perf: Fix scaling vs. perf_install_in_context()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
272325c4 89task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
272325c4 113static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
fae3fde6
PZ
127static inline struct perf_cpu_context *
128__get_cpu_context(struct perf_event_context *ctx)
129{
130 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131}
132
133static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 struct perf_event_context *ctx)
0017960f 135{
fae3fde6
PZ
136 raw_spin_lock(&cpuctx->ctx.lock);
137 if (ctx)
138 raw_spin_lock(&ctx->lock);
139}
140
141static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 struct perf_event_context *ctx)
143{
144 if (ctx)
145 raw_spin_unlock(&ctx->lock);
146 raw_spin_unlock(&cpuctx->ctx.lock);
147}
148
63b6da39
PZ
149#define TASK_TOMBSTONE ((void *)-1L)
150
151static bool is_kernel_event(struct perf_event *event)
152{
f47c02c0 153 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
154}
155
39a43640
PZ
156/*
157 * On task ctx scheduling...
158 *
159 * When !ctx->nr_events a task context will not be scheduled. This means
160 * we can disable the scheduler hooks (for performance) without leaving
161 * pending task ctx state.
162 *
163 * This however results in two special cases:
164 *
165 * - removing the last event from a task ctx; this is relatively straight
166 * forward and is done in __perf_remove_from_context.
167 *
168 * - adding the first event to a task ctx; this is tricky because we cannot
169 * rely on ctx->is_active and therefore cannot use event_function_call().
170 * See perf_install_in_context().
171 *
172 * This is because we need a ctx->lock serialized variable (ctx->is_active)
173 * to reliably determine if a particular task/context is scheduled in. The
174 * task_curr() use in task_function_call() is racy in that a remote context
175 * switch is not a single atomic operation.
176 *
177 * As is, the situation is 'safe' because we set rq->curr before we do the
178 * actual context switch. This means that task_curr() will fail early, but
179 * we'll continue spinning on ctx->is_active until we've passed
180 * perf_event_task_sched_out().
181 *
182 * Without this ctx->lock serialized variable we could have race where we find
183 * the task (and hence the context) would not be active while in fact they are.
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39
PZ
214 if (ctx->task != current) {
215 ret = -EAGAIN;
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 379 do_div(tmp, 100);
d9494cb4 380 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 381}
163ec435 382
9e630205
SE
383static int perf_rotate_context(struct perf_cpu_context *cpuctx);
384
163ec435
PZ
385int perf_proc_update_handler(struct ctl_table *table, int write,
386 void __user *buffer, size_t *lenp,
387 loff_t *ppos)
388{
723478c8 389 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
390
391 if (ret || !write)
392 return ret;
393
394 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
395 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
396 update_perf_cpu_limits();
397
398 return 0;
399}
400
401int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
402
403int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
404 void __user *buffer, size_t *lenp,
405 loff_t *ppos)
406{
407 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
408
409 if (ret || !write)
410 return ret;
411
412 update_perf_cpu_limits();
163ec435
PZ
413
414 return 0;
415}
1ccd1549 416
14c63f17
DH
417/*
418 * perf samples are done in some very critical code paths (NMIs).
419 * If they take too much CPU time, the system can lock up and not
420 * get any real work done. This will drop the sample rate when
421 * we detect that events are taking too long.
422 */
423#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 424static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 425
6a02ad66 426static void perf_duration_warn(struct irq_work *w)
14c63f17 427{
6a02ad66 428 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 429 u64 avg_local_sample_len;
e5302920 430 u64 local_samples_len;
6a02ad66 431
4a32fea9 432 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
433 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
434
435 printk_ratelimited(KERN_WARNING
436 "perf interrupt took too long (%lld > %lld), lowering "
437 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 438 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
439 sysctl_perf_event_sample_rate);
440}
441
442static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
443
444void perf_sample_event_took(u64 sample_len_ns)
445{
d9494cb4 446 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
447 u64 avg_local_sample_len;
448 u64 local_samples_len;
14c63f17 449
d9494cb4 450 if (allowed_ns == 0)
14c63f17
DH
451 return;
452
453 /* decay the counter by 1 average sample */
4a32fea9 454 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
455 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
456 local_samples_len += sample_len_ns;
4a32fea9 457 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
458
459 /*
460 * note: this will be biased artifically low until we have
461 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
462 * from having to maintain a count.
463 */
464 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
465
d9494cb4 466 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
467 return;
468
469 if (max_samples_per_tick <= 1)
470 return;
471
472 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
473 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
474 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
475
14c63f17 476 update_perf_cpu_limits();
6a02ad66 477
cd578abb
PZ
478 if (!irq_work_queue(&perf_duration_work)) {
479 early_printk("perf interrupt took too long (%lld > %lld), lowering "
480 "kernel.perf_event_max_sample_rate to %d\n",
481 avg_local_sample_len, allowed_ns >> 1,
482 sysctl_perf_event_sample_rate);
483 }
14c63f17
DH
484}
485
cdd6c482 486static atomic64_t perf_event_id;
a96bbc16 487
0b3fcf17
SE
488static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
489 enum event_type_t event_type);
490
491static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
492 enum event_type_t event_type,
493 struct task_struct *task);
494
495static void update_context_time(struct perf_event_context *ctx);
496static u64 perf_event_time(struct perf_event *event);
0b3fcf17 497
cdd6c482 498void __weak perf_event_print_debug(void) { }
0793a61d 499
84c79910 500extern __weak const char *perf_pmu_name(void)
0793a61d 501{
84c79910 502 return "pmu";
0793a61d
TG
503}
504
0b3fcf17
SE
505static inline u64 perf_clock(void)
506{
507 return local_clock();
508}
509
34f43927
PZ
510static inline u64 perf_event_clock(struct perf_event *event)
511{
512 return event->clock();
513}
514
e5d1367f
SE
515#ifdef CONFIG_CGROUP_PERF
516
e5d1367f
SE
517static inline bool
518perf_cgroup_match(struct perf_event *event)
519{
520 struct perf_event_context *ctx = event->ctx;
521 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
522
ef824fa1
TH
523 /* @event doesn't care about cgroup */
524 if (!event->cgrp)
525 return true;
526
527 /* wants specific cgroup scope but @cpuctx isn't associated with any */
528 if (!cpuctx->cgrp)
529 return false;
530
531 /*
532 * Cgroup scoping is recursive. An event enabled for a cgroup is
533 * also enabled for all its descendant cgroups. If @cpuctx's
534 * cgroup is a descendant of @event's (the test covers identity
535 * case), it's a match.
536 */
537 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
538 event->cgrp->css.cgroup);
e5d1367f
SE
539}
540
e5d1367f
SE
541static inline void perf_detach_cgroup(struct perf_event *event)
542{
4e2ba650 543 css_put(&event->cgrp->css);
e5d1367f
SE
544 event->cgrp = NULL;
545}
546
547static inline int is_cgroup_event(struct perf_event *event)
548{
549 return event->cgrp != NULL;
550}
551
552static inline u64 perf_cgroup_event_time(struct perf_event *event)
553{
554 struct perf_cgroup_info *t;
555
556 t = per_cpu_ptr(event->cgrp->info, event->cpu);
557 return t->time;
558}
559
560static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
561{
562 struct perf_cgroup_info *info;
563 u64 now;
564
565 now = perf_clock();
566
567 info = this_cpu_ptr(cgrp->info);
568
569 info->time += now - info->timestamp;
570 info->timestamp = now;
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
576 if (cgrp_out)
577 __update_cgrp_time(cgrp_out);
578}
579
580static inline void update_cgrp_time_from_event(struct perf_event *event)
581{
3f7cce3c
SE
582 struct perf_cgroup *cgrp;
583
e5d1367f 584 /*
3f7cce3c
SE
585 * ensure we access cgroup data only when needed and
586 * when we know the cgroup is pinned (css_get)
e5d1367f 587 */
3f7cce3c 588 if (!is_cgroup_event(event))
e5d1367f
SE
589 return;
590
614e4c4e 591 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
592 /*
593 * Do not update time when cgroup is not active
594 */
595 if (cgrp == event->cgrp)
596 __update_cgrp_time(event->cgrp);
e5d1367f
SE
597}
598
599static inline void
3f7cce3c
SE
600perf_cgroup_set_timestamp(struct task_struct *task,
601 struct perf_event_context *ctx)
e5d1367f
SE
602{
603 struct perf_cgroup *cgrp;
604 struct perf_cgroup_info *info;
605
3f7cce3c
SE
606 /*
607 * ctx->lock held by caller
608 * ensure we do not access cgroup data
609 * unless we have the cgroup pinned (css_get)
610 */
611 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
612 return;
613
614e4c4e 614 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 615 info = this_cpu_ptr(cgrp->info);
3f7cce3c 616 info->timestamp = ctx->timestamp;
e5d1367f
SE
617}
618
619#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
620#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
621
622/*
623 * reschedule events based on the cgroup constraint of task.
624 *
625 * mode SWOUT : schedule out everything
626 * mode SWIN : schedule in based on cgroup for next
627 */
18ab2cd3 628static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
629{
630 struct perf_cpu_context *cpuctx;
631 struct pmu *pmu;
632 unsigned long flags;
633
634 /*
635 * disable interrupts to avoid geting nr_cgroup
636 * changes via __perf_event_disable(). Also
637 * avoids preemption.
638 */
639 local_irq_save(flags);
640
641 /*
642 * we reschedule only in the presence of cgroup
643 * constrained events.
644 */
e5d1367f
SE
645
646 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 647 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
648 if (cpuctx->unique_pmu != pmu)
649 continue; /* ensure we process each cpuctx once */
e5d1367f 650
e5d1367f
SE
651 /*
652 * perf_cgroup_events says at least one
653 * context on this CPU has cgroup events.
654 *
655 * ctx->nr_cgroups reports the number of cgroup
656 * events for a context.
657 */
658 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
659 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
660 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
661
662 if (mode & PERF_CGROUP_SWOUT) {
663 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
664 /*
665 * must not be done before ctxswout due
666 * to event_filter_match() in event_sched_out()
667 */
668 cpuctx->cgrp = NULL;
669 }
670
671 if (mode & PERF_CGROUP_SWIN) {
e566b76e 672 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
673 /*
674 * set cgrp before ctxsw in to allow
675 * event_filter_match() to not have to pass
676 * task around
614e4c4e
SE
677 * we pass the cpuctx->ctx to perf_cgroup_from_task()
678 * because cgorup events are only per-cpu
e5d1367f 679 */
614e4c4e 680 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
681 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
682 }
facc4307
PZ
683 perf_pmu_enable(cpuctx->ctx.pmu);
684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 685 }
e5d1367f
SE
686 }
687
e5d1367f
SE
688 local_irq_restore(flags);
689}
690
a8d757ef
SE
691static inline void perf_cgroup_sched_out(struct task_struct *task,
692 struct task_struct *next)
e5d1367f 693{
a8d757ef
SE
694 struct perf_cgroup *cgrp1;
695 struct perf_cgroup *cgrp2 = NULL;
696
ddaaf4e2 697 rcu_read_lock();
a8d757ef
SE
698 /*
699 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
700 * we do not need to pass the ctx here because we know
701 * we are holding the rcu lock
a8d757ef 702 */
614e4c4e 703 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 704 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
705
706 /*
707 * only schedule out current cgroup events if we know
708 * that we are switching to a different cgroup. Otherwise,
709 * do no touch the cgroup events.
710 */
711 if (cgrp1 != cgrp2)
712 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
713
714 rcu_read_unlock();
e5d1367f
SE
715}
716
a8d757ef
SE
717static inline void perf_cgroup_sched_in(struct task_struct *prev,
718 struct task_struct *task)
e5d1367f 719{
a8d757ef
SE
720 struct perf_cgroup *cgrp1;
721 struct perf_cgroup *cgrp2 = NULL;
722
ddaaf4e2 723 rcu_read_lock();
a8d757ef
SE
724 /*
725 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
726 * we do not need to pass the ctx here because we know
727 * we are holding the rcu lock
a8d757ef 728 */
614e4c4e 729 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 730 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
731
732 /*
733 * only need to schedule in cgroup events if we are changing
734 * cgroup during ctxsw. Cgroup events were not scheduled
735 * out of ctxsw out if that was not the case.
736 */
737 if (cgrp1 != cgrp2)
738 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
739
740 rcu_read_unlock();
e5d1367f
SE
741}
742
743static inline int perf_cgroup_connect(int fd, struct perf_event *event,
744 struct perf_event_attr *attr,
745 struct perf_event *group_leader)
746{
747 struct perf_cgroup *cgrp;
748 struct cgroup_subsys_state *css;
2903ff01
AV
749 struct fd f = fdget(fd);
750 int ret = 0;
e5d1367f 751
2903ff01 752 if (!f.file)
e5d1367f
SE
753 return -EBADF;
754
b583043e 755 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 756 &perf_event_cgrp_subsys);
3db272c0
LZ
757 if (IS_ERR(css)) {
758 ret = PTR_ERR(css);
759 goto out;
760 }
e5d1367f
SE
761
762 cgrp = container_of(css, struct perf_cgroup, css);
763 event->cgrp = cgrp;
764
765 /*
766 * all events in a group must monitor
767 * the same cgroup because a task belongs
768 * to only one perf cgroup at a time
769 */
770 if (group_leader && group_leader->cgrp != cgrp) {
771 perf_detach_cgroup(event);
772 ret = -EINVAL;
e5d1367f 773 }
3db272c0 774out:
2903ff01 775 fdput(f);
e5d1367f
SE
776 return ret;
777}
778
779static inline void
780perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
781{
782 struct perf_cgroup_info *t;
783 t = per_cpu_ptr(event->cgrp->info, event->cpu);
784 event->shadow_ctx_time = now - t->timestamp;
785}
786
787static inline void
788perf_cgroup_defer_enabled(struct perf_event *event)
789{
790 /*
791 * when the current task's perf cgroup does not match
792 * the event's, we need to remember to call the
793 * perf_mark_enable() function the first time a task with
794 * a matching perf cgroup is scheduled in.
795 */
796 if (is_cgroup_event(event) && !perf_cgroup_match(event))
797 event->cgrp_defer_enabled = 1;
798}
799
800static inline void
801perf_cgroup_mark_enabled(struct perf_event *event,
802 struct perf_event_context *ctx)
803{
804 struct perf_event *sub;
805 u64 tstamp = perf_event_time(event);
806
807 if (!event->cgrp_defer_enabled)
808 return;
809
810 event->cgrp_defer_enabled = 0;
811
812 event->tstamp_enabled = tstamp - event->total_time_enabled;
813 list_for_each_entry(sub, &event->sibling_list, group_entry) {
814 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
815 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
816 sub->cgrp_defer_enabled = 0;
817 }
818 }
819}
820#else /* !CONFIG_CGROUP_PERF */
821
822static inline bool
823perf_cgroup_match(struct perf_event *event)
824{
825 return true;
826}
827
828static inline void perf_detach_cgroup(struct perf_event *event)
829{}
830
831static inline int is_cgroup_event(struct perf_event *event)
832{
833 return 0;
834}
835
836static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
837{
838 return 0;
839}
840
841static inline void update_cgrp_time_from_event(struct perf_event *event)
842{
843}
844
845static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
846{
847}
848
a8d757ef
SE
849static inline void perf_cgroup_sched_out(struct task_struct *task,
850 struct task_struct *next)
e5d1367f
SE
851{
852}
853
a8d757ef
SE
854static inline void perf_cgroup_sched_in(struct task_struct *prev,
855 struct task_struct *task)
e5d1367f
SE
856{
857}
858
859static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
860 struct perf_event_attr *attr,
861 struct perf_event *group_leader)
862{
863 return -EINVAL;
864}
865
866static inline void
3f7cce3c
SE
867perf_cgroup_set_timestamp(struct task_struct *task,
868 struct perf_event_context *ctx)
e5d1367f
SE
869{
870}
871
872void
873perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
874{
875}
876
877static inline void
878perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
879{
880}
881
882static inline u64 perf_cgroup_event_time(struct perf_event *event)
883{
884 return 0;
885}
886
887static inline void
888perf_cgroup_defer_enabled(struct perf_event *event)
889{
890}
891
892static inline void
893perf_cgroup_mark_enabled(struct perf_event *event,
894 struct perf_event_context *ctx)
895{
896}
897#endif
898
9e630205
SE
899/*
900 * set default to be dependent on timer tick just
901 * like original code
902 */
903#define PERF_CPU_HRTIMER (1000 / HZ)
904/*
905 * function must be called with interrupts disbled
906 */
272325c4 907static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
908{
909 struct perf_cpu_context *cpuctx;
9e630205
SE
910 int rotations = 0;
911
912 WARN_ON(!irqs_disabled());
913
914 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
915 rotations = perf_rotate_context(cpuctx);
916
4cfafd30
PZ
917 raw_spin_lock(&cpuctx->hrtimer_lock);
918 if (rotations)
9e630205 919 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
920 else
921 cpuctx->hrtimer_active = 0;
922 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 923
4cfafd30 924 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
925}
926
272325c4 927static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 928{
272325c4 929 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 930 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 931 u64 interval;
9e630205
SE
932
933 /* no multiplexing needed for SW PMU */
934 if (pmu->task_ctx_nr == perf_sw_context)
935 return;
936
62b85639
SE
937 /*
938 * check default is sane, if not set then force to
939 * default interval (1/tick)
940 */
272325c4
PZ
941 interval = pmu->hrtimer_interval_ms;
942 if (interval < 1)
943 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 944
272325c4 945 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 946
4cfafd30
PZ
947 raw_spin_lock_init(&cpuctx->hrtimer_lock);
948 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 949 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
950}
951
272325c4 952static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 953{
272325c4 954 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 955 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 956 unsigned long flags;
9e630205
SE
957
958 /* not for SW PMU */
959 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 960 return 0;
9e630205 961
4cfafd30
PZ
962 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
963 if (!cpuctx->hrtimer_active) {
964 cpuctx->hrtimer_active = 1;
965 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
966 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
967 }
968 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 969
272325c4 970 return 0;
9e630205
SE
971}
972
33696fc0 973void perf_pmu_disable(struct pmu *pmu)
9e35ad38 974{
33696fc0
PZ
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!(*count)++)
977 pmu->pmu_disable(pmu);
9e35ad38 978}
9e35ad38 979
33696fc0 980void perf_pmu_enable(struct pmu *pmu)
9e35ad38 981{
33696fc0
PZ
982 int *count = this_cpu_ptr(pmu->pmu_disable_count);
983 if (!--(*count))
984 pmu->pmu_enable(pmu);
9e35ad38 985}
9e35ad38 986
2fde4f94 987static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
988
989/*
2fde4f94
MR
990 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
991 * perf_event_task_tick() are fully serialized because they're strictly cpu
992 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
993 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 994 */
2fde4f94 995static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 996{
2fde4f94 997 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 998
e9d2b064 999 WARN_ON(!irqs_disabled());
b5ab4cd5 1000
2fde4f94
MR
1001 WARN_ON(!list_empty(&ctx->active_ctx_list));
1002
1003 list_add(&ctx->active_ctx_list, head);
1004}
1005
1006static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1007{
1008 WARN_ON(!irqs_disabled());
1009
1010 WARN_ON(list_empty(&ctx->active_ctx_list));
1011
1012 list_del_init(&ctx->active_ctx_list);
9e35ad38 1013}
9e35ad38 1014
cdd6c482 1015static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1016{
e5289d4a 1017 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1018}
1019
4af57ef2
YZ
1020static void free_ctx(struct rcu_head *head)
1021{
1022 struct perf_event_context *ctx;
1023
1024 ctx = container_of(head, struct perf_event_context, rcu_head);
1025 kfree(ctx->task_ctx_data);
1026 kfree(ctx);
1027}
1028
cdd6c482 1029static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1030{
564c2b21
PM
1031 if (atomic_dec_and_test(&ctx->refcount)) {
1032 if (ctx->parent_ctx)
1033 put_ctx(ctx->parent_ctx);
63b6da39 1034 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1035 put_task_struct(ctx->task);
4af57ef2 1036 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1037 }
a63eaf34
PM
1038}
1039
f63a8daa
PZ
1040/*
1041 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1042 * perf_pmu_migrate_context() we need some magic.
1043 *
1044 * Those places that change perf_event::ctx will hold both
1045 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1046 *
8b10c5e2
PZ
1047 * Lock ordering is by mutex address. There are two other sites where
1048 * perf_event_context::mutex nests and those are:
1049 *
1050 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1051 * perf_event_exit_event()
1052 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1053 *
1054 * - perf_event_init_context() [ parent, 0 ]
1055 * inherit_task_group()
1056 * inherit_group()
1057 * inherit_event()
1058 * perf_event_alloc()
1059 * perf_init_event()
1060 * perf_try_init_event() [ child , 1 ]
1061 *
1062 * While it appears there is an obvious deadlock here -- the parent and child
1063 * nesting levels are inverted between the two. This is in fact safe because
1064 * life-time rules separate them. That is an exiting task cannot fork, and a
1065 * spawning task cannot (yet) exit.
1066 *
1067 * But remember that that these are parent<->child context relations, and
1068 * migration does not affect children, therefore these two orderings should not
1069 * interact.
f63a8daa
PZ
1070 *
1071 * The change in perf_event::ctx does not affect children (as claimed above)
1072 * because the sys_perf_event_open() case will install a new event and break
1073 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1074 * concerned with cpuctx and that doesn't have children.
1075 *
1076 * The places that change perf_event::ctx will issue:
1077 *
1078 * perf_remove_from_context();
1079 * synchronize_rcu();
1080 * perf_install_in_context();
1081 *
1082 * to affect the change. The remove_from_context() + synchronize_rcu() should
1083 * quiesce the event, after which we can install it in the new location. This
1084 * means that only external vectors (perf_fops, prctl) can perturb the event
1085 * while in transit. Therefore all such accessors should also acquire
1086 * perf_event_context::mutex to serialize against this.
1087 *
1088 * However; because event->ctx can change while we're waiting to acquire
1089 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1090 * function.
1091 *
1092 * Lock order:
1093 * task_struct::perf_event_mutex
1094 * perf_event_context::mutex
f63a8daa 1095 * perf_event::child_mutex;
07c4a776 1096 * perf_event_context::lock
f63a8daa
PZ
1097 * perf_event::mmap_mutex
1098 * mmap_sem
1099 */
a83fe28e
PZ
1100static struct perf_event_context *
1101perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1102{
1103 struct perf_event_context *ctx;
1104
1105again:
1106 rcu_read_lock();
1107 ctx = ACCESS_ONCE(event->ctx);
1108 if (!atomic_inc_not_zero(&ctx->refcount)) {
1109 rcu_read_unlock();
1110 goto again;
1111 }
1112 rcu_read_unlock();
1113
a83fe28e 1114 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1115 if (event->ctx != ctx) {
1116 mutex_unlock(&ctx->mutex);
1117 put_ctx(ctx);
1118 goto again;
1119 }
1120
1121 return ctx;
1122}
1123
a83fe28e
PZ
1124static inline struct perf_event_context *
1125perf_event_ctx_lock(struct perf_event *event)
1126{
1127 return perf_event_ctx_lock_nested(event, 0);
1128}
1129
f63a8daa
PZ
1130static void perf_event_ctx_unlock(struct perf_event *event,
1131 struct perf_event_context *ctx)
1132{
1133 mutex_unlock(&ctx->mutex);
1134 put_ctx(ctx);
1135}
1136
211de6eb
PZ
1137/*
1138 * This must be done under the ctx->lock, such as to serialize against
1139 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1140 * calling scheduler related locks and ctx->lock nests inside those.
1141 */
1142static __must_check struct perf_event_context *
1143unclone_ctx(struct perf_event_context *ctx)
71a851b4 1144{
211de6eb
PZ
1145 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1146
1147 lockdep_assert_held(&ctx->lock);
1148
1149 if (parent_ctx)
71a851b4 1150 ctx->parent_ctx = NULL;
5a3126d4 1151 ctx->generation++;
211de6eb
PZ
1152
1153 return parent_ctx;
71a851b4
PZ
1154}
1155
6844c09d
ACM
1156static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1157{
1158 /*
1159 * only top level events have the pid namespace they were created in
1160 */
1161 if (event->parent)
1162 event = event->parent;
1163
1164 return task_tgid_nr_ns(p, event->ns);
1165}
1166
1167static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1168{
1169 /*
1170 * only top level events have the pid namespace they were created in
1171 */
1172 if (event->parent)
1173 event = event->parent;
1174
1175 return task_pid_nr_ns(p, event->ns);
1176}
1177
7f453c24 1178/*
cdd6c482 1179 * If we inherit events we want to return the parent event id
7f453c24
PZ
1180 * to userspace.
1181 */
cdd6c482 1182static u64 primary_event_id(struct perf_event *event)
7f453c24 1183{
cdd6c482 1184 u64 id = event->id;
7f453c24 1185
cdd6c482
IM
1186 if (event->parent)
1187 id = event->parent->id;
7f453c24
PZ
1188
1189 return id;
1190}
1191
25346b93 1192/*
cdd6c482 1193 * Get the perf_event_context for a task and lock it.
63b6da39 1194 *
25346b93
PM
1195 * This has to cope with with the fact that until it is locked,
1196 * the context could get moved to another task.
1197 */
cdd6c482 1198static struct perf_event_context *
8dc85d54 1199perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1200{
cdd6c482 1201 struct perf_event_context *ctx;
25346b93 1202
9ed6060d 1203retry:
058ebd0e
PZ
1204 /*
1205 * One of the few rules of preemptible RCU is that one cannot do
1206 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1207 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1208 * rcu_read_unlock_special().
1209 *
1210 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1211 * side critical section has interrupts disabled.
058ebd0e 1212 */
2fd59077 1213 local_irq_save(*flags);
058ebd0e 1214 rcu_read_lock();
8dc85d54 1215 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1216 if (ctx) {
1217 /*
1218 * If this context is a clone of another, it might
1219 * get swapped for another underneath us by
cdd6c482 1220 * perf_event_task_sched_out, though the
25346b93
PM
1221 * rcu_read_lock() protects us from any context
1222 * getting freed. Lock the context and check if it
1223 * got swapped before we could get the lock, and retry
1224 * if so. If we locked the right context, then it
1225 * can't get swapped on us any more.
1226 */
2fd59077 1227 raw_spin_lock(&ctx->lock);
8dc85d54 1228 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1229 raw_spin_unlock(&ctx->lock);
058ebd0e 1230 rcu_read_unlock();
2fd59077 1231 local_irq_restore(*flags);
25346b93
PM
1232 goto retry;
1233 }
b49a9e7e 1234
63b6da39
PZ
1235 if (ctx->task == TASK_TOMBSTONE ||
1236 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1237 raw_spin_unlock(&ctx->lock);
b49a9e7e 1238 ctx = NULL;
828b6f0e
PZ
1239 } else {
1240 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1241 }
25346b93
PM
1242 }
1243 rcu_read_unlock();
2fd59077
PM
1244 if (!ctx)
1245 local_irq_restore(*flags);
25346b93
PM
1246 return ctx;
1247}
1248
1249/*
1250 * Get the context for a task and increment its pin_count so it
1251 * can't get swapped to another task. This also increments its
1252 * reference count so that the context can't get freed.
1253 */
8dc85d54
PZ
1254static struct perf_event_context *
1255perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1256{
cdd6c482 1257 struct perf_event_context *ctx;
25346b93
PM
1258 unsigned long flags;
1259
8dc85d54 1260 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1261 if (ctx) {
1262 ++ctx->pin_count;
e625cce1 1263 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1264 }
1265 return ctx;
1266}
1267
cdd6c482 1268static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1269{
1270 unsigned long flags;
1271
e625cce1 1272 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1273 --ctx->pin_count;
e625cce1 1274 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1275}
1276
f67218c3
PZ
1277/*
1278 * Update the record of the current time in a context.
1279 */
1280static void update_context_time(struct perf_event_context *ctx)
1281{
1282 u64 now = perf_clock();
1283
1284 ctx->time += now - ctx->timestamp;
1285 ctx->timestamp = now;
1286}
1287
4158755d
SE
1288static u64 perf_event_time(struct perf_event *event)
1289{
1290 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1291
1292 if (is_cgroup_event(event))
1293 return perf_cgroup_event_time(event);
1294
4158755d
SE
1295 return ctx ? ctx->time : 0;
1296}
1297
f67218c3
PZ
1298/*
1299 * Update the total_time_enabled and total_time_running fields for a event.
1300 */
1301static void update_event_times(struct perf_event *event)
1302{
1303 struct perf_event_context *ctx = event->ctx;
1304 u64 run_end;
1305
3cbaa590
PZ
1306 lockdep_assert_held(&ctx->lock);
1307
f67218c3
PZ
1308 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1309 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1310 return;
3cbaa590 1311
e5d1367f
SE
1312 /*
1313 * in cgroup mode, time_enabled represents
1314 * the time the event was enabled AND active
1315 * tasks were in the monitored cgroup. This is
1316 * independent of the activity of the context as
1317 * there may be a mix of cgroup and non-cgroup events.
1318 *
1319 * That is why we treat cgroup events differently
1320 * here.
1321 */
1322 if (is_cgroup_event(event))
46cd6a7f 1323 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1324 else if (ctx->is_active)
1325 run_end = ctx->time;
acd1d7c1
PZ
1326 else
1327 run_end = event->tstamp_stopped;
1328
1329 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1330
1331 if (event->state == PERF_EVENT_STATE_INACTIVE)
1332 run_end = event->tstamp_stopped;
1333 else
4158755d 1334 run_end = perf_event_time(event);
f67218c3
PZ
1335
1336 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1337
f67218c3
PZ
1338}
1339
96c21a46
PZ
1340/*
1341 * Update total_time_enabled and total_time_running for all events in a group.
1342 */
1343static void update_group_times(struct perf_event *leader)
1344{
1345 struct perf_event *event;
1346
1347 update_event_times(leader);
1348 list_for_each_entry(event, &leader->sibling_list, group_entry)
1349 update_event_times(event);
1350}
1351
889ff015
FW
1352static struct list_head *
1353ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1354{
1355 if (event->attr.pinned)
1356 return &ctx->pinned_groups;
1357 else
1358 return &ctx->flexible_groups;
1359}
1360
fccc714b 1361/*
cdd6c482 1362 * Add a event from the lists for its context.
fccc714b
PZ
1363 * Must be called with ctx->mutex and ctx->lock held.
1364 */
04289bb9 1365static void
cdd6c482 1366list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1367{
c994d613
PZ
1368 lockdep_assert_held(&ctx->lock);
1369
8a49542c
PZ
1370 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1371 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1372
1373 /*
8a49542c
PZ
1374 * If we're a stand alone event or group leader, we go to the context
1375 * list, group events are kept attached to the group so that
1376 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1377 */
8a49542c 1378 if (event->group_leader == event) {
889ff015
FW
1379 struct list_head *list;
1380
d6f962b5
FW
1381 if (is_software_event(event))
1382 event->group_flags |= PERF_GROUP_SOFTWARE;
1383
889ff015
FW
1384 list = ctx_group_list(event, ctx);
1385 list_add_tail(&event->group_entry, list);
5c148194 1386 }
592903cd 1387
08309379 1388 if (is_cgroup_event(event))
e5d1367f 1389 ctx->nr_cgroups++;
e5d1367f 1390
cdd6c482
IM
1391 list_add_rcu(&event->event_entry, &ctx->event_list);
1392 ctx->nr_events++;
1393 if (event->attr.inherit_stat)
bfbd3381 1394 ctx->nr_stat++;
5a3126d4
PZ
1395
1396 ctx->generation++;
04289bb9
IM
1397}
1398
0231bb53
JO
1399/*
1400 * Initialize event state based on the perf_event_attr::disabled.
1401 */
1402static inline void perf_event__state_init(struct perf_event *event)
1403{
1404 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1405 PERF_EVENT_STATE_INACTIVE;
1406}
1407
a723968c 1408static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1409{
1410 int entry = sizeof(u64); /* value */
1411 int size = 0;
1412 int nr = 1;
1413
1414 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1415 size += sizeof(u64);
1416
1417 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1418 size += sizeof(u64);
1419
1420 if (event->attr.read_format & PERF_FORMAT_ID)
1421 entry += sizeof(u64);
1422
1423 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1424 nr += nr_siblings;
c320c7b7
ACM
1425 size += sizeof(u64);
1426 }
1427
1428 size += entry * nr;
1429 event->read_size = size;
1430}
1431
a723968c 1432static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1433{
1434 struct perf_sample_data *data;
c320c7b7
ACM
1435 u16 size = 0;
1436
c320c7b7
ACM
1437 if (sample_type & PERF_SAMPLE_IP)
1438 size += sizeof(data->ip);
1439
6844c09d
ACM
1440 if (sample_type & PERF_SAMPLE_ADDR)
1441 size += sizeof(data->addr);
1442
1443 if (sample_type & PERF_SAMPLE_PERIOD)
1444 size += sizeof(data->period);
1445
c3feedf2
AK
1446 if (sample_type & PERF_SAMPLE_WEIGHT)
1447 size += sizeof(data->weight);
1448
6844c09d
ACM
1449 if (sample_type & PERF_SAMPLE_READ)
1450 size += event->read_size;
1451
d6be9ad6
SE
1452 if (sample_type & PERF_SAMPLE_DATA_SRC)
1453 size += sizeof(data->data_src.val);
1454
fdfbbd07
AK
1455 if (sample_type & PERF_SAMPLE_TRANSACTION)
1456 size += sizeof(data->txn);
1457
6844c09d
ACM
1458 event->header_size = size;
1459}
1460
a723968c
PZ
1461/*
1462 * Called at perf_event creation and when events are attached/detached from a
1463 * group.
1464 */
1465static void perf_event__header_size(struct perf_event *event)
1466{
1467 __perf_event_read_size(event,
1468 event->group_leader->nr_siblings);
1469 __perf_event_header_size(event, event->attr.sample_type);
1470}
1471
6844c09d
ACM
1472static void perf_event__id_header_size(struct perf_event *event)
1473{
1474 struct perf_sample_data *data;
1475 u64 sample_type = event->attr.sample_type;
1476 u16 size = 0;
1477
c320c7b7
ACM
1478 if (sample_type & PERF_SAMPLE_TID)
1479 size += sizeof(data->tid_entry);
1480
1481 if (sample_type & PERF_SAMPLE_TIME)
1482 size += sizeof(data->time);
1483
ff3d527c
AH
1484 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1485 size += sizeof(data->id);
1486
c320c7b7
ACM
1487 if (sample_type & PERF_SAMPLE_ID)
1488 size += sizeof(data->id);
1489
1490 if (sample_type & PERF_SAMPLE_STREAM_ID)
1491 size += sizeof(data->stream_id);
1492
1493 if (sample_type & PERF_SAMPLE_CPU)
1494 size += sizeof(data->cpu_entry);
1495
6844c09d 1496 event->id_header_size = size;
c320c7b7
ACM
1497}
1498
a723968c
PZ
1499static bool perf_event_validate_size(struct perf_event *event)
1500{
1501 /*
1502 * The values computed here will be over-written when we actually
1503 * attach the event.
1504 */
1505 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1506 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1507 perf_event__id_header_size(event);
1508
1509 /*
1510 * Sum the lot; should not exceed the 64k limit we have on records.
1511 * Conservative limit to allow for callchains and other variable fields.
1512 */
1513 if (event->read_size + event->header_size +
1514 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1515 return false;
1516
1517 return true;
1518}
1519
8a49542c
PZ
1520static void perf_group_attach(struct perf_event *event)
1521{
c320c7b7 1522 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1523
74c3337c
PZ
1524 /*
1525 * We can have double attach due to group movement in perf_event_open.
1526 */
1527 if (event->attach_state & PERF_ATTACH_GROUP)
1528 return;
1529
8a49542c
PZ
1530 event->attach_state |= PERF_ATTACH_GROUP;
1531
1532 if (group_leader == event)
1533 return;
1534
652884fe
PZ
1535 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1536
8a49542c
PZ
1537 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1538 !is_software_event(event))
1539 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1540
1541 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1542 group_leader->nr_siblings++;
c320c7b7
ACM
1543
1544 perf_event__header_size(group_leader);
1545
1546 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1547 perf_event__header_size(pos);
8a49542c
PZ
1548}
1549
a63eaf34 1550/*
cdd6c482 1551 * Remove a event from the lists for its context.
fccc714b 1552 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1553 */
04289bb9 1554static void
cdd6c482 1555list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1556{
68cacd29 1557 struct perf_cpu_context *cpuctx;
652884fe
PZ
1558
1559 WARN_ON_ONCE(event->ctx != ctx);
1560 lockdep_assert_held(&ctx->lock);
1561
8a49542c
PZ
1562 /*
1563 * We can have double detach due to exit/hot-unplug + close.
1564 */
1565 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1566 return;
8a49542c
PZ
1567
1568 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1569
68cacd29 1570 if (is_cgroup_event(event)) {
e5d1367f 1571 ctx->nr_cgroups--;
70a01657
PZ
1572 /*
1573 * Because cgroup events are always per-cpu events, this will
1574 * always be called from the right CPU.
1575 */
68cacd29
SE
1576 cpuctx = __get_cpu_context(ctx);
1577 /*
70a01657
PZ
1578 * If there are no more cgroup events then clear cgrp to avoid
1579 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1580 */
1581 if (!ctx->nr_cgroups)
1582 cpuctx->cgrp = NULL;
1583 }
e5d1367f 1584
cdd6c482
IM
1585 ctx->nr_events--;
1586 if (event->attr.inherit_stat)
bfbd3381 1587 ctx->nr_stat--;
8bc20959 1588
cdd6c482 1589 list_del_rcu(&event->event_entry);
04289bb9 1590
8a49542c
PZ
1591 if (event->group_leader == event)
1592 list_del_init(&event->group_entry);
5c148194 1593
96c21a46 1594 update_group_times(event);
b2e74a26
SE
1595
1596 /*
1597 * If event was in error state, then keep it
1598 * that way, otherwise bogus counts will be
1599 * returned on read(). The only way to get out
1600 * of error state is by explicit re-enabling
1601 * of the event
1602 */
1603 if (event->state > PERF_EVENT_STATE_OFF)
1604 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1605
1606 ctx->generation++;
050735b0
PZ
1607}
1608
8a49542c 1609static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1610{
1611 struct perf_event *sibling, *tmp;
8a49542c
PZ
1612 struct list_head *list = NULL;
1613
1614 /*
1615 * We can have double detach due to exit/hot-unplug + close.
1616 */
1617 if (!(event->attach_state & PERF_ATTACH_GROUP))
1618 return;
1619
1620 event->attach_state &= ~PERF_ATTACH_GROUP;
1621
1622 /*
1623 * If this is a sibling, remove it from its group.
1624 */
1625 if (event->group_leader != event) {
1626 list_del_init(&event->group_entry);
1627 event->group_leader->nr_siblings--;
c320c7b7 1628 goto out;
8a49542c
PZ
1629 }
1630
1631 if (!list_empty(&event->group_entry))
1632 list = &event->group_entry;
2e2af50b 1633
04289bb9 1634 /*
cdd6c482
IM
1635 * If this was a group event with sibling events then
1636 * upgrade the siblings to singleton events by adding them
8a49542c 1637 * to whatever list we are on.
04289bb9 1638 */
cdd6c482 1639 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1640 if (list)
1641 list_move_tail(&sibling->group_entry, list);
04289bb9 1642 sibling->group_leader = sibling;
d6f962b5
FW
1643
1644 /* Inherit group flags from the previous leader */
1645 sibling->group_flags = event->group_flags;
652884fe
PZ
1646
1647 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1648 }
c320c7b7
ACM
1649
1650out:
1651 perf_event__header_size(event->group_leader);
1652
1653 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1654 perf_event__header_size(tmp);
04289bb9
IM
1655}
1656
fadfe7be
JO
1657static bool is_orphaned_event(struct perf_event *event)
1658{
a69b0ca4 1659 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1660}
1661
66eb579e
MR
1662static inline int pmu_filter_match(struct perf_event *event)
1663{
1664 struct pmu *pmu = event->pmu;
1665 return pmu->filter_match ? pmu->filter_match(event) : 1;
1666}
1667
fa66f07a
SE
1668static inline int
1669event_filter_match(struct perf_event *event)
1670{
e5d1367f 1671 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1672 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1673}
1674
9ffcfa6f
SE
1675static void
1676event_sched_out(struct perf_event *event,
3b6f9e5c 1677 struct perf_cpu_context *cpuctx,
cdd6c482 1678 struct perf_event_context *ctx)
3b6f9e5c 1679{
4158755d 1680 u64 tstamp = perf_event_time(event);
fa66f07a 1681 u64 delta;
652884fe
PZ
1682
1683 WARN_ON_ONCE(event->ctx != ctx);
1684 lockdep_assert_held(&ctx->lock);
1685
fa66f07a
SE
1686 /*
1687 * An event which could not be activated because of
1688 * filter mismatch still needs to have its timings
1689 * maintained, otherwise bogus information is return
1690 * via read() for time_enabled, time_running:
1691 */
1692 if (event->state == PERF_EVENT_STATE_INACTIVE
1693 && !event_filter_match(event)) {
e5d1367f 1694 delta = tstamp - event->tstamp_stopped;
fa66f07a 1695 event->tstamp_running += delta;
4158755d 1696 event->tstamp_stopped = tstamp;
fa66f07a
SE
1697 }
1698
cdd6c482 1699 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1700 return;
3b6f9e5c 1701
44377277
AS
1702 perf_pmu_disable(event->pmu);
1703
28a967c3
PZ
1704 event->tstamp_stopped = tstamp;
1705 event->pmu->del(event, 0);
1706 event->oncpu = -1;
cdd6c482
IM
1707 event->state = PERF_EVENT_STATE_INACTIVE;
1708 if (event->pending_disable) {
1709 event->pending_disable = 0;
1710 event->state = PERF_EVENT_STATE_OFF;
970892a9 1711 }
3b6f9e5c 1712
cdd6c482 1713 if (!is_software_event(event))
3b6f9e5c 1714 cpuctx->active_oncpu--;
2fde4f94
MR
1715 if (!--ctx->nr_active)
1716 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1717 if (event->attr.freq && event->attr.sample_freq)
1718 ctx->nr_freq--;
cdd6c482 1719 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1720 cpuctx->exclusive = 0;
44377277
AS
1721
1722 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1723}
1724
d859e29f 1725static void
cdd6c482 1726group_sched_out(struct perf_event *group_event,
d859e29f 1727 struct perf_cpu_context *cpuctx,
cdd6c482 1728 struct perf_event_context *ctx)
d859e29f 1729{
cdd6c482 1730 struct perf_event *event;
fa66f07a 1731 int state = group_event->state;
d859e29f 1732
cdd6c482 1733 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1734
1735 /*
1736 * Schedule out siblings (if any):
1737 */
cdd6c482
IM
1738 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1739 event_sched_out(event, cpuctx, ctx);
d859e29f 1740
fa66f07a 1741 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1742 cpuctx->exclusive = 0;
1743}
1744
45a0e07a 1745#define DETACH_GROUP 0x01UL
0017960f 1746
0793a61d 1747/*
cdd6c482 1748 * Cross CPU call to remove a performance event
0793a61d 1749 *
cdd6c482 1750 * We disable the event on the hardware level first. After that we
0793a61d
TG
1751 * remove it from the context list.
1752 */
fae3fde6
PZ
1753static void
1754__perf_remove_from_context(struct perf_event *event,
1755 struct perf_cpu_context *cpuctx,
1756 struct perf_event_context *ctx,
1757 void *info)
0793a61d 1758{
45a0e07a 1759 unsigned long flags = (unsigned long)info;
0793a61d 1760
cdd6c482 1761 event_sched_out(event, cpuctx, ctx);
45a0e07a 1762 if (flags & DETACH_GROUP)
46ce0fe9 1763 perf_group_detach(event);
cdd6c482 1764 list_del_event(event, ctx);
39a43640
PZ
1765
1766 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1767 ctx->is_active = 0;
39a43640
PZ
1768 if (ctx->task) {
1769 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1770 cpuctx->task_ctx = NULL;
1771 }
64ce3126 1772 }
0793a61d
TG
1773}
1774
0793a61d 1775/*
cdd6c482 1776 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1777 *
cdd6c482
IM
1778 * If event->ctx is a cloned context, callers must make sure that
1779 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1780 * remains valid. This is OK when called from perf_release since
1781 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1782 * When called from perf_event_exit_task, it's OK because the
c93f7669 1783 * context has been detached from its task.
0793a61d 1784 */
45a0e07a 1785static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1786{
fae3fde6 1787 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1788
45a0e07a 1789 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1790}
1791
d859e29f 1792/*
cdd6c482 1793 * Cross CPU call to disable a performance event
d859e29f 1794 */
fae3fde6
PZ
1795static void __perf_event_disable(struct perf_event *event,
1796 struct perf_cpu_context *cpuctx,
1797 struct perf_event_context *ctx,
1798 void *info)
7b648018 1799{
fae3fde6
PZ
1800 if (event->state < PERF_EVENT_STATE_INACTIVE)
1801 return;
7b648018 1802
fae3fde6
PZ
1803 update_context_time(ctx);
1804 update_cgrp_time_from_event(event);
1805 update_group_times(event);
1806 if (event == event->group_leader)
1807 group_sched_out(event, cpuctx, ctx);
1808 else
1809 event_sched_out(event, cpuctx, ctx);
1810 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1811}
1812
d859e29f 1813/*
cdd6c482 1814 * Disable a event.
c93f7669 1815 *
cdd6c482
IM
1816 * If event->ctx is a cloned context, callers must make sure that
1817 * every task struct that event->ctx->task could possibly point to
c93f7669 1818 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1819 * perf_event_for_each_child or perf_event_for_each because they
1820 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1821 * goes to exit will block in perf_event_exit_event().
1822 *
cdd6c482 1823 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1824 * is the current context on this CPU and preemption is disabled,
cdd6c482 1825 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1826 */
f63a8daa 1827static void _perf_event_disable(struct perf_event *event)
d859e29f 1828{
cdd6c482 1829 struct perf_event_context *ctx = event->ctx;
d859e29f 1830
e625cce1 1831 raw_spin_lock_irq(&ctx->lock);
7b648018 1832 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1833 raw_spin_unlock_irq(&ctx->lock);
7b648018 1834 return;
53cfbf59 1835 }
e625cce1 1836 raw_spin_unlock_irq(&ctx->lock);
7b648018 1837
fae3fde6
PZ
1838 event_function_call(event, __perf_event_disable, NULL);
1839}
1840
1841void perf_event_disable_local(struct perf_event *event)
1842{
1843 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1844}
f63a8daa
PZ
1845
1846/*
1847 * Strictly speaking kernel users cannot create groups and therefore this
1848 * interface does not need the perf_event_ctx_lock() magic.
1849 */
1850void perf_event_disable(struct perf_event *event)
1851{
1852 struct perf_event_context *ctx;
1853
1854 ctx = perf_event_ctx_lock(event);
1855 _perf_event_disable(event);
1856 perf_event_ctx_unlock(event, ctx);
1857}
dcfce4a0 1858EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1859
e5d1367f
SE
1860static void perf_set_shadow_time(struct perf_event *event,
1861 struct perf_event_context *ctx,
1862 u64 tstamp)
1863{
1864 /*
1865 * use the correct time source for the time snapshot
1866 *
1867 * We could get by without this by leveraging the
1868 * fact that to get to this function, the caller
1869 * has most likely already called update_context_time()
1870 * and update_cgrp_time_xx() and thus both timestamp
1871 * are identical (or very close). Given that tstamp is,
1872 * already adjusted for cgroup, we could say that:
1873 * tstamp - ctx->timestamp
1874 * is equivalent to
1875 * tstamp - cgrp->timestamp.
1876 *
1877 * Then, in perf_output_read(), the calculation would
1878 * work with no changes because:
1879 * - event is guaranteed scheduled in
1880 * - no scheduled out in between
1881 * - thus the timestamp would be the same
1882 *
1883 * But this is a bit hairy.
1884 *
1885 * So instead, we have an explicit cgroup call to remain
1886 * within the time time source all along. We believe it
1887 * is cleaner and simpler to understand.
1888 */
1889 if (is_cgroup_event(event))
1890 perf_cgroup_set_shadow_time(event, tstamp);
1891 else
1892 event->shadow_ctx_time = tstamp - ctx->timestamp;
1893}
1894
4fe757dd
PZ
1895#define MAX_INTERRUPTS (~0ULL)
1896
1897static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1898static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1899
235c7fc7 1900static int
9ffcfa6f 1901event_sched_in(struct perf_event *event,
235c7fc7 1902 struct perf_cpu_context *cpuctx,
6e37738a 1903 struct perf_event_context *ctx)
235c7fc7 1904{
4158755d 1905 u64 tstamp = perf_event_time(event);
44377277 1906 int ret = 0;
4158755d 1907
63342411
PZ
1908 lockdep_assert_held(&ctx->lock);
1909
cdd6c482 1910 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1911 return 0;
1912
cdd6c482 1913 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1914 event->oncpu = smp_processor_id();
4fe757dd
PZ
1915
1916 /*
1917 * Unthrottle events, since we scheduled we might have missed several
1918 * ticks already, also for a heavily scheduling task there is little
1919 * guarantee it'll get a tick in a timely manner.
1920 */
1921 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1922 perf_log_throttle(event, 1);
1923 event->hw.interrupts = 0;
1924 }
1925
235c7fc7
IM
1926 /*
1927 * The new state must be visible before we turn it on in the hardware:
1928 */
1929 smp_wmb();
1930
44377277
AS
1931 perf_pmu_disable(event->pmu);
1932
72f669c0
SL
1933 perf_set_shadow_time(event, ctx, tstamp);
1934
ec0d7729
AS
1935 perf_log_itrace_start(event);
1936
a4eaf7f1 1937 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1938 event->state = PERF_EVENT_STATE_INACTIVE;
1939 event->oncpu = -1;
44377277
AS
1940 ret = -EAGAIN;
1941 goto out;
235c7fc7
IM
1942 }
1943
00a2916f
PZ
1944 event->tstamp_running += tstamp - event->tstamp_stopped;
1945
cdd6c482 1946 if (!is_software_event(event))
3b6f9e5c 1947 cpuctx->active_oncpu++;
2fde4f94
MR
1948 if (!ctx->nr_active++)
1949 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1950 if (event->attr.freq && event->attr.sample_freq)
1951 ctx->nr_freq++;
235c7fc7 1952
cdd6c482 1953 if (event->attr.exclusive)
3b6f9e5c
PM
1954 cpuctx->exclusive = 1;
1955
44377277
AS
1956out:
1957 perf_pmu_enable(event->pmu);
1958
1959 return ret;
235c7fc7
IM
1960}
1961
6751b71e 1962static int
cdd6c482 1963group_sched_in(struct perf_event *group_event,
6751b71e 1964 struct perf_cpu_context *cpuctx,
6e37738a 1965 struct perf_event_context *ctx)
6751b71e 1966{
6bde9b6c 1967 struct perf_event *event, *partial_group = NULL;
4a234593 1968 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1969 u64 now = ctx->time;
1970 bool simulate = false;
6751b71e 1971
cdd6c482 1972 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1973 return 0;
1974
fbbe0701 1975 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1976
9ffcfa6f 1977 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1978 pmu->cancel_txn(pmu);
272325c4 1979 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1980 return -EAGAIN;
90151c35 1981 }
6751b71e
PM
1982
1983 /*
1984 * Schedule in siblings as one group (if any):
1985 */
cdd6c482 1986 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1987 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1988 partial_group = event;
6751b71e
PM
1989 goto group_error;
1990 }
1991 }
1992
9ffcfa6f 1993 if (!pmu->commit_txn(pmu))
6e85158c 1994 return 0;
9ffcfa6f 1995
6751b71e
PM
1996group_error:
1997 /*
1998 * Groups can be scheduled in as one unit only, so undo any
1999 * partial group before returning:
d7842da4
SE
2000 * The events up to the failed event are scheduled out normally,
2001 * tstamp_stopped will be updated.
2002 *
2003 * The failed events and the remaining siblings need to have
2004 * their timings updated as if they had gone thru event_sched_in()
2005 * and event_sched_out(). This is required to get consistent timings
2006 * across the group. This also takes care of the case where the group
2007 * could never be scheduled by ensuring tstamp_stopped is set to mark
2008 * the time the event was actually stopped, such that time delta
2009 * calculation in update_event_times() is correct.
6751b71e 2010 */
cdd6c482
IM
2011 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2012 if (event == partial_group)
d7842da4
SE
2013 simulate = true;
2014
2015 if (simulate) {
2016 event->tstamp_running += now - event->tstamp_stopped;
2017 event->tstamp_stopped = now;
2018 } else {
2019 event_sched_out(event, cpuctx, ctx);
2020 }
6751b71e 2021 }
9ffcfa6f 2022 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2023
ad5133b7 2024 pmu->cancel_txn(pmu);
90151c35 2025
272325c4 2026 perf_mux_hrtimer_restart(cpuctx);
9e630205 2027
6751b71e
PM
2028 return -EAGAIN;
2029}
2030
3b6f9e5c 2031/*
cdd6c482 2032 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2033 */
cdd6c482 2034static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2035 struct perf_cpu_context *cpuctx,
2036 int can_add_hw)
2037{
2038 /*
cdd6c482 2039 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2040 */
d6f962b5 2041 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2042 return 1;
2043 /*
2044 * If an exclusive group is already on, no other hardware
cdd6c482 2045 * events can go on.
3b6f9e5c
PM
2046 */
2047 if (cpuctx->exclusive)
2048 return 0;
2049 /*
2050 * If this group is exclusive and there are already
cdd6c482 2051 * events on the CPU, it can't go on.
3b6f9e5c 2052 */
cdd6c482 2053 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2054 return 0;
2055 /*
2056 * Otherwise, try to add it if all previous groups were able
2057 * to go on.
2058 */
2059 return can_add_hw;
2060}
2061
cdd6c482
IM
2062static void add_event_to_ctx(struct perf_event *event,
2063 struct perf_event_context *ctx)
53cfbf59 2064{
4158755d
SE
2065 u64 tstamp = perf_event_time(event);
2066
cdd6c482 2067 list_add_event(event, ctx);
8a49542c 2068 perf_group_attach(event);
4158755d
SE
2069 event->tstamp_enabled = tstamp;
2070 event->tstamp_running = tstamp;
2071 event->tstamp_stopped = tstamp;
53cfbf59
PM
2072}
2073
bd2afa49
PZ
2074static void ctx_sched_out(struct perf_event_context *ctx,
2075 struct perf_cpu_context *cpuctx,
2076 enum event_type_t event_type);
2c29ef0f
PZ
2077static void
2078ctx_sched_in(struct perf_event_context *ctx,
2079 struct perf_cpu_context *cpuctx,
2080 enum event_type_t event_type,
2081 struct task_struct *task);
fe4b04fa 2082
bd2afa49
PZ
2083static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 struct perf_event_context *ctx)
2085{
2086 if (!cpuctx->task_ctx)
2087 return;
2088
2089 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2090 return;
2091
2092 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2093}
2094
dce5855b
PZ
2095static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2096 struct perf_event_context *ctx,
2097 struct task_struct *task)
2098{
2099 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2100 if (ctx)
2101 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2102 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2103 if (ctx)
2104 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2105}
2106
3e349507
PZ
2107static void ctx_resched(struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *task_ctx)
0017960f 2109{
3e349507
PZ
2110 perf_pmu_disable(cpuctx->ctx.pmu);
2111 if (task_ctx)
2112 task_ctx_sched_out(cpuctx, task_ctx);
2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2114 perf_event_sched_in(cpuctx, task_ctx, current);
2115 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2116}
2117
0793a61d 2118/*
cdd6c482 2119 * Cross CPU call to install and enable a performance event
682076ae 2120 *
a096309b
PZ
2121 * Very similar to remote_function() + event_function() but cannot assume that
2122 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2123 */
fe4b04fa 2124static int __perf_install_in_context(void *info)
0793a61d 2125{
a096309b
PZ
2126 struct perf_event *event = info;
2127 struct perf_event_context *ctx = event->ctx;
108b02cf 2128 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2129 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2130 bool activate = true;
2131 int ret = 0;
0793a61d 2132
63b6da39 2133 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2134 if (ctx->task) {
b58f6b0d
PZ
2135 raw_spin_lock(&ctx->lock);
2136 task_ctx = ctx;
a096309b
PZ
2137
2138 /* If we're on the wrong CPU, try again */
2139 if (task_cpu(ctx->task) != smp_processor_id()) {
2140 ret = -ESRCH;
63b6da39 2141 goto unlock;
a096309b 2142 }
b58f6b0d 2143
39a43640 2144 /*
a096309b
PZ
2145 * If we're on the right CPU, see if the task we target is
2146 * current, if not we don't have to activate the ctx, a future
2147 * context switch will do that for us.
39a43640 2148 */
a096309b
PZ
2149 if (ctx->task != current)
2150 activate = false;
2151 else
2152 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2153
63b6da39
PZ
2154 } else if (task_ctx) {
2155 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2156 }
b58f6b0d 2157
a096309b
PZ
2158 if (activate) {
2159 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2160 add_event_to_ctx(event, ctx);
2161 ctx_resched(cpuctx, task_ctx);
2162 } else {
2163 add_event_to_ctx(event, ctx);
2164 }
2165
63b6da39 2166unlock:
2c29ef0f 2167 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2168
a096309b 2169 return ret;
0793a61d
TG
2170}
2171
2172/*
a096309b
PZ
2173 * Attach a performance event to a context.
2174 *
2175 * Very similar to event_function_call, see comment there.
0793a61d
TG
2176 */
2177static void
cdd6c482
IM
2178perf_install_in_context(struct perf_event_context *ctx,
2179 struct perf_event *event,
0793a61d
TG
2180 int cpu)
2181{
a096309b 2182 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2183
fe4b04fa
PZ
2184 lockdep_assert_held(&ctx->mutex);
2185
c3f00c70 2186 event->ctx = ctx;
0cda4c02
YZ
2187 if (event->cpu != -1)
2188 event->cpu = cpu;
c3f00c70 2189
a096309b
PZ
2190 if (!task) {
2191 cpu_function_call(cpu, __perf_install_in_context, event);
2192 return;
2193 }
2194
2195 /*
2196 * Should not happen, we validate the ctx is still alive before calling.
2197 */
2198 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2199 return;
2200
39a43640
PZ
2201 /*
2202 * Installing events is tricky because we cannot rely on ctx->is_active
2203 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2204 */
a096309b 2205again:
63b6da39 2206 /*
a096309b
PZ
2207 * Cannot use task_function_call() because we need to run on the task's
2208 * CPU regardless of whether its current or not.
63b6da39 2209 */
a096309b
PZ
2210 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2211 return;
2212
2213 raw_spin_lock_irq(&ctx->lock);
2214 task = ctx->task;
84c4e620 2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2216 /*
2217 * Cannot happen because we already checked above (which also
2218 * cannot happen), and we hold ctx->mutex, which serializes us
2219 * against perf_event_exit_task_context().
2220 */
63b6da39
PZ
2221 raw_spin_unlock_irq(&ctx->lock);
2222 return;
2223 }
39a43640 2224 raw_spin_unlock_irq(&ctx->lock);
a096309b
PZ
2225 /*
2226 * Since !ctx->is_active doesn't mean anything, we must IPI
2227 * unconditionally.
2228 */
2229 goto again;
0793a61d
TG
2230}
2231
fa289bec 2232/*
cdd6c482 2233 * Put a event into inactive state and update time fields.
fa289bec
PM
2234 * Enabling the leader of a group effectively enables all
2235 * the group members that aren't explicitly disabled, so we
2236 * have to update their ->tstamp_enabled also.
2237 * Note: this works for group members as well as group leaders
2238 * since the non-leader members' sibling_lists will be empty.
2239 */
1d9b482e 2240static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2241{
cdd6c482 2242 struct perf_event *sub;
4158755d 2243 u64 tstamp = perf_event_time(event);
fa289bec 2244
cdd6c482 2245 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2246 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2247 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2248 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2249 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2250 }
fa289bec
PM
2251}
2252
d859e29f 2253/*
cdd6c482 2254 * Cross CPU call to enable a performance event
d859e29f 2255 */
fae3fde6
PZ
2256static void __perf_event_enable(struct perf_event *event,
2257 struct perf_cpu_context *cpuctx,
2258 struct perf_event_context *ctx,
2259 void *info)
04289bb9 2260{
cdd6c482 2261 struct perf_event *leader = event->group_leader;
fae3fde6 2262 struct perf_event_context *task_ctx;
04289bb9 2263
6e801e01
PZ
2264 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2266 return;
3cbed429 2267
bd2afa49
PZ
2268 if (ctx->is_active)
2269 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2270
1d9b482e 2271 __perf_event_mark_enabled(event);
04289bb9 2272
fae3fde6
PZ
2273 if (!ctx->is_active)
2274 return;
2275
e5d1367f 2276 if (!event_filter_match(event)) {
bd2afa49 2277 if (is_cgroup_event(event))
e5d1367f 2278 perf_cgroup_defer_enabled(event);
bd2afa49 2279 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2280 return;
e5d1367f 2281 }
f4c4176f 2282
04289bb9 2283 /*
cdd6c482 2284 * If the event is in a group and isn't the group leader,
d859e29f 2285 * then don't put it on unless the group is on.
04289bb9 2286 */
bd2afa49
PZ
2287 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2288 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2289 return;
bd2afa49 2290 }
fe4b04fa 2291
fae3fde6
PZ
2292 task_ctx = cpuctx->task_ctx;
2293 if (ctx->task)
2294 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2295
fae3fde6 2296 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2297}
2298
d859e29f 2299/*
cdd6c482 2300 * Enable a event.
c93f7669 2301 *
cdd6c482
IM
2302 * If event->ctx is a cloned context, callers must make sure that
2303 * every task struct that event->ctx->task could possibly point to
c93f7669 2304 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2305 * perf_event_for_each_child or perf_event_for_each as described
2306 * for perf_event_disable.
d859e29f 2307 */
f63a8daa 2308static void _perf_event_enable(struct perf_event *event)
d859e29f 2309{
cdd6c482 2310 struct perf_event_context *ctx = event->ctx;
d859e29f 2311
7b648018 2312 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2313 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2314 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2315 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2316 return;
2317 }
2318
d859e29f 2319 /*
cdd6c482 2320 * If the event is in error state, clear that first.
7b648018
PZ
2321 *
2322 * That way, if we see the event in error state below, we know that it
2323 * has gone back into error state, as distinct from the task having
2324 * been scheduled away before the cross-call arrived.
d859e29f 2325 */
cdd6c482
IM
2326 if (event->state == PERF_EVENT_STATE_ERROR)
2327 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2328 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2329
fae3fde6 2330 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2331}
f63a8daa
PZ
2332
2333/*
2334 * See perf_event_disable();
2335 */
2336void perf_event_enable(struct perf_event *event)
2337{
2338 struct perf_event_context *ctx;
2339
2340 ctx = perf_event_ctx_lock(event);
2341 _perf_event_enable(event);
2342 perf_event_ctx_unlock(event, ctx);
2343}
dcfce4a0 2344EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2345
f63a8daa 2346static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2347{
2023b359 2348 /*
cdd6c482 2349 * not supported on inherited events
2023b359 2350 */
2e939d1d 2351 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2352 return -EINVAL;
2353
cdd6c482 2354 atomic_add(refresh, &event->event_limit);
f63a8daa 2355 _perf_event_enable(event);
2023b359
PZ
2356
2357 return 0;
79f14641 2358}
f63a8daa
PZ
2359
2360/*
2361 * See perf_event_disable()
2362 */
2363int perf_event_refresh(struct perf_event *event, int refresh)
2364{
2365 struct perf_event_context *ctx;
2366 int ret;
2367
2368 ctx = perf_event_ctx_lock(event);
2369 ret = _perf_event_refresh(event, refresh);
2370 perf_event_ctx_unlock(event, ctx);
2371
2372 return ret;
2373}
26ca5c11 2374EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2375
5b0311e1
FW
2376static void ctx_sched_out(struct perf_event_context *ctx,
2377 struct perf_cpu_context *cpuctx,
2378 enum event_type_t event_type)
235c7fc7 2379{
db24d33e 2380 int is_active = ctx->is_active;
c994d613 2381 struct perf_event *event;
235c7fc7 2382
c994d613 2383 lockdep_assert_held(&ctx->lock);
235c7fc7 2384
39a43640
PZ
2385 if (likely(!ctx->nr_events)) {
2386 /*
2387 * See __perf_remove_from_context().
2388 */
2389 WARN_ON_ONCE(ctx->is_active);
2390 if (ctx->task)
2391 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2392 return;
39a43640
PZ
2393 }
2394
db24d33e 2395 ctx->is_active &= ~event_type;
3cbaa590
PZ
2396 if (!(ctx->is_active & EVENT_ALL))
2397 ctx->is_active = 0;
2398
63e30d3e
PZ
2399 if (ctx->task) {
2400 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2401 if (!ctx->is_active)
2402 cpuctx->task_ctx = NULL;
2403 }
facc4307 2404
3cbaa590
PZ
2405 is_active ^= ctx->is_active; /* changed bits */
2406
2407 if (is_active & EVENT_TIME) {
2408 /* update (and stop) ctx time */
2409 update_context_time(ctx);
2410 update_cgrp_time_from_cpuctx(cpuctx);
2411 }
2412
2413 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2414 return;
5b0311e1 2415
075e0b00 2416 perf_pmu_disable(ctx->pmu);
3cbaa590 2417 if (is_active & EVENT_PINNED) {
889ff015
FW
2418 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2419 group_sched_out(event, cpuctx, ctx);
9ed6060d 2420 }
889ff015 2421
3cbaa590 2422 if (is_active & EVENT_FLEXIBLE) {
889ff015 2423 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2424 group_sched_out(event, cpuctx, ctx);
9ed6060d 2425 }
1b9a644f 2426 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2427}
2428
564c2b21 2429/*
5a3126d4
PZ
2430 * Test whether two contexts are equivalent, i.e. whether they have both been
2431 * cloned from the same version of the same context.
2432 *
2433 * Equivalence is measured using a generation number in the context that is
2434 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2435 * and list_del_event().
564c2b21 2436 */
cdd6c482
IM
2437static int context_equiv(struct perf_event_context *ctx1,
2438 struct perf_event_context *ctx2)
564c2b21 2439{
211de6eb
PZ
2440 lockdep_assert_held(&ctx1->lock);
2441 lockdep_assert_held(&ctx2->lock);
2442
5a3126d4
PZ
2443 /* Pinning disables the swap optimization */
2444 if (ctx1->pin_count || ctx2->pin_count)
2445 return 0;
2446
2447 /* If ctx1 is the parent of ctx2 */
2448 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2449 return 1;
2450
2451 /* If ctx2 is the parent of ctx1 */
2452 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2453 return 1;
2454
2455 /*
2456 * If ctx1 and ctx2 have the same parent; we flatten the parent
2457 * hierarchy, see perf_event_init_context().
2458 */
2459 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2460 ctx1->parent_gen == ctx2->parent_gen)
2461 return 1;
2462
2463 /* Unmatched */
2464 return 0;
564c2b21
PM
2465}
2466
cdd6c482
IM
2467static void __perf_event_sync_stat(struct perf_event *event,
2468 struct perf_event *next_event)
bfbd3381
PZ
2469{
2470 u64 value;
2471
cdd6c482 2472 if (!event->attr.inherit_stat)
bfbd3381
PZ
2473 return;
2474
2475 /*
cdd6c482 2476 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2477 * because we're in the middle of a context switch and have IRQs
2478 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2479 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2480 * don't need to use it.
2481 */
cdd6c482
IM
2482 switch (event->state) {
2483 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2484 event->pmu->read(event);
2485 /* fall-through */
bfbd3381 2486
cdd6c482
IM
2487 case PERF_EVENT_STATE_INACTIVE:
2488 update_event_times(event);
bfbd3381
PZ
2489 break;
2490
2491 default:
2492 break;
2493 }
2494
2495 /*
cdd6c482 2496 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2497 * values when we flip the contexts.
2498 */
e7850595
PZ
2499 value = local64_read(&next_event->count);
2500 value = local64_xchg(&event->count, value);
2501 local64_set(&next_event->count, value);
bfbd3381 2502
cdd6c482
IM
2503 swap(event->total_time_enabled, next_event->total_time_enabled);
2504 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2505
bfbd3381 2506 /*
19d2e755 2507 * Since we swizzled the values, update the user visible data too.
bfbd3381 2508 */
cdd6c482
IM
2509 perf_event_update_userpage(event);
2510 perf_event_update_userpage(next_event);
bfbd3381
PZ
2511}
2512
cdd6c482
IM
2513static void perf_event_sync_stat(struct perf_event_context *ctx,
2514 struct perf_event_context *next_ctx)
bfbd3381 2515{
cdd6c482 2516 struct perf_event *event, *next_event;
bfbd3381
PZ
2517
2518 if (!ctx->nr_stat)
2519 return;
2520
02ffdbc8
PZ
2521 update_context_time(ctx);
2522
cdd6c482
IM
2523 event = list_first_entry(&ctx->event_list,
2524 struct perf_event, event_entry);
bfbd3381 2525
cdd6c482
IM
2526 next_event = list_first_entry(&next_ctx->event_list,
2527 struct perf_event, event_entry);
bfbd3381 2528
cdd6c482
IM
2529 while (&event->event_entry != &ctx->event_list &&
2530 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2531
cdd6c482 2532 __perf_event_sync_stat(event, next_event);
bfbd3381 2533
cdd6c482
IM
2534 event = list_next_entry(event, event_entry);
2535 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2536 }
2537}
2538
fe4b04fa
PZ
2539static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2540 struct task_struct *next)
0793a61d 2541{
8dc85d54 2542 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2543 struct perf_event_context *next_ctx;
5a3126d4 2544 struct perf_event_context *parent, *next_parent;
108b02cf 2545 struct perf_cpu_context *cpuctx;
c93f7669 2546 int do_switch = 1;
0793a61d 2547
108b02cf
PZ
2548 if (likely(!ctx))
2549 return;
10989fb2 2550
108b02cf
PZ
2551 cpuctx = __get_cpu_context(ctx);
2552 if (!cpuctx->task_ctx)
0793a61d
TG
2553 return;
2554
c93f7669 2555 rcu_read_lock();
8dc85d54 2556 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2557 if (!next_ctx)
2558 goto unlock;
2559
2560 parent = rcu_dereference(ctx->parent_ctx);
2561 next_parent = rcu_dereference(next_ctx->parent_ctx);
2562
2563 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2564 if (!parent && !next_parent)
5a3126d4
PZ
2565 goto unlock;
2566
2567 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2568 /*
2569 * Looks like the two contexts are clones, so we might be
2570 * able to optimize the context switch. We lock both
2571 * contexts and check that they are clones under the
2572 * lock (including re-checking that neither has been
2573 * uncloned in the meantime). It doesn't matter which
2574 * order we take the locks because no other cpu could
2575 * be trying to lock both of these tasks.
2576 */
e625cce1
TG
2577 raw_spin_lock(&ctx->lock);
2578 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2579 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2580 WRITE_ONCE(ctx->task, next);
2581 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2582
2583 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2584
63b6da39
PZ
2585 /*
2586 * RCU_INIT_POINTER here is safe because we've not
2587 * modified the ctx and the above modification of
2588 * ctx->task and ctx->task_ctx_data are immaterial
2589 * since those values are always verified under
2590 * ctx->lock which we're now holding.
2591 */
2592 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2593 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2594
c93f7669 2595 do_switch = 0;
bfbd3381 2596
cdd6c482 2597 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2598 }
e625cce1
TG
2599 raw_spin_unlock(&next_ctx->lock);
2600 raw_spin_unlock(&ctx->lock);
564c2b21 2601 }
5a3126d4 2602unlock:
c93f7669 2603 rcu_read_unlock();
564c2b21 2604
c93f7669 2605 if (do_switch) {
facc4307 2606 raw_spin_lock(&ctx->lock);
8833d0e2 2607 task_ctx_sched_out(cpuctx, ctx);
facc4307 2608 raw_spin_unlock(&ctx->lock);
c93f7669 2609 }
0793a61d
TG
2610}
2611
ba532500
YZ
2612void perf_sched_cb_dec(struct pmu *pmu)
2613{
2614 this_cpu_dec(perf_sched_cb_usages);
2615}
2616
2617void perf_sched_cb_inc(struct pmu *pmu)
2618{
2619 this_cpu_inc(perf_sched_cb_usages);
2620}
2621
2622/*
2623 * This function provides the context switch callback to the lower code
2624 * layer. It is invoked ONLY when the context switch callback is enabled.
2625 */
2626static void perf_pmu_sched_task(struct task_struct *prev,
2627 struct task_struct *next,
2628 bool sched_in)
2629{
2630 struct perf_cpu_context *cpuctx;
2631 struct pmu *pmu;
2632 unsigned long flags;
2633
2634 if (prev == next)
2635 return;
2636
2637 local_irq_save(flags);
2638
2639 rcu_read_lock();
2640
2641 list_for_each_entry_rcu(pmu, &pmus, entry) {
2642 if (pmu->sched_task) {
2643 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2644
2645 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2646
2647 perf_pmu_disable(pmu);
2648
2649 pmu->sched_task(cpuctx->task_ctx, sched_in);
2650
2651 perf_pmu_enable(pmu);
2652
2653 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2654 }
2655 }
2656
2657 rcu_read_unlock();
2658
2659 local_irq_restore(flags);
2660}
2661
45ac1403
AH
2662static void perf_event_switch(struct task_struct *task,
2663 struct task_struct *next_prev, bool sched_in);
2664
8dc85d54
PZ
2665#define for_each_task_context_nr(ctxn) \
2666 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2667
2668/*
2669 * Called from scheduler to remove the events of the current task,
2670 * with interrupts disabled.
2671 *
2672 * We stop each event and update the event value in event->count.
2673 *
2674 * This does not protect us against NMI, but disable()
2675 * sets the disabled bit in the control field of event _before_
2676 * accessing the event control register. If a NMI hits, then it will
2677 * not restart the event.
2678 */
ab0cce56
JO
2679void __perf_event_task_sched_out(struct task_struct *task,
2680 struct task_struct *next)
8dc85d54
PZ
2681{
2682 int ctxn;
2683
ba532500
YZ
2684 if (__this_cpu_read(perf_sched_cb_usages))
2685 perf_pmu_sched_task(task, next, false);
2686
45ac1403
AH
2687 if (atomic_read(&nr_switch_events))
2688 perf_event_switch(task, next, false);
2689
8dc85d54
PZ
2690 for_each_task_context_nr(ctxn)
2691 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2692
2693 /*
2694 * if cgroup events exist on this CPU, then we need
2695 * to check if we have to switch out PMU state.
2696 * cgroup event are system-wide mode only
2697 */
4a32fea9 2698 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2699 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2700}
2701
5b0311e1
FW
2702/*
2703 * Called with IRQs disabled
2704 */
2705static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707{
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2709}
2710
235c7fc7 2711static void
5b0311e1 2712ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2713 struct perf_cpu_context *cpuctx)
0793a61d 2714{
cdd6c482 2715 struct perf_event *event;
0793a61d 2716
889ff015
FW
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2719 continue;
5632ab12 2720 if (!event_filter_match(event))
3b6f9e5c
PM
2721 continue;
2722
e5d1367f
SE
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
8c9ed8e1 2727 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2728 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
cdd6c482
IM
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2737 }
3b6f9e5c 2738 }
5b0311e1
FW
2739}
2740
2741static void
2742ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2743 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2744{
2745 struct perf_event *event;
2746 int can_add_hw = 1;
3b6f9e5c 2747
889ff015
FW
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2751 continue;
04289bb9
IM
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2754 * of events:
04289bb9 2755 */
5632ab12 2756 if (!event_filter_match(event))
0793a61d
TG
2757 continue;
2758
e5d1367f
SE
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
9ed6060d 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2764 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2765 can_add_hw = 0;
9ed6060d 2766 }
0793a61d 2767 }
5b0311e1
FW
2768}
2769
2770static void
2771ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2773 enum event_type_t event_type,
2774 struct task_struct *task)
5b0311e1 2775{
db24d33e 2776 int is_active = ctx->is_active;
c994d613
PZ
2777 u64 now;
2778
2779 lockdep_assert_held(&ctx->lock);
e5d1367f 2780
5b0311e1 2781 if (likely(!ctx->nr_events))
facc4307 2782 return;
5b0311e1 2783
3cbaa590 2784 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2785 if (ctx->task) {
2786 if (!is_active)
2787 cpuctx->task_ctx = ctx;
2788 else
2789 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2790 }
2791
3cbaa590
PZ
2792 is_active ^= ctx->is_active; /* changed bits */
2793
2794 if (is_active & EVENT_TIME) {
2795 /* start ctx time */
2796 now = perf_clock();
2797 ctx->timestamp = now;
2798 perf_cgroup_set_timestamp(task, ctx);
2799 }
2800
5b0311e1
FW
2801 /*
2802 * First go through the list and put on any pinned groups
2803 * in order to give them the best chance of going on.
2804 */
3cbaa590 2805 if (is_active & EVENT_PINNED)
6e37738a 2806 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2807
2808 /* Then walk through the lower prio flexible groups */
3cbaa590 2809 if (is_active & EVENT_FLEXIBLE)
6e37738a 2810 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2811}
2812
329c0e01 2813static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2814 enum event_type_t event_type,
2815 struct task_struct *task)
329c0e01
FW
2816{
2817 struct perf_event_context *ctx = &cpuctx->ctx;
2818
e5d1367f 2819 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2820}
2821
e5d1367f
SE
2822static void perf_event_context_sched_in(struct perf_event_context *ctx,
2823 struct task_struct *task)
235c7fc7 2824{
108b02cf 2825 struct perf_cpu_context *cpuctx;
235c7fc7 2826
108b02cf 2827 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2828 if (cpuctx->task_ctx == ctx)
2829 return;
2830
facc4307 2831 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2832 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2833 /*
2834 * We want to keep the following priority order:
2835 * cpu pinned (that don't need to move), task pinned,
2836 * cpu flexible, task flexible.
2837 */
2838 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2839 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2840 perf_pmu_enable(ctx->pmu);
2841 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2842}
2843
8dc85d54
PZ
2844/*
2845 * Called from scheduler to add the events of the current task
2846 * with interrupts disabled.
2847 *
2848 * We restore the event value and then enable it.
2849 *
2850 * This does not protect us against NMI, but enable()
2851 * sets the enabled bit in the control field of event _before_
2852 * accessing the event control register. If a NMI hits, then it will
2853 * keep the event running.
2854 */
ab0cce56
JO
2855void __perf_event_task_sched_in(struct task_struct *prev,
2856 struct task_struct *task)
8dc85d54
PZ
2857{
2858 struct perf_event_context *ctx;
2859 int ctxn;
2860
7e41d177
PZ
2861 /*
2862 * If cgroup events exist on this CPU, then we need to check if we have
2863 * to switch in PMU state; cgroup event are system-wide mode only.
2864 *
2865 * Since cgroup events are CPU events, we must schedule these in before
2866 * we schedule in the task events.
2867 */
2868 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2869 perf_cgroup_sched_in(prev, task);
2870
8dc85d54
PZ
2871 for_each_task_context_nr(ctxn) {
2872 ctx = task->perf_event_ctxp[ctxn];
2873 if (likely(!ctx))
2874 continue;
2875
e5d1367f 2876 perf_event_context_sched_in(ctx, task);
8dc85d54 2877 }
d010b332 2878
45ac1403
AH
2879 if (atomic_read(&nr_switch_events))
2880 perf_event_switch(task, prev, true);
2881
ba532500
YZ
2882 if (__this_cpu_read(perf_sched_cb_usages))
2883 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2884}
2885
abd50713
PZ
2886static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2887{
2888 u64 frequency = event->attr.sample_freq;
2889 u64 sec = NSEC_PER_SEC;
2890 u64 divisor, dividend;
2891
2892 int count_fls, nsec_fls, frequency_fls, sec_fls;
2893
2894 count_fls = fls64(count);
2895 nsec_fls = fls64(nsec);
2896 frequency_fls = fls64(frequency);
2897 sec_fls = 30;
2898
2899 /*
2900 * We got @count in @nsec, with a target of sample_freq HZ
2901 * the target period becomes:
2902 *
2903 * @count * 10^9
2904 * period = -------------------
2905 * @nsec * sample_freq
2906 *
2907 */
2908
2909 /*
2910 * Reduce accuracy by one bit such that @a and @b converge
2911 * to a similar magnitude.
2912 */
fe4b04fa 2913#define REDUCE_FLS(a, b) \
abd50713
PZ
2914do { \
2915 if (a##_fls > b##_fls) { \
2916 a >>= 1; \
2917 a##_fls--; \
2918 } else { \
2919 b >>= 1; \
2920 b##_fls--; \
2921 } \
2922} while (0)
2923
2924 /*
2925 * Reduce accuracy until either term fits in a u64, then proceed with
2926 * the other, so that finally we can do a u64/u64 division.
2927 */
2928 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2929 REDUCE_FLS(nsec, frequency);
2930 REDUCE_FLS(sec, count);
2931 }
2932
2933 if (count_fls + sec_fls > 64) {
2934 divisor = nsec * frequency;
2935
2936 while (count_fls + sec_fls > 64) {
2937 REDUCE_FLS(count, sec);
2938 divisor >>= 1;
2939 }
2940
2941 dividend = count * sec;
2942 } else {
2943 dividend = count * sec;
2944
2945 while (nsec_fls + frequency_fls > 64) {
2946 REDUCE_FLS(nsec, frequency);
2947 dividend >>= 1;
2948 }
2949
2950 divisor = nsec * frequency;
2951 }
2952
f6ab91ad
PZ
2953 if (!divisor)
2954 return dividend;
2955
abd50713
PZ
2956 return div64_u64(dividend, divisor);
2957}
2958
e050e3f0
SE
2959static DEFINE_PER_CPU(int, perf_throttled_count);
2960static DEFINE_PER_CPU(u64, perf_throttled_seq);
2961
f39d47ff 2962static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2963{
cdd6c482 2964 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2965 s64 period, sample_period;
bd2b5b12
PZ
2966 s64 delta;
2967
abd50713 2968 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2969
2970 delta = (s64)(period - hwc->sample_period);
2971 delta = (delta + 7) / 8; /* low pass filter */
2972
2973 sample_period = hwc->sample_period + delta;
2974
2975 if (!sample_period)
2976 sample_period = 1;
2977
bd2b5b12 2978 hwc->sample_period = sample_period;
abd50713 2979
e7850595 2980 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2981 if (disable)
2982 event->pmu->stop(event, PERF_EF_UPDATE);
2983
e7850595 2984 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2985
2986 if (disable)
2987 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2988 }
bd2b5b12
PZ
2989}
2990
e050e3f0
SE
2991/*
2992 * combine freq adjustment with unthrottling to avoid two passes over the
2993 * events. At the same time, make sure, having freq events does not change
2994 * the rate of unthrottling as that would introduce bias.
2995 */
2996static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2997 int needs_unthr)
60db5e09 2998{
cdd6c482
IM
2999 struct perf_event *event;
3000 struct hw_perf_event *hwc;
e050e3f0 3001 u64 now, period = TICK_NSEC;
abd50713 3002 s64 delta;
60db5e09 3003
e050e3f0
SE
3004 /*
3005 * only need to iterate over all events iff:
3006 * - context have events in frequency mode (needs freq adjust)
3007 * - there are events to unthrottle on this cpu
3008 */
3009 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3010 return;
3011
e050e3f0 3012 raw_spin_lock(&ctx->lock);
f39d47ff 3013 perf_pmu_disable(ctx->pmu);
e050e3f0 3014
03541f8b 3015 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3016 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3017 continue;
3018
5632ab12 3019 if (!event_filter_match(event))
5d27c23d
PZ
3020 continue;
3021
44377277
AS
3022 perf_pmu_disable(event->pmu);
3023
cdd6c482 3024 hwc = &event->hw;
6a24ed6c 3025
ae23bff1 3026 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3027 hwc->interrupts = 0;
cdd6c482 3028 perf_log_throttle(event, 1);
a4eaf7f1 3029 event->pmu->start(event, 0);
a78ac325
PZ
3030 }
3031
cdd6c482 3032 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3033 goto next;
60db5e09 3034
e050e3f0
SE
3035 /*
3036 * stop the event and update event->count
3037 */
3038 event->pmu->stop(event, PERF_EF_UPDATE);
3039
e7850595 3040 now = local64_read(&event->count);
abd50713
PZ
3041 delta = now - hwc->freq_count_stamp;
3042 hwc->freq_count_stamp = now;
60db5e09 3043
e050e3f0
SE
3044 /*
3045 * restart the event
3046 * reload only if value has changed
f39d47ff
SE
3047 * we have stopped the event so tell that
3048 * to perf_adjust_period() to avoid stopping it
3049 * twice.
e050e3f0 3050 */
abd50713 3051 if (delta > 0)
f39d47ff 3052 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3053
3054 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3055 next:
3056 perf_pmu_enable(event->pmu);
60db5e09 3057 }
e050e3f0 3058
f39d47ff 3059 perf_pmu_enable(ctx->pmu);
e050e3f0 3060 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3061}
3062
235c7fc7 3063/*
cdd6c482 3064 * Round-robin a context's events:
235c7fc7 3065 */
cdd6c482 3066static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3067{
dddd3379
TG
3068 /*
3069 * Rotate the first entry last of non-pinned groups. Rotation might be
3070 * disabled by the inheritance code.
3071 */
3072 if (!ctx->rotate_disable)
3073 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3074}
3075
9e630205 3076static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3077{
8dc85d54 3078 struct perf_event_context *ctx = NULL;
2fde4f94 3079 int rotate = 0;
7fc23a53 3080
b5ab4cd5 3081 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3082 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3083 rotate = 1;
3084 }
235c7fc7 3085
8dc85d54 3086 ctx = cpuctx->task_ctx;
b5ab4cd5 3087 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3088 if (ctx->nr_events != ctx->nr_active)
3089 rotate = 1;
3090 }
9717e6cd 3091
e050e3f0 3092 if (!rotate)
0f5a2601
PZ
3093 goto done;
3094
facc4307 3095 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3096 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3097
e050e3f0
SE
3098 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3099 if (ctx)
3100 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3101
e050e3f0
SE
3102 rotate_ctx(&cpuctx->ctx);
3103 if (ctx)
3104 rotate_ctx(ctx);
235c7fc7 3105
e050e3f0 3106 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3107
0f5a2601
PZ
3108 perf_pmu_enable(cpuctx->ctx.pmu);
3109 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3110done:
9e630205
SE
3111
3112 return rotate;
e9d2b064
PZ
3113}
3114
026249ef
FW
3115#ifdef CONFIG_NO_HZ_FULL
3116bool perf_event_can_stop_tick(void)
3117{
948b26b6 3118 if (atomic_read(&nr_freq_events) ||
d84153d6 3119 __this_cpu_read(perf_throttled_count))
026249ef 3120 return false;
d84153d6
FW
3121 else
3122 return true;
026249ef
FW
3123}
3124#endif
3125
e9d2b064
PZ
3126void perf_event_task_tick(void)
3127{
2fde4f94
MR
3128 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3129 struct perf_event_context *ctx, *tmp;
e050e3f0 3130 int throttled;
b5ab4cd5 3131
e9d2b064
PZ
3132 WARN_ON(!irqs_disabled());
3133
e050e3f0
SE
3134 __this_cpu_inc(perf_throttled_seq);
3135 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3136
2fde4f94 3137 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3138 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3139}
3140
889ff015
FW
3141static int event_enable_on_exec(struct perf_event *event,
3142 struct perf_event_context *ctx)
3143{
3144 if (!event->attr.enable_on_exec)
3145 return 0;
3146
3147 event->attr.enable_on_exec = 0;
3148 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3149 return 0;
3150
1d9b482e 3151 __perf_event_mark_enabled(event);
889ff015
FW
3152
3153 return 1;
3154}
3155
57e7986e 3156/*
cdd6c482 3157 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3158 * This expects task == current.
3159 */
c1274499 3160static void perf_event_enable_on_exec(int ctxn)
57e7986e 3161{
c1274499 3162 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3163 struct perf_cpu_context *cpuctx;
cdd6c482 3164 struct perf_event *event;
57e7986e
PM
3165 unsigned long flags;
3166 int enabled = 0;
3167
3168 local_irq_save(flags);
c1274499 3169 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3170 if (!ctx || !ctx->nr_events)
57e7986e
PM
3171 goto out;
3172
3e349507
PZ
3173 cpuctx = __get_cpu_context(ctx);
3174 perf_ctx_lock(cpuctx, ctx);
7fce2509 3175 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3176 list_for_each_entry(event, &ctx->event_list, event_entry)
3177 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3178
3179 /*
3e349507 3180 * Unclone and reschedule this context if we enabled any event.
57e7986e 3181 */
3e349507 3182 if (enabled) {
211de6eb 3183 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3184 ctx_resched(cpuctx, ctx);
3185 }
3186 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3187
9ed6060d 3188out:
57e7986e 3189 local_irq_restore(flags);
211de6eb
PZ
3190
3191 if (clone_ctx)
3192 put_ctx(clone_ctx);
57e7986e
PM
3193}
3194
e041e328
PZ
3195void perf_event_exec(void)
3196{
e041e328
PZ
3197 int ctxn;
3198
3199 rcu_read_lock();
c1274499
PZ
3200 for_each_task_context_nr(ctxn)
3201 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3202 rcu_read_unlock();
3203}
3204
0492d4c5
PZ
3205struct perf_read_data {
3206 struct perf_event *event;
3207 bool group;
7d88962e 3208 int ret;
0492d4c5
PZ
3209};
3210
0793a61d 3211/*
cdd6c482 3212 * Cross CPU call to read the hardware event
0793a61d 3213 */
cdd6c482 3214static void __perf_event_read(void *info)
0793a61d 3215{
0492d4c5
PZ
3216 struct perf_read_data *data = info;
3217 struct perf_event *sub, *event = data->event;
cdd6c482 3218 struct perf_event_context *ctx = event->ctx;
108b02cf 3219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3220 struct pmu *pmu = event->pmu;
621a01ea 3221
e1ac3614
PM
3222 /*
3223 * If this is a task context, we need to check whether it is
3224 * the current task context of this cpu. If not it has been
3225 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3226 * event->count would have been updated to a recent sample
3227 * when the event was scheduled out.
e1ac3614
PM
3228 */
3229 if (ctx->task && cpuctx->task_ctx != ctx)
3230 return;
3231
e625cce1 3232 raw_spin_lock(&ctx->lock);
e5d1367f 3233 if (ctx->is_active) {
542e72fc 3234 update_context_time(ctx);
e5d1367f
SE
3235 update_cgrp_time_from_event(event);
3236 }
0492d4c5 3237
cdd6c482 3238 update_event_times(event);
4a00c16e
SB
3239 if (event->state != PERF_EVENT_STATE_ACTIVE)
3240 goto unlock;
0492d4c5 3241
4a00c16e
SB
3242 if (!data->group) {
3243 pmu->read(event);
3244 data->ret = 0;
0492d4c5 3245 goto unlock;
4a00c16e
SB
3246 }
3247
3248 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3249
3250 pmu->read(event);
0492d4c5
PZ
3251
3252 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3253 update_event_times(sub);
4a00c16e
SB
3254 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3255 /*
3256 * Use sibling's PMU rather than @event's since
3257 * sibling could be on different (eg: software) PMU.
3258 */
0492d4c5 3259 sub->pmu->read(sub);
4a00c16e 3260 }
0492d4c5 3261 }
4a00c16e
SB
3262
3263 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3264
3265unlock:
e625cce1 3266 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3267}
3268
b5e58793
PZ
3269static inline u64 perf_event_count(struct perf_event *event)
3270{
eacd3ecc
MF
3271 if (event->pmu->count)
3272 return event->pmu->count(event);
3273
3274 return __perf_event_count(event);
b5e58793
PZ
3275}
3276
ffe8690c
KX
3277/*
3278 * NMI-safe method to read a local event, that is an event that
3279 * is:
3280 * - either for the current task, or for this CPU
3281 * - does not have inherit set, for inherited task events
3282 * will not be local and we cannot read them atomically
3283 * - must not have a pmu::count method
3284 */
3285u64 perf_event_read_local(struct perf_event *event)
3286{
3287 unsigned long flags;
3288 u64 val;
3289
3290 /*
3291 * Disabling interrupts avoids all counter scheduling (context
3292 * switches, timer based rotation and IPIs).
3293 */
3294 local_irq_save(flags);
3295
3296 /* If this is a per-task event, it must be for current */
3297 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3298 event->hw.target != current);
3299
3300 /* If this is a per-CPU event, it must be for this CPU */
3301 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3302 event->cpu != smp_processor_id());
3303
3304 /*
3305 * It must not be an event with inherit set, we cannot read
3306 * all child counters from atomic context.
3307 */
3308 WARN_ON_ONCE(event->attr.inherit);
3309
3310 /*
3311 * It must not have a pmu::count method, those are not
3312 * NMI safe.
3313 */
3314 WARN_ON_ONCE(event->pmu->count);
3315
3316 /*
3317 * If the event is currently on this CPU, its either a per-task event,
3318 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3319 * oncpu == -1).
3320 */
3321 if (event->oncpu == smp_processor_id())
3322 event->pmu->read(event);
3323
3324 val = local64_read(&event->count);
3325 local_irq_restore(flags);
3326
3327 return val;
3328}
3329
7d88962e 3330static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3331{
7d88962e
SB
3332 int ret = 0;
3333
0793a61d 3334 /*
cdd6c482
IM
3335 * If event is enabled and currently active on a CPU, update the
3336 * value in the event structure:
0793a61d 3337 */
cdd6c482 3338 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3339 struct perf_read_data data = {
3340 .event = event,
3341 .group = group,
7d88962e 3342 .ret = 0,
0492d4c5 3343 };
cdd6c482 3344 smp_call_function_single(event->oncpu,
0492d4c5 3345 __perf_event_read, &data, 1);
7d88962e 3346 ret = data.ret;
cdd6c482 3347 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3348 struct perf_event_context *ctx = event->ctx;
3349 unsigned long flags;
3350
e625cce1 3351 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3352 /*
3353 * may read while context is not active
3354 * (e.g., thread is blocked), in that case
3355 * we cannot update context time
3356 */
e5d1367f 3357 if (ctx->is_active) {
c530ccd9 3358 update_context_time(ctx);
e5d1367f
SE
3359 update_cgrp_time_from_event(event);
3360 }
0492d4c5
PZ
3361 if (group)
3362 update_group_times(event);
3363 else
3364 update_event_times(event);
e625cce1 3365 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3366 }
7d88962e
SB
3367
3368 return ret;
0793a61d
TG
3369}
3370
a63eaf34 3371/*
cdd6c482 3372 * Initialize the perf_event context in a task_struct:
a63eaf34 3373 */
eb184479 3374static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3375{
e625cce1 3376 raw_spin_lock_init(&ctx->lock);
a63eaf34 3377 mutex_init(&ctx->mutex);
2fde4f94 3378 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3379 INIT_LIST_HEAD(&ctx->pinned_groups);
3380 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3381 INIT_LIST_HEAD(&ctx->event_list);
3382 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3383}
3384
3385static struct perf_event_context *
3386alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3387{
3388 struct perf_event_context *ctx;
3389
3390 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3391 if (!ctx)
3392 return NULL;
3393
3394 __perf_event_init_context(ctx);
3395 if (task) {
3396 ctx->task = task;
3397 get_task_struct(task);
0793a61d 3398 }
eb184479
PZ
3399 ctx->pmu = pmu;
3400
3401 return ctx;
a63eaf34
PM
3402}
3403
2ebd4ffb
MH
3404static struct task_struct *
3405find_lively_task_by_vpid(pid_t vpid)
3406{
3407 struct task_struct *task;
3408 int err;
0793a61d
TG
3409
3410 rcu_read_lock();
2ebd4ffb 3411 if (!vpid)
0793a61d
TG
3412 task = current;
3413 else
2ebd4ffb 3414 task = find_task_by_vpid(vpid);
0793a61d
TG
3415 if (task)
3416 get_task_struct(task);
3417 rcu_read_unlock();
3418
3419 if (!task)
3420 return ERR_PTR(-ESRCH);
3421
0793a61d 3422 /* Reuse ptrace permission checks for now. */
c93f7669 3423 err = -EACCES;
caaee623 3424 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3425 goto errout;
3426
2ebd4ffb
MH
3427 return task;
3428errout:
3429 put_task_struct(task);
3430 return ERR_PTR(err);
3431
3432}
3433
fe4b04fa
PZ
3434/*
3435 * Returns a matching context with refcount and pincount.
3436 */
108b02cf 3437static struct perf_event_context *
4af57ef2
YZ
3438find_get_context(struct pmu *pmu, struct task_struct *task,
3439 struct perf_event *event)
0793a61d 3440{
211de6eb 3441 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3442 struct perf_cpu_context *cpuctx;
4af57ef2 3443 void *task_ctx_data = NULL;
25346b93 3444 unsigned long flags;
8dc85d54 3445 int ctxn, err;
4af57ef2 3446 int cpu = event->cpu;
0793a61d 3447
22a4ec72 3448 if (!task) {
cdd6c482 3449 /* Must be root to operate on a CPU event: */
0764771d 3450 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3451 return ERR_PTR(-EACCES);
3452
0793a61d 3453 /*
cdd6c482 3454 * We could be clever and allow to attach a event to an
0793a61d
TG
3455 * offline CPU and activate it when the CPU comes up, but
3456 * that's for later.
3457 */
f6325e30 3458 if (!cpu_online(cpu))
0793a61d
TG
3459 return ERR_PTR(-ENODEV);
3460
108b02cf 3461 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3462 ctx = &cpuctx->ctx;
c93f7669 3463 get_ctx(ctx);
fe4b04fa 3464 ++ctx->pin_count;
0793a61d 3465
0793a61d
TG
3466 return ctx;
3467 }
3468
8dc85d54
PZ
3469 err = -EINVAL;
3470 ctxn = pmu->task_ctx_nr;
3471 if (ctxn < 0)
3472 goto errout;
3473
4af57ef2
YZ
3474 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3475 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3476 if (!task_ctx_data) {
3477 err = -ENOMEM;
3478 goto errout;
3479 }
3480 }
3481
9ed6060d 3482retry:
8dc85d54 3483 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3484 if (ctx) {
211de6eb 3485 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3486 ++ctx->pin_count;
4af57ef2
YZ
3487
3488 if (task_ctx_data && !ctx->task_ctx_data) {
3489 ctx->task_ctx_data = task_ctx_data;
3490 task_ctx_data = NULL;
3491 }
e625cce1 3492 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3493
3494 if (clone_ctx)
3495 put_ctx(clone_ctx);
9137fb28 3496 } else {
eb184479 3497 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3498 err = -ENOMEM;
3499 if (!ctx)
3500 goto errout;
eb184479 3501
4af57ef2
YZ
3502 if (task_ctx_data) {
3503 ctx->task_ctx_data = task_ctx_data;
3504 task_ctx_data = NULL;
3505 }
3506
dbe08d82
ON
3507 err = 0;
3508 mutex_lock(&task->perf_event_mutex);
3509 /*
3510 * If it has already passed perf_event_exit_task().
3511 * we must see PF_EXITING, it takes this mutex too.
3512 */
3513 if (task->flags & PF_EXITING)
3514 err = -ESRCH;
3515 else if (task->perf_event_ctxp[ctxn])
3516 err = -EAGAIN;
fe4b04fa 3517 else {
9137fb28 3518 get_ctx(ctx);
fe4b04fa 3519 ++ctx->pin_count;
dbe08d82 3520 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3521 }
dbe08d82
ON
3522 mutex_unlock(&task->perf_event_mutex);
3523
3524 if (unlikely(err)) {
9137fb28 3525 put_ctx(ctx);
dbe08d82
ON
3526
3527 if (err == -EAGAIN)
3528 goto retry;
3529 goto errout;
a63eaf34
PM
3530 }
3531 }
3532
4af57ef2 3533 kfree(task_ctx_data);
0793a61d 3534 return ctx;
c93f7669 3535
9ed6060d 3536errout:
4af57ef2 3537 kfree(task_ctx_data);
c93f7669 3538 return ERR_PTR(err);
0793a61d
TG
3539}
3540
6fb2915d 3541static void perf_event_free_filter(struct perf_event *event);
2541517c 3542static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3543
cdd6c482 3544static void free_event_rcu(struct rcu_head *head)
592903cd 3545{
cdd6c482 3546 struct perf_event *event;
592903cd 3547
cdd6c482
IM
3548 event = container_of(head, struct perf_event, rcu_head);
3549 if (event->ns)
3550 put_pid_ns(event->ns);
6fb2915d 3551 perf_event_free_filter(event);
cdd6c482 3552 kfree(event);
592903cd
PZ
3553}
3554
b69cf536
PZ
3555static void ring_buffer_attach(struct perf_event *event,
3556 struct ring_buffer *rb);
925d519a 3557
4beb31f3 3558static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3559{
4beb31f3
FW
3560 if (event->parent)
3561 return;
3562
4beb31f3
FW
3563 if (is_cgroup_event(event))
3564 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3565}
925d519a 3566
4beb31f3
FW
3567static void unaccount_event(struct perf_event *event)
3568{
25432ae9
PZ
3569 bool dec = false;
3570
4beb31f3
FW
3571 if (event->parent)
3572 return;
3573
3574 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3575 dec = true;
4beb31f3
FW
3576 if (event->attr.mmap || event->attr.mmap_data)
3577 atomic_dec(&nr_mmap_events);
3578 if (event->attr.comm)
3579 atomic_dec(&nr_comm_events);
3580 if (event->attr.task)
3581 atomic_dec(&nr_task_events);
948b26b6
FW
3582 if (event->attr.freq)
3583 atomic_dec(&nr_freq_events);
45ac1403 3584 if (event->attr.context_switch) {
25432ae9 3585 dec = true;
45ac1403
AH
3586 atomic_dec(&nr_switch_events);
3587 }
4beb31f3 3588 if (is_cgroup_event(event))
25432ae9 3589 dec = true;
4beb31f3 3590 if (has_branch_stack(event))
25432ae9
PZ
3591 dec = true;
3592
9107c89e
PZ
3593 if (dec) {
3594 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3595 schedule_delayed_work(&perf_sched_work, HZ);
3596 }
4beb31f3
FW
3597
3598 unaccount_event_cpu(event, event->cpu);
3599}
925d519a 3600
9107c89e
PZ
3601static void perf_sched_delayed(struct work_struct *work)
3602{
3603 mutex_lock(&perf_sched_mutex);
3604 if (atomic_dec_and_test(&perf_sched_count))
3605 static_branch_disable(&perf_sched_events);
3606 mutex_unlock(&perf_sched_mutex);
3607}
3608
bed5b25a
AS
3609/*
3610 * The following implement mutual exclusion of events on "exclusive" pmus
3611 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3612 * at a time, so we disallow creating events that might conflict, namely:
3613 *
3614 * 1) cpu-wide events in the presence of per-task events,
3615 * 2) per-task events in the presence of cpu-wide events,
3616 * 3) two matching events on the same context.
3617 *
3618 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3619 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3620 */
3621static int exclusive_event_init(struct perf_event *event)
3622{
3623 struct pmu *pmu = event->pmu;
3624
3625 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3626 return 0;
3627
3628 /*
3629 * Prevent co-existence of per-task and cpu-wide events on the
3630 * same exclusive pmu.
3631 *
3632 * Negative pmu::exclusive_cnt means there are cpu-wide
3633 * events on this "exclusive" pmu, positive means there are
3634 * per-task events.
3635 *
3636 * Since this is called in perf_event_alloc() path, event::ctx
3637 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3638 * to mean "per-task event", because unlike other attach states it
3639 * never gets cleared.
3640 */
3641 if (event->attach_state & PERF_ATTACH_TASK) {
3642 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3643 return -EBUSY;
3644 } else {
3645 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3646 return -EBUSY;
3647 }
3648
3649 return 0;
3650}
3651
3652static void exclusive_event_destroy(struct perf_event *event)
3653{
3654 struct pmu *pmu = event->pmu;
3655
3656 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3657 return;
3658
3659 /* see comment in exclusive_event_init() */
3660 if (event->attach_state & PERF_ATTACH_TASK)
3661 atomic_dec(&pmu->exclusive_cnt);
3662 else
3663 atomic_inc(&pmu->exclusive_cnt);
3664}
3665
3666static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3667{
3668 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3669 (e1->cpu == e2->cpu ||
3670 e1->cpu == -1 ||
3671 e2->cpu == -1))
3672 return true;
3673 return false;
3674}
3675
3676/* Called under the same ctx::mutex as perf_install_in_context() */
3677static bool exclusive_event_installable(struct perf_event *event,
3678 struct perf_event_context *ctx)
3679{
3680 struct perf_event *iter_event;
3681 struct pmu *pmu = event->pmu;
3682
3683 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3684 return true;
3685
3686 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3687 if (exclusive_event_match(iter_event, event))
3688 return false;
3689 }
3690
3691 return true;
3692}
3693
683ede43 3694static void _free_event(struct perf_event *event)
f1600952 3695{
e360adbe 3696 irq_work_sync(&event->pending);
925d519a 3697
4beb31f3 3698 unaccount_event(event);
9ee318a7 3699
76369139 3700 if (event->rb) {
9bb5d40c
PZ
3701 /*
3702 * Can happen when we close an event with re-directed output.
3703 *
3704 * Since we have a 0 refcount, perf_mmap_close() will skip
3705 * over us; possibly making our ring_buffer_put() the last.
3706 */
3707 mutex_lock(&event->mmap_mutex);
b69cf536 3708 ring_buffer_attach(event, NULL);
9bb5d40c 3709 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3710 }
3711
e5d1367f
SE
3712 if (is_cgroup_event(event))
3713 perf_detach_cgroup(event);
3714
a0733e69
PZ
3715 if (!event->parent) {
3716 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3717 put_callchain_buffers();
3718 }
3719
3720 perf_event_free_bpf_prog(event);
3721
3722 if (event->destroy)
3723 event->destroy(event);
3724
3725 if (event->ctx)
3726 put_ctx(event->ctx);
3727
3728 if (event->pmu) {
3729 exclusive_event_destroy(event);
3730 module_put(event->pmu->module);
3731 }
3732
3733 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3734}
3735
683ede43
PZ
3736/*
3737 * Used to free events which have a known refcount of 1, such as in error paths
3738 * where the event isn't exposed yet and inherited events.
3739 */
3740static void free_event(struct perf_event *event)
0793a61d 3741{
683ede43
PZ
3742 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3743 "unexpected event refcount: %ld; ptr=%p\n",
3744 atomic_long_read(&event->refcount), event)) {
3745 /* leak to avoid use-after-free */
3746 return;
3747 }
0793a61d 3748
683ede43 3749 _free_event(event);
0793a61d
TG
3750}
3751
a66a3052 3752/*
f8697762 3753 * Remove user event from the owner task.
a66a3052 3754 */
f8697762 3755static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3756{
8882135b 3757 struct task_struct *owner;
fb0459d7 3758
8882135b 3759 rcu_read_lock();
8882135b 3760 /*
f47c02c0
PZ
3761 * Matches the smp_store_release() in perf_event_exit_task(). If we
3762 * observe !owner it means the list deletion is complete and we can
3763 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3764 * owner->perf_event_mutex.
3765 */
f47c02c0 3766 owner = lockless_dereference(event->owner);
8882135b
PZ
3767 if (owner) {
3768 /*
3769 * Since delayed_put_task_struct() also drops the last
3770 * task reference we can safely take a new reference
3771 * while holding the rcu_read_lock().
3772 */
3773 get_task_struct(owner);
3774 }
3775 rcu_read_unlock();
3776
3777 if (owner) {
f63a8daa
PZ
3778 /*
3779 * If we're here through perf_event_exit_task() we're already
3780 * holding ctx->mutex which would be an inversion wrt. the
3781 * normal lock order.
3782 *
3783 * However we can safely take this lock because its the child
3784 * ctx->mutex.
3785 */
3786 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3787
8882135b
PZ
3788 /*
3789 * We have to re-check the event->owner field, if it is cleared
3790 * we raced with perf_event_exit_task(), acquiring the mutex
3791 * ensured they're done, and we can proceed with freeing the
3792 * event.
3793 */
f47c02c0 3794 if (event->owner) {
8882135b 3795 list_del_init(&event->owner_entry);
f47c02c0
PZ
3796 smp_store_release(&event->owner, NULL);
3797 }
8882135b
PZ
3798 mutex_unlock(&owner->perf_event_mutex);
3799 put_task_struct(owner);
3800 }
f8697762
JO
3801}
3802
f8697762
JO
3803static void put_event(struct perf_event *event)
3804{
f8697762
JO
3805 if (!atomic_long_dec_and_test(&event->refcount))
3806 return;
3807
c6e5b732
PZ
3808 _free_event(event);
3809}
3810
3811/*
3812 * Kill an event dead; while event:refcount will preserve the event
3813 * object, it will not preserve its functionality. Once the last 'user'
3814 * gives up the object, we'll destroy the thing.
3815 */
3816int perf_event_release_kernel(struct perf_event *event)
3817{
a4f4bb6d 3818 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3819 struct perf_event *child, *tmp;
3820
a4f4bb6d
PZ
3821 /*
3822 * If we got here through err_file: fput(event_file); we will not have
3823 * attached to a context yet.
3824 */
3825 if (!ctx) {
3826 WARN_ON_ONCE(event->attach_state &
3827 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3828 goto no_ctx;
3829 }
3830
f8697762
JO
3831 if (!is_kernel_event(event))
3832 perf_remove_from_owner(event);
8882135b 3833
5fa7c8ec 3834 ctx = perf_event_ctx_lock(event);
a83fe28e 3835 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3836 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3837
a69b0ca4 3838 raw_spin_lock_irq(&ctx->lock);
683ede43 3839 /*
a69b0ca4
PZ
3840 * Mark this even as STATE_DEAD, there is no external reference to it
3841 * anymore.
683ede43 3842 *
a69b0ca4
PZ
3843 * Anybody acquiring event->child_mutex after the below loop _must_
3844 * also see this, most importantly inherit_event() which will avoid
3845 * placing more children on the list.
683ede43 3846 *
c6e5b732
PZ
3847 * Thus this guarantees that we will in fact observe and kill _ALL_
3848 * child events.
683ede43 3849 */
a69b0ca4
PZ
3850 event->state = PERF_EVENT_STATE_DEAD;
3851 raw_spin_unlock_irq(&ctx->lock);
3852
3853 perf_event_ctx_unlock(event, ctx);
683ede43 3854
c6e5b732
PZ
3855again:
3856 mutex_lock(&event->child_mutex);
3857 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3858
c6e5b732
PZ
3859 /*
3860 * Cannot change, child events are not migrated, see the
3861 * comment with perf_event_ctx_lock_nested().
3862 */
3863 ctx = lockless_dereference(child->ctx);
3864 /*
3865 * Since child_mutex nests inside ctx::mutex, we must jump
3866 * through hoops. We start by grabbing a reference on the ctx.
3867 *
3868 * Since the event cannot get freed while we hold the
3869 * child_mutex, the context must also exist and have a !0
3870 * reference count.
3871 */
3872 get_ctx(ctx);
3873
3874 /*
3875 * Now that we have a ctx ref, we can drop child_mutex, and
3876 * acquire ctx::mutex without fear of it going away. Then we
3877 * can re-acquire child_mutex.
3878 */
3879 mutex_unlock(&event->child_mutex);
3880 mutex_lock(&ctx->mutex);
3881 mutex_lock(&event->child_mutex);
3882
3883 /*
3884 * Now that we hold ctx::mutex and child_mutex, revalidate our
3885 * state, if child is still the first entry, it didn't get freed
3886 * and we can continue doing so.
3887 */
3888 tmp = list_first_entry_or_null(&event->child_list,
3889 struct perf_event, child_list);
3890 if (tmp == child) {
3891 perf_remove_from_context(child, DETACH_GROUP);
3892 list_del(&child->child_list);
3893 free_event(child);
3894 /*
3895 * This matches the refcount bump in inherit_event();
3896 * this can't be the last reference.
3897 */
3898 put_event(event);
3899 }
3900
3901 mutex_unlock(&event->child_mutex);
3902 mutex_unlock(&ctx->mutex);
3903 put_ctx(ctx);
3904 goto again;
3905 }
3906 mutex_unlock(&event->child_mutex);
3907
a4f4bb6d
PZ
3908no_ctx:
3909 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3910 return 0;
3911}
3912EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3913
8b10c5e2
PZ
3914/*
3915 * Called when the last reference to the file is gone.
3916 */
a6fa941d
AV
3917static int perf_release(struct inode *inode, struct file *file)
3918{
c6e5b732 3919 perf_event_release_kernel(file->private_data);
a6fa941d 3920 return 0;
fb0459d7 3921}
fb0459d7 3922
59ed446f 3923u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3924{
cdd6c482 3925 struct perf_event *child;
e53c0994
PZ
3926 u64 total = 0;
3927
59ed446f
PZ
3928 *enabled = 0;
3929 *running = 0;
3930
6f10581a 3931 mutex_lock(&event->child_mutex);
01add3ea 3932
7d88962e 3933 (void)perf_event_read(event, false);
01add3ea
SB
3934 total += perf_event_count(event);
3935
59ed446f
PZ
3936 *enabled += event->total_time_enabled +
3937 atomic64_read(&event->child_total_time_enabled);
3938 *running += event->total_time_running +
3939 atomic64_read(&event->child_total_time_running);
3940
3941 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3942 (void)perf_event_read(child, false);
01add3ea 3943 total += perf_event_count(child);
59ed446f
PZ
3944 *enabled += child->total_time_enabled;
3945 *running += child->total_time_running;
3946 }
6f10581a 3947 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3948
3949 return total;
3950}
fb0459d7 3951EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3952
7d88962e 3953static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3954 u64 read_format, u64 *values)
3dab77fb 3955{
fa8c2693
PZ
3956 struct perf_event *sub;
3957 int n = 1; /* skip @nr */
7d88962e 3958 int ret;
f63a8daa 3959
7d88962e
SB
3960 ret = perf_event_read(leader, true);
3961 if (ret)
3962 return ret;
abf4868b 3963
fa8c2693
PZ
3964 /*
3965 * Since we co-schedule groups, {enabled,running} times of siblings
3966 * will be identical to those of the leader, so we only publish one
3967 * set.
3968 */
3969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3970 values[n++] += leader->total_time_enabled +
3971 atomic64_read(&leader->child_total_time_enabled);
3972 }
3dab77fb 3973
fa8c2693
PZ
3974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3975 values[n++] += leader->total_time_running +
3976 atomic64_read(&leader->child_total_time_running);
3977 }
3978
3979 /*
3980 * Write {count,id} tuples for every sibling.
3981 */
3982 values[n++] += perf_event_count(leader);
abf4868b
PZ
3983 if (read_format & PERF_FORMAT_ID)
3984 values[n++] = primary_event_id(leader);
3dab77fb 3985
fa8c2693
PZ
3986 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3987 values[n++] += perf_event_count(sub);
3988 if (read_format & PERF_FORMAT_ID)
3989 values[n++] = primary_event_id(sub);
3990 }
7d88962e
SB
3991
3992 return 0;
fa8c2693 3993}
3dab77fb 3994
fa8c2693
PZ
3995static int perf_read_group(struct perf_event *event,
3996 u64 read_format, char __user *buf)
3997{
3998 struct perf_event *leader = event->group_leader, *child;
3999 struct perf_event_context *ctx = leader->ctx;
7d88962e 4000 int ret;
fa8c2693 4001 u64 *values;
3dab77fb 4002
fa8c2693 4003 lockdep_assert_held(&ctx->mutex);
3dab77fb 4004
fa8c2693
PZ
4005 values = kzalloc(event->read_size, GFP_KERNEL);
4006 if (!values)
4007 return -ENOMEM;
3dab77fb 4008
fa8c2693
PZ
4009 values[0] = 1 + leader->nr_siblings;
4010
4011 /*
4012 * By locking the child_mutex of the leader we effectively
4013 * lock the child list of all siblings.. XXX explain how.
4014 */
4015 mutex_lock(&leader->child_mutex);
abf4868b 4016
7d88962e
SB
4017 ret = __perf_read_group_add(leader, read_format, values);
4018 if (ret)
4019 goto unlock;
4020
4021 list_for_each_entry(child, &leader->child_list, child_list) {
4022 ret = __perf_read_group_add(child, read_format, values);
4023 if (ret)
4024 goto unlock;
4025 }
abf4868b 4026
fa8c2693 4027 mutex_unlock(&leader->child_mutex);
abf4868b 4028
7d88962e 4029 ret = event->read_size;
fa8c2693
PZ
4030 if (copy_to_user(buf, values, event->read_size))
4031 ret = -EFAULT;
7d88962e 4032 goto out;
fa8c2693 4033
7d88962e
SB
4034unlock:
4035 mutex_unlock(&leader->child_mutex);
4036out:
fa8c2693 4037 kfree(values);
abf4868b 4038 return ret;
3dab77fb
PZ
4039}
4040
b15f495b 4041static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4042 u64 read_format, char __user *buf)
4043{
59ed446f 4044 u64 enabled, running;
3dab77fb
PZ
4045 u64 values[4];
4046 int n = 0;
4047
59ed446f
PZ
4048 values[n++] = perf_event_read_value(event, &enabled, &running);
4049 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4050 values[n++] = enabled;
4051 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4052 values[n++] = running;
3dab77fb 4053 if (read_format & PERF_FORMAT_ID)
cdd6c482 4054 values[n++] = primary_event_id(event);
3dab77fb
PZ
4055
4056 if (copy_to_user(buf, values, n * sizeof(u64)))
4057 return -EFAULT;
4058
4059 return n * sizeof(u64);
4060}
4061
dc633982
JO
4062static bool is_event_hup(struct perf_event *event)
4063{
4064 bool no_children;
4065
a69b0ca4 4066 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4067 return false;
4068
4069 mutex_lock(&event->child_mutex);
4070 no_children = list_empty(&event->child_list);
4071 mutex_unlock(&event->child_mutex);
4072 return no_children;
4073}
4074
0793a61d 4075/*
cdd6c482 4076 * Read the performance event - simple non blocking version for now
0793a61d
TG
4077 */
4078static ssize_t
b15f495b 4079__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4080{
cdd6c482 4081 u64 read_format = event->attr.read_format;
3dab77fb 4082 int ret;
0793a61d 4083
3b6f9e5c 4084 /*
cdd6c482 4085 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4086 * error state (i.e. because it was pinned but it couldn't be
4087 * scheduled on to the CPU at some point).
4088 */
cdd6c482 4089 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4090 return 0;
4091
c320c7b7 4092 if (count < event->read_size)
3dab77fb
PZ
4093 return -ENOSPC;
4094
cdd6c482 4095 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4096 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4097 ret = perf_read_group(event, read_format, buf);
3dab77fb 4098 else
b15f495b 4099 ret = perf_read_one(event, read_format, buf);
0793a61d 4100
3dab77fb 4101 return ret;
0793a61d
TG
4102}
4103
0793a61d
TG
4104static ssize_t
4105perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4106{
cdd6c482 4107 struct perf_event *event = file->private_data;
f63a8daa
PZ
4108 struct perf_event_context *ctx;
4109 int ret;
0793a61d 4110
f63a8daa 4111 ctx = perf_event_ctx_lock(event);
b15f495b 4112 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4113 perf_event_ctx_unlock(event, ctx);
4114
4115 return ret;
0793a61d
TG
4116}
4117
4118static unsigned int perf_poll(struct file *file, poll_table *wait)
4119{
cdd6c482 4120 struct perf_event *event = file->private_data;
76369139 4121 struct ring_buffer *rb;
61b67684 4122 unsigned int events = POLLHUP;
c7138f37 4123
e708d7ad 4124 poll_wait(file, &event->waitq, wait);
179033b3 4125
dc633982 4126 if (is_event_hup(event))
179033b3 4127 return events;
c7138f37 4128
10c6db11 4129 /*
9bb5d40c
PZ
4130 * Pin the event->rb by taking event->mmap_mutex; otherwise
4131 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4132 */
4133 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4134 rb = event->rb;
4135 if (rb)
76369139 4136 events = atomic_xchg(&rb->poll, 0);
10c6db11 4137 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4138 return events;
4139}
4140
f63a8daa 4141static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4142{
7d88962e 4143 (void)perf_event_read(event, false);
e7850595 4144 local64_set(&event->count, 0);
cdd6c482 4145 perf_event_update_userpage(event);
3df5edad
PZ
4146}
4147
c93f7669 4148/*
cdd6c482
IM
4149 * Holding the top-level event's child_mutex means that any
4150 * descendant process that has inherited this event will block
8ba289b8 4151 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4152 * task existence requirements of perf_event_enable/disable.
c93f7669 4153 */
cdd6c482
IM
4154static void perf_event_for_each_child(struct perf_event *event,
4155 void (*func)(struct perf_event *))
3df5edad 4156{
cdd6c482 4157 struct perf_event *child;
3df5edad 4158
cdd6c482 4159 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4160
cdd6c482
IM
4161 mutex_lock(&event->child_mutex);
4162 func(event);
4163 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4164 func(child);
cdd6c482 4165 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4166}
4167
cdd6c482
IM
4168static void perf_event_for_each(struct perf_event *event,
4169 void (*func)(struct perf_event *))
3df5edad 4170{
cdd6c482
IM
4171 struct perf_event_context *ctx = event->ctx;
4172 struct perf_event *sibling;
3df5edad 4173
f63a8daa
PZ
4174 lockdep_assert_held(&ctx->mutex);
4175
cdd6c482 4176 event = event->group_leader;
75f937f2 4177
cdd6c482 4178 perf_event_for_each_child(event, func);
cdd6c482 4179 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4180 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4181}
4182
fae3fde6
PZ
4183static void __perf_event_period(struct perf_event *event,
4184 struct perf_cpu_context *cpuctx,
4185 struct perf_event_context *ctx,
4186 void *info)
c7999c6f 4187{
fae3fde6 4188 u64 value = *((u64 *)info);
c7999c6f 4189 bool active;
08247e31 4190
cdd6c482 4191 if (event->attr.freq) {
cdd6c482 4192 event->attr.sample_freq = value;
08247e31 4193 } else {
cdd6c482
IM
4194 event->attr.sample_period = value;
4195 event->hw.sample_period = value;
08247e31 4196 }
bad7192b
PZ
4197
4198 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4199 if (active) {
4200 perf_pmu_disable(ctx->pmu);
4201 event->pmu->stop(event, PERF_EF_UPDATE);
4202 }
4203
4204 local64_set(&event->hw.period_left, 0);
4205
4206 if (active) {
4207 event->pmu->start(event, PERF_EF_RELOAD);
4208 perf_pmu_enable(ctx->pmu);
4209 }
c7999c6f
PZ
4210}
4211
4212static int perf_event_period(struct perf_event *event, u64 __user *arg)
4213{
c7999c6f
PZ
4214 u64 value;
4215
4216 if (!is_sampling_event(event))
4217 return -EINVAL;
4218
4219 if (copy_from_user(&value, arg, sizeof(value)))
4220 return -EFAULT;
4221
4222 if (!value)
4223 return -EINVAL;
4224
4225 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4226 return -EINVAL;
4227
fae3fde6 4228 event_function_call(event, __perf_event_period, &value);
08247e31 4229
c7999c6f 4230 return 0;
08247e31
PZ
4231}
4232
ac9721f3
PZ
4233static const struct file_operations perf_fops;
4234
2903ff01 4235static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4236{
2903ff01
AV
4237 struct fd f = fdget(fd);
4238 if (!f.file)
4239 return -EBADF;
ac9721f3 4240
2903ff01
AV
4241 if (f.file->f_op != &perf_fops) {
4242 fdput(f);
4243 return -EBADF;
ac9721f3 4244 }
2903ff01
AV
4245 *p = f;
4246 return 0;
ac9721f3
PZ
4247}
4248
4249static int perf_event_set_output(struct perf_event *event,
4250 struct perf_event *output_event);
6fb2915d 4251static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4252static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4253
f63a8daa 4254static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4255{
cdd6c482 4256 void (*func)(struct perf_event *);
3df5edad 4257 u32 flags = arg;
d859e29f
PM
4258
4259 switch (cmd) {
cdd6c482 4260 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4261 func = _perf_event_enable;
d859e29f 4262 break;
cdd6c482 4263 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4264 func = _perf_event_disable;
79f14641 4265 break;
cdd6c482 4266 case PERF_EVENT_IOC_RESET:
f63a8daa 4267 func = _perf_event_reset;
6de6a7b9 4268 break;
3df5edad 4269
cdd6c482 4270 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4271 return _perf_event_refresh(event, arg);
08247e31 4272
cdd6c482
IM
4273 case PERF_EVENT_IOC_PERIOD:
4274 return perf_event_period(event, (u64 __user *)arg);
08247e31 4275
cf4957f1
JO
4276 case PERF_EVENT_IOC_ID:
4277 {
4278 u64 id = primary_event_id(event);
4279
4280 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4281 return -EFAULT;
4282 return 0;
4283 }
4284
cdd6c482 4285 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4286 {
ac9721f3 4287 int ret;
ac9721f3 4288 if (arg != -1) {
2903ff01
AV
4289 struct perf_event *output_event;
4290 struct fd output;
4291 ret = perf_fget_light(arg, &output);
4292 if (ret)
4293 return ret;
4294 output_event = output.file->private_data;
4295 ret = perf_event_set_output(event, output_event);
4296 fdput(output);
4297 } else {
4298 ret = perf_event_set_output(event, NULL);
ac9721f3 4299 }
ac9721f3
PZ
4300 return ret;
4301 }
a4be7c27 4302
6fb2915d
LZ
4303 case PERF_EVENT_IOC_SET_FILTER:
4304 return perf_event_set_filter(event, (void __user *)arg);
4305
2541517c
AS
4306 case PERF_EVENT_IOC_SET_BPF:
4307 return perf_event_set_bpf_prog(event, arg);
4308
d859e29f 4309 default:
3df5edad 4310 return -ENOTTY;
d859e29f 4311 }
3df5edad
PZ
4312
4313 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4314 perf_event_for_each(event, func);
3df5edad 4315 else
cdd6c482 4316 perf_event_for_each_child(event, func);
3df5edad
PZ
4317
4318 return 0;
d859e29f
PM
4319}
4320
f63a8daa
PZ
4321static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4322{
4323 struct perf_event *event = file->private_data;
4324 struct perf_event_context *ctx;
4325 long ret;
4326
4327 ctx = perf_event_ctx_lock(event);
4328 ret = _perf_ioctl(event, cmd, arg);
4329 perf_event_ctx_unlock(event, ctx);
4330
4331 return ret;
4332}
4333
b3f20785
PM
4334#ifdef CONFIG_COMPAT
4335static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4336 unsigned long arg)
4337{
4338 switch (_IOC_NR(cmd)) {
4339 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4340 case _IOC_NR(PERF_EVENT_IOC_ID):
4341 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4342 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4343 cmd &= ~IOCSIZE_MASK;
4344 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4345 }
4346 break;
4347 }
4348 return perf_ioctl(file, cmd, arg);
4349}
4350#else
4351# define perf_compat_ioctl NULL
4352#endif
4353
cdd6c482 4354int perf_event_task_enable(void)
771d7cde 4355{
f63a8daa 4356 struct perf_event_context *ctx;
cdd6c482 4357 struct perf_event *event;
771d7cde 4358
cdd6c482 4359 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4360 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4361 ctx = perf_event_ctx_lock(event);
4362 perf_event_for_each_child(event, _perf_event_enable);
4363 perf_event_ctx_unlock(event, ctx);
4364 }
cdd6c482 4365 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4366
4367 return 0;
4368}
4369
cdd6c482 4370int perf_event_task_disable(void)
771d7cde 4371{
f63a8daa 4372 struct perf_event_context *ctx;
cdd6c482 4373 struct perf_event *event;
771d7cde 4374
cdd6c482 4375 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4376 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4377 ctx = perf_event_ctx_lock(event);
4378 perf_event_for_each_child(event, _perf_event_disable);
4379 perf_event_ctx_unlock(event, ctx);
4380 }
cdd6c482 4381 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4382
4383 return 0;
4384}
4385
cdd6c482 4386static int perf_event_index(struct perf_event *event)
194002b2 4387{
a4eaf7f1
PZ
4388 if (event->hw.state & PERF_HES_STOPPED)
4389 return 0;
4390
cdd6c482 4391 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4392 return 0;
4393
35edc2a5 4394 return event->pmu->event_idx(event);
194002b2
PZ
4395}
4396
c4794295 4397static void calc_timer_values(struct perf_event *event,
e3f3541c 4398 u64 *now,
7f310a5d
EM
4399 u64 *enabled,
4400 u64 *running)
c4794295 4401{
e3f3541c 4402 u64 ctx_time;
c4794295 4403
e3f3541c
PZ
4404 *now = perf_clock();
4405 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4406 *enabled = ctx_time - event->tstamp_enabled;
4407 *running = ctx_time - event->tstamp_running;
4408}
4409
fa731587
PZ
4410static void perf_event_init_userpage(struct perf_event *event)
4411{
4412 struct perf_event_mmap_page *userpg;
4413 struct ring_buffer *rb;
4414
4415 rcu_read_lock();
4416 rb = rcu_dereference(event->rb);
4417 if (!rb)
4418 goto unlock;
4419
4420 userpg = rb->user_page;
4421
4422 /* Allow new userspace to detect that bit 0 is deprecated */
4423 userpg->cap_bit0_is_deprecated = 1;
4424 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4425 userpg->data_offset = PAGE_SIZE;
4426 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4427
4428unlock:
4429 rcu_read_unlock();
4430}
4431
c1317ec2
AL
4432void __weak arch_perf_update_userpage(
4433 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4434{
4435}
4436
38ff667b
PZ
4437/*
4438 * Callers need to ensure there can be no nesting of this function, otherwise
4439 * the seqlock logic goes bad. We can not serialize this because the arch
4440 * code calls this from NMI context.
4441 */
cdd6c482 4442void perf_event_update_userpage(struct perf_event *event)
37d81828 4443{
cdd6c482 4444 struct perf_event_mmap_page *userpg;
76369139 4445 struct ring_buffer *rb;
e3f3541c 4446 u64 enabled, running, now;
38ff667b
PZ
4447
4448 rcu_read_lock();
5ec4c599
PZ
4449 rb = rcu_dereference(event->rb);
4450 if (!rb)
4451 goto unlock;
4452
0d641208
EM
4453 /*
4454 * compute total_time_enabled, total_time_running
4455 * based on snapshot values taken when the event
4456 * was last scheduled in.
4457 *
4458 * we cannot simply called update_context_time()
4459 * because of locking issue as we can be called in
4460 * NMI context
4461 */
e3f3541c 4462 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4463
76369139 4464 userpg = rb->user_page;
7b732a75
PZ
4465 /*
4466 * Disable preemption so as to not let the corresponding user-space
4467 * spin too long if we get preempted.
4468 */
4469 preempt_disable();
37d81828 4470 ++userpg->lock;
92f22a38 4471 barrier();
cdd6c482 4472 userpg->index = perf_event_index(event);
b5e58793 4473 userpg->offset = perf_event_count(event);
365a4038 4474 if (userpg->index)
e7850595 4475 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4476
0d641208 4477 userpg->time_enabled = enabled +
cdd6c482 4478 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4479
0d641208 4480 userpg->time_running = running +
cdd6c482 4481 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4482
c1317ec2 4483 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4484
92f22a38 4485 barrier();
37d81828 4486 ++userpg->lock;
7b732a75 4487 preempt_enable();
38ff667b 4488unlock:
7b732a75 4489 rcu_read_unlock();
37d81828
PM
4490}
4491
906010b2
PZ
4492static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4493{
4494 struct perf_event *event = vma->vm_file->private_data;
76369139 4495 struct ring_buffer *rb;
906010b2
PZ
4496 int ret = VM_FAULT_SIGBUS;
4497
4498 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4499 if (vmf->pgoff == 0)
4500 ret = 0;
4501 return ret;
4502 }
4503
4504 rcu_read_lock();
76369139
FW
4505 rb = rcu_dereference(event->rb);
4506 if (!rb)
906010b2
PZ
4507 goto unlock;
4508
4509 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4510 goto unlock;
4511
76369139 4512 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4513 if (!vmf->page)
4514 goto unlock;
4515
4516 get_page(vmf->page);
4517 vmf->page->mapping = vma->vm_file->f_mapping;
4518 vmf->page->index = vmf->pgoff;
4519
4520 ret = 0;
4521unlock:
4522 rcu_read_unlock();
4523
4524 return ret;
4525}
4526
10c6db11
PZ
4527static void ring_buffer_attach(struct perf_event *event,
4528 struct ring_buffer *rb)
4529{
b69cf536 4530 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4531 unsigned long flags;
4532
b69cf536
PZ
4533 if (event->rb) {
4534 /*
4535 * Should be impossible, we set this when removing
4536 * event->rb_entry and wait/clear when adding event->rb_entry.
4537 */
4538 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4539
b69cf536 4540 old_rb = event->rb;
b69cf536
PZ
4541 spin_lock_irqsave(&old_rb->event_lock, flags);
4542 list_del_rcu(&event->rb_entry);
4543 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4544
2f993cf0
ON
4545 event->rcu_batches = get_state_synchronize_rcu();
4546 event->rcu_pending = 1;
b69cf536 4547 }
10c6db11 4548
b69cf536 4549 if (rb) {
2f993cf0
ON
4550 if (event->rcu_pending) {
4551 cond_synchronize_rcu(event->rcu_batches);
4552 event->rcu_pending = 0;
4553 }
4554
b69cf536
PZ
4555 spin_lock_irqsave(&rb->event_lock, flags);
4556 list_add_rcu(&event->rb_entry, &rb->event_list);
4557 spin_unlock_irqrestore(&rb->event_lock, flags);
4558 }
4559
4560 rcu_assign_pointer(event->rb, rb);
4561
4562 if (old_rb) {
4563 ring_buffer_put(old_rb);
4564 /*
4565 * Since we detached before setting the new rb, so that we
4566 * could attach the new rb, we could have missed a wakeup.
4567 * Provide it now.
4568 */
4569 wake_up_all(&event->waitq);
4570 }
10c6db11
PZ
4571}
4572
4573static void ring_buffer_wakeup(struct perf_event *event)
4574{
4575 struct ring_buffer *rb;
4576
4577 rcu_read_lock();
4578 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4579 if (rb) {
4580 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4581 wake_up_all(&event->waitq);
4582 }
10c6db11
PZ
4583 rcu_read_unlock();
4584}
4585
fdc26706 4586struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4587{
76369139 4588 struct ring_buffer *rb;
7b732a75 4589
ac9721f3 4590 rcu_read_lock();
76369139
FW
4591 rb = rcu_dereference(event->rb);
4592 if (rb) {
4593 if (!atomic_inc_not_zero(&rb->refcount))
4594 rb = NULL;
ac9721f3
PZ
4595 }
4596 rcu_read_unlock();
4597
76369139 4598 return rb;
ac9721f3
PZ
4599}
4600
fdc26706 4601void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4602{
76369139 4603 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4604 return;
7b732a75 4605
9bb5d40c 4606 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4607
76369139 4608 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4609}
4610
4611static void perf_mmap_open(struct vm_area_struct *vma)
4612{
cdd6c482 4613 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4614
cdd6c482 4615 atomic_inc(&event->mmap_count);
9bb5d40c 4616 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4617
45bfb2e5
PZ
4618 if (vma->vm_pgoff)
4619 atomic_inc(&event->rb->aux_mmap_count);
4620
1e0fb9ec
AL
4621 if (event->pmu->event_mapped)
4622 event->pmu->event_mapped(event);
7b732a75
PZ
4623}
4624
9bb5d40c
PZ
4625/*
4626 * A buffer can be mmap()ed multiple times; either directly through the same
4627 * event, or through other events by use of perf_event_set_output().
4628 *
4629 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4630 * the buffer here, where we still have a VM context. This means we need
4631 * to detach all events redirecting to us.
4632 */
7b732a75
PZ
4633static void perf_mmap_close(struct vm_area_struct *vma)
4634{
cdd6c482 4635 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4636
b69cf536 4637 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4638 struct user_struct *mmap_user = rb->mmap_user;
4639 int mmap_locked = rb->mmap_locked;
4640 unsigned long size = perf_data_size(rb);
789f90fc 4641
1e0fb9ec
AL
4642 if (event->pmu->event_unmapped)
4643 event->pmu->event_unmapped(event);
4644
45bfb2e5
PZ
4645 /*
4646 * rb->aux_mmap_count will always drop before rb->mmap_count and
4647 * event->mmap_count, so it is ok to use event->mmap_mutex to
4648 * serialize with perf_mmap here.
4649 */
4650 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4651 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4652 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4653 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4654
4655 rb_free_aux(rb);
4656 mutex_unlock(&event->mmap_mutex);
4657 }
4658
9bb5d40c
PZ
4659 atomic_dec(&rb->mmap_count);
4660
4661 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4662 goto out_put;
9bb5d40c 4663
b69cf536 4664 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4665 mutex_unlock(&event->mmap_mutex);
4666
4667 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4668 if (atomic_read(&rb->mmap_count))
4669 goto out_put;
ac9721f3 4670
9bb5d40c
PZ
4671 /*
4672 * No other mmap()s, detach from all other events that might redirect
4673 * into the now unreachable buffer. Somewhat complicated by the
4674 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4675 */
4676again:
4677 rcu_read_lock();
4678 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4679 if (!atomic_long_inc_not_zero(&event->refcount)) {
4680 /*
4681 * This event is en-route to free_event() which will
4682 * detach it and remove it from the list.
4683 */
4684 continue;
4685 }
4686 rcu_read_unlock();
789f90fc 4687
9bb5d40c
PZ
4688 mutex_lock(&event->mmap_mutex);
4689 /*
4690 * Check we didn't race with perf_event_set_output() which can
4691 * swizzle the rb from under us while we were waiting to
4692 * acquire mmap_mutex.
4693 *
4694 * If we find a different rb; ignore this event, a next
4695 * iteration will no longer find it on the list. We have to
4696 * still restart the iteration to make sure we're not now
4697 * iterating the wrong list.
4698 */
b69cf536
PZ
4699 if (event->rb == rb)
4700 ring_buffer_attach(event, NULL);
4701
cdd6c482 4702 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4703 put_event(event);
ac9721f3 4704
9bb5d40c
PZ
4705 /*
4706 * Restart the iteration; either we're on the wrong list or
4707 * destroyed its integrity by doing a deletion.
4708 */
4709 goto again;
7b732a75 4710 }
9bb5d40c
PZ
4711 rcu_read_unlock();
4712
4713 /*
4714 * It could be there's still a few 0-ref events on the list; they'll
4715 * get cleaned up by free_event() -- they'll also still have their
4716 * ref on the rb and will free it whenever they are done with it.
4717 *
4718 * Aside from that, this buffer is 'fully' detached and unmapped,
4719 * undo the VM accounting.
4720 */
4721
4722 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4723 vma->vm_mm->pinned_vm -= mmap_locked;
4724 free_uid(mmap_user);
4725
b69cf536 4726out_put:
9bb5d40c 4727 ring_buffer_put(rb); /* could be last */
37d81828
PM
4728}
4729
f0f37e2f 4730static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4731 .open = perf_mmap_open,
45bfb2e5 4732 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4733 .fault = perf_mmap_fault,
4734 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4735};
4736
4737static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4738{
cdd6c482 4739 struct perf_event *event = file->private_data;
22a4f650 4740 unsigned long user_locked, user_lock_limit;
789f90fc 4741 struct user_struct *user = current_user();
22a4f650 4742 unsigned long locked, lock_limit;
45bfb2e5 4743 struct ring_buffer *rb = NULL;
7b732a75
PZ
4744 unsigned long vma_size;
4745 unsigned long nr_pages;
45bfb2e5 4746 long user_extra = 0, extra = 0;
d57e34fd 4747 int ret = 0, flags = 0;
37d81828 4748
c7920614
PZ
4749 /*
4750 * Don't allow mmap() of inherited per-task counters. This would
4751 * create a performance issue due to all children writing to the
76369139 4752 * same rb.
c7920614
PZ
4753 */
4754 if (event->cpu == -1 && event->attr.inherit)
4755 return -EINVAL;
4756
43a21ea8 4757 if (!(vma->vm_flags & VM_SHARED))
37d81828 4758 return -EINVAL;
7b732a75
PZ
4759
4760 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4761
4762 if (vma->vm_pgoff == 0) {
4763 nr_pages = (vma_size / PAGE_SIZE) - 1;
4764 } else {
4765 /*
4766 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4767 * mapped, all subsequent mappings should have the same size
4768 * and offset. Must be above the normal perf buffer.
4769 */
4770 u64 aux_offset, aux_size;
4771
4772 if (!event->rb)
4773 return -EINVAL;
4774
4775 nr_pages = vma_size / PAGE_SIZE;
4776
4777 mutex_lock(&event->mmap_mutex);
4778 ret = -EINVAL;
4779
4780 rb = event->rb;
4781 if (!rb)
4782 goto aux_unlock;
4783
4784 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4785 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4786
4787 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4788 goto aux_unlock;
4789
4790 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4791 goto aux_unlock;
4792
4793 /* already mapped with a different offset */
4794 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4795 goto aux_unlock;
4796
4797 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4798 goto aux_unlock;
4799
4800 /* already mapped with a different size */
4801 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4802 goto aux_unlock;
4803
4804 if (!is_power_of_2(nr_pages))
4805 goto aux_unlock;
4806
4807 if (!atomic_inc_not_zero(&rb->mmap_count))
4808 goto aux_unlock;
4809
4810 if (rb_has_aux(rb)) {
4811 atomic_inc(&rb->aux_mmap_count);
4812 ret = 0;
4813 goto unlock;
4814 }
4815
4816 atomic_set(&rb->aux_mmap_count, 1);
4817 user_extra = nr_pages;
4818
4819 goto accounting;
4820 }
7b732a75 4821
7730d865 4822 /*
76369139 4823 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4824 * can do bitmasks instead of modulo.
4825 */
2ed11312 4826 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4827 return -EINVAL;
4828
7b732a75 4829 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4830 return -EINVAL;
4831
cdd6c482 4832 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4833again:
cdd6c482 4834 mutex_lock(&event->mmap_mutex);
76369139 4835 if (event->rb) {
9bb5d40c 4836 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4837 ret = -EINVAL;
9bb5d40c
PZ
4838 goto unlock;
4839 }
4840
4841 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4842 /*
4843 * Raced against perf_mmap_close() through
4844 * perf_event_set_output(). Try again, hope for better
4845 * luck.
4846 */
4847 mutex_unlock(&event->mmap_mutex);
4848 goto again;
4849 }
4850
ebb3c4c4
PZ
4851 goto unlock;
4852 }
4853
789f90fc 4854 user_extra = nr_pages + 1;
45bfb2e5
PZ
4855
4856accounting:
cdd6c482 4857 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4858
4859 /*
4860 * Increase the limit linearly with more CPUs:
4861 */
4862 user_lock_limit *= num_online_cpus();
4863
789f90fc 4864 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4865
789f90fc
PZ
4866 if (user_locked > user_lock_limit)
4867 extra = user_locked - user_lock_limit;
7b732a75 4868
78d7d407 4869 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4870 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4871 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4872
459ec28a
IM
4873 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4874 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4875 ret = -EPERM;
4876 goto unlock;
4877 }
7b732a75 4878
45bfb2e5 4879 WARN_ON(!rb && event->rb);
906010b2 4880
d57e34fd 4881 if (vma->vm_flags & VM_WRITE)
76369139 4882 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4883
76369139 4884 if (!rb) {
45bfb2e5
PZ
4885 rb = rb_alloc(nr_pages,
4886 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4887 event->cpu, flags);
26cb63ad 4888
45bfb2e5
PZ
4889 if (!rb) {
4890 ret = -ENOMEM;
4891 goto unlock;
4892 }
43a21ea8 4893
45bfb2e5
PZ
4894 atomic_set(&rb->mmap_count, 1);
4895 rb->mmap_user = get_current_user();
4896 rb->mmap_locked = extra;
26cb63ad 4897
45bfb2e5 4898 ring_buffer_attach(event, rb);
ac9721f3 4899
45bfb2e5
PZ
4900 perf_event_init_userpage(event);
4901 perf_event_update_userpage(event);
4902 } else {
1a594131
AS
4903 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4904 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4905 if (!ret)
4906 rb->aux_mmap_locked = extra;
4907 }
9a0f05cb 4908
ebb3c4c4 4909unlock:
45bfb2e5
PZ
4910 if (!ret) {
4911 atomic_long_add(user_extra, &user->locked_vm);
4912 vma->vm_mm->pinned_vm += extra;
4913
ac9721f3 4914 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4915 } else if (rb) {
4916 atomic_dec(&rb->mmap_count);
4917 }
4918aux_unlock:
cdd6c482 4919 mutex_unlock(&event->mmap_mutex);
37d81828 4920
9bb5d40c
PZ
4921 /*
4922 * Since pinned accounting is per vm we cannot allow fork() to copy our
4923 * vma.
4924 */
26cb63ad 4925 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4926 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4927
1e0fb9ec
AL
4928 if (event->pmu->event_mapped)
4929 event->pmu->event_mapped(event);
4930
7b732a75 4931 return ret;
37d81828
PM
4932}
4933
3c446b3d
PZ
4934static int perf_fasync(int fd, struct file *filp, int on)
4935{
496ad9aa 4936 struct inode *inode = file_inode(filp);
cdd6c482 4937 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4938 int retval;
4939
5955102c 4940 inode_lock(inode);
cdd6c482 4941 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4942 inode_unlock(inode);
3c446b3d
PZ
4943
4944 if (retval < 0)
4945 return retval;
4946
4947 return 0;
4948}
4949
0793a61d 4950static const struct file_operations perf_fops = {
3326c1ce 4951 .llseek = no_llseek,
0793a61d
TG
4952 .release = perf_release,
4953 .read = perf_read,
4954 .poll = perf_poll,
d859e29f 4955 .unlocked_ioctl = perf_ioctl,
b3f20785 4956 .compat_ioctl = perf_compat_ioctl,
37d81828 4957 .mmap = perf_mmap,
3c446b3d 4958 .fasync = perf_fasync,
0793a61d
TG
4959};
4960
925d519a 4961/*
cdd6c482 4962 * Perf event wakeup
925d519a
PZ
4963 *
4964 * If there's data, ensure we set the poll() state and publish everything
4965 * to user-space before waking everybody up.
4966 */
4967
fed66e2c
PZ
4968static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4969{
4970 /* only the parent has fasync state */
4971 if (event->parent)
4972 event = event->parent;
4973 return &event->fasync;
4974}
4975
cdd6c482 4976void perf_event_wakeup(struct perf_event *event)
925d519a 4977{
10c6db11 4978 ring_buffer_wakeup(event);
4c9e2542 4979
cdd6c482 4980 if (event->pending_kill) {
fed66e2c 4981 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4982 event->pending_kill = 0;
4c9e2542 4983 }
925d519a
PZ
4984}
4985
e360adbe 4986static void perf_pending_event(struct irq_work *entry)
79f14641 4987{
cdd6c482
IM
4988 struct perf_event *event = container_of(entry,
4989 struct perf_event, pending);
d525211f
PZ
4990 int rctx;
4991
4992 rctx = perf_swevent_get_recursion_context();
4993 /*
4994 * If we 'fail' here, that's OK, it means recursion is already disabled
4995 * and we won't recurse 'further'.
4996 */
79f14641 4997
cdd6c482
IM
4998 if (event->pending_disable) {
4999 event->pending_disable = 0;
fae3fde6 5000 perf_event_disable_local(event);
79f14641
PZ
5001 }
5002
cdd6c482
IM
5003 if (event->pending_wakeup) {
5004 event->pending_wakeup = 0;
5005 perf_event_wakeup(event);
79f14641 5006 }
d525211f
PZ
5007
5008 if (rctx >= 0)
5009 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5010}
5011
39447b38
ZY
5012/*
5013 * We assume there is only KVM supporting the callbacks.
5014 * Later on, we might change it to a list if there is
5015 * another virtualization implementation supporting the callbacks.
5016 */
5017struct perf_guest_info_callbacks *perf_guest_cbs;
5018
5019int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5020{
5021 perf_guest_cbs = cbs;
5022 return 0;
5023}
5024EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5025
5026int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5027{
5028 perf_guest_cbs = NULL;
5029 return 0;
5030}
5031EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5032
4018994f
JO
5033static void
5034perf_output_sample_regs(struct perf_output_handle *handle,
5035 struct pt_regs *regs, u64 mask)
5036{
5037 int bit;
5038
5039 for_each_set_bit(bit, (const unsigned long *) &mask,
5040 sizeof(mask) * BITS_PER_BYTE) {
5041 u64 val;
5042
5043 val = perf_reg_value(regs, bit);
5044 perf_output_put(handle, val);
5045 }
5046}
5047
60e2364e 5048static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5049 struct pt_regs *regs,
5050 struct pt_regs *regs_user_copy)
4018994f 5051{
88a7c26a
AL
5052 if (user_mode(regs)) {
5053 regs_user->abi = perf_reg_abi(current);
2565711f 5054 regs_user->regs = regs;
88a7c26a
AL
5055 } else if (current->mm) {
5056 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5057 } else {
5058 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5059 regs_user->regs = NULL;
4018994f
JO
5060 }
5061}
5062
60e2364e
SE
5063static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5064 struct pt_regs *regs)
5065{
5066 regs_intr->regs = regs;
5067 regs_intr->abi = perf_reg_abi(current);
5068}
5069
5070
c5ebcedb
JO
5071/*
5072 * Get remaining task size from user stack pointer.
5073 *
5074 * It'd be better to take stack vma map and limit this more
5075 * precisly, but there's no way to get it safely under interrupt,
5076 * so using TASK_SIZE as limit.
5077 */
5078static u64 perf_ustack_task_size(struct pt_regs *regs)
5079{
5080 unsigned long addr = perf_user_stack_pointer(regs);
5081
5082 if (!addr || addr >= TASK_SIZE)
5083 return 0;
5084
5085 return TASK_SIZE - addr;
5086}
5087
5088static u16
5089perf_sample_ustack_size(u16 stack_size, u16 header_size,
5090 struct pt_regs *regs)
5091{
5092 u64 task_size;
5093
5094 /* No regs, no stack pointer, no dump. */
5095 if (!regs)
5096 return 0;
5097
5098 /*
5099 * Check if we fit in with the requested stack size into the:
5100 * - TASK_SIZE
5101 * If we don't, we limit the size to the TASK_SIZE.
5102 *
5103 * - remaining sample size
5104 * If we don't, we customize the stack size to
5105 * fit in to the remaining sample size.
5106 */
5107
5108 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5109 stack_size = min(stack_size, (u16) task_size);
5110
5111 /* Current header size plus static size and dynamic size. */
5112 header_size += 2 * sizeof(u64);
5113
5114 /* Do we fit in with the current stack dump size? */
5115 if ((u16) (header_size + stack_size) < header_size) {
5116 /*
5117 * If we overflow the maximum size for the sample,
5118 * we customize the stack dump size to fit in.
5119 */
5120 stack_size = USHRT_MAX - header_size - sizeof(u64);
5121 stack_size = round_up(stack_size, sizeof(u64));
5122 }
5123
5124 return stack_size;
5125}
5126
5127static void
5128perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5129 struct pt_regs *regs)
5130{
5131 /* Case of a kernel thread, nothing to dump */
5132 if (!regs) {
5133 u64 size = 0;
5134 perf_output_put(handle, size);
5135 } else {
5136 unsigned long sp;
5137 unsigned int rem;
5138 u64 dyn_size;
5139
5140 /*
5141 * We dump:
5142 * static size
5143 * - the size requested by user or the best one we can fit
5144 * in to the sample max size
5145 * data
5146 * - user stack dump data
5147 * dynamic size
5148 * - the actual dumped size
5149 */
5150
5151 /* Static size. */
5152 perf_output_put(handle, dump_size);
5153
5154 /* Data. */
5155 sp = perf_user_stack_pointer(regs);
5156 rem = __output_copy_user(handle, (void *) sp, dump_size);
5157 dyn_size = dump_size - rem;
5158
5159 perf_output_skip(handle, rem);
5160
5161 /* Dynamic size. */
5162 perf_output_put(handle, dyn_size);
5163 }
5164}
5165
c980d109
ACM
5166static void __perf_event_header__init_id(struct perf_event_header *header,
5167 struct perf_sample_data *data,
5168 struct perf_event *event)
6844c09d
ACM
5169{
5170 u64 sample_type = event->attr.sample_type;
5171
5172 data->type = sample_type;
5173 header->size += event->id_header_size;
5174
5175 if (sample_type & PERF_SAMPLE_TID) {
5176 /* namespace issues */
5177 data->tid_entry.pid = perf_event_pid(event, current);
5178 data->tid_entry.tid = perf_event_tid(event, current);
5179 }
5180
5181 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5182 data->time = perf_event_clock(event);
6844c09d 5183
ff3d527c 5184 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5185 data->id = primary_event_id(event);
5186
5187 if (sample_type & PERF_SAMPLE_STREAM_ID)
5188 data->stream_id = event->id;
5189
5190 if (sample_type & PERF_SAMPLE_CPU) {
5191 data->cpu_entry.cpu = raw_smp_processor_id();
5192 data->cpu_entry.reserved = 0;
5193 }
5194}
5195
76369139
FW
5196void perf_event_header__init_id(struct perf_event_header *header,
5197 struct perf_sample_data *data,
5198 struct perf_event *event)
c980d109
ACM
5199{
5200 if (event->attr.sample_id_all)
5201 __perf_event_header__init_id(header, data, event);
5202}
5203
5204static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5205 struct perf_sample_data *data)
5206{
5207 u64 sample_type = data->type;
5208
5209 if (sample_type & PERF_SAMPLE_TID)
5210 perf_output_put(handle, data->tid_entry);
5211
5212 if (sample_type & PERF_SAMPLE_TIME)
5213 perf_output_put(handle, data->time);
5214
5215 if (sample_type & PERF_SAMPLE_ID)
5216 perf_output_put(handle, data->id);
5217
5218 if (sample_type & PERF_SAMPLE_STREAM_ID)
5219 perf_output_put(handle, data->stream_id);
5220
5221 if (sample_type & PERF_SAMPLE_CPU)
5222 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5223
5224 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5225 perf_output_put(handle, data->id);
c980d109
ACM
5226}
5227
76369139
FW
5228void perf_event__output_id_sample(struct perf_event *event,
5229 struct perf_output_handle *handle,
5230 struct perf_sample_data *sample)
c980d109
ACM
5231{
5232 if (event->attr.sample_id_all)
5233 __perf_event__output_id_sample(handle, sample);
5234}
5235
3dab77fb 5236static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5237 struct perf_event *event,
5238 u64 enabled, u64 running)
3dab77fb 5239{
cdd6c482 5240 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5241 u64 values[4];
5242 int n = 0;
5243
b5e58793 5244 values[n++] = perf_event_count(event);
3dab77fb 5245 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5246 values[n++] = enabled +
cdd6c482 5247 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5248 }
5249 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5250 values[n++] = running +
cdd6c482 5251 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5252 }
5253 if (read_format & PERF_FORMAT_ID)
cdd6c482 5254 values[n++] = primary_event_id(event);
3dab77fb 5255
76369139 5256 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5257}
5258
5259/*
cdd6c482 5260 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5261 */
5262static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5263 struct perf_event *event,
5264 u64 enabled, u64 running)
3dab77fb 5265{
cdd6c482
IM
5266 struct perf_event *leader = event->group_leader, *sub;
5267 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5268 u64 values[5];
5269 int n = 0;
5270
5271 values[n++] = 1 + leader->nr_siblings;
5272
5273 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5274 values[n++] = enabled;
3dab77fb
PZ
5275
5276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5277 values[n++] = running;
3dab77fb 5278
cdd6c482 5279 if (leader != event)
3dab77fb
PZ
5280 leader->pmu->read(leader);
5281
b5e58793 5282 values[n++] = perf_event_count(leader);
3dab77fb 5283 if (read_format & PERF_FORMAT_ID)
cdd6c482 5284 values[n++] = primary_event_id(leader);
3dab77fb 5285
76369139 5286 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5287
65abc865 5288 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5289 n = 0;
5290
6f5ab001
JO
5291 if ((sub != event) &&
5292 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5293 sub->pmu->read(sub);
5294
b5e58793 5295 values[n++] = perf_event_count(sub);
3dab77fb 5296 if (read_format & PERF_FORMAT_ID)
cdd6c482 5297 values[n++] = primary_event_id(sub);
3dab77fb 5298
76369139 5299 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5300 }
5301}
5302
eed01528
SE
5303#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5304 PERF_FORMAT_TOTAL_TIME_RUNNING)
5305
3dab77fb 5306static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5307 struct perf_event *event)
3dab77fb 5308{
e3f3541c 5309 u64 enabled = 0, running = 0, now;
eed01528
SE
5310 u64 read_format = event->attr.read_format;
5311
5312 /*
5313 * compute total_time_enabled, total_time_running
5314 * based on snapshot values taken when the event
5315 * was last scheduled in.
5316 *
5317 * we cannot simply called update_context_time()
5318 * because of locking issue as we are called in
5319 * NMI context
5320 */
c4794295 5321 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5322 calc_timer_values(event, &now, &enabled, &running);
eed01528 5323
cdd6c482 5324 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5325 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5326 else
eed01528 5327 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5328}
5329
5622f295
MM
5330void perf_output_sample(struct perf_output_handle *handle,
5331 struct perf_event_header *header,
5332 struct perf_sample_data *data,
cdd6c482 5333 struct perf_event *event)
5622f295
MM
5334{
5335 u64 sample_type = data->type;
5336
5337 perf_output_put(handle, *header);
5338
ff3d527c
AH
5339 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5340 perf_output_put(handle, data->id);
5341
5622f295
MM
5342 if (sample_type & PERF_SAMPLE_IP)
5343 perf_output_put(handle, data->ip);
5344
5345 if (sample_type & PERF_SAMPLE_TID)
5346 perf_output_put(handle, data->tid_entry);
5347
5348 if (sample_type & PERF_SAMPLE_TIME)
5349 perf_output_put(handle, data->time);
5350
5351 if (sample_type & PERF_SAMPLE_ADDR)
5352 perf_output_put(handle, data->addr);
5353
5354 if (sample_type & PERF_SAMPLE_ID)
5355 perf_output_put(handle, data->id);
5356
5357 if (sample_type & PERF_SAMPLE_STREAM_ID)
5358 perf_output_put(handle, data->stream_id);
5359
5360 if (sample_type & PERF_SAMPLE_CPU)
5361 perf_output_put(handle, data->cpu_entry);
5362
5363 if (sample_type & PERF_SAMPLE_PERIOD)
5364 perf_output_put(handle, data->period);
5365
5366 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5367 perf_output_read(handle, event);
5622f295
MM
5368
5369 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5370 if (data->callchain) {
5371 int size = 1;
5372
5373 if (data->callchain)
5374 size += data->callchain->nr;
5375
5376 size *= sizeof(u64);
5377
76369139 5378 __output_copy(handle, data->callchain, size);
5622f295
MM
5379 } else {
5380 u64 nr = 0;
5381 perf_output_put(handle, nr);
5382 }
5383 }
5384
5385 if (sample_type & PERF_SAMPLE_RAW) {
5386 if (data->raw) {
fa128e6a
AS
5387 u32 raw_size = data->raw->size;
5388 u32 real_size = round_up(raw_size + sizeof(u32),
5389 sizeof(u64)) - sizeof(u32);
5390 u64 zero = 0;
5391
5392 perf_output_put(handle, real_size);
5393 __output_copy(handle, data->raw->data, raw_size);
5394 if (real_size - raw_size)
5395 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5396 } else {
5397 struct {
5398 u32 size;
5399 u32 data;
5400 } raw = {
5401 .size = sizeof(u32),
5402 .data = 0,
5403 };
5404 perf_output_put(handle, raw);
5405 }
5406 }
a7ac67ea 5407
bce38cd5
SE
5408 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5409 if (data->br_stack) {
5410 size_t size;
5411
5412 size = data->br_stack->nr
5413 * sizeof(struct perf_branch_entry);
5414
5415 perf_output_put(handle, data->br_stack->nr);
5416 perf_output_copy(handle, data->br_stack->entries, size);
5417 } else {
5418 /*
5419 * we always store at least the value of nr
5420 */
5421 u64 nr = 0;
5422 perf_output_put(handle, nr);
5423 }
5424 }
4018994f
JO
5425
5426 if (sample_type & PERF_SAMPLE_REGS_USER) {
5427 u64 abi = data->regs_user.abi;
5428
5429 /*
5430 * If there are no regs to dump, notice it through
5431 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5432 */
5433 perf_output_put(handle, abi);
5434
5435 if (abi) {
5436 u64 mask = event->attr.sample_regs_user;
5437 perf_output_sample_regs(handle,
5438 data->regs_user.regs,
5439 mask);
5440 }
5441 }
c5ebcedb 5442
a5cdd40c 5443 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5444 perf_output_sample_ustack(handle,
5445 data->stack_user_size,
5446 data->regs_user.regs);
a5cdd40c 5447 }
c3feedf2
AK
5448
5449 if (sample_type & PERF_SAMPLE_WEIGHT)
5450 perf_output_put(handle, data->weight);
d6be9ad6
SE
5451
5452 if (sample_type & PERF_SAMPLE_DATA_SRC)
5453 perf_output_put(handle, data->data_src.val);
a5cdd40c 5454
fdfbbd07
AK
5455 if (sample_type & PERF_SAMPLE_TRANSACTION)
5456 perf_output_put(handle, data->txn);
5457
60e2364e
SE
5458 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5459 u64 abi = data->regs_intr.abi;
5460 /*
5461 * If there are no regs to dump, notice it through
5462 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5463 */
5464 perf_output_put(handle, abi);
5465
5466 if (abi) {
5467 u64 mask = event->attr.sample_regs_intr;
5468
5469 perf_output_sample_regs(handle,
5470 data->regs_intr.regs,
5471 mask);
5472 }
5473 }
5474
a5cdd40c
PZ
5475 if (!event->attr.watermark) {
5476 int wakeup_events = event->attr.wakeup_events;
5477
5478 if (wakeup_events) {
5479 struct ring_buffer *rb = handle->rb;
5480 int events = local_inc_return(&rb->events);
5481
5482 if (events >= wakeup_events) {
5483 local_sub(wakeup_events, &rb->events);
5484 local_inc(&rb->wakeup);
5485 }
5486 }
5487 }
5622f295
MM
5488}
5489
5490void perf_prepare_sample(struct perf_event_header *header,
5491 struct perf_sample_data *data,
cdd6c482 5492 struct perf_event *event,
5622f295 5493 struct pt_regs *regs)
7b732a75 5494{
cdd6c482 5495 u64 sample_type = event->attr.sample_type;
7b732a75 5496
cdd6c482 5497 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5498 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5499
5500 header->misc = 0;
5501 header->misc |= perf_misc_flags(regs);
6fab0192 5502
c980d109 5503 __perf_event_header__init_id(header, data, event);
6844c09d 5504
c320c7b7 5505 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5506 data->ip = perf_instruction_pointer(regs);
5507
b23f3325 5508 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5509 int size = 1;
394ee076 5510
e6dab5ff 5511 data->callchain = perf_callchain(event, regs);
5622f295
MM
5512
5513 if (data->callchain)
5514 size += data->callchain->nr;
5515
5516 header->size += size * sizeof(u64);
394ee076
PZ
5517 }
5518
3a43ce68 5519 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5520 int size = sizeof(u32);
5521
5522 if (data->raw)
5523 size += data->raw->size;
5524 else
5525 size += sizeof(u32);
5526
fa128e6a 5527 header->size += round_up(size, sizeof(u64));
7f453c24 5528 }
bce38cd5
SE
5529
5530 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5531 int size = sizeof(u64); /* nr */
5532 if (data->br_stack) {
5533 size += data->br_stack->nr
5534 * sizeof(struct perf_branch_entry);
5535 }
5536 header->size += size;
5537 }
4018994f 5538
2565711f 5539 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5540 perf_sample_regs_user(&data->regs_user, regs,
5541 &data->regs_user_copy);
2565711f 5542
4018994f
JO
5543 if (sample_type & PERF_SAMPLE_REGS_USER) {
5544 /* regs dump ABI info */
5545 int size = sizeof(u64);
5546
4018994f
JO
5547 if (data->regs_user.regs) {
5548 u64 mask = event->attr.sample_regs_user;
5549 size += hweight64(mask) * sizeof(u64);
5550 }
5551
5552 header->size += size;
5553 }
c5ebcedb
JO
5554
5555 if (sample_type & PERF_SAMPLE_STACK_USER) {
5556 /*
5557 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5558 * processed as the last one or have additional check added
5559 * in case new sample type is added, because we could eat
5560 * up the rest of the sample size.
5561 */
c5ebcedb
JO
5562 u16 stack_size = event->attr.sample_stack_user;
5563 u16 size = sizeof(u64);
5564
c5ebcedb 5565 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5566 data->regs_user.regs);
c5ebcedb
JO
5567
5568 /*
5569 * If there is something to dump, add space for the dump
5570 * itself and for the field that tells the dynamic size,
5571 * which is how many have been actually dumped.
5572 */
5573 if (stack_size)
5574 size += sizeof(u64) + stack_size;
5575
5576 data->stack_user_size = stack_size;
5577 header->size += size;
5578 }
60e2364e
SE
5579
5580 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5581 /* regs dump ABI info */
5582 int size = sizeof(u64);
5583
5584 perf_sample_regs_intr(&data->regs_intr, regs);
5585
5586 if (data->regs_intr.regs) {
5587 u64 mask = event->attr.sample_regs_intr;
5588
5589 size += hweight64(mask) * sizeof(u64);
5590 }
5591
5592 header->size += size;
5593 }
5622f295 5594}
7f453c24 5595
21509084
YZ
5596void perf_event_output(struct perf_event *event,
5597 struct perf_sample_data *data,
5598 struct pt_regs *regs)
5622f295
MM
5599{
5600 struct perf_output_handle handle;
5601 struct perf_event_header header;
689802b2 5602
927c7a9e
FW
5603 /* protect the callchain buffers */
5604 rcu_read_lock();
5605
cdd6c482 5606 perf_prepare_sample(&header, data, event, regs);
5c148194 5607
a7ac67ea 5608 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5609 goto exit;
0322cd6e 5610
cdd6c482 5611 perf_output_sample(&handle, &header, data, event);
f413cdb8 5612
8a057d84 5613 perf_output_end(&handle);
927c7a9e
FW
5614
5615exit:
5616 rcu_read_unlock();
0322cd6e
PZ
5617}
5618
38b200d6 5619/*
cdd6c482 5620 * read event_id
38b200d6
PZ
5621 */
5622
5623struct perf_read_event {
5624 struct perf_event_header header;
5625
5626 u32 pid;
5627 u32 tid;
38b200d6
PZ
5628};
5629
5630static void
cdd6c482 5631perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5632 struct task_struct *task)
5633{
5634 struct perf_output_handle handle;
c980d109 5635 struct perf_sample_data sample;
dfc65094 5636 struct perf_read_event read_event = {
38b200d6 5637 .header = {
cdd6c482 5638 .type = PERF_RECORD_READ,
38b200d6 5639 .misc = 0,
c320c7b7 5640 .size = sizeof(read_event) + event->read_size,
38b200d6 5641 },
cdd6c482
IM
5642 .pid = perf_event_pid(event, task),
5643 .tid = perf_event_tid(event, task),
38b200d6 5644 };
3dab77fb 5645 int ret;
38b200d6 5646
c980d109 5647 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5648 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5649 if (ret)
5650 return;
5651
dfc65094 5652 perf_output_put(&handle, read_event);
cdd6c482 5653 perf_output_read(&handle, event);
c980d109 5654 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5655
38b200d6
PZ
5656 perf_output_end(&handle);
5657}
5658
52d857a8
JO
5659typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5660
5661static void
5662perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5663 perf_event_aux_output_cb output,
5664 void *data)
5665{
5666 struct perf_event *event;
5667
5668 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5669 if (event->state < PERF_EVENT_STATE_INACTIVE)
5670 continue;
5671 if (!event_filter_match(event))
5672 continue;
67516844 5673 output(event, data);
52d857a8
JO
5674 }
5675}
5676
4e93ad60
JO
5677static void
5678perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5679 struct perf_event_context *task_ctx)
5680{
5681 rcu_read_lock();
5682 preempt_disable();
5683 perf_event_aux_ctx(task_ctx, output, data);
5684 preempt_enable();
5685 rcu_read_unlock();
5686}
5687
52d857a8 5688static void
67516844 5689perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5690 struct perf_event_context *task_ctx)
5691{
5692 struct perf_cpu_context *cpuctx;
5693 struct perf_event_context *ctx;
5694 struct pmu *pmu;
5695 int ctxn;
5696
4e93ad60
JO
5697 /*
5698 * If we have task_ctx != NULL we only notify
5699 * the task context itself. The task_ctx is set
5700 * only for EXIT events before releasing task
5701 * context.
5702 */
5703 if (task_ctx) {
5704 perf_event_aux_task_ctx(output, data, task_ctx);
5705 return;
5706 }
5707
52d857a8
JO
5708 rcu_read_lock();
5709 list_for_each_entry_rcu(pmu, &pmus, entry) {
5710 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5711 if (cpuctx->unique_pmu != pmu)
5712 goto next;
67516844 5713 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5714 ctxn = pmu->task_ctx_nr;
5715 if (ctxn < 0)
5716 goto next;
5717 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5718 if (ctx)
67516844 5719 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5720next:
5721 put_cpu_ptr(pmu->pmu_cpu_context);
5722 }
52d857a8
JO
5723 rcu_read_unlock();
5724}
5725
60313ebe 5726/*
9f498cc5
PZ
5727 * task tracking -- fork/exit
5728 *
13d7a241 5729 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5730 */
5731
9f498cc5 5732struct perf_task_event {
3a80b4a3 5733 struct task_struct *task;
cdd6c482 5734 struct perf_event_context *task_ctx;
60313ebe
PZ
5735
5736 struct {
5737 struct perf_event_header header;
5738
5739 u32 pid;
5740 u32 ppid;
9f498cc5
PZ
5741 u32 tid;
5742 u32 ptid;
393b2ad8 5743 u64 time;
cdd6c482 5744 } event_id;
60313ebe
PZ
5745};
5746
67516844
JO
5747static int perf_event_task_match(struct perf_event *event)
5748{
13d7a241
SE
5749 return event->attr.comm || event->attr.mmap ||
5750 event->attr.mmap2 || event->attr.mmap_data ||
5751 event->attr.task;
67516844
JO
5752}
5753
cdd6c482 5754static void perf_event_task_output(struct perf_event *event,
52d857a8 5755 void *data)
60313ebe 5756{
52d857a8 5757 struct perf_task_event *task_event = data;
60313ebe 5758 struct perf_output_handle handle;
c980d109 5759 struct perf_sample_data sample;
9f498cc5 5760 struct task_struct *task = task_event->task;
c980d109 5761 int ret, size = task_event->event_id.header.size;
8bb39f9a 5762
67516844
JO
5763 if (!perf_event_task_match(event))
5764 return;
5765
c980d109 5766 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5767
c980d109 5768 ret = perf_output_begin(&handle, event,
a7ac67ea 5769 task_event->event_id.header.size);
ef60777c 5770 if (ret)
c980d109 5771 goto out;
60313ebe 5772
cdd6c482
IM
5773 task_event->event_id.pid = perf_event_pid(event, task);
5774 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5775
cdd6c482
IM
5776 task_event->event_id.tid = perf_event_tid(event, task);
5777 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5778
34f43927
PZ
5779 task_event->event_id.time = perf_event_clock(event);
5780
cdd6c482 5781 perf_output_put(&handle, task_event->event_id);
393b2ad8 5782
c980d109
ACM
5783 perf_event__output_id_sample(event, &handle, &sample);
5784
60313ebe 5785 perf_output_end(&handle);
c980d109
ACM
5786out:
5787 task_event->event_id.header.size = size;
60313ebe
PZ
5788}
5789
cdd6c482
IM
5790static void perf_event_task(struct task_struct *task,
5791 struct perf_event_context *task_ctx,
3a80b4a3 5792 int new)
60313ebe 5793{
9f498cc5 5794 struct perf_task_event task_event;
60313ebe 5795
cdd6c482
IM
5796 if (!atomic_read(&nr_comm_events) &&
5797 !atomic_read(&nr_mmap_events) &&
5798 !atomic_read(&nr_task_events))
60313ebe
PZ
5799 return;
5800
9f498cc5 5801 task_event = (struct perf_task_event){
3a80b4a3
PZ
5802 .task = task,
5803 .task_ctx = task_ctx,
cdd6c482 5804 .event_id = {
60313ebe 5805 .header = {
cdd6c482 5806 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5807 .misc = 0,
cdd6c482 5808 .size = sizeof(task_event.event_id),
60313ebe 5809 },
573402db
PZ
5810 /* .pid */
5811 /* .ppid */
9f498cc5
PZ
5812 /* .tid */
5813 /* .ptid */
34f43927 5814 /* .time */
60313ebe
PZ
5815 },
5816 };
5817
67516844 5818 perf_event_aux(perf_event_task_output,
52d857a8
JO
5819 &task_event,
5820 task_ctx);
9f498cc5
PZ
5821}
5822
cdd6c482 5823void perf_event_fork(struct task_struct *task)
9f498cc5 5824{
cdd6c482 5825 perf_event_task(task, NULL, 1);
60313ebe
PZ
5826}
5827
8d1b2d93
PZ
5828/*
5829 * comm tracking
5830 */
5831
5832struct perf_comm_event {
22a4f650
IM
5833 struct task_struct *task;
5834 char *comm;
8d1b2d93
PZ
5835 int comm_size;
5836
5837 struct {
5838 struct perf_event_header header;
5839
5840 u32 pid;
5841 u32 tid;
cdd6c482 5842 } event_id;
8d1b2d93
PZ
5843};
5844
67516844
JO
5845static int perf_event_comm_match(struct perf_event *event)
5846{
5847 return event->attr.comm;
5848}
5849
cdd6c482 5850static void perf_event_comm_output(struct perf_event *event,
52d857a8 5851 void *data)
8d1b2d93 5852{
52d857a8 5853 struct perf_comm_event *comm_event = data;
8d1b2d93 5854 struct perf_output_handle handle;
c980d109 5855 struct perf_sample_data sample;
cdd6c482 5856 int size = comm_event->event_id.header.size;
c980d109
ACM
5857 int ret;
5858
67516844
JO
5859 if (!perf_event_comm_match(event))
5860 return;
5861
c980d109
ACM
5862 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5863 ret = perf_output_begin(&handle, event,
a7ac67ea 5864 comm_event->event_id.header.size);
8d1b2d93
PZ
5865
5866 if (ret)
c980d109 5867 goto out;
8d1b2d93 5868
cdd6c482
IM
5869 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5870 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5871
cdd6c482 5872 perf_output_put(&handle, comm_event->event_id);
76369139 5873 __output_copy(&handle, comm_event->comm,
8d1b2d93 5874 comm_event->comm_size);
c980d109
ACM
5875
5876 perf_event__output_id_sample(event, &handle, &sample);
5877
8d1b2d93 5878 perf_output_end(&handle);
c980d109
ACM
5879out:
5880 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5881}
5882
cdd6c482 5883static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5884{
413ee3b4 5885 char comm[TASK_COMM_LEN];
8d1b2d93 5886 unsigned int size;
8d1b2d93 5887
413ee3b4 5888 memset(comm, 0, sizeof(comm));
96b02d78 5889 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5890 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5891
5892 comm_event->comm = comm;
5893 comm_event->comm_size = size;
5894
cdd6c482 5895 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5896
67516844 5897 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5898 comm_event,
5899 NULL);
8d1b2d93
PZ
5900}
5901
82b89778 5902void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5903{
9ee318a7
PZ
5904 struct perf_comm_event comm_event;
5905
cdd6c482 5906 if (!atomic_read(&nr_comm_events))
9ee318a7 5907 return;
a63eaf34 5908
9ee318a7 5909 comm_event = (struct perf_comm_event){
8d1b2d93 5910 .task = task,
573402db
PZ
5911 /* .comm */
5912 /* .comm_size */
cdd6c482 5913 .event_id = {
573402db 5914 .header = {
cdd6c482 5915 .type = PERF_RECORD_COMM,
82b89778 5916 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5917 /* .size */
5918 },
5919 /* .pid */
5920 /* .tid */
8d1b2d93
PZ
5921 },
5922 };
5923
cdd6c482 5924 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5925}
5926
0a4a9391
PZ
5927/*
5928 * mmap tracking
5929 */
5930
5931struct perf_mmap_event {
089dd79d
PZ
5932 struct vm_area_struct *vma;
5933
5934 const char *file_name;
5935 int file_size;
13d7a241
SE
5936 int maj, min;
5937 u64 ino;
5938 u64 ino_generation;
f972eb63 5939 u32 prot, flags;
0a4a9391
PZ
5940
5941 struct {
5942 struct perf_event_header header;
5943
5944 u32 pid;
5945 u32 tid;
5946 u64 start;
5947 u64 len;
5948 u64 pgoff;
cdd6c482 5949 } event_id;
0a4a9391
PZ
5950};
5951
67516844
JO
5952static int perf_event_mmap_match(struct perf_event *event,
5953 void *data)
5954{
5955 struct perf_mmap_event *mmap_event = data;
5956 struct vm_area_struct *vma = mmap_event->vma;
5957 int executable = vma->vm_flags & VM_EXEC;
5958
5959 return (!executable && event->attr.mmap_data) ||
13d7a241 5960 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5961}
5962
cdd6c482 5963static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5964 void *data)
0a4a9391 5965{
52d857a8 5966 struct perf_mmap_event *mmap_event = data;
0a4a9391 5967 struct perf_output_handle handle;
c980d109 5968 struct perf_sample_data sample;
cdd6c482 5969 int size = mmap_event->event_id.header.size;
c980d109 5970 int ret;
0a4a9391 5971
67516844
JO
5972 if (!perf_event_mmap_match(event, data))
5973 return;
5974
13d7a241
SE
5975 if (event->attr.mmap2) {
5976 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5977 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5978 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5979 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5980 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5981 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5982 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5983 }
5984
c980d109
ACM
5985 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5986 ret = perf_output_begin(&handle, event,
a7ac67ea 5987 mmap_event->event_id.header.size);
0a4a9391 5988 if (ret)
c980d109 5989 goto out;
0a4a9391 5990
cdd6c482
IM
5991 mmap_event->event_id.pid = perf_event_pid(event, current);
5992 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5993
cdd6c482 5994 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5995
5996 if (event->attr.mmap2) {
5997 perf_output_put(&handle, mmap_event->maj);
5998 perf_output_put(&handle, mmap_event->min);
5999 perf_output_put(&handle, mmap_event->ino);
6000 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6001 perf_output_put(&handle, mmap_event->prot);
6002 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6003 }
6004
76369139 6005 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6006 mmap_event->file_size);
c980d109
ACM
6007
6008 perf_event__output_id_sample(event, &handle, &sample);
6009
78d613eb 6010 perf_output_end(&handle);
c980d109
ACM
6011out:
6012 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6013}
6014
cdd6c482 6015static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6016{
089dd79d
PZ
6017 struct vm_area_struct *vma = mmap_event->vma;
6018 struct file *file = vma->vm_file;
13d7a241
SE
6019 int maj = 0, min = 0;
6020 u64 ino = 0, gen = 0;
f972eb63 6021 u32 prot = 0, flags = 0;
0a4a9391
PZ
6022 unsigned int size;
6023 char tmp[16];
6024 char *buf = NULL;
2c42cfbf 6025 char *name;
413ee3b4 6026
0a4a9391 6027 if (file) {
13d7a241
SE
6028 struct inode *inode;
6029 dev_t dev;
3ea2f2b9 6030
2c42cfbf 6031 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6032 if (!buf) {
c7e548b4
ON
6033 name = "//enomem";
6034 goto cpy_name;
0a4a9391 6035 }
413ee3b4 6036 /*
3ea2f2b9 6037 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6038 * need to add enough zero bytes after the string to handle
6039 * the 64bit alignment we do later.
6040 */
9bf39ab2 6041 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6042 if (IS_ERR(name)) {
c7e548b4
ON
6043 name = "//toolong";
6044 goto cpy_name;
0a4a9391 6045 }
13d7a241
SE
6046 inode = file_inode(vma->vm_file);
6047 dev = inode->i_sb->s_dev;
6048 ino = inode->i_ino;
6049 gen = inode->i_generation;
6050 maj = MAJOR(dev);
6051 min = MINOR(dev);
f972eb63
PZ
6052
6053 if (vma->vm_flags & VM_READ)
6054 prot |= PROT_READ;
6055 if (vma->vm_flags & VM_WRITE)
6056 prot |= PROT_WRITE;
6057 if (vma->vm_flags & VM_EXEC)
6058 prot |= PROT_EXEC;
6059
6060 if (vma->vm_flags & VM_MAYSHARE)
6061 flags = MAP_SHARED;
6062 else
6063 flags = MAP_PRIVATE;
6064
6065 if (vma->vm_flags & VM_DENYWRITE)
6066 flags |= MAP_DENYWRITE;
6067 if (vma->vm_flags & VM_MAYEXEC)
6068 flags |= MAP_EXECUTABLE;
6069 if (vma->vm_flags & VM_LOCKED)
6070 flags |= MAP_LOCKED;
6071 if (vma->vm_flags & VM_HUGETLB)
6072 flags |= MAP_HUGETLB;
6073
c7e548b4 6074 goto got_name;
0a4a9391 6075 } else {
fbe26abe
JO
6076 if (vma->vm_ops && vma->vm_ops->name) {
6077 name = (char *) vma->vm_ops->name(vma);
6078 if (name)
6079 goto cpy_name;
6080 }
6081
2c42cfbf 6082 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6083 if (name)
6084 goto cpy_name;
089dd79d 6085
32c5fb7e 6086 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6087 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6088 name = "[heap]";
6089 goto cpy_name;
32c5fb7e
ON
6090 }
6091 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6092 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6093 name = "[stack]";
6094 goto cpy_name;
089dd79d
PZ
6095 }
6096
c7e548b4
ON
6097 name = "//anon";
6098 goto cpy_name;
0a4a9391
PZ
6099 }
6100
c7e548b4
ON
6101cpy_name:
6102 strlcpy(tmp, name, sizeof(tmp));
6103 name = tmp;
0a4a9391 6104got_name:
2c42cfbf
PZ
6105 /*
6106 * Since our buffer works in 8 byte units we need to align our string
6107 * size to a multiple of 8. However, we must guarantee the tail end is
6108 * zero'd out to avoid leaking random bits to userspace.
6109 */
6110 size = strlen(name)+1;
6111 while (!IS_ALIGNED(size, sizeof(u64)))
6112 name[size++] = '\0';
0a4a9391
PZ
6113
6114 mmap_event->file_name = name;
6115 mmap_event->file_size = size;
13d7a241
SE
6116 mmap_event->maj = maj;
6117 mmap_event->min = min;
6118 mmap_event->ino = ino;
6119 mmap_event->ino_generation = gen;
f972eb63
PZ
6120 mmap_event->prot = prot;
6121 mmap_event->flags = flags;
0a4a9391 6122
2fe85427
SE
6123 if (!(vma->vm_flags & VM_EXEC))
6124 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6125
cdd6c482 6126 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6127
67516844 6128 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6129 mmap_event,
6130 NULL);
665c2142 6131
0a4a9391
PZ
6132 kfree(buf);
6133}
6134
3af9e859 6135void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6136{
9ee318a7
PZ
6137 struct perf_mmap_event mmap_event;
6138
cdd6c482 6139 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6140 return;
6141
6142 mmap_event = (struct perf_mmap_event){
089dd79d 6143 .vma = vma,
573402db
PZ
6144 /* .file_name */
6145 /* .file_size */
cdd6c482 6146 .event_id = {
573402db 6147 .header = {
cdd6c482 6148 .type = PERF_RECORD_MMAP,
39447b38 6149 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6150 /* .size */
6151 },
6152 /* .pid */
6153 /* .tid */
089dd79d
PZ
6154 .start = vma->vm_start,
6155 .len = vma->vm_end - vma->vm_start,
3a0304e9 6156 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6157 },
13d7a241
SE
6158 /* .maj (attr_mmap2 only) */
6159 /* .min (attr_mmap2 only) */
6160 /* .ino (attr_mmap2 only) */
6161 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6162 /* .prot (attr_mmap2 only) */
6163 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6164 };
6165
cdd6c482 6166 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6167}
6168
68db7e98
AS
6169void perf_event_aux_event(struct perf_event *event, unsigned long head,
6170 unsigned long size, u64 flags)
6171{
6172 struct perf_output_handle handle;
6173 struct perf_sample_data sample;
6174 struct perf_aux_event {
6175 struct perf_event_header header;
6176 u64 offset;
6177 u64 size;
6178 u64 flags;
6179 } rec = {
6180 .header = {
6181 .type = PERF_RECORD_AUX,
6182 .misc = 0,
6183 .size = sizeof(rec),
6184 },
6185 .offset = head,
6186 .size = size,
6187 .flags = flags,
6188 };
6189 int ret;
6190
6191 perf_event_header__init_id(&rec.header, &sample, event);
6192 ret = perf_output_begin(&handle, event, rec.header.size);
6193
6194 if (ret)
6195 return;
6196
6197 perf_output_put(&handle, rec);
6198 perf_event__output_id_sample(event, &handle, &sample);
6199
6200 perf_output_end(&handle);
6201}
6202
f38b0dbb
KL
6203/*
6204 * Lost/dropped samples logging
6205 */
6206void perf_log_lost_samples(struct perf_event *event, u64 lost)
6207{
6208 struct perf_output_handle handle;
6209 struct perf_sample_data sample;
6210 int ret;
6211
6212 struct {
6213 struct perf_event_header header;
6214 u64 lost;
6215 } lost_samples_event = {
6216 .header = {
6217 .type = PERF_RECORD_LOST_SAMPLES,
6218 .misc = 0,
6219 .size = sizeof(lost_samples_event),
6220 },
6221 .lost = lost,
6222 };
6223
6224 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6225
6226 ret = perf_output_begin(&handle, event,
6227 lost_samples_event.header.size);
6228 if (ret)
6229 return;
6230
6231 perf_output_put(&handle, lost_samples_event);
6232 perf_event__output_id_sample(event, &handle, &sample);
6233 perf_output_end(&handle);
6234}
6235
45ac1403
AH
6236/*
6237 * context_switch tracking
6238 */
6239
6240struct perf_switch_event {
6241 struct task_struct *task;
6242 struct task_struct *next_prev;
6243
6244 struct {
6245 struct perf_event_header header;
6246 u32 next_prev_pid;
6247 u32 next_prev_tid;
6248 } event_id;
6249};
6250
6251static int perf_event_switch_match(struct perf_event *event)
6252{
6253 return event->attr.context_switch;
6254}
6255
6256static void perf_event_switch_output(struct perf_event *event, void *data)
6257{
6258 struct perf_switch_event *se = data;
6259 struct perf_output_handle handle;
6260 struct perf_sample_data sample;
6261 int ret;
6262
6263 if (!perf_event_switch_match(event))
6264 return;
6265
6266 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6267 if (event->ctx->task) {
6268 se->event_id.header.type = PERF_RECORD_SWITCH;
6269 se->event_id.header.size = sizeof(se->event_id.header);
6270 } else {
6271 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6272 se->event_id.header.size = sizeof(se->event_id);
6273 se->event_id.next_prev_pid =
6274 perf_event_pid(event, se->next_prev);
6275 se->event_id.next_prev_tid =
6276 perf_event_tid(event, se->next_prev);
6277 }
6278
6279 perf_event_header__init_id(&se->event_id.header, &sample, event);
6280
6281 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6282 if (ret)
6283 return;
6284
6285 if (event->ctx->task)
6286 perf_output_put(&handle, se->event_id.header);
6287 else
6288 perf_output_put(&handle, se->event_id);
6289
6290 perf_event__output_id_sample(event, &handle, &sample);
6291
6292 perf_output_end(&handle);
6293}
6294
6295static void perf_event_switch(struct task_struct *task,
6296 struct task_struct *next_prev, bool sched_in)
6297{
6298 struct perf_switch_event switch_event;
6299
6300 /* N.B. caller checks nr_switch_events != 0 */
6301
6302 switch_event = (struct perf_switch_event){
6303 .task = task,
6304 .next_prev = next_prev,
6305 .event_id = {
6306 .header = {
6307 /* .type */
6308 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6309 /* .size */
6310 },
6311 /* .next_prev_pid */
6312 /* .next_prev_tid */
6313 },
6314 };
6315
6316 perf_event_aux(perf_event_switch_output,
6317 &switch_event,
6318 NULL);
6319}
6320
a78ac325
PZ
6321/*
6322 * IRQ throttle logging
6323 */
6324
cdd6c482 6325static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6326{
6327 struct perf_output_handle handle;
c980d109 6328 struct perf_sample_data sample;
a78ac325
PZ
6329 int ret;
6330
6331 struct {
6332 struct perf_event_header header;
6333 u64 time;
cca3f454 6334 u64 id;
7f453c24 6335 u64 stream_id;
a78ac325
PZ
6336 } throttle_event = {
6337 .header = {
cdd6c482 6338 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6339 .misc = 0,
6340 .size = sizeof(throttle_event),
6341 },
34f43927 6342 .time = perf_event_clock(event),
cdd6c482
IM
6343 .id = primary_event_id(event),
6344 .stream_id = event->id,
a78ac325
PZ
6345 };
6346
966ee4d6 6347 if (enable)
cdd6c482 6348 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6349
c980d109
ACM
6350 perf_event_header__init_id(&throttle_event.header, &sample, event);
6351
6352 ret = perf_output_begin(&handle, event,
a7ac67ea 6353 throttle_event.header.size);
a78ac325
PZ
6354 if (ret)
6355 return;
6356
6357 perf_output_put(&handle, throttle_event);
c980d109 6358 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6359 perf_output_end(&handle);
6360}
6361
ec0d7729
AS
6362static void perf_log_itrace_start(struct perf_event *event)
6363{
6364 struct perf_output_handle handle;
6365 struct perf_sample_data sample;
6366 struct perf_aux_event {
6367 struct perf_event_header header;
6368 u32 pid;
6369 u32 tid;
6370 } rec;
6371 int ret;
6372
6373 if (event->parent)
6374 event = event->parent;
6375
6376 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6377 event->hw.itrace_started)
6378 return;
6379
ec0d7729
AS
6380 rec.header.type = PERF_RECORD_ITRACE_START;
6381 rec.header.misc = 0;
6382 rec.header.size = sizeof(rec);
6383 rec.pid = perf_event_pid(event, current);
6384 rec.tid = perf_event_tid(event, current);
6385
6386 perf_event_header__init_id(&rec.header, &sample, event);
6387 ret = perf_output_begin(&handle, event, rec.header.size);
6388
6389 if (ret)
6390 return;
6391
6392 perf_output_put(&handle, rec);
6393 perf_event__output_id_sample(event, &handle, &sample);
6394
6395 perf_output_end(&handle);
6396}
6397
f6c7d5fe 6398/*
cdd6c482 6399 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6400 */
6401
a8b0ca17 6402static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6403 int throttle, struct perf_sample_data *data,
6404 struct pt_regs *regs)
f6c7d5fe 6405{
cdd6c482
IM
6406 int events = atomic_read(&event->event_limit);
6407 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6408 u64 seq;
79f14641
PZ
6409 int ret = 0;
6410
96398826
PZ
6411 /*
6412 * Non-sampling counters might still use the PMI to fold short
6413 * hardware counters, ignore those.
6414 */
6415 if (unlikely(!is_sampling_event(event)))
6416 return 0;
6417
e050e3f0
SE
6418 seq = __this_cpu_read(perf_throttled_seq);
6419 if (seq != hwc->interrupts_seq) {
6420 hwc->interrupts_seq = seq;
6421 hwc->interrupts = 1;
6422 } else {
6423 hwc->interrupts++;
6424 if (unlikely(throttle
6425 && hwc->interrupts >= max_samples_per_tick)) {
6426 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6427 hwc->interrupts = MAX_INTERRUPTS;
6428 perf_log_throttle(event, 0);
d84153d6 6429 tick_nohz_full_kick();
a78ac325
PZ
6430 ret = 1;
6431 }
e050e3f0 6432 }
60db5e09 6433
cdd6c482 6434 if (event->attr.freq) {
def0a9b2 6435 u64 now = perf_clock();
abd50713 6436 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6437
abd50713 6438 hwc->freq_time_stamp = now;
bd2b5b12 6439
abd50713 6440 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6441 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6442 }
6443
2023b359
PZ
6444 /*
6445 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6446 * events
2023b359
PZ
6447 */
6448
cdd6c482
IM
6449 event->pending_kill = POLL_IN;
6450 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6451 ret = 1;
cdd6c482 6452 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6453 event->pending_disable = 1;
6454 irq_work_queue(&event->pending);
79f14641
PZ
6455 }
6456
453f19ee 6457 if (event->overflow_handler)
a8b0ca17 6458 event->overflow_handler(event, data, regs);
453f19ee 6459 else
a8b0ca17 6460 perf_event_output(event, data, regs);
453f19ee 6461
fed66e2c 6462 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6463 event->pending_wakeup = 1;
6464 irq_work_queue(&event->pending);
f506b3dc
PZ
6465 }
6466
79f14641 6467 return ret;
f6c7d5fe
PZ
6468}
6469
a8b0ca17 6470int perf_event_overflow(struct perf_event *event,
5622f295
MM
6471 struct perf_sample_data *data,
6472 struct pt_regs *regs)
850bc73f 6473{
a8b0ca17 6474 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6475}
6476
15dbf27c 6477/*
cdd6c482 6478 * Generic software event infrastructure
15dbf27c
PZ
6479 */
6480
b28ab83c
PZ
6481struct swevent_htable {
6482 struct swevent_hlist *swevent_hlist;
6483 struct mutex hlist_mutex;
6484 int hlist_refcount;
6485
6486 /* Recursion avoidance in each contexts */
6487 int recursion[PERF_NR_CONTEXTS];
6488};
6489
6490static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6491
7b4b6658 6492/*
cdd6c482
IM
6493 * We directly increment event->count and keep a second value in
6494 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6495 * is kept in the range [-sample_period, 0] so that we can use the
6496 * sign as trigger.
6497 */
6498
ab573844 6499u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6500{
cdd6c482 6501 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6502 u64 period = hwc->last_period;
6503 u64 nr, offset;
6504 s64 old, val;
6505
6506 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6507
6508again:
e7850595 6509 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6510 if (val < 0)
6511 return 0;
15dbf27c 6512
7b4b6658
PZ
6513 nr = div64_u64(period + val, period);
6514 offset = nr * period;
6515 val -= offset;
e7850595 6516 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6517 goto again;
15dbf27c 6518
7b4b6658 6519 return nr;
15dbf27c
PZ
6520}
6521
0cff784a 6522static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6523 struct perf_sample_data *data,
5622f295 6524 struct pt_regs *regs)
15dbf27c 6525{
cdd6c482 6526 struct hw_perf_event *hwc = &event->hw;
850bc73f 6527 int throttle = 0;
15dbf27c 6528
0cff784a
PZ
6529 if (!overflow)
6530 overflow = perf_swevent_set_period(event);
15dbf27c 6531
7b4b6658
PZ
6532 if (hwc->interrupts == MAX_INTERRUPTS)
6533 return;
15dbf27c 6534
7b4b6658 6535 for (; overflow; overflow--) {
a8b0ca17 6536 if (__perf_event_overflow(event, throttle,
5622f295 6537 data, regs)) {
7b4b6658
PZ
6538 /*
6539 * We inhibit the overflow from happening when
6540 * hwc->interrupts == MAX_INTERRUPTS.
6541 */
6542 break;
6543 }
cf450a73 6544 throttle = 1;
7b4b6658 6545 }
15dbf27c
PZ
6546}
6547
a4eaf7f1 6548static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6549 struct perf_sample_data *data,
5622f295 6550 struct pt_regs *regs)
7b4b6658 6551{
cdd6c482 6552 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6553
e7850595 6554 local64_add(nr, &event->count);
d6d020e9 6555
0cff784a
PZ
6556 if (!regs)
6557 return;
6558
6c7e550f 6559 if (!is_sampling_event(event))
7b4b6658 6560 return;
d6d020e9 6561
5d81e5cf
AV
6562 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6563 data->period = nr;
6564 return perf_swevent_overflow(event, 1, data, regs);
6565 } else
6566 data->period = event->hw.last_period;
6567
0cff784a 6568 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6569 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6570
e7850595 6571 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6572 return;
df1a132b 6573
a8b0ca17 6574 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6575}
6576
f5ffe02e
FW
6577static int perf_exclude_event(struct perf_event *event,
6578 struct pt_regs *regs)
6579{
a4eaf7f1 6580 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6581 return 1;
a4eaf7f1 6582
f5ffe02e
FW
6583 if (regs) {
6584 if (event->attr.exclude_user && user_mode(regs))
6585 return 1;
6586
6587 if (event->attr.exclude_kernel && !user_mode(regs))
6588 return 1;
6589 }
6590
6591 return 0;
6592}
6593
cdd6c482 6594static int perf_swevent_match(struct perf_event *event,
1c432d89 6595 enum perf_type_id type,
6fb2915d
LZ
6596 u32 event_id,
6597 struct perf_sample_data *data,
6598 struct pt_regs *regs)
15dbf27c 6599{
cdd6c482 6600 if (event->attr.type != type)
a21ca2ca 6601 return 0;
f5ffe02e 6602
cdd6c482 6603 if (event->attr.config != event_id)
15dbf27c
PZ
6604 return 0;
6605
f5ffe02e
FW
6606 if (perf_exclude_event(event, regs))
6607 return 0;
15dbf27c
PZ
6608
6609 return 1;
6610}
6611
76e1d904
FW
6612static inline u64 swevent_hash(u64 type, u32 event_id)
6613{
6614 u64 val = event_id | (type << 32);
6615
6616 return hash_64(val, SWEVENT_HLIST_BITS);
6617}
6618
49f135ed
FW
6619static inline struct hlist_head *
6620__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6621{
49f135ed
FW
6622 u64 hash = swevent_hash(type, event_id);
6623
6624 return &hlist->heads[hash];
6625}
76e1d904 6626
49f135ed
FW
6627/* For the read side: events when they trigger */
6628static inline struct hlist_head *
b28ab83c 6629find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6630{
6631 struct swevent_hlist *hlist;
76e1d904 6632
b28ab83c 6633 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6634 if (!hlist)
6635 return NULL;
6636
49f135ed
FW
6637 return __find_swevent_head(hlist, type, event_id);
6638}
6639
6640/* For the event head insertion and removal in the hlist */
6641static inline struct hlist_head *
b28ab83c 6642find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6643{
6644 struct swevent_hlist *hlist;
6645 u32 event_id = event->attr.config;
6646 u64 type = event->attr.type;
6647
6648 /*
6649 * Event scheduling is always serialized against hlist allocation
6650 * and release. Which makes the protected version suitable here.
6651 * The context lock guarantees that.
6652 */
b28ab83c 6653 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6654 lockdep_is_held(&event->ctx->lock));
6655 if (!hlist)
6656 return NULL;
6657
6658 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6659}
6660
6661static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6662 u64 nr,
76e1d904
FW
6663 struct perf_sample_data *data,
6664 struct pt_regs *regs)
15dbf27c 6665{
4a32fea9 6666 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6667 struct perf_event *event;
76e1d904 6668 struct hlist_head *head;
15dbf27c 6669
76e1d904 6670 rcu_read_lock();
b28ab83c 6671 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6672 if (!head)
6673 goto end;
6674
b67bfe0d 6675 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6676 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6677 perf_swevent_event(event, nr, data, regs);
15dbf27c 6678 }
76e1d904
FW
6679end:
6680 rcu_read_unlock();
15dbf27c
PZ
6681}
6682
86038c5e
PZI
6683DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6684
4ed7c92d 6685int perf_swevent_get_recursion_context(void)
96f6d444 6686{
4a32fea9 6687 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6688
b28ab83c 6689 return get_recursion_context(swhash->recursion);
96f6d444 6690}
645e8cc0 6691EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6692
fa9f90be 6693inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6694{
4a32fea9 6695 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6696
b28ab83c 6697 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6698}
15dbf27c 6699
86038c5e 6700void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6701{
a4234bfc 6702 struct perf_sample_data data;
4ed7c92d 6703
86038c5e 6704 if (WARN_ON_ONCE(!regs))
4ed7c92d 6705 return;
a4234bfc 6706
fd0d000b 6707 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6708 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6709}
6710
6711void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6712{
6713 int rctx;
6714
6715 preempt_disable_notrace();
6716 rctx = perf_swevent_get_recursion_context();
6717 if (unlikely(rctx < 0))
6718 goto fail;
6719
6720 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6721
6722 perf_swevent_put_recursion_context(rctx);
86038c5e 6723fail:
1c024eca 6724 preempt_enable_notrace();
b8e83514
PZ
6725}
6726
cdd6c482 6727static void perf_swevent_read(struct perf_event *event)
15dbf27c 6728{
15dbf27c
PZ
6729}
6730
a4eaf7f1 6731static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6732{
4a32fea9 6733 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6734 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6735 struct hlist_head *head;
6736
6c7e550f 6737 if (is_sampling_event(event)) {
7b4b6658 6738 hwc->last_period = hwc->sample_period;
cdd6c482 6739 perf_swevent_set_period(event);
7b4b6658 6740 }
76e1d904 6741
a4eaf7f1
PZ
6742 hwc->state = !(flags & PERF_EF_START);
6743
b28ab83c 6744 head = find_swevent_head(swhash, event);
12ca6ad2 6745 if (WARN_ON_ONCE(!head))
76e1d904
FW
6746 return -EINVAL;
6747
6748 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6749 perf_event_update_userpage(event);
76e1d904 6750
15dbf27c
PZ
6751 return 0;
6752}
6753
a4eaf7f1 6754static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6755{
76e1d904 6756 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6757}
6758
a4eaf7f1 6759static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6760{
a4eaf7f1 6761 event->hw.state = 0;
d6d020e9 6762}
aa9c4c0f 6763
a4eaf7f1 6764static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6765{
a4eaf7f1 6766 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6767}
6768
49f135ed
FW
6769/* Deref the hlist from the update side */
6770static inline struct swevent_hlist *
b28ab83c 6771swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6772{
b28ab83c
PZ
6773 return rcu_dereference_protected(swhash->swevent_hlist,
6774 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6775}
6776
b28ab83c 6777static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6778{
b28ab83c 6779 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6780
49f135ed 6781 if (!hlist)
76e1d904
FW
6782 return;
6783
70691d4a 6784 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6785 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6786}
6787
6788static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6789{
b28ab83c 6790 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6791
b28ab83c 6792 mutex_lock(&swhash->hlist_mutex);
76e1d904 6793
b28ab83c
PZ
6794 if (!--swhash->hlist_refcount)
6795 swevent_hlist_release(swhash);
76e1d904 6796
b28ab83c 6797 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6798}
6799
6800static void swevent_hlist_put(struct perf_event *event)
6801{
6802 int cpu;
6803
76e1d904
FW
6804 for_each_possible_cpu(cpu)
6805 swevent_hlist_put_cpu(event, cpu);
6806}
6807
6808static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6809{
b28ab83c 6810 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6811 int err = 0;
6812
b28ab83c 6813 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6814 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6815 struct swevent_hlist *hlist;
6816
6817 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6818 if (!hlist) {
6819 err = -ENOMEM;
6820 goto exit;
6821 }
b28ab83c 6822 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6823 }
b28ab83c 6824 swhash->hlist_refcount++;
9ed6060d 6825exit:
b28ab83c 6826 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6827
6828 return err;
6829}
6830
6831static int swevent_hlist_get(struct perf_event *event)
6832{
6833 int err;
6834 int cpu, failed_cpu;
6835
76e1d904
FW
6836 get_online_cpus();
6837 for_each_possible_cpu(cpu) {
6838 err = swevent_hlist_get_cpu(event, cpu);
6839 if (err) {
6840 failed_cpu = cpu;
6841 goto fail;
6842 }
6843 }
6844 put_online_cpus();
6845
6846 return 0;
9ed6060d 6847fail:
76e1d904
FW
6848 for_each_possible_cpu(cpu) {
6849 if (cpu == failed_cpu)
6850 break;
6851 swevent_hlist_put_cpu(event, cpu);
6852 }
6853
6854 put_online_cpus();
6855 return err;
6856}
6857
c5905afb 6858struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6859
b0a873eb
PZ
6860static void sw_perf_event_destroy(struct perf_event *event)
6861{
6862 u64 event_id = event->attr.config;
95476b64 6863
b0a873eb
PZ
6864 WARN_ON(event->parent);
6865
c5905afb 6866 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6867 swevent_hlist_put(event);
6868}
6869
6870static int perf_swevent_init(struct perf_event *event)
6871{
8176cced 6872 u64 event_id = event->attr.config;
b0a873eb
PZ
6873
6874 if (event->attr.type != PERF_TYPE_SOFTWARE)
6875 return -ENOENT;
6876
2481c5fa
SE
6877 /*
6878 * no branch sampling for software events
6879 */
6880 if (has_branch_stack(event))
6881 return -EOPNOTSUPP;
6882
b0a873eb
PZ
6883 switch (event_id) {
6884 case PERF_COUNT_SW_CPU_CLOCK:
6885 case PERF_COUNT_SW_TASK_CLOCK:
6886 return -ENOENT;
6887
6888 default:
6889 break;
6890 }
6891
ce677831 6892 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6893 return -ENOENT;
6894
6895 if (!event->parent) {
6896 int err;
6897
6898 err = swevent_hlist_get(event);
6899 if (err)
6900 return err;
6901
c5905afb 6902 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6903 event->destroy = sw_perf_event_destroy;
6904 }
6905
6906 return 0;
6907}
6908
6909static struct pmu perf_swevent = {
89a1e187 6910 .task_ctx_nr = perf_sw_context,
95476b64 6911
34f43927
PZ
6912 .capabilities = PERF_PMU_CAP_NO_NMI,
6913
b0a873eb 6914 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6915 .add = perf_swevent_add,
6916 .del = perf_swevent_del,
6917 .start = perf_swevent_start,
6918 .stop = perf_swevent_stop,
1c024eca 6919 .read = perf_swevent_read,
1c024eca
PZ
6920};
6921
b0a873eb
PZ
6922#ifdef CONFIG_EVENT_TRACING
6923
1c024eca
PZ
6924static int perf_tp_filter_match(struct perf_event *event,
6925 struct perf_sample_data *data)
6926{
6927 void *record = data->raw->data;
6928
b71b437e
PZ
6929 /* only top level events have filters set */
6930 if (event->parent)
6931 event = event->parent;
6932
1c024eca
PZ
6933 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6934 return 1;
6935 return 0;
6936}
6937
6938static int perf_tp_event_match(struct perf_event *event,
6939 struct perf_sample_data *data,
6940 struct pt_regs *regs)
6941{
a0f7d0f7
FW
6942 if (event->hw.state & PERF_HES_STOPPED)
6943 return 0;
580d607c
PZ
6944 /*
6945 * All tracepoints are from kernel-space.
6946 */
6947 if (event->attr.exclude_kernel)
1c024eca
PZ
6948 return 0;
6949
6950 if (!perf_tp_filter_match(event, data))
6951 return 0;
6952
6953 return 1;
6954}
6955
6956void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6957 struct pt_regs *regs, struct hlist_head *head, int rctx,
6958 struct task_struct *task)
95476b64
FW
6959{
6960 struct perf_sample_data data;
1c024eca 6961 struct perf_event *event;
1c024eca 6962
95476b64
FW
6963 struct perf_raw_record raw = {
6964 .size = entry_size,
6965 .data = record,
6966 };
6967
fd0d000b 6968 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6969 data.raw = &raw;
6970
b67bfe0d 6971 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6972 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6973 perf_swevent_event(event, count, &data, regs);
4f41c013 6974 }
ecc55f84 6975
e6dab5ff
AV
6976 /*
6977 * If we got specified a target task, also iterate its context and
6978 * deliver this event there too.
6979 */
6980 if (task && task != current) {
6981 struct perf_event_context *ctx;
6982 struct trace_entry *entry = record;
6983
6984 rcu_read_lock();
6985 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6986 if (!ctx)
6987 goto unlock;
6988
6989 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6990 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6991 continue;
6992 if (event->attr.config != entry->type)
6993 continue;
6994 if (perf_tp_event_match(event, &data, regs))
6995 perf_swevent_event(event, count, &data, regs);
6996 }
6997unlock:
6998 rcu_read_unlock();
6999 }
7000
ecc55f84 7001 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7002}
7003EXPORT_SYMBOL_GPL(perf_tp_event);
7004
cdd6c482 7005static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7006{
1c024eca 7007 perf_trace_destroy(event);
e077df4f
PZ
7008}
7009
b0a873eb 7010static int perf_tp_event_init(struct perf_event *event)
e077df4f 7011{
76e1d904
FW
7012 int err;
7013
b0a873eb
PZ
7014 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7015 return -ENOENT;
7016
2481c5fa
SE
7017 /*
7018 * no branch sampling for tracepoint events
7019 */
7020 if (has_branch_stack(event))
7021 return -EOPNOTSUPP;
7022
1c024eca
PZ
7023 err = perf_trace_init(event);
7024 if (err)
b0a873eb 7025 return err;
e077df4f 7026
cdd6c482 7027 event->destroy = tp_perf_event_destroy;
e077df4f 7028
b0a873eb
PZ
7029 return 0;
7030}
7031
7032static struct pmu perf_tracepoint = {
89a1e187
PZ
7033 .task_ctx_nr = perf_sw_context,
7034
b0a873eb 7035 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7036 .add = perf_trace_add,
7037 .del = perf_trace_del,
7038 .start = perf_swevent_start,
7039 .stop = perf_swevent_stop,
b0a873eb 7040 .read = perf_swevent_read,
b0a873eb
PZ
7041};
7042
7043static inline void perf_tp_register(void)
7044{
2e80a82a 7045 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7046}
6fb2915d
LZ
7047
7048static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7049{
7050 char *filter_str;
7051 int ret;
7052
7053 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7054 return -EINVAL;
7055
7056 filter_str = strndup_user(arg, PAGE_SIZE);
7057 if (IS_ERR(filter_str))
7058 return PTR_ERR(filter_str);
7059
7060 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7061
7062 kfree(filter_str);
7063 return ret;
7064}
7065
7066static void perf_event_free_filter(struct perf_event *event)
7067{
7068 ftrace_profile_free_filter(event);
7069}
7070
2541517c
AS
7071static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7072{
7073 struct bpf_prog *prog;
7074
7075 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7076 return -EINVAL;
7077
7078 if (event->tp_event->prog)
7079 return -EEXIST;
7080
04a22fae
WN
7081 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7082 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7083 return -EINVAL;
7084
7085 prog = bpf_prog_get(prog_fd);
7086 if (IS_ERR(prog))
7087 return PTR_ERR(prog);
7088
6c373ca8 7089 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7090 /* valid fd, but invalid bpf program type */
7091 bpf_prog_put(prog);
7092 return -EINVAL;
7093 }
7094
7095 event->tp_event->prog = prog;
7096
7097 return 0;
7098}
7099
7100static void perf_event_free_bpf_prog(struct perf_event *event)
7101{
7102 struct bpf_prog *prog;
7103
7104 if (!event->tp_event)
7105 return;
7106
7107 prog = event->tp_event->prog;
7108 if (prog) {
7109 event->tp_event->prog = NULL;
7110 bpf_prog_put(prog);
7111 }
7112}
7113
e077df4f 7114#else
6fb2915d 7115
b0a873eb 7116static inline void perf_tp_register(void)
e077df4f 7117{
e077df4f 7118}
6fb2915d
LZ
7119
7120static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7121{
7122 return -ENOENT;
7123}
7124
7125static void perf_event_free_filter(struct perf_event *event)
7126{
7127}
7128
2541517c
AS
7129static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7130{
7131 return -ENOENT;
7132}
7133
7134static void perf_event_free_bpf_prog(struct perf_event *event)
7135{
7136}
07b139c8 7137#endif /* CONFIG_EVENT_TRACING */
e077df4f 7138
24f1e32c 7139#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7140void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7141{
f5ffe02e
FW
7142 struct perf_sample_data sample;
7143 struct pt_regs *regs = data;
7144
fd0d000b 7145 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7146
a4eaf7f1 7147 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7148 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7149}
7150#endif
7151
b0a873eb
PZ
7152/*
7153 * hrtimer based swevent callback
7154 */
f29ac756 7155
b0a873eb 7156static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7157{
b0a873eb
PZ
7158 enum hrtimer_restart ret = HRTIMER_RESTART;
7159 struct perf_sample_data data;
7160 struct pt_regs *regs;
7161 struct perf_event *event;
7162 u64 period;
f29ac756 7163
b0a873eb 7164 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7165
7166 if (event->state != PERF_EVENT_STATE_ACTIVE)
7167 return HRTIMER_NORESTART;
7168
b0a873eb 7169 event->pmu->read(event);
f344011c 7170
fd0d000b 7171 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7172 regs = get_irq_regs();
7173
7174 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7175 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7176 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7177 ret = HRTIMER_NORESTART;
7178 }
24f1e32c 7179
b0a873eb
PZ
7180 period = max_t(u64, 10000, event->hw.sample_period);
7181 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7182
b0a873eb 7183 return ret;
f29ac756
PZ
7184}
7185
b0a873eb 7186static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7187{
b0a873eb 7188 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7189 s64 period;
7190
7191 if (!is_sampling_event(event))
7192 return;
f5ffe02e 7193
5d508e82
FBH
7194 period = local64_read(&hwc->period_left);
7195 if (period) {
7196 if (period < 0)
7197 period = 10000;
fa407f35 7198
5d508e82
FBH
7199 local64_set(&hwc->period_left, 0);
7200 } else {
7201 period = max_t(u64, 10000, hwc->sample_period);
7202 }
3497d206
TG
7203 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7204 HRTIMER_MODE_REL_PINNED);
24f1e32c 7205}
b0a873eb
PZ
7206
7207static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7208{
b0a873eb
PZ
7209 struct hw_perf_event *hwc = &event->hw;
7210
6c7e550f 7211 if (is_sampling_event(event)) {
b0a873eb 7212 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7213 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7214
7215 hrtimer_cancel(&hwc->hrtimer);
7216 }
24f1e32c
FW
7217}
7218
ba3dd36c
PZ
7219static void perf_swevent_init_hrtimer(struct perf_event *event)
7220{
7221 struct hw_perf_event *hwc = &event->hw;
7222
7223 if (!is_sampling_event(event))
7224 return;
7225
7226 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7227 hwc->hrtimer.function = perf_swevent_hrtimer;
7228
7229 /*
7230 * Since hrtimers have a fixed rate, we can do a static freq->period
7231 * mapping and avoid the whole period adjust feedback stuff.
7232 */
7233 if (event->attr.freq) {
7234 long freq = event->attr.sample_freq;
7235
7236 event->attr.sample_period = NSEC_PER_SEC / freq;
7237 hwc->sample_period = event->attr.sample_period;
7238 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7239 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7240 event->attr.freq = 0;
7241 }
7242}
7243
b0a873eb
PZ
7244/*
7245 * Software event: cpu wall time clock
7246 */
7247
7248static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7249{
b0a873eb
PZ
7250 s64 prev;
7251 u64 now;
7252
a4eaf7f1 7253 now = local_clock();
b0a873eb
PZ
7254 prev = local64_xchg(&event->hw.prev_count, now);
7255 local64_add(now - prev, &event->count);
24f1e32c 7256}
24f1e32c 7257
a4eaf7f1 7258static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7259{
a4eaf7f1 7260 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7261 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7262}
7263
a4eaf7f1 7264static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7265{
b0a873eb
PZ
7266 perf_swevent_cancel_hrtimer(event);
7267 cpu_clock_event_update(event);
7268}
f29ac756 7269
a4eaf7f1
PZ
7270static int cpu_clock_event_add(struct perf_event *event, int flags)
7271{
7272 if (flags & PERF_EF_START)
7273 cpu_clock_event_start(event, flags);
6a694a60 7274 perf_event_update_userpage(event);
a4eaf7f1
PZ
7275
7276 return 0;
7277}
7278
7279static void cpu_clock_event_del(struct perf_event *event, int flags)
7280{
7281 cpu_clock_event_stop(event, flags);
7282}
7283
b0a873eb
PZ
7284static void cpu_clock_event_read(struct perf_event *event)
7285{
7286 cpu_clock_event_update(event);
7287}
f344011c 7288
b0a873eb
PZ
7289static int cpu_clock_event_init(struct perf_event *event)
7290{
7291 if (event->attr.type != PERF_TYPE_SOFTWARE)
7292 return -ENOENT;
7293
7294 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7295 return -ENOENT;
7296
2481c5fa
SE
7297 /*
7298 * no branch sampling for software events
7299 */
7300 if (has_branch_stack(event))
7301 return -EOPNOTSUPP;
7302
ba3dd36c
PZ
7303 perf_swevent_init_hrtimer(event);
7304
b0a873eb 7305 return 0;
f29ac756
PZ
7306}
7307
b0a873eb 7308static struct pmu perf_cpu_clock = {
89a1e187
PZ
7309 .task_ctx_nr = perf_sw_context,
7310
34f43927
PZ
7311 .capabilities = PERF_PMU_CAP_NO_NMI,
7312
b0a873eb 7313 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7314 .add = cpu_clock_event_add,
7315 .del = cpu_clock_event_del,
7316 .start = cpu_clock_event_start,
7317 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7318 .read = cpu_clock_event_read,
7319};
7320
7321/*
7322 * Software event: task time clock
7323 */
7324
7325static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7326{
b0a873eb
PZ
7327 u64 prev;
7328 s64 delta;
5c92d124 7329
b0a873eb
PZ
7330 prev = local64_xchg(&event->hw.prev_count, now);
7331 delta = now - prev;
7332 local64_add(delta, &event->count);
7333}
5c92d124 7334
a4eaf7f1 7335static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7336{
a4eaf7f1 7337 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7338 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7339}
7340
a4eaf7f1 7341static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7342{
7343 perf_swevent_cancel_hrtimer(event);
7344 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7345}
7346
7347static int task_clock_event_add(struct perf_event *event, int flags)
7348{
7349 if (flags & PERF_EF_START)
7350 task_clock_event_start(event, flags);
6a694a60 7351 perf_event_update_userpage(event);
b0a873eb 7352
a4eaf7f1
PZ
7353 return 0;
7354}
7355
7356static void task_clock_event_del(struct perf_event *event, int flags)
7357{
7358 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7359}
7360
7361static void task_clock_event_read(struct perf_event *event)
7362{
768a06e2
PZ
7363 u64 now = perf_clock();
7364 u64 delta = now - event->ctx->timestamp;
7365 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7366
7367 task_clock_event_update(event, time);
7368}
7369
7370static int task_clock_event_init(struct perf_event *event)
6fb2915d 7371{
b0a873eb
PZ
7372 if (event->attr.type != PERF_TYPE_SOFTWARE)
7373 return -ENOENT;
7374
7375 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7376 return -ENOENT;
7377
2481c5fa
SE
7378 /*
7379 * no branch sampling for software events
7380 */
7381 if (has_branch_stack(event))
7382 return -EOPNOTSUPP;
7383
ba3dd36c
PZ
7384 perf_swevent_init_hrtimer(event);
7385
b0a873eb 7386 return 0;
6fb2915d
LZ
7387}
7388
b0a873eb 7389static struct pmu perf_task_clock = {
89a1e187
PZ
7390 .task_ctx_nr = perf_sw_context,
7391
34f43927
PZ
7392 .capabilities = PERF_PMU_CAP_NO_NMI,
7393
b0a873eb 7394 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7395 .add = task_clock_event_add,
7396 .del = task_clock_event_del,
7397 .start = task_clock_event_start,
7398 .stop = task_clock_event_stop,
b0a873eb
PZ
7399 .read = task_clock_event_read,
7400};
6fb2915d 7401
ad5133b7 7402static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7403{
e077df4f 7404}
6fb2915d 7405
fbbe0701
SB
7406static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7407{
7408}
7409
ad5133b7 7410static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7411{
ad5133b7 7412 return 0;
6fb2915d
LZ
7413}
7414
18ab2cd3 7415static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7416
7417static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7418{
fbbe0701
SB
7419 __this_cpu_write(nop_txn_flags, flags);
7420
7421 if (flags & ~PERF_PMU_TXN_ADD)
7422 return;
7423
ad5133b7 7424 perf_pmu_disable(pmu);
6fb2915d
LZ
7425}
7426
ad5133b7
PZ
7427static int perf_pmu_commit_txn(struct pmu *pmu)
7428{
fbbe0701
SB
7429 unsigned int flags = __this_cpu_read(nop_txn_flags);
7430
7431 __this_cpu_write(nop_txn_flags, 0);
7432
7433 if (flags & ~PERF_PMU_TXN_ADD)
7434 return 0;
7435
ad5133b7
PZ
7436 perf_pmu_enable(pmu);
7437 return 0;
7438}
e077df4f 7439
ad5133b7 7440static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7441{
fbbe0701
SB
7442 unsigned int flags = __this_cpu_read(nop_txn_flags);
7443
7444 __this_cpu_write(nop_txn_flags, 0);
7445
7446 if (flags & ~PERF_PMU_TXN_ADD)
7447 return;
7448
ad5133b7 7449 perf_pmu_enable(pmu);
24f1e32c
FW
7450}
7451
35edc2a5
PZ
7452static int perf_event_idx_default(struct perf_event *event)
7453{
c719f560 7454 return 0;
35edc2a5
PZ
7455}
7456
8dc85d54
PZ
7457/*
7458 * Ensures all contexts with the same task_ctx_nr have the same
7459 * pmu_cpu_context too.
7460 */
9e317041 7461static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7462{
8dc85d54 7463 struct pmu *pmu;
b326e956 7464
8dc85d54
PZ
7465 if (ctxn < 0)
7466 return NULL;
24f1e32c 7467
8dc85d54
PZ
7468 list_for_each_entry(pmu, &pmus, entry) {
7469 if (pmu->task_ctx_nr == ctxn)
7470 return pmu->pmu_cpu_context;
7471 }
24f1e32c 7472
8dc85d54 7473 return NULL;
24f1e32c
FW
7474}
7475
51676957 7476static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7477{
51676957
PZ
7478 int cpu;
7479
7480 for_each_possible_cpu(cpu) {
7481 struct perf_cpu_context *cpuctx;
7482
7483 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7484
3f1f3320
PZ
7485 if (cpuctx->unique_pmu == old_pmu)
7486 cpuctx->unique_pmu = pmu;
51676957
PZ
7487 }
7488}
7489
7490static void free_pmu_context(struct pmu *pmu)
7491{
7492 struct pmu *i;
f5ffe02e 7493
8dc85d54 7494 mutex_lock(&pmus_lock);
0475f9ea 7495 /*
8dc85d54 7496 * Like a real lame refcount.
0475f9ea 7497 */
51676957
PZ
7498 list_for_each_entry(i, &pmus, entry) {
7499 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7500 update_pmu_context(i, pmu);
8dc85d54 7501 goto out;
51676957 7502 }
8dc85d54 7503 }
d6d020e9 7504
51676957 7505 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7506out:
7507 mutex_unlock(&pmus_lock);
24f1e32c 7508}
2e80a82a 7509static struct idr pmu_idr;
d6d020e9 7510
abe43400
PZ
7511static ssize_t
7512type_show(struct device *dev, struct device_attribute *attr, char *page)
7513{
7514 struct pmu *pmu = dev_get_drvdata(dev);
7515
7516 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7517}
90826ca7 7518static DEVICE_ATTR_RO(type);
abe43400 7519
62b85639
SE
7520static ssize_t
7521perf_event_mux_interval_ms_show(struct device *dev,
7522 struct device_attribute *attr,
7523 char *page)
7524{
7525 struct pmu *pmu = dev_get_drvdata(dev);
7526
7527 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7528}
7529
272325c4
PZ
7530static DEFINE_MUTEX(mux_interval_mutex);
7531
62b85639
SE
7532static ssize_t
7533perf_event_mux_interval_ms_store(struct device *dev,
7534 struct device_attribute *attr,
7535 const char *buf, size_t count)
7536{
7537 struct pmu *pmu = dev_get_drvdata(dev);
7538 int timer, cpu, ret;
7539
7540 ret = kstrtoint(buf, 0, &timer);
7541 if (ret)
7542 return ret;
7543
7544 if (timer < 1)
7545 return -EINVAL;
7546
7547 /* same value, noting to do */
7548 if (timer == pmu->hrtimer_interval_ms)
7549 return count;
7550
272325c4 7551 mutex_lock(&mux_interval_mutex);
62b85639
SE
7552 pmu->hrtimer_interval_ms = timer;
7553
7554 /* update all cpuctx for this PMU */
272325c4
PZ
7555 get_online_cpus();
7556 for_each_online_cpu(cpu) {
62b85639
SE
7557 struct perf_cpu_context *cpuctx;
7558 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7559 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7560
272325c4
PZ
7561 cpu_function_call(cpu,
7562 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7563 }
272325c4
PZ
7564 put_online_cpus();
7565 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7566
7567 return count;
7568}
90826ca7 7569static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7570
90826ca7
GKH
7571static struct attribute *pmu_dev_attrs[] = {
7572 &dev_attr_type.attr,
7573 &dev_attr_perf_event_mux_interval_ms.attr,
7574 NULL,
abe43400 7575};
90826ca7 7576ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7577
7578static int pmu_bus_running;
7579static struct bus_type pmu_bus = {
7580 .name = "event_source",
90826ca7 7581 .dev_groups = pmu_dev_groups,
abe43400
PZ
7582};
7583
7584static void pmu_dev_release(struct device *dev)
7585{
7586 kfree(dev);
7587}
7588
7589static int pmu_dev_alloc(struct pmu *pmu)
7590{
7591 int ret = -ENOMEM;
7592
7593 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7594 if (!pmu->dev)
7595 goto out;
7596
0c9d42ed 7597 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7598 device_initialize(pmu->dev);
7599 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7600 if (ret)
7601 goto free_dev;
7602
7603 dev_set_drvdata(pmu->dev, pmu);
7604 pmu->dev->bus = &pmu_bus;
7605 pmu->dev->release = pmu_dev_release;
7606 ret = device_add(pmu->dev);
7607 if (ret)
7608 goto free_dev;
7609
7610out:
7611 return ret;
7612
7613free_dev:
7614 put_device(pmu->dev);
7615 goto out;
7616}
7617
547e9fd7 7618static struct lock_class_key cpuctx_mutex;
facc4307 7619static struct lock_class_key cpuctx_lock;
547e9fd7 7620
03d8e80b 7621int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7622{
108b02cf 7623 int cpu, ret;
24f1e32c 7624
b0a873eb 7625 mutex_lock(&pmus_lock);
33696fc0
PZ
7626 ret = -ENOMEM;
7627 pmu->pmu_disable_count = alloc_percpu(int);
7628 if (!pmu->pmu_disable_count)
7629 goto unlock;
f29ac756 7630
2e80a82a
PZ
7631 pmu->type = -1;
7632 if (!name)
7633 goto skip_type;
7634 pmu->name = name;
7635
7636 if (type < 0) {
0e9c3be2
TH
7637 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7638 if (type < 0) {
7639 ret = type;
2e80a82a
PZ
7640 goto free_pdc;
7641 }
7642 }
7643 pmu->type = type;
7644
abe43400
PZ
7645 if (pmu_bus_running) {
7646 ret = pmu_dev_alloc(pmu);
7647 if (ret)
7648 goto free_idr;
7649 }
7650
2e80a82a 7651skip_type:
8dc85d54
PZ
7652 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7653 if (pmu->pmu_cpu_context)
7654 goto got_cpu_context;
f29ac756 7655
c4814202 7656 ret = -ENOMEM;
108b02cf
PZ
7657 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7658 if (!pmu->pmu_cpu_context)
abe43400 7659 goto free_dev;
f344011c 7660
108b02cf
PZ
7661 for_each_possible_cpu(cpu) {
7662 struct perf_cpu_context *cpuctx;
7663
7664 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7665 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7666 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7667 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7668 cpuctx->ctx.pmu = pmu;
9e630205 7669
272325c4 7670 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7671
3f1f3320 7672 cpuctx->unique_pmu = pmu;
108b02cf 7673 }
76e1d904 7674
8dc85d54 7675got_cpu_context:
ad5133b7
PZ
7676 if (!pmu->start_txn) {
7677 if (pmu->pmu_enable) {
7678 /*
7679 * If we have pmu_enable/pmu_disable calls, install
7680 * transaction stubs that use that to try and batch
7681 * hardware accesses.
7682 */
7683 pmu->start_txn = perf_pmu_start_txn;
7684 pmu->commit_txn = perf_pmu_commit_txn;
7685 pmu->cancel_txn = perf_pmu_cancel_txn;
7686 } else {
fbbe0701 7687 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7688 pmu->commit_txn = perf_pmu_nop_int;
7689 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7690 }
5c92d124 7691 }
15dbf27c 7692
ad5133b7
PZ
7693 if (!pmu->pmu_enable) {
7694 pmu->pmu_enable = perf_pmu_nop_void;
7695 pmu->pmu_disable = perf_pmu_nop_void;
7696 }
7697
35edc2a5
PZ
7698 if (!pmu->event_idx)
7699 pmu->event_idx = perf_event_idx_default;
7700
b0a873eb 7701 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7702 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7703 ret = 0;
7704unlock:
b0a873eb
PZ
7705 mutex_unlock(&pmus_lock);
7706
33696fc0 7707 return ret;
108b02cf 7708
abe43400
PZ
7709free_dev:
7710 device_del(pmu->dev);
7711 put_device(pmu->dev);
7712
2e80a82a
PZ
7713free_idr:
7714 if (pmu->type >= PERF_TYPE_MAX)
7715 idr_remove(&pmu_idr, pmu->type);
7716
108b02cf
PZ
7717free_pdc:
7718 free_percpu(pmu->pmu_disable_count);
7719 goto unlock;
f29ac756 7720}
c464c76e 7721EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7722
b0a873eb 7723void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7724{
b0a873eb
PZ
7725 mutex_lock(&pmus_lock);
7726 list_del_rcu(&pmu->entry);
7727 mutex_unlock(&pmus_lock);
5c92d124 7728
0475f9ea 7729 /*
cde8e884
PZ
7730 * We dereference the pmu list under both SRCU and regular RCU, so
7731 * synchronize against both of those.
0475f9ea 7732 */
b0a873eb 7733 synchronize_srcu(&pmus_srcu);
cde8e884 7734 synchronize_rcu();
d6d020e9 7735
33696fc0 7736 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7737 if (pmu->type >= PERF_TYPE_MAX)
7738 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7739 device_del(pmu->dev);
7740 put_device(pmu->dev);
51676957 7741 free_pmu_context(pmu);
b0a873eb 7742}
c464c76e 7743EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7744
cc34b98b
MR
7745static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7746{
ccd41c86 7747 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7748 int ret;
7749
7750 if (!try_module_get(pmu->module))
7751 return -ENODEV;
ccd41c86
PZ
7752
7753 if (event->group_leader != event) {
8b10c5e2
PZ
7754 /*
7755 * This ctx->mutex can nest when we're called through
7756 * inheritance. See the perf_event_ctx_lock_nested() comment.
7757 */
7758 ctx = perf_event_ctx_lock_nested(event->group_leader,
7759 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7760 BUG_ON(!ctx);
7761 }
7762
cc34b98b
MR
7763 event->pmu = pmu;
7764 ret = pmu->event_init(event);
ccd41c86
PZ
7765
7766 if (ctx)
7767 perf_event_ctx_unlock(event->group_leader, ctx);
7768
cc34b98b
MR
7769 if (ret)
7770 module_put(pmu->module);
7771
7772 return ret;
7773}
7774
18ab2cd3 7775static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7776{
7777 struct pmu *pmu = NULL;
7778 int idx;
940c5b29 7779 int ret;
b0a873eb
PZ
7780
7781 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7782
7783 rcu_read_lock();
7784 pmu = idr_find(&pmu_idr, event->attr.type);
7785 rcu_read_unlock();
940c5b29 7786 if (pmu) {
cc34b98b 7787 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7788 if (ret)
7789 pmu = ERR_PTR(ret);
2e80a82a 7790 goto unlock;
940c5b29 7791 }
2e80a82a 7792
b0a873eb 7793 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7794 ret = perf_try_init_event(pmu, event);
b0a873eb 7795 if (!ret)
e5f4d339 7796 goto unlock;
76e1d904 7797
b0a873eb
PZ
7798 if (ret != -ENOENT) {
7799 pmu = ERR_PTR(ret);
e5f4d339 7800 goto unlock;
f344011c 7801 }
5c92d124 7802 }
e5f4d339
PZ
7803 pmu = ERR_PTR(-ENOENT);
7804unlock:
b0a873eb 7805 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7806
4aeb0b42 7807 return pmu;
5c92d124
IM
7808}
7809
4beb31f3
FW
7810static void account_event_cpu(struct perf_event *event, int cpu)
7811{
7812 if (event->parent)
7813 return;
7814
4beb31f3
FW
7815 if (is_cgroup_event(event))
7816 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7817}
7818
766d6c07
FW
7819static void account_event(struct perf_event *event)
7820{
25432ae9
PZ
7821 bool inc = false;
7822
4beb31f3
FW
7823 if (event->parent)
7824 return;
7825
766d6c07 7826 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7827 inc = true;
766d6c07
FW
7828 if (event->attr.mmap || event->attr.mmap_data)
7829 atomic_inc(&nr_mmap_events);
7830 if (event->attr.comm)
7831 atomic_inc(&nr_comm_events);
7832 if (event->attr.task)
7833 atomic_inc(&nr_task_events);
948b26b6
FW
7834 if (event->attr.freq) {
7835 if (atomic_inc_return(&nr_freq_events) == 1)
7836 tick_nohz_full_kick_all();
7837 }
45ac1403
AH
7838 if (event->attr.context_switch) {
7839 atomic_inc(&nr_switch_events);
25432ae9 7840 inc = true;
45ac1403 7841 }
4beb31f3 7842 if (has_branch_stack(event))
25432ae9 7843 inc = true;
4beb31f3 7844 if (is_cgroup_event(event))
25432ae9
PZ
7845 inc = true;
7846
9107c89e
PZ
7847 if (inc) {
7848 if (atomic_inc_not_zero(&perf_sched_count))
7849 goto enabled;
7850
7851 mutex_lock(&perf_sched_mutex);
7852 if (!atomic_read(&perf_sched_count)) {
7853 static_branch_enable(&perf_sched_events);
7854 /*
7855 * Guarantee that all CPUs observe they key change and
7856 * call the perf scheduling hooks before proceeding to
7857 * install events that need them.
7858 */
7859 synchronize_sched();
7860 }
7861 /*
7862 * Now that we have waited for the sync_sched(), allow further
7863 * increments to by-pass the mutex.
7864 */
7865 atomic_inc(&perf_sched_count);
7866 mutex_unlock(&perf_sched_mutex);
7867 }
7868enabled:
4beb31f3
FW
7869
7870 account_event_cpu(event, event->cpu);
766d6c07
FW
7871}
7872
0793a61d 7873/*
cdd6c482 7874 * Allocate and initialize a event structure
0793a61d 7875 */
cdd6c482 7876static struct perf_event *
c3f00c70 7877perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7878 struct task_struct *task,
7879 struct perf_event *group_leader,
7880 struct perf_event *parent_event,
4dc0da86 7881 perf_overflow_handler_t overflow_handler,
79dff51e 7882 void *context, int cgroup_fd)
0793a61d 7883{
51b0fe39 7884 struct pmu *pmu;
cdd6c482
IM
7885 struct perf_event *event;
7886 struct hw_perf_event *hwc;
90983b16 7887 long err = -EINVAL;
0793a61d 7888
66832eb4
ON
7889 if ((unsigned)cpu >= nr_cpu_ids) {
7890 if (!task || cpu != -1)
7891 return ERR_PTR(-EINVAL);
7892 }
7893
c3f00c70 7894 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7895 if (!event)
d5d2bc0d 7896 return ERR_PTR(-ENOMEM);
0793a61d 7897
04289bb9 7898 /*
cdd6c482 7899 * Single events are their own group leaders, with an
04289bb9
IM
7900 * empty sibling list:
7901 */
7902 if (!group_leader)
cdd6c482 7903 group_leader = event;
04289bb9 7904
cdd6c482
IM
7905 mutex_init(&event->child_mutex);
7906 INIT_LIST_HEAD(&event->child_list);
fccc714b 7907
cdd6c482
IM
7908 INIT_LIST_HEAD(&event->group_entry);
7909 INIT_LIST_HEAD(&event->event_entry);
7910 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7911 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7912 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7913 INIT_HLIST_NODE(&event->hlist_entry);
7914
10c6db11 7915
cdd6c482 7916 init_waitqueue_head(&event->waitq);
e360adbe 7917 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7918
cdd6c482 7919 mutex_init(&event->mmap_mutex);
7b732a75 7920
a6fa941d 7921 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7922 event->cpu = cpu;
7923 event->attr = *attr;
7924 event->group_leader = group_leader;
7925 event->pmu = NULL;
cdd6c482 7926 event->oncpu = -1;
a96bbc16 7927
cdd6c482 7928 event->parent = parent_event;
b84fbc9f 7929
17cf22c3 7930 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7931 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7932
cdd6c482 7933 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7934
d580ff86
PZ
7935 if (task) {
7936 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7937 /*
50f16a8b
PZ
7938 * XXX pmu::event_init needs to know what task to account to
7939 * and we cannot use the ctx information because we need the
7940 * pmu before we get a ctx.
d580ff86 7941 */
50f16a8b 7942 event->hw.target = task;
d580ff86
PZ
7943 }
7944
34f43927
PZ
7945 event->clock = &local_clock;
7946 if (parent_event)
7947 event->clock = parent_event->clock;
7948
4dc0da86 7949 if (!overflow_handler && parent_event) {
b326e956 7950 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7951 context = parent_event->overflow_handler_context;
7952 }
66832eb4 7953
b326e956 7954 event->overflow_handler = overflow_handler;
4dc0da86 7955 event->overflow_handler_context = context;
97eaf530 7956
0231bb53 7957 perf_event__state_init(event);
a86ed508 7958
4aeb0b42 7959 pmu = NULL;
b8e83514 7960
cdd6c482 7961 hwc = &event->hw;
bd2b5b12 7962 hwc->sample_period = attr->sample_period;
0d48696f 7963 if (attr->freq && attr->sample_freq)
bd2b5b12 7964 hwc->sample_period = 1;
eced1dfc 7965 hwc->last_period = hwc->sample_period;
bd2b5b12 7966
e7850595 7967 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7968
2023b359 7969 /*
cdd6c482 7970 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7971 */
3dab77fb 7972 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7973 goto err_ns;
a46a2300
YZ
7974
7975 if (!has_branch_stack(event))
7976 event->attr.branch_sample_type = 0;
2023b359 7977
79dff51e
MF
7978 if (cgroup_fd != -1) {
7979 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7980 if (err)
7981 goto err_ns;
7982 }
7983
b0a873eb 7984 pmu = perf_init_event(event);
4aeb0b42 7985 if (!pmu)
90983b16
FW
7986 goto err_ns;
7987 else if (IS_ERR(pmu)) {
4aeb0b42 7988 err = PTR_ERR(pmu);
90983b16 7989 goto err_ns;
621a01ea 7990 }
d5d2bc0d 7991
bed5b25a
AS
7992 err = exclusive_event_init(event);
7993 if (err)
7994 goto err_pmu;
7995
cdd6c482 7996 if (!event->parent) {
927c7a9e
FW
7997 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7998 err = get_callchain_buffers();
90983b16 7999 if (err)
bed5b25a 8000 goto err_per_task;
d010b332 8001 }
f344011c 8002 }
9ee318a7 8003
cdd6c482 8004 return event;
90983b16 8005
bed5b25a
AS
8006err_per_task:
8007 exclusive_event_destroy(event);
8008
90983b16
FW
8009err_pmu:
8010 if (event->destroy)
8011 event->destroy(event);
c464c76e 8012 module_put(pmu->module);
90983b16 8013err_ns:
79dff51e
MF
8014 if (is_cgroup_event(event))
8015 perf_detach_cgroup(event);
90983b16
FW
8016 if (event->ns)
8017 put_pid_ns(event->ns);
8018 kfree(event);
8019
8020 return ERR_PTR(err);
0793a61d
TG
8021}
8022
cdd6c482
IM
8023static int perf_copy_attr(struct perf_event_attr __user *uattr,
8024 struct perf_event_attr *attr)
974802ea 8025{
974802ea 8026 u32 size;
cdf8073d 8027 int ret;
974802ea
PZ
8028
8029 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8030 return -EFAULT;
8031
8032 /*
8033 * zero the full structure, so that a short copy will be nice.
8034 */
8035 memset(attr, 0, sizeof(*attr));
8036
8037 ret = get_user(size, &uattr->size);
8038 if (ret)
8039 return ret;
8040
8041 if (size > PAGE_SIZE) /* silly large */
8042 goto err_size;
8043
8044 if (!size) /* abi compat */
8045 size = PERF_ATTR_SIZE_VER0;
8046
8047 if (size < PERF_ATTR_SIZE_VER0)
8048 goto err_size;
8049
8050 /*
8051 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8052 * ensure all the unknown bits are 0 - i.e. new
8053 * user-space does not rely on any kernel feature
8054 * extensions we dont know about yet.
974802ea
PZ
8055 */
8056 if (size > sizeof(*attr)) {
cdf8073d
IS
8057 unsigned char __user *addr;
8058 unsigned char __user *end;
8059 unsigned char val;
974802ea 8060
cdf8073d
IS
8061 addr = (void __user *)uattr + sizeof(*attr);
8062 end = (void __user *)uattr + size;
974802ea 8063
cdf8073d 8064 for (; addr < end; addr++) {
974802ea
PZ
8065 ret = get_user(val, addr);
8066 if (ret)
8067 return ret;
8068 if (val)
8069 goto err_size;
8070 }
b3e62e35 8071 size = sizeof(*attr);
974802ea
PZ
8072 }
8073
8074 ret = copy_from_user(attr, uattr, size);
8075 if (ret)
8076 return -EFAULT;
8077
cd757645 8078 if (attr->__reserved_1)
974802ea
PZ
8079 return -EINVAL;
8080
8081 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8082 return -EINVAL;
8083
8084 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8085 return -EINVAL;
8086
bce38cd5
SE
8087 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8088 u64 mask = attr->branch_sample_type;
8089
8090 /* only using defined bits */
8091 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8092 return -EINVAL;
8093
8094 /* at least one branch bit must be set */
8095 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8096 return -EINVAL;
8097
bce38cd5
SE
8098 /* propagate priv level, when not set for branch */
8099 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8100
8101 /* exclude_kernel checked on syscall entry */
8102 if (!attr->exclude_kernel)
8103 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8104
8105 if (!attr->exclude_user)
8106 mask |= PERF_SAMPLE_BRANCH_USER;
8107
8108 if (!attr->exclude_hv)
8109 mask |= PERF_SAMPLE_BRANCH_HV;
8110 /*
8111 * adjust user setting (for HW filter setup)
8112 */
8113 attr->branch_sample_type = mask;
8114 }
e712209a
SE
8115 /* privileged levels capture (kernel, hv): check permissions */
8116 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8117 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8118 return -EACCES;
bce38cd5 8119 }
4018994f 8120
c5ebcedb 8121 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8122 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8123 if (ret)
8124 return ret;
8125 }
8126
8127 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8128 if (!arch_perf_have_user_stack_dump())
8129 return -ENOSYS;
8130
8131 /*
8132 * We have __u32 type for the size, but so far
8133 * we can only use __u16 as maximum due to the
8134 * __u16 sample size limit.
8135 */
8136 if (attr->sample_stack_user >= USHRT_MAX)
8137 ret = -EINVAL;
8138 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8139 ret = -EINVAL;
8140 }
4018994f 8141
60e2364e
SE
8142 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8143 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8144out:
8145 return ret;
8146
8147err_size:
8148 put_user(sizeof(*attr), &uattr->size);
8149 ret = -E2BIG;
8150 goto out;
8151}
8152
ac9721f3
PZ
8153static int
8154perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8155{
b69cf536 8156 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8157 int ret = -EINVAL;
8158
ac9721f3 8159 if (!output_event)
a4be7c27
PZ
8160 goto set;
8161
ac9721f3
PZ
8162 /* don't allow circular references */
8163 if (event == output_event)
a4be7c27
PZ
8164 goto out;
8165
0f139300
PZ
8166 /*
8167 * Don't allow cross-cpu buffers
8168 */
8169 if (output_event->cpu != event->cpu)
8170 goto out;
8171
8172 /*
76369139 8173 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8174 */
8175 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8176 goto out;
8177
34f43927
PZ
8178 /*
8179 * Mixing clocks in the same buffer is trouble you don't need.
8180 */
8181 if (output_event->clock != event->clock)
8182 goto out;
8183
45bfb2e5
PZ
8184 /*
8185 * If both events generate aux data, they must be on the same PMU
8186 */
8187 if (has_aux(event) && has_aux(output_event) &&
8188 event->pmu != output_event->pmu)
8189 goto out;
8190
a4be7c27 8191set:
cdd6c482 8192 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8193 /* Can't redirect output if we've got an active mmap() */
8194 if (atomic_read(&event->mmap_count))
8195 goto unlock;
a4be7c27 8196
ac9721f3 8197 if (output_event) {
76369139
FW
8198 /* get the rb we want to redirect to */
8199 rb = ring_buffer_get(output_event);
8200 if (!rb)
ac9721f3 8201 goto unlock;
a4be7c27
PZ
8202 }
8203
b69cf536 8204 ring_buffer_attach(event, rb);
9bb5d40c 8205
a4be7c27 8206 ret = 0;
ac9721f3
PZ
8207unlock:
8208 mutex_unlock(&event->mmap_mutex);
8209
a4be7c27 8210out:
a4be7c27
PZ
8211 return ret;
8212}
8213
f63a8daa
PZ
8214static void mutex_lock_double(struct mutex *a, struct mutex *b)
8215{
8216 if (b < a)
8217 swap(a, b);
8218
8219 mutex_lock(a);
8220 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8221}
8222
34f43927
PZ
8223static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8224{
8225 bool nmi_safe = false;
8226
8227 switch (clk_id) {
8228 case CLOCK_MONOTONIC:
8229 event->clock = &ktime_get_mono_fast_ns;
8230 nmi_safe = true;
8231 break;
8232
8233 case CLOCK_MONOTONIC_RAW:
8234 event->clock = &ktime_get_raw_fast_ns;
8235 nmi_safe = true;
8236 break;
8237
8238 case CLOCK_REALTIME:
8239 event->clock = &ktime_get_real_ns;
8240 break;
8241
8242 case CLOCK_BOOTTIME:
8243 event->clock = &ktime_get_boot_ns;
8244 break;
8245
8246 case CLOCK_TAI:
8247 event->clock = &ktime_get_tai_ns;
8248 break;
8249
8250 default:
8251 return -EINVAL;
8252 }
8253
8254 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8255 return -EINVAL;
8256
8257 return 0;
8258}
8259
0793a61d 8260/**
cdd6c482 8261 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8262 *
cdd6c482 8263 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8264 * @pid: target pid
9f66a381 8265 * @cpu: target cpu
cdd6c482 8266 * @group_fd: group leader event fd
0793a61d 8267 */
cdd6c482
IM
8268SYSCALL_DEFINE5(perf_event_open,
8269 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8270 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8271{
b04243ef
PZ
8272 struct perf_event *group_leader = NULL, *output_event = NULL;
8273 struct perf_event *event, *sibling;
cdd6c482 8274 struct perf_event_attr attr;
f63a8daa 8275 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8276 struct file *event_file = NULL;
2903ff01 8277 struct fd group = {NULL, 0};
38a81da2 8278 struct task_struct *task = NULL;
89a1e187 8279 struct pmu *pmu;
ea635c64 8280 int event_fd;
b04243ef 8281 int move_group = 0;
dc86cabe 8282 int err;
a21b0b35 8283 int f_flags = O_RDWR;
79dff51e 8284 int cgroup_fd = -1;
0793a61d 8285
2743a5b0 8286 /* for future expandability... */
e5d1367f 8287 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8288 return -EINVAL;
8289
dc86cabe
IM
8290 err = perf_copy_attr(attr_uptr, &attr);
8291 if (err)
8292 return err;
eab656ae 8293
0764771d
PZ
8294 if (!attr.exclude_kernel) {
8295 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8296 return -EACCES;
8297 }
8298
df58ab24 8299 if (attr.freq) {
cdd6c482 8300 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8301 return -EINVAL;
0819b2e3
PZ
8302 } else {
8303 if (attr.sample_period & (1ULL << 63))
8304 return -EINVAL;
df58ab24
PZ
8305 }
8306
e5d1367f
SE
8307 /*
8308 * In cgroup mode, the pid argument is used to pass the fd
8309 * opened to the cgroup directory in cgroupfs. The cpu argument
8310 * designates the cpu on which to monitor threads from that
8311 * cgroup.
8312 */
8313 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8314 return -EINVAL;
8315
a21b0b35
YD
8316 if (flags & PERF_FLAG_FD_CLOEXEC)
8317 f_flags |= O_CLOEXEC;
8318
8319 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8320 if (event_fd < 0)
8321 return event_fd;
8322
ac9721f3 8323 if (group_fd != -1) {
2903ff01
AV
8324 err = perf_fget_light(group_fd, &group);
8325 if (err)
d14b12d7 8326 goto err_fd;
2903ff01 8327 group_leader = group.file->private_data;
ac9721f3
PZ
8328 if (flags & PERF_FLAG_FD_OUTPUT)
8329 output_event = group_leader;
8330 if (flags & PERF_FLAG_FD_NO_GROUP)
8331 group_leader = NULL;
8332 }
8333
e5d1367f 8334 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8335 task = find_lively_task_by_vpid(pid);
8336 if (IS_ERR(task)) {
8337 err = PTR_ERR(task);
8338 goto err_group_fd;
8339 }
8340 }
8341
1f4ee503
PZ
8342 if (task && group_leader &&
8343 group_leader->attr.inherit != attr.inherit) {
8344 err = -EINVAL;
8345 goto err_task;
8346 }
8347
fbfc623f
YZ
8348 get_online_cpus();
8349
79dff51e
MF
8350 if (flags & PERF_FLAG_PID_CGROUP)
8351 cgroup_fd = pid;
8352
4dc0da86 8353 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8354 NULL, NULL, cgroup_fd);
d14b12d7
SE
8355 if (IS_ERR(event)) {
8356 err = PTR_ERR(event);
1f4ee503 8357 goto err_cpus;
d14b12d7
SE
8358 }
8359
53b25335
VW
8360 if (is_sampling_event(event)) {
8361 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8362 err = -ENOTSUPP;
8363 goto err_alloc;
8364 }
8365 }
8366
766d6c07
FW
8367 account_event(event);
8368
89a1e187
PZ
8369 /*
8370 * Special case software events and allow them to be part of
8371 * any hardware group.
8372 */
8373 pmu = event->pmu;
b04243ef 8374
34f43927
PZ
8375 if (attr.use_clockid) {
8376 err = perf_event_set_clock(event, attr.clockid);
8377 if (err)
8378 goto err_alloc;
8379 }
8380
b04243ef
PZ
8381 if (group_leader &&
8382 (is_software_event(event) != is_software_event(group_leader))) {
8383 if (is_software_event(event)) {
8384 /*
8385 * If event and group_leader are not both a software
8386 * event, and event is, then group leader is not.
8387 *
8388 * Allow the addition of software events to !software
8389 * groups, this is safe because software events never
8390 * fail to schedule.
8391 */
8392 pmu = group_leader->pmu;
8393 } else if (is_software_event(group_leader) &&
8394 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8395 /*
8396 * In case the group is a pure software group, and we
8397 * try to add a hardware event, move the whole group to
8398 * the hardware context.
8399 */
8400 move_group = 1;
8401 }
8402 }
89a1e187
PZ
8403
8404 /*
8405 * Get the target context (task or percpu):
8406 */
4af57ef2 8407 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8408 if (IS_ERR(ctx)) {
8409 err = PTR_ERR(ctx);
c6be5a5c 8410 goto err_alloc;
89a1e187
PZ
8411 }
8412
bed5b25a
AS
8413 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8414 err = -EBUSY;
8415 goto err_context;
8416 }
8417
fd1edb3a
PZ
8418 if (task) {
8419 put_task_struct(task);
8420 task = NULL;
8421 }
8422
ccff286d 8423 /*
cdd6c482 8424 * Look up the group leader (we will attach this event to it):
04289bb9 8425 */
ac9721f3 8426 if (group_leader) {
dc86cabe 8427 err = -EINVAL;
04289bb9 8428
04289bb9 8429 /*
ccff286d
IM
8430 * Do not allow a recursive hierarchy (this new sibling
8431 * becoming part of another group-sibling):
8432 */
8433 if (group_leader->group_leader != group_leader)
c3f00c70 8434 goto err_context;
34f43927
PZ
8435
8436 /* All events in a group should have the same clock */
8437 if (group_leader->clock != event->clock)
8438 goto err_context;
8439
ccff286d
IM
8440 /*
8441 * Do not allow to attach to a group in a different
8442 * task or CPU context:
04289bb9 8443 */
b04243ef 8444 if (move_group) {
c3c87e77
PZ
8445 /*
8446 * Make sure we're both on the same task, or both
8447 * per-cpu events.
8448 */
8449 if (group_leader->ctx->task != ctx->task)
8450 goto err_context;
8451
8452 /*
8453 * Make sure we're both events for the same CPU;
8454 * grouping events for different CPUs is broken; since
8455 * you can never concurrently schedule them anyhow.
8456 */
8457 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8458 goto err_context;
8459 } else {
8460 if (group_leader->ctx != ctx)
8461 goto err_context;
8462 }
8463
3b6f9e5c
PM
8464 /*
8465 * Only a group leader can be exclusive or pinned
8466 */
0d48696f 8467 if (attr.exclusive || attr.pinned)
c3f00c70 8468 goto err_context;
ac9721f3
PZ
8469 }
8470
8471 if (output_event) {
8472 err = perf_event_set_output(event, output_event);
8473 if (err)
c3f00c70 8474 goto err_context;
ac9721f3 8475 }
0793a61d 8476
a21b0b35
YD
8477 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8478 f_flags);
ea635c64
AV
8479 if (IS_ERR(event_file)) {
8480 err = PTR_ERR(event_file);
c3f00c70 8481 goto err_context;
ea635c64 8482 }
9b51f66d 8483
b04243ef 8484 if (move_group) {
f63a8daa 8485 gctx = group_leader->ctx;
f55fc2a5 8486 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8487 if (gctx->task == TASK_TOMBSTONE) {
8488 err = -ESRCH;
8489 goto err_locked;
8490 }
f55fc2a5
PZ
8491 } else {
8492 mutex_lock(&ctx->mutex);
8493 }
8494
84c4e620
PZ
8495 if (ctx->task == TASK_TOMBSTONE) {
8496 err = -ESRCH;
8497 goto err_locked;
8498 }
8499
a723968c
PZ
8500 if (!perf_event_validate_size(event)) {
8501 err = -E2BIG;
8502 goto err_locked;
8503 }
8504
f55fc2a5
PZ
8505 /*
8506 * Must be under the same ctx::mutex as perf_install_in_context(),
8507 * because we need to serialize with concurrent event creation.
8508 */
8509 if (!exclusive_event_installable(event, ctx)) {
8510 /* exclusive and group stuff are assumed mutually exclusive */
8511 WARN_ON_ONCE(move_group);
f63a8daa 8512
f55fc2a5
PZ
8513 err = -EBUSY;
8514 goto err_locked;
8515 }
f63a8daa 8516
f55fc2a5
PZ
8517 WARN_ON_ONCE(ctx->parent_ctx);
8518
8519 if (move_group) {
f63a8daa
PZ
8520 /*
8521 * See perf_event_ctx_lock() for comments on the details
8522 * of swizzling perf_event::ctx.
8523 */
45a0e07a 8524 perf_remove_from_context(group_leader, 0);
0231bb53 8525
b04243ef
PZ
8526 list_for_each_entry(sibling, &group_leader->sibling_list,
8527 group_entry) {
45a0e07a 8528 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8529 put_ctx(gctx);
8530 }
b04243ef 8531
f63a8daa
PZ
8532 /*
8533 * Wait for everybody to stop referencing the events through
8534 * the old lists, before installing it on new lists.
8535 */
0cda4c02 8536 synchronize_rcu();
f63a8daa 8537
8f95b435
PZI
8538 /*
8539 * Install the group siblings before the group leader.
8540 *
8541 * Because a group leader will try and install the entire group
8542 * (through the sibling list, which is still in-tact), we can
8543 * end up with siblings installed in the wrong context.
8544 *
8545 * By installing siblings first we NO-OP because they're not
8546 * reachable through the group lists.
8547 */
b04243ef
PZ
8548 list_for_each_entry(sibling, &group_leader->sibling_list,
8549 group_entry) {
8f95b435 8550 perf_event__state_init(sibling);
9fc81d87 8551 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8552 get_ctx(ctx);
8553 }
8f95b435
PZI
8554
8555 /*
8556 * Removing from the context ends up with disabled
8557 * event. What we want here is event in the initial
8558 * startup state, ready to be add into new context.
8559 */
8560 perf_event__state_init(group_leader);
8561 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8562 get_ctx(ctx);
b04243ef 8563
f55fc2a5
PZ
8564 /*
8565 * Now that all events are installed in @ctx, nothing
8566 * references @gctx anymore, so drop the last reference we have
8567 * on it.
8568 */
8569 put_ctx(gctx);
bed5b25a
AS
8570 }
8571
f73e22ab
PZ
8572 /*
8573 * Precalculate sample_data sizes; do while holding ctx::mutex such
8574 * that we're serialized against further additions and before
8575 * perf_install_in_context() which is the point the event is active and
8576 * can use these values.
8577 */
8578 perf_event__header_size(event);
8579 perf_event__id_header_size(event);
8580
78cd2c74
PZ
8581 event->owner = current;
8582
e2d37cd2 8583 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8584 perf_unpin_context(ctx);
f63a8daa 8585
f55fc2a5 8586 if (move_group)
f63a8daa 8587 mutex_unlock(&gctx->mutex);
d859e29f 8588 mutex_unlock(&ctx->mutex);
9b51f66d 8589
fbfc623f
YZ
8590 put_online_cpus();
8591
cdd6c482
IM
8592 mutex_lock(&current->perf_event_mutex);
8593 list_add_tail(&event->owner_entry, &current->perf_event_list);
8594 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8595
8a49542c
PZ
8596 /*
8597 * Drop the reference on the group_event after placing the
8598 * new event on the sibling_list. This ensures destruction
8599 * of the group leader will find the pointer to itself in
8600 * perf_group_detach().
8601 */
2903ff01 8602 fdput(group);
ea635c64
AV
8603 fd_install(event_fd, event_file);
8604 return event_fd;
0793a61d 8605
f55fc2a5
PZ
8606err_locked:
8607 if (move_group)
8608 mutex_unlock(&gctx->mutex);
8609 mutex_unlock(&ctx->mutex);
8610/* err_file: */
8611 fput(event_file);
c3f00c70 8612err_context:
fe4b04fa 8613 perf_unpin_context(ctx);
ea635c64 8614 put_ctx(ctx);
c6be5a5c 8615err_alloc:
13005627
PZ
8616 /*
8617 * If event_file is set, the fput() above will have called ->release()
8618 * and that will take care of freeing the event.
8619 */
8620 if (!event_file)
8621 free_event(event);
1f4ee503 8622err_cpus:
fbfc623f 8623 put_online_cpus();
1f4ee503 8624err_task:
e7d0bc04
PZ
8625 if (task)
8626 put_task_struct(task);
89a1e187 8627err_group_fd:
2903ff01 8628 fdput(group);
ea635c64
AV
8629err_fd:
8630 put_unused_fd(event_fd);
dc86cabe 8631 return err;
0793a61d
TG
8632}
8633
fb0459d7
AV
8634/**
8635 * perf_event_create_kernel_counter
8636 *
8637 * @attr: attributes of the counter to create
8638 * @cpu: cpu in which the counter is bound
38a81da2 8639 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8640 */
8641struct perf_event *
8642perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8643 struct task_struct *task,
4dc0da86
AK
8644 perf_overflow_handler_t overflow_handler,
8645 void *context)
fb0459d7 8646{
fb0459d7 8647 struct perf_event_context *ctx;
c3f00c70 8648 struct perf_event *event;
fb0459d7 8649 int err;
d859e29f 8650
fb0459d7
AV
8651 /*
8652 * Get the target context (task or percpu):
8653 */
d859e29f 8654
4dc0da86 8655 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8656 overflow_handler, context, -1);
c3f00c70
PZ
8657 if (IS_ERR(event)) {
8658 err = PTR_ERR(event);
8659 goto err;
8660 }
d859e29f 8661
f8697762 8662 /* Mark owner so we could distinguish it from user events. */
63b6da39 8663 event->owner = TASK_TOMBSTONE;
f8697762 8664
766d6c07
FW
8665 account_event(event);
8666
4af57ef2 8667 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8668 if (IS_ERR(ctx)) {
8669 err = PTR_ERR(ctx);
c3f00c70 8670 goto err_free;
d859e29f 8671 }
fb0459d7 8672
fb0459d7
AV
8673 WARN_ON_ONCE(ctx->parent_ctx);
8674 mutex_lock(&ctx->mutex);
84c4e620
PZ
8675 if (ctx->task == TASK_TOMBSTONE) {
8676 err = -ESRCH;
8677 goto err_unlock;
8678 }
8679
bed5b25a 8680 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8681 err = -EBUSY;
84c4e620 8682 goto err_unlock;
bed5b25a
AS
8683 }
8684
fb0459d7 8685 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8686 perf_unpin_context(ctx);
fb0459d7
AV
8687 mutex_unlock(&ctx->mutex);
8688
fb0459d7
AV
8689 return event;
8690
84c4e620
PZ
8691err_unlock:
8692 mutex_unlock(&ctx->mutex);
8693 perf_unpin_context(ctx);
8694 put_ctx(ctx);
c3f00c70
PZ
8695err_free:
8696 free_event(event);
8697err:
c6567f64 8698 return ERR_PTR(err);
9b51f66d 8699}
fb0459d7 8700EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8701
0cda4c02
YZ
8702void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8703{
8704 struct perf_event_context *src_ctx;
8705 struct perf_event_context *dst_ctx;
8706 struct perf_event *event, *tmp;
8707 LIST_HEAD(events);
8708
8709 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8710 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8711
f63a8daa
PZ
8712 /*
8713 * See perf_event_ctx_lock() for comments on the details
8714 * of swizzling perf_event::ctx.
8715 */
8716 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8717 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8718 event_entry) {
45a0e07a 8719 perf_remove_from_context(event, 0);
9a545de0 8720 unaccount_event_cpu(event, src_cpu);
0cda4c02 8721 put_ctx(src_ctx);
9886167d 8722 list_add(&event->migrate_entry, &events);
0cda4c02 8723 }
0cda4c02 8724
8f95b435
PZI
8725 /*
8726 * Wait for the events to quiesce before re-instating them.
8727 */
0cda4c02
YZ
8728 synchronize_rcu();
8729
8f95b435
PZI
8730 /*
8731 * Re-instate events in 2 passes.
8732 *
8733 * Skip over group leaders and only install siblings on this first
8734 * pass, siblings will not get enabled without a leader, however a
8735 * leader will enable its siblings, even if those are still on the old
8736 * context.
8737 */
8738 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8739 if (event->group_leader == event)
8740 continue;
8741
8742 list_del(&event->migrate_entry);
8743 if (event->state >= PERF_EVENT_STATE_OFF)
8744 event->state = PERF_EVENT_STATE_INACTIVE;
8745 account_event_cpu(event, dst_cpu);
8746 perf_install_in_context(dst_ctx, event, dst_cpu);
8747 get_ctx(dst_ctx);
8748 }
8749
8750 /*
8751 * Once all the siblings are setup properly, install the group leaders
8752 * to make it go.
8753 */
9886167d
PZ
8754 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8755 list_del(&event->migrate_entry);
0cda4c02
YZ
8756 if (event->state >= PERF_EVENT_STATE_OFF)
8757 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8758 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8759 perf_install_in_context(dst_ctx, event, dst_cpu);
8760 get_ctx(dst_ctx);
8761 }
8762 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8763 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8764}
8765EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8766
cdd6c482 8767static void sync_child_event(struct perf_event *child_event,
38b200d6 8768 struct task_struct *child)
d859e29f 8769{
cdd6c482 8770 struct perf_event *parent_event = child_event->parent;
8bc20959 8771 u64 child_val;
d859e29f 8772
cdd6c482
IM
8773 if (child_event->attr.inherit_stat)
8774 perf_event_read_event(child_event, child);
38b200d6 8775
b5e58793 8776 child_val = perf_event_count(child_event);
d859e29f
PM
8777
8778 /*
8779 * Add back the child's count to the parent's count:
8780 */
a6e6dea6 8781 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8782 atomic64_add(child_event->total_time_enabled,
8783 &parent_event->child_total_time_enabled);
8784 atomic64_add(child_event->total_time_running,
8785 &parent_event->child_total_time_running);
d859e29f
PM
8786}
8787
9b51f66d 8788static void
8ba289b8
PZ
8789perf_event_exit_event(struct perf_event *child_event,
8790 struct perf_event_context *child_ctx,
8791 struct task_struct *child)
9b51f66d 8792{
8ba289b8
PZ
8793 struct perf_event *parent_event = child_event->parent;
8794
1903d50c
PZ
8795 /*
8796 * Do not destroy the 'original' grouping; because of the context
8797 * switch optimization the original events could've ended up in a
8798 * random child task.
8799 *
8800 * If we were to destroy the original group, all group related
8801 * operations would cease to function properly after this random
8802 * child dies.
8803 *
8804 * Do destroy all inherited groups, we don't care about those
8805 * and being thorough is better.
8806 */
32132a3d
PZ
8807 raw_spin_lock_irq(&child_ctx->lock);
8808 WARN_ON_ONCE(child_ctx->is_active);
8809
8ba289b8 8810 if (parent_event)
32132a3d
PZ
8811 perf_group_detach(child_event);
8812 list_del_event(child_event, child_ctx);
a69b0ca4 8813 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8814 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8815
9b51f66d 8816 /*
8ba289b8 8817 * Parent events are governed by their filedesc, retain them.
9b51f66d 8818 */
8ba289b8 8819 if (!parent_event) {
179033b3 8820 perf_event_wakeup(child_event);
8ba289b8 8821 return;
4bcf349a 8822 }
8ba289b8
PZ
8823 /*
8824 * Child events can be cleaned up.
8825 */
8826
8827 sync_child_event(child_event, child);
8828
8829 /*
8830 * Remove this event from the parent's list
8831 */
8832 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8833 mutex_lock(&parent_event->child_mutex);
8834 list_del_init(&child_event->child_list);
8835 mutex_unlock(&parent_event->child_mutex);
8836
8837 /*
8838 * Kick perf_poll() for is_event_hup().
8839 */
8840 perf_event_wakeup(parent_event);
8841 free_event(child_event);
8842 put_event(parent_event);
9b51f66d
IM
8843}
8844
8dc85d54 8845static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8846{
211de6eb 8847 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8848 struct perf_event *child_event, *next;
63b6da39
PZ
8849
8850 WARN_ON_ONCE(child != current);
9b51f66d 8851
6a3351b6 8852 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8853 if (!child_ctx)
9b51f66d
IM
8854 return;
8855
ad3a37de 8856 /*
6a3351b6
PZ
8857 * In order to reduce the amount of tricky in ctx tear-down, we hold
8858 * ctx::mutex over the entire thing. This serializes against almost
8859 * everything that wants to access the ctx.
8860 *
8861 * The exception is sys_perf_event_open() /
8862 * perf_event_create_kernel_count() which does find_get_context()
8863 * without ctx::mutex (it cannot because of the move_group double mutex
8864 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8865 */
6a3351b6 8866 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8867
8868 /*
6a3351b6
PZ
8869 * In a single ctx::lock section, de-schedule the events and detach the
8870 * context from the task such that we cannot ever get it scheduled back
8871 * in.
c93f7669 8872 */
6a3351b6 8873 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8874 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8875
71a851b4 8876 /*
63b6da39
PZ
8877 * Now that the context is inactive, destroy the task <-> ctx relation
8878 * and mark the context dead.
71a851b4 8879 */
63b6da39
PZ
8880 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8881 put_ctx(child_ctx); /* cannot be last */
8882 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8883 put_task_struct(current); /* cannot be last */
4a1c0f26 8884
211de6eb 8885 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8886 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8887
211de6eb
PZ
8888 if (clone_ctx)
8889 put_ctx(clone_ctx);
4a1c0f26 8890
9f498cc5 8891 /*
cdd6c482
IM
8892 * Report the task dead after unscheduling the events so that we
8893 * won't get any samples after PERF_RECORD_EXIT. We can however still
8894 * get a few PERF_RECORD_READ events.
9f498cc5 8895 */
cdd6c482 8896 perf_event_task(child, child_ctx, 0);
a63eaf34 8897
ebf905fc 8898 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8899 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8900
a63eaf34
PM
8901 mutex_unlock(&child_ctx->mutex);
8902
8903 put_ctx(child_ctx);
9b51f66d
IM
8904}
8905
8dc85d54
PZ
8906/*
8907 * When a child task exits, feed back event values to parent events.
8908 */
8909void perf_event_exit_task(struct task_struct *child)
8910{
8882135b 8911 struct perf_event *event, *tmp;
8dc85d54
PZ
8912 int ctxn;
8913
8882135b
PZ
8914 mutex_lock(&child->perf_event_mutex);
8915 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8916 owner_entry) {
8917 list_del_init(&event->owner_entry);
8918
8919 /*
8920 * Ensure the list deletion is visible before we clear
8921 * the owner, closes a race against perf_release() where
8922 * we need to serialize on the owner->perf_event_mutex.
8923 */
f47c02c0 8924 smp_store_release(&event->owner, NULL);
8882135b
PZ
8925 }
8926 mutex_unlock(&child->perf_event_mutex);
8927
8dc85d54
PZ
8928 for_each_task_context_nr(ctxn)
8929 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8930
8931 /*
8932 * The perf_event_exit_task_context calls perf_event_task
8933 * with child's task_ctx, which generates EXIT events for
8934 * child contexts and sets child->perf_event_ctxp[] to NULL.
8935 * At this point we need to send EXIT events to cpu contexts.
8936 */
8937 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8938}
8939
889ff015
FW
8940static void perf_free_event(struct perf_event *event,
8941 struct perf_event_context *ctx)
8942{
8943 struct perf_event *parent = event->parent;
8944
8945 if (WARN_ON_ONCE(!parent))
8946 return;
8947
8948 mutex_lock(&parent->child_mutex);
8949 list_del_init(&event->child_list);
8950 mutex_unlock(&parent->child_mutex);
8951
a6fa941d 8952 put_event(parent);
889ff015 8953
652884fe 8954 raw_spin_lock_irq(&ctx->lock);
8a49542c 8955 perf_group_detach(event);
889ff015 8956 list_del_event(event, ctx);
652884fe 8957 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8958 free_event(event);
8959}
8960
bbbee908 8961/*
652884fe 8962 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8963 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8964 *
8965 * Not all locks are strictly required, but take them anyway to be nice and
8966 * help out with the lockdep assertions.
bbbee908 8967 */
cdd6c482 8968void perf_event_free_task(struct task_struct *task)
bbbee908 8969{
8dc85d54 8970 struct perf_event_context *ctx;
cdd6c482 8971 struct perf_event *event, *tmp;
8dc85d54 8972 int ctxn;
bbbee908 8973
8dc85d54
PZ
8974 for_each_task_context_nr(ctxn) {
8975 ctx = task->perf_event_ctxp[ctxn];
8976 if (!ctx)
8977 continue;
bbbee908 8978
8dc85d54 8979 mutex_lock(&ctx->mutex);
bbbee908 8980again:
8dc85d54
PZ
8981 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8982 group_entry)
8983 perf_free_event(event, ctx);
bbbee908 8984
8dc85d54
PZ
8985 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8986 group_entry)
8987 perf_free_event(event, ctx);
bbbee908 8988
8dc85d54
PZ
8989 if (!list_empty(&ctx->pinned_groups) ||
8990 !list_empty(&ctx->flexible_groups))
8991 goto again;
bbbee908 8992
8dc85d54 8993 mutex_unlock(&ctx->mutex);
bbbee908 8994
8dc85d54
PZ
8995 put_ctx(ctx);
8996 }
889ff015
FW
8997}
8998
4e231c79
PZ
8999void perf_event_delayed_put(struct task_struct *task)
9000{
9001 int ctxn;
9002
9003 for_each_task_context_nr(ctxn)
9004 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9005}
9006
e03e7ee3 9007struct file *perf_event_get(unsigned int fd)
ffe8690c 9008{
e03e7ee3 9009 struct file *file;
ffe8690c 9010
e03e7ee3
AS
9011 file = fget_raw(fd);
9012 if (!file)
9013 return ERR_PTR(-EBADF);
ffe8690c 9014
e03e7ee3
AS
9015 if (file->f_op != &perf_fops) {
9016 fput(file);
9017 return ERR_PTR(-EBADF);
9018 }
ffe8690c 9019
e03e7ee3 9020 return file;
ffe8690c
KX
9021}
9022
9023const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9024{
9025 if (!event)
9026 return ERR_PTR(-EINVAL);
9027
9028 return &event->attr;
9029}
9030
97dee4f3
PZ
9031/*
9032 * inherit a event from parent task to child task:
9033 */
9034static struct perf_event *
9035inherit_event(struct perf_event *parent_event,
9036 struct task_struct *parent,
9037 struct perf_event_context *parent_ctx,
9038 struct task_struct *child,
9039 struct perf_event *group_leader,
9040 struct perf_event_context *child_ctx)
9041{
1929def9 9042 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9043 struct perf_event *child_event;
cee010ec 9044 unsigned long flags;
97dee4f3
PZ
9045
9046 /*
9047 * Instead of creating recursive hierarchies of events,
9048 * we link inherited events back to the original parent,
9049 * which has a filp for sure, which we use as the reference
9050 * count:
9051 */
9052 if (parent_event->parent)
9053 parent_event = parent_event->parent;
9054
9055 child_event = perf_event_alloc(&parent_event->attr,
9056 parent_event->cpu,
d580ff86 9057 child,
97dee4f3 9058 group_leader, parent_event,
79dff51e 9059 NULL, NULL, -1);
97dee4f3
PZ
9060 if (IS_ERR(child_event))
9061 return child_event;
a6fa941d 9062
c6e5b732
PZ
9063 /*
9064 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9065 * must be under the same lock in order to serialize against
9066 * perf_event_release_kernel(), such that either we must observe
9067 * is_orphaned_event() or they will observe us on the child_list.
9068 */
9069 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9070 if (is_orphaned_event(parent_event) ||
9071 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9072 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9073 free_event(child_event);
9074 return NULL;
9075 }
9076
97dee4f3
PZ
9077 get_ctx(child_ctx);
9078
9079 /*
9080 * Make the child state follow the state of the parent event,
9081 * not its attr.disabled bit. We hold the parent's mutex,
9082 * so we won't race with perf_event_{en, dis}able_family.
9083 */
1929def9 9084 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9085 child_event->state = PERF_EVENT_STATE_INACTIVE;
9086 else
9087 child_event->state = PERF_EVENT_STATE_OFF;
9088
9089 if (parent_event->attr.freq) {
9090 u64 sample_period = parent_event->hw.sample_period;
9091 struct hw_perf_event *hwc = &child_event->hw;
9092
9093 hwc->sample_period = sample_period;
9094 hwc->last_period = sample_period;
9095
9096 local64_set(&hwc->period_left, sample_period);
9097 }
9098
9099 child_event->ctx = child_ctx;
9100 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9101 child_event->overflow_handler_context
9102 = parent_event->overflow_handler_context;
97dee4f3 9103
614b6780
TG
9104 /*
9105 * Precalculate sample_data sizes
9106 */
9107 perf_event__header_size(child_event);
6844c09d 9108 perf_event__id_header_size(child_event);
614b6780 9109
97dee4f3
PZ
9110 /*
9111 * Link it up in the child's context:
9112 */
cee010ec 9113 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9114 add_event_to_ctx(child_event, child_ctx);
cee010ec 9115 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9116
97dee4f3
PZ
9117 /*
9118 * Link this into the parent event's child list
9119 */
97dee4f3
PZ
9120 list_add_tail(&child_event->child_list, &parent_event->child_list);
9121 mutex_unlock(&parent_event->child_mutex);
9122
9123 return child_event;
9124}
9125
9126static int inherit_group(struct perf_event *parent_event,
9127 struct task_struct *parent,
9128 struct perf_event_context *parent_ctx,
9129 struct task_struct *child,
9130 struct perf_event_context *child_ctx)
9131{
9132 struct perf_event *leader;
9133 struct perf_event *sub;
9134 struct perf_event *child_ctr;
9135
9136 leader = inherit_event(parent_event, parent, parent_ctx,
9137 child, NULL, child_ctx);
9138 if (IS_ERR(leader))
9139 return PTR_ERR(leader);
9140 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9141 child_ctr = inherit_event(sub, parent, parent_ctx,
9142 child, leader, child_ctx);
9143 if (IS_ERR(child_ctr))
9144 return PTR_ERR(child_ctr);
9145 }
9146 return 0;
889ff015
FW
9147}
9148
9149static int
9150inherit_task_group(struct perf_event *event, struct task_struct *parent,
9151 struct perf_event_context *parent_ctx,
8dc85d54 9152 struct task_struct *child, int ctxn,
889ff015
FW
9153 int *inherited_all)
9154{
9155 int ret;
8dc85d54 9156 struct perf_event_context *child_ctx;
889ff015
FW
9157
9158 if (!event->attr.inherit) {
9159 *inherited_all = 0;
9160 return 0;
bbbee908
PZ
9161 }
9162
fe4b04fa 9163 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9164 if (!child_ctx) {
9165 /*
9166 * This is executed from the parent task context, so
9167 * inherit events that have been marked for cloning.
9168 * First allocate and initialize a context for the
9169 * child.
9170 */
bbbee908 9171
734df5ab 9172 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9173 if (!child_ctx)
9174 return -ENOMEM;
bbbee908 9175
8dc85d54 9176 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9177 }
9178
9179 ret = inherit_group(event, parent, parent_ctx,
9180 child, child_ctx);
9181
9182 if (ret)
9183 *inherited_all = 0;
9184
9185 return ret;
bbbee908
PZ
9186}
9187
9b51f66d 9188/*
cdd6c482 9189 * Initialize the perf_event context in task_struct
9b51f66d 9190 */
985c8dcb 9191static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9192{
889ff015 9193 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9194 struct perf_event_context *cloned_ctx;
9195 struct perf_event *event;
9b51f66d 9196 struct task_struct *parent = current;
564c2b21 9197 int inherited_all = 1;
dddd3379 9198 unsigned long flags;
6ab423e0 9199 int ret = 0;
9b51f66d 9200
8dc85d54 9201 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9202 return 0;
9203
ad3a37de 9204 /*
25346b93
PM
9205 * If the parent's context is a clone, pin it so it won't get
9206 * swapped under us.
ad3a37de 9207 */
8dc85d54 9208 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9209 if (!parent_ctx)
9210 return 0;
25346b93 9211
ad3a37de
PM
9212 /*
9213 * No need to check if parent_ctx != NULL here; since we saw
9214 * it non-NULL earlier, the only reason for it to become NULL
9215 * is if we exit, and since we're currently in the middle of
9216 * a fork we can't be exiting at the same time.
9217 */
ad3a37de 9218
9b51f66d
IM
9219 /*
9220 * Lock the parent list. No need to lock the child - not PID
9221 * hashed yet and not running, so nobody can access it.
9222 */
d859e29f 9223 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9224
9225 /*
9226 * We dont have to disable NMIs - we are only looking at
9227 * the list, not manipulating it:
9228 */
889ff015 9229 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9230 ret = inherit_task_group(event, parent, parent_ctx,
9231 child, ctxn, &inherited_all);
889ff015
FW
9232 if (ret)
9233 break;
9234 }
b93f7978 9235
dddd3379
TG
9236 /*
9237 * We can't hold ctx->lock when iterating the ->flexible_group list due
9238 * to allocations, but we need to prevent rotation because
9239 * rotate_ctx() will change the list from interrupt context.
9240 */
9241 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9242 parent_ctx->rotate_disable = 1;
9243 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9244
889ff015 9245 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9246 ret = inherit_task_group(event, parent, parent_ctx,
9247 child, ctxn, &inherited_all);
889ff015 9248 if (ret)
9b51f66d 9249 break;
564c2b21
PM
9250 }
9251
dddd3379
TG
9252 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9253 parent_ctx->rotate_disable = 0;
dddd3379 9254
8dc85d54 9255 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9256
05cbaa28 9257 if (child_ctx && inherited_all) {
564c2b21
PM
9258 /*
9259 * Mark the child context as a clone of the parent
9260 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9261 *
9262 * Note that if the parent is a clone, the holding of
9263 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9264 */
c5ed5145 9265 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9266 if (cloned_ctx) {
9267 child_ctx->parent_ctx = cloned_ctx;
25346b93 9268 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9269 } else {
9270 child_ctx->parent_ctx = parent_ctx;
9271 child_ctx->parent_gen = parent_ctx->generation;
9272 }
9273 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9274 }
9275
c5ed5145 9276 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9277 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9278
25346b93 9279 perf_unpin_context(parent_ctx);
fe4b04fa 9280 put_ctx(parent_ctx);
ad3a37de 9281
6ab423e0 9282 return ret;
9b51f66d
IM
9283}
9284
8dc85d54
PZ
9285/*
9286 * Initialize the perf_event context in task_struct
9287 */
9288int perf_event_init_task(struct task_struct *child)
9289{
9290 int ctxn, ret;
9291
8550d7cb
ON
9292 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9293 mutex_init(&child->perf_event_mutex);
9294 INIT_LIST_HEAD(&child->perf_event_list);
9295
8dc85d54
PZ
9296 for_each_task_context_nr(ctxn) {
9297 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9298 if (ret) {
9299 perf_event_free_task(child);
8dc85d54 9300 return ret;
6c72e350 9301 }
8dc85d54
PZ
9302 }
9303
9304 return 0;
9305}
9306
220b140b
PM
9307static void __init perf_event_init_all_cpus(void)
9308{
b28ab83c 9309 struct swevent_htable *swhash;
220b140b 9310 int cpu;
220b140b
PM
9311
9312 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9313 swhash = &per_cpu(swevent_htable, cpu);
9314 mutex_init(&swhash->hlist_mutex);
2fde4f94 9315 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9316 }
9317}
9318
0db0628d 9319static void perf_event_init_cpu(int cpu)
0793a61d 9320{
108b02cf 9321 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9322
b28ab83c 9323 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9324 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9325 struct swevent_hlist *hlist;
9326
b28ab83c
PZ
9327 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9328 WARN_ON(!hlist);
9329 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9330 }
b28ab83c 9331 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9332}
9333
2965faa5 9334#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9335static void __perf_event_exit_context(void *__info)
0793a61d 9336{
108b02cf 9337 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9338 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9339 struct perf_event *event;
0793a61d 9340
fae3fde6
PZ
9341 raw_spin_lock(&ctx->lock);
9342 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9343 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9344 raw_spin_unlock(&ctx->lock);
0793a61d 9345}
108b02cf
PZ
9346
9347static void perf_event_exit_cpu_context(int cpu)
9348{
9349 struct perf_event_context *ctx;
9350 struct pmu *pmu;
9351 int idx;
9352
9353 idx = srcu_read_lock(&pmus_srcu);
9354 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9355 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9356
9357 mutex_lock(&ctx->mutex);
9358 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9359 mutex_unlock(&ctx->mutex);
9360 }
9361 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9362}
9363
cdd6c482 9364static void perf_event_exit_cpu(int cpu)
0793a61d 9365{
e3703f8c 9366 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9367}
9368#else
cdd6c482 9369static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9370#endif
9371
c277443c
PZ
9372static int
9373perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9374{
9375 int cpu;
9376
9377 for_each_online_cpu(cpu)
9378 perf_event_exit_cpu(cpu);
9379
9380 return NOTIFY_OK;
9381}
9382
9383/*
9384 * Run the perf reboot notifier at the very last possible moment so that
9385 * the generic watchdog code runs as long as possible.
9386 */
9387static struct notifier_block perf_reboot_notifier = {
9388 .notifier_call = perf_reboot,
9389 .priority = INT_MIN,
9390};
9391
0db0628d 9392static int
0793a61d
TG
9393perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9394{
9395 unsigned int cpu = (long)hcpu;
9396
4536e4d1 9397 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9398
9399 case CPU_UP_PREPARE:
cdd6c482 9400 perf_event_init_cpu(cpu);
0793a61d
TG
9401 break;
9402
9403 case CPU_DOWN_PREPARE:
cdd6c482 9404 perf_event_exit_cpu(cpu);
0793a61d 9405 break;
0793a61d
TG
9406 default:
9407 break;
9408 }
9409
9410 return NOTIFY_OK;
9411}
9412
cdd6c482 9413void __init perf_event_init(void)
0793a61d 9414{
3c502e7a
JW
9415 int ret;
9416
2e80a82a
PZ
9417 idr_init(&pmu_idr);
9418
220b140b 9419 perf_event_init_all_cpus();
b0a873eb 9420 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9421 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9422 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9423 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9424 perf_tp_register();
9425 perf_cpu_notifier(perf_cpu_notify);
c277443c 9426 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9427
9428 ret = init_hw_breakpoint();
9429 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9430
b01c3a00
JO
9431 /*
9432 * Build time assertion that we keep the data_head at the intended
9433 * location. IOW, validation we got the __reserved[] size right.
9434 */
9435 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9436 != 1024);
0793a61d 9437}
abe43400 9438
fd979c01
CS
9439ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9440 char *page)
9441{
9442 struct perf_pmu_events_attr *pmu_attr =
9443 container_of(attr, struct perf_pmu_events_attr, attr);
9444
9445 if (pmu_attr->event_str)
9446 return sprintf(page, "%s\n", pmu_attr->event_str);
9447
9448 return 0;
9449}
9450
abe43400
PZ
9451static int __init perf_event_sysfs_init(void)
9452{
9453 struct pmu *pmu;
9454 int ret;
9455
9456 mutex_lock(&pmus_lock);
9457
9458 ret = bus_register(&pmu_bus);
9459 if (ret)
9460 goto unlock;
9461
9462 list_for_each_entry(pmu, &pmus, entry) {
9463 if (!pmu->name || pmu->type < 0)
9464 continue;
9465
9466 ret = pmu_dev_alloc(pmu);
9467 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9468 }
9469 pmu_bus_running = 1;
9470 ret = 0;
9471
9472unlock:
9473 mutex_unlock(&pmus_lock);
9474
9475 return ret;
9476}
9477device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9478
9479#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9480static struct cgroup_subsys_state *
9481perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9482{
9483 struct perf_cgroup *jc;
e5d1367f 9484
1b15d055 9485 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9486 if (!jc)
9487 return ERR_PTR(-ENOMEM);
9488
e5d1367f
SE
9489 jc->info = alloc_percpu(struct perf_cgroup_info);
9490 if (!jc->info) {
9491 kfree(jc);
9492 return ERR_PTR(-ENOMEM);
9493 }
9494
e5d1367f
SE
9495 return &jc->css;
9496}
9497
eb95419b 9498static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9499{
eb95419b
TH
9500 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9501
e5d1367f
SE
9502 free_percpu(jc->info);
9503 kfree(jc);
9504}
9505
9506static int __perf_cgroup_move(void *info)
9507{
9508 struct task_struct *task = info;
ddaaf4e2 9509 rcu_read_lock();
e5d1367f 9510 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9511 rcu_read_unlock();
e5d1367f
SE
9512 return 0;
9513}
9514
1f7dd3e5 9515static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9516{
bb9d97b6 9517 struct task_struct *task;
1f7dd3e5 9518 struct cgroup_subsys_state *css;
bb9d97b6 9519
1f7dd3e5 9520 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9521 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9522}
9523
073219e9 9524struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9525 .css_alloc = perf_cgroup_css_alloc,
9526 .css_free = perf_cgroup_css_free,
bb9d97b6 9527 .attach = perf_cgroup_attach,
e5d1367f
SE
9528};
9529#endif /* CONFIG_CGROUP_PERF */