perf/x86: Add support for PEBS Precise Store
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
c5ebcedb 39#include <linux/mm_types.h>
877c6856 40#include <linux/cgroup.h>
0793a61d 41
76369139
FW
42#include "internal.h"
43
4e193bd4
TB
44#include <asm/irq_regs.h>
45
fe4b04fa 46struct remote_function_call {
e7e7ee2e
IM
47 struct task_struct *p;
48 int (*func)(void *info);
49 void *info;
50 int ret;
fe4b04fa
PZ
51};
52
53static void remote_function(void *data)
54{
55 struct remote_function_call *tfc = data;
56 struct task_struct *p = tfc->p;
57
58 if (p) {
59 tfc->ret = -EAGAIN;
60 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
61 return;
62 }
63
64 tfc->ret = tfc->func(tfc->info);
65}
66
67/**
68 * task_function_call - call a function on the cpu on which a task runs
69 * @p: the task to evaluate
70 * @func: the function to be called
71 * @info: the function call argument
72 *
73 * Calls the function @func when the task is currently running. This might
74 * be on the current CPU, which just calls the function directly
75 *
76 * returns: @func return value, or
77 * -ESRCH - when the process isn't running
78 * -EAGAIN - when the process moved away
79 */
80static int
81task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
82{
83 struct remote_function_call data = {
e7e7ee2e
IM
84 .p = p,
85 .func = func,
86 .info = info,
87 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
88 };
89
90 if (task_curr(p))
91 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
92
93 return data.ret;
94}
95
96/**
97 * cpu_function_call - call a function on the cpu
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func on the remote cpu.
102 *
103 * returns: @func return value or -ENXIO when the cpu is offline
104 */
105static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
106{
107 struct remote_function_call data = {
e7e7ee2e
IM
108 .p = NULL,
109 .func = func,
110 .info = info,
111 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
112 };
113
114 smp_call_function_single(cpu, remote_function, &data, 1);
115
116 return data.ret;
117}
118
e5d1367f
SE
119#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
120 PERF_FLAG_FD_OUTPUT |\
121 PERF_FLAG_PID_CGROUP)
122
bce38cd5
SE
123/*
124 * branch priv levels that need permission checks
125 */
126#define PERF_SAMPLE_BRANCH_PERM_PLM \
127 (PERF_SAMPLE_BRANCH_KERNEL |\
128 PERF_SAMPLE_BRANCH_HV)
129
0b3fcf17
SE
130enum event_type_t {
131 EVENT_FLEXIBLE = 0x1,
132 EVENT_PINNED = 0x2,
133 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
134};
135
e5d1367f
SE
136/*
137 * perf_sched_events : >0 events exist
138 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
139 */
c5905afb 140struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 141static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 142static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 143
cdd6c482
IM
144static atomic_t nr_mmap_events __read_mostly;
145static atomic_t nr_comm_events __read_mostly;
146static atomic_t nr_task_events __read_mostly;
9ee318a7 147
108b02cf
PZ
148static LIST_HEAD(pmus);
149static DEFINE_MUTEX(pmus_lock);
150static struct srcu_struct pmus_srcu;
151
0764771d 152/*
cdd6c482 153 * perf event paranoia level:
0fbdea19
IM
154 * -1 - not paranoid at all
155 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 156 * 1 - disallow cpu events for unpriv
0fbdea19 157 * 2 - disallow kernel profiling for unpriv
0764771d 158 */
cdd6c482 159int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 160
20443384
FW
161/* Minimum for 512 kiB + 1 user control page */
162int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
163
164/*
cdd6c482 165 * max perf event sample rate
df58ab24 166 */
163ec435
PZ
167#define DEFAULT_MAX_SAMPLE_RATE 100000
168int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
169static int max_samples_per_tick __read_mostly =
170 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
171
172int perf_proc_update_handler(struct ctl_table *table, int write,
173 void __user *buffer, size_t *lenp,
174 loff_t *ppos)
175{
176 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
177
178 if (ret || !write)
179 return ret;
180
181 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
182
183 return 0;
184}
1ccd1549 185
cdd6c482 186static atomic64_t perf_event_id;
a96bbc16 187
0b3fcf17
SE
188static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
189 enum event_type_t event_type);
190
191static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
192 enum event_type_t event_type,
193 struct task_struct *task);
194
195static void update_context_time(struct perf_event_context *ctx);
196static u64 perf_event_time(struct perf_event *event);
0b3fcf17 197
10c6db11
PZ
198static void ring_buffer_attach(struct perf_event *event,
199 struct ring_buffer *rb);
200
cdd6c482 201void __weak perf_event_print_debug(void) { }
0793a61d 202
84c79910 203extern __weak const char *perf_pmu_name(void)
0793a61d 204{
84c79910 205 return "pmu";
0793a61d
TG
206}
207
0b3fcf17
SE
208static inline u64 perf_clock(void)
209{
210 return local_clock();
211}
212
e5d1367f
SE
213static inline struct perf_cpu_context *
214__get_cpu_context(struct perf_event_context *ctx)
215{
216 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
217}
218
facc4307
PZ
219static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
220 struct perf_event_context *ctx)
221{
222 raw_spin_lock(&cpuctx->ctx.lock);
223 if (ctx)
224 raw_spin_lock(&ctx->lock);
225}
226
227static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
228 struct perf_event_context *ctx)
229{
230 if (ctx)
231 raw_spin_unlock(&ctx->lock);
232 raw_spin_unlock(&cpuctx->ctx.lock);
233}
234
e5d1367f
SE
235#ifdef CONFIG_CGROUP_PERF
236
877c6856
LZ
237/*
238 * perf_cgroup_info keeps track of time_enabled for a cgroup.
239 * This is a per-cpu dynamically allocated data structure.
240 */
241struct perf_cgroup_info {
242 u64 time;
243 u64 timestamp;
244};
245
246struct perf_cgroup {
247 struct cgroup_subsys_state css;
86e213e1 248 struct perf_cgroup_info __percpu *info;
877c6856
LZ
249};
250
3f7cce3c
SE
251/*
252 * Must ensure cgroup is pinned (css_get) before calling
253 * this function. In other words, we cannot call this function
254 * if there is no cgroup event for the current CPU context.
255 */
e5d1367f
SE
256static inline struct perf_cgroup *
257perf_cgroup_from_task(struct task_struct *task)
258{
259 return container_of(task_subsys_state(task, perf_subsys_id),
260 struct perf_cgroup, css);
261}
262
263static inline bool
264perf_cgroup_match(struct perf_event *event)
265{
266 struct perf_event_context *ctx = event->ctx;
267 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
268
269 return !event->cgrp || event->cgrp == cpuctx->cgrp;
270}
271
9c5da09d 272static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 273{
9c5da09d 274 return css_tryget(&event->cgrp->css);
e5d1367f
SE
275}
276
277static inline void perf_put_cgroup(struct perf_event *event)
278{
279 css_put(&event->cgrp->css);
280}
281
282static inline void perf_detach_cgroup(struct perf_event *event)
283{
284 perf_put_cgroup(event);
285 event->cgrp = NULL;
286}
287
288static inline int is_cgroup_event(struct perf_event *event)
289{
290 return event->cgrp != NULL;
291}
292
293static inline u64 perf_cgroup_event_time(struct perf_event *event)
294{
295 struct perf_cgroup_info *t;
296
297 t = per_cpu_ptr(event->cgrp->info, event->cpu);
298 return t->time;
299}
300
301static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
302{
303 struct perf_cgroup_info *info;
304 u64 now;
305
306 now = perf_clock();
307
308 info = this_cpu_ptr(cgrp->info);
309
310 info->time += now - info->timestamp;
311 info->timestamp = now;
312}
313
314static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
315{
316 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
317 if (cgrp_out)
318 __update_cgrp_time(cgrp_out);
319}
320
321static inline void update_cgrp_time_from_event(struct perf_event *event)
322{
3f7cce3c
SE
323 struct perf_cgroup *cgrp;
324
e5d1367f 325 /*
3f7cce3c
SE
326 * ensure we access cgroup data only when needed and
327 * when we know the cgroup is pinned (css_get)
e5d1367f 328 */
3f7cce3c 329 if (!is_cgroup_event(event))
e5d1367f
SE
330 return;
331
3f7cce3c
SE
332 cgrp = perf_cgroup_from_task(current);
333 /*
334 * Do not update time when cgroup is not active
335 */
336 if (cgrp == event->cgrp)
337 __update_cgrp_time(event->cgrp);
e5d1367f
SE
338}
339
340static inline void
3f7cce3c
SE
341perf_cgroup_set_timestamp(struct task_struct *task,
342 struct perf_event_context *ctx)
e5d1367f
SE
343{
344 struct perf_cgroup *cgrp;
345 struct perf_cgroup_info *info;
346
3f7cce3c
SE
347 /*
348 * ctx->lock held by caller
349 * ensure we do not access cgroup data
350 * unless we have the cgroup pinned (css_get)
351 */
352 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
353 return;
354
355 cgrp = perf_cgroup_from_task(task);
356 info = this_cpu_ptr(cgrp->info);
3f7cce3c 357 info->timestamp = ctx->timestamp;
e5d1367f
SE
358}
359
360#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
361#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
362
363/*
364 * reschedule events based on the cgroup constraint of task.
365 *
366 * mode SWOUT : schedule out everything
367 * mode SWIN : schedule in based on cgroup for next
368 */
369void perf_cgroup_switch(struct task_struct *task, int mode)
370{
371 struct perf_cpu_context *cpuctx;
372 struct pmu *pmu;
373 unsigned long flags;
374
375 /*
376 * disable interrupts to avoid geting nr_cgroup
377 * changes via __perf_event_disable(). Also
378 * avoids preemption.
379 */
380 local_irq_save(flags);
381
382 /*
383 * we reschedule only in the presence of cgroup
384 * constrained events.
385 */
386 rcu_read_lock();
387
388 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 389 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
390 if (cpuctx->unique_pmu != pmu)
391 continue; /* ensure we process each cpuctx once */
e5d1367f 392
e5d1367f
SE
393 /*
394 * perf_cgroup_events says at least one
395 * context on this CPU has cgroup events.
396 *
397 * ctx->nr_cgroups reports the number of cgroup
398 * events for a context.
399 */
400 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
401 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
402 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
403
404 if (mode & PERF_CGROUP_SWOUT) {
405 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
406 /*
407 * must not be done before ctxswout due
408 * to event_filter_match() in event_sched_out()
409 */
410 cpuctx->cgrp = NULL;
411 }
412
413 if (mode & PERF_CGROUP_SWIN) {
e566b76e 414 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
415 /*
416 * set cgrp before ctxsw in to allow
417 * event_filter_match() to not have to pass
418 * task around
e5d1367f
SE
419 */
420 cpuctx->cgrp = perf_cgroup_from_task(task);
421 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
422 }
facc4307
PZ
423 perf_pmu_enable(cpuctx->ctx.pmu);
424 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 425 }
e5d1367f
SE
426 }
427
428 rcu_read_unlock();
429
430 local_irq_restore(flags);
431}
432
a8d757ef
SE
433static inline void perf_cgroup_sched_out(struct task_struct *task,
434 struct task_struct *next)
e5d1367f 435{
a8d757ef
SE
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /*
445 * next is NULL when called from perf_event_enable_on_exec()
446 * that will systematically cause a cgroup_switch()
447 */
448 if (next)
449 cgrp2 = perf_cgroup_from_task(next);
450
451 /*
452 * only schedule out current cgroup events if we know
453 * that we are switching to a different cgroup. Otherwise,
454 * do no touch the cgroup events.
455 */
456 if (cgrp1 != cgrp2)
457 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
458}
459
a8d757ef
SE
460static inline void perf_cgroup_sched_in(struct task_struct *prev,
461 struct task_struct *task)
e5d1367f 462{
a8d757ef
SE
463 struct perf_cgroup *cgrp1;
464 struct perf_cgroup *cgrp2 = NULL;
465
466 /*
467 * we come here when we know perf_cgroup_events > 0
468 */
469 cgrp1 = perf_cgroup_from_task(task);
470
471 /* prev can never be NULL */
472 cgrp2 = perf_cgroup_from_task(prev);
473
474 /*
475 * only need to schedule in cgroup events if we are changing
476 * cgroup during ctxsw. Cgroup events were not scheduled
477 * out of ctxsw out if that was not the case.
478 */
479 if (cgrp1 != cgrp2)
480 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
481}
482
483static inline int perf_cgroup_connect(int fd, struct perf_event *event,
484 struct perf_event_attr *attr,
485 struct perf_event *group_leader)
486{
487 struct perf_cgroup *cgrp;
488 struct cgroup_subsys_state *css;
2903ff01
AV
489 struct fd f = fdget(fd);
490 int ret = 0;
e5d1367f 491
2903ff01 492 if (!f.file)
e5d1367f
SE
493 return -EBADF;
494
2903ff01 495 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
496 if (IS_ERR(css)) {
497 ret = PTR_ERR(css);
498 goto out;
499 }
e5d1367f
SE
500
501 cgrp = container_of(css, struct perf_cgroup, css);
502 event->cgrp = cgrp;
503
f75e18cb 504 /* must be done before we fput() the file */
9c5da09d
SQ
505 if (!perf_tryget_cgroup(event)) {
506 event->cgrp = NULL;
507 ret = -ENOENT;
508 goto out;
509 }
f75e18cb 510
e5d1367f
SE
511 /*
512 * all events in a group must monitor
513 * the same cgroup because a task belongs
514 * to only one perf cgroup at a time
515 */
516 if (group_leader && group_leader->cgrp != cgrp) {
517 perf_detach_cgroup(event);
518 ret = -EINVAL;
e5d1367f 519 }
3db272c0 520out:
2903ff01 521 fdput(f);
e5d1367f
SE
522 return ret;
523}
524
525static inline void
526perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
527{
528 struct perf_cgroup_info *t;
529 t = per_cpu_ptr(event->cgrp->info, event->cpu);
530 event->shadow_ctx_time = now - t->timestamp;
531}
532
533static inline void
534perf_cgroup_defer_enabled(struct perf_event *event)
535{
536 /*
537 * when the current task's perf cgroup does not match
538 * the event's, we need to remember to call the
539 * perf_mark_enable() function the first time a task with
540 * a matching perf cgroup is scheduled in.
541 */
542 if (is_cgroup_event(event) && !perf_cgroup_match(event))
543 event->cgrp_defer_enabled = 1;
544}
545
546static inline void
547perf_cgroup_mark_enabled(struct perf_event *event,
548 struct perf_event_context *ctx)
549{
550 struct perf_event *sub;
551 u64 tstamp = perf_event_time(event);
552
553 if (!event->cgrp_defer_enabled)
554 return;
555
556 event->cgrp_defer_enabled = 0;
557
558 event->tstamp_enabled = tstamp - event->total_time_enabled;
559 list_for_each_entry(sub, &event->sibling_list, group_entry) {
560 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
561 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
562 sub->cgrp_defer_enabled = 0;
563 }
564 }
565}
566#else /* !CONFIG_CGROUP_PERF */
567
568static inline bool
569perf_cgroup_match(struct perf_event *event)
570{
571 return true;
572}
573
574static inline void perf_detach_cgroup(struct perf_event *event)
575{}
576
577static inline int is_cgroup_event(struct perf_event *event)
578{
579 return 0;
580}
581
582static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
583{
584 return 0;
585}
586
587static inline void update_cgrp_time_from_event(struct perf_event *event)
588{
589}
590
591static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592{
593}
594
a8d757ef
SE
595static inline void perf_cgroup_sched_out(struct task_struct *task,
596 struct task_struct *next)
e5d1367f
SE
597{
598}
599
a8d757ef
SE
600static inline void perf_cgroup_sched_in(struct task_struct *prev,
601 struct task_struct *task)
e5d1367f
SE
602{
603}
604
605static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 return -EINVAL;
610}
611
612static inline void
3f7cce3c
SE
613perf_cgroup_set_timestamp(struct task_struct *task,
614 struct perf_event_context *ctx)
e5d1367f
SE
615{
616}
617
618void
619perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
620{
621}
622
623static inline void
624perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625{
626}
627
628static inline u64 perf_cgroup_event_time(struct perf_event *event)
629{
630 return 0;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636}
637
638static inline void
639perf_cgroup_mark_enabled(struct perf_event *event,
640 struct perf_event_context *ctx)
641{
642}
643#endif
644
33696fc0 645void perf_pmu_disable(struct pmu *pmu)
9e35ad38 646{
33696fc0
PZ
647 int *count = this_cpu_ptr(pmu->pmu_disable_count);
648 if (!(*count)++)
649 pmu->pmu_disable(pmu);
9e35ad38 650}
9e35ad38 651
33696fc0 652void perf_pmu_enable(struct pmu *pmu)
9e35ad38 653{
33696fc0
PZ
654 int *count = this_cpu_ptr(pmu->pmu_disable_count);
655 if (!--(*count))
656 pmu->pmu_enable(pmu);
9e35ad38 657}
9e35ad38 658
e9d2b064
PZ
659static DEFINE_PER_CPU(struct list_head, rotation_list);
660
661/*
662 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
663 * because they're strictly cpu affine and rotate_start is called with IRQs
664 * disabled, while rotate_context is called from IRQ context.
665 */
108b02cf 666static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 667{
108b02cf 668 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 669 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 670
e9d2b064 671 WARN_ON(!irqs_disabled());
b5ab4cd5 672
e9d2b064
PZ
673 if (list_empty(&cpuctx->rotation_list))
674 list_add(&cpuctx->rotation_list, head);
9e35ad38 675}
9e35ad38 676
cdd6c482 677static void get_ctx(struct perf_event_context *ctx)
a63eaf34 678{
e5289d4a 679 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
680}
681
cdd6c482 682static void put_ctx(struct perf_event_context *ctx)
a63eaf34 683{
564c2b21
PM
684 if (atomic_dec_and_test(&ctx->refcount)) {
685 if (ctx->parent_ctx)
686 put_ctx(ctx->parent_ctx);
c93f7669
PM
687 if (ctx->task)
688 put_task_struct(ctx->task);
cb796ff3 689 kfree_rcu(ctx, rcu_head);
564c2b21 690 }
a63eaf34
PM
691}
692
cdd6c482 693static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
694{
695 if (ctx->parent_ctx) {
696 put_ctx(ctx->parent_ctx);
697 ctx->parent_ctx = NULL;
698 }
699}
700
6844c09d
ACM
701static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
702{
703 /*
704 * only top level events have the pid namespace they were created in
705 */
706 if (event->parent)
707 event = event->parent;
708
709 return task_tgid_nr_ns(p, event->ns);
710}
711
712static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
713{
714 /*
715 * only top level events have the pid namespace they were created in
716 */
717 if (event->parent)
718 event = event->parent;
719
720 return task_pid_nr_ns(p, event->ns);
721}
722
7f453c24 723/*
cdd6c482 724 * If we inherit events we want to return the parent event id
7f453c24
PZ
725 * to userspace.
726 */
cdd6c482 727static u64 primary_event_id(struct perf_event *event)
7f453c24 728{
cdd6c482 729 u64 id = event->id;
7f453c24 730
cdd6c482
IM
731 if (event->parent)
732 id = event->parent->id;
7f453c24
PZ
733
734 return id;
735}
736
25346b93 737/*
cdd6c482 738 * Get the perf_event_context for a task and lock it.
25346b93
PM
739 * This has to cope with with the fact that until it is locked,
740 * the context could get moved to another task.
741 */
cdd6c482 742static struct perf_event_context *
8dc85d54 743perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 744{
cdd6c482 745 struct perf_event_context *ctx;
25346b93
PM
746
747 rcu_read_lock();
9ed6060d 748retry:
8dc85d54 749 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
750 if (ctx) {
751 /*
752 * If this context is a clone of another, it might
753 * get swapped for another underneath us by
cdd6c482 754 * perf_event_task_sched_out, though the
25346b93
PM
755 * rcu_read_lock() protects us from any context
756 * getting freed. Lock the context and check if it
757 * got swapped before we could get the lock, and retry
758 * if so. If we locked the right context, then it
759 * can't get swapped on us any more.
760 */
e625cce1 761 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 762 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 763 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
764 goto retry;
765 }
b49a9e7e
PZ
766
767 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 768 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
769 ctx = NULL;
770 }
25346b93
PM
771 }
772 rcu_read_unlock();
773 return ctx;
774}
775
776/*
777 * Get the context for a task and increment its pin_count so it
778 * can't get swapped to another task. This also increments its
779 * reference count so that the context can't get freed.
780 */
8dc85d54
PZ
781static struct perf_event_context *
782perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 783{
cdd6c482 784 struct perf_event_context *ctx;
25346b93
PM
785 unsigned long flags;
786
8dc85d54 787 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
788 if (ctx) {
789 ++ctx->pin_count;
e625cce1 790 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
791 }
792 return ctx;
793}
794
cdd6c482 795static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
796{
797 unsigned long flags;
798
e625cce1 799 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 800 --ctx->pin_count;
e625cce1 801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
802}
803
f67218c3
PZ
804/*
805 * Update the record of the current time in a context.
806 */
807static void update_context_time(struct perf_event_context *ctx)
808{
809 u64 now = perf_clock();
810
811 ctx->time += now - ctx->timestamp;
812 ctx->timestamp = now;
813}
814
4158755d
SE
815static u64 perf_event_time(struct perf_event *event)
816{
817 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
818
819 if (is_cgroup_event(event))
820 return perf_cgroup_event_time(event);
821
4158755d
SE
822 return ctx ? ctx->time : 0;
823}
824
f67218c3
PZ
825/*
826 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 827 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
828 */
829static void update_event_times(struct perf_event *event)
830{
831 struct perf_event_context *ctx = event->ctx;
832 u64 run_end;
833
834 if (event->state < PERF_EVENT_STATE_INACTIVE ||
835 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
836 return;
e5d1367f
SE
837 /*
838 * in cgroup mode, time_enabled represents
839 * the time the event was enabled AND active
840 * tasks were in the monitored cgroup. This is
841 * independent of the activity of the context as
842 * there may be a mix of cgroup and non-cgroup events.
843 *
844 * That is why we treat cgroup events differently
845 * here.
846 */
847 if (is_cgroup_event(event))
46cd6a7f 848 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
849 else if (ctx->is_active)
850 run_end = ctx->time;
acd1d7c1
PZ
851 else
852 run_end = event->tstamp_stopped;
853
854 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
855
856 if (event->state == PERF_EVENT_STATE_INACTIVE)
857 run_end = event->tstamp_stopped;
858 else
4158755d 859 run_end = perf_event_time(event);
f67218c3
PZ
860
861 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 862
f67218c3
PZ
863}
864
96c21a46
PZ
865/*
866 * Update total_time_enabled and total_time_running for all events in a group.
867 */
868static void update_group_times(struct perf_event *leader)
869{
870 struct perf_event *event;
871
872 update_event_times(leader);
873 list_for_each_entry(event, &leader->sibling_list, group_entry)
874 update_event_times(event);
875}
876
889ff015
FW
877static struct list_head *
878ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
879{
880 if (event->attr.pinned)
881 return &ctx->pinned_groups;
882 else
883 return &ctx->flexible_groups;
884}
885
fccc714b 886/*
cdd6c482 887 * Add a event from the lists for its context.
fccc714b
PZ
888 * Must be called with ctx->mutex and ctx->lock held.
889 */
04289bb9 890static void
cdd6c482 891list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 892{
8a49542c
PZ
893 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
894 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
895
896 /*
8a49542c
PZ
897 * If we're a stand alone event or group leader, we go to the context
898 * list, group events are kept attached to the group so that
899 * perf_group_detach can, at all times, locate all siblings.
04289bb9 900 */
8a49542c 901 if (event->group_leader == event) {
889ff015
FW
902 struct list_head *list;
903
d6f962b5
FW
904 if (is_software_event(event))
905 event->group_flags |= PERF_GROUP_SOFTWARE;
906
889ff015
FW
907 list = ctx_group_list(event, ctx);
908 list_add_tail(&event->group_entry, list);
5c148194 909 }
592903cd 910
08309379 911 if (is_cgroup_event(event))
e5d1367f 912 ctx->nr_cgroups++;
e5d1367f 913
d010b332
SE
914 if (has_branch_stack(event))
915 ctx->nr_branch_stack++;
916
cdd6c482 917 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 918 if (!ctx->nr_events)
108b02cf 919 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
920 ctx->nr_events++;
921 if (event->attr.inherit_stat)
bfbd3381 922 ctx->nr_stat++;
04289bb9
IM
923}
924
0231bb53
JO
925/*
926 * Initialize event state based on the perf_event_attr::disabled.
927 */
928static inline void perf_event__state_init(struct perf_event *event)
929{
930 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
931 PERF_EVENT_STATE_INACTIVE;
932}
933
c320c7b7
ACM
934/*
935 * Called at perf_event creation and when events are attached/detached from a
936 * group.
937 */
938static void perf_event__read_size(struct perf_event *event)
939{
940 int entry = sizeof(u64); /* value */
941 int size = 0;
942 int nr = 1;
943
944 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
945 size += sizeof(u64);
946
947 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
948 size += sizeof(u64);
949
950 if (event->attr.read_format & PERF_FORMAT_ID)
951 entry += sizeof(u64);
952
953 if (event->attr.read_format & PERF_FORMAT_GROUP) {
954 nr += event->group_leader->nr_siblings;
955 size += sizeof(u64);
956 }
957
958 size += entry * nr;
959 event->read_size = size;
960}
961
962static void perf_event__header_size(struct perf_event *event)
963{
964 struct perf_sample_data *data;
965 u64 sample_type = event->attr.sample_type;
966 u16 size = 0;
967
968 perf_event__read_size(event);
969
970 if (sample_type & PERF_SAMPLE_IP)
971 size += sizeof(data->ip);
972
6844c09d
ACM
973 if (sample_type & PERF_SAMPLE_ADDR)
974 size += sizeof(data->addr);
975
976 if (sample_type & PERF_SAMPLE_PERIOD)
977 size += sizeof(data->period);
978
c3feedf2
AK
979 if (sample_type & PERF_SAMPLE_WEIGHT)
980 size += sizeof(data->weight);
981
6844c09d
ACM
982 if (sample_type & PERF_SAMPLE_READ)
983 size += event->read_size;
984
d6be9ad6
SE
985 if (sample_type & PERF_SAMPLE_DATA_SRC)
986 size += sizeof(data->data_src.val);
987
6844c09d
ACM
988 event->header_size = size;
989}
990
991static void perf_event__id_header_size(struct perf_event *event)
992{
993 struct perf_sample_data *data;
994 u64 sample_type = event->attr.sample_type;
995 u16 size = 0;
996
c320c7b7
ACM
997 if (sample_type & PERF_SAMPLE_TID)
998 size += sizeof(data->tid_entry);
999
1000 if (sample_type & PERF_SAMPLE_TIME)
1001 size += sizeof(data->time);
1002
c320c7b7
ACM
1003 if (sample_type & PERF_SAMPLE_ID)
1004 size += sizeof(data->id);
1005
1006 if (sample_type & PERF_SAMPLE_STREAM_ID)
1007 size += sizeof(data->stream_id);
1008
1009 if (sample_type & PERF_SAMPLE_CPU)
1010 size += sizeof(data->cpu_entry);
1011
6844c09d 1012 event->id_header_size = size;
c320c7b7
ACM
1013}
1014
8a49542c
PZ
1015static void perf_group_attach(struct perf_event *event)
1016{
c320c7b7 1017 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1018
74c3337c
PZ
1019 /*
1020 * We can have double attach due to group movement in perf_event_open.
1021 */
1022 if (event->attach_state & PERF_ATTACH_GROUP)
1023 return;
1024
8a49542c
PZ
1025 event->attach_state |= PERF_ATTACH_GROUP;
1026
1027 if (group_leader == event)
1028 return;
1029
1030 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1031 !is_software_event(event))
1032 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1033
1034 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1035 group_leader->nr_siblings++;
c320c7b7
ACM
1036
1037 perf_event__header_size(group_leader);
1038
1039 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1040 perf_event__header_size(pos);
8a49542c
PZ
1041}
1042
a63eaf34 1043/*
cdd6c482 1044 * Remove a event from the lists for its context.
fccc714b 1045 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1046 */
04289bb9 1047static void
cdd6c482 1048list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1049{
68cacd29 1050 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1051 /*
1052 * We can have double detach due to exit/hot-unplug + close.
1053 */
1054 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1055 return;
8a49542c
PZ
1056
1057 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1058
68cacd29 1059 if (is_cgroup_event(event)) {
e5d1367f 1060 ctx->nr_cgroups--;
68cacd29
SE
1061 cpuctx = __get_cpu_context(ctx);
1062 /*
1063 * if there are no more cgroup events
1064 * then cler cgrp to avoid stale pointer
1065 * in update_cgrp_time_from_cpuctx()
1066 */
1067 if (!ctx->nr_cgroups)
1068 cpuctx->cgrp = NULL;
1069 }
e5d1367f 1070
d010b332
SE
1071 if (has_branch_stack(event))
1072 ctx->nr_branch_stack--;
1073
cdd6c482
IM
1074 ctx->nr_events--;
1075 if (event->attr.inherit_stat)
bfbd3381 1076 ctx->nr_stat--;
8bc20959 1077
cdd6c482 1078 list_del_rcu(&event->event_entry);
04289bb9 1079
8a49542c
PZ
1080 if (event->group_leader == event)
1081 list_del_init(&event->group_entry);
5c148194 1082
96c21a46 1083 update_group_times(event);
b2e74a26
SE
1084
1085 /*
1086 * If event was in error state, then keep it
1087 * that way, otherwise bogus counts will be
1088 * returned on read(). The only way to get out
1089 * of error state is by explicit re-enabling
1090 * of the event
1091 */
1092 if (event->state > PERF_EVENT_STATE_OFF)
1093 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1094}
1095
8a49542c 1096static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1097{
1098 struct perf_event *sibling, *tmp;
8a49542c
PZ
1099 struct list_head *list = NULL;
1100
1101 /*
1102 * We can have double detach due to exit/hot-unplug + close.
1103 */
1104 if (!(event->attach_state & PERF_ATTACH_GROUP))
1105 return;
1106
1107 event->attach_state &= ~PERF_ATTACH_GROUP;
1108
1109 /*
1110 * If this is a sibling, remove it from its group.
1111 */
1112 if (event->group_leader != event) {
1113 list_del_init(&event->group_entry);
1114 event->group_leader->nr_siblings--;
c320c7b7 1115 goto out;
8a49542c
PZ
1116 }
1117
1118 if (!list_empty(&event->group_entry))
1119 list = &event->group_entry;
2e2af50b 1120
04289bb9 1121 /*
cdd6c482
IM
1122 * If this was a group event with sibling events then
1123 * upgrade the siblings to singleton events by adding them
8a49542c 1124 * to whatever list we are on.
04289bb9 1125 */
cdd6c482 1126 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1127 if (list)
1128 list_move_tail(&sibling->group_entry, list);
04289bb9 1129 sibling->group_leader = sibling;
d6f962b5
FW
1130
1131 /* Inherit group flags from the previous leader */
1132 sibling->group_flags = event->group_flags;
04289bb9 1133 }
c320c7b7
ACM
1134
1135out:
1136 perf_event__header_size(event->group_leader);
1137
1138 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1139 perf_event__header_size(tmp);
04289bb9
IM
1140}
1141
fa66f07a
SE
1142static inline int
1143event_filter_match(struct perf_event *event)
1144{
e5d1367f
SE
1145 return (event->cpu == -1 || event->cpu == smp_processor_id())
1146 && perf_cgroup_match(event);
fa66f07a
SE
1147}
1148
9ffcfa6f
SE
1149static void
1150event_sched_out(struct perf_event *event,
3b6f9e5c 1151 struct perf_cpu_context *cpuctx,
cdd6c482 1152 struct perf_event_context *ctx)
3b6f9e5c 1153{
4158755d 1154 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1155 u64 delta;
1156 /*
1157 * An event which could not be activated because of
1158 * filter mismatch still needs to have its timings
1159 * maintained, otherwise bogus information is return
1160 * via read() for time_enabled, time_running:
1161 */
1162 if (event->state == PERF_EVENT_STATE_INACTIVE
1163 && !event_filter_match(event)) {
e5d1367f 1164 delta = tstamp - event->tstamp_stopped;
fa66f07a 1165 event->tstamp_running += delta;
4158755d 1166 event->tstamp_stopped = tstamp;
fa66f07a
SE
1167 }
1168
cdd6c482 1169 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1170 return;
3b6f9e5c 1171
cdd6c482
IM
1172 event->state = PERF_EVENT_STATE_INACTIVE;
1173 if (event->pending_disable) {
1174 event->pending_disable = 0;
1175 event->state = PERF_EVENT_STATE_OFF;
970892a9 1176 }
4158755d 1177 event->tstamp_stopped = tstamp;
a4eaf7f1 1178 event->pmu->del(event, 0);
cdd6c482 1179 event->oncpu = -1;
3b6f9e5c 1180
cdd6c482 1181 if (!is_software_event(event))
3b6f9e5c
PM
1182 cpuctx->active_oncpu--;
1183 ctx->nr_active--;
0f5a2601
PZ
1184 if (event->attr.freq && event->attr.sample_freq)
1185 ctx->nr_freq--;
cdd6c482 1186 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1187 cpuctx->exclusive = 0;
1188}
1189
d859e29f 1190static void
cdd6c482 1191group_sched_out(struct perf_event *group_event,
d859e29f 1192 struct perf_cpu_context *cpuctx,
cdd6c482 1193 struct perf_event_context *ctx)
d859e29f 1194{
cdd6c482 1195 struct perf_event *event;
fa66f07a 1196 int state = group_event->state;
d859e29f 1197
cdd6c482 1198 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1199
1200 /*
1201 * Schedule out siblings (if any):
1202 */
cdd6c482
IM
1203 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1204 event_sched_out(event, cpuctx, ctx);
d859e29f 1205
fa66f07a 1206 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1207 cpuctx->exclusive = 0;
1208}
1209
0793a61d 1210/*
cdd6c482 1211 * Cross CPU call to remove a performance event
0793a61d 1212 *
cdd6c482 1213 * We disable the event on the hardware level first. After that we
0793a61d
TG
1214 * remove it from the context list.
1215 */
fe4b04fa 1216static int __perf_remove_from_context(void *info)
0793a61d 1217{
cdd6c482
IM
1218 struct perf_event *event = info;
1219 struct perf_event_context *ctx = event->ctx;
108b02cf 1220 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1221
e625cce1 1222 raw_spin_lock(&ctx->lock);
cdd6c482 1223 event_sched_out(event, cpuctx, ctx);
cdd6c482 1224 list_del_event(event, ctx);
64ce3126
PZ
1225 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1226 ctx->is_active = 0;
1227 cpuctx->task_ctx = NULL;
1228 }
e625cce1 1229 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1230
1231 return 0;
0793a61d
TG
1232}
1233
1234
1235/*
cdd6c482 1236 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1237 *
cdd6c482 1238 * CPU events are removed with a smp call. For task events we only
0793a61d 1239 * call when the task is on a CPU.
c93f7669 1240 *
cdd6c482
IM
1241 * If event->ctx is a cloned context, callers must make sure that
1242 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1243 * remains valid. This is OK when called from perf_release since
1244 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1245 * When called from perf_event_exit_task, it's OK because the
c93f7669 1246 * context has been detached from its task.
0793a61d 1247 */
fe4b04fa 1248static void perf_remove_from_context(struct perf_event *event)
0793a61d 1249{
cdd6c482 1250 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1251 struct task_struct *task = ctx->task;
1252
fe4b04fa
PZ
1253 lockdep_assert_held(&ctx->mutex);
1254
0793a61d
TG
1255 if (!task) {
1256 /*
cdd6c482 1257 * Per cpu events are removed via an smp call and
af901ca1 1258 * the removal is always successful.
0793a61d 1259 */
fe4b04fa 1260 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1261 return;
1262 }
1263
1264retry:
fe4b04fa
PZ
1265 if (!task_function_call(task, __perf_remove_from_context, event))
1266 return;
0793a61d 1267
e625cce1 1268 raw_spin_lock_irq(&ctx->lock);
0793a61d 1269 /*
fe4b04fa
PZ
1270 * If we failed to find a running task, but find the context active now
1271 * that we've acquired the ctx->lock, retry.
0793a61d 1272 */
fe4b04fa 1273 if (ctx->is_active) {
e625cce1 1274 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1275 goto retry;
1276 }
1277
1278 /*
fe4b04fa
PZ
1279 * Since the task isn't running, its safe to remove the event, us
1280 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1281 */
fe4b04fa 1282 list_del_event(event, ctx);
e625cce1 1283 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1284}
1285
d859e29f 1286/*
cdd6c482 1287 * Cross CPU call to disable a performance event
d859e29f 1288 */
500ad2d8 1289int __perf_event_disable(void *info)
d859e29f 1290{
cdd6c482 1291 struct perf_event *event = info;
cdd6c482 1292 struct perf_event_context *ctx = event->ctx;
108b02cf 1293 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1294
1295 /*
cdd6c482
IM
1296 * If this is a per-task event, need to check whether this
1297 * event's task is the current task on this cpu.
fe4b04fa
PZ
1298 *
1299 * Can trigger due to concurrent perf_event_context_sched_out()
1300 * flipping contexts around.
d859e29f 1301 */
665c2142 1302 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1303 return -EINVAL;
d859e29f 1304
e625cce1 1305 raw_spin_lock(&ctx->lock);
d859e29f
PM
1306
1307 /*
cdd6c482 1308 * If the event is on, turn it off.
d859e29f
PM
1309 * If it is in error state, leave it in error state.
1310 */
cdd6c482 1311 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1312 update_context_time(ctx);
e5d1367f 1313 update_cgrp_time_from_event(event);
cdd6c482
IM
1314 update_group_times(event);
1315 if (event == event->group_leader)
1316 group_sched_out(event, cpuctx, ctx);
d859e29f 1317 else
cdd6c482
IM
1318 event_sched_out(event, cpuctx, ctx);
1319 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1320 }
1321
e625cce1 1322 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1323
1324 return 0;
d859e29f
PM
1325}
1326
1327/*
cdd6c482 1328 * Disable a event.
c93f7669 1329 *
cdd6c482
IM
1330 * If event->ctx is a cloned context, callers must make sure that
1331 * every task struct that event->ctx->task could possibly point to
c93f7669 1332 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1333 * perf_event_for_each_child or perf_event_for_each because they
1334 * hold the top-level event's child_mutex, so any descendant that
1335 * goes to exit will block in sync_child_event.
1336 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1337 * is the current context on this CPU and preemption is disabled,
cdd6c482 1338 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1339 */
44234adc 1340void perf_event_disable(struct perf_event *event)
d859e29f 1341{
cdd6c482 1342 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1343 struct task_struct *task = ctx->task;
1344
1345 if (!task) {
1346 /*
cdd6c482 1347 * Disable the event on the cpu that it's on
d859e29f 1348 */
fe4b04fa 1349 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1350 return;
1351 }
1352
9ed6060d 1353retry:
fe4b04fa
PZ
1354 if (!task_function_call(task, __perf_event_disable, event))
1355 return;
d859e29f 1356
e625cce1 1357 raw_spin_lock_irq(&ctx->lock);
d859e29f 1358 /*
cdd6c482 1359 * If the event is still active, we need to retry the cross-call.
d859e29f 1360 */
cdd6c482 1361 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1362 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1363 /*
1364 * Reload the task pointer, it might have been changed by
1365 * a concurrent perf_event_context_sched_out().
1366 */
1367 task = ctx->task;
d859e29f
PM
1368 goto retry;
1369 }
1370
1371 /*
1372 * Since we have the lock this context can't be scheduled
1373 * in, so we can change the state safely.
1374 */
cdd6c482
IM
1375 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1376 update_group_times(event);
1377 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1378 }
e625cce1 1379 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1380}
dcfce4a0 1381EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1382
e5d1367f
SE
1383static void perf_set_shadow_time(struct perf_event *event,
1384 struct perf_event_context *ctx,
1385 u64 tstamp)
1386{
1387 /*
1388 * use the correct time source for the time snapshot
1389 *
1390 * We could get by without this by leveraging the
1391 * fact that to get to this function, the caller
1392 * has most likely already called update_context_time()
1393 * and update_cgrp_time_xx() and thus both timestamp
1394 * are identical (or very close). Given that tstamp is,
1395 * already adjusted for cgroup, we could say that:
1396 * tstamp - ctx->timestamp
1397 * is equivalent to
1398 * tstamp - cgrp->timestamp.
1399 *
1400 * Then, in perf_output_read(), the calculation would
1401 * work with no changes because:
1402 * - event is guaranteed scheduled in
1403 * - no scheduled out in between
1404 * - thus the timestamp would be the same
1405 *
1406 * But this is a bit hairy.
1407 *
1408 * So instead, we have an explicit cgroup call to remain
1409 * within the time time source all along. We believe it
1410 * is cleaner and simpler to understand.
1411 */
1412 if (is_cgroup_event(event))
1413 perf_cgroup_set_shadow_time(event, tstamp);
1414 else
1415 event->shadow_ctx_time = tstamp - ctx->timestamp;
1416}
1417
4fe757dd
PZ
1418#define MAX_INTERRUPTS (~0ULL)
1419
1420static void perf_log_throttle(struct perf_event *event, int enable);
1421
235c7fc7 1422static int
9ffcfa6f 1423event_sched_in(struct perf_event *event,
235c7fc7 1424 struct perf_cpu_context *cpuctx,
6e37738a 1425 struct perf_event_context *ctx)
235c7fc7 1426{
4158755d
SE
1427 u64 tstamp = perf_event_time(event);
1428
cdd6c482 1429 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1430 return 0;
1431
cdd6c482 1432 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1433 event->oncpu = smp_processor_id();
4fe757dd
PZ
1434
1435 /*
1436 * Unthrottle events, since we scheduled we might have missed several
1437 * ticks already, also for a heavily scheduling task there is little
1438 * guarantee it'll get a tick in a timely manner.
1439 */
1440 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1441 perf_log_throttle(event, 1);
1442 event->hw.interrupts = 0;
1443 }
1444
235c7fc7
IM
1445 /*
1446 * The new state must be visible before we turn it on in the hardware:
1447 */
1448 smp_wmb();
1449
a4eaf7f1 1450 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1451 event->state = PERF_EVENT_STATE_INACTIVE;
1452 event->oncpu = -1;
235c7fc7
IM
1453 return -EAGAIN;
1454 }
1455
4158755d 1456 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1457
e5d1367f 1458 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1459
cdd6c482 1460 if (!is_software_event(event))
3b6f9e5c 1461 cpuctx->active_oncpu++;
235c7fc7 1462 ctx->nr_active++;
0f5a2601
PZ
1463 if (event->attr.freq && event->attr.sample_freq)
1464 ctx->nr_freq++;
235c7fc7 1465
cdd6c482 1466 if (event->attr.exclusive)
3b6f9e5c
PM
1467 cpuctx->exclusive = 1;
1468
235c7fc7
IM
1469 return 0;
1470}
1471
6751b71e 1472static int
cdd6c482 1473group_sched_in(struct perf_event *group_event,
6751b71e 1474 struct perf_cpu_context *cpuctx,
6e37738a 1475 struct perf_event_context *ctx)
6751b71e 1476{
6bde9b6c 1477 struct perf_event *event, *partial_group = NULL;
51b0fe39 1478 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1479 u64 now = ctx->time;
1480 bool simulate = false;
6751b71e 1481
cdd6c482 1482 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1483 return 0;
1484
ad5133b7 1485 pmu->start_txn(pmu);
6bde9b6c 1486
9ffcfa6f 1487 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1488 pmu->cancel_txn(pmu);
6751b71e 1489 return -EAGAIN;
90151c35 1490 }
6751b71e
PM
1491
1492 /*
1493 * Schedule in siblings as one group (if any):
1494 */
cdd6c482 1495 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1496 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1497 partial_group = event;
6751b71e
PM
1498 goto group_error;
1499 }
1500 }
1501
9ffcfa6f 1502 if (!pmu->commit_txn(pmu))
6e85158c 1503 return 0;
9ffcfa6f 1504
6751b71e
PM
1505group_error:
1506 /*
1507 * Groups can be scheduled in as one unit only, so undo any
1508 * partial group before returning:
d7842da4
SE
1509 * The events up to the failed event are scheduled out normally,
1510 * tstamp_stopped will be updated.
1511 *
1512 * The failed events and the remaining siblings need to have
1513 * their timings updated as if they had gone thru event_sched_in()
1514 * and event_sched_out(). This is required to get consistent timings
1515 * across the group. This also takes care of the case where the group
1516 * could never be scheduled by ensuring tstamp_stopped is set to mark
1517 * the time the event was actually stopped, such that time delta
1518 * calculation in update_event_times() is correct.
6751b71e 1519 */
cdd6c482
IM
1520 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1521 if (event == partial_group)
d7842da4
SE
1522 simulate = true;
1523
1524 if (simulate) {
1525 event->tstamp_running += now - event->tstamp_stopped;
1526 event->tstamp_stopped = now;
1527 } else {
1528 event_sched_out(event, cpuctx, ctx);
1529 }
6751b71e 1530 }
9ffcfa6f 1531 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1532
ad5133b7 1533 pmu->cancel_txn(pmu);
90151c35 1534
6751b71e
PM
1535 return -EAGAIN;
1536}
1537
3b6f9e5c 1538/*
cdd6c482 1539 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1540 */
cdd6c482 1541static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1542 struct perf_cpu_context *cpuctx,
1543 int can_add_hw)
1544{
1545 /*
cdd6c482 1546 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1547 */
d6f962b5 1548 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1549 return 1;
1550 /*
1551 * If an exclusive group is already on, no other hardware
cdd6c482 1552 * events can go on.
3b6f9e5c
PM
1553 */
1554 if (cpuctx->exclusive)
1555 return 0;
1556 /*
1557 * If this group is exclusive and there are already
cdd6c482 1558 * events on the CPU, it can't go on.
3b6f9e5c 1559 */
cdd6c482 1560 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1561 return 0;
1562 /*
1563 * Otherwise, try to add it if all previous groups were able
1564 * to go on.
1565 */
1566 return can_add_hw;
1567}
1568
cdd6c482
IM
1569static void add_event_to_ctx(struct perf_event *event,
1570 struct perf_event_context *ctx)
53cfbf59 1571{
4158755d
SE
1572 u64 tstamp = perf_event_time(event);
1573
cdd6c482 1574 list_add_event(event, ctx);
8a49542c 1575 perf_group_attach(event);
4158755d
SE
1576 event->tstamp_enabled = tstamp;
1577 event->tstamp_running = tstamp;
1578 event->tstamp_stopped = tstamp;
53cfbf59
PM
1579}
1580
2c29ef0f
PZ
1581static void task_ctx_sched_out(struct perf_event_context *ctx);
1582static void
1583ctx_sched_in(struct perf_event_context *ctx,
1584 struct perf_cpu_context *cpuctx,
1585 enum event_type_t event_type,
1586 struct task_struct *task);
fe4b04fa 1587
dce5855b
PZ
1588static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1589 struct perf_event_context *ctx,
1590 struct task_struct *task)
1591{
1592 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1593 if (ctx)
1594 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1595 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1596 if (ctx)
1597 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1598}
1599
0793a61d 1600/*
cdd6c482 1601 * Cross CPU call to install and enable a performance event
682076ae
PZ
1602 *
1603 * Must be called with ctx->mutex held
0793a61d 1604 */
fe4b04fa 1605static int __perf_install_in_context(void *info)
0793a61d 1606{
cdd6c482
IM
1607 struct perf_event *event = info;
1608 struct perf_event_context *ctx = event->ctx;
108b02cf 1609 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1610 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1611 struct task_struct *task = current;
1612
b58f6b0d 1613 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1614 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1615
1616 /*
2c29ef0f 1617 * If there was an active task_ctx schedule it out.
0793a61d 1618 */
b58f6b0d 1619 if (task_ctx)
2c29ef0f 1620 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1621
1622 /*
1623 * If the context we're installing events in is not the
1624 * active task_ctx, flip them.
1625 */
1626 if (ctx->task && task_ctx != ctx) {
1627 if (task_ctx)
1628 raw_spin_unlock(&task_ctx->lock);
1629 raw_spin_lock(&ctx->lock);
1630 task_ctx = ctx;
1631 }
1632
1633 if (task_ctx) {
1634 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1635 task = task_ctx->task;
1636 }
b58f6b0d 1637
2c29ef0f 1638 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1639
4af4998b 1640 update_context_time(ctx);
e5d1367f
SE
1641 /*
1642 * update cgrp time only if current cgrp
1643 * matches event->cgrp. Must be done before
1644 * calling add_event_to_ctx()
1645 */
1646 update_cgrp_time_from_event(event);
0793a61d 1647
cdd6c482 1648 add_event_to_ctx(event, ctx);
0793a61d 1649
d859e29f 1650 /*
2c29ef0f 1651 * Schedule everything back in
d859e29f 1652 */
dce5855b 1653 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1654
1655 perf_pmu_enable(cpuctx->ctx.pmu);
1656 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1657
1658 return 0;
0793a61d
TG
1659}
1660
1661/*
cdd6c482 1662 * Attach a performance event to a context
0793a61d 1663 *
cdd6c482
IM
1664 * First we add the event to the list with the hardware enable bit
1665 * in event->hw_config cleared.
0793a61d 1666 *
cdd6c482 1667 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1668 * call to enable it in the task context. The task might have been
1669 * scheduled away, but we check this in the smp call again.
1670 */
1671static void
cdd6c482
IM
1672perf_install_in_context(struct perf_event_context *ctx,
1673 struct perf_event *event,
0793a61d
TG
1674 int cpu)
1675{
1676 struct task_struct *task = ctx->task;
1677
fe4b04fa
PZ
1678 lockdep_assert_held(&ctx->mutex);
1679
c3f00c70 1680 event->ctx = ctx;
0cda4c02
YZ
1681 if (event->cpu != -1)
1682 event->cpu = cpu;
c3f00c70 1683
0793a61d
TG
1684 if (!task) {
1685 /*
cdd6c482 1686 * Per cpu events are installed via an smp call and
af901ca1 1687 * the install is always successful.
0793a61d 1688 */
fe4b04fa 1689 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1690 return;
1691 }
1692
0793a61d 1693retry:
fe4b04fa
PZ
1694 if (!task_function_call(task, __perf_install_in_context, event))
1695 return;
0793a61d 1696
e625cce1 1697 raw_spin_lock_irq(&ctx->lock);
0793a61d 1698 /*
fe4b04fa
PZ
1699 * If we failed to find a running task, but find the context active now
1700 * that we've acquired the ctx->lock, retry.
0793a61d 1701 */
fe4b04fa 1702 if (ctx->is_active) {
e625cce1 1703 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1704 goto retry;
1705 }
1706
1707 /*
fe4b04fa
PZ
1708 * Since the task isn't running, its safe to add the event, us holding
1709 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1710 */
fe4b04fa 1711 add_event_to_ctx(event, ctx);
e625cce1 1712 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1713}
1714
fa289bec 1715/*
cdd6c482 1716 * Put a event into inactive state and update time fields.
fa289bec
PM
1717 * Enabling the leader of a group effectively enables all
1718 * the group members that aren't explicitly disabled, so we
1719 * have to update their ->tstamp_enabled also.
1720 * Note: this works for group members as well as group leaders
1721 * since the non-leader members' sibling_lists will be empty.
1722 */
1d9b482e 1723static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1724{
cdd6c482 1725 struct perf_event *sub;
4158755d 1726 u64 tstamp = perf_event_time(event);
fa289bec 1727
cdd6c482 1728 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1729 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1730 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1731 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1732 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1733 }
fa289bec
PM
1734}
1735
d859e29f 1736/*
cdd6c482 1737 * Cross CPU call to enable a performance event
d859e29f 1738 */
fe4b04fa 1739static int __perf_event_enable(void *info)
04289bb9 1740{
cdd6c482 1741 struct perf_event *event = info;
cdd6c482
IM
1742 struct perf_event_context *ctx = event->ctx;
1743 struct perf_event *leader = event->group_leader;
108b02cf 1744 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1745 int err;
04289bb9 1746
fe4b04fa
PZ
1747 if (WARN_ON_ONCE(!ctx->is_active))
1748 return -EINVAL;
3cbed429 1749
e625cce1 1750 raw_spin_lock(&ctx->lock);
4af4998b 1751 update_context_time(ctx);
d859e29f 1752
cdd6c482 1753 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1754 goto unlock;
e5d1367f
SE
1755
1756 /*
1757 * set current task's cgroup time reference point
1758 */
3f7cce3c 1759 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1760
1d9b482e 1761 __perf_event_mark_enabled(event);
04289bb9 1762
e5d1367f
SE
1763 if (!event_filter_match(event)) {
1764 if (is_cgroup_event(event))
1765 perf_cgroup_defer_enabled(event);
f4c4176f 1766 goto unlock;
e5d1367f 1767 }
f4c4176f 1768
04289bb9 1769 /*
cdd6c482 1770 * If the event is in a group and isn't the group leader,
d859e29f 1771 * then don't put it on unless the group is on.
04289bb9 1772 */
cdd6c482 1773 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1774 goto unlock;
3b6f9e5c 1775
cdd6c482 1776 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1777 err = -EEXIST;
e758a33d 1778 } else {
cdd6c482 1779 if (event == leader)
6e37738a 1780 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1781 else
6e37738a 1782 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1783 }
d859e29f
PM
1784
1785 if (err) {
1786 /*
cdd6c482 1787 * If this event can't go on and it's part of a
d859e29f
PM
1788 * group, then the whole group has to come off.
1789 */
cdd6c482 1790 if (leader != event)
d859e29f 1791 group_sched_out(leader, cpuctx, ctx);
0d48696f 1792 if (leader->attr.pinned) {
53cfbf59 1793 update_group_times(leader);
cdd6c482 1794 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1795 }
d859e29f
PM
1796 }
1797
9ed6060d 1798unlock:
e625cce1 1799 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1800
1801 return 0;
d859e29f
PM
1802}
1803
1804/*
cdd6c482 1805 * Enable a event.
c93f7669 1806 *
cdd6c482
IM
1807 * If event->ctx is a cloned context, callers must make sure that
1808 * every task struct that event->ctx->task could possibly point to
c93f7669 1809 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1810 * perf_event_for_each_child or perf_event_for_each as described
1811 * for perf_event_disable.
d859e29f 1812 */
44234adc 1813void perf_event_enable(struct perf_event *event)
d859e29f 1814{
cdd6c482 1815 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1816 struct task_struct *task = ctx->task;
1817
1818 if (!task) {
1819 /*
cdd6c482 1820 * Enable the event on the cpu that it's on
d859e29f 1821 */
fe4b04fa 1822 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1823 return;
1824 }
1825
e625cce1 1826 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1827 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1828 goto out;
1829
1830 /*
cdd6c482
IM
1831 * If the event is in error state, clear that first.
1832 * That way, if we see the event in error state below, we
d859e29f
PM
1833 * know that it has gone back into error state, as distinct
1834 * from the task having been scheduled away before the
1835 * cross-call arrived.
1836 */
cdd6c482
IM
1837 if (event->state == PERF_EVENT_STATE_ERROR)
1838 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1839
9ed6060d 1840retry:
fe4b04fa 1841 if (!ctx->is_active) {
1d9b482e 1842 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1843 goto out;
1844 }
1845
e625cce1 1846 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1847
1848 if (!task_function_call(task, __perf_event_enable, event))
1849 return;
d859e29f 1850
e625cce1 1851 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1852
1853 /*
cdd6c482 1854 * If the context is active and the event is still off,
d859e29f
PM
1855 * we need to retry the cross-call.
1856 */
fe4b04fa
PZ
1857 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1858 /*
1859 * task could have been flipped by a concurrent
1860 * perf_event_context_sched_out()
1861 */
1862 task = ctx->task;
d859e29f 1863 goto retry;
fe4b04fa 1864 }
fa289bec 1865
9ed6060d 1866out:
e625cce1 1867 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1868}
dcfce4a0 1869EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1870
26ca5c11 1871int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1872{
2023b359 1873 /*
cdd6c482 1874 * not supported on inherited events
2023b359 1875 */
2e939d1d 1876 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1877 return -EINVAL;
1878
cdd6c482
IM
1879 atomic_add(refresh, &event->event_limit);
1880 perf_event_enable(event);
2023b359
PZ
1881
1882 return 0;
79f14641 1883}
26ca5c11 1884EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1885
5b0311e1
FW
1886static void ctx_sched_out(struct perf_event_context *ctx,
1887 struct perf_cpu_context *cpuctx,
1888 enum event_type_t event_type)
235c7fc7 1889{
cdd6c482 1890 struct perf_event *event;
db24d33e 1891 int is_active = ctx->is_active;
235c7fc7 1892
db24d33e 1893 ctx->is_active &= ~event_type;
cdd6c482 1894 if (likely(!ctx->nr_events))
facc4307
PZ
1895 return;
1896
4af4998b 1897 update_context_time(ctx);
e5d1367f 1898 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1899 if (!ctx->nr_active)
facc4307 1900 return;
5b0311e1 1901
075e0b00 1902 perf_pmu_disable(ctx->pmu);
db24d33e 1903 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1904 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1905 group_sched_out(event, cpuctx, ctx);
9ed6060d 1906 }
889ff015 1907
db24d33e 1908 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1909 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1910 group_sched_out(event, cpuctx, ctx);
9ed6060d 1911 }
1b9a644f 1912 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1913}
1914
564c2b21
PM
1915/*
1916 * Test whether two contexts are equivalent, i.e. whether they
1917 * have both been cloned from the same version of the same context
cdd6c482
IM
1918 * and they both have the same number of enabled events.
1919 * If the number of enabled events is the same, then the set
1920 * of enabled events should be the same, because these are both
1921 * inherited contexts, therefore we can't access individual events
564c2b21 1922 * in them directly with an fd; we can only enable/disable all
cdd6c482 1923 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1924 * via ioctl, which will have the same effect on both contexts.
1925 */
cdd6c482
IM
1926static int context_equiv(struct perf_event_context *ctx1,
1927 struct perf_event_context *ctx2)
564c2b21
PM
1928{
1929 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1930 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1931 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1932}
1933
cdd6c482
IM
1934static void __perf_event_sync_stat(struct perf_event *event,
1935 struct perf_event *next_event)
bfbd3381
PZ
1936{
1937 u64 value;
1938
cdd6c482 1939 if (!event->attr.inherit_stat)
bfbd3381
PZ
1940 return;
1941
1942 /*
cdd6c482 1943 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1944 * because we're in the middle of a context switch and have IRQs
1945 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1946 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1947 * don't need to use it.
1948 */
cdd6c482
IM
1949 switch (event->state) {
1950 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1951 event->pmu->read(event);
1952 /* fall-through */
bfbd3381 1953
cdd6c482
IM
1954 case PERF_EVENT_STATE_INACTIVE:
1955 update_event_times(event);
bfbd3381
PZ
1956 break;
1957
1958 default:
1959 break;
1960 }
1961
1962 /*
cdd6c482 1963 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1964 * values when we flip the contexts.
1965 */
e7850595
PZ
1966 value = local64_read(&next_event->count);
1967 value = local64_xchg(&event->count, value);
1968 local64_set(&next_event->count, value);
bfbd3381 1969
cdd6c482
IM
1970 swap(event->total_time_enabled, next_event->total_time_enabled);
1971 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1972
bfbd3381 1973 /*
19d2e755 1974 * Since we swizzled the values, update the user visible data too.
bfbd3381 1975 */
cdd6c482
IM
1976 perf_event_update_userpage(event);
1977 perf_event_update_userpage(next_event);
bfbd3381
PZ
1978}
1979
1980#define list_next_entry(pos, member) \
1981 list_entry(pos->member.next, typeof(*pos), member)
1982
cdd6c482
IM
1983static void perf_event_sync_stat(struct perf_event_context *ctx,
1984 struct perf_event_context *next_ctx)
bfbd3381 1985{
cdd6c482 1986 struct perf_event *event, *next_event;
bfbd3381
PZ
1987
1988 if (!ctx->nr_stat)
1989 return;
1990
02ffdbc8
PZ
1991 update_context_time(ctx);
1992
cdd6c482
IM
1993 event = list_first_entry(&ctx->event_list,
1994 struct perf_event, event_entry);
bfbd3381 1995
cdd6c482
IM
1996 next_event = list_first_entry(&next_ctx->event_list,
1997 struct perf_event, event_entry);
bfbd3381 1998
cdd6c482
IM
1999 while (&event->event_entry != &ctx->event_list &&
2000 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2001
cdd6c482 2002 __perf_event_sync_stat(event, next_event);
bfbd3381 2003
cdd6c482
IM
2004 event = list_next_entry(event, event_entry);
2005 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2006 }
2007}
2008
fe4b04fa
PZ
2009static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2010 struct task_struct *next)
0793a61d 2011{
8dc85d54 2012 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2013 struct perf_event_context *next_ctx;
2014 struct perf_event_context *parent;
108b02cf 2015 struct perf_cpu_context *cpuctx;
c93f7669 2016 int do_switch = 1;
0793a61d 2017
108b02cf
PZ
2018 if (likely(!ctx))
2019 return;
10989fb2 2020
108b02cf
PZ
2021 cpuctx = __get_cpu_context(ctx);
2022 if (!cpuctx->task_ctx)
0793a61d
TG
2023 return;
2024
c93f7669
PM
2025 rcu_read_lock();
2026 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2027 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2028 if (parent && next_ctx &&
2029 rcu_dereference(next_ctx->parent_ctx) == parent) {
2030 /*
2031 * Looks like the two contexts are clones, so we might be
2032 * able to optimize the context switch. We lock both
2033 * contexts and check that they are clones under the
2034 * lock (including re-checking that neither has been
2035 * uncloned in the meantime). It doesn't matter which
2036 * order we take the locks because no other cpu could
2037 * be trying to lock both of these tasks.
2038 */
e625cce1
TG
2039 raw_spin_lock(&ctx->lock);
2040 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2041 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2042 /*
2043 * XXX do we need a memory barrier of sorts
cdd6c482 2044 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2045 */
8dc85d54
PZ
2046 task->perf_event_ctxp[ctxn] = next_ctx;
2047 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2048 ctx->task = next;
2049 next_ctx->task = task;
2050 do_switch = 0;
bfbd3381 2051
cdd6c482 2052 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2053 }
e625cce1
TG
2054 raw_spin_unlock(&next_ctx->lock);
2055 raw_spin_unlock(&ctx->lock);
564c2b21 2056 }
c93f7669 2057 rcu_read_unlock();
564c2b21 2058
c93f7669 2059 if (do_switch) {
facc4307 2060 raw_spin_lock(&ctx->lock);
5b0311e1 2061 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2062 cpuctx->task_ctx = NULL;
facc4307 2063 raw_spin_unlock(&ctx->lock);
c93f7669 2064 }
0793a61d
TG
2065}
2066
8dc85d54
PZ
2067#define for_each_task_context_nr(ctxn) \
2068 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2069
2070/*
2071 * Called from scheduler to remove the events of the current task,
2072 * with interrupts disabled.
2073 *
2074 * We stop each event and update the event value in event->count.
2075 *
2076 * This does not protect us against NMI, but disable()
2077 * sets the disabled bit in the control field of event _before_
2078 * accessing the event control register. If a NMI hits, then it will
2079 * not restart the event.
2080 */
ab0cce56
JO
2081void __perf_event_task_sched_out(struct task_struct *task,
2082 struct task_struct *next)
8dc85d54
PZ
2083{
2084 int ctxn;
2085
8dc85d54
PZ
2086 for_each_task_context_nr(ctxn)
2087 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2088
2089 /*
2090 * if cgroup events exist on this CPU, then we need
2091 * to check if we have to switch out PMU state.
2092 * cgroup event are system-wide mode only
2093 */
2094 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2095 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2096}
2097
04dc2dbb 2098static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2099{
108b02cf 2100 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2101
a63eaf34
PM
2102 if (!cpuctx->task_ctx)
2103 return;
012b84da
IM
2104
2105 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2106 return;
2107
04dc2dbb 2108 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2109 cpuctx->task_ctx = NULL;
2110}
2111
5b0311e1
FW
2112/*
2113 * Called with IRQs disabled
2114 */
2115static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116 enum event_type_t event_type)
2117{
2118 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2119}
2120
235c7fc7 2121static void
5b0311e1 2122ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2123 struct perf_cpu_context *cpuctx)
0793a61d 2124{
cdd6c482 2125 struct perf_event *event;
0793a61d 2126
889ff015
FW
2127 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2128 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2129 continue;
5632ab12 2130 if (!event_filter_match(event))
3b6f9e5c
PM
2131 continue;
2132
e5d1367f
SE
2133 /* may need to reset tstamp_enabled */
2134 if (is_cgroup_event(event))
2135 perf_cgroup_mark_enabled(event, ctx);
2136
8c9ed8e1 2137 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2138 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2139
2140 /*
2141 * If this pinned group hasn't been scheduled,
2142 * put it in error state.
2143 */
cdd6c482
IM
2144 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2145 update_group_times(event);
2146 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2147 }
3b6f9e5c 2148 }
5b0311e1
FW
2149}
2150
2151static void
2152ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2153 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2154{
2155 struct perf_event *event;
2156 int can_add_hw = 1;
3b6f9e5c 2157
889ff015
FW
2158 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2159 /* Ignore events in OFF or ERROR state */
2160 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2161 continue;
04289bb9
IM
2162 /*
2163 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2164 * of events:
04289bb9 2165 */
5632ab12 2166 if (!event_filter_match(event))
0793a61d
TG
2167 continue;
2168
e5d1367f
SE
2169 /* may need to reset tstamp_enabled */
2170 if (is_cgroup_event(event))
2171 perf_cgroup_mark_enabled(event, ctx);
2172
9ed6060d 2173 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2174 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2175 can_add_hw = 0;
9ed6060d 2176 }
0793a61d 2177 }
5b0311e1
FW
2178}
2179
2180static void
2181ctx_sched_in(struct perf_event_context *ctx,
2182 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2183 enum event_type_t event_type,
2184 struct task_struct *task)
5b0311e1 2185{
e5d1367f 2186 u64 now;
db24d33e 2187 int is_active = ctx->is_active;
e5d1367f 2188
db24d33e 2189 ctx->is_active |= event_type;
5b0311e1 2190 if (likely(!ctx->nr_events))
facc4307 2191 return;
5b0311e1 2192
e5d1367f
SE
2193 now = perf_clock();
2194 ctx->timestamp = now;
3f7cce3c 2195 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2196 /*
2197 * First go through the list and put on any pinned groups
2198 * in order to give them the best chance of going on.
2199 */
db24d33e 2200 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2201 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2202
2203 /* Then walk through the lower prio flexible groups */
db24d33e 2204 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2205 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2206}
2207
329c0e01 2208static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2209 enum event_type_t event_type,
2210 struct task_struct *task)
329c0e01
FW
2211{
2212 struct perf_event_context *ctx = &cpuctx->ctx;
2213
e5d1367f 2214 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2215}
2216
e5d1367f
SE
2217static void perf_event_context_sched_in(struct perf_event_context *ctx,
2218 struct task_struct *task)
235c7fc7 2219{
108b02cf 2220 struct perf_cpu_context *cpuctx;
235c7fc7 2221
108b02cf 2222 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2223 if (cpuctx->task_ctx == ctx)
2224 return;
2225
facc4307 2226 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2227 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2228 /*
2229 * We want to keep the following priority order:
2230 * cpu pinned (that don't need to move), task pinned,
2231 * cpu flexible, task flexible.
2232 */
2233 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2234
1d5f003f
GN
2235 if (ctx->nr_events)
2236 cpuctx->task_ctx = ctx;
9b33fa6b 2237
86b47c25
GN
2238 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2239
facc4307
PZ
2240 perf_pmu_enable(ctx->pmu);
2241 perf_ctx_unlock(cpuctx, ctx);
2242
b5ab4cd5
PZ
2243 /*
2244 * Since these rotations are per-cpu, we need to ensure the
2245 * cpu-context we got scheduled on is actually rotating.
2246 */
108b02cf 2247 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2248}
2249
d010b332
SE
2250/*
2251 * When sampling the branck stack in system-wide, it may be necessary
2252 * to flush the stack on context switch. This happens when the branch
2253 * stack does not tag its entries with the pid of the current task.
2254 * Otherwise it becomes impossible to associate a branch entry with a
2255 * task. This ambiguity is more likely to appear when the branch stack
2256 * supports priv level filtering and the user sets it to monitor only
2257 * at the user level (which could be a useful measurement in system-wide
2258 * mode). In that case, the risk is high of having a branch stack with
2259 * branch from multiple tasks. Flushing may mean dropping the existing
2260 * entries or stashing them somewhere in the PMU specific code layer.
2261 *
2262 * This function provides the context switch callback to the lower code
2263 * layer. It is invoked ONLY when there is at least one system-wide context
2264 * with at least one active event using taken branch sampling.
2265 */
2266static void perf_branch_stack_sched_in(struct task_struct *prev,
2267 struct task_struct *task)
2268{
2269 struct perf_cpu_context *cpuctx;
2270 struct pmu *pmu;
2271 unsigned long flags;
2272
2273 /* no need to flush branch stack if not changing task */
2274 if (prev == task)
2275 return;
2276
2277 local_irq_save(flags);
2278
2279 rcu_read_lock();
2280
2281 list_for_each_entry_rcu(pmu, &pmus, entry) {
2282 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2283
2284 /*
2285 * check if the context has at least one
2286 * event using PERF_SAMPLE_BRANCH_STACK
2287 */
2288 if (cpuctx->ctx.nr_branch_stack > 0
2289 && pmu->flush_branch_stack) {
2290
2291 pmu = cpuctx->ctx.pmu;
2292
2293 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2294
2295 perf_pmu_disable(pmu);
2296
2297 pmu->flush_branch_stack();
2298
2299 perf_pmu_enable(pmu);
2300
2301 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2302 }
2303 }
2304
2305 rcu_read_unlock();
2306
2307 local_irq_restore(flags);
2308}
2309
8dc85d54
PZ
2310/*
2311 * Called from scheduler to add the events of the current task
2312 * with interrupts disabled.
2313 *
2314 * We restore the event value and then enable it.
2315 *
2316 * This does not protect us against NMI, but enable()
2317 * sets the enabled bit in the control field of event _before_
2318 * accessing the event control register. If a NMI hits, then it will
2319 * keep the event running.
2320 */
ab0cce56
JO
2321void __perf_event_task_sched_in(struct task_struct *prev,
2322 struct task_struct *task)
8dc85d54
PZ
2323{
2324 struct perf_event_context *ctx;
2325 int ctxn;
2326
2327 for_each_task_context_nr(ctxn) {
2328 ctx = task->perf_event_ctxp[ctxn];
2329 if (likely(!ctx))
2330 continue;
2331
e5d1367f 2332 perf_event_context_sched_in(ctx, task);
8dc85d54 2333 }
e5d1367f
SE
2334 /*
2335 * if cgroup events exist on this CPU, then we need
2336 * to check if we have to switch in PMU state.
2337 * cgroup event are system-wide mode only
2338 */
2339 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2340 perf_cgroup_sched_in(prev, task);
d010b332
SE
2341
2342 /* check for system-wide branch_stack events */
2343 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2344 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2345}
2346
abd50713
PZ
2347static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2348{
2349 u64 frequency = event->attr.sample_freq;
2350 u64 sec = NSEC_PER_SEC;
2351 u64 divisor, dividend;
2352
2353 int count_fls, nsec_fls, frequency_fls, sec_fls;
2354
2355 count_fls = fls64(count);
2356 nsec_fls = fls64(nsec);
2357 frequency_fls = fls64(frequency);
2358 sec_fls = 30;
2359
2360 /*
2361 * We got @count in @nsec, with a target of sample_freq HZ
2362 * the target period becomes:
2363 *
2364 * @count * 10^9
2365 * period = -------------------
2366 * @nsec * sample_freq
2367 *
2368 */
2369
2370 /*
2371 * Reduce accuracy by one bit such that @a and @b converge
2372 * to a similar magnitude.
2373 */
fe4b04fa 2374#define REDUCE_FLS(a, b) \
abd50713
PZ
2375do { \
2376 if (a##_fls > b##_fls) { \
2377 a >>= 1; \
2378 a##_fls--; \
2379 } else { \
2380 b >>= 1; \
2381 b##_fls--; \
2382 } \
2383} while (0)
2384
2385 /*
2386 * Reduce accuracy until either term fits in a u64, then proceed with
2387 * the other, so that finally we can do a u64/u64 division.
2388 */
2389 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2390 REDUCE_FLS(nsec, frequency);
2391 REDUCE_FLS(sec, count);
2392 }
2393
2394 if (count_fls + sec_fls > 64) {
2395 divisor = nsec * frequency;
2396
2397 while (count_fls + sec_fls > 64) {
2398 REDUCE_FLS(count, sec);
2399 divisor >>= 1;
2400 }
2401
2402 dividend = count * sec;
2403 } else {
2404 dividend = count * sec;
2405
2406 while (nsec_fls + frequency_fls > 64) {
2407 REDUCE_FLS(nsec, frequency);
2408 dividend >>= 1;
2409 }
2410
2411 divisor = nsec * frequency;
2412 }
2413
f6ab91ad
PZ
2414 if (!divisor)
2415 return dividend;
2416
abd50713
PZ
2417 return div64_u64(dividend, divisor);
2418}
2419
e050e3f0
SE
2420static DEFINE_PER_CPU(int, perf_throttled_count);
2421static DEFINE_PER_CPU(u64, perf_throttled_seq);
2422
f39d47ff 2423static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2424{
cdd6c482 2425 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2426 s64 period, sample_period;
bd2b5b12
PZ
2427 s64 delta;
2428
abd50713 2429 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2430
2431 delta = (s64)(period - hwc->sample_period);
2432 delta = (delta + 7) / 8; /* low pass filter */
2433
2434 sample_period = hwc->sample_period + delta;
2435
2436 if (!sample_period)
2437 sample_period = 1;
2438
bd2b5b12 2439 hwc->sample_period = sample_period;
abd50713 2440
e7850595 2441 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2442 if (disable)
2443 event->pmu->stop(event, PERF_EF_UPDATE);
2444
e7850595 2445 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2446
2447 if (disable)
2448 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2449 }
bd2b5b12
PZ
2450}
2451
e050e3f0
SE
2452/*
2453 * combine freq adjustment with unthrottling to avoid two passes over the
2454 * events. At the same time, make sure, having freq events does not change
2455 * the rate of unthrottling as that would introduce bias.
2456 */
2457static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2458 int needs_unthr)
60db5e09 2459{
cdd6c482
IM
2460 struct perf_event *event;
2461 struct hw_perf_event *hwc;
e050e3f0 2462 u64 now, period = TICK_NSEC;
abd50713 2463 s64 delta;
60db5e09 2464
e050e3f0
SE
2465 /*
2466 * only need to iterate over all events iff:
2467 * - context have events in frequency mode (needs freq adjust)
2468 * - there are events to unthrottle on this cpu
2469 */
2470 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2471 return;
2472
e050e3f0 2473 raw_spin_lock(&ctx->lock);
f39d47ff 2474 perf_pmu_disable(ctx->pmu);
e050e3f0 2475
03541f8b 2476 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2477 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2478 continue;
2479
5632ab12 2480 if (!event_filter_match(event))
5d27c23d
PZ
2481 continue;
2482
cdd6c482 2483 hwc = &event->hw;
6a24ed6c 2484
e050e3f0
SE
2485 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2486 hwc->interrupts = 0;
cdd6c482 2487 perf_log_throttle(event, 1);
a4eaf7f1 2488 event->pmu->start(event, 0);
a78ac325
PZ
2489 }
2490
cdd6c482 2491 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2492 continue;
2493
e050e3f0
SE
2494 /*
2495 * stop the event and update event->count
2496 */
2497 event->pmu->stop(event, PERF_EF_UPDATE);
2498
e7850595 2499 now = local64_read(&event->count);
abd50713
PZ
2500 delta = now - hwc->freq_count_stamp;
2501 hwc->freq_count_stamp = now;
60db5e09 2502
e050e3f0
SE
2503 /*
2504 * restart the event
2505 * reload only if value has changed
f39d47ff
SE
2506 * we have stopped the event so tell that
2507 * to perf_adjust_period() to avoid stopping it
2508 * twice.
e050e3f0 2509 */
abd50713 2510 if (delta > 0)
f39d47ff 2511 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2512
2513 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2514 }
e050e3f0 2515
f39d47ff 2516 perf_pmu_enable(ctx->pmu);
e050e3f0 2517 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2518}
2519
235c7fc7 2520/*
cdd6c482 2521 * Round-robin a context's events:
235c7fc7 2522 */
cdd6c482 2523static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2524{
dddd3379
TG
2525 /*
2526 * Rotate the first entry last of non-pinned groups. Rotation might be
2527 * disabled by the inheritance code.
2528 */
2529 if (!ctx->rotate_disable)
2530 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2531}
2532
b5ab4cd5 2533/*
e9d2b064
PZ
2534 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2535 * because they're strictly cpu affine and rotate_start is called with IRQs
2536 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2537 */
e9d2b064 2538static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2539{
8dc85d54 2540 struct perf_event_context *ctx = NULL;
e050e3f0 2541 int rotate = 0, remove = 1;
7fc23a53 2542
b5ab4cd5 2543 if (cpuctx->ctx.nr_events) {
e9d2b064 2544 remove = 0;
b5ab4cd5
PZ
2545 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2546 rotate = 1;
2547 }
235c7fc7 2548
8dc85d54 2549 ctx = cpuctx->task_ctx;
b5ab4cd5 2550 if (ctx && ctx->nr_events) {
e9d2b064 2551 remove = 0;
b5ab4cd5
PZ
2552 if (ctx->nr_events != ctx->nr_active)
2553 rotate = 1;
2554 }
9717e6cd 2555
e050e3f0 2556 if (!rotate)
0f5a2601
PZ
2557 goto done;
2558
facc4307 2559 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2560 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2561
e050e3f0
SE
2562 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2563 if (ctx)
2564 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2565
e050e3f0
SE
2566 rotate_ctx(&cpuctx->ctx);
2567 if (ctx)
2568 rotate_ctx(ctx);
235c7fc7 2569
e050e3f0 2570 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2571
0f5a2601
PZ
2572 perf_pmu_enable(cpuctx->ctx.pmu);
2573 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2574done:
e9d2b064
PZ
2575 if (remove)
2576 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2577}
2578
2579void perf_event_task_tick(void)
2580{
2581 struct list_head *head = &__get_cpu_var(rotation_list);
2582 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2583 struct perf_event_context *ctx;
2584 int throttled;
b5ab4cd5 2585
e9d2b064
PZ
2586 WARN_ON(!irqs_disabled());
2587
e050e3f0
SE
2588 __this_cpu_inc(perf_throttled_seq);
2589 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2590
e9d2b064 2591 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2592 ctx = &cpuctx->ctx;
2593 perf_adjust_freq_unthr_context(ctx, throttled);
2594
2595 ctx = cpuctx->task_ctx;
2596 if (ctx)
2597 perf_adjust_freq_unthr_context(ctx, throttled);
2598
e9d2b064
PZ
2599 if (cpuctx->jiffies_interval == 1 ||
2600 !(jiffies % cpuctx->jiffies_interval))
2601 perf_rotate_context(cpuctx);
2602 }
0793a61d
TG
2603}
2604
889ff015
FW
2605static int event_enable_on_exec(struct perf_event *event,
2606 struct perf_event_context *ctx)
2607{
2608 if (!event->attr.enable_on_exec)
2609 return 0;
2610
2611 event->attr.enable_on_exec = 0;
2612 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2613 return 0;
2614
1d9b482e 2615 __perf_event_mark_enabled(event);
889ff015
FW
2616
2617 return 1;
2618}
2619
57e7986e 2620/*
cdd6c482 2621 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2622 * This expects task == current.
2623 */
8dc85d54 2624static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2625{
cdd6c482 2626 struct perf_event *event;
57e7986e
PM
2627 unsigned long flags;
2628 int enabled = 0;
889ff015 2629 int ret;
57e7986e
PM
2630
2631 local_irq_save(flags);
cdd6c482 2632 if (!ctx || !ctx->nr_events)
57e7986e
PM
2633 goto out;
2634
e566b76e
SE
2635 /*
2636 * We must ctxsw out cgroup events to avoid conflict
2637 * when invoking perf_task_event_sched_in() later on
2638 * in this function. Otherwise we end up trying to
2639 * ctxswin cgroup events which are already scheduled
2640 * in.
2641 */
a8d757ef 2642 perf_cgroup_sched_out(current, NULL);
57e7986e 2643
e625cce1 2644 raw_spin_lock(&ctx->lock);
04dc2dbb 2645 task_ctx_sched_out(ctx);
57e7986e 2646
b79387ef 2647 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2648 ret = event_enable_on_exec(event, ctx);
2649 if (ret)
2650 enabled = 1;
57e7986e
PM
2651 }
2652
2653 /*
cdd6c482 2654 * Unclone this context if we enabled any event.
57e7986e 2655 */
71a851b4
PZ
2656 if (enabled)
2657 unclone_ctx(ctx);
57e7986e 2658
e625cce1 2659 raw_spin_unlock(&ctx->lock);
57e7986e 2660
e566b76e
SE
2661 /*
2662 * Also calls ctxswin for cgroup events, if any:
2663 */
e5d1367f 2664 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2665out:
57e7986e
PM
2666 local_irq_restore(flags);
2667}
2668
0793a61d 2669/*
cdd6c482 2670 * Cross CPU call to read the hardware event
0793a61d 2671 */
cdd6c482 2672static void __perf_event_read(void *info)
0793a61d 2673{
cdd6c482
IM
2674 struct perf_event *event = info;
2675 struct perf_event_context *ctx = event->ctx;
108b02cf 2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2677
e1ac3614
PM
2678 /*
2679 * If this is a task context, we need to check whether it is
2680 * the current task context of this cpu. If not it has been
2681 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2682 * event->count would have been updated to a recent sample
2683 * when the event was scheduled out.
e1ac3614
PM
2684 */
2685 if (ctx->task && cpuctx->task_ctx != ctx)
2686 return;
2687
e625cce1 2688 raw_spin_lock(&ctx->lock);
e5d1367f 2689 if (ctx->is_active) {
542e72fc 2690 update_context_time(ctx);
e5d1367f
SE
2691 update_cgrp_time_from_event(event);
2692 }
cdd6c482 2693 update_event_times(event);
542e72fc
PZ
2694 if (event->state == PERF_EVENT_STATE_ACTIVE)
2695 event->pmu->read(event);
e625cce1 2696 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2697}
2698
b5e58793
PZ
2699static inline u64 perf_event_count(struct perf_event *event)
2700{
e7850595 2701 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2702}
2703
cdd6c482 2704static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2705{
2706 /*
cdd6c482
IM
2707 * If event is enabled and currently active on a CPU, update the
2708 * value in the event structure:
0793a61d 2709 */
cdd6c482
IM
2710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2711 smp_call_function_single(event->oncpu,
2712 __perf_event_read, event, 1);
2713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2714 struct perf_event_context *ctx = event->ctx;
2715 unsigned long flags;
2716
e625cce1 2717 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2718 /*
2719 * may read while context is not active
2720 * (e.g., thread is blocked), in that case
2721 * we cannot update context time
2722 */
e5d1367f 2723 if (ctx->is_active) {
c530ccd9 2724 update_context_time(ctx);
e5d1367f
SE
2725 update_cgrp_time_from_event(event);
2726 }
cdd6c482 2727 update_event_times(event);
e625cce1 2728 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2729 }
2730
b5e58793 2731 return perf_event_count(event);
0793a61d
TG
2732}
2733
a63eaf34 2734/*
cdd6c482 2735 * Initialize the perf_event context in a task_struct:
a63eaf34 2736 */
eb184479 2737static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2738{
e625cce1 2739 raw_spin_lock_init(&ctx->lock);
a63eaf34 2740 mutex_init(&ctx->mutex);
889ff015
FW
2741 INIT_LIST_HEAD(&ctx->pinned_groups);
2742 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2743 INIT_LIST_HEAD(&ctx->event_list);
2744 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2745}
2746
2747static struct perf_event_context *
2748alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2749{
2750 struct perf_event_context *ctx;
2751
2752 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2753 if (!ctx)
2754 return NULL;
2755
2756 __perf_event_init_context(ctx);
2757 if (task) {
2758 ctx->task = task;
2759 get_task_struct(task);
0793a61d 2760 }
eb184479
PZ
2761 ctx->pmu = pmu;
2762
2763 return ctx;
a63eaf34
PM
2764}
2765
2ebd4ffb
MH
2766static struct task_struct *
2767find_lively_task_by_vpid(pid_t vpid)
2768{
2769 struct task_struct *task;
2770 int err;
0793a61d
TG
2771
2772 rcu_read_lock();
2ebd4ffb 2773 if (!vpid)
0793a61d
TG
2774 task = current;
2775 else
2ebd4ffb 2776 task = find_task_by_vpid(vpid);
0793a61d
TG
2777 if (task)
2778 get_task_struct(task);
2779 rcu_read_unlock();
2780
2781 if (!task)
2782 return ERR_PTR(-ESRCH);
2783
0793a61d 2784 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2785 err = -EACCES;
2786 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2787 goto errout;
2788
2ebd4ffb
MH
2789 return task;
2790errout:
2791 put_task_struct(task);
2792 return ERR_PTR(err);
2793
2794}
2795
fe4b04fa
PZ
2796/*
2797 * Returns a matching context with refcount and pincount.
2798 */
108b02cf 2799static struct perf_event_context *
38a81da2 2800find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2801{
cdd6c482 2802 struct perf_event_context *ctx;
22a4f650 2803 struct perf_cpu_context *cpuctx;
25346b93 2804 unsigned long flags;
8dc85d54 2805 int ctxn, err;
0793a61d 2806
22a4ec72 2807 if (!task) {
cdd6c482 2808 /* Must be root to operate on a CPU event: */
0764771d 2809 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2810 return ERR_PTR(-EACCES);
2811
0793a61d 2812 /*
cdd6c482 2813 * We could be clever and allow to attach a event to an
0793a61d
TG
2814 * offline CPU and activate it when the CPU comes up, but
2815 * that's for later.
2816 */
f6325e30 2817 if (!cpu_online(cpu))
0793a61d
TG
2818 return ERR_PTR(-ENODEV);
2819
108b02cf 2820 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2821 ctx = &cpuctx->ctx;
c93f7669 2822 get_ctx(ctx);
fe4b04fa 2823 ++ctx->pin_count;
0793a61d 2824
0793a61d
TG
2825 return ctx;
2826 }
2827
8dc85d54
PZ
2828 err = -EINVAL;
2829 ctxn = pmu->task_ctx_nr;
2830 if (ctxn < 0)
2831 goto errout;
2832
9ed6060d 2833retry:
8dc85d54 2834 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2835 if (ctx) {
71a851b4 2836 unclone_ctx(ctx);
fe4b04fa 2837 ++ctx->pin_count;
e625cce1 2838 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2839 } else {
eb184479 2840 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2841 err = -ENOMEM;
2842 if (!ctx)
2843 goto errout;
eb184479 2844
dbe08d82
ON
2845 err = 0;
2846 mutex_lock(&task->perf_event_mutex);
2847 /*
2848 * If it has already passed perf_event_exit_task().
2849 * we must see PF_EXITING, it takes this mutex too.
2850 */
2851 if (task->flags & PF_EXITING)
2852 err = -ESRCH;
2853 else if (task->perf_event_ctxp[ctxn])
2854 err = -EAGAIN;
fe4b04fa 2855 else {
9137fb28 2856 get_ctx(ctx);
fe4b04fa 2857 ++ctx->pin_count;
dbe08d82 2858 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2859 }
dbe08d82
ON
2860 mutex_unlock(&task->perf_event_mutex);
2861
2862 if (unlikely(err)) {
9137fb28 2863 put_ctx(ctx);
dbe08d82
ON
2864
2865 if (err == -EAGAIN)
2866 goto retry;
2867 goto errout;
a63eaf34
PM
2868 }
2869 }
2870
0793a61d 2871 return ctx;
c93f7669 2872
9ed6060d 2873errout:
c93f7669 2874 return ERR_PTR(err);
0793a61d
TG
2875}
2876
6fb2915d
LZ
2877static void perf_event_free_filter(struct perf_event *event);
2878
cdd6c482 2879static void free_event_rcu(struct rcu_head *head)
592903cd 2880{
cdd6c482 2881 struct perf_event *event;
592903cd 2882
cdd6c482
IM
2883 event = container_of(head, struct perf_event, rcu_head);
2884 if (event->ns)
2885 put_pid_ns(event->ns);
6fb2915d 2886 perf_event_free_filter(event);
cdd6c482 2887 kfree(event);
592903cd
PZ
2888}
2889
76369139 2890static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2891
cdd6c482 2892static void free_event(struct perf_event *event)
f1600952 2893{
e360adbe 2894 irq_work_sync(&event->pending);
925d519a 2895
cdd6c482 2896 if (!event->parent) {
82cd6def 2897 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2898 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2899 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2900 atomic_dec(&nr_mmap_events);
2901 if (event->attr.comm)
2902 atomic_dec(&nr_comm_events);
2903 if (event->attr.task)
2904 atomic_dec(&nr_task_events);
927c7a9e
FW
2905 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2906 put_callchain_buffers();
08309379
PZ
2907 if (is_cgroup_event(event)) {
2908 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2909 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2910 }
d010b332
SE
2911
2912 if (has_branch_stack(event)) {
2913 static_key_slow_dec_deferred(&perf_sched_events);
2914 /* is system-wide event */
2915 if (!(event->attach_state & PERF_ATTACH_TASK))
2916 atomic_dec(&per_cpu(perf_branch_stack_events,
2917 event->cpu));
2918 }
f344011c 2919 }
9ee318a7 2920
76369139
FW
2921 if (event->rb) {
2922 ring_buffer_put(event->rb);
2923 event->rb = NULL;
a4be7c27
PZ
2924 }
2925
e5d1367f
SE
2926 if (is_cgroup_event(event))
2927 perf_detach_cgroup(event);
2928
cdd6c482
IM
2929 if (event->destroy)
2930 event->destroy(event);
e077df4f 2931
0c67b408
PZ
2932 if (event->ctx)
2933 put_ctx(event->ctx);
2934
cdd6c482 2935 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2936}
2937
a66a3052 2938int perf_event_release_kernel(struct perf_event *event)
0793a61d 2939{
cdd6c482 2940 struct perf_event_context *ctx = event->ctx;
0793a61d 2941
ad3a37de 2942 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2943 /*
2944 * There are two ways this annotation is useful:
2945 *
2946 * 1) there is a lock recursion from perf_event_exit_task
2947 * see the comment there.
2948 *
2949 * 2) there is a lock-inversion with mmap_sem through
2950 * perf_event_read_group(), which takes faults while
2951 * holding ctx->mutex, however this is called after
2952 * the last filedesc died, so there is no possibility
2953 * to trigger the AB-BA case.
2954 */
2955 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2956 raw_spin_lock_irq(&ctx->lock);
8a49542c 2957 perf_group_detach(event);
050735b0 2958 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2959 perf_remove_from_context(event);
d859e29f 2960 mutex_unlock(&ctx->mutex);
0793a61d 2961
cdd6c482 2962 free_event(event);
0793a61d
TG
2963
2964 return 0;
2965}
a66a3052 2966EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2967
a66a3052
PZ
2968/*
2969 * Called when the last reference to the file is gone.
2970 */
a6fa941d 2971static void put_event(struct perf_event *event)
fb0459d7 2972{
8882135b 2973 struct task_struct *owner;
fb0459d7 2974
a6fa941d
AV
2975 if (!atomic_long_dec_and_test(&event->refcount))
2976 return;
fb0459d7 2977
8882135b
PZ
2978 rcu_read_lock();
2979 owner = ACCESS_ONCE(event->owner);
2980 /*
2981 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2982 * !owner it means the list deletion is complete and we can indeed
2983 * free this event, otherwise we need to serialize on
2984 * owner->perf_event_mutex.
2985 */
2986 smp_read_barrier_depends();
2987 if (owner) {
2988 /*
2989 * Since delayed_put_task_struct() also drops the last
2990 * task reference we can safely take a new reference
2991 * while holding the rcu_read_lock().
2992 */
2993 get_task_struct(owner);
2994 }
2995 rcu_read_unlock();
2996
2997 if (owner) {
2998 mutex_lock(&owner->perf_event_mutex);
2999 /*
3000 * We have to re-check the event->owner field, if it is cleared
3001 * we raced with perf_event_exit_task(), acquiring the mutex
3002 * ensured they're done, and we can proceed with freeing the
3003 * event.
3004 */
3005 if (event->owner)
3006 list_del_init(&event->owner_entry);
3007 mutex_unlock(&owner->perf_event_mutex);
3008 put_task_struct(owner);
3009 }
3010
a6fa941d
AV
3011 perf_event_release_kernel(event);
3012}
3013
3014static int perf_release(struct inode *inode, struct file *file)
3015{
3016 put_event(file->private_data);
3017 return 0;
fb0459d7 3018}
fb0459d7 3019
59ed446f 3020u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3021{
cdd6c482 3022 struct perf_event *child;
e53c0994
PZ
3023 u64 total = 0;
3024
59ed446f
PZ
3025 *enabled = 0;
3026 *running = 0;
3027
6f10581a 3028 mutex_lock(&event->child_mutex);
cdd6c482 3029 total += perf_event_read(event);
59ed446f
PZ
3030 *enabled += event->total_time_enabled +
3031 atomic64_read(&event->child_total_time_enabled);
3032 *running += event->total_time_running +
3033 atomic64_read(&event->child_total_time_running);
3034
3035 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3036 total += perf_event_read(child);
59ed446f
PZ
3037 *enabled += child->total_time_enabled;
3038 *running += child->total_time_running;
3039 }
6f10581a 3040 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3041
3042 return total;
3043}
fb0459d7 3044EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3045
cdd6c482 3046static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3047 u64 read_format, char __user *buf)
3048{
cdd6c482 3049 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3050 int n = 0, size = 0, ret = -EFAULT;
3051 struct perf_event_context *ctx = leader->ctx;
abf4868b 3052 u64 values[5];
59ed446f 3053 u64 count, enabled, running;
abf4868b 3054
6f10581a 3055 mutex_lock(&ctx->mutex);
59ed446f 3056 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3057
3058 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 values[n++] = enabled;
3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 values[n++] = running;
abf4868b
PZ
3063 values[n++] = count;
3064 if (read_format & PERF_FORMAT_ID)
3065 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3066
3067 size = n * sizeof(u64);
3068
3069 if (copy_to_user(buf, values, size))
6f10581a 3070 goto unlock;
3dab77fb 3071
6f10581a 3072 ret = size;
3dab77fb 3073
65abc865 3074 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3075 n = 0;
3dab77fb 3076
59ed446f 3077 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3078 if (read_format & PERF_FORMAT_ID)
3079 values[n++] = primary_event_id(sub);
3080
3081 size = n * sizeof(u64);
3082
184d3da8 3083 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3084 ret = -EFAULT;
3085 goto unlock;
3086 }
abf4868b
PZ
3087
3088 ret += size;
3dab77fb 3089 }
6f10581a
PZ
3090unlock:
3091 mutex_unlock(&ctx->mutex);
3dab77fb 3092
abf4868b 3093 return ret;
3dab77fb
PZ
3094}
3095
cdd6c482 3096static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3097 u64 read_format, char __user *buf)
3098{
59ed446f 3099 u64 enabled, running;
3dab77fb
PZ
3100 u64 values[4];
3101 int n = 0;
3102
59ed446f
PZ
3103 values[n++] = perf_event_read_value(event, &enabled, &running);
3104 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3105 values[n++] = enabled;
3106 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3107 values[n++] = running;
3dab77fb 3108 if (read_format & PERF_FORMAT_ID)
cdd6c482 3109 values[n++] = primary_event_id(event);
3dab77fb
PZ
3110
3111 if (copy_to_user(buf, values, n * sizeof(u64)))
3112 return -EFAULT;
3113
3114 return n * sizeof(u64);
3115}
3116
0793a61d 3117/*
cdd6c482 3118 * Read the performance event - simple non blocking version for now
0793a61d
TG
3119 */
3120static ssize_t
cdd6c482 3121perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3122{
cdd6c482 3123 u64 read_format = event->attr.read_format;
3dab77fb 3124 int ret;
0793a61d 3125
3b6f9e5c 3126 /*
cdd6c482 3127 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3128 * error state (i.e. because it was pinned but it couldn't be
3129 * scheduled on to the CPU at some point).
3130 */
cdd6c482 3131 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3132 return 0;
3133
c320c7b7 3134 if (count < event->read_size)
3dab77fb
PZ
3135 return -ENOSPC;
3136
cdd6c482 3137 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3138 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3139 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3140 else
cdd6c482 3141 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3142
3dab77fb 3143 return ret;
0793a61d
TG
3144}
3145
0793a61d
TG
3146static ssize_t
3147perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3148{
cdd6c482 3149 struct perf_event *event = file->private_data;
0793a61d 3150
cdd6c482 3151 return perf_read_hw(event, buf, count);
0793a61d
TG
3152}
3153
3154static unsigned int perf_poll(struct file *file, poll_table *wait)
3155{
cdd6c482 3156 struct perf_event *event = file->private_data;
76369139 3157 struct ring_buffer *rb;
c33a0bc4 3158 unsigned int events = POLL_HUP;
c7138f37 3159
10c6db11
PZ
3160 /*
3161 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3162 * grabs the rb reference but perf_event_set_output() overrides it.
3163 * Here is the timeline for two threads T1, T2:
3164 * t0: T1, rb = rcu_dereference(event->rb)
3165 * t1: T2, old_rb = event->rb
3166 * t2: T2, event->rb = new rb
3167 * t3: T2, ring_buffer_detach(old_rb)
3168 * t4: T1, ring_buffer_attach(rb1)
3169 * t5: T1, poll_wait(event->waitq)
3170 *
3171 * To avoid this problem, we grab mmap_mutex in perf_poll()
3172 * thereby ensuring that the assignment of the new ring buffer
3173 * and the detachment of the old buffer appear atomic to perf_poll()
3174 */
3175 mutex_lock(&event->mmap_mutex);
3176
c7138f37 3177 rcu_read_lock();
76369139 3178 rb = rcu_dereference(event->rb);
10c6db11
PZ
3179 if (rb) {
3180 ring_buffer_attach(event, rb);
76369139 3181 events = atomic_xchg(&rb->poll, 0);
10c6db11 3182 }
c7138f37 3183 rcu_read_unlock();
0793a61d 3184
10c6db11
PZ
3185 mutex_unlock(&event->mmap_mutex);
3186
cdd6c482 3187 poll_wait(file, &event->waitq, wait);
0793a61d 3188
0793a61d
TG
3189 return events;
3190}
3191
cdd6c482 3192static void perf_event_reset(struct perf_event *event)
6de6a7b9 3193{
cdd6c482 3194 (void)perf_event_read(event);
e7850595 3195 local64_set(&event->count, 0);
cdd6c482 3196 perf_event_update_userpage(event);
3df5edad
PZ
3197}
3198
c93f7669 3199/*
cdd6c482
IM
3200 * Holding the top-level event's child_mutex means that any
3201 * descendant process that has inherited this event will block
3202 * in sync_child_event if it goes to exit, thus satisfying the
3203 * task existence requirements of perf_event_enable/disable.
c93f7669 3204 */
cdd6c482
IM
3205static void perf_event_for_each_child(struct perf_event *event,
3206 void (*func)(struct perf_event *))
3df5edad 3207{
cdd6c482 3208 struct perf_event *child;
3df5edad 3209
cdd6c482
IM
3210 WARN_ON_ONCE(event->ctx->parent_ctx);
3211 mutex_lock(&event->child_mutex);
3212 func(event);
3213 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3214 func(child);
cdd6c482 3215 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3216}
3217
cdd6c482
IM
3218static void perf_event_for_each(struct perf_event *event,
3219 void (*func)(struct perf_event *))
3df5edad 3220{
cdd6c482
IM
3221 struct perf_event_context *ctx = event->ctx;
3222 struct perf_event *sibling;
3df5edad 3223
75f937f2
PZ
3224 WARN_ON_ONCE(ctx->parent_ctx);
3225 mutex_lock(&ctx->mutex);
cdd6c482 3226 event = event->group_leader;
75f937f2 3227
cdd6c482 3228 perf_event_for_each_child(event, func);
cdd6c482 3229 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3230 perf_event_for_each_child(sibling, func);
75f937f2 3231 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3232}
3233
cdd6c482 3234static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3235{
cdd6c482 3236 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3237 int ret = 0;
3238 u64 value;
3239
6c7e550f 3240 if (!is_sampling_event(event))
08247e31
PZ
3241 return -EINVAL;
3242
ad0cf347 3243 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3244 return -EFAULT;
3245
3246 if (!value)
3247 return -EINVAL;
3248
e625cce1 3249 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3250 if (event->attr.freq) {
3251 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3252 ret = -EINVAL;
3253 goto unlock;
3254 }
3255
cdd6c482 3256 event->attr.sample_freq = value;
08247e31 3257 } else {
cdd6c482
IM
3258 event->attr.sample_period = value;
3259 event->hw.sample_period = value;
08247e31
PZ
3260 }
3261unlock:
e625cce1 3262 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3263
3264 return ret;
3265}
3266
ac9721f3
PZ
3267static const struct file_operations perf_fops;
3268
2903ff01 3269static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3270{
2903ff01
AV
3271 struct fd f = fdget(fd);
3272 if (!f.file)
3273 return -EBADF;
ac9721f3 3274
2903ff01
AV
3275 if (f.file->f_op != &perf_fops) {
3276 fdput(f);
3277 return -EBADF;
ac9721f3 3278 }
2903ff01
AV
3279 *p = f;
3280 return 0;
ac9721f3
PZ
3281}
3282
3283static int perf_event_set_output(struct perf_event *event,
3284 struct perf_event *output_event);
6fb2915d 3285static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3286
d859e29f
PM
3287static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3288{
cdd6c482
IM
3289 struct perf_event *event = file->private_data;
3290 void (*func)(struct perf_event *);
3df5edad 3291 u32 flags = arg;
d859e29f
PM
3292
3293 switch (cmd) {
cdd6c482
IM
3294 case PERF_EVENT_IOC_ENABLE:
3295 func = perf_event_enable;
d859e29f 3296 break;
cdd6c482
IM
3297 case PERF_EVENT_IOC_DISABLE:
3298 func = perf_event_disable;
79f14641 3299 break;
cdd6c482
IM
3300 case PERF_EVENT_IOC_RESET:
3301 func = perf_event_reset;
6de6a7b9 3302 break;
3df5edad 3303
cdd6c482
IM
3304 case PERF_EVENT_IOC_REFRESH:
3305 return perf_event_refresh(event, arg);
08247e31 3306
cdd6c482
IM
3307 case PERF_EVENT_IOC_PERIOD:
3308 return perf_event_period(event, (u64 __user *)arg);
08247e31 3309
cdd6c482 3310 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3311 {
ac9721f3 3312 int ret;
ac9721f3 3313 if (arg != -1) {
2903ff01
AV
3314 struct perf_event *output_event;
3315 struct fd output;
3316 ret = perf_fget_light(arg, &output);
3317 if (ret)
3318 return ret;
3319 output_event = output.file->private_data;
3320 ret = perf_event_set_output(event, output_event);
3321 fdput(output);
3322 } else {
3323 ret = perf_event_set_output(event, NULL);
ac9721f3 3324 }
ac9721f3
PZ
3325 return ret;
3326 }
a4be7c27 3327
6fb2915d
LZ
3328 case PERF_EVENT_IOC_SET_FILTER:
3329 return perf_event_set_filter(event, (void __user *)arg);
3330
d859e29f 3331 default:
3df5edad 3332 return -ENOTTY;
d859e29f 3333 }
3df5edad
PZ
3334
3335 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3336 perf_event_for_each(event, func);
3df5edad 3337 else
cdd6c482 3338 perf_event_for_each_child(event, func);
3df5edad
PZ
3339
3340 return 0;
d859e29f
PM
3341}
3342
cdd6c482 3343int perf_event_task_enable(void)
771d7cde 3344{
cdd6c482 3345 struct perf_event *event;
771d7cde 3346
cdd6c482
IM
3347 mutex_lock(&current->perf_event_mutex);
3348 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3349 perf_event_for_each_child(event, perf_event_enable);
3350 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3351
3352 return 0;
3353}
3354
cdd6c482 3355int perf_event_task_disable(void)
771d7cde 3356{
cdd6c482 3357 struct perf_event *event;
771d7cde 3358
cdd6c482
IM
3359 mutex_lock(&current->perf_event_mutex);
3360 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3361 perf_event_for_each_child(event, perf_event_disable);
3362 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3363
3364 return 0;
3365}
3366
cdd6c482 3367static int perf_event_index(struct perf_event *event)
194002b2 3368{
a4eaf7f1
PZ
3369 if (event->hw.state & PERF_HES_STOPPED)
3370 return 0;
3371
cdd6c482 3372 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3373 return 0;
3374
35edc2a5 3375 return event->pmu->event_idx(event);
194002b2
PZ
3376}
3377
c4794295 3378static void calc_timer_values(struct perf_event *event,
e3f3541c 3379 u64 *now,
7f310a5d
EM
3380 u64 *enabled,
3381 u64 *running)
c4794295 3382{
e3f3541c 3383 u64 ctx_time;
c4794295 3384
e3f3541c
PZ
3385 *now = perf_clock();
3386 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3387 *enabled = ctx_time - event->tstamp_enabled;
3388 *running = ctx_time - event->tstamp_running;
3389}
3390
c7206205 3391void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3392{
3393}
3394
38ff667b
PZ
3395/*
3396 * Callers need to ensure there can be no nesting of this function, otherwise
3397 * the seqlock logic goes bad. We can not serialize this because the arch
3398 * code calls this from NMI context.
3399 */
cdd6c482 3400void perf_event_update_userpage(struct perf_event *event)
37d81828 3401{
cdd6c482 3402 struct perf_event_mmap_page *userpg;
76369139 3403 struct ring_buffer *rb;
e3f3541c 3404 u64 enabled, running, now;
38ff667b
PZ
3405
3406 rcu_read_lock();
0d641208
EM
3407 /*
3408 * compute total_time_enabled, total_time_running
3409 * based on snapshot values taken when the event
3410 * was last scheduled in.
3411 *
3412 * we cannot simply called update_context_time()
3413 * because of locking issue as we can be called in
3414 * NMI context
3415 */
e3f3541c 3416 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3417 rb = rcu_dereference(event->rb);
3418 if (!rb)
38ff667b
PZ
3419 goto unlock;
3420
76369139 3421 userpg = rb->user_page;
37d81828 3422
7b732a75
PZ
3423 /*
3424 * Disable preemption so as to not let the corresponding user-space
3425 * spin too long if we get preempted.
3426 */
3427 preempt_disable();
37d81828 3428 ++userpg->lock;
92f22a38 3429 barrier();
cdd6c482 3430 userpg->index = perf_event_index(event);
b5e58793 3431 userpg->offset = perf_event_count(event);
365a4038 3432 if (userpg->index)
e7850595 3433 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3434
0d641208 3435 userpg->time_enabled = enabled +
cdd6c482 3436 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3437
0d641208 3438 userpg->time_running = running +
cdd6c482 3439 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3440
c7206205 3441 arch_perf_update_userpage(userpg, now);
e3f3541c 3442
92f22a38 3443 barrier();
37d81828 3444 ++userpg->lock;
7b732a75 3445 preempt_enable();
38ff667b 3446unlock:
7b732a75 3447 rcu_read_unlock();
37d81828
PM
3448}
3449
906010b2
PZ
3450static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3451{
3452 struct perf_event *event = vma->vm_file->private_data;
76369139 3453 struct ring_buffer *rb;
906010b2
PZ
3454 int ret = VM_FAULT_SIGBUS;
3455
3456 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3457 if (vmf->pgoff == 0)
3458 ret = 0;
3459 return ret;
3460 }
3461
3462 rcu_read_lock();
76369139
FW
3463 rb = rcu_dereference(event->rb);
3464 if (!rb)
906010b2
PZ
3465 goto unlock;
3466
3467 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3468 goto unlock;
3469
76369139 3470 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3471 if (!vmf->page)
3472 goto unlock;
3473
3474 get_page(vmf->page);
3475 vmf->page->mapping = vma->vm_file->f_mapping;
3476 vmf->page->index = vmf->pgoff;
3477
3478 ret = 0;
3479unlock:
3480 rcu_read_unlock();
3481
3482 return ret;
3483}
3484
10c6db11
PZ
3485static void ring_buffer_attach(struct perf_event *event,
3486 struct ring_buffer *rb)
3487{
3488 unsigned long flags;
3489
3490 if (!list_empty(&event->rb_entry))
3491 return;
3492
3493 spin_lock_irqsave(&rb->event_lock, flags);
3494 if (!list_empty(&event->rb_entry))
3495 goto unlock;
3496
3497 list_add(&event->rb_entry, &rb->event_list);
3498unlock:
3499 spin_unlock_irqrestore(&rb->event_lock, flags);
3500}
3501
3502static void ring_buffer_detach(struct perf_event *event,
3503 struct ring_buffer *rb)
3504{
3505 unsigned long flags;
3506
3507 if (list_empty(&event->rb_entry))
3508 return;
3509
3510 spin_lock_irqsave(&rb->event_lock, flags);
3511 list_del_init(&event->rb_entry);
3512 wake_up_all(&event->waitq);
3513 spin_unlock_irqrestore(&rb->event_lock, flags);
3514}
3515
3516static void ring_buffer_wakeup(struct perf_event *event)
3517{
3518 struct ring_buffer *rb;
3519
3520 rcu_read_lock();
3521 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3522 if (!rb)
3523 goto unlock;
3524
3525 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3526 wake_up_all(&event->waitq);
44b7f4b9
WD
3527
3528unlock:
10c6db11
PZ
3529 rcu_read_unlock();
3530}
3531
76369139 3532static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3533{
76369139 3534 struct ring_buffer *rb;
906010b2 3535
76369139
FW
3536 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3537 rb_free(rb);
7b732a75
PZ
3538}
3539
76369139 3540static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3541{
76369139 3542 struct ring_buffer *rb;
7b732a75 3543
ac9721f3 3544 rcu_read_lock();
76369139
FW
3545 rb = rcu_dereference(event->rb);
3546 if (rb) {
3547 if (!atomic_inc_not_zero(&rb->refcount))
3548 rb = NULL;
ac9721f3
PZ
3549 }
3550 rcu_read_unlock();
3551
76369139 3552 return rb;
ac9721f3
PZ
3553}
3554
76369139 3555static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3556{
10c6db11
PZ
3557 struct perf_event *event, *n;
3558 unsigned long flags;
3559
76369139 3560 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3561 return;
7b732a75 3562
10c6db11
PZ
3563 spin_lock_irqsave(&rb->event_lock, flags);
3564 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3565 list_del_init(&event->rb_entry);
3566 wake_up_all(&event->waitq);
3567 }
3568 spin_unlock_irqrestore(&rb->event_lock, flags);
3569
76369139 3570 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3571}
3572
3573static void perf_mmap_open(struct vm_area_struct *vma)
3574{
cdd6c482 3575 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3576
cdd6c482 3577 atomic_inc(&event->mmap_count);
7b732a75
PZ
3578}
3579
3580static void perf_mmap_close(struct vm_area_struct *vma)
3581{
cdd6c482 3582 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3583
cdd6c482 3584 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3585 unsigned long size = perf_data_size(event->rb);
ac9721f3 3586 struct user_struct *user = event->mmap_user;
76369139 3587 struct ring_buffer *rb = event->rb;
789f90fc 3588
906010b2 3589 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3590 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3591 rcu_assign_pointer(event->rb, NULL);
10c6db11 3592 ring_buffer_detach(event, rb);
cdd6c482 3593 mutex_unlock(&event->mmap_mutex);
ac9721f3 3594
76369139 3595 ring_buffer_put(rb);
ac9721f3 3596 free_uid(user);
7b732a75 3597 }
37d81828
PM
3598}
3599
f0f37e2f 3600static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3601 .open = perf_mmap_open,
3602 .close = perf_mmap_close,
3603 .fault = perf_mmap_fault,
3604 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3605};
3606
3607static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3608{
cdd6c482 3609 struct perf_event *event = file->private_data;
22a4f650 3610 unsigned long user_locked, user_lock_limit;
789f90fc 3611 struct user_struct *user = current_user();
22a4f650 3612 unsigned long locked, lock_limit;
76369139 3613 struct ring_buffer *rb;
7b732a75
PZ
3614 unsigned long vma_size;
3615 unsigned long nr_pages;
789f90fc 3616 long user_extra, extra;
d57e34fd 3617 int ret = 0, flags = 0;
37d81828 3618
c7920614
PZ
3619 /*
3620 * Don't allow mmap() of inherited per-task counters. This would
3621 * create a performance issue due to all children writing to the
76369139 3622 * same rb.
c7920614
PZ
3623 */
3624 if (event->cpu == -1 && event->attr.inherit)
3625 return -EINVAL;
3626
43a21ea8 3627 if (!(vma->vm_flags & VM_SHARED))
37d81828 3628 return -EINVAL;
7b732a75
PZ
3629
3630 vma_size = vma->vm_end - vma->vm_start;
3631 nr_pages = (vma_size / PAGE_SIZE) - 1;
3632
7730d865 3633 /*
76369139 3634 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3635 * can do bitmasks instead of modulo.
3636 */
3637 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3638 return -EINVAL;
3639
7b732a75 3640 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3641 return -EINVAL;
3642
7b732a75
PZ
3643 if (vma->vm_pgoff != 0)
3644 return -EINVAL;
37d81828 3645
cdd6c482
IM
3646 WARN_ON_ONCE(event->ctx->parent_ctx);
3647 mutex_lock(&event->mmap_mutex);
76369139
FW
3648 if (event->rb) {
3649 if (event->rb->nr_pages == nr_pages)
3650 atomic_inc(&event->rb->refcount);
ac9721f3 3651 else
ebb3c4c4
PZ
3652 ret = -EINVAL;
3653 goto unlock;
3654 }
3655
789f90fc 3656 user_extra = nr_pages + 1;
cdd6c482 3657 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3658
3659 /*
3660 * Increase the limit linearly with more CPUs:
3661 */
3662 user_lock_limit *= num_online_cpus();
3663
789f90fc 3664 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3665
789f90fc
PZ
3666 extra = 0;
3667 if (user_locked > user_lock_limit)
3668 extra = user_locked - user_lock_limit;
7b732a75 3669
78d7d407 3670 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3671 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3672 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3673
459ec28a
IM
3674 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3675 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3676 ret = -EPERM;
3677 goto unlock;
3678 }
7b732a75 3679
76369139 3680 WARN_ON(event->rb);
906010b2 3681
d57e34fd 3682 if (vma->vm_flags & VM_WRITE)
76369139 3683 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3684
4ec8363d
VW
3685 rb = rb_alloc(nr_pages,
3686 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3687 event->cpu, flags);
3688
76369139 3689 if (!rb) {
ac9721f3 3690 ret = -ENOMEM;
ebb3c4c4 3691 goto unlock;
ac9721f3 3692 }
76369139 3693 rcu_assign_pointer(event->rb, rb);
43a21ea8 3694
ac9721f3
PZ
3695 atomic_long_add(user_extra, &user->locked_vm);
3696 event->mmap_locked = extra;
3697 event->mmap_user = get_current_user();
bc3e53f6 3698 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3699
9a0f05cb
PZ
3700 perf_event_update_userpage(event);
3701
ebb3c4c4 3702unlock:
ac9721f3
PZ
3703 if (!ret)
3704 atomic_inc(&event->mmap_count);
cdd6c482 3705 mutex_unlock(&event->mmap_mutex);
37d81828 3706
314e51b9 3707 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
37d81828 3708 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3709
3710 return ret;
37d81828
PM
3711}
3712
3c446b3d
PZ
3713static int perf_fasync(int fd, struct file *filp, int on)
3714{
496ad9aa 3715 struct inode *inode = file_inode(filp);
cdd6c482 3716 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3717 int retval;
3718
3719 mutex_lock(&inode->i_mutex);
cdd6c482 3720 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3721 mutex_unlock(&inode->i_mutex);
3722
3723 if (retval < 0)
3724 return retval;
3725
3726 return 0;
3727}
3728
0793a61d 3729static const struct file_operations perf_fops = {
3326c1ce 3730 .llseek = no_llseek,
0793a61d
TG
3731 .release = perf_release,
3732 .read = perf_read,
3733 .poll = perf_poll,
d859e29f
PM
3734 .unlocked_ioctl = perf_ioctl,
3735 .compat_ioctl = perf_ioctl,
37d81828 3736 .mmap = perf_mmap,
3c446b3d 3737 .fasync = perf_fasync,
0793a61d
TG
3738};
3739
925d519a 3740/*
cdd6c482 3741 * Perf event wakeup
925d519a
PZ
3742 *
3743 * If there's data, ensure we set the poll() state and publish everything
3744 * to user-space before waking everybody up.
3745 */
3746
cdd6c482 3747void perf_event_wakeup(struct perf_event *event)
925d519a 3748{
10c6db11 3749 ring_buffer_wakeup(event);
4c9e2542 3750
cdd6c482
IM
3751 if (event->pending_kill) {
3752 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3753 event->pending_kill = 0;
4c9e2542 3754 }
925d519a
PZ
3755}
3756
e360adbe 3757static void perf_pending_event(struct irq_work *entry)
79f14641 3758{
cdd6c482
IM
3759 struct perf_event *event = container_of(entry,
3760 struct perf_event, pending);
79f14641 3761
cdd6c482
IM
3762 if (event->pending_disable) {
3763 event->pending_disable = 0;
3764 __perf_event_disable(event);
79f14641
PZ
3765 }
3766
cdd6c482
IM
3767 if (event->pending_wakeup) {
3768 event->pending_wakeup = 0;
3769 perf_event_wakeup(event);
79f14641
PZ
3770 }
3771}
3772
39447b38
ZY
3773/*
3774 * We assume there is only KVM supporting the callbacks.
3775 * Later on, we might change it to a list if there is
3776 * another virtualization implementation supporting the callbacks.
3777 */
3778struct perf_guest_info_callbacks *perf_guest_cbs;
3779
3780int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3781{
3782 perf_guest_cbs = cbs;
3783 return 0;
3784}
3785EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3786
3787int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3788{
3789 perf_guest_cbs = NULL;
3790 return 0;
3791}
3792EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3793
4018994f
JO
3794static void
3795perf_output_sample_regs(struct perf_output_handle *handle,
3796 struct pt_regs *regs, u64 mask)
3797{
3798 int bit;
3799
3800 for_each_set_bit(bit, (const unsigned long *) &mask,
3801 sizeof(mask) * BITS_PER_BYTE) {
3802 u64 val;
3803
3804 val = perf_reg_value(regs, bit);
3805 perf_output_put(handle, val);
3806 }
3807}
3808
3809static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3810 struct pt_regs *regs)
3811{
3812 if (!user_mode(regs)) {
3813 if (current->mm)
3814 regs = task_pt_regs(current);
3815 else
3816 regs = NULL;
3817 }
3818
3819 if (regs) {
3820 regs_user->regs = regs;
3821 regs_user->abi = perf_reg_abi(current);
3822 }
3823}
3824
c5ebcedb
JO
3825/*
3826 * Get remaining task size from user stack pointer.
3827 *
3828 * It'd be better to take stack vma map and limit this more
3829 * precisly, but there's no way to get it safely under interrupt,
3830 * so using TASK_SIZE as limit.
3831 */
3832static u64 perf_ustack_task_size(struct pt_regs *regs)
3833{
3834 unsigned long addr = perf_user_stack_pointer(regs);
3835
3836 if (!addr || addr >= TASK_SIZE)
3837 return 0;
3838
3839 return TASK_SIZE - addr;
3840}
3841
3842static u16
3843perf_sample_ustack_size(u16 stack_size, u16 header_size,
3844 struct pt_regs *regs)
3845{
3846 u64 task_size;
3847
3848 /* No regs, no stack pointer, no dump. */
3849 if (!regs)
3850 return 0;
3851
3852 /*
3853 * Check if we fit in with the requested stack size into the:
3854 * - TASK_SIZE
3855 * If we don't, we limit the size to the TASK_SIZE.
3856 *
3857 * - remaining sample size
3858 * If we don't, we customize the stack size to
3859 * fit in to the remaining sample size.
3860 */
3861
3862 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3863 stack_size = min(stack_size, (u16) task_size);
3864
3865 /* Current header size plus static size and dynamic size. */
3866 header_size += 2 * sizeof(u64);
3867
3868 /* Do we fit in with the current stack dump size? */
3869 if ((u16) (header_size + stack_size) < header_size) {
3870 /*
3871 * If we overflow the maximum size for the sample,
3872 * we customize the stack dump size to fit in.
3873 */
3874 stack_size = USHRT_MAX - header_size - sizeof(u64);
3875 stack_size = round_up(stack_size, sizeof(u64));
3876 }
3877
3878 return stack_size;
3879}
3880
3881static void
3882perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3883 struct pt_regs *regs)
3884{
3885 /* Case of a kernel thread, nothing to dump */
3886 if (!regs) {
3887 u64 size = 0;
3888 perf_output_put(handle, size);
3889 } else {
3890 unsigned long sp;
3891 unsigned int rem;
3892 u64 dyn_size;
3893
3894 /*
3895 * We dump:
3896 * static size
3897 * - the size requested by user or the best one we can fit
3898 * in to the sample max size
3899 * data
3900 * - user stack dump data
3901 * dynamic size
3902 * - the actual dumped size
3903 */
3904
3905 /* Static size. */
3906 perf_output_put(handle, dump_size);
3907
3908 /* Data. */
3909 sp = perf_user_stack_pointer(regs);
3910 rem = __output_copy_user(handle, (void *) sp, dump_size);
3911 dyn_size = dump_size - rem;
3912
3913 perf_output_skip(handle, rem);
3914
3915 /* Dynamic size. */
3916 perf_output_put(handle, dyn_size);
3917 }
3918}
3919
c980d109
ACM
3920static void __perf_event_header__init_id(struct perf_event_header *header,
3921 struct perf_sample_data *data,
3922 struct perf_event *event)
6844c09d
ACM
3923{
3924 u64 sample_type = event->attr.sample_type;
3925
3926 data->type = sample_type;
3927 header->size += event->id_header_size;
3928
3929 if (sample_type & PERF_SAMPLE_TID) {
3930 /* namespace issues */
3931 data->tid_entry.pid = perf_event_pid(event, current);
3932 data->tid_entry.tid = perf_event_tid(event, current);
3933 }
3934
3935 if (sample_type & PERF_SAMPLE_TIME)
3936 data->time = perf_clock();
3937
3938 if (sample_type & PERF_SAMPLE_ID)
3939 data->id = primary_event_id(event);
3940
3941 if (sample_type & PERF_SAMPLE_STREAM_ID)
3942 data->stream_id = event->id;
3943
3944 if (sample_type & PERF_SAMPLE_CPU) {
3945 data->cpu_entry.cpu = raw_smp_processor_id();
3946 data->cpu_entry.reserved = 0;
3947 }
3948}
3949
76369139
FW
3950void perf_event_header__init_id(struct perf_event_header *header,
3951 struct perf_sample_data *data,
3952 struct perf_event *event)
c980d109
ACM
3953{
3954 if (event->attr.sample_id_all)
3955 __perf_event_header__init_id(header, data, event);
3956}
3957
3958static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3959 struct perf_sample_data *data)
3960{
3961 u64 sample_type = data->type;
3962
3963 if (sample_type & PERF_SAMPLE_TID)
3964 perf_output_put(handle, data->tid_entry);
3965
3966 if (sample_type & PERF_SAMPLE_TIME)
3967 perf_output_put(handle, data->time);
3968
3969 if (sample_type & PERF_SAMPLE_ID)
3970 perf_output_put(handle, data->id);
3971
3972 if (sample_type & PERF_SAMPLE_STREAM_ID)
3973 perf_output_put(handle, data->stream_id);
3974
3975 if (sample_type & PERF_SAMPLE_CPU)
3976 perf_output_put(handle, data->cpu_entry);
3977}
3978
76369139
FW
3979void perf_event__output_id_sample(struct perf_event *event,
3980 struct perf_output_handle *handle,
3981 struct perf_sample_data *sample)
c980d109
ACM
3982{
3983 if (event->attr.sample_id_all)
3984 __perf_event__output_id_sample(handle, sample);
3985}
3986
3dab77fb 3987static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3988 struct perf_event *event,
3989 u64 enabled, u64 running)
3dab77fb 3990{
cdd6c482 3991 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3992 u64 values[4];
3993 int n = 0;
3994
b5e58793 3995 values[n++] = perf_event_count(event);
3dab77fb 3996 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3997 values[n++] = enabled +
cdd6c482 3998 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3999 }
4000 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4001 values[n++] = running +
cdd6c482 4002 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4003 }
4004 if (read_format & PERF_FORMAT_ID)
cdd6c482 4005 values[n++] = primary_event_id(event);
3dab77fb 4006
76369139 4007 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4008}
4009
4010/*
cdd6c482 4011 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4012 */
4013static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4014 struct perf_event *event,
4015 u64 enabled, u64 running)
3dab77fb 4016{
cdd6c482
IM
4017 struct perf_event *leader = event->group_leader, *sub;
4018 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4019 u64 values[5];
4020 int n = 0;
4021
4022 values[n++] = 1 + leader->nr_siblings;
4023
4024 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4025 values[n++] = enabled;
3dab77fb
PZ
4026
4027 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4028 values[n++] = running;
3dab77fb 4029
cdd6c482 4030 if (leader != event)
3dab77fb
PZ
4031 leader->pmu->read(leader);
4032
b5e58793 4033 values[n++] = perf_event_count(leader);
3dab77fb 4034 if (read_format & PERF_FORMAT_ID)
cdd6c482 4035 values[n++] = primary_event_id(leader);
3dab77fb 4036
76369139 4037 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4038
65abc865 4039 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4040 n = 0;
4041
cdd6c482 4042 if (sub != event)
3dab77fb
PZ
4043 sub->pmu->read(sub);
4044
b5e58793 4045 values[n++] = perf_event_count(sub);
3dab77fb 4046 if (read_format & PERF_FORMAT_ID)
cdd6c482 4047 values[n++] = primary_event_id(sub);
3dab77fb 4048
76369139 4049 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4050 }
4051}
4052
eed01528
SE
4053#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4054 PERF_FORMAT_TOTAL_TIME_RUNNING)
4055
3dab77fb 4056static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4057 struct perf_event *event)
3dab77fb 4058{
e3f3541c 4059 u64 enabled = 0, running = 0, now;
eed01528
SE
4060 u64 read_format = event->attr.read_format;
4061
4062 /*
4063 * compute total_time_enabled, total_time_running
4064 * based on snapshot values taken when the event
4065 * was last scheduled in.
4066 *
4067 * we cannot simply called update_context_time()
4068 * because of locking issue as we are called in
4069 * NMI context
4070 */
c4794295 4071 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4072 calc_timer_values(event, &now, &enabled, &running);
eed01528 4073
cdd6c482 4074 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4075 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4076 else
eed01528 4077 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4078}
4079
5622f295
MM
4080void perf_output_sample(struct perf_output_handle *handle,
4081 struct perf_event_header *header,
4082 struct perf_sample_data *data,
cdd6c482 4083 struct perf_event *event)
5622f295
MM
4084{
4085 u64 sample_type = data->type;
4086
4087 perf_output_put(handle, *header);
4088
4089 if (sample_type & PERF_SAMPLE_IP)
4090 perf_output_put(handle, data->ip);
4091
4092 if (sample_type & PERF_SAMPLE_TID)
4093 perf_output_put(handle, data->tid_entry);
4094
4095 if (sample_type & PERF_SAMPLE_TIME)
4096 perf_output_put(handle, data->time);
4097
4098 if (sample_type & PERF_SAMPLE_ADDR)
4099 perf_output_put(handle, data->addr);
4100
4101 if (sample_type & PERF_SAMPLE_ID)
4102 perf_output_put(handle, data->id);
4103
4104 if (sample_type & PERF_SAMPLE_STREAM_ID)
4105 perf_output_put(handle, data->stream_id);
4106
4107 if (sample_type & PERF_SAMPLE_CPU)
4108 perf_output_put(handle, data->cpu_entry);
4109
4110 if (sample_type & PERF_SAMPLE_PERIOD)
4111 perf_output_put(handle, data->period);
4112
4113 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4114 perf_output_read(handle, event);
5622f295
MM
4115
4116 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4117 if (data->callchain) {
4118 int size = 1;
4119
4120 if (data->callchain)
4121 size += data->callchain->nr;
4122
4123 size *= sizeof(u64);
4124
76369139 4125 __output_copy(handle, data->callchain, size);
5622f295
MM
4126 } else {
4127 u64 nr = 0;
4128 perf_output_put(handle, nr);
4129 }
4130 }
4131
4132 if (sample_type & PERF_SAMPLE_RAW) {
4133 if (data->raw) {
4134 perf_output_put(handle, data->raw->size);
76369139
FW
4135 __output_copy(handle, data->raw->data,
4136 data->raw->size);
5622f295
MM
4137 } else {
4138 struct {
4139 u32 size;
4140 u32 data;
4141 } raw = {
4142 .size = sizeof(u32),
4143 .data = 0,
4144 };
4145 perf_output_put(handle, raw);
4146 }
4147 }
a7ac67ea
PZ
4148
4149 if (!event->attr.watermark) {
4150 int wakeup_events = event->attr.wakeup_events;
4151
4152 if (wakeup_events) {
4153 struct ring_buffer *rb = handle->rb;
4154 int events = local_inc_return(&rb->events);
4155
4156 if (events >= wakeup_events) {
4157 local_sub(wakeup_events, &rb->events);
4158 local_inc(&rb->wakeup);
4159 }
4160 }
4161 }
bce38cd5
SE
4162
4163 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4164 if (data->br_stack) {
4165 size_t size;
4166
4167 size = data->br_stack->nr
4168 * sizeof(struct perf_branch_entry);
4169
4170 perf_output_put(handle, data->br_stack->nr);
4171 perf_output_copy(handle, data->br_stack->entries, size);
4172 } else {
4173 /*
4174 * we always store at least the value of nr
4175 */
4176 u64 nr = 0;
4177 perf_output_put(handle, nr);
4178 }
4179 }
4018994f
JO
4180
4181 if (sample_type & PERF_SAMPLE_REGS_USER) {
4182 u64 abi = data->regs_user.abi;
4183
4184 /*
4185 * If there are no regs to dump, notice it through
4186 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4187 */
4188 perf_output_put(handle, abi);
4189
4190 if (abi) {
4191 u64 mask = event->attr.sample_regs_user;
4192 perf_output_sample_regs(handle,
4193 data->regs_user.regs,
4194 mask);
4195 }
4196 }
c5ebcedb
JO
4197
4198 if (sample_type & PERF_SAMPLE_STACK_USER)
4199 perf_output_sample_ustack(handle,
4200 data->stack_user_size,
4201 data->regs_user.regs);
c3feedf2
AK
4202
4203 if (sample_type & PERF_SAMPLE_WEIGHT)
4204 perf_output_put(handle, data->weight);
d6be9ad6
SE
4205
4206 if (sample_type & PERF_SAMPLE_DATA_SRC)
4207 perf_output_put(handle, data->data_src.val);
5622f295
MM
4208}
4209
4210void perf_prepare_sample(struct perf_event_header *header,
4211 struct perf_sample_data *data,
cdd6c482 4212 struct perf_event *event,
5622f295 4213 struct pt_regs *regs)
7b732a75 4214{
cdd6c482 4215 u64 sample_type = event->attr.sample_type;
7b732a75 4216
cdd6c482 4217 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4218 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4219
4220 header->misc = 0;
4221 header->misc |= perf_misc_flags(regs);
6fab0192 4222
c980d109 4223 __perf_event_header__init_id(header, data, event);
6844c09d 4224
c320c7b7 4225 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4226 data->ip = perf_instruction_pointer(regs);
4227
b23f3325 4228 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4229 int size = 1;
394ee076 4230
e6dab5ff 4231 data->callchain = perf_callchain(event, regs);
5622f295
MM
4232
4233 if (data->callchain)
4234 size += data->callchain->nr;
4235
4236 header->size += size * sizeof(u64);
394ee076
PZ
4237 }
4238
3a43ce68 4239 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4240 int size = sizeof(u32);
4241
4242 if (data->raw)
4243 size += data->raw->size;
4244 else
4245 size += sizeof(u32);
4246
4247 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4248 header->size += size;
7f453c24 4249 }
bce38cd5
SE
4250
4251 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4252 int size = sizeof(u64); /* nr */
4253 if (data->br_stack) {
4254 size += data->br_stack->nr
4255 * sizeof(struct perf_branch_entry);
4256 }
4257 header->size += size;
4258 }
4018994f
JO
4259
4260 if (sample_type & PERF_SAMPLE_REGS_USER) {
4261 /* regs dump ABI info */
4262 int size = sizeof(u64);
4263
4264 perf_sample_regs_user(&data->regs_user, regs);
4265
4266 if (data->regs_user.regs) {
4267 u64 mask = event->attr.sample_regs_user;
4268 size += hweight64(mask) * sizeof(u64);
4269 }
4270
4271 header->size += size;
4272 }
c5ebcedb
JO
4273
4274 if (sample_type & PERF_SAMPLE_STACK_USER) {
4275 /*
4276 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4277 * processed as the last one or have additional check added
4278 * in case new sample type is added, because we could eat
4279 * up the rest of the sample size.
4280 */
4281 struct perf_regs_user *uregs = &data->regs_user;
4282 u16 stack_size = event->attr.sample_stack_user;
4283 u16 size = sizeof(u64);
4284
4285 if (!uregs->abi)
4286 perf_sample_regs_user(uregs, regs);
4287
4288 stack_size = perf_sample_ustack_size(stack_size, header->size,
4289 uregs->regs);
4290
4291 /*
4292 * If there is something to dump, add space for the dump
4293 * itself and for the field that tells the dynamic size,
4294 * which is how many have been actually dumped.
4295 */
4296 if (stack_size)
4297 size += sizeof(u64) + stack_size;
4298
4299 data->stack_user_size = stack_size;
4300 header->size += size;
4301 }
5622f295 4302}
7f453c24 4303
a8b0ca17 4304static void perf_event_output(struct perf_event *event,
5622f295
MM
4305 struct perf_sample_data *data,
4306 struct pt_regs *regs)
4307{
4308 struct perf_output_handle handle;
4309 struct perf_event_header header;
689802b2 4310
927c7a9e
FW
4311 /* protect the callchain buffers */
4312 rcu_read_lock();
4313
cdd6c482 4314 perf_prepare_sample(&header, data, event, regs);
5c148194 4315
a7ac67ea 4316 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4317 goto exit;
0322cd6e 4318
cdd6c482 4319 perf_output_sample(&handle, &header, data, event);
f413cdb8 4320
8a057d84 4321 perf_output_end(&handle);
927c7a9e
FW
4322
4323exit:
4324 rcu_read_unlock();
0322cd6e
PZ
4325}
4326
38b200d6 4327/*
cdd6c482 4328 * read event_id
38b200d6
PZ
4329 */
4330
4331struct perf_read_event {
4332 struct perf_event_header header;
4333
4334 u32 pid;
4335 u32 tid;
38b200d6
PZ
4336};
4337
4338static void
cdd6c482 4339perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4340 struct task_struct *task)
4341{
4342 struct perf_output_handle handle;
c980d109 4343 struct perf_sample_data sample;
dfc65094 4344 struct perf_read_event read_event = {
38b200d6 4345 .header = {
cdd6c482 4346 .type = PERF_RECORD_READ,
38b200d6 4347 .misc = 0,
c320c7b7 4348 .size = sizeof(read_event) + event->read_size,
38b200d6 4349 },
cdd6c482
IM
4350 .pid = perf_event_pid(event, task),
4351 .tid = perf_event_tid(event, task),
38b200d6 4352 };
3dab77fb 4353 int ret;
38b200d6 4354
c980d109 4355 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4356 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4357 if (ret)
4358 return;
4359
dfc65094 4360 perf_output_put(&handle, read_event);
cdd6c482 4361 perf_output_read(&handle, event);
c980d109 4362 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4363
38b200d6
PZ
4364 perf_output_end(&handle);
4365}
4366
60313ebe 4367/*
9f498cc5
PZ
4368 * task tracking -- fork/exit
4369 *
3af9e859 4370 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4371 */
4372
9f498cc5 4373struct perf_task_event {
3a80b4a3 4374 struct task_struct *task;
cdd6c482 4375 struct perf_event_context *task_ctx;
60313ebe
PZ
4376
4377 struct {
4378 struct perf_event_header header;
4379
4380 u32 pid;
4381 u32 ppid;
9f498cc5
PZ
4382 u32 tid;
4383 u32 ptid;
393b2ad8 4384 u64 time;
cdd6c482 4385 } event_id;
60313ebe
PZ
4386};
4387
cdd6c482 4388static void perf_event_task_output(struct perf_event *event,
9f498cc5 4389 struct perf_task_event *task_event)
60313ebe
PZ
4390{
4391 struct perf_output_handle handle;
c980d109 4392 struct perf_sample_data sample;
9f498cc5 4393 struct task_struct *task = task_event->task;
c980d109 4394 int ret, size = task_event->event_id.header.size;
8bb39f9a 4395
c980d109 4396 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4397
c980d109 4398 ret = perf_output_begin(&handle, event,
a7ac67ea 4399 task_event->event_id.header.size);
ef60777c 4400 if (ret)
c980d109 4401 goto out;
60313ebe 4402
cdd6c482
IM
4403 task_event->event_id.pid = perf_event_pid(event, task);
4404 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4405
cdd6c482
IM
4406 task_event->event_id.tid = perf_event_tid(event, task);
4407 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4408
cdd6c482 4409 perf_output_put(&handle, task_event->event_id);
393b2ad8 4410
c980d109
ACM
4411 perf_event__output_id_sample(event, &handle, &sample);
4412
60313ebe 4413 perf_output_end(&handle);
c980d109
ACM
4414out:
4415 task_event->event_id.header.size = size;
60313ebe
PZ
4416}
4417
cdd6c482 4418static int perf_event_task_match(struct perf_event *event)
60313ebe 4419{
6f93d0a7 4420 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4421 return 0;
4422
5632ab12 4423 if (!event_filter_match(event))
5d27c23d
PZ
4424 return 0;
4425
3af9e859
EM
4426 if (event->attr.comm || event->attr.mmap ||
4427 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4428 return 1;
4429
4430 return 0;
4431}
4432
cdd6c482 4433static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4434 struct perf_task_event *task_event)
60313ebe 4435{
cdd6c482 4436 struct perf_event *event;
60313ebe 4437
cdd6c482
IM
4438 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4439 if (perf_event_task_match(event))
4440 perf_event_task_output(event, task_event);
60313ebe 4441 }
60313ebe
PZ
4442}
4443
cdd6c482 4444static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4445{
4446 struct perf_cpu_context *cpuctx;
8dc85d54 4447 struct perf_event_context *ctx;
108b02cf 4448 struct pmu *pmu;
8dc85d54 4449 int ctxn;
60313ebe 4450
d6ff86cf 4451 rcu_read_lock();
108b02cf 4452 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4453 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4454 if (cpuctx->unique_pmu != pmu)
51676957 4455 goto next;
108b02cf 4456 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4457
4458 ctx = task_event->task_ctx;
4459 if (!ctx) {
4460 ctxn = pmu->task_ctx_nr;
4461 if (ctxn < 0)
41945f6c 4462 goto next;
8dc85d54 4463 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
d610d98b
NK
4464 if (ctx)
4465 perf_event_task_ctx(ctx, task_event);
8dc85d54 4466 }
41945f6c
PZ
4467next:
4468 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4469 }
d610d98b
NK
4470 if (task_event->task_ctx)
4471 perf_event_task_ctx(task_event->task_ctx, task_event);
4472
60313ebe
PZ
4473 rcu_read_unlock();
4474}
4475
cdd6c482
IM
4476static void perf_event_task(struct task_struct *task,
4477 struct perf_event_context *task_ctx,
3a80b4a3 4478 int new)
60313ebe 4479{
9f498cc5 4480 struct perf_task_event task_event;
60313ebe 4481
cdd6c482
IM
4482 if (!atomic_read(&nr_comm_events) &&
4483 !atomic_read(&nr_mmap_events) &&
4484 !atomic_read(&nr_task_events))
60313ebe
PZ
4485 return;
4486
9f498cc5 4487 task_event = (struct perf_task_event){
3a80b4a3
PZ
4488 .task = task,
4489 .task_ctx = task_ctx,
cdd6c482 4490 .event_id = {
60313ebe 4491 .header = {
cdd6c482 4492 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4493 .misc = 0,
cdd6c482 4494 .size = sizeof(task_event.event_id),
60313ebe 4495 },
573402db
PZ
4496 /* .pid */
4497 /* .ppid */
9f498cc5
PZ
4498 /* .tid */
4499 /* .ptid */
6f93d0a7 4500 .time = perf_clock(),
60313ebe
PZ
4501 },
4502 };
4503
cdd6c482 4504 perf_event_task_event(&task_event);
9f498cc5
PZ
4505}
4506
cdd6c482 4507void perf_event_fork(struct task_struct *task)
9f498cc5 4508{
cdd6c482 4509 perf_event_task(task, NULL, 1);
60313ebe
PZ
4510}
4511
8d1b2d93
PZ
4512/*
4513 * comm tracking
4514 */
4515
4516struct perf_comm_event {
22a4f650
IM
4517 struct task_struct *task;
4518 char *comm;
8d1b2d93
PZ
4519 int comm_size;
4520
4521 struct {
4522 struct perf_event_header header;
4523
4524 u32 pid;
4525 u32 tid;
cdd6c482 4526 } event_id;
8d1b2d93
PZ
4527};
4528
cdd6c482 4529static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4530 struct perf_comm_event *comm_event)
4531{
4532 struct perf_output_handle handle;
c980d109 4533 struct perf_sample_data sample;
cdd6c482 4534 int size = comm_event->event_id.header.size;
c980d109
ACM
4535 int ret;
4536
4537 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4538 ret = perf_output_begin(&handle, event,
a7ac67ea 4539 comm_event->event_id.header.size);
8d1b2d93
PZ
4540
4541 if (ret)
c980d109 4542 goto out;
8d1b2d93 4543
cdd6c482
IM
4544 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4545 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4546
cdd6c482 4547 perf_output_put(&handle, comm_event->event_id);
76369139 4548 __output_copy(&handle, comm_event->comm,
8d1b2d93 4549 comm_event->comm_size);
c980d109
ACM
4550
4551 perf_event__output_id_sample(event, &handle, &sample);
4552
8d1b2d93 4553 perf_output_end(&handle);
c980d109
ACM
4554out:
4555 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4556}
4557
cdd6c482 4558static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4559{
6f93d0a7 4560 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4561 return 0;
4562
5632ab12 4563 if (!event_filter_match(event))
5d27c23d
PZ
4564 return 0;
4565
cdd6c482 4566 if (event->attr.comm)
8d1b2d93
PZ
4567 return 1;
4568
4569 return 0;
4570}
4571
cdd6c482 4572static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4573 struct perf_comm_event *comm_event)
4574{
cdd6c482 4575 struct perf_event *event;
8d1b2d93 4576
cdd6c482
IM
4577 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4578 if (perf_event_comm_match(event))
4579 perf_event_comm_output(event, comm_event);
8d1b2d93 4580 }
8d1b2d93
PZ
4581}
4582
cdd6c482 4583static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4584{
4585 struct perf_cpu_context *cpuctx;
cdd6c482 4586 struct perf_event_context *ctx;
413ee3b4 4587 char comm[TASK_COMM_LEN];
8d1b2d93 4588 unsigned int size;
108b02cf 4589 struct pmu *pmu;
8dc85d54 4590 int ctxn;
8d1b2d93 4591
413ee3b4 4592 memset(comm, 0, sizeof(comm));
96b02d78 4593 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4594 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4595
4596 comm_event->comm = comm;
4597 comm_event->comm_size = size;
4598
cdd6c482 4599 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4600 rcu_read_lock();
108b02cf 4601 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4602 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4603 if (cpuctx->unique_pmu != pmu)
51676957 4604 goto next;
108b02cf 4605 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4606
4607 ctxn = pmu->task_ctx_nr;
4608 if (ctxn < 0)
41945f6c 4609 goto next;
8dc85d54
PZ
4610
4611 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4612 if (ctx)
4613 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4614next:
4615 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4616 }
665c2142 4617 rcu_read_unlock();
8d1b2d93
PZ
4618}
4619
cdd6c482 4620void perf_event_comm(struct task_struct *task)
8d1b2d93 4621{
9ee318a7 4622 struct perf_comm_event comm_event;
8dc85d54
PZ
4623 struct perf_event_context *ctx;
4624 int ctxn;
9ee318a7 4625
8dc85d54
PZ
4626 for_each_task_context_nr(ctxn) {
4627 ctx = task->perf_event_ctxp[ctxn];
4628 if (!ctx)
4629 continue;
9ee318a7 4630
8dc85d54
PZ
4631 perf_event_enable_on_exec(ctx);
4632 }
9ee318a7 4633
cdd6c482 4634 if (!atomic_read(&nr_comm_events))
9ee318a7 4635 return;
a63eaf34 4636
9ee318a7 4637 comm_event = (struct perf_comm_event){
8d1b2d93 4638 .task = task,
573402db
PZ
4639 /* .comm */
4640 /* .comm_size */
cdd6c482 4641 .event_id = {
573402db 4642 .header = {
cdd6c482 4643 .type = PERF_RECORD_COMM,
573402db
PZ
4644 .misc = 0,
4645 /* .size */
4646 },
4647 /* .pid */
4648 /* .tid */
8d1b2d93
PZ
4649 },
4650 };
4651
cdd6c482 4652 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4653}
4654
0a4a9391
PZ
4655/*
4656 * mmap tracking
4657 */
4658
4659struct perf_mmap_event {
089dd79d
PZ
4660 struct vm_area_struct *vma;
4661
4662 const char *file_name;
4663 int file_size;
0a4a9391
PZ
4664
4665 struct {
4666 struct perf_event_header header;
4667
4668 u32 pid;
4669 u32 tid;
4670 u64 start;
4671 u64 len;
4672 u64 pgoff;
cdd6c482 4673 } event_id;
0a4a9391
PZ
4674};
4675
cdd6c482 4676static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4677 struct perf_mmap_event *mmap_event)
4678{
4679 struct perf_output_handle handle;
c980d109 4680 struct perf_sample_data sample;
cdd6c482 4681 int size = mmap_event->event_id.header.size;
c980d109 4682 int ret;
0a4a9391 4683
c980d109
ACM
4684 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4685 ret = perf_output_begin(&handle, event,
a7ac67ea 4686 mmap_event->event_id.header.size);
0a4a9391 4687 if (ret)
c980d109 4688 goto out;
0a4a9391 4689
cdd6c482
IM
4690 mmap_event->event_id.pid = perf_event_pid(event, current);
4691 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4692
cdd6c482 4693 perf_output_put(&handle, mmap_event->event_id);
76369139 4694 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4695 mmap_event->file_size);
c980d109
ACM
4696
4697 perf_event__output_id_sample(event, &handle, &sample);
4698
78d613eb 4699 perf_output_end(&handle);
c980d109
ACM
4700out:
4701 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4702}
4703
cdd6c482 4704static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4705 struct perf_mmap_event *mmap_event,
4706 int executable)
0a4a9391 4707{
6f93d0a7 4708 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4709 return 0;
4710
5632ab12 4711 if (!event_filter_match(event))
5d27c23d
PZ
4712 return 0;
4713
3af9e859
EM
4714 if ((!executable && event->attr.mmap_data) ||
4715 (executable && event->attr.mmap))
0a4a9391
PZ
4716 return 1;
4717
4718 return 0;
4719}
4720
cdd6c482 4721static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4722 struct perf_mmap_event *mmap_event,
4723 int executable)
0a4a9391 4724{
cdd6c482 4725 struct perf_event *event;
0a4a9391 4726
cdd6c482 4727 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4728 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4729 perf_event_mmap_output(event, mmap_event);
0a4a9391 4730 }
0a4a9391
PZ
4731}
4732
cdd6c482 4733static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4734{
4735 struct perf_cpu_context *cpuctx;
cdd6c482 4736 struct perf_event_context *ctx;
089dd79d
PZ
4737 struct vm_area_struct *vma = mmap_event->vma;
4738 struct file *file = vma->vm_file;
0a4a9391
PZ
4739 unsigned int size;
4740 char tmp[16];
4741 char *buf = NULL;
089dd79d 4742 const char *name;
108b02cf 4743 struct pmu *pmu;
8dc85d54 4744 int ctxn;
0a4a9391 4745
413ee3b4
AB
4746 memset(tmp, 0, sizeof(tmp));
4747
0a4a9391 4748 if (file) {
413ee3b4 4749 /*
76369139 4750 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4751 * need to add enough zero bytes after the string to handle
4752 * the 64bit alignment we do later.
4753 */
4754 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4755 if (!buf) {
4756 name = strncpy(tmp, "//enomem", sizeof(tmp));
4757 goto got_name;
4758 }
d3d21c41 4759 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4760 if (IS_ERR(name)) {
4761 name = strncpy(tmp, "//toolong", sizeof(tmp));
4762 goto got_name;
4763 }
4764 } else {
413ee3b4
AB
4765 if (arch_vma_name(mmap_event->vma)) {
4766 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4767 sizeof(tmp));
089dd79d 4768 goto got_name;
413ee3b4 4769 }
089dd79d
PZ
4770
4771 if (!vma->vm_mm) {
4772 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4773 goto got_name;
3af9e859
EM
4774 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4775 vma->vm_end >= vma->vm_mm->brk) {
4776 name = strncpy(tmp, "[heap]", sizeof(tmp));
4777 goto got_name;
4778 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4779 vma->vm_end >= vma->vm_mm->start_stack) {
4780 name = strncpy(tmp, "[stack]", sizeof(tmp));
4781 goto got_name;
089dd79d
PZ
4782 }
4783
0a4a9391
PZ
4784 name = strncpy(tmp, "//anon", sizeof(tmp));
4785 goto got_name;
4786 }
4787
4788got_name:
888fcee0 4789 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4790
4791 mmap_event->file_name = name;
4792 mmap_event->file_size = size;
4793
cdd6c482 4794 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4795
f6d9dd23 4796 rcu_read_lock();
108b02cf 4797 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4798 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4799 if (cpuctx->unique_pmu != pmu)
51676957 4800 goto next;
108b02cf
PZ
4801 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4802 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4803
4804 ctxn = pmu->task_ctx_nr;
4805 if (ctxn < 0)
41945f6c 4806 goto next;
8dc85d54
PZ
4807
4808 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4809 if (ctx) {
4810 perf_event_mmap_ctx(ctx, mmap_event,
4811 vma->vm_flags & VM_EXEC);
4812 }
41945f6c
PZ
4813next:
4814 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4815 }
665c2142
PZ
4816 rcu_read_unlock();
4817
0a4a9391
PZ
4818 kfree(buf);
4819}
4820
3af9e859 4821void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4822{
9ee318a7
PZ
4823 struct perf_mmap_event mmap_event;
4824
cdd6c482 4825 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4826 return;
4827
4828 mmap_event = (struct perf_mmap_event){
089dd79d 4829 .vma = vma,
573402db
PZ
4830 /* .file_name */
4831 /* .file_size */
cdd6c482 4832 .event_id = {
573402db 4833 .header = {
cdd6c482 4834 .type = PERF_RECORD_MMAP,
39447b38 4835 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4836 /* .size */
4837 },
4838 /* .pid */
4839 /* .tid */
089dd79d
PZ
4840 .start = vma->vm_start,
4841 .len = vma->vm_end - vma->vm_start,
3a0304e9 4842 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4843 },
4844 };
4845
cdd6c482 4846 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4847}
4848
a78ac325
PZ
4849/*
4850 * IRQ throttle logging
4851 */
4852
cdd6c482 4853static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4854{
4855 struct perf_output_handle handle;
c980d109 4856 struct perf_sample_data sample;
a78ac325
PZ
4857 int ret;
4858
4859 struct {
4860 struct perf_event_header header;
4861 u64 time;
cca3f454 4862 u64 id;
7f453c24 4863 u64 stream_id;
a78ac325
PZ
4864 } throttle_event = {
4865 .header = {
cdd6c482 4866 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4867 .misc = 0,
4868 .size = sizeof(throttle_event),
4869 },
def0a9b2 4870 .time = perf_clock(),
cdd6c482
IM
4871 .id = primary_event_id(event),
4872 .stream_id = event->id,
a78ac325
PZ
4873 };
4874
966ee4d6 4875 if (enable)
cdd6c482 4876 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4877
c980d109
ACM
4878 perf_event_header__init_id(&throttle_event.header, &sample, event);
4879
4880 ret = perf_output_begin(&handle, event,
a7ac67ea 4881 throttle_event.header.size);
a78ac325
PZ
4882 if (ret)
4883 return;
4884
4885 perf_output_put(&handle, throttle_event);
c980d109 4886 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4887 perf_output_end(&handle);
4888}
4889
f6c7d5fe 4890/*
cdd6c482 4891 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4892 */
4893
a8b0ca17 4894static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4895 int throttle, struct perf_sample_data *data,
4896 struct pt_regs *regs)
f6c7d5fe 4897{
cdd6c482
IM
4898 int events = atomic_read(&event->event_limit);
4899 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4900 u64 seq;
79f14641
PZ
4901 int ret = 0;
4902
96398826
PZ
4903 /*
4904 * Non-sampling counters might still use the PMI to fold short
4905 * hardware counters, ignore those.
4906 */
4907 if (unlikely(!is_sampling_event(event)))
4908 return 0;
4909
e050e3f0
SE
4910 seq = __this_cpu_read(perf_throttled_seq);
4911 if (seq != hwc->interrupts_seq) {
4912 hwc->interrupts_seq = seq;
4913 hwc->interrupts = 1;
4914 } else {
4915 hwc->interrupts++;
4916 if (unlikely(throttle
4917 && hwc->interrupts >= max_samples_per_tick)) {
4918 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4919 hwc->interrupts = MAX_INTERRUPTS;
4920 perf_log_throttle(event, 0);
a78ac325
PZ
4921 ret = 1;
4922 }
e050e3f0 4923 }
60db5e09 4924
cdd6c482 4925 if (event->attr.freq) {
def0a9b2 4926 u64 now = perf_clock();
abd50713 4927 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4928
abd50713 4929 hwc->freq_time_stamp = now;
bd2b5b12 4930
abd50713 4931 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4932 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4933 }
4934
2023b359
PZ
4935 /*
4936 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4937 * events
2023b359
PZ
4938 */
4939
cdd6c482
IM
4940 event->pending_kill = POLL_IN;
4941 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4942 ret = 1;
cdd6c482 4943 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4944 event->pending_disable = 1;
4945 irq_work_queue(&event->pending);
79f14641
PZ
4946 }
4947
453f19ee 4948 if (event->overflow_handler)
a8b0ca17 4949 event->overflow_handler(event, data, regs);
453f19ee 4950 else
a8b0ca17 4951 perf_event_output(event, data, regs);
453f19ee 4952
f506b3dc 4953 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4954 event->pending_wakeup = 1;
4955 irq_work_queue(&event->pending);
f506b3dc
PZ
4956 }
4957
79f14641 4958 return ret;
f6c7d5fe
PZ
4959}
4960
a8b0ca17 4961int perf_event_overflow(struct perf_event *event,
5622f295
MM
4962 struct perf_sample_data *data,
4963 struct pt_regs *regs)
850bc73f 4964{
a8b0ca17 4965 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4966}
4967
15dbf27c 4968/*
cdd6c482 4969 * Generic software event infrastructure
15dbf27c
PZ
4970 */
4971
b28ab83c
PZ
4972struct swevent_htable {
4973 struct swevent_hlist *swevent_hlist;
4974 struct mutex hlist_mutex;
4975 int hlist_refcount;
4976
4977 /* Recursion avoidance in each contexts */
4978 int recursion[PERF_NR_CONTEXTS];
4979};
4980
4981static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4982
7b4b6658 4983/*
cdd6c482
IM
4984 * We directly increment event->count and keep a second value in
4985 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4986 * is kept in the range [-sample_period, 0] so that we can use the
4987 * sign as trigger.
4988 */
4989
cdd6c482 4990static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4991{
cdd6c482 4992 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4993 u64 period = hwc->last_period;
4994 u64 nr, offset;
4995 s64 old, val;
4996
4997 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4998
4999again:
e7850595 5000 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5001 if (val < 0)
5002 return 0;
15dbf27c 5003
7b4b6658
PZ
5004 nr = div64_u64(period + val, period);
5005 offset = nr * period;
5006 val -= offset;
e7850595 5007 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5008 goto again;
15dbf27c 5009
7b4b6658 5010 return nr;
15dbf27c
PZ
5011}
5012
0cff784a 5013static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5014 struct perf_sample_data *data,
5622f295 5015 struct pt_regs *regs)
15dbf27c 5016{
cdd6c482 5017 struct hw_perf_event *hwc = &event->hw;
850bc73f 5018 int throttle = 0;
15dbf27c 5019
0cff784a
PZ
5020 if (!overflow)
5021 overflow = perf_swevent_set_period(event);
15dbf27c 5022
7b4b6658
PZ
5023 if (hwc->interrupts == MAX_INTERRUPTS)
5024 return;
15dbf27c 5025
7b4b6658 5026 for (; overflow; overflow--) {
a8b0ca17 5027 if (__perf_event_overflow(event, throttle,
5622f295 5028 data, regs)) {
7b4b6658
PZ
5029 /*
5030 * We inhibit the overflow from happening when
5031 * hwc->interrupts == MAX_INTERRUPTS.
5032 */
5033 break;
5034 }
cf450a73 5035 throttle = 1;
7b4b6658 5036 }
15dbf27c
PZ
5037}
5038
a4eaf7f1 5039static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5040 struct perf_sample_data *data,
5622f295 5041 struct pt_regs *regs)
7b4b6658 5042{
cdd6c482 5043 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5044
e7850595 5045 local64_add(nr, &event->count);
d6d020e9 5046
0cff784a
PZ
5047 if (!regs)
5048 return;
5049
6c7e550f 5050 if (!is_sampling_event(event))
7b4b6658 5051 return;
d6d020e9 5052
5d81e5cf
AV
5053 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5054 data->period = nr;
5055 return perf_swevent_overflow(event, 1, data, regs);
5056 } else
5057 data->period = event->hw.last_period;
5058
0cff784a 5059 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5060 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5061
e7850595 5062 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5063 return;
df1a132b 5064
a8b0ca17 5065 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5066}
5067
f5ffe02e
FW
5068static int perf_exclude_event(struct perf_event *event,
5069 struct pt_regs *regs)
5070{
a4eaf7f1 5071 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5072 return 1;
a4eaf7f1 5073
f5ffe02e
FW
5074 if (regs) {
5075 if (event->attr.exclude_user && user_mode(regs))
5076 return 1;
5077
5078 if (event->attr.exclude_kernel && !user_mode(regs))
5079 return 1;
5080 }
5081
5082 return 0;
5083}
5084
cdd6c482 5085static int perf_swevent_match(struct perf_event *event,
1c432d89 5086 enum perf_type_id type,
6fb2915d
LZ
5087 u32 event_id,
5088 struct perf_sample_data *data,
5089 struct pt_regs *regs)
15dbf27c 5090{
cdd6c482 5091 if (event->attr.type != type)
a21ca2ca 5092 return 0;
f5ffe02e 5093
cdd6c482 5094 if (event->attr.config != event_id)
15dbf27c
PZ
5095 return 0;
5096
f5ffe02e
FW
5097 if (perf_exclude_event(event, regs))
5098 return 0;
15dbf27c
PZ
5099
5100 return 1;
5101}
5102
76e1d904
FW
5103static inline u64 swevent_hash(u64 type, u32 event_id)
5104{
5105 u64 val = event_id | (type << 32);
5106
5107 return hash_64(val, SWEVENT_HLIST_BITS);
5108}
5109
49f135ed
FW
5110static inline struct hlist_head *
5111__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5112{
49f135ed
FW
5113 u64 hash = swevent_hash(type, event_id);
5114
5115 return &hlist->heads[hash];
5116}
76e1d904 5117
49f135ed
FW
5118/* For the read side: events when they trigger */
5119static inline struct hlist_head *
b28ab83c 5120find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5121{
5122 struct swevent_hlist *hlist;
76e1d904 5123
b28ab83c 5124 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5125 if (!hlist)
5126 return NULL;
5127
49f135ed
FW
5128 return __find_swevent_head(hlist, type, event_id);
5129}
5130
5131/* For the event head insertion and removal in the hlist */
5132static inline struct hlist_head *
b28ab83c 5133find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5134{
5135 struct swevent_hlist *hlist;
5136 u32 event_id = event->attr.config;
5137 u64 type = event->attr.type;
5138
5139 /*
5140 * Event scheduling is always serialized against hlist allocation
5141 * and release. Which makes the protected version suitable here.
5142 * The context lock guarantees that.
5143 */
b28ab83c 5144 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5145 lockdep_is_held(&event->ctx->lock));
5146 if (!hlist)
5147 return NULL;
5148
5149 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5150}
5151
5152static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5153 u64 nr,
76e1d904
FW
5154 struct perf_sample_data *data,
5155 struct pt_regs *regs)
15dbf27c 5156{
b28ab83c 5157 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5158 struct perf_event *event;
76e1d904 5159 struct hlist_head *head;
15dbf27c 5160
76e1d904 5161 rcu_read_lock();
b28ab83c 5162 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5163 if (!head)
5164 goto end;
5165
b67bfe0d 5166 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5167 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5168 perf_swevent_event(event, nr, data, regs);
15dbf27c 5169 }
76e1d904
FW
5170end:
5171 rcu_read_unlock();
15dbf27c
PZ
5172}
5173
4ed7c92d 5174int perf_swevent_get_recursion_context(void)
96f6d444 5175{
b28ab83c 5176 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5177
b28ab83c 5178 return get_recursion_context(swhash->recursion);
96f6d444 5179}
645e8cc0 5180EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5181
fa9f90be 5182inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5183{
b28ab83c 5184 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5185
b28ab83c 5186 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5187}
15dbf27c 5188
a8b0ca17 5189void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5190{
a4234bfc 5191 struct perf_sample_data data;
4ed7c92d
PZ
5192 int rctx;
5193
1c024eca 5194 preempt_disable_notrace();
4ed7c92d
PZ
5195 rctx = perf_swevent_get_recursion_context();
5196 if (rctx < 0)
5197 return;
a4234bfc 5198
fd0d000b 5199 perf_sample_data_init(&data, addr, 0);
92bf309a 5200
a8b0ca17 5201 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5202
5203 perf_swevent_put_recursion_context(rctx);
1c024eca 5204 preempt_enable_notrace();
b8e83514
PZ
5205}
5206
cdd6c482 5207static void perf_swevent_read(struct perf_event *event)
15dbf27c 5208{
15dbf27c
PZ
5209}
5210
a4eaf7f1 5211static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5212{
b28ab83c 5213 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5214 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5215 struct hlist_head *head;
5216
6c7e550f 5217 if (is_sampling_event(event)) {
7b4b6658 5218 hwc->last_period = hwc->sample_period;
cdd6c482 5219 perf_swevent_set_period(event);
7b4b6658 5220 }
76e1d904 5221
a4eaf7f1
PZ
5222 hwc->state = !(flags & PERF_EF_START);
5223
b28ab83c 5224 head = find_swevent_head(swhash, event);
76e1d904
FW
5225 if (WARN_ON_ONCE(!head))
5226 return -EINVAL;
5227
5228 hlist_add_head_rcu(&event->hlist_entry, head);
5229
15dbf27c
PZ
5230 return 0;
5231}
5232
a4eaf7f1 5233static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5234{
76e1d904 5235 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5236}
5237
a4eaf7f1 5238static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5239{
a4eaf7f1 5240 event->hw.state = 0;
d6d020e9 5241}
aa9c4c0f 5242
a4eaf7f1 5243static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5244{
a4eaf7f1 5245 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5246}
5247
49f135ed
FW
5248/* Deref the hlist from the update side */
5249static inline struct swevent_hlist *
b28ab83c 5250swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5251{
b28ab83c
PZ
5252 return rcu_dereference_protected(swhash->swevent_hlist,
5253 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5254}
5255
b28ab83c 5256static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5257{
b28ab83c 5258 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5259
49f135ed 5260 if (!hlist)
76e1d904
FW
5261 return;
5262
b28ab83c 5263 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5264 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5265}
5266
5267static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5268{
b28ab83c 5269 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5270
b28ab83c 5271 mutex_lock(&swhash->hlist_mutex);
76e1d904 5272
b28ab83c
PZ
5273 if (!--swhash->hlist_refcount)
5274 swevent_hlist_release(swhash);
76e1d904 5275
b28ab83c 5276 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5277}
5278
5279static void swevent_hlist_put(struct perf_event *event)
5280{
5281 int cpu;
5282
5283 if (event->cpu != -1) {
5284 swevent_hlist_put_cpu(event, event->cpu);
5285 return;
5286 }
5287
5288 for_each_possible_cpu(cpu)
5289 swevent_hlist_put_cpu(event, cpu);
5290}
5291
5292static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5293{
b28ab83c 5294 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5295 int err = 0;
5296
b28ab83c 5297 mutex_lock(&swhash->hlist_mutex);
76e1d904 5298
b28ab83c 5299 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5300 struct swevent_hlist *hlist;
5301
5302 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5303 if (!hlist) {
5304 err = -ENOMEM;
5305 goto exit;
5306 }
b28ab83c 5307 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5308 }
b28ab83c 5309 swhash->hlist_refcount++;
9ed6060d 5310exit:
b28ab83c 5311 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5312
5313 return err;
5314}
5315
5316static int swevent_hlist_get(struct perf_event *event)
5317{
5318 int err;
5319 int cpu, failed_cpu;
5320
5321 if (event->cpu != -1)
5322 return swevent_hlist_get_cpu(event, event->cpu);
5323
5324 get_online_cpus();
5325 for_each_possible_cpu(cpu) {
5326 err = swevent_hlist_get_cpu(event, cpu);
5327 if (err) {
5328 failed_cpu = cpu;
5329 goto fail;
5330 }
5331 }
5332 put_online_cpus();
5333
5334 return 0;
9ed6060d 5335fail:
76e1d904
FW
5336 for_each_possible_cpu(cpu) {
5337 if (cpu == failed_cpu)
5338 break;
5339 swevent_hlist_put_cpu(event, cpu);
5340 }
5341
5342 put_online_cpus();
5343 return err;
5344}
5345
c5905afb 5346struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5347
b0a873eb
PZ
5348static void sw_perf_event_destroy(struct perf_event *event)
5349{
5350 u64 event_id = event->attr.config;
95476b64 5351
b0a873eb
PZ
5352 WARN_ON(event->parent);
5353
c5905afb 5354 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5355 swevent_hlist_put(event);
5356}
5357
5358static int perf_swevent_init(struct perf_event *event)
5359{
5360 int event_id = event->attr.config;
5361
5362 if (event->attr.type != PERF_TYPE_SOFTWARE)
5363 return -ENOENT;
5364
2481c5fa
SE
5365 /*
5366 * no branch sampling for software events
5367 */
5368 if (has_branch_stack(event))
5369 return -EOPNOTSUPP;
5370
b0a873eb
PZ
5371 switch (event_id) {
5372 case PERF_COUNT_SW_CPU_CLOCK:
5373 case PERF_COUNT_SW_TASK_CLOCK:
5374 return -ENOENT;
5375
5376 default:
5377 break;
5378 }
5379
ce677831 5380 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5381 return -ENOENT;
5382
5383 if (!event->parent) {
5384 int err;
5385
5386 err = swevent_hlist_get(event);
5387 if (err)
5388 return err;
5389
c5905afb 5390 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5391 event->destroy = sw_perf_event_destroy;
5392 }
5393
5394 return 0;
5395}
5396
35edc2a5
PZ
5397static int perf_swevent_event_idx(struct perf_event *event)
5398{
5399 return 0;
5400}
5401
b0a873eb 5402static struct pmu perf_swevent = {
89a1e187 5403 .task_ctx_nr = perf_sw_context,
95476b64 5404
b0a873eb 5405 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5406 .add = perf_swevent_add,
5407 .del = perf_swevent_del,
5408 .start = perf_swevent_start,
5409 .stop = perf_swevent_stop,
1c024eca 5410 .read = perf_swevent_read,
35edc2a5
PZ
5411
5412 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5413};
5414
b0a873eb
PZ
5415#ifdef CONFIG_EVENT_TRACING
5416
1c024eca
PZ
5417static int perf_tp_filter_match(struct perf_event *event,
5418 struct perf_sample_data *data)
5419{
5420 void *record = data->raw->data;
5421
5422 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5423 return 1;
5424 return 0;
5425}
5426
5427static int perf_tp_event_match(struct perf_event *event,
5428 struct perf_sample_data *data,
5429 struct pt_regs *regs)
5430{
a0f7d0f7
FW
5431 if (event->hw.state & PERF_HES_STOPPED)
5432 return 0;
580d607c
PZ
5433 /*
5434 * All tracepoints are from kernel-space.
5435 */
5436 if (event->attr.exclude_kernel)
1c024eca
PZ
5437 return 0;
5438
5439 if (!perf_tp_filter_match(event, data))
5440 return 0;
5441
5442 return 1;
5443}
5444
5445void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5446 struct pt_regs *regs, struct hlist_head *head, int rctx,
5447 struct task_struct *task)
95476b64
FW
5448{
5449 struct perf_sample_data data;
1c024eca 5450 struct perf_event *event;
1c024eca 5451
95476b64
FW
5452 struct perf_raw_record raw = {
5453 .size = entry_size,
5454 .data = record,
5455 };
5456
fd0d000b 5457 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5458 data.raw = &raw;
5459
b67bfe0d 5460 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5461 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5462 perf_swevent_event(event, count, &data, regs);
4f41c013 5463 }
ecc55f84 5464
e6dab5ff
AV
5465 /*
5466 * If we got specified a target task, also iterate its context and
5467 * deliver this event there too.
5468 */
5469 if (task && task != current) {
5470 struct perf_event_context *ctx;
5471 struct trace_entry *entry = record;
5472
5473 rcu_read_lock();
5474 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5475 if (!ctx)
5476 goto unlock;
5477
5478 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5479 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5480 continue;
5481 if (event->attr.config != entry->type)
5482 continue;
5483 if (perf_tp_event_match(event, &data, regs))
5484 perf_swevent_event(event, count, &data, regs);
5485 }
5486unlock:
5487 rcu_read_unlock();
5488 }
5489
ecc55f84 5490 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5491}
5492EXPORT_SYMBOL_GPL(perf_tp_event);
5493
cdd6c482 5494static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5495{
1c024eca 5496 perf_trace_destroy(event);
e077df4f
PZ
5497}
5498
b0a873eb 5499static int perf_tp_event_init(struct perf_event *event)
e077df4f 5500{
76e1d904
FW
5501 int err;
5502
b0a873eb
PZ
5503 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5504 return -ENOENT;
5505
2481c5fa
SE
5506 /*
5507 * no branch sampling for tracepoint events
5508 */
5509 if (has_branch_stack(event))
5510 return -EOPNOTSUPP;
5511
1c024eca
PZ
5512 err = perf_trace_init(event);
5513 if (err)
b0a873eb 5514 return err;
e077df4f 5515
cdd6c482 5516 event->destroy = tp_perf_event_destroy;
e077df4f 5517
b0a873eb
PZ
5518 return 0;
5519}
5520
5521static struct pmu perf_tracepoint = {
89a1e187
PZ
5522 .task_ctx_nr = perf_sw_context,
5523
b0a873eb 5524 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5525 .add = perf_trace_add,
5526 .del = perf_trace_del,
5527 .start = perf_swevent_start,
5528 .stop = perf_swevent_stop,
b0a873eb 5529 .read = perf_swevent_read,
35edc2a5
PZ
5530
5531 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5532};
5533
5534static inline void perf_tp_register(void)
5535{
2e80a82a 5536 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5537}
6fb2915d
LZ
5538
5539static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5540{
5541 char *filter_str;
5542 int ret;
5543
5544 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5545 return -EINVAL;
5546
5547 filter_str = strndup_user(arg, PAGE_SIZE);
5548 if (IS_ERR(filter_str))
5549 return PTR_ERR(filter_str);
5550
5551 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5552
5553 kfree(filter_str);
5554 return ret;
5555}
5556
5557static void perf_event_free_filter(struct perf_event *event)
5558{
5559 ftrace_profile_free_filter(event);
5560}
5561
e077df4f 5562#else
6fb2915d 5563
b0a873eb 5564static inline void perf_tp_register(void)
e077df4f 5565{
e077df4f 5566}
6fb2915d
LZ
5567
5568static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5569{
5570 return -ENOENT;
5571}
5572
5573static void perf_event_free_filter(struct perf_event *event)
5574{
5575}
5576
07b139c8 5577#endif /* CONFIG_EVENT_TRACING */
e077df4f 5578
24f1e32c 5579#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5580void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5581{
f5ffe02e
FW
5582 struct perf_sample_data sample;
5583 struct pt_regs *regs = data;
5584
fd0d000b 5585 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5586
a4eaf7f1 5587 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5588 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5589}
5590#endif
5591
b0a873eb
PZ
5592/*
5593 * hrtimer based swevent callback
5594 */
f29ac756 5595
b0a873eb 5596static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5597{
b0a873eb
PZ
5598 enum hrtimer_restart ret = HRTIMER_RESTART;
5599 struct perf_sample_data data;
5600 struct pt_regs *regs;
5601 struct perf_event *event;
5602 u64 period;
f29ac756 5603
b0a873eb 5604 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5605
5606 if (event->state != PERF_EVENT_STATE_ACTIVE)
5607 return HRTIMER_NORESTART;
5608
b0a873eb 5609 event->pmu->read(event);
f344011c 5610
fd0d000b 5611 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5612 regs = get_irq_regs();
5613
5614 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5615 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5616 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5617 ret = HRTIMER_NORESTART;
5618 }
24f1e32c 5619
b0a873eb
PZ
5620 period = max_t(u64, 10000, event->hw.sample_period);
5621 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5622
b0a873eb 5623 return ret;
f29ac756
PZ
5624}
5625
b0a873eb 5626static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5627{
b0a873eb 5628 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5629 s64 period;
5630
5631 if (!is_sampling_event(event))
5632 return;
f5ffe02e 5633
5d508e82
FBH
5634 period = local64_read(&hwc->period_left);
5635 if (period) {
5636 if (period < 0)
5637 period = 10000;
fa407f35 5638
5d508e82
FBH
5639 local64_set(&hwc->period_left, 0);
5640 } else {
5641 period = max_t(u64, 10000, hwc->sample_period);
5642 }
5643 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5644 ns_to_ktime(period), 0,
b5ab4cd5 5645 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5646}
b0a873eb
PZ
5647
5648static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5649{
b0a873eb
PZ
5650 struct hw_perf_event *hwc = &event->hw;
5651
6c7e550f 5652 if (is_sampling_event(event)) {
b0a873eb 5653 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5654 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5655
5656 hrtimer_cancel(&hwc->hrtimer);
5657 }
24f1e32c
FW
5658}
5659
ba3dd36c
PZ
5660static void perf_swevent_init_hrtimer(struct perf_event *event)
5661{
5662 struct hw_perf_event *hwc = &event->hw;
5663
5664 if (!is_sampling_event(event))
5665 return;
5666
5667 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5668 hwc->hrtimer.function = perf_swevent_hrtimer;
5669
5670 /*
5671 * Since hrtimers have a fixed rate, we can do a static freq->period
5672 * mapping and avoid the whole period adjust feedback stuff.
5673 */
5674 if (event->attr.freq) {
5675 long freq = event->attr.sample_freq;
5676
5677 event->attr.sample_period = NSEC_PER_SEC / freq;
5678 hwc->sample_period = event->attr.sample_period;
5679 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5680 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5681 event->attr.freq = 0;
5682 }
5683}
5684
b0a873eb
PZ
5685/*
5686 * Software event: cpu wall time clock
5687 */
5688
5689static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5690{
b0a873eb
PZ
5691 s64 prev;
5692 u64 now;
5693
a4eaf7f1 5694 now = local_clock();
b0a873eb
PZ
5695 prev = local64_xchg(&event->hw.prev_count, now);
5696 local64_add(now - prev, &event->count);
24f1e32c 5697}
24f1e32c 5698
a4eaf7f1 5699static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5700{
a4eaf7f1 5701 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5702 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5703}
5704
a4eaf7f1 5705static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5706{
b0a873eb
PZ
5707 perf_swevent_cancel_hrtimer(event);
5708 cpu_clock_event_update(event);
5709}
f29ac756 5710
a4eaf7f1
PZ
5711static int cpu_clock_event_add(struct perf_event *event, int flags)
5712{
5713 if (flags & PERF_EF_START)
5714 cpu_clock_event_start(event, flags);
5715
5716 return 0;
5717}
5718
5719static void cpu_clock_event_del(struct perf_event *event, int flags)
5720{
5721 cpu_clock_event_stop(event, flags);
5722}
5723
b0a873eb
PZ
5724static void cpu_clock_event_read(struct perf_event *event)
5725{
5726 cpu_clock_event_update(event);
5727}
f344011c 5728
b0a873eb
PZ
5729static int cpu_clock_event_init(struct perf_event *event)
5730{
5731 if (event->attr.type != PERF_TYPE_SOFTWARE)
5732 return -ENOENT;
5733
5734 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5735 return -ENOENT;
5736
2481c5fa
SE
5737 /*
5738 * no branch sampling for software events
5739 */
5740 if (has_branch_stack(event))
5741 return -EOPNOTSUPP;
5742
ba3dd36c
PZ
5743 perf_swevent_init_hrtimer(event);
5744
b0a873eb 5745 return 0;
f29ac756
PZ
5746}
5747
b0a873eb 5748static struct pmu perf_cpu_clock = {
89a1e187
PZ
5749 .task_ctx_nr = perf_sw_context,
5750
b0a873eb 5751 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5752 .add = cpu_clock_event_add,
5753 .del = cpu_clock_event_del,
5754 .start = cpu_clock_event_start,
5755 .stop = cpu_clock_event_stop,
b0a873eb 5756 .read = cpu_clock_event_read,
35edc2a5
PZ
5757
5758 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5759};
5760
5761/*
5762 * Software event: task time clock
5763 */
5764
5765static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5766{
b0a873eb
PZ
5767 u64 prev;
5768 s64 delta;
5c92d124 5769
b0a873eb
PZ
5770 prev = local64_xchg(&event->hw.prev_count, now);
5771 delta = now - prev;
5772 local64_add(delta, &event->count);
5773}
5c92d124 5774
a4eaf7f1 5775static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5776{
a4eaf7f1 5777 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5778 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5779}
5780
a4eaf7f1 5781static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5782{
5783 perf_swevent_cancel_hrtimer(event);
5784 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5785}
5786
5787static int task_clock_event_add(struct perf_event *event, int flags)
5788{
5789 if (flags & PERF_EF_START)
5790 task_clock_event_start(event, flags);
b0a873eb 5791
a4eaf7f1
PZ
5792 return 0;
5793}
5794
5795static void task_clock_event_del(struct perf_event *event, int flags)
5796{
5797 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5798}
5799
5800static void task_clock_event_read(struct perf_event *event)
5801{
768a06e2
PZ
5802 u64 now = perf_clock();
5803 u64 delta = now - event->ctx->timestamp;
5804 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5805
5806 task_clock_event_update(event, time);
5807}
5808
5809static int task_clock_event_init(struct perf_event *event)
6fb2915d 5810{
b0a873eb
PZ
5811 if (event->attr.type != PERF_TYPE_SOFTWARE)
5812 return -ENOENT;
5813
5814 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5815 return -ENOENT;
5816
2481c5fa
SE
5817 /*
5818 * no branch sampling for software events
5819 */
5820 if (has_branch_stack(event))
5821 return -EOPNOTSUPP;
5822
ba3dd36c
PZ
5823 perf_swevent_init_hrtimer(event);
5824
b0a873eb 5825 return 0;
6fb2915d
LZ
5826}
5827
b0a873eb 5828static struct pmu perf_task_clock = {
89a1e187
PZ
5829 .task_ctx_nr = perf_sw_context,
5830
b0a873eb 5831 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5832 .add = task_clock_event_add,
5833 .del = task_clock_event_del,
5834 .start = task_clock_event_start,
5835 .stop = task_clock_event_stop,
b0a873eb 5836 .read = task_clock_event_read,
35edc2a5
PZ
5837
5838 .event_idx = perf_swevent_event_idx,
b0a873eb 5839};
6fb2915d 5840
ad5133b7 5841static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5842{
e077df4f 5843}
6fb2915d 5844
ad5133b7 5845static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5846{
ad5133b7 5847 return 0;
6fb2915d
LZ
5848}
5849
ad5133b7 5850static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5851{
ad5133b7 5852 perf_pmu_disable(pmu);
6fb2915d
LZ
5853}
5854
ad5133b7
PZ
5855static int perf_pmu_commit_txn(struct pmu *pmu)
5856{
5857 perf_pmu_enable(pmu);
5858 return 0;
5859}
e077df4f 5860
ad5133b7 5861static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5862{
ad5133b7 5863 perf_pmu_enable(pmu);
24f1e32c
FW
5864}
5865
35edc2a5
PZ
5866static int perf_event_idx_default(struct perf_event *event)
5867{
5868 return event->hw.idx + 1;
5869}
5870
8dc85d54
PZ
5871/*
5872 * Ensures all contexts with the same task_ctx_nr have the same
5873 * pmu_cpu_context too.
5874 */
5875static void *find_pmu_context(int ctxn)
24f1e32c 5876{
8dc85d54 5877 struct pmu *pmu;
b326e956 5878
8dc85d54
PZ
5879 if (ctxn < 0)
5880 return NULL;
24f1e32c 5881
8dc85d54
PZ
5882 list_for_each_entry(pmu, &pmus, entry) {
5883 if (pmu->task_ctx_nr == ctxn)
5884 return pmu->pmu_cpu_context;
5885 }
24f1e32c 5886
8dc85d54 5887 return NULL;
24f1e32c
FW
5888}
5889
51676957 5890static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5891{
51676957
PZ
5892 int cpu;
5893
5894 for_each_possible_cpu(cpu) {
5895 struct perf_cpu_context *cpuctx;
5896
5897 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5898
3f1f3320
PZ
5899 if (cpuctx->unique_pmu == old_pmu)
5900 cpuctx->unique_pmu = pmu;
51676957
PZ
5901 }
5902}
5903
5904static void free_pmu_context(struct pmu *pmu)
5905{
5906 struct pmu *i;
f5ffe02e 5907
8dc85d54 5908 mutex_lock(&pmus_lock);
0475f9ea 5909 /*
8dc85d54 5910 * Like a real lame refcount.
0475f9ea 5911 */
51676957
PZ
5912 list_for_each_entry(i, &pmus, entry) {
5913 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5914 update_pmu_context(i, pmu);
8dc85d54 5915 goto out;
51676957 5916 }
8dc85d54 5917 }
d6d020e9 5918
51676957 5919 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5920out:
5921 mutex_unlock(&pmus_lock);
24f1e32c 5922}
2e80a82a 5923static struct idr pmu_idr;
d6d020e9 5924
abe43400
PZ
5925static ssize_t
5926type_show(struct device *dev, struct device_attribute *attr, char *page)
5927{
5928 struct pmu *pmu = dev_get_drvdata(dev);
5929
5930 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5931}
5932
5933static struct device_attribute pmu_dev_attrs[] = {
5934 __ATTR_RO(type),
5935 __ATTR_NULL,
5936};
5937
5938static int pmu_bus_running;
5939static struct bus_type pmu_bus = {
5940 .name = "event_source",
5941 .dev_attrs = pmu_dev_attrs,
5942};
5943
5944static void pmu_dev_release(struct device *dev)
5945{
5946 kfree(dev);
5947}
5948
5949static int pmu_dev_alloc(struct pmu *pmu)
5950{
5951 int ret = -ENOMEM;
5952
5953 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5954 if (!pmu->dev)
5955 goto out;
5956
0c9d42ed 5957 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5958 device_initialize(pmu->dev);
5959 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5960 if (ret)
5961 goto free_dev;
5962
5963 dev_set_drvdata(pmu->dev, pmu);
5964 pmu->dev->bus = &pmu_bus;
5965 pmu->dev->release = pmu_dev_release;
5966 ret = device_add(pmu->dev);
5967 if (ret)
5968 goto free_dev;
5969
5970out:
5971 return ret;
5972
5973free_dev:
5974 put_device(pmu->dev);
5975 goto out;
5976}
5977
547e9fd7 5978static struct lock_class_key cpuctx_mutex;
facc4307 5979static struct lock_class_key cpuctx_lock;
547e9fd7 5980
2e80a82a 5981int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5982{
108b02cf 5983 int cpu, ret;
24f1e32c 5984
b0a873eb 5985 mutex_lock(&pmus_lock);
33696fc0
PZ
5986 ret = -ENOMEM;
5987 pmu->pmu_disable_count = alloc_percpu(int);
5988 if (!pmu->pmu_disable_count)
5989 goto unlock;
f29ac756 5990
2e80a82a
PZ
5991 pmu->type = -1;
5992 if (!name)
5993 goto skip_type;
5994 pmu->name = name;
5995
5996 if (type < 0) {
0e9c3be2
TH
5997 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5998 if (type < 0) {
5999 ret = type;
2e80a82a
PZ
6000 goto free_pdc;
6001 }
6002 }
6003 pmu->type = type;
6004
abe43400
PZ
6005 if (pmu_bus_running) {
6006 ret = pmu_dev_alloc(pmu);
6007 if (ret)
6008 goto free_idr;
6009 }
6010
2e80a82a 6011skip_type:
8dc85d54
PZ
6012 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6013 if (pmu->pmu_cpu_context)
6014 goto got_cpu_context;
f29ac756 6015
108b02cf
PZ
6016 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6017 if (!pmu->pmu_cpu_context)
abe43400 6018 goto free_dev;
f344011c 6019
108b02cf
PZ
6020 for_each_possible_cpu(cpu) {
6021 struct perf_cpu_context *cpuctx;
6022
6023 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6024 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6025 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6026 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6027 cpuctx->ctx.type = cpu_context;
108b02cf 6028 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
6029 cpuctx->jiffies_interval = 1;
6030 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6031 cpuctx->unique_pmu = pmu;
108b02cf 6032 }
76e1d904 6033
8dc85d54 6034got_cpu_context:
ad5133b7
PZ
6035 if (!pmu->start_txn) {
6036 if (pmu->pmu_enable) {
6037 /*
6038 * If we have pmu_enable/pmu_disable calls, install
6039 * transaction stubs that use that to try and batch
6040 * hardware accesses.
6041 */
6042 pmu->start_txn = perf_pmu_start_txn;
6043 pmu->commit_txn = perf_pmu_commit_txn;
6044 pmu->cancel_txn = perf_pmu_cancel_txn;
6045 } else {
6046 pmu->start_txn = perf_pmu_nop_void;
6047 pmu->commit_txn = perf_pmu_nop_int;
6048 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6049 }
5c92d124 6050 }
15dbf27c 6051
ad5133b7
PZ
6052 if (!pmu->pmu_enable) {
6053 pmu->pmu_enable = perf_pmu_nop_void;
6054 pmu->pmu_disable = perf_pmu_nop_void;
6055 }
6056
35edc2a5
PZ
6057 if (!pmu->event_idx)
6058 pmu->event_idx = perf_event_idx_default;
6059
b0a873eb 6060 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6061 ret = 0;
6062unlock:
b0a873eb
PZ
6063 mutex_unlock(&pmus_lock);
6064
33696fc0 6065 return ret;
108b02cf 6066
abe43400
PZ
6067free_dev:
6068 device_del(pmu->dev);
6069 put_device(pmu->dev);
6070
2e80a82a
PZ
6071free_idr:
6072 if (pmu->type >= PERF_TYPE_MAX)
6073 idr_remove(&pmu_idr, pmu->type);
6074
108b02cf
PZ
6075free_pdc:
6076 free_percpu(pmu->pmu_disable_count);
6077 goto unlock;
f29ac756
PZ
6078}
6079
b0a873eb 6080void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6081{
b0a873eb
PZ
6082 mutex_lock(&pmus_lock);
6083 list_del_rcu(&pmu->entry);
6084 mutex_unlock(&pmus_lock);
5c92d124 6085
0475f9ea 6086 /*
cde8e884
PZ
6087 * We dereference the pmu list under both SRCU and regular RCU, so
6088 * synchronize against both of those.
0475f9ea 6089 */
b0a873eb 6090 synchronize_srcu(&pmus_srcu);
cde8e884 6091 synchronize_rcu();
d6d020e9 6092
33696fc0 6093 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6094 if (pmu->type >= PERF_TYPE_MAX)
6095 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6096 device_del(pmu->dev);
6097 put_device(pmu->dev);
51676957 6098 free_pmu_context(pmu);
b0a873eb 6099}
d6d020e9 6100
b0a873eb
PZ
6101struct pmu *perf_init_event(struct perf_event *event)
6102{
6103 struct pmu *pmu = NULL;
6104 int idx;
940c5b29 6105 int ret;
b0a873eb
PZ
6106
6107 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6108
6109 rcu_read_lock();
6110 pmu = idr_find(&pmu_idr, event->attr.type);
6111 rcu_read_unlock();
940c5b29 6112 if (pmu) {
7e5b2a01 6113 event->pmu = pmu;
940c5b29
LM
6114 ret = pmu->event_init(event);
6115 if (ret)
6116 pmu = ERR_PTR(ret);
2e80a82a 6117 goto unlock;
940c5b29 6118 }
2e80a82a 6119
b0a873eb 6120 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6121 event->pmu = pmu;
940c5b29 6122 ret = pmu->event_init(event);
b0a873eb 6123 if (!ret)
e5f4d339 6124 goto unlock;
76e1d904 6125
b0a873eb
PZ
6126 if (ret != -ENOENT) {
6127 pmu = ERR_PTR(ret);
e5f4d339 6128 goto unlock;
f344011c 6129 }
5c92d124 6130 }
e5f4d339
PZ
6131 pmu = ERR_PTR(-ENOENT);
6132unlock:
b0a873eb 6133 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6134
4aeb0b42 6135 return pmu;
5c92d124
IM
6136}
6137
0793a61d 6138/*
cdd6c482 6139 * Allocate and initialize a event structure
0793a61d 6140 */
cdd6c482 6141static struct perf_event *
c3f00c70 6142perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6143 struct task_struct *task,
6144 struct perf_event *group_leader,
6145 struct perf_event *parent_event,
4dc0da86
AK
6146 perf_overflow_handler_t overflow_handler,
6147 void *context)
0793a61d 6148{
51b0fe39 6149 struct pmu *pmu;
cdd6c482
IM
6150 struct perf_event *event;
6151 struct hw_perf_event *hwc;
d5d2bc0d 6152 long err;
0793a61d 6153
66832eb4
ON
6154 if ((unsigned)cpu >= nr_cpu_ids) {
6155 if (!task || cpu != -1)
6156 return ERR_PTR(-EINVAL);
6157 }
6158
c3f00c70 6159 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6160 if (!event)
d5d2bc0d 6161 return ERR_PTR(-ENOMEM);
0793a61d 6162
04289bb9 6163 /*
cdd6c482 6164 * Single events are their own group leaders, with an
04289bb9
IM
6165 * empty sibling list:
6166 */
6167 if (!group_leader)
cdd6c482 6168 group_leader = event;
04289bb9 6169
cdd6c482
IM
6170 mutex_init(&event->child_mutex);
6171 INIT_LIST_HEAD(&event->child_list);
fccc714b 6172
cdd6c482
IM
6173 INIT_LIST_HEAD(&event->group_entry);
6174 INIT_LIST_HEAD(&event->event_entry);
6175 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6176 INIT_LIST_HEAD(&event->rb_entry);
6177
cdd6c482 6178 init_waitqueue_head(&event->waitq);
e360adbe 6179 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6180
cdd6c482 6181 mutex_init(&event->mmap_mutex);
7b732a75 6182
a6fa941d 6183 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6184 event->cpu = cpu;
6185 event->attr = *attr;
6186 event->group_leader = group_leader;
6187 event->pmu = NULL;
cdd6c482 6188 event->oncpu = -1;
a96bbc16 6189
cdd6c482 6190 event->parent = parent_event;
b84fbc9f 6191
17cf22c3 6192 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6193 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6194
cdd6c482 6195 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6196
d580ff86
PZ
6197 if (task) {
6198 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6199
6200 if (attr->type == PERF_TYPE_TRACEPOINT)
6201 event->hw.tp_target = task;
d580ff86
PZ
6202#ifdef CONFIG_HAVE_HW_BREAKPOINT
6203 /*
6204 * hw_breakpoint is a bit difficult here..
6205 */
f22c1bb6 6206 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6207 event->hw.bp_target = task;
6208#endif
6209 }
6210
4dc0da86 6211 if (!overflow_handler && parent_event) {
b326e956 6212 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6213 context = parent_event->overflow_handler_context;
6214 }
66832eb4 6215
b326e956 6216 event->overflow_handler = overflow_handler;
4dc0da86 6217 event->overflow_handler_context = context;
97eaf530 6218
0231bb53 6219 perf_event__state_init(event);
a86ed508 6220
4aeb0b42 6221 pmu = NULL;
b8e83514 6222
cdd6c482 6223 hwc = &event->hw;
bd2b5b12 6224 hwc->sample_period = attr->sample_period;
0d48696f 6225 if (attr->freq && attr->sample_freq)
bd2b5b12 6226 hwc->sample_period = 1;
eced1dfc 6227 hwc->last_period = hwc->sample_period;
bd2b5b12 6228
e7850595 6229 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6230
2023b359 6231 /*
cdd6c482 6232 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6233 */
3dab77fb 6234 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6235 goto done;
6236
b0a873eb 6237 pmu = perf_init_event(event);
974802ea 6238
d5d2bc0d
PM
6239done:
6240 err = 0;
4aeb0b42 6241 if (!pmu)
d5d2bc0d 6242 err = -EINVAL;
4aeb0b42
RR
6243 else if (IS_ERR(pmu))
6244 err = PTR_ERR(pmu);
5c92d124 6245
d5d2bc0d 6246 if (err) {
cdd6c482
IM
6247 if (event->ns)
6248 put_pid_ns(event->ns);
6249 kfree(event);
d5d2bc0d 6250 return ERR_PTR(err);
621a01ea 6251 }
d5d2bc0d 6252
cdd6c482 6253 if (!event->parent) {
82cd6def 6254 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6255 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6256 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6257 atomic_inc(&nr_mmap_events);
6258 if (event->attr.comm)
6259 atomic_inc(&nr_comm_events);
6260 if (event->attr.task)
6261 atomic_inc(&nr_task_events);
927c7a9e
FW
6262 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6263 err = get_callchain_buffers();
6264 if (err) {
6265 free_event(event);
6266 return ERR_PTR(err);
6267 }
6268 }
d010b332
SE
6269 if (has_branch_stack(event)) {
6270 static_key_slow_inc(&perf_sched_events.key);
6271 if (!(event->attach_state & PERF_ATTACH_TASK))
6272 atomic_inc(&per_cpu(perf_branch_stack_events,
6273 event->cpu));
6274 }
f344011c 6275 }
9ee318a7 6276
cdd6c482 6277 return event;
0793a61d
TG
6278}
6279
cdd6c482
IM
6280static int perf_copy_attr(struct perf_event_attr __user *uattr,
6281 struct perf_event_attr *attr)
974802ea 6282{
974802ea 6283 u32 size;
cdf8073d 6284 int ret;
974802ea
PZ
6285
6286 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6287 return -EFAULT;
6288
6289 /*
6290 * zero the full structure, so that a short copy will be nice.
6291 */
6292 memset(attr, 0, sizeof(*attr));
6293
6294 ret = get_user(size, &uattr->size);
6295 if (ret)
6296 return ret;
6297
6298 if (size > PAGE_SIZE) /* silly large */
6299 goto err_size;
6300
6301 if (!size) /* abi compat */
6302 size = PERF_ATTR_SIZE_VER0;
6303
6304 if (size < PERF_ATTR_SIZE_VER0)
6305 goto err_size;
6306
6307 /*
6308 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6309 * ensure all the unknown bits are 0 - i.e. new
6310 * user-space does not rely on any kernel feature
6311 * extensions we dont know about yet.
974802ea
PZ
6312 */
6313 if (size > sizeof(*attr)) {
cdf8073d
IS
6314 unsigned char __user *addr;
6315 unsigned char __user *end;
6316 unsigned char val;
974802ea 6317
cdf8073d
IS
6318 addr = (void __user *)uattr + sizeof(*attr);
6319 end = (void __user *)uattr + size;
974802ea 6320
cdf8073d 6321 for (; addr < end; addr++) {
974802ea
PZ
6322 ret = get_user(val, addr);
6323 if (ret)
6324 return ret;
6325 if (val)
6326 goto err_size;
6327 }
b3e62e35 6328 size = sizeof(*attr);
974802ea
PZ
6329 }
6330
6331 ret = copy_from_user(attr, uattr, size);
6332 if (ret)
6333 return -EFAULT;
6334
cd757645 6335 if (attr->__reserved_1)
974802ea
PZ
6336 return -EINVAL;
6337
6338 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6339 return -EINVAL;
6340
6341 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6342 return -EINVAL;
6343
bce38cd5
SE
6344 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6345 u64 mask = attr->branch_sample_type;
6346
6347 /* only using defined bits */
6348 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6349 return -EINVAL;
6350
6351 /* at least one branch bit must be set */
6352 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6353 return -EINVAL;
6354
6355 /* kernel level capture: check permissions */
6356 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6357 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6358 return -EACCES;
6359
6360 /* propagate priv level, when not set for branch */
6361 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6362
6363 /* exclude_kernel checked on syscall entry */
6364 if (!attr->exclude_kernel)
6365 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6366
6367 if (!attr->exclude_user)
6368 mask |= PERF_SAMPLE_BRANCH_USER;
6369
6370 if (!attr->exclude_hv)
6371 mask |= PERF_SAMPLE_BRANCH_HV;
6372 /*
6373 * adjust user setting (for HW filter setup)
6374 */
6375 attr->branch_sample_type = mask;
6376 }
6377 }
4018994f 6378
c5ebcedb 6379 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6380 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6381 if (ret)
6382 return ret;
6383 }
6384
6385 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6386 if (!arch_perf_have_user_stack_dump())
6387 return -ENOSYS;
6388
6389 /*
6390 * We have __u32 type for the size, but so far
6391 * we can only use __u16 as maximum due to the
6392 * __u16 sample size limit.
6393 */
6394 if (attr->sample_stack_user >= USHRT_MAX)
6395 ret = -EINVAL;
6396 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6397 ret = -EINVAL;
6398 }
4018994f 6399
974802ea
PZ
6400out:
6401 return ret;
6402
6403err_size:
6404 put_user(sizeof(*attr), &uattr->size);
6405 ret = -E2BIG;
6406 goto out;
6407}
6408
ac9721f3
PZ
6409static int
6410perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6411{
76369139 6412 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6413 int ret = -EINVAL;
6414
ac9721f3 6415 if (!output_event)
a4be7c27
PZ
6416 goto set;
6417
ac9721f3
PZ
6418 /* don't allow circular references */
6419 if (event == output_event)
a4be7c27
PZ
6420 goto out;
6421
0f139300
PZ
6422 /*
6423 * Don't allow cross-cpu buffers
6424 */
6425 if (output_event->cpu != event->cpu)
6426 goto out;
6427
6428 /*
76369139 6429 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6430 */
6431 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6432 goto out;
6433
a4be7c27 6434set:
cdd6c482 6435 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6436 /* Can't redirect output if we've got an active mmap() */
6437 if (atomic_read(&event->mmap_count))
6438 goto unlock;
a4be7c27 6439
ac9721f3 6440 if (output_event) {
76369139
FW
6441 /* get the rb we want to redirect to */
6442 rb = ring_buffer_get(output_event);
6443 if (!rb)
ac9721f3 6444 goto unlock;
a4be7c27
PZ
6445 }
6446
76369139
FW
6447 old_rb = event->rb;
6448 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6449 if (old_rb)
6450 ring_buffer_detach(event, old_rb);
a4be7c27 6451 ret = 0;
ac9721f3
PZ
6452unlock:
6453 mutex_unlock(&event->mmap_mutex);
6454
76369139
FW
6455 if (old_rb)
6456 ring_buffer_put(old_rb);
a4be7c27 6457out:
a4be7c27
PZ
6458 return ret;
6459}
6460
0793a61d 6461/**
cdd6c482 6462 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6463 *
cdd6c482 6464 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6465 * @pid: target pid
9f66a381 6466 * @cpu: target cpu
cdd6c482 6467 * @group_fd: group leader event fd
0793a61d 6468 */
cdd6c482
IM
6469SYSCALL_DEFINE5(perf_event_open,
6470 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6471 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6472{
b04243ef
PZ
6473 struct perf_event *group_leader = NULL, *output_event = NULL;
6474 struct perf_event *event, *sibling;
cdd6c482
IM
6475 struct perf_event_attr attr;
6476 struct perf_event_context *ctx;
6477 struct file *event_file = NULL;
2903ff01 6478 struct fd group = {NULL, 0};
38a81da2 6479 struct task_struct *task = NULL;
89a1e187 6480 struct pmu *pmu;
ea635c64 6481 int event_fd;
b04243ef 6482 int move_group = 0;
dc86cabe 6483 int err;
0793a61d 6484
2743a5b0 6485 /* for future expandability... */
e5d1367f 6486 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6487 return -EINVAL;
6488
dc86cabe
IM
6489 err = perf_copy_attr(attr_uptr, &attr);
6490 if (err)
6491 return err;
eab656ae 6492
0764771d
PZ
6493 if (!attr.exclude_kernel) {
6494 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6495 return -EACCES;
6496 }
6497
df58ab24 6498 if (attr.freq) {
cdd6c482 6499 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6500 return -EINVAL;
6501 }
6502
e5d1367f
SE
6503 /*
6504 * In cgroup mode, the pid argument is used to pass the fd
6505 * opened to the cgroup directory in cgroupfs. The cpu argument
6506 * designates the cpu on which to monitor threads from that
6507 * cgroup.
6508 */
6509 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6510 return -EINVAL;
6511
ab72a702 6512 event_fd = get_unused_fd();
ea635c64
AV
6513 if (event_fd < 0)
6514 return event_fd;
6515
ac9721f3 6516 if (group_fd != -1) {
2903ff01
AV
6517 err = perf_fget_light(group_fd, &group);
6518 if (err)
d14b12d7 6519 goto err_fd;
2903ff01 6520 group_leader = group.file->private_data;
ac9721f3
PZ
6521 if (flags & PERF_FLAG_FD_OUTPUT)
6522 output_event = group_leader;
6523 if (flags & PERF_FLAG_FD_NO_GROUP)
6524 group_leader = NULL;
6525 }
6526
e5d1367f 6527 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6528 task = find_lively_task_by_vpid(pid);
6529 if (IS_ERR(task)) {
6530 err = PTR_ERR(task);
6531 goto err_group_fd;
6532 }
6533 }
6534
fbfc623f
YZ
6535 get_online_cpus();
6536
4dc0da86
AK
6537 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6538 NULL, NULL);
d14b12d7
SE
6539 if (IS_ERR(event)) {
6540 err = PTR_ERR(event);
c6be5a5c 6541 goto err_task;
d14b12d7
SE
6542 }
6543
e5d1367f
SE
6544 if (flags & PERF_FLAG_PID_CGROUP) {
6545 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6546 if (err)
6547 goto err_alloc;
08309379
PZ
6548 /*
6549 * one more event:
6550 * - that has cgroup constraint on event->cpu
6551 * - that may need work on context switch
6552 */
6553 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6554 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6555 }
6556
89a1e187
PZ
6557 /*
6558 * Special case software events and allow them to be part of
6559 * any hardware group.
6560 */
6561 pmu = event->pmu;
b04243ef
PZ
6562
6563 if (group_leader &&
6564 (is_software_event(event) != is_software_event(group_leader))) {
6565 if (is_software_event(event)) {
6566 /*
6567 * If event and group_leader are not both a software
6568 * event, and event is, then group leader is not.
6569 *
6570 * Allow the addition of software events to !software
6571 * groups, this is safe because software events never
6572 * fail to schedule.
6573 */
6574 pmu = group_leader->pmu;
6575 } else if (is_software_event(group_leader) &&
6576 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6577 /*
6578 * In case the group is a pure software group, and we
6579 * try to add a hardware event, move the whole group to
6580 * the hardware context.
6581 */
6582 move_group = 1;
6583 }
6584 }
89a1e187
PZ
6585
6586 /*
6587 * Get the target context (task or percpu):
6588 */
e2d37cd2 6589 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6590 if (IS_ERR(ctx)) {
6591 err = PTR_ERR(ctx);
c6be5a5c 6592 goto err_alloc;
89a1e187
PZ
6593 }
6594
fd1edb3a
PZ
6595 if (task) {
6596 put_task_struct(task);
6597 task = NULL;
6598 }
6599
ccff286d 6600 /*
cdd6c482 6601 * Look up the group leader (we will attach this event to it):
04289bb9 6602 */
ac9721f3 6603 if (group_leader) {
dc86cabe 6604 err = -EINVAL;
04289bb9 6605
04289bb9 6606 /*
ccff286d
IM
6607 * Do not allow a recursive hierarchy (this new sibling
6608 * becoming part of another group-sibling):
6609 */
6610 if (group_leader->group_leader != group_leader)
c3f00c70 6611 goto err_context;
ccff286d
IM
6612 /*
6613 * Do not allow to attach to a group in a different
6614 * task or CPU context:
04289bb9 6615 */
b04243ef
PZ
6616 if (move_group) {
6617 if (group_leader->ctx->type != ctx->type)
6618 goto err_context;
6619 } else {
6620 if (group_leader->ctx != ctx)
6621 goto err_context;
6622 }
6623
3b6f9e5c
PM
6624 /*
6625 * Only a group leader can be exclusive or pinned
6626 */
0d48696f 6627 if (attr.exclusive || attr.pinned)
c3f00c70 6628 goto err_context;
ac9721f3
PZ
6629 }
6630
6631 if (output_event) {
6632 err = perf_event_set_output(event, output_event);
6633 if (err)
c3f00c70 6634 goto err_context;
ac9721f3 6635 }
0793a61d 6636
ea635c64
AV
6637 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6638 if (IS_ERR(event_file)) {
6639 err = PTR_ERR(event_file);
c3f00c70 6640 goto err_context;
ea635c64 6641 }
9b51f66d 6642
b04243ef
PZ
6643 if (move_group) {
6644 struct perf_event_context *gctx = group_leader->ctx;
6645
6646 mutex_lock(&gctx->mutex);
fe4b04fa 6647 perf_remove_from_context(group_leader);
0231bb53
JO
6648
6649 /*
6650 * Removing from the context ends up with disabled
6651 * event. What we want here is event in the initial
6652 * startup state, ready to be add into new context.
6653 */
6654 perf_event__state_init(group_leader);
b04243ef
PZ
6655 list_for_each_entry(sibling, &group_leader->sibling_list,
6656 group_entry) {
fe4b04fa 6657 perf_remove_from_context(sibling);
0231bb53 6658 perf_event__state_init(sibling);
b04243ef
PZ
6659 put_ctx(gctx);
6660 }
6661 mutex_unlock(&gctx->mutex);
6662 put_ctx(gctx);
ea635c64 6663 }
9b51f66d 6664
ad3a37de 6665 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6666 mutex_lock(&ctx->mutex);
b04243ef
PZ
6667
6668 if (move_group) {
0cda4c02 6669 synchronize_rcu();
e2d37cd2 6670 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6671 get_ctx(ctx);
6672 list_for_each_entry(sibling, &group_leader->sibling_list,
6673 group_entry) {
e2d37cd2 6674 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6675 get_ctx(ctx);
6676 }
6677 }
6678
e2d37cd2 6679 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6680 ++ctx->generation;
fe4b04fa 6681 perf_unpin_context(ctx);
d859e29f 6682 mutex_unlock(&ctx->mutex);
9b51f66d 6683
fbfc623f
YZ
6684 put_online_cpus();
6685
cdd6c482 6686 event->owner = current;
8882135b 6687
cdd6c482
IM
6688 mutex_lock(&current->perf_event_mutex);
6689 list_add_tail(&event->owner_entry, &current->perf_event_list);
6690 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6691
c320c7b7
ACM
6692 /*
6693 * Precalculate sample_data sizes
6694 */
6695 perf_event__header_size(event);
6844c09d 6696 perf_event__id_header_size(event);
c320c7b7 6697
8a49542c
PZ
6698 /*
6699 * Drop the reference on the group_event after placing the
6700 * new event on the sibling_list. This ensures destruction
6701 * of the group leader will find the pointer to itself in
6702 * perf_group_detach().
6703 */
2903ff01 6704 fdput(group);
ea635c64
AV
6705 fd_install(event_fd, event_file);
6706 return event_fd;
0793a61d 6707
c3f00c70 6708err_context:
fe4b04fa 6709 perf_unpin_context(ctx);
ea635c64 6710 put_ctx(ctx);
c6be5a5c 6711err_alloc:
ea635c64 6712 free_event(event);
e7d0bc04 6713err_task:
fbfc623f 6714 put_online_cpus();
e7d0bc04
PZ
6715 if (task)
6716 put_task_struct(task);
89a1e187 6717err_group_fd:
2903ff01 6718 fdput(group);
ea635c64
AV
6719err_fd:
6720 put_unused_fd(event_fd);
dc86cabe 6721 return err;
0793a61d
TG
6722}
6723
fb0459d7
AV
6724/**
6725 * perf_event_create_kernel_counter
6726 *
6727 * @attr: attributes of the counter to create
6728 * @cpu: cpu in which the counter is bound
38a81da2 6729 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6730 */
6731struct perf_event *
6732perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6733 struct task_struct *task,
4dc0da86
AK
6734 perf_overflow_handler_t overflow_handler,
6735 void *context)
fb0459d7 6736{
fb0459d7 6737 struct perf_event_context *ctx;
c3f00c70 6738 struct perf_event *event;
fb0459d7 6739 int err;
d859e29f 6740
fb0459d7
AV
6741 /*
6742 * Get the target context (task or percpu):
6743 */
d859e29f 6744
4dc0da86
AK
6745 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6746 overflow_handler, context);
c3f00c70
PZ
6747 if (IS_ERR(event)) {
6748 err = PTR_ERR(event);
6749 goto err;
6750 }
d859e29f 6751
38a81da2 6752 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6753 if (IS_ERR(ctx)) {
6754 err = PTR_ERR(ctx);
c3f00c70 6755 goto err_free;
d859e29f 6756 }
fb0459d7 6757
fb0459d7
AV
6758 WARN_ON_ONCE(ctx->parent_ctx);
6759 mutex_lock(&ctx->mutex);
6760 perf_install_in_context(ctx, event, cpu);
6761 ++ctx->generation;
fe4b04fa 6762 perf_unpin_context(ctx);
fb0459d7
AV
6763 mutex_unlock(&ctx->mutex);
6764
fb0459d7
AV
6765 return event;
6766
c3f00c70
PZ
6767err_free:
6768 free_event(event);
6769err:
c6567f64 6770 return ERR_PTR(err);
9b51f66d 6771}
fb0459d7 6772EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6773
0cda4c02
YZ
6774void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6775{
6776 struct perf_event_context *src_ctx;
6777 struct perf_event_context *dst_ctx;
6778 struct perf_event *event, *tmp;
6779 LIST_HEAD(events);
6780
6781 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6782 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6783
6784 mutex_lock(&src_ctx->mutex);
6785 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6786 event_entry) {
6787 perf_remove_from_context(event);
6788 put_ctx(src_ctx);
6789 list_add(&event->event_entry, &events);
6790 }
6791 mutex_unlock(&src_ctx->mutex);
6792
6793 synchronize_rcu();
6794
6795 mutex_lock(&dst_ctx->mutex);
6796 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6797 list_del(&event->event_entry);
6798 if (event->state >= PERF_EVENT_STATE_OFF)
6799 event->state = PERF_EVENT_STATE_INACTIVE;
6800 perf_install_in_context(dst_ctx, event, dst_cpu);
6801 get_ctx(dst_ctx);
6802 }
6803 mutex_unlock(&dst_ctx->mutex);
6804}
6805EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6806
cdd6c482 6807static void sync_child_event(struct perf_event *child_event,
38b200d6 6808 struct task_struct *child)
d859e29f 6809{
cdd6c482 6810 struct perf_event *parent_event = child_event->parent;
8bc20959 6811 u64 child_val;
d859e29f 6812
cdd6c482
IM
6813 if (child_event->attr.inherit_stat)
6814 perf_event_read_event(child_event, child);
38b200d6 6815
b5e58793 6816 child_val = perf_event_count(child_event);
d859e29f
PM
6817
6818 /*
6819 * Add back the child's count to the parent's count:
6820 */
a6e6dea6 6821 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6822 atomic64_add(child_event->total_time_enabled,
6823 &parent_event->child_total_time_enabled);
6824 atomic64_add(child_event->total_time_running,
6825 &parent_event->child_total_time_running);
d859e29f
PM
6826
6827 /*
cdd6c482 6828 * Remove this event from the parent's list
d859e29f 6829 */
cdd6c482
IM
6830 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6831 mutex_lock(&parent_event->child_mutex);
6832 list_del_init(&child_event->child_list);
6833 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6834
6835 /*
cdd6c482 6836 * Release the parent event, if this was the last
d859e29f
PM
6837 * reference to it.
6838 */
a6fa941d 6839 put_event(parent_event);
d859e29f
PM
6840}
6841
9b51f66d 6842static void
cdd6c482
IM
6843__perf_event_exit_task(struct perf_event *child_event,
6844 struct perf_event_context *child_ctx,
38b200d6 6845 struct task_struct *child)
9b51f66d 6846{
38b435b1
PZ
6847 if (child_event->parent) {
6848 raw_spin_lock_irq(&child_ctx->lock);
6849 perf_group_detach(child_event);
6850 raw_spin_unlock_irq(&child_ctx->lock);
6851 }
9b51f66d 6852
fe4b04fa 6853 perf_remove_from_context(child_event);
0cc0c027 6854
9b51f66d 6855 /*
38b435b1 6856 * It can happen that the parent exits first, and has events
9b51f66d 6857 * that are still around due to the child reference. These
38b435b1 6858 * events need to be zapped.
9b51f66d 6859 */
38b435b1 6860 if (child_event->parent) {
cdd6c482
IM
6861 sync_child_event(child_event, child);
6862 free_event(child_event);
4bcf349a 6863 }
9b51f66d
IM
6864}
6865
8dc85d54 6866static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6867{
cdd6c482
IM
6868 struct perf_event *child_event, *tmp;
6869 struct perf_event_context *child_ctx;
a63eaf34 6870 unsigned long flags;
9b51f66d 6871
8dc85d54 6872 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6873 perf_event_task(child, NULL, 0);
9b51f66d 6874 return;
9f498cc5 6875 }
9b51f66d 6876
a63eaf34 6877 local_irq_save(flags);
ad3a37de
PM
6878 /*
6879 * We can't reschedule here because interrupts are disabled,
6880 * and either child is current or it is a task that can't be
6881 * scheduled, so we are now safe from rescheduling changing
6882 * our context.
6883 */
806839b2 6884 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6885
6886 /*
6887 * Take the context lock here so that if find_get_context is
cdd6c482 6888 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6889 * incremented the context's refcount before we do put_ctx below.
6890 */
e625cce1 6891 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6892 task_ctx_sched_out(child_ctx);
8dc85d54 6893 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6894 /*
6895 * If this context is a clone; unclone it so it can't get
6896 * swapped to another process while we're removing all
cdd6c482 6897 * the events from it.
71a851b4
PZ
6898 */
6899 unclone_ctx(child_ctx);
5e942bb3 6900 update_context_time(child_ctx);
e625cce1 6901 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6902
6903 /*
cdd6c482
IM
6904 * Report the task dead after unscheduling the events so that we
6905 * won't get any samples after PERF_RECORD_EXIT. We can however still
6906 * get a few PERF_RECORD_READ events.
9f498cc5 6907 */
cdd6c482 6908 perf_event_task(child, child_ctx, 0);
a63eaf34 6909
66fff224
PZ
6910 /*
6911 * We can recurse on the same lock type through:
6912 *
cdd6c482
IM
6913 * __perf_event_exit_task()
6914 * sync_child_event()
a6fa941d
AV
6915 * put_event()
6916 * mutex_lock(&ctx->mutex)
66fff224
PZ
6917 *
6918 * But since its the parent context it won't be the same instance.
6919 */
a0507c84 6920 mutex_lock(&child_ctx->mutex);
a63eaf34 6921
8bc20959 6922again:
889ff015
FW
6923 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6924 group_entry)
6925 __perf_event_exit_task(child_event, child_ctx, child);
6926
6927 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6928 group_entry)
cdd6c482 6929 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6930
6931 /*
cdd6c482 6932 * If the last event was a group event, it will have appended all
8bc20959
PZ
6933 * its siblings to the list, but we obtained 'tmp' before that which
6934 * will still point to the list head terminating the iteration.
6935 */
889ff015
FW
6936 if (!list_empty(&child_ctx->pinned_groups) ||
6937 !list_empty(&child_ctx->flexible_groups))
8bc20959 6938 goto again;
a63eaf34
PM
6939
6940 mutex_unlock(&child_ctx->mutex);
6941
6942 put_ctx(child_ctx);
9b51f66d
IM
6943}
6944
8dc85d54
PZ
6945/*
6946 * When a child task exits, feed back event values to parent events.
6947 */
6948void perf_event_exit_task(struct task_struct *child)
6949{
8882135b 6950 struct perf_event *event, *tmp;
8dc85d54
PZ
6951 int ctxn;
6952
8882135b
PZ
6953 mutex_lock(&child->perf_event_mutex);
6954 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6955 owner_entry) {
6956 list_del_init(&event->owner_entry);
6957
6958 /*
6959 * Ensure the list deletion is visible before we clear
6960 * the owner, closes a race against perf_release() where
6961 * we need to serialize on the owner->perf_event_mutex.
6962 */
6963 smp_wmb();
6964 event->owner = NULL;
6965 }
6966 mutex_unlock(&child->perf_event_mutex);
6967
8dc85d54
PZ
6968 for_each_task_context_nr(ctxn)
6969 perf_event_exit_task_context(child, ctxn);
6970}
6971
889ff015
FW
6972static void perf_free_event(struct perf_event *event,
6973 struct perf_event_context *ctx)
6974{
6975 struct perf_event *parent = event->parent;
6976
6977 if (WARN_ON_ONCE(!parent))
6978 return;
6979
6980 mutex_lock(&parent->child_mutex);
6981 list_del_init(&event->child_list);
6982 mutex_unlock(&parent->child_mutex);
6983
a6fa941d 6984 put_event(parent);
889ff015 6985
8a49542c 6986 perf_group_detach(event);
889ff015
FW
6987 list_del_event(event, ctx);
6988 free_event(event);
6989}
6990
bbbee908
PZ
6991/*
6992 * free an unexposed, unused context as created by inheritance by
8dc85d54 6993 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6994 */
cdd6c482 6995void perf_event_free_task(struct task_struct *task)
bbbee908 6996{
8dc85d54 6997 struct perf_event_context *ctx;
cdd6c482 6998 struct perf_event *event, *tmp;
8dc85d54 6999 int ctxn;
bbbee908 7000
8dc85d54
PZ
7001 for_each_task_context_nr(ctxn) {
7002 ctx = task->perf_event_ctxp[ctxn];
7003 if (!ctx)
7004 continue;
bbbee908 7005
8dc85d54 7006 mutex_lock(&ctx->mutex);
bbbee908 7007again:
8dc85d54
PZ
7008 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7009 group_entry)
7010 perf_free_event(event, ctx);
bbbee908 7011
8dc85d54
PZ
7012 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7013 group_entry)
7014 perf_free_event(event, ctx);
bbbee908 7015
8dc85d54
PZ
7016 if (!list_empty(&ctx->pinned_groups) ||
7017 !list_empty(&ctx->flexible_groups))
7018 goto again;
bbbee908 7019
8dc85d54 7020 mutex_unlock(&ctx->mutex);
bbbee908 7021
8dc85d54
PZ
7022 put_ctx(ctx);
7023 }
889ff015
FW
7024}
7025
4e231c79
PZ
7026void perf_event_delayed_put(struct task_struct *task)
7027{
7028 int ctxn;
7029
7030 for_each_task_context_nr(ctxn)
7031 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7032}
7033
97dee4f3
PZ
7034/*
7035 * inherit a event from parent task to child task:
7036 */
7037static struct perf_event *
7038inherit_event(struct perf_event *parent_event,
7039 struct task_struct *parent,
7040 struct perf_event_context *parent_ctx,
7041 struct task_struct *child,
7042 struct perf_event *group_leader,
7043 struct perf_event_context *child_ctx)
7044{
7045 struct perf_event *child_event;
cee010ec 7046 unsigned long flags;
97dee4f3
PZ
7047
7048 /*
7049 * Instead of creating recursive hierarchies of events,
7050 * we link inherited events back to the original parent,
7051 * which has a filp for sure, which we use as the reference
7052 * count:
7053 */
7054 if (parent_event->parent)
7055 parent_event = parent_event->parent;
7056
7057 child_event = perf_event_alloc(&parent_event->attr,
7058 parent_event->cpu,
d580ff86 7059 child,
97dee4f3 7060 group_leader, parent_event,
4dc0da86 7061 NULL, NULL);
97dee4f3
PZ
7062 if (IS_ERR(child_event))
7063 return child_event;
a6fa941d
AV
7064
7065 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7066 free_event(child_event);
7067 return NULL;
7068 }
7069
97dee4f3
PZ
7070 get_ctx(child_ctx);
7071
7072 /*
7073 * Make the child state follow the state of the parent event,
7074 * not its attr.disabled bit. We hold the parent's mutex,
7075 * so we won't race with perf_event_{en, dis}able_family.
7076 */
7077 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7078 child_event->state = PERF_EVENT_STATE_INACTIVE;
7079 else
7080 child_event->state = PERF_EVENT_STATE_OFF;
7081
7082 if (parent_event->attr.freq) {
7083 u64 sample_period = parent_event->hw.sample_period;
7084 struct hw_perf_event *hwc = &child_event->hw;
7085
7086 hwc->sample_period = sample_period;
7087 hwc->last_period = sample_period;
7088
7089 local64_set(&hwc->period_left, sample_period);
7090 }
7091
7092 child_event->ctx = child_ctx;
7093 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7094 child_event->overflow_handler_context
7095 = parent_event->overflow_handler_context;
97dee4f3 7096
614b6780
TG
7097 /*
7098 * Precalculate sample_data sizes
7099 */
7100 perf_event__header_size(child_event);
6844c09d 7101 perf_event__id_header_size(child_event);
614b6780 7102
97dee4f3
PZ
7103 /*
7104 * Link it up in the child's context:
7105 */
cee010ec 7106 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7107 add_event_to_ctx(child_event, child_ctx);
cee010ec 7108 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7109
97dee4f3
PZ
7110 /*
7111 * Link this into the parent event's child list
7112 */
7113 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7114 mutex_lock(&parent_event->child_mutex);
7115 list_add_tail(&child_event->child_list, &parent_event->child_list);
7116 mutex_unlock(&parent_event->child_mutex);
7117
7118 return child_event;
7119}
7120
7121static int inherit_group(struct perf_event *parent_event,
7122 struct task_struct *parent,
7123 struct perf_event_context *parent_ctx,
7124 struct task_struct *child,
7125 struct perf_event_context *child_ctx)
7126{
7127 struct perf_event *leader;
7128 struct perf_event *sub;
7129 struct perf_event *child_ctr;
7130
7131 leader = inherit_event(parent_event, parent, parent_ctx,
7132 child, NULL, child_ctx);
7133 if (IS_ERR(leader))
7134 return PTR_ERR(leader);
7135 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7136 child_ctr = inherit_event(sub, parent, parent_ctx,
7137 child, leader, child_ctx);
7138 if (IS_ERR(child_ctr))
7139 return PTR_ERR(child_ctr);
7140 }
7141 return 0;
889ff015
FW
7142}
7143
7144static int
7145inherit_task_group(struct perf_event *event, struct task_struct *parent,
7146 struct perf_event_context *parent_ctx,
8dc85d54 7147 struct task_struct *child, int ctxn,
889ff015
FW
7148 int *inherited_all)
7149{
7150 int ret;
8dc85d54 7151 struct perf_event_context *child_ctx;
889ff015
FW
7152
7153 if (!event->attr.inherit) {
7154 *inherited_all = 0;
7155 return 0;
bbbee908
PZ
7156 }
7157
fe4b04fa 7158 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7159 if (!child_ctx) {
7160 /*
7161 * This is executed from the parent task context, so
7162 * inherit events that have been marked for cloning.
7163 * First allocate and initialize a context for the
7164 * child.
7165 */
bbbee908 7166
eb184479 7167 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7168 if (!child_ctx)
7169 return -ENOMEM;
bbbee908 7170
8dc85d54 7171 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7172 }
7173
7174 ret = inherit_group(event, parent, parent_ctx,
7175 child, child_ctx);
7176
7177 if (ret)
7178 *inherited_all = 0;
7179
7180 return ret;
bbbee908
PZ
7181}
7182
9b51f66d 7183/*
cdd6c482 7184 * Initialize the perf_event context in task_struct
9b51f66d 7185 */
8dc85d54 7186int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7187{
889ff015 7188 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7189 struct perf_event_context *cloned_ctx;
7190 struct perf_event *event;
9b51f66d 7191 struct task_struct *parent = current;
564c2b21 7192 int inherited_all = 1;
dddd3379 7193 unsigned long flags;
6ab423e0 7194 int ret = 0;
9b51f66d 7195
8dc85d54 7196 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7197 return 0;
7198
ad3a37de 7199 /*
25346b93
PM
7200 * If the parent's context is a clone, pin it so it won't get
7201 * swapped under us.
ad3a37de 7202 */
8dc85d54 7203 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7204
ad3a37de
PM
7205 /*
7206 * No need to check if parent_ctx != NULL here; since we saw
7207 * it non-NULL earlier, the only reason for it to become NULL
7208 * is if we exit, and since we're currently in the middle of
7209 * a fork we can't be exiting at the same time.
7210 */
ad3a37de 7211
9b51f66d
IM
7212 /*
7213 * Lock the parent list. No need to lock the child - not PID
7214 * hashed yet and not running, so nobody can access it.
7215 */
d859e29f 7216 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7217
7218 /*
7219 * We dont have to disable NMIs - we are only looking at
7220 * the list, not manipulating it:
7221 */
889ff015 7222 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7223 ret = inherit_task_group(event, parent, parent_ctx,
7224 child, ctxn, &inherited_all);
889ff015
FW
7225 if (ret)
7226 break;
7227 }
b93f7978 7228
dddd3379
TG
7229 /*
7230 * We can't hold ctx->lock when iterating the ->flexible_group list due
7231 * to allocations, but we need to prevent rotation because
7232 * rotate_ctx() will change the list from interrupt context.
7233 */
7234 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7235 parent_ctx->rotate_disable = 1;
7236 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7237
889ff015 7238 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7239 ret = inherit_task_group(event, parent, parent_ctx,
7240 child, ctxn, &inherited_all);
889ff015 7241 if (ret)
9b51f66d 7242 break;
564c2b21
PM
7243 }
7244
dddd3379
TG
7245 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7246 parent_ctx->rotate_disable = 0;
dddd3379 7247
8dc85d54 7248 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7249
05cbaa28 7250 if (child_ctx && inherited_all) {
564c2b21
PM
7251 /*
7252 * Mark the child context as a clone of the parent
7253 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7254 *
7255 * Note that if the parent is a clone, the holding of
7256 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7257 */
c5ed5145 7258 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7259 if (cloned_ctx) {
7260 child_ctx->parent_ctx = cloned_ctx;
25346b93 7261 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7262 } else {
7263 child_ctx->parent_ctx = parent_ctx;
7264 child_ctx->parent_gen = parent_ctx->generation;
7265 }
7266 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7267 }
7268
c5ed5145 7269 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7270 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7271
25346b93 7272 perf_unpin_context(parent_ctx);
fe4b04fa 7273 put_ctx(parent_ctx);
ad3a37de 7274
6ab423e0 7275 return ret;
9b51f66d
IM
7276}
7277
8dc85d54
PZ
7278/*
7279 * Initialize the perf_event context in task_struct
7280 */
7281int perf_event_init_task(struct task_struct *child)
7282{
7283 int ctxn, ret;
7284
8550d7cb
ON
7285 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7286 mutex_init(&child->perf_event_mutex);
7287 INIT_LIST_HEAD(&child->perf_event_list);
7288
8dc85d54
PZ
7289 for_each_task_context_nr(ctxn) {
7290 ret = perf_event_init_context(child, ctxn);
7291 if (ret)
7292 return ret;
7293 }
7294
7295 return 0;
7296}
7297
220b140b
PM
7298static void __init perf_event_init_all_cpus(void)
7299{
b28ab83c 7300 struct swevent_htable *swhash;
220b140b 7301 int cpu;
220b140b
PM
7302
7303 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7304 swhash = &per_cpu(swevent_htable, cpu);
7305 mutex_init(&swhash->hlist_mutex);
e9d2b064 7306 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7307 }
7308}
7309
cdd6c482 7310static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7311{
108b02cf 7312 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7313
b28ab83c 7314 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7315 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7316 struct swevent_hlist *hlist;
7317
b28ab83c
PZ
7318 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7319 WARN_ON(!hlist);
7320 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7321 }
b28ab83c 7322 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7323}
7324
c277443c 7325#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7326static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7327{
e9d2b064
PZ
7328 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7329
7330 WARN_ON(!irqs_disabled());
7331
7332 list_del_init(&cpuctx->rotation_list);
7333}
7334
108b02cf 7335static void __perf_event_exit_context(void *__info)
0793a61d 7336{
108b02cf 7337 struct perf_event_context *ctx = __info;
cdd6c482 7338 struct perf_event *event, *tmp;
0793a61d 7339
108b02cf 7340 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7341
889ff015 7342 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7343 __perf_remove_from_context(event);
889ff015 7344 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7345 __perf_remove_from_context(event);
0793a61d 7346}
108b02cf
PZ
7347
7348static void perf_event_exit_cpu_context(int cpu)
7349{
7350 struct perf_event_context *ctx;
7351 struct pmu *pmu;
7352 int idx;
7353
7354 idx = srcu_read_lock(&pmus_srcu);
7355 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7356 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7357
7358 mutex_lock(&ctx->mutex);
7359 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7360 mutex_unlock(&ctx->mutex);
7361 }
7362 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7363}
7364
cdd6c482 7365static void perf_event_exit_cpu(int cpu)
0793a61d 7366{
b28ab83c 7367 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7368
b28ab83c
PZ
7369 mutex_lock(&swhash->hlist_mutex);
7370 swevent_hlist_release(swhash);
7371 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7372
108b02cf 7373 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7374}
7375#else
cdd6c482 7376static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7377#endif
7378
c277443c
PZ
7379static int
7380perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7381{
7382 int cpu;
7383
7384 for_each_online_cpu(cpu)
7385 perf_event_exit_cpu(cpu);
7386
7387 return NOTIFY_OK;
7388}
7389
7390/*
7391 * Run the perf reboot notifier at the very last possible moment so that
7392 * the generic watchdog code runs as long as possible.
7393 */
7394static struct notifier_block perf_reboot_notifier = {
7395 .notifier_call = perf_reboot,
7396 .priority = INT_MIN,
7397};
7398
0793a61d
TG
7399static int __cpuinit
7400perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7401{
7402 unsigned int cpu = (long)hcpu;
7403
4536e4d1 7404 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7405
7406 case CPU_UP_PREPARE:
5e11637e 7407 case CPU_DOWN_FAILED:
cdd6c482 7408 perf_event_init_cpu(cpu);
0793a61d
TG
7409 break;
7410
5e11637e 7411 case CPU_UP_CANCELED:
0793a61d 7412 case CPU_DOWN_PREPARE:
cdd6c482 7413 perf_event_exit_cpu(cpu);
0793a61d
TG
7414 break;
7415
7416 default:
7417 break;
7418 }
7419
7420 return NOTIFY_OK;
7421}
7422
cdd6c482 7423void __init perf_event_init(void)
0793a61d 7424{
3c502e7a
JW
7425 int ret;
7426
2e80a82a
PZ
7427 idr_init(&pmu_idr);
7428
220b140b 7429 perf_event_init_all_cpus();
b0a873eb 7430 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7431 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7432 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7433 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7434 perf_tp_register();
7435 perf_cpu_notifier(perf_cpu_notify);
c277443c 7436 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7437
7438 ret = init_hw_breakpoint();
7439 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7440
7441 /* do not patch jump label more than once per second */
7442 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7443
7444 /*
7445 * Build time assertion that we keep the data_head at the intended
7446 * location. IOW, validation we got the __reserved[] size right.
7447 */
7448 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7449 != 1024);
0793a61d 7450}
abe43400
PZ
7451
7452static int __init perf_event_sysfs_init(void)
7453{
7454 struct pmu *pmu;
7455 int ret;
7456
7457 mutex_lock(&pmus_lock);
7458
7459 ret = bus_register(&pmu_bus);
7460 if (ret)
7461 goto unlock;
7462
7463 list_for_each_entry(pmu, &pmus, entry) {
7464 if (!pmu->name || pmu->type < 0)
7465 continue;
7466
7467 ret = pmu_dev_alloc(pmu);
7468 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7469 }
7470 pmu_bus_running = 1;
7471 ret = 0;
7472
7473unlock:
7474 mutex_unlock(&pmus_lock);
7475
7476 return ret;
7477}
7478device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7479
7480#ifdef CONFIG_CGROUP_PERF
92fb9748 7481static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7482{
7483 struct perf_cgroup *jc;
e5d1367f 7484
1b15d055 7485 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7486 if (!jc)
7487 return ERR_PTR(-ENOMEM);
7488
e5d1367f
SE
7489 jc->info = alloc_percpu(struct perf_cgroup_info);
7490 if (!jc->info) {
7491 kfree(jc);
7492 return ERR_PTR(-ENOMEM);
7493 }
7494
e5d1367f
SE
7495 return &jc->css;
7496}
7497
92fb9748 7498static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7499{
7500 struct perf_cgroup *jc;
7501 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7502 struct perf_cgroup, css);
7503 free_percpu(jc->info);
7504 kfree(jc);
7505}
7506
7507static int __perf_cgroup_move(void *info)
7508{
7509 struct task_struct *task = info;
7510 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7511 return 0;
7512}
7513
761b3ef5 7514static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7515{
bb9d97b6
TH
7516 struct task_struct *task;
7517
7518 cgroup_taskset_for_each(task, cgrp, tset)
7519 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7520}
7521
761b3ef5
LZ
7522static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7523 struct task_struct *task)
e5d1367f
SE
7524{
7525 /*
7526 * cgroup_exit() is called in the copy_process() failure path.
7527 * Ignore this case since the task hasn't ran yet, this avoids
7528 * trying to poke a half freed task state from generic code.
7529 */
7530 if (!(task->flags & PF_EXITING))
7531 return;
7532
bb9d97b6 7533 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7534}
7535
7536struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7537 .name = "perf_event",
7538 .subsys_id = perf_subsys_id,
92fb9748
TH
7539 .css_alloc = perf_cgroup_css_alloc,
7540 .css_free = perf_cgroup_css_free,
e7e7ee2e 7541 .exit = perf_cgroup_exit,
bb9d97b6 7542 .attach = perf_cgroup_attach,
8c7f6edb
TH
7543
7544 /*
7545 * perf_event cgroup doesn't handle nesting correctly.
7546 * ctx->nr_cgroups adjustments should be propagated through the
7547 * cgroup hierarchy. Fix it and remove the following.
7548 */
7549 .broken_hierarchy = true,
e5d1367f
SE
7550};
7551#endif /* CONFIG_CGROUP_PERF */