perf: Simplify/fix perf_event_enable() event scheduling
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
0017960f
PZ
129static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133{
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158}
159
f8697762
JO
160#define EVENT_OWNER_KERNEL ((void *) -1)
161
162static bool is_kernel_event(struct perf_event *event)
163{
164 return event->owner == EVENT_OWNER_KERNEL;
165}
166
e5d1367f
SE
167#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
e5d1367f 171
bce38cd5
SE
172/*
173 * branch priv levels that need permission checks
174 */
175#define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
0b3fcf17
SE
179enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183};
184
e5d1367f
SE
185/*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
c5905afb 189struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 190static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 191static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 192
cdd6c482
IM
193static atomic_t nr_mmap_events __read_mostly;
194static atomic_t nr_comm_events __read_mostly;
195static atomic_t nr_task_events __read_mostly;
948b26b6 196static atomic_t nr_freq_events __read_mostly;
45ac1403 197static atomic_t nr_switch_events __read_mostly;
9ee318a7 198
108b02cf
PZ
199static LIST_HEAD(pmus);
200static DEFINE_MUTEX(pmus_lock);
201static struct srcu_struct pmus_srcu;
202
0764771d 203/*
cdd6c482 204 * perf event paranoia level:
0fbdea19
IM
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 207 * 1 - disallow cpu events for unpriv
0fbdea19 208 * 2 - disallow kernel profiling for unpriv
0764771d 209 */
cdd6c482 210int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 211
20443384
FW
212/* Minimum for 512 kiB + 1 user control page */
213int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
214
215/*
cdd6c482 216 * max perf event sample rate
df58ab24 217 */
14c63f17
DH
218#define DEFAULT_MAX_SAMPLE_RATE 100000
219#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220#define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
d9494cb4
PZ
227static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 229
18ab2cd3 230static void update_perf_cpu_limits(void)
14c63f17
DH
231{
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 235 do_div(tmp, 100);
d9494cb4 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 237}
163ec435 238
9e630205
SE
239static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
163ec435
PZ
241int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
723478c8 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255}
256
257int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262{
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
163ec435
PZ
269
270 return 0;
271}
1ccd1549 272
14c63f17
DH
273/*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 280static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 281
6a02ad66 282static void perf_duration_warn(struct irq_work *w)
14c63f17 283{
6a02ad66 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 285 u64 avg_local_sample_len;
e5302920 286 u64 local_samples_len;
6a02ad66 287
4a32fea9 288 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 294 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
295 sysctl_perf_event_sample_rate);
296}
297
298static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300void perf_sample_event_took(u64 sample_len_ns)
301{
d9494cb4 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
14c63f17 305
d9494cb4 306 if (allowed_ns == 0)
14c63f17
DH
307 return;
308
309 /* decay the counter by 1 average sample */
4a32fea9 310 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
4a32fea9 313 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
d9494cb4 322 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
14c63f17 332 update_perf_cpu_limits();
6a02ad66 333
cd578abb
PZ
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
14c63f17
DH
340}
341
cdd6c482 342static atomic64_t perf_event_id;
a96bbc16 343
0b3fcf17
SE
344static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351static void update_context_time(struct perf_event_context *ctx);
352static u64 perf_event_time(struct perf_event *event);
0b3fcf17 353
cdd6c482 354void __weak perf_event_print_debug(void) { }
0793a61d 355
84c79910 356extern __weak const char *perf_pmu_name(void)
0793a61d 357{
84c79910 358 return "pmu";
0793a61d
TG
359}
360
0b3fcf17
SE
361static inline u64 perf_clock(void)
362{
363 return local_clock();
364}
365
34f43927
PZ
366static inline u64 perf_event_clock(struct perf_event *event)
367{
368 return event->clock();
369}
370
e5d1367f
SE
371static inline struct perf_cpu_context *
372__get_cpu_context(struct perf_event_context *ctx)
373{
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375}
376
facc4307
PZ
377static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379{
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383}
384
385static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387{
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391}
392
e5d1367f
SE
393#ifdef CONFIG_CGROUP_PERF
394
e5d1367f
SE
395static inline bool
396perf_cgroup_match(struct perf_event *event)
397{
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
ef824fa1
TH
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
e5d1367f
SE
417}
418
e5d1367f
SE
419static inline void perf_detach_cgroup(struct perf_event *event)
420{
4e2ba650 421 css_put(&event->cgrp->css);
e5d1367f
SE
422 event->cgrp = NULL;
423}
424
425static inline int is_cgroup_event(struct perf_event *event)
426{
427 return event->cgrp != NULL;
428}
429
430static inline u64 perf_cgroup_event_time(struct perf_event *event)
431{
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436}
437
438static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439{
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449}
450
451static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452{
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456}
457
458static inline void update_cgrp_time_from_event(struct perf_event *event)
459{
3f7cce3c
SE
460 struct perf_cgroup *cgrp;
461
e5d1367f 462 /*
3f7cce3c
SE
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
e5d1367f 465 */
3f7cce3c 466 if (!is_cgroup_event(event))
e5d1367f
SE
467 return;
468
614e4c4e 469 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
e5d1367f
SE
475}
476
477static inline void
3f7cce3c
SE
478perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
e5d1367f
SE
480{
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
3f7cce3c
SE
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
490 return;
491
614e4c4e 492 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 493 info = this_cpu_ptr(cgrp->info);
3f7cce3c 494 info->timestamp = ctx->timestamp;
e5d1367f
SE
495}
496
497#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500/*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
18ab2cd3 506static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
507{
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
e5d1367f
SE
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
e5d1367f 528
e5d1367f
SE
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
e566b76e 550 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
614e4c4e
SE
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
e5d1367f 557 */
614e4c4e 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
facc4307
PZ
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 563 }
e5d1367f
SE
564 }
565
e5d1367f
SE
566 local_irq_restore(flags);
567}
568
a8d757ef
SE
569static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
e5d1367f 571{
a8d757ef
SE
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
ddaaf4e2 575 rcu_read_lock();
a8d757ef
SE
576 /*
577 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
a8d757ef 580 */
614e4c4e 581 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 582 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
583
584 /*
585 * only schedule out current cgroup events if we know
586 * that we are switching to a different cgroup. Otherwise,
587 * do no touch the cgroup events.
588 */
589 if (cgrp1 != cgrp2)
590 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
591
592 rcu_read_unlock();
e5d1367f
SE
593}
594
a8d757ef
SE
595static inline void perf_cgroup_sched_in(struct task_struct *prev,
596 struct task_struct *task)
e5d1367f 597{
a8d757ef
SE
598 struct perf_cgroup *cgrp1;
599 struct perf_cgroup *cgrp2 = NULL;
600
ddaaf4e2 601 rcu_read_lock();
a8d757ef
SE
602 /*
603 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
604 * we do not need to pass the ctx here because we know
605 * we are holding the rcu lock
a8d757ef 606 */
614e4c4e 607 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 608 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
609
610 /*
611 * only need to schedule in cgroup events if we are changing
612 * cgroup during ctxsw. Cgroup events were not scheduled
613 * out of ctxsw out if that was not the case.
614 */
615 if (cgrp1 != cgrp2)
616 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
617
618 rcu_read_unlock();
e5d1367f
SE
619}
620
621static inline int perf_cgroup_connect(int fd, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624{
625 struct perf_cgroup *cgrp;
626 struct cgroup_subsys_state *css;
2903ff01
AV
627 struct fd f = fdget(fd);
628 int ret = 0;
e5d1367f 629
2903ff01 630 if (!f.file)
e5d1367f
SE
631 return -EBADF;
632
b583043e 633 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 634 &perf_event_cgrp_subsys);
3db272c0
LZ
635 if (IS_ERR(css)) {
636 ret = PTR_ERR(css);
637 goto out;
638 }
e5d1367f
SE
639
640 cgrp = container_of(css, struct perf_cgroup, css);
641 event->cgrp = cgrp;
642
643 /*
644 * all events in a group must monitor
645 * the same cgroup because a task belongs
646 * to only one perf cgroup at a time
647 */
648 if (group_leader && group_leader->cgrp != cgrp) {
649 perf_detach_cgroup(event);
650 ret = -EINVAL;
e5d1367f 651 }
3db272c0 652out:
2903ff01 653 fdput(f);
e5d1367f
SE
654 return ret;
655}
656
657static inline void
658perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
659{
660 struct perf_cgroup_info *t;
661 t = per_cpu_ptr(event->cgrp->info, event->cpu);
662 event->shadow_ctx_time = now - t->timestamp;
663}
664
665static inline void
666perf_cgroup_defer_enabled(struct perf_event *event)
667{
668 /*
669 * when the current task's perf cgroup does not match
670 * the event's, we need to remember to call the
671 * perf_mark_enable() function the first time a task with
672 * a matching perf cgroup is scheduled in.
673 */
674 if (is_cgroup_event(event) && !perf_cgroup_match(event))
675 event->cgrp_defer_enabled = 1;
676}
677
678static inline void
679perf_cgroup_mark_enabled(struct perf_event *event,
680 struct perf_event_context *ctx)
681{
682 struct perf_event *sub;
683 u64 tstamp = perf_event_time(event);
684
685 if (!event->cgrp_defer_enabled)
686 return;
687
688 event->cgrp_defer_enabled = 0;
689
690 event->tstamp_enabled = tstamp - event->total_time_enabled;
691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
692 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
694 sub->cgrp_defer_enabled = 0;
695 }
696 }
697}
698#else /* !CONFIG_CGROUP_PERF */
699
700static inline bool
701perf_cgroup_match(struct perf_event *event)
702{
703 return true;
704}
705
706static inline void perf_detach_cgroup(struct perf_event *event)
707{}
708
709static inline int is_cgroup_event(struct perf_event *event)
710{
711 return 0;
712}
713
714static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
715{
716 return 0;
717}
718
719static inline void update_cgrp_time_from_event(struct perf_event *event)
720{
721}
722
723static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
724{
725}
726
a8d757ef
SE
727static inline void perf_cgroup_sched_out(struct task_struct *task,
728 struct task_struct *next)
e5d1367f
SE
729{
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f
SE
734{
735}
736
737static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
738 struct perf_event_attr *attr,
739 struct perf_event *group_leader)
740{
741 return -EINVAL;
742}
743
744static inline void
3f7cce3c
SE
745perf_cgroup_set_timestamp(struct task_struct *task,
746 struct perf_event_context *ctx)
e5d1367f
SE
747{
748}
749
750void
751perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
752{
753}
754
755static inline void
756perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
757{
758}
759
760static inline u64 perf_cgroup_event_time(struct perf_event *event)
761{
762 return 0;
763}
764
765static inline void
766perf_cgroup_defer_enabled(struct perf_event *event)
767{
768}
769
770static inline void
771perf_cgroup_mark_enabled(struct perf_event *event,
772 struct perf_event_context *ctx)
773{
774}
775#endif
776
9e630205
SE
777/*
778 * set default to be dependent on timer tick just
779 * like original code
780 */
781#define PERF_CPU_HRTIMER (1000 / HZ)
782/*
783 * function must be called with interrupts disbled
784 */
272325c4 785static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
786{
787 struct perf_cpu_context *cpuctx;
9e630205
SE
788 int rotations = 0;
789
790 WARN_ON(!irqs_disabled());
791
792 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
793 rotations = perf_rotate_context(cpuctx);
794
4cfafd30
PZ
795 raw_spin_lock(&cpuctx->hrtimer_lock);
796 if (rotations)
9e630205 797 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
798 else
799 cpuctx->hrtimer_active = 0;
800 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 801
4cfafd30 802 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
803}
804
272325c4 805static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 806{
272325c4 807 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 808 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 809 u64 interval;
9e630205
SE
810
811 /* no multiplexing needed for SW PMU */
812 if (pmu->task_ctx_nr == perf_sw_context)
813 return;
814
62b85639
SE
815 /*
816 * check default is sane, if not set then force to
817 * default interval (1/tick)
818 */
272325c4
PZ
819 interval = pmu->hrtimer_interval_ms;
820 if (interval < 1)
821 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 822
272325c4 823 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 824
4cfafd30
PZ
825 raw_spin_lock_init(&cpuctx->hrtimer_lock);
826 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 827 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
828}
829
272325c4 830static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 831{
272325c4 832 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 833 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 834 unsigned long flags;
9e630205
SE
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 838 return 0;
9e630205 839
4cfafd30
PZ
840 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
841 if (!cpuctx->hrtimer_active) {
842 cpuctx->hrtimer_active = 1;
843 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
844 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
845 }
846 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 847
272325c4 848 return 0;
9e630205
SE
849}
850
33696fc0 851void perf_pmu_disable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!(*count)++)
855 pmu->pmu_disable(pmu);
9e35ad38 856}
9e35ad38 857
33696fc0 858void perf_pmu_enable(struct pmu *pmu)
9e35ad38 859{
33696fc0
PZ
860 int *count = this_cpu_ptr(pmu->pmu_disable_count);
861 if (!--(*count))
862 pmu->pmu_enable(pmu);
9e35ad38 863}
9e35ad38 864
2fde4f94 865static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
866
867/*
2fde4f94
MR
868 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
869 * perf_event_task_tick() are fully serialized because they're strictly cpu
870 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
871 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 872 */
2fde4f94 873static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 874{
2fde4f94 875 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 876
e9d2b064 877 WARN_ON(!irqs_disabled());
b5ab4cd5 878
2fde4f94
MR
879 WARN_ON(!list_empty(&ctx->active_ctx_list));
880
881 list_add(&ctx->active_ctx_list, head);
882}
883
884static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
885{
886 WARN_ON(!irqs_disabled());
887
888 WARN_ON(list_empty(&ctx->active_ctx_list));
889
890 list_del_init(&ctx->active_ctx_list);
9e35ad38 891}
9e35ad38 892
cdd6c482 893static void get_ctx(struct perf_event_context *ctx)
a63eaf34 894{
e5289d4a 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
896}
897
4af57ef2
YZ
898static void free_ctx(struct rcu_head *head)
899{
900 struct perf_event_context *ctx;
901
902 ctx = container_of(head, struct perf_event_context, rcu_head);
903 kfree(ctx->task_ctx_data);
904 kfree(ctx);
905}
906
cdd6c482 907static void put_ctx(struct perf_event_context *ctx)
a63eaf34 908{
564c2b21
PM
909 if (atomic_dec_and_test(&ctx->refcount)) {
910 if (ctx->parent_ctx)
911 put_ctx(ctx->parent_ctx);
c93f7669
PM
912 if (ctx->task)
913 put_task_struct(ctx->task);
4af57ef2 914 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 915 }
a63eaf34
PM
916}
917
f63a8daa
PZ
918/*
919 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
920 * perf_pmu_migrate_context() we need some magic.
921 *
922 * Those places that change perf_event::ctx will hold both
923 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
924 *
8b10c5e2
PZ
925 * Lock ordering is by mutex address. There are two other sites where
926 * perf_event_context::mutex nests and those are:
927 *
928 * - perf_event_exit_task_context() [ child , 0 ]
929 * __perf_event_exit_task()
930 * sync_child_event()
931 * put_event() [ parent, 1 ]
932 *
933 * - perf_event_init_context() [ parent, 0 ]
934 * inherit_task_group()
935 * inherit_group()
936 * inherit_event()
937 * perf_event_alloc()
938 * perf_init_event()
939 * perf_try_init_event() [ child , 1 ]
940 *
941 * While it appears there is an obvious deadlock here -- the parent and child
942 * nesting levels are inverted between the two. This is in fact safe because
943 * life-time rules separate them. That is an exiting task cannot fork, and a
944 * spawning task cannot (yet) exit.
945 *
946 * But remember that that these are parent<->child context relations, and
947 * migration does not affect children, therefore these two orderings should not
948 * interact.
f63a8daa
PZ
949 *
950 * The change in perf_event::ctx does not affect children (as claimed above)
951 * because the sys_perf_event_open() case will install a new event and break
952 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
953 * concerned with cpuctx and that doesn't have children.
954 *
955 * The places that change perf_event::ctx will issue:
956 *
957 * perf_remove_from_context();
958 * synchronize_rcu();
959 * perf_install_in_context();
960 *
961 * to affect the change. The remove_from_context() + synchronize_rcu() should
962 * quiesce the event, after which we can install it in the new location. This
963 * means that only external vectors (perf_fops, prctl) can perturb the event
964 * while in transit. Therefore all such accessors should also acquire
965 * perf_event_context::mutex to serialize against this.
966 *
967 * However; because event->ctx can change while we're waiting to acquire
968 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
969 * function.
970 *
971 * Lock order:
972 * task_struct::perf_event_mutex
973 * perf_event_context::mutex
974 * perf_event_context::lock
975 * perf_event::child_mutex;
976 * perf_event::mmap_mutex
977 * mmap_sem
978 */
a83fe28e
PZ
979static struct perf_event_context *
980perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
981{
982 struct perf_event_context *ctx;
983
984again:
985 rcu_read_lock();
986 ctx = ACCESS_ONCE(event->ctx);
987 if (!atomic_inc_not_zero(&ctx->refcount)) {
988 rcu_read_unlock();
989 goto again;
990 }
991 rcu_read_unlock();
992
a83fe28e 993 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
994 if (event->ctx != ctx) {
995 mutex_unlock(&ctx->mutex);
996 put_ctx(ctx);
997 goto again;
998 }
999
1000 return ctx;
1001}
1002
a83fe28e
PZ
1003static inline struct perf_event_context *
1004perf_event_ctx_lock(struct perf_event *event)
1005{
1006 return perf_event_ctx_lock_nested(event, 0);
1007}
1008
f63a8daa
PZ
1009static void perf_event_ctx_unlock(struct perf_event *event,
1010 struct perf_event_context *ctx)
1011{
1012 mutex_unlock(&ctx->mutex);
1013 put_ctx(ctx);
1014}
1015
211de6eb
PZ
1016/*
1017 * This must be done under the ctx->lock, such as to serialize against
1018 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1019 * calling scheduler related locks and ctx->lock nests inside those.
1020 */
1021static __must_check struct perf_event_context *
1022unclone_ctx(struct perf_event_context *ctx)
71a851b4 1023{
211de6eb
PZ
1024 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1025
1026 lockdep_assert_held(&ctx->lock);
1027
1028 if (parent_ctx)
71a851b4 1029 ctx->parent_ctx = NULL;
5a3126d4 1030 ctx->generation++;
211de6eb
PZ
1031
1032 return parent_ctx;
71a851b4
PZ
1033}
1034
6844c09d
ACM
1035static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1036{
1037 /*
1038 * only top level events have the pid namespace they were created in
1039 */
1040 if (event->parent)
1041 event = event->parent;
1042
1043 return task_tgid_nr_ns(p, event->ns);
1044}
1045
1046static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1047{
1048 /*
1049 * only top level events have the pid namespace they were created in
1050 */
1051 if (event->parent)
1052 event = event->parent;
1053
1054 return task_pid_nr_ns(p, event->ns);
1055}
1056
7f453c24 1057/*
cdd6c482 1058 * If we inherit events we want to return the parent event id
7f453c24
PZ
1059 * to userspace.
1060 */
cdd6c482 1061static u64 primary_event_id(struct perf_event *event)
7f453c24 1062{
cdd6c482 1063 u64 id = event->id;
7f453c24 1064
cdd6c482
IM
1065 if (event->parent)
1066 id = event->parent->id;
7f453c24
PZ
1067
1068 return id;
1069}
1070
25346b93 1071/*
cdd6c482 1072 * Get the perf_event_context for a task and lock it.
25346b93
PM
1073 * This has to cope with with the fact that until it is locked,
1074 * the context could get moved to another task.
1075 */
cdd6c482 1076static struct perf_event_context *
8dc85d54 1077perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1078{
cdd6c482 1079 struct perf_event_context *ctx;
25346b93 1080
9ed6060d 1081retry:
058ebd0e
PZ
1082 /*
1083 * One of the few rules of preemptible RCU is that one cannot do
1084 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1085 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1086 * rcu_read_unlock_special().
1087 *
1088 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1089 * side critical section has interrupts disabled.
058ebd0e 1090 */
2fd59077 1091 local_irq_save(*flags);
058ebd0e 1092 rcu_read_lock();
8dc85d54 1093 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1094 if (ctx) {
1095 /*
1096 * If this context is a clone of another, it might
1097 * get swapped for another underneath us by
cdd6c482 1098 * perf_event_task_sched_out, though the
25346b93
PM
1099 * rcu_read_lock() protects us from any context
1100 * getting freed. Lock the context and check if it
1101 * got swapped before we could get the lock, and retry
1102 * if so. If we locked the right context, then it
1103 * can't get swapped on us any more.
1104 */
2fd59077 1105 raw_spin_lock(&ctx->lock);
8dc85d54 1106 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1107 raw_spin_unlock(&ctx->lock);
058ebd0e 1108 rcu_read_unlock();
2fd59077 1109 local_irq_restore(*flags);
25346b93
PM
1110 goto retry;
1111 }
b49a9e7e
PZ
1112
1113 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1114 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1115 ctx = NULL;
1116 }
25346b93
PM
1117 }
1118 rcu_read_unlock();
2fd59077
PM
1119 if (!ctx)
1120 local_irq_restore(*flags);
25346b93
PM
1121 return ctx;
1122}
1123
1124/*
1125 * Get the context for a task and increment its pin_count so it
1126 * can't get swapped to another task. This also increments its
1127 * reference count so that the context can't get freed.
1128 */
8dc85d54
PZ
1129static struct perf_event_context *
1130perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1131{
cdd6c482 1132 struct perf_event_context *ctx;
25346b93
PM
1133 unsigned long flags;
1134
8dc85d54 1135 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1136 if (ctx) {
1137 ++ctx->pin_count;
e625cce1 1138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1139 }
1140 return ctx;
1141}
1142
cdd6c482 1143static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1144{
1145 unsigned long flags;
1146
e625cce1 1147 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1148 --ctx->pin_count;
e625cce1 1149 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1150}
1151
f67218c3
PZ
1152/*
1153 * Update the record of the current time in a context.
1154 */
1155static void update_context_time(struct perf_event_context *ctx)
1156{
1157 u64 now = perf_clock();
1158
1159 ctx->time += now - ctx->timestamp;
1160 ctx->timestamp = now;
1161}
1162
4158755d
SE
1163static u64 perf_event_time(struct perf_event *event)
1164{
1165 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1166
1167 if (is_cgroup_event(event))
1168 return perf_cgroup_event_time(event);
1169
4158755d
SE
1170 return ctx ? ctx->time : 0;
1171}
1172
f67218c3
PZ
1173/*
1174 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1175 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1176 */
1177static void update_event_times(struct perf_event *event)
1178{
1179 struct perf_event_context *ctx = event->ctx;
1180 u64 run_end;
1181
1182 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1183 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1184 return;
e5d1367f
SE
1185 /*
1186 * in cgroup mode, time_enabled represents
1187 * the time the event was enabled AND active
1188 * tasks were in the monitored cgroup. This is
1189 * independent of the activity of the context as
1190 * there may be a mix of cgroup and non-cgroup events.
1191 *
1192 * That is why we treat cgroup events differently
1193 * here.
1194 */
1195 if (is_cgroup_event(event))
46cd6a7f 1196 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1197 else if (ctx->is_active)
1198 run_end = ctx->time;
acd1d7c1
PZ
1199 else
1200 run_end = event->tstamp_stopped;
1201
1202 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1203
1204 if (event->state == PERF_EVENT_STATE_INACTIVE)
1205 run_end = event->tstamp_stopped;
1206 else
4158755d 1207 run_end = perf_event_time(event);
f67218c3
PZ
1208
1209 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1210
f67218c3
PZ
1211}
1212
96c21a46
PZ
1213/*
1214 * Update total_time_enabled and total_time_running for all events in a group.
1215 */
1216static void update_group_times(struct perf_event *leader)
1217{
1218 struct perf_event *event;
1219
1220 update_event_times(leader);
1221 list_for_each_entry(event, &leader->sibling_list, group_entry)
1222 update_event_times(event);
1223}
1224
889ff015
FW
1225static struct list_head *
1226ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1227{
1228 if (event->attr.pinned)
1229 return &ctx->pinned_groups;
1230 else
1231 return &ctx->flexible_groups;
1232}
1233
fccc714b 1234/*
cdd6c482 1235 * Add a event from the lists for its context.
fccc714b
PZ
1236 * Must be called with ctx->mutex and ctx->lock held.
1237 */
04289bb9 1238static void
cdd6c482 1239list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1240{
c994d613
PZ
1241 lockdep_assert_held(&ctx->lock);
1242
8a49542c
PZ
1243 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1244 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1245
1246 /*
8a49542c
PZ
1247 * If we're a stand alone event or group leader, we go to the context
1248 * list, group events are kept attached to the group so that
1249 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1250 */
8a49542c 1251 if (event->group_leader == event) {
889ff015
FW
1252 struct list_head *list;
1253
d6f962b5
FW
1254 if (is_software_event(event))
1255 event->group_flags |= PERF_GROUP_SOFTWARE;
1256
889ff015
FW
1257 list = ctx_group_list(event, ctx);
1258 list_add_tail(&event->group_entry, list);
5c148194 1259 }
592903cd 1260
08309379 1261 if (is_cgroup_event(event))
e5d1367f 1262 ctx->nr_cgroups++;
e5d1367f 1263
cdd6c482
IM
1264 list_add_rcu(&event->event_entry, &ctx->event_list);
1265 ctx->nr_events++;
1266 if (event->attr.inherit_stat)
bfbd3381 1267 ctx->nr_stat++;
5a3126d4
PZ
1268
1269 ctx->generation++;
04289bb9
IM
1270}
1271
0231bb53
JO
1272/*
1273 * Initialize event state based on the perf_event_attr::disabled.
1274 */
1275static inline void perf_event__state_init(struct perf_event *event)
1276{
1277 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1278 PERF_EVENT_STATE_INACTIVE;
1279}
1280
a723968c 1281static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1282{
1283 int entry = sizeof(u64); /* value */
1284 int size = 0;
1285 int nr = 1;
1286
1287 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1288 size += sizeof(u64);
1289
1290 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1291 size += sizeof(u64);
1292
1293 if (event->attr.read_format & PERF_FORMAT_ID)
1294 entry += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1297 nr += nr_siblings;
c320c7b7
ACM
1298 size += sizeof(u64);
1299 }
1300
1301 size += entry * nr;
1302 event->read_size = size;
1303}
1304
a723968c 1305static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1306{
1307 struct perf_sample_data *data;
c320c7b7
ACM
1308 u16 size = 0;
1309
c320c7b7
ACM
1310 if (sample_type & PERF_SAMPLE_IP)
1311 size += sizeof(data->ip);
1312
6844c09d
ACM
1313 if (sample_type & PERF_SAMPLE_ADDR)
1314 size += sizeof(data->addr);
1315
1316 if (sample_type & PERF_SAMPLE_PERIOD)
1317 size += sizeof(data->period);
1318
c3feedf2
AK
1319 if (sample_type & PERF_SAMPLE_WEIGHT)
1320 size += sizeof(data->weight);
1321
6844c09d
ACM
1322 if (sample_type & PERF_SAMPLE_READ)
1323 size += event->read_size;
1324
d6be9ad6
SE
1325 if (sample_type & PERF_SAMPLE_DATA_SRC)
1326 size += sizeof(data->data_src.val);
1327
fdfbbd07
AK
1328 if (sample_type & PERF_SAMPLE_TRANSACTION)
1329 size += sizeof(data->txn);
1330
6844c09d
ACM
1331 event->header_size = size;
1332}
1333
a723968c
PZ
1334/*
1335 * Called at perf_event creation and when events are attached/detached from a
1336 * group.
1337 */
1338static void perf_event__header_size(struct perf_event *event)
1339{
1340 __perf_event_read_size(event,
1341 event->group_leader->nr_siblings);
1342 __perf_event_header_size(event, event->attr.sample_type);
1343}
1344
6844c09d
ACM
1345static void perf_event__id_header_size(struct perf_event *event)
1346{
1347 struct perf_sample_data *data;
1348 u64 sample_type = event->attr.sample_type;
1349 u16 size = 0;
1350
c320c7b7
ACM
1351 if (sample_type & PERF_SAMPLE_TID)
1352 size += sizeof(data->tid_entry);
1353
1354 if (sample_type & PERF_SAMPLE_TIME)
1355 size += sizeof(data->time);
1356
ff3d527c
AH
1357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1358 size += sizeof(data->id);
1359
c320c7b7
ACM
1360 if (sample_type & PERF_SAMPLE_ID)
1361 size += sizeof(data->id);
1362
1363 if (sample_type & PERF_SAMPLE_STREAM_ID)
1364 size += sizeof(data->stream_id);
1365
1366 if (sample_type & PERF_SAMPLE_CPU)
1367 size += sizeof(data->cpu_entry);
1368
6844c09d 1369 event->id_header_size = size;
c320c7b7
ACM
1370}
1371
a723968c
PZ
1372static bool perf_event_validate_size(struct perf_event *event)
1373{
1374 /*
1375 * The values computed here will be over-written when we actually
1376 * attach the event.
1377 */
1378 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1379 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1380 perf_event__id_header_size(event);
1381
1382 /*
1383 * Sum the lot; should not exceed the 64k limit we have on records.
1384 * Conservative limit to allow for callchains and other variable fields.
1385 */
1386 if (event->read_size + event->header_size +
1387 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1388 return false;
1389
1390 return true;
1391}
1392
8a49542c
PZ
1393static void perf_group_attach(struct perf_event *event)
1394{
c320c7b7 1395 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1396
74c3337c
PZ
1397 /*
1398 * We can have double attach due to group movement in perf_event_open.
1399 */
1400 if (event->attach_state & PERF_ATTACH_GROUP)
1401 return;
1402
8a49542c
PZ
1403 event->attach_state |= PERF_ATTACH_GROUP;
1404
1405 if (group_leader == event)
1406 return;
1407
652884fe
PZ
1408 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1409
8a49542c
PZ
1410 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1411 !is_software_event(event))
1412 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1413
1414 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1415 group_leader->nr_siblings++;
c320c7b7
ACM
1416
1417 perf_event__header_size(group_leader);
1418
1419 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1420 perf_event__header_size(pos);
8a49542c
PZ
1421}
1422
a63eaf34 1423/*
cdd6c482 1424 * Remove a event from the lists for its context.
fccc714b 1425 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1426 */
04289bb9 1427static void
cdd6c482 1428list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1429{
68cacd29 1430 struct perf_cpu_context *cpuctx;
652884fe
PZ
1431
1432 WARN_ON_ONCE(event->ctx != ctx);
1433 lockdep_assert_held(&ctx->lock);
1434
8a49542c
PZ
1435 /*
1436 * We can have double detach due to exit/hot-unplug + close.
1437 */
1438 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1439 return;
8a49542c
PZ
1440
1441 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1442
68cacd29 1443 if (is_cgroup_event(event)) {
e5d1367f 1444 ctx->nr_cgroups--;
70a01657
PZ
1445 /*
1446 * Because cgroup events are always per-cpu events, this will
1447 * always be called from the right CPU.
1448 */
68cacd29
SE
1449 cpuctx = __get_cpu_context(ctx);
1450 /*
70a01657
PZ
1451 * If there are no more cgroup events then clear cgrp to avoid
1452 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1453 */
1454 if (!ctx->nr_cgroups)
1455 cpuctx->cgrp = NULL;
1456 }
e5d1367f 1457
cdd6c482
IM
1458 ctx->nr_events--;
1459 if (event->attr.inherit_stat)
bfbd3381 1460 ctx->nr_stat--;
8bc20959 1461
cdd6c482 1462 list_del_rcu(&event->event_entry);
04289bb9 1463
8a49542c
PZ
1464 if (event->group_leader == event)
1465 list_del_init(&event->group_entry);
5c148194 1466
96c21a46 1467 update_group_times(event);
b2e74a26
SE
1468
1469 /*
1470 * If event was in error state, then keep it
1471 * that way, otherwise bogus counts will be
1472 * returned on read(). The only way to get out
1473 * of error state is by explicit re-enabling
1474 * of the event
1475 */
1476 if (event->state > PERF_EVENT_STATE_OFF)
1477 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1478
1479 ctx->generation++;
050735b0
PZ
1480}
1481
8a49542c 1482static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1483{
1484 struct perf_event *sibling, *tmp;
8a49542c
PZ
1485 struct list_head *list = NULL;
1486
1487 /*
1488 * We can have double detach due to exit/hot-unplug + close.
1489 */
1490 if (!(event->attach_state & PERF_ATTACH_GROUP))
1491 return;
1492
1493 event->attach_state &= ~PERF_ATTACH_GROUP;
1494
1495 /*
1496 * If this is a sibling, remove it from its group.
1497 */
1498 if (event->group_leader != event) {
1499 list_del_init(&event->group_entry);
1500 event->group_leader->nr_siblings--;
c320c7b7 1501 goto out;
8a49542c
PZ
1502 }
1503
1504 if (!list_empty(&event->group_entry))
1505 list = &event->group_entry;
2e2af50b 1506
04289bb9 1507 /*
cdd6c482
IM
1508 * If this was a group event with sibling events then
1509 * upgrade the siblings to singleton events by adding them
8a49542c 1510 * to whatever list we are on.
04289bb9 1511 */
cdd6c482 1512 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1513 if (list)
1514 list_move_tail(&sibling->group_entry, list);
04289bb9 1515 sibling->group_leader = sibling;
d6f962b5
FW
1516
1517 /* Inherit group flags from the previous leader */
1518 sibling->group_flags = event->group_flags;
652884fe
PZ
1519
1520 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1521 }
c320c7b7
ACM
1522
1523out:
1524 perf_event__header_size(event->group_leader);
1525
1526 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1527 perf_event__header_size(tmp);
04289bb9
IM
1528}
1529
fadfe7be
JO
1530/*
1531 * User event without the task.
1532 */
1533static bool is_orphaned_event(struct perf_event *event)
1534{
1535 return event && !is_kernel_event(event) && !event->owner;
1536}
1537
1538/*
1539 * Event has a parent but parent's task finished and it's
1540 * alive only because of children holding refference.
1541 */
1542static bool is_orphaned_child(struct perf_event *event)
1543{
1544 return is_orphaned_event(event->parent);
1545}
1546
1547static void orphans_remove_work(struct work_struct *work);
1548
1549static void schedule_orphans_remove(struct perf_event_context *ctx)
1550{
1551 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1552 return;
1553
1554 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1555 get_ctx(ctx);
1556 ctx->orphans_remove_sched = true;
1557 }
1558}
1559
1560static int __init perf_workqueue_init(void)
1561{
1562 perf_wq = create_singlethread_workqueue("perf");
1563 WARN(!perf_wq, "failed to create perf workqueue\n");
1564 return perf_wq ? 0 : -1;
1565}
1566
1567core_initcall(perf_workqueue_init);
1568
66eb579e
MR
1569static inline int pmu_filter_match(struct perf_event *event)
1570{
1571 struct pmu *pmu = event->pmu;
1572 return pmu->filter_match ? pmu->filter_match(event) : 1;
1573}
1574
fa66f07a
SE
1575static inline int
1576event_filter_match(struct perf_event *event)
1577{
e5d1367f 1578 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1579 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1580}
1581
9ffcfa6f
SE
1582static void
1583event_sched_out(struct perf_event *event,
3b6f9e5c 1584 struct perf_cpu_context *cpuctx,
cdd6c482 1585 struct perf_event_context *ctx)
3b6f9e5c 1586{
4158755d 1587 u64 tstamp = perf_event_time(event);
fa66f07a 1588 u64 delta;
652884fe
PZ
1589
1590 WARN_ON_ONCE(event->ctx != ctx);
1591 lockdep_assert_held(&ctx->lock);
1592
fa66f07a
SE
1593 /*
1594 * An event which could not be activated because of
1595 * filter mismatch still needs to have its timings
1596 * maintained, otherwise bogus information is return
1597 * via read() for time_enabled, time_running:
1598 */
1599 if (event->state == PERF_EVENT_STATE_INACTIVE
1600 && !event_filter_match(event)) {
e5d1367f 1601 delta = tstamp - event->tstamp_stopped;
fa66f07a 1602 event->tstamp_running += delta;
4158755d 1603 event->tstamp_stopped = tstamp;
fa66f07a
SE
1604 }
1605
cdd6c482 1606 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1607 return;
3b6f9e5c 1608
44377277
AS
1609 perf_pmu_disable(event->pmu);
1610
cdd6c482
IM
1611 event->state = PERF_EVENT_STATE_INACTIVE;
1612 if (event->pending_disable) {
1613 event->pending_disable = 0;
1614 event->state = PERF_EVENT_STATE_OFF;
970892a9 1615 }
4158755d 1616 event->tstamp_stopped = tstamp;
a4eaf7f1 1617 event->pmu->del(event, 0);
cdd6c482 1618 event->oncpu = -1;
3b6f9e5c 1619
cdd6c482 1620 if (!is_software_event(event))
3b6f9e5c 1621 cpuctx->active_oncpu--;
2fde4f94
MR
1622 if (!--ctx->nr_active)
1623 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1624 if (event->attr.freq && event->attr.sample_freq)
1625 ctx->nr_freq--;
cdd6c482 1626 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1627 cpuctx->exclusive = 0;
44377277 1628
fadfe7be
JO
1629 if (is_orphaned_child(event))
1630 schedule_orphans_remove(ctx);
1631
44377277 1632 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1633}
1634
d859e29f 1635static void
cdd6c482 1636group_sched_out(struct perf_event *group_event,
d859e29f 1637 struct perf_cpu_context *cpuctx,
cdd6c482 1638 struct perf_event_context *ctx)
d859e29f 1639{
cdd6c482 1640 struct perf_event *event;
fa66f07a 1641 int state = group_event->state;
d859e29f 1642
cdd6c482 1643 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1644
1645 /*
1646 * Schedule out siblings (if any):
1647 */
cdd6c482
IM
1648 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1649 event_sched_out(event, cpuctx, ctx);
d859e29f 1650
fa66f07a 1651 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1652 cpuctx->exclusive = 0;
1653}
1654
46ce0fe9
PZ
1655struct remove_event {
1656 struct perf_event *event;
1657 bool detach_group;
1658};
1659
0017960f
PZ
1660static void ___perf_remove_from_context(void *info)
1661{
1662 struct remove_event *re = info;
1663 struct perf_event *event = re->event;
1664 struct perf_event_context *ctx = event->ctx;
1665
1666 if (re->detach_group)
1667 perf_group_detach(event);
1668 list_del_event(event, ctx);
1669}
1670
0793a61d 1671/*
cdd6c482 1672 * Cross CPU call to remove a performance event
0793a61d 1673 *
cdd6c482 1674 * We disable the event on the hardware level first. After that we
0793a61d
TG
1675 * remove it from the context list.
1676 */
fe4b04fa 1677static int __perf_remove_from_context(void *info)
0793a61d 1678{
46ce0fe9
PZ
1679 struct remove_event *re = info;
1680 struct perf_event *event = re->event;
cdd6c482 1681 struct perf_event_context *ctx = event->ctx;
108b02cf 1682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1683
e625cce1 1684 raw_spin_lock(&ctx->lock);
cdd6c482 1685 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1686 if (re->detach_group)
1687 perf_group_detach(event);
cdd6c482 1688 list_del_event(event, ctx);
64ce3126
PZ
1689 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1690 ctx->is_active = 0;
1691 cpuctx->task_ctx = NULL;
1692 }
e625cce1 1693 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1694
1695 return 0;
0793a61d
TG
1696}
1697
0793a61d 1698/*
cdd6c482 1699 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1700 *
cdd6c482 1701 * CPU events are removed with a smp call. For task events we only
0793a61d 1702 * call when the task is on a CPU.
c93f7669 1703 *
cdd6c482
IM
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1706 * remains valid. This is OK when called from perf_release since
1707 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1708 * When called from perf_event_exit_task, it's OK because the
c93f7669 1709 * context has been detached from its task.
0793a61d 1710 */
46ce0fe9 1711static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1712{
cdd6c482 1713 struct perf_event_context *ctx = event->ctx;
46ce0fe9
PZ
1714 struct remove_event re = {
1715 .event = event,
1716 .detach_group = detach_group,
1717 };
0793a61d 1718
fe4b04fa
PZ
1719 lockdep_assert_held(&ctx->mutex);
1720
0017960f
PZ
1721 event_function_call(event, __perf_remove_from_context,
1722 ___perf_remove_from_context, &re);
0793a61d
TG
1723}
1724
d859e29f 1725/*
cdd6c482 1726 * Cross CPU call to disable a performance event
d859e29f 1727 */
500ad2d8 1728int __perf_event_disable(void *info)
d859e29f 1729{
cdd6c482 1730 struct perf_event *event = info;
cdd6c482 1731 struct perf_event_context *ctx = event->ctx;
108b02cf 1732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1733
1734 /*
cdd6c482
IM
1735 * If this is a per-task event, need to check whether this
1736 * event's task is the current task on this cpu.
fe4b04fa
PZ
1737 *
1738 * Can trigger due to concurrent perf_event_context_sched_out()
1739 * flipping contexts around.
d859e29f 1740 */
665c2142 1741 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1742 return -EINVAL;
d859e29f 1743
e625cce1 1744 raw_spin_lock(&ctx->lock);
d859e29f
PM
1745
1746 /*
cdd6c482 1747 * If the event is on, turn it off.
d859e29f
PM
1748 * If it is in error state, leave it in error state.
1749 */
cdd6c482 1750 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1751 update_context_time(ctx);
e5d1367f 1752 update_cgrp_time_from_event(event);
cdd6c482
IM
1753 update_group_times(event);
1754 if (event == event->group_leader)
1755 group_sched_out(event, cpuctx, ctx);
d859e29f 1756 else
cdd6c482
IM
1757 event_sched_out(event, cpuctx, ctx);
1758 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1759 }
1760
e625cce1 1761 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1762
1763 return 0;
d859e29f
PM
1764}
1765
7b648018
PZ
1766void ___perf_event_disable(void *info)
1767{
1768 struct perf_event *event = info;
1769
1770 /*
1771 * Since we have the lock this context can't be scheduled
1772 * in, so we can change the state safely.
1773 */
1774 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1775 update_group_times(event);
1776 event->state = PERF_EVENT_STATE_OFF;
1777 }
1778}
1779
d859e29f 1780/*
cdd6c482 1781 * Disable a event.
c93f7669 1782 *
cdd6c482
IM
1783 * If event->ctx is a cloned context, callers must make sure that
1784 * every task struct that event->ctx->task could possibly point to
c93f7669 1785 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1786 * perf_event_for_each_child or perf_event_for_each because they
1787 * hold the top-level event's child_mutex, so any descendant that
1788 * goes to exit will block in sync_child_event.
1789 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1790 * is the current context on this CPU and preemption is disabled,
cdd6c482 1791 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1792 */
f63a8daa 1793static void _perf_event_disable(struct perf_event *event)
d859e29f 1794{
cdd6c482 1795 struct perf_event_context *ctx = event->ctx;
d859e29f 1796
e625cce1 1797 raw_spin_lock_irq(&ctx->lock);
7b648018 1798 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1799 raw_spin_unlock_irq(&ctx->lock);
7b648018 1800 return;
53cfbf59 1801 }
e625cce1 1802 raw_spin_unlock_irq(&ctx->lock);
7b648018
PZ
1803
1804 event_function_call(event, __perf_event_disable,
1805 ___perf_event_disable, event);
d859e29f 1806}
f63a8daa
PZ
1807
1808/*
1809 * Strictly speaking kernel users cannot create groups and therefore this
1810 * interface does not need the perf_event_ctx_lock() magic.
1811 */
1812void perf_event_disable(struct perf_event *event)
1813{
1814 struct perf_event_context *ctx;
1815
1816 ctx = perf_event_ctx_lock(event);
1817 _perf_event_disable(event);
1818 perf_event_ctx_unlock(event, ctx);
1819}
dcfce4a0 1820EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1821
e5d1367f
SE
1822static void perf_set_shadow_time(struct perf_event *event,
1823 struct perf_event_context *ctx,
1824 u64 tstamp)
1825{
1826 /*
1827 * use the correct time source for the time snapshot
1828 *
1829 * We could get by without this by leveraging the
1830 * fact that to get to this function, the caller
1831 * has most likely already called update_context_time()
1832 * and update_cgrp_time_xx() and thus both timestamp
1833 * are identical (or very close). Given that tstamp is,
1834 * already adjusted for cgroup, we could say that:
1835 * tstamp - ctx->timestamp
1836 * is equivalent to
1837 * tstamp - cgrp->timestamp.
1838 *
1839 * Then, in perf_output_read(), the calculation would
1840 * work with no changes because:
1841 * - event is guaranteed scheduled in
1842 * - no scheduled out in between
1843 * - thus the timestamp would be the same
1844 *
1845 * But this is a bit hairy.
1846 *
1847 * So instead, we have an explicit cgroup call to remain
1848 * within the time time source all along. We believe it
1849 * is cleaner and simpler to understand.
1850 */
1851 if (is_cgroup_event(event))
1852 perf_cgroup_set_shadow_time(event, tstamp);
1853 else
1854 event->shadow_ctx_time = tstamp - ctx->timestamp;
1855}
1856
4fe757dd
PZ
1857#define MAX_INTERRUPTS (~0ULL)
1858
1859static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1860static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1861
235c7fc7 1862static int
9ffcfa6f 1863event_sched_in(struct perf_event *event,
235c7fc7 1864 struct perf_cpu_context *cpuctx,
6e37738a 1865 struct perf_event_context *ctx)
235c7fc7 1866{
4158755d 1867 u64 tstamp = perf_event_time(event);
44377277 1868 int ret = 0;
4158755d 1869
63342411
PZ
1870 lockdep_assert_held(&ctx->lock);
1871
cdd6c482 1872 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1873 return 0;
1874
cdd6c482 1875 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1876 event->oncpu = smp_processor_id();
4fe757dd
PZ
1877
1878 /*
1879 * Unthrottle events, since we scheduled we might have missed several
1880 * ticks already, also for a heavily scheduling task there is little
1881 * guarantee it'll get a tick in a timely manner.
1882 */
1883 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1884 perf_log_throttle(event, 1);
1885 event->hw.interrupts = 0;
1886 }
1887
235c7fc7
IM
1888 /*
1889 * The new state must be visible before we turn it on in the hardware:
1890 */
1891 smp_wmb();
1892
44377277
AS
1893 perf_pmu_disable(event->pmu);
1894
72f669c0
SL
1895 perf_set_shadow_time(event, ctx, tstamp);
1896
ec0d7729
AS
1897 perf_log_itrace_start(event);
1898
a4eaf7f1 1899 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1900 event->state = PERF_EVENT_STATE_INACTIVE;
1901 event->oncpu = -1;
44377277
AS
1902 ret = -EAGAIN;
1903 goto out;
235c7fc7
IM
1904 }
1905
00a2916f
PZ
1906 event->tstamp_running += tstamp - event->tstamp_stopped;
1907
cdd6c482 1908 if (!is_software_event(event))
3b6f9e5c 1909 cpuctx->active_oncpu++;
2fde4f94
MR
1910 if (!ctx->nr_active++)
1911 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1912 if (event->attr.freq && event->attr.sample_freq)
1913 ctx->nr_freq++;
235c7fc7 1914
cdd6c482 1915 if (event->attr.exclusive)
3b6f9e5c
PM
1916 cpuctx->exclusive = 1;
1917
fadfe7be
JO
1918 if (is_orphaned_child(event))
1919 schedule_orphans_remove(ctx);
1920
44377277
AS
1921out:
1922 perf_pmu_enable(event->pmu);
1923
1924 return ret;
235c7fc7
IM
1925}
1926
6751b71e 1927static int
cdd6c482 1928group_sched_in(struct perf_event *group_event,
6751b71e 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
6751b71e 1931{
6bde9b6c 1932 struct perf_event *event, *partial_group = NULL;
4a234593 1933 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1934 u64 now = ctx->time;
1935 bool simulate = false;
6751b71e 1936
cdd6c482 1937 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1938 return 0;
1939
fbbe0701 1940 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1941
9ffcfa6f 1942 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1943 pmu->cancel_txn(pmu);
272325c4 1944 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1945 return -EAGAIN;
90151c35 1946 }
6751b71e
PM
1947
1948 /*
1949 * Schedule in siblings as one group (if any):
1950 */
cdd6c482 1951 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1952 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1953 partial_group = event;
6751b71e
PM
1954 goto group_error;
1955 }
1956 }
1957
9ffcfa6f 1958 if (!pmu->commit_txn(pmu))
6e85158c 1959 return 0;
9ffcfa6f 1960
6751b71e
PM
1961group_error:
1962 /*
1963 * Groups can be scheduled in as one unit only, so undo any
1964 * partial group before returning:
d7842da4
SE
1965 * The events up to the failed event are scheduled out normally,
1966 * tstamp_stopped will be updated.
1967 *
1968 * The failed events and the remaining siblings need to have
1969 * their timings updated as if they had gone thru event_sched_in()
1970 * and event_sched_out(). This is required to get consistent timings
1971 * across the group. This also takes care of the case where the group
1972 * could never be scheduled by ensuring tstamp_stopped is set to mark
1973 * the time the event was actually stopped, such that time delta
1974 * calculation in update_event_times() is correct.
6751b71e 1975 */
cdd6c482
IM
1976 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1977 if (event == partial_group)
d7842da4
SE
1978 simulate = true;
1979
1980 if (simulate) {
1981 event->tstamp_running += now - event->tstamp_stopped;
1982 event->tstamp_stopped = now;
1983 } else {
1984 event_sched_out(event, cpuctx, ctx);
1985 }
6751b71e 1986 }
9ffcfa6f 1987 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1988
ad5133b7 1989 pmu->cancel_txn(pmu);
90151c35 1990
272325c4 1991 perf_mux_hrtimer_restart(cpuctx);
9e630205 1992
6751b71e
PM
1993 return -EAGAIN;
1994}
1995
3b6f9e5c 1996/*
cdd6c482 1997 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1998 */
cdd6c482 1999static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2000 struct perf_cpu_context *cpuctx,
2001 int can_add_hw)
2002{
2003 /*
cdd6c482 2004 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2005 */
d6f962b5 2006 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2007 return 1;
2008 /*
2009 * If an exclusive group is already on, no other hardware
cdd6c482 2010 * events can go on.
3b6f9e5c
PM
2011 */
2012 if (cpuctx->exclusive)
2013 return 0;
2014 /*
2015 * If this group is exclusive and there are already
cdd6c482 2016 * events on the CPU, it can't go on.
3b6f9e5c 2017 */
cdd6c482 2018 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2019 return 0;
2020 /*
2021 * Otherwise, try to add it if all previous groups were able
2022 * to go on.
2023 */
2024 return can_add_hw;
2025}
2026
cdd6c482
IM
2027static void add_event_to_ctx(struct perf_event *event,
2028 struct perf_event_context *ctx)
53cfbf59 2029{
4158755d
SE
2030 u64 tstamp = perf_event_time(event);
2031
cdd6c482 2032 list_add_event(event, ctx);
8a49542c 2033 perf_group_attach(event);
4158755d
SE
2034 event->tstamp_enabled = tstamp;
2035 event->tstamp_running = tstamp;
2036 event->tstamp_stopped = tstamp;
53cfbf59
PM
2037}
2038
3e349507
PZ
2039static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2040 struct perf_event_context *ctx);
2c29ef0f
PZ
2041static void
2042ctx_sched_in(struct perf_event_context *ctx,
2043 struct perf_cpu_context *cpuctx,
2044 enum event_type_t event_type,
2045 struct task_struct *task);
fe4b04fa 2046
dce5855b
PZ
2047static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx,
2049 struct task_struct *task)
2050{
2051 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2052 if (ctx)
2053 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2054 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2055 if (ctx)
2056 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2057}
2058
0017960f
PZ
2059static void ___perf_install_in_context(void *info)
2060{
2061 struct perf_event *event = info;
2062 struct perf_event_context *ctx = event->ctx;
2063
2064 /*
2065 * Since the task isn't running, its safe to add the event, us holding
2066 * the ctx->lock ensures the task won't get scheduled in.
2067 */
2068 add_event_to_ctx(event, ctx);
2069}
2070
3e349507
PZ
2071static void ctx_resched(struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *task_ctx)
2073{
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075 if (task_ctx)
2076 task_ctx_sched_out(cpuctx, task_ctx);
2077 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2078 perf_event_sched_in(cpuctx, task_ctx, current);
2079 perf_pmu_enable(cpuctx->ctx.pmu);
2080}
2081
0793a61d 2082/*
cdd6c482 2083 * Cross CPU call to install and enable a performance event
682076ae
PZ
2084 *
2085 * Must be called with ctx->mutex held
0793a61d 2086 */
fe4b04fa 2087static int __perf_install_in_context(void *info)
0793a61d 2088{
cdd6c482
IM
2089 struct perf_event *event = info;
2090 struct perf_event_context *ctx = event->ctx;
108b02cf 2091 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2092 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2093 struct task_struct *task = current;
2094
b58f6b0d 2095 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2096 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2097
2098 /*
2c29ef0f 2099 * If there was an active task_ctx schedule it out.
0793a61d 2100 */
b58f6b0d 2101 if (task_ctx)
3e349507 2102 task_ctx_sched_out(cpuctx, task_ctx);
b58f6b0d
PZ
2103
2104 /*
2105 * If the context we're installing events in is not the
2106 * active task_ctx, flip them.
2107 */
2108 if (ctx->task && task_ctx != ctx) {
2109 if (task_ctx)
2110 raw_spin_unlock(&task_ctx->lock);
2111 raw_spin_lock(&ctx->lock);
2112 task_ctx = ctx;
2113 }
2114
2115 if (task_ctx) {
2116 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2117 task = task_ctx->task;
2118 }
b58f6b0d 2119
2c29ef0f 2120 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2121
4af4998b 2122 update_context_time(ctx);
e5d1367f
SE
2123 /*
2124 * update cgrp time only if current cgrp
2125 * matches event->cgrp. Must be done before
2126 * calling add_event_to_ctx()
2127 */
2128 update_cgrp_time_from_event(event);
0793a61d 2129
cdd6c482 2130 add_event_to_ctx(event, ctx);
0793a61d 2131
d859e29f 2132 /*
2c29ef0f 2133 * Schedule everything back in
d859e29f 2134 */
dce5855b 2135 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2136
2137 perf_pmu_enable(cpuctx->ctx.pmu);
2138 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2139
2140 return 0;
0793a61d
TG
2141}
2142
2143/*
cdd6c482 2144 * Attach a performance event to a context
0793a61d
TG
2145 */
2146static void
cdd6c482
IM
2147perf_install_in_context(struct perf_event_context *ctx,
2148 struct perf_event *event,
0793a61d
TG
2149 int cpu)
2150{
fe4b04fa
PZ
2151 lockdep_assert_held(&ctx->mutex);
2152
c3f00c70 2153 event->ctx = ctx;
0cda4c02
YZ
2154 if (event->cpu != -1)
2155 event->cpu = cpu;
c3f00c70 2156
0017960f
PZ
2157 event_function_call(event, __perf_install_in_context,
2158 ___perf_install_in_context, event);
0793a61d
TG
2159}
2160
fa289bec 2161/*
cdd6c482 2162 * Put a event into inactive state and update time fields.
fa289bec
PM
2163 * Enabling the leader of a group effectively enables all
2164 * the group members that aren't explicitly disabled, so we
2165 * have to update their ->tstamp_enabled also.
2166 * Note: this works for group members as well as group leaders
2167 * since the non-leader members' sibling_lists will be empty.
2168 */
1d9b482e 2169static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2170{
cdd6c482 2171 struct perf_event *sub;
4158755d 2172 u64 tstamp = perf_event_time(event);
fa289bec 2173
cdd6c482 2174 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2175 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2177 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2178 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2179 }
fa289bec
PM
2180}
2181
d859e29f 2182/*
cdd6c482 2183 * Cross CPU call to enable a performance event
d859e29f 2184 */
fe4b04fa 2185static int __perf_event_enable(void *info)
04289bb9 2186{
cdd6c482 2187 struct perf_event *event = info;
cdd6c482
IM
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *leader = event->group_leader;
108b02cf 2190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
aee7dbc4 2191 struct perf_event_context *task_ctx = cpuctx->task_ctx;
04289bb9 2192
06f41796
JO
2193 /*
2194 * There's a time window between 'ctx->is_active' check
2195 * in perf_event_enable function and this place having:
2196 * - IRQs on
2197 * - ctx->lock unlocked
2198 *
2199 * where the task could be killed and 'ctx' deactivated
2200 * by perf_event_exit_task.
2201 */
2202 if (!ctx->is_active)
fe4b04fa 2203 return -EINVAL;
3cbed429 2204
aee7dbc4
PZ
2205 perf_ctx_lock(cpuctx, task_ctx);
2206 WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
4af4998b 2207 update_context_time(ctx);
d859e29f 2208
cdd6c482 2209 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2210 goto unlock;
e5d1367f
SE
2211
2212 /*
2213 * set current task's cgroup time reference point
2214 */
3f7cce3c 2215 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2216
1d9b482e 2217 __perf_event_mark_enabled(event);
04289bb9 2218
e5d1367f
SE
2219 if (!event_filter_match(event)) {
2220 if (is_cgroup_event(event))
2221 perf_cgroup_defer_enabled(event);
f4c4176f 2222 goto unlock;
e5d1367f 2223 }
f4c4176f 2224
04289bb9 2225 /*
cdd6c482 2226 * If the event is in a group and isn't the group leader,
d859e29f 2227 * then don't put it on unless the group is on.
04289bb9 2228 */
cdd6c482 2229 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2230 goto unlock;
3b6f9e5c 2231
aee7dbc4 2232 ctx_resched(cpuctx, task_ctx);
d859e29f 2233
9ed6060d 2234unlock:
aee7dbc4 2235 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2236
2237 return 0;
d859e29f
PM
2238}
2239
7b648018
PZ
2240void ___perf_event_enable(void *info)
2241{
2242 __perf_event_mark_enabled((struct perf_event *)info);
2243}
2244
d859e29f 2245/*
cdd6c482 2246 * Enable a event.
c93f7669 2247 *
cdd6c482
IM
2248 * If event->ctx is a cloned context, callers must make sure that
2249 * every task struct that event->ctx->task could possibly point to
c93f7669 2250 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2251 * perf_event_for_each_child or perf_event_for_each as described
2252 * for perf_event_disable.
d859e29f 2253 */
f63a8daa 2254static void _perf_event_enable(struct perf_event *event)
d859e29f 2255{
cdd6c482 2256 struct perf_event_context *ctx = event->ctx;
d859e29f 2257
7b648018
PZ
2258 raw_spin_lock_irq(&ctx->lock);
2259 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2260 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2261 return;
2262 }
2263
d859e29f 2264 /*
cdd6c482 2265 * If the event is in error state, clear that first.
7b648018
PZ
2266 *
2267 * That way, if we see the event in error state below, we know that it
2268 * has gone back into error state, as distinct from the task having
2269 * been scheduled away before the cross-call arrived.
d859e29f 2270 */
cdd6c482
IM
2271 if (event->state == PERF_EVENT_STATE_ERROR)
2272 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2273 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2274
7b648018
PZ
2275 event_function_call(event, __perf_event_enable,
2276 ___perf_event_enable, event);
d859e29f 2277}
f63a8daa
PZ
2278
2279/*
2280 * See perf_event_disable();
2281 */
2282void perf_event_enable(struct perf_event *event)
2283{
2284 struct perf_event_context *ctx;
2285
2286 ctx = perf_event_ctx_lock(event);
2287 _perf_event_enable(event);
2288 perf_event_ctx_unlock(event, ctx);
2289}
dcfce4a0 2290EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2291
f63a8daa 2292static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2293{
2023b359 2294 /*
cdd6c482 2295 * not supported on inherited events
2023b359 2296 */
2e939d1d 2297 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2298 return -EINVAL;
2299
cdd6c482 2300 atomic_add(refresh, &event->event_limit);
f63a8daa 2301 _perf_event_enable(event);
2023b359
PZ
2302
2303 return 0;
79f14641 2304}
f63a8daa
PZ
2305
2306/*
2307 * See perf_event_disable()
2308 */
2309int perf_event_refresh(struct perf_event *event, int refresh)
2310{
2311 struct perf_event_context *ctx;
2312 int ret;
2313
2314 ctx = perf_event_ctx_lock(event);
2315 ret = _perf_event_refresh(event, refresh);
2316 perf_event_ctx_unlock(event, ctx);
2317
2318 return ret;
2319}
26ca5c11 2320EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2321
5b0311e1
FW
2322static void ctx_sched_out(struct perf_event_context *ctx,
2323 struct perf_cpu_context *cpuctx,
2324 enum event_type_t event_type)
235c7fc7 2325{
db24d33e 2326 int is_active = ctx->is_active;
c994d613
PZ
2327 struct perf_event *event;
2328
2329 lockdep_assert_held(&ctx->lock);
235c7fc7 2330
db24d33e 2331 ctx->is_active &= ~event_type;
cdd6c482 2332 if (likely(!ctx->nr_events))
facc4307
PZ
2333 return;
2334
4af4998b 2335 update_context_time(ctx);
e5d1367f 2336 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2337 if (!ctx->nr_active)
facc4307 2338 return;
5b0311e1 2339
075e0b00 2340 perf_pmu_disable(ctx->pmu);
db24d33e 2341 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2342 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2343 group_sched_out(event, cpuctx, ctx);
9ed6060d 2344 }
889ff015 2345
db24d33e 2346 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2347 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2348 group_sched_out(event, cpuctx, ctx);
9ed6060d 2349 }
1b9a644f 2350 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2351}
2352
564c2b21 2353/*
5a3126d4
PZ
2354 * Test whether two contexts are equivalent, i.e. whether they have both been
2355 * cloned from the same version of the same context.
2356 *
2357 * Equivalence is measured using a generation number in the context that is
2358 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2359 * and list_del_event().
564c2b21 2360 */
cdd6c482
IM
2361static int context_equiv(struct perf_event_context *ctx1,
2362 struct perf_event_context *ctx2)
564c2b21 2363{
211de6eb
PZ
2364 lockdep_assert_held(&ctx1->lock);
2365 lockdep_assert_held(&ctx2->lock);
2366
5a3126d4
PZ
2367 /* Pinning disables the swap optimization */
2368 if (ctx1->pin_count || ctx2->pin_count)
2369 return 0;
2370
2371 /* If ctx1 is the parent of ctx2 */
2372 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2373 return 1;
2374
2375 /* If ctx2 is the parent of ctx1 */
2376 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2377 return 1;
2378
2379 /*
2380 * If ctx1 and ctx2 have the same parent; we flatten the parent
2381 * hierarchy, see perf_event_init_context().
2382 */
2383 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2384 ctx1->parent_gen == ctx2->parent_gen)
2385 return 1;
2386
2387 /* Unmatched */
2388 return 0;
564c2b21
PM
2389}
2390
cdd6c482
IM
2391static void __perf_event_sync_stat(struct perf_event *event,
2392 struct perf_event *next_event)
bfbd3381
PZ
2393{
2394 u64 value;
2395
cdd6c482 2396 if (!event->attr.inherit_stat)
bfbd3381
PZ
2397 return;
2398
2399 /*
cdd6c482 2400 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2401 * because we're in the middle of a context switch and have IRQs
2402 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2403 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2404 * don't need to use it.
2405 */
cdd6c482
IM
2406 switch (event->state) {
2407 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2408 event->pmu->read(event);
2409 /* fall-through */
bfbd3381 2410
cdd6c482
IM
2411 case PERF_EVENT_STATE_INACTIVE:
2412 update_event_times(event);
bfbd3381
PZ
2413 break;
2414
2415 default:
2416 break;
2417 }
2418
2419 /*
cdd6c482 2420 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2421 * values when we flip the contexts.
2422 */
e7850595
PZ
2423 value = local64_read(&next_event->count);
2424 value = local64_xchg(&event->count, value);
2425 local64_set(&next_event->count, value);
bfbd3381 2426
cdd6c482
IM
2427 swap(event->total_time_enabled, next_event->total_time_enabled);
2428 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2429
bfbd3381 2430 /*
19d2e755 2431 * Since we swizzled the values, update the user visible data too.
bfbd3381 2432 */
cdd6c482
IM
2433 perf_event_update_userpage(event);
2434 perf_event_update_userpage(next_event);
bfbd3381
PZ
2435}
2436
cdd6c482
IM
2437static void perf_event_sync_stat(struct perf_event_context *ctx,
2438 struct perf_event_context *next_ctx)
bfbd3381 2439{
cdd6c482 2440 struct perf_event *event, *next_event;
bfbd3381
PZ
2441
2442 if (!ctx->nr_stat)
2443 return;
2444
02ffdbc8
PZ
2445 update_context_time(ctx);
2446
cdd6c482
IM
2447 event = list_first_entry(&ctx->event_list,
2448 struct perf_event, event_entry);
bfbd3381 2449
cdd6c482
IM
2450 next_event = list_first_entry(&next_ctx->event_list,
2451 struct perf_event, event_entry);
bfbd3381 2452
cdd6c482
IM
2453 while (&event->event_entry != &ctx->event_list &&
2454 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2455
cdd6c482 2456 __perf_event_sync_stat(event, next_event);
bfbd3381 2457
cdd6c482
IM
2458 event = list_next_entry(event, event_entry);
2459 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2460 }
2461}
2462
fe4b04fa
PZ
2463static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2464 struct task_struct *next)
0793a61d 2465{
8dc85d54 2466 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2467 struct perf_event_context *next_ctx;
5a3126d4 2468 struct perf_event_context *parent, *next_parent;
108b02cf 2469 struct perf_cpu_context *cpuctx;
c93f7669 2470 int do_switch = 1;
0793a61d 2471
108b02cf
PZ
2472 if (likely(!ctx))
2473 return;
10989fb2 2474
108b02cf
PZ
2475 cpuctx = __get_cpu_context(ctx);
2476 if (!cpuctx->task_ctx)
0793a61d
TG
2477 return;
2478
c93f7669 2479 rcu_read_lock();
8dc85d54 2480 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2481 if (!next_ctx)
2482 goto unlock;
2483
2484 parent = rcu_dereference(ctx->parent_ctx);
2485 next_parent = rcu_dereference(next_ctx->parent_ctx);
2486
2487 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2488 if (!parent && !next_parent)
5a3126d4
PZ
2489 goto unlock;
2490
2491 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2492 /*
2493 * Looks like the two contexts are clones, so we might be
2494 * able to optimize the context switch. We lock both
2495 * contexts and check that they are clones under the
2496 * lock (including re-checking that neither has been
2497 * uncloned in the meantime). It doesn't matter which
2498 * order we take the locks because no other cpu could
2499 * be trying to lock both of these tasks.
2500 */
e625cce1
TG
2501 raw_spin_lock(&ctx->lock);
2502 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2503 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2504 /*
2505 * XXX do we need a memory barrier of sorts
cdd6c482 2506 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2507 */
8dc85d54
PZ
2508 task->perf_event_ctxp[ctxn] = next_ctx;
2509 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2510 ctx->task = next;
2511 next_ctx->task = task;
5a158c3c
YZ
2512
2513 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2514
c93f7669 2515 do_switch = 0;
bfbd3381 2516
cdd6c482 2517 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2518 }
e625cce1
TG
2519 raw_spin_unlock(&next_ctx->lock);
2520 raw_spin_unlock(&ctx->lock);
564c2b21 2521 }
5a3126d4 2522unlock:
c93f7669 2523 rcu_read_unlock();
564c2b21 2524
c93f7669 2525 if (do_switch) {
facc4307 2526 raw_spin_lock(&ctx->lock);
8833d0e2 2527 task_ctx_sched_out(cpuctx, ctx);
facc4307 2528 raw_spin_unlock(&ctx->lock);
c93f7669 2529 }
0793a61d
TG
2530}
2531
ba532500
YZ
2532void perf_sched_cb_dec(struct pmu *pmu)
2533{
2534 this_cpu_dec(perf_sched_cb_usages);
2535}
2536
2537void perf_sched_cb_inc(struct pmu *pmu)
2538{
2539 this_cpu_inc(perf_sched_cb_usages);
2540}
2541
2542/*
2543 * This function provides the context switch callback to the lower code
2544 * layer. It is invoked ONLY when the context switch callback is enabled.
2545 */
2546static void perf_pmu_sched_task(struct task_struct *prev,
2547 struct task_struct *next,
2548 bool sched_in)
2549{
2550 struct perf_cpu_context *cpuctx;
2551 struct pmu *pmu;
2552 unsigned long flags;
2553
2554 if (prev == next)
2555 return;
2556
2557 local_irq_save(flags);
2558
2559 rcu_read_lock();
2560
2561 list_for_each_entry_rcu(pmu, &pmus, entry) {
2562 if (pmu->sched_task) {
2563 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2564
2565 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2566
2567 perf_pmu_disable(pmu);
2568
2569 pmu->sched_task(cpuctx->task_ctx, sched_in);
2570
2571 perf_pmu_enable(pmu);
2572
2573 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2574 }
2575 }
2576
2577 rcu_read_unlock();
2578
2579 local_irq_restore(flags);
2580}
2581
45ac1403
AH
2582static void perf_event_switch(struct task_struct *task,
2583 struct task_struct *next_prev, bool sched_in);
2584
8dc85d54
PZ
2585#define for_each_task_context_nr(ctxn) \
2586 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2587
2588/*
2589 * Called from scheduler to remove the events of the current task,
2590 * with interrupts disabled.
2591 *
2592 * We stop each event and update the event value in event->count.
2593 *
2594 * This does not protect us against NMI, but disable()
2595 * sets the disabled bit in the control field of event _before_
2596 * accessing the event control register. If a NMI hits, then it will
2597 * not restart the event.
2598 */
ab0cce56
JO
2599void __perf_event_task_sched_out(struct task_struct *task,
2600 struct task_struct *next)
8dc85d54
PZ
2601{
2602 int ctxn;
2603
ba532500
YZ
2604 if (__this_cpu_read(perf_sched_cb_usages))
2605 perf_pmu_sched_task(task, next, false);
2606
45ac1403
AH
2607 if (atomic_read(&nr_switch_events))
2608 perf_event_switch(task, next, false);
2609
8dc85d54
PZ
2610 for_each_task_context_nr(ctxn)
2611 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2612
2613 /*
2614 * if cgroup events exist on this CPU, then we need
2615 * to check if we have to switch out PMU state.
2616 * cgroup event are system-wide mode only
2617 */
4a32fea9 2618 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2619 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2620}
2621
3e349507
PZ
2622static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2623 struct perf_event_context *ctx)
a08b159f 2624{
a63eaf34
PM
2625 if (!cpuctx->task_ctx)
2626 return;
012b84da
IM
2627
2628 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2629 return;
2630
04dc2dbb 2631 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2632 cpuctx->task_ctx = NULL;
2633}
2634
5b0311e1
FW
2635/*
2636 * Called with IRQs disabled
2637 */
2638static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2639 enum event_type_t event_type)
2640{
2641 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2642}
2643
235c7fc7 2644static void
5b0311e1 2645ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2646 struct perf_cpu_context *cpuctx)
0793a61d 2647{
cdd6c482 2648 struct perf_event *event;
0793a61d 2649
889ff015
FW
2650 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2651 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2652 continue;
5632ab12 2653 if (!event_filter_match(event))
3b6f9e5c
PM
2654 continue;
2655
e5d1367f
SE
2656 /* may need to reset tstamp_enabled */
2657 if (is_cgroup_event(event))
2658 perf_cgroup_mark_enabled(event, ctx);
2659
8c9ed8e1 2660 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2661 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2662
2663 /*
2664 * If this pinned group hasn't been scheduled,
2665 * put it in error state.
2666 */
cdd6c482
IM
2667 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2668 update_group_times(event);
2669 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2670 }
3b6f9e5c 2671 }
5b0311e1
FW
2672}
2673
2674static void
2675ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2676 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2677{
2678 struct perf_event *event;
2679 int can_add_hw = 1;
3b6f9e5c 2680
889ff015
FW
2681 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2682 /* Ignore events in OFF or ERROR state */
2683 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2684 continue;
04289bb9
IM
2685 /*
2686 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2687 * of events:
04289bb9 2688 */
5632ab12 2689 if (!event_filter_match(event))
0793a61d
TG
2690 continue;
2691
e5d1367f
SE
2692 /* may need to reset tstamp_enabled */
2693 if (is_cgroup_event(event))
2694 perf_cgroup_mark_enabled(event, ctx);
2695
9ed6060d 2696 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2697 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2698 can_add_hw = 0;
9ed6060d 2699 }
0793a61d 2700 }
5b0311e1
FW
2701}
2702
2703static void
2704ctx_sched_in(struct perf_event_context *ctx,
2705 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2706 enum event_type_t event_type,
2707 struct task_struct *task)
5b0311e1 2708{
db24d33e 2709 int is_active = ctx->is_active;
c994d613
PZ
2710 u64 now;
2711
2712 lockdep_assert_held(&ctx->lock);
e5d1367f 2713
db24d33e 2714 ctx->is_active |= event_type;
5b0311e1 2715 if (likely(!ctx->nr_events))
facc4307 2716 return;
5b0311e1 2717
e5d1367f
SE
2718 now = perf_clock();
2719 ctx->timestamp = now;
3f7cce3c 2720 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2721 /*
2722 * First go through the list and put on any pinned groups
2723 * in order to give them the best chance of going on.
2724 */
db24d33e 2725 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2726 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2727
2728 /* Then walk through the lower prio flexible groups */
db24d33e 2729 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2730 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2731}
2732
329c0e01 2733static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2734 enum event_type_t event_type,
2735 struct task_struct *task)
329c0e01
FW
2736{
2737 struct perf_event_context *ctx = &cpuctx->ctx;
2738
e5d1367f 2739 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2740}
2741
e5d1367f
SE
2742static void perf_event_context_sched_in(struct perf_event_context *ctx,
2743 struct task_struct *task)
235c7fc7 2744{
108b02cf 2745 struct perf_cpu_context *cpuctx;
235c7fc7 2746
108b02cf 2747 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2748 if (cpuctx->task_ctx == ctx)
2749 return;
2750
facc4307 2751 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2752 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2753 /*
2754 * We want to keep the following priority order:
2755 * cpu pinned (that don't need to move), task pinned,
2756 * cpu flexible, task flexible.
2757 */
2758 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2759
1d5f003f
GN
2760 if (ctx->nr_events)
2761 cpuctx->task_ctx = ctx;
9b33fa6b 2762
86b47c25
GN
2763 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2764
facc4307
PZ
2765 perf_pmu_enable(ctx->pmu);
2766 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2767}
2768
8dc85d54
PZ
2769/*
2770 * Called from scheduler to add the events of the current task
2771 * with interrupts disabled.
2772 *
2773 * We restore the event value and then enable it.
2774 *
2775 * This does not protect us against NMI, but enable()
2776 * sets the enabled bit in the control field of event _before_
2777 * accessing the event control register. If a NMI hits, then it will
2778 * keep the event running.
2779 */
ab0cce56
JO
2780void __perf_event_task_sched_in(struct task_struct *prev,
2781 struct task_struct *task)
8dc85d54
PZ
2782{
2783 struct perf_event_context *ctx;
2784 int ctxn;
2785
7e41d177
PZ
2786 /*
2787 * If cgroup events exist on this CPU, then we need to check if we have
2788 * to switch in PMU state; cgroup event are system-wide mode only.
2789 *
2790 * Since cgroup events are CPU events, we must schedule these in before
2791 * we schedule in the task events.
2792 */
2793 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2794 perf_cgroup_sched_in(prev, task);
2795
8dc85d54
PZ
2796 for_each_task_context_nr(ctxn) {
2797 ctx = task->perf_event_ctxp[ctxn];
2798 if (likely(!ctx))
2799 continue;
2800
e5d1367f 2801 perf_event_context_sched_in(ctx, task);
8dc85d54 2802 }
d010b332 2803
45ac1403
AH
2804 if (atomic_read(&nr_switch_events))
2805 perf_event_switch(task, prev, true);
2806
ba532500
YZ
2807 if (__this_cpu_read(perf_sched_cb_usages))
2808 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2809}
2810
abd50713
PZ
2811static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2812{
2813 u64 frequency = event->attr.sample_freq;
2814 u64 sec = NSEC_PER_SEC;
2815 u64 divisor, dividend;
2816
2817 int count_fls, nsec_fls, frequency_fls, sec_fls;
2818
2819 count_fls = fls64(count);
2820 nsec_fls = fls64(nsec);
2821 frequency_fls = fls64(frequency);
2822 sec_fls = 30;
2823
2824 /*
2825 * We got @count in @nsec, with a target of sample_freq HZ
2826 * the target period becomes:
2827 *
2828 * @count * 10^9
2829 * period = -------------------
2830 * @nsec * sample_freq
2831 *
2832 */
2833
2834 /*
2835 * Reduce accuracy by one bit such that @a and @b converge
2836 * to a similar magnitude.
2837 */
fe4b04fa 2838#define REDUCE_FLS(a, b) \
abd50713
PZ
2839do { \
2840 if (a##_fls > b##_fls) { \
2841 a >>= 1; \
2842 a##_fls--; \
2843 } else { \
2844 b >>= 1; \
2845 b##_fls--; \
2846 } \
2847} while (0)
2848
2849 /*
2850 * Reduce accuracy until either term fits in a u64, then proceed with
2851 * the other, so that finally we can do a u64/u64 division.
2852 */
2853 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2854 REDUCE_FLS(nsec, frequency);
2855 REDUCE_FLS(sec, count);
2856 }
2857
2858 if (count_fls + sec_fls > 64) {
2859 divisor = nsec * frequency;
2860
2861 while (count_fls + sec_fls > 64) {
2862 REDUCE_FLS(count, sec);
2863 divisor >>= 1;
2864 }
2865
2866 dividend = count * sec;
2867 } else {
2868 dividend = count * sec;
2869
2870 while (nsec_fls + frequency_fls > 64) {
2871 REDUCE_FLS(nsec, frequency);
2872 dividend >>= 1;
2873 }
2874
2875 divisor = nsec * frequency;
2876 }
2877
f6ab91ad
PZ
2878 if (!divisor)
2879 return dividend;
2880
abd50713
PZ
2881 return div64_u64(dividend, divisor);
2882}
2883
e050e3f0
SE
2884static DEFINE_PER_CPU(int, perf_throttled_count);
2885static DEFINE_PER_CPU(u64, perf_throttled_seq);
2886
f39d47ff 2887static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2888{
cdd6c482 2889 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2890 s64 period, sample_period;
bd2b5b12
PZ
2891 s64 delta;
2892
abd50713 2893 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2894
2895 delta = (s64)(period - hwc->sample_period);
2896 delta = (delta + 7) / 8; /* low pass filter */
2897
2898 sample_period = hwc->sample_period + delta;
2899
2900 if (!sample_period)
2901 sample_period = 1;
2902
bd2b5b12 2903 hwc->sample_period = sample_period;
abd50713 2904
e7850595 2905 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2906 if (disable)
2907 event->pmu->stop(event, PERF_EF_UPDATE);
2908
e7850595 2909 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2910
2911 if (disable)
2912 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2913 }
bd2b5b12
PZ
2914}
2915
e050e3f0
SE
2916/*
2917 * combine freq adjustment with unthrottling to avoid two passes over the
2918 * events. At the same time, make sure, having freq events does not change
2919 * the rate of unthrottling as that would introduce bias.
2920 */
2921static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2922 int needs_unthr)
60db5e09 2923{
cdd6c482
IM
2924 struct perf_event *event;
2925 struct hw_perf_event *hwc;
e050e3f0 2926 u64 now, period = TICK_NSEC;
abd50713 2927 s64 delta;
60db5e09 2928
e050e3f0
SE
2929 /*
2930 * only need to iterate over all events iff:
2931 * - context have events in frequency mode (needs freq adjust)
2932 * - there are events to unthrottle on this cpu
2933 */
2934 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2935 return;
2936
e050e3f0 2937 raw_spin_lock(&ctx->lock);
f39d47ff 2938 perf_pmu_disable(ctx->pmu);
e050e3f0 2939
03541f8b 2940 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2941 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2942 continue;
2943
5632ab12 2944 if (!event_filter_match(event))
5d27c23d
PZ
2945 continue;
2946
44377277
AS
2947 perf_pmu_disable(event->pmu);
2948
cdd6c482 2949 hwc = &event->hw;
6a24ed6c 2950
ae23bff1 2951 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2952 hwc->interrupts = 0;
cdd6c482 2953 perf_log_throttle(event, 1);
a4eaf7f1 2954 event->pmu->start(event, 0);
a78ac325
PZ
2955 }
2956
cdd6c482 2957 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2958 goto next;
60db5e09 2959
e050e3f0
SE
2960 /*
2961 * stop the event and update event->count
2962 */
2963 event->pmu->stop(event, PERF_EF_UPDATE);
2964
e7850595 2965 now = local64_read(&event->count);
abd50713
PZ
2966 delta = now - hwc->freq_count_stamp;
2967 hwc->freq_count_stamp = now;
60db5e09 2968
e050e3f0
SE
2969 /*
2970 * restart the event
2971 * reload only if value has changed
f39d47ff
SE
2972 * we have stopped the event so tell that
2973 * to perf_adjust_period() to avoid stopping it
2974 * twice.
e050e3f0 2975 */
abd50713 2976 if (delta > 0)
f39d47ff 2977 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2978
2979 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2980 next:
2981 perf_pmu_enable(event->pmu);
60db5e09 2982 }
e050e3f0 2983
f39d47ff 2984 perf_pmu_enable(ctx->pmu);
e050e3f0 2985 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2986}
2987
235c7fc7 2988/*
cdd6c482 2989 * Round-robin a context's events:
235c7fc7 2990 */
cdd6c482 2991static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2992{
dddd3379
TG
2993 /*
2994 * Rotate the first entry last of non-pinned groups. Rotation might be
2995 * disabled by the inheritance code.
2996 */
2997 if (!ctx->rotate_disable)
2998 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2999}
3000
9e630205 3001static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3002{
8dc85d54 3003 struct perf_event_context *ctx = NULL;
2fde4f94 3004 int rotate = 0;
7fc23a53 3005
b5ab4cd5 3006 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3007 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3008 rotate = 1;
3009 }
235c7fc7 3010
8dc85d54 3011 ctx = cpuctx->task_ctx;
b5ab4cd5 3012 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3013 if (ctx->nr_events != ctx->nr_active)
3014 rotate = 1;
3015 }
9717e6cd 3016
e050e3f0 3017 if (!rotate)
0f5a2601
PZ
3018 goto done;
3019
facc4307 3020 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3021 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3022
e050e3f0
SE
3023 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3024 if (ctx)
3025 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3026
e050e3f0
SE
3027 rotate_ctx(&cpuctx->ctx);
3028 if (ctx)
3029 rotate_ctx(ctx);
235c7fc7 3030
e050e3f0 3031 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3032
0f5a2601
PZ
3033 perf_pmu_enable(cpuctx->ctx.pmu);
3034 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3035done:
9e630205
SE
3036
3037 return rotate;
e9d2b064
PZ
3038}
3039
026249ef
FW
3040#ifdef CONFIG_NO_HZ_FULL
3041bool perf_event_can_stop_tick(void)
3042{
948b26b6 3043 if (atomic_read(&nr_freq_events) ||
d84153d6 3044 __this_cpu_read(perf_throttled_count))
026249ef 3045 return false;
d84153d6
FW
3046 else
3047 return true;
026249ef
FW
3048}
3049#endif
3050
e9d2b064
PZ
3051void perf_event_task_tick(void)
3052{
2fde4f94
MR
3053 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3054 struct perf_event_context *ctx, *tmp;
e050e3f0 3055 int throttled;
b5ab4cd5 3056
e9d2b064
PZ
3057 WARN_ON(!irqs_disabled());
3058
e050e3f0
SE
3059 __this_cpu_inc(perf_throttled_seq);
3060 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3061
2fde4f94 3062 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3063 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3064}
3065
889ff015
FW
3066static int event_enable_on_exec(struct perf_event *event,
3067 struct perf_event_context *ctx)
3068{
3069 if (!event->attr.enable_on_exec)
3070 return 0;
3071
3072 event->attr.enable_on_exec = 0;
3073 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3074 return 0;
3075
1d9b482e 3076 __perf_event_mark_enabled(event);
889ff015
FW
3077
3078 return 1;
3079}
3080
57e7986e 3081/*
cdd6c482 3082 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3083 * This expects task == current.
3084 */
c1274499 3085static void perf_event_enable_on_exec(int ctxn)
57e7986e 3086{
c1274499 3087 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3088 struct perf_cpu_context *cpuctx;
cdd6c482 3089 struct perf_event *event;
57e7986e
PM
3090 unsigned long flags;
3091 int enabled = 0;
3092
3093 local_irq_save(flags);
c1274499 3094 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3095 if (!ctx || !ctx->nr_events)
57e7986e
PM
3096 goto out;
3097
3e349507
PZ
3098 cpuctx = __get_cpu_context(ctx);
3099 perf_ctx_lock(cpuctx, ctx);
3100 list_for_each_entry(event, &ctx->event_list, event_entry)
3101 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3102
3103 /*
3e349507 3104 * Unclone and reschedule this context if we enabled any event.
57e7986e 3105 */
3e349507 3106 if (enabled) {
211de6eb 3107 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3108 ctx_resched(cpuctx, ctx);
3109 }
3110 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3111
9ed6060d 3112out:
57e7986e 3113 local_irq_restore(flags);
211de6eb
PZ
3114
3115 if (clone_ctx)
3116 put_ctx(clone_ctx);
57e7986e
PM
3117}
3118
e041e328
PZ
3119void perf_event_exec(void)
3120{
e041e328
PZ
3121 int ctxn;
3122
3123 rcu_read_lock();
c1274499
PZ
3124 for_each_task_context_nr(ctxn)
3125 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3126 rcu_read_unlock();
3127}
3128
0492d4c5
PZ
3129struct perf_read_data {
3130 struct perf_event *event;
3131 bool group;
7d88962e 3132 int ret;
0492d4c5
PZ
3133};
3134
0793a61d 3135/*
cdd6c482 3136 * Cross CPU call to read the hardware event
0793a61d 3137 */
cdd6c482 3138static void __perf_event_read(void *info)
0793a61d 3139{
0492d4c5
PZ
3140 struct perf_read_data *data = info;
3141 struct perf_event *sub, *event = data->event;
cdd6c482 3142 struct perf_event_context *ctx = event->ctx;
108b02cf 3143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3144 struct pmu *pmu = event->pmu;
621a01ea 3145
e1ac3614
PM
3146 /*
3147 * If this is a task context, we need to check whether it is
3148 * the current task context of this cpu. If not it has been
3149 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3150 * event->count would have been updated to a recent sample
3151 * when the event was scheduled out.
e1ac3614
PM
3152 */
3153 if (ctx->task && cpuctx->task_ctx != ctx)
3154 return;
3155
e625cce1 3156 raw_spin_lock(&ctx->lock);
e5d1367f 3157 if (ctx->is_active) {
542e72fc 3158 update_context_time(ctx);
e5d1367f
SE
3159 update_cgrp_time_from_event(event);
3160 }
0492d4c5 3161
cdd6c482 3162 update_event_times(event);
4a00c16e
SB
3163 if (event->state != PERF_EVENT_STATE_ACTIVE)
3164 goto unlock;
0492d4c5 3165
4a00c16e
SB
3166 if (!data->group) {
3167 pmu->read(event);
3168 data->ret = 0;
0492d4c5 3169 goto unlock;
4a00c16e
SB
3170 }
3171
3172 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3173
3174 pmu->read(event);
0492d4c5
PZ
3175
3176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3177 update_event_times(sub);
4a00c16e
SB
3178 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3179 /*
3180 * Use sibling's PMU rather than @event's since
3181 * sibling could be on different (eg: software) PMU.
3182 */
0492d4c5 3183 sub->pmu->read(sub);
4a00c16e 3184 }
0492d4c5 3185 }
4a00c16e
SB
3186
3187 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3188
3189unlock:
e625cce1 3190 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3191}
3192
b5e58793
PZ
3193static inline u64 perf_event_count(struct perf_event *event)
3194{
eacd3ecc
MF
3195 if (event->pmu->count)
3196 return event->pmu->count(event);
3197
3198 return __perf_event_count(event);
b5e58793
PZ
3199}
3200
ffe8690c
KX
3201/*
3202 * NMI-safe method to read a local event, that is an event that
3203 * is:
3204 * - either for the current task, or for this CPU
3205 * - does not have inherit set, for inherited task events
3206 * will not be local and we cannot read them atomically
3207 * - must not have a pmu::count method
3208 */
3209u64 perf_event_read_local(struct perf_event *event)
3210{
3211 unsigned long flags;
3212 u64 val;
3213
3214 /*
3215 * Disabling interrupts avoids all counter scheduling (context
3216 * switches, timer based rotation and IPIs).
3217 */
3218 local_irq_save(flags);
3219
3220 /* If this is a per-task event, it must be for current */
3221 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3222 event->hw.target != current);
3223
3224 /* If this is a per-CPU event, it must be for this CPU */
3225 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3226 event->cpu != smp_processor_id());
3227
3228 /*
3229 * It must not be an event with inherit set, we cannot read
3230 * all child counters from atomic context.
3231 */
3232 WARN_ON_ONCE(event->attr.inherit);
3233
3234 /*
3235 * It must not have a pmu::count method, those are not
3236 * NMI safe.
3237 */
3238 WARN_ON_ONCE(event->pmu->count);
3239
3240 /*
3241 * If the event is currently on this CPU, its either a per-task event,
3242 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3243 * oncpu == -1).
3244 */
3245 if (event->oncpu == smp_processor_id())
3246 event->pmu->read(event);
3247
3248 val = local64_read(&event->count);
3249 local_irq_restore(flags);
3250
3251 return val;
3252}
3253
7d88962e 3254static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3255{
7d88962e
SB
3256 int ret = 0;
3257
0793a61d 3258 /*
cdd6c482
IM
3259 * If event is enabled and currently active on a CPU, update the
3260 * value in the event structure:
0793a61d 3261 */
cdd6c482 3262 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3263 struct perf_read_data data = {
3264 .event = event,
3265 .group = group,
7d88962e 3266 .ret = 0,
0492d4c5 3267 };
cdd6c482 3268 smp_call_function_single(event->oncpu,
0492d4c5 3269 __perf_event_read, &data, 1);
7d88962e 3270 ret = data.ret;
cdd6c482 3271 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3272 struct perf_event_context *ctx = event->ctx;
3273 unsigned long flags;
3274
e625cce1 3275 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3276 /*
3277 * may read while context is not active
3278 * (e.g., thread is blocked), in that case
3279 * we cannot update context time
3280 */
e5d1367f 3281 if (ctx->is_active) {
c530ccd9 3282 update_context_time(ctx);
e5d1367f
SE
3283 update_cgrp_time_from_event(event);
3284 }
0492d4c5
PZ
3285 if (group)
3286 update_group_times(event);
3287 else
3288 update_event_times(event);
e625cce1 3289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3290 }
7d88962e
SB
3291
3292 return ret;
0793a61d
TG
3293}
3294
a63eaf34 3295/*
cdd6c482 3296 * Initialize the perf_event context in a task_struct:
a63eaf34 3297 */
eb184479 3298static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3299{
e625cce1 3300 raw_spin_lock_init(&ctx->lock);
a63eaf34 3301 mutex_init(&ctx->mutex);
2fde4f94 3302 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3303 INIT_LIST_HEAD(&ctx->pinned_groups);
3304 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3305 INIT_LIST_HEAD(&ctx->event_list);
3306 atomic_set(&ctx->refcount, 1);
fadfe7be 3307 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3308}
3309
3310static struct perf_event_context *
3311alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3312{
3313 struct perf_event_context *ctx;
3314
3315 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3316 if (!ctx)
3317 return NULL;
3318
3319 __perf_event_init_context(ctx);
3320 if (task) {
3321 ctx->task = task;
3322 get_task_struct(task);
0793a61d 3323 }
eb184479
PZ
3324 ctx->pmu = pmu;
3325
3326 return ctx;
a63eaf34
PM
3327}
3328
2ebd4ffb
MH
3329static struct task_struct *
3330find_lively_task_by_vpid(pid_t vpid)
3331{
3332 struct task_struct *task;
3333 int err;
0793a61d
TG
3334
3335 rcu_read_lock();
2ebd4ffb 3336 if (!vpid)
0793a61d
TG
3337 task = current;
3338 else
2ebd4ffb 3339 task = find_task_by_vpid(vpid);
0793a61d
TG
3340 if (task)
3341 get_task_struct(task);
3342 rcu_read_unlock();
3343
3344 if (!task)
3345 return ERR_PTR(-ESRCH);
3346
0793a61d 3347 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3348 err = -EACCES;
3349 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3350 goto errout;
3351
2ebd4ffb
MH
3352 return task;
3353errout:
3354 put_task_struct(task);
3355 return ERR_PTR(err);
3356
3357}
3358
fe4b04fa
PZ
3359/*
3360 * Returns a matching context with refcount and pincount.
3361 */
108b02cf 3362static struct perf_event_context *
4af57ef2
YZ
3363find_get_context(struct pmu *pmu, struct task_struct *task,
3364 struct perf_event *event)
0793a61d 3365{
211de6eb 3366 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3367 struct perf_cpu_context *cpuctx;
4af57ef2 3368 void *task_ctx_data = NULL;
25346b93 3369 unsigned long flags;
8dc85d54 3370 int ctxn, err;
4af57ef2 3371 int cpu = event->cpu;
0793a61d 3372
22a4ec72 3373 if (!task) {
cdd6c482 3374 /* Must be root to operate on a CPU event: */
0764771d 3375 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3376 return ERR_PTR(-EACCES);
3377
0793a61d 3378 /*
cdd6c482 3379 * We could be clever and allow to attach a event to an
0793a61d
TG
3380 * offline CPU and activate it when the CPU comes up, but
3381 * that's for later.
3382 */
f6325e30 3383 if (!cpu_online(cpu))
0793a61d
TG
3384 return ERR_PTR(-ENODEV);
3385
108b02cf 3386 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3387 ctx = &cpuctx->ctx;
c93f7669 3388 get_ctx(ctx);
fe4b04fa 3389 ++ctx->pin_count;
0793a61d 3390
0793a61d
TG
3391 return ctx;
3392 }
3393
8dc85d54
PZ
3394 err = -EINVAL;
3395 ctxn = pmu->task_ctx_nr;
3396 if (ctxn < 0)
3397 goto errout;
3398
4af57ef2
YZ
3399 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3400 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3401 if (!task_ctx_data) {
3402 err = -ENOMEM;
3403 goto errout;
3404 }
3405 }
3406
9ed6060d 3407retry:
8dc85d54 3408 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3409 if (ctx) {
211de6eb 3410 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3411 ++ctx->pin_count;
4af57ef2
YZ
3412
3413 if (task_ctx_data && !ctx->task_ctx_data) {
3414 ctx->task_ctx_data = task_ctx_data;
3415 task_ctx_data = NULL;
3416 }
e625cce1 3417 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3418
3419 if (clone_ctx)
3420 put_ctx(clone_ctx);
9137fb28 3421 } else {
eb184479 3422 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3423 err = -ENOMEM;
3424 if (!ctx)
3425 goto errout;
eb184479 3426
4af57ef2
YZ
3427 if (task_ctx_data) {
3428 ctx->task_ctx_data = task_ctx_data;
3429 task_ctx_data = NULL;
3430 }
3431
dbe08d82
ON
3432 err = 0;
3433 mutex_lock(&task->perf_event_mutex);
3434 /*
3435 * If it has already passed perf_event_exit_task().
3436 * we must see PF_EXITING, it takes this mutex too.
3437 */
3438 if (task->flags & PF_EXITING)
3439 err = -ESRCH;
3440 else if (task->perf_event_ctxp[ctxn])
3441 err = -EAGAIN;
fe4b04fa 3442 else {
9137fb28 3443 get_ctx(ctx);
fe4b04fa 3444 ++ctx->pin_count;
dbe08d82 3445 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3446 }
dbe08d82
ON
3447 mutex_unlock(&task->perf_event_mutex);
3448
3449 if (unlikely(err)) {
9137fb28 3450 put_ctx(ctx);
dbe08d82
ON
3451
3452 if (err == -EAGAIN)
3453 goto retry;
3454 goto errout;
a63eaf34
PM
3455 }
3456 }
3457
4af57ef2 3458 kfree(task_ctx_data);
0793a61d 3459 return ctx;
c93f7669 3460
9ed6060d 3461errout:
4af57ef2 3462 kfree(task_ctx_data);
c93f7669 3463 return ERR_PTR(err);
0793a61d
TG
3464}
3465
6fb2915d 3466static void perf_event_free_filter(struct perf_event *event);
2541517c 3467static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3468
cdd6c482 3469static void free_event_rcu(struct rcu_head *head)
592903cd 3470{
cdd6c482 3471 struct perf_event *event;
592903cd 3472
cdd6c482
IM
3473 event = container_of(head, struct perf_event, rcu_head);
3474 if (event->ns)
3475 put_pid_ns(event->ns);
6fb2915d 3476 perf_event_free_filter(event);
cdd6c482 3477 kfree(event);
592903cd
PZ
3478}
3479
b69cf536
PZ
3480static void ring_buffer_attach(struct perf_event *event,
3481 struct ring_buffer *rb);
925d519a 3482
4beb31f3 3483static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3484{
4beb31f3
FW
3485 if (event->parent)
3486 return;
3487
4beb31f3
FW
3488 if (is_cgroup_event(event))
3489 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3490}
925d519a 3491
4beb31f3
FW
3492static void unaccount_event(struct perf_event *event)
3493{
3494 if (event->parent)
3495 return;
3496
3497 if (event->attach_state & PERF_ATTACH_TASK)
3498 static_key_slow_dec_deferred(&perf_sched_events);
3499 if (event->attr.mmap || event->attr.mmap_data)
3500 atomic_dec(&nr_mmap_events);
3501 if (event->attr.comm)
3502 atomic_dec(&nr_comm_events);
3503 if (event->attr.task)
3504 atomic_dec(&nr_task_events);
948b26b6
FW
3505 if (event->attr.freq)
3506 atomic_dec(&nr_freq_events);
45ac1403
AH
3507 if (event->attr.context_switch) {
3508 static_key_slow_dec_deferred(&perf_sched_events);
3509 atomic_dec(&nr_switch_events);
3510 }
4beb31f3
FW
3511 if (is_cgroup_event(event))
3512 static_key_slow_dec_deferred(&perf_sched_events);
3513 if (has_branch_stack(event))
3514 static_key_slow_dec_deferred(&perf_sched_events);
3515
3516 unaccount_event_cpu(event, event->cpu);
3517}
925d519a 3518
bed5b25a
AS
3519/*
3520 * The following implement mutual exclusion of events on "exclusive" pmus
3521 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3522 * at a time, so we disallow creating events that might conflict, namely:
3523 *
3524 * 1) cpu-wide events in the presence of per-task events,
3525 * 2) per-task events in the presence of cpu-wide events,
3526 * 3) two matching events on the same context.
3527 *
3528 * The former two cases are handled in the allocation path (perf_event_alloc(),
3529 * __free_event()), the latter -- before the first perf_install_in_context().
3530 */
3531static int exclusive_event_init(struct perf_event *event)
3532{
3533 struct pmu *pmu = event->pmu;
3534
3535 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3536 return 0;
3537
3538 /*
3539 * Prevent co-existence of per-task and cpu-wide events on the
3540 * same exclusive pmu.
3541 *
3542 * Negative pmu::exclusive_cnt means there are cpu-wide
3543 * events on this "exclusive" pmu, positive means there are
3544 * per-task events.
3545 *
3546 * Since this is called in perf_event_alloc() path, event::ctx
3547 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3548 * to mean "per-task event", because unlike other attach states it
3549 * never gets cleared.
3550 */
3551 if (event->attach_state & PERF_ATTACH_TASK) {
3552 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3553 return -EBUSY;
3554 } else {
3555 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3556 return -EBUSY;
3557 }
3558
3559 return 0;
3560}
3561
3562static void exclusive_event_destroy(struct perf_event *event)
3563{
3564 struct pmu *pmu = event->pmu;
3565
3566 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3567 return;
3568
3569 /* see comment in exclusive_event_init() */
3570 if (event->attach_state & PERF_ATTACH_TASK)
3571 atomic_dec(&pmu->exclusive_cnt);
3572 else
3573 atomic_inc(&pmu->exclusive_cnt);
3574}
3575
3576static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3577{
3578 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3579 (e1->cpu == e2->cpu ||
3580 e1->cpu == -1 ||
3581 e2->cpu == -1))
3582 return true;
3583 return false;
3584}
3585
3586/* Called under the same ctx::mutex as perf_install_in_context() */
3587static bool exclusive_event_installable(struct perf_event *event,
3588 struct perf_event_context *ctx)
3589{
3590 struct perf_event *iter_event;
3591 struct pmu *pmu = event->pmu;
3592
3593 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3594 return true;
3595
3596 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3597 if (exclusive_event_match(iter_event, event))
3598 return false;
3599 }
3600
3601 return true;
3602}
3603
766d6c07
FW
3604static void __free_event(struct perf_event *event)
3605{
cdd6c482 3606 if (!event->parent) {
927c7a9e
FW
3607 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3608 put_callchain_buffers();
f344011c 3609 }
9ee318a7 3610
dead9f29
AS
3611 perf_event_free_bpf_prog(event);
3612
766d6c07
FW
3613 if (event->destroy)
3614 event->destroy(event);
3615
3616 if (event->ctx)
3617 put_ctx(event->ctx);
3618
bed5b25a
AS
3619 if (event->pmu) {
3620 exclusive_event_destroy(event);
c464c76e 3621 module_put(event->pmu->module);
bed5b25a 3622 }
c464c76e 3623
766d6c07
FW
3624 call_rcu(&event->rcu_head, free_event_rcu);
3625}
683ede43
PZ
3626
3627static void _free_event(struct perf_event *event)
f1600952 3628{
e360adbe 3629 irq_work_sync(&event->pending);
925d519a 3630
4beb31f3 3631 unaccount_event(event);
9ee318a7 3632
76369139 3633 if (event->rb) {
9bb5d40c
PZ
3634 /*
3635 * Can happen when we close an event with re-directed output.
3636 *
3637 * Since we have a 0 refcount, perf_mmap_close() will skip
3638 * over us; possibly making our ring_buffer_put() the last.
3639 */
3640 mutex_lock(&event->mmap_mutex);
b69cf536 3641 ring_buffer_attach(event, NULL);
9bb5d40c 3642 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3643 }
3644
e5d1367f
SE
3645 if (is_cgroup_event(event))
3646 perf_detach_cgroup(event);
3647
766d6c07 3648 __free_event(event);
f1600952
PZ
3649}
3650
683ede43
PZ
3651/*
3652 * Used to free events which have a known refcount of 1, such as in error paths
3653 * where the event isn't exposed yet and inherited events.
3654 */
3655static void free_event(struct perf_event *event)
0793a61d 3656{
683ede43
PZ
3657 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3658 "unexpected event refcount: %ld; ptr=%p\n",
3659 atomic_long_read(&event->refcount), event)) {
3660 /* leak to avoid use-after-free */
3661 return;
3662 }
0793a61d 3663
683ede43 3664 _free_event(event);
0793a61d
TG
3665}
3666
a66a3052 3667/*
f8697762 3668 * Remove user event from the owner task.
a66a3052 3669 */
f8697762 3670static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3671{
8882135b 3672 struct task_struct *owner;
fb0459d7 3673
8882135b
PZ
3674 rcu_read_lock();
3675 owner = ACCESS_ONCE(event->owner);
3676 /*
3677 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3678 * !owner it means the list deletion is complete and we can indeed
3679 * free this event, otherwise we need to serialize on
3680 * owner->perf_event_mutex.
3681 */
3682 smp_read_barrier_depends();
3683 if (owner) {
3684 /*
3685 * Since delayed_put_task_struct() also drops the last
3686 * task reference we can safely take a new reference
3687 * while holding the rcu_read_lock().
3688 */
3689 get_task_struct(owner);
3690 }
3691 rcu_read_unlock();
3692
3693 if (owner) {
f63a8daa
PZ
3694 /*
3695 * If we're here through perf_event_exit_task() we're already
3696 * holding ctx->mutex which would be an inversion wrt. the
3697 * normal lock order.
3698 *
3699 * However we can safely take this lock because its the child
3700 * ctx->mutex.
3701 */
3702 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3703
8882135b
PZ
3704 /*
3705 * We have to re-check the event->owner field, if it is cleared
3706 * we raced with perf_event_exit_task(), acquiring the mutex
3707 * ensured they're done, and we can proceed with freeing the
3708 * event.
3709 */
3710 if (event->owner)
3711 list_del_init(&event->owner_entry);
3712 mutex_unlock(&owner->perf_event_mutex);
3713 put_task_struct(owner);
3714 }
f8697762
JO
3715}
3716
f8697762
JO
3717static void put_event(struct perf_event *event)
3718{
a83fe28e 3719 struct perf_event_context *ctx;
f8697762
JO
3720
3721 if (!atomic_long_dec_and_test(&event->refcount))
3722 return;
3723
3724 if (!is_kernel_event(event))
3725 perf_remove_from_owner(event);
8882135b 3726
683ede43
PZ
3727 /*
3728 * There are two ways this annotation is useful:
3729 *
3730 * 1) there is a lock recursion from perf_event_exit_task
3731 * see the comment there.
3732 *
3733 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3734 * perf_read_group(), which takes faults while
683ede43
PZ
3735 * holding ctx->mutex, however this is called after
3736 * the last filedesc died, so there is no possibility
3737 * to trigger the AB-BA case.
3738 */
a83fe28e
PZ
3739 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3740 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3741 perf_remove_from_context(event, true);
d415a7f1 3742 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3743
3744 _free_event(event);
a6fa941d
AV
3745}
3746
683ede43
PZ
3747int perf_event_release_kernel(struct perf_event *event)
3748{
3749 put_event(event);
3750 return 0;
3751}
3752EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3753
8b10c5e2
PZ
3754/*
3755 * Called when the last reference to the file is gone.
3756 */
a6fa941d
AV
3757static int perf_release(struct inode *inode, struct file *file)
3758{
3759 put_event(file->private_data);
3760 return 0;
fb0459d7 3761}
fb0459d7 3762
fadfe7be
JO
3763/*
3764 * Remove all orphanes events from the context.
3765 */
3766static void orphans_remove_work(struct work_struct *work)
3767{
3768 struct perf_event_context *ctx;
3769 struct perf_event *event, *tmp;
3770
3771 ctx = container_of(work, struct perf_event_context,
3772 orphans_remove.work);
3773
3774 mutex_lock(&ctx->mutex);
3775 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3776 struct perf_event *parent_event = event->parent;
3777
3778 if (!is_orphaned_child(event))
3779 continue;
3780
3781 perf_remove_from_context(event, true);
3782
3783 mutex_lock(&parent_event->child_mutex);
3784 list_del_init(&event->child_list);
3785 mutex_unlock(&parent_event->child_mutex);
3786
3787 free_event(event);
3788 put_event(parent_event);
3789 }
3790
3791 raw_spin_lock_irq(&ctx->lock);
3792 ctx->orphans_remove_sched = false;
3793 raw_spin_unlock_irq(&ctx->lock);
3794 mutex_unlock(&ctx->mutex);
3795
3796 put_ctx(ctx);
3797}
3798
59ed446f 3799u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3800{
cdd6c482 3801 struct perf_event *child;
e53c0994
PZ
3802 u64 total = 0;
3803
59ed446f
PZ
3804 *enabled = 0;
3805 *running = 0;
3806
6f10581a 3807 mutex_lock(&event->child_mutex);
01add3ea 3808
7d88962e 3809 (void)perf_event_read(event, false);
01add3ea
SB
3810 total += perf_event_count(event);
3811
59ed446f
PZ
3812 *enabled += event->total_time_enabled +
3813 atomic64_read(&event->child_total_time_enabled);
3814 *running += event->total_time_running +
3815 atomic64_read(&event->child_total_time_running);
3816
3817 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3818 (void)perf_event_read(child, false);
01add3ea 3819 total += perf_event_count(child);
59ed446f
PZ
3820 *enabled += child->total_time_enabled;
3821 *running += child->total_time_running;
3822 }
6f10581a 3823 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3824
3825 return total;
3826}
fb0459d7 3827EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3828
7d88962e 3829static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3830 u64 read_format, u64 *values)
3dab77fb 3831{
fa8c2693
PZ
3832 struct perf_event *sub;
3833 int n = 1; /* skip @nr */
7d88962e 3834 int ret;
f63a8daa 3835
7d88962e
SB
3836 ret = perf_event_read(leader, true);
3837 if (ret)
3838 return ret;
abf4868b 3839
fa8c2693
PZ
3840 /*
3841 * Since we co-schedule groups, {enabled,running} times of siblings
3842 * will be identical to those of the leader, so we only publish one
3843 * set.
3844 */
3845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3846 values[n++] += leader->total_time_enabled +
3847 atomic64_read(&leader->child_total_time_enabled);
3848 }
3dab77fb 3849
fa8c2693
PZ
3850 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3851 values[n++] += leader->total_time_running +
3852 atomic64_read(&leader->child_total_time_running);
3853 }
3854
3855 /*
3856 * Write {count,id} tuples for every sibling.
3857 */
3858 values[n++] += perf_event_count(leader);
abf4868b
PZ
3859 if (read_format & PERF_FORMAT_ID)
3860 values[n++] = primary_event_id(leader);
3dab77fb 3861
fa8c2693
PZ
3862 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3863 values[n++] += perf_event_count(sub);
3864 if (read_format & PERF_FORMAT_ID)
3865 values[n++] = primary_event_id(sub);
3866 }
7d88962e
SB
3867
3868 return 0;
fa8c2693 3869}
3dab77fb 3870
fa8c2693
PZ
3871static int perf_read_group(struct perf_event *event,
3872 u64 read_format, char __user *buf)
3873{
3874 struct perf_event *leader = event->group_leader, *child;
3875 struct perf_event_context *ctx = leader->ctx;
7d88962e 3876 int ret;
fa8c2693 3877 u64 *values;
3dab77fb 3878
fa8c2693 3879 lockdep_assert_held(&ctx->mutex);
3dab77fb 3880
fa8c2693
PZ
3881 values = kzalloc(event->read_size, GFP_KERNEL);
3882 if (!values)
3883 return -ENOMEM;
3dab77fb 3884
fa8c2693
PZ
3885 values[0] = 1 + leader->nr_siblings;
3886
3887 /*
3888 * By locking the child_mutex of the leader we effectively
3889 * lock the child list of all siblings.. XXX explain how.
3890 */
3891 mutex_lock(&leader->child_mutex);
abf4868b 3892
7d88962e
SB
3893 ret = __perf_read_group_add(leader, read_format, values);
3894 if (ret)
3895 goto unlock;
3896
3897 list_for_each_entry(child, &leader->child_list, child_list) {
3898 ret = __perf_read_group_add(child, read_format, values);
3899 if (ret)
3900 goto unlock;
3901 }
abf4868b 3902
fa8c2693 3903 mutex_unlock(&leader->child_mutex);
abf4868b 3904
7d88962e 3905 ret = event->read_size;
fa8c2693
PZ
3906 if (copy_to_user(buf, values, event->read_size))
3907 ret = -EFAULT;
7d88962e 3908 goto out;
fa8c2693 3909
7d88962e
SB
3910unlock:
3911 mutex_unlock(&leader->child_mutex);
3912out:
fa8c2693 3913 kfree(values);
abf4868b 3914 return ret;
3dab77fb
PZ
3915}
3916
b15f495b 3917static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3918 u64 read_format, char __user *buf)
3919{
59ed446f 3920 u64 enabled, running;
3dab77fb
PZ
3921 u64 values[4];
3922 int n = 0;
3923
59ed446f
PZ
3924 values[n++] = perf_event_read_value(event, &enabled, &running);
3925 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3926 values[n++] = enabled;
3927 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3928 values[n++] = running;
3dab77fb 3929 if (read_format & PERF_FORMAT_ID)
cdd6c482 3930 values[n++] = primary_event_id(event);
3dab77fb
PZ
3931
3932 if (copy_to_user(buf, values, n * sizeof(u64)))
3933 return -EFAULT;
3934
3935 return n * sizeof(u64);
3936}
3937
dc633982
JO
3938static bool is_event_hup(struct perf_event *event)
3939{
3940 bool no_children;
3941
3942 if (event->state != PERF_EVENT_STATE_EXIT)
3943 return false;
3944
3945 mutex_lock(&event->child_mutex);
3946 no_children = list_empty(&event->child_list);
3947 mutex_unlock(&event->child_mutex);
3948 return no_children;
3949}
3950
0793a61d 3951/*
cdd6c482 3952 * Read the performance event - simple non blocking version for now
0793a61d
TG
3953 */
3954static ssize_t
b15f495b 3955__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3956{
cdd6c482 3957 u64 read_format = event->attr.read_format;
3dab77fb 3958 int ret;
0793a61d 3959
3b6f9e5c 3960 /*
cdd6c482 3961 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3962 * error state (i.e. because it was pinned but it couldn't be
3963 * scheduled on to the CPU at some point).
3964 */
cdd6c482 3965 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3966 return 0;
3967
c320c7b7 3968 if (count < event->read_size)
3dab77fb
PZ
3969 return -ENOSPC;
3970
cdd6c482 3971 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3972 if (read_format & PERF_FORMAT_GROUP)
b15f495b 3973 ret = perf_read_group(event, read_format, buf);
3dab77fb 3974 else
b15f495b 3975 ret = perf_read_one(event, read_format, buf);
0793a61d 3976
3dab77fb 3977 return ret;
0793a61d
TG
3978}
3979
0793a61d
TG
3980static ssize_t
3981perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3982{
cdd6c482 3983 struct perf_event *event = file->private_data;
f63a8daa
PZ
3984 struct perf_event_context *ctx;
3985 int ret;
0793a61d 3986
f63a8daa 3987 ctx = perf_event_ctx_lock(event);
b15f495b 3988 ret = __perf_read(event, buf, count);
f63a8daa
PZ
3989 perf_event_ctx_unlock(event, ctx);
3990
3991 return ret;
0793a61d
TG
3992}
3993
3994static unsigned int perf_poll(struct file *file, poll_table *wait)
3995{
cdd6c482 3996 struct perf_event *event = file->private_data;
76369139 3997 struct ring_buffer *rb;
61b67684 3998 unsigned int events = POLLHUP;
c7138f37 3999
e708d7ad 4000 poll_wait(file, &event->waitq, wait);
179033b3 4001
dc633982 4002 if (is_event_hup(event))
179033b3 4003 return events;
c7138f37 4004
10c6db11 4005 /*
9bb5d40c
PZ
4006 * Pin the event->rb by taking event->mmap_mutex; otherwise
4007 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4008 */
4009 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4010 rb = event->rb;
4011 if (rb)
76369139 4012 events = atomic_xchg(&rb->poll, 0);
10c6db11 4013 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4014 return events;
4015}
4016
f63a8daa 4017static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4018{
7d88962e 4019 (void)perf_event_read(event, false);
e7850595 4020 local64_set(&event->count, 0);
cdd6c482 4021 perf_event_update_userpage(event);
3df5edad
PZ
4022}
4023
c93f7669 4024/*
cdd6c482
IM
4025 * Holding the top-level event's child_mutex means that any
4026 * descendant process that has inherited this event will block
4027 * in sync_child_event if it goes to exit, thus satisfying the
4028 * task existence requirements of perf_event_enable/disable.
c93f7669 4029 */
cdd6c482
IM
4030static void perf_event_for_each_child(struct perf_event *event,
4031 void (*func)(struct perf_event *))
3df5edad 4032{
cdd6c482 4033 struct perf_event *child;
3df5edad 4034
cdd6c482 4035 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4036
cdd6c482
IM
4037 mutex_lock(&event->child_mutex);
4038 func(event);
4039 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4040 func(child);
cdd6c482 4041 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4042}
4043
cdd6c482
IM
4044static void perf_event_for_each(struct perf_event *event,
4045 void (*func)(struct perf_event *))
3df5edad 4046{
cdd6c482
IM
4047 struct perf_event_context *ctx = event->ctx;
4048 struct perf_event *sibling;
3df5edad 4049
f63a8daa
PZ
4050 lockdep_assert_held(&ctx->mutex);
4051
cdd6c482 4052 event = event->group_leader;
75f937f2 4053
cdd6c482 4054 perf_event_for_each_child(event, func);
cdd6c482 4055 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4056 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4057}
4058
c7999c6f
PZ
4059struct period_event {
4060 struct perf_event *event;
08247e31 4061 u64 value;
c7999c6f 4062};
08247e31 4063
0017960f
PZ
4064static void ___perf_event_period(void *info)
4065{
4066 struct period_event *pe = info;
4067 struct perf_event *event = pe->event;
4068 u64 value = pe->value;
4069
4070 if (event->attr.freq) {
4071 event->attr.sample_freq = value;
4072 } else {
4073 event->attr.sample_period = value;
4074 event->hw.sample_period = value;
4075 }
4076
4077 local64_set(&event->hw.period_left, 0);
4078}
4079
c7999c6f
PZ
4080static int __perf_event_period(void *info)
4081{
4082 struct period_event *pe = info;
4083 struct perf_event *event = pe->event;
4084 struct perf_event_context *ctx = event->ctx;
4085 u64 value = pe->value;
4086 bool active;
08247e31 4087
c7999c6f 4088 raw_spin_lock(&ctx->lock);
cdd6c482 4089 if (event->attr.freq) {
cdd6c482 4090 event->attr.sample_freq = value;
08247e31 4091 } else {
cdd6c482
IM
4092 event->attr.sample_period = value;
4093 event->hw.sample_period = value;
08247e31 4094 }
bad7192b
PZ
4095
4096 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4097 if (active) {
4098 perf_pmu_disable(ctx->pmu);
4099 event->pmu->stop(event, PERF_EF_UPDATE);
4100 }
4101
4102 local64_set(&event->hw.period_left, 0);
4103
4104 if (active) {
4105 event->pmu->start(event, PERF_EF_RELOAD);
4106 perf_pmu_enable(ctx->pmu);
4107 }
c7999c6f 4108 raw_spin_unlock(&ctx->lock);
bad7192b 4109
c7999c6f
PZ
4110 return 0;
4111}
4112
4113static int perf_event_period(struct perf_event *event, u64 __user *arg)
4114{
4115 struct period_event pe = { .event = event, };
c7999c6f
PZ
4116 u64 value;
4117
4118 if (!is_sampling_event(event))
4119 return -EINVAL;
4120
4121 if (copy_from_user(&value, arg, sizeof(value)))
4122 return -EFAULT;
4123
4124 if (!value)
4125 return -EINVAL;
4126
4127 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4128 return -EINVAL;
4129
c7999c6f
PZ
4130 pe.value = value;
4131
0017960f
PZ
4132 event_function_call(event, __perf_event_period,
4133 ___perf_event_period, &pe);
08247e31 4134
c7999c6f 4135 return 0;
08247e31
PZ
4136}
4137
ac9721f3
PZ
4138static const struct file_operations perf_fops;
4139
2903ff01 4140static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4141{
2903ff01
AV
4142 struct fd f = fdget(fd);
4143 if (!f.file)
4144 return -EBADF;
ac9721f3 4145
2903ff01
AV
4146 if (f.file->f_op != &perf_fops) {
4147 fdput(f);
4148 return -EBADF;
ac9721f3 4149 }
2903ff01
AV
4150 *p = f;
4151 return 0;
ac9721f3
PZ
4152}
4153
4154static int perf_event_set_output(struct perf_event *event,
4155 struct perf_event *output_event);
6fb2915d 4156static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4157static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4158
f63a8daa 4159static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4160{
cdd6c482 4161 void (*func)(struct perf_event *);
3df5edad 4162 u32 flags = arg;
d859e29f
PM
4163
4164 switch (cmd) {
cdd6c482 4165 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4166 func = _perf_event_enable;
d859e29f 4167 break;
cdd6c482 4168 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4169 func = _perf_event_disable;
79f14641 4170 break;
cdd6c482 4171 case PERF_EVENT_IOC_RESET:
f63a8daa 4172 func = _perf_event_reset;
6de6a7b9 4173 break;
3df5edad 4174
cdd6c482 4175 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4176 return _perf_event_refresh(event, arg);
08247e31 4177
cdd6c482
IM
4178 case PERF_EVENT_IOC_PERIOD:
4179 return perf_event_period(event, (u64 __user *)arg);
08247e31 4180
cf4957f1
JO
4181 case PERF_EVENT_IOC_ID:
4182 {
4183 u64 id = primary_event_id(event);
4184
4185 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4186 return -EFAULT;
4187 return 0;
4188 }
4189
cdd6c482 4190 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4191 {
ac9721f3 4192 int ret;
ac9721f3 4193 if (arg != -1) {
2903ff01
AV
4194 struct perf_event *output_event;
4195 struct fd output;
4196 ret = perf_fget_light(arg, &output);
4197 if (ret)
4198 return ret;
4199 output_event = output.file->private_data;
4200 ret = perf_event_set_output(event, output_event);
4201 fdput(output);
4202 } else {
4203 ret = perf_event_set_output(event, NULL);
ac9721f3 4204 }
ac9721f3
PZ
4205 return ret;
4206 }
a4be7c27 4207
6fb2915d
LZ
4208 case PERF_EVENT_IOC_SET_FILTER:
4209 return perf_event_set_filter(event, (void __user *)arg);
4210
2541517c
AS
4211 case PERF_EVENT_IOC_SET_BPF:
4212 return perf_event_set_bpf_prog(event, arg);
4213
d859e29f 4214 default:
3df5edad 4215 return -ENOTTY;
d859e29f 4216 }
3df5edad
PZ
4217
4218 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4219 perf_event_for_each(event, func);
3df5edad 4220 else
cdd6c482 4221 perf_event_for_each_child(event, func);
3df5edad
PZ
4222
4223 return 0;
d859e29f
PM
4224}
4225
f63a8daa
PZ
4226static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4227{
4228 struct perf_event *event = file->private_data;
4229 struct perf_event_context *ctx;
4230 long ret;
4231
4232 ctx = perf_event_ctx_lock(event);
4233 ret = _perf_ioctl(event, cmd, arg);
4234 perf_event_ctx_unlock(event, ctx);
4235
4236 return ret;
4237}
4238
b3f20785
PM
4239#ifdef CONFIG_COMPAT
4240static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4241 unsigned long arg)
4242{
4243 switch (_IOC_NR(cmd)) {
4244 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4245 case _IOC_NR(PERF_EVENT_IOC_ID):
4246 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4247 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4248 cmd &= ~IOCSIZE_MASK;
4249 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4250 }
4251 break;
4252 }
4253 return perf_ioctl(file, cmd, arg);
4254}
4255#else
4256# define perf_compat_ioctl NULL
4257#endif
4258
cdd6c482 4259int perf_event_task_enable(void)
771d7cde 4260{
f63a8daa 4261 struct perf_event_context *ctx;
cdd6c482 4262 struct perf_event *event;
771d7cde 4263
cdd6c482 4264 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4265 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4266 ctx = perf_event_ctx_lock(event);
4267 perf_event_for_each_child(event, _perf_event_enable);
4268 perf_event_ctx_unlock(event, ctx);
4269 }
cdd6c482 4270 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4271
4272 return 0;
4273}
4274
cdd6c482 4275int perf_event_task_disable(void)
771d7cde 4276{
f63a8daa 4277 struct perf_event_context *ctx;
cdd6c482 4278 struct perf_event *event;
771d7cde 4279
cdd6c482 4280 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4281 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4282 ctx = perf_event_ctx_lock(event);
4283 perf_event_for_each_child(event, _perf_event_disable);
4284 perf_event_ctx_unlock(event, ctx);
4285 }
cdd6c482 4286 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4287
4288 return 0;
4289}
4290
cdd6c482 4291static int perf_event_index(struct perf_event *event)
194002b2 4292{
a4eaf7f1
PZ
4293 if (event->hw.state & PERF_HES_STOPPED)
4294 return 0;
4295
cdd6c482 4296 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4297 return 0;
4298
35edc2a5 4299 return event->pmu->event_idx(event);
194002b2
PZ
4300}
4301
c4794295 4302static void calc_timer_values(struct perf_event *event,
e3f3541c 4303 u64 *now,
7f310a5d
EM
4304 u64 *enabled,
4305 u64 *running)
c4794295 4306{
e3f3541c 4307 u64 ctx_time;
c4794295 4308
e3f3541c
PZ
4309 *now = perf_clock();
4310 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4311 *enabled = ctx_time - event->tstamp_enabled;
4312 *running = ctx_time - event->tstamp_running;
4313}
4314
fa731587
PZ
4315static void perf_event_init_userpage(struct perf_event *event)
4316{
4317 struct perf_event_mmap_page *userpg;
4318 struct ring_buffer *rb;
4319
4320 rcu_read_lock();
4321 rb = rcu_dereference(event->rb);
4322 if (!rb)
4323 goto unlock;
4324
4325 userpg = rb->user_page;
4326
4327 /* Allow new userspace to detect that bit 0 is deprecated */
4328 userpg->cap_bit0_is_deprecated = 1;
4329 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4330 userpg->data_offset = PAGE_SIZE;
4331 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4332
4333unlock:
4334 rcu_read_unlock();
4335}
4336
c1317ec2
AL
4337void __weak arch_perf_update_userpage(
4338 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4339{
4340}
4341
38ff667b
PZ
4342/*
4343 * Callers need to ensure there can be no nesting of this function, otherwise
4344 * the seqlock logic goes bad. We can not serialize this because the arch
4345 * code calls this from NMI context.
4346 */
cdd6c482 4347void perf_event_update_userpage(struct perf_event *event)
37d81828 4348{
cdd6c482 4349 struct perf_event_mmap_page *userpg;
76369139 4350 struct ring_buffer *rb;
e3f3541c 4351 u64 enabled, running, now;
38ff667b
PZ
4352
4353 rcu_read_lock();
5ec4c599
PZ
4354 rb = rcu_dereference(event->rb);
4355 if (!rb)
4356 goto unlock;
4357
0d641208
EM
4358 /*
4359 * compute total_time_enabled, total_time_running
4360 * based on snapshot values taken when the event
4361 * was last scheduled in.
4362 *
4363 * we cannot simply called update_context_time()
4364 * because of locking issue as we can be called in
4365 * NMI context
4366 */
e3f3541c 4367 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4368
76369139 4369 userpg = rb->user_page;
7b732a75
PZ
4370 /*
4371 * Disable preemption so as to not let the corresponding user-space
4372 * spin too long if we get preempted.
4373 */
4374 preempt_disable();
37d81828 4375 ++userpg->lock;
92f22a38 4376 barrier();
cdd6c482 4377 userpg->index = perf_event_index(event);
b5e58793 4378 userpg->offset = perf_event_count(event);
365a4038 4379 if (userpg->index)
e7850595 4380 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4381
0d641208 4382 userpg->time_enabled = enabled +
cdd6c482 4383 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4384
0d641208 4385 userpg->time_running = running +
cdd6c482 4386 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4387
c1317ec2 4388 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4389
92f22a38 4390 barrier();
37d81828 4391 ++userpg->lock;
7b732a75 4392 preempt_enable();
38ff667b 4393unlock:
7b732a75 4394 rcu_read_unlock();
37d81828
PM
4395}
4396
906010b2
PZ
4397static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4398{
4399 struct perf_event *event = vma->vm_file->private_data;
76369139 4400 struct ring_buffer *rb;
906010b2
PZ
4401 int ret = VM_FAULT_SIGBUS;
4402
4403 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4404 if (vmf->pgoff == 0)
4405 ret = 0;
4406 return ret;
4407 }
4408
4409 rcu_read_lock();
76369139
FW
4410 rb = rcu_dereference(event->rb);
4411 if (!rb)
906010b2
PZ
4412 goto unlock;
4413
4414 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4415 goto unlock;
4416
76369139 4417 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4418 if (!vmf->page)
4419 goto unlock;
4420
4421 get_page(vmf->page);
4422 vmf->page->mapping = vma->vm_file->f_mapping;
4423 vmf->page->index = vmf->pgoff;
4424
4425 ret = 0;
4426unlock:
4427 rcu_read_unlock();
4428
4429 return ret;
4430}
4431
10c6db11
PZ
4432static void ring_buffer_attach(struct perf_event *event,
4433 struct ring_buffer *rb)
4434{
b69cf536 4435 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4436 unsigned long flags;
4437
b69cf536
PZ
4438 if (event->rb) {
4439 /*
4440 * Should be impossible, we set this when removing
4441 * event->rb_entry and wait/clear when adding event->rb_entry.
4442 */
4443 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4444
b69cf536 4445 old_rb = event->rb;
b69cf536
PZ
4446 spin_lock_irqsave(&old_rb->event_lock, flags);
4447 list_del_rcu(&event->rb_entry);
4448 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4449
2f993cf0
ON
4450 event->rcu_batches = get_state_synchronize_rcu();
4451 event->rcu_pending = 1;
b69cf536 4452 }
10c6db11 4453
b69cf536 4454 if (rb) {
2f993cf0
ON
4455 if (event->rcu_pending) {
4456 cond_synchronize_rcu(event->rcu_batches);
4457 event->rcu_pending = 0;
4458 }
4459
b69cf536
PZ
4460 spin_lock_irqsave(&rb->event_lock, flags);
4461 list_add_rcu(&event->rb_entry, &rb->event_list);
4462 spin_unlock_irqrestore(&rb->event_lock, flags);
4463 }
4464
4465 rcu_assign_pointer(event->rb, rb);
4466
4467 if (old_rb) {
4468 ring_buffer_put(old_rb);
4469 /*
4470 * Since we detached before setting the new rb, so that we
4471 * could attach the new rb, we could have missed a wakeup.
4472 * Provide it now.
4473 */
4474 wake_up_all(&event->waitq);
4475 }
10c6db11
PZ
4476}
4477
4478static void ring_buffer_wakeup(struct perf_event *event)
4479{
4480 struct ring_buffer *rb;
4481
4482 rcu_read_lock();
4483 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4484 if (rb) {
4485 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4486 wake_up_all(&event->waitq);
4487 }
10c6db11
PZ
4488 rcu_read_unlock();
4489}
4490
fdc26706 4491struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4492{
76369139 4493 struct ring_buffer *rb;
7b732a75 4494
ac9721f3 4495 rcu_read_lock();
76369139
FW
4496 rb = rcu_dereference(event->rb);
4497 if (rb) {
4498 if (!atomic_inc_not_zero(&rb->refcount))
4499 rb = NULL;
ac9721f3
PZ
4500 }
4501 rcu_read_unlock();
4502
76369139 4503 return rb;
ac9721f3
PZ
4504}
4505
fdc26706 4506void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4507{
76369139 4508 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4509 return;
7b732a75 4510
9bb5d40c 4511 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4512
76369139 4513 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4514}
4515
4516static void perf_mmap_open(struct vm_area_struct *vma)
4517{
cdd6c482 4518 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4519
cdd6c482 4520 atomic_inc(&event->mmap_count);
9bb5d40c 4521 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4522
45bfb2e5
PZ
4523 if (vma->vm_pgoff)
4524 atomic_inc(&event->rb->aux_mmap_count);
4525
1e0fb9ec
AL
4526 if (event->pmu->event_mapped)
4527 event->pmu->event_mapped(event);
7b732a75
PZ
4528}
4529
9bb5d40c
PZ
4530/*
4531 * A buffer can be mmap()ed multiple times; either directly through the same
4532 * event, or through other events by use of perf_event_set_output().
4533 *
4534 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4535 * the buffer here, where we still have a VM context. This means we need
4536 * to detach all events redirecting to us.
4537 */
7b732a75
PZ
4538static void perf_mmap_close(struct vm_area_struct *vma)
4539{
cdd6c482 4540 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4541
b69cf536 4542 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4543 struct user_struct *mmap_user = rb->mmap_user;
4544 int mmap_locked = rb->mmap_locked;
4545 unsigned long size = perf_data_size(rb);
789f90fc 4546
1e0fb9ec
AL
4547 if (event->pmu->event_unmapped)
4548 event->pmu->event_unmapped(event);
4549
45bfb2e5
PZ
4550 /*
4551 * rb->aux_mmap_count will always drop before rb->mmap_count and
4552 * event->mmap_count, so it is ok to use event->mmap_mutex to
4553 * serialize with perf_mmap here.
4554 */
4555 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4556 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4557 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4558 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4559
4560 rb_free_aux(rb);
4561 mutex_unlock(&event->mmap_mutex);
4562 }
4563
9bb5d40c
PZ
4564 atomic_dec(&rb->mmap_count);
4565
4566 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4567 goto out_put;
9bb5d40c 4568
b69cf536 4569 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4570 mutex_unlock(&event->mmap_mutex);
4571
4572 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4573 if (atomic_read(&rb->mmap_count))
4574 goto out_put;
ac9721f3 4575
9bb5d40c
PZ
4576 /*
4577 * No other mmap()s, detach from all other events that might redirect
4578 * into the now unreachable buffer. Somewhat complicated by the
4579 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4580 */
4581again:
4582 rcu_read_lock();
4583 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4584 if (!atomic_long_inc_not_zero(&event->refcount)) {
4585 /*
4586 * This event is en-route to free_event() which will
4587 * detach it and remove it from the list.
4588 */
4589 continue;
4590 }
4591 rcu_read_unlock();
789f90fc 4592
9bb5d40c
PZ
4593 mutex_lock(&event->mmap_mutex);
4594 /*
4595 * Check we didn't race with perf_event_set_output() which can
4596 * swizzle the rb from under us while we were waiting to
4597 * acquire mmap_mutex.
4598 *
4599 * If we find a different rb; ignore this event, a next
4600 * iteration will no longer find it on the list. We have to
4601 * still restart the iteration to make sure we're not now
4602 * iterating the wrong list.
4603 */
b69cf536
PZ
4604 if (event->rb == rb)
4605 ring_buffer_attach(event, NULL);
4606
cdd6c482 4607 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4608 put_event(event);
ac9721f3 4609
9bb5d40c
PZ
4610 /*
4611 * Restart the iteration; either we're on the wrong list or
4612 * destroyed its integrity by doing a deletion.
4613 */
4614 goto again;
7b732a75 4615 }
9bb5d40c
PZ
4616 rcu_read_unlock();
4617
4618 /*
4619 * It could be there's still a few 0-ref events on the list; they'll
4620 * get cleaned up by free_event() -- they'll also still have their
4621 * ref on the rb and will free it whenever they are done with it.
4622 *
4623 * Aside from that, this buffer is 'fully' detached and unmapped,
4624 * undo the VM accounting.
4625 */
4626
4627 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4628 vma->vm_mm->pinned_vm -= mmap_locked;
4629 free_uid(mmap_user);
4630
b69cf536 4631out_put:
9bb5d40c 4632 ring_buffer_put(rb); /* could be last */
37d81828
PM
4633}
4634
f0f37e2f 4635static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4636 .open = perf_mmap_open,
45bfb2e5 4637 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4638 .fault = perf_mmap_fault,
4639 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4640};
4641
4642static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4643{
cdd6c482 4644 struct perf_event *event = file->private_data;
22a4f650 4645 unsigned long user_locked, user_lock_limit;
789f90fc 4646 struct user_struct *user = current_user();
22a4f650 4647 unsigned long locked, lock_limit;
45bfb2e5 4648 struct ring_buffer *rb = NULL;
7b732a75
PZ
4649 unsigned long vma_size;
4650 unsigned long nr_pages;
45bfb2e5 4651 long user_extra = 0, extra = 0;
d57e34fd 4652 int ret = 0, flags = 0;
37d81828 4653
c7920614
PZ
4654 /*
4655 * Don't allow mmap() of inherited per-task counters. This would
4656 * create a performance issue due to all children writing to the
76369139 4657 * same rb.
c7920614
PZ
4658 */
4659 if (event->cpu == -1 && event->attr.inherit)
4660 return -EINVAL;
4661
43a21ea8 4662 if (!(vma->vm_flags & VM_SHARED))
37d81828 4663 return -EINVAL;
7b732a75
PZ
4664
4665 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4666
4667 if (vma->vm_pgoff == 0) {
4668 nr_pages = (vma_size / PAGE_SIZE) - 1;
4669 } else {
4670 /*
4671 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4672 * mapped, all subsequent mappings should have the same size
4673 * and offset. Must be above the normal perf buffer.
4674 */
4675 u64 aux_offset, aux_size;
4676
4677 if (!event->rb)
4678 return -EINVAL;
4679
4680 nr_pages = vma_size / PAGE_SIZE;
4681
4682 mutex_lock(&event->mmap_mutex);
4683 ret = -EINVAL;
4684
4685 rb = event->rb;
4686 if (!rb)
4687 goto aux_unlock;
4688
4689 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4690 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4691
4692 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4693 goto aux_unlock;
4694
4695 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4696 goto aux_unlock;
4697
4698 /* already mapped with a different offset */
4699 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4700 goto aux_unlock;
4701
4702 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4703 goto aux_unlock;
4704
4705 /* already mapped with a different size */
4706 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4707 goto aux_unlock;
4708
4709 if (!is_power_of_2(nr_pages))
4710 goto aux_unlock;
4711
4712 if (!atomic_inc_not_zero(&rb->mmap_count))
4713 goto aux_unlock;
4714
4715 if (rb_has_aux(rb)) {
4716 atomic_inc(&rb->aux_mmap_count);
4717 ret = 0;
4718 goto unlock;
4719 }
4720
4721 atomic_set(&rb->aux_mmap_count, 1);
4722 user_extra = nr_pages;
4723
4724 goto accounting;
4725 }
7b732a75 4726
7730d865 4727 /*
76369139 4728 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4729 * can do bitmasks instead of modulo.
4730 */
2ed11312 4731 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4732 return -EINVAL;
4733
7b732a75 4734 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4735 return -EINVAL;
4736
cdd6c482 4737 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4738again:
cdd6c482 4739 mutex_lock(&event->mmap_mutex);
76369139 4740 if (event->rb) {
9bb5d40c 4741 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4742 ret = -EINVAL;
9bb5d40c
PZ
4743 goto unlock;
4744 }
4745
4746 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4747 /*
4748 * Raced against perf_mmap_close() through
4749 * perf_event_set_output(). Try again, hope for better
4750 * luck.
4751 */
4752 mutex_unlock(&event->mmap_mutex);
4753 goto again;
4754 }
4755
ebb3c4c4
PZ
4756 goto unlock;
4757 }
4758
789f90fc 4759 user_extra = nr_pages + 1;
45bfb2e5
PZ
4760
4761accounting:
cdd6c482 4762 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4763
4764 /*
4765 * Increase the limit linearly with more CPUs:
4766 */
4767 user_lock_limit *= num_online_cpus();
4768
789f90fc 4769 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4770
789f90fc
PZ
4771 if (user_locked > user_lock_limit)
4772 extra = user_locked - user_lock_limit;
7b732a75 4773
78d7d407 4774 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4775 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4776 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4777
459ec28a
IM
4778 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4779 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4780 ret = -EPERM;
4781 goto unlock;
4782 }
7b732a75 4783
45bfb2e5 4784 WARN_ON(!rb && event->rb);
906010b2 4785
d57e34fd 4786 if (vma->vm_flags & VM_WRITE)
76369139 4787 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4788
76369139 4789 if (!rb) {
45bfb2e5
PZ
4790 rb = rb_alloc(nr_pages,
4791 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4792 event->cpu, flags);
26cb63ad 4793
45bfb2e5
PZ
4794 if (!rb) {
4795 ret = -ENOMEM;
4796 goto unlock;
4797 }
43a21ea8 4798
45bfb2e5
PZ
4799 atomic_set(&rb->mmap_count, 1);
4800 rb->mmap_user = get_current_user();
4801 rb->mmap_locked = extra;
26cb63ad 4802
45bfb2e5 4803 ring_buffer_attach(event, rb);
ac9721f3 4804
45bfb2e5
PZ
4805 perf_event_init_userpage(event);
4806 perf_event_update_userpage(event);
4807 } else {
1a594131
AS
4808 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4809 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4810 if (!ret)
4811 rb->aux_mmap_locked = extra;
4812 }
9a0f05cb 4813
ebb3c4c4 4814unlock:
45bfb2e5
PZ
4815 if (!ret) {
4816 atomic_long_add(user_extra, &user->locked_vm);
4817 vma->vm_mm->pinned_vm += extra;
4818
ac9721f3 4819 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4820 } else if (rb) {
4821 atomic_dec(&rb->mmap_count);
4822 }
4823aux_unlock:
cdd6c482 4824 mutex_unlock(&event->mmap_mutex);
37d81828 4825
9bb5d40c
PZ
4826 /*
4827 * Since pinned accounting is per vm we cannot allow fork() to copy our
4828 * vma.
4829 */
26cb63ad 4830 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4831 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4832
1e0fb9ec
AL
4833 if (event->pmu->event_mapped)
4834 event->pmu->event_mapped(event);
4835
7b732a75 4836 return ret;
37d81828
PM
4837}
4838
3c446b3d
PZ
4839static int perf_fasync(int fd, struct file *filp, int on)
4840{
496ad9aa 4841 struct inode *inode = file_inode(filp);
cdd6c482 4842 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4843 int retval;
4844
4845 mutex_lock(&inode->i_mutex);
cdd6c482 4846 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4847 mutex_unlock(&inode->i_mutex);
4848
4849 if (retval < 0)
4850 return retval;
4851
4852 return 0;
4853}
4854
0793a61d 4855static const struct file_operations perf_fops = {
3326c1ce 4856 .llseek = no_llseek,
0793a61d
TG
4857 .release = perf_release,
4858 .read = perf_read,
4859 .poll = perf_poll,
d859e29f 4860 .unlocked_ioctl = perf_ioctl,
b3f20785 4861 .compat_ioctl = perf_compat_ioctl,
37d81828 4862 .mmap = perf_mmap,
3c446b3d 4863 .fasync = perf_fasync,
0793a61d
TG
4864};
4865
925d519a 4866/*
cdd6c482 4867 * Perf event wakeup
925d519a
PZ
4868 *
4869 * If there's data, ensure we set the poll() state and publish everything
4870 * to user-space before waking everybody up.
4871 */
4872
fed66e2c
PZ
4873static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4874{
4875 /* only the parent has fasync state */
4876 if (event->parent)
4877 event = event->parent;
4878 return &event->fasync;
4879}
4880
cdd6c482 4881void perf_event_wakeup(struct perf_event *event)
925d519a 4882{
10c6db11 4883 ring_buffer_wakeup(event);
4c9e2542 4884
cdd6c482 4885 if (event->pending_kill) {
fed66e2c 4886 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4887 event->pending_kill = 0;
4c9e2542 4888 }
925d519a
PZ
4889}
4890
e360adbe 4891static void perf_pending_event(struct irq_work *entry)
79f14641 4892{
cdd6c482
IM
4893 struct perf_event *event = container_of(entry,
4894 struct perf_event, pending);
d525211f
PZ
4895 int rctx;
4896
4897 rctx = perf_swevent_get_recursion_context();
4898 /*
4899 * If we 'fail' here, that's OK, it means recursion is already disabled
4900 * and we won't recurse 'further'.
4901 */
79f14641 4902
cdd6c482
IM
4903 if (event->pending_disable) {
4904 event->pending_disable = 0;
4905 __perf_event_disable(event);
79f14641
PZ
4906 }
4907
cdd6c482
IM
4908 if (event->pending_wakeup) {
4909 event->pending_wakeup = 0;
4910 perf_event_wakeup(event);
79f14641 4911 }
d525211f
PZ
4912
4913 if (rctx >= 0)
4914 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4915}
4916
39447b38
ZY
4917/*
4918 * We assume there is only KVM supporting the callbacks.
4919 * Later on, we might change it to a list if there is
4920 * another virtualization implementation supporting the callbacks.
4921 */
4922struct perf_guest_info_callbacks *perf_guest_cbs;
4923
4924int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4925{
4926 perf_guest_cbs = cbs;
4927 return 0;
4928}
4929EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4930
4931int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4932{
4933 perf_guest_cbs = NULL;
4934 return 0;
4935}
4936EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4937
4018994f
JO
4938static void
4939perf_output_sample_regs(struct perf_output_handle *handle,
4940 struct pt_regs *regs, u64 mask)
4941{
4942 int bit;
4943
4944 for_each_set_bit(bit, (const unsigned long *) &mask,
4945 sizeof(mask) * BITS_PER_BYTE) {
4946 u64 val;
4947
4948 val = perf_reg_value(regs, bit);
4949 perf_output_put(handle, val);
4950 }
4951}
4952
60e2364e 4953static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4954 struct pt_regs *regs,
4955 struct pt_regs *regs_user_copy)
4018994f 4956{
88a7c26a
AL
4957 if (user_mode(regs)) {
4958 regs_user->abi = perf_reg_abi(current);
2565711f 4959 regs_user->regs = regs;
88a7c26a
AL
4960 } else if (current->mm) {
4961 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4962 } else {
4963 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4964 regs_user->regs = NULL;
4018994f
JO
4965 }
4966}
4967
60e2364e
SE
4968static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4969 struct pt_regs *regs)
4970{
4971 regs_intr->regs = regs;
4972 regs_intr->abi = perf_reg_abi(current);
4973}
4974
4975
c5ebcedb
JO
4976/*
4977 * Get remaining task size from user stack pointer.
4978 *
4979 * It'd be better to take stack vma map and limit this more
4980 * precisly, but there's no way to get it safely under interrupt,
4981 * so using TASK_SIZE as limit.
4982 */
4983static u64 perf_ustack_task_size(struct pt_regs *regs)
4984{
4985 unsigned long addr = perf_user_stack_pointer(regs);
4986
4987 if (!addr || addr >= TASK_SIZE)
4988 return 0;
4989
4990 return TASK_SIZE - addr;
4991}
4992
4993static u16
4994perf_sample_ustack_size(u16 stack_size, u16 header_size,
4995 struct pt_regs *regs)
4996{
4997 u64 task_size;
4998
4999 /* No regs, no stack pointer, no dump. */
5000 if (!regs)
5001 return 0;
5002
5003 /*
5004 * Check if we fit in with the requested stack size into the:
5005 * - TASK_SIZE
5006 * If we don't, we limit the size to the TASK_SIZE.
5007 *
5008 * - remaining sample size
5009 * If we don't, we customize the stack size to
5010 * fit in to the remaining sample size.
5011 */
5012
5013 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5014 stack_size = min(stack_size, (u16) task_size);
5015
5016 /* Current header size plus static size and dynamic size. */
5017 header_size += 2 * sizeof(u64);
5018
5019 /* Do we fit in with the current stack dump size? */
5020 if ((u16) (header_size + stack_size) < header_size) {
5021 /*
5022 * If we overflow the maximum size for the sample,
5023 * we customize the stack dump size to fit in.
5024 */
5025 stack_size = USHRT_MAX - header_size - sizeof(u64);
5026 stack_size = round_up(stack_size, sizeof(u64));
5027 }
5028
5029 return stack_size;
5030}
5031
5032static void
5033perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5034 struct pt_regs *regs)
5035{
5036 /* Case of a kernel thread, nothing to dump */
5037 if (!regs) {
5038 u64 size = 0;
5039 perf_output_put(handle, size);
5040 } else {
5041 unsigned long sp;
5042 unsigned int rem;
5043 u64 dyn_size;
5044
5045 /*
5046 * We dump:
5047 * static size
5048 * - the size requested by user or the best one we can fit
5049 * in to the sample max size
5050 * data
5051 * - user stack dump data
5052 * dynamic size
5053 * - the actual dumped size
5054 */
5055
5056 /* Static size. */
5057 perf_output_put(handle, dump_size);
5058
5059 /* Data. */
5060 sp = perf_user_stack_pointer(regs);
5061 rem = __output_copy_user(handle, (void *) sp, dump_size);
5062 dyn_size = dump_size - rem;
5063
5064 perf_output_skip(handle, rem);
5065
5066 /* Dynamic size. */
5067 perf_output_put(handle, dyn_size);
5068 }
5069}
5070
c980d109
ACM
5071static void __perf_event_header__init_id(struct perf_event_header *header,
5072 struct perf_sample_data *data,
5073 struct perf_event *event)
6844c09d
ACM
5074{
5075 u64 sample_type = event->attr.sample_type;
5076
5077 data->type = sample_type;
5078 header->size += event->id_header_size;
5079
5080 if (sample_type & PERF_SAMPLE_TID) {
5081 /* namespace issues */
5082 data->tid_entry.pid = perf_event_pid(event, current);
5083 data->tid_entry.tid = perf_event_tid(event, current);
5084 }
5085
5086 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5087 data->time = perf_event_clock(event);
6844c09d 5088
ff3d527c 5089 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5090 data->id = primary_event_id(event);
5091
5092 if (sample_type & PERF_SAMPLE_STREAM_ID)
5093 data->stream_id = event->id;
5094
5095 if (sample_type & PERF_SAMPLE_CPU) {
5096 data->cpu_entry.cpu = raw_smp_processor_id();
5097 data->cpu_entry.reserved = 0;
5098 }
5099}
5100
76369139
FW
5101void perf_event_header__init_id(struct perf_event_header *header,
5102 struct perf_sample_data *data,
5103 struct perf_event *event)
c980d109
ACM
5104{
5105 if (event->attr.sample_id_all)
5106 __perf_event_header__init_id(header, data, event);
5107}
5108
5109static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5110 struct perf_sample_data *data)
5111{
5112 u64 sample_type = data->type;
5113
5114 if (sample_type & PERF_SAMPLE_TID)
5115 perf_output_put(handle, data->tid_entry);
5116
5117 if (sample_type & PERF_SAMPLE_TIME)
5118 perf_output_put(handle, data->time);
5119
5120 if (sample_type & PERF_SAMPLE_ID)
5121 perf_output_put(handle, data->id);
5122
5123 if (sample_type & PERF_SAMPLE_STREAM_ID)
5124 perf_output_put(handle, data->stream_id);
5125
5126 if (sample_type & PERF_SAMPLE_CPU)
5127 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5128
5129 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5130 perf_output_put(handle, data->id);
c980d109
ACM
5131}
5132
76369139
FW
5133void perf_event__output_id_sample(struct perf_event *event,
5134 struct perf_output_handle *handle,
5135 struct perf_sample_data *sample)
c980d109
ACM
5136{
5137 if (event->attr.sample_id_all)
5138 __perf_event__output_id_sample(handle, sample);
5139}
5140
3dab77fb 5141static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5142 struct perf_event *event,
5143 u64 enabled, u64 running)
3dab77fb 5144{
cdd6c482 5145 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5146 u64 values[4];
5147 int n = 0;
5148
b5e58793 5149 values[n++] = perf_event_count(event);
3dab77fb 5150 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5151 values[n++] = enabled +
cdd6c482 5152 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5153 }
5154 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5155 values[n++] = running +
cdd6c482 5156 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5157 }
5158 if (read_format & PERF_FORMAT_ID)
cdd6c482 5159 values[n++] = primary_event_id(event);
3dab77fb 5160
76369139 5161 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5162}
5163
5164/*
cdd6c482 5165 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5166 */
5167static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5168 struct perf_event *event,
5169 u64 enabled, u64 running)
3dab77fb 5170{
cdd6c482
IM
5171 struct perf_event *leader = event->group_leader, *sub;
5172 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5173 u64 values[5];
5174 int n = 0;
5175
5176 values[n++] = 1 + leader->nr_siblings;
5177
5178 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5179 values[n++] = enabled;
3dab77fb
PZ
5180
5181 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5182 values[n++] = running;
3dab77fb 5183
cdd6c482 5184 if (leader != event)
3dab77fb
PZ
5185 leader->pmu->read(leader);
5186
b5e58793 5187 values[n++] = perf_event_count(leader);
3dab77fb 5188 if (read_format & PERF_FORMAT_ID)
cdd6c482 5189 values[n++] = primary_event_id(leader);
3dab77fb 5190
76369139 5191 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5192
65abc865 5193 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5194 n = 0;
5195
6f5ab001
JO
5196 if ((sub != event) &&
5197 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5198 sub->pmu->read(sub);
5199
b5e58793 5200 values[n++] = perf_event_count(sub);
3dab77fb 5201 if (read_format & PERF_FORMAT_ID)
cdd6c482 5202 values[n++] = primary_event_id(sub);
3dab77fb 5203
76369139 5204 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5205 }
5206}
5207
eed01528
SE
5208#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5209 PERF_FORMAT_TOTAL_TIME_RUNNING)
5210
3dab77fb 5211static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5212 struct perf_event *event)
3dab77fb 5213{
e3f3541c 5214 u64 enabled = 0, running = 0, now;
eed01528
SE
5215 u64 read_format = event->attr.read_format;
5216
5217 /*
5218 * compute total_time_enabled, total_time_running
5219 * based on snapshot values taken when the event
5220 * was last scheduled in.
5221 *
5222 * we cannot simply called update_context_time()
5223 * because of locking issue as we are called in
5224 * NMI context
5225 */
c4794295 5226 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5227 calc_timer_values(event, &now, &enabled, &running);
eed01528 5228
cdd6c482 5229 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5230 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5231 else
eed01528 5232 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5233}
5234
5622f295
MM
5235void perf_output_sample(struct perf_output_handle *handle,
5236 struct perf_event_header *header,
5237 struct perf_sample_data *data,
cdd6c482 5238 struct perf_event *event)
5622f295
MM
5239{
5240 u64 sample_type = data->type;
5241
5242 perf_output_put(handle, *header);
5243
ff3d527c
AH
5244 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5245 perf_output_put(handle, data->id);
5246
5622f295
MM
5247 if (sample_type & PERF_SAMPLE_IP)
5248 perf_output_put(handle, data->ip);
5249
5250 if (sample_type & PERF_SAMPLE_TID)
5251 perf_output_put(handle, data->tid_entry);
5252
5253 if (sample_type & PERF_SAMPLE_TIME)
5254 perf_output_put(handle, data->time);
5255
5256 if (sample_type & PERF_SAMPLE_ADDR)
5257 perf_output_put(handle, data->addr);
5258
5259 if (sample_type & PERF_SAMPLE_ID)
5260 perf_output_put(handle, data->id);
5261
5262 if (sample_type & PERF_SAMPLE_STREAM_ID)
5263 perf_output_put(handle, data->stream_id);
5264
5265 if (sample_type & PERF_SAMPLE_CPU)
5266 perf_output_put(handle, data->cpu_entry);
5267
5268 if (sample_type & PERF_SAMPLE_PERIOD)
5269 perf_output_put(handle, data->period);
5270
5271 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5272 perf_output_read(handle, event);
5622f295
MM
5273
5274 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5275 if (data->callchain) {
5276 int size = 1;
5277
5278 if (data->callchain)
5279 size += data->callchain->nr;
5280
5281 size *= sizeof(u64);
5282
76369139 5283 __output_copy(handle, data->callchain, size);
5622f295
MM
5284 } else {
5285 u64 nr = 0;
5286 perf_output_put(handle, nr);
5287 }
5288 }
5289
5290 if (sample_type & PERF_SAMPLE_RAW) {
5291 if (data->raw) {
fa128e6a
AS
5292 u32 raw_size = data->raw->size;
5293 u32 real_size = round_up(raw_size + sizeof(u32),
5294 sizeof(u64)) - sizeof(u32);
5295 u64 zero = 0;
5296
5297 perf_output_put(handle, real_size);
5298 __output_copy(handle, data->raw->data, raw_size);
5299 if (real_size - raw_size)
5300 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5301 } else {
5302 struct {
5303 u32 size;
5304 u32 data;
5305 } raw = {
5306 .size = sizeof(u32),
5307 .data = 0,
5308 };
5309 perf_output_put(handle, raw);
5310 }
5311 }
a7ac67ea 5312
bce38cd5
SE
5313 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5314 if (data->br_stack) {
5315 size_t size;
5316
5317 size = data->br_stack->nr
5318 * sizeof(struct perf_branch_entry);
5319
5320 perf_output_put(handle, data->br_stack->nr);
5321 perf_output_copy(handle, data->br_stack->entries, size);
5322 } else {
5323 /*
5324 * we always store at least the value of nr
5325 */
5326 u64 nr = 0;
5327 perf_output_put(handle, nr);
5328 }
5329 }
4018994f
JO
5330
5331 if (sample_type & PERF_SAMPLE_REGS_USER) {
5332 u64 abi = data->regs_user.abi;
5333
5334 /*
5335 * If there are no regs to dump, notice it through
5336 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5337 */
5338 perf_output_put(handle, abi);
5339
5340 if (abi) {
5341 u64 mask = event->attr.sample_regs_user;
5342 perf_output_sample_regs(handle,
5343 data->regs_user.regs,
5344 mask);
5345 }
5346 }
c5ebcedb 5347
a5cdd40c 5348 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5349 perf_output_sample_ustack(handle,
5350 data->stack_user_size,
5351 data->regs_user.regs);
a5cdd40c 5352 }
c3feedf2
AK
5353
5354 if (sample_type & PERF_SAMPLE_WEIGHT)
5355 perf_output_put(handle, data->weight);
d6be9ad6
SE
5356
5357 if (sample_type & PERF_SAMPLE_DATA_SRC)
5358 perf_output_put(handle, data->data_src.val);
a5cdd40c 5359
fdfbbd07
AK
5360 if (sample_type & PERF_SAMPLE_TRANSACTION)
5361 perf_output_put(handle, data->txn);
5362
60e2364e
SE
5363 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5364 u64 abi = data->regs_intr.abi;
5365 /*
5366 * If there are no regs to dump, notice it through
5367 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5368 */
5369 perf_output_put(handle, abi);
5370
5371 if (abi) {
5372 u64 mask = event->attr.sample_regs_intr;
5373
5374 perf_output_sample_regs(handle,
5375 data->regs_intr.regs,
5376 mask);
5377 }
5378 }
5379
a5cdd40c
PZ
5380 if (!event->attr.watermark) {
5381 int wakeup_events = event->attr.wakeup_events;
5382
5383 if (wakeup_events) {
5384 struct ring_buffer *rb = handle->rb;
5385 int events = local_inc_return(&rb->events);
5386
5387 if (events >= wakeup_events) {
5388 local_sub(wakeup_events, &rb->events);
5389 local_inc(&rb->wakeup);
5390 }
5391 }
5392 }
5622f295
MM
5393}
5394
5395void perf_prepare_sample(struct perf_event_header *header,
5396 struct perf_sample_data *data,
cdd6c482 5397 struct perf_event *event,
5622f295 5398 struct pt_regs *regs)
7b732a75 5399{
cdd6c482 5400 u64 sample_type = event->attr.sample_type;
7b732a75 5401
cdd6c482 5402 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5403 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5404
5405 header->misc = 0;
5406 header->misc |= perf_misc_flags(regs);
6fab0192 5407
c980d109 5408 __perf_event_header__init_id(header, data, event);
6844c09d 5409
c320c7b7 5410 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5411 data->ip = perf_instruction_pointer(regs);
5412
b23f3325 5413 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5414 int size = 1;
394ee076 5415
e6dab5ff 5416 data->callchain = perf_callchain(event, regs);
5622f295
MM
5417
5418 if (data->callchain)
5419 size += data->callchain->nr;
5420
5421 header->size += size * sizeof(u64);
394ee076
PZ
5422 }
5423
3a43ce68 5424 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5425 int size = sizeof(u32);
5426
5427 if (data->raw)
5428 size += data->raw->size;
5429 else
5430 size += sizeof(u32);
5431
fa128e6a 5432 header->size += round_up(size, sizeof(u64));
7f453c24 5433 }
bce38cd5
SE
5434
5435 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5436 int size = sizeof(u64); /* nr */
5437 if (data->br_stack) {
5438 size += data->br_stack->nr
5439 * sizeof(struct perf_branch_entry);
5440 }
5441 header->size += size;
5442 }
4018994f 5443
2565711f 5444 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5445 perf_sample_regs_user(&data->regs_user, regs,
5446 &data->regs_user_copy);
2565711f 5447
4018994f
JO
5448 if (sample_type & PERF_SAMPLE_REGS_USER) {
5449 /* regs dump ABI info */
5450 int size = sizeof(u64);
5451
4018994f
JO
5452 if (data->regs_user.regs) {
5453 u64 mask = event->attr.sample_regs_user;
5454 size += hweight64(mask) * sizeof(u64);
5455 }
5456
5457 header->size += size;
5458 }
c5ebcedb
JO
5459
5460 if (sample_type & PERF_SAMPLE_STACK_USER) {
5461 /*
5462 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5463 * processed as the last one or have additional check added
5464 * in case new sample type is added, because we could eat
5465 * up the rest of the sample size.
5466 */
c5ebcedb
JO
5467 u16 stack_size = event->attr.sample_stack_user;
5468 u16 size = sizeof(u64);
5469
c5ebcedb 5470 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5471 data->regs_user.regs);
c5ebcedb
JO
5472
5473 /*
5474 * If there is something to dump, add space for the dump
5475 * itself and for the field that tells the dynamic size,
5476 * which is how many have been actually dumped.
5477 */
5478 if (stack_size)
5479 size += sizeof(u64) + stack_size;
5480
5481 data->stack_user_size = stack_size;
5482 header->size += size;
5483 }
60e2364e
SE
5484
5485 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5486 /* regs dump ABI info */
5487 int size = sizeof(u64);
5488
5489 perf_sample_regs_intr(&data->regs_intr, regs);
5490
5491 if (data->regs_intr.regs) {
5492 u64 mask = event->attr.sample_regs_intr;
5493
5494 size += hweight64(mask) * sizeof(u64);
5495 }
5496
5497 header->size += size;
5498 }
5622f295 5499}
7f453c24 5500
21509084
YZ
5501void perf_event_output(struct perf_event *event,
5502 struct perf_sample_data *data,
5503 struct pt_regs *regs)
5622f295
MM
5504{
5505 struct perf_output_handle handle;
5506 struct perf_event_header header;
689802b2 5507
927c7a9e
FW
5508 /* protect the callchain buffers */
5509 rcu_read_lock();
5510
cdd6c482 5511 perf_prepare_sample(&header, data, event, regs);
5c148194 5512
a7ac67ea 5513 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5514 goto exit;
0322cd6e 5515
cdd6c482 5516 perf_output_sample(&handle, &header, data, event);
f413cdb8 5517
8a057d84 5518 perf_output_end(&handle);
927c7a9e
FW
5519
5520exit:
5521 rcu_read_unlock();
0322cd6e
PZ
5522}
5523
38b200d6 5524/*
cdd6c482 5525 * read event_id
38b200d6
PZ
5526 */
5527
5528struct perf_read_event {
5529 struct perf_event_header header;
5530
5531 u32 pid;
5532 u32 tid;
38b200d6
PZ
5533};
5534
5535static void
cdd6c482 5536perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5537 struct task_struct *task)
5538{
5539 struct perf_output_handle handle;
c980d109 5540 struct perf_sample_data sample;
dfc65094 5541 struct perf_read_event read_event = {
38b200d6 5542 .header = {
cdd6c482 5543 .type = PERF_RECORD_READ,
38b200d6 5544 .misc = 0,
c320c7b7 5545 .size = sizeof(read_event) + event->read_size,
38b200d6 5546 },
cdd6c482
IM
5547 .pid = perf_event_pid(event, task),
5548 .tid = perf_event_tid(event, task),
38b200d6 5549 };
3dab77fb 5550 int ret;
38b200d6 5551
c980d109 5552 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5553 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5554 if (ret)
5555 return;
5556
dfc65094 5557 perf_output_put(&handle, read_event);
cdd6c482 5558 perf_output_read(&handle, event);
c980d109 5559 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5560
38b200d6
PZ
5561 perf_output_end(&handle);
5562}
5563
52d857a8
JO
5564typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5565
5566static void
5567perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5568 perf_event_aux_output_cb output,
5569 void *data)
5570{
5571 struct perf_event *event;
5572
5573 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5574 if (event->state < PERF_EVENT_STATE_INACTIVE)
5575 continue;
5576 if (!event_filter_match(event))
5577 continue;
67516844 5578 output(event, data);
52d857a8
JO
5579 }
5580}
5581
4e93ad60
JO
5582static void
5583perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5584 struct perf_event_context *task_ctx)
5585{
5586 rcu_read_lock();
5587 preempt_disable();
5588 perf_event_aux_ctx(task_ctx, output, data);
5589 preempt_enable();
5590 rcu_read_unlock();
5591}
5592
52d857a8 5593static void
67516844 5594perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5595 struct perf_event_context *task_ctx)
5596{
5597 struct perf_cpu_context *cpuctx;
5598 struct perf_event_context *ctx;
5599 struct pmu *pmu;
5600 int ctxn;
5601
4e93ad60
JO
5602 /*
5603 * If we have task_ctx != NULL we only notify
5604 * the task context itself. The task_ctx is set
5605 * only for EXIT events before releasing task
5606 * context.
5607 */
5608 if (task_ctx) {
5609 perf_event_aux_task_ctx(output, data, task_ctx);
5610 return;
5611 }
5612
52d857a8
JO
5613 rcu_read_lock();
5614 list_for_each_entry_rcu(pmu, &pmus, entry) {
5615 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5616 if (cpuctx->unique_pmu != pmu)
5617 goto next;
67516844 5618 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5619 ctxn = pmu->task_ctx_nr;
5620 if (ctxn < 0)
5621 goto next;
5622 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5623 if (ctx)
67516844 5624 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5625next:
5626 put_cpu_ptr(pmu->pmu_cpu_context);
5627 }
52d857a8
JO
5628 rcu_read_unlock();
5629}
5630
60313ebe 5631/*
9f498cc5
PZ
5632 * task tracking -- fork/exit
5633 *
13d7a241 5634 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5635 */
5636
9f498cc5 5637struct perf_task_event {
3a80b4a3 5638 struct task_struct *task;
cdd6c482 5639 struct perf_event_context *task_ctx;
60313ebe
PZ
5640
5641 struct {
5642 struct perf_event_header header;
5643
5644 u32 pid;
5645 u32 ppid;
9f498cc5
PZ
5646 u32 tid;
5647 u32 ptid;
393b2ad8 5648 u64 time;
cdd6c482 5649 } event_id;
60313ebe
PZ
5650};
5651
67516844
JO
5652static int perf_event_task_match(struct perf_event *event)
5653{
13d7a241
SE
5654 return event->attr.comm || event->attr.mmap ||
5655 event->attr.mmap2 || event->attr.mmap_data ||
5656 event->attr.task;
67516844
JO
5657}
5658
cdd6c482 5659static void perf_event_task_output(struct perf_event *event,
52d857a8 5660 void *data)
60313ebe 5661{
52d857a8 5662 struct perf_task_event *task_event = data;
60313ebe 5663 struct perf_output_handle handle;
c980d109 5664 struct perf_sample_data sample;
9f498cc5 5665 struct task_struct *task = task_event->task;
c980d109 5666 int ret, size = task_event->event_id.header.size;
8bb39f9a 5667
67516844
JO
5668 if (!perf_event_task_match(event))
5669 return;
5670
c980d109 5671 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5672
c980d109 5673 ret = perf_output_begin(&handle, event,
a7ac67ea 5674 task_event->event_id.header.size);
ef60777c 5675 if (ret)
c980d109 5676 goto out;
60313ebe 5677
cdd6c482
IM
5678 task_event->event_id.pid = perf_event_pid(event, task);
5679 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5680
cdd6c482
IM
5681 task_event->event_id.tid = perf_event_tid(event, task);
5682 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5683
34f43927
PZ
5684 task_event->event_id.time = perf_event_clock(event);
5685
cdd6c482 5686 perf_output_put(&handle, task_event->event_id);
393b2ad8 5687
c980d109
ACM
5688 perf_event__output_id_sample(event, &handle, &sample);
5689
60313ebe 5690 perf_output_end(&handle);
c980d109
ACM
5691out:
5692 task_event->event_id.header.size = size;
60313ebe
PZ
5693}
5694
cdd6c482
IM
5695static void perf_event_task(struct task_struct *task,
5696 struct perf_event_context *task_ctx,
3a80b4a3 5697 int new)
60313ebe 5698{
9f498cc5 5699 struct perf_task_event task_event;
60313ebe 5700
cdd6c482
IM
5701 if (!atomic_read(&nr_comm_events) &&
5702 !atomic_read(&nr_mmap_events) &&
5703 !atomic_read(&nr_task_events))
60313ebe
PZ
5704 return;
5705
9f498cc5 5706 task_event = (struct perf_task_event){
3a80b4a3
PZ
5707 .task = task,
5708 .task_ctx = task_ctx,
cdd6c482 5709 .event_id = {
60313ebe 5710 .header = {
cdd6c482 5711 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5712 .misc = 0,
cdd6c482 5713 .size = sizeof(task_event.event_id),
60313ebe 5714 },
573402db
PZ
5715 /* .pid */
5716 /* .ppid */
9f498cc5
PZ
5717 /* .tid */
5718 /* .ptid */
34f43927 5719 /* .time */
60313ebe
PZ
5720 },
5721 };
5722
67516844 5723 perf_event_aux(perf_event_task_output,
52d857a8
JO
5724 &task_event,
5725 task_ctx);
9f498cc5
PZ
5726}
5727
cdd6c482 5728void perf_event_fork(struct task_struct *task)
9f498cc5 5729{
cdd6c482 5730 perf_event_task(task, NULL, 1);
60313ebe
PZ
5731}
5732
8d1b2d93
PZ
5733/*
5734 * comm tracking
5735 */
5736
5737struct perf_comm_event {
22a4f650
IM
5738 struct task_struct *task;
5739 char *comm;
8d1b2d93
PZ
5740 int comm_size;
5741
5742 struct {
5743 struct perf_event_header header;
5744
5745 u32 pid;
5746 u32 tid;
cdd6c482 5747 } event_id;
8d1b2d93
PZ
5748};
5749
67516844
JO
5750static int perf_event_comm_match(struct perf_event *event)
5751{
5752 return event->attr.comm;
5753}
5754
cdd6c482 5755static void perf_event_comm_output(struct perf_event *event,
52d857a8 5756 void *data)
8d1b2d93 5757{
52d857a8 5758 struct perf_comm_event *comm_event = data;
8d1b2d93 5759 struct perf_output_handle handle;
c980d109 5760 struct perf_sample_data sample;
cdd6c482 5761 int size = comm_event->event_id.header.size;
c980d109
ACM
5762 int ret;
5763
67516844
JO
5764 if (!perf_event_comm_match(event))
5765 return;
5766
c980d109
ACM
5767 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5768 ret = perf_output_begin(&handle, event,
a7ac67ea 5769 comm_event->event_id.header.size);
8d1b2d93
PZ
5770
5771 if (ret)
c980d109 5772 goto out;
8d1b2d93 5773
cdd6c482
IM
5774 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5775 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5776
cdd6c482 5777 perf_output_put(&handle, comm_event->event_id);
76369139 5778 __output_copy(&handle, comm_event->comm,
8d1b2d93 5779 comm_event->comm_size);
c980d109
ACM
5780
5781 perf_event__output_id_sample(event, &handle, &sample);
5782
8d1b2d93 5783 perf_output_end(&handle);
c980d109
ACM
5784out:
5785 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5786}
5787
cdd6c482 5788static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5789{
413ee3b4 5790 char comm[TASK_COMM_LEN];
8d1b2d93 5791 unsigned int size;
8d1b2d93 5792
413ee3b4 5793 memset(comm, 0, sizeof(comm));
96b02d78 5794 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5795 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5796
5797 comm_event->comm = comm;
5798 comm_event->comm_size = size;
5799
cdd6c482 5800 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5801
67516844 5802 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5803 comm_event,
5804 NULL);
8d1b2d93
PZ
5805}
5806
82b89778 5807void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5808{
9ee318a7
PZ
5809 struct perf_comm_event comm_event;
5810
cdd6c482 5811 if (!atomic_read(&nr_comm_events))
9ee318a7 5812 return;
a63eaf34 5813
9ee318a7 5814 comm_event = (struct perf_comm_event){
8d1b2d93 5815 .task = task,
573402db
PZ
5816 /* .comm */
5817 /* .comm_size */
cdd6c482 5818 .event_id = {
573402db 5819 .header = {
cdd6c482 5820 .type = PERF_RECORD_COMM,
82b89778 5821 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5822 /* .size */
5823 },
5824 /* .pid */
5825 /* .tid */
8d1b2d93
PZ
5826 },
5827 };
5828
cdd6c482 5829 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5830}
5831
0a4a9391
PZ
5832/*
5833 * mmap tracking
5834 */
5835
5836struct perf_mmap_event {
089dd79d
PZ
5837 struct vm_area_struct *vma;
5838
5839 const char *file_name;
5840 int file_size;
13d7a241
SE
5841 int maj, min;
5842 u64 ino;
5843 u64 ino_generation;
f972eb63 5844 u32 prot, flags;
0a4a9391
PZ
5845
5846 struct {
5847 struct perf_event_header header;
5848
5849 u32 pid;
5850 u32 tid;
5851 u64 start;
5852 u64 len;
5853 u64 pgoff;
cdd6c482 5854 } event_id;
0a4a9391
PZ
5855};
5856
67516844
JO
5857static int perf_event_mmap_match(struct perf_event *event,
5858 void *data)
5859{
5860 struct perf_mmap_event *mmap_event = data;
5861 struct vm_area_struct *vma = mmap_event->vma;
5862 int executable = vma->vm_flags & VM_EXEC;
5863
5864 return (!executable && event->attr.mmap_data) ||
13d7a241 5865 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5866}
5867
cdd6c482 5868static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5869 void *data)
0a4a9391 5870{
52d857a8 5871 struct perf_mmap_event *mmap_event = data;
0a4a9391 5872 struct perf_output_handle handle;
c980d109 5873 struct perf_sample_data sample;
cdd6c482 5874 int size = mmap_event->event_id.header.size;
c980d109 5875 int ret;
0a4a9391 5876
67516844
JO
5877 if (!perf_event_mmap_match(event, data))
5878 return;
5879
13d7a241
SE
5880 if (event->attr.mmap2) {
5881 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5882 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5883 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5884 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5885 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5886 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5887 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5888 }
5889
c980d109
ACM
5890 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5891 ret = perf_output_begin(&handle, event,
a7ac67ea 5892 mmap_event->event_id.header.size);
0a4a9391 5893 if (ret)
c980d109 5894 goto out;
0a4a9391 5895
cdd6c482
IM
5896 mmap_event->event_id.pid = perf_event_pid(event, current);
5897 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5898
cdd6c482 5899 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5900
5901 if (event->attr.mmap2) {
5902 perf_output_put(&handle, mmap_event->maj);
5903 perf_output_put(&handle, mmap_event->min);
5904 perf_output_put(&handle, mmap_event->ino);
5905 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5906 perf_output_put(&handle, mmap_event->prot);
5907 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5908 }
5909
76369139 5910 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5911 mmap_event->file_size);
c980d109
ACM
5912
5913 perf_event__output_id_sample(event, &handle, &sample);
5914
78d613eb 5915 perf_output_end(&handle);
c980d109
ACM
5916out:
5917 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5918}
5919
cdd6c482 5920static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5921{
089dd79d
PZ
5922 struct vm_area_struct *vma = mmap_event->vma;
5923 struct file *file = vma->vm_file;
13d7a241
SE
5924 int maj = 0, min = 0;
5925 u64 ino = 0, gen = 0;
f972eb63 5926 u32 prot = 0, flags = 0;
0a4a9391
PZ
5927 unsigned int size;
5928 char tmp[16];
5929 char *buf = NULL;
2c42cfbf 5930 char *name;
413ee3b4 5931
0a4a9391 5932 if (file) {
13d7a241
SE
5933 struct inode *inode;
5934 dev_t dev;
3ea2f2b9 5935
2c42cfbf 5936 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5937 if (!buf) {
c7e548b4
ON
5938 name = "//enomem";
5939 goto cpy_name;
0a4a9391 5940 }
413ee3b4 5941 /*
3ea2f2b9 5942 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5943 * need to add enough zero bytes after the string to handle
5944 * the 64bit alignment we do later.
5945 */
9bf39ab2 5946 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5947 if (IS_ERR(name)) {
c7e548b4
ON
5948 name = "//toolong";
5949 goto cpy_name;
0a4a9391 5950 }
13d7a241
SE
5951 inode = file_inode(vma->vm_file);
5952 dev = inode->i_sb->s_dev;
5953 ino = inode->i_ino;
5954 gen = inode->i_generation;
5955 maj = MAJOR(dev);
5956 min = MINOR(dev);
f972eb63
PZ
5957
5958 if (vma->vm_flags & VM_READ)
5959 prot |= PROT_READ;
5960 if (vma->vm_flags & VM_WRITE)
5961 prot |= PROT_WRITE;
5962 if (vma->vm_flags & VM_EXEC)
5963 prot |= PROT_EXEC;
5964
5965 if (vma->vm_flags & VM_MAYSHARE)
5966 flags = MAP_SHARED;
5967 else
5968 flags = MAP_PRIVATE;
5969
5970 if (vma->vm_flags & VM_DENYWRITE)
5971 flags |= MAP_DENYWRITE;
5972 if (vma->vm_flags & VM_MAYEXEC)
5973 flags |= MAP_EXECUTABLE;
5974 if (vma->vm_flags & VM_LOCKED)
5975 flags |= MAP_LOCKED;
5976 if (vma->vm_flags & VM_HUGETLB)
5977 flags |= MAP_HUGETLB;
5978
c7e548b4 5979 goto got_name;
0a4a9391 5980 } else {
fbe26abe
JO
5981 if (vma->vm_ops && vma->vm_ops->name) {
5982 name = (char *) vma->vm_ops->name(vma);
5983 if (name)
5984 goto cpy_name;
5985 }
5986
2c42cfbf 5987 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5988 if (name)
5989 goto cpy_name;
089dd79d 5990
32c5fb7e 5991 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5992 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5993 name = "[heap]";
5994 goto cpy_name;
32c5fb7e
ON
5995 }
5996 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5997 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5998 name = "[stack]";
5999 goto cpy_name;
089dd79d
PZ
6000 }
6001
c7e548b4
ON
6002 name = "//anon";
6003 goto cpy_name;
0a4a9391
PZ
6004 }
6005
c7e548b4
ON
6006cpy_name:
6007 strlcpy(tmp, name, sizeof(tmp));
6008 name = tmp;
0a4a9391 6009got_name:
2c42cfbf
PZ
6010 /*
6011 * Since our buffer works in 8 byte units we need to align our string
6012 * size to a multiple of 8. However, we must guarantee the tail end is
6013 * zero'd out to avoid leaking random bits to userspace.
6014 */
6015 size = strlen(name)+1;
6016 while (!IS_ALIGNED(size, sizeof(u64)))
6017 name[size++] = '\0';
0a4a9391
PZ
6018
6019 mmap_event->file_name = name;
6020 mmap_event->file_size = size;
13d7a241
SE
6021 mmap_event->maj = maj;
6022 mmap_event->min = min;
6023 mmap_event->ino = ino;
6024 mmap_event->ino_generation = gen;
f972eb63
PZ
6025 mmap_event->prot = prot;
6026 mmap_event->flags = flags;
0a4a9391 6027
2fe85427
SE
6028 if (!(vma->vm_flags & VM_EXEC))
6029 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6030
cdd6c482 6031 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6032
67516844 6033 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6034 mmap_event,
6035 NULL);
665c2142 6036
0a4a9391
PZ
6037 kfree(buf);
6038}
6039
3af9e859 6040void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6041{
9ee318a7
PZ
6042 struct perf_mmap_event mmap_event;
6043
cdd6c482 6044 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6045 return;
6046
6047 mmap_event = (struct perf_mmap_event){
089dd79d 6048 .vma = vma,
573402db
PZ
6049 /* .file_name */
6050 /* .file_size */
cdd6c482 6051 .event_id = {
573402db 6052 .header = {
cdd6c482 6053 .type = PERF_RECORD_MMAP,
39447b38 6054 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6055 /* .size */
6056 },
6057 /* .pid */
6058 /* .tid */
089dd79d
PZ
6059 .start = vma->vm_start,
6060 .len = vma->vm_end - vma->vm_start,
3a0304e9 6061 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6062 },
13d7a241
SE
6063 /* .maj (attr_mmap2 only) */
6064 /* .min (attr_mmap2 only) */
6065 /* .ino (attr_mmap2 only) */
6066 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6067 /* .prot (attr_mmap2 only) */
6068 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6069 };
6070
cdd6c482 6071 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6072}
6073
68db7e98
AS
6074void perf_event_aux_event(struct perf_event *event, unsigned long head,
6075 unsigned long size, u64 flags)
6076{
6077 struct perf_output_handle handle;
6078 struct perf_sample_data sample;
6079 struct perf_aux_event {
6080 struct perf_event_header header;
6081 u64 offset;
6082 u64 size;
6083 u64 flags;
6084 } rec = {
6085 .header = {
6086 .type = PERF_RECORD_AUX,
6087 .misc = 0,
6088 .size = sizeof(rec),
6089 },
6090 .offset = head,
6091 .size = size,
6092 .flags = flags,
6093 };
6094 int ret;
6095
6096 perf_event_header__init_id(&rec.header, &sample, event);
6097 ret = perf_output_begin(&handle, event, rec.header.size);
6098
6099 if (ret)
6100 return;
6101
6102 perf_output_put(&handle, rec);
6103 perf_event__output_id_sample(event, &handle, &sample);
6104
6105 perf_output_end(&handle);
6106}
6107
f38b0dbb
KL
6108/*
6109 * Lost/dropped samples logging
6110 */
6111void perf_log_lost_samples(struct perf_event *event, u64 lost)
6112{
6113 struct perf_output_handle handle;
6114 struct perf_sample_data sample;
6115 int ret;
6116
6117 struct {
6118 struct perf_event_header header;
6119 u64 lost;
6120 } lost_samples_event = {
6121 .header = {
6122 .type = PERF_RECORD_LOST_SAMPLES,
6123 .misc = 0,
6124 .size = sizeof(lost_samples_event),
6125 },
6126 .lost = lost,
6127 };
6128
6129 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6130
6131 ret = perf_output_begin(&handle, event,
6132 lost_samples_event.header.size);
6133 if (ret)
6134 return;
6135
6136 perf_output_put(&handle, lost_samples_event);
6137 perf_event__output_id_sample(event, &handle, &sample);
6138 perf_output_end(&handle);
6139}
6140
45ac1403
AH
6141/*
6142 * context_switch tracking
6143 */
6144
6145struct perf_switch_event {
6146 struct task_struct *task;
6147 struct task_struct *next_prev;
6148
6149 struct {
6150 struct perf_event_header header;
6151 u32 next_prev_pid;
6152 u32 next_prev_tid;
6153 } event_id;
6154};
6155
6156static int perf_event_switch_match(struct perf_event *event)
6157{
6158 return event->attr.context_switch;
6159}
6160
6161static void perf_event_switch_output(struct perf_event *event, void *data)
6162{
6163 struct perf_switch_event *se = data;
6164 struct perf_output_handle handle;
6165 struct perf_sample_data sample;
6166 int ret;
6167
6168 if (!perf_event_switch_match(event))
6169 return;
6170
6171 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6172 if (event->ctx->task) {
6173 se->event_id.header.type = PERF_RECORD_SWITCH;
6174 se->event_id.header.size = sizeof(se->event_id.header);
6175 } else {
6176 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6177 se->event_id.header.size = sizeof(se->event_id);
6178 se->event_id.next_prev_pid =
6179 perf_event_pid(event, se->next_prev);
6180 se->event_id.next_prev_tid =
6181 perf_event_tid(event, se->next_prev);
6182 }
6183
6184 perf_event_header__init_id(&se->event_id.header, &sample, event);
6185
6186 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6187 if (ret)
6188 return;
6189
6190 if (event->ctx->task)
6191 perf_output_put(&handle, se->event_id.header);
6192 else
6193 perf_output_put(&handle, se->event_id);
6194
6195 perf_event__output_id_sample(event, &handle, &sample);
6196
6197 perf_output_end(&handle);
6198}
6199
6200static void perf_event_switch(struct task_struct *task,
6201 struct task_struct *next_prev, bool sched_in)
6202{
6203 struct perf_switch_event switch_event;
6204
6205 /* N.B. caller checks nr_switch_events != 0 */
6206
6207 switch_event = (struct perf_switch_event){
6208 .task = task,
6209 .next_prev = next_prev,
6210 .event_id = {
6211 .header = {
6212 /* .type */
6213 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6214 /* .size */
6215 },
6216 /* .next_prev_pid */
6217 /* .next_prev_tid */
6218 },
6219 };
6220
6221 perf_event_aux(perf_event_switch_output,
6222 &switch_event,
6223 NULL);
6224}
6225
a78ac325
PZ
6226/*
6227 * IRQ throttle logging
6228 */
6229
cdd6c482 6230static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6231{
6232 struct perf_output_handle handle;
c980d109 6233 struct perf_sample_data sample;
a78ac325
PZ
6234 int ret;
6235
6236 struct {
6237 struct perf_event_header header;
6238 u64 time;
cca3f454 6239 u64 id;
7f453c24 6240 u64 stream_id;
a78ac325
PZ
6241 } throttle_event = {
6242 .header = {
cdd6c482 6243 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6244 .misc = 0,
6245 .size = sizeof(throttle_event),
6246 },
34f43927 6247 .time = perf_event_clock(event),
cdd6c482
IM
6248 .id = primary_event_id(event),
6249 .stream_id = event->id,
a78ac325
PZ
6250 };
6251
966ee4d6 6252 if (enable)
cdd6c482 6253 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6254
c980d109
ACM
6255 perf_event_header__init_id(&throttle_event.header, &sample, event);
6256
6257 ret = perf_output_begin(&handle, event,
a7ac67ea 6258 throttle_event.header.size);
a78ac325
PZ
6259 if (ret)
6260 return;
6261
6262 perf_output_put(&handle, throttle_event);
c980d109 6263 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6264 perf_output_end(&handle);
6265}
6266
ec0d7729
AS
6267static void perf_log_itrace_start(struct perf_event *event)
6268{
6269 struct perf_output_handle handle;
6270 struct perf_sample_data sample;
6271 struct perf_aux_event {
6272 struct perf_event_header header;
6273 u32 pid;
6274 u32 tid;
6275 } rec;
6276 int ret;
6277
6278 if (event->parent)
6279 event = event->parent;
6280
6281 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6282 event->hw.itrace_started)
6283 return;
6284
ec0d7729
AS
6285 rec.header.type = PERF_RECORD_ITRACE_START;
6286 rec.header.misc = 0;
6287 rec.header.size = sizeof(rec);
6288 rec.pid = perf_event_pid(event, current);
6289 rec.tid = perf_event_tid(event, current);
6290
6291 perf_event_header__init_id(&rec.header, &sample, event);
6292 ret = perf_output_begin(&handle, event, rec.header.size);
6293
6294 if (ret)
6295 return;
6296
6297 perf_output_put(&handle, rec);
6298 perf_event__output_id_sample(event, &handle, &sample);
6299
6300 perf_output_end(&handle);
6301}
6302
f6c7d5fe 6303/*
cdd6c482 6304 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6305 */
6306
a8b0ca17 6307static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6308 int throttle, struct perf_sample_data *data,
6309 struct pt_regs *regs)
f6c7d5fe 6310{
cdd6c482
IM
6311 int events = atomic_read(&event->event_limit);
6312 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6313 u64 seq;
79f14641
PZ
6314 int ret = 0;
6315
96398826
PZ
6316 /*
6317 * Non-sampling counters might still use the PMI to fold short
6318 * hardware counters, ignore those.
6319 */
6320 if (unlikely(!is_sampling_event(event)))
6321 return 0;
6322
e050e3f0
SE
6323 seq = __this_cpu_read(perf_throttled_seq);
6324 if (seq != hwc->interrupts_seq) {
6325 hwc->interrupts_seq = seq;
6326 hwc->interrupts = 1;
6327 } else {
6328 hwc->interrupts++;
6329 if (unlikely(throttle
6330 && hwc->interrupts >= max_samples_per_tick)) {
6331 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6332 hwc->interrupts = MAX_INTERRUPTS;
6333 perf_log_throttle(event, 0);
d84153d6 6334 tick_nohz_full_kick();
a78ac325
PZ
6335 ret = 1;
6336 }
e050e3f0 6337 }
60db5e09 6338
cdd6c482 6339 if (event->attr.freq) {
def0a9b2 6340 u64 now = perf_clock();
abd50713 6341 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6342
abd50713 6343 hwc->freq_time_stamp = now;
bd2b5b12 6344
abd50713 6345 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6346 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6347 }
6348
2023b359
PZ
6349 /*
6350 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6351 * events
2023b359
PZ
6352 */
6353
cdd6c482
IM
6354 event->pending_kill = POLL_IN;
6355 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6356 ret = 1;
cdd6c482 6357 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6358 event->pending_disable = 1;
6359 irq_work_queue(&event->pending);
79f14641
PZ
6360 }
6361
453f19ee 6362 if (event->overflow_handler)
a8b0ca17 6363 event->overflow_handler(event, data, regs);
453f19ee 6364 else
a8b0ca17 6365 perf_event_output(event, data, regs);
453f19ee 6366
fed66e2c 6367 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6368 event->pending_wakeup = 1;
6369 irq_work_queue(&event->pending);
f506b3dc
PZ
6370 }
6371
79f14641 6372 return ret;
f6c7d5fe
PZ
6373}
6374
a8b0ca17 6375int perf_event_overflow(struct perf_event *event,
5622f295
MM
6376 struct perf_sample_data *data,
6377 struct pt_regs *regs)
850bc73f 6378{
a8b0ca17 6379 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6380}
6381
15dbf27c 6382/*
cdd6c482 6383 * Generic software event infrastructure
15dbf27c
PZ
6384 */
6385
b28ab83c
PZ
6386struct swevent_htable {
6387 struct swevent_hlist *swevent_hlist;
6388 struct mutex hlist_mutex;
6389 int hlist_refcount;
6390
6391 /* Recursion avoidance in each contexts */
6392 int recursion[PERF_NR_CONTEXTS];
6393};
6394
6395static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6396
7b4b6658 6397/*
cdd6c482
IM
6398 * We directly increment event->count and keep a second value in
6399 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6400 * is kept in the range [-sample_period, 0] so that we can use the
6401 * sign as trigger.
6402 */
6403
ab573844 6404u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6405{
cdd6c482 6406 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6407 u64 period = hwc->last_period;
6408 u64 nr, offset;
6409 s64 old, val;
6410
6411 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6412
6413again:
e7850595 6414 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6415 if (val < 0)
6416 return 0;
15dbf27c 6417
7b4b6658
PZ
6418 nr = div64_u64(period + val, period);
6419 offset = nr * period;
6420 val -= offset;
e7850595 6421 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6422 goto again;
15dbf27c 6423
7b4b6658 6424 return nr;
15dbf27c
PZ
6425}
6426
0cff784a 6427static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6428 struct perf_sample_data *data,
5622f295 6429 struct pt_regs *regs)
15dbf27c 6430{
cdd6c482 6431 struct hw_perf_event *hwc = &event->hw;
850bc73f 6432 int throttle = 0;
15dbf27c 6433
0cff784a
PZ
6434 if (!overflow)
6435 overflow = perf_swevent_set_period(event);
15dbf27c 6436
7b4b6658
PZ
6437 if (hwc->interrupts == MAX_INTERRUPTS)
6438 return;
15dbf27c 6439
7b4b6658 6440 for (; overflow; overflow--) {
a8b0ca17 6441 if (__perf_event_overflow(event, throttle,
5622f295 6442 data, regs)) {
7b4b6658
PZ
6443 /*
6444 * We inhibit the overflow from happening when
6445 * hwc->interrupts == MAX_INTERRUPTS.
6446 */
6447 break;
6448 }
cf450a73 6449 throttle = 1;
7b4b6658 6450 }
15dbf27c
PZ
6451}
6452
a4eaf7f1 6453static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6454 struct perf_sample_data *data,
5622f295 6455 struct pt_regs *regs)
7b4b6658 6456{
cdd6c482 6457 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6458
e7850595 6459 local64_add(nr, &event->count);
d6d020e9 6460
0cff784a
PZ
6461 if (!regs)
6462 return;
6463
6c7e550f 6464 if (!is_sampling_event(event))
7b4b6658 6465 return;
d6d020e9 6466
5d81e5cf
AV
6467 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6468 data->period = nr;
6469 return perf_swevent_overflow(event, 1, data, regs);
6470 } else
6471 data->period = event->hw.last_period;
6472
0cff784a 6473 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6474 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6475
e7850595 6476 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6477 return;
df1a132b 6478
a8b0ca17 6479 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6480}
6481
f5ffe02e
FW
6482static int perf_exclude_event(struct perf_event *event,
6483 struct pt_regs *regs)
6484{
a4eaf7f1 6485 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6486 return 1;
a4eaf7f1 6487
f5ffe02e
FW
6488 if (regs) {
6489 if (event->attr.exclude_user && user_mode(regs))
6490 return 1;
6491
6492 if (event->attr.exclude_kernel && !user_mode(regs))
6493 return 1;
6494 }
6495
6496 return 0;
6497}
6498
cdd6c482 6499static int perf_swevent_match(struct perf_event *event,
1c432d89 6500 enum perf_type_id type,
6fb2915d
LZ
6501 u32 event_id,
6502 struct perf_sample_data *data,
6503 struct pt_regs *regs)
15dbf27c 6504{
cdd6c482 6505 if (event->attr.type != type)
a21ca2ca 6506 return 0;
f5ffe02e 6507
cdd6c482 6508 if (event->attr.config != event_id)
15dbf27c
PZ
6509 return 0;
6510
f5ffe02e
FW
6511 if (perf_exclude_event(event, regs))
6512 return 0;
15dbf27c
PZ
6513
6514 return 1;
6515}
6516
76e1d904
FW
6517static inline u64 swevent_hash(u64 type, u32 event_id)
6518{
6519 u64 val = event_id | (type << 32);
6520
6521 return hash_64(val, SWEVENT_HLIST_BITS);
6522}
6523
49f135ed
FW
6524static inline struct hlist_head *
6525__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6526{
49f135ed
FW
6527 u64 hash = swevent_hash(type, event_id);
6528
6529 return &hlist->heads[hash];
6530}
76e1d904 6531
49f135ed
FW
6532/* For the read side: events when they trigger */
6533static inline struct hlist_head *
b28ab83c 6534find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6535{
6536 struct swevent_hlist *hlist;
76e1d904 6537
b28ab83c 6538 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6539 if (!hlist)
6540 return NULL;
6541
49f135ed
FW
6542 return __find_swevent_head(hlist, type, event_id);
6543}
6544
6545/* For the event head insertion and removal in the hlist */
6546static inline struct hlist_head *
b28ab83c 6547find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6548{
6549 struct swevent_hlist *hlist;
6550 u32 event_id = event->attr.config;
6551 u64 type = event->attr.type;
6552
6553 /*
6554 * Event scheduling is always serialized against hlist allocation
6555 * and release. Which makes the protected version suitable here.
6556 * The context lock guarantees that.
6557 */
b28ab83c 6558 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6559 lockdep_is_held(&event->ctx->lock));
6560 if (!hlist)
6561 return NULL;
6562
6563 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6564}
6565
6566static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6567 u64 nr,
76e1d904
FW
6568 struct perf_sample_data *data,
6569 struct pt_regs *regs)
15dbf27c 6570{
4a32fea9 6571 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6572 struct perf_event *event;
76e1d904 6573 struct hlist_head *head;
15dbf27c 6574
76e1d904 6575 rcu_read_lock();
b28ab83c 6576 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6577 if (!head)
6578 goto end;
6579
b67bfe0d 6580 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6581 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6582 perf_swevent_event(event, nr, data, regs);
15dbf27c 6583 }
76e1d904
FW
6584end:
6585 rcu_read_unlock();
15dbf27c
PZ
6586}
6587
86038c5e
PZI
6588DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6589
4ed7c92d 6590int perf_swevent_get_recursion_context(void)
96f6d444 6591{
4a32fea9 6592 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6593
b28ab83c 6594 return get_recursion_context(swhash->recursion);
96f6d444 6595}
645e8cc0 6596EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6597
fa9f90be 6598inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6599{
4a32fea9 6600 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6601
b28ab83c 6602 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6603}
15dbf27c 6604
86038c5e 6605void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6606{
a4234bfc 6607 struct perf_sample_data data;
4ed7c92d 6608
86038c5e 6609 if (WARN_ON_ONCE(!regs))
4ed7c92d 6610 return;
a4234bfc 6611
fd0d000b 6612 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6613 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6614}
6615
6616void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6617{
6618 int rctx;
6619
6620 preempt_disable_notrace();
6621 rctx = perf_swevent_get_recursion_context();
6622 if (unlikely(rctx < 0))
6623 goto fail;
6624
6625 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6626
6627 perf_swevent_put_recursion_context(rctx);
86038c5e 6628fail:
1c024eca 6629 preempt_enable_notrace();
b8e83514
PZ
6630}
6631
cdd6c482 6632static void perf_swevent_read(struct perf_event *event)
15dbf27c 6633{
15dbf27c
PZ
6634}
6635
a4eaf7f1 6636static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6637{
4a32fea9 6638 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6639 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6640 struct hlist_head *head;
6641
6c7e550f 6642 if (is_sampling_event(event)) {
7b4b6658 6643 hwc->last_period = hwc->sample_period;
cdd6c482 6644 perf_swevent_set_period(event);
7b4b6658 6645 }
76e1d904 6646
a4eaf7f1
PZ
6647 hwc->state = !(flags & PERF_EF_START);
6648
b28ab83c 6649 head = find_swevent_head(swhash, event);
12ca6ad2 6650 if (WARN_ON_ONCE(!head))
76e1d904
FW
6651 return -EINVAL;
6652
6653 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6654 perf_event_update_userpage(event);
76e1d904 6655
15dbf27c
PZ
6656 return 0;
6657}
6658
a4eaf7f1 6659static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6660{
76e1d904 6661 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6662}
6663
a4eaf7f1 6664static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6665{
a4eaf7f1 6666 event->hw.state = 0;
d6d020e9 6667}
aa9c4c0f 6668
a4eaf7f1 6669static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6670{
a4eaf7f1 6671 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6672}
6673
49f135ed
FW
6674/* Deref the hlist from the update side */
6675static inline struct swevent_hlist *
b28ab83c 6676swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6677{
b28ab83c
PZ
6678 return rcu_dereference_protected(swhash->swevent_hlist,
6679 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6680}
6681
b28ab83c 6682static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6683{
b28ab83c 6684 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6685
49f135ed 6686 if (!hlist)
76e1d904
FW
6687 return;
6688
70691d4a 6689 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6690 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6691}
6692
6693static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6694{
b28ab83c 6695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6696
b28ab83c 6697 mutex_lock(&swhash->hlist_mutex);
76e1d904 6698
b28ab83c
PZ
6699 if (!--swhash->hlist_refcount)
6700 swevent_hlist_release(swhash);
76e1d904 6701
b28ab83c 6702 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6703}
6704
6705static void swevent_hlist_put(struct perf_event *event)
6706{
6707 int cpu;
6708
76e1d904
FW
6709 for_each_possible_cpu(cpu)
6710 swevent_hlist_put_cpu(event, cpu);
6711}
6712
6713static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6714{
b28ab83c 6715 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6716 int err = 0;
6717
b28ab83c 6718 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6719 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6720 struct swevent_hlist *hlist;
6721
6722 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6723 if (!hlist) {
6724 err = -ENOMEM;
6725 goto exit;
6726 }
b28ab83c 6727 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6728 }
b28ab83c 6729 swhash->hlist_refcount++;
9ed6060d 6730exit:
b28ab83c 6731 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6732
6733 return err;
6734}
6735
6736static int swevent_hlist_get(struct perf_event *event)
6737{
6738 int err;
6739 int cpu, failed_cpu;
6740
76e1d904
FW
6741 get_online_cpus();
6742 for_each_possible_cpu(cpu) {
6743 err = swevent_hlist_get_cpu(event, cpu);
6744 if (err) {
6745 failed_cpu = cpu;
6746 goto fail;
6747 }
6748 }
6749 put_online_cpus();
6750
6751 return 0;
9ed6060d 6752fail:
76e1d904
FW
6753 for_each_possible_cpu(cpu) {
6754 if (cpu == failed_cpu)
6755 break;
6756 swevent_hlist_put_cpu(event, cpu);
6757 }
6758
6759 put_online_cpus();
6760 return err;
6761}
6762
c5905afb 6763struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6764
b0a873eb
PZ
6765static void sw_perf_event_destroy(struct perf_event *event)
6766{
6767 u64 event_id = event->attr.config;
95476b64 6768
b0a873eb
PZ
6769 WARN_ON(event->parent);
6770
c5905afb 6771 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6772 swevent_hlist_put(event);
6773}
6774
6775static int perf_swevent_init(struct perf_event *event)
6776{
8176cced 6777 u64 event_id = event->attr.config;
b0a873eb
PZ
6778
6779 if (event->attr.type != PERF_TYPE_SOFTWARE)
6780 return -ENOENT;
6781
2481c5fa
SE
6782 /*
6783 * no branch sampling for software events
6784 */
6785 if (has_branch_stack(event))
6786 return -EOPNOTSUPP;
6787
b0a873eb
PZ
6788 switch (event_id) {
6789 case PERF_COUNT_SW_CPU_CLOCK:
6790 case PERF_COUNT_SW_TASK_CLOCK:
6791 return -ENOENT;
6792
6793 default:
6794 break;
6795 }
6796
ce677831 6797 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6798 return -ENOENT;
6799
6800 if (!event->parent) {
6801 int err;
6802
6803 err = swevent_hlist_get(event);
6804 if (err)
6805 return err;
6806
c5905afb 6807 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6808 event->destroy = sw_perf_event_destroy;
6809 }
6810
6811 return 0;
6812}
6813
6814static struct pmu perf_swevent = {
89a1e187 6815 .task_ctx_nr = perf_sw_context,
95476b64 6816
34f43927
PZ
6817 .capabilities = PERF_PMU_CAP_NO_NMI,
6818
b0a873eb 6819 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6820 .add = perf_swevent_add,
6821 .del = perf_swevent_del,
6822 .start = perf_swevent_start,
6823 .stop = perf_swevent_stop,
1c024eca 6824 .read = perf_swevent_read,
1c024eca
PZ
6825};
6826
b0a873eb
PZ
6827#ifdef CONFIG_EVENT_TRACING
6828
1c024eca
PZ
6829static int perf_tp_filter_match(struct perf_event *event,
6830 struct perf_sample_data *data)
6831{
6832 void *record = data->raw->data;
6833
b71b437e
PZ
6834 /* only top level events have filters set */
6835 if (event->parent)
6836 event = event->parent;
6837
1c024eca
PZ
6838 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6839 return 1;
6840 return 0;
6841}
6842
6843static int perf_tp_event_match(struct perf_event *event,
6844 struct perf_sample_data *data,
6845 struct pt_regs *regs)
6846{
a0f7d0f7
FW
6847 if (event->hw.state & PERF_HES_STOPPED)
6848 return 0;
580d607c
PZ
6849 /*
6850 * All tracepoints are from kernel-space.
6851 */
6852 if (event->attr.exclude_kernel)
1c024eca
PZ
6853 return 0;
6854
6855 if (!perf_tp_filter_match(event, data))
6856 return 0;
6857
6858 return 1;
6859}
6860
6861void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6862 struct pt_regs *regs, struct hlist_head *head, int rctx,
6863 struct task_struct *task)
95476b64
FW
6864{
6865 struct perf_sample_data data;
1c024eca 6866 struct perf_event *event;
1c024eca 6867
95476b64
FW
6868 struct perf_raw_record raw = {
6869 .size = entry_size,
6870 .data = record,
6871 };
6872
fd0d000b 6873 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6874 data.raw = &raw;
6875
b67bfe0d 6876 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6877 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6878 perf_swevent_event(event, count, &data, regs);
4f41c013 6879 }
ecc55f84 6880
e6dab5ff
AV
6881 /*
6882 * If we got specified a target task, also iterate its context and
6883 * deliver this event there too.
6884 */
6885 if (task && task != current) {
6886 struct perf_event_context *ctx;
6887 struct trace_entry *entry = record;
6888
6889 rcu_read_lock();
6890 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6891 if (!ctx)
6892 goto unlock;
6893
6894 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6895 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6896 continue;
6897 if (event->attr.config != entry->type)
6898 continue;
6899 if (perf_tp_event_match(event, &data, regs))
6900 perf_swevent_event(event, count, &data, regs);
6901 }
6902unlock:
6903 rcu_read_unlock();
6904 }
6905
ecc55f84 6906 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6907}
6908EXPORT_SYMBOL_GPL(perf_tp_event);
6909
cdd6c482 6910static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6911{
1c024eca 6912 perf_trace_destroy(event);
e077df4f
PZ
6913}
6914
b0a873eb 6915static int perf_tp_event_init(struct perf_event *event)
e077df4f 6916{
76e1d904
FW
6917 int err;
6918
b0a873eb
PZ
6919 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6920 return -ENOENT;
6921
2481c5fa
SE
6922 /*
6923 * no branch sampling for tracepoint events
6924 */
6925 if (has_branch_stack(event))
6926 return -EOPNOTSUPP;
6927
1c024eca
PZ
6928 err = perf_trace_init(event);
6929 if (err)
b0a873eb 6930 return err;
e077df4f 6931
cdd6c482 6932 event->destroy = tp_perf_event_destroy;
e077df4f 6933
b0a873eb
PZ
6934 return 0;
6935}
6936
6937static struct pmu perf_tracepoint = {
89a1e187
PZ
6938 .task_ctx_nr = perf_sw_context,
6939
b0a873eb 6940 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6941 .add = perf_trace_add,
6942 .del = perf_trace_del,
6943 .start = perf_swevent_start,
6944 .stop = perf_swevent_stop,
b0a873eb 6945 .read = perf_swevent_read,
b0a873eb
PZ
6946};
6947
6948static inline void perf_tp_register(void)
6949{
2e80a82a 6950 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6951}
6fb2915d
LZ
6952
6953static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6954{
6955 char *filter_str;
6956 int ret;
6957
6958 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6959 return -EINVAL;
6960
6961 filter_str = strndup_user(arg, PAGE_SIZE);
6962 if (IS_ERR(filter_str))
6963 return PTR_ERR(filter_str);
6964
6965 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6966
6967 kfree(filter_str);
6968 return ret;
6969}
6970
6971static void perf_event_free_filter(struct perf_event *event)
6972{
6973 ftrace_profile_free_filter(event);
6974}
6975
2541517c
AS
6976static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6977{
6978 struct bpf_prog *prog;
6979
6980 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6981 return -EINVAL;
6982
6983 if (event->tp_event->prog)
6984 return -EEXIST;
6985
04a22fae
WN
6986 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6987 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
6988 return -EINVAL;
6989
6990 prog = bpf_prog_get(prog_fd);
6991 if (IS_ERR(prog))
6992 return PTR_ERR(prog);
6993
6c373ca8 6994 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6995 /* valid fd, but invalid bpf program type */
6996 bpf_prog_put(prog);
6997 return -EINVAL;
6998 }
6999
7000 event->tp_event->prog = prog;
7001
7002 return 0;
7003}
7004
7005static void perf_event_free_bpf_prog(struct perf_event *event)
7006{
7007 struct bpf_prog *prog;
7008
7009 if (!event->tp_event)
7010 return;
7011
7012 prog = event->tp_event->prog;
7013 if (prog) {
7014 event->tp_event->prog = NULL;
7015 bpf_prog_put(prog);
7016 }
7017}
7018
e077df4f 7019#else
6fb2915d 7020
b0a873eb 7021static inline void perf_tp_register(void)
e077df4f 7022{
e077df4f 7023}
6fb2915d
LZ
7024
7025static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7026{
7027 return -ENOENT;
7028}
7029
7030static void perf_event_free_filter(struct perf_event *event)
7031{
7032}
7033
2541517c
AS
7034static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7035{
7036 return -ENOENT;
7037}
7038
7039static void perf_event_free_bpf_prog(struct perf_event *event)
7040{
7041}
07b139c8 7042#endif /* CONFIG_EVENT_TRACING */
e077df4f 7043
24f1e32c 7044#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7045void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7046{
f5ffe02e
FW
7047 struct perf_sample_data sample;
7048 struct pt_regs *regs = data;
7049
fd0d000b 7050 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7051
a4eaf7f1 7052 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7053 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7054}
7055#endif
7056
b0a873eb
PZ
7057/*
7058 * hrtimer based swevent callback
7059 */
f29ac756 7060
b0a873eb 7061static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7062{
b0a873eb
PZ
7063 enum hrtimer_restart ret = HRTIMER_RESTART;
7064 struct perf_sample_data data;
7065 struct pt_regs *regs;
7066 struct perf_event *event;
7067 u64 period;
f29ac756 7068
b0a873eb 7069 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7070
7071 if (event->state != PERF_EVENT_STATE_ACTIVE)
7072 return HRTIMER_NORESTART;
7073
b0a873eb 7074 event->pmu->read(event);
f344011c 7075
fd0d000b 7076 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7077 regs = get_irq_regs();
7078
7079 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7080 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7081 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7082 ret = HRTIMER_NORESTART;
7083 }
24f1e32c 7084
b0a873eb
PZ
7085 period = max_t(u64, 10000, event->hw.sample_period);
7086 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7087
b0a873eb 7088 return ret;
f29ac756
PZ
7089}
7090
b0a873eb 7091static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7092{
b0a873eb 7093 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7094 s64 period;
7095
7096 if (!is_sampling_event(event))
7097 return;
f5ffe02e 7098
5d508e82
FBH
7099 period = local64_read(&hwc->period_left);
7100 if (period) {
7101 if (period < 0)
7102 period = 10000;
fa407f35 7103
5d508e82
FBH
7104 local64_set(&hwc->period_left, 0);
7105 } else {
7106 period = max_t(u64, 10000, hwc->sample_period);
7107 }
3497d206
TG
7108 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7109 HRTIMER_MODE_REL_PINNED);
24f1e32c 7110}
b0a873eb
PZ
7111
7112static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7113{
b0a873eb
PZ
7114 struct hw_perf_event *hwc = &event->hw;
7115
6c7e550f 7116 if (is_sampling_event(event)) {
b0a873eb 7117 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7118 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7119
7120 hrtimer_cancel(&hwc->hrtimer);
7121 }
24f1e32c
FW
7122}
7123
ba3dd36c
PZ
7124static void perf_swevent_init_hrtimer(struct perf_event *event)
7125{
7126 struct hw_perf_event *hwc = &event->hw;
7127
7128 if (!is_sampling_event(event))
7129 return;
7130
7131 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7132 hwc->hrtimer.function = perf_swevent_hrtimer;
7133
7134 /*
7135 * Since hrtimers have a fixed rate, we can do a static freq->period
7136 * mapping and avoid the whole period adjust feedback stuff.
7137 */
7138 if (event->attr.freq) {
7139 long freq = event->attr.sample_freq;
7140
7141 event->attr.sample_period = NSEC_PER_SEC / freq;
7142 hwc->sample_period = event->attr.sample_period;
7143 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7144 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7145 event->attr.freq = 0;
7146 }
7147}
7148
b0a873eb
PZ
7149/*
7150 * Software event: cpu wall time clock
7151 */
7152
7153static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7154{
b0a873eb
PZ
7155 s64 prev;
7156 u64 now;
7157
a4eaf7f1 7158 now = local_clock();
b0a873eb
PZ
7159 prev = local64_xchg(&event->hw.prev_count, now);
7160 local64_add(now - prev, &event->count);
24f1e32c 7161}
24f1e32c 7162
a4eaf7f1 7163static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7164{
a4eaf7f1 7165 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7166 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7167}
7168
a4eaf7f1 7169static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7170{
b0a873eb
PZ
7171 perf_swevent_cancel_hrtimer(event);
7172 cpu_clock_event_update(event);
7173}
f29ac756 7174
a4eaf7f1
PZ
7175static int cpu_clock_event_add(struct perf_event *event, int flags)
7176{
7177 if (flags & PERF_EF_START)
7178 cpu_clock_event_start(event, flags);
6a694a60 7179 perf_event_update_userpage(event);
a4eaf7f1
PZ
7180
7181 return 0;
7182}
7183
7184static void cpu_clock_event_del(struct perf_event *event, int flags)
7185{
7186 cpu_clock_event_stop(event, flags);
7187}
7188
b0a873eb
PZ
7189static void cpu_clock_event_read(struct perf_event *event)
7190{
7191 cpu_clock_event_update(event);
7192}
f344011c 7193
b0a873eb
PZ
7194static int cpu_clock_event_init(struct perf_event *event)
7195{
7196 if (event->attr.type != PERF_TYPE_SOFTWARE)
7197 return -ENOENT;
7198
7199 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7200 return -ENOENT;
7201
2481c5fa
SE
7202 /*
7203 * no branch sampling for software events
7204 */
7205 if (has_branch_stack(event))
7206 return -EOPNOTSUPP;
7207
ba3dd36c
PZ
7208 perf_swevent_init_hrtimer(event);
7209
b0a873eb 7210 return 0;
f29ac756
PZ
7211}
7212
b0a873eb 7213static struct pmu perf_cpu_clock = {
89a1e187
PZ
7214 .task_ctx_nr = perf_sw_context,
7215
34f43927
PZ
7216 .capabilities = PERF_PMU_CAP_NO_NMI,
7217
b0a873eb 7218 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7219 .add = cpu_clock_event_add,
7220 .del = cpu_clock_event_del,
7221 .start = cpu_clock_event_start,
7222 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7223 .read = cpu_clock_event_read,
7224};
7225
7226/*
7227 * Software event: task time clock
7228 */
7229
7230static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7231{
b0a873eb
PZ
7232 u64 prev;
7233 s64 delta;
5c92d124 7234
b0a873eb
PZ
7235 prev = local64_xchg(&event->hw.prev_count, now);
7236 delta = now - prev;
7237 local64_add(delta, &event->count);
7238}
5c92d124 7239
a4eaf7f1 7240static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7241{
a4eaf7f1 7242 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7243 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7244}
7245
a4eaf7f1 7246static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7247{
7248 perf_swevent_cancel_hrtimer(event);
7249 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7250}
7251
7252static int task_clock_event_add(struct perf_event *event, int flags)
7253{
7254 if (flags & PERF_EF_START)
7255 task_clock_event_start(event, flags);
6a694a60 7256 perf_event_update_userpage(event);
b0a873eb 7257
a4eaf7f1
PZ
7258 return 0;
7259}
7260
7261static void task_clock_event_del(struct perf_event *event, int flags)
7262{
7263 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7264}
7265
7266static void task_clock_event_read(struct perf_event *event)
7267{
768a06e2
PZ
7268 u64 now = perf_clock();
7269 u64 delta = now - event->ctx->timestamp;
7270 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7271
7272 task_clock_event_update(event, time);
7273}
7274
7275static int task_clock_event_init(struct perf_event *event)
6fb2915d 7276{
b0a873eb
PZ
7277 if (event->attr.type != PERF_TYPE_SOFTWARE)
7278 return -ENOENT;
7279
7280 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7281 return -ENOENT;
7282
2481c5fa
SE
7283 /*
7284 * no branch sampling for software events
7285 */
7286 if (has_branch_stack(event))
7287 return -EOPNOTSUPP;
7288
ba3dd36c
PZ
7289 perf_swevent_init_hrtimer(event);
7290
b0a873eb 7291 return 0;
6fb2915d
LZ
7292}
7293
b0a873eb 7294static struct pmu perf_task_clock = {
89a1e187
PZ
7295 .task_ctx_nr = perf_sw_context,
7296
34f43927
PZ
7297 .capabilities = PERF_PMU_CAP_NO_NMI,
7298
b0a873eb 7299 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7300 .add = task_clock_event_add,
7301 .del = task_clock_event_del,
7302 .start = task_clock_event_start,
7303 .stop = task_clock_event_stop,
b0a873eb
PZ
7304 .read = task_clock_event_read,
7305};
6fb2915d 7306
ad5133b7 7307static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7308{
e077df4f 7309}
6fb2915d 7310
fbbe0701
SB
7311static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7312{
7313}
7314
ad5133b7 7315static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7316{
ad5133b7 7317 return 0;
6fb2915d
LZ
7318}
7319
18ab2cd3 7320static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7321
7322static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7323{
fbbe0701
SB
7324 __this_cpu_write(nop_txn_flags, flags);
7325
7326 if (flags & ~PERF_PMU_TXN_ADD)
7327 return;
7328
ad5133b7 7329 perf_pmu_disable(pmu);
6fb2915d
LZ
7330}
7331
ad5133b7
PZ
7332static int perf_pmu_commit_txn(struct pmu *pmu)
7333{
fbbe0701
SB
7334 unsigned int flags = __this_cpu_read(nop_txn_flags);
7335
7336 __this_cpu_write(nop_txn_flags, 0);
7337
7338 if (flags & ~PERF_PMU_TXN_ADD)
7339 return 0;
7340
ad5133b7
PZ
7341 perf_pmu_enable(pmu);
7342 return 0;
7343}
e077df4f 7344
ad5133b7 7345static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7346{
fbbe0701
SB
7347 unsigned int flags = __this_cpu_read(nop_txn_flags);
7348
7349 __this_cpu_write(nop_txn_flags, 0);
7350
7351 if (flags & ~PERF_PMU_TXN_ADD)
7352 return;
7353
ad5133b7 7354 perf_pmu_enable(pmu);
24f1e32c
FW
7355}
7356
35edc2a5
PZ
7357static int perf_event_idx_default(struct perf_event *event)
7358{
c719f560 7359 return 0;
35edc2a5
PZ
7360}
7361
8dc85d54
PZ
7362/*
7363 * Ensures all contexts with the same task_ctx_nr have the same
7364 * pmu_cpu_context too.
7365 */
9e317041 7366static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7367{
8dc85d54 7368 struct pmu *pmu;
b326e956 7369
8dc85d54
PZ
7370 if (ctxn < 0)
7371 return NULL;
24f1e32c 7372
8dc85d54
PZ
7373 list_for_each_entry(pmu, &pmus, entry) {
7374 if (pmu->task_ctx_nr == ctxn)
7375 return pmu->pmu_cpu_context;
7376 }
24f1e32c 7377
8dc85d54 7378 return NULL;
24f1e32c
FW
7379}
7380
51676957 7381static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7382{
51676957
PZ
7383 int cpu;
7384
7385 for_each_possible_cpu(cpu) {
7386 struct perf_cpu_context *cpuctx;
7387
7388 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7389
3f1f3320
PZ
7390 if (cpuctx->unique_pmu == old_pmu)
7391 cpuctx->unique_pmu = pmu;
51676957
PZ
7392 }
7393}
7394
7395static void free_pmu_context(struct pmu *pmu)
7396{
7397 struct pmu *i;
f5ffe02e 7398
8dc85d54 7399 mutex_lock(&pmus_lock);
0475f9ea 7400 /*
8dc85d54 7401 * Like a real lame refcount.
0475f9ea 7402 */
51676957
PZ
7403 list_for_each_entry(i, &pmus, entry) {
7404 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7405 update_pmu_context(i, pmu);
8dc85d54 7406 goto out;
51676957 7407 }
8dc85d54 7408 }
d6d020e9 7409
51676957 7410 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7411out:
7412 mutex_unlock(&pmus_lock);
24f1e32c 7413}
2e80a82a 7414static struct idr pmu_idr;
d6d020e9 7415
abe43400
PZ
7416static ssize_t
7417type_show(struct device *dev, struct device_attribute *attr, char *page)
7418{
7419 struct pmu *pmu = dev_get_drvdata(dev);
7420
7421 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7422}
90826ca7 7423static DEVICE_ATTR_RO(type);
abe43400 7424
62b85639
SE
7425static ssize_t
7426perf_event_mux_interval_ms_show(struct device *dev,
7427 struct device_attribute *attr,
7428 char *page)
7429{
7430 struct pmu *pmu = dev_get_drvdata(dev);
7431
7432 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7433}
7434
272325c4
PZ
7435static DEFINE_MUTEX(mux_interval_mutex);
7436
62b85639
SE
7437static ssize_t
7438perf_event_mux_interval_ms_store(struct device *dev,
7439 struct device_attribute *attr,
7440 const char *buf, size_t count)
7441{
7442 struct pmu *pmu = dev_get_drvdata(dev);
7443 int timer, cpu, ret;
7444
7445 ret = kstrtoint(buf, 0, &timer);
7446 if (ret)
7447 return ret;
7448
7449 if (timer < 1)
7450 return -EINVAL;
7451
7452 /* same value, noting to do */
7453 if (timer == pmu->hrtimer_interval_ms)
7454 return count;
7455
272325c4 7456 mutex_lock(&mux_interval_mutex);
62b85639
SE
7457 pmu->hrtimer_interval_ms = timer;
7458
7459 /* update all cpuctx for this PMU */
272325c4
PZ
7460 get_online_cpus();
7461 for_each_online_cpu(cpu) {
62b85639
SE
7462 struct perf_cpu_context *cpuctx;
7463 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7464 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7465
272325c4
PZ
7466 cpu_function_call(cpu,
7467 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7468 }
272325c4
PZ
7469 put_online_cpus();
7470 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7471
7472 return count;
7473}
90826ca7 7474static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7475
90826ca7
GKH
7476static struct attribute *pmu_dev_attrs[] = {
7477 &dev_attr_type.attr,
7478 &dev_attr_perf_event_mux_interval_ms.attr,
7479 NULL,
abe43400 7480};
90826ca7 7481ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7482
7483static int pmu_bus_running;
7484static struct bus_type pmu_bus = {
7485 .name = "event_source",
90826ca7 7486 .dev_groups = pmu_dev_groups,
abe43400
PZ
7487};
7488
7489static void pmu_dev_release(struct device *dev)
7490{
7491 kfree(dev);
7492}
7493
7494static int pmu_dev_alloc(struct pmu *pmu)
7495{
7496 int ret = -ENOMEM;
7497
7498 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7499 if (!pmu->dev)
7500 goto out;
7501
0c9d42ed 7502 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7503 device_initialize(pmu->dev);
7504 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7505 if (ret)
7506 goto free_dev;
7507
7508 dev_set_drvdata(pmu->dev, pmu);
7509 pmu->dev->bus = &pmu_bus;
7510 pmu->dev->release = pmu_dev_release;
7511 ret = device_add(pmu->dev);
7512 if (ret)
7513 goto free_dev;
7514
7515out:
7516 return ret;
7517
7518free_dev:
7519 put_device(pmu->dev);
7520 goto out;
7521}
7522
547e9fd7 7523static struct lock_class_key cpuctx_mutex;
facc4307 7524static struct lock_class_key cpuctx_lock;
547e9fd7 7525
03d8e80b 7526int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7527{
108b02cf 7528 int cpu, ret;
24f1e32c 7529
b0a873eb 7530 mutex_lock(&pmus_lock);
33696fc0
PZ
7531 ret = -ENOMEM;
7532 pmu->pmu_disable_count = alloc_percpu(int);
7533 if (!pmu->pmu_disable_count)
7534 goto unlock;
f29ac756 7535
2e80a82a
PZ
7536 pmu->type = -1;
7537 if (!name)
7538 goto skip_type;
7539 pmu->name = name;
7540
7541 if (type < 0) {
0e9c3be2
TH
7542 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7543 if (type < 0) {
7544 ret = type;
2e80a82a
PZ
7545 goto free_pdc;
7546 }
7547 }
7548 pmu->type = type;
7549
abe43400
PZ
7550 if (pmu_bus_running) {
7551 ret = pmu_dev_alloc(pmu);
7552 if (ret)
7553 goto free_idr;
7554 }
7555
2e80a82a 7556skip_type:
8dc85d54
PZ
7557 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7558 if (pmu->pmu_cpu_context)
7559 goto got_cpu_context;
f29ac756 7560
c4814202 7561 ret = -ENOMEM;
108b02cf
PZ
7562 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7563 if (!pmu->pmu_cpu_context)
abe43400 7564 goto free_dev;
f344011c 7565
108b02cf
PZ
7566 for_each_possible_cpu(cpu) {
7567 struct perf_cpu_context *cpuctx;
7568
7569 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7570 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7571 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7572 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7573 cpuctx->ctx.pmu = pmu;
9e630205 7574
272325c4 7575 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7576
3f1f3320 7577 cpuctx->unique_pmu = pmu;
108b02cf 7578 }
76e1d904 7579
8dc85d54 7580got_cpu_context:
ad5133b7
PZ
7581 if (!pmu->start_txn) {
7582 if (pmu->pmu_enable) {
7583 /*
7584 * If we have pmu_enable/pmu_disable calls, install
7585 * transaction stubs that use that to try and batch
7586 * hardware accesses.
7587 */
7588 pmu->start_txn = perf_pmu_start_txn;
7589 pmu->commit_txn = perf_pmu_commit_txn;
7590 pmu->cancel_txn = perf_pmu_cancel_txn;
7591 } else {
fbbe0701 7592 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7593 pmu->commit_txn = perf_pmu_nop_int;
7594 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7595 }
5c92d124 7596 }
15dbf27c 7597
ad5133b7
PZ
7598 if (!pmu->pmu_enable) {
7599 pmu->pmu_enable = perf_pmu_nop_void;
7600 pmu->pmu_disable = perf_pmu_nop_void;
7601 }
7602
35edc2a5
PZ
7603 if (!pmu->event_idx)
7604 pmu->event_idx = perf_event_idx_default;
7605
b0a873eb 7606 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7607 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7608 ret = 0;
7609unlock:
b0a873eb
PZ
7610 mutex_unlock(&pmus_lock);
7611
33696fc0 7612 return ret;
108b02cf 7613
abe43400
PZ
7614free_dev:
7615 device_del(pmu->dev);
7616 put_device(pmu->dev);
7617
2e80a82a
PZ
7618free_idr:
7619 if (pmu->type >= PERF_TYPE_MAX)
7620 idr_remove(&pmu_idr, pmu->type);
7621
108b02cf
PZ
7622free_pdc:
7623 free_percpu(pmu->pmu_disable_count);
7624 goto unlock;
f29ac756 7625}
c464c76e 7626EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7627
b0a873eb 7628void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7629{
b0a873eb
PZ
7630 mutex_lock(&pmus_lock);
7631 list_del_rcu(&pmu->entry);
7632 mutex_unlock(&pmus_lock);
5c92d124 7633
0475f9ea 7634 /*
cde8e884
PZ
7635 * We dereference the pmu list under both SRCU and regular RCU, so
7636 * synchronize against both of those.
0475f9ea 7637 */
b0a873eb 7638 synchronize_srcu(&pmus_srcu);
cde8e884 7639 synchronize_rcu();
d6d020e9 7640
33696fc0 7641 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7642 if (pmu->type >= PERF_TYPE_MAX)
7643 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7644 device_del(pmu->dev);
7645 put_device(pmu->dev);
51676957 7646 free_pmu_context(pmu);
b0a873eb 7647}
c464c76e 7648EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7649
cc34b98b
MR
7650static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7651{
ccd41c86 7652 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7653 int ret;
7654
7655 if (!try_module_get(pmu->module))
7656 return -ENODEV;
ccd41c86
PZ
7657
7658 if (event->group_leader != event) {
8b10c5e2
PZ
7659 /*
7660 * This ctx->mutex can nest when we're called through
7661 * inheritance. See the perf_event_ctx_lock_nested() comment.
7662 */
7663 ctx = perf_event_ctx_lock_nested(event->group_leader,
7664 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7665 BUG_ON(!ctx);
7666 }
7667
cc34b98b
MR
7668 event->pmu = pmu;
7669 ret = pmu->event_init(event);
ccd41c86
PZ
7670
7671 if (ctx)
7672 perf_event_ctx_unlock(event->group_leader, ctx);
7673
cc34b98b
MR
7674 if (ret)
7675 module_put(pmu->module);
7676
7677 return ret;
7678}
7679
18ab2cd3 7680static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7681{
7682 struct pmu *pmu = NULL;
7683 int idx;
940c5b29 7684 int ret;
b0a873eb
PZ
7685
7686 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7687
7688 rcu_read_lock();
7689 pmu = idr_find(&pmu_idr, event->attr.type);
7690 rcu_read_unlock();
940c5b29 7691 if (pmu) {
cc34b98b 7692 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7693 if (ret)
7694 pmu = ERR_PTR(ret);
2e80a82a 7695 goto unlock;
940c5b29 7696 }
2e80a82a 7697
b0a873eb 7698 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7699 ret = perf_try_init_event(pmu, event);
b0a873eb 7700 if (!ret)
e5f4d339 7701 goto unlock;
76e1d904 7702
b0a873eb
PZ
7703 if (ret != -ENOENT) {
7704 pmu = ERR_PTR(ret);
e5f4d339 7705 goto unlock;
f344011c 7706 }
5c92d124 7707 }
e5f4d339
PZ
7708 pmu = ERR_PTR(-ENOENT);
7709unlock:
b0a873eb 7710 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7711
4aeb0b42 7712 return pmu;
5c92d124
IM
7713}
7714
4beb31f3
FW
7715static void account_event_cpu(struct perf_event *event, int cpu)
7716{
7717 if (event->parent)
7718 return;
7719
4beb31f3
FW
7720 if (is_cgroup_event(event))
7721 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7722}
7723
766d6c07
FW
7724static void account_event(struct perf_event *event)
7725{
4beb31f3
FW
7726 if (event->parent)
7727 return;
7728
766d6c07
FW
7729 if (event->attach_state & PERF_ATTACH_TASK)
7730 static_key_slow_inc(&perf_sched_events.key);
7731 if (event->attr.mmap || event->attr.mmap_data)
7732 atomic_inc(&nr_mmap_events);
7733 if (event->attr.comm)
7734 atomic_inc(&nr_comm_events);
7735 if (event->attr.task)
7736 atomic_inc(&nr_task_events);
948b26b6
FW
7737 if (event->attr.freq) {
7738 if (atomic_inc_return(&nr_freq_events) == 1)
7739 tick_nohz_full_kick_all();
7740 }
45ac1403
AH
7741 if (event->attr.context_switch) {
7742 atomic_inc(&nr_switch_events);
7743 static_key_slow_inc(&perf_sched_events.key);
7744 }
4beb31f3 7745 if (has_branch_stack(event))
766d6c07 7746 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7747 if (is_cgroup_event(event))
766d6c07 7748 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7749
7750 account_event_cpu(event, event->cpu);
766d6c07
FW
7751}
7752
0793a61d 7753/*
cdd6c482 7754 * Allocate and initialize a event structure
0793a61d 7755 */
cdd6c482 7756static struct perf_event *
c3f00c70 7757perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7758 struct task_struct *task,
7759 struct perf_event *group_leader,
7760 struct perf_event *parent_event,
4dc0da86 7761 perf_overflow_handler_t overflow_handler,
79dff51e 7762 void *context, int cgroup_fd)
0793a61d 7763{
51b0fe39 7764 struct pmu *pmu;
cdd6c482
IM
7765 struct perf_event *event;
7766 struct hw_perf_event *hwc;
90983b16 7767 long err = -EINVAL;
0793a61d 7768
66832eb4
ON
7769 if ((unsigned)cpu >= nr_cpu_ids) {
7770 if (!task || cpu != -1)
7771 return ERR_PTR(-EINVAL);
7772 }
7773
c3f00c70 7774 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7775 if (!event)
d5d2bc0d 7776 return ERR_PTR(-ENOMEM);
0793a61d 7777
04289bb9 7778 /*
cdd6c482 7779 * Single events are their own group leaders, with an
04289bb9
IM
7780 * empty sibling list:
7781 */
7782 if (!group_leader)
cdd6c482 7783 group_leader = event;
04289bb9 7784
cdd6c482
IM
7785 mutex_init(&event->child_mutex);
7786 INIT_LIST_HEAD(&event->child_list);
fccc714b 7787
cdd6c482
IM
7788 INIT_LIST_HEAD(&event->group_entry);
7789 INIT_LIST_HEAD(&event->event_entry);
7790 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7791 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7792 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7793 INIT_HLIST_NODE(&event->hlist_entry);
7794
10c6db11 7795
cdd6c482 7796 init_waitqueue_head(&event->waitq);
e360adbe 7797 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7798
cdd6c482 7799 mutex_init(&event->mmap_mutex);
7b732a75 7800
a6fa941d 7801 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7802 event->cpu = cpu;
7803 event->attr = *attr;
7804 event->group_leader = group_leader;
7805 event->pmu = NULL;
cdd6c482 7806 event->oncpu = -1;
a96bbc16 7807
cdd6c482 7808 event->parent = parent_event;
b84fbc9f 7809
17cf22c3 7810 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7811 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7812
cdd6c482 7813 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7814
d580ff86
PZ
7815 if (task) {
7816 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7817 /*
50f16a8b
PZ
7818 * XXX pmu::event_init needs to know what task to account to
7819 * and we cannot use the ctx information because we need the
7820 * pmu before we get a ctx.
d580ff86 7821 */
50f16a8b 7822 event->hw.target = task;
d580ff86
PZ
7823 }
7824
34f43927
PZ
7825 event->clock = &local_clock;
7826 if (parent_event)
7827 event->clock = parent_event->clock;
7828
4dc0da86 7829 if (!overflow_handler && parent_event) {
b326e956 7830 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7831 context = parent_event->overflow_handler_context;
7832 }
66832eb4 7833
b326e956 7834 event->overflow_handler = overflow_handler;
4dc0da86 7835 event->overflow_handler_context = context;
97eaf530 7836
0231bb53 7837 perf_event__state_init(event);
a86ed508 7838
4aeb0b42 7839 pmu = NULL;
b8e83514 7840
cdd6c482 7841 hwc = &event->hw;
bd2b5b12 7842 hwc->sample_period = attr->sample_period;
0d48696f 7843 if (attr->freq && attr->sample_freq)
bd2b5b12 7844 hwc->sample_period = 1;
eced1dfc 7845 hwc->last_period = hwc->sample_period;
bd2b5b12 7846
e7850595 7847 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7848
2023b359 7849 /*
cdd6c482 7850 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7851 */
3dab77fb 7852 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7853 goto err_ns;
a46a2300
YZ
7854
7855 if (!has_branch_stack(event))
7856 event->attr.branch_sample_type = 0;
2023b359 7857
79dff51e
MF
7858 if (cgroup_fd != -1) {
7859 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7860 if (err)
7861 goto err_ns;
7862 }
7863
b0a873eb 7864 pmu = perf_init_event(event);
4aeb0b42 7865 if (!pmu)
90983b16
FW
7866 goto err_ns;
7867 else if (IS_ERR(pmu)) {
4aeb0b42 7868 err = PTR_ERR(pmu);
90983b16 7869 goto err_ns;
621a01ea 7870 }
d5d2bc0d 7871
bed5b25a
AS
7872 err = exclusive_event_init(event);
7873 if (err)
7874 goto err_pmu;
7875
cdd6c482 7876 if (!event->parent) {
927c7a9e
FW
7877 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7878 err = get_callchain_buffers();
90983b16 7879 if (err)
bed5b25a 7880 goto err_per_task;
d010b332 7881 }
f344011c 7882 }
9ee318a7 7883
cdd6c482 7884 return event;
90983b16 7885
bed5b25a
AS
7886err_per_task:
7887 exclusive_event_destroy(event);
7888
90983b16
FW
7889err_pmu:
7890 if (event->destroy)
7891 event->destroy(event);
c464c76e 7892 module_put(pmu->module);
90983b16 7893err_ns:
79dff51e
MF
7894 if (is_cgroup_event(event))
7895 perf_detach_cgroup(event);
90983b16
FW
7896 if (event->ns)
7897 put_pid_ns(event->ns);
7898 kfree(event);
7899
7900 return ERR_PTR(err);
0793a61d
TG
7901}
7902
cdd6c482
IM
7903static int perf_copy_attr(struct perf_event_attr __user *uattr,
7904 struct perf_event_attr *attr)
974802ea 7905{
974802ea 7906 u32 size;
cdf8073d 7907 int ret;
974802ea
PZ
7908
7909 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7910 return -EFAULT;
7911
7912 /*
7913 * zero the full structure, so that a short copy will be nice.
7914 */
7915 memset(attr, 0, sizeof(*attr));
7916
7917 ret = get_user(size, &uattr->size);
7918 if (ret)
7919 return ret;
7920
7921 if (size > PAGE_SIZE) /* silly large */
7922 goto err_size;
7923
7924 if (!size) /* abi compat */
7925 size = PERF_ATTR_SIZE_VER0;
7926
7927 if (size < PERF_ATTR_SIZE_VER0)
7928 goto err_size;
7929
7930 /*
7931 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7932 * ensure all the unknown bits are 0 - i.e. new
7933 * user-space does not rely on any kernel feature
7934 * extensions we dont know about yet.
974802ea
PZ
7935 */
7936 if (size > sizeof(*attr)) {
cdf8073d
IS
7937 unsigned char __user *addr;
7938 unsigned char __user *end;
7939 unsigned char val;
974802ea 7940
cdf8073d
IS
7941 addr = (void __user *)uattr + sizeof(*attr);
7942 end = (void __user *)uattr + size;
974802ea 7943
cdf8073d 7944 for (; addr < end; addr++) {
974802ea
PZ
7945 ret = get_user(val, addr);
7946 if (ret)
7947 return ret;
7948 if (val)
7949 goto err_size;
7950 }
b3e62e35 7951 size = sizeof(*attr);
974802ea
PZ
7952 }
7953
7954 ret = copy_from_user(attr, uattr, size);
7955 if (ret)
7956 return -EFAULT;
7957
cd757645 7958 if (attr->__reserved_1)
974802ea
PZ
7959 return -EINVAL;
7960
7961 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7962 return -EINVAL;
7963
7964 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7965 return -EINVAL;
7966
bce38cd5
SE
7967 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7968 u64 mask = attr->branch_sample_type;
7969
7970 /* only using defined bits */
7971 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7972 return -EINVAL;
7973
7974 /* at least one branch bit must be set */
7975 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7976 return -EINVAL;
7977
bce38cd5
SE
7978 /* propagate priv level, when not set for branch */
7979 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7980
7981 /* exclude_kernel checked on syscall entry */
7982 if (!attr->exclude_kernel)
7983 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7984
7985 if (!attr->exclude_user)
7986 mask |= PERF_SAMPLE_BRANCH_USER;
7987
7988 if (!attr->exclude_hv)
7989 mask |= PERF_SAMPLE_BRANCH_HV;
7990 /*
7991 * adjust user setting (for HW filter setup)
7992 */
7993 attr->branch_sample_type = mask;
7994 }
e712209a
SE
7995 /* privileged levels capture (kernel, hv): check permissions */
7996 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7997 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7998 return -EACCES;
bce38cd5 7999 }
4018994f 8000
c5ebcedb 8001 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8002 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8003 if (ret)
8004 return ret;
8005 }
8006
8007 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8008 if (!arch_perf_have_user_stack_dump())
8009 return -ENOSYS;
8010
8011 /*
8012 * We have __u32 type for the size, but so far
8013 * we can only use __u16 as maximum due to the
8014 * __u16 sample size limit.
8015 */
8016 if (attr->sample_stack_user >= USHRT_MAX)
8017 ret = -EINVAL;
8018 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8019 ret = -EINVAL;
8020 }
4018994f 8021
60e2364e
SE
8022 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8023 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8024out:
8025 return ret;
8026
8027err_size:
8028 put_user(sizeof(*attr), &uattr->size);
8029 ret = -E2BIG;
8030 goto out;
8031}
8032
ac9721f3
PZ
8033static int
8034perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8035{
b69cf536 8036 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8037 int ret = -EINVAL;
8038
ac9721f3 8039 if (!output_event)
a4be7c27
PZ
8040 goto set;
8041
ac9721f3
PZ
8042 /* don't allow circular references */
8043 if (event == output_event)
a4be7c27
PZ
8044 goto out;
8045
0f139300
PZ
8046 /*
8047 * Don't allow cross-cpu buffers
8048 */
8049 if (output_event->cpu != event->cpu)
8050 goto out;
8051
8052 /*
76369139 8053 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8054 */
8055 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8056 goto out;
8057
34f43927
PZ
8058 /*
8059 * Mixing clocks in the same buffer is trouble you don't need.
8060 */
8061 if (output_event->clock != event->clock)
8062 goto out;
8063
45bfb2e5
PZ
8064 /*
8065 * If both events generate aux data, they must be on the same PMU
8066 */
8067 if (has_aux(event) && has_aux(output_event) &&
8068 event->pmu != output_event->pmu)
8069 goto out;
8070
a4be7c27 8071set:
cdd6c482 8072 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8073 /* Can't redirect output if we've got an active mmap() */
8074 if (atomic_read(&event->mmap_count))
8075 goto unlock;
a4be7c27 8076
ac9721f3 8077 if (output_event) {
76369139
FW
8078 /* get the rb we want to redirect to */
8079 rb = ring_buffer_get(output_event);
8080 if (!rb)
ac9721f3 8081 goto unlock;
a4be7c27
PZ
8082 }
8083
b69cf536 8084 ring_buffer_attach(event, rb);
9bb5d40c 8085
a4be7c27 8086 ret = 0;
ac9721f3
PZ
8087unlock:
8088 mutex_unlock(&event->mmap_mutex);
8089
a4be7c27 8090out:
a4be7c27
PZ
8091 return ret;
8092}
8093
f63a8daa
PZ
8094static void mutex_lock_double(struct mutex *a, struct mutex *b)
8095{
8096 if (b < a)
8097 swap(a, b);
8098
8099 mutex_lock(a);
8100 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8101}
8102
34f43927
PZ
8103static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8104{
8105 bool nmi_safe = false;
8106
8107 switch (clk_id) {
8108 case CLOCK_MONOTONIC:
8109 event->clock = &ktime_get_mono_fast_ns;
8110 nmi_safe = true;
8111 break;
8112
8113 case CLOCK_MONOTONIC_RAW:
8114 event->clock = &ktime_get_raw_fast_ns;
8115 nmi_safe = true;
8116 break;
8117
8118 case CLOCK_REALTIME:
8119 event->clock = &ktime_get_real_ns;
8120 break;
8121
8122 case CLOCK_BOOTTIME:
8123 event->clock = &ktime_get_boot_ns;
8124 break;
8125
8126 case CLOCK_TAI:
8127 event->clock = &ktime_get_tai_ns;
8128 break;
8129
8130 default:
8131 return -EINVAL;
8132 }
8133
8134 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8135 return -EINVAL;
8136
8137 return 0;
8138}
8139
0793a61d 8140/**
cdd6c482 8141 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8142 *
cdd6c482 8143 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8144 * @pid: target pid
9f66a381 8145 * @cpu: target cpu
cdd6c482 8146 * @group_fd: group leader event fd
0793a61d 8147 */
cdd6c482
IM
8148SYSCALL_DEFINE5(perf_event_open,
8149 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8150 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8151{
b04243ef
PZ
8152 struct perf_event *group_leader = NULL, *output_event = NULL;
8153 struct perf_event *event, *sibling;
cdd6c482 8154 struct perf_event_attr attr;
f63a8daa 8155 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8156 struct file *event_file = NULL;
2903ff01 8157 struct fd group = {NULL, 0};
38a81da2 8158 struct task_struct *task = NULL;
89a1e187 8159 struct pmu *pmu;
ea635c64 8160 int event_fd;
b04243ef 8161 int move_group = 0;
dc86cabe 8162 int err;
a21b0b35 8163 int f_flags = O_RDWR;
79dff51e 8164 int cgroup_fd = -1;
0793a61d 8165
2743a5b0 8166 /* for future expandability... */
e5d1367f 8167 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8168 return -EINVAL;
8169
dc86cabe
IM
8170 err = perf_copy_attr(attr_uptr, &attr);
8171 if (err)
8172 return err;
eab656ae 8173
0764771d
PZ
8174 if (!attr.exclude_kernel) {
8175 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8176 return -EACCES;
8177 }
8178
df58ab24 8179 if (attr.freq) {
cdd6c482 8180 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8181 return -EINVAL;
0819b2e3
PZ
8182 } else {
8183 if (attr.sample_period & (1ULL << 63))
8184 return -EINVAL;
df58ab24
PZ
8185 }
8186
e5d1367f
SE
8187 /*
8188 * In cgroup mode, the pid argument is used to pass the fd
8189 * opened to the cgroup directory in cgroupfs. The cpu argument
8190 * designates the cpu on which to monitor threads from that
8191 * cgroup.
8192 */
8193 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8194 return -EINVAL;
8195
a21b0b35
YD
8196 if (flags & PERF_FLAG_FD_CLOEXEC)
8197 f_flags |= O_CLOEXEC;
8198
8199 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8200 if (event_fd < 0)
8201 return event_fd;
8202
ac9721f3 8203 if (group_fd != -1) {
2903ff01
AV
8204 err = perf_fget_light(group_fd, &group);
8205 if (err)
d14b12d7 8206 goto err_fd;
2903ff01 8207 group_leader = group.file->private_data;
ac9721f3
PZ
8208 if (flags & PERF_FLAG_FD_OUTPUT)
8209 output_event = group_leader;
8210 if (flags & PERF_FLAG_FD_NO_GROUP)
8211 group_leader = NULL;
8212 }
8213
e5d1367f 8214 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8215 task = find_lively_task_by_vpid(pid);
8216 if (IS_ERR(task)) {
8217 err = PTR_ERR(task);
8218 goto err_group_fd;
8219 }
8220 }
8221
1f4ee503
PZ
8222 if (task && group_leader &&
8223 group_leader->attr.inherit != attr.inherit) {
8224 err = -EINVAL;
8225 goto err_task;
8226 }
8227
fbfc623f
YZ
8228 get_online_cpus();
8229
79dff51e
MF
8230 if (flags & PERF_FLAG_PID_CGROUP)
8231 cgroup_fd = pid;
8232
4dc0da86 8233 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8234 NULL, NULL, cgroup_fd);
d14b12d7
SE
8235 if (IS_ERR(event)) {
8236 err = PTR_ERR(event);
1f4ee503 8237 goto err_cpus;
d14b12d7
SE
8238 }
8239
53b25335
VW
8240 if (is_sampling_event(event)) {
8241 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8242 err = -ENOTSUPP;
8243 goto err_alloc;
8244 }
8245 }
8246
766d6c07
FW
8247 account_event(event);
8248
89a1e187
PZ
8249 /*
8250 * Special case software events and allow them to be part of
8251 * any hardware group.
8252 */
8253 pmu = event->pmu;
b04243ef 8254
34f43927
PZ
8255 if (attr.use_clockid) {
8256 err = perf_event_set_clock(event, attr.clockid);
8257 if (err)
8258 goto err_alloc;
8259 }
8260
b04243ef
PZ
8261 if (group_leader &&
8262 (is_software_event(event) != is_software_event(group_leader))) {
8263 if (is_software_event(event)) {
8264 /*
8265 * If event and group_leader are not both a software
8266 * event, and event is, then group leader is not.
8267 *
8268 * Allow the addition of software events to !software
8269 * groups, this is safe because software events never
8270 * fail to schedule.
8271 */
8272 pmu = group_leader->pmu;
8273 } else if (is_software_event(group_leader) &&
8274 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8275 /*
8276 * In case the group is a pure software group, and we
8277 * try to add a hardware event, move the whole group to
8278 * the hardware context.
8279 */
8280 move_group = 1;
8281 }
8282 }
89a1e187
PZ
8283
8284 /*
8285 * Get the target context (task or percpu):
8286 */
4af57ef2 8287 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8288 if (IS_ERR(ctx)) {
8289 err = PTR_ERR(ctx);
c6be5a5c 8290 goto err_alloc;
89a1e187
PZ
8291 }
8292
bed5b25a
AS
8293 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8294 err = -EBUSY;
8295 goto err_context;
8296 }
8297
fd1edb3a
PZ
8298 if (task) {
8299 put_task_struct(task);
8300 task = NULL;
8301 }
8302
ccff286d 8303 /*
cdd6c482 8304 * Look up the group leader (we will attach this event to it):
04289bb9 8305 */
ac9721f3 8306 if (group_leader) {
dc86cabe 8307 err = -EINVAL;
04289bb9 8308
04289bb9 8309 /*
ccff286d
IM
8310 * Do not allow a recursive hierarchy (this new sibling
8311 * becoming part of another group-sibling):
8312 */
8313 if (group_leader->group_leader != group_leader)
c3f00c70 8314 goto err_context;
34f43927
PZ
8315
8316 /* All events in a group should have the same clock */
8317 if (group_leader->clock != event->clock)
8318 goto err_context;
8319
ccff286d
IM
8320 /*
8321 * Do not allow to attach to a group in a different
8322 * task or CPU context:
04289bb9 8323 */
b04243ef 8324 if (move_group) {
c3c87e77
PZ
8325 /*
8326 * Make sure we're both on the same task, or both
8327 * per-cpu events.
8328 */
8329 if (group_leader->ctx->task != ctx->task)
8330 goto err_context;
8331
8332 /*
8333 * Make sure we're both events for the same CPU;
8334 * grouping events for different CPUs is broken; since
8335 * you can never concurrently schedule them anyhow.
8336 */
8337 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8338 goto err_context;
8339 } else {
8340 if (group_leader->ctx != ctx)
8341 goto err_context;
8342 }
8343
3b6f9e5c
PM
8344 /*
8345 * Only a group leader can be exclusive or pinned
8346 */
0d48696f 8347 if (attr.exclusive || attr.pinned)
c3f00c70 8348 goto err_context;
ac9721f3
PZ
8349 }
8350
8351 if (output_event) {
8352 err = perf_event_set_output(event, output_event);
8353 if (err)
c3f00c70 8354 goto err_context;
ac9721f3 8355 }
0793a61d 8356
a21b0b35
YD
8357 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8358 f_flags);
ea635c64
AV
8359 if (IS_ERR(event_file)) {
8360 err = PTR_ERR(event_file);
c3f00c70 8361 goto err_context;
ea635c64 8362 }
9b51f66d 8363
b04243ef 8364 if (move_group) {
f63a8daa 8365 gctx = group_leader->ctx;
f55fc2a5
PZ
8366 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8367 } else {
8368 mutex_lock(&ctx->mutex);
8369 }
8370
a723968c
PZ
8371 if (!perf_event_validate_size(event)) {
8372 err = -E2BIG;
8373 goto err_locked;
8374 }
8375
f55fc2a5
PZ
8376 /*
8377 * Must be under the same ctx::mutex as perf_install_in_context(),
8378 * because we need to serialize with concurrent event creation.
8379 */
8380 if (!exclusive_event_installable(event, ctx)) {
8381 /* exclusive and group stuff are assumed mutually exclusive */
8382 WARN_ON_ONCE(move_group);
f63a8daa 8383
f55fc2a5
PZ
8384 err = -EBUSY;
8385 goto err_locked;
8386 }
f63a8daa 8387
f55fc2a5
PZ
8388 WARN_ON_ONCE(ctx->parent_ctx);
8389
8390 if (move_group) {
f63a8daa
PZ
8391 /*
8392 * See perf_event_ctx_lock() for comments on the details
8393 * of swizzling perf_event::ctx.
8394 */
46ce0fe9 8395 perf_remove_from_context(group_leader, false);
0231bb53 8396
b04243ef
PZ
8397 list_for_each_entry(sibling, &group_leader->sibling_list,
8398 group_entry) {
46ce0fe9 8399 perf_remove_from_context(sibling, false);
b04243ef
PZ
8400 put_ctx(gctx);
8401 }
b04243ef 8402
f63a8daa
PZ
8403 /*
8404 * Wait for everybody to stop referencing the events through
8405 * the old lists, before installing it on new lists.
8406 */
0cda4c02 8407 synchronize_rcu();
f63a8daa 8408
8f95b435
PZI
8409 /*
8410 * Install the group siblings before the group leader.
8411 *
8412 * Because a group leader will try and install the entire group
8413 * (through the sibling list, which is still in-tact), we can
8414 * end up with siblings installed in the wrong context.
8415 *
8416 * By installing siblings first we NO-OP because they're not
8417 * reachable through the group lists.
8418 */
b04243ef
PZ
8419 list_for_each_entry(sibling, &group_leader->sibling_list,
8420 group_entry) {
8f95b435 8421 perf_event__state_init(sibling);
9fc81d87 8422 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8423 get_ctx(ctx);
8424 }
8f95b435
PZI
8425
8426 /*
8427 * Removing from the context ends up with disabled
8428 * event. What we want here is event in the initial
8429 * startup state, ready to be add into new context.
8430 */
8431 perf_event__state_init(group_leader);
8432 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8433 get_ctx(ctx);
b04243ef 8434
f55fc2a5
PZ
8435 /*
8436 * Now that all events are installed in @ctx, nothing
8437 * references @gctx anymore, so drop the last reference we have
8438 * on it.
8439 */
8440 put_ctx(gctx);
bed5b25a
AS
8441 }
8442
f73e22ab
PZ
8443 /*
8444 * Precalculate sample_data sizes; do while holding ctx::mutex such
8445 * that we're serialized against further additions and before
8446 * perf_install_in_context() which is the point the event is active and
8447 * can use these values.
8448 */
8449 perf_event__header_size(event);
8450 perf_event__id_header_size(event);
8451
e2d37cd2 8452 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8453 perf_unpin_context(ctx);
f63a8daa 8454
f55fc2a5 8455 if (move_group)
f63a8daa 8456 mutex_unlock(&gctx->mutex);
d859e29f 8457 mutex_unlock(&ctx->mutex);
9b51f66d 8458
fbfc623f
YZ
8459 put_online_cpus();
8460
cdd6c482 8461 event->owner = current;
8882135b 8462
cdd6c482
IM
8463 mutex_lock(&current->perf_event_mutex);
8464 list_add_tail(&event->owner_entry, &current->perf_event_list);
8465 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8466
8a49542c
PZ
8467 /*
8468 * Drop the reference on the group_event after placing the
8469 * new event on the sibling_list. This ensures destruction
8470 * of the group leader will find the pointer to itself in
8471 * perf_group_detach().
8472 */
2903ff01 8473 fdput(group);
ea635c64
AV
8474 fd_install(event_fd, event_file);
8475 return event_fd;
0793a61d 8476
f55fc2a5
PZ
8477err_locked:
8478 if (move_group)
8479 mutex_unlock(&gctx->mutex);
8480 mutex_unlock(&ctx->mutex);
8481/* err_file: */
8482 fput(event_file);
c3f00c70 8483err_context:
fe4b04fa 8484 perf_unpin_context(ctx);
ea635c64 8485 put_ctx(ctx);
c6be5a5c 8486err_alloc:
ea635c64 8487 free_event(event);
1f4ee503 8488err_cpus:
fbfc623f 8489 put_online_cpus();
1f4ee503 8490err_task:
e7d0bc04
PZ
8491 if (task)
8492 put_task_struct(task);
89a1e187 8493err_group_fd:
2903ff01 8494 fdput(group);
ea635c64
AV
8495err_fd:
8496 put_unused_fd(event_fd);
dc86cabe 8497 return err;
0793a61d
TG
8498}
8499
fb0459d7
AV
8500/**
8501 * perf_event_create_kernel_counter
8502 *
8503 * @attr: attributes of the counter to create
8504 * @cpu: cpu in which the counter is bound
38a81da2 8505 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8506 */
8507struct perf_event *
8508perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8509 struct task_struct *task,
4dc0da86
AK
8510 perf_overflow_handler_t overflow_handler,
8511 void *context)
fb0459d7 8512{
fb0459d7 8513 struct perf_event_context *ctx;
c3f00c70 8514 struct perf_event *event;
fb0459d7 8515 int err;
d859e29f 8516
fb0459d7
AV
8517 /*
8518 * Get the target context (task or percpu):
8519 */
d859e29f 8520
4dc0da86 8521 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8522 overflow_handler, context, -1);
c3f00c70
PZ
8523 if (IS_ERR(event)) {
8524 err = PTR_ERR(event);
8525 goto err;
8526 }
d859e29f 8527
f8697762
JO
8528 /* Mark owner so we could distinguish it from user events. */
8529 event->owner = EVENT_OWNER_KERNEL;
8530
766d6c07
FW
8531 account_event(event);
8532
4af57ef2 8533 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8534 if (IS_ERR(ctx)) {
8535 err = PTR_ERR(ctx);
c3f00c70 8536 goto err_free;
d859e29f 8537 }
fb0459d7 8538
fb0459d7
AV
8539 WARN_ON_ONCE(ctx->parent_ctx);
8540 mutex_lock(&ctx->mutex);
bed5b25a
AS
8541 if (!exclusive_event_installable(event, ctx)) {
8542 mutex_unlock(&ctx->mutex);
8543 perf_unpin_context(ctx);
8544 put_ctx(ctx);
8545 err = -EBUSY;
8546 goto err_free;
8547 }
8548
fb0459d7 8549 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8550 perf_unpin_context(ctx);
fb0459d7
AV
8551 mutex_unlock(&ctx->mutex);
8552
fb0459d7
AV
8553 return event;
8554
c3f00c70
PZ
8555err_free:
8556 free_event(event);
8557err:
c6567f64 8558 return ERR_PTR(err);
9b51f66d 8559}
fb0459d7 8560EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8561
0cda4c02
YZ
8562void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8563{
8564 struct perf_event_context *src_ctx;
8565 struct perf_event_context *dst_ctx;
8566 struct perf_event *event, *tmp;
8567 LIST_HEAD(events);
8568
8569 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8570 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8571
f63a8daa
PZ
8572 /*
8573 * See perf_event_ctx_lock() for comments on the details
8574 * of swizzling perf_event::ctx.
8575 */
8576 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8577 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8578 event_entry) {
46ce0fe9 8579 perf_remove_from_context(event, false);
9a545de0 8580 unaccount_event_cpu(event, src_cpu);
0cda4c02 8581 put_ctx(src_ctx);
9886167d 8582 list_add(&event->migrate_entry, &events);
0cda4c02 8583 }
0cda4c02 8584
8f95b435
PZI
8585 /*
8586 * Wait for the events to quiesce before re-instating them.
8587 */
0cda4c02
YZ
8588 synchronize_rcu();
8589
8f95b435
PZI
8590 /*
8591 * Re-instate events in 2 passes.
8592 *
8593 * Skip over group leaders and only install siblings on this first
8594 * pass, siblings will not get enabled without a leader, however a
8595 * leader will enable its siblings, even if those are still on the old
8596 * context.
8597 */
8598 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8599 if (event->group_leader == event)
8600 continue;
8601
8602 list_del(&event->migrate_entry);
8603 if (event->state >= PERF_EVENT_STATE_OFF)
8604 event->state = PERF_EVENT_STATE_INACTIVE;
8605 account_event_cpu(event, dst_cpu);
8606 perf_install_in_context(dst_ctx, event, dst_cpu);
8607 get_ctx(dst_ctx);
8608 }
8609
8610 /*
8611 * Once all the siblings are setup properly, install the group leaders
8612 * to make it go.
8613 */
9886167d
PZ
8614 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8615 list_del(&event->migrate_entry);
0cda4c02
YZ
8616 if (event->state >= PERF_EVENT_STATE_OFF)
8617 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8618 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8619 perf_install_in_context(dst_ctx, event, dst_cpu);
8620 get_ctx(dst_ctx);
8621 }
8622 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8623 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8624}
8625EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8626
cdd6c482 8627static void sync_child_event(struct perf_event *child_event,
38b200d6 8628 struct task_struct *child)
d859e29f 8629{
cdd6c482 8630 struct perf_event *parent_event = child_event->parent;
8bc20959 8631 u64 child_val;
d859e29f 8632
cdd6c482
IM
8633 if (child_event->attr.inherit_stat)
8634 perf_event_read_event(child_event, child);
38b200d6 8635
b5e58793 8636 child_val = perf_event_count(child_event);
d859e29f
PM
8637
8638 /*
8639 * Add back the child's count to the parent's count:
8640 */
a6e6dea6 8641 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8642 atomic64_add(child_event->total_time_enabled,
8643 &parent_event->child_total_time_enabled);
8644 atomic64_add(child_event->total_time_running,
8645 &parent_event->child_total_time_running);
d859e29f
PM
8646
8647 /*
cdd6c482 8648 * Remove this event from the parent's list
d859e29f 8649 */
cdd6c482
IM
8650 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8651 mutex_lock(&parent_event->child_mutex);
8652 list_del_init(&child_event->child_list);
8653 mutex_unlock(&parent_event->child_mutex);
d859e29f 8654
dc633982
JO
8655 /*
8656 * Make sure user/parent get notified, that we just
8657 * lost one event.
8658 */
8659 perf_event_wakeup(parent_event);
8660
d859e29f 8661 /*
cdd6c482 8662 * Release the parent event, if this was the last
d859e29f
PM
8663 * reference to it.
8664 */
a6fa941d 8665 put_event(parent_event);
d859e29f
PM
8666}
8667
9b51f66d 8668static void
cdd6c482
IM
8669__perf_event_exit_task(struct perf_event *child_event,
8670 struct perf_event_context *child_ctx,
38b200d6 8671 struct task_struct *child)
9b51f66d 8672{
1903d50c
PZ
8673 /*
8674 * Do not destroy the 'original' grouping; because of the context
8675 * switch optimization the original events could've ended up in a
8676 * random child task.
8677 *
8678 * If we were to destroy the original group, all group related
8679 * operations would cease to function properly after this random
8680 * child dies.
8681 *
8682 * Do destroy all inherited groups, we don't care about those
8683 * and being thorough is better.
8684 */
8685 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8686
9b51f66d 8687 /*
38b435b1 8688 * It can happen that the parent exits first, and has events
9b51f66d 8689 * that are still around due to the child reference. These
38b435b1 8690 * events need to be zapped.
9b51f66d 8691 */
38b435b1 8692 if (child_event->parent) {
cdd6c482
IM
8693 sync_child_event(child_event, child);
8694 free_event(child_event);
179033b3
JO
8695 } else {
8696 child_event->state = PERF_EVENT_STATE_EXIT;
8697 perf_event_wakeup(child_event);
4bcf349a 8698 }
9b51f66d
IM
8699}
8700
8dc85d54 8701static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8702{
ebf905fc 8703 struct perf_event *child_event, *next;
211de6eb 8704 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8705 unsigned long flags;
9b51f66d 8706
4e93ad60 8707 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8708 return;
8709
a63eaf34 8710 local_irq_save(flags);
ad3a37de
PM
8711 /*
8712 * We can't reschedule here because interrupts are disabled,
8713 * and either child is current or it is a task that can't be
8714 * scheduled, so we are now safe from rescheduling changing
8715 * our context.
8716 */
806839b2 8717 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8718
8719 /*
8720 * Take the context lock here so that if find_get_context is
cdd6c482 8721 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8722 * incremented the context's refcount before we do put_ctx below.
8723 */
e625cce1 8724 raw_spin_lock(&child_ctx->lock);
3e349507 8725 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8dc85d54 8726 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8727
71a851b4
PZ
8728 /*
8729 * If this context is a clone; unclone it so it can't get
8730 * swapped to another process while we're removing all
cdd6c482 8731 * the events from it.
71a851b4 8732 */
211de6eb 8733 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8734 update_context_time(child_ctx);
e625cce1 8735 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8736
211de6eb
PZ
8737 if (clone_ctx)
8738 put_ctx(clone_ctx);
4a1c0f26 8739
9f498cc5 8740 /*
cdd6c482
IM
8741 * Report the task dead after unscheduling the events so that we
8742 * won't get any samples after PERF_RECORD_EXIT. We can however still
8743 * get a few PERF_RECORD_READ events.
9f498cc5 8744 */
cdd6c482 8745 perf_event_task(child, child_ctx, 0);
a63eaf34 8746
66fff224
PZ
8747 /*
8748 * We can recurse on the same lock type through:
8749 *
cdd6c482
IM
8750 * __perf_event_exit_task()
8751 * sync_child_event()
a6fa941d
AV
8752 * put_event()
8753 * mutex_lock(&ctx->mutex)
66fff224
PZ
8754 *
8755 * But since its the parent context it won't be the same instance.
8756 */
a0507c84 8757 mutex_lock(&child_ctx->mutex);
a63eaf34 8758
ebf905fc 8759 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8760 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8761
a63eaf34
PM
8762 mutex_unlock(&child_ctx->mutex);
8763
8764 put_ctx(child_ctx);
9b51f66d
IM
8765}
8766
8dc85d54
PZ
8767/*
8768 * When a child task exits, feed back event values to parent events.
8769 */
8770void perf_event_exit_task(struct task_struct *child)
8771{
8882135b 8772 struct perf_event *event, *tmp;
8dc85d54
PZ
8773 int ctxn;
8774
8882135b
PZ
8775 mutex_lock(&child->perf_event_mutex);
8776 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8777 owner_entry) {
8778 list_del_init(&event->owner_entry);
8779
8780 /*
8781 * Ensure the list deletion is visible before we clear
8782 * the owner, closes a race against perf_release() where
8783 * we need to serialize on the owner->perf_event_mutex.
8784 */
8785 smp_wmb();
8786 event->owner = NULL;
8787 }
8788 mutex_unlock(&child->perf_event_mutex);
8789
8dc85d54
PZ
8790 for_each_task_context_nr(ctxn)
8791 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8792
8793 /*
8794 * The perf_event_exit_task_context calls perf_event_task
8795 * with child's task_ctx, which generates EXIT events for
8796 * child contexts and sets child->perf_event_ctxp[] to NULL.
8797 * At this point we need to send EXIT events to cpu contexts.
8798 */
8799 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8800}
8801
889ff015
FW
8802static void perf_free_event(struct perf_event *event,
8803 struct perf_event_context *ctx)
8804{
8805 struct perf_event *parent = event->parent;
8806
8807 if (WARN_ON_ONCE(!parent))
8808 return;
8809
8810 mutex_lock(&parent->child_mutex);
8811 list_del_init(&event->child_list);
8812 mutex_unlock(&parent->child_mutex);
8813
a6fa941d 8814 put_event(parent);
889ff015 8815
652884fe 8816 raw_spin_lock_irq(&ctx->lock);
8a49542c 8817 perf_group_detach(event);
889ff015 8818 list_del_event(event, ctx);
652884fe 8819 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8820 free_event(event);
8821}
8822
bbbee908 8823/*
652884fe 8824 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8825 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8826 *
8827 * Not all locks are strictly required, but take them anyway to be nice and
8828 * help out with the lockdep assertions.
bbbee908 8829 */
cdd6c482 8830void perf_event_free_task(struct task_struct *task)
bbbee908 8831{
8dc85d54 8832 struct perf_event_context *ctx;
cdd6c482 8833 struct perf_event *event, *tmp;
8dc85d54 8834 int ctxn;
bbbee908 8835
8dc85d54
PZ
8836 for_each_task_context_nr(ctxn) {
8837 ctx = task->perf_event_ctxp[ctxn];
8838 if (!ctx)
8839 continue;
bbbee908 8840
8dc85d54 8841 mutex_lock(&ctx->mutex);
bbbee908 8842again:
8dc85d54
PZ
8843 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8844 group_entry)
8845 perf_free_event(event, ctx);
bbbee908 8846
8dc85d54
PZ
8847 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8848 group_entry)
8849 perf_free_event(event, ctx);
bbbee908 8850
8dc85d54
PZ
8851 if (!list_empty(&ctx->pinned_groups) ||
8852 !list_empty(&ctx->flexible_groups))
8853 goto again;
bbbee908 8854
8dc85d54 8855 mutex_unlock(&ctx->mutex);
bbbee908 8856
8dc85d54
PZ
8857 put_ctx(ctx);
8858 }
889ff015
FW
8859}
8860
4e231c79
PZ
8861void perf_event_delayed_put(struct task_struct *task)
8862{
8863 int ctxn;
8864
8865 for_each_task_context_nr(ctxn)
8866 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8867}
8868
ffe8690c
KX
8869struct perf_event *perf_event_get(unsigned int fd)
8870{
8871 int err;
8872 struct fd f;
8873 struct perf_event *event;
8874
8875 err = perf_fget_light(fd, &f);
8876 if (err)
8877 return ERR_PTR(err);
8878
8879 event = f.file->private_data;
8880 atomic_long_inc(&event->refcount);
8881 fdput(f);
8882
8883 return event;
8884}
8885
8886const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8887{
8888 if (!event)
8889 return ERR_PTR(-EINVAL);
8890
8891 return &event->attr;
8892}
8893
97dee4f3
PZ
8894/*
8895 * inherit a event from parent task to child task:
8896 */
8897static struct perf_event *
8898inherit_event(struct perf_event *parent_event,
8899 struct task_struct *parent,
8900 struct perf_event_context *parent_ctx,
8901 struct task_struct *child,
8902 struct perf_event *group_leader,
8903 struct perf_event_context *child_ctx)
8904{
1929def9 8905 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8906 struct perf_event *child_event;
cee010ec 8907 unsigned long flags;
97dee4f3
PZ
8908
8909 /*
8910 * Instead of creating recursive hierarchies of events,
8911 * we link inherited events back to the original parent,
8912 * which has a filp for sure, which we use as the reference
8913 * count:
8914 */
8915 if (parent_event->parent)
8916 parent_event = parent_event->parent;
8917
8918 child_event = perf_event_alloc(&parent_event->attr,
8919 parent_event->cpu,
d580ff86 8920 child,
97dee4f3 8921 group_leader, parent_event,
79dff51e 8922 NULL, NULL, -1);
97dee4f3
PZ
8923 if (IS_ERR(child_event))
8924 return child_event;
a6fa941d 8925
fadfe7be
JO
8926 if (is_orphaned_event(parent_event) ||
8927 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8928 free_event(child_event);
8929 return NULL;
8930 }
8931
97dee4f3
PZ
8932 get_ctx(child_ctx);
8933
8934 /*
8935 * Make the child state follow the state of the parent event,
8936 * not its attr.disabled bit. We hold the parent's mutex,
8937 * so we won't race with perf_event_{en, dis}able_family.
8938 */
1929def9 8939 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8940 child_event->state = PERF_EVENT_STATE_INACTIVE;
8941 else
8942 child_event->state = PERF_EVENT_STATE_OFF;
8943
8944 if (parent_event->attr.freq) {
8945 u64 sample_period = parent_event->hw.sample_period;
8946 struct hw_perf_event *hwc = &child_event->hw;
8947
8948 hwc->sample_period = sample_period;
8949 hwc->last_period = sample_period;
8950
8951 local64_set(&hwc->period_left, sample_period);
8952 }
8953
8954 child_event->ctx = child_ctx;
8955 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8956 child_event->overflow_handler_context
8957 = parent_event->overflow_handler_context;
97dee4f3 8958
614b6780
TG
8959 /*
8960 * Precalculate sample_data sizes
8961 */
8962 perf_event__header_size(child_event);
6844c09d 8963 perf_event__id_header_size(child_event);
614b6780 8964
97dee4f3
PZ
8965 /*
8966 * Link it up in the child's context:
8967 */
cee010ec 8968 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8969 add_event_to_ctx(child_event, child_ctx);
cee010ec 8970 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8971
97dee4f3
PZ
8972 /*
8973 * Link this into the parent event's child list
8974 */
8975 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8976 mutex_lock(&parent_event->child_mutex);
8977 list_add_tail(&child_event->child_list, &parent_event->child_list);
8978 mutex_unlock(&parent_event->child_mutex);
8979
8980 return child_event;
8981}
8982
8983static int inherit_group(struct perf_event *parent_event,
8984 struct task_struct *parent,
8985 struct perf_event_context *parent_ctx,
8986 struct task_struct *child,
8987 struct perf_event_context *child_ctx)
8988{
8989 struct perf_event *leader;
8990 struct perf_event *sub;
8991 struct perf_event *child_ctr;
8992
8993 leader = inherit_event(parent_event, parent, parent_ctx,
8994 child, NULL, child_ctx);
8995 if (IS_ERR(leader))
8996 return PTR_ERR(leader);
8997 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8998 child_ctr = inherit_event(sub, parent, parent_ctx,
8999 child, leader, child_ctx);
9000 if (IS_ERR(child_ctr))
9001 return PTR_ERR(child_ctr);
9002 }
9003 return 0;
889ff015
FW
9004}
9005
9006static int
9007inherit_task_group(struct perf_event *event, struct task_struct *parent,
9008 struct perf_event_context *parent_ctx,
8dc85d54 9009 struct task_struct *child, int ctxn,
889ff015
FW
9010 int *inherited_all)
9011{
9012 int ret;
8dc85d54 9013 struct perf_event_context *child_ctx;
889ff015
FW
9014
9015 if (!event->attr.inherit) {
9016 *inherited_all = 0;
9017 return 0;
bbbee908
PZ
9018 }
9019
fe4b04fa 9020 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9021 if (!child_ctx) {
9022 /*
9023 * This is executed from the parent task context, so
9024 * inherit events that have been marked for cloning.
9025 * First allocate and initialize a context for the
9026 * child.
9027 */
bbbee908 9028
734df5ab 9029 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9030 if (!child_ctx)
9031 return -ENOMEM;
bbbee908 9032
8dc85d54 9033 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9034 }
9035
9036 ret = inherit_group(event, parent, parent_ctx,
9037 child, child_ctx);
9038
9039 if (ret)
9040 *inherited_all = 0;
9041
9042 return ret;
bbbee908
PZ
9043}
9044
9b51f66d 9045/*
cdd6c482 9046 * Initialize the perf_event context in task_struct
9b51f66d 9047 */
985c8dcb 9048static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9049{
889ff015 9050 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9051 struct perf_event_context *cloned_ctx;
9052 struct perf_event *event;
9b51f66d 9053 struct task_struct *parent = current;
564c2b21 9054 int inherited_all = 1;
dddd3379 9055 unsigned long flags;
6ab423e0 9056 int ret = 0;
9b51f66d 9057
8dc85d54 9058 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9059 return 0;
9060
ad3a37de 9061 /*
25346b93
PM
9062 * If the parent's context is a clone, pin it so it won't get
9063 * swapped under us.
ad3a37de 9064 */
8dc85d54 9065 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9066 if (!parent_ctx)
9067 return 0;
25346b93 9068
ad3a37de
PM
9069 /*
9070 * No need to check if parent_ctx != NULL here; since we saw
9071 * it non-NULL earlier, the only reason for it to become NULL
9072 * is if we exit, and since we're currently in the middle of
9073 * a fork we can't be exiting at the same time.
9074 */
ad3a37de 9075
9b51f66d
IM
9076 /*
9077 * Lock the parent list. No need to lock the child - not PID
9078 * hashed yet and not running, so nobody can access it.
9079 */
d859e29f 9080 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9081
9082 /*
9083 * We dont have to disable NMIs - we are only looking at
9084 * the list, not manipulating it:
9085 */
889ff015 9086 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9087 ret = inherit_task_group(event, parent, parent_ctx,
9088 child, ctxn, &inherited_all);
889ff015
FW
9089 if (ret)
9090 break;
9091 }
b93f7978 9092
dddd3379
TG
9093 /*
9094 * We can't hold ctx->lock when iterating the ->flexible_group list due
9095 * to allocations, but we need to prevent rotation because
9096 * rotate_ctx() will change the list from interrupt context.
9097 */
9098 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9099 parent_ctx->rotate_disable = 1;
9100 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9101
889ff015 9102 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9103 ret = inherit_task_group(event, parent, parent_ctx,
9104 child, ctxn, &inherited_all);
889ff015 9105 if (ret)
9b51f66d 9106 break;
564c2b21
PM
9107 }
9108
dddd3379
TG
9109 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9110 parent_ctx->rotate_disable = 0;
dddd3379 9111
8dc85d54 9112 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9113
05cbaa28 9114 if (child_ctx && inherited_all) {
564c2b21
PM
9115 /*
9116 * Mark the child context as a clone of the parent
9117 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9118 *
9119 * Note that if the parent is a clone, the holding of
9120 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9121 */
c5ed5145 9122 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9123 if (cloned_ctx) {
9124 child_ctx->parent_ctx = cloned_ctx;
25346b93 9125 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9126 } else {
9127 child_ctx->parent_ctx = parent_ctx;
9128 child_ctx->parent_gen = parent_ctx->generation;
9129 }
9130 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9131 }
9132
c5ed5145 9133 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9134 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9135
25346b93 9136 perf_unpin_context(parent_ctx);
fe4b04fa 9137 put_ctx(parent_ctx);
ad3a37de 9138
6ab423e0 9139 return ret;
9b51f66d
IM
9140}
9141
8dc85d54
PZ
9142/*
9143 * Initialize the perf_event context in task_struct
9144 */
9145int perf_event_init_task(struct task_struct *child)
9146{
9147 int ctxn, ret;
9148
8550d7cb
ON
9149 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9150 mutex_init(&child->perf_event_mutex);
9151 INIT_LIST_HEAD(&child->perf_event_list);
9152
8dc85d54
PZ
9153 for_each_task_context_nr(ctxn) {
9154 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9155 if (ret) {
9156 perf_event_free_task(child);
8dc85d54 9157 return ret;
6c72e350 9158 }
8dc85d54
PZ
9159 }
9160
9161 return 0;
9162}
9163
220b140b
PM
9164static void __init perf_event_init_all_cpus(void)
9165{
b28ab83c 9166 struct swevent_htable *swhash;
220b140b 9167 int cpu;
220b140b
PM
9168
9169 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9170 swhash = &per_cpu(swevent_htable, cpu);
9171 mutex_init(&swhash->hlist_mutex);
2fde4f94 9172 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9173 }
9174}
9175
0db0628d 9176static void perf_event_init_cpu(int cpu)
0793a61d 9177{
108b02cf 9178 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9179
b28ab83c 9180 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9181 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9182 struct swevent_hlist *hlist;
9183
b28ab83c
PZ
9184 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9185 WARN_ON(!hlist);
9186 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9187 }
b28ab83c 9188 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9189}
9190
2965faa5 9191#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9192static void __perf_event_exit_context(void *__info)
0793a61d 9193{
226424ee 9194 struct remove_event re = { .detach_group = true };
108b02cf 9195 struct perf_event_context *ctx = __info;
0793a61d 9196
e3703f8c 9197 rcu_read_lock();
46ce0fe9
PZ
9198 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9199 __perf_remove_from_context(&re);
e3703f8c 9200 rcu_read_unlock();
0793a61d 9201}
108b02cf
PZ
9202
9203static void perf_event_exit_cpu_context(int cpu)
9204{
9205 struct perf_event_context *ctx;
9206 struct pmu *pmu;
9207 int idx;
9208
9209 idx = srcu_read_lock(&pmus_srcu);
9210 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9211 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9212
9213 mutex_lock(&ctx->mutex);
9214 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9215 mutex_unlock(&ctx->mutex);
9216 }
9217 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9218}
9219
cdd6c482 9220static void perf_event_exit_cpu(int cpu)
0793a61d 9221{
e3703f8c 9222 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9223}
9224#else
cdd6c482 9225static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9226#endif
9227
c277443c
PZ
9228static int
9229perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9230{
9231 int cpu;
9232
9233 for_each_online_cpu(cpu)
9234 perf_event_exit_cpu(cpu);
9235
9236 return NOTIFY_OK;
9237}
9238
9239/*
9240 * Run the perf reboot notifier at the very last possible moment so that
9241 * the generic watchdog code runs as long as possible.
9242 */
9243static struct notifier_block perf_reboot_notifier = {
9244 .notifier_call = perf_reboot,
9245 .priority = INT_MIN,
9246};
9247
0db0628d 9248static int
0793a61d
TG
9249perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9250{
9251 unsigned int cpu = (long)hcpu;
9252
4536e4d1 9253 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9254
9255 case CPU_UP_PREPARE:
5e11637e 9256 case CPU_DOWN_FAILED:
cdd6c482 9257 perf_event_init_cpu(cpu);
0793a61d
TG
9258 break;
9259
5e11637e 9260 case CPU_UP_CANCELED:
0793a61d 9261 case CPU_DOWN_PREPARE:
cdd6c482 9262 perf_event_exit_cpu(cpu);
0793a61d 9263 break;
0793a61d
TG
9264 default:
9265 break;
9266 }
9267
9268 return NOTIFY_OK;
9269}
9270
cdd6c482 9271void __init perf_event_init(void)
0793a61d 9272{
3c502e7a
JW
9273 int ret;
9274
2e80a82a
PZ
9275 idr_init(&pmu_idr);
9276
220b140b 9277 perf_event_init_all_cpus();
b0a873eb 9278 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9279 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9280 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9281 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9282 perf_tp_register();
9283 perf_cpu_notifier(perf_cpu_notify);
c277443c 9284 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9285
9286 ret = init_hw_breakpoint();
9287 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9288
9289 /* do not patch jump label more than once per second */
9290 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9291
9292 /*
9293 * Build time assertion that we keep the data_head at the intended
9294 * location. IOW, validation we got the __reserved[] size right.
9295 */
9296 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9297 != 1024);
0793a61d 9298}
abe43400 9299
fd979c01
CS
9300ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9301 char *page)
9302{
9303 struct perf_pmu_events_attr *pmu_attr =
9304 container_of(attr, struct perf_pmu_events_attr, attr);
9305
9306 if (pmu_attr->event_str)
9307 return sprintf(page, "%s\n", pmu_attr->event_str);
9308
9309 return 0;
9310}
9311
abe43400
PZ
9312static int __init perf_event_sysfs_init(void)
9313{
9314 struct pmu *pmu;
9315 int ret;
9316
9317 mutex_lock(&pmus_lock);
9318
9319 ret = bus_register(&pmu_bus);
9320 if (ret)
9321 goto unlock;
9322
9323 list_for_each_entry(pmu, &pmus, entry) {
9324 if (!pmu->name || pmu->type < 0)
9325 continue;
9326
9327 ret = pmu_dev_alloc(pmu);
9328 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9329 }
9330 pmu_bus_running = 1;
9331 ret = 0;
9332
9333unlock:
9334 mutex_unlock(&pmus_lock);
9335
9336 return ret;
9337}
9338device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9339
9340#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9341static struct cgroup_subsys_state *
9342perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9343{
9344 struct perf_cgroup *jc;
e5d1367f 9345
1b15d055 9346 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9347 if (!jc)
9348 return ERR_PTR(-ENOMEM);
9349
e5d1367f
SE
9350 jc->info = alloc_percpu(struct perf_cgroup_info);
9351 if (!jc->info) {
9352 kfree(jc);
9353 return ERR_PTR(-ENOMEM);
9354 }
9355
e5d1367f
SE
9356 return &jc->css;
9357}
9358
eb95419b 9359static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9360{
eb95419b
TH
9361 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9362
e5d1367f
SE
9363 free_percpu(jc->info);
9364 kfree(jc);
9365}
9366
9367static int __perf_cgroup_move(void *info)
9368{
9369 struct task_struct *task = info;
ddaaf4e2 9370 rcu_read_lock();
e5d1367f 9371 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9372 rcu_read_unlock();
e5d1367f
SE
9373 return 0;
9374}
9375
1f7dd3e5 9376static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9377{
bb9d97b6 9378 struct task_struct *task;
1f7dd3e5 9379 struct cgroup_subsys_state *css;
bb9d97b6 9380
1f7dd3e5 9381 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9382 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9383}
9384
073219e9 9385struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9386 .css_alloc = perf_cgroup_css_alloc,
9387 .css_free = perf_cgroup_css_free,
bb9d97b6 9388 .attach = perf_cgroup_attach,
e5d1367f
SE
9389};
9390#endif /* CONFIG_CGROUP_PERF */