Merge branch 'liblockdep-fixes-3.15' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
122 PERF_FLAG_PID_CGROUP |\
123 PERF_FLAG_FD_CLOEXEC)
e5d1367f 124
bce38cd5
SE
125/*
126 * branch priv levels that need permission checks
127 */
128#define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
0b3fcf17
SE
132enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136};
137
e5d1367f
SE
138/*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
c5905afb 142struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 143static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 144static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 145
cdd6c482
IM
146static atomic_t nr_mmap_events __read_mostly;
147static atomic_t nr_comm_events __read_mostly;
148static atomic_t nr_task_events __read_mostly;
948b26b6 149static atomic_t nr_freq_events __read_mostly;
9ee318a7 150
108b02cf
PZ
151static LIST_HEAD(pmus);
152static DEFINE_MUTEX(pmus_lock);
153static struct srcu_struct pmus_srcu;
154
0764771d 155/*
cdd6c482 156 * perf event paranoia level:
0fbdea19
IM
157 * -1 - not paranoid at all
158 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 159 * 1 - disallow cpu events for unpriv
0fbdea19 160 * 2 - disallow kernel profiling for unpriv
0764771d 161 */
cdd6c482 162int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 163
20443384
FW
164/* Minimum for 512 kiB + 1 user control page */
165int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
166
167/*
cdd6c482 168 * max perf event sample rate
df58ab24 169 */
14c63f17
DH
170#define DEFAULT_MAX_SAMPLE_RATE 100000
171#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172#define DEFAULT_CPU_TIME_MAX_PERCENT 25
173
174int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175
176static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178
d9494cb4
PZ
179static int perf_sample_allowed_ns __read_mostly =
180 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
181
182void update_perf_cpu_limits(void)
183{
184 u64 tmp = perf_sample_period_ns;
185
186 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 187 do_div(tmp, 100);
d9494cb4 188 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 189}
163ec435 190
9e630205
SE
191static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192
163ec435
PZ
193int perf_proc_update_handler(struct ctl_table *table, int write,
194 void __user *buffer, size_t *lenp,
195 loff_t *ppos)
196{
723478c8 197 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
198
199 if (ret || !write)
200 return ret;
201
202 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
203 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 update_perf_cpu_limits();
205
206 return 0;
207}
208
209int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210
211int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp,
213 loff_t *ppos)
214{
215 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216
217 if (ret || !write)
218 return ret;
219
220 update_perf_cpu_limits();
163ec435
PZ
221
222 return 0;
223}
1ccd1549 224
14c63f17
DH
225/*
226 * perf samples are done in some very critical code paths (NMIs).
227 * If they take too much CPU time, the system can lock up and not
228 * get any real work done. This will drop the sample rate when
229 * we detect that events are taking too long.
230 */
231#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 232static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 233
6a02ad66 234static void perf_duration_warn(struct irq_work *w)
14c63f17 235{
6a02ad66 236 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 237 u64 avg_local_sample_len;
e5302920 238 u64 local_samples_len;
6a02ad66
PZ
239
240 local_samples_len = __get_cpu_var(running_sample_length);
241 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
242
243 printk_ratelimited(KERN_WARNING
244 "perf interrupt took too long (%lld > %lld), lowering "
245 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 246 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
247 sysctl_perf_event_sample_rate);
248}
249
250static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
251
252void perf_sample_event_took(u64 sample_len_ns)
253{
d9494cb4 254 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
255 u64 avg_local_sample_len;
256 u64 local_samples_len;
14c63f17 257
d9494cb4 258 if (allowed_ns == 0)
14c63f17
DH
259 return;
260
261 /* decay the counter by 1 average sample */
262 local_samples_len = __get_cpu_var(running_sample_length);
263 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
264 local_samples_len += sample_len_ns;
265 __get_cpu_var(running_sample_length) = local_samples_len;
266
267 /*
268 * note: this will be biased artifically low until we have
269 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
270 * from having to maintain a count.
271 */
272 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
273
d9494cb4 274 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
275 return;
276
277 if (max_samples_per_tick <= 1)
278 return;
279
280 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
281 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
282 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
283
14c63f17 284 update_perf_cpu_limits();
6a02ad66 285
cd578abb
PZ
286 if (!irq_work_queue(&perf_duration_work)) {
287 early_printk("perf interrupt took too long (%lld > %lld), lowering "
288 "kernel.perf_event_max_sample_rate to %d\n",
289 avg_local_sample_len, allowed_ns >> 1,
290 sysctl_perf_event_sample_rate);
291 }
14c63f17
DH
292}
293
cdd6c482 294static atomic64_t perf_event_id;
a96bbc16 295
0b3fcf17
SE
296static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
297 enum event_type_t event_type);
298
299static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
300 enum event_type_t event_type,
301 struct task_struct *task);
302
303static void update_context_time(struct perf_event_context *ctx);
304static u64 perf_event_time(struct perf_event *event);
0b3fcf17 305
cdd6c482 306void __weak perf_event_print_debug(void) { }
0793a61d 307
84c79910 308extern __weak const char *perf_pmu_name(void)
0793a61d 309{
84c79910 310 return "pmu";
0793a61d
TG
311}
312
0b3fcf17
SE
313static inline u64 perf_clock(void)
314{
315 return local_clock();
316}
317
e5d1367f
SE
318static inline struct perf_cpu_context *
319__get_cpu_context(struct perf_event_context *ctx)
320{
321 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
322}
323
facc4307
PZ
324static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
325 struct perf_event_context *ctx)
326{
327 raw_spin_lock(&cpuctx->ctx.lock);
328 if (ctx)
329 raw_spin_lock(&ctx->lock);
330}
331
332static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334{
335 if (ctx)
336 raw_spin_unlock(&ctx->lock);
337 raw_spin_unlock(&cpuctx->ctx.lock);
338}
339
e5d1367f
SE
340#ifdef CONFIG_CGROUP_PERF
341
877c6856
LZ
342/*
343 * perf_cgroup_info keeps track of time_enabled for a cgroup.
344 * This is a per-cpu dynamically allocated data structure.
345 */
346struct perf_cgroup_info {
347 u64 time;
348 u64 timestamp;
349};
350
351struct perf_cgroup {
352 struct cgroup_subsys_state css;
86e213e1 353 struct perf_cgroup_info __percpu *info;
877c6856
LZ
354};
355
3f7cce3c
SE
356/*
357 * Must ensure cgroup is pinned (css_get) before calling
358 * this function. In other words, we cannot call this function
359 * if there is no cgroup event for the current CPU context.
360 */
e5d1367f
SE
361static inline struct perf_cgroup *
362perf_cgroup_from_task(struct task_struct *task)
363{
073219e9 364 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 365 struct perf_cgroup, css);
e5d1367f
SE
366}
367
368static inline bool
369perf_cgroup_match(struct perf_event *event)
370{
371 struct perf_event_context *ctx = event->ctx;
372 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
373
ef824fa1
TH
374 /* @event doesn't care about cgroup */
375 if (!event->cgrp)
376 return true;
377
378 /* wants specific cgroup scope but @cpuctx isn't associated with any */
379 if (!cpuctx->cgrp)
380 return false;
381
382 /*
383 * Cgroup scoping is recursive. An event enabled for a cgroup is
384 * also enabled for all its descendant cgroups. If @cpuctx's
385 * cgroup is a descendant of @event's (the test covers identity
386 * case), it's a match.
387 */
388 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
389 event->cgrp->css.cgroup);
e5d1367f
SE
390}
391
e5d1367f
SE
392static inline void perf_put_cgroup(struct perf_event *event)
393{
394 css_put(&event->cgrp->css);
395}
396
397static inline void perf_detach_cgroup(struct perf_event *event)
398{
399 perf_put_cgroup(event);
400 event->cgrp = NULL;
401}
402
403static inline int is_cgroup_event(struct perf_event *event)
404{
405 return event->cgrp != NULL;
406}
407
408static inline u64 perf_cgroup_event_time(struct perf_event *event)
409{
410 struct perf_cgroup_info *t;
411
412 t = per_cpu_ptr(event->cgrp->info, event->cpu);
413 return t->time;
414}
415
416static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
417{
418 struct perf_cgroup_info *info;
419 u64 now;
420
421 now = perf_clock();
422
423 info = this_cpu_ptr(cgrp->info);
424
425 info->time += now - info->timestamp;
426 info->timestamp = now;
427}
428
429static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
430{
431 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
432 if (cgrp_out)
433 __update_cgrp_time(cgrp_out);
434}
435
436static inline void update_cgrp_time_from_event(struct perf_event *event)
437{
3f7cce3c
SE
438 struct perf_cgroup *cgrp;
439
e5d1367f 440 /*
3f7cce3c
SE
441 * ensure we access cgroup data only when needed and
442 * when we know the cgroup is pinned (css_get)
e5d1367f 443 */
3f7cce3c 444 if (!is_cgroup_event(event))
e5d1367f
SE
445 return;
446
3f7cce3c
SE
447 cgrp = perf_cgroup_from_task(current);
448 /*
449 * Do not update time when cgroup is not active
450 */
451 if (cgrp == event->cgrp)
452 __update_cgrp_time(event->cgrp);
e5d1367f
SE
453}
454
455static inline void
3f7cce3c
SE
456perf_cgroup_set_timestamp(struct task_struct *task,
457 struct perf_event_context *ctx)
e5d1367f
SE
458{
459 struct perf_cgroup *cgrp;
460 struct perf_cgroup_info *info;
461
3f7cce3c
SE
462 /*
463 * ctx->lock held by caller
464 * ensure we do not access cgroup data
465 * unless we have the cgroup pinned (css_get)
466 */
467 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
468 return;
469
470 cgrp = perf_cgroup_from_task(task);
471 info = this_cpu_ptr(cgrp->info);
3f7cce3c 472 info->timestamp = ctx->timestamp;
e5d1367f
SE
473}
474
475#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
476#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
477
478/*
479 * reschedule events based on the cgroup constraint of task.
480 *
481 * mode SWOUT : schedule out everything
482 * mode SWIN : schedule in based on cgroup for next
483 */
484void perf_cgroup_switch(struct task_struct *task, int mode)
485{
486 struct perf_cpu_context *cpuctx;
487 struct pmu *pmu;
488 unsigned long flags;
489
490 /*
491 * disable interrupts to avoid geting nr_cgroup
492 * changes via __perf_event_disable(). Also
493 * avoids preemption.
494 */
495 local_irq_save(flags);
496
497 /*
498 * we reschedule only in the presence of cgroup
499 * constrained events.
500 */
501 rcu_read_lock();
502
503 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 504 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
505 if (cpuctx->unique_pmu != pmu)
506 continue; /* ensure we process each cpuctx once */
e5d1367f 507
e5d1367f
SE
508 /*
509 * perf_cgroup_events says at least one
510 * context on this CPU has cgroup events.
511 *
512 * ctx->nr_cgroups reports the number of cgroup
513 * events for a context.
514 */
515 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
516 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
517 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
518
519 if (mode & PERF_CGROUP_SWOUT) {
520 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
521 /*
522 * must not be done before ctxswout due
523 * to event_filter_match() in event_sched_out()
524 */
525 cpuctx->cgrp = NULL;
526 }
527
528 if (mode & PERF_CGROUP_SWIN) {
e566b76e 529 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
530 /*
531 * set cgrp before ctxsw in to allow
532 * event_filter_match() to not have to pass
533 * task around
e5d1367f
SE
534 */
535 cpuctx->cgrp = perf_cgroup_from_task(task);
536 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
537 }
facc4307
PZ
538 perf_pmu_enable(cpuctx->ctx.pmu);
539 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 540 }
e5d1367f
SE
541 }
542
543 rcu_read_unlock();
544
545 local_irq_restore(flags);
546}
547
a8d757ef
SE
548static inline void perf_cgroup_sched_out(struct task_struct *task,
549 struct task_struct *next)
e5d1367f 550{
a8d757ef
SE
551 struct perf_cgroup *cgrp1;
552 struct perf_cgroup *cgrp2 = NULL;
553
554 /*
555 * we come here when we know perf_cgroup_events > 0
556 */
557 cgrp1 = perf_cgroup_from_task(task);
558
559 /*
560 * next is NULL when called from perf_event_enable_on_exec()
561 * that will systematically cause a cgroup_switch()
562 */
563 if (next)
564 cgrp2 = perf_cgroup_from_task(next);
565
566 /*
567 * only schedule out current cgroup events if we know
568 * that we are switching to a different cgroup. Otherwise,
569 * do no touch the cgroup events.
570 */
571 if (cgrp1 != cgrp2)
572 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
573}
574
a8d757ef
SE
575static inline void perf_cgroup_sched_in(struct task_struct *prev,
576 struct task_struct *task)
e5d1367f 577{
a8d757ef
SE
578 struct perf_cgroup *cgrp1;
579 struct perf_cgroup *cgrp2 = NULL;
580
581 /*
582 * we come here when we know perf_cgroup_events > 0
583 */
584 cgrp1 = perf_cgroup_from_task(task);
585
586 /* prev can never be NULL */
587 cgrp2 = perf_cgroup_from_task(prev);
588
589 /*
590 * only need to schedule in cgroup events if we are changing
591 * cgroup during ctxsw. Cgroup events were not scheduled
592 * out of ctxsw out if that was not the case.
593 */
594 if (cgrp1 != cgrp2)
595 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
596}
597
598static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601{
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
2903ff01
AV
604 struct fd f = fdget(fd);
605 int ret = 0;
e5d1367f 606
2903ff01 607 if (!f.file)
e5d1367f
SE
608 return -EBADF;
609
5a17f543 610 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
3db272c0
LZ
611 if (IS_ERR(css)) {
612 ret = PTR_ERR(css);
613 goto out;
614 }
e5d1367f
SE
615
616 cgrp = container_of(css, struct perf_cgroup, css);
617 event->cgrp = cgrp;
618
619 /*
620 * all events in a group must monitor
621 * the same cgroup because a task belongs
622 * to only one perf cgroup at a time
623 */
624 if (group_leader && group_leader->cgrp != cgrp) {
625 perf_detach_cgroup(event);
626 ret = -EINVAL;
e5d1367f 627 }
3db272c0 628out:
2903ff01 629 fdput(f);
e5d1367f
SE
630 return ret;
631}
632
633static inline void
634perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
635{
636 struct perf_cgroup_info *t;
637 t = per_cpu_ptr(event->cgrp->info, event->cpu);
638 event->shadow_ctx_time = now - t->timestamp;
639}
640
641static inline void
642perf_cgroup_defer_enabled(struct perf_event *event)
643{
644 /*
645 * when the current task's perf cgroup does not match
646 * the event's, we need to remember to call the
647 * perf_mark_enable() function the first time a task with
648 * a matching perf cgroup is scheduled in.
649 */
650 if (is_cgroup_event(event) && !perf_cgroup_match(event))
651 event->cgrp_defer_enabled = 1;
652}
653
654static inline void
655perf_cgroup_mark_enabled(struct perf_event *event,
656 struct perf_event_context *ctx)
657{
658 struct perf_event *sub;
659 u64 tstamp = perf_event_time(event);
660
661 if (!event->cgrp_defer_enabled)
662 return;
663
664 event->cgrp_defer_enabled = 0;
665
666 event->tstamp_enabled = tstamp - event->total_time_enabled;
667 list_for_each_entry(sub, &event->sibling_list, group_entry) {
668 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
669 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
670 sub->cgrp_defer_enabled = 0;
671 }
672 }
673}
674#else /* !CONFIG_CGROUP_PERF */
675
676static inline bool
677perf_cgroup_match(struct perf_event *event)
678{
679 return true;
680}
681
682static inline void perf_detach_cgroup(struct perf_event *event)
683{}
684
685static inline int is_cgroup_event(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
691{
692 return 0;
693}
694
695static inline void update_cgrp_time_from_event(struct perf_event *event)
696{
697}
698
699static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
700{
701}
702
a8d757ef
SE
703static inline void perf_cgroup_sched_out(struct task_struct *task,
704 struct task_struct *next)
e5d1367f
SE
705{
706}
707
a8d757ef
SE
708static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
e5d1367f
SE
710{
711}
712
713static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
714 struct perf_event_attr *attr,
715 struct perf_event *group_leader)
716{
717 return -EINVAL;
718}
719
720static inline void
3f7cce3c
SE
721perf_cgroup_set_timestamp(struct task_struct *task,
722 struct perf_event_context *ctx)
e5d1367f
SE
723{
724}
725
726void
727perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
728{
729}
730
731static inline void
732perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
733{
734}
735
736static inline u64 perf_cgroup_event_time(struct perf_event *event)
737{
738 return 0;
739}
740
741static inline void
742perf_cgroup_defer_enabled(struct perf_event *event)
743{
744}
745
746static inline void
747perf_cgroup_mark_enabled(struct perf_event *event,
748 struct perf_event_context *ctx)
749{
750}
751#endif
752
9e630205
SE
753/*
754 * set default to be dependent on timer tick just
755 * like original code
756 */
757#define PERF_CPU_HRTIMER (1000 / HZ)
758/*
759 * function must be called with interrupts disbled
760 */
761static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
762{
763 struct perf_cpu_context *cpuctx;
764 enum hrtimer_restart ret = HRTIMER_NORESTART;
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770
771 rotations = perf_rotate_context(cpuctx);
772
773 /*
774 * arm timer if needed
775 */
776 if (rotations) {
777 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
778 ret = HRTIMER_RESTART;
779 }
780
781 return ret;
782}
783
784/* CPU is going down */
785void perf_cpu_hrtimer_cancel(int cpu)
786{
787 struct perf_cpu_context *cpuctx;
788 struct pmu *pmu;
789 unsigned long flags;
790
791 if (WARN_ON(cpu != smp_processor_id()))
792 return;
793
794 local_irq_save(flags);
795
796 rcu_read_lock();
797
798 list_for_each_entry_rcu(pmu, &pmus, entry) {
799 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
800
801 if (pmu->task_ctx_nr == perf_sw_context)
802 continue;
803
804 hrtimer_cancel(&cpuctx->hrtimer);
805 }
806
807 rcu_read_unlock();
808
809 local_irq_restore(flags);
810}
811
812static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
813{
814 struct hrtimer *hr = &cpuctx->hrtimer;
815 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 816 int timer;
9e630205
SE
817
818 /* no multiplexing needed for SW PMU */
819 if (pmu->task_ctx_nr == perf_sw_context)
820 return;
821
62b85639
SE
822 /*
823 * check default is sane, if not set then force to
824 * default interval (1/tick)
825 */
826 timer = pmu->hrtimer_interval_ms;
827 if (timer < 1)
828 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
829
830 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
831
832 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
833 hr->function = perf_cpu_hrtimer_handler;
834}
835
836static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
837{
838 struct hrtimer *hr = &cpuctx->hrtimer;
839 struct pmu *pmu = cpuctx->ctx.pmu;
840
841 /* not for SW PMU */
842 if (pmu->task_ctx_nr == perf_sw_context)
843 return;
844
845 if (hrtimer_active(hr))
846 return;
847
848 if (!hrtimer_callback_running(hr))
849 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
850 0, HRTIMER_MODE_REL_PINNED, 0);
851}
852
33696fc0 853void perf_pmu_disable(struct pmu *pmu)
9e35ad38 854{
33696fc0
PZ
855 int *count = this_cpu_ptr(pmu->pmu_disable_count);
856 if (!(*count)++)
857 pmu->pmu_disable(pmu);
9e35ad38 858}
9e35ad38 859
33696fc0 860void perf_pmu_enable(struct pmu *pmu)
9e35ad38 861{
33696fc0
PZ
862 int *count = this_cpu_ptr(pmu->pmu_disable_count);
863 if (!--(*count))
864 pmu->pmu_enable(pmu);
9e35ad38 865}
9e35ad38 866
e9d2b064
PZ
867static DEFINE_PER_CPU(struct list_head, rotation_list);
868
869/*
870 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
871 * because they're strictly cpu affine and rotate_start is called with IRQs
872 * disabled, while rotate_context is called from IRQ context.
873 */
108b02cf 874static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 875{
108b02cf 876 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 877 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 878
e9d2b064 879 WARN_ON(!irqs_disabled());
b5ab4cd5 880
d84153d6 881 if (list_empty(&cpuctx->rotation_list))
e9d2b064 882 list_add(&cpuctx->rotation_list, head);
9e35ad38 883}
9e35ad38 884
cdd6c482 885static void get_ctx(struct perf_event_context *ctx)
a63eaf34 886{
e5289d4a 887 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
888}
889
cdd6c482 890static void put_ctx(struct perf_event_context *ctx)
a63eaf34 891{
564c2b21
PM
892 if (atomic_dec_and_test(&ctx->refcount)) {
893 if (ctx->parent_ctx)
894 put_ctx(ctx->parent_ctx);
c93f7669
PM
895 if (ctx->task)
896 put_task_struct(ctx->task);
cb796ff3 897 kfree_rcu(ctx, rcu_head);
564c2b21 898 }
a63eaf34
PM
899}
900
cdd6c482 901static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
902{
903 if (ctx->parent_ctx) {
904 put_ctx(ctx->parent_ctx);
905 ctx->parent_ctx = NULL;
906 }
5a3126d4 907 ctx->generation++;
71a851b4
PZ
908}
909
6844c09d
ACM
910static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
911{
912 /*
913 * only top level events have the pid namespace they were created in
914 */
915 if (event->parent)
916 event = event->parent;
917
918 return task_tgid_nr_ns(p, event->ns);
919}
920
921static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
922{
923 /*
924 * only top level events have the pid namespace they were created in
925 */
926 if (event->parent)
927 event = event->parent;
928
929 return task_pid_nr_ns(p, event->ns);
930}
931
7f453c24 932/*
cdd6c482 933 * If we inherit events we want to return the parent event id
7f453c24
PZ
934 * to userspace.
935 */
cdd6c482 936static u64 primary_event_id(struct perf_event *event)
7f453c24 937{
cdd6c482 938 u64 id = event->id;
7f453c24 939
cdd6c482
IM
940 if (event->parent)
941 id = event->parent->id;
7f453c24
PZ
942
943 return id;
944}
945
25346b93 946/*
cdd6c482 947 * Get the perf_event_context for a task and lock it.
25346b93
PM
948 * This has to cope with with the fact that until it is locked,
949 * the context could get moved to another task.
950 */
cdd6c482 951static struct perf_event_context *
8dc85d54 952perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 953{
cdd6c482 954 struct perf_event_context *ctx;
25346b93 955
9ed6060d 956retry:
058ebd0e
PZ
957 /*
958 * One of the few rules of preemptible RCU is that one cannot do
959 * rcu_read_unlock() while holding a scheduler (or nested) lock when
960 * part of the read side critical section was preemptible -- see
961 * rcu_read_unlock_special().
962 *
963 * Since ctx->lock nests under rq->lock we must ensure the entire read
964 * side critical section is non-preemptible.
965 */
966 preempt_disable();
967 rcu_read_lock();
8dc85d54 968 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
969 if (ctx) {
970 /*
971 * If this context is a clone of another, it might
972 * get swapped for another underneath us by
cdd6c482 973 * perf_event_task_sched_out, though the
25346b93
PM
974 * rcu_read_lock() protects us from any context
975 * getting freed. Lock the context and check if it
976 * got swapped before we could get the lock, and retry
977 * if so. If we locked the right context, then it
978 * can't get swapped on us any more.
979 */
e625cce1 980 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 981 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 982 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
983 rcu_read_unlock();
984 preempt_enable();
25346b93
PM
985 goto retry;
986 }
b49a9e7e
PZ
987
988 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 989 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
990 ctx = NULL;
991 }
25346b93
PM
992 }
993 rcu_read_unlock();
058ebd0e 994 preempt_enable();
25346b93
PM
995 return ctx;
996}
997
998/*
999 * Get the context for a task and increment its pin_count so it
1000 * can't get swapped to another task. This also increments its
1001 * reference count so that the context can't get freed.
1002 */
8dc85d54
PZ
1003static struct perf_event_context *
1004perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1005{
cdd6c482 1006 struct perf_event_context *ctx;
25346b93
PM
1007 unsigned long flags;
1008
8dc85d54 1009 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1010 if (ctx) {
1011 ++ctx->pin_count;
e625cce1 1012 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1013 }
1014 return ctx;
1015}
1016
cdd6c482 1017static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1018{
1019 unsigned long flags;
1020
e625cce1 1021 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1022 --ctx->pin_count;
e625cce1 1023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1024}
1025
f67218c3
PZ
1026/*
1027 * Update the record of the current time in a context.
1028 */
1029static void update_context_time(struct perf_event_context *ctx)
1030{
1031 u64 now = perf_clock();
1032
1033 ctx->time += now - ctx->timestamp;
1034 ctx->timestamp = now;
1035}
1036
4158755d
SE
1037static u64 perf_event_time(struct perf_event *event)
1038{
1039 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1040
1041 if (is_cgroup_event(event))
1042 return perf_cgroup_event_time(event);
1043
4158755d
SE
1044 return ctx ? ctx->time : 0;
1045}
1046
f67218c3
PZ
1047/*
1048 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1049 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1050 */
1051static void update_event_times(struct perf_event *event)
1052{
1053 struct perf_event_context *ctx = event->ctx;
1054 u64 run_end;
1055
1056 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1057 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1058 return;
e5d1367f
SE
1059 /*
1060 * in cgroup mode, time_enabled represents
1061 * the time the event was enabled AND active
1062 * tasks were in the monitored cgroup. This is
1063 * independent of the activity of the context as
1064 * there may be a mix of cgroup and non-cgroup events.
1065 *
1066 * That is why we treat cgroup events differently
1067 * here.
1068 */
1069 if (is_cgroup_event(event))
46cd6a7f 1070 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1071 else if (ctx->is_active)
1072 run_end = ctx->time;
acd1d7c1
PZ
1073 else
1074 run_end = event->tstamp_stopped;
1075
1076 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1077
1078 if (event->state == PERF_EVENT_STATE_INACTIVE)
1079 run_end = event->tstamp_stopped;
1080 else
4158755d 1081 run_end = perf_event_time(event);
f67218c3
PZ
1082
1083 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1084
f67218c3
PZ
1085}
1086
96c21a46
PZ
1087/*
1088 * Update total_time_enabled and total_time_running for all events in a group.
1089 */
1090static void update_group_times(struct perf_event *leader)
1091{
1092 struct perf_event *event;
1093
1094 update_event_times(leader);
1095 list_for_each_entry(event, &leader->sibling_list, group_entry)
1096 update_event_times(event);
1097}
1098
889ff015
FW
1099static struct list_head *
1100ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1101{
1102 if (event->attr.pinned)
1103 return &ctx->pinned_groups;
1104 else
1105 return &ctx->flexible_groups;
1106}
1107
fccc714b 1108/*
cdd6c482 1109 * Add a event from the lists for its context.
fccc714b
PZ
1110 * Must be called with ctx->mutex and ctx->lock held.
1111 */
04289bb9 1112static void
cdd6c482 1113list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1114{
8a49542c
PZ
1115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1116 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1117
1118 /*
8a49542c
PZ
1119 * If we're a stand alone event or group leader, we go to the context
1120 * list, group events are kept attached to the group so that
1121 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1122 */
8a49542c 1123 if (event->group_leader == event) {
889ff015
FW
1124 struct list_head *list;
1125
d6f962b5
FW
1126 if (is_software_event(event))
1127 event->group_flags |= PERF_GROUP_SOFTWARE;
1128
889ff015
FW
1129 list = ctx_group_list(event, ctx);
1130 list_add_tail(&event->group_entry, list);
5c148194 1131 }
592903cd 1132
08309379 1133 if (is_cgroup_event(event))
e5d1367f 1134 ctx->nr_cgroups++;
e5d1367f 1135
d010b332
SE
1136 if (has_branch_stack(event))
1137 ctx->nr_branch_stack++;
1138
cdd6c482 1139 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1140 if (!ctx->nr_events)
108b02cf 1141 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1142 ctx->nr_events++;
1143 if (event->attr.inherit_stat)
bfbd3381 1144 ctx->nr_stat++;
5a3126d4
PZ
1145
1146 ctx->generation++;
04289bb9
IM
1147}
1148
0231bb53
JO
1149/*
1150 * Initialize event state based on the perf_event_attr::disabled.
1151 */
1152static inline void perf_event__state_init(struct perf_event *event)
1153{
1154 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1155 PERF_EVENT_STATE_INACTIVE;
1156}
1157
c320c7b7
ACM
1158/*
1159 * Called at perf_event creation and when events are attached/detached from a
1160 * group.
1161 */
1162static void perf_event__read_size(struct perf_event *event)
1163{
1164 int entry = sizeof(u64); /* value */
1165 int size = 0;
1166 int nr = 1;
1167
1168 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1169 size += sizeof(u64);
1170
1171 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1172 size += sizeof(u64);
1173
1174 if (event->attr.read_format & PERF_FORMAT_ID)
1175 entry += sizeof(u64);
1176
1177 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1178 nr += event->group_leader->nr_siblings;
1179 size += sizeof(u64);
1180 }
1181
1182 size += entry * nr;
1183 event->read_size = size;
1184}
1185
1186static void perf_event__header_size(struct perf_event *event)
1187{
1188 struct perf_sample_data *data;
1189 u64 sample_type = event->attr.sample_type;
1190 u16 size = 0;
1191
1192 perf_event__read_size(event);
1193
1194 if (sample_type & PERF_SAMPLE_IP)
1195 size += sizeof(data->ip);
1196
6844c09d
ACM
1197 if (sample_type & PERF_SAMPLE_ADDR)
1198 size += sizeof(data->addr);
1199
1200 if (sample_type & PERF_SAMPLE_PERIOD)
1201 size += sizeof(data->period);
1202
c3feedf2
AK
1203 if (sample_type & PERF_SAMPLE_WEIGHT)
1204 size += sizeof(data->weight);
1205
6844c09d
ACM
1206 if (sample_type & PERF_SAMPLE_READ)
1207 size += event->read_size;
1208
d6be9ad6
SE
1209 if (sample_type & PERF_SAMPLE_DATA_SRC)
1210 size += sizeof(data->data_src.val);
1211
fdfbbd07
AK
1212 if (sample_type & PERF_SAMPLE_TRANSACTION)
1213 size += sizeof(data->txn);
1214
6844c09d
ACM
1215 event->header_size = size;
1216}
1217
1218static void perf_event__id_header_size(struct perf_event *event)
1219{
1220 struct perf_sample_data *data;
1221 u64 sample_type = event->attr.sample_type;
1222 u16 size = 0;
1223
c320c7b7
ACM
1224 if (sample_type & PERF_SAMPLE_TID)
1225 size += sizeof(data->tid_entry);
1226
1227 if (sample_type & PERF_SAMPLE_TIME)
1228 size += sizeof(data->time);
1229
ff3d527c
AH
1230 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1231 size += sizeof(data->id);
1232
c320c7b7
ACM
1233 if (sample_type & PERF_SAMPLE_ID)
1234 size += sizeof(data->id);
1235
1236 if (sample_type & PERF_SAMPLE_STREAM_ID)
1237 size += sizeof(data->stream_id);
1238
1239 if (sample_type & PERF_SAMPLE_CPU)
1240 size += sizeof(data->cpu_entry);
1241
6844c09d 1242 event->id_header_size = size;
c320c7b7
ACM
1243}
1244
8a49542c
PZ
1245static void perf_group_attach(struct perf_event *event)
1246{
c320c7b7 1247 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1248
74c3337c
PZ
1249 /*
1250 * We can have double attach due to group movement in perf_event_open.
1251 */
1252 if (event->attach_state & PERF_ATTACH_GROUP)
1253 return;
1254
8a49542c
PZ
1255 event->attach_state |= PERF_ATTACH_GROUP;
1256
1257 if (group_leader == event)
1258 return;
1259
1260 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1261 !is_software_event(event))
1262 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1263
1264 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1265 group_leader->nr_siblings++;
c320c7b7
ACM
1266
1267 perf_event__header_size(group_leader);
1268
1269 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1270 perf_event__header_size(pos);
8a49542c
PZ
1271}
1272
a63eaf34 1273/*
cdd6c482 1274 * Remove a event from the lists for its context.
fccc714b 1275 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1276 */
04289bb9 1277static void
cdd6c482 1278list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1279{
68cacd29 1280 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1281 /*
1282 * We can have double detach due to exit/hot-unplug + close.
1283 */
1284 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1285 return;
8a49542c
PZ
1286
1287 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1288
68cacd29 1289 if (is_cgroup_event(event)) {
e5d1367f 1290 ctx->nr_cgroups--;
68cacd29
SE
1291 cpuctx = __get_cpu_context(ctx);
1292 /*
1293 * if there are no more cgroup events
1294 * then cler cgrp to avoid stale pointer
1295 * in update_cgrp_time_from_cpuctx()
1296 */
1297 if (!ctx->nr_cgroups)
1298 cpuctx->cgrp = NULL;
1299 }
e5d1367f 1300
d010b332
SE
1301 if (has_branch_stack(event))
1302 ctx->nr_branch_stack--;
1303
cdd6c482
IM
1304 ctx->nr_events--;
1305 if (event->attr.inherit_stat)
bfbd3381 1306 ctx->nr_stat--;
8bc20959 1307
cdd6c482 1308 list_del_rcu(&event->event_entry);
04289bb9 1309
8a49542c
PZ
1310 if (event->group_leader == event)
1311 list_del_init(&event->group_entry);
5c148194 1312
96c21a46 1313 update_group_times(event);
b2e74a26
SE
1314
1315 /*
1316 * If event was in error state, then keep it
1317 * that way, otherwise bogus counts will be
1318 * returned on read(). The only way to get out
1319 * of error state is by explicit re-enabling
1320 * of the event
1321 */
1322 if (event->state > PERF_EVENT_STATE_OFF)
1323 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1324
1325 ctx->generation++;
050735b0
PZ
1326}
1327
8a49542c 1328static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1329{
1330 struct perf_event *sibling, *tmp;
8a49542c
PZ
1331 struct list_head *list = NULL;
1332
1333 /*
1334 * We can have double detach due to exit/hot-unplug + close.
1335 */
1336 if (!(event->attach_state & PERF_ATTACH_GROUP))
1337 return;
1338
1339 event->attach_state &= ~PERF_ATTACH_GROUP;
1340
1341 /*
1342 * If this is a sibling, remove it from its group.
1343 */
1344 if (event->group_leader != event) {
1345 list_del_init(&event->group_entry);
1346 event->group_leader->nr_siblings--;
c320c7b7 1347 goto out;
8a49542c
PZ
1348 }
1349
1350 if (!list_empty(&event->group_entry))
1351 list = &event->group_entry;
2e2af50b 1352
04289bb9 1353 /*
cdd6c482
IM
1354 * If this was a group event with sibling events then
1355 * upgrade the siblings to singleton events by adding them
8a49542c 1356 * to whatever list we are on.
04289bb9 1357 */
cdd6c482 1358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1359 if (list)
1360 list_move_tail(&sibling->group_entry, list);
04289bb9 1361 sibling->group_leader = sibling;
d6f962b5
FW
1362
1363 /* Inherit group flags from the previous leader */
1364 sibling->group_flags = event->group_flags;
04289bb9 1365 }
c320c7b7
ACM
1366
1367out:
1368 perf_event__header_size(event->group_leader);
1369
1370 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1371 perf_event__header_size(tmp);
04289bb9
IM
1372}
1373
fa66f07a
SE
1374static inline int
1375event_filter_match(struct perf_event *event)
1376{
e5d1367f
SE
1377 return (event->cpu == -1 || event->cpu == smp_processor_id())
1378 && perf_cgroup_match(event);
fa66f07a
SE
1379}
1380
9ffcfa6f
SE
1381static void
1382event_sched_out(struct perf_event *event,
3b6f9e5c 1383 struct perf_cpu_context *cpuctx,
cdd6c482 1384 struct perf_event_context *ctx)
3b6f9e5c 1385{
4158755d 1386 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1387 u64 delta;
1388 /*
1389 * An event which could not be activated because of
1390 * filter mismatch still needs to have its timings
1391 * maintained, otherwise bogus information is return
1392 * via read() for time_enabled, time_running:
1393 */
1394 if (event->state == PERF_EVENT_STATE_INACTIVE
1395 && !event_filter_match(event)) {
e5d1367f 1396 delta = tstamp - event->tstamp_stopped;
fa66f07a 1397 event->tstamp_running += delta;
4158755d 1398 event->tstamp_stopped = tstamp;
fa66f07a
SE
1399 }
1400
cdd6c482 1401 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1402 return;
3b6f9e5c 1403
44377277
AS
1404 perf_pmu_disable(event->pmu);
1405
cdd6c482
IM
1406 event->state = PERF_EVENT_STATE_INACTIVE;
1407 if (event->pending_disable) {
1408 event->pending_disable = 0;
1409 event->state = PERF_EVENT_STATE_OFF;
970892a9 1410 }
4158755d 1411 event->tstamp_stopped = tstamp;
a4eaf7f1 1412 event->pmu->del(event, 0);
cdd6c482 1413 event->oncpu = -1;
3b6f9e5c 1414
cdd6c482 1415 if (!is_software_event(event))
3b6f9e5c
PM
1416 cpuctx->active_oncpu--;
1417 ctx->nr_active--;
0f5a2601
PZ
1418 if (event->attr.freq && event->attr.sample_freq)
1419 ctx->nr_freq--;
cdd6c482 1420 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1421 cpuctx->exclusive = 0;
44377277
AS
1422
1423 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1424}
1425
d859e29f 1426static void
cdd6c482 1427group_sched_out(struct perf_event *group_event,
d859e29f 1428 struct perf_cpu_context *cpuctx,
cdd6c482 1429 struct perf_event_context *ctx)
d859e29f 1430{
cdd6c482 1431 struct perf_event *event;
fa66f07a 1432 int state = group_event->state;
d859e29f 1433
cdd6c482 1434 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1435
1436 /*
1437 * Schedule out siblings (if any):
1438 */
cdd6c482
IM
1439 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1440 event_sched_out(event, cpuctx, ctx);
d859e29f 1441
fa66f07a 1442 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1443 cpuctx->exclusive = 0;
1444}
1445
46ce0fe9
PZ
1446struct remove_event {
1447 struct perf_event *event;
1448 bool detach_group;
1449};
1450
0793a61d 1451/*
cdd6c482 1452 * Cross CPU call to remove a performance event
0793a61d 1453 *
cdd6c482 1454 * We disable the event on the hardware level first. After that we
0793a61d
TG
1455 * remove it from the context list.
1456 */
fe4b04fa 1457static int __perf_remove_from_context(void *info)
0793a61d 1458{
46ce0fe9
PZ
1459 struct remove_event *re = info;
1460 struct perf_event *event = re->event;
cdd6c482 1461 struct perf_event_context *ctx = event->ctx;
108b02cf 1462 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1463
e625cce1 1464 raw_spin_lock(&ctx->lock);
cdd6c482 1465 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1466 if (re->detach_group)
1467 perf_group_detach(event);
cdd6c482 1468 list_del_event(event, ctx);
64ce3126
PZ
1469 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1470 ctx->is_active = 0;
1471 cpuctx->task_ctx = NULL;
1472 }
e625cce1 1473 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1474
1475 return 0;
0793a61d
TG
1476}
1477
1478
1479/*
cdd6c482 1480 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1481 *
cdd6c482 1482 * CPU events are removed with a smp call. For task events we only
0793a61d 1483 * call when the task is on a CPU.
c93f7669 1484 *
cdd6c482
IM
1485 * If event->ctx is a cloned context, callers must make sure that
1486 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1487 * remains valid. This is OK when called from perf_release since
1488 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1489 * When called from perf_event_exit_task, it's OK because the
c93f7669 1490 * context has been detached from its task.
0793a61d 1491 */
46ce0fe9 1492static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1493{
cdd6c482 1494 struct perf_event_context *ctx = event->ctx;
0793a61d 1495 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1496 struct remove_event re = {
1497 .event = event,
1498 .detach_group = detach_group,
1499 };
0793a61d 1500
fe4b04fa
PZ
1501 lockdep_assert_held(&ctx->mutex);
1502
0793a61d
TG
1503 if (!task) {
1504 /*
cdd6c482 1505 * Per cpu events are removed via an smp call and
af901ca1 1506 * the removal is always successful.
0793a61d 1507 */
46ce0fe9 1508 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1509 return;
1510 }
1511
1512retry:
46ce0fe9 1513 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1514 return;
0793a61d 1515
e625cce1 1516 raw_spin_lock_irq(&ctx->lock);
0793a61d 1517 /*
fe4b04fa
PZ
1518 * If we failed to find a running task, but find the context active now
1519 * that we've acquired the ctx->lock, retry.
0793a61d 1520 */
fe4b04fa 1521 if (ctx->is_active) {
e625cce1 1522 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1523 goto retry;
1524 }
1525
1526 /*
fe4b04fa
PZ
1527 * Since the task isn't running, its safe to remove the event, us
1528 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1529 */
46ce0fe9
PZ
1530 if (detach_group)
1531 perf_group_detach(event);
fe4b04fa 1532 list_del_event(event, ctx);
e625cce1 1533 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1534}
1535
d859e29f 1536/*
cdd6c482 1537 * Cross CPU call to disable a performance event
d859e29f 1538 */
500ad2d8 1539int __perf_event_disable(void *info)
d859e29f 1540{
cdd6c482 1541 struct perf_event *event = info;
cdd6c482 1542 struct perf_event_context *ctx = event->ctx;
108b02cf 1543 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1544
1545 /*
cdd6c482
IM
1546 * If this is a per-task event, need to check whether this
1547 * event's task is the current task on this cpu.
fe4b04fa
PZ
1548 *
1549 * Can trigger due to concurrent perf_event_context_sched_out()
1550 * flipping contexts around.
d859e29f 1551 */
665c2142 1552 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1553 return -EINVAL;
d859e29f 1554
e625cce1 1555 raw_spin_lock(&ctx->lock);
d859e29f
PM
1556
1557 /*
cdd6c482 1558 * If the event is on, turn it off.
d859e29f
PM
1559 * If it is in error state, leave it in error state.
1560 */
cdd6c482 1561 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1562 update_context_time(ctx);
e5d1367f 1563 update_cgrp_time_from_event(event);
cdd6c482
IM
1564 update_group_times(event);
1565 if (event == event->group_leader)
1566 group_sched_out(event, cpuctx, ctx);
d859e29f 1567 else
cdd6c482
IM
1568 event_sched_out(event, cpuctx, ctx);
1569 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1570 }
1571
e625cce1 1572 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1573
1574 return 0;
d859e29f
PM
1575}
1576
1577/*
cdd6c482 1578 * Disable a event.
c93f7669 1579 *
cdd6c482
IM
1580 * If event->ctx is a cloned context, callers must make sure that
1581 * every task struct that event->ctx->task could possibly point to
c93f7669 1582 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1583 * perf_event_for_each_child or perf_event_for_each because they
1584 * hold the top-level event's child_mutex, so any descendant that
1585 * goes to exit will block in sync_child_event.
1586 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1587 * is the current context on this CPU and preemption is disabled,
cdd6c482 1588 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1589 */
44234adc 1590void perf_event_disable(struct perf_event *event)
d859e29f 1591{
cdd6c482 1592 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1593 struct task_struct *task = ctx->task;
1594
1595 if (!task) {
1596 /*
cdd6c482 1597 * Disable the event on the cpu that it's on
d859e29f 1598 */
fe4b04fa 1599 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1600 return;
1601 }
1602
9ed6060d 1603retry:
fe4b04fa
PZ
1604 if (!task_function_call(task, __perf_event_disable, event))
1605 return;
d859e29f 1606
e625cce1 1607 raw_spin_lock_irq(&ctx->lock);
d859e29f 1608 /*
cdd6c482 1609 * If the event is still active, we need to retry the cross-call.
d859e29f 1610 */
cdd6c482 1611 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1612 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1613 /*
1614 * Reload the task pointer, it might have been changed by
1615 * a concurrent perf_event_context_sched_out().
1616 */
1617 task = ctx->task;
d859e29f
PM
1618 goto retry;
1619 }
1620
1621 /*
1622 * Since we have the lock this context can't be scheduled
1623 * in, so we can change the state safely.
1624 */
cdd6c482
IM
1625 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1626 update_group_times(event);
1627 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1628 }
e625cce1 1629 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1630}
dcfce4a0 1631EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1632
e5d1367f
SE
1633static void perf_set_shadow_time(struct perf_event *event,
1634 struct perf_event_context *ctx,
1635 u64 tstamp)
1636{
1637 /*
1638 * use the correct time source for the time snapshot
1639 *
1640 * We could get by without this by leveraging the
1641 * fact that to get to this function, the caller
1642 * has most likely already called update_context_time()
1643 * and update_cgrp_time_xx() and thus both timestamp
1644 * are identical (or very close). Given that tstamp is,
1645 * already adjusted for cgroup, we could say that:
1646 * tstamp - ctx->timestamp
1647 * is equivalent to
1648 * tstamp - cgrp->timestamp.
1649 *
1650 * Then, in perf_output_read(), the calculation would
1651 * work with no changes because:
1652 * - event is guaranteed scheduled in
1653 * - no scheduled out in between
1654 * - thus the timestamp would be the same
1655 *
1656 * But this is a bit hairy.
1657 *
1658 * So instead, we have an explicit cgroup call to remain
1659 * within the time time source all along. We believe it
1660 * is cleaner and simpler to understand.
1661 */
1662 if (is_cgroup_event(event))
1663 perf_cgroup_set_shadow_time(event, tstamp);
1664 else
1665 event->shadow_ctx_time = tstamp - ctx->timestamp;
1666}
1667
4fe757dd
PZ
1668#define MAX_INTERRUPTS (~0ULL)
1669
1670static void perf_log_throttle(struct perf_event *event, int enable);
1671
235c7fc7 1672static int
9ffcfa6f 1673event_sched_in(struct perf_event *event,
235c7fc7 1674 struct perf_cpu_context *cpuctx,
6e37738a 1675 struct perf_event_context *ctx)
235c7fc7 1676{
4158755d 1677 u64 tstamp = perf_event_time(event);
44377277 1678 int ret = 0;
4158755d 1679
cdd6c482 1680 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1681 return 0;
1682
cdd6c482 1683 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1684 event->oncpu = smp_processor_id();
4fe757dd
PZ
1685
1686 /*
1687 * Unthrottle events, since we scheduled we might have missed several
1688 * ticks already, also for a heavily scheduling task there is little
1689 * guarantee it'll get a tick in a timely manner.
1690 */
1691 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1692 perf_log_throttle(event, 1);
1693 event->hw.interrupts = 0;
1694 }
1695
235c7fc7
IM
1696 /*
1697 * The new state must be visible before we turn it on in the hardware:
1698 */
1699 smp_wmb();
1700
44377277
AS
1701 perf_pmu_disable(event->pmu);
1702
a4eaf7f1 1703 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1704 event->state = PERF_EVENT_STATE_INACTIVE;
1705 event->oncpu = -1;
44377277
AS
1706 ret = -EAGAIN;
1707 goto out;
235c7fc7
IM
1708 }
1709
4158755d 1710 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1711
e5d1367f 1712 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1713
cdd6c482 1714 if (!is_software_event(event))
3b6f9e5c 1715 cpuctx->active_oncpu++;
235c7fc7 1716 ctx->nr_active++;
0f5a2601
PZ
1717 if (event->attr.freq && event->attr.sample_freq)
1718 ctx->nr_freq++;
235c7fc7 1719
cdd6c482 1720 if (event->attr.exclusive)
3b6f9e5c
PM
1721 cpuctx->exclusive = 1;
1722
44377277
AS
1723out:
1724 perf_pmu_enable(event->pmu);
1725
1726 return ret;
235c7fc7
IM
1727}
1728
6751b71e 1729static int
cdd6c482 1730group_sched_in(struct perf_event *group_event,
6751b71e 1731 struct perf_cpu_context *cpuctx,
6e37738a 1732 struct perf_event_context *ctx)
6751b71e 1733{
6bde9b6c 1734 struct perf_event *event, *partial_group = NULL;
4a234593 1735 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1736 u64 now = ctx->time;
1737 bool simulate = false;
6751b71e 1738
cdd6c482 1739 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1740 return 0;
1741
ad5133b7 1742 pmu->start_txn(pmu);
6bde9b6c 1743
9ffcfa6f 1744 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1745 pmu->cancel_txn(pmu);
9e630205 1746 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1747 return -EAGAIN;
90151c35 1748 }
6751b71e
PM
1749
1750 /*
1751 * Schedule in siblings as one group (if any):
1752 */
cdd6c482 1753 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1754 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1755 partial_group = event;
6751b71e
PM
1756 goto group_error;
1757 }
1758 }
1759
9ffcfa6f 1760 if (!pmu->commit_txn(pmu))
6e85158c 1761 return 0;
9ffcfa6f 1762
6751b71e
PM
1763group_error:
1764 /*
1765 * Groups can be scheduled in as one unit only, so undo any
1766 * partial group before returning:
d7842da4
SE
1767 * The events up to the failed event are scheduled out normally,
1768 * tstamp_stopped will be updated.
1769 *
1770 * The failed events and the remaining siblings need to have
1771 * their timings updated as if they had gone thru event_sched_in()
1772 * and event_sched_out(). This is required to get consistent timings
1773 * across the group. This also takes care of the case where the group
1774 * could never be scheduled by ensuring tstamp_stopped is set to mark
1775 * the time the event was actually stopped, such that time delta
1776 * calculation in update_event_times() is correct.
6751b71e 1777 */
cdd6c482
IM
1778 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1779 if (event == partial_group)
d7842da4
SE
1780 simulate = true;
1781
1782 if (simulate) {
1783 event->tstamp_running += now - event->tstamp_stopped;
1784 event->tstamp_stopped = now;
1785 } else {
1786 event_sched_out(event, cpuctx, ctx);
1787 }
6751b71e 1788 }
9ffcfa6f 1789 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1790
ad5133b7 1791 pmu->cancel_txn(pmu);
90151c35 1792
9e630205
SE
1793 perf_cpu_hrtimer_restart(cpuctx);
1794
6751b71e
PM
1795 return -EAGAIN;
1796}
1797
3b6f9e5c 1798/*
cdd6c482 1799 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1800 */
cdd6c482 1801static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1802 struct perf_cpu_context *cpuctx,
1803 int can_add_hw)
1804{
1805 /*
cdd6c482 1806 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1807 */
d6f962b5 1808 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1809 return 1;
1810 /*
1811 * If an exclusive group is already on, no other hardware
cdd6c482 1812 * events can go on.
3b6f9e5c
PM
1813 */
1814 if (cpuctx->exclusive)
1815 return 0;
1816 /*
1817 * If this group is exclusive and there are already
cdd6c482 1818 * events on the CPU, it can't go on.
3b6f9e5c 1819 */
cdd6c482 1820 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1821 return 0;
1822 /*
1823 * Otherwise, try to add it if all previous groups were able
1824 * to go on.
1825 */
1826 return can_add_hw;
1827}
1828
cdd6c482
IM
1829static void add_event_to_ctx(struct perf_event *event,
1830 struct perf_event_context *ctx)
53cfbf59 1831{
4158755d
SE
1832 u64 tstamp = perf_event_time(event);
1833
cdd6c482 1834 list_add_event(event, ctx);
8a49542c 1835 perf_group_attach(event);
4158755d
SE
1836 event->tstamp_enabled = tstamp;
1837 event->tstamp_running = tstamp;
1838 event->tstamp_stopped = tstamp;
53cfbf59
PM
1839}
1840
2c29ef0f
PZ
1841static void task_ctx_sched_out(struct perf_event_context *ctx);
1842static void
1843ctx_sched_in(struct perf_event_context *ctx,
1844 struct perf_cpu_context *cpuctx,
1845 enum event_type_t event_type,
1846 struct task_struct *task);
fe4b04fa 1847
dce5855b
PZ
1848static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1849 struct perf_event_context *ctx,
1850 struct task_struct *task)
1851{
1852 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1853 if (ctx)
1854 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1855 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1856 if (ctx)
1857 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1858}
1859
0793a61d 1860/*
cdd6c482 1861 * Cross CPU call to install and enable a performance event
682076ae
PZ
1862 *
1863 * Must be called with ctx->mutex held
0793a61d 1864 */
fe4b04fa 1865static int __perf_install_in_context(void *info)
0793a61d 1866{
cdd6c482
IM
1867 struct perf_event *event = info;
1868 struct perf_event_context *ctx = event->ctx;
108b02cf 1869 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1870 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1871 struct task_struct *task = current;
1872
b58f6b0d 1873 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1874 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1875
1876 /*
2c29ef0f 1877 * If there was an active task_ctx schedule it out.
0793a61d 1878 */
b58f6b0d 1879 if (task_ctx)
2c29ef0f 1880 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1881
1882 /*
1883 * If the context we're installing events in is not the
1884 * active task_ctx, flip them.
1885 */
1886 if (ctx->task && task_ctx != ctx) {
1887 if (task_ctx)
1888 raw_spin_unlock(&task_ctx->lock);
1889 raw_spin_lock(&ctx->lock);
1890 task_ctx = ctx;
1891 }
1892
1893 if (task_ctx) {
1894 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1895 task = task_ctx->task;
1896 }
b58f6b0d 1897
2c29ef0f 1898 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1899
4af4998b 1900 update_context_time(ctx);
e5d1367f
SE
1901 /*
1902 * update cgrp time only if current cgrp
1903 * matches event->cgrp. Must be done before
1904 * calling add_event_to_ctx()
1905 */
1906 update_cgrp_time_from_event(event);
0793a61d 1907
cdd6c482 1908 add_event_to_ctx(event, ctx);
0793a61d 1909
d859e29f 1910 /*
2c29ef0f 1911 * Schedule everything back in
d859e29f 1912 */
dce5855b 1913 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1914
1915 perf_pmu_enable(cpuctx->ctx.pmu);
1916 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1917
1918 return 0;
0793a61d
TG
1919}
1920
1921/*
cdd6c482 1922 * Attach a performance event to a context
0793a61d 1923 *
cdd6c482
IM
1924 * First we add the event to the list with the hardware enable bit
1925 * in event->hw_config cleared.
0793a61d 1926 *
cdd6c482 1927 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1928 * call to enable it in the task context. The task might have been
1929 * scheduled away, but we check this in the smp call again.
1930 */
1931static void
cdd6c482
IM
1932perf_install_in_context(struct perf_event_context *ctx,
1933 struct perf_event *event,
0793a61d
TG
1934 int cpu)
1935{
1936 struct task_struct *task = ctx->task;
1937
fe4b04fa
PZ
1938 lockdep_assert_held(&ctx->mutex);
1939
c3f00c70 1940 event->ctx = ctx;
0cda4c02
YZ
1941 if (event->cpu != -1)
1942 event->cpu = cpu;
c3f00c70 1943
0793a61d
TG
1944 if (!task) {
1945 /*
cdd6c482 1946 * Per cpu events are installed via an smp call and
af901ca1 1947 * the install is always successful.
0793a61d 1948 */
fe4b04fa 1949 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1950 return;
1951 }
1952
0793a61d 1953retry:
fe4b04fa
PZ
1954 if (!task_function_call(task, __perf_install_in_context, event))
1955 return;
0793a61d 1956
e625cce1 1957 raw_spin_lock_irq(&ctx->lock);
0793a61d 1958 /*
fe4b04fa
PZ
1959 * If we failed to find a running task, but find the context active now
1960 * that we've acquired the ctx->lock, retry.
0793a61d 1961 */
fe4b04fa 1962 if (ctx->is_active) {
e625cce1 1963 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1964 goto retry;
1965 }
1966
1967 /*
fe4b04fa
PZ
1968 * Since the task isn't running, its safe to add the event, us holding
1969 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1970 */
fe4b04fa 1971 add_event_to_ctx(event, ctx);
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1973}
1974
fa289bec 1975/*
cdd6c482 1976 * Put a event into inactive state and update time fields.
fa289bec
PM
1977 * Enabling the leader of a group effectively enables all
1978 * the group members that aren't explicitly disabled, so we
1979 * have to update their ->tstamp_enabled also.
1980 * Note: this works for group members as well as group leaders
1981 * since the non-leader members' sibling_lists will be empty.
1982 */
1d9b482e 1983static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1984{
cdd6c482 1985 struct perf_event *sub;
4158755d 1986 u64 tstamp = perf_event_time(event);
fa289bec 1987
cdd6c482 1988 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1989 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1990 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1991 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1992 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1993 }
fa289bec
PM
1994}
1995
d859e29f 1996/*
cdd6c482 1997 * Cross CPU call to enable a performance event
d859e29f 1998 */
fe4b04fa 1999static int __perf_event_enable(void *info)
04289bb9 2000{
cdd6c482 2001 struct perf_event *event = info;
cdd6c482
IM
2002 struct perf_event_context *ctx = event->ctx;
2003 struct perf_event *leader = event->group_leader;
108b02cf 2004 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2005 int err;
04289bb9 2006
06f41796
JO
2007 /*
2008 * There's a time window between 'ctx->is_active' check
2009 * in perf_event_enable function and this place having:
2010 * - IRQs on
2011 * - ctx->lock unlocked
2012 *
2013 * where the task could be killed and 'ctx' deactivated
2014 * by perf_event_exit_task.
2015 */
2016 if (!ctx->is_active)
fe4b04fa 2017 return -EINVAL;
3cbed429 2018
e625cce1 2019 raw_spin_lock(&ctx->lock);
4af4998b 2020 update_context_time(ctx);
d859e29f 2021
cdd6c482 2022 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2023 goto unlock;
e5d1367f
SE
2024
2025 /*
2026 * set current task's cgroup time reference point
2027 */
3f7cce3c 2028 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2029
1d9b482e 2030 __perf_event_mark_enabled(event);
04289bb9 2031
e5d1367f
SE
2032 if (!event_filter_match(event)) {
2033 if (is_cgroup_event(event))
2034 perf_cgroup_defer_enabled(event);
f4c4176f 2035 goto unlock;
e5d1367f 2036 }
f4c4176f 2037
04289bb9 2038 /*
cdd6c482 2039 * If the event is in a group and isn't the group leader,
d859e29f 2040 * then don't put it on unless the group is on.
04289bb9 2041 */
cdd6c482 2042 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2043 goto unlock;
3b6f9e5c 2044
cdd6c482 2045 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2046 err = -EEXIST;
e758a33d 2047 } else {
cdd6c482 2048 if (event == leader)
6e37738a 2049 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2050 else
6e37738a 2051 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2052 }
d859e29f
PM
2053
2054 if (err) {
2055 /*
cdd6c482 2056 * If this event can't go on and it's part of a
d859e29f
PM
2057 * group, then the whole group has to come off.
2058 */
9e630205 2059 if (leader != event) {
d859e29f 2060 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2061 perf_cpu_hrtimer_restart(cpuctx);
2062 }
0d48696f 2063 if (leader->attr.pinned) {
53cfbf59 2064 update_group_times(leader);
cdd6c482 2065 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2066 }
d859e29f
PM
2067 }
2068
9ed6060d 2069unlock:
e625cce1 2070 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2071
2072 return 0;
d859e29f
PM
2073}
2074
2075/*
cdd6c482 2076 * Enable a event.
c93f7669 2077 *
cdd6c482
IM
2078 * If event->ctx is a cloned context, callers must make sure that
2079 * every task struct that event->ctx->task could possibly point to
c93f7669 2080 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2081 * perf_event_for_each_child or perf_event_for_each as described
2082 * for perf_event_disable.
d859e29f 2083 */
44234adc 2084void perf_event_enable(struct perf_event *event)
d859e29f 2085{
cdd6c482 2086 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2087 struct task_struct *task = ctx->task;
2088
2089 if (!task) {
2090 /*
cdd6c482 2091 * Enable the event on the cpu that it's on
d859e29f 2092 */
fe4b04fa 2093 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2094 return;
2095 }
2096
e625cce1 2097 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2098 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2099 goto out;
2100
2101 /*
cdd6c482
IM
2102 * If the event is in error state, clear that first.
2103 * That way, if we see the event in error state below, we
d859e29f
PM
2104 * know that it has gone back into error state, as distinct
2105 * from the task having been scheduled away before the
2106 * cross-call arrived.
2107 */
cdd6c482
IM
2108 if (event->state == PERF_EVENT_STATE_ERROR)
2109 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2110
9ed6060d 2111retry:
fe4b04fa 2112 if (!ctx->is_active) {
1d9b482e 2113 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2114 goto out;
2115 }
2116
e625cce1 2117 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2118
2119 if (!task_function_call(task, __perf_event_enable, event))
2120 return;
d859e29f 2121
e625cce1 2122 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2123
2124 /*
cdd6c482 2125 * If the context is active and the event is still off,
d859e29f
PM
2126 * we need to retry the cross-call.
2127 */
fe4b04fa
PZ
2128 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2129 /*
2130 * task could have been flipped by a concurrent
2131 * perf_event_context_sched_out()
2132 */
2133 task = ctx->task;
d859e29f 2134 goto retry;
fe4b04fa 2135 }
fa289bec 2136
9ed6060d 2137out:
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2139}
dcfce4a0 2140EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2141
26ca5c11 2142int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2143{
2023b359 2144 /*
cdd6c482 2145 * not supported on inherited events
2023b359 2146 */
2e939d1d 2147 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2148 return -EINVAL;
2149
cdd6c482
IM
2150 atomic_add(refresh, &event->event_limit);
2151 perf_event_enable(event);
2023b359
PZ
2152
2153 return 0;
79f14641 2154}
26ca5c11 2155EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2156
5b0311e1
FW
2157static void ctx_sched_out(struct perf_event_context *ctx,
2158 struct perf_cpu_context *cpuctx,
2159 enum event_type_t event_type)
235c7fc7 2160{
cdd6c482 2161 struct perf_event *event;
db24d33e 2162 int is_active = ctx->is_active;
235c7fc7 2163
db24d33e 2164 ctx->is_active &= ~event_type;
cdd6c482 2165 if (likely(!ctx->nr_events))
facc4307
PZ
2166 return;
2167
4af4998b 2168 update_context_time(ctx);
e5d1367f 2169 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2170 if (!ctx->nr_active)
facc4307 2171 return;
5b0311e1 2172
075e0b00 2173 perf_pmu_disable(ctx->pmu);
db24d33e 2174 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2175 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2176 group_sched_out(event, cpuctx, ctx);
9ed6060d 2177 }
889ff015 2178
db24d33e 2179 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2180 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2181 group_sched_out(event, cpuctx, ctx);
9ed6060d 2182 }
1b9a644f 2183 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2184}
2185
564c2b21 2186/*
5a3126d4
PZ
2187 * Test whether two contexts are equivalent, i.e. whether they have both been
2188 * cloned from the same version of the same context.
2189 *
2190 * Equivalence is measured using a generation number in the context that is
2191 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2192 * and list_del_event().
564c2b21 2193 */
cdd6c482
IM
2194static int context_equiv(struct perf_event_context *ctx1,
2195 struct perf_event_context *ctx2)
564c2b21 2196{
5a3126d4
PZ
2197 /* Pinning disables the swap optimization */
2198 if (ctx1->pin_count || ctx2->pin_count)
2199 return 0;
2200
2201 /* If ctx1 is the parent of ctx2 */
2202 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2203 return 1;
2204
2205 /* If ctx2 is the parent of ctx1 */
2206 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2207 return 1;
2208
2209 /*
2210 * If ctx1 and ctx2 have the same parent; we flatten the parent
2211 * hierarchy, see perf_event_init_context().
2212 */
2213 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2214 ctx1->parent_gen == ctx2->parent_gen)
2215 return 1;
2216
2217 /* Unmatched */
2218 return 0;
564c2b21
PM
2219}
2220
cdd6c482
IM
2221static void __perf_event_sync_stat(struct perf_event *event,
2222 struct perf_event *next_event)
bfbd3381
PZ
2223{
2224 u64 value;
2225
cdd6c482 2226 if (!event->attr.inherit_stat)
bfbd3381
PZ
2227 return;
2228
2229 /*
cdd6c482 2230 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2231 * because we're in the middle of a context switch and have IRQs
2232 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2233 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2234 * don't need to use it.
2235 */
cdd6c482
IM
2236 switch (event->state) {
2237 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2238 event->pmu->read(event);
2239 /* fall-through */
bfbd3381 2240
cdd6c482
IM
2241 case PERF_EVENT_STATE_INACTIVE:
2242 update_event_times(event);
bfbd3381
PZ
2243 break;
2244
2245 default:
2246 break;
2247 }
2248
2249 /*
cdd6c482 2250 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2251 * values when we flip the contexts.
2252 */
e7850595
PZ
2253 value = local64_read(&next_event->count);
2254 value = local64_xchg(&event->count, value);
2255 local64_set(&next_event->count, value);
bfbd3381 2256
cdd6c482
IM
2257 swap(event->total_time_enabled, next_event->total_time_enabled);
2258 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2259
bfbd3381 2260 /*
19d2e755 2261 * Since we swizzled the values, update the user visible data too.
bfbd3381 2262 */
cdd6c482
IM
2263 perf_event_update_userpage(event);
2264 perf_event_update_userpage(next_event);
bfbd3381
PZ
2265}
2266
cdd6c482
IM
2267static void perf_event_sync_stat(struct perf_event_context *ctx,
2268 struct perf_event_context *next_ctx)
bfbd3381 2269{
cdd6c482 2270 struct perf_event *event, *next_event;
bfbd3381
PZ
2271
2272 if (!ctx->nr_stat)
2273 return;
2274
02ffdbc8
PZ
2275 update_context_time(ctx);
2276
cdd6c482
IM
2277 event = list_first_entry(&ctx->event_list,
2278 struct perf_event, event_entry);
bfbd3381 2279
cdd6c482
IM
2280 next_event = list_first_entry(&next_ctx->event_list,
2281 struct perf_event, event_entry);
bfbd3381 2282
cdd6c482
IM
2283 while (&event->event_entry != &ctx->event_list &&
2284 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2285
cdd6c482 2286 __perf_event_sync_stat(event, next_event);
bfbd3381 2287
cdd6c482
IM
2288 event = list_next_entry(event, event_entry);
2289 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2290 }
2291}
2292
fe4b04fa
PZ
2293static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2294 struct task_struct *next)
0793a61d 2295{
8dc85d54 2296 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2297 struct perf_event_context *next_ctx;
5a3126d4 2298 struct perf_event_context *parent, *next_parent;
108b02cf 2299 struct perf_cpu_context *cpuctx;
c93f7669 2300 int do_switch = 1;
0793a61d 2301
108b02cf
PZ
2302 if (likely(!ctx))
2303 return;
10989fb2 2304
108b02cf
PZ
2305 cpuctx = __get_cpu_context(ctx);
2306 if (!cpuctx->task_ctx)
0793a61d
TG
2307 return;
2308
c93f7669 2309 rcu_read_lock();
8dc85d54 2310 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2311 if (!next_ctx)
2312 goto unlock;
2313
2314 parent = rcu_dereference(ctx->parent_ctx);
2315 next_parent = rcu_dereference(next_ctx->parent_ctx);
2316
2317 /* If neither context have a parent context; they cannot be clones. */
2318 if (!parent && !next_parent)
2319 goto unlock;
2320
2321 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2322 /*
2323 * Looks like the two contexts are clones, so we might be
2324 * able to optimize the context switch. We lock both
2325 * contexts and check that they are clones under the
2326 * lock (including re-checking that neither has been
2327 * uncloned in the meantime). It doesn't matter which
2328 * order we take the locks because no other cpu could
2329 * be trying to lock both of these tasks.
2330 */
e625cce1
TG
2331 raw_spin_lock(&ctx->lock);
2332 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2333 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2334 /*
2335 * XXX do we need a memory barrier of sorts
cdd6c482 2336 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2337 */
8dc85d54
PZ
2338 task->perf_event_ctxp[ctxn] = next_ctx;
2339 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2340 ctx->task = next;
2341 next_ctx->task = task;
2342 do_switch = 0;
bfbd3381 2343
cdd6c482 2344 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2345 }
e625cce1
TG
2346 raw_spin_unlock(&next_ctx->lock);
2347 raw_spin_unlock(&ctx->lock);
564c2b21 2348 }
5a3126d4 2349unlock:
c93f7669 2350 rcu_read_unlock();
564c2b21 2351
c93f7669 2352 if (do_switch) {
facc4307 2353 raw_spin_lock(&ctx->lock);
5b0311e1 2354 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2355 cpuctx->task_ctx = NULL;
facc4307 2356 raw_spin_unlock(&ctx->lock);
c93f7669 2357 }
0793a61d
TG
2358}
2359
8dc85d54
PZ
2360#define for_each_task_context_nr(ctxn) \
2361 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2362
2363/*
2364 * Called from scheduler to remove the events of the current task,
2365 * with interrupts disabled.
2366 *
2367 * We stop each event and update the event value in event->count.
2368 *
2369 * This does not protect us against NMI, but disable()
2370 * sets the disabled bit in the control field of event _before_
2371 * accessing the event control register. If a NMI hits, then it will
2372 * not restart the event.
2373 */
ab0cce56
JO
2374void __perf_event_task_sched_out(struct task_struct *task,
2375 struct task_struct *next)
8dc85d54
PZ
2376{
2377 int ctxn;
2378
8dc85d54
PZ
2379 for_each_task_context_nr(ctxn)
2380 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2381
2382 /*
2383 * if cgroup events exist on this CPU, then we need
2384 * to check if we have to switch out PMU state.
2385 * cgroup event are system-wide mode only
2386 */
2387 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2388 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2389}
2390
04dc2dbb 2391static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2392{
108b02cf 2393 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2394
a63eaf34
PM
2395 if (!cpuctx->task_ctx)
2396 return;
012b84da
IM
2397
2398 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399 return;
2400
04dc2dbb 2401 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2402 cpuctx->task_ctx = NULL;
2403}
2404
5b0311e1
FW
2405/*
2406 * Called with IRQs disabled
2407 */
2408static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2409 enum event_type_t event_type)
2410{
2411 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2412}
2413
235c7fc7 2414static void
5b0311e1 2415ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2416 struct perf_cpu_context *cpuctx)
0793a61d 2417{
cdd6c482 2418 struct perf_event *event;
0793a61d 2419
889ff015
FW
2420 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2421 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2422 continue;
5632ab12 2423 if (!event_filter_match(event))
3b6f9e5c
PM
2424 continue;
2425
e5d1367f
SE
2426 /* may need to reset tstamp_enabled */
2427 if (is_cgroup_event(event))
2428 perf_cgroup_mark_enabled(event, ctx);
2429
8c9ed8e1 2430 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2431 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2432
2433 /*
2434 * If this pinned group hasn't been scheduled,
2435 * put it in error state.
2436 */
cdd6c482
IM
2437 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2438 update_group_times(event);
2439 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2440 }
3b6f9e5c 2441 }
5b0311e1
FW
2442}
2443
2444static void
2445ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2446 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2447{
2448 struct perf_event *event;
2449 int can_add_hw = 1;
3b6f9e5c 2450
889ff015
FW
2451 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2452 /* Ignore events in OFF or ERROR state */
2453 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2454 continue;
04289bb9
IM
2455 /*
2456 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2457 * of events:
04289bb9 2458 */
5632ab12 2459 if (!event_filter_match(event))
0793a61d
TG
2460 continue;
2461
e5d1367f
SE
2462 /* may need to reset tstamp_enabled */
2463 if (is_cgroup_event(event))
2464 perf_cgroup_mark_enabled(event, ctx);
2465
9ed6060d 2466 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2467 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2468 can_add_hw = 0;
9ed6060d 2469 }
0793a61d 2470 }
5b0311e1
FW
2471}
2472
2473static void
2474ctx_sched_in(struct perf_event_context *ctx,
2475 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2476 enum event_type_t event_type,
2477 struct task_struct *task)
5b0311e1 2478{
e5d1367f 2479 u64 now;
db24d33e 2480 int is_active = ctx->is_active;
e5d1367f 2481
db24d33e 2482 ctx->is_active |= event_type;
5b0311e1 2483 if (likely(!ctx->nr_events))
facc4307 2484 return;
5b0311e1 2485
e5d1367f
SE
2486 now = perf_clock();
2487 ctx->timestamp = now;
3f7cce3c 2488 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2489 /*
2490 * First go through the list and put on any pinned groups
2491 * in order to give them the best chance of going on.
2492 */
db24d33e 2493 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2494 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2495
2496 /* Then walk through the lower prio flexible groups */
db24d33e 2497 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2498 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2499}
2500
329c0e01 2501static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2502 enum event_type_t event_type,
2503 struct task_struct *task)
329c0e01
FW
2504{
2505 struct perf_event_context *ctx = &cpuctx->ctx;
2506
e5d1367f 2507 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2508}
2509
e5d1367f
SE
2510static void perf_event_context_sched_in(struct perf_event_context *ctx,
2511 struct task_struct *task)
235c7fc7 2512{
108b02cf 2513 struct perf_cpu_context *cpuctx;
235c7fc7 2514
108b02cf 2515 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2516 if (cpuctx->task_ctx == ctx)
2517 return;
2518
facc4307 2519 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2520 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2521 /*
2522 * We want to keep the following priority order:
2523 * cpu pinned (that don't need to move), task pinned,
2524 * cpu flexible, task flexible.
2525 */
2526 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2527
1d5f003f
GN
2528 if (ctx->nr_events)
2529 cpuctx->task_ctx = ctx;
9b33fa6b 2530
86b47c25
GN
2531 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2532
facc4307
PZ
2533 perf_pmu_enable(ctx->pmu);
2534 perf_ctx_unlock(cpuctx, ctx);
2535
b5ab4cd5
PZ
2536 /*
2537 * Since these rotations are per-cpu, we need to ensure the
2538 * cpu-context we got scheduled on is actually rotating.
2539 */
108b02cf 2540 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2541}
2542
d010b332
SE
2543/*
2544 * When sampling the branck stack in system-wide, it may be necessary
2545 * to flush the stack on context switch. This happens when the branch
2546 * stack does not tag its entries with the pid of the current task.
2547 * Otherwise it becomes impossible to associate a branch entry with a
2548 * task. This ambiguity is more likely to appear when the branch stack
2549 * supports priv level filtering and the user sets it to monitor only
2550 * at the user level (which could be a useful measurement in system-wide
2551 * mode). In that case, the risk is high of having a branch stack with
2552 * branch from multiple tasks. Flushing may mean dropping the existing
2553 * entries or stashing them somewhere in the PMU specific code layer.
2554 *
2555 * This function provides the context switch callback to the lower code
2556 * layer. It is invoked ONLY when there is at least one system-wide context
2557 * with at least one active event using taken branch sampling.
2558 */
2559static void perf_branch_stack_sched_in(struct task_struct *prev,
2560 struct task_struct *task)
2561{
2562 struct perf_cpu_context *cpuctx;
2563 struct pmu *pmu;
2564 unsigned long flags;
2565
2566 /* no need to flush branch stack if not changing task */
2567 if (prev == task)
2568 return;
2569
2570 local_irq_save(flags);
2571
2572 rcu_read_lock();
2573
2574 list_for_each_entry_rcu(pmu, &pmus, entry) {
2575 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2576
2577 /*
2578 * check if the context has at least one
2579 * event using PERF_SAMPLE_BRANCH_STACK
2580 */
2581 if (cpuctx->ctx.nr_branch_stack > 0
2582 && pmu->flush_branch_stack) {
2583
d010b332
SE
2584 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2585
2586 perf_pmu_disable(pmu);
2587
2588 pmu->flush_branch_stack();
2589
2590 perf_pmu_enable(pmu);
2591
2592 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2593 }
2594 }
2595
2596 rcu_read_unlock();
2597
2598 local_irq_restore(flags);
2599}
2600
8dc85d54
PZ
2601/*
2602 * Called from scheduler to add the events of the current task
2603 * with interrupts disabled.
2604 *
2605 * We restore the event value and then enable it.
2606 *
2607 * This does not protect us against NMI, but enable()
2608 * sets the enabled bit in the control field of event _before_
2609 * accessing the event control register. If a NMI hits, then it will
2610 * keep the event running.
2611 */
ab0cce56
JO
2612void __perf_event_task_sched_in(struct task_struct *prev,
2613 struct task_struct *task)
8dc85d54
PZ
2614{
2615 struct perf_event_context *ctx;
2616 int ctxn;
2617
2618 for_each_task_context_nr(ctxn) {
2619 ctx = task->perf_event_ctxp[ctxn];
2620 if (likely(!ctx))
2621 continue;
2622
e5d1367f 2623 perf_event_context_sched_in(ctx, task);
8dc85d54 2624 }
e5d1367f
SE
2625 /*
2626 * if cgroup events exist on this CPU, then we need
2627 * to check if we have to switch in PMU state.
2628 * cgroup event are system-wide mode only
2629 */
2630 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2631 perf_cgroup_sched_in(prev, task);
d010b332
SE
2632
2633 /* check for system-wide branch_stack events */
2634 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2635 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2636}
2637
abd50713
PZ
2638static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2639{
2640 u64 frequency = event->attr.sample_freq;
2641 u64 sec = NSEC_PER_SEC;
2642 u64 divisor, dividend;
2643
2644 int count_fls, nsec_fls, frequency_fls, sec_fls;
2645
2646 count_fls = fls64(count);
2647 nsec_fls = fls64(nsec);
2648 frequency_fls = fls64(frequency);
2649 sec_fls = 30;
2650
2651 /*
2652 * We got @count in @nsec, with a target of sample_freq HZ
2653 * the target period becomes:
2654 *
2655 * @count * 10^9
2656 * period = -------------------
2657 * @nsec * sample_freq
2658 *
2659 */
2660
2661 /*
2662 * Reduce accuracy by one bit such that @a and @b converge
2663 * to a similar magnitude.
2664 */
fe4b04fa 2665#define REDUCE_FLS(a, b) \
abd50713
PZ
2666do { \
2667 if (a##_fls > b##_fls) { \
2668 a >>= 1; \
2669 a##_fls--; \
2670 } else { \
2671 b >>= 1; \
2672 b##_fls--; \
2673 } \
2674} while (0)
2675
2676 /*
2677 * Reduce accuracy until either term fits in a u64, then proceed with
2678 * the other, so that finally we can do a u64/u64 division.
2679 */
2680 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2681 REDUCE_FLS(nsec, frequency);
2682 REDUCE_FLS(sec, count);
2683 }
2684
2685 if (count_fls + sec_fls > 64) {
2686 divisor = nsec * frequency;
2687
2688 while (count_fls + sec_fls > 64) {
2689 REDUCE_FLS(count, sec);
2690 divisor >>= 1;
2691 }
2692
2693 dividend = count * sec;
2694 } else {
2695 dividend = count * sec;
2696
2697 while (nsec_fls + frequency_fls > 64) {
2698 REDUCE_FLS(nsec, frequency);
2699 dividend >>= 1;
2700 }
2701
2702 divisor = nsec * frequency;
2703 }
2704
f6ab91ad
PZ
2705 if (!divisor)
2706 return dividend;
2707
abd50713
PZ
2708 return div64_u64(dividend, divisor);
2709}
2710
e050e3f0
SE
2711static DEFINE_PER_CPU(int, perf_throttled_count);
2712static DEFINE_PER_CPU(u64, perf_throttled_seq);
2713
f39d47ff 2714static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2715{
cdd6c482 2716 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2717 s64 period, sample_period;
bd2b5b12
PZ
2718 s64 delta;
2719
abd50713 2720 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2721
2722 delta = (s64)(period - hwc->sample_period);
2723 delta = (delta + 7) / 8; /* low pass filter */
2724
2725 sample_period = hwc->sample_period + delta;
2726
2727 if (!sample_period)
2728 sample_period = 1;
2729
bd2b5b12 2730 hwc->sample_period = sample_period;
abd50713 2731
e7850595 2732 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2733 if (disable)
2734 event->pmu->stop(event, PERF_EF_UPDATE);
2735
e7850595 2736 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2737
2738 if (disable)
2739 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2740 }
bd2b5b12
PZ
2741}
2742
e050e3f0
SE
2743/*
2744 * combine freq adjustment with unthrottling to avoid two passes over the
2745 * events. At the same time, make sure, having freq events does not change
2746 * the rate of unthrottling as that would introduce bias.
2747 */
2748static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2749 int needs_unthr)
60db5e09 2750{
cdd6c482
IM
2751 struct perf_event *event;
2752 struct hw_perf_event *hwc;
e050e3f0 2753 u64 now, period = TICK_NSEC;
abd50713 2754 s64 delta;
60db5e09 2755
e050e3f0
SE
2756 /*
2757 * only need to iterate over all events iff:
2758 * - context have events in frequency mode (needs freq adjust)
2759 * - there are events to unthrottle on this cpu
2760 */
2761 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2762 return;
2763
e050e3f0 2764 raw_spin_lock(&ctx->lock);
f39d47ff 2765 perf_pmu_disable(ctx->pmu);
e050e3f0 2766
03541f8b 2767 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2768 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2769 continue;
2770
5632ab12 2771 if (!event_filter_match(event))
5d27c23d
PZ
2772 continue;
2773
44377277
AS
2774 perf_pmu_disable(event->pmu);
2775
cdd6c482 2776 hwc = &event->hw;
6a24ed6c 2777
ae23bff1 2778 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2779 hwc->interrupts = 0;
cdd6c482 2780 perf_log_throttle(event, 1);
a4eaf7f1 2781 event->pmu->start(event, 0);
a78ac325
PZ
2782 }
2783
cdd6c482 2784 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2785 goto next;
60db5e09 2786
e050e3f0
SE
2787 /*
2788 * stop the event and update event->count
2789 */
2790 event->pmu->stop(event, PERF_EF_UPDATE);
2791
e7850595 2792 now = local64_read(&event->count);
abd50713
PZ
2793 delta = now - hwc->freq_count_stamp;
2794 hwc->freq_count_stamp = now;
60db5e09 2795
e050e3f0
SE
2796 /*
2797 * restart the event
2798 * reload only if value has changed
f39d47ff
SE
2799 * we have stopped the event so tell that
2800 * to perf_adjust_period() to avoid stopping it
2801 * twice.
e050e3f0 2802 */
abd50713 2803 if (delta > 0)
f39d47ff 2804 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2805
2806 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2807 next:
2808 perf_pmu_enable(event->pmu);
60db5e09 2809 }
e050e3f0 2810
f39d47ff 2811 perf_pmu_enable(ctx->pmu);
e050e3f0 2812 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2813}
2814
235c7fc7 2815/*
cdd6c482 2816 * Round-robin a context's events:
235c7fc7 2817 */
cdd6c482 2818static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2819{
dddd3379
TG
2820 /*
2821 * Rotate the first entry last of non-pinned groups. Rotation might be
2822 * disabled by the inheritance code.
2823 */
2824 if (!ctx->rotate_disable)
2825 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2826}
2827
b5ab4cd5 2828/*
e9d2b064
PZ
2829 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2830 * because they're strictly cpu affine and rotate_start is called with IRQs
2831 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2832 */
9e630205 2833static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2834{
8dc85d54 2835 struct perf_event_context *ctx = NULL;
e050e3f0 2836 int rotate = 0, remove = 1;
7fc23a53 2837
b5ab4cd5 2838 if (cpuctx->ctx.nr_events) {
e9d2b064 2839 remove = 0;
b5ab4cd5
PZ
2840 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2841 rotate = 1;
2842 }
235c7fc7 2843
8dc85d54 2844 ctx = cpuctx->task_ctx;
b5ab4cd5 2845 if (ctx && ctx->nr_events) {
e9d2b064 2846 remove = 0;
b5ab4cd5
PZ
2847 if (ctx->nr_events != ctx->nr_active)
2848 rotate = 1;
2849 }
9717e6cd 2850
e050e3f0 2851 if (!rotate)
0f5a2601
PZ
2852 goto done;
2853
facc4307 2854 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2855 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2856
e050e3f0
SE
2857 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2858 if (ctx)
2859 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2860
e050e3f0
SE
2861 rotate_ctx(&cpuctx->ctx);
2862 if (ctx)
2863 rotate_ctx(ctx);
235c7fc7 2864
e050e3f0 2865 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2866
0f5a2601
PZ
2867 perf_pmu_enable(cpuctx->ctx.pmu);
2868 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2869done:
e9d2b064
PZ
2870 if (remove)
2871 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2872
2873 return rotate;
e9d2b064
PZ
2874}
2875
026249ef
FW
2876#ifdef CONFIG_NO_HZ_FULL
2877bool perf_event_can_stop_tick(void)
2878{
948b26b6 2879 if (atomic_read(&nr_freq_events) ||
d84153d6 2880 __this_cpu_read(perf_throttled_count))
026249ef 2881 return false;
d84153d6
FW
2882 else
2883 return true;
026249ef
FW
2884}
2885#endif
2886
e9d2b064
PZ
2887void perf_event_task_tick(void)
2888{
2889 struct list_head *head = &__get_cpu_var(rotation_list);
2890 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2891 struct perf_event_context *ctx;
2892 int throttled;
b5ab4cd5 2893
e9d2b064
PZ
2894 WARN_ON(!irqs_disabled());
2895
e050e3f0
SE
2896 __this_cpu_inc(perf_throttled_seq);
2897 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2898
e9d2b064 2899 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2900 ctx = &cpuctx->ctx;
2901 perf_adjust_freq_unthr_context(ctx, throttled);
2902
2903 ctx = cpuctx->task_ctx;
2904 if (ctx)
2905 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2906 }
0793a61d
TG
2907}
2908
889ff015
FW
2909static int event_enable_on_exec(struct perf_event *event,
2910 struct perf_event_context *ctx)
2911{
2912 if (!event->attr.enable_on_exec)
2913 return 0;
2914
2915 event->attr.enable_on_exec = 0;
2916 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2917 return 0;
2918
1d9b482e 2919 __perf_event_mark_enabled(event);
889ff015
FW
2920
2921 return 1;
2922}
2923
57e7986e 2924/*
cdd6c482 2925 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2926 * This expects task == current.
2927 */
8dc85d54 2928static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2929{
cdd6c482 2930 struct perf_event *event;
57e7986e
PM
2931 unsigned long flags;
2932 int enabled = 0;
889ff015 2933 int ret;
57e7986e
PM
2934
2935 local_irq_save(flags);
cdd6c482 2936 if (!ctx || !ctx->nr_events)
57e7986e
PM
2937 goto out;
2938
e566b76e
SE
2939 /*
2940 * We must ctxsw out cgroup events to avoid conflict
2941 * when invoking perf_task_event_sched_in() later on
2942 * in this function. Otherwise we end up trying to
2943 * ctxswin cgroup events which are already scheduled
2944 * in.
2945 */
a8d757ef 2946 perf_cgroup_sched_out(current, NULL);
57e7986e 2947
e625cce1 2948 raw_spin_lock(&ctx->lock);
04dc2dbb 2949 task_ctx_sched_out(ctx);
57e7986e 2950
b79387ef 2951 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2952 ret = event_enable_on_exec(event, ctx);
2953 if (ret)
2954 enabled = 1;
57e7986e
PM
2955 }
2956
2957 /*
cdd6c482 2958 * Unclone this context if we enabled any event.
57e7986e 2959 */
71a851b4
PZ
2960 if (enabled)
2961 unclone_ctx(ctx);
57e7986e 2962
e625cce1 2963 raw_spin_unlock(&ctx->lock);
57e7986e 2964
e566b76e
SE
2965 /*
2966 * Also calls ctxswin for cgroup events, if any:
2967 */
e5d1367f 2968 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2969out:
57e7986e
PM
2970 local_irq_restore(flags);
2971}
2972
0793a61d 2973/*
cdd6c482 2974 * Cross CPU call to read the hardware event
0793a61d 2975 */
cdd6c482 2976static void __perf_event_read(void *info)
0793a61d 2977{
cdd6c482
IM
2978 struct perf_event *event = info;
2979 struct perf_event_context *ctx = event->ctx;
108b02cf 2980 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2981
e1ac3614
PM
2982 /*
2983 * If this is a task context, we need to check whether it is
2984 * the current task context of this cpu. If not it has been
2985 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2986 * event->count would have been updated to a recent sample
2987 * when the event was scheduled out.
e1ac3614
PM
2988 */
2989 if (ctx->task && cpuctx->task_ctx != ctx)
2990 return;
2991
e625cce1 2992 raw_spin_lock(&ctx->lock);
e5d1367f 2993 if (ctx->is_active) {
542e72fc 2994 update_context_time(ctx);
e5d1367f
SE
2995 update_cgrp_time_from_event(event);
2996 }
cdd6c482 2997 update_event_times(event);
542e72fc
PZ
2998 if (event->state == PERF_EVENT_STATE_ACTIVE)
2999 event->pmu->read(event);
e625cce1 3000 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3001}
3002
b5e58793
PZ
3003static inline u64 perf_event_count(struct perf_event *event)
3004{
e7850595 3005 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3006}
3007
cdd6c482 3008static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3009{
3010 /*
cdd6c482
IM
3011 * If event is enabled and currently active on a CPU, update the
3012 * value in the event structure:
0793a61d 3013 */
cdd6c482
IM
3014 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3015 smp_call_function_single(event->oncpu,
3016 __perf_event_read, event, 1);
3017 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3018 struct perf_event_context *ctx = event->ctx;
3019 unsigned long flags;
3020
e625cce1 3021 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3022 /*
3023 * may read while context is not active
3024 * (e.g., thread is blocked), in that case
3025 * we cannot update context time
3026 */
e5d1367f 3027 if (ctx->is_active) {
c530ccd9 3028 update_context_time(ctx);
e5d1367f
SE
3029 update_cgrp_time_from_event(event);
3030 }
cdd6c482 3031 update_event_times(event);
e625cce1 3032 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3033 }
3034
b5e58793 3035 return perf_event_count(event);
0793a61d
TG
3036}
3037
a63eaf34 3038/*
cdd6c482 3039 * Initialize the perf_event context in a task_struct:
a63eaf34 3040 */
eb184479 3041static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3042{
e625cce1 3043 raw_spin_lock_init(&ctx->lock);
a63eaf34 3044 mutex_init(&ctx->mutex);
889ff015
FW
3045 INIT_LIST_HEAD(&ctx->pinned_groups);
3046 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3047 INIT_LIST_HEAD(&ctx->event_list);
3048 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3049}
3050
3051static struct perf_event_context *
3052alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3053{
3054 struct perf_event_context *ctx;
3055
3056 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3057 if (!ctx)
3058 return NULL;
3059
3060 __perf_event_init_context(ctx);
3061 if (task) {
3062 ctx->task = task;
3063 get_task_struct(task);
0793a61d 3064 }
eb184479
PZ
3065 ctx->pmu = pmu;
3066
3067 return ctx;
a63eaf34
PM
3068}
3069
2ebd4ffb
MH
3070static struct task_struct *
3071find_lively_task_by_vpid(pid_t vpid)
3072{
3073 struct task_struct *task;
3074 int err;
0793a61d
TG
3075
3076 rcu_read_lock();
2ebd4ffb 3077 if (!vpid)
0793a61d
TG
3078 task = current;
3079 else
2ebd4ffb 3080 task = find_task_by_vpid(vpid);
0793a61d
TG
3081 if (task)
3082 get_task_struct(task);
3083 rcu_read_unlock();
3084
3085 if (!task)
3086 return ERR_PTR(-ESRCH);
3087
0793a61d 3088 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3089 err = -EACCES;
3090 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3091 goto errout;
3092
2ebd4ffb
MH
3093 return task;
3094errout:
3095 put_task_struct(task);
3096 return ERR_PTR(err);
3097
3098}
3099
fe4b04fa
PZ
3100/*
3101 * Returns a matching context with refcount and pincount.
3102 */
108b02cf 3103static struct perf_event_context *
38a81da2 3104find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3105{
cdd6c482 3106 struct perf_event_context *ctx;
22a4f650 3107 struct perf_cpu_context *cpuctx;
25346b93 3108 unsigned long flags;
8dc85d54 3109 int ctxn, err;
0793a61d 3110
22a4ec72 3111 if (!task) {
cdd6c482 3112 /* Must be root to operate on a CPU event: */
0764771d 3113 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3114 return ERR_PTR(-EACCES);
3115
0793a61d 3116 /*
cdd6c482 3117 * We could be clever and allow to attach a event to an
0793a61d
TG
3118 * offline CPU and activate it when the CPU comes up, but
3119 * that's for later.
3120 */
f6325e30 3121 if (!cpu_online(cpu))
0793a61d
TG
3122 return ERR_PTR(-ENODEV);
3123
108b02cf 3124 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3125 ctx = &cpuctx->ctx;
c93f7669 3126 get_ctx(ctx);
fe4b04fa 3127 ++ctx->pin_count;
0793a61d 3128
0793a61d
TG
3129 return ctx;
3130 }
3131
8dc85d54
PZ
3132 err = -EINVAL;
3133 ctxn = pmu->task_ctx_nr;
3134 if (ctxn < 0)
3135 goto errout;
3136
9ed6060d 3137retry:
8dc85d54 3138 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3139 if (ctx) {
71a851b4 3140 unclone_ctx(ctx);
fe4b04fa 3141 ++ctx->pin_count;
e625cce1 3142 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3143 } else {
eb184479 3144 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3145 err = -ENOMEM;
3146 if (!ctx)
3147 goto errout;
eb184479 3148
dbe08d82
ON
3149 err = 0;
3150 mutex_lock(&task->perf_event_mutex);
3151 /*
3152 * If it has already passed perf_event_exit_task().
3153 * we must see PF_EXITING, it takes this mutex too.
3154 */
3155 if (task->flags & PF_EXITING)
3156 err = -ESRCH;
3157 else if (task->perf_event_ctxp[ctxn])
3158 err = -EAGAIN;
fe4b04fa 3159 else {
9137fb28 3160 get_ctx(ctx);
fe4b04fa 3161 ++ctx->pin_count;
dbe08d82 3162 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3163 }
dbe08d82
ON
3164 mutex_unlock(&task->perf_event_mutex);
3165
3166 if (unlikely(err)) {
9137fb28 3167 put_ctx(ctx);
dbe08d82
ON
3168
3169 if (err == -EAGAIN)
3170 goto retry;
3171 goto errout;
a63eaf34
PM
3172 }
3173 }
3174
0793a61d 3175 return ctx;
c93f7669 3176
9ed6060d 3177errout:
c93f7669 3178 return ERR_PTR(err);
0793a61d
TG
3179}
3180
6fb2915d
LZ
3181static void perf_event_free_filter(struct perf_event *event);
3182
cdd6c482 3183static void free_event_rcu(struct rcu_head *head)
592903cd 3184{
cdd6c482 3185 struct perf_event *event;
592903cd 3186
cdd6c482
IM
3187 event = container_of(head, struct perf_event, rcu_head);
3188 if (event->ns)
3189 put_pid_ns(event->ns);
6fb2915d 3190 perf_event_free_filter(event);
cdd6c482 3191 kfree(event);
592903cd
PZ
3192}
3193
76369139 3194static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3195static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3196
4beb31f3 3197static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3198{
4beb31f3
FW
3199 if (event->parent)
3200 return;
3201
3202 if (has_branch_stack(event)) {
3203 if (!(event->attach_state & PERF_ATTACH_TASK))
3204 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3205 }
3206 if (is_cgroup_event(event))
3207 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3208}
925d519a 3209
4beb31f3
FW
3210static void unaccount_event(struct perf_event *event)
3211{
3212 if (event->parent)
3213 return;
3214
3215 if (event->attach_state & PERF_ATTACH_TASK)
3216 static_key_slow_dec_deferred(&perf_sched_events);
3217 if (event->attr.mmap || event->attr.mmap_data)
3218 atomic_dec(&nr_mmap_events);
3219 if (event->attr.comm)
3220 atomic_dec(&nr_comm_events);
3221 if (event->attr.task)
3222 atomic_dec(&nr_task_events);
948b26b6
FW
3223 if (event->attr.freq)
3224 atomic_dec(&nr_freq_events);
4beb31f3
FW
3225 if (is_cgroup_event(event))
3226 static_key_slow_dec_deferred(&perf_sched_events);
3227 if (has_branch_stack(event))
3228 static_key_slow_dec_deferred(&perf_sched_events);
3229
3230 unaccount_event_cpu(event, event->cpu);
3231}
925d519a 3232
766d6c07
FW
3233static void __free_event(struct perf_event *event)
3234{
cdd6c482 3235 if (!event->parent) {
927c7a9e
FW
3236 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3237 put_callchain_buffers();
f344011c 3238 }
9ee318a7 3239
766d6c07
FW
3240 if (event->destroy)
3241 event->destroy(event);
3242
3243 if (event->ctx)
3244 put_ctx(event->ctx);
3245
3246 call_rcu(&event->rcu_head, free_event_rcu);
3247}
cdd6c482 3248static void free_event(struct perf_event *event)
f1600952 3249{
e360adbe 3250 irq_work_sync(&event->pending);
925d519a 3251
4beb31f3 3252 unaccount_event(event);
9ee318a7 3253
76369139 3254 if (event->rb) {
9bb5d40c
PZ
3255 struct ring_buffer *rb;
3256
3257 /*
3258 * Can happen when we close an event with re-directed output.
3259 *
3260 * Since we have a 0 refcount, perf_mmap_close() will skip
3261 * over us; possibly making our ring_buffer_put() the last.
3262 */
3263 mutex_lock(&event->mmap_mutex);
3264 rb = event->rb;
3265 if (rb) {
3266 rcu_assign_pointer(event->rb, NULL);
3267 ring_buffer_detach(event, rb);
3268 ring_buffer_put(rb); /* could be last */
3269 }
3270 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3271 }
3272
e5d1367f
SE
3273 if (is_cgroup_event(event))
3274 perf_detach_cgroup(event);
3275
0c67b408 3276
766d6c07 3277 __free_event(event);
f1600952
PZ
3278}
3279
a66a3052 3280int perf_event_release_kernel(struct perf_event *event)
0793a61d 3281{
cdd6c482 3282 struct perf_event_context *ctx = event->ctx;
0793a61d 3283
ad3a37de 3284 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3285 /*
3286 * There are two ways this annotation is useful:
3287 *
3288 * 1) there is a lock recursion from perf_event_exit_task
3289 * see the comment there.
3290 *
3291 * 2) there is a lock-inversion with mmap_sem through
3292 * perf_event_read_group(), which takes faults while
3293 * holding ctx->mutex, however this is called after
3294 * the last filedesc died, so there is no possibility
3295 * to trigger the AB-BA case.
3296 */
3297 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
46ce0fe9 3298 perf_remove_from_context(event, true);
d859e29f 3299 mutex_unlock(&ctx->mutex);
0793a61d 3300
cdd6c482 3301 free_event(event);
0793a61d
TG
3302
3303 return 0;
3304}
a66a3052 3305EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3306
a66a3052
PZ
3307/*
3308 * Called when the last reference to the file is gone.
3309 */
a6fa941d 3310static void put_event(struct perf_event *event)
fb0459d7 3311{
8882135b 3312 struct task_struct *owner;
fb0459d7 3313
a6fa941d
AV
3314 if (!atomic_long_dec_and_test(&event->refcount))
3315 return;
fb0459d7 3316
8882135b
PZ
3317 rcu_read_lock();
3318 owner = ACCESS_ONCE(event->owner);
3319 /*
3320 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3321 * !owner it means the list deletion is complete and we can indeed
3322 * free this event, otherwise we need to serialize on
3323 * owner->perf_event_mutex.
3324 */
3325 smp_read_barrier_depends();
3326 if (owner) {
3327 /*
3328 * Since delayed_put_task_struct() also drops the last
3329 * task reference we can safely take a new reference
3330 * while holding the rcu_read_lock().
3331 */
3332 get_task_struct(owner);
3333 }
3334 rcu_read_unlock();
3335
3336 if (owner) {
3337 mutex_lock(&owner->perf_event_mutex);
3338 /*
3339 * We have to re-check the event->owner field, if it is cleared
3340 * we raced with perf_event_exit_task(), acquiring the mutex
3341 * ensured they're done, and we can proceed with freeing the
3342 * event.
3343 */
3344 if (event->owner)
3345 list_del_init(&event->owner_entry);
3346 mutex_unlock(&owner->perf_event_mutex);
3347 put_task_struct(owner);
3348 }
3349
a6fa941d
AV
3350 perf_event_release_kernel(event);
3351}
3352
3353static int perf_release(struct inode *inode, struct file *file)
3354{
3355 put_event(file->private_data);
3356 return 0;
fb0459d7 3357}
fb0459d7 3358
59ed446f 3359u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3360{
cdd6c482 3361 struct perf_event *child;
e53c0994
PZ
3362 u64 total = 0;
3363
59ed446f
PZ
3364 *enabled = 0;
3365 *running = 0;
3366
6f10581a 3367 mutex_lock(&event->child_mutex);
cdd6c482 3368 total += perf_event_read(event);
59ed446f
PZ
3369 *enabled += event->total_time_enabled +
3370 atomic64_read(&event->child_total_time_enabled);
3371 *running += event->total_time_running +
3372 atomic64_read(&event->child_total_time_running);
3373
3374 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3375 total += perf_event_read(child);
59ed446f
PZ
3376 *enabled += child->total_time_enabled;
3377 *running += child->total_time_running;
3378 }
6f10581a 3379 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3380
3381 return total;
3382}
fb0459d7 3383EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3384
cdd6c482 3385static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3386 u64 read_format, char __user *buf)
3387{
cdd6c482 3388 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3389 int n = 0, size = 0, ret = -EFAULT;
3390 struct perf_event_context *ctx = leader->ctx;
abf4868b 3391 u64 values[5];
59ed446f 3392 u64 count, enabled, running;
abf4868b 3393
6f10581a 3394 mutex_lock(&ctx->mutex);
59ed446f 3395 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3396
3397 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3398 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3399 values[n++] = enabled;
3400 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3401 values[n++] = running;
abf4868b
PZ
3402 values[n++] = count;
3403 if (read_format & PERF_FORMAT_ID)
3404 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3405
3406 size = n * sizeof(u64);
3407
3408 if (copy_to_user(buf, values, size))
6f10581a 3409 goto unlock;
3dab77fb 3410
6f10581a 3411 ret = size;
3dab77fb 3412
65abc865 3413 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3414 n = 0;
3dab77fb 3415
59ed446f 3416 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3417 if (read_format & PERF_FORMAT_ID)
3418 values[n++] = primary_event_id(sub);
3419
3420 size = n * sizeof(u64);
3421
184d3da8 3422 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3423 ret = -EFAULT;
3424 goto unlock;
3425 }
abf4868b
PZ
3426
3427 ret += size;
3dab77fb 3428 }
6f10581a
PZ
3429unlock:
3430 mutex_unlock(&ctx->mutex);
3dab77fb 3431
abf4868b 3432 return ret;
3dab77fb
PZ
3433}
3434
cdd6c482 3435static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3436 u64 read_format, char __user *buf)
3437{
59ed446f 3438 u64 enabled, running;
3dab77fb
PZ
3439 u64 values[4];
3440 int n = 0;
3441
59ed446f
PZ
3442 values[n++] = perf_event_read_value(event, &enabled, &running);
3443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3444 values[n++] = enabled;
3445 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3446 values[n++] = running;
3dab77fb 3447 if (read_format & PERF_FORMAT_ID)
cdd6c482 3448 values[n++] = primary_event_id(event);
3dab77fb
PZ
3449
3450 if (copy_to_user(buf, values, n * sizeof(u64)))
3451 return -EFAULT;
3452
3453 return n * sizeof(u64);
3454}
3455
0793a61d 3456/*
cdd6c482 3457 * Read the performance event - simple non blocking version for now
0793a61d
TG
3458 */
3459static ssize_t
cdd6c482 3460perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3461{
cdd6c482 3462 u64 read_format = event->attr.read_format;
3dab77fb 3463 int ret;
0793a61d 3464
3b6f9e5c 3465 /*
cdd6c482 3466 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3467 * error state (i.e. because it was pinned but it couldn't be
3468 * scheduled on to the CPU at some point).
3469 */
cdd6c482 3470 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3471 return 0;
3472
c320c7b7 3473 if (count < event->read_size)
3dab77fb
PZ
3474 return -ENOSPC;
3475
cdd6c482 3476 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3477 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3478 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3479 else
cdd6c482 3480 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3481
3dab77fb 3482 return ret;
0793a61d
TG
3483}
3484
0793a61d
TG
3485static ssize_t
3486perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3487{
cdd6c482 3488 struct perf_event *event = file->private_data;
0793a61d 3489
cdd6c482 3490 return perf_read_hw(event, buf, count);
0793a61d
TG
3491}
3492
3493static unsigned int perf_poll(struct file *file, poll_table *wait)
3494{
cdd6c482 3495 struct perf_event *event = file->private_data;
76369139 3496 struct ring_buffer *rb;
c33a0bc4 3497 unsigned int events = POLL_HUP;
c7138f37 3498
10c6db11 3499 /*
9bb5d40c
PZ
3500 * Pin the event->rb by taking event->mmap_mutex; otherwise
3501 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3502 */
3503 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3504 rb = event->rb;
3505 if (rb)
76369139 3506 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3507 mutex_unlock(&event->mmap_mutex);
3508
cdd6c482 3509 poll_wait(file, &event->waitq, wait);
0793a61d 3510
0793a61d
TG
3511 return events;
3512}
3513
cdd6c482 3514static void perf_event_reset(struct perf_event *event)
6de6a7b9 3515{
cdd6c482 3516 (void)perf_event_read(event);
e7850595 3517 local64_set(&event->count, 0);
cdd6c482 3518 perf_event_update_userpage(event);
3df5edad
PZ
3519}
3520
c93f7669 3521/*
cdd6c482
IM
3522 * Holding the top-level event's child_mutex means that any
3523 * descendant process that has inherited this event will block
3524 * in sync_child_event if it goes to exit, thus satisfying the
3525 * task existence requirements of perf_event_enable/disable.
c93f7669 3526 */
cdd6c482
IM
3527static void perf_event_for_each_child(struct perf_event *event,
3528 void (*func)(struct perf_event *))
3df5edad 3529{
cdd6c482 3530 struct perf_event *child;
3df5edad 3531
cdd6c482
IM
3532 WARN_ON_ONCE(event->ctx->parent_ctx);
3533 mutex_lock(&event->child_mutex);
3534 func(event);
3535 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3536 func(child);
cdd6c482 3537 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3538}
3539
cdd6c482
IM
3540static void perf_event_for_each(struct perf_event *event,
3541 void (*func)(struct perf_event *))
3df5edad 3542{
cdd6c482
IM
3543 struct perf_event_context *ctx = event->ctx;
3544 struct perf_event *sibling;
3df5edad 3545
75f937f2
PZ
3546 WARN_ON_ONCE(ctx->parent_ctx);
3547 mutex_lock(&ctx->mutex);
cdd6c482 3548 event = event->group_leader;
75f937f2 3549
cdd6c482 3550 perf_event_for_each_child(event, func);
cdd6c482 3551 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3552 perf_event_for_each_child(sibling, func);
75f937f2 3553 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3554}
3555
cdd6c482 3556static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3557{
cdd6c482 3558 struct perf_event_context *ctx = event->ctx;
bad7192b 3559 int ret = 0, active;
08247e31
PZ
3560 u64 value;
3561
6c7e550f 3562 if (!is_sampling_event(event))
08247e31
PZ
3563 return -EINVAL;
3564
ad0cf347 3565 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3566 return -EFAULT;
3567
3568 if (!value)
3569 return -EINVAL;
3570
e625cce1 3571 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3572 if (event->attr.freq) {
3573 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3574 ret = -EINVAL;
3575 goto unlock;
3576 }
3577
cdd6c482 3578 event->attr.sample_freq = value;
08247e31 3579 } else {
cdd6c482
IM
3580 event->attr.sample_period = value;
3581 event->hw.sample_period = value;
08247e31 3582 }
bad7192b
PZ
3583
3584 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3585 if (active) {
3586 perf_pmu_disable(ctx->pmu);
3587 event->pmu->stop(event, PERF_EF_UPDATE);
3588 }
3589
3590 local64_set(&event->hw.period_left, 0);
3591
3592 if (active) {
3593 event->pmu->start(event, PERF_EF_RELOAD);
3594 perf_pmu_enable(ctx->pmu);
3595 }
3596
08247e31 3597unlock:
e625cce1 3598 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3599
3600 return ret;
3601}
3602
ac9721f3
PZ
3603static const struct file_operations perf_fops;
3604
2903ff01 3605static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3606{
2903ff01
AV
3607 struct fd f = fdget(fd);
3608 if (!f.file)
3609 return -EBADF;
ac9721f3 3610
2903ff01
AV
3611 if (f.file->f_op != &perf_fops) {
3612 fdput(f);
3613 return -EBADF;
ac9721f3 3614 }
2903ff01
AV
3615 *p = f;
3616 return 0;
ac9721f3
PZ
3617}
3618
3619static int perf_event_set_output(struct perf_event *event,
3620 struct perf_event *output_event);
6fb2915d 3621static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3622
d859e29f
PM
3623static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3624{
cdd6c482
IM
3625 struct perf_event *event = file->private_data;
3626 void (*func)(struct perf_event *);
3df5edad 3627 u32 flags = arg;
d859e29f
PM
3628
3629 switch (cmd) {
cdd6c482
IM
3630 case PERF_EVENT_IOC_ENABLE:
3631 func = perf_event_enable;
d859e29f 3632 break;
cdd6c482
IM
3633 case PERF_EVENT_IOC_DISABLE:
3634 func = perf_event_disable;
79f14641 3635 break;
cdd6c482
IM
3636 case PERF_EVENT_IOC_RESET:
3637 func = perf_event_reset;
6de6a7b9 3638 break;
3df5edad 3639
cdd6c482
IM
3640 case PERF_EVENT_IOC_REFRESH:
3641 return perf_event_refresh(event, arg);
08247e31 3642
cdd6c482
IM
3643 case PERF_EVENT_IOC_PERIOD:
3644 return perf_event_period(event, (u64 __user *)arg);
08247e31 3645
cf4957f1
JO
3646 case PERF_EVENT_IOC_ID:
3647 {
3648 u64 id = primary_event_id(event);
3649
3650 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3651 return -EFAULT;
3652 return 0;
3653 }
3654
cdd6c482 3655 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3656 {
ac9721f3 3657 int ret;
ac9721f3 3658 if (arg != -1) {
2903ff01
AV
3659 struct perf_event *output_event;
3660 struct fd output;
3661 ret = perf_fget_light(arg, &output);
3662 if (ret)
3663 return ret;
3664 output_event = output.file->private_data;
3665 ret = perf_event_set_output(event, output_event);
3666 fdput(output);
3667 } else {
3668 ret = perf_event_set_output(event, NULL);
ac9721f3 3669 }
ac9721f3
PZ
3670 return ret;
3671 }
a4be7c27 3672
6fb2915d
LZ
3673 case PERF_EVENT_IOC_SET_FILTER:
3674 return perf_event_set_filter(event, (void __user *)arg);
3675
d859e29f 3676 default:
3df5edad 3677 return -ENOTTY;
d859e29f 3678 }
3df5edad
PZ
3679
3680 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3681 perf_event_for_each(event, func);
3df5edad 3682 else
cdd6c482 3683 perf_event_for_each_child(event, func);
3df5edad
PZ
3684
3685 return 0;
d859e29f
PM
3686}
3687
cdd6c482 3688int perf_event_task_enable(void)
771d7cde 3689{
cdd6c482 3690 struct perf_event *event;
771d7cde 3691
cdd6c482
IM
3692 mutex_lock(&current->perf_event_mutex);
3693 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3694 perf_event_for_each_child(event, perf_event_enable);
3695 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3696
3697 return 0;
3698}
3699
cdd6c482 3700int perf_event_task_disable(void)
771d7cde 3701{
cdd6c482 3702 struct perf_event *event;
771d7cde 3703
cdd6c482
IM
3704 mutex_lock(&current->perf_event_mutex);
3705 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3706 perf_event_for_each_child(event, perf_event_disable);
3707 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3708
3709 return 0;
3710}
3711
cdd6c482 3712static int perf_event_index(struct perf_event *event)
194002b2 3713{
a4eaf7f1
PZ
3714 if (event->hw.state & PERF_HES_STOPPED)
3715 return 0;
3716
cdd6c482 3717 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3718 return 0;
3719
35edc2a5 3720 return event->pmu->event_idx(event);
194002b2
PZ
3721}
3722
c4794295 3723static void calc_timer_values(struct perf_event *event,
e3f3541c 3724 u64 *now,
7f310a5d
EM
3725 u64 *enabled,
3726 u64 *running)
c4794295 3727{
e3f3541c 3728 u64 ctx_time;
c4794295 3729
e3f3541c
PZ
3730 *now = perf_clock();
3731 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3732 *enabled = ctx_time - event->tstamp_enabled;
3733 *running = ctx_time - event->tstamp_running;
3734}
3735
fa731587
PZ
3736static void perf_event_init_userpage(struct perf_event *event)
3737{
3738 struct perf_event_mmap_page *userpg;
3739 struct ring_buffer *rb;
3740
3741 rcu_read_lock();
3742 rb = rcu_dereference(event->rb);
3743 if (!rb)
3744 goto unlock;
3745
3746 userpg = rb->user_page;
3747
3748 /* Allow new userspace to detect that bit 0 is deprecated */
3749 userpg->cap_bit0_is_deprecated = 1;
3750 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3751
3752unlock:
3753 rcu_read_unlock();
3754}
3755
c7206205 3756void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3757{
3758}
3759
38ff667b
PZ
3760/*
3761 * Callers need to ensure there can be no nesting of this function, otherwise
3762 * the seqlock logic goes bad. We can not serialize this because the arch
3763 * code calls this from NMI context.
3764 */
cdd6c482 3765void perf_event_update_userpage(struct perf_event *event)
37d81828 3766{
cdd6c482 3767 struct perf_event_mmap_page *userpg;
76369139 3768 struct ring_buffer *rb;
e3f3541c 3769 u64 enabled, running, now;
38ff667b
PZ
3770
3771 rcu_read_lock();
5ec4c599
PZ
3772 rb = rcu_dereference(event->rb);
3773 if (!rb)
3774 goto unlock;
3775
0d641208
EM
3776 /*
3777 * compute total_time_enabled, total_time_running
3778 * based on snapshot values taken when the event
3779 * was last scheduled in.
3780 *
3781 * we cannot simply called update_context_time()
3782 * because of locking issue as we can be called in
3783 * NMI context
3784 */
e3f3541c 3785 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3786
76369139 3787 userpg = rb->user_page;
7b732a75
PZ
3788 /*
3789 * Disable preemption so as to not let the corresponding user-space
3790 * spin too long if we get preempted.
3791 */
3792 preempt_disable();
37d81828 3793 ++userpg->lock;
92f22a38 3794 barrier();
cdd6c482 3795 userpg->index = perf_event_index(event);
b5e58793 3796 userpg->offset = perf_event_count(event);
365a4038 3797 if (userpg->index)
e7850595 3798 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3799
0d641208 3800 userpg->time_enabled = enabled +
cdd6c482 3801 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3802
0d641208 3803 userpg->time_running = running +
cdd6c482 3804 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3805
c7206205 3806 arch_perf_update_userpage(userpg, now);
e3f3541c 3807
92f22a38 3808 barrier();
37d81828 3809 ++userpg->lock;
7b732a75 3810 preempt_enable();
38ff667b 3811unlock:
7b732a75 3812 rcu_read_unlock();
37d81828
PM
3813}
3814
906010b2
PZ
3815static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3816{
3817 struct perf_event *event = vma->vm_file->private_data;
76369139 3818 struct ring_buffer *rb;
906010b2
PZ
3819 int ret = VM_FAULT_SIGBUS;
3820
3821 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3822 if (vmf->pgoff == 0)
3823 ret = 0;
3824 return ret;
3825 }
3826
3827 rcu_read_lock();
76369139
FW
3828 rb = rcu_dereference(event->rb);
3829 if (!rb)
906010b2
PZ
3830 goto unlock;
3831
3832 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3833 goto unlock;
3834
76369139 3835 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3836 if (!vmf->page)
3837 goto unlock;
3838
3839 get_page(vmf->page);
3840 vmf->page->mapping = vma->vm_file->f_mapping;
3841 vmf->page->index = vmf->pgoff;
3842
3843 ret = 0;
3844unlock:
3845 rcu_read_unlock();
3846
3847 return ret;
3848}
3849
10c6db11
PZ
3850static void ring_buffer_attach(struct perf_event *event,
3851 struct ring_buffer *rb)
3852{
3853 unsigned long flags;
3854
3855 if (!list_empty(&event->rb_entry))
3856 return;
3857
3858 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3859 if (list_empty(&event->rb_entry))
3860 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3861 spin_unlock_irqrestore(&rb->event_lock, flags);
3862}
3863
9bb5d40c 3864static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3865{
3866 unsigned long flags;
3867
3868 if (list_empty(&event->rb_entry))
3869 return;
3870
3871 spin_lock_irqsave(&rb->event_lock, flags);
3872 list_del_init(&event->rb_entry);
3873 wake_up_all(&event->waitq);
3874 spin_unlock_irqrestore(&rb->event_lock, flags);
3875}
3876
3877static void ring_buffer_wakeup(struct perf_event *event)
3878{
3879 struct ring_buffer *rb;
3880
3881 rcu_read_lock();
3882 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3883 if (rb) {
3884 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3885 wake_up_all(&event->waitq);
3886 }
10c6db11
PZ
3887 rcu_read_unlock();
3888}
3889
76369139 3890static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3891{
76369139 3892 struct ring_buffer *rb;
906010b2 3893
76369139
FW
3894 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3895 rb_free(rb);
7b732a75
PZ
3896}
3897
76369139 3898static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3899{
76369139 3900 struct ring_buffer *rb;
7b732a75 3901
ac9721f3 3902 rcu_read_lock();
76369139
FW
3903 rb = rcu_dereference(event->rb);
3904 if (rb) {
3905 if (!atomic_inc_not_zero(&rb->refcount))
3906 rb = NULL;
ac9721f3
PZ
3907 }
3908 rcu_read_unlock();
3909
76369139 3910 return rb;
ac9721f3
PZ
3911}
3912
76369139 3913static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3914{
76369139 3915 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3916 return;
7b732a75 3917
9bb5d40c 3918 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3919
76369139 3920 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3921}
3922
3923static void perf_mmap_open(struct vm_area_struct *vma)
3924{
cdd6c482 3925 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3926
cdd6c482 3927 atomic_inc(&event->mmap_count);
9bb5d40c 3928 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3929}
3930
9bb5d40c
PZ
3931/*
3932 * A buffer can be mmap()ed multiple times; either directly through the same
3933 * event, or through other events by use of perf_event_set_output().
3934 *
3935 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3936 * the buffer here, where we still have a VM context. This means we need
3937 * to detach all events redirecting to us.
3938 */
7b732a75
PZ
3939static void perf_mmap_close(struct vm_area_struct *vma)
3940{
cdd6c482 3941 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3942
9bb5d40c
PZ
3943 struct ring_buffer *rb = event->rb;
3944 struct user_struct *mmap_user = rb->mmap_user;
3945 int mmap_locked = rb->mmap_locked;
3946 unsigned long size = perf_data_size(rb);
789f90fc 3947
9bb5d40c
PZ
3948 atomic_dec(&rb->mmap_count);
3949
3950 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3951 return;
3952
3953 /* Detach current event from the buffer. */
3954 rcu_assign_pointer(event->rb, NULL);
3955 ring_buffer_detach(event, rb);
3956 mutex_unlock(&event->mmap_mutex);
3957
3958 /* If there's still other mmap()s of this buffer, we're done. */
3959 if (atomic_read(&rb->mmap_count)) {
3960 ring_buffer_put(rb); /* can't be last */
3961 return;
3962 }
ac9721f3 3963
9bb5d40c
PZ
3964 /*
3965 * No other mmap()s, detach from all other events that might redirect
3966 * into the now unreachable buffer. Somewhat complicated by the
3967 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3968 */
3969again:
3970 rcu_read_lock();
3971 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3972 if (!atomic_long_inc_not_zero(&event->refcount)) {
3973 /*
3974 * This event is en-route to free_event() which will
3975 * detach it and remove it from the list.
3976 */
3977 continue;
3978 }
3979 rcu_read_unlock();
789f90fc 3980
9bb5d40c
PZ
3981 mutex_lock(&event->mmap_mutex);
3982 /*
3983 * Check we didn't race with perf_event_set_output() which can
3984 * swizzle the rb from under us while we were waiting to
3985 * acquire mmap_mutex.
3986 *
3987 * If we find a different rb; ignore this event, a next
3988 * iteration will no longer find it on the list. We have to
3989 * still restart the iteration to make sure we're not now
3990 * iterating the wrong list.
3991 */
3992 if (event->rb == rb) {
3993 rcu_assign_pointer(event->rb, NULL);
3994 ring_buffer_detach(event, rb);
3995 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3996 }
cdd6c482 3997 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3998 put_event(event);
ac9721f3 3999
9bb5d40c
PZ
4000 /*
4001 * Restart the iteration; either we're on the wrong list or
4002 * destroyed its integrity by doing a deletion.
4003 */
4004 goto again;
7b732a75 4005 }
9bb5d40c
PZ
4006 rcu_read_unlock();
4007
4008 /*
4009 * It could be there's still a few 0-ref events on the list; they'll
4010 * get cleaned up by free_event() -- they'll also still have their
4011 * ref on the rb and will free it whenever they are done with it.
4012 *
4013 * Aside from that, this buffer is 'fully' detached and unmapped,
4014 * undo the VM accounting.
4015 */
4016
4017 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4018 vma->vm_mm->pinned_vm -= mmap_locked;
4019 free_uid(mmap_user);
4020
4021 ring_buffer_put(rb); /* could be last */
37d81828
PM
4022}
4023
f0f37e2f 4024static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4025 .open = perf_mmap_open,
4026 .close = perf_mmap_close,
4027 .fault = perf_mmap_fault,
4028 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4029};
4030
4031static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4032{
cdd6c482 4033 struct perf_event *event = file->private_data;
22a4f650 4034 unsigned long user_locked, user_lock_limit;
789f90fc 4035 struct user_struct *user = current_user();
22a4f650 4036 unsigned long locked, lock_limit;
76369139 4037 struct ring_buffer *rb;
7b732a75
PZ
4038 unsigned long vma_size;
4039 unsigned long nr_pages;
789f90fc 4040 long user_extra, extra;
d57e34fd 4041 int ret = 0, flags = 0;
37d81828 4042
c7920614
PZ
4043 /*
4044 * Don't allow mmap() of inherited per-task counters. This would
4045 * create a performance issue due to all children writing to the
76369139 4046 * same rb.
c7920614
PZ
4047 */
4048 if (event->cpu == -1 && event->attr.inherit)
4049 return -EINVAL;
4050
43a21ea8 4051 if (!(vma->vm_flags & VM_SHARED))
37d81828 4052 return -EINVAL;
7b732a75
PZ
4053
4054 vma_size = vma->vm_end - vma->vm_start;
4055 nr_pages = (vma_size / PAGE_SIZE) - 1;
4056
7730d865 4057 /*
76369139 4058 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4059 * can do bitmasks instead of modulo.
4060 */
4061 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4062 return -EINVAL;
4063
7b732a75 4064 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4065 return -EINVAL;
4066
7b732a75
PZ
4067 if (vma->vm_pgoff != 0)
4068 return -EINVAL;
37d81828 4069
cdd6c482 4070 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4071again:
cdd6c482 4072 mutex_lock(&event->mmap_mutex);
76369139 4073 if (event->rb) {
9bb5d40c 4074 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4075 ret = -EINVAL;
9bb5d40c
PZ
4076 goto unlock;
4077 }
4078
4079 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4080 /*
4081 * Raced against perf_mmap_close() through
4082 * perf_event_set_output(). Try again, hope for better
4083 * luck.
4084 */
4085 mutex_unlock(&event->mmap_mutex);
4086 goto again;
4087 }
4088
ebb3c4c4
PZ
4089 goto unlock;
4090 }
4091
789f90fc 4092 user_extra = nr_pages + 1;
cdd6c482 4093 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4094
4095 /*
4096 * Increase the limit linearly with more CPUs:
4097 */
4098 user_lock_limit *= num_online_cpus();
4099
789f90fc 4100 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4101
789f90fc
PZ
4102 extra = 0;
4103 if (user_locked > user_lock_limit)
4104 extra = user_locked - user_lock_limit;
7b732a75 4105
78d7d407 4106 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4107 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4108 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4109
459ec28a
IM
4110 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4111 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4112 ret = -EPERM;
4113 goto unlock;
4114 }
7b732a75 4115
76369139 4116 WARN_ON(event->rb);
906010b2 4117
d57e34fd 4118 if (vma->vm_flags & VM_WRITE)
76369139 4119 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4120
4ec8363d
VW
4121 rb = rb_alloc(nr_pages,
4122 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4123 event->cpu, flags);
4124
76369139 4125 if (!rb) {
ac9721f3 4126 ret = -ENOMEM;
ebb3c4c4 4127 goto unlock;
ac9721f3 4128 }
26cb63ad 4129
9bb5d40c 4130 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4131 rb->mmap_locked = extra;
4132 rb->mmap_user = get_current_user();
43a21ea8 4133
ac9721f3 4134 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4135 vma->vm_mm->pinned_vm += extra;
4136
9bb5d40c 4137 ring_buffer_attach(event, rb);
26cb63ad 4138 rcu_assign_pointer(event->rb, rb);
ac9721f3 4139
fa731587 4140 perf_event_init_userpage(event);
9a0f05cb
PZ
4141 perf_event_update_userpage(event);
4142
ebb3c4c4 4143unlock:
ac9721f3
PZ
4144 if (!ret)
4145 atomic_inc(&event->mmap_count);
cdd6c482 4146 mutex_unlock(&event->mmap_mutex);
37d81828 4147
9bb5d40c
PZ
4148 /*
4149 * Since pinned accounting is per vm we cannot allow fork() to copy our
4150 * vma.
4151 */
26cb63ad 4152 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4153 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4154
4155 return ret;
37d81828
PM
4156}
4157
3c446b3d
PZ
4158static int perf_fasync(int fd, struct file *filp, int on)
4159{
496ad9aa 4160 struct inode *inode = file_inode(filp);
cdd6c482 4161 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4162 int retval;
4163
4164 mutex_lock(&inode->i_mutex);
cdd6c482 4165 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4166 mutex_unlock(&inode->i_mutex);
4167
4168 if (retval < 0)
4169 return retval;
4170
4171 return 0;
4172}
4173
0793a61d 4174static const struct file_operations perf_fops = {
3326c1ce 4175 .llseek = no_llseek,
0793a61d
TG
4176 .release = perf_release,
4177 .read = perf_read,
4178 .poll = perf_poll,
d859e29f
PM
4179 .unlocked_ioctl = perf_ioctl,
4180 .compat_ioctl = perf_ioctl,
37d81828 4181 .mmap = perf_mmap,
3c446b3d 4182 .fasync = perf_fasync,
0793a61d
TG
4183};
4184
925d519a 4185/*
cdd6c482 4186 * Perf event wakeup
925d519a
PZ
4187 *
4188 * If there's data, ensure we set the poll() state and publish everything
4189 * to user-space before waking everybody up.
4190 */
4191
cdd6c482 4192void perf_event_wakeup(struct perf_event *event)
925d519a 4193{
10c6db11 4194 ring_buffer_wakeup(event);
4c9e2542 4195
cdd6c482
IM
4196 if (event->pending_kill) {
4197 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4198 event->pending_kill = 0;
4c9e2542 4199 }
925d519a
PZ
4200}
4201
e360adbe 4202static void perf_pending_event(struct irq_work *entry)
79f14641 4203{
cdd6c482
IM
4204 struct perf_event *event = container_of(entry,
4205 struct perf_event, pending);
79f14641 4206
cdd6c482
IM
4207 if (event->pending_disable) {
4208 event->pending_disable = 0;
4209 __perf_event_disable(event);
79f14641
PZ
4210 }
4211
cdd6c482
IM
4212 if (event->pending_wakeup) {
4213 event->pending_wakeup = 0;
4214 perf_event_wakeup(event);
79f14641
PZ
4215 }
4216}
4217
39447b38
ZY
4218/*
4219 * We assume there is only KVM supporting the callbacks.
4220 * Later on, we might change it to a list if there is
4221 * another virtualization implementation supporting the callbacks.
4222 */
4223struct perf_guest_info_callbacks *perf_guest_cbs;
4224
4225int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4226{
4227 perf_guest_cbs = cbs;
4228 return 0;
4229}
4230EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4231
4232int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4233{
4234 perf_guest_cbs = NULL;
4235 return 0;
4236}
4237EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4238
4018994f
JO
4239static void
4240perf_output_sample_regs(struct perf_output_handle *handle,
4241 struct pt_regs *regs, u64 mask)
4242{
4243 int bit;
4244
4245 for_each_set_bit(bit, (const unsigned long *) &mask,
4246 sizeof(mask) * BITS_PER_BYTE) {
4247 u64 val;
4248
4249 val = perf_reg_value(regs, bit);
4250 perf_output_put(handle, val);
4251 }
4252}
4253
4254static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4255 struct pt_regs *regs)
4256{
4257 if (!user_mode(regs)) {
4258 if (current->mm)
4259 regs = task_pt_regs(current);
4260 else
4261 regs = NULL;
4262 }
4263
4264 if (regs) {
4265 regs_user->regs = regs;
4266 regs_user->abi = perf_reg_abi(current);
4267 }
4268}
4269
c5ebcedb
JO
4270/*
4271 * Get remaining task size from user stack pointer.
4272 *
4273 * It'd be better to take stack vma map and limit this more
4274 * precisly, but there's no way to get it safely under interrupt,
4275 * so using TASK_SIZE as limit.
4276 */
4277static u64 perf_ustack_task_size(struct pt_regs *regs)
4278{
4279 unsigned long addr = perf_user_stack_pointer(regs);
4280
4281 if (!addr || addr >= TASK_SIZE)
4282 return 0;
4283
4284 return TASK_SIZE - addr;
4285}
4286
4287static u16
4288perf_sample_ustack_size(u16 stack_size, u16 header_size,
4289 struct pt_regs *regs)
4290{
4291 u64 task_size;
4292
4293 /* No regs, no stack pointer, no dump. */
4294 if (!regs)
4295 return 0;
4296
4297 /*
4298 * Check if we fit in with the requested stack size into the:
4299 * - TASK_SIZE
4300 * If we don't, we limit the size to the TASK_SIZE.
4301 *
4302 * - remaining sample size
4303 * If we don't, we customize the stack size to
4304 * fit in to the remaining sample size.
4305 */
4306
4307 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4308 stack_size = min(stack_size, (u16) task_size);
4309
4310 /* Current header size plus static size and dynamic size. */
4311 header_size += 2 * sizeof(u64);
4312
4313 /* Do we fit in with the current stack dump size? */
4314 if ((u16) (header_size + stack_size) < header_size) {
4315 /*
4316 * If we overflow the maximum size for the sample,
4317 * we customize the stack dump size to fit in.
4318 */
4319 stack_size = USHRT_MAX - header_size - sizeof(u64);
4320 stack_size = round_up(stack_size, sizeof(u64));
4321 }
4322
4323 return stack_size;
4324}
4325
4326static void
4327perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4328 struct pt_regs *regs)
4329{
4330 /* Case of a kernel thread, nothing to dump */
4331 if (!regs) {
4332 u64 size = 0;
4333 perf_output_put(handle, size);
4334 } else {
4335 unsigned long sp;
4336 unsigned int rem;
4337 u64 dyn_size;
4338
4339 /*
4340 * We dump:
4341 * static size
4342 * - the size requested by user or the best one we can fit
4343 * in to the sample max size
4344 * data
4345 * - user stack dump data
4346 * dynamic size
4347 * - the actual dumped size
4348 */
4349
4350 /* Static size. */
4351 perf_output_put(handle, dump_size);
4352
4353 /* Data. */
4354 sp = perf_user_stack_pointer(regs);
4355 rem = __output_copy_user(handle, (void *) sp, dump_size);
4356 dyn_size = dump_size - rem;
4357
4358 perf_output_skip(handle, rem);
4359
4360 /* Dynamic size. */
4361 perf_output_put(handle, dyn_size);
4362 }
4363}
4364
c980d109
ACM
4365static void __perf_event_header__init_id(struct perf_event_header *header,
4366 struct perf_sample_data *data,
4367 struct perf_event *event)
6844c09d
ACM
4368{
4369 u64 sample_type = event->attr.sample_type;
4370
4371 data->type = sample_type;
4372 header->size += event->id_header_size;
4373
4374 if (sample_type & PERF_SAMPLE_TID) {
4375 /* namespace issues */
4376 data->tid_entry.pid = perf_event_pid(event, current);
4377 data->tid_entry.tid = perf_event_tid(event, current);
4378 }
4379
4380 if (sample_type & PERF_SAMPLE_TIME)
4381 data->time = perf_clock();
4382
ff3d527c 4383 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4384 data->id = primary_event_id(event);
4385
4386 if (sample_type & PERF_SAMPLE_STREAM_ID)
4387 data->stream_id = event->id;
4388
4389 if (sample_type & PERF_SAMPLE_CPU) {
4390 data->cpu_entry.cpu = raw_smp_processor_id();
4391 data->cpu_entry.reserved = 0;
4392 }
4393}
4394
76369139
FW
4395void perf_event_header__init_id(struct perf_event_header *header,
4396 struct perf_sample_data *data,
4397 struct perf_event *event)
c980d109
ACM
4398{
4399 if (event->attr.sample_id_all)
4400 __perf_event_header__init_id(header, data, event);
4401}
4402
4403static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4404 struct perf_sample_data *data)
4405{
4406 u64 sample_type = data->type;
4407
4408 if (sample_type & PERF_SAMPLE_TID)
4409 perf_output_put(handle, data->tid_entry);
4410
4411 if (sample_type & PERF_SAMPLE_TIME)
4412 perf_output_put(handle, data->time);
4413
4414 if (sample_type & PERF_SAMPLE_ID)
4415 perf_output_put(handle, data->id);
4416
4417 if (sample_type & PERF_SAMPLE_STREAM_ID)
4418 perf_output_put(handle, data->stream_id);
4419
4420 if (sample_type & PERF_SAMPLE_CPU)
4421 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4422
4423 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4424 perf_output_put(handle, data->id);
c980d109
ACM
4425}
4426
76369139
FW
4427void perf_event__output_id_sample(struct perf_event *event,
4428 struct perf_output_handle *handle,
4429 struct perf_sample_data *sample)
c980d109
ACM
4430{
4431 if (event->attr.sample_id_all)
4432 __perf_event__output_id_sample(handle, sample);
4433}
4434
3dab77fb 4435static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4436 struct perf_event *event,
4437 u64 enabled, u64 running)
3dab77fb 4438{
cdd6c482 4439 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4440 u64 values[4];
4441 int n = 0;
4442
b5e58793 4443 values[n++] = perf_event_count(event);
3dab77fb 4444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4445 values[n++] = enabled +
cdd6c482 4446 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4447 }
4448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4449 values[n++] = running +
cdd6c482 4450 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4451 }
4452 if (read_format & PERF_FORMAT_ID)
cdd6c482 4453 values[n++] = primary_event_id(event);
3dab77fb 4454
76369139 4455 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4456}
4457
4458/*
cdd6c482 4459 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4460 */
4461static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4462 struct perf_event *event,
4463 u64 enabled, u64 running)
3dab77fb 4464{
cdd6c482
IM
4465 struct perf_event *leader = event->group_leader, *sub;
4466 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4467 u64 values[5];
4468 int n = 0;
4469
4470 values[n++] = 1 + leader->nr_siblings;
4471
4472 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4473 values[n++] = enabled;
3dab77fb
PZ
4474
4475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4476 values[n++] = running;
3dab77fb 4477
cdd6c482 4478 if (leader != event)
3dab77fb
PZ
4479 leader->pmu->read(leader);
4480
b5e58793 4481 values[n++] = perf_event_count(leader);
3dab77fb 4482 if (read_format & PERF_FORMAT_ID)
cdd6c482 4483 values[n++] = primary_event_id(leader);
3dab77fb 4484
76369139 4485 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4486
65abc865 4487 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4488 n = 0;
4489
6f5ab001
JO
4490 if ((sub != event) &&
4491 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4492 sub->pmu->read(sub);
4493
b5e58793 4494 values[n++] = perf_event_count(sub);
3dab77fb 4495 if (read_format & PERF_FORMAT_ID)
cdd6c482 4496 values[n++] = primary_event_id(sub);
3dab77fb 4497
76369139 4498 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4499 }
4500}
4501
eed01528
SE
4502#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4503 PERF_FORMAT_TOTAL_TIME_RUNNING)
4504
3dab77fb 4505static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4506 struct perf_event *event)
3dab77fb 4507{
e3f3541c 4508 u64 enabled = 0, running = 0, now;
eed01528
SE
4509 u64 read_format = event->attr.read_format;
4510
4511 /*
4512 * compute total_time_enabled, total_time_running
4513 * based on snapshot values taken when the event
4514 * was last scheduled in.
4515 *
4516 * we cannot simply called update_context_time()
4517 * because of locking issue as we are called in
4518 * NMI context
4519 */
c4794295 4520 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4521 calc_timer_values(event, &now, &enabled, &running);
eed01528 4522
cdd6c482 4523 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4524 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4525 else
eed01528 4526 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4527}
4528
5622f295
MM
4529void perf_output_sample(struct perf_output_handle *handle,
4530 struct perf_event_header *header,
4531 struct perf_sample_data *data,
cdd6c482 4532 struct perf_event *event)
5622f295
MM
4533{
4534 u64 sample_type = data->type;
4535
4536 perf_output_put(handle, *header);
4537
ff3d527c
AH
4538 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4539 perf_output_put(handle, data->id);
4540
5622f295
MM
4541 if (sample_type & PERF_SAMPLE_IP)
4542 perf_output_put(handle, data->ip);
4543
4544 if (sample_type & PERF_SAMPLE_TID)
4545 perf_output_put(handle, data->tid_entry);
4546
4547 if (sample_type & PERF_SAMPLE_TIME)
4548 perf_output_put(handle, data->time);
4549
4550 if (sample_type & PERF_SAMPLE_ADDR)
4551 perf_output_put(handle, data->addr);
4552
4553 if (sample_type & PERF_SAMPLE_ID)
4554 perf_output_put(handle, data->id);
4555
4556 if (sample_type & PERF_SAMPLE_STREAM_ID)
4557 perf_output_put(handle, data->stream_id);
4558
4559 if (sample_type & PERF_SAMPLE_CPU)
4560 perf_output_put(handle, data->cpu_entry);
4561
4562 if (sample_type & PERF_SAMPLE_PERIOD)
4563 perf_output_put(handle, data->period);
4564
4565 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4566 perf_output_read(handle, event);
5622f295
MM
4567
4568 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4569 if (data->callchain) {
4570 int size = 1;
4571
4572 if (data->callchain)
4573 size += data->callchain->nr;
4574
4575 size *= sizeof(u64);
4576
76369139 4577 __output_copy(handle, data->callchain, size);
5622f295
MM
4578 } else {
4579 u64 nr = 0;
4580 perf_output_put(handle, nr);
4581 }
4582 }
4583
4584 if (sample_type & PERF_SAMPLE_RAW) {
4585 if (data->raw) {
4586 perf_output_put(handle, data->raw->size);
76369139
FW
4587 __output_copy(handle, data->raw->data,
4588 data->raw->size);
5622f295
MM
4589 } else {
4590 struct {
4591 u32 size;
4592 u32 data;
4593 } raw = {
4594 .size = sizeof(u32),
4595 .data = 0,
4596 };
4597 perf_output_put(handle, raw);
4598 }
4599 }
a7ac67ea 4600
bce38cd5
SE
4601 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4602 if (data->br_stack) {
4603 size_t size;
4604
4605 size = data->br_stack->nr
4606 * sizeof(struct perf_branch_entry);
4607
4608 perf_output_put(handle, data->br_stack->nr);
4609 perf_output_copy(handle, data->br_stack->entries, size);
4610 } else {
4611 /*
4612 * we always store at least the value of nr
4613 */
4614 u64 nr = 0;
4615 perf_output_put(handle, nr);
4616 }
4617 }
4018994f
JO
4618
4619 if (sample_type & PERF_SAMPLE_REGS_USER) {
4620 u64 abi = data->regs_user.abi;
4621
4622 /*
4623 * If there are no regs to dump, notice it through
4624 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4625 */
4626 perf_output_put(handle, abi);
4627
4628 if (abi) {
4629 u64 mask = event->attr.sample_regs_user;
4630 perf_output_sample_regs(handle,
4631 data->regs_user.regs,
4632 mask);
4633 }
4634 }
c5ebcedb 4635
a5cdd40c 4636 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4637 perf_output_sample_ustack(handle,
4638 data->stack_user_size,
4639 data->regs_user.regs);
a5cdd40c 4640 }
c3feedf2
AK
4641
4642 if (sample_type & PERF_SAMPLE_WEIGHT)
4643 perf_output_put(handle, data->weight);
d6be9ad6
SE
4644
4645 if (sample_type & PERF_SAMPLE_DATA_SRC)
4646 perf_output_put(handle, data->data_src.val);
a5cdd40c 4647
fdfbbd07
AK
4648 if (sample_type & PERF_SAMPLE_TRANSACTION)
4649 perf_output_put(handle, data->txn);
4650
a5cdd40c
PZ
4651 if (!event->attr.watermark) {
4652 int wakeup_events = event->attr.wakeup_events;
4653
4654 if (wakeup_events) {
4655 struct ring_buffer *rb = handle->rb;
4656 int events = local_inc_return(&rb->events);
4657
4658 if (events >= wakeup_events) {
4659 local_sub(wakeup_events, &rb->events);
4660 local_inc(&rb->wakeup);
4661 }
4662 }
4663 }
5622f295
MM
4664}
4665
4666void perf_prepare_sample(struct perf_event_header *header,
4667 struct perf_sample_data *data,
cdd6c482 4668 struct perf_event *event,
5622f295 4669 struct pt_regs *regs)
7b732a75 4670{
cdd6c482 4671 u64 sample_type = event->attr.sample_type;
7b732a75 4672
cdd6c482 4673 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4674 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4675
4676 header->misc = 0;
4677 header->misc |= perf_misc_flags(regs);
6fab0192 4678
c980d109 4679 __perf_event_header__init_id(header, data, event);
6844c09d 4680
c320c7b7 4681 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4682 data->ip = perf_instruction_pointer(regs);
4683
b23f3325 4684 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4685 int size = 1;
394ee076 4686
e6dab5ff 4687 data->callchain = perf_callchain(event, regs);
5622f295
MM
4688
4689 if (data->callchain)
4690 size += data->callchain->nr;
4691
4692 header->size += size * sizeof(u64);
394ee076
PZ
4693 }
4694
3a43ce68 4695 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4696 int size = sizeof(u32);
4697
4698 if (data->raw)
4699 size += data->raw->size;
4700 else
4701 size += sizeof(u32);
4702
4703 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4704 header->size += size;
7f453c24 4705 }
bce38cd5
SE
4706
4707 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4708 int size = sizeof(u64); /* nr */
4709 if (data->br_stack) {
4710 size += data->br_stack->nr
4711 * sizeof(struct perf_branch_entry);
4712 }
4713 header->size += size;
4714 }
4018994f
JO
4715
4716 if (sample_type & PERF_SAMPLE_REGS_USER) {
4717 /* regs dump ABI info */
4718 int size = sizeof(u64);
4719
4720 perf_sample_regs_user(&data->regs_user, regs);
4721
4722 if (data->regs_user.regs) {
4723 u64 mask = event->attr.sample_regs_user;
4724 size += hweight64(mask) * sizeof(u64);
4725 }
4726
4727 header->size += size;
4728 }
c5ebcedb
JO
4729
4730 if (sample_type & PERF_SAMPLE_STACK_USER) {
4731 /*
4732 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4733 * processed as the last one or have additional check added
4734 * in case new sample type is added, because we could eat
4735 * up the rest of the sample size.
4736 */
4737 struct perf_regs_user *uregs = &data->regs_user;
4738 u16 stack_size = event->attr.sample_stack_user;
4739 u16 size = sizeof(u64);
4740
4741 if (!uregs->abi)
4742 perf_sample_regs_user(uregs, regs);
4743
4744 stack_size = perf_sample_ustack_size(stack_size, header->size,
4745 uregs->regs);
4746
4747 /*
4748 * If there is something to dump, add space for the dump
4749 * itself and for the field that tells the dynamic size,
4750 * which is how many have been actually dumped.
4751 */
4752 if (stack_size)
4753 size += sizeof(u64) + stack_size;
4754
4755 data->stack_user_size = stack_size;
4756 header->size += size;
4757 }
5622f295 4758}
7f453c24 4759
a8b0ca17 4760static void perf_event_output(struct perf_event *event,
5622f295
MM
4761 struct perf_sample_data *data,
4762 struct pt_regs *regs)
4763{
4764 struct perf_output_handle handle;
4765 struct perf_event_header header;
689802b2 4766
927c7a9e
FW
4767 /* protect the callchain buffers */
4768 rcu_read_lock();
4769
cdd6c482 4770 perf_prepare_sample(&header, data, event, regs);
5c148194 4771
a7ac67ea 4772 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4773 goto exit;
0322cd6e 4774
cdd6c482 4775 perf_output_sample(&handle, &header, data, event);
f413cdb8 4776
8a057d84 4777 perf_output_end(&handle);
927c7a9e
FW
4778
4779exit:
4780 rcu_read_unlock();
0322cd6e
PZ
4781}
4782
38b200d6 4783/*
cdd6c482 4784 * read event_id
38b200d6
PZ
4785 */
4786
4787struct perf_read_event {
4788 struct perf_event_header header;
4789
4790 u32 pid;
4791 u32 tid;
38b200d6
PZ
4792};
4793
4794static void
cdd6c482 4795perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4796 struct task_struct *task)
4797{
4798 struct perf_output_handle handle;
c980d109 4799 struct perf_sample_data sample;
dfc65094 4800 struct perf_read_event read_event = {
38b200d6 4801 .header = {
cdd6c482 4802 .type = PERF_RECORD_READ,
38b200d6 4803 .misc = 0,
c320c7b7 4804 .size = sizeof(read_event) + event->read_size,
38b200d6 4805 },
cdd6c482
IM
4806 .pid = perf_event_pid(event, task),
4807 .tid = perf_event_tid(event, task),
38b200d6 4808 };
3dab77fb 4809 int ret;
38b200d6 4810
c980d109 4811 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4812 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4813 if (ret)
4814 return;
4815
dfc65094 4816 perf_output_put(&handle, read_event);
cdd6c482 4817 perf_output_read(&handle, event);
c980d109 4818 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4819
38b200d6
PZ
4820 perf_output_end(&handle);
4821}
4822
52d857a8
JO
4823typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4824
4825static void
4826perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4827 perf_event_aux_output_cb output,
4828 void *data)
4829{
4830 struct perf_event *event;
4831
4832 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4833 if (event->state < PERF_EVENT_STATE_INACTIVE)
4834 continue;
4835 if (!event_filter_match(event))
4836 continue;
67516844 4837 output(event, data);
52d857a8
JO
4838 }
4839}
4840
4841static void
67516844 4842perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4843 struct perf_event_context *task_ctx)
4844{
4845 struct perf_cpu_context *cpuctx;
4846 struct perf_event_context *ctx;
4847 struct pmu *pmu;
4848 int ctxn;
4849
4850 rcu_read_lock();
4851 list_for_each_entry_rcu(pmu, &pmus, entry) {
4852 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4853 if (cpuctx->unique_pmu != pmu)
4854 goto next;
67516844 4855 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4856 if (task_ctx)
4857 goto next;
4858 ctxn = pmu->task_ctx_nr;
4859 if (ctxn < 0)
4860 goto next;
4861 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4862 if (ctx)
67516844 4863 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4864next:
4865 put_cpu_ptr(pmu->pmu_cpu_context);
4866 }
4867
4868 if (task_ctx) {
4869 preempt_disable();
67516844 4870 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4871 preempt_enable();
4872 }
4873 rcu_read_unlock();
4874}
4875
60313ebe 4876/*
9f498cc5
PZ
4877 * task tracking -- fork/exit
4878 *
13d7a241 4879 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4880 */
4881
9f498cc5 4882struct perf_task_event {
3a80b4a3 4883 struct task_struct *task;
cdd6c482 4884 struct perf_event_context *task_ctx;
60313ebe
PZ
4885
4886 struct {
4887 struct perf_event_header header;
4888
4889 u32 pid;
4890 u32 ppid;
9f498cc5
PZ
4891 u32 tid;
4892 u32 ptid;
393b2ad8 4893 u64 time;
cdd6c482 4894 } event_id;
60313ebe
PZ
4895};
4896
67516844
JO
4897static int perf_event_task_match(struct perf_event *event)
4898{
13d7a241
SE
4899 return event->attr.comm || event->attr.mmap ||
4900 event->attr.mmap2 || event->attr.mmap_data ||
4901 event->attr.task;
67516844
JO
4902}
4903
cdd6c482 4904static void perf_event_task_output(struct perf_event *event,
52d857a8 4905 void *data)
60313ebe 4906{
52d857a8 4907 struct perf_task_event *task_event = data;
60313ebe 4908 struct perf_output_handle handle;
c980d109 4909 struct perf_sample_data sample;
9f498cc5 4910 struct task_struct *task = task_event->task;
c980d109 4911 int ret, size = task_event->event_id.header.size;
8bb39f9a 4912
67516844
JO
4913 if (!perf_event_task_match(event))
4914 return;
4915
c980d109 4916 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4917
c980d109 4918 ret = perf_output_begin(&handle, event,
a7ac67ea 4919 task_event->event_id.header.size);
ef60777c 4920 if (ret)
c980d109 4921 goto out;
60313ebe 4922
cdd6c482
IM
4923 task_event->event_id.pid = perf_event_pid(event, task);
4924 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4925
cdd6c482
IM
4926 task_event->event_id.tid = perf_event_tid(event, task);
4927 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4928
cdd6c482 4929 perf_output_put(&handle, task_event->event_id);
393b2ad8 4930
c980d109
ACM
4931 perf_event__output_id_sample(event, &handle, &sample);
4932
60313ebe 4933 perf_output_end(&handle);
c980d109
ACM
4934out:
4935 task_event->event_id.header.size = size;
60313ebe
PZ
4936}
4937
cdd6c482
IM
4938static void perf_event_task(struct task_struct *task,
4939 struct perf_event_context *task_ctx,
3a80b4a3 4940 int new)
60313ebe 4941{
9f498cc5 4942 struct perf_task_event task_event;
60313ebe 4943
cdd6c482
IM
4944 if (!atomic_read(&nr_comm_events) &&
4945 !atomic_read(&nr_mmap_events) &&
4946 !atomic_read(&nr_task_events))
60313ebe
PZ
4947 return;
4948
9f498cc5 4949 task_event = (struct perf_task_event){
3a80b4a3
PZ
4950 .task = task,
4951 .task_ctx = task_ctx,
cdd6c482 4952 .event_id = {
60313ebe 4953 .header = {
cdd6c482 4954 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4955 .misc = 0,
cdd6c482 4956 .size = sizeof(task_event.event_id),
60313ebe 4957 },
573402db
PZ
4958 /* .pid */
4959 /* .ppid */
9f498cc5
PZ
4960 /* .tid */
4961 /* .ptid */
6f93d0a7 4962 .time = perf_clock(),
60313ebe
PZ
4963 },
4964 };
4965
67516844 4966 perf_event_aux(perf_event_task_output,
52d857a8
JO
4967 &task_event,
4968 task_ctx);
9f498cc5
PZ
4969}
4970
cdd6c482 4971void perf_event_fork(struct task_struct *task)
9f498cc5 4972{
cdd6c482 4973 perf_event_task(task, NULL, 1);
60313ebe
PZ
4974}
4975
8d1b2d93
PZ
4976/*
4977 * comm tracking
4978 */
4979
4980struct perf_comm_event {
22a4f650
IM
4981 struct task_struct *task;
4982 char *comm;
8d1b2d93
PZ
4983 int comm_size;
4984
4985 struct {
4986 struct perf_event_header header;
4987
4988 u32 pid;
4989 u32 tid;
cdd6c482 4990 } event_id;
8d1b2d93
PZ
4991};
4992
67516844
JO
4993static int perf_event_comm_match(struct perf_event *event)
4994{
4995 return event->attr.comm;
4996}
4997
cdd6c482 4998static void perf_event_comm_output(struct perf_event *event,
52d857a8 4999 void *data)
8d1b2d93 5000{
52d857a8 5001 struct perf_comm_event *comm_event = data;
8d1b2d93 5002 struct perf_output_handle handle;
c980d109 5003 struct perf_sample_data sample;
cdd6c482 5004 int size = comm_event->event_id.header.size;
c980d109
ACM
5005 int ret;
5006
67516844
JO
5007 if (!perf_event_comm_match(event))
5008 return;
5009
c980d109
ACM
5010 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5011 ret = perf_output_begin(&handle, event,
a7ac67ea 5012 comm_event->event_id.header.size);
8d1b2d93
PZ
5013
5014 if (ret)
c980d109 5015 goto out;
8d1b2d93 5016
cdd6c482
IM
5017 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5018 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5019
cdd6c482 5020 perf_output_put(&handle, comm_event->event_id);
76369139 5021 __output_copy(&handle, comm_event->comm,
8d1b2d93 5022 comm_event->comm_size);
c980d109
ACM
5023
5024 perf_event__output_id_sample(event, &handle, &sample);
5025
8d1b2d93 5026 perf_output_end(&handle);
c980d109
ACM
5027out:
5028 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5029}
5030
cdd6c482 5031static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5032{
413ee3b4 5033 char comm[TASK_COMM_LEN];
8d1b2d93 5034 unsigned int size;
8d1b2d93 5035
413ee3b4 5036 memset(comm, 0, sizeof(comm));
96b02d78 5037 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5038 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5039
5040 comm_event->comm = comm;
5041 comm_event->comm_size = size;
5042
cdd6c482 5043 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5044
67516844 5045 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5046 comm_event,
5047 NULL);
8d1b2d93
PZ
5048}
5049
cdd6c482 5050void perf_event_comm(struct task_struct *task)
8d1b2d93 5051{
9ee318a7 5052 struct perf_comm_event comm_event;
8dc85d54
PZ
5053 struct perf_event_context *ctx;
5054 int ctxn;
9ee318a7 5055
c79aa0d9 5056 rcu_read_lock();
8dc85d54
PZ
5057 for_each_task_context_nr(ctxn) {
5058 ctx = task->perf_event_ctxp[ctxn];
5059 if (!ctx)
5060 continue;
9ee318a7 5061
8dc85d54
PZ
5062 perf_event_enable_on_exec(ctx);
5063 }
c79aa0d9 5064 rcu_read_unlock();
9ee318a7 5065
cdd6c482 5066 if (!atomic_read(&nr_comm_events))
9ee318a7 5067 return;
a63eaf34 5068
9ee318a7 5069 comm_event = (struct perf_comm_event){
8d1b2d93 5070 .task = task,
573402db
PZ
5071 /* .comm */
5072 /* .comm_size */
cdd6c482 5073 .event_id = {
573402db 5074 .header = {
cdd6c482 5075 .type = PERF_RECORD_COMM,
573402db
PZ
5076 .misc = 0,
5077 /* .size */
5078 },
5079 /* .pid */
5080 /* .tid */
8d1b2d93
PZ
5081 },
5082 };
5083
cdd6c482 5084 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5085}
5086
0a4a9391
PZ
5087/*
5088 * mmap tracking
5089 */
5090
5091struct perf_mmap_event {
089dd79d
PZ
5092 struct vm_area_struct *vma;
5093
5094 const char *file_name;
5095 int file_size;
13d7a241
SE
5096 int maj, min;
5097 u64 ino;
5098 u64 ino_generation;
0a4a9391
PZ
5099
5100 struct {
5101 struct perf_event_header header;
5102
5103 u32 pid;
5104 u32 tid;
5105 u64 start;
5106 u64 len;
5107 u64 pgoff;
cdd6c482 5108 } event_id;
0a4a9391
PZ
5109};
5110
67516844
JO
5111static int perf_event_mmap_match(struct perf_event *event,
5112 void *data)
5113{
5114 struct perf_mmap_event *mmap_event = data;
5115 struct vm_area_struct *vma = mmap_event->vma;
5116 int executable = vma->vm_flags & VM_EXEC;
5117
5118 return (!executable && event->attr.mmap_data) ||
13d7a241 5119 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5120}
5121
cdd6c482 5122static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5123 void *data)
0a4a9391 5124{
52d857a8 5125 struct perf_mmap_event *mmap_event = data;
0a4a9391 5126 struct perf_output_handle handle;
c980d109 5127 struct perf_sample_data sample;
cdd6c482 5128 int size = mmap_event->event_id.header.size;
c980d109 5129 int ret;
0a4a9391 5130
67516844
JO
5131 if (!perf_event_mmap_match(event, data))
5132 return;
5133
13d7a241
SE
5134 if (event->attr.mmap2) {
5135 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5136 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5137 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5138 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5139 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5140 }
5141
c980d109
ACM
5142 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5143 ret = perf_output_begin(&handle, event,
a7ac67ea 5144 mmap_event->event_id.header.size);
0a4a9391 5145 if (ret)
c980d109 5146 goto out;
0a4a9391 5147
cdd6c482
IM
5148 mmap_event->event_id.pid = perf_event_pid(event, current);
5149 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5150
cdd6c482 5151 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5152
5153 if (event->attr.mmap2) {
5154 perf_output_put(&handle, mmap_event->maj);
5155 perf_output_put(&handle, mmap_event->min);
5156 perf_output_put(&handle, mmap_event->ino);
5157 perf_output_put(&handle, mmap_event->ino_generation);
5158 }
5159
76369139 5160 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5161 mmap_event->file_size);
c980d109
ACM
5162
5163 perf_event__output_id_sample(event, &handle, &sample);
5164
78d613eb 5165 perf_output_end(&handle);
c980d109
ACM
5166out:
5167 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5168}
5169
cdd6c482 5170static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5171{
089dd79d
PZ
5172 struct vm_area_struct *vma = mmap_event->vma;
5173 struct file *file = vma->vm_file;
13d7a241
SE
5174 int maj = 0, min = 0;
5175 u64 ino = 0, gen = 0;
0a4a9391
PZ
5176 unsigned int size;
5177 char tmp[16];
5178 char *buf = NULL;
2c42cfbf 5179 char *name;
413ee3b4 5180
0a4a9391 5181 if (file) {
13d7a241
SE
5182 struct inode *inode;
5183 dev_t dev;
3ea2f2b9 5184
2c42cfbf 5185 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5186 if (!buf) {
c7e548b4
ON
5187 name = "//enomem";
5188 goto cpy_name;
0a4a9391 5189 }
413ee3b4 5190 /*
3ea2f2b9 5191 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5192 * need to add enough zero bytes after the string to handle
5193 * the 64bit alignment we do later.
5194 */
3ea2f2b9 5195 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5196 if (IS_ERR(name)) {
c7e548b4
ON
5197 name = "//toolong";
5198 goto cpy_name;
0a4a9391 5199 }
13d7a241
SE
5200 inode = file_inode(vma->vm_file);
5201 dev = inode->i_sb->s_dev;
5202 ino = inode->i_ino;
5203 gen = inode->i_generation;
5204 maj = MAJOR(dev);
5205 min = MINOR(dev);
c7e548b4 5206 goto got_name;
0a4a9391 5207 } else {
2c42cfbf 5208 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5209 if (name)
5210 goto cpy_name;
089dd79d 5211
32c5fb7e 5212 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5213 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5214 name = "[heap]";
5215 goto cpy_name;
32c5fb7e
ON
5216 }
5217 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5218 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5219 name = "[stack]";
5220 goto cpy_name;
089dd79d
PZ
5221 }
5222
c7e548b4
ON
5223 name = "//anon";
5224 goto cpy_name;
0a4a9391
PZ
5225 }
5226
c7e548b4
ON
5227cpy_name:
5228 strlcpy(tmp, name, sizeof(tmp));
5229 name = tmp;
0a4a9391 5230got_name:
2c42cfbf
PZ
5231 /*
5232 * Since our buffer works in 8 byte units we need to align our string
5233 * size to a multiple of 8. However, we must guarantee the tail end is
5234 * zero'd out to avoid leaking random bits to userspace.
5235 */
5236 size = strlen(name)+1;
5237 while (!IS_ALIGNED(size, sizeof(u64)))
5238 name[size++] = '\0';
0a4a9391
PZ
5239
5240 mmap_event->file_name = name;
5241 mmap_event->file_size = size;
13d7a241
SE
5242 mmap_event->maj = maj;
5243 mmap_event->min = min;
5244 mmap_event->ino = ino;
5245 mmap_event->ino_generation = gen;
0a4a9391 5246
2fe85427
SE
5247 if (!(vma->vm_flags & VM_EXEC))
5248 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5249
cdd6c482 5250 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5251
67516844 5252 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5253 mmap_event,
5254 NULL);
665c2142 5255
0a4a9391
PZ
5256 kfree(buf);
5257}
5258
3af9e859 5259void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5260{
9ee318a7
PZ
5261 struct perf_mmap_event mmap_event;
5262
cdd6c482 5263 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5264 return;
5265
5266 mmap_event = (struct perf_mmap_event){
089dd79d 5267 .vma = vma,
573402db
PZ
5268 /* .file_name */
5269 /* .file_size */
cdd6c482 5270 .event_id = {
573402db 5271 .header = {
cdd6c482 5272 .type = PERF_RECORD_MMAP,
39447b38 5273 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5274 /* .size */
5275 },
5276 /* .pid */
5277 /* .tid */
089dd79d
PZ
5278 .start = vma->vm_start,
5279 .len = vma->vm_end - vma->vm_start,
3a0304e9 5280 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5281 },
13d7a241
SE
5282 /* .maj (attr_mmap2 only) */
5283 /* .min (attr_mmap2 only) */
5284 /* .ino (attr_mmap2 only) */
5285 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5286 };
5287
cdd6c482 5288 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5289}
5290
a78ac325
PZ
5291/*
5292 * IRQ throttle logging
5293 */
5294
cdd6c482 5295static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5296{
5297 struct perf_output_handle handle;
c980d109 5298 struct perf_sample_data sample;
a78ac325
PZ
5299 int ret;
5300
5301 struct {
5302 struct perf_event_header header;
5303 u64 time;
cca3f454 5304 u64 id;
7f453c24 5305 u64 stream_id;
a78ac325
PZ
5306 } throttle_event = {
5307 .header = {
cdd6c482 5308 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5309 .misc = 0,
5310 .size = sizeof(throttle_event),
5311 },
def0a9b2 5312 .time = perf_clock(),
cdd6c482
IM
5313 .id = primary_event_id(event),
5314 .stream_id = event->id,
a78ac325
PZ
5315 };
5316
966ee4d6 5317 if (enable)
cdd6c482 5318 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5319
c980d109
ACM
5320 perf_event_header__init_id(&throttle_event.header, &sample, event);
5321
5322 ret = perf_output_begin(&handle, event,
a7ac67ea 5323 throttle_event.header.size);
a78ac325
PZ
5324 if (ret)
5325 return;
5326
5327 perf_output_put(&handle, throttle_event);
c980d109 5328 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5329 perf_output_end(&handle);
5330}
5331
f6c7d5fe 5332/*
cdd6c482 5333 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5334 */
5335
a8b0ca17 5336static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5337 int throttle, struct perf_sample_data *data,
5338 struct pt_regs *regs)
f6c7d5fe 5339{
cdd6c482
IM
5340 int events = atomic_read(&event->event_limit);
5341 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5342 u64 seq;
79f14641
PZ
5343 int ret = 0;
5344
96398826
PZ
5345 /*
5346 * Non-sampling counters might still use the PMI to fold short
5347 * hardware counters, ignore those.
5348 */
5349 if (unlikely(!is_sampling_event(event)))
5350 return 0;
5351
e050e3f0
SE
5352 seq = __this_cpu_read(perf_throttled_seq);
5353 if (seq != hwc->interrupts_seq) {
5354 hwc->interrupts_seq = seq;
5355 hwc->interrupts = 1;
5356 } else {
5357 hwc->interrupts++;
5358 if (unlikely(throttle
5359 && hwc->interrupts >= max_samples_per_tick)) {
5360 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5361 hwc->interrupts = MAX_INTERRUPTS;
5362 perf_log_throttle(event, 0);
d84153d6 5363 tick_nohz_full_kick();
a78ac325
PZ
5364 ret = 1;
5365 }
e050e3f0 5366 }
60db5e09 5367
cdd6c482 5368 if (event->attr.freq) {
def0a9b2 5369 u64 now = perf_clock();
abd50713 5370 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5371
abd50713 5372 hwc->freq_time_stamp = now;
bd2b5b12 5373
abd50713 5374 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5375 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5376 }
5377
2023b359
PZ
5378 /*
5379 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5380 * events
2023b359
PZ
5381 */
5382
cdd6c482
IM
5383 event->pending_kill = POLL_IN;
5384 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5385 ret = 1;
cdd6c482 5386 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5387 event->pending_disable = 1;
5388 irq_work_queue(&event->pending);
79f14641
PZ
5389 }
5390
453f19ee 5391 if (event->overflow_handler)
a8b0ca17 5392 event->overflow_handler(event, data, regs);
453f19ee 5393 else
a8b0ca17 5394 perf_event_output(event, data, regs);
453f19ee 5395
f506b3dc 5396 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5397 event->pending_wakeup = 1;
5398 irq_work_queue(&event->pending);
f506b3dc
PZ
5399 }
5400
79f14641 5401 return ret;
f6c7d5fe
PZ
5402}
5403
a8b0ca17 5404int perf_event_overflow(struct perf_event *event,
5622f295
MM
5405 struct perf_sample_data *data,
5406 struct pt_regs *regs)
850bc73f 5407{
a8b0ca17 5408 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5409}
5410
15dbf27c 5411/*
cdd6c482 5412 * Generic software event infrastructure
15dbf27c
PZ
5413 */
5414
b28ab83c
PZ
5415struct swevent_htable {
5416 struct swevent_hlist *swevent_hlist;
5417 struct mutex hlist_mutex;
5418 int hlist_refcount;
5419
5420 /* Recursion avoidance in each contexts */
5421 int recursion[PERF_NR_CONTEXTS];
5422};
5423
5424static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5425
7b4b6658 5426/*
cdd6c482
IM
5427 * We directly increment event->count and keep a second value in
5428 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5429 * is kept in the range [-sample_period, 0] so that we can use the
5430 * sign as trigger.
5431 */
5432
ab573844 5433u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5434{
cdd6c482 5435 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5436 u64 period = hwc->last_period;
5437 u64 nr, offset;
5438 s64 old, val;
5439
5440 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5441
5442again:
e7850595 5443 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5444 if (val < 0)
5445 return 0;
15dbf27c 5446
7b4b6658
PZ
5447 nr = div64_u64(period + val, period);
5448 offset = nr * period;
5449 val -= offset;
e7850595 5450 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5451 goto again;
15dbf27c 5452
7b4b6658 5453 return nr;
15dbf27c
PZ
5454}
5455
0cff784a 5456static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5457 struct perf_sample_data *data,
5622f295 5458 struct pt_regs *regs)
15dbf27c 5459{
cdd6c482 5460 struct hw_perf_event *hwc = &event->hw;
850bc73f 5461 int throttle = 0;
15dbf27c 5462
0cff784a
PZ
5463 if (!overflow)
5464 overflow = perf_swevent_set_period(event);
15dbf27c 5465
7b4b6658
PZ
5466 if (hwc->interrupts == MAX_INTERRUPTS)
5467 return;
15dbf27c 5468
7b4b6658 5469 for (; overflow; overflow--) {
a8b0ca17 5470 if (__perf_event_overflow(event, throttle,
5622f295 5471 data, regs)) {
7b4b6658
PZ
5472 /*
5473 * We inhibit the overflow from happening when
5474 * hwc->interrupts == MAX_INTERRUPTS.
5475 */
5476 break;
5477 }
cf450a73 5478 throttle = 1;
7b4b6658 5479 }
15dbf27c
PZ
5480}
5481
a4eaf7f1 5482static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5483 struct perf_sample_data *data,
5622f295 5484 struct pt_regs *regs)
7b4b6658 5485{
cdd6c482 5486 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5487
e7850595 5488 local64_add(nr, &event->count);
d6d020e9 5489
0cff784a
PZ
5490 if (!regs)
5491 return;
5492
6c7e550f 5493 if (!is_sampling_event(event))
7b4b6658 5494 return;
d6d020e9 5495
5d81e5cf
AV
5496 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5497 data->period = nr;
5498 return perf_swevent_overflow(event, 1, data, regs);
5499 } else
5500 data->period = event->hw.last_period;
5501
0cff784a 5502 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5503 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5504
e7850595 5505 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5506 return;
df1a132b 5507
a8b0ca17 5508 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5509}
5510
f5ffe02e
FW
5511static int perf_exclude_event(struct perf_event *event,
5512 struct pt_regs *regs)
5513{
a4eaf7f1 5514 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5515 return 1;
a4eaf7f1 5516
f5ffe02e
FW
5517 if (regs) {
5518 if (event->attr.exclude_user && user_mode(regs))
5519 return 1;
5520
5521 if (event->attr.exclude_kernel && !user_mode(regs))
5522 return 1;
5523 }
5524
5525 return 0;
5526}
5527
cdd6c482 5528static int perf_swevent_match(struct perf_event *event,
1c432d89 5529 enum perf_type_id type,
6fb2915d
LZ
5530 u32 event_id,
5531 struct perf_sample_data *data,
5532 struct pt_regs *regs)
15dbf27c 5533{
cdd6c482 5534 if (event->attr.type != type)
a21ca2ca 5535 return 0;
f5ffe02e 5536
cdd6c482 5537 if (event->attr.config != event_id)
15dbf27c
PZ
5538 return 0;
5539
f5ffe02e
FW
5540 if (perf_exclude_event(event, regs))
5541 return 0;
15dbf27c
PZ
5542
5543 return 1;
5544}
5545
76e1d904
FW
5546static inline u64 swevent_hash(u64 type, u32 event_id)
5547{
5548 u64 val = event_id | (type << 32);
5549
5550 return hash_64(val, SWEVENT_HLIST_BITS);
5551}
5552
49f135ed
FW
5553static inline struct hlist_head *
5554__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5555{
49f135ed
FW
5556 u64 hash = swevent_hash(type, event_id);
5557
5558 return &hlist->heads[hash];
5559}
76e1d904 5560
49f135ed
FW
5561/* For the read side: events when they trigger */
5562static inline struct hlist_head *
b28ab83c 5563find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5564{
5565 struct swevent_hlist *hlist;
76e1d904 5566
b28ab83c 5567 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5568 if (!hlist)
5569 return NULL;
5570
49f135ed
FW
5571 return __find_swevent_head(hlist, type, event_id);
5572}
5573
5574/* For the event head insertion and removal in the hlist */
5575static inline struct hlist_head *
b28ab83c 5576find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5577{
5578 struct swevent_hlist *hlist;
5579 u32 event_id = event->attr.config;
5580 u64 type = event->attr.type;
5581
5582 /*
5583 * Event scheduling is always serialized against hlist allocation
5584 * and release. Which makes the protected version suitable here.
5585 * The context lock guarantees that.
5586 */
b28ab83c 5587 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5588 lockdep_is_held(&event->ctx->lock));
5589 if (!hlist)
5590 return NULL;
5591
5592 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5593}
5594
5595static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5596 u64 nr,
76e1d904
FW
5597 struct perf_sample_data *data,
5598 struct pt_regs *regs)
15dbf27c 5599{
b28ab83c 5600 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5601 struct perf_event *event;
76e1d904 5602 struct hlist_head *head;
15dbf27c 5603
76e1d904 5604 rcu_read_lock();
b28ab83c 5605 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5606 if (!head)
5607 goto end;
5608
b67bfe0d 5609 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5610 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5611 perf_swevent_event(event, nr, data, regs);
15dbf27c 5612 }
76e1d904
FW
5613end:
5614 rcu_read_unlock();
15dbf27c
PZ
5615}
5616
4ed7c92d 5617int perf_swevent_get_recursion_context(void)
96f6d444 5618{
b28ab83c 5619 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5620
b28ab83c 5621 return get_recursion_context(swhash->recursion);
96f6d444 5622}
645e8cc0 5623EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5624
fa9f90be 5625inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5626{
b28ab83c 5627 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5628
b28ab83c 5629 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5630}
15dbf27c 5631
a8b0ca17 5632void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5633{
a4234bfc 5634 struct perf_sample_data data;
4ed7c92d
PZ
5635 int rctx;
5636
1c024eca 5637 preempt_disable_notrace();
4ed7c92d
PZ
5638 rctx = perf_swevent_get_recursion_context();
5639 if (rctx < 0)
5640 return;
a4234bfc 5641
fd0d000b 5642 perf_sample_data_init(&data, addr, 0);
92bf309a 5643
a8b0ca17 5644 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5645
5646 perf_swevent_put_recursion_context(rctx);
1c024eca 5647 preempt_enable_notrace();
b8e83514
PZ
5648}
5649
cdd6c482 5650static void perf_swevent_read(struct perf_event *event)
15dbf27c 5651{
15dbf27c
PZ
5652}
5653
a4eaf7f1 5654static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5655{
b28ab83c 5656 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5657 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5658 struct hlist_head *head;
5659
6c7e550f 5660 if (is_sampling_event(event)) {
7b4b6658 5661 hwc->last_period = hwc->sample_period;
cdd6c482 5662 perf_swevent_set_period(event);
7b4b6658 5663 }
76e1d904 5664
a4eaf7f1
PZ
5665 hwc->state = !(flags & PERF_EF_START);
5666
b28ab83c 5667 head = find_swevent_head(swhash, event);
76e1d904
FW
5668 if (WARN_ON_ONCE(!head))
5669 return -EINVAL;
5670
5671 hlist_add_head_rcu(&event->hlist_entry, head);
5672
15dbf27c
PZ
5673 return 0;
5674}
5675
a4eaf7f1 5676static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5677{
76e1d904 5678 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5679}
5680
a4eaf7f1 5681static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5682{
a4eaf7f1 5683 event->hw.state = 0;
d6d020e9 5684}
aa9c4c0f 5685
a4eaf7f1 5686static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5687{
a4eaf7f1 5688 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5689}
5690
49f135ed
FW
5691/* Deref the hlist from the update side */
5692static inline struct swevent_hlist *
b28ab83c 5693swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5694{
b28ab83c
PZ
5695 return rcu_dereference_protected(swhash->swevent_hlist,
5696 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5697}
5698
b28ab83c 5699static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5700{
b28ab83c 5701 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5702
49f135ed 5703 if (!hlist)
76e1d904
FW
5704 return;
5705
b28ab83c 5706 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5707 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5708}
5709
5710static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5711{
b28ab83c 5712 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5713
b28ab83c 5714 mutex_lock(&swhash->hlist_mutex);
76e1d904 5715
b28ab83c
PZ
5716 if (!--swhash->hlist_refcount)
5717 swevent_hlist_release(swhash);
76e1d904 5718
b28ab83c 5719 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5720}
5721
5722static void swevent_hlist_put(struct perf_event *event)
5723{
5724 int cpu;
5725
76e1d904
FW
5726 for_each_possible_cpu(cpu)
5727 swevent_hlist_put_cpu(event, cpu);
5728}
5729
5730static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5731{
b28ab83c 5732 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5733 int err = 0;
5734
b28ab83c 5735 mutex_lock(&swhash->hlist_mutex);
76e1d904 5736
b28ab83c 5737 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5738 struct swevent_hlist *hlist;
5739
5740 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5741 if (!hlist) {
5742 err = -ENOMEM;
5743 goto exit;
5744 }
b28ab83c 5745 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5746 }
b28ab83c 5747 swhash->hlist_refcount++;
9ed6060d 5748exit:
b28ab83c 5749 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5750
5751 return err;
5752}
5753
5754static int swevent_hlist_get(struct perf_event *event)
5755{
5756 int err;
5757 int cpu, failed_cpu;
5758
76e1d904
FW
5759 get_online_cpus();
5760 for_each_possible_cpu(cpu) {
5761 err = swevent_hlist_get_cpu(event, cpu);
5762 if (err) {
5763 failed_cpu = cpu;
5764 goto fail;
5765 }
5766 }
5767 put_online_cpus();
5768
5769 return 0;
9ed6060d 5770fail:
76e1d904
FW
5771 for_each_possible_cpu(cpu) {
5772 if (cpu == failed_cpu)
5773 break;
5774 swevent_hlist_put_cpu(event, cpu);
5775 }
5776
5777 put_online_cpus();
5778 return err;
5779}
5780
c5905afb 5781struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5782
b0a873eb
PZ
5783static void sw_perf_event_destroy(struct perf_event *event)
5784{
5785 u64 event_id = event->attr.config;
95476b64 5786
b0a873eb
PZ
5787 WARN_ON(event->parent);
5788
c5905afb 5789 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5790 swevent_hlist_put(event);
5791}
5792
5793static int perf_swevent_init(struct perf_event *event)
5794{
8176cced 5795 u64 event_id = event->attr.config;
b0a873eb
PZ
5796
5797 if (event->attr.type != PERF_TYPE_SOFTWARE)
5798 return -ENOENT;
5799
2481c5fa
SE
5800 /*
5801 * no branch sampling for software events
5802 */
5803 if (has_branch_stack(event))
5804 return -EOPNOTSUPP;
5805
b0a873eb
PZ
5806 switch (event_id) {
5807 case PERF_COUNT_SW_CPU_CLOCK:
5808 case PERF_COUNT_SW_TASK_CLOCK:
5809 return -ENOENT;
5810
5811 default:
5812 break;
5813 }
5814
ce677831 5815 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5816 return -ENOENT;
5817
5818 if (!event->parent) {
5819 int err;
5820
5821 err = swevent_hlist_get(event);
5822 if (err)
5823 return err;
5824
c5905afb 5825 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5826 event->destroy = sw_perf_event_destroy;
5827 }
5828
5829 return 0;
5830}
5831
35edc2a5
PZ
5832static int perf_swevent_event_idx(struct perf_event *event)
5833{
5834 return 0;
5835}
5836
b0a873eb 5837static struct pmu perf_swevent = {
89a1e187 5838 .task_ctx_nr = perf_sw_context,
95476b64 5839
b0a873eb 5840 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5841 .add = perf_swevent_add,
5842 .del = perf_swevent_del,
5843 .start = perf_swevent_start,
5844 .stop = perf_swevent_stop,
1c024eca 5845 .read = perf_swevent_read,
35edc2a5
PZ
5846
5847 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5848};
5849
b0a873eb
PZ
5850#ifdef CONFIG_EVENT_TRACING
5851
1c024eca
PZ
5852static int perf_tp_filter_match(struct perf_event *event,
5853 struct perf_sample_data *data)
5854{
5855 void *record = data->raw->data;
5856
5857 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5858 return 1;
5859 return 0;
5860}
5861
5862static int perf_tp_event_match(struct perf_event *event,
5863 struct perf_sample_data *data,
5864 struct pt_regs *regs)
5865{
a0f7d0f7
FW
5866 if (event->hw.state & PERF_HES_STOPPED)
5867 return 0;
580d607c
PZ
5868 /*
5869 * All tracepoints are from kernel-space.
5870 */
5871 if (event->attr.exclude_kernel)
1c024eca
PZ
5872 return 0;
5873
5874 if (!perf_tp_filter_match(event, data))
5875 return 0;
5876
5877 return 1;
5878}
5879
5880void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5881 struct pt_regs *regs, struct hlist_head *head, int rctx,
5882 struct task_struct *task)
95476b64
FW
5883{
5884 struct perf_sample_data data;
1c024eca 5885 struct perf_event *event;
1c024eca 5886
95476b64
FW
5887 struct perf_raw_record raw = {
5888 .size = entry_size,
5889 .data = record,
5890 };
5891
fd0d000b 5892 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5893 data.raw = &raw;
5894
b67bfe0d 5895 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5896 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5897 perf_swevent_event(event, count, &data, regs);
4f41c013 5898 }
ecc55f84 5899
e6dab5ff
AV
5900 /*
5901 * If we got specified a target task, also iterate its context and
5902 * deliver this event there too.
5903 */
5904 if (task && task != current) {
5905 struct perf_event_context *ctx;
5906 struct trace_entry *entry = record;
5907
5908 rcu_read_lock();
5909 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5910 if (!ctx)
5911 goto unlock;
5912
5913 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5914 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5915 continue;
5916 if (event->attr.config != entry->type)
5917 continue;
5918 if (perf_tp_event_match(event, &data, regs))
5919 perf_swevent_event(event, count, &data, regs);
5920 }
5921unlock:
5922 rcu_read_unlock();
5923 }
5924
ecc55f84 5925 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5926}
5927EXPORT_SYMBOL_GPL(perf_tp_event);
5928
cdd6c482 5929static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5930{
1c024eca 5931 perf_trace_destroy(event);
e077df4f
PZ
5932}
5933
b0a873eb 5934static int perf_tp_event_init(struct perf_event *event)
e077df4f 5935{
76e1d904
FW
5936 int err;
5937
b0a873eb
PZ
5938 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5939 return -ENOENT;
5940
2481c5fa
SE
5941 /*
5942 * no branch sampling for tracepoint events
5943 */
5944 if (has_branch_stack(event))
5945 return -EOPNOTSUPP;
5946
1c024eca
PZ
5947 err = perf_trace_init(event);
5948 if (err)
b0a873eb 5949 return err;
e077df4f 5950
cdd6c482 5951 event->destroy = tp_perf_event_destroy;
e077df4f 5952
b0a873eb
PZ
5953 return 0;
5954}
5955
5956static struct pmu perf_tracepoint = {
89a1e187
PZ
5957 .task_ctx_nr = perf_sw_context,
5958
b0a873eb 5959 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5960 .add = perf_trace_add,
5961 .del = perf_trace_del,
5962 .start = perf_swevent_start,
5963 .stop = perf_swevent_stop,
b0a873eb 5964 .read = perf_swevent_read,
35edc2a5
PZ
5965
5966 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5967};
5968
5969static inline void perf_tp_register(void)
5970{
2e80a82a 5971 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5972}
6fb2915d
LZ
5973
5974static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5975{
5976 char *filter_str;
5977 int ret;
5978
5979 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5980 return -EINVAL;
5981
5982 filter_str = strndup_user(arg, PAGE_SIZE);
5983 if (IS_ERR(filter_str))
5984 return PTR_ERR(filter_str);
5985
5986 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5987
5988 kfree(filter_str);
5989 return ret;
5990}
5991
5992static void perf_event_free_filter(struct perf_event *event)
5993{
5994 ftrace_profile_free_filter(event);
5995}
5996
e077df4f 5997#else
6fb2915d 5998
b0a873eb 5999static inline void perf_tp_register(void)
e077df4f 6000{
e077df4f 6001}
6fb2915d
LZ
6002
6003static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6004{
6005 return -ENOENT;
6006}
6007
6008static void perf_event_free_filter(struct perf_event *event)
6009{
6010}
6011
07b139c8 6012#endif /* CONFIG_EVENT_TRACING */
e077df4f 6013
24f1e32c 6014#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6015void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6016{
f5ffe02e
FW
6017 struct perf_sample_data sample;
6018 struct pt_regs *regs = data;
6019
fd0d000b 6020 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6021
a4eaf7f1 6022 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6023 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6024}
6025#endif
6026
b0a873eb
PZ
6027/*
6028 * hrtimer based swevent callback
6029 */
f29ac756 6030
b0a873eb 6031static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6032{
b0a873eb
PZ
6033 enum hrtimer_restart ret = HRTIMER_RESTART;
6034 struct perf_sample_data data;
6035 struct pt_regs *regs;
6036 struct perf_event *event;
6037 u64 period;
f29ac756 6038
b0a873eb 6039 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6040
6041 if (event->state != PERF_EVENT_STATE_ACTIVE)
6042 return HRTIMER_NORESTART;
6043
b0a873eb 6044 event->pmu->read(event);
f344011c 6045
fd0d000b 6046 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6047 regs = get_irq_regs();
6048
6049 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6050 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6051 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6052 ret = HRTIMER_NORESTART;
6053 }
24f1e32c 6054
b0a873eb
PZ
6055 period = max_t(u64, 10000, event->hw.sample_period);
6056 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6057
b0a873eb 6058 return ret;
f29ac756
PZ
6059}
6060
b0a873eb 6061static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6062{
b0a873eb 6063 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6064 s64 period;
6065
6066 if (!is_sampling_event(event))
6067 return;
f5ffe02e 6068
5d508e82
FBH
6069 period = local64_read(&hwc->period_left);
6070 if (period) {
6071 if (period < 0)
6072 period = 10000;
fa407f35 6073
5d508e82
FBH
6074 local64_set(&hwc->period_left, 0);
6075 } else {
6076 period = max_t(u64, 10000, hwc->sample_period);
6077 }
6078 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6079 ns_to_ktime(period), 0,
b5ab4cd5 6080 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6081}
b0a873eb
PZ
6082
6083static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6084{
b0a873eb
PZ
6085 struct hw_perf_event *hwc = &event->hw;
6086
6c7e550f 6087 if (is_sampling_event(event)) {
b0a873eb 6088 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6089 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6090
6091 hrtimer_cancel(&hwc->hrtimer);
6092 }
24f1e32c
FW
6093}
6094
ba3dd36c
PZ
6095static void perf_swevent_init_hrtimer(struct perf_event *event)
6096{
6097 struct hw_perf_event *hwc = &event->hw;
6098
6099 if (!is_sampling_event(event))
6100 return;
6101
6102 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6103 hwc->hrtimer.function = perf_swevent_hrtimer;
6104
6105 /*
6106 * Since hrtimers have a fixed rate, we can do a static freq->period
6107 * mapping and avoid the whole period adjust feedback stuff.
6108 */
6109 if (event->attr.freq) {
6110 long freq = event->attr.sample_freq;
6111
6112 event->attr.sample_period = NSEC_PER_SEC / freq;
6113 hwc->sample_period = event->attr.sample_period;
6114 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6115 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6116 event->attr.freq = 0;
6117 }
6118}
6119
b0a873eb
PZ
6120/*
6121 * Software event: cpu wall time clock
6122 */
6123
6124static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6125{
b0a873eb
PZ
6126 s64 prev;
6127 u64 now;
6128
a4eaf7f1 6129 now = local_clock();
b0a873eb
PZ
6130 prev = local64_xchg(&event->hw.prev_count, now);
6131 local64_add(now - prev, &event->count);
24f1e32c 6132}
24f1e32c 6133
a4eaf7f1 6134static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6135{
a4eaf7f1 6136 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6137 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6138}
6139
a4eaf7f1 6140static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6141{
b0a873eb
PZ
6142 perf_swevent_cancel_hrtimer(event);
6143 cpu_clock_event_update(event);
6144}
f29ac756 6145
a4eaf7f1
PZ
6146static int cpu_clock_event_add(struct perf_event *event, int flags)
6147{
6148 if (flags & PERF_EF_START)
6149 cpu_clock_event_start(event, flags);
6150
6151 return 0;
6152}
6153
6154static void cpu_clock_event_del(struct perf_event *event, int flags)
6155{
6156 cpu_clock_event_stop(event, flags);
6157}
6158
b0a873eb
PZ
6159static void cpu_clock_event_read(struct perf_event *event)
6160{
6161 cpu_clock_event_update(event);
6162}
f344011c 6163
b0a873eb
PZ
6164static int cpu_clock_event_init(struct perf_event *event)
6165{
6166 if (event->attr.type != PERF_TYPE_SOFTWARE)
6167 return -ENOENT;
6168
6169 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6170 return -ENOENT;
6171
2481c5fa
SE
6172 /*
6173 * no branch sampling for software events
6174 */
6175 if (has_branch_stack(event))
6176 return -EOPNOTSUPP;
6177
ba3dd36c
PZ
6178 perf_swevent_init_hrtimer(event);
6179
b0a873eb 6180 return 0;
f29ac756
PZ
6181}
6182
b0a873eb 6183static struct pmu perf_cpu_clock = {
89a1e187
PZ
6184 .task_ctx_nr = perf_sw_context,
6185
b0a873eb 6186 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6187 .add = cpu_clock_event_add,
6188 .del = cpu_clock_event_del,
6189 .start = cpu_clock_event_start,
6190 .stop = cpu_clock_event_stop,
b0a873eb 6191 .read = cpu_clock_event_read,
35edc2a5
PZ
6192
6193 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6194};
6195
6196/*
6197 * Software event: task time clock
6198 */
6199
6200static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6201{
b0a873eb
PZ
6202 u64 prev;
6203 s64 delta;
5c92d124 6204
b0a873eb
PZ
6205 prev = local64_xchg(&event->hw.prev_count, now);
6206 delta = now - prev;
6207 local64_add(delta, &event->count);
6208}
5c92d124 6209
a4eaf7f1 6210static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6211{
a4eaf7f1 6212 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6213 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6214}
6215
a4eaf7f1 6216static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6217{
6218 perf_swevent_cancel_hrtimer(event);
6219 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6220}
6221
6222static int task_clock_event_add(struct perf_event *event, int flags)
6223{
6224 if (flags & PERF_EF_START)
6225 task_clock_event_start(event, flags);
b0a873eb 6226
a4eaf7f1
PZ
6227 return 0;
6228}
6229
6230static void task_clock_event_del(struct perf_event *event, int flags)
6231{
6232 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6233}
6234
6235static void task_clock_event_read(struct perf_event *event)
6236{
768a06e2
PZ
6237 u64 now = perf_clock();
6238 u64 delta = now - event->ctx->timestamp;
6239 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6240
6241 task_clock_event_update(event, time);
6242}
6243
6244static int task_clock_event_init(struct perf_event *event)
6fb2915d 6245{
b0a873eb
PZ
6246 if (event->attr.type != PERF_TYPE_SOFTWARE)
6247 return -ENOENT;
6248
6249 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6250 return -ENOENT;
6251
2481c5fa
SE
6252 /*
6253 * no branch sampling for software events
6254 */
6255 if (has_branch_stack(event))
6256 return -EOPNOTSUPP;
6257
ba3dd36c
PZ
6258 perf_swevent_init_hrtimer(event);
6259
b0a873eb 6260 return 0;
6fb2915d
LZ
6261}
6262
b0a873eb 6263static struct pmu perf_task_clock = {
89a1e187
PZ
6264 .task_ctx_nr = perf_sw_context,
6265
b0a873eb 6266 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6267 .add = task_clock_event_add,
6268 .del = task_clock_event_del,
6269 .start = task_clock_event_start,
6270 .stop = task_clock_event_stop,
b0a873eb 6271 .read = task_clock_event_read,
35edc2a5
PZ
6272
6273 .event_idx = perf_swevent_event_idx,
b0a873eb 6274};
6fb2915d 6275
ad5133b7 6276static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6277{
e077df4f 6278}
6fb2915d 6279
ad5133b7 6280static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6281{
ad5133b7 6282 return 0;
6fb2915d
LZ
6283}
6284
ad5133b7 6285static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6286{
ad5133b7 6287 perf_pmu_disable(pmu);
6fb2915d
LZ
6288}
6289
ad5133b7
PZ
6290static int perf_pmu_commit_txn(struct pmu *pmu)
6291{
6292 perf_pmu_enable(pmu);
6293 return 0;
6294}
e077df4f 6295
ad5133b7 6296static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6297{
ad5133b7 6298 perf_pmu_enable(pmu);
24f1e32c
FW
6299}
6300
35edc2a5
PZ
6301static int perf_event_idx_default(struct perf_event *event)
6302{
6303 return event->hw.idx + 1;
6304}
6305
8dc85d54
PZ
6306/*
6307 * Ensures all contexts with the same task_ctx_nr have the same
6308 * pmu_cpu_context too.
6309 */
9e317041 6310static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6311{
8dc85d54 6312 struct pmu *pmu;
b326e956 6313
8dc85d54
PZ
6314 if (ctxn < 0)
6315 return NULL;
24f1e32c 6316
8dc85d54
PZ
6317 list_for_each_entry(pmu, &pmus, entry) {
6318 if (pmu->task_ctx_nr == ctxn)
6319 return pmu->pmu_cpu_context;
6320 }
24f1e32c 6321
8dc85d54 6322 return NULL;
24f1e32c
FW
6323}
6324
51676957 6325static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6326{
51676957
PZ
6327 int cpu;
6328
6329 for_each_possible_cpu(cpu) {
6330 struct perf_cpu_context *cpuctx;
6331
6332 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6333
3f1f3320
PZ
6334 if (cpuctx->unique_pmu == old_pmu)
6335 cpuctx->unique_pmu = pmu;
51676957
PZ
6336 }
6337}
6338
6339static void free_pmu_context(struct pmu *pmu)
6340{
6341 struct pmu *i;
f5ffe02e 6342
8dc85d54 6343 mutex_lock(&pmus_lock);
0475f9ea 6344 /*
8dc85d54 6345 * Like a real lame refcount.
0475f9ea 6346 */
51676957
PZ
6347 list_for_each_entry(i, &pmus, entry) {
6348 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6349 update_pmu_context(i, pmu);
8dc85d54 6350 goto out;
51676957 6351 }
8dc85d54 6352 }
d6d020e9 6353
51676957 6354 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6355out:
6356 mutex_unlock(&pmus_lock);
24f1e32c 6357}
2e80a82a 6358static struct idr pmu_idr;
d6d020e9 6359
abe43400
PZ
6360static ssize_t
6361type_show(struct device *dev, struct device_attribute *attr, char *page)
6362{
6363 struct pmu *pmu = dev_get_drvdata(dev);
6364
6365 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6366}
90826ca7 6367static DEVICE_ATTR_RO(type);
abe43400 6368
62b85639
SE
6369static ssize_t
6370perf_event_mux_interval_ms_show(struct device *dev,
6371 struct device_attribute *attr,
6372 char *page)
6373{
6374 struct pmu *pmu = dev_get_drvdata(dev);
6375
6376 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6377}
6378
6379static ssize_t
6380perf_event_mux_interval_ms_store(struct device *dev,
6381 struct device_attribute *attr,
6382 const char *buf, size_t count)
6383{
6384 struct pmu *pmu = dev_get_drvdata(dev);
6385 int timer, cpu, ret;
6386
6387 ret = kstrtoint(buf, 0, &timer);
6388 if (ret)
6389 return ret;
6390
6391 if (timer < 1)
6392 return -EINVAL;
6393
6394 /* same value, noting to do */
6395 if (timer == pmu->hrtimer_interval_ms)
6396 return count;
6397
6398 pmu->hrtimer_interval_ms = timer;
6399
6400 /* update all cpuctx for this PMU */
6401 for_each_possible_cpu(cpu) {
6402 struct perf_cpu_context *cpuctx;
6403 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6404 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6405
6406 if (hrtimer_active(&cpuctx->hrtimer))
6407 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6408 }
6409
6410 return count;
6411}
90826ca7 6412static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6413
90826ca7
GKH
6414static struct attribute *pmu_dev_attrs[] = {
6415 &dev_attr_type.attr,
6416 &dev_attr_perf_event_mux_interval_ms.attr,
6417 NULL,
abe43400 6418};
90826ca7 6419ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6420
6421static int pmu_bus_running;
6422static struct bus_type pmu_bus = {
6423 .name = "event_source",
90826ca7 6424 .dev_groups = pmu_dev_groups,
abe43400
PZ
6425};
6426
6427static void pmu_dev_release(struct device *dev)
6428{
6429 kfree(dev);
6430}
6431
6432static int pmu_dev_alloc(struct pmu *pmu)
6433{
6434 int ret = -ENOMEM;
6435
6436 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6437 if (!pmu->dev)
6438 goto out;
6439
0c9d42ed 6440 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6441 device_initialize(pmu->dev);
6442 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6443 if (ret)
6444 goto free_dev;
6445
6446 dev_set_drvdata(pmu->dev, pmu);
6447 pmu->dev->bus = &pmu_bus;
6448 pmu->dev->release = pmu_dev_release;
6449 ret = device_add(pmu->dev);
6450 if (ret)
6451 goto free_dev;
6452
6453out:
6454 return ret;
6455
6456free_dev:
6457 put_device(pmu->dev);
6458 goto out;
6459}
6460
547e9fd7 6461static struct lock_class_key cpuctx_mutex;
facc4307 6462static struct lock_class_key cpuctx_lock;
547e9fd7 6463
03d8e80b 6464int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6465{
108b02cf 6466 int cpu, ret;
24f1e32c 6467
b0a873eb 6468 mutex_lock(&pmus_lock);
33696fc0
PZ
6469 ret = -ENOMEM;
6470 pmu->pmu_disable_count = alloc_percpu(int);
6471 if (!pmu->pmu_disable_count)
6472 goto unlock;
f29ac756 6473
2e80a82a
PZ
6474 pmu->type = -1;
6475 if (!name)
6476 goto skip_type;
6477 pmu->name = name;
6478
6479 if (type < 0) {
0e9c3be2
TH
6480 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6481 if (type < 0) {
6482 ret = type;
2e80a82a
PZ
6483 goto free_pdc;
6484 }
6485 }
6486 pmu->type = type;
6487
abe43400
PZ
6488 if (pmu_bus_running) {
6489 ret = pmu_dev_alloc(pmu);
6490 if (ret)
6491 goto free_idr;
6492 }
6493
2e80a82a 6494skip_type:
8dc85d54
PZ
6495 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6496 if (pmu->pmu_cpu_context)
6497 goto got_cpu_context;
f29ac756 6498
c4814202 6499 ret = -ENOMEM;
108b02cf
PZ
6500 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6501 if (!pmu->pmu_cpu_context)
abe43400 6502 goto free_dev;
f344011c 6503
108b02cf
PZ
6504 for_each_possible_cpu(cpu) {
6505 struct perf_cpu_context *cpuctx;
6506
6507 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6508 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6509 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6510 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6511 cpuctx->ctx.type = cpu_context;
108b02cf 6512 cpuctx->ctx.pmu = pmu;
9e630205
SE
6513
6514 __perf_cpu_hrtimer_init(cpuctx, cpu);
6515
e9d2b064 6516 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6517 cpuctx->unique_pmu = pmu;
108b02cf 6518 }
76e1d904 6519
8dc85d54 6520got_cpu_context:
ad5133b7
PZ
6521 if (!pmu->start_txn) {
6522 if (pmu->pmu_enable) {
6523 /*
6524 * If we have pmu_enable/pmu_disable calls, install
6525 * transaction stubs that use that to try and batch
6526 * hardware accesses.
6527 */
6528 pmu->start_txn = perf_pmu_start_txn;
6529 pmu->commit_txn = perf_pmu_commit_txn;
6530 pmu->cancel_txn = perf_pmu_cancel_txn;
6531 } else {
6532 pmu->start_txn = perf_pmu_nop_void;
6533 pmu->commit_txn = perf_pmu_nop_int;
6534 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6535 }
5c92d124 6536 }
15dbf27c 6537
ad5133b7
PZ
6538 if (!pmu->pmu_enable) {
6539 pmu->pmu_enable = perf_pmu_nop_void;
6540 pmu->pmu_disable = perf_pmu_nop_void;
6541 }
6542
35edc2a5
PZ
6543 if (!pmu->event_idx)
6544 pmu->event_idx = perf_event_idx_default;
6545
b0a873eb 6546 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6547 ret = 0;
6548unlock:
b0a873eb
PZ
6549 mutex_unlock(&pmus_lock);
6550
33696fc0 6551 return ret;
108b02cf 6552
abe43400
PZ
6553free_dev:
6554 device_del(pmu->dev);
6555 put_device(pmu->dev);
6556
2e80a82a
PZ
6557free_idr:
6558 if (pmu->type >= PERF_TYPE_MAX)
6559 idr_remove(&pmu_idr, pmu->type);
6560
108b02cf
PZ
6561free_pdc:
6562 free_percpu(pmu->pmu_disable_count);
6563 goto unlock;
f29ac756
PZ
6564}
6565
b0a873eb 6566void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6567{
b0a873eb
PZ
6568 mutex_lock(&pmus_lock);
6569 list_del_rcu(&pmu->entry);
6570 mutex_unlock(&pmus_lock);
5c92d124 6571
0475f9ea 6572 /*
cde8e884
PZ
6573 * We dereference the pmu list under both SRCU and regular RCU, so
6574 * synchronize against both of those.
0475f9ea 6575 */
b0a873eb 6576 synchronize_srcu(&pmus_srcu);
cde8e884 6577 synchronize_rcu();
d6d020e9 6578
33696fc0 6579 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6580 if (pmu->type >= PERF_TYPE_MAX)
6581 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6582 device_del(pmu->dev);
6583 put_device(pmu->dev);
51676957 6584 free_pmu_context(pmu);
b0a873eb 6585}
d6d020e9 6586
b0a873eb
PZ
6587struct pmu *perf_init_event(struct perf_event *event)
6588{
6589 struct pmu *pmu = NULL;
6590 int idx;
940c5b29 6591 int ret;
b0a873eb
PZ
6592
6593 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6594
6595 rcu_read_lock();
6596 pmu = idr_find(&pmu_idr, event->attr.type);
6597 rcu_read_unlock();
940c5b29 6598 if (pmu) {
7e5b2a01 6599 event->pmu = pmu;
940c5b29
LM
6600 ret = pmu->event_init(event);
6601 if (ret)
6602 pmu = ERR_PTR(ret);
2e80a82a 6603 goto unlock;
940c5b29 6604 }
2e80a82a 6605
b0a873eb 6606 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6607 event->pmu = pmu;
940c5b29 6608 ret = pmu->event_init(event);
b0a873eb 6609 if (!ret)
e5f4d339 6610 goto unlock;
76e1d904 6611
b0a873eb
PZ
6612 if (ret != -ENOENT) {
6613 pmu = ERR_PTR(ret);
e5f4d339 6614 goto unlock;
f344011c 6615 }
5c92d124 6616 }
e5f4d339
PZ
6617 pmu = ERR_PTR(-ENOENT);
6618unlock:
b0a873eb 6619 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6620
4aeb0b42 6621 return pmu;
5c92d124
IM
6622}
6623
4beb31f3
FW
6624static void account_event_cpu(struct perf_event *event, int cpu)
6625{
6626 if (event->parent)
6627 return;
6628
6629 if (has_branch_stack(event)) {
6630 if (!(event->attach_state & PERF_ATTACH_TASK))
6631 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6632 }
6633 if (is_cgroup_event(event))
6634 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6635}
6636
766d6c07
FW
6637static void account_event(struct perf_event *event)
6638{
4beb31f3
FW
6639 if (event->parent)
6640 return;
6641
766d6c07
FW
6642 if (event->attach_state & PERF_ATTACH_TASK)
6643 static_key_slow_inc(&perf_sched_events.key);
6644 if (event->attr.mmap || event->attr.mmap_data)
6645 atomic_inc(&nr_mmap_events);
6646 if (event->attr.comm)
6647 atomic_inc(&nr_comm_events);
6648 if (event->attr.task)
6649 atomic_inc(&nr_task_events);
948b26b6
FW
6650 if (event->attr.freq) {
6651 if (atomic_inc_return(&nr_freq_events) == 1)
6652 tick_nohz_full_kick_all();
6653 }
4beb31f3 6654 if (has_branch_stack(event))
766d6c07 6655 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6656 if (is_cgroup_event(event))
766d6c07 6657 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6658
6659 account_event_cpu(event, event->cpu);
766d6c07
FW
6660}
6661
0793a61d 6662/*
cdd6c482 6663 * Allocate and initialize a event structure
0793a61d 6664 */
cdd6c482 6665static struct perf_event *
c3f00c70 6666perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6667 struct task_struct *task,
6668 struct perf_event *group_leader,
6669 struct perf_event *parent_event,
4dc0da86
AK
6670 perf_overflow_handler_t overflow_handler,
6671 void *context)
0793a61d 6672{
51b0fe39 6673 struct pmu *pmu;
cdd6c482
IM
6674 struct perf_event *event;
6675 struct hw_perf_event *hwc;
90983b16 6676 long err = -EINVAL;
0793a61d 6677
66832eb4
ON
6678 if ((unsigned)cpu >= nr_cpu_ids) {
6679 if (!task || cpu != -1)
6680 return ERR_PTR(-EINVAL);
6681 }
6682
c3f00c70 6683 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6684 if (!event)
d5d2bc0d 6685 return ERR_PTR(-ENOMEM);
0793a61d 6686
04289bb9 6687 /*
cdd6c482 6688 * Single events are their own group leaders, with an
04289bb9
IM
6689 * empty sibling list:
6690 */
6691 if (!group_leader)
cdd6c482 6692 group_leader = event;
04289bb9 6693
cdd6c482
IM
6694 mutex_init(&event->child_mutex);
6695 INIT_LIST_HEAD(&event->child_list);
fccc714b 6696
cdd6c482
IM
6697 INIT_LIST_HEAD(&event->group_entry);
6698 INIT_LIST_HEAD(&event->event_entry);
6699 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6700 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6701 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6702 INIT_HLIST_NODE(&event->hlist_entry);
6703
10c6db11 6704
cdd6c482 6705 init_waitqueue_head(&event->waitq);
e360adbe 6706 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6707
cdd6c482 6708 mutex_init(&event->mmap_mutex);
7b732a75 6709
a6fa941d 6710 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6711 event->cpu = cpu;
6712 event->attr = *attr;
6713 event->group_leader = group_leader;
6714 event->pmu = NULL;
cdd6c482 6715 event->oncpu = -1;
a96bbc16 6716
cdd6c482 6717 event->parent = parent_event;
b84fbc9f 6718
17cf22c3 6719 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6720 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6721
cdd6c482 6722 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6723
d580ff86
PZ
6724 if (task) {
6725 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6726
6727 if (attr->type == PERF_TYPE_TRACEPOINT)
6728 event->hw.tp_target = task;
d580ff86
PZ
6729#ifdef CONFIG_HAVE_HW_BREAKPOINT
6730 /*
6731 * hw_breakpoint is a bit difficult here..
6732 */
f22c1bb6 6733 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6734 event->hw.bp_target = task;
6735#endif
6736 }
6737
4dc0da86 6738 if (!overflow_handler && parent_event) {
b326e956 6739 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6740 context = parent_event->overflow_handler_context;
6741 }
66832eb4 6742
b326e956 6743 event->overflow_handler = overflow_handler;
4dc0da86 6744 event->overflow_handler_context = context;
97eaf530 6745
0231bb53 6746 perf_event__state_init(event);
a86ed508 6747
4aeb0b42 6748 pmu = NULL;
b8e83514 6749
cdd6c482 6750 hwc = &event->hw;
bd2b5b12 6751 hwc->sample_period = attr->sample_period;
0d48696f 6752 if (attr->freq && attr->sample_freq)
bd2b5b12 6753 hwc->sample_period = 1;
eced1dfc 6754 hwc->last_period = hwc->sample_period;
bd2b5b12 6755
e7850595 6756 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6757
2023b359 6758 /*
cdd6c482 6759 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6760 */
3dab77fb 6761 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6762 goto err_ns;
2023b359 6763
b0a873eb 6764 pmu = perf_init_event(event);
4aeb0b42 6765 if (!pmu)
90983b16
FW
6766 goto err_ns;
6767 else if (IS_ERR(pmu)) {
4aeb0b42 6768 err = PTR_ERR(pmu);
90983b16 6769 goto err_ns;
621a01ea 6770 }
d5d2bc0d 6771
cdd6c482 6772 if (!event->parent) {
927c7a9e
FW
6773 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6774 err = get_callchain_buffers();
90983b16
FW
6775 if (err)
6776 goto err_pmu;
d010b332 6777 }
f344011c 6778 }
9ee318a7 6779
cdd6c482 6780 return event;
90983b16
FW
6781
6782err_pmu:
6783 if (event->destroy)
6784 event->destroy(event);
6785err_ns:
6786 if (event->ns)
6787 put_pid_ns(event->ns);
6788 kfree(event);
6789
6790 return ERR_PTR(err);
0793a61d
TG
6791}
6792
cdd6c482
IM
6793static int perf_copy_attr(struct perf_event_attr __user *uattr,
6794 struct perf_event_attr *attr)
974802ea 6795{
974802ea 6796 u32 size;
cdf8073d 6797 int ret;
974802ea
PZ
6798
6799 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6800 return -EFAULT;
6801
6802 /*
6803 * zero the full structure, so that a short copy will be nice.
6804 */
6805 memset(attr, 0, sizeof(*attr));
6806
6807 ret = get_user(size, &uattr->size);
6808 if (ret)
6809 return ret;
6810
6811 if (size > PAGE_SIZE) /* silly large */
6812 goto err_size;
6813
6814 if (!size) /* abi compat */
6815 size = PERF_ATTR_SIZE_VER0;
6816
6817 if (size < PERF_ATTR_SIZE_VER0)
6818 goto err_size;
6819
6820 /*
6821 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6822 * ensure all the unknown bits are 0 - i.e. new
6823 * user-space does not rely on any kernel feature
6824 * extensions we dont know about yet.
974802ea
PZ
6825 */
6826 if (size > sizeof(*attr)) {
cdf8073d
IS
6827 unsigned char __user *addr;
6828 unsigned char __user *end;
6829 unsigned char val;
974802ea 6830
cdf8073d
IS
6831 addr = (void __user *)uattr + sizeof(*attr);
6832 end = (void __user *)uattr + size;
974802ea 6833
cdf8073d 6834 for (; addr < end; addr++) {
974802ea
PZ
6835 ret = get_user(val, addr);
6836 if (ret)
6837 return ret;
6838 if (val)
6839 goto err_size;
6840 }
b3e62e35 6841 size = sizeof(*attr);
974802ea
PZ
6842 }
6843
6844 ret = copy_from_user(attr, uattr, size);
6845 if (ret)
6846 return -EFAULT;
6847
3090ffb5
SE
6848 /* disabled for now */
6849 if (attr->mmap2)
6850 return -EINVAL;
6851
cd757645 6852 if (attr->__reserved_1)
974802ea
PZ
6853 return -EINVAL;
6854
6855 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6856 return -EINVAL;
6857
6858 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6859 return -EINVAL;
6860
bce38cd5
SE
6861 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6862 u64 mask = attr->branch_sample_type;
6863
6864 /* only using defined bits */
6865 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6866 return -EINVAL;
6867
6868 /* at least one branch bit must be set */
6869 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6870 return -EINVAL;
6871
bce38cd5
SE
6872 /* propagate priv level, when not set for branch */
6873 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6874
6875 /* exclude_kernel checked on syscall entry */
6876 if (!attr->exclude_kernel)
6877 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6878
6879 if (!attr->exclude_user)
6880 mask |= PERF_SAMPLE_BRANCH_USER;
6881
6882 if (!attr->exclude_hv)
6883 mask |= PERF_SAMPLE_BRANCH_HV;
6884 /*
6885 * adjust user setting (for HW filter setup)
6886 */
6887 attr->branch_sample_type = mask;
6888 }
e712209a
SE
6889 /* privileged levels capture (kernel, hv): check permissions */
6890 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6891 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6892 return -EACCES;
bce38cd5 6893 }
4018994f 6894
c5ebcedb 6895 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6896 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6897 if (ret)
6898 return ret;
6899 }
6900
6901 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6902 if (!arch_perf_have_user_stack_dump())
6903 return -ENOSYS;
6904
6905 /*
6906 * We have __u32 type for the size, but so far
6907 * we can only use __u16 as maximum due to the
6908 * __u16 sample size limit.
6909 */
6910 if (attr->sample_stack_user >= USHRT_MAX)
6911 ret = -EINVAL;
6912 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6913 ret = -EINVAL;
6914 }
4018994f 6915
974802ea
PZ
6916out:
6917 return ret;
6918
6919err_size:
6920 put_user(sizeof(*attr), &uattr->size);
6921 ret = -E2BIG;
6922 goto out;
6923}
6924
ac9721f3
PZ
6925static int
6926perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6927{
76369139 6928 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6929 int ret = -EINVAL;
6930
ac9721f3 6931 if (!output_event)
a4be7c27
PZ
6932 goto set;
6933
ac9721f3
PZ
6934 /* don't allow circular references */
6935 if (event == output_event)
a4be7c27
PZ
6936 goto out;
6937
0f139300
PZ
6938 /*
6939 * Don't allow cross-cpu buffers
6940 */
6941 if (output_event->cpu != event->cpu)
6942 goto out;
6943
6944 /*
76369139 6945 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6946 */
6947 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6948 goto out;
6949
a4be7c27 6950set:
cdd6c482 6951 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6952 /* Can't redirect output if we've got an active mmap() */
6953 if (atomic_read(&event->mmap_count))
6954 goto unlock;
a4be7c27 6955
9bb5d40c
PZ
6956 old_rb = event->rb;
6957
ac9721f3 6958 if (output_event) {
76369139
FW
6959 /* get the rb we want to redirect to */
6960 rb = ring_buffer_get(output_event);
6961 if (!rb)
ac9721f3 6962 goto unlock;
a4be7c27
PZ
6963 }
6964
10c6db11
PZ
6965 if (old_rb)
6966 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6967
6968 if (rb)
6969 ring_buffer_attach(event, rb);
6970
6971 rcu_assign_pointer(event->rb, rb);
6972
6973 if (old_rb) {
6974 ring_buffer_put(old_rb);
6975 /*
6976 * Since we detached before setting the new rb, so that we
6977 * could attach the new rb, we could have missed a wakeup.
6978 * Provide it now.
6979 */
6980 wake_up_all(&event->waitq);
6981 }
6982
a4be7c27 6983 ret = 0;
ac9721f3
PZ
6984unlock:
6985 mutex_unlock(&event->mmap_mutex);
6986
a4be7c27 6987out:
a4be7c27
PZ
6988 return ret;
6989}
6990
0793a61d 6991/**
cdd6c482 6992 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6993 *
cdd6c482 6994 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6995 * @pid: target pid
9f66a381 6996 * @cpu: target cpu
cdd6c482 6997 * @group_fd: group leader event fd
0793a61d 6998 */
cdd6c482
IM
6999SYSCALL_DEFINE5(perf_event_open,
7000 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7001 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7002{
b04243ef
PZ
7003 struct perf_event *group_leader = NULL, *output_event = NULL;
7004 struct perf_event *event, *sibling;
cdd6c482
IM
7005 struct perf_event_attr attr;
7006 struct perf_event_context *ctx;
7007 struct file *event_file = NULL;
2903ff01 7008 struct fd group = {NULL, 0};
38a81da2 7009 struct task_struct *task = NULL;
89a1e187 7010 struct pmu *pmu;
ea635c64 7011 int event_fd;
b04243ef 7012 int move_group = 0;
dc86cabe 7013 int err;
a21b0b35 7014 int f_flags = O_RDWR;
0793a61d 7015
2743a5b0 7016 /* for future expandability... */
e5d1367f 7017 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7018 return -EINVAL;
7019
dc86cabe
IM
7020 err = perf_copy_attr(attr_uptr, &attr);
7021 if (err)
7022 return err;
eab656ae 7023
0764771d
PZ
7024 if (!attr.exclude_kernel) {
7025 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7026 return -EACCES;
7027 }
7028
df58ab24 7029 if (attr.freq) {
cdd6c482 7030 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
7031 return -EINVAL;
7032 }
7033
e5d1367f
SE
7034 /*
7035 * In cgroup mode, the pid argument is used to pass the fd
7036 * opened to the cgroup directory in cgroupfs. The cpu argument
7037 * designates the cpu on which to monitor threads from that
7038 * cgroup.
7039 */
7040 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7041 return -EINVAL;
7042
a21b0b35
YD
7043 if (flags & PERF_FLAG_FD_CLOEXEC)
7044 f_flags |= O_CLOEXEC;
7045
7046 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7047 if (event_fd < 0)
7048 return event_fd;
7049
ac9721f3 7050 if (group_fd != -1) {
2903ff01
AV
7051 err = perf_fget_light(group_fd, &group);
7052 if (err)
d14b12d7 7053 goto err_fd;
2903ff01 7054 group_leader = group.file->private_data;
ac9721f3
PZ
7055 if (flags & PERF_FLAG_FD_OUTPUT)
7056 output_event = group_leader;
7057 if (flags & PERF_FLAG_FD_NO_GROUP)
7058 group_leader = NULL;
7059 }
7060
e5d1367f 7061 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7062 task = find_lively_task_by_vpid(pid);
7063 if (IS_ERR(task)) {
7064 err = PTR_ERR(task);
7065 goto err_group_fd;
7066 }
7067 }
7068
fbfc623f
YZ
7069 get_online_cpus();
7070
4dc0da86
AK
7071 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7072 NULL, NULL);
d14b12d7
SE
7073 if (IS_ERR(event)) {
7074 err = PTR_ERR(event);
c6be5a5c 7075 goto err_task;
d14b12d7
SE
7076 }
7077
e5d1367f
SE
7078 if (flags & PERF_FLAG_PID_CGROUP) {
7079 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7080 if (err) {
7081 __free_event(event);
7082 goto err_task;
7083 }
e5d1367f
SE
7084 }
7085
766d6c07
FW
7086 account_event(event);
7087
89a1e187
PZ
7088 /*
7089 * Special case software events and allow them to be part of
7090 * any hardware group.
7091 */
7092 pmu = event->pmu;
b04243ef
PZ
7093
7094 if (group_leader &&
7095 (is_software_event(event) != is_software_event(group_leader))) {
7096 if (is_software_event(event)) {
7097 /*
7098 * If event and group_leader are not both a software
7099 * event, and event is, then group leader is not.
7100 *
7101 * Allow the addition of software events to !software
7102 * groups, this is safe because software events never
7103 * fail to schedule.
7104 */
7105 pmu = group_leader->pmu;
7106 } else if (is_software_event(group_leader) &&
7107 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7108 /*
7109 * In case the group is a pure software group, and we
7110 * try to add a hardware event, move the whole group to
7111 * the hardware context.
7112 */
7113 move_group = 1;
7114 }
7115 }
89a1e187
PZ
7116
7117 /*
7118 * Get the target context (task or percpu):
7119 */
e2d37cd2 7120 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7121 if (IS_ERR(ctx)) {
7122 err = PTR_ERR(ctx);
c6be5a5c 7123 goto err_alloc;
89a1e187
PZ
7124 }
7125
fd1edb3a
PZ
7126 if (task) {
7127 put_task_struct(task);
7128 task = NULL;
7129 }
7130
ccff286d 7131 /*
cdd6c482 7132 * Look up the group leader (we will attach this event to it):
04289bb9 7133 */
ac9721f3 7134 if (group_leader) {
dc86cabe 7135 err = -EINVAL;
04289bb9 7136
04289bb9 7137 /*
ccff286d
IM
7138 * Do not allow a recursive hierarchy (this new sibling
7139 * becoming part of another group-sibling):
7140 */
7141 if (group_leader->group_leader != group_leader)
c3f00c70 7142 goto err_context;
ccff286d
IM
7143 /*
7144 * Do not allow to attach to a group in a different
7145 * task or CPU context:
04289bb9 7146 */
b04243ef
PZ
7147 if (move_group) {
7148 if (group_leader->ctx->type != ctx->type)
7149 goto err_context;
7150 } else {
7151 if (group_leader->ctx != ctx)
7152 goto err_context;
7153 }
7154
3b6f9e5c
PM
7155 /*
7156 * Only a group leader can be exclusive or pinned
7157 */
0d48696f 7158 if (attr.exclusive || attr.pinned)
c3f00c70 7159 goto err_context;
ac9721f3
PZ
7160 }
7161
7162 if (output_event) {
7163 err = perf_event_set_output(event, output_event);
7164 if (err)
c3f00c70 7165 goto err_context;
ac9721f3 7166 }
0793a61d 7167
a21b0b35
YD
7168 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7169 f_flags);
ea635c64
AV
7170 if (IS_ERR(event_file)) {
7171 err = PTR_ERR(event_file);
c3f00c70 7172 goto err_context;
ea635c64 7173 }
9b51f66d 7174
b04243ef
PZ
7175 if (move_group) {
7176 struct perf_event_context *gctx = group_leader->ctx;
7177
7178 mutex_lock(&gctx->mutex);
46ce0fe9 7179 perf_remove_from_context(group_leader, false);
0231bb53
JO
7180
7181 /*
7182 * Removing from the context ends up with disabled
7183 * event. What we want here is event in the initial
7184 * startup state, ready to be add into new context.
7185 */
7186 perf_event__state_init(group_leader);
b04243ef
PZ
7187 list_for_each_entry(sibling, &group_leader->sibling_list,
7188 group_entry) {
46ce0fe9 7189 perf_remove_from_context(sibling, false);
0231bb53 7190 perf_event__state_init(sibling);
b04243ef
PZ
7191 put_ctx(gctx);
7192 }
7193 mutex_unlock(&gctx->mutex);
7194 put_ctx(gctx);
ea635c64 7195 }
9b51f66d 7196
ad3a37de 7197 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7198 mutex_lock(&ctx->mutex);
b04243ef
PZ
7199
7200 if (move_group) {
0cda4c02 7201 synchronize_rcu();
e2d37cd2 7202 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7203 get_ctx(ctx);
7204 list_for_each_entry(sibling, &group_leader->sibling_list,
7205 group_entry) {
e2d37cd2 7206 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7207 get_ctx(ctx);
7208 }
7209 }
7210
e2d37cd2 7211 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7212 perf_unpin_context(ctx);
d859e29f 7213 mutex_unlock(&ctx->mutex);
9b51f66d 7214
fbfc623f
YZ
7215 put_online_cpus();
7216
cdd6c482 7217 event->owner = current;
8882135b 7218
cdd6c482
IM
7219 mutex_lock(&current->perf_event_mutex);
7220 list_add_tail(&event->owner_entry, &current->perf_event_list);
7221 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7222
c320c7b7
ACM
7223 /*
7224 * Precalculate sample_data sizes
7225 */
7226 perf_event__header_size(event);
6844c09d 7227 perf_event__id_header_size(event);
c320c7b7 7228
8a49542c
PZ
7229 /*
7230 * Drop the reference on the group_event after placing the
7231 * new event on the sibling_list. This ensures destruction
7232 * of the group leader will find the pointer to itself in
7233 * perf_group_detach().
7234 */
2903ff01 7235 fdput(group);
ea635c64
AV
7236 fd_install(event_fd, event_file);
7237 return event_fd;
0793a61d 7238
c3f00c70 7239err_context:
fe4b04fa 7240 perf_unpin_context(ctx);
ea635c64 7241 put_ctx(ctx);
c6be5a5c 7242err_alloc:
ea635c64 7243 free_event(event);
e7d0bc04 7244err_task:
fbfc623f 7245 put_online_cpus();
e7d0bc04
PZ
7246 if (task)
7247 put_task_struct(task);
89a1e187 7248err_group_fd:
2903ff01 7249 fdput(group);
ea635c64
AV
7250err_fd:
7251 put_unused_fd(event_fd);
dc86cabe 7252 return err;
0793a61d
TG
7253}
7254
fb0459d7
AV
7255/**
7256 * perf_event_create_kernel_counter
7257 *
7258 * @attr: attributes of the counter to create
7259 * @cpu: cpu in which the counter is bound
38a81da2 7260 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7261 */
7262struct perf_event *
7263perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7264 struct task_struct *task,
4dc0da86
AK
7265 perf_overflow_handler_t overflow_handler,
7266 void *context)
fb0459d7 7267{
fb0459d7 7268 struct perf_event_context *ctx;
c3f00c70 7269 struct perf_event *event;
fb0459d7 7270 int err;
d859e29f 7271
fb0459d7
AV
7272 /*
7273 * Get the target context (task or percpu):
7274 */
d859e29f 7275
4dc0da86
AK
7276 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7277 overflow_handler, context);
c3f00c70
PZ
7278 if (IS_ERR(event)) {
7279 err = PTR_ERR(event);
7280 goto err;
7281 }
d859e29f 7282
766d6c07
FW
7283 account_event(event);
7284
38a81da2 7285 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7286 if (IS_ERR(ctx)) {
7287 err = PTR_ERR(ctx);
c3f00c70 7288 goto err_free;
d859e29f 7289 }
fb0459d7 7290
fb0459d7
AV
7291 WARN_ON_ONCE(ctx->parent_ctx);
7292 mutex_lock(&ctx->mutex);
7293 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7294 perf_unpin_context(ctx);
fb0459d7
AV
7295 mutex_unlock(&ctx->mutex);
7296
fb0459d7
AV
7297 return event;
7298
c3f00c70
PZ
7299err_free:
7300 free_event(event);
7301err:
c6567f64 7302 return ERR_PTR(err);
9b51f66d 7303}
fb0459d7 7304EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7305
0cda4c02
YZ
7306void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7307{
7308 struct perf_event_context *src_ctx;
7309 struct perf_event_context *dst_ctx;
7310 struct perf_event *event, *tmp;
7311 LIST_HEAD(events);
7312
7313 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7314 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7315
7316 mutex_lock(&src_ctx->mutex);
7317 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7318 event_entry) {
46ce0fe9 7319 perf_remove_from_context(event, false);
9a545de0 7320 unaccount_event_cpu(event, src_cpu);
0cda4c02 7321 put_ctx(src_ctx);
9886167d 7322 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7323 }
7324 mutex_unlock(&src_ctx->mutex);
7325
7326 synchronize_rcu();
7327
7328 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7329 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7330 list_del(&event->migrate_entry);
0cda4c02
YZ
7331 if (event->state >= PERF_EVENT_STATE_OFF)
7332 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7333 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7334 perf_install_in_context(dst_ctx, event, dst_cpu);
7335 get_ctx(dst_ctx);
7336 }
7337 mutex_unlock(&dst_ctx->mutex);
7338}
7339EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7340
cdd6c482 7341static void sync_child_event(struct perf_event *child_event,
38b200d6 7342 struct task_struct *child)
d859e29f 7343{
cdd6c482 7344 struct perf_event *parent_event = child_event->parent;
8bc20959 7345 u64 child_val;
d859e29f 7346
cdd6c482
IM
7347 if (child_event->attr.inherit_stat)
7348 perf_event_read_event(child_event, child);
38b200d6 7349
b5e58793 7350 child_val = perf_event_count(child_event);
d859e29f
PM
7351
7352 /*
7353 * Add back the child's count to the parent's count:
7354 */
a6e6dea6 7355 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7356 atomic64_add(child_event->total_time_enabled,
7357 &parent_event->child_total_time_enabled);
7358 atomic64_add(child_event->total_time_running,
7359 &parent_event->child_total_time_running);
d859e29f
PM
7360
7361 /*
cdd6c482 7362 * Remove this event from the parent's list
d859e29f 7363 */
cdd6c482
IM
7364 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7365 mutex_lock(&parent_event->child_mutex);
7366 list_del_init(&child_event->child_list);
7367 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7368
7369 /*
cdd6c482 7370 * Release the parent event, if this was the last
d859e29f
PM
7371 * reference to it.
7372 */
a6fa941d 7373 put_event(parent_event);
d859e29f
PM
7374}
7375
9b51f66d 7376static void
cdd6c482
IM
7377__perf_event_exit_task(struct perf_event *child_event,
7378 struct perf_event_context *child_ctx,
38b200d6 7379 struct task_struct *child)
9b51f66d 7380{
46ce0fe9 7381 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7382
9b51f66d 7383 /*
38b435b1 7384 * It can happen that the parent exits first, and has events
9b51f66d 7385 * that are still around due to the child reference. These
38b435b1 7386 * events need to be zapped.
9b51f66d 7387 */
38b435b1 7388 if (child_event->parent) {
cdd6c482
IM
7389 sync_child_event(child_event, child);
7390 free_event(child_event);
4bcf349a 7391 }
9b51f66d
IM
7392}
7393
8dc85d54 7394static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7395{
cdd6c482
IM
7396 struct perf_event *child_event, *tmp;
7397 struct perf_event_context *child_ctx;
a63eaf34 7398 unsigned long flags;
9b51f66d 7399
8dc85d54 7400 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7401 perf_event_task(child, NULL, 0);
9b51f66d 7402 return;
9f498cc5 7403 }
9b51f66d 7404
a63eaf34 7405 local_irq_save(flags);
ad3a37de
PM
7406 /*
7407 * We can't reschedule here because interrupts are disabled,
7408 * and either child is current or it is a task that can't be
7409 * scheduled, so we are now safe from rescheduling changing
7410 * our context.
7411 */
806839b2 7412 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7413
7414 /*
7415 * Take the context lock here so that if find_get_context is
cdd6c482 7416 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7417 * incremented the context's refcount before we do put_ctx below.
7418 */
e625cce1 7419 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7420 task_ctx_sched_out(child_ctx);
8dc85d54 7421 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7422 /*
7423 * If this context is a clone; unclone it so it can't get
7424 * swapped to another process while we're removing all
cdd6c482 7425 * the events from it.
71a851b4
PZ
7426 */
7427 unclone_ctx(child_ctx);
5e942bb3 7428 update_context_time(child_ctx);
e625cce1 7429 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7430
7431 /*
cdd6c482
IM
7432 * Report the task dead after unscheduling the events so that we
7433 * won't get any samples after PERF_RECORD_EXIT. We can however still
7434 * get a few PERF_RECORD_READ events.
9f498cc5 7435 */
cdd6c482 7436 perf_event_task(child, child_ctx, 0);
a63eaf34 7437
66fff224
PZ
7438 /*
7439 * We can recurse on the same lock type through:
7440 *
cdd6c482
IM
7441 * __perf_event_exit_task()
7442 * sync_child_event()
a6fa941d
AV
7443 * put_event()
7444 * mutex_lock(&ctx->mutex)
66fff224
PZ
7445 *
7446 * But since its the parent context it won't be the same instance.
7447 */
a0507c84 7448 mutex_lock(&child_ctx->mutex);
a63eaf34 7449
8bc20959 7450again:
889ff015
FW
7451 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7452 group_entry)
7453 __perf_event_exit_task(child_event, child_ctx, child);
7454
7455 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7456 group_entry)
cdd6c482 7457 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7458
7459 /*
cdd6c482 7460 * If the last event was a group event, it will have appended all
8bc20959
PZ
7461 * its siblings to the list, but we obtained 'tmp' before that which
7462 * will still point to the list head terminating the iteration.
7463 */
889ff015
FW
7464 if (!list_empty(&child_ctx->pinned_groups) ||
7465 !list_empty(&child_ctx->flexible_groups))
8bc20959 7466 goto again;
a63eaf34
PM
7467
7468 mutex_unlock(&child_ctx->mutex);
7469
7470 put_ctx(child_ctx);
9b51f66d
IM
7471}
7472
8dc85d54
PZ
7473/*
7474 * When a child task exits, feed back event values to parent events.
7475 */
7476void perf_event_exit_task(struct task_struct *child)
7477{
8882135b 7478 struct perf_event *event, *tmp;
8dc85d54
PZ
7479 int ctxn;
7480
8882135b
PZ
7481 mutex_lock(&child->perf_event_mutex);
7482 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7483 owner_entry) {
7484 list_del_init(&event->owner_entry);
7485
7486 /*
7487 * Ensure the list deletion is visible before we clear
7488 * the owner, closes a race against perf_release() where
7489 * we need to serialize on the owner->perf_event_mutex.
7490 */
7491 smp_wmb();
7492 event->owner = NULL;
7493 }
7494 mutex_unlock(&child->perf_event_mutex);
7495
8dc85d54
PZ
7496 for_each_task_context_nr(ctxn)
7497 perf_event_exit_task_context(child, ctxn);
7498}
7499
889ff015
FW
7500static void perf_free_event(struct perf_event *event,
7501 struct perf_event_context *ctx)
7502{
7503 struct perf_event *parent = event->parent;
7504
7505 if (WARN_ON_ONCE(!parent))
7506 return;
7507
7508 mutex_lock(&parent->child_mutex);
7509 list_del_init(&event->child_list);
7510 mutex_unlock(&parent->child_mutex);
7511
a6fa941d 7512 put_event(parent);
889ff015 7513
8a49542c 7514 perf_group_detach(event);
889ff015
FW
7515 list_del_event(event, ctx);
7516 free_event(event);
7517}
7518
bbbee908
PZ
7519/*
7520 * free an unexposed, unused context as created by inheritance by
8dc85d54 7521 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7522 */
cdd6c482 7523void perf_event_free_task(struct task_struct *task)
bbbee908 7524{
8dc85d54 7525 struct perf_event_context *ctx;
cdd6c482 7526 struct perf_event *event, *tmp;
8dc85d54 7527 int ctxn;
bbbee908 7528
8dc85d54
PZ
7529 for_each_task_context_nr(ctxn) {
7530 ctx = task->perf_event_ctxp[ctxn];
7531 if (!ctx)
7532 continue;
bbbee908 7533
8dc85d54 7534 mutex_lock(&ctx->mutex);
bbbee908 7535again:
8dc85d54
PZ
7536 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7537 group_entry)
7538 perf_free_event(event, ctx);
bbbee908 7539
8dc85d54
PZ
7540 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7541 group_entry)
7542 perf_free_event(event, ctx);
bbbee908 7543
8dc85d54
PZ
7544 if (!list_empty(&ctx->pinned_groups) ||
7545 !list_empty(&ctx->flexible_groups))
7546 goto again;
bbbee908 7547
8dc85d54 7548 mutex_unlock(&ctx->mutex);
bbbee908 7549
8dc85d54
PZ
7550 put_ctx(ctx);
7551 }
889ff015
FW
7552}
7553
4e231c79
PZ
7554void perf_event_delayed_put(struct task_struct *task)
7555{
7556 int ctxn;
7557
7558 for_each_task_context_nr(ctxn)
7559 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7560}
7561
97dee4f3
PZ
7562/*
7563 * inherit a event from parent task to child task:
7564 */
7565static struct perf_event *
7566inherit_event(struct perf_event *parent_event,
7567 struct task_struct *parent,
7568 struct perf_event_context *parent_ctx,
7569 struct task_struct *child,
7570 struct perf_event *group_leader,
7571 struct perf_event_context *child_ctx)
7572{
7573 struct perf_event *child_event;
cee010ec 7574 unsigned long flags;
97dee4f3
PZ
7575
7576 /*
7577 * Instead of creating recursive hierarchies of events,
7578 * we link inherited events back to the original parent,
7579 * which has a filp for sure, which we use as the reference
7580 * count:
7581 */
7582 if (parent_event->parent)
7583 parent_event = parent_event->parent;
7584
7585 child_event = perf_event_alloc(&parent_event->attr,
7586 parent_event->cpu,
d580ff86 7587 child,
97dee4f3 7588 group_leader, parent_event,
4dc0da86 7589 NULL, NULL);
97dee4f3
PZ
7590 if (IS_ERR(child_event))
7591 return child_event;
a6fa941d
AV
7592
7593 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7594 free_event(child_event);
7595 return NULL;
7596 }
7597
97dee4f3
PZ
7598 get_ctx(child_ctx);
7599
7600 /*
7601 * Make the child state follow the state of the parent event,
7602 * not its attr.disabled bit. We hold the parent's mutex,
7603 * so we won't race with perf_event_{en, dis}able_family.
7604 */
7605 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7606 child_event->state = PERF_EVENT_STATE_INACTIVE;
7607 else
7608 child_event->state = PERF_EVENT_STATE_OFF;
7609
7610 if (parent_event->attr.freq) {
7611 u64 sample_period = parent_event->hw.sample_period;
7612 struct hw_perf_event *hwc = &child_event->hw;
7613
7614 hwc->sample_period = sample_period;
7615 hwc->last_period = sample_period;
7616
7617 local64_set(&hwc->period_left, sample_period);
7618 }
7619
7620 child_event->ctx = child_ctx;
7621 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7622 child_event->overflow_handler_context
7623 = parent_event->overflow_handler_context;
97dee4f3 7624
614b6780
TG
7625 /*
7626 * Precalculate sample_data sizes
7627 */
7628 perf_event__header_size(child_event);
6844c09d 7629 perf_event__id_header_size(child_event);
614b6780 7630
97dee4f3
PZ
7631 /*
7632 * Link it up in the child's context:
7633 */
cee010ec 7634 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7635 add_event_to_ctx(child_event, child_ctx);
cee010ec 7636 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7637
97dee4f3
PZ
7638 /*
7639 * Link this into the parent event's child list
7640 */
7641 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7642 mutex_lock(&parent_event->child_mutex);
7643 list_add_tail(&child_event->child_list, &parent_event->child_list);
7644 mutex_unlock(&parent_event->child_mutex);
7645
7646 return child_event;
7647}
7648
7649static int inherit_group(struct perf_event *parent_event,
7650 struct task_struct *parent,
7651 struct perf_event_context *parent_ctx,
7652 struct task_struct *child,
7653 struct perf_event_context *child_ctx)
7654{
7655 struct perf_event *leader;
7656 struct perf_event *sub;
7657 struct perf_event *child_ctr;
7658
7659 leader = inherit_event(parent_event, parent, parent_ctx,
7660 child, NULL, child_ctx);
7661 if (IS_ERR(leader))
7662 return PTR_ERR(leader);
7663 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7664 child_ctr = inherit_event(sub, parent, parent_ctx,
7665 child, leader, child_ctx);
7666 if (IS_ERR(child_ctr))
7667 return PTR_ERR(child_ctr);
7668 }
7669 return 0;
889ff015
FW
7670}
7671
7672static int
7673inherit_task_group(struct perf_event *event, struct task_struct *parent,
7674 struct perf_event_context *parent_ctx,
8dc85d54 7675 struct task_struct *child, int ctxn,
889ff015
FW
7676 int *inherited_all)
7677{
7678 int ret;
8dc85d54 7679 struct perf_event_context *child_ctx;
889ff015
FW
7680
7681 if (!event->attr.inherit) {
7682 *inherited_all = 0;
7683 return 0;
bbbee908
PZ
7684 }
7685
fe4b04fa 7686 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7687 if (!child_ctx) {
7688 /*
7689 * This is executed from the parent task context, so
7690 * inherit events that have been marked for cloning.
7691 * First allocate and initialize a context for the
7692 * child.
7693 */
bbbee908 7694
734df5ab 7695 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7696 if (!child_ctx)
7697 return -ENOMEM;
bbbee908 7698
8dc85d54 7699 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7700 }
7701
7702 ret = inherit_group(event, parent, parent_ctx,
7703 child, child_ctx);
7704
7705 if (ret)
7706 *inherited_all = 0;
7707
7708 return ret;
bbbee908
PZ
7709}
7710
9b51f66d 7711/*
cdd6c482 7712 * Initialize the perf_event context in task_struct
9b51f66d 7713 */
8dc85d54 7714int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7715{
889ff015 7716 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7717 struct perf_event_context *cloned_ctx;
7718 struct perf_event *event;
9b51f66d 7719 struct task_struct *parent = current;
564c2b21 7720 int inherited_all = 1;
dddd3379 7721 unsigned long flags;
6ab423e0 7722 int ret = 0;
9b51f66d 7723
8dc85d54 7724 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7725 return 0;
7726
ad3a37de 7727 /*
25346b93
PM
7728 * If the parent's context is a clone, pin it so it won't get
7729 * swapped under us.
ad3a37de 7730 */
8dc85d54 7731 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7732 if (!parent_ctx)
7733 return 0;
25346b93 7734
ad3a37de
PM
7735 /*
7736 * No need to check if parent_ctx != NULL here; since we saw
7737 * it non-NULL earlier, the only reason for it to become NULL
7738 * is if we exit, and since we're currently in the middle of
7739 * a fork we can't be exiting at the same time.
7740 */
ad3a37de 7741
9b51f66d
IM
7742 /*
7743 * Lock the parent list. No need to lock the child - not PID
7744 * hashed yet and not running, so nobody can access it.
7745 */
d859e29f 7746 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7747
7748 /*
7749 * We dont have to disable NMIs - we are only looking at
7750 * the list, not manipulating it:
7751 */
889ff015 7752 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7753 ret = inherit_task_group(event, parent, parent_ctx,
7754 child, ctxn, &inherited_all);
889ff015
FW
7755 if (ret)
7756 break;
7757 }
b93f7978 7758
dddd3379
TG
7759 /*
7760 * We can't hold ctx->lock when iterating the ->flexible_group list due
7761 * to allocations, but we need to prevent rotation because
7762 * rotate_ctx() will change the list from interrupt context.
7763 */
7764 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7765 parent_ctx->rotate_disable = 1;
7766 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7767
889ff015 7768 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7769 ret = inherit_task_group(event, parent, parent_ctx,
7770 child, ctxn, &inherited_all);
889ff015 7771 if (ret)
9b51f66d 7772 break;
564c2b21
PM
7773 }
7774
dddd3379
TG
7775 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7776 parent_ctx->rotate_disable = 0;
dddd3379 7777
8dc85d54 7778 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7779
05cbaa28 7780 if (child_ctx && inherited_all) {
564c2b21
PM
7781 /*
7782 * Mark the child context as a clone of the parent
7783 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7784 *
7785 * Note that if the parent is a clone, the holding of
7786 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7787 */
c5ed5145 7788 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7789 if (cloned_ctx) {
7790 child_ctx->parent_ctx = cloned_ctx;
25346b93 7791 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7792 } else {
7793 child_ctx->parent_ctx = parent_ctx;
7794 child_ctx->parent_gen = parent_ctx->generation;
7795 }
7796 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7797 }
7798
c5ed5145 7799 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7800 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7801
25346b93 7802 perf_unpin_context(parent_ctx);
fe4b04fa 7803 put_ctx(parent_ctx);
ad3a37de 7804
6ab423e0 7805 return ret;
9b51f66d
IM
7806}
7807
8dc85d54
PZ
7808/*
7809 * Initialize the perf_event context in task_struct
7810 */
7811int perf_event_init_task(struct task_struct *child)
7812{
7813 int ctxn, ret;
7814
8550d7cb
ON
7815 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7816 mutex_init(&child->perf_event_mutex);
7817 INIT_LIST_HEAD(&child->perf_event_list);
7818
8dc85d54
PZ
7819 for_each_task_context_nr(ctxn) {
7820 ret = perf_event_init_context(child, ctxn);
7821 if (ret)
7822 return ret;
7823 }
7824
7825 return 0;
7826}
7827
220b140b
PM
7828static void __init perf_event_init_all_cpus(void)
7829{
b28ab83c 7830 struct swevent_htable *swhash;
220b140b 7831 int cpu;
220b140b
PM
7832
7833 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7834 swhash = &per_cpu(swevent_htable, cpu);
7835 mutex_init(&swhash->hlist_mutex);
e9d2b064 7836 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7837 }
7838}
7839
0db0628d 7840static void perf_event_init_cpu(int cpu)
0793a61d 7841{
108b02cf 7842 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7843
b28ab83c 7844 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7845 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7846 struct swevent_hlist *hlist;
7847
b28ab83c
PZ
7848 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7849 WARN_ON(!hlist);
7850 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7851 }
b28ab83c 7852 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7853}
7854
c277443c 7855#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7856static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7857{
e9d2b064
PZ
7858 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7859
7860 WARN_ON(!irqs_disabled());
7861
7862 list_del_init(&cpuctx->rotation_list);
7863}
7864
108b02cf 7865static void __perf_event_exit_context(void *__info)
0793a61d 7866{
46ce0fe9 7867 struct remove_event re = { .detach_group = false };
108b02cf 7868 struct perf_event_context *ctx = __info;
0793a61d 7869
108b02cf 7870 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7871
e3703f8c 7872 rcu_read_lock();
46ce0fe9
PZ
7873 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7874 __perf_remove_from_context(&re);
e3703f8c 7875 rcu_read_unlock();
0793a61d 7876}
108b02cf
PZ
7877
7878static void perf_event_exit_cpu_context(int cpu)
7879{
7880 struct perf_event_context *ctx;
7881 struct pmu *pmu;
7882 int idx;
7883
7884 idx = srcu_read_lock(&pmus_srcu);
7885 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7886 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7887
7888 mutex_lock(&ctx->mutex);
7889 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7890 mutex_unlock(&ctx->mutex);
7891 }
7892 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7893}
7894
cdd6c482 7895static void perf_event_exit_cpu(int cpu)
0793a61d 7896{
b28ab83c 7897 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7898
e3703f8c
PZ
7899 perf_event_exit_cpu_context(cpu);
7900
b28ab83c
PZ
7901 mutex_lock(&swhash->hlist_mutex);
7902 swevent_hlist_release(swhash);
7903 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7904}
7905#else
cdd6c482 7906static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7907#endif
7908
c277443c
PZ
7909static int
7910perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7911{
7912 int cpu;
7913
7914 for_each_online_cpu(cpu)
7915 perf_event_exit_cpu(cpu);
7916
7917 return NOTIFY_OK;
7918}
7919
7920/*
7921 * Run the perf reboot notifier at the very last possible moment so that
7922 * the generic watchdog code runs as long as possible.
7923 */
7924static struct notifier_block perf_reboot_notifier = {
7925 .notifier_call = perf_reboot,
7926 .priority = INT_MIN,
7927};
7928
0db0628d 7929static int
0793a61d
TG
7930perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7931{
7932 unsigned int cpu = (long)hcpu;
7933
4536e4d1 7934 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7935
7936 case CPU_UP_PREPARE:
5e11637e 7937 case CPU_DOWN_FAILED:
cdd6c482 7938 perf_event_init_cpu(cpu);
0793a61d
TG
7939 break;
7940
5e11637e 7941 case CPU_UP_CANCELED:
0793a61d 7942 case CPU_DOWN_PREPARE:
cdd6c482 7943 perf_event_exit_cpu(cpu);
0793a61d 7944 break;
0793a61d
TG
7945 default:
7946 break;
7947 }
7948
7949 return NOTIFY_OK;
7950}
7951
cdd6c482 7952void __init perf_event_init(void)
0793a61d 7953{
3c502e7a
JW
7954 int ret;
7955
2e80a82a
PZ
7956 idr_init(&pmu_idr);
7957
220b140b 7958 perf_event_init_all_cpus();
b0a873eb 7959 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7960 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7961 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7962 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7963 perf_tp_register();
7964 perf_cpu_notifier(perf_cpu_notify);
c277443c 7965 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7966
7967 ret = init_hw_breakpoint();
7968 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7969
7970 /* do not patch jump label more than once per second */
7971 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7972
7973 /*
7974 * Build time assertion that we keep the data_head at the intended
7975 * location. IOW, validation we got the __reserved[] size right.
7976 */
7977 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7978 != 1024);
0793a61d 7979}
abe43400
PZ
7980
7981static int __init perf_event_sysfs_init(void)
7982{
7983 struct pmu *pmu;
7984 int ret;
7985
7986 mutex_lock(&pmus_lock);
7987
7988 ret = bus_register(&pmu_bus);
7989 if (ret)
7990 goto unlock;
7991
7992 list_for_each_entry(pmu, &pmus, entry) {
7993 if (!pmu->name || pmu->type < 0)
7994 continue;
7995
7996 ret = pmu_dev_alloc(pmu);
7997 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7998 }
7999 pmu_bus_running = 1;
8000 ret = 0;
8001
8002unlock:
8003 mutex_unlock(&pmus_lock);
8004
8005 return ret;
8006}
8007device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8008
8009#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8010static struct cgroup_subsys_state *
8011perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8012{
8013 struct perf_cgroup *jc;
e5d1367f 8014
1b15d055 8015 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8016 if (!jc)
8017 return ERR_PTR(-ENOMEM);
8018
e5d1367f
SE
8019 jc->info = alloc_percpu(struct perf_cgroup_info);
8020 if (!jc->info) {
8021 kfree(jc);
8022 return ERR_PTR(-ENOMEM);
8023 }
8024
e5d1367f
SE
8025 return &jc->css;
8026}
8027
eb95419b 8028static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8029{
eb95419b
TH
8030 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8031
e5d1367f
SE
8032 free_percpu(jc->info);
8033 kfree(jc);
8034}
8035
8036static int __perf_cgroup_move(void *info)
8037{
8038 struct task_struct *task = info;
8039 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8040 return 0;
8041}
8042
eb95419b
TH
8043static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8044 struct cgroup_taskset *tset)
e5d1367f 8045{
bb9d97b6
TH
8046 struct task_struct *task;
8047
924f0d9a 8048 cgroup_taskset_for_each(task, tset)
bb9d97b6 8049 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8050}
8051
eb95419b
TH
8052static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8053 struct cgroup_subsys_state *old_css,
761b3ef5 8054 struct task_struct *task)
e5d1367f
SE
8055{
8056 /*
8057 * cgroup_exit() is called in the copy_process() failure path.
8058 * Ignore this case since the task hasn't ran yet, this avoids
8059 * trying to poke a half freed task state from generic code.
8060 */
8061 if (!(task->flags & PF_EXITING))
8062 return;
8063
bb9d97b6 8064 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8065}
8066
073219e9 8067struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8068 .css_alloc = perf_cgroup_css_alloc,
8069 .css_free = perf_cgroup_css_free,
e7e7ee2e 8070 .exit = perf_cgroup_exit,
bb9d97b6 8071 .attach = perf_cgroup_attach,
e5d1367f
SE
8072};
8073#endif /* CONFIG_CGROUP_PERF */