fget_raw(fd);
9276 if (!file)
9277 return ERR_PTR(-EBADF);
ffe8690c 9278
e03e7ee3
AS
9279 if (file->f_op != &perf_fops) {
9280 fput(file);
9281 return ERR_PTR(-EBADF);
9282 }
ffe8690c 9283
e03e7ee3 9284 return file;
ffe8690c
KX
9285}
9286
9287const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9288{
9289 if (!event)
9290 return ERR_PTR(-EINVAL);
9291
9292 return &event->attr;
9293}
9294
97dee4f3
PZ
9295/*
9296 * inherit a event from parent task to child task:
9297 */
9298static struct perf_event *
9299inherit_event(struct perf_event *parent_event,
9300 struct task_struct *parent,
9301 struct perf_event_context *parent_ctx,
9302 struct task_struct *child,
9303 struct perf_event *group_leader,
9304 struct perf_event_context *child_ctx)
9305{
1929def9 9306 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9307 struct perf_event *child_event;
cee010ec 9308 unsigned long flags;
97dee4f3
PZ
9309
9310 /*
9311 * Instead of creating recursive hierarchies of events,
9312 * we link inherited events back to the original parent,
9313 * which has a filp for sure, which we use as the reference
9314 * count:
9315 */
9316 if (parent_event->parent)
9317 parent_event = parent_event->parent;
9318
9319 child_event = perf_event_alloc(&parent_event->attr,
9320 parent_event->cpu,
d580ff86 9321 child,
97dee4f3 9322 group_leader, parent_event,
79dff51e 9323 NULL, NULL, -1);
97dee4f3
PZ
9324 if (IS_ERR(child_event))
9325 return child_event;
a6fa941d 9326
c6e5b732
PZ
9327 /*
9328 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9329 * must be under the same lock in order to serialize against
9330 * perf_event_release_kernel(), such that either we must observe
9331 * is_orphaned_event() or they will observe us on the child_list.
9332 */
9333 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9334 if (is_orphaned_event(parent_event) ||
9335 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9336 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9337 free_event(child_event);
9338 return NULL;
9339 }
9340
97dee4f3
PZ
9341 get_ctx(child_ctx);
9342
9343 /*
9344 * Make the child state follow the state of the parent event,
9345 * not its attr.disabled bit. We hold the parent's mutex,
9346 * so we won't race with perf_event_{en, dis}able_family.
9347 */
1929def9 9348 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9349 child_event->state = PERF_EVENT_STATE_INACTIVE;
9350 else
9351 child_event->state = PERF_EVENT_STATE_OFF;
9352
9353 if (parent_event->attr.freq) {
9354 u64 sample_period = parent_event->hw.sample_period;
9355 struct hw_perf_event *hwc = &child_event->hw;
9356
9357 hwc->sample_period = sample_period;
9358 hwc->last_period = sample_period;
9359
9360 local64_set(&hwc->period_left, sample_period);
9361 }
9362
9363 child_event->ctx = child_ctx;
9364 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9365 child_event->overflow_handler_context
9366 = parent_event->overflow_handler_context;
97dee4f3 9367
614b6780
TG
9368 /*
9369 * Precalculate sample_data sizes
9370 */
9371 perf_event__header_size(child_event);
6844c09d 9372 perf_event__id_header_size(child_event);
614b6780 9373
97dee4f3
PZ
9374 /*
9375 * Link it up in the child's context:
9376 */
cee010ec 9377 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9378 add_event_to_ctx(child_event, child_ctx);
cee010ec 9379 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9380
97dee4f3
PZ
9381 /*
9382 * Link this into the parent event's child list
9383 */
97dee4f3
PZ
9384 list_add_tail(&child_event->child_list, &parent_event->child_list);
9385 mutex_unlock(&parent_event->child_mutex);
9386
9387 return child_event;
9388}
9389
9390static int inherit_group(struct perf_event *parent_event,
9391 struct task_struct *parent,
9392 struct perf_event_context *parent_ctx,
9393 struct task_struct *child,
9394 struct perf_event_context *child_ctx)
9395{
9396 struct perf_event *leader;
9397 struct perf_event *sub;
9398 struct perf_event *child_ctr;
9399
9400 leader = inherit_event(parent_event, parent, parent_ctx,
9401 child, NULL, child_ctx);
9402 if (IS_ERR(leader))
9403 return PTR_ERR(leader);
9404 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9405 child_ctr = inherit_event(sub, parent, parent_ctx,
9406 child, leader, child_ctx);
9407 if (IS_ERR(child_ctr))
9408 return PTR_ERR(child_ctr);
9409 }
9410 return 0;
889ff015
FW
9411}
9412
9413static int
9414inherit_task_group(struct perf_event *event, struct task_struct *parent,
9415 struct perf_event_context *parent_ctx,
8dc85d54 9416 struct task_struct *child, int ctxn,
889ff015
FW
9417 int *inherited_all)
9418{
9419 int ret;
8dc85d54 9420 struct perf_event_context *child_ctx;
889ff015
FW
9421
9422 if (!event->attr.inherit) {
9423 *inherited_all = 0;
9424 return 0;
bbbee908
PZ
9425 }
9426
fe4b04fa 9427 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9428 if (!child_ctx) {
9429 /*
9430 * This is executed from the parent task context, so
9431 * inherit events that have been marked for cloning.
9432 * First allocate and initialize a context for the
9433 * child.
9434 */
bbbee908 9435
734df5ab 9436 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9437 if (!child_ctx)
9438 return -ENOMEM;
bbbee908 9439
8dc85d54 9440 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9441 }
9442
9443 ret = inherit_group(event, parent, parent_ctx,
9444 child, child_ctx);
9445
9446 if (ret)
9447 *inherited_all = 0;
9448
9449 return ret;
bbbee908
PZ
9450}
9451
9b51f66d 9452/*
cdd6c482 9453 * Initialize the perf_event context in task_struct
9b51f66d 9454 */
985c8dcb 9455static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9456{
889ff015 9457 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9458 struct perf_event_context *cloned_ctx;
9459 struct perf_event *event;
9b51f66d 9460 struct task_struct *parent = current;
564c2b21 9461 int inherited_all = 1;
dddd3379 9462 unsigned long flags;
6ab423e0 9463 int ret = 0;
9b51f66d 9464
8dc85d54 9465 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9466 return 0;
9467
ad3a37de 9468 /*
25346b93
PM
9469 * If the parent's context is a clone, pin it so it won't get
9470 * swapped under us.
ad3a37de 9471 */
8dc85d54 9472 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9473 if (!parent_ctx)
9474 return 0;
25346b93 9475
ad3a37de
PM
9476 /*
9477 * No need to check if parent_ctx != NULL here; since we saw
9478 * it non-NULL earlier, the only reason for it to become NULL
9479 * is if we exit, and since we're currently in the middle of
9480 * a fork we can't be exiting at the same time.
9481 */
ad3a37de 9482
9b51f66d
IM
9483 /*
9484 * Lock the parent list. No need to lock the child - not PID
9485 * hashed yet and not running, so nobody can access it.
9486 */
d859e29f 9487 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9488
9489 /*
9490 * We dont have to disable NMIs - we are only looking at
9491 * the list, not manipulating it:
9492 */
889ff015 9493 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9494 ret = inherit_task_group(event, parent, parent_ctx,
9495 child, ctxn, &inherited_all);
889ff015
FW
9496 if (ret)
9497 break;
9498 }
b93f7978 9499
dddd3379
TG
9500 /*
9501 * We can't hold ctx->lock when iterating the ->flexible_group list due
9502 * to allocations, but we need to prevent rotation because
9503 * rotate_ctx() will change the list from interrupt context.
9504 */
9505 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9506 parent_ctx->rotate_disable = 1;
9507 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9508
889ff015 9509 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9510 ret = inherit_task_group(event, parent, parent_ctx,
9511 child, ctxn, &inherited_all);
889ff015 9512 if (ret)
9b51f66d 9513 break;
564c2b21
PM
9514 }
9515
dddd3379
TG
9516 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9517 parent_ctx->rotate_disable = 0;
dddd3379 9518
8dc85d54 9519 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9520
05cbaa28 9521 if (child_ctx && inherited_all) {
564c2b21
PM
9522 /*
9523 * Mark the child context as a clone of the parent
9524 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9525 *
9526 * Note that if the parent is a clone, the holding of
9527 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9528 */
c5ed5145 9529 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9530 if (cloned_ctx) {
9531 child_ctx->parent_ctx = cloned_ctx;
25346b93 9532 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9533 } else {
9534 child_ctx->parent_ctx = parent_ctx;
9535 child_ctx->parent_gen = parent_ctx->generation;
9536 }
9537 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9538 }
9539
c5ed5145 9540 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9541 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9542
25346b93 9543 perf_unpin_context(parent_ctx);
fe4b04fa 9544 put_ctx(parent_ctx);
ad3a37de 9545
6ab423e0 9546 return ret;
9b51f66d
IM
9547}
9548
8dc85d54
PZ
9549/*
9550 * Initialize the perf_event context in task_struct
9551 */
9552int perf_event_init_task(struct task_struct *child)
9553{
9554 int ctxn, ret;
9555
8550d7cb
ON
9556 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9557 mutex_init(&child->perf_event_mutex);
9558 INIT_LIST_HEAD(&child->perf_event_list);
9559
8dc85d54
PZ
9560 for_each_task_context_nr(ctxn) {
9561 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9562 if (ret) {
9563 perf_event_free_task(child);
8dc85d54 9564 return ret;
6c72e350 9565 }
8dc85d54
PZ
9566 }
9567
9568 return 0;
9569}
9570
220b140b
PM
9571static void __init perf_event_init_all_cpus(void)
9572{
b28ab83c 9573 struct swevent_htable *swhash;
220b140b 9574 int cpu;
220b140b
PM
9575
9576 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9577 swhash = &per_cpu(swevent_htable, cpu);
9578 mutex_init(&swhash->hlist_mutex);
2fde4f94 9579 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9580 }
9581}
9582
0db0628d 9583static void perf_event_init_cpu(int cpu)
0793a61d 9584{
108b02cf 9585 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9586
b28ab83c 9587 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9588 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9589 struct swevent_hlist *hlist;
9590
b28ab83c
PZ
9591 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9592 WARN_ON(!hlist);
9593 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9594 }
b28ab83c 9595 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9596}
9597
2965faa5 9598#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9599static void __perf_event_exit_context(void *__info)
0793a61d 9600{
108b02cf 9601 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9602 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9603 struct perf_event *event;
0793a61d 9604
fae3fde6
PZ
9605 raw_spin_lock(&ctx->lock);
9606 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9607 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9608 raw_spin_unlock(&ctx->lock);
0793a61d 9609}
108b02cf
PZ
9610
9611static void perf_event_exit_cpu_context(int cpu)
9612{
9613 struct perf_event_context *ctx;
9614 struct pmu *pmu;
9615 int idx;
9616
9617 idx = srcu_read_lock(&pmus_srcu);
9618 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9619 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9620
9621 mutex_lock(&ctx->mutex);
9622 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9623 mutex_unlock(&ctx->mutex);
9624 }
9625 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9626}
9627
cdd6c482 9628static void perf_event_exit_cpu(int cpu)
0793a61d 9629{
e3703f8c 9630 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9631}
9632#else
cdd6c482 9633static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9634#endif
9635
c277443c
PZ
9636static int
9637perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9638{
9639 int cpu;
9640
9641 for_each_online_cpu(cpu)
9642 perf_event_exit_cpu(cpu);
9643
9644 return NOTIFY_OK;
9645}
9646
9647/*
9648 * Run the perf reboot notifier at the very last possible moment so that
9649 * the generic watchdog code runs as long as possible.
9650 */
9651static struct notifier_block perf_reboot_notifier = {
9652 .notifier_call = perf_reboot,
9653 .priority = INT_MIN,
9654};
9655
0db0628d 9656static int
0793a61d
TG
9657perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9658{
9659 unsigned int cpu = (long)hcpu;
9660
4536e4d1 9661 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9662
9663 case CPU_UP_PREPARE:
1dcaac1c
PZ
9664 /*
9665 * This must be done before the CPU comes alive, because the
9666 * moment we can run tasks we can encounter (software) events.
9667 *
9668 * Specifically, someone can have inherited events on kthreadd
9669 * or a pre-existing worker thread that gets re-bound.
9670 */
cdd6c482 9671 perf_event_init_cpu(cpu);
0793a61d
TG
9672 break;
9673
9674 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9675 /*
9676 * This must be done before the CPU dies because after that an
9677 * active event might want to IPI the CPU and that'll not work
9678 * so great for dead CPUs.
9679 *
9680 * XXX smp_call_function_single() return -ENXIO without a warn
9681 * so we could possibly deal with this.
9682 *
9683 * This is safe against new events arriving because
9684 * sys_perf_event_open() serializes against hotplug using
9685 * get_online_cpus().
9686 */
cdd6c482 9687 perf_event_exit_cpu(cpu);
0793a61d 9688 break;
0793a61d
TG
9689 default:
9690 break;
9691 }
9692
9693 return NOTIFY_OK;
9694}
9695
cdd6c482 9696void __init perf_event_init(void)
0793a61d 9697{
3c502e7a
JW
9698 int ret;
9699
2e80a82a
PZ
9700 idr_init(&pmu_idr);
9701
220b140b 9702 perf_event_init_all_cpus();
b0a873eb 9703 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9704 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9705 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9706 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9707 perf_tp_register();
9708 perf_cpu_notifier(perf_cpu_notify);
c277443c 9709 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9710
9711 ret = init_hw_breakpoint();
9712 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9713
b01c3a00
JO
9714 /*
9715 * Build time assertion that we keep the data_head at the intended
9716 * location. IOW, validation we got the __reserved[] size right.
9717 */
9718 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9719 != 1024);
0793a61d 9720}
abe43400 9721
fd979c01
CS
9722ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9723 char *page)
9724{
9725 struct perf_pmu_events_attr *pmu_attr =
9726 container_of(attr, struct perf_pmu_events_attr, attr);
9727
9728 if (pmu_attr->event_str)
9729 return sprintf(page, "%s\n", pmu_attr->event_str);
9730
9731 return 0;
9732}
675965b0 9733EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9734
abe43400
PZ
9735static int __init perf_event_sysfs_init(void)
9736{
9737 struct pmu *pmu;
9738 int ret;
9739
9740 mutex_lock(&pmus_lock);
9741
9742 ret = bus_register(&pmu_bus);
9743 if (ret)
9744 goto unlock;
9745
9746 list_for_each_entry(pmu, &pmus, entry) {
9747 if (!pmu->name || pmu->type < 0)
9748 continue;
9749
9750 ret = pmu_dev_alloc(pmu);
9751 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9752 }
9753 pmu_bus_running = 1;
9754 ret = 0;
9755
9756unlock:
9757 mutex_unlock(&pmus_lock);
9758
9759 return ret;
9760}
9761device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9762
9763#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9764static struct cgroup_subsys_state *
9765perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9766{
9767 struct perf_cgroup *jc;
e5d1367f 9768
1b15d055 9769 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9770 if (!jc)
9771 return ERR_PTR(-ENOMEM);
9772
e5d1367f
SE
9773 jc->info = alloc_percpu(struct perf_cgroup_info);
9774 if (!jc->info) {
9775 kfree(jc);
9776 return ERR_PTR(-ENOMEM);
9777 }
9778
e5d1367f
SE
9779 return &jc->css;
9780}
9781
eb95419b 9782static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9783{
eb95419b
TH
9784 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9785
e5d1367f
SE
9786 free_percpu(jc->info);
9787 kfree(jc);
9788}
9789
9790static int __perf_cgroup_move(void *info)
9791{
9792 struct task_struct *task = info;
ddaaf4e2 9793 rcu_read_lock();
e5d1367f 9794 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9795 rcu_read_unlock();
e5d1367f
SE
9796 return 0;
9797}
9798
1f7dd3e5 9799static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9800{
bb9d97b6 9801 struct task_struct *task;
1f7dd3e5 9802 struct cgroup_subsys_state *css;
bb9d97b6 9803
1f7dd3e5 9804 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9805 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9806}
9807
073219e9 9808struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9809 .css_alloc = perf_cgroup_css_alloc,
9810 .css_free = perf_cgroup_css_free,
bb9d97b6 9811 .attach = perf_cgroup_attach,
e5d1367f
SE
9812};
9813#endif /* CONFIG_CGROUP_PERF */