perf: Account freq events globally
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
948b26b6 148static atomic_t nr_freq_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
14c63f17
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
231DEFINE_PER_CPU(u64, running_sample_length);
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
14c63f17
DH
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
2903ff01 595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
596 if (IS_ERR(css)) {
597 ret = PTR_ERR(css);
598 goto out;
599 }
e5d1367f
SE
600
601 cgrp = container_of(css, struct perf_cgroup, css);
602 event->cgrp = cgrp;
603
f75e18cb 604 /* must be done before we fput() the file */
9c5da09d
SQ
605 if (!perf_tryget_cgroup(event)) {
606 event->cgrp = NULL;
607 ret = -ENOENT;
608 goto out;
609 }
f75e18cb 610
e5d1367f
SE
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
753static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
754{
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
757 int rotations = 0;
758
759 WARN_ON(!irqs_disabled());
760
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
762
763 rotations = perf_rotate_context(cpuctx);
764
765 /*
766 * arm timer if needed
767 */
768 if (rotations) {
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
771 }
772
773 return ret;
774}
775
776/* CPU is going down */
777void perf_cpu_hrtimer_cancel(int cpu)
778{
779 struct perf_cpu_context *cpuctx;
780 struct pmu *pmu;
781 unsigned long flags;
782
783 if (WARN_ON(cpu != smp_processor_id()))
784 return;
785
786 local_irq_save(flags);
787
788 rcu_read_lock();
789
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
792
793 if (pmu->task_ctx_nr == perf_sw_context)
794 continue;
795
796 hrtimer_cancel(&cpuctx->hrtimer);
797 }
798
799 rcu_read_unlock();
800
801 local_irq_restore(flags);
802}
803
804static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
805{
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 808 int timer;
9e630205
SE
809
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
812 return;
813
62b85639
SE
814 /*
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
817 */
818 timer = pmu->hrtimer_interval_ms;
819 if (timer < 1)
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
821
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
823
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
826}
827
828static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
829{
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
832
833 /* not for SW PMU */
834 if (pmu->task_ctx_nr == perf_sw_context)
835 return;
836
837 if (hrtimer_active(hr))
838 return;
839
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
843}
844
33696fc0 845void perf_pmu_disable(struct pmu *pmu)
9e35ad38 846{
33696fc0
PZ
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
848 if (!(*count)++)
849 pmu->pmu_disable(pmu);
9e35ad38 850}
9e35ad38 851
33696fc0 852void perf_pmu_enable(struct pmu *pmu)
9e35ad38 853{
33696fc0
PZ
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
855 if (!--(*count))
856 pmu->pmu_enable(pmu);
9e35ad38 857}
9e35ad38 858
e9d2b064
PZ
859static DEFINE_PER_CPU(struct list_head, rotation_list);
860
861/*
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
865 */
108b02cf 866static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 867{
108b02cf 868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 869 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 870
e9d2b064 871 WARN_ON(!irqs_disabled());
b5ab4cd5 872
d84153d6 873 if (list_empty(&cpuctx->rotation_list))
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
cdd6c482 882static void put_ctx(struct perf_event_context *ctx)
a63eaf34 883{
564c2b21
PM
884 if (atomic_dec_and_test(&ctx->refcount)) {
885 if (ctx->parent_ctx)
886 put_ctx(ctx->parent_ctx);
c93f7669
PM
887 if (ctx->task)
888 put_task_struct(ctx->task);
cb796ff3 889 kfree_rcu(ctx, rcu_head);
564c2b21 890 }
a63eaf34
PM
891}
892
cdd6c482 893static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
894{
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
898 }
899}
900
6844c09d
ACM
901static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
902{
903 /*
904 * only top level events have the pid namespace they were created in
905 */
906 if (event->parent)
907 event = event->parent;
908
909 return task_tgid_nr_ns(p, event->ns);
910}
911
912static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
913{
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_pid_nr_ns(p, event->ns);
921}
922
7f453c24 923/*
cdd6c482 924 * If we inherit events we want to return the parent event id
7f453c24
PZ
925 * to userspace.
926 */
cdd6c482 927static u64 primary_event_id(struct perf_event *event)
7f453c24 928{
cdd6c482 929 u64 id = event->id;
7f453c24 930
cdd6c482
IM
931 if (event->parent)
932 id = event->parent->id;
7f453c24
PZ
933
934 return id;
935}
936
25346b93 937/*
cdd6c482 938 * Get the perf_event_context for a task and lock it.
25346b93
PM
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
941 */
cdd6c482 942static struct perf_event_context *
8dc85d54 943perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 944{
cdd6c482 945 struct perf_event_context *ctx;
25346b93 946
9ed6060d 947retry:
058ebd0e
PZ
948 /*
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
953 *
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
956 */
957 preempt_disable();
958 rcu_read_lock();
8dc85d54 959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
960 if (ctx) {
961 /*
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
cdd6c482 964 * perf_event_task_sched_out, though the
25346b93
PM
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
970 */
e625cce1 971 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
974 rcu_read_unlock();
975 preempt_enable();
25346b93
PM
976 goto retry;
977 }
b49a9e7e
PZ
978
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
981 ctx = NULL;
982 }
25346b93
PM
983 }
984 rcu_read_unlock();
058ebd0e 985 preempt_enable();
25346b93
PM
986 return ctx;
987}
988
989/*
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
993 */
8dc85d54
PZ
994static struct perf_event_context *
995perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 996{
cdd6c482 997 struct perf_event_context *ctx;
25346b93
PM
998 unsigned long flags;
999
8dc85d54 1000 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1001 if (ctx) {
1002 ++ctx->pin_count;
e625cce1 1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1004 }
1005 return ctx;
1006}
1007
cdd6c482 1008static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1009{
1010 unsigned long flags;
1011
e625cce1 1012 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1013 --ctx->pin_count;
e625cce1 1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1015}
1016
f67218c3
PZ
1017/*
1018 * Update the record of the current time in a context.
1019 */
1020static void update_context_time(struct perf_event_context *ctx)
1021{
1022 u64 now = perf_clock();
1023
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1026}
1027
4158755d
SE
1028static u64 perf_event_time(struct perf_event *event)
1029{
1030 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1031
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1034
4158755d
SE
1035 return ctx ? ctx->time : 0;
1036}
1037
f67218c3
PZ
1038/*
1039 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1040 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1041 */
1042static void update_event_times(struct perf_event *event)
1043{
1044 struct perf_event_context *ctx = event->ctx;
1045 u64 run_end;
1046
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1049 return;
e5d1367f
SE
1050 /*
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1056 *
1057 * That is why we treat cgroup events differently
1058 * here.
1059 */
1060 if (is_cgroup_event(event))
46cd6a7f 1061 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
acd1d7c1
PZ
1064 else
1065 run_end = event->tstamp_stopped;
1066
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1068
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1071 else
4158755d 1072 run_end = perf_event_time(event);
f67218c3
PZ
1073
1074 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1075
f67218c3
PZ
1076}
1077
96c21a46
PZ
1078/*
1079 * Update total_time_enabled and total_time_running for all events in a group.
1080 */
1081static void update_group_times(struct perf_event *leader)
1082{
1083 struct perf_event *event;
1084
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1088}
1089
889ff015
FW
1090static struct list_head *
1091ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1092{
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1095 else
1096 return &ctx->flexible_groups;
1097}
1098
fccc714b 1099/*
cdd6c482 1100 * Add a event from the lists for its context.
fccc714b
PZ
1101 * Must be called with ctx->mutex and ctx->lock held.
1102 */
04289bb9 1103static void
cdd6c482 1104list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1105{
8a49542c
PZ
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1108
1109 /*
8a49542c
PZ
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1113 */
8a49542c 1114 if (event->group_leader == event) {
889ff015
FW
1115 struct list_head *list;
1116
d6f962b5
FW
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1119
889ff015
FW
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
5c148194 1122 }
592903cd 1123
08309379 1124 if (is_cgroup_event(event))
e5d1367f 1125 ctx->nr_cgroups++;
e5d1367f 1126
d010b332
SE
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1129
cdd6c482 1130 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1131 if (!ctx->nr_events)
108b02cf 1132 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1133 ctx->nr_events++;
1134 if (event->attr.inherit_stat)
bfbd3381 1135 ctx->nr_stat++;
04289bb9
IM
1136}
1137
0231bb53
JO
1138/*
1139 * Initialize event state based on the perf_event_attr::disabled.
1140 */
1141static inline void perf_event__state_init(struct perf_event *event)
1142{
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1145}
1146
c320c7b7
ACM
1147/*
1148 * Called at perf_event creation and when events are attached/detached from a
1149 * group.
1150 */
1151static void perf_event__read_size(struct perf_event *event)
1152{
1153 int entry = sizeof(u64); /* value */
1154 int size = 0;
1155 int nr = 1;
1156
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1169 }
1170
1171 size += entry * nr;
1172 event->read_size = size;
1173}
1174
1175static void perf_event__header_size(struct perf_event *event)
1176{
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1179 u16 size = 0;
1180
1181 perf_event__read_size(event);
1182
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1185
6844c09d
ACM
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1188
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1191
c3feedf2
AK
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1194
6844c09d
ACM
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1197
d6be9ad6
SE
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1200
6844c09d
ACM
1201 event->header_size = size;
1202}
1203
1204static void perf_event__id_header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
c320c7b7
ACM
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1212
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1215
c320c7b7
ACM
1216 if (sample_type & PERF_SAMPLE_ID)
1217 size += sizeof(data->id);
1218
1219 if (sample_type & PERF_SAMPLE_STREAM_ID)
1220 size += sizeof(data->stream_id);
1221
1222 if (sample_type & PERF_SAMPLE_CPU)
1223 size += sizeof(data->cpu_entry);
1224
6844c09d 1225 event->id_header_size = size;
c320c7b7
ACM
1226}
1227
8a49542c
PZ
1228static void perf_group_attach(struct perf_event *event)
1229{
c320c7b7 1230 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1231
74c3337c
PZ
1232 /*
1233 * We can have double attach due to group movement in perf_event_open.
1234 */
1235 if (event->attach_state & PERF_ATTACH_GROUP)
1236 return;
1237
8a49542c
PZ
1238 event->attach_state |= PERF_ATTACH_GROUP;
1239
1240 if (group_leader == event)
1241 return;
1242
1243 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1244 !is_software_event(event))
1245 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1246
1247 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1248 group_leader->nr_siblings++;
c320c7b7
ACM
1249
1250 perf_event__header_size(group_leader);
1251
1252 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1253 perf_event__header_size(pos);
8a49542c
PZ
1254}
1255
a63eaf34 1256/*
cdd6c482 1257 * Remove a event from the lists for its context.
fccc714b 1258 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1259 */
04289bb9 1260static void
cdd6c482 1261list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1262{
68cacd29 1263 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1264 /*
1265 * We can have double detach due to exit/hot-unplug + close.
1266 */
1267 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1268 return;
8a49542c
PZ
1269
1270 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1271
68cacd29 1272 if (is_cgroup_event(event)) {
e5d1367f 1273 ctx->nr_cgroups--;
68cacd29
SE
1274 cpuctx = __get_cpu_context(ctx);
1275 /*
1276 * if there are no more cgroup events
1277 * then cler cgrp to avoid stale pointer
1278 * in update_cgrp_time_from_cpuctx()
1279 */
1280 if (!ctx->nr_cgroups)
1281 cpuctx->cgrp = NULL;
1282 }
e5d1367f 1283
d010b332
SE
1284 if (has_branch_stack(event))
1285 ctx->nr_branch_stack--;
1286
cdd6c482
IM
1287 ctx->nr_events--;
1288 if (event->attr.inherit_stat)
bfbd3381 1289 ctx->nr_stat--;
8bc20959 1290
cdd6c482 1291 list_del_rcu(&event->event_entry);
04289bb9 1292
8a49542c
PZ
1293 if (event->group_leader == event)
1294 list_del_init(&event->group_entry);
5c148194 1295
96c21a46 1296 update_group_times(event);
b2e74a26
SE
1297
1298 /*
1299 * If event was in error state, then keep it
1300 * that way, otherwise bogus counts will be
1301 * returned on read(). The only way to get out
1302 * of error state is by explicit re-enabling
1303 * of the event
1304 */
1305 if (event->state > PERF_EVENT_STATE_OFF)
1306 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1307}
1308
8a49542c 1309static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1310{
1311 struct perf_event *sibling, *tmp;
8a49542c
PZ
1312 struct list_head *list = NULL;
1313
1314 /*
1315 * We can have double detach due to exit/hot-unplug + close.
1316 */
1317 if (!(event->attach_state & PERF_ATTACH_GROUP))
1318 return;
1319
1320 event->attach_state &= ~PERF_ATTACH_GROUP;
1321
1322 /*
1323 * If this is a sibling, remove it from its group.
1324 */
1325 if (event->group_leader != event) {
1326 list_del_init(&event->group_entry);
1327 event->group_leader->nr_siblings--;
c320c7b7 1328 goto out;
8a49542c
PZ
1329 }
1330
1331 if (!list_empty(&event->group_entry))
1332 list = &event->group_entry;
2e2af50b 1333
04289bb9 1334 /*
cdd6c482
IM
1335 * If this was a group event with sibling events then
1336 * upgrade the siblings to singleton events by adding them
8a49542c 1337 * to whatever list we are on.
04289bb9 1338 */
cdd6c482 1339 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1340 if (list)
1341 list_move_tail(&sibling->group_entry, list);
04289bb9 1342 sibling->group_leader = sibling;
d6f962b5
FW
1343
1344 /* Inherit group flags from the previous leader */
1345 sibling->group_flags = event->group_flags;
04289bb9 1346 }
c320c7b7
ACM
1347
1348out:
1349 perf_event__header_size(event->group_leader);
1350
1351 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1352 perf_event__header_size(tmp);
04289bb9
IM
1353}
1354
fa66f07a
SE
1355static inline int
1356event_filter_match(struct perf_event *event)
1357{
e5d1367f
SE
1358 return (event->cpu == -1 || event->cpu == smp_processor_id())
1359 && perf_cgroup_match(event);
fa66f07a
SE
1360}
1361
9ffcfa6f
SE
1362static void
1363event_sched_out(struct perf_event *event,
3b6f9e5c 1364 struct perf_cpu_context *cpuctx,
cdd6c482 1365 struct perf_event_context *ctx)
3b6f9e5c 1366{
4158755d 1367 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1368 u64 delta;
1369 /*
1370 * An event which could not be activated because of
1371 * filter mismatch still needs to have its timings
1372 * maintained, otherwise bogus information is return
1373 * via read() for time_enabled, time_running:
1374 */
1375 if (event->state == PERF_EVENT_STATE_INACTIVE
1376 && !event_filter_match(event)) {
e5d1367f 1377 delta = tstamp - event->tstamp_stopped;
fa66f07a 1378 event->tstamp_running += delta;
4158755d 1379 event->tstamp_stopped = tstamp;
fa66f07a
SE
1380 }
1381
cdd6c482 1382 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1383 return;
3b6f9e5c 1384
cdd6c482
IM
1385 event->state = PERF_EVENT_STATE_INACTIVE;
1386 if (event->pending_disable) {
1387 event->pending_disable = 0;
1388 event->state = PERF_EVENT_STATE_OFF;
970892a9 1389 }
4158755d 1390 event->tstamp_stopped = tstamp;
a4eaf7f1 1391 event->pmu->del(event, 0);
cdd6c482 1392 event->oncpu = -1;
3b6f9e5c 1393
cdd6c482 1394 if (!is_software_event(event))
3b6f9e5c
PM
1395 cpuctx->active_oncpu--;
1396 ctx->nr_active--;
0f5a2601
PZ
1397 if (event->attr.freq && event->attr.sample_freq)
1398 ctx->nr_freq--;
cdd6c482 1399 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1400 cpuctx->exclusive = 0;
1401}
1402
d859e29f 1403static void
cdd6c482 1404group_sched_out(struct perf_event *group_event,
d859e29f 1405 struct perf_cpu_context *cpuctx,
cdd6c482 1406 struct perf_event_context *ctx)
d859e29f 1407{
cdd6c482 1408 struct perf_event *event;
fa66f07a 1409 int state = group_event->state;
d859e29f 1410
cdd6c482 1411 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1412
1413 /*
1414 * Schedule out siblings (if any):
1415 */
cdd6c482
IM
1416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1417 event_sched_out(event, cpuctx, ctx);
d859e29f 1418
fa66f07a 1419 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1420 cpuctx->exclusive = 0;
1421}
1422
0793a61d 1423/*
cdd6c482 1424 * Cross CPU call to remove a performance event
0793a61d 1425 *
cdd6c482 1426 * We disable the event on the hardware level first. After that we
0793a61d
TG
1427 * remove it from the context list.
1428 */
fe4b04fa 1429static int __perf_remove_from_context(void *info)
0793a61d 1430{
cdd6c482
IM
1431 struct perf_event *event = info;
1432 struct perf_event_context *ctx = event->ctx;
108b02cf 1433 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1434
e625cce1 1435 raw_spin_lock(&ctx->lock);
cdd6c482 1436 event_sched_out(event, cpuctx, ctx);
cdd6c482 1437 list_del_event(event, ctx);
64ce3126
PZ
1438 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1439 ctx->is_active = 0;
1440 cpuctx->task_ctx = NULL;
1441 }
e625cce1 1442 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1443
1444 return 0;
0793a61d
TG
1445}
1446
1447
1448/*
cdd6c482 1449 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1450 *
cdd6c482 1451 * CPU events are removed with a smp call. For task events we only
0793a61d 1452 * call when the task is on a CPU.
c93f7669 1453 *
cdd6c482
IM
1454 * If event->ctx is a cloned context, callers must make sure that
1455 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1456 * remains valid. This is OK when called from perf_release since
1457 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1458 * When called from perf_event_exit_task, it's OK because the
c93f7669 1459 * context has been detached from its task.
0793a61d 1460 */
fe4b04fa 1461static void perf_remove_from_context(struct perf_event *event)
0793a61d 1462{
cdd6c482 1463 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1464 struct task_struct *task = ctx->task;
1465
fe4b04fa
PZ
1466 lockdep_assert_held(&ctx->mutex);
1467
0793a61d
TG
1468 if (!task) {
1469 /*
cdd6c482 1470 * Per cpu events are removed via an smp call and
af901ca1 1471 * the removal is always successful.
0793a61d 1472 */
fe4b04fa 1473 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1474 return;
1475 }
1476
1477retry:
fe4b04fa
PZ
1478 if (!task_function_call(task, __perf_remove_from_context, event))
1479 return;
0793a61d 1480
e625cce1 1481 raw_spin_lock_irq(&ctx->lock);
0793a61d 1482 /*
fe4b04fa
PZ
1483 * If we failed to find a running task, but find the context active now
1484 * that we've acquired the ctx->lock, retry.
0793a61d 1485 */
fe4b04fa 1486 if (ctx->is_active) {
e625cce1 1487 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1488 goto retry;
1489 }
1490
1491 /*
fe4b04fa
PZ
1492 * Since the task isn't running, its safe to remove the event, us
1493 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1494 */
fe4b04fa 1495 list_del_event(event, ctx);
e625cce1 1496 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1497}
1498
d859e29f 1499/*
cdd6c482 1500 * Cross CPU call to disable a performance event
d859e29f 1501 */
500ad2d8 1502int __perf_event_disable(void *info)
d859e29f 1503{
cdd6c482 1504 struct perf_event *event = info;
cdd6c482 1505 struct perf_event_context *ctx = event->ctx;
108b02cf 1506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1507
1508 /*
cdd6c482
IM
1509 * If this is a per-task event, need to check whether this
1510 * event's task is the current task on this cpu.
fe4b04fa
PZ
1511 *
1512 * Can trigger due to concurrent perf_event_context_sched_out()
1513 * flipping contexts around.
d859e29f 1514 */
665c2142 1515 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1516 return -EINVAL;
d859e29f 1517
e625cce1 1518 raw_spin_lock(&ctx->lock);
d859e29f
PM
1519
1520 /*
cdd6c482 1521 * If the event is on, turn it off.
d859e29f
PM
1522 * If it is in error state, leave it in error state.
1523 */
cdd6c482 1524 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1525 update_context_time(ctx);
e5d1367f 1526 update_cgrp_time_from_event(event);
cdd6c482
IM
1527 update_group_times(event);
1528 if (event == event->group_leader)
1529 group_sched_out(event, cpuctx, ctx);
d859e29f 1530 else
cdd6c482
IM
1531 event_sched_out(event, cpuctx, ctx);
1532 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1533 }
1534
e625cce1 1535 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1536
1537 return 0;
d859e29f
PM
1538}
1539
1540/*
cdd6c482 1541 * Disable a event.
c93f7669 1542 *
cdd6c482
IM
1543 * If event->ctx is a cloned context, callers must make sure that
1544 * every task struct that event->ctx->task could possibly point to
c93f7669 1545 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1546 * perf_event_for_each_child or perf_event_for_each because they
1547 * hold the top-level event's child_mutex, so any descendant that
1548 * goes to exit will block in sync_child_event.
1549 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1550 * is the current context on this CPU and preemption is disabled,
cdd6c482 1551 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1552 */
44234adc 1553void perf_event_disable(struct perf_event *event)
d859e29f 1554{
cdd6c482 1555 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1556 struct task_struct *task = ctx->task;
1557
1558 if (!task) {
1559 /*
cdd6c482 1560 * Disable the event on the cpu that it's on
d859e29f 1561 */
fe4b04fa 1562 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1563 return;
1564 }
1565
9ed6060d 1566retry:
fe4b04fa
PZ
1567 if (!task_function_call(task, __perf_event_disable, event))
1568 return;
d859e29f 1569
e625cce1 1570 raw_spin_lock_irq(&ctx->lock);
d859e29f 1571 /*
cdd6c482 1572 * If the event is still active, we need to retry the cross-call.
d859e29f 1573 */
cdd6c482 1574 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1575 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1576 /*
1577 * Reload the task pointer, it might have been changed by
1578 * a concurrent perf_event_context_sched_out().
1579 */
1580 task = ctx->task;
d859e29f
PM
1581 goto retry;
1582 }
1583
1584 /*
1585 * Since we have the lock this context can't be scheduled
1586 * in, so we can change the state safely.
1587 */
cdd6c482
IM
1588 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1589 update_group_times(event);
1590 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1591 }
e625cce1 1592 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1593}
dcfce4a0 1594EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1595
e5d1367f
SE
1596static void perf_set_shadow_time(struct perf_event *event,
1597 struct perf_event_context *ctx,
1598 u64 tstamp)
1599{
1600 /*
1601 * use the correct time source for the time snapshot
1602 *
1603 * We could get by without this by leveraging the
1604 * fact that to get to this function, the caller
1605 * has most likely already called update_context_time()
1606 * and update_cgrp_time_xx() and thus both timestamp
1607 * are identical (or very close). Given that tstamp is,
1608 * already adjusted for cgroup, we could say that:
1609 * tstamp - ctx->timestamp
1610 * is equivalent to
1611 * tstamp - cgrp->timestamp.
1612 *
1613 * Then, in perf_output_read(), the calculation would
1614 * work with no changes because:
1615 * - event is guaranteed scheduled in
1616 * - no scheduled out in between
1617 * - thus the timestamp would be the same
1618 *
1619 * But this is a bit hairy.
1620 *
1621 * So instead, we have an explicit cgroup call to remain
1622 * within the time time source all along. We believe it
1623 * is cleaner and simpler to understand.
1624 */
1625 if (is_cgroup_event(event))
1626 perf_cgroup_set_shadow_time(event, tstamp);
1627 else
1628 event->shadow_ctx_time = tstamp - ctx->timestamp;
1629}
1630
4fe757dd
PZ
1631#define MAX_INTERRUPTS (~0ULL)
1632
1633static void perf_log_throttle(struct perf_event *event, int enable);
1634
235c7fc7 1635static int
9ffcfa6f 1636event_sched_in(struct perf_event *event,
235c7fc7 1637 struct perf_cpu_context *cpuctx,
6e37738a 1638 struct perf_event_context *ctx)
235c7fc7 1639{
4158755d
SE
1640 u64 tstamp = perf_event_time(event);
1641
cdd6c482 1642 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1643 return 0;
1644
cdd6c482 1645 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1646 event->oncpu = smp_processor_id();
4fe757dd
PZ
1647
1648 /*
1649 * Unthrottle events, since we scheduled we might have missed several
1650 * ticks already, also for a heavily scheduling task there is little
1651 * guarantee it'll get a tick in a timely manner.
1652 */
1653 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1654 perf_log_throttle(event, 1);
1655 event->hw.interrupts = 0;
1656 }
1657
235c7fc7
IM
1658 /*
1659 * The new state must be visible before we turn it on in the hardware:
1660 */
1661 smp_wmb();
1662
a4eaf7f1 1663 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1664 event->state = PERF_EVENT_STATE_INACTIVE;
1665 event->oncpu = -1;
235c7fc7
IM
1666 return -EAGAIN;
1667 }
1668
4158755d 1669 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1670
e5d1367f 1671 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1672
cdd6c482 1673 if (!is_software_event(event))
3b6f9e5c 1674 cpuctx->active_oncpu++;
235c7fc7 1675 ctx->nr_active++;
0f5a2601
PZ
1676 if (event->attr.freq && event->attr.sample_freq)
1677 ctx->nr_freq++;
235c7fc7 1678
cdd6c482 1679 if (event->attr.exclusive)
3b6f9e5c
PM
1680 cpuctx->exclusive = 1;
1681
235c7fc7
IM
1682 return 0;
1683}
1684
6751b71e 1685static int
cdd6c482 1686group_sched_in(struct perf_event *group_event,
6751b71e 1687 struct perf_cpu_context *cpuctx,
6e37738a 1688 struct perf_event_context *ctx)
6751b71e 1689{
6bde9b6c 1690 struct perf_event *event, *partial_group = NULL;
51b0fe39 1691 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1692 u64 now = ctx->time;
1693 bool simulate = false;
6751b71e 1694
cdd6c482 1695 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1696 return 0;
1697
ad5133b7 1698 pmu->start_txn(pmu);
6bde9b6c 1699
9ffcfa6f 1700 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1701 pmu->cancel_txn(pmu);
9e630205 1702 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1703 return -EAGAIN;
90151c35 1704 }
6751b71e
PM
1705
1706 /*
1707 * Schedule in siblings as one group (if any):
1708 */
cdd6c482 1709 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1710 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1711 partial_group = event;
6751b71e
PM
1712 goto group_error;
1713 }
1714 }
1715
9ffcfa6f 1716 if (!pmu->commit_txn(pmu))
6e85158c 1717 return 0;
9ffcfa6f 1718
6751b71e
PM
1719group_error:
1720 /*
1721 * Groups can be scheduled in as one unit only, so undo any
1722 * partial group before returning:
d7842da4
SE
1723 * The events up to the failed event are scheduled out normally,
1724 * tstamp_stopped will be updated.
1725 *
1726 * The failed events and the remaining siblings need to have
1727 * their timings updated as if they had gone thru event_sched_in()
1728 * and event_sched_out(). This is required to get consistent timings
1729 * across the group. This also takes care of the case where the group
1730 * could never be scheduled by ensuring tstamp_stopped is set to mark
1731 * the time the event was actually stopped, such that time delta
1732 * calculation in update_event_times() is correct.
6751b71e 1733 */
cdd6c482
IM
1734 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1735 if (event == partial_group)
d7842da4
SE
1736 simulate = true;
1737
1738 if (simulate) {
1739 event->tstamp_running += now - event->tstamp_stopped;
1740 event->tstamp_stopped = now;
1741 } else {
1742 event_sched_out(event, cpuctx, ctx);
1743 }
6751b71e 1744 }
9ffcfa6f 1745 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1746
ad5133b7 1747 pmu->cancel_txn(pmu);
90151c35 1748
9e630205
SE
1749 perf_cpu_hrtimer_restart(cpuctx);
1750
6751b71e
PM
1751 return -EAGAIN;
1752}
1753
3b6f9e5c 1754/*
cdd6c482 1755 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1756 */
cdd6c482 1757static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1758 struct perf_cpu_context *cpuctx,
1759 int can_add_hw)
1760{
1761 /*
cdd6c482 1762 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1763 */
d6f962b5 1764 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1765 return 1;
1766 /*
1767 * If an exclusive group is already on, no other hardware
cdd6c482 1768 * events can go on.
3b6f9e5c
PM
1769 */
1770 if (cpuctx->exclusive)
1771 return 0;
1772 /*
1773 * If this group is exclusive and there are already
cdd6c482 1774 * events on the CPU, it can't go on.
3b6f9e5c 1775 */
cdd6c482 1776 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1777 return 0;
1778 /*
1779 * Otherwise, try to add it if all previous groups were able
1780 * to go on.
1781 */
1782 return can_add_hw;
1783}
1784
cdd6c482
IM
1785static void add_event_to_ctx(struct perf_event *event,
1786 struct perf_event_context *ctx)
53cfbf59 1787{
4158755d
SE
1788 u64 tstamp = perf_event_time(event);
1789
cdd6c482 1790 list_add_event(event, ctx);
8a49542c 1791 perf_group_attach(event);
4158755d
SE
1792 event->tstamp_enabled = tstamp;
1793 event->tstamp_running = tstamp;
1794 event->tstamp_stopped = tstamp;
53cfbf59
PM
1795}
1796
2c29ef0f
PZ
1797static void task_ctx_sched_out(struct perf_event_context *ctx);
1798static void
1799ctx_sched_in(struct perf_event_context *ctx,
1800 struct perf_cpu_context *cpuctx,
1801 enum event_type_t event_type,
1802 struct task_struct *task);
fe4b04fa 1803
dce5855b
PZ
1804static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1805 struct perf_event_context *ctx,
1806 struct task_struct *task)
1807{
1808 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1809 if (ctx)
1810 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1811 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1814}
1815
0793a61d 1816/*
cdd6c482 1817 * Cross CPU call to install and enable a performance event
682076ae
PZ
1818 *
1819 * Must be called with ctx->mutex held
0793a61d 1820 */
fe4b04fa 1821static int __perf_install_in_context(void *info)
0793a61d 1822{
cdd6c482
IM
1823 struct perf_event *event = info;
1824 struct perf_event_context *ctx = event->ctx;
108b02cf 1825 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1826 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1827 struct task_struct *task = current;
1828
b58f6b0d 1829 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1830 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1831
1832 /*
2c29ef0f 1833 * If there was an active task_ctx schedule it out.
0793a61d 1834 */
b58f6b0d 1835 if (task_ctx)
2c29ef0f 1836 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1837
1838 /*
1839 * If the context we're installing events in is not the
1840 * active task_ctx, flip them.
1841 */
1842 if (ctx->task && task_ctx != ctx) {
1843 if (task_ctx)
1844 raw_spin_unlock(&task_ctx->lock);
1845 raw_spin_lock(&ctx->lock);
1846 task_ctx = ctx;
1847 }
1848
1849 if (task_ctx) {
1850 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1851 task = task_ctx->task;
1852 }
b58f6b0d 1853
2c29ef0f 1854 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1855
4af4998b 1856 update_context_time(ctx);
e5d1367f
SE
1857 /*
1858 * update cgrp time only if current cgrp
1859 * matches event->cgrp. Must be done before
1860 * calling add_event_to_ctx()
1861 */
1862 update_cgrp_time_from_event(event);
0793a61d 1863
cdd6c482 1864 add_event_to_ctx(event, ctx);
0793a61d 1865
d859e29f 1866 /*
2c29ef0f 1867 * Schedule everything back in
d859e29f 1868 */
dce5855b 1869 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1870
1871 perf_pmu_enable(cpuctx->ctx.pmu);
1872 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1873
1874 return 0;
0793a61d
TG
1875}
1876
1877/*
cdd6c482 1878 * Attach a performance event to a context
0793a61d 1879 *
cdd6c482
IM
1880 * First we add the event to the list with the hardware enable bit
1881 * in event->hw_config cleared.
0793a61d 1882 *
cdd6c482 1883 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1884 * call to enable it in the task context. The task might have been
1885 * scheduled away, but we check this in the smp call again.
1886 */
1887static void
cdd6c482
IM
1888perf_install_in_context(struct perf_event_context *ctx,
1889 struct perf_event *event,
0793a61d
TG
1890 int cpu)
1891{
1892 struct task_struct *task = ctx->task;
1893
fe4b04fa
PZ
1894 lockdep_assert_held(&ctx->mutex);
1895
c3f00c70 1896 event->ctx = ctx;
0cda4c02
YZ
1897 if (event->cpu != -1)
1898 event->cpu = cpu;
c3f00c70 1899
0793a61d
TG
1900 if (!task) {
1901 /*
cdd6c482 1902 * Per cpu events are installed via an smp call and
af901ca1 1903 * the install is always successful.
0793a61d 1904 */
fe4b04fa 1905 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1906 return;
1907 }
1908
0793a61d 1909retry:
fe4b04fa
PZ
1910 if (!task_function_call(task, __perf_install_in_context, event))
1911 return;
0793a61d 1912
e625cce1 1913 raw_spin_lock_irq(&ctx->lock);
0793a61d 1914 /*
fe4b04fa
PZ
1915 * If we failed to find a running task, but find the context active now
1916 * that we've acquired the ctx->lock, retry.
0793a61d 1917 */
fe4b04fa 1918 if (ctx->is_active) {
e625cce1 1919 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1920 goto retry;
1921 }
1922
1923 /*
fe4b04fa
PZ
1924 * Since the task isn't running, its safe to add the event, us holding
1925 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1926 */
fe4b04fa 1927 add_event_to_ctx(event, ctx);
e625cce1 1928 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1929}
1930
fa289bec 1931/*
cdd6c482 1932 * Put a event into inactive state and update time fields.
fa289bec
PM
1933 * Enabling the leader of a group effectively enables all
1934 * the group members that aren't explicitly disabled, so we
1935 * have to update their ->tstamp_enabled also.
1936 * Note: this works for group members as well as group leaders
1937 * since the non-leader members' sibling_lists will be empty.
1938 */
1d9b482e 1939static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1940{
cdd6c482 1941 struct perf_event *sub;
4158755d 1942 u64 tstamp = perf_event_time(event);
fa289bec 1943
cdd6c482 1944 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1945 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1946 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1947 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1948 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1949 }
fa289bec
PM
1950}
1951
d859e29f 1952/*
cdd6c482 1953 * Cross CPU call to enable a performance event
d859e29f 1954 */
fe4b04fa 1955static int __perf_event_enable(void *info)
04289bb9 1956{
cdd6c482 1957 struct perf_event *event = info;
cdd6c482
IM
1958 struct perf_event_context *ctx = event->ctx;
1959 struct perf_event *leader = event->group_leader;
108b02cf 1960 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1961 int err;
04289bb9 1962
06f41796
JO
1963 /*
1964 * There's a time window between 'ctx->is_active' check
1965 * in perf_event_enable function and this place having:
1966 * - IRQs on
1967 * - ctx->lock unlocked
1968 *
1969 * where the task could be killed and 'ctx' deactivated
1970 * by perf_event_exit_task.
1971 */
1972 if (!ctx->is_active)
fe4b04fa 1973 return -EINVAL;
3cbed429 1974
e625cce1 1975 raw_spin_lock(&ctx->lock);
4af4998b 1976 update_context_time(ctx);
d859e29f 1977
cdd6c482 1978 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1979 goto unlock;
e5d1367f
SE
1980
1981 /*
1982 * set current task's cgroup time reference point
1983 */
3f7cce3c 1984 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1985
1d9b482e 1986 __perf_event_mark_enabled(event);
04289bb9 1987
e5d1367f
SE
1988 if (!event_filter_match(event)) {
1989 if (is_cgroup_event(event))
1990 perf_cgroup_defer_enabled(event);
f4c4176f 1991 goto unlock;
e5d1367f 1992 }
f4c4176f 1993
04289bb9 1994 /*
cdd6c482 1995 * If the event is in a group and isn't the group leader,
d859e29f 1996 * then don't put it on unless the group is on.
04289bb9 1997 */
cdd6c482 1998 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1999 goto unlock;
3b6f9e5c 2000
cdd6c482 2001 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2002 err = -EEXIST;
e758a33d 2003 } else {
cdd6c482 2004 if (event == leader)
6e37738a 2005 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2006 else
6e37738a 2007 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2008 }
d859e29f
PM
2009
2010 if (err) {
2011 /*
cdd6c482 2012 * If this event can't go on and it's part of a
d859e29f
PM
2013 * group, then the whole group has to come off.
2014 */
9e630205 2015 if (leader != event) {
d859e29f 2016 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2017 perf_cpu_hrtimer_restart(cpuctx);
2018 }
0d48696f 2019 if (leader->attr.pinned) {
53cfbf59 2020 update_group_times(leader);
cdd6c482 2021 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2022 }
d859e29f
PM
2023 }
2024
9ed6060d 2025unlock:
e625cce1 2026 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2027
2028 return 0;
d859e29f
PM
2029}
2030
2031/*
cdd6c482 2032 * Enable a event.
c93f7669 2033 *
cdd6c482
IM
2034 * If event->ctx is a cloned context, callers must make sure that
2035 * every task struct that event->ctx->task could possibly point to
c93f7669 2036 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2037 * perf_event_for_each_child or perf_event_for_each as described
2038 * for perf_event_disable.
d859e29f 2039 */
44234adc 2040void perf_event_enable(struct perf_event *event)
d859e29f 2041{
cdd6c482 2042 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2043 struct task_struct *task = ctx->task;
2044
2045 if (!task) {
2046 /*
cdd6c482 2047 * Enable the event on the cpu that it's on
d859e29f 2048 */
fe4b04fa 2049 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2050 return;
2051 }
2052
e625cce1 2053 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2054 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2055 goto out;
2056
2057 /*
cdd6c482
IM
2058 * If the event is in error state, clear that first.
2059 * That way, if we see the event in error state below, we
d859e29f
PM
2060 * know that it has gone back into error state, as distinct
2061 * from the task having been scheduled away before the
2062 * cross-call arrived.
2063 */
cdd6c482
IM
2064 if (event->state == PERF_EVENT_STATE_ERROR)
2065 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2066
9ed6060d 2067retry:
fe4b04fa 2068 if (!ctx->is_active) {
1d9b482e 2069 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2070 goto out;
2071 }
2072
e625cce1 2073 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2074
2075 if (!task_function_call(task, __perf_event_enable, event))
2076 return;
d859e29f 2077
e625cce1 2078 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2079
2080 /*
cdd6c482 2081 * If the context is active and the event is still off,
d859e29f
PM
2082 * we need to retry the cross-call.
2083 */
fe4b04fa
PZ
2084 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2085 /*
2086 * task could have been flipped by a concurrent
2087 * perf_event_context_sched_out()
2088 */
2089 task = ctx->task;
d859e29f 2090 goto retry;
fe4b04fa 2091 }
fa289bec 2092
9ed6060d 2093out:
e625cce1 2094 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2095}
dcfce4a0 2096EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2097
26ca5c11 2098int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2099{
2023b359 2100 /*
cdd6c482 2101 * not supported on inherited events
2023b359 2102 */
2e939d1d 2103 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2104 return -EINVAL;
2105
cdd6c482
IM
2106 atomic_add(refresh, &event->event_limit);
2107 perf_event_enable(event);
2023b359
PZ
2108
2109 return 0;
79f14641 2110}
26ca5c11 2111EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2112
5b0311e1
FW
2113static void ctx_sched_out(struct perf_event_context *ctx,
2114 struct perf_cpu_context *cpuctx,
2115 enum event_type_t event_type)
235c7fc7 2116{
cdd6c482 2117 struct perf_event *event;
db24d33e 2118 int is_active = ctx->is_active;
235c7fc7 2119
db24d33e 2120 ctx->is_active &= ~event_type;
cdd6c482 2121 if (likely(!ctx->nr_events))
facc4307
PZ
2122 return;
2123
4af4998b 2124 update_context_time(ctx);
e5d1367f 2125 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2126 if (!ctx->nr_active)
facc4307 2127 return;
5b0311e1 2128
075e0b00 2129 perf_pmu_disable(ctx->pmu);
db24d33e 2130 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2131 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2132 group_sched_out(event, cpuctx, ctx);
9ed6060d 2133 }
889ff015 2134
db24d33e 2135 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2136 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2137 group_sched_out(event, cpuctx, ctx);
9ed6060d 2138 }
1b9a644f 2139 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2140}
2141
564c2b21
PM
2142/*
2143 * Test whether two contexts are equivalent, i.e. whether they
2144 * have both been cloned from the same version of the same context
cdd6c482
IM
2145 * and they both have the same number of enabled events.
2146 * If the number of enabled events is the same, then the set
2147 * of enabled events should be the same, because these are both
2148 * inherited contexts, therefore we can't access individual events
564c2b21 2149 * in them directly with an fd; we can only enable/disable all
cdd6c482 2150 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2151 * via ioctl, which will have the same effect on both contexts.
2152 */
cdd6c482
IM
2153static int context_equiv(struct perf_event_context *ctx1,
2154 struct perf_event_context *ctx2)
564c2b21
PM
2155{
2156 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2157 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2158 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2159}
2160
cdd6c482
IM
2161static void __perf_event_sync_stat(struct perf_event *event,
2162 struct perf_event *next_event)
bfbd3381
PZ
2163{
2164 u64 value;
2165
cdd6c482 2166 if (!event->attr.inherit_stat)
bfbd3381
PZ
2167 return;
2168
2169 /*
cdd6c482 2170 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2171 * because we're in the middle of a context switch and have IRQs
2172 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2173 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2174 * don't need to use it.
2175 */
cdd6c482
IM
2176 switch (event->state) {
2177 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2178 event->pmu->read(event);
2179 /* fall-through */
bfbd3381 2180
cdd6c482
IM
2181 case PERF_EVENT_STATE_INACTIVE:
2182 update_event_times(event);
bfbd3381
PZ
2183 break;
2184
2185 default:
2186 break;
2187 }
2188
2189 /*
cdd6c482 2190 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2191 * values when we flip the contexts.
2192 */
e7850595
PZ
2193 value = local64_read(&next_event->count);
2194 value = local64_xchg(&event->count, value);
2195 local64_set(&next_event->count, value);
bfbd3381 2196
cdd6c482
IM
2197 swap(event->total_time_enabled, next_event->total_time_enabled);
2198 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2199
bfbd3381 2200 /*
19d2e755 2201 * Since we swizzled the values, update the user visible data too.
bfbd3381 2202 */
cdd6c482
IM
2203 perf_event_update_userpage(event);
2204 perf_event_update_userpage(next_event);
bfbd3381
PZ
2205}
2206
2207#define list_next_entry(pos, member) \
2208 list_entry(pos->member.next, typeof(*pos), member)
2209
cdd6c482
IM
2210static void perf_event_sync_stat(struct perf_event_context *ctx,
2211 struct perf_event_context *next_ctx)
bfbd3381 2212{
cdd6c482 2213 struct perf_event *event, *next_event;
bfbd3381
PZ
2214
2215 if (!ctx->nr_stat)
2216 return;
2217
02ffdbc8
PZ
2218 update_context_time(ctx);
2219
cdd6c482
IM
2220 event = list_first_entry(&ctx->event_list,
2221 struct perf_event, event_entry);
bfbd3381 2222
cdd6c482
IM
2223 next_event = list_first_entry(&next_ctx->event_list,
2224 struct perf_event, event_entry);
bfbd3381 2225
cdd6c482
IM
2226 while (&event->event_entry != &ctx->event_list &&
2227 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2228
cdd6c482 2229 __perf_event_sync_stat(event, next_event);
bfbd3381 2230
cdd6c482
IM
2231 event = list_next_entry(event, event_entry);
2232 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2233 }
2234}
2235
fe4b04fa
PZ
2236static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2237 struct task_struct *next)
0793a61d 2238{
8dc85d54 2239 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2240 struct perf_event_context *next_ctx;
2241 struct perf_event_context *parent;
108b02cf 2242 struct perf_cpu_context *cpuctx;
c93f7669 2243 int do_switch = 1;
0793a61d 2244
108b02cf
PZ
2245 if (likely(!ctx))
2246 return;
10989fb2 2247
108b02cf
PZ
2248 cpuctx = __get_cpu_context(ctx);
2249 if (!cpuctx->task_ctx)
0793a61d
TG
2250 return;
2251
c93f7669
PM
2252 rcu_read_lock();
2253 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2254 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2255 if (parent && next_ctx &&
2256 rcu_dereference(next_ctx->parent_ctx) == parent) {
2257 /*
2258 * Looks like the two contexts are clones, so we might be
2259 * able to optimize the context switch. We lock both
2260 * contexts and check that they are clones under the
2261 * lock (including re-checking that neither has been
2262 * uncloned in the meantime). It doesn't matter which
2263 * order we take the locks because no other cpu could
2264 * be trying to lock both of these tasks.
2265 */
e625cce1
TG
2266 raw_spin_lock(&ctx->lock);
2267 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2268 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2269 /*
2270 * XXX do we need a memory barrier of sorts
cdd6c482 2271 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2272 */
8dc85d54
PZ
2273 task->perf_event_ctxp[ctxn] = next_ctx;
2274 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2275 ctx->task = next;
2276 next_ctx->task = task;
2277 do_switch = 0;
bfbd3381 2278
cdd6c482 2279 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2280 }
e625cce1
TG
2281 raw_spin_unlock(&next_ctx->lock);
2282 raw_spin_unlock(&ctx->lock);
564c2b21 2283 }
c93f7669 2284 rcu_read_unlock();
564c2b21 2285
c93f7669 2286 if (do_switch) {
facc4307 2287 raw_spin_lock(&ctx->lock);
5b0311e1 2288 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2289 cpuctx->task_ctx = NULL;
facc4307 2290 raw_spin_unlock(&ctx->lock);
c93f7669 2291 }
0793a61d
TG
2292}
2293
8dc85d54
PZ
2294#define for_each_task_context_nr(ctxn) \
2295 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2296
2297/*
2298 * Called from scheduler to remove the events of the current task,
2299 * with interrupts disabled.
2300 *
2301 * We stop each event and update the event value in event->count.
2302 *
2303 * This does not protect us against NMI, but disable()
2304 * sets the disabled bit in the control field of event _before_
2305 * accessing the event control register. If a NMI hits, then it will
2306 * not restart the event.
2307 */
ab0cce56
JO
2308void __perf_event_task_sched_out(struct task_struct *task,
2309 struct task_struct *next)
8dc85d54
PZ
2310{
2311 int ctxn;
2312
8dc85d54
PZ
2313 for_each_task_context_nr(ctxn)
2314 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2315
2316 /*
2317 * if cgroup events exist on this CPU, then we need
2318 * to check if we have to switch out PMU state.
2319 * cgroup event are system-wide mode only
2320 */
2321 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2322 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2323}
2324
04dc2dbb 2325static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2326{
108b02cf 2327 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2328
a63eaf34
PM
2329 if (!cpuctx->task_ctx)
2330 return;
012b84da
IM
2331
2332 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2333 return;
2334
04dc2dbb 2335 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2336 cpuctx->task_ctx = NULL;
2337}
2338
5b0311e1
FW
2339/*
2340 * Called with IRQs disabled
2341 */
2342static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2343 enum event_type_t event_type)
2344{
2345 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2346}
2347
235c7fc7 2348static void
5b0311e1 2349ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2350 struct perf_cpu_context *cpuctx)
0793a61d 2351{
cdd6c482 2352 struct perf_event *event;
0793a61d 2353
889ff015
FW
2354 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2355 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2356 continue;
5632ab12 2357 if (!event_filter_match(event))
3b6f9e5c
PM
2358 continue;
2359
e5d1367f
SE
2360 /* may need to reset tstamp_enabled */
2361 if (is_cgroup_event(event))
2362 perf_cgroup_mark_enabled(event, ctx);
2363
8c9ed8e1 2364 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2365 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2366
2367 /*
2368 * If this pinned group hasn't been scheduled,
2369 * put it in error state.
2370 */
cdd6c482
IM
2371 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2372 update_group_times(event);
2373 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2374 }
3b6f9e5c 2375 }
5b0311e1
FW
2376}
2377
2378static void
2379ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2380 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2381{
2382 struct perf_event *event;
2383 int can_add_hw = 1;
3b6f9e5c 2384
889ff015
FW
2385 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2386 /* Ignore events in OFF or ERROR state */
2387 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2388 continue;
04289bb9
IM
2389 /*
2390 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2391 * of events:
04289bb9 2392 */
5632ab12 2393 if (!event_filter_match(event))
0793a61d
TG
2394 continue;
2395
e5d1367f
SE
2396 /* may need to reset tstamp_enabled */
2397 if (is_cgroup_event(event))
2398 perf_cgroup_mark_enabled(event, ctx);
2399
9ed6060d 2400 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2401 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2402 can_add_hw = 0;
9ed6060d 2403 }
0793a61d 2404 }
5b0311e1
FW
2405}
2406
2407static void
2408ctx_sched_in(struct perf_event_context *ctx,
2409 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2410 enum event_type_t event_type,
2411 struct task_struct *task)
5b0311e1 2412{
e5d1367f 2413 u64 now;
db24d33e 2414 int is_active = ctx->is_active;
e5d1367f 2415
db24d33e 2416 ctx->is_active |= event_type;
5b0311e1 2417 if (likely(!ctx->nr_events))
facc4307 2418 return;
5b0311e1 2419
e5d1367f
SE
2420 now = perf_clock();
2421 ctx->timestamp = now;
3f7cce3c 2422 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2423 /*
2424 * First go through the list and put on any pinned groups
2425 * in order to give them the best chance of going on.
2426 */
db24d33e 2427 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2428 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2429
2430 /* Then walk through the lower prio flexible groups */
db24d33e 2431 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2432 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2433}
2434
329c0e01 2435static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2436 enum event_type_t event_type,
2437 struct task_struct *task)
329c0e01
FW
2438{
2439 struct perf_event_context *ctx = &cpuctx->ctx;
2440
e5d1367f 2441 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2442}
2443
e5d1367f
SE
2444static void perf_event_context_sched_in(struct perf_event_context *ctx,
2445 struct task_struct *task)
235c7fc7 2446{
108b02cf 2447 struct perf_cpu_context *cpuctx;
235c7fc7 2448
108b02cf 2449 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2450 if (cpuctx->task_ctx == ctx)
2451 return;
2452
facc4307 2453 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2454 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2455 /*
2456 * We want to keep the following priority order:
2457 * cpu pinned (that don't need to move), task pinned,
2458 * cpu flexible, task flexible.
2459 */
2460 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2461
1d5f003f
GN
2462 if (ctx->nr_events)
2463 cpuctx->task_ctx = ctx;
9b33fa6b 2464
86b47c25
GN
2465 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2466
facc4307
PZ
2467 perf_pmu_enable(ctx->pmu);
2468 perf_ctx_unlock(cpuctx, ctx);
2469
b5ab4cd5
PZ
2470 /*
2471 * Since these rotations are per-cpu, we need to ensure the
2472 * cpu-context we got scheduled on is actually rotating.
2473 */
108b02cf 2474 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2475}
2476
d010b332
SE
2477/*
2478 * When sampling the branck stack in system-wide, it may be necessary
2479 * to flush the stack on context switch. This happens when the branch
2480 * stack does not tag its entries with the pid of the current task.
2481 * Otherwise it becomes impossible to associate a branch entry with a
2482 * task. This ambiguity is more likely to appear when the branch stack
2483 * supports priv level filtering and the user sets it to monitor only
2484 * at the user level (which could be a useful measurement in system-wide
2485 * mode). In that case, the risk is high of having a branch stack with
2486 * branch from multiple tasks. Flushing may mean dropping the existing
2487 * entries or stashing them somewhere in the PMU specific code layer.
2488 *
2489 * This function provides the context switch callback to the lower code
2490 * layer. It is invoked ONLY when there is at least one system-wide context
2491 * with at least one active event using taken branch sampling.
2492 */
2493static void perf_branch_stack_sched_in(struct task_struct *prev,
2494 struct task_struct *task)
2495{
2496 struct perf_cpu_context *cpuctx;
2497 struct pmu *pmu;
2498 unsigned long flags;
2499
2500 /* no need to flush branch stack if not changing task */
2501 if (prev == task)
2502 return;
2503
2504 local_irq_save(flags);
2505
2506 rcu_read_lock();
2507
2508 list_for_each_entry_rcu(pmu, &pmus, entry) {
2509 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2510
2511 /*
2512 * check if the context has at least one
2513 * event using PERF_SAMPLE_BRANCH_STACK
2514 */
2515 if (cpuctx->ctx.nr_branch_stack > 0
2516 && pmu->flush_branch_stack) {
2517
2518 pmu = cpuctx->ctx.pmu;
2519
2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521
2522 perf_pmu_disable(pmu);
2523
2524 pmu->flush_branch_stack();
2525
2526 perf_pmu_enable(pmu);
2527
2528 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2529 }
2530 }
2531
2532 rcu_read_unlock();
2533
2534 local_irq_restore(flags);
2535}
2536
8dc85d54
PZ
2537/*
2538 * Called from scheduler to add the events of the current task
2539 * with interrupts disabled.
2540 *
2541 * We restore the event value and then enable it.
2542 *
2543 * This does not protect us against NMI, but enable()
2544 * sets the enabled bit in the control field of event _before_
2545 * accessing the event control register. If a NMI hits, then it will
2546 * keep the event running.
2547 */
ab0cce56
JO
2548void __perf_event_task_sched_in(struct task_struct *prev,
2549 struct task_struct *task)
8dc85d54
PZ
2550{
2551 struct perf_event_context *ctx;
2552 int ctxn;
2553
2554 for_each_task_context_nr(ctxn) {
2555 ctx = task->perf_event_ctxp[ctxn];
2556 if (likely(!ctx))
2557 continue;
2558
e5d1367f 2559 perf_event_context_sched_in(ctx, task);
8dc85d54 2560 }
e5d1367f
SE
2561 /*
2562 * if cgroup events exist on this CPU, then we need
2563 * to check if we have to switch in PMU state.
2564 * cgroup event are system-wide mode only
2565 */
2566 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2567 perf_cgroup_sched_in(prev, task);
d010b332
SE
2568
2569 /* check for system-wide branch_stack events */
2570 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2571 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2572}
2573
abd50713
PZ
2574static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2575{
2576 u64 frequency = event->attr.sample_freq;
2577 u64 sec = NSEC_PER_SEC;
2578 u64 divisor, dividend;
2579
2580 int count_fls, nsec_fls, frequency_fls, sec_fls;
2581
2582 count_fls = fls64(count);
2583 nsec_fls = fls64(nsec);
2584 frequency_fls = fls64(frequency);
2585 sec_fls = 30;
2586
2587 /*
2588 * We got @count in @nsec, with a target of sample_freq HZ
2589 * the target period becomes:
2590 *
2591 * @count * 10^9
2592 * period = -------------------
2593 * @nsec * sample_freq
2594 *
2595 */
2596
2597 /*
2598 * Reduce accuracy by one bit such that @a and @b converge
2599 * to a similar magnitude.
2600 */
fe4b04fa 2601#define REDUCE_FLS(a, b) \
abd50713
PZ
2602do { \
2603 if (a##_fls > b##_fls) { \
2604 a >>= 1; \
2605 a##_fls--; \
2606 } else { \
2607 b >>= 1; \
2608 b##_fls--; \
2609 } \
2610} while (0)
2611
2612 /*
2613 * Reduce accuracy until either term fits in a u64, then proceed with
2614 * the other, so that finally we can do a u64/u64 division.
2615 */
2616 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2617 REDUCE_FLS(nsec, frequency);
2618 REDUCE_FLS(sec, count);
2619 }
2620
2621 if (count_fls + sec_fls > 64) {
2622 divisor = nsec * frequency;
2623
2624 while (count_fls + sec_fls > 64) {
2625 REDUCE_FLS(count, sec);
2626 divisor >>= 1;
2627 }
2628
2629 dividend = count * sec;
2630 } else {
2631 dividend = count * sec;
2632
2633 while (nsec_fls + frequency_fls > 64) {
2634 REDUCE_FLS(nsec, frequency);
2635 dividend >>= 1;
2636 }
2637
2638 divisor = nsec * frequency;
2639 }
2640
f6ab91ad
PZ
2641 if (!divisor)
2642 return dividend;
2643
abd50713
PZ
2644 return div64_u64(dividend, divisor);
2645}
2646
e050e3f0
SE
2647static DEFINE_PER_CPU(int, perf_throttled_count);
2648static DEFINE_PER_CPU(u64, perf_throttled_seq);
2649
f39d47ff 2650static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2651{
cdd6c482 2652 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2653 s64 period, sample_period;
bd2b5b12
PZ
2654 s64 delta;
2655
abd50713 2656 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2657
2658 delta = (s64)(period - hwc->sample_period);
2659 delta = (delta + 7) / 8; /* low pass filter */
2660
2661 sample_period = hwc->sample_period + delta;
2662
2663 if (!sample_period)
2664 sample_period = 1;
2665
bd2b5b12 2666 hwc->sample_period = sample_period;
abd50713 2667
e7850595 2668 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2669 if (disable)
2670 event->pmu->stop(event, PERF_EF_UPDATE);
2671
e7850595 2672 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2673
2674 if (disable)
2675 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2676 }
bd2b5b12
PZ
2677}
2678
e050e3f0
SE
2679/*
2680 * combine freq adjustment with unthrottling to avoid two passes over the
2681 * events. At the same time, make sure, having freq events does not change
2682 * the rate of unthrottling as that would introduce bias.
2683 */
2684static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2685 int needs_unthr)
60db5e09 2686{
cdd6c482
IM
2687 struct perf_event *event;
2688 struct hw_perf_event *hwc;
e050e3f0 2689 u64 now, period = TICK_NSEC;
abd50713 2690 s64 delta;
60db5e09 2691
e050e3f0
SE
2692 /*
2693 * only need to iterate over all events iff:
2694 * - context have events in frequency mode (needs freq adjust)
2695 * - there are events to unthrottle on this cpu
2696 */
2697 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2698 return;
2699
e050e3f0 2700 raw_spin_lock(&ctx->lock);
f39d47ff 2701 perf_pmu_disable(ctx->pmu);
e050e3f0 2702
03541f8b 2703 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2704 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2705 continue;
2706
5632ab12 2707 if (!event_filter_match(event))
5d27c23d
PZ
2708 continue;
2709
cdd6c482 2710 hwc = &event->hw;
6a24ed6c 2711
e050e3f0
SE
2712 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2713 hwc->interrupts = 0;
cdd6c482 2714 perf_log_throttle(event, 1);
a4eaf7f1 2715 event->pmu->start(event, 0);
a78ac325
PZ
2716 }
2717
cdd6c482 2718 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2719 continue;
2720
e050e3f0
SE
2721 /*
2722 * stop the event and update event->count
2723 */
2724 event->pmu->stop(event, PERF_EF_UPDATE);
2725
e7850595 2726 now = local64_read(&event->count);
abd50713
PZ
2727 delta = now - hwc->freq_count_stamp;
2728 hwc->freq_count_stamp = now;
60db5e09 2729
e050e3f0
SE
2730 /*
2731 * restart the event
2732 * reload only if value has changed
f39d47ff
SE
2733 * we have stopped the event so tell that
2734 * to perf_adjust_period() to avoid stopping it
2735 * twice.
e050e3f0 2736 */
abd50713 2737 if (delta > 0)
f39d47ff 2738 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2739
2740 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2741 }
e050e3f0 2742
f39d47ff 2743 perf_pmu_enable(ctx->pmu);
e050e3f0 2744 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2745}
2746
235c7fc7 2747/*
cdd6c482 2748 * Round-robin a context's events:
235c7fc7 2749 */
cdd6c482 2750static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2751{
dddd3379
TG
2752 /*
2753 * Rotate the first entry last of non-pinned groups. Rotation might be
2754 * disabled by the inheritance code.
2755 */
2756 if (!ctx->rotate_disable)
2757 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2758}
2759
b5ab4cd5 2760/*
e9d2b064
PZ
2761 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2762 * because they're strictly cpu affine and rotate_start is called with IRQs
2763 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2764 */
9e630205 2765static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2766{
8dc85d54 2767 struct perf_event_context *ctx = NULL;
e050e3f0 2768 int rotate = 0, remove = 1;
7fc23a53 2769
b5ab4cd5 2770 if (cpuctx->ctx.nr_events) {
e9d2b064 2771 remove = 0;
b5ab4cd5
PZ
2772 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2773 rotate = 1;
2774 }
235c7fc7 2775
8dc85d54 2776 ctx = cpuctx->task_ctx;
b5ab4cd5 2777 if (ctx && ctx->nr_events) {
e9d2b064 2778 remove = 0;
b5ab4cd5
PZ
2779 if (ctx->nr_events != ctx->nr_active)
2780 rotate = 1;
2781 }
9717e6cd 2782
e050e3f0 2783 if (!rotate)
0f5a2601
PZ
2784 goto done;
2785
facc4307 2786 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2787 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2788
e050e3f0
SE
2789 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790 if (ctx)
2791 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2792
e050e3f0
SE
2793 rotate_ctx(&cpuctx->ctx);
2794 if (ctx)
2795 rotate_ctx(ctx);
235c7fc7 2796
e050e3f0 2797 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2798
0f5a2601
PZ
2799 perf_pmu_enable(cpuctx->ctx.pmu);
2800 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2801done:
e9d2b064
PZ
2802 if (remove)
2803 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2804
2805 return rotate;
e9d2b064
PZ
2806}
2807
026249ef
FW
2808#ifdef CONFIG_NO_HZ_FULL
2809bool perf_event_can_stop_tick(void)
2810{
948b26b6 2811 if (atomic_read(&nr_freq_events) ||
d84153d6 2812 __this_cpu_read(perf_throttled_count))
026249ef 2813 return false;
d84153d6
FW
2814 else
2815 return true;
026249ef
FW
2816}
2817#endif
2818
e9d2b064
PZ
2819void perf_event_task_tick(void)
2820{
2821 struct list_head *head = &__get_cpu_var(rotation_list);
2822 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2823 struct perf_event_context *ctx;
2824 int throttled;
b5ab4cd5 2825
e9d2b064
PZ
2826 WARN_ON(!irqs_disabled());
2827
e050e3f0
SE
2828 __this_cpu_inc(perf_throttled_seq);
2829 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2830
e9d2b064 2831 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2832 ctx = &cpuctx->ctx;
2833 perf_adjust_freq_unthr_context(ctx, throttled);
2834
2835 ctx = cpuctx->task_ctx;
2836 if (ctx)
2837 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2838 }
0793a61d
TG
2839}
2840
889ff015
FW
2841static int event_enable_on_exec(struct perf_event *event,
2842 struct perf_event_context *ctx)
2843{
2844 if (!event->attr.enable_on_exec)
2845 return 0;
2846
2847 event->attr.enable_on_exec = 0;
2848 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2849 return 0;
2850
1d9b482e 2851 __perf_event_mark_enabled(event);
889ff015
FW
2852
2853 return 1;
2854}
2855
57e7986e 2856/*
cdd6c482 2857 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2858 * This expects task == current.
2859 */
8dc85d54 2860static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2861{
cdd6c482 2862 struct perf_event *event;
57e7986e
PM
2863 unsigned long flags;
2864 int enabled = 0;
889ff015 2865 int ret;
57e7986e
PM
2866
2867 local_irq_save(flags);
cdd6c482 2868 if (!ctx || !ctx->nr_events)
57e7986e
PM
2869 goto out;
2870
e566b76e
SE
2871 /*
2872 * We must ctxsw out cgroup events to avoid conflict
2873 * when invoking perf_task_event_sched_in() later on
2874 * in this function. Otherwise we end up trying to
2875 * ctxswin cgroup events which are already scheduled
2876 * in.
2877 */
a8d757ef 2878 perf_cgroup_sched_out(current, NULL);
57e7986e 2879
e625cce1 2880 raw_spin_lock(&ctx->lock);
04dc2dbb 2881 task_ctx_sched_out(ctx);
57e7986e 2882
b79387ef 2883 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2884 ret = event_enable_on_exec(event, ctx);
2885 if (ret)
2886 enabled = 1;
57e7986e
PM
2887 }
2888
2889 /*
cdd6c482 2890 * Unclone this context if we enabled any event.
57e7986e 2891 */
71a851b4
PZ
2892 if (enabled)
2893 unclone_ctx(ctx);
57e7986e 2894
e625cce1 2895 raw_spin_unlock(&ctx->lock);
57e7986e 2896
e566b76e
SE
2897 /*
2898 * Also calls ctxswin for cgroup events, if any:
2899 */
e5d1367f 2900 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2901out:
57e7986e
PM
2902 local_irq_restore(flags);
2903}
2904
0793a61d 2905/*
cdd6c482 2906 * Cross CPU call to read the hardware event
0793a61d 2907 */
cdd6c482 2908static void __perf_event_read(void *info)
0793a61d 2909{
cdd6c482
IM
2910 struct perf_event *event = info;
2911 struct perf_event_context *ctx = event->ctx;
108b02cf 2912 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2913
e1ac3614
PM
2914 /*
2915 * If this is a task context, we need to check whether it is
2916 * the current task context of this cpu. If not it has been
2917 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2918 * event->count would have been updated to a recent sample
2919 * when the event was scheduled out.
e1ac3614
PM
2920 */
2921 if (ctx->task && cpuctx->task_ctx != ctx)
2922 return;
2923
e625cce1 2924 raw_spin_lock(&ctx->lock);
e5d1367f 2925 if (ctx->is_active) {
542e72fc 2926 update_context_time(ctx);
e5d1367f
SE
2927 update_cgrp_time_from_event(event);
2928 }
cdd6c482 2929 update_event_times(event);
542e72fc
PZ
2930 if (event->state == PERF_EVENT_STATE_ACTIVE)
2931 event->pmu->read(event);
e625cce1 2932 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2933}
2934
b5e58793
PZ
2935static inline u64 perf_event_count(struct perf_event *event)
2936{
e7850595 2937 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2938}
2939
cdd6c482 2940static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2941{
2942 /*
cdd6c482
IM
2943 * If event is enabled and currently active on a CPU, update the
2944 * value in the event structure:
0793a61d 2945 */
cdd6c482
IM
2946 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2947 smp_call_function_single(event->oncpu,
2948 __perf_event_read, event, 1);
2949 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2950 struct perf_event_context *ctx = event->ctx;
2951 unsigned long flags;
2952
e625cce1 2953 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2954 /*
2955 * may read while context is not active
2956 * (e.g., thread is blocked), in that case
2957 * we cannot update context time
2958 */
e5d1367f 2959 if (ctx->is_active) {
c530ccd9 2960 update_context_time(ctx);
e5d1367f
SE
2961 update_cgrp_time_from_event(event);
2962 }
cdd6c482 2963 update_event_times(event);
e625cce1 2964 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2965 }
2966
b5e58793 2967 return perf_event_count(event);
0793a61d
TG
2968}
2969
a63eaf34 2970/*
cdd6c482 2971 * Initialize the perf_event context in a task_struct:
a63eaf34 2972 */
eb184479 2973static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2974{
e625cce1 2975 raw_spin_lock_init(&ctx->lock);
a63eaf34 2976 mutex_init(&ctx->mutex);
889ff015
FW
2977 INIT_LIST_HEAD(&ctx->pinned_groups);
2978 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2979 INIT_LIST_HEAD(&ctx->event_list);
2980 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2981}
2982
2983static struct perf_event_context *
2984alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2985{
2986 struct perf_event_context *ctx;
2987
2988 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2989 if (!ctx)
2990 return NULL;
2991
2992 __perf_event_init_context(ctx);
2993 if (task) {
2994 ctx->task = task;
2995 get_task_struct(task);
0793a61d 2996 }
eb184479
PZ
2997 ctx->pmu = pmu;
2998
2999 return ctx;
a63eaf34
PM
3000}
3001
2ebd4ffb
MH
3002static struct task_struct *
3003find_lively_task_by_vpid(pid_t vpid)
3004{
3005 struct task_struct *task;
3006 int err;
0793a61d
TG
3007
3008 rcu_read_lock();
2ebd4ffb 3009 if (!vpid)
0793a61d
TG
3010 task = current;
3011 else
2ebd4ffb 3012 task = find_task_by_vpid(vpid);
0793a61d
TG
3013 if (task)
3014 get_task_struct(task);
3015 rcu_read_unlock();
3016
3017 if (!task)
3018 return ERR_PTR(-ESRCH);
3019
0793a61d 3020 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3021 err = -EACCES;
3022 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3023 goto errout;
3024
2ebd4ffb
MH
3025 return task;
3026errout:
3027 put_task_struct(task);
3028 return ERR_PTR(err);
3029
3030}
3031
fe4b04fa
PZ
3032/*
3033 * Returns a matching context with refcount and pincount.
3034 */
108b02cf 3035static struct perf_event_context *
38a81da2 3036find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3037{
cdd6c482 3038 struct perf_event_context *ctx;
22a4f650 3039 struct perf_cpu_context *cpuctx;
25346b93 3040 unsigned long flags;
8dc85d54 3041 int ctxn, err;
0793a61d 3042
22a4ec72 3043 if (!task) {
cdd6c482 3044 /* Must be root to operate on a CPU event: */
0764771d 3045 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3046 return ERR_PTR(-EACCES);
3047
0793a61d 3048 /*
cdd6c482 3049 * We could be clever and allow to attach a event to an
0793a61d
TG
3050 * offline CPU and activate it when the CPU comes up, but
3051 * that's for later.
3052 */
f6325e30 3053 if (!cpu_online(cpu))
0793a61d
TG
3054 return ERR_PTR(-ENODEV);
3055
108b02cf 3056 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3057 ctx = &cpuctx->ctx;
c93f7669 3058 get_ctx(ctx);
fe4b04fa 3059 ++ctx->pin_count;
0793a61d 3060
0793a61d
TG
3061 return ctx;
3062 }
3063
8dc85d54
PZ
3064 err = -EINVAL;
3065 ctxn = pmu->task_ctx_nr;
3066 if (ctxn < 0)
3067 goto errout;
3068
9ed6060d 3069retry:
8dc85d54 3070 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3071 if (ctx) {
71a851b4 3072 unclone_ctx(ctx);
fe4b04fa 3073 ++ctx->pin_count;
e625cce1 3074 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3075 } else {
eb184479 3076 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3077 err = -ENOMEM;
3078 if (!ctx)
3079 goto errout;
eb184479 3080
dbe08d82
ON
3081 err = 0;
3082 mutex_lock(&task->perf_event_mutex);
3083 /*
3084 * If it has already passed perf_event_exit_task().
3085 * we must see PF_EXITING, it takes this mutex too.
3086 */
3087 if (task->flags & PF_EXITING)
3088 err = -ESRCH;
3089 else if (task->perf_event_ctxp[ctxn])
3090 err = -EAGAIN;
fe4b04fa 3091 else {
9137fb28 3092 get_ctx(ctx);
fe4b04fa 3093 ++ctx->pin_count;
dbe08d82 3094 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3095 }
dbe08d82
ON
3096 mutex_unlock(&task->perf_event_mutex);
3097
3098 if (unlikely(err)) {
9137fb28 3099 put_ctx(ctx);
dbe08d82
ON
3100
3101 if (err == -EAGAIN)
3102 goto retry;
3103 goto errout;
a63eaf34
PM
3104 }
3105 }
3106
0793a61d 3107 return ctx;
c93f7669 3108
9ed6060d 3109errout:
c93f7669 3110 return ERR_PTR(err);
0793a61d
TG
3111}
3112
6fb2915d
LZ
3113static void perf_event_free_filter(struct perf_event *event);
3114
cdd6c482 3115static void free_event_rcu(struct rcu_head *head)
592903cd 3116{
cdd6c482 3117 struct perf_event *event;
592903cd 3118
cdd6c482
IM
3119 event = container_of(head, struct perf_event, rcu_head);
3120 if (event->ns)
3121 put_pid_ns(event->ns);
6fb2915d 3122 perf_event_free_filter(event);
cdd6c482 3123 kfree(event);
592903cd
PZ
3124}
3125
76369139 3126static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3127static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3128
4beb31f3
FW
3129static void unaccount_event_cpu(struct perf_event *event, int cpu)
3130{
3131 if (event->parent)
3132 return;
3133
3134 if (has_branch_stack(event)) {
3135 if (!(event->attach_state & PERF_ATTACH_TASK))
3136 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3137 }
3138 if (is_cgroup_event(event))
3139 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3140}
3141
3142static void unaccount_event(struct perf_event *event)
3143{
3144 if (event->parent)
3145 return;
3146
3147 if (event->attach_state & PERF_ATTACH_TASK)
3148 static_key_slow_dec_deferred(&perf_sched_events);
3149 if (event->attr.mmap || event->attr.mmap_data)
3150 atomic_dec(&nr_mmap_events);
3151 if (event->attr.comm)
3152 atomic_dec(&nr_comm_events);
3153 if (event->attr.task)
3154 atomic_dec(&nr_task_events);
948b26b6
FW
3155 if (event->attr.freq)
3156 atomic_dec(&nr_freq_events);
4beb31f3
FW
3157 if (is_cgroup_event(event))
3158 static_key_slow_dec_deferred(&perf_sched_events);
3159 if (has_branch_stack(event))
3160 static_key_slow_dec_deferred(&perf_sched_events);
3161
3162 unaccount_event_cpu(event, event->cpu);
3163}
3164
766d6c07
FW
3165static void __free_event(struct perf_event *event)
3166{
3167 if (!event->parent) {
3168 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3169 put_callchain_buffers();
3170 }
3171
3172 if (event->destroy)
3173 event->destroy(event);
3174
3175 if (event->ctx)
3176 put_ctx(event->ctx);
3177
3178 call_rcu(&event->rcu_head, free_event_rcu);
3179}
cdd6c482 3180static void free_event(struct perf_event *event)
f1600952 3181{
e360adbe 3182 irq_work_sync(&event->pending);
925d519a 3183
4beb31f3 3184 unaccount_event(event);
9ee318a7 3185
76369139 3186 if (event->rb) {
9bb5d40c
PZ
3187 struct ring_buffer *rb;
3188
3189 /*
3190 * Can happen when we close an event with re-directed output.
3191 *
3192 * Since we have a 0 refcount, perf_mmap_close() will skip
3193 * over us; possibly making our ring_buffer_put() the last.
3194 */
3195 mutex_lock(&event->mmap_mutex);
3196 rb = event->rb;
3197 if (rb) {
3198 rcu_assign_pointer(event->rb, NULL);
3199 ring_buffer_detach(event, rb);
3200 ring_buffer_put(rb); /* could be last */
3201 }
3202 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3203 }
3204
e5d1367f
SE
3205 if (is_cgroup_event(event))
3206 perf_detach_cgroup(event);
3207
0c67b408 3208
766d6c07 3209 __free_event(event);
f1600952
PZ
3210}
3211
a66a3052 3212int perf_event_release_kernel(struct perf_event *event)
0793a61d 3213{
cdd6c482 3214 struct perf_event_context *ctx = event->ctx;
0793a61d 3215
ad3a37de 3216 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3217 /*
3218 * There are two ways this annotation is useful:
3219 *
3220 * 1) there is a lock recursion from perf_event_exit_task
3221 * see the comment there.
3222 *
3223 * 2) there is a lock-inversion with mmap_sem through
3224 * perf_event_read_group(), which takes faults while
3225 * holding ctx->mutex, however this is called after
3226 * the last filedesc died, so there is no possibility
3227 * to trigger the AB-BA case.
3228 */
3229 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3230 raw_spin_lock_irq(&ctx->lock);
8a49542c 3231 perf_group_detach(event);
050735b0 3232 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3233 perf_remove_from_context(event);
d859e29f 3234 mutex_unlock(&ctx->mutex);
0793a61d 3235
cdd6c482 3236 free_event(event);
0793a61d
TG
3237
3238 return 0;
3239}
a66a3052 3240EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3241
a66a3052
PZ
3242/*
3243 * Called when the last reference to the file is gone.
3244 */
a6fa941d 3245static void put_event(struct perf_event *event)
fb0459d7 3246{
8882135b 3247 struct task_struct *owner;
fb0459d7 3248
a6fa941d
AV
3249 if (!atomic_long_dec_and_test(&event->refcount))
3250 return;
fb0459d7 3251
8882135b
PZ
3252 rcu_read_lock();
3253 owner = ACCESS_ONCE(event->owner);
3254 /*
3255 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3256 * !owner it means the list deletion is complete and we can indeed
3257 * free this event, otherwise we need to serialize on
3258 * owner->perf_event_mutex.
3259 */
3260 smp_read_barrier_depends();
3261 if (owner) {
3262 /*
3263 * Since delayed_put_task_struct() also drops the last
3264 * task reference we can safely take a new reference
3265 * while holding the rcu_read_lock().
3266 */
3267 get_task_struct(owner);
3268 }
3269 rcu_read_unlock();
3270
3271 if (owner) {
3272 mutex_lock(&owner->perf_event_mutex);
3273 /*
3274 * We have to re-check the event->owner field, if it is cleared
3275 * we raced with perf_event_exit_task(), acquiring the mutex
3276 * ensured they're done, and we can proceed with freeing the
3277 * event.
3278 */
3279 if (event->owner)
3280 list_del_init(&event->owner_entry);
3281 mutex_unlock(&owner->perf_event_mutex);
3282 put_task_struct(owner);
3283 }
3284
a6fa941d
AV
3285 perf_event_release_kernel(event);
3286}
3287
3288static int perf_release(struct inode *inode, struct file *file)
3289{
3290 put_event(file->private_data);
3291 return 0;
fb0459d7 3292}
fb0459d7 3293
59ed446f 3294u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3295{
cdd6c482 3296 struct perf_event *child;
e53c0994
PZ
3297 u64 total = 0;
3298
59ed446f
PZ
3299 *enabled = 0;
3300 *running = 0;
3301
6f10581a 3302 mutex_lock(&event->child_mutex);
cdd6c482 3303 total += perf_event_read(event);
59ed446f
PZ
3304 *enabled += event->total_time_enabled +
3305 atomic64_read(&event->child_total_time_enabled);
3306 *running += event->total_time_running +
3307 atomic64_read(&event->child_total_time_running);
3308
3309 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3310 total += perf_event_read(child);
59ed446f
PZ
3311 *enabled += child->total_time_enabled;
3312 *running += child->total_time_running;
3313 }
6f10581a 3314 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3315
3316 return total;
3317}
fb0459d7 3318EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3319
cdd6c482 3320static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3321 u64 read_format, char __user *buf)
3322{
cdd6c482 3323 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3324 int n = 0, size = 0, ret = -EFAULT;
3325 struct perf_event_context *ctx = leader->ctx;
abf4868b 3326 u64 values[5];
59ed446f 3327 u64 count, enabled, running;
abf4868b 3328
6f10581a 3329 mutex_lock(&ctx->mutex);
59ed446f 3330 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3331
3332 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3334 values[n++] = enabled;
3335 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3336 values[n++] = running;
abf4868b
PZ
3337 values[n++] = count;
3338 if (read_format & PERF_FORMAT_ID)
3339 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3340
3341 size = n * sizeof(u64);
3342
3343 if (copy_to_user(buf, values, size))
6f10581a 3344 goto unlock;
3dab77fb 3345
6f10581a 3346 ret = size;
3dab77fb 3347
65abc865 3348 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3349 n = 0;
3dab77fb 3350
59ed446f 3351 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3352 if (read_format & PERF_FORMAT_ID)
3353 values[n++] = primary_event_id(sub);
3354
3355 size = n * sizeof(u64);
3356
184d3da8 3357 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3358 ret = -EFAULT;
3359 goto unlock;
3360 }
abf4868b
PZ
3361
3362 ret += size;
3dab77fb 3363 }
6f10581a
PZ
3364unlock:
3365 mutex_unlock(&ctx->mutex);
3dab77fb 3366
abf4868b 3367 return ret;
3dab77fb
PZ
3368}
3369
cdd6c482 3370static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3371 u64 read_format, char __user *buf)
3372{
59ed446f 3373 u64 enabled, running;
3dab77fb
PZ
3374 u64 values[4];
3375 int n = 0;
3376
59ed446f
PZ
3377 values[n++] = perf_event_read_value(event, &enabled, &running);
3378 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3379 values[n++] = enabled;
3380 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3381 values[n++] = running;
3dab77fb 3382 if (read_format & PERF_FORMAT_ID)
cdd6c482 3383 values[n++] = primary_event_id(event);
3dab77fb
PZ
3384
3385 if (copy_to_user(buf, values, n * sizeof(u64)))
3386 return -EFAULT;
3387
3388 return n * sizeof(u64);
3389}
3390
0793a61d 3391/*
cdd6c482 3392 * Read the performance event - simple non blocking version for now
0793a61d
TG
3393 */
3394static ssize_t
cdd6c482 3395perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3396{
cdd6c482 3397 u64 read_format = event->attr.read_format;
3dab77fb 3398 int ret;
0793a61d 3399
3b6f9e5c 3400 /*
cdd6c482 3401 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3402 * error state (i.e. because it was pinned but it couldn't be
3403 * scheduled on to the CPU at some point).
3404 */
cdd6c482 3405 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3406 return 0;
3407
c320c7b7 3408 if (count < event->read_size)
3dab77fb
PZ
3409 return -ENOSPC;
3410
cdd6c482 3411 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3412 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3413 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3414 else
cdd6c482 3415 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3416
3dab77fb 3417 return ret;
0793a61d
TG
3418}
3419
0793a61d
TG
3420static ssize_t
3421perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3422{
cdd6c482 3423 struct perf_event *event = file->private_data;
0793a61d 3424
cdd6c482 3425 return perf_read_hw(event, buf, count);
0793a61d
TG
3426}
3427
3428static unsigned int perf_poll(struct file *file, poll_table *wait)
3429{
cdd6c482 3430 struct perf_event *event = file->private_data;
76369139 3431 struct ring_buffer *rb;
c33a0bc4 3432 unsigned int events = POLL_HUP;
c7138f37 3433
10c6db11 3434 /*
9bb5d40c
PZ
3435 * Pin the event->rb by taking event->mmap_mutex; otherwise
3436 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3437 */
3438 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3439 rb = event->rb;
3440 if (rb)
76369139 3441 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3442 mutex_unlock(&event->mmap_mutex);
3443
cdd6c482 3444 poll_wait(file, &event->waitq, wait);
0793a61d 3445
0793a61d
TG
3446 return events;
3447}
3448
cdd6c482 3449static void perf_event_reset(struct perf_event *event)
6de6a7b9 3450{
cdd6c482 3451 (void)perf_event_read(event);
e7850595 3452 local64_set(&event->count, 0);
cdd6c482 3453 perf_event_update_userpage(event);
3df5edad
PZ
3454}
3455
c93f7669 3456/*
cdd6c482
IM
3457 * Holding the top-level event's child_mutex means that any
3458 * descendant process that has inherited this event will block
3459 * in sync_child_event if it goes to exit, thus satisfying the
3460 * task existence requirements of perf_event_enable/disable.
c93f7669 3461 */
cdd6c482
IM
3462static void perf_event_for_each_child(struct perf_event *event,
3463 void (*func)(struct perf_event *))
3df5edad 3464{
cdd6c482 3465 struct perf_event *child;
3df5edad 3466
cdd6c482
IM
3467 WARN_ON_ONCE(event->ctx->parent_ctx);
3468 mutex_lock(&event->child_mutex);
3469 func(event);
3470 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3471 func(child);
cdd6c482 3472 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3473}
3474
cdd6c482
IM
3475static void perf_event_for_each(struct perf_event *event,
3476 void (*func)(struct perf_event *))
3df5edad 3477{
cdd6c482
IM
3478 struct perf_event_context *ctx = event->ctx;
3479 struct perf_event *sibling;
3df5edad 3480
75f937f2
PZ
3481 WARN_ON_ONCE(ctx->parent_ctx);
3482 mutex_lock(&ctx->mutex);
cdd6c482 3483 event = event->group_leader;
75f937f2 3484
cdd6c482 3485 perf_event_for_each_child(event, func);
cdd6c482 3486 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3487 perf_event_for_each_child(sibling, func);
75f937f2 3488 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3489}
3490
cdd6c482 3491static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3492{
cdd6c482 3493 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3494 int ret = 0;
3495 u64 value;
3496
6c7e550f 3497 if (!is_sampling_event(event))
08247e31
PZ
3498 return -EINVAL;
3499
ad0cf347 3500 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3501 return -EFAULT;
3502
3503 if (!value)
3504 return -EINVAL;
3505
e625cce1 3506 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3507 if (event->attr.freq) {
3508 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3509 ret = -EINVAL;
3510 goto unlock;
3511 }
3512
cdd6c482 3513 event->attr.sample_freq = value;
08247e31 3514 } else {
cdd6c482
IM
3515 event->attr.sample_period = value;
3516 event->hw.sample_period = value;
08247e31
PZ
3517 }
3518unlock:
e625cce1 3519 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3520
3521 return ret;
3522}
3523
ac9721f3
PZ
3524static const struct file_operations perf_fops;
3525
2903ff01 3526static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3527{
2903ff01
AV
3528 struct fd f = fdget(fd);
3529 if (!f.file)
3530 return -EBADF;
ac9721f3 3531
2903ff01
AV
3532 if (f.file->f_op != &perf_fops) {
3533 fdput(f);
3534 return -EBADF;
ac9721f3 3535 }
2903ff01
AV
3536 *p = f;
3537 return 0;
ac9721f3
PZ
3538}
3539
3540static int perf_event_set_output(struct perf_event *event,
3541 struct perf_event *output_event);
6fb2915d 3542static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3543
d859e29f
PM
3544static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3545{
cdd6c482
IM
3546 struct perf_event *event = file->private_data;
3547 void (*func)(struct perf_event *);
3df5edad 3548 u32 flags = arg;
d859e29f
PM
3549
3550 switch (cmd) {
cdd6c482
IM
3551 case PERF_EVENT_IOC_ENABLE:
3552 func = perf_event_enable;
d859e29f 3553 break;
cdd6c482
IM
3554 case PERF_EVENT_IOC_DISABLE:
3555 func = perf_event_disable;
79f14641 3556 break;
cdd6c482
IM
3557 case PERF_EVENT_IOC_RESET:
3558 func = perf_event_reset;
6de6a7b9 3559 break;
3df5edad 3560
cdd6c482
IM
3561 case PERF_EVENT_IOC_REFRESH:
3562 return perf_event_refresh(event, arg);
08247e31 3563
cdd6c482
IM
3564 case PERF_EVENT_IOC_PERIOD:
3565 return perf_event_period(event, (u64 __user *)arg);
08247e31 3566
cf4957f1
JO
3567 case PERF_EVENT_IOC_ID:
3568 {
3569 u64 id = primary_event_id(event);
3570
3571 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3572 return -EFAULT;
3573 return 0;
3574 }
3575
cdd6c482 3576 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3577 {
ac9721f3 3578 int ret;
ac9721f3 3579 if (arg != -1) {
2903ff01
AV
3580 struct perf_event *output_event;
3581 struct fd output;
3582 ret = perf_fget_light(arg, &output);
3583 if (ret)
3584 return ret;
3585 output_event = output.file->private_data;
3586 ret = perf_event_set_output(event, output_event);
3587 fdput(output);
3588 } else {
3589 ret = perf_event_set_output(event, NULL);
ac9721f3 3590 }
ac9721f3
PZ
3591 return ret;
3592 }
a4be7c27 3593
6fb2915d
LZ
3594 case PERF_EVENT_IOC_SET_FILTER:
3595 return perf_event_set_filter(event, (void __user *)arg);
3596
d859e29f 3597 default:
3df5edad 3598 return -ENOTTY;
d859e29f 3599 }
3df5edad
PZ
3600
3601 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3602 perf_event_for_each(event, func);
3df5edad 3603 else
cdd6c482 3604 perf_event_for_each_child(event, func);
3df5edad
PZ
3605
3606 return 0;
d859e29f
PM
3607}
3608
cdd6c482 3609int perf_event_task_enable(void)
771d7cde 3610{
cdd6c482 3611 struct perf_event *event;
771d7cde 3612
cdd6c482
IM
3613 mutex_lock(&current->perf_event_mutex);
3614 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3615 perf_event_for_each_child(event, perf_event_enable);
3616 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3617
3618 return 0;
3619}
3620
cdd6c482 3621int perf_event_task_disable(void)
771d7cde 3622{
cdd6c482 3623 struct perf_event *event;
771d7cde 3624
cdd6c482
IM
3625 mutex_lock(&current->perf_event_mutex);
3626 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3627 perf_event_for_each_child(event, perf_event_disable);
3628 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3629
3630 return 0;
3631}
3632
cdd6c482 3633static int perf_event_index(struct perf_event *event)
194002b2 3634{
a4eaf7f1
PZ
3635 if (event->hw.state & PERF_HES_STOPPED)
3636 return 0;
3637
cdd6c482 3638 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3639 return 0;
3640
35edc2a5 3641 return event->pmu->event_idx(event);
194002b2
PZ
3642}
3643
c4794295 3644static void calc_timer_values(struct perf_event *event,
e3f3541c 3645 u64 *now,
7f310a5d
EM
3646 u64 *enabled,
3647 u64 *running)
c4794295 3648{
e3f3541c 3649 u64 ctx_time;
c4794295 3650
e3f3541c
PZ
3651 *now = perf_clock();
3652 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3653 *enabled = ctx_time - event->tstamp_enabled;
3654 *running = ctx_time - event->tstamp_running;
3655}
3656
c7206205 3657void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3658{
3659}
3660
38ff667b
PZ
3661/*
3662 * Callers need to ensure there can be no nesting of this function, otherwise
3663 * the seqlock logic goes bad. We can not serialize this because the arch
3664 * code calls this from NMI context.
3665 */
cdd6c482 3666void perf_event_update_userpage(struct perf_event *event)
37d81828 3667{
cdd6c482 3668 struct perf_event_mmap_page *userpg;
76369139 3669 struct ring_buffer *rb;
e3f3541c 3670 u64 enabled, running, now;
38ff667b
PZ
3671
3672 rcu_read_lock();
0d641208
EM
3673 /*
3674 * compute total_time_enabled, total_time_running
3675 * based on snapshot values taken when the event
3676 * was last scheduled in.
3677 *
3678 * we cannot simply called update_context_time()
3679 * because of locking issue as we can be called in
3680 * NMI context
3681 */
e3f3541c 3682 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3683 rb = rcu_dereference(event->rb);
3684 if (!rb)
38ff667b
PZ
3685 goto unlock;
3686
76369139 3687 userpg = rb->user_page;
37d81828 3688
7b732a75
PZ
3689 /*
3690 * Disable preemption so as to not let the corresponding user-space
3691 * spin too long if we get preempted.
3692 */
3693 preempt_disable();
37d81828 3694 ++userpg->lock;
92f22a38 3695 barrier();
cdd6c482 3696 userpg->index = perf_event_index(event);
b5e58793 3697 userpg->offset = perf_event_count(event);
365a4038 3698 if (userpg->index)
e7850595 3699 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3700
0d641208 3701 userpg->time_enabled = enabled +
cdd6c482 3702 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3703
0d641208 3704 userpg->time_running = running +
cdd6c482 3705 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3706
c7206205 3707 arch_perf_update_userpage(userpg, now);
e3f3541c 3708
92f22a38 3709 barrier();
37d81828 3710 ++userpg->lock;
7b732a75 3711 preempt_enable();
38ff667b 3712unlock:
7b732a75 3713 rcu_read_unlock();
37d81828
PM
3714}
3715
906010b2
PZ
3716static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3717{
3718 struct perf_event *event = vma->vm_file->private_data;
76369139 3719 struct ring_buffer *rb;
906010b2
PZ
3720 int ret = VM_FAULT_SIGBUS;
3721
3722 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3723 if (vmf->pgoff == 0)
3724 ret = 0;
3725 return ret;
3726 }
3727
3728 rcu_read_lock();
76369139
FW
3729 rb = rcu_dereference(event->rb);
3730 if (!rb)
906010b2
PZ
3731 goto unlock;
3732
3733 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3734 goto unlock;
3735
76369139 3736 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3737 if (!vmf->page)
3738 goto unlock;
3739
3740 get_page(vmf->page);
3741 vmf->page->mapping = vma->vm_file->f_mapping;
3742 vmf->page->index = vmf->pgoff;
3743
3744 ret = 0;
3745unlock:
3746 rcu_read_unlock();
3747
3748 return ret;
3749}
3750
10c6db11
PZ
3751static void ring_buffer_attach(struct perf_event *event,
3752 struct ring_buffer *rb)
3753{
3754 unsigned long flags;
3755
3756 if (!list_empty(&event->rb_entry))
3757 return;
3758
3759 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3760 if (list_empty(&event->rb_entry))
3761 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3762 spin_unlock_irqrestore(&rb->event_lock, flags);
3763}
3764
9bb5d40c 3765static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3766{
3767 unsigned long flags;
3768
3769 if (list_empty(&event->rb_entry))
3770 return;
3771
3772 spin_lock_irqsave(&rb->event_lock, flags);
3773 list_del_init(&event->rb_entry);
3774 wake_up_all(&event->waitq);
3775 spin_unlock_irqrestore(&rb->event_lock, flags);
3776}
3777
3778static void ring_buffer_wakeup(struct perf_event *event)
3779{
3780 struct ring_buffer *rb;
3781
3782 rcu_read_lock();
3783 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3784 if (rb) {
3785 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3786 wake_up_all(&event->waitq);
3787 }
10c6db11
PZ
3788 rcu_read_unlock();
3789}
3790
76369139 3791static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3792{
76369139 3793 struct ring_buffer *rb;
906010b2 3794
76369139
FW
3795 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3796 rb_free(rb);
7b732a75
PZ
3797}
3798
76369139 3799static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3800{
76369139 3801 struct ring_buffer *rb;
7b732a75 3802
ac9721f3 3803 rcu_read_lock();
76369139
FW
3804 rb = rcu_dereference(event->rb);
3805 if (rb) {
3806 if (!atomic_inc_not_zero(&rb->refcount))
3807 rb = NULL;
ac9721f3
PZ
3808 }
3809 rcu_read_unlock();
3810
76369139 3811 return rb;
ac9721f3
PZ
3812}
3813
76369139 3814static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3815{
76369139 3816 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3817 return;
7b732a75 3818
9bb5d40c 3819 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3820
76369139 3821 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3822}
3823
3824static void perf_mmap_open(struct vm_area_struct *vma)
3825{
cdd6c482 3826 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3827
cdd6c482 3828 atomic_inc(&event->mmap_count);
9bb5d40c 3829 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3830}
3831
9bb5d40c
PZ
3832/*
3833 * A buffer can be mmap()ed multiple times; either directly through the same
3834 * event, or through other events by use of perf_event_set_output().
3835 *
3836 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3837 * the buffer here, where we still have a VM context. This means we need
3838 * to detach all events redirecting to us.
3839 */
7b732a75
PZ
3840static void perf_mmap_close(struct vm_area_struct *vma)
3841{
cdd6c482 3842 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3843
9bb5d40c
PZ
3844 struct ring_buffer *rb = event->rb;
3845 struct user_struct *mmap_user = rb->mmap_user;
3846 int mmap_locked = rb->mmap_locked;
3847 unsigned long size = perf_data_size(rb);
789f90fc 3848
9bb5d40c
PZ
3849 atomic_dec(&rb->mmap_count);
3850
3851 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3852 return;
3853
3854 /* Detach current event from the buffer. */
3855 rcu_assign_pointer(event->rb, NULL);
3856 ring_buffer_detach(event, rb);
3857 mutex_unlock(&event->mmap_mutex);
3858
3859 /* If there's still other mmap()s of this buffer, we're done. */
3860 if (atomic_read(&rb->mmap_count)) {
3861 ring_buffer_put(rb); /* can't be last */
3862 return;
3863 }
ac9721f3 3864
9bb5d40c
PZ
3865 /*
3866 * No other mmap()s, detach from all other events that might redirect
3867 * into the now unreachable buffer. Somewhat complicated by the
3868 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3869 */
3870again:
3871 rcu_read_lock();
3872 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3873 if (!atomic_long_inc_not_zero(&event->refcount)) {
3874 /*
3875 * This event is en-route to free_event() which will
3876 * detach it and remove it from the list.
3877 */
3878 continue;
3879 }
3880 rcu_read_unlock();
789f90fc 3881
9bb5d40c
PZ
3882 mutex_lock(&event->mmap_mutex);
3883 /*
3884 * Check we didn't race with perf_event_set_output() which can
3885 * swizzle the rb from under us while we were waiting to
3886 * acquire mmap_mutex.
3887 *
3888 * If we find a different rb; ignore this event, a next
3889 * iteration will no longer find it on the list. We have to
3890 * still restart the iteration to make sure we're not now
3891 * iterating the wrong list.
3892 */
3893 if (event->rb == rb) {
3894 rcu_assign_pointer(event->rb, NULL);
3895 ring_buffer_detach(event, rb);
3896 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3897 }
cdd6c482 3898 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3899 put_event(event);
ac9721f3 3900
9bb5d40c
PZ
3901 /*
3902 * Restart the iteration; either we're on the wrong list or
3903 * destroyed its integrity by doing a deletion.
3904 */
3905 goto again;
7b732a75 3906 }
9bb5d40c
PZ
3907 rcu_read_unlock();
3908
3909 /*
3910 * It could be there's still a few 0-ref events on the list; they'll
3911 * get cleaned up by free_event() -- they'll also still have their
3912 * ref on the rb and will free it whenever they are done with it.
3913 *
3914 * Aside from that, this buffer is 'fully' detached and unmapped,
3915 * undo the VM accounting.
3916 */
3917
3918 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3919 vma->vm_mm->pinned_vm -= mmap_locked;
3920 free_uid(mmap_user);
3921
3922 ring_buffer_put(rb); /* could be last */
37d81828
PM
3923}
3924
f0f37e2f 3925static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3926 .open = perf_mmap_open,
3927 .close = perf_mmap_close,
3928 .fault = perf_mmap_fault,
3929 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3930};
3931
3932static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3933{
cdd6c482 3934 struct perf_event *event = file->private_data;
22a4f650 3935 unsigned long user_locked, user_lock_limit;
789f90fc 3936 struct user_struct *user = current_user();
22a4f650 3937 unsigned long locked, lock_limit;
76369139 3938 struct ring_buffer *rb;
7b732a75
PZ
3939 unsigned long vma_size;
3940 unsigned long nr_pages;
789f90fc 3941 long user_extra, extra;
d57e34fd 3942 int ret = 0, flags = 0;
37d81828 3943
c7920614
PZ
3944 /*
3945 * Don't allow mmap() of inherited per-task counters. This would
3946 * create a performance issue due to all children writing to the
76369139 3947 * same rb.
c7920614
PZ
3948 */
3949 if (event->cpu == -1 && event->attr.inherit)
3950 return -EINVAL;
3951
43a21ea8 3952 if (!(vma->vm_flags & VM_SHARED))
37d81828 3953 return -EINVAL;
7b732a75
PZ
3954
3955 vma_size = vma->vm_end - vma->vm_start;
3956 nr_pages = (vma_size / PAGE_SIZE) - 1;
3957
7730d865 3958 /*
76369139 3959 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3960 * can do bitmasks instead of modulo.
3961 */
3962 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3963 return -EINVAL;
3964
7b732a75 3965 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3966 return -EINVAL;
3967
7b732a75
PZ
3968 if (vma->vm_pgoff != 0)
3969 return -EINVAL;
37d81828 3970
cdd6c482 3971 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3972again:
cdd6c482 3973 mutex_lock(&event->mmap_mutex);
76369139 3974 if (event->rb) {
9bb5d40c 3975 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3976 ret = -EINVAL;
9bb5d40c
PZ
3977 goto unlock;
3978 }
3979
3980 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3981 /*
3982 * Raced against perf_mmap_close() through
3983 * perf_event_set_output(). Try again, hope for better
3984 * luck.
3985 */
3986 mutex_unlock(&event->mmap_mutex);
3987 goto again;
3988 }
3989
ebb3c4c4
PZ
3990 goto unlock;
3991 }
3992
789f90fc 3993 user_extra = nr_pages + 1;
cdd6c482 3994 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3995
3996 /*
3997 * Increase the limit linearly with more CPUs:
3998 */
3999 user_lock_limit *= num_online_cpus();
4000
789f90fc 4001 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4002
789f90fc
PZ
4003 extra = 0;
4004 if (user_locked > user_lock_limit)
4005 extra = user_locked - user_lock_limit;
7b732a75 4006
78d7d407 4007 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4008 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4009 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4010
459ec28a
IM
4011 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4012 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4013 ret = -EPERM;
4014 goto unlock;
4015 }
7b732a75 4016
76369139 4017 WARN_ON(event->rb);
906010b2 4018
d57e34fd 4019 if (vma->vm_flags & VM_WRITE)
76369139 4020 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4021
4ec8363d
VW
4022 rb = rb_alloc(nr_pages,
4023 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4024 event->cpu, flags);
4025
76369139 4026 if (!rb) {
ac9721f3 4027 ret = -ENOMEM;
ebb3c4c4 4028 goto unlock;
ac9721f3 4029 }
26cb63ad 4030
9bb5d40c 4031 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4032 rb->mmap_locked = extra;
4033 rb->mmap_user = get_current_user();
43a21ea8 4034
ac9721f3 4035 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4036 vma->vm_mm->pinned_vm += extra;
4037
9bb5d40c 4038 ring_buffer_attach(event, rb);
26cb63ad 4039 rcu_assign_pointer(event->rb, rb);
ac9721f3 4040
9a0f05cb
PZ
4041 perf_event_update_userpage(event);
4042
ebb3c4c4 4043unlock:
ac9721f3
PZ
4044 if (!ret)
4045 atomic_inc(&event->mmap_count);
cdd6c482 4046 mutex_unlock(&event->mmap_mutex);
37d81828 4047
9bb5d40c
PZ
4048 /*
4049 * Since pinned accounting is per vm we cannot allow fork() to copy our
4050 * vma.
4051 */
26cb63ad 4052 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4053 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4054
4055 return ret;
37d81828
PM
4056}
4057
3c446b3d
PZ
4058static int perf_fasync(int fd, struct file *filp, int on)
4059{
496ad9aa 4060 struct inode *inode = file_inode(filp);
cdd6c482 4061 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4062 int retval;
4063
4064 mutex_lock(&inode->i_mutex);
cdd6c482 4065 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4066 mutex_unlock(&inode->i_mutex);
4067
4068 if (retval < 0)
4069 return retval;
4070
4071 return 0;
4072}
4073
0793a61d 4074static const struct file_operations perf_fops = {
3326c1ce 4075 .llseek = no_llseek,
0793a61d
TG
4076 .release = perf_release,
4077 .read = perf_read,
4078 .poll = perf_poll,
d859e29f
PM
4079 .unlocked_ioctl = perf_ioctl,
4080 .compat_ioctl = perf_ioctl,
37d81828 4081 .mmap = perf_mmap,
3c446b3d 4082 .fasync = perf_fasync,
0793a61d
TG
4083};
4084
925d519a 4085/*
cdd6c482 4086 * Perf event wakeup
925d519a
PZ
4087 *
4088 * If there's data, ensure we set the poll() state and publish everything
4089 * to user-space before waking everybody up.
4090 */
4091
cdd6c482 4092void perf_event_wakeup(struct perf_event *event)
925d519a 4093{
10c6db11 4094 ring_buffer_wakeup(event);
4c9e2542 4095
cdd6c482
IM
4096 if (event->pending_kill) {
4097 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4098 event->pending_kill = 0;
4c9e2542 4099 }
925d519a
PZ
4100}
4101
e360adbe 4102static void perf_pending_event(struct irq_work *entry)
79f14641 4103{
cdd6c482
IM
4104 struct perf_event *event = container_of(entry,
4105 struct perf_event, pending);
79f14641 4106
cdd6c482
IM
4107 if (event->pending_disable) {
4108 event->pending_disable = 0;
4109 __perf_event_disable(event);
79f14641
PZ
4110 }
4111
cdd6c482
IM
4112 if (event->pending_wakeup) {
4113 event->pending_wakeup = 0;
4114 perf_event_wakeup(event);
79f14641
PZ
4115 }
4116}
4117
39447b38
ZY
4118/*
4119 * We assume there is only KVM supporting the callbacks.
4120 * Later on, we might change it to a list if there is
4121 * another virtualization implementation supporting the callbacks.
4122 */
4123struct perf_guest_info_callbacks *perf_guest_cbs;
4124
4125int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4126{
4127 perf_guest_cbs = cbs;
4128 return 0;
4129}
4130EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4131
4132int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4133{
4134 perf_guest_cbs = NULL;
4135 return 0;
4136}
4137EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4138
4018994f
JO
4139static void
4140perf_output_sample_regs(struct perf_output_handle *handle,
4141 struct pt_regs *regs, u64 mask)
4142{
4143 int bit;
4144
4145 for_each_set_bit(bit, (const unsigned long *) &mask,
4146 sizeof(mask) * BITS_PER_BYTE) {
4147 u64 val;
4148
4149 val = perf_reg_value(regs, bit);
4150 perf_output_put(handle, val);
4151 }
4152}
4153
4154static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4155 struct pt_regs *regs)
4156{
4157 if (!user_mode(regs)) {
4158 if (current->mm)
4159 regs = task_pt_regs(current);
4160 else
4161 regs = NULL;
4162 }
4163
4164 if (regs) {
4165 regs_user->regs = regs;
4166 regs_user->abi = perf_reg_abi(current);
4167 }
4168}
4169
c5ebcedb
JO
4170/*
4171 * Get remaining task size from user stack pointer.
4172 *
4173 * It'd be better to take stack vma map and limit this more
4174 * precisly, but there's no way to get it safely under interrupt,
4175 * so using TASK_SIZE as limit.
4176 */
4177static u64 perf_ustack_task_size(struct pt_regs *regs)
4178{
4179 unsigned long addr = perf_user_stack_pointer(regs);
4180
4181 if (!addr || addr >= TASK_SIZE)
4182 return 0;
4183
4184 return TASK_SIZE - addr;
4185}
4186
4187static u16
4188perf_sample_ustack_size(u16 stack_size, u16 header_size,
4189 struct pt_regs *regs)
4190{
4191 u64 task_size;
4192
4193 /* No regs, no stack pointer, no dump. */
4194 if (!regs)
4195 return 0;
4196
4197 /*
4198 * Check if we fit in with the requested stack size into the:
4199 * - TASK_SIZE
4200 * If we don't, we limit the size to the TASK_SIZE.
4201 *
4202 * - remaining sample size
4203 * If we don't, we customize the stack size to
4204 * fit in to the remaining sample size.
4205 */
4206
4207 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4208 stack_size = min(stack_size, (u16) task_size);
4209
4210 /* Current header size plus static size and dynamic size. */
4211 header_size += 2 * sizeof(u64);
4212
4213 /* Do we fit in with the current stack dump size? */
4214 if ((u16) (header_size + stack_size) < header_size) {
4215 /*
4216 * If we overflow the maximum size for the sample,
4217 * we customize the stack dump size to fit in.
4218 */
4219 stack_size = USHRT_MAX - header_size - sizeof(u64);
4220 stack_size = round_up(stack_size, sizeof(u64));
4221 }
4222
4223 return stack_size;
4224}
4225
4226static void
4227perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4228 struct pt_regs *regs)
4229{
4230 /* Case of a kernel thread, nothing to dump */
4231 if (!regs) {
4232 u64 size = 0;
4233 perf_output_put(handle, size);
4234 } else {
4235 unsigned long sp;
4236 unsigned int rem;
4237 u64 dyn_size;
4238
4239 /*
4240 * We dump:
4241 * static size
4242 * - the size requested by user or the best one we can fit
4243 * in to the sample max size
4244 * data
4245 * - user stack dump data
4246 * dynamic size
4247 * - the actual dumped size
4248 */
4249
4250 /* Static size. */
4251 perf_output_put(handle, dump_size);
4252
4253 /* Data. */
4254 sp = perf_user_stack_pointer(regs);
4255 rem = __output_copy_user(handle, (void *) sp, dump_size);
4256 dyn_size = dump_size - rem;
4257
4258 perf_output_skip(handle, rem);
4259
4260 /* Dynamic size. */
4261 perf_output_put(handle, dyn_size);
4262 }
4263}
4264
c980d109
ACM
4265static void __perf_event_header__init_id(struct perf_event_header *header,
4266 struct perf_sample_data *data,
4267 struct perf_event *event)
6844c09d
ACM
4268{
4269 u64 sample_type = event->attr.sample_type;
4270
4271 data->type = sample_type;
4272 header->size += event->id_header_size;
4273
4274 if (sample_type & PERF_SAMPLE_TID) {
4275 /* namespace issues */
4276 data->tid_entry.pid = perf_event_pid(event, current);
4277 data->tid_entry.tid = perf_event_tid(event, current);
4278 }
4279
4280 if (sample_type & PERF_SAMPLE_TIME)
4281 data->time = perf_clock();
4282
4283 if (sample_type & PERF_SAMPLE_ID)
4284 data->id = primary_event_id(event);
4285
4286 if (sample_type & PERF_SAMPLE_STREAM_ID)
4287 data->stream_id = event->id;
4288
4289 if (sample_type & PERF_SAMPLE_CPU) {
4290 data->cpu_entry.cpu = raw_smp_processor_id();
4291 data->cpu_entry.reserved = 0;
4292 }
4293}
4294
76369139
FW
4295void perf_event_header__init_id(struct perf_event_header *header,
4296 struct perf_sample_data *data,
4297 struct perf_event *event)
c980d109
ACM
4298{
4299 if (event->attr.sample_id_all)
4300 __perf_event_header__init_id(header, data, event);
4301}
4302
4303static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4304 struct perf_sample_data *data)
4305{
4306 u64 sample_type = data->type;
4307
4308 if (sample_type & PERF_SAMPLE_TID)
4309 perf_output_put(handle, data->tid_entry);
4310
4311 if (sample_type & PERF_SAMPLE_TIME)
4312 perf_output_put(handle, data->time);
4313
4314 if (sample_type & PERF_SAMPLE_ID)
4315 perf_output_put(handle, data->id);
4316
4317 if (sample_type & PERF_SAMPLE_STREAM_ID)
4318 perf_output_put(handle, data->stream_id);
4319
4320 if (sample_type & PERF_SAMPLE_CPU)
4321 perf_output_put(handle, data->cpu_entry);
4322}
4323
76369139
FW
4324void perf_event__output_id_sample(struct perf_event *event,
4325 struct perf_output_handle *handle,
4326 struct perf_sample_data *sample)
c980d109
ACM
4327{
4328 if (event->attr.sample_id_all)
4329 __perf_event__output_id_sample(handle, sample);
4330}
4331
3dab77fb 4332static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4333 struct perf_event *event,
4334 u64 enabled, u64 running)
3dab77fb 4335{
cdd6c482 4336 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4337 u64 values[4];
4338 int n = 0;
4339
b5e58793 4340 values[n++] = perf_event_count(event);
3dab77fb 4341 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4342 values[n++] = enabled +
cdd6c482 4343 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4344 }
4345 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4346 values[n++] = running +
cdd6c482 4347 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4348 }
4349 if (read_format & PERF_FORMAT_ID)
cdd6c482 4350 values[n++] = primary_event_id(event);
3dab77fb 4351
76369139 4352 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4353}
4354
4355/*
cdd6c482 4356 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4357 */
4358static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4359 struct perf_event *event,
4360 u64 enabled, u64 running)
3dab77fb 4361{
cdd6c482
IM
4362 struct perf_event *leader = event->group_leader, *sub;
4363 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4364 u64 values[5];
4365 int n = 0;
4366
4367 values[n++] = 1 + leader->nr_siblings;
4368
4369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4370 values[n++] = enabled;
3dab77fb
PZ
4371
4372 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4373 values[n++] = running;
3dab77fb 4374
cdd6c482 4375 if (leader != event)
3dab77fb
PZ
4376 leader->pmu->read(leader);
4377
b5e58793 4378 values[n++] = perf_event_count(leader);
3dab77fb 4379 if (read_format & PERF_FORMAT_ID)
cdd6c482 4380 values[n++] = primary_event_id(leader);
3dab77fb 4381
76369139 4382 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4383
65abc865 4384 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4385 n = 0;
4386
6f5ab001
JO
4387 if ((sub != event) &&
4388 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4389 sub->pmu->read(sub);
4390
b5e58793 4391 values[n++] = perf_event_count(sub);
3dab77fb 4392 if (read_format & PERF_FORMAT_ID)
cdd6c482 4393 values[n++] = primary_event_id(sub);
3dab77fb 4394
76369139 4395 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4396 }
4397}
4398
eed01528
SE
4399#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4400 PERF_FORMAT_TOTAL_TIME_RUNNING)
4401
3dab77fb 4402static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4403 struct perf_event *event)
3dab77fb 4404{
e3f3541c 4405 u64 enabled = 0, running = 0, now;
eed01528
SE
4406 u64 read_format = event->attr.read_format;
4407
4408 /*
4409 * compute total_time_enabled, total_time_running
4410 * based on snapshot values taken when the event
4411 * was last scheduled in.
4412 *
4413 * we cannot simply called update_context_time()
4414 * because of locking issue as we are called in
4415 * NMI context
4416 */
c4794295 4417 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4418 calc_timer_values(event, &now, &enabled, &running);
eed01528 4419
cdd6c482 4420 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4421 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4422 else
eed01528 4423 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4424}
4425
5622f295
MM
4426void perf_output_sample(struct perf_output_handle *handle,
4427 struct perf_event_header *header,
4428 struct perf_sample_data *data,
cdd6c482 4429 struct perf_event *event)
5622f295
MM
4430{
4431 u64 sample_type = data->type;
4432
4433 perf_output_put(handle, *header);
4434
4435 if (sample_type & PERF_SAMPLE_IP)
4436 perf_output_put(handle, data->ip);
4437
4438 if (sample_type & PERF_SAMPLE_TID)
4439 perf_output_put(handle, data->tid_entry);
4440
4441 if (sample_type & PERF_SAMPLE_TIME)
4442 perf_output_put(handle, data->time);
4443
4444 if (sample_type & PERF_SAMPLE_ADDR)
4445 perf_output_put(handle, data->addr);
4446
4447 if (sample_type & PERF_SAMPLE_ID)
4448 perf_output_put(handle, data->id);
4449
4450 if (sample_type & PERF_SAMPLE_STREAM_ID)
4451 perf_output_put(handle, data->stream_id);
4452
4453 if (sample_type & PERF_SAMPLE_CPU)
4454 perf_output_put(handle, data->cpu_entry);
4455
4456 if (sample_type & PERF_SAMPLE_PERIOD)
4457 perf_output_put(handle, data->period);
4458
4459 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4460 perf_output_read(handle, event);
5622f295
MM
4461
4462 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4463 if (data->callchain) {
4464 int size = 1;
4465
4466 if (data->callchain)
4467 size += data->callchain->nr;
4468
4469 size *= sizeof(u64);
4470
76369139 4471 __output_copy(handle, data->callchain, size);
5622f295
MM
4472 } else {
4473 u64 nr = 0;
4474 perf_output_put(handle, nr);
4475 }
4476 }
4477
4478 if (sample_type & PERF_SAMPLE_RAW) {
4479 if (data->raw) {
4480 perf_output_put(handle, data->raw->size);
76369139
FW
4481 __output_copy(handle, data->raw->data,
4482 data->raw->size);
5622f295
MM
4483 } else {
4484 struct {
4485 u32 size;
4486 u32 data;
4487 } raw = {
4488 .size = sizeof(u32),
4489 .data = 0,
4490 };
4491 perf_output_put(handle, raw);
4492 }
4493 }
a7ac67ea 4494
bce38cd5
SE
4495 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4496 if (data->br_stack) {
4497 size_t size;
4498
4499 size = data->br_stack->nr
4500 * sizeof(struct perf_branch_entry);
4501
4502 perf_output_put(handle, data->br_stack->nr);
4503 perf_output_copy(handle, data->br_stack->entries, size);
4504 } else {
4505 /*
4506 * we always store at least the value of nr
4507 */
4508 u64 nr = 0;
4509 perf_output_put(handle, nr);
4510 }
4511 }
4018994f
JO
4512
4513 if (sample_type & PERF_SAMPLE_REGS_USER) {
4514 u64 abi = data->regs_user.abi;
4515
4516 /*
4517 * If there are no regs to dump, notice it through
4518 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4519 */
4520 perf_output_put(handle, abi);
4521
4522 if (abi) {
4523 u64 mask = event->attr.sample_regs_user;
4524 perf_output_sample_regs(handle,
4525 data->regs_user.regs,
4526 mask);
4527 }
4528 }
c5ebcedb 4529
a5cdd40c 4530 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4531 perf_output_sample_ustack(handle,
4532 data->stack_user_size,
4533 data->regs_user.regs);
a5cdd40c 4534 }
c3feedf2
AK
4535
4536 if (sample_type & PERF_SAMPLE_WEIGHT)
4537 perf_output_put(handle, data->weight);
d6be9ad6
SE
4538
4539 if (sample_type & PERF_SAMPLE_DATA_SRC)
4540 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4541
4542 if (!event->attr.watermark) {
4543 int wakeup_events = event->attr.wakeup_events;
4544
4545 if (wakeup_events) {
4546 struct ring_buffer *rb = handle->rb;
4547 int events = local_inc_return(&rb->events);
4548
4549 if (events >= wakeup_events) {
4550 local_sub(wakeup_events, &rb->events);
4551 local_inc(&rb->wakeup);
4552 }
4553 }
4554 }
5622f295
MM
4555}
4556
4557void perf_prepare_sample(struct perf_event_header *header,
4558 struct perf_sample_data *data,
cdd6c482 4559 struct perf_event *event,
5622f295 4560 struct pt_regs *regs)
7b732a75 4561{
cdd6c482 4562 u64 sample_type = event->attr.sample_type;
7b732a75 4563
cdd6c482 4564 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4565 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4566
4567 header->misc = 0;
4568 header->misc |= perf_misc_flags(regs);
6fab0192 4569
c980d109 4570 __perf_event_header__init_id(header, data, event);
6844c09d 4571
c320c7b7 4572 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4573 data->ip = perf_instruction_pointer(regs);
4574
b23f3325 4575 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4576 int size = 1;
394ee076 4577
e6dab5ff 4578 data->callchain = perf_callchain(event, regs);
5622f295
MM
4579
4580 if (data->callchain)
4581 size += data->callchain->nr;
4582
4583 header->size += size * sizeof(u64);
394ee076
PZ
4584 }
4585
3a43ce68 4586 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4587 int size = sizeof(u32);
4588
4589 if (data->raw)
4590 size += data->raw->size;
4591 else
4592 size += sizeof(u32);
4593
4594 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4595 header->size += size;
7f453c24 4596 }
bce38cd5
SE
4597
4598 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4599 int size = sizeof(u64); /* nr */
4600 if (data->br_stack) {
4601 size += data->br_stack->nr
4602 * sizeof(struct perf_branch_entry);
4603 }
4604 header->size += size;
4605 }
4018994f
JO
4606
4607 if (sample_type & PERF_SAMPLE_REGS_USER) {
4608 /* regs dump ABI info */
4609 int size = sizeof(u64);
4610
4611 perf_sample_regs_user(&data->regs_user, regs);
4612
4613 if (data->regs_user.regs) {
4614 u64 mask = event->attr.sample_regs_user;
4615 size += hweight64(mask) * sizeof(u64);
4616 }
4617
4618 header->size += size;
4619 }
c5ebcedb
JO
4620
4621 if (sample_type & PERF_SAMPLE_STACK_USER) {
4622 /*
4623 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4624 * processed as the last one or have additional check added
4625 * in case new sample type is added, because we could eat
4626 * up the rest of the sample size.
4627 */
4628 struct perf_regs_user *uregs = &data->regs_user;
4629 u16 stack_size = event->attr.sample_stack_user;
4630 u16 size = sizeof(u64);
4631
4632 if (!uregs->abi)
4633 perf_sample_regs_user(uregs, regs);
4634
4635 stack_size = perf_sample_ustack_size(stack_size, header->size,
4636 uregs->regs);
4637
4638 /*
4639 * If there is something to dump, add space for the dump
4640 * itself and for the field that tells the dynamic size,
4641 * which is how many have been actually dumped.
4642 */
4643 if (stack_size)
4644 size += sizeof(u64) + stack_size;
4645
4646 data->stack_user_size = stack_size;
4647 header->size += size;
4648 }
5622f295 4649}
7f453c24 4650
a8b0ca17 4651static void perf_event_output(struct perf_event *event,
5622f295
MM
4652 struct perf_sample_data *data,
4653 struct pt_regs *regs)
4654{
4655 struct perf_output_handle handle;
4656 struct perf_event_header header;
689802b2 4657
927c7a9e
FW
4658 /* protect the callchain buffers */
4659 rcu_read_lock();
4660
cdd6c482 4661 perf_prepare_sample(&header, data, event, regs);
5c148194 4662
a7ac67ea 4663 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4664 goto exit;
0322cd6e 4665
cdd6c482 4666 perf_output_sample(&handle, &header, data, event);
f413cdb8 4667
8a057d84 4668 perf_output_end(&handle);
927c7a9e
FW
4669
4670exit:
4671 rcu_read_unlock();
0322cd6e
PZ
4672}
4673
38b200d6 4674/*
cdd6c482 4675 * read event_id
38b200d6
PZ
4676 */
4677
4678struct perf_read_event {
4679 struct perf_event_header header;
4680
4681 u32 pid;
4682 u32 tid;
38b200d6
PZ
4683};
4684
4685static void
cdd6c482 4686perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4687 struct task_struct *task)
4688{
4689 struct perf_output_handle handle;
c980d109 4690 struct perf_sample_data sample;
dfc65094 4691 struct perf_read_event read_event = {
38b200d6 4692 .header = {
cdd6c482 4693 .type = PERF_RECORD_READ,
38b200d6 4694 .misc = 0,
c320c7b7 4695 .size = sizeof(read_event) + event->read_size,
38b200d6 4696 },
cdd6c482
IM
4697 .pid = perf_event_pid(event, task),
4698 .tid = perf_event_tid(event, task),
38b200d6 4699 };
3dab77fb 4700 int ret;
38b200d6 4701
c980d109 4702 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4703 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4704 if (ret)
4705 return;
4706
dfc65094 4707 perf_output_put(&handle, read_event);
cdd6c482 4708 perf_output_read(&handle, event);
c980d109 4709 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4710
38b200d6
PZ
4711 perf_output_end(&handle);
4712}
4713
52d857a8
JO
4714typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4715
4716static void
4717perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4718 perf_event_aux_output_cb output,
4719 void *data)
4720{
4721 struct perf_event *event;
4722
4723 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4724 if (event->state < PERF_EVENT_STATE_INACTIVE)
4725 continue;
4726 if (!event_filter_match(event))
4727 continue;
67516844 4728 output(event, data);
52d857a8
JO
4729 }
4730}
4731
4732static void
67516844 4733perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4734 struct perf_event_context *task_ctx)
4735{
4736 struct perf_cpu_context *cpuctx;
4737 struct perf_event_context *ctx;
4738 struct pmu *pmu;
4739 int ctxn;
4740
4741 rcu_read_lock();
4742 list_for_each_entry_rcu(pmu, &pmus, entry) {
4743 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4744 if (cpuctx->unique_pmu != pmu)
4745 goto next;
67516844 4746 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4747 if (task_ctx)
4748 goto next;
4749 ctxn = pmu->task_ctx_nr;
4750 if (ctxn < 0)
4751 goto next;
4752 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4753 if (ctx)
67516844 4754 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4755next:
4756 put_cpu_ptr(pmu->pmu_cpu_context);
4757 }
4758
4759 if (task_ctx) {
4760 preempt_disable();
67516844 4761 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4762 preempt_enable();
4763 }
4764 rcu_read_unlock();
4765}
4766
60313ebe 4767/*
9f498cc5
PZ
4768 * task tracking -- fork/exit
4769 *
3af9e859 4770 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4771 */
4772
9f498cc5 4773struct perf_task_event {
3a80b4a3 4774 struct task_struct *task;
cdd6c482 4775 struct perf_event_context *task_ctx;
60313ebe
PZ
4776
4777 struct {
4778 struct perf_event_header header;
4779
4780 u32 pid;
4781 u32 ppid;
9f498cc5
PZ
4782 u32 tid;
4783 u32 ptid;
393b2ad8 4784 u64 time;
cdd6c482 4785 } event_id;
60313ebe
PZ
4786};
4787
67516844
JO
4788static int perf_event_task_match(struct perf_event *event)
4789{
4790 return event->attr.comm || event->attr.mmap ||
4791 event->attr.mmap_data || event->attr.task;
4792}
4793
cdd6c482 4794static void perf_event_task_output(struct perf_event *event,
52d857a8 4795 void *data)
60313ebe 4796{
52d857a8 4797 struct perf_task_event *task_event = data;
60313ebe 4798 struct perf_output_handle handle;
c980d109 4799 struct perf_sample_data sample;
9f498cc5 4800 struct task_struct *task = task_event->task;
c980d109 4801 int ret, size = task_event->event_id.header.size;
8bb39f9a 4802
67516844
JO
4803 if (!perf_event_task_match(event))
4804 return;
4805
c980d109 4806 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4807
c980d109 4808 ret = perf_output_begin(&handle, event,
a7ac67ea 4809 task_event->event_id.header.size);
ef60777c 4810 if (ret)
c980d109 4811 goto out;
60313ebe 4812
cdd6c482
IM
4813 task_event->event_id.pid = perf_event_pid(event, task);
4814 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4815
cdd6c482
IM
4816 task_event->event_id.tid = perf_event_tid(event, task);
4817 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4818
cdd6c482 4819 perf_output_put(&handle, task_event->event_id);
393b2ad8 4820
c980d109
ACM
4821 perf_event__output_id_sample(event, &handle, &sample);
4822
60313ebe 4823 perf_output_end(&handle);
c980d109
ACM
4824out:
4825 task_event->event_id.header.size = size;
60313ebe
PZ
4826}
4827
cdd6c482
IM
4828static void perf_event_task(struct task_struct *task,
4829 struct perf_event_context *task_ctx,
3a80b4a3 4830 int new)
60313ebe 4831{
9f498cc5 4832 struct perf_task_event task_event;
60313ebe 4833
cdd6c482
IM
4834 if (!atomic_read(&nr_comm_events) &&
4835 !atomic_read(&nr_mmap_events) &&
4836 !atomic_read(&nr_task_events))
60313ebe
PZ
4837 return;
4838
9f498cc5 4839 task_event = (struct perf_task_event){
3a80b4a3
PZ
4840 .task = task,
4841 .task_ctx = task_ctx,
cdd6c482 4842 .event_id = {
60313ebe 4843 .header = {
cdd6c482 4844 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4845 .misc = 0,
cdd6c482 4846 .size = sizeof(task_event.event_id),
60313ebe 4847 },
573402db
PZ
4848 /* .pid */
4849 /* .ppid */
9f498cc5
PZ
4850 /* .tid */
4851 /* .ptid */
6f93d0a7 4852 .time = perf_clock(),
60313ebe
PZ
4853 },
4854 };
4855
67516844 4856 perf_event_aux(perf_event_task_output,
52d857a8
JO
4857 &task_event,
4858 task_ctx);
9f498cc5
PZ
4859}
4860
cdd6c482 4861void perf_event_fork(struct task_struct *task)
9f498cc5 4862{
cdd6c482 4863 perf_event_task(task, NULL, 1);
60313ebe
PZ
4864}
4865
8d1b2d93
PZ
4866/*
4867 * comm tracking
4868 */
4869
4870struct perf_comm_event {
22a4f650
IM
4871 struct task_struct *task;
4872 char *comm;
8d1b2d93
PZ
4873 int comm_size;
4874
4875 struct {
4876 struct perf_event_header header;
4877
4878 u32 pid;
4879 u32 tid;
cdd6c482 4880 } event_id;
8d1b2d93
PZ
4881};
4882
67516844
JO
4883static int perf_event_comm_match(struct perf_event *event)
4884{
4885 return event->attr.comm;
4886}
4887
cdd6c482 4888static void perf_event_comm_output(struct perf_event *event,
52d857a8 4889 void *data)
8d1b2d93 4890{
52d857a8 4891 struct perf_comm_event *comm_event = data;
8d1b2d93 4892 struct perf_output_handle handle;
c980d109 4893 struct perf_sample_data sample;
cdd6c482 4894 int size = comm_event->event_id.header.size;
c980d109
ACM
4895 int ret;
4896
67516844
JO
4897 if (!perf_event_comm_match(event))
4898 return;
4899
c980d109
ACM
4900 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4901 ret = perf_output_begin(&handle, event,
a7ac67ea 4902 comm_event->event_id.header.size);
8d1b2d93
PZ
4903
4904 if (ret)
c980d109 4905 goto out;
8d1b2d93 4906
cdd6c482
IM
4907 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4908 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4909
cdd6c482 4910 perf_output_put(&handle, comm_event->event_id);
76369139 4911 __output_copy(&handle, comm_event->comm,
8d1b2d93 4912 comm_event->comm_size);
c980d109
ACM
4913
4914 perf_event__output_id_sample(event, &handle, &sample);
4915
8d1b2d93 4916 perf_output_end(&handle);
c980d109
ACM
4917out:
4918 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4919}
4920
cdd6c482 4921static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4922{
413ee3b4 4923 char comm[TASK_COMM_LEN];
8d1b2d93 4924 unsigned int size;
8d1b2d93 4925
413ee3b4 4926 memset(comm, 0, sizeof(comm));
96b02d78 4927 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4928 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4929
4930 comm_event->comm = comm;
4931 comm_event->comm_size = size;
4932
cdd6c482 4933 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4934
67516844 4935 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4936 comm_event,
4937 NULL);
8d1b2d93
PZ
4938}
4939
cdd6c482 4940void perf_event_comm(struct task_struct *task)
8d1b2d93 4941{
9ee318a7 4942 struct perf_comm_event comm_event;
8dc85d54
PZ
4943 struct perf_event_context *ctx;
4944 int ctxn;
9ee318a7 4945
c79aa0d9 4946 rcu_read_lock();
8dc85d54
PZ
4947 for_each_task_context_nr(ctxn) {
4948 ctx = task->perf_event_ctxp[ctxn];
4949 if (!ctx)
4950 continue;
9ee318a7 4951
8dc85d54
PZ
4952 perf_event_enable_on_exec(ctx);
4953 }
c79aa0d9 4954 rcu_read_unlock();
9ee318a7 4955
cdd6c482 4956 if (!atomic_read(&nr_comm_events))
9ee318a7 4957 return;
a63eaf34 4958
9ee318a7 4959 comm_event = (struct perf_comm_event){
8d1b2d93 4960 .task = task,
573402db
PZ
4961 /* .comm */
4962 /* .comm_size */
cdd6c482 4963 .event_id = {
573402db 4964 .header = {
cdd6c482 4965 .type = PERF_RECORD_COMM,
573402db
PZ
4966 .misc = 0,
4967 /* .size */
4968 },
4969 /* .pid */
4970 /* .tid */
8d1b2d93
PZ
4971 },
4972 };
4973
cdd6c482 4974 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4975}
4976
0a4a9391
PZ
4977/*
4978 * mmap tracking
4979 */
4980
4981struct perf_mmap_event {
089dd79d
PZ
4982 struct vm_area_struct *vma;
4983
4984 const char *file_name;
4985 int file_size;
0a4a9391
PZ
4986
4987 struct {
4988 struct perf_event_header header;
4989
4990 u32 pid;
4991 u32 tid;
4992 u64 start;
4993 u64 len;
4994 u64 pgoff;
cdd6c482 4995 } event_id;
0a4a9391
PZ
4996};
4997
67516844
JO
4998static int perf_event_mmap_match(struct perf_event *event,
4999 void *data)
5000{
5001 struct perf_mmap_event *mmap_event = data;
5002 struct vm_area_struct *vma = mmap_event->vma;
5003 int executable = vma->vm_flags & VM_EXEC;
5004
5005 return (!executable && event->attr.mmap_data) ||
5006 (executable && event->attr.mmap);
5007}
5008
cdd6c482 5009static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5010 void *data)
0a4a9391 5011{
52d857a8 5012 struct perf_mmap_event *mmap_event = data;
0a4a9391 5013 struct perf_output_handle handle;
c980d109 5014 struct perf_sample_data sample;
cdd6c482 5015 int size = mmap_event->event_id.header.size;
c980d109 5016 int ret;
0a4a9391 5017
67516844
JO
5018 if (!perf_event_mmap_match(event, data))
5019 return;
5020
c980d109
ACM
5021 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5022 ret = perf_output_begin(&handle, event,
a7ac67ea 5023 mmap_event->event_id.header.size);
0a4a9391 5024 if (ret)
c980d109 5025 goto out;
0a4a9391 5026
cdd6c482
IM
5027 mmap_event->event_id.pid = perf_event_pid(event, current);
5028 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5029
cdd6c482 5030 perf_output_put(&handle, mmap_event->event_id);
76369139 5031 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5032 mmap_event->file_size);
c980d109
ACM
5033
5034 perf_event__output_id_sample(event, &handle, &sample);
5035
78d613eb 5036 perf_output_end(&handle);
c980d109
ACM
5037out:
5038 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5039}
5040
cdd6c482 5041static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5042{
089dd79d
PZ
5043 struct vm_area_struct *vma = mmap_event->vma;
5044 struct file *file = vma->vm_file;
0a4a9391
PZ
5045 unsigned int size;
5046 char tmp[16];
5047 char *buf = NULL;
089dd79d 5048 const char *name;
0a4a9391 5049
413ee3b4
AB
5050 memset(tmp, 0, sizeof(tmp));
5051
0a4a9391 5052 if (file) {
413ee3b4 5053 /*
76369139 5054 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5055 * need to add enough zero bytes after the string to handle
5056 * the 64bit alignment we do later.
5057 */
5058 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5059 if (!buf) {
5060 name = strncpy(tmp, "//enomem", sizeof(tmp));
5061 goto got_name;
5062 }
d3d21c41 5063 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5064 if (IS_ERR(name)) {
5065 name = strncpy(tmp, "//toolong", sizeof(tmp));
5066 goto got_name;
5067 }
5068 } else {
413ee3b4
AB
5069 if (arch_vma_name(mmap_event->vma)) {
5070 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5071 sizeof(tmp) - 1);
5072 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5073 goto got_name;
413ee3b4 5074 }
089dd79d
PZ
5075
5076 if (!vma->vm_mm) {
5077 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5078 goto got_name;
3af9e859
EM
5079 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5080 vma->vm_end >= vma->vm_mm->brk) {
5081 name = strncpy(tmp, "[heap]", sizeof(tmp));
5082 goto got_name;
5083 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5084 vma->vm_end >= vma->vm_mm->start_stack) {
5085 name = strncpy(tmp, "[stack]", sizeof(tmp));
5086 goto got_name;
089dd79d
PZ
5087 }
5088
0a4a9391
PZ
5089 name = strncpy(tmp, "//anon", sizeof(tmp));
5090 goto got_name;
5091 }
5092
5093got_name:
888fcee0 5094 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5095
5096 mmap_event->file_name = name;
5097 mmap_event->file_size = size;
5098
2fe85427
SE
5099 if (!(vma->vm_flags & VM_EXEC))
5100 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5101
cdd6c482 5102 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5103
67516844 5104 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5105 mmap_event,
5106 NULL);
665c2142 5107
0a4a9391
PZ
5108 kfree(buf);
5109}
5110
3af9e859 5111void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5112{
9ee318a7
PZ
5113 struct perf_mmap_event mmap_event;
5114
cdd6c482 5115 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5116 return;
5117
5118 mmap_event = (struct perf_mmap_event){
089dd79d 5119 .vma = vma,
573402db
PZ
5120 /* .file_name */
5121 /* .file_size */
cdd6c482 5122 .event_id = {
573402db 5123 .header = {
cdd6c482 5124 .type = PERF_RECORD_MMAP,
39447b38 5125 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5126 /* .size */
5127 },
5128 /* .pid */
5129 /* .tid */
089dd79d
PZ
5130 .start = vma->vm_start,
5131 .len = vma->vm_end - vma->vm_start,
3a0304e9 5132 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5133 },
5134 };
5135
cdd6c482 5136 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5137}
5138
a78ac325
PZ
5139/*
5140 * IRQ throttle logging
5141 */
5142
cdd6c482 5143static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5144{
5145 struct perf_output_handle handle;
c980d109 5146 struct perf_sample_data sample;
a78ac325
PZ
5147 int ret;
5148
5149 struct {
5150 struct perf_event_header header;
5151 u64 time;
cca3f454 5152 u64 id;
7f453c24 5153 u64 stream_id;
a78ac325
PZ
5154 } throttle_event = {
5155 .header = {
cdd6c482 5156 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5157 .misc = 0,
5158 .size = sizeof(throttle_event),
5159 },
def0a9b2 5160 .time = perf_clock(),
cdd6c482
IM
5161 .id = primary_event_id(event),
5162 .stream_id = event->id,
a78ac325
PZ
5163 };
5164
966ee4d6 5165 if (enable)
cdd6c482 5166 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5167
c980d109
ACM
5168 perf_event_header__init_id(&throttle_event.header, &sample, event);
5169
5170 ret = perf_output_begin(&handle, event,
a7ac67ea 5171 throttle_event.header.size);
a78ac325
PZ
5172 if (ret)
5173 return;
5174
5175 perf_output_put(&handle, throttle_event);
c980d109 5176 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5177 perf_output_end(&handle);
5178}
5179
f6c7d5fe 5180/*
cdd6c482 5181 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5182 */
5183
a8b0ca17 5184static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5185 int throttle, struct perf_sample_data *data,
5186 struct pt_regs *regs)
f6c7d5fe 5187{
cdd6c482
IM
5188 int events = atomic_read(&event->event_limit);
5189 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5190 u64 seq;
79f14641
PZ
5191 int ret = 0;
5192
96398826
PZ
5193 /*
5194 * Non-sampling counters might still use the PMI to fold short
5195 * hardware counters, ignore those.
5196 */
5197 if (unlikely(!is_sampling_event(event)))
5198 return 0;
5199
e050e3f0
SE
5200 seq = __this_cpu_read(perf_throttled_seq);
5201 if (seq != hwc->interrupts_seq) {
5202 hwc->interrupts_seq = seq;
5203 hwc->interrupts = 1;
5204 } else {
5205 hwc->interrupts++;
5206 if (unlikely(throttle
5207 && hwc->interrupts >= max_samples_per_tick)) {
5208 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5209 hwc->interrupts = MAX_INTERRUPTS;
5210 perf_log_throttle(event, 0);
d84153d6 5211 tick_nohz_full_kick();
a78ac325
PZ
5212 ret = 1;
5213 }
e050e3f0 5214 }
60db5e09 5215
cdd6c482 5216 if (event->attr.freq) {
def0a9b2 5217 u64 now = perf_clock();
abd50713 5218 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5219
abd50713 5220 hwc->freq_time_stamp = now;
bd2b5b12 5221
abd50713 5222 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5223 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5224 }
5225
2023b359
PZ
5226 /*
5227 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5228 * events
2023b359
PZ
5229 */
5230
cdd6c482
IM
5231 event->pending_kill = POLL_IN;
5232 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5233 ret = 1;
cdd6c482 5234 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5235 event->pending_disable = 1;
5236 irq_work_queue(&event->pending);
79f14641
PZ
5237 }
5238
453f19ee 5239 if (event->overflow_handler)
a8b0ca17 5240 event->overflow_handler(event, data, regs);
453f19ee 5241 else
a8b0ca17 5242 perf_event_output(event, data, regs);
453f19ee 5243
f506b3dc 5244 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5245 event->pending_wakeup = 1;
5246 irq_work_queue(&event->pending);
f506b3dc
PZ
5247 }
5248
79f14641 5249 return ret;
f6c7d5fe
PZ
5250}
5251
a8b0ca17 5252int perf_event_overflow(struct perf_event *event,
5622f295
MM
5253 struct perf_sample_data *data,
5254 struct pt_regs *regs)
850bc73f 5255{
a8b0ca17 5256 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5257}
5258
15dbf27c 5259/*
cdd6c482 5260 * Generic software event infrastructure
15dbf27c
PZ
5261 */
5262
b28ab83c
PZ
5263struct swevent_htable {
5264 struct swevent_hlist *swevent_hlist;
5265 struct mutex hlist_mutex;
5266 int hlist_refcount;
5267
5268 /* Recursion avoidance in each contexts */
5269 int recursion[PERF_NR_CONTEXTS];
5270};
5271
5272static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5273
7b4b6658 5274/*
cdd6c482
IM
5275 * We directly increment event->count and keep a second value in
5276 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5277 * is kept in the range [-sample_period, 0] so that we can use the
5278 * sign as trigger.
5279 */
5280
ab573844 5281u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5282{
cdd6c482 5283 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5284 u64 period = hwc->last_period;
5285 u64 nr, offset;
5286 s64 old, val;
5287
5288 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5289
5290again:
e7850595 5291 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5292 if (val < 0)
5293 return 0;
15dbf27c 5294
7b4b6658
PZ
5295 nr = div64_u64(period + val, period);
5296 offset = nr * period;
5297 val -= offset;
e7850595 5298 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5299 goto again;
15dbf27c 5300
7b4b6658 5301 return nr;
15dbf27c
PZ
5302}
5303
0cff784a 5304static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5305 struct perf_sample_data *data,
5622f295 5306 struct pt_regs *regs)
15dbf27c 5307{
cdd6c482 5308 struct hw_perf_event *hwc = &event->hw;
850bc73f 5309 int throttle = 0;
15dbf27c 5310
0cff784a
PZ
5311 if (!overflow)
5312 overflow = perf_swevent_set_period(event);
15dbf27c 5313
7b4b6658
PZ
5314 if (hwc->interrupts == MAX_INTERRUPTS)
5315 return;
15dbf27c 5316
7b4b6658 5317 for (; overflow; overflow--) {
a8b0ca17 5318 if (__perf_event_overflow(event, throttle,
5622f295 5319 data, regs)) {
7b4b6658
PZ
5320 /*
5321 * We inhibit the overflow from happening when
5322 * hwc->interrupts == MAX_INTERRUPTS.
5323 */
5324 break;
5325 }
cf450a73 5326 throttle = 1;
7b4b6658 5327 }
15dbf27c
PZ
5328}
5329
a4eaf7f1 5330static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5331 struct perf_sample_data *data,
5622f295 5332 struct pt_regs *regs)
7b4b6658 5333{
cdd6c482 5334 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5335
e7850595 5336 local64_add(nr, &event->count);
d6d020e9 5337
0cff784a
PZ
5338 if (!regs)
5339 return;
5340
6c7e550f 5341 if (!is_sampling_event(event))
7b4b6658 5342 return;
d6d020e9 5343
5d81e5cf
AV
5344 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5345 data->period = nr;
5346 return perf_swevent_overflow(event, 1, data, regs);
5347 } else
5348 data->period = event->hw.last_period;
5349
0cff784a 5350 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5351 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5352
e7850595 5353 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5354 return;
df1a132b 5355
a8b0ca17 5356 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5357}
5358
f5ffe02e
FW
5359static int perf_exclude_event(struct perf_event *event,
5360 struct pt_regs *regs)
5361{
a4eaf7f1 5362 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5363 return 1;
a4eaf7f1 5364
f5ffe02e
FW
5365 if (regs) {
5366 if (event->attr.exclude_user && user_mode(regs))
5367 return 1;
5368
5369 if (event->attr.exclude_kernel && !user_mode(regs))
5370 return 1;
5371 }
5372
5373 return 0;
5374}
5375
cdd6c482 5376static int perf_swevent_match(struct perf_event *event,
1c432d89 5377 enum perf_type_id type,
6fb2915d
LZ
5378 u32 event_id,
5379 struct perf_sample_data *data,
5380 struct pt_regs *regs)
15dbf27c 5381{
cdd6c482 5382 if (event->attr.type != type)
a21ca2ca 5383 return 0;
f5ffe02e 5384
cdd6c482 5385 if (event->attr.config != event_id)
15dbf27c
PZ
5386 return 0;
5387
f5ffe02e
FW
5388 if (perf_exclude_event(event, regs))
5389 return 0;
15dbf27c
PZ
5390
5391 return 1;
5392}
5393
76e1d904
FW
5394static inline u64 swevent_hash(u64 type, u32 event_id)
5395{
5396 u64 val = event_id | (type << 32);
5397
5398 return hash_64(val, SWEVENT_HLIST_BITS);
5399}
5400
49f135ed
FW
5401static inline struct hlist_head *
5402__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5403{
49f135ed
FW
5404 u64 hash = swevent_hash(type, event_id);
5405
5406 return &hlist->heads[hash];
5407}
76e1d904 5408
49f135ed
FW
5409/* For the read side: events when they trigger */
5410static inline struct hlist_head *
b28ab83c 5411find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5412{
5413 struct swevent_hlist *hlist;
76e1d904 5414
b28ab83c 5415 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5416 if (!hlist)
5417 return NULL;
5418
49f135ed
FW
5419 return __find_swevent_head(hlist, type, event_id);
5420}
5421
5422/* For the event head insertion and removal in the hlist */
5423static inline struct hlist_head *
b28ab83c 5424find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5425{
5426 struct swevent_hlist *hlist;
5427 u32 event_id = event->attr.config;
5428 u64 type = event->attr.type;
5429
5430 /*
5431 * Event scheduling is always serialized against hlist allocation
5432 * and release. Which makes the protected version suitable here.
5433 * The context lock guarantees that.
5434 */
b28ab83c 5435 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5436 lockdep_is_held(&event->ctx->lock));
5437 if (!hlist)
5438 return NULL;
5439
5440 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5441}
5442
5443static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5444 u64 nr,
76e1d904
FW
5445 struct perf_sample_data *data,
5446 struct pt_regs *regs)
15dbf27c 5447{
b28ab83c 5448 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5449 struct perf_event *event;
76e1d904 5450 struct hlist_head *head;
15dbf27c 5451
76e1d904 5452 rcu_read_lock();
b28ab83c 5453 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5454 if (!head)
5455 goto end;
5456
b67bfe0d 5457 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5458 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5459 perf_swevent_event(event, nr, data, regs);
15dbf27c 5460 }
76e1d904
FW
5461end:
5462 rcu_read_unlock();
15dbf27c
PZ
5463}
5464
4ed7c92d 5465int perf_swevent_get_recursion_context(void)
96f6d444 5466{
b28ab83c 5467 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5468
b28ab83c 5469 return get_recursion_context(swhash->recursion);
96f6d444 5470}
645e8cc0 5471EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5472
fa9f90be 5473inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5474{
b28ab83c 5475 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5476
b28ab83c 5477 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5478}
15dbf27c 5479
a8b0ca17 5480void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5481{
a4234bfc 5482 struct perf_sample_data data;
4ed7c92d
PZ
5483 int rctx;
5484
1c024eca 5485 preempt_disable_notrace();
4ed7c92d
PZ
5486 rctx = perf_swevent_get_recursion_context();
5487 if (rctx < 0)
5488 return;
a4234bfc 5489
fd0d000b 5490 perf_sample_data_init(&data, addr, 0);
92bf309a 5491
a8b0ca17 5492 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5493
5494 perf_swevent_put_recursion_context(rctx);
1c024eca 5495 preempt_enable_notrace();
b8e83514
PZ
5496}
5497
cdd6c482 5498static void perf_swevent_read(struct perf_event *event)
15dbf27c 5499{
15dbf27c
PZ
5500}
5501
a4eaf7f1 5502static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5503{
b28ab83c 5504 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5505 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5506 struct hlist_head *head;
5507
6c7e550f 5508 if (is_sampling_event(event)) {
7b4b6658 5509 hwc->last_period = hwc->sample_period;
cdd6c482 5510 perf_swevent_set_period(event);
7b4b6658 5511 }
76e1d904 5512
a4eaf7f1
PZ
5513 hwc->state = !(flags & PERF_EF_START);
5514
b28ab83c 5515 head = find_swevent_head(swhash, event);
76e1d904
FW
5516 if (WARN_ON_ONCE(!head))
5517 return -EINVAL;
5518
5519 hlist_add_head_rcu(&event->hlist_entry, head);
5520
15dbf27c
PZ
5521 return 0;
5522}
5523
a4eaf7f1 5524static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5525{
76e1d904 5526 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5527}
5528
a4eaf7f1 5529static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5530{
a4eaf7f1 5531 event->hw.state = 0;
d6d020e9 5532}
aa9c4c0f 5533
a4eaf7f1 5534static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5535{
a4eaf7f1 5536 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5537}
5538
49f135ed
FW
5539/* Deref the hlist from the update side */
5540static inline struct swevent_hlist *
b28ab83c 5541swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5542{
b28ab83c
PZ
5543 return rcu_dereference_protected(swhash->swevent_hlist,
5544 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5545}
5546
b28ab83c 5547static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5548{
b28ab83c 5549 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5550
49f135ed 5551 if (!hlist)
76e1d904
FW
5552 return;
5553
b28ab83c 5554 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5555 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5556}
5557
5558static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5559{
b28ab83c 5560 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5561
b28ab83c 5562 mutex_lock(&swhash->hlist_mutex);
76e1d904 5563
b28ab83c
PZ
5564 if (!--swhash->hlist_refcount)
5565 swevent_hlist_release(swhash);
76e1d904 5566
b28ab83c 5567 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5568}
5569
5570static void swevent_hlist_put(struct perf_event *event)
5571{
5572 int cpu;
5573
5574 if (event->cpu != -1) {
5575 swevent_hlist_put_cpu(event, event->cpu);
5576 return;
5577 }
5578
5579 for_each_possible_cpu(cpu)
5580 swevent_hlist_put_cpu(event, cpu);
5581}
5582
5583static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5584{
b28ab83c 5585 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5586 int err = 0;
5587
b28ab83c 5588 mutex_lock(&swhash->hlist_mutex);
76e1d904 5589
b28ab83c 5590 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5591 struct swevent_hlist *hlist;
5592
5593 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5594 if (!hlist) {
5595 err = -ENOMEM;
5596 goto exit;
5597 }
b28ab83c 5598 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5599 }
b28ab83c 5600 swhash->hlist_refcount++;
9ed6060d 5601exit:
b28ab83c 5602 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5603
5604 return err;
5605}
5606
5607static int swevent_hlist_get(struct perf_event *event)
5608{
5609 int err;
5610 int cpu, failed_cpu;
5611
5612 if (event->cpu != -1)
5613 return swevent_hlist_get_cpu(event, event->cpu);
5614
5615 get_online_cpus();
5616 for_each_possible_cpu(cpu) {
5617 err = swevent_hlist_get_cpu(event, cpu);
5618 if (err) {
5619 failed_cpu = cpu;
5620 goto fail;
5621 }
5622 }
5623 put_online_cpus();
5624
5625 return 0;
9ed6060d 5626fail:
76e1d904
FW
5627 for_each_possible_cpu(cpu) {
5628 if (cpu == failed_cpu)
5629 break;
5630 swevent_hlist_put_cpu(event, cpu);
5631 }
5632
5633 put_online_cpus();
5634 return err;
5635}
5636
c5905afb 5637struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5638
b0a873eb
PZ
5639static void sw_perf_event_destroy(struct perf_event *event)
5640{
5641 u64 event_id = event->attr.config;
95476b64 5642
b0a873eb
PZ
5643 WARN_ON(event->parent);
5644
c5905afb 5645 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5646 swevent_hlist_put(event);
5647}
5648
5649static int perf_swevent_init(struct perf_event *event)
5650{
8176cced 5651 u64 event_id = event->attr.config;
b0a873eb
PZ
5652
5653 if (event->attr.type != PERF_TYPE_SOFTWARE)
5654 return -ENOENT;
5655
2481c5fa
SE
5656 /*
5657 * no branch sampling for software events
5658 */
5659 if (has_branch_stack(event))
5660 return -EOPNOTSUPP;
5661
b0a873eb
PZ
5662 switch (event_id) {
5663 case PERF_COUNT_SW_CPU_CLOCK:
5664 case PERF_COUNT_SW_TASK_CLOCK:
5665 return -ENOENT;
5666
5667 default:
5668 break;
5669 }
5670
ce677831 5671 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5672 return -ENOENT;
5673
5674 if (!event->parent) {
5675 int err;
5676
5677 err = swevent_hlist_get(event);
5678 if (err)
5679 return err;
5680
c5905afb 5681 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5682 event->destroy = sw_perf_event_destroy;
5683 }
5684
5685 return 0;
5686}
5687
35edc2a5
PZ
5688static int perf_swevent_event_idx(struct perf_event *event)
5689{
5690 return 0;
5691}
5692
b0a873eb 5693static struct pmu perf_swevent = {
89a1e187 5694 .task_ctx_nr = perf_sw_context,
95476b64 5695
b0a873eb 5696 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5697 .add = perf_swevent_add,
5698 .del = perf_swevent_del,
5699 .start = perf_swevent_start,
5700 .stop = perf_swevent_stop,
1c024eca 5701 .read = perf_swevent_read,
35edc2a5
PZ
5702
5703 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5704};
5705
b0a873eb
PZ
5706#ifdef CONFIG_EVENT_TRACING
5707
1c024eca
PZ
5708static int perf_tp_filter_match(struct perf_event *event,
5709 struct perf_sample_data *data)
5710{
5711 void *record = data->raw->data;
5712
5713 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5714 return 1;
5715 return 0;
5716}
5717
5718static int perf_tp_event_match(struct perf_event *event,
5719 struct perf_sample_data *data,
5720 struct pt_regs *regs)
5721{
a0f7d0f7
FW
5722 if (event->hw.state & PERF_HES_STOPPED)
5723 return 0;
580d607c
PZ
5724 /*
5725 * All tracepoints are from kernel-space.
5726 */
5727 if (event->attr.exclude_kernel)
1c024eca
PZ
5728 return 0;
5729
5730 if (!perf_tp_filter_match(event, data))
5731 return 0;
5732
5733 return 1;
5734}
5735
5736void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5737 struct pt_regs *regs, struct hlist_head *head, int rctx,
5738 struct task_struct *task)
95476b64
FW
5739{
5740 struct perf_sample_data data;
1c024eca 5741 struct perf_event *event;
1c024eca 5742
95476b64
FW
5743 struct perf_raw_record raw = {
5744 .size = entry_size,
5745 .data = record,
5746 };
5747
fd0d000b 5748 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5749 data.raw = &raw;
5750
b67bfe0d 5751 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5752 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5753 perf_swevent_event(event, count, &data, regs);
4f41c013 5754 }
ecc55f84 5755
e6dab5ff
AV
5756 /*
5757 * If we got specified a target task, also iterate its context and
5758 * deliver this event there too.
5759 */
5760 if (task && task != current) {
5761 struct perf_event_context *ctx;
5762 struct trace_entry *entry = record;
5763
5764 rcu_read_lock();
5765 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5766 if (!ctx)
5767 goto unlock;
5768
5769 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5770 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5771 continue;
5772 if (event->attr.config != entry->type)
5773 continue;
5774 if (perf_tp_event_match(event, &data, regs))
5775 perf_swevent_event(event, count, &data, regs);
5776 }
5777unlock:
5778 rcu_read_unlock();
5779 }
5780
ecc55f84 5781 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5782}
5783EXPORT_SYMBOL_GPL(perf_tp_event);
5784
cdd6c482 5785static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5786{
1c024eca 5787 perf_trace_destroy(event);
e077df4f
PZ
5788}
5789
b0a873eb 5790static int perf_tp_event_init(struct perf_event *event)
e077df4f 5791{
76e1d904
FW
5792 int err;
5793
b0a873eb
PZ
5794 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5795 return -ENOENT;
5796
2481c5fa
SE
5797 /*
5798 * no branch sampling for tracepoint events
5799 */
5800 if (has_branch_stack(event))
5801 return -EOPNOTSUPP;
5802
1c024eca
PZ
5803 err = perf_trace_init(event);
5804 if (err)
b0a873eb 5805 return err;
e077df4f 5806
cdd6c482 5807 event->destroy = tp_perf_event_destroy;
e077df4f 5808
b0a873eb
PZ
5809 return 0;
5810}
5811
5812static struct pmu perf_tracepoint = {
89a1e187
PZ
5813 .task_ctx_nr = perf_sw_context,
5814
b0a873eb 5815 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5816 .add = perf_trace_add,
5817 .del = perf_trace_del,
5818 .start = perf_swevent_start,
5819 .stop = perf_swevent_stop,
b0a873eb 5820 .read = perf_swevent_read,
35edc2a5
PZ
5821
5822 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5823};
5824
5825static inline void perf_tp_register(void)
5826{
2e80a82a 5827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5828}
6fb2915d
LZ
5829
5830static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5831{
5832 char *filter_str;
5833 int ret;
5834
5835 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5836 return -EINVAL;
5837
5838 filter_str = strndup_user(arg, PAGE_SIZE);
5839 if (IS_ERR(filter_str))
5840 return PTR_ERR(filter_str);
5841
5842 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5843
5844 kfree(filter_str);
5845 return ret;
5846}
5847
5848static void perf_event_free_filter(struct perf_event *event)
5849{
5850 ftrace_profile_free_filter(event);
5851}
5852
e077df4f 5853#else
6fb2915d 5854
b0a873eb 5855static inline void perf_tp_register(void)
e077df4f 5856{
e077df4f 5857}
6fb2915d
LZ
5858
5859static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5860{
5861 return -ENOENT;
5862}
5863
5864static void perf_event_free_filter(struct perf_event *event)
5865{
5866}
5867
07b139c8 5868#endif /* CONFIG_EVENT_TRACING */
e077df4f 5869
24f1e32c 5870#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5871void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5872{
f5ffe02e
FW
5873 struct perf_sample_data sample;
5874 struct pt_regs *regs = data;
5875
fd0d000b 5876 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5877
a4eaf7f1 5878 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5879 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5880}
5881#endif
5882
b0a873eb
PZ
5883/*
5884 * hrtimer based swevent callback
5885 */
f29ac756 5886
b0a873eb 5887static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5888{
b0a873eb
PZ
5889 enum hrtimer_restart ret = HRTIMER_RESTART;
5890 struct perf_sample_data data;
5891 struct pt_regs *regs;
5892 struct perf_event *event;
5893 u64 period;
f29ac756 5894
b0a873eb 5895 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5896
5897 if (event->state != PERF_EVENT_STATE_ACTIVE)
5898 return HRTIMER_NORESTART;
5899
b0a873eb 5900 event->pmu->read(event);
f344011c 5901
fd0d000b 5902 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5903 regs = get_irq_regs();
5904
5905 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5906 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5907 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5908 ret = HRTIMER_NORESTART;
5909 }
24f1e32c 5910
b0a873eb
PZ
5911 period = max_t(u64, 10000, event->hw.sample_period);
5912 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5913
b0a873eb 5914 return ret;
f29ac756
PZ
5915}
5916
b0a873eb 5917static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5918{
b0a873eb 5919 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5920 s64 period;
5921
5922 if (!is_sampling_event(event))
5923 return;
f5ffe02e 5924
5d508e82
FBH
5925 period = local64_read(&hwc->period_left);
5926 if (period) {
5927 if (period < 0)
5928 period = 10000;
fa407f35 5929
5d508e82
FBH
5930 local64_set(&hwc->period_left, 0);
5931 } else {
5932 period = max_t(u64, 10000, hwc->sample_period);
5933 }
5934 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5935 ns_to_ktime(period), 0,
b5ab4cd5 5936 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5937}
b0a873eb
PZ
5938
5939static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5940{
b0a873eb
PZ
5941 struct hw_perf_event *hwc = &event->hw;
5942
6c7e550f 5943 if (is_sampling_event(event)) {
b0a873eb 5944 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5945 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5946
5947 hrtimer_cancel(&hwc->hrtimer);
5948 }
24f1e32c
FW
5949}
5950
ba3dd36c
PZ
5951static void perf_swevent_init_hrtimer(struct perf_event *event)
5952{
5953 struct hw_perf_event *hwc = &event->hw;
5954
5955 if (!is_sampling_event(event))
5956 return;
5957
5958 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5959 hwc->hrtimer.function = perf_swevent_hrtimer;
5960
5961 /*
5962 * Since hrtimers have a fixed rate, we can do a static freq->period
5963 * mapping and avoid the whole period adjust feedback stuff.
5964 */
5965 if (event->attr.freq) {
5966 long freq = event->attr.sample_freq;
5967
5968 event->attr.sample_period = NSEC_PER_SEC / freq;
5969 hwc->sample_period = event->attr.sample_period;
5970 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5971 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5972 event->attr.freq = 0;
5973 }
5974}
5975
b0a873eb
PZ
5976/*
5977 * Software event: cpu wall time clock
5978 */
5979
5980static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5981{
b0a873eb
PZ
5982 s64 prev;
5983 u64 now;
5984
a4eaf7f1 5985 now = local_clock();
b0a873eb
PZ
5986 prev = local64_xchg(&event->hw.prev_count, now);
5987 local64_add(now - prev, &event->count);
24f1e32c 5988}
24f1e32c 5989
a4eaf7f1 5990static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5991{
a4eaf7f1 5992 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5993 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5994}
5995
a4eaf7f1 5996static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5997{
b0a873eb
PZ
5998 perf_swevent_cancel_hrtimer(event);
5999 cpu_clock_event_update(event);
6000}
f29ac756 6001
a4eaf7f1
PZ
6002static int cpu_clock_event_add(struct perf_event *event, int flags)
6003{
6004 if (flags & PERF_EF_START)
6005 cpu_clock_event_start(event, flags);
6006
6007 return 0;
6008}
6009
6010static void cpu_clock_event_del(struct perf_event *event, int flags)
6011{
6012 cpu_clock_event_stop(event, flags);
6013}
6014
b0a873eb
PZ
6015static void cpu_clock_event_read(struct perf_event *event)
6016{
6017 cpu_clock_event_update(event);
6018}
f344011c 6019
b0a873eb
PZ
6020static int cpu_clock_event_init(struct perf_event *event)
6021{
6022 if (event->attr.type != PERF_TYPE_SOFTWARE)
6023 return -ENOENT;
6024
6025 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6026 return -ENOENT;
6027
2481c5fa
SE
6028 /*
6029 * no branch sampling for software events
6030 */
6031 if (has_branch_stack(event))
6032 return -EOPNOTSUPP;
6033
ba3dd36c
PZ
6034 perf_swevent_init_hrtimer(event);
6035
b0a873eb 6036 return 0;
f29ac756
PZ
6037}
6038
b0a873eb 6039static struct pmu perf_cpu_clock = {
89a1e187
PZ
6040 .task_ctx_nr = perf_sw_context,
6041
b0a873eb 6042 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6043 .add = cpu_clock_event_add,
6044 .del = cpu_clock_event_del,
6045 .start = cpu_clock_event_start,
6046 .stop = cpu_clock_event_stop,
b0a873eb 6047 .read = cpu_clock_event_read,
35edc2a5
PZ
6048
6049 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6050};
6051
6052/*
6053 * Software event: task time clock
6054 */
6055
6056static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6057{
b0a873eb
PZ
6058 u64 prev;
6059 s64 delta;
5c92d124 6060
b0a873eb
PZ
6061 prev = local64_xchg(&event->hw.prev_count, now);
6062 delta = now - prev;
6063 local64_add(delta, &event->count);
6064}
5c92d124 6065
a4eaf7f1 6066static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6067{
a4eaf7f1 6068 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6069 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6070}
6071
a4eaf7f1 6072static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6073{
6074 perf_swevent_cancel_hrtimer(event);
6075 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6076}
6077
6078static int task_clock_event_add(struct perf_event *event, int flags)
6079{
6080 if (flags & PERF_EF_START)
6081 task_clock_event_start(event, flags);
b0a873eb 6082
a4eaf7f1
PZ
6083 return 0;
6084}
6085
6086static void task_clock_event_del(struct perf_event *event, int flags)
6087{
6088 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6089}
6090
6091static void task_clock_event_read(struct perf_event *event)
6092{
768a06e2
PZ
6093 u64 now = perf_clock();
6094 u64 delta = now - event->ctx->timestamp;
6095 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6096
6097 task_clock_event_update(event, time);
6098}
6099
6100static int task_clock_event_init(struct perf_event *event)
6fb2915d 6101{
b0a873eb
PZ
6102 if (event->attr.type != PERF_TYPE_SOFTWARE)
6103 return -ENOENT;
6104
6105 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6106 return -ENOENT;
6107
2481c5fa
SE
6108 /*
6109 * no branch sampling for software events
6110 */
6111 if (has_branch_stack(event))
6112 return -EOPNOTSUPP;
6113
ba3dd36c
PZ
6114 perf_swevent_init_hrtimer(event);
6115
b0a873eb 6116 return 0;
6fb2915d
LZ
6117}
6118
b0a873eb 6119static struct pmu perf_task_clock = {
89a1e187
PZ
6120 .task_ctx_nr = perf_sw_context,
6121
b0a873eb 6122 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6123 .add = task_clock_event_add,
6124 .del = task_clock_event_del,
6125 .start = task_clock_event_start,
6126 .stop = task_clock_event_stop,
b0a873eb 6127 .read = task_clock_event_read,
35edc2a5
PZ
6128
6129 .event_idx = perf_swevent_event_idx,
b0a873eb 6130};
6fb2915d 6131
ad5133b7 6132static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6133{
e077df4f 6134}
6fb2915d 6135
ad5133b7 6136static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6137{
ad5133b7 6138 return 0;
6fb2915d
LZ
6139}
6140
ad5133b7 6141static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6142{
ad5133b7 6143 perf_pmu_disable(pmu);
6fb2915d
LZ
6144}
6145
ad5133b7
PZ
6146static int perf_pmu_commit_txn(struct pmu *pmu)
6147{
6148 perf_pmu_enable(pmu);
6149 return 0;
6150}
e077df4f 6151
ad5133b7 6152static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6153{
ad5133b7 6154 perf_pmu_enable(pmu);
24f1e32c
FW
6155}
6156
35edc2a5
PZ
6157static int perf_event_idx_default(struct perf_event *event)
6158{
6159 return event->hw.idx + 1;
6160}
6161
8dc85d54
PZ
6162/*
6163 * Ensures all contexts with the same task_ctx_nr have the same
6164 * pmu_cpu_context too.
6165 */
6166static void *find_pmu_context(int ctxn)
24f1e32c 6167{
8dc85d54 6168 struct pmu *pmu;
b326e956 6169
8dc85d54
PZ
6170 if (ctxn < 0)
6171 return NULL;
24f1e32c 6172
8dc85d54
PZ
6173 list_for_each_entry(pmu, &pmus, entry) {
6174 if (pmu->task_ctx_nr == ctxn)
6175 return pmu->pmu_cpu_context;
6176 }
24f1e32c 6177
8dc85d54 6178 return NULL;
24f1e32c
FW
6179}
6180
51676957 6181static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6182{
51676957
PZ
6183 int cpu;
6184
6185 for_each_possible_cpu(cpu) {
6186 struct perf_cpu_context *cpuctx;
6187
6188 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6189
3f1f3320
PZ
6190 if (cpuctx->unique_pmu == old_pmu)
6191 cpuctx->unique_pmu = pmu;
51676957
PZ
6192 }
6193}
6194
6195static void free_pmu_context(struct pmu *pmu)
6196{
6197 struct pmu *i;
f5ffe02e 6198
8dc85d54 6199 mutex_lock(&pmus_lock);
0475f9ea 6200 /*
8dc85d54 6201 * Like a real lame refcount.
0475f9ea 6202 */
51676957
PZ
6203 list_for_each_entry(i, &pmus, entry) {
6204 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6205 update_pmu_context(i, pmu);
8dc85d54 6206 goto out;
51676957 6207 }
8dc85d54 6208 }
d6d020e9 6209
51676957 6210 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6211out:
6212 mutex_unlock(&pmus_lock);
24f1e32c 6213}
2e80a82a 6214static struct idr pmu_idr;
d6d020e9 6215
abe43400
PZ
6216static ssize_t
6217type_show(struct device *dev, struct device_attribute *attr, char *page)
6218{
6219 struct pmu *pmu = dev_get_drvdata(dev);
6220
6221 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6222}
6223
62b85639
SE
6224static ssize_t
6225perf_event_mux_interval_ms_show(struct device *dev,
6226 struct device_attribute *attr,
6227 char *page)
6228{
6229 struct pmu *pmu = dev_get_drvdata(dev);
6230
6231 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6232}
6233
6234static ssize_t
6235perf_event_mux_interval_ms_store(struct device *dev,
6236 struct device_attribute *attr,
6237 const char *buf, size_t count)
6238{
6239 struct pmu *pmu = dev_get_drvdata(dev);
6240 int timer, cpu, ret;
6241
6242 ret = kstrtoint(buf, 0, &timer);
6243 if (ret)
6244 return ret;
6245
6246 if (timer < 1)
6247 return -EINVAL;
6248
6249 /* same value, noting to do */
6250 if (timer == pmu->hrtimer_interval_ms)
6251 return count;
6252
6253 pmu->hrtimer_interval_ms = timer;
6254
6255 /* update all cpuctx for this PMU */
6256 for_each_possible_cpu(cpu) {
6257 struct perf_cpu_context *cpuctx;
6258 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6259 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6260
6261 if (hrtimer_active(&cpuctx->hrtimer))
6262 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6263 }
6264
6265 return count;
6266}
6267
abe43400 6268static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6269 __ATTR_RO(type),
6270 __ATTR_RW(perf_event_mux_interval_ms),
6271 __ATTR_NULL,
abe43400
PZ
6272};
6273
6274static int pmu_bus_running;
6275static struct bus_type pmu_bus = {
6276 .name = "event_source",
6277 .dev_attrs = pmu_dev_attrs,
6278};
6279
6280static void pmu_dev_release(struct device *dev)
6281{
6282 kfree(dev);
6283}
6284
6285static int pmu_dev_alloc(struct pmu *pmu)
6286{
6287 int ret = -ENOMEM;
6288
6289 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6290 if (!pmu->dev)
6291 goto out;
6292
0c9d42ed 6293 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6294 device_initialize(pmu->dev);
6295 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6296 if (ret)
6297 goto free_dev;
6298
6299 dev_set_drvdata(pmu->dev, pmu);
6300 pmu->dev->bus = &pmu_bus;
6301 pmu->dev->release = pmu_dev_release;
6302 ret = device_add(pmu->dev);
6303 if (ret)
6304 goto free_dev;
6305
6306out:
6307 return ret;
6308
6309free_dev:
6310 put_device(pmu->dev);
6311 goto out;
6312}
6313
547e9fd7 6314static struct lock_class_key cpuctx_mutex;
facc4307 6315static struct lock_class_key cpuctx_lock;
547e9fd7 6316
03d8e80b 6317int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6318{
108b02cf 6319 int cpu, ret;
24f1e32c 6320
b0a873eb 6321 mutex_lock(&pmus_lock);
33696fc0
PZ
6322 ret = -ENOMEM;
6323 pmu->pmu_disable_count = alloc_percpu(int);
6324 if (!pmu->pmu_disable_count)
6325 goto unlock;
f29ac756 6326
2e80a82a
PZ
6327 pmu->type = -1;
6328 if (!name)
6329 goto skip_type;
6330 pmu->name = name;
6331
6332 if (type < 0) {
0e9c3be2
TH
6333 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6334 if (type < 0) {
6335 ret = type;
2e80a82a
PZ
6336 goto free_pdc;
6337 }
6338 }
6339 pmu->type = type;
6340
abe43400
PZ
6341 if (pmu_bus_running) {
6342 ret = pmu_dev_alloc(pmu);
6343 if (ret)
6344 goto free_idr;
6345 }
6346
2e80a82a 6347skip_type:
8dc85d54
PZ
6348 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6349 if (pmu->pmu_cpu_context)
6350 goto got_cpu_context;
f29ac756 6351
c4814202 6352 ret = -ENOMEM;
108b02cf
PZ
6353 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6354 if (!pmu->pmu_cpu_context)
abe43400 6355 goto free_dev;
f344011c 6356
108b02cf
PZ
6357 for_each_possible_cpu(cpu) {
6358 struct perf_cpu_context *cpuctx;
6359
6360 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6361 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6362 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6363 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6364 cpuctx->ctx.type = cpu_context;
108b02cf 6365 cpuctx->ctx.pmu = pmu;
9e630205
SE
6366
6367 __perf_cpu_hrtimer_init(cpuctx, cpu);
6368
e9d2b064 6369 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6370 cpuctx->unique_pmu = pmu;
108b02cf 6371 }
76e1d904 6372
8dc85d54 6373got_cpu_context:
ad5133b7
PZ
6374 if (!pmu->start_txn) {
6375 if (pmu->pmu_enable) {
6376 /*
6377 * If we have pmu_enable/pmu_disable calls, install
6378 * transaction stubs that use that to try and batch
6379 * hardware accesses.
6380 */
6381 pmu->start_txn = perf_pmu_start_txn;
6382 pmu->commit_txn = perf_pmu_commit_txn;
6383 pmu->cancel_txn = perf_pmu_cancel_txn;
6384 } else {
6385 pmu->start_txn = perf_pmu_nop_void;
6386 pmu->commit_txn = perf_pmu_nop_int;
6387 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6388 }
5c92d124 6389 }
15dbf27c 6390
ad5133b7
PZ
6391 if (!pmu->pmu_enable) {
6392 pmu->pmu_enable = perf_pmu_nop_void;
6393 pmu->pmu_disable = perf_pmu_nop_void;
6394 }
6395
35edc2a5
PZ
6396 if (!pmu->event_idx)
6397 pmu->event_idx = perf_event_idx_default;
6398
b0a873eb 6399 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6400 ret = 0;
6401unlock:
b0a873eb
PZ
6402 mutex_unlock(&pmus_lock);
6403
33696fc0 6404 return ret;
108b02cf 6405
abe43400
PZ
6406free_dev:
6407 device_del(pmu->dev);
6408 put_device(pmu->dev);
6409
2e80a82a
PZ
6410free_idr:
6411 if (pmu->type >= PERF_TYPE_MAX)
6412 idr_remove(&pmu_idr, pmu->type);
6413
108b02cf
PZ
6414free_pdc:
6415 free_percpu(pmu->pmu_disable_count);
6416 goto unlock;
f29ac756
PZ
6417}
6418
b0a873eb 6419void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6420{
b0a873eb
PZ
6421 mutex_lock(&pmus_lock);
6422 list_del_rcu(&pmu->entry);
6423 mutex_unlock(&pmus_lock);
5c92d124 6424
0475f9ea 6425 /*
cde8e884
PZ
6426 * We dereference the pmu list under both SRCU and regular RCU, so
6427 * synchronize against both of those.
0475f9ea 6428 */
b0a873eb 6429 synchronize_srcu(&pmus_srcu);
cde8e884 6430 synchronize_rcu();
d6d020e9 6431
33696fc0 6432 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6433 if (pmu->type >= PERF_TYPE_MAX)
6434 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6435 device_del(pmu->dev);
6436 put_device(pmu->dev);
51676957 6437 free_pmu_context(pmu);
b0a873eb 6438}
d6d020e9 6439
b0a873eb
PZ
6440struct pmu *perf_init_event(struct perf_event *event)
6441{
6442 struct pmu *pmu = NULL;
6443 int idx;
940c5b29 6444 int ret;
b0a873eb
PZ
6445
6446 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6447
6448 rcu_read_lock();
6449 pmu = idr_find(&pmu_idr, event->attr.type);
6450 rcu_read_unlock();
940c5b29 6451 if (pmu) {
7e5b2a01 6452 event->pmu = pmu;
940c5b29
LM
6453 ret = pmu->event_init(event);
6454 if (ret)
6455 pmu = ERR_PTR(ret);
2e80a82a 6456 goto unlock;
940c5b29 6457 }
2e80a82a 6458
b0a873eb 6459 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6460 event->pmu = pmu;
940c5b29 6461 ret = pmu->event_init(event);
b0a873eb 6462 if (!ret)
e5f4d339 6463 goto unlock;
76e1d904 6464
b0a873eb
PZ
6465 if (ret != -ENOENT) {
6466 pmu = ERR_PTR(ret);
e5f4d339 6467 goto unlock;
f344011c 6468 }
5c92d124 6469 }
e5f4d339
PZ
6470 pmu = ERR_PTR(-ENOENT);
6471unlock:
b0a873eb 6472 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6473
4aeb0b42 6474 return pmu;
5c92d124
IM
6475}
6476
4beb31f3
FW
6477static void account_event_cpu(struct perf_event *event, int cpu)
6478{
6479 if (event->parent)
6480 return;
6481
6482 if (has_branch_stack(event)) {
6483 if (!(event->attach_state & PERF_ATTACH_TASK))
6484 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6485 }
6486 if (is_cgroup_event(event))
6487 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6488}
6489
766d6c07
FW
6490static void account_event(struct perf_event *event)
6491{
4beb31f3
FW
6492 if (event->parent)
6493 return;
6494
766d6c07
FW
6495 if (event->attach_state & PERF_ATTACH_TASK)
6496 static_key_slow_inc(&perf_sched_events.key);
6497 if (event->attr.mmap || event->attr.mmap_data)
6498 atomic_inc(&nr_mmap_events);
6499 if (event->attr.comm)
6500 atomic_inc(&nr_comm_events);
6501 if (event->attr.task)
6502 atomic_inc(&nr_task_events);
948b26b6
FW
6503 if (event->attr.freq) {
6504 if (atomic_inc_return(&nr_freq_events) == 1)
6505 tick_nohz_full_kick_all();
6506 }
4beb31f3 6507 if (has_branch_stack(event))
766d6c07 6508 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6509 if (is_cgroup_event(event))
766d6c07 6510 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6511
6512 account_event_cpu(event, event->cpu);
766d6c07
FW
6513}
6514
0793a61d 6515/*
cdd6c482 6516 * Allocate and initialize a event structure
0793a61d 6517 */
cdd6c482 6518static struct perf_event *
c3f00c70 6519perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6520 struct task_struct *task,
6521 struct perf_event *group_leader,
6522 struct perf_event *parent_event,
4dc0da86
AK
6523 perf_overflow_handler_t overflow_handler,
6524 void *context)
0793a61d 6525{
51b0fe39 6526 struct pmu *pmu;
cdd6c482
IM
6527 struct perf_event *event;
6528 struct hw_perf_event *hwc;
90983b16 6529 long err = -EINVAL;
0793a61d 6530
66832eb4
ON
6531 if ((unsigned)cpu >= nr_cpu_ids) {
6532 if (!task || cpu != -1)
6533 return ERR_PTR(-EINVAL);
6534 }
6535
c3f00c70 6536 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6537 if (!event)
d5d2bc0d 6538 return ERR_PTR(-ENOMEM);
0793a61d 6539
04289bb9 6540 /*
cdd6c482 6541 * Single events are their own group leaders, with an
04289bb9
IM
6542 * empty sibling list:
6543 */
6544 if (!group_leader)
cdd6c482 6545 group_leader = event;
04289bb9 6546
cdd6c482
IM
6547 mutex_init(&event->child_mutex);
6548 INIT_LIST_HEAD(&event->child_list);
fccc714b 6549
cdd6c482
IM
6550 INIT_LIST_HEAD(&event->group_entry);
6551 INIT_LIST_HEAD(&event->event_entry);
6552 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6553 INIT_LIST_HEAD(&event->rb_entry);
6554
cdd6c482 6555 init_waitqueue_head(&event->waitq);
e360adbe 6556 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6557
cdd6c482 6558 mutex_init(&event->mmap_mutex);
7b732a75 6559
a6fa941d 6560 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6561 event->cpu = cpu;
6562 event->attr = *attr;
6563 event->group_leader = group_leader;
6564 event->pmu = NULL;
cdd6c482 6565 event->oncpu = -1;
a96bbc16 6566
cdd6c482 6567 event->parent = parent_event;
b84fbc9f 6568
17cf22c3 6569 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6570 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6571
cdd6c482 6572 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6573
d580ff86
PZ
6574 if (task) {
6575 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6576
6577 if (attr->type == PERF_TYPE_TRACEPOINT)
6578 event->hw.tp_target = task;
d580ff86
PZ
6579#ifdef CONFIG_HAVE_HW_BREAKPOINT
6580 /*
6581 * hw_breakpoint is a bit difficult here..
6582 */
f22c1bb6 6583 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6584 event->hw.bp_target = task;
6585#endif
6586 }
6587
4dc0da86 6588 if (!overflow_handler && parent_event) {
b326e956 6589 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6590 context = parent_event->overflow_handler_context;
6591 }
66832eb4 6592
b326e956 6593 event->overflow_handler = overflow_handler;
4dc0da86 6594 event->overflow_handler_context = context;
97eaf530 6595
0231bb53 6596 perf_event__state_init(event);
a86ed508 6597
4aeb0b42 6598 pmu = NULL;
b8e83514 6599
cdd6c482 6600 hwc = &event->hw;
bd2b5b12 6601 hwc->sample_period = attr->sample_period;
0d48696f 6602 if (attr->freq && attr->sample_freq)
bd2b5b12 6603 hwc->sample_period = 1;
eced1dfc 6604 hwc->last_period = hwc->sample_period;
bd2b5b12 6605
e7850595 6606 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6607
2023b359 6608 /*
cdd6c482 6609 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6610 */
3dab77fb 6611 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6612 goto err_ns;
2023b359 6613
b0a873eb 6614 pmu = perf_init_event(event);
4aeb0b42 6615 if (!pmu)
90983b16
FW
6616 goto err_ns;
6617 else if (IS_ERR(pmu)) {
4aeb0b42 6618 err = PTR_ERR(pmu);
90983b16 6619 goto err_ns;
621a01ea 6620 }
d5d2bc0d 6621
cdd6c482 6622 if (!event->parent) {
90983b16
FW
6623 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6624 err = get_callchain_buffers();
6625 if (err)
6626 goto err_pmu;
6627 }
f344011c 6628 }
9ee318a7 6629
cdd6c482 6630 return event;
90983b16
FW
6631
6632err_pmu:
6633 if (event->destroy)
6634 event->destroy(event);
6635err_ns:
6636 if (event->ns)
6637 put_pid_ns(event->ns);
6638 kfree(event);
6639
6640 return ERR_PTR(err);
0793a61d
TG
6641}
6642
cdd6c482
IM
6643static int perf_copy_attr(struct perf_event_attr __user *uattr,
6644 struct perf_event_attr *attr)
974802ea 6645{
974802ea 6646 u32 size;
cdf8073d 6647 int ret;
974802ea
PZ
6648
6649 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6650 return -EFAULT;
6651
6652 /*
6653 * zero the full structure, so that a short copy will be nice.
6654 */
6655 memset(attr, 0, sizeof(*attr));
6656
6657 ret = get_user(size, &uattr->size);
6658 if (ret)
6659 return ret;
6660
6661 if (size > PAGE_SIZE) /* silly large */
6662 goto err_size;
6663
6664 if (!size) /* abi compat */
6665 size = PERF_ATTR_SIZE_VER0;
6666
6667 if (size < PERF_ATTR_SIZE_VER0)
6668 goto err_size;
6669
6670 /*
6671 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6672 * ensure all the unknown bits are 0 - i.e. new
6673 * user-space does not rely on any kernel feature
6674 * extensions we dont know about yet.
974802ea
PZ
6675 */
6676 if (size > sizeof(*attr)) {
cdf8073d
IS
6677 unsigned char __user *addr;
6678 unsigned char __user *end;
6679 unsigned char val;
974802ea 6680
cdf8073d
IS
6681 addr = (void __user *)uattr + sizeof(*attr);
6682 end = (void __user *)uattr + size;
974802ea 6683
cdf8073d 6684 for (; addr < end; addr++) {
974802ea
PZ
6685 ret = get_user(val, addr);
6686 if (ret)
6687 return ret;
6688 if (val)
6689 goto err_size;
6690 }
b3e62e35 6691 size = sizeof(*attr);
974802ea
PZ
6692 }
6693
6694 ret = copy_from_user(attr, uattr, size);
6695 if (ret)
6696 return -EFAULT;
6697
cd757645 6698 if (attr->__reserved_1)
974802ea
PZ
6699 return -EINVAL;
6700
6701 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6702 return -EINVAL;
6703
6704 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6705 return -EINVAL;
6706
bce38cd5
SE
6707 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6708 u64 mask = attr->branch_sample_type;
6709
6710 /* only using defined bits */
6711 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6712 return -EINVAL;
6713
6714 /* at least one branch bit must be set */
6715 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6716 return -EINVAL;
6717
bce38cd5
SE
6718 /* propagate priv level, when not set for branch */
6719 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6720
6721 /* exclude_kernel checked on syscall entry */
6722 if (!attr->exclude_kernel)
6723 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6724
6725 if (!attr->exclude_user)
6726 mask |= PERF_SAMPLE_BRANCH_USER;
6727
6728 if (!attr->exclude_hv)
6729 mask |= PERF_SAMPLE_BRANCH_HV;
6730 /*
6731 * adjust user setting (for HW filter setup)
6732 */
6733 attr->branch_sample_type = mask;
6734 }
e712209a
SE
6735 /* privileged levels capture (kernel, hv): check permissions */
6736 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6737 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6738 return -EACCES;
bce38cd5 6739 }
4018994f 6740
c5ebcedb 6741 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6742 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6743 if (ret)
6744 return ret;
6745 }
6746
6747 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6748 if (!arch_perf_have_user_stack_dump())
6749 return -ENOSYS;
6750
6751 /*
6752 * We have __u32 type for the size, but so far
6753 * we can only use __u16 as maximum due to the
6754 * __u16 sample size limit.
6755 */
6756 if (attr->sample_stack_user >= USHRT_MAX)
6757 ret = -EINVAL;
6758 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6759 ret = -EINVAL;
6760 }
4018994f 6761
974802ea
PZ
6762out:
6763 return ret;
6764
6765err_size:
6766 put_user(sizeof(*attr), &uattr->size);
6767 ret = -E2BIG;
6768 goto out;
6769}
6770
ac9721f3
PZ
6771static int
6772perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6773{
76369139 6774 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6775 int ret = -EINVAL;
6776
ac9721f3 6777 if (!output_event)
a4be7c27
PZ
6778 goto set;
6779
ac9721f3
PZ
6780 /* don't allow circular references */
6781 if (event == output_event)
a4be7c27
PZ
6782 goto out;
6783
0f139300
PZ
6784 /*
6785 * Don't allow cross-cpu buffers
6786 */
6787 if (output_event->cpu != event->cpu)
6788 goto out;
6789
6790 /*
76369139 6791 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6792 */
6793 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6794 goto out;
6795
a4be7c27 6796set:
cdd6c482 6797 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6798 /* Can't redirect output if we've got an active mmap() */
6799 if (atomic_read(&event->mmap_count))
6800 goto unlock;
a4be7c27 6801
9bb5d40c
PZ
6802 old_rb = event->rb;
6803
ac9721f3 6804 if (output_event) {
76369139
FW
6805 /* get the rb we want to redirect to */
6806 rb = ring_buffer_get(output_event);
6807 if (!rb)
ac9721f3 6808 goto unlock;
a4be7c27
PZ
6809 }
6810
10c6db11
PZ
6811 if (old_rb)
6812 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6813
6814 if (rb)
6815 ring_buffer_attach(event, rb);
6816
6817 rcu_assign_pointer(event->rb, rb);
6818
6819 if (old_rb) {
6820 ring_buffer_put(old_rb);
6821 /*
6822 * Since we detached before setting the new rb, so that we
6823 * could attach the new rb, we could have missed a wakeup.
6824 * Provide it now.
6825 */
6826 wake_up_all(&event->waitq);
6827 }
6828
a4be7c27 6829 ret = 0;
ac9721f3
PZ
6830unlock:
6831 mutex_unlock(&event->mmap_mutex);
6832
a4be7c27 6833out:
a4be7c27
PZ
6834 return ret;
6835}
6836
0793a61d 6837/**
cdd6c482 6838 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6839 *
cdd6c482 6840 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6841 * @pid: target pid
9f66a381 6842 * @cpu: target cpu
cdd6c482 6843 * @group_fd: group leader event fd
0793a61d 6844 */
cdd6c482
IM
6845SYSCALL_DEFINE5(perf_event_open,
6846 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6847 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6848{
b04243ef
PZ
6849 struct perf_event *group_leader = NULL, *output_event = NULL;
6850 struct perf_event *event, *sibling;
cdd6c482
IM
6851 struct perf_event_attr attr;
6852 struct perf_event_context *ctx;
6853 struct file *event_file = NULL;
2903ff01 6854 struct fd group = {NULL, 0};
38a81da2 6855 struct task_struct *task = NULL;
89a1e187 6856 struct pmu *pmu;
ea635c64 6857 int event_fd;
b04243ef 6858 int move_group = 0;
dc86cabe 6859 int err;
0793a61d 6860
2743a5b0 6861 /* for future expandability... */
e5d1367f 6862 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6863 return -EINVAL;
6864
dc86cabe
IM
6865 err = perf_copy_attr(attr_uptr, &attr);
6866 if (err)
6867 return err;
eab656ae 6868
0764771d
PZ
6869 if (!attr.exclude_kernel) {
6870 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6871 return -EACCES;
6872 }
6873
df58ab24 6874 if (attr.freq) {
cdd6c482 6875 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6876 return -EINVAL;
6877 }
6878
e5d1367f
SE
6879 /*
6880 * In cgroup mode, the pid argument is used to pass the fd
6881 * opened to the cgroup directory in cgroupfs. The cpu argument
6882 * designates the cpu on which to monitor threads from that
6883 * cgroup.
6884 */
6885 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6886 return -EINVAL;
6887
ab72a702 6888 event_fd = get_unused_fd();
ea635c64
AV
6889 if (event_fd < 0)
6890 return event_fd;
6891
ac9721f3 6892 if (group_fd != -1) {
2903ff01
AV
6893 err = perf_fget_light(group_fd, &group);
6894 if (err)
d14b12d7 6895 goto err_fd;
2903ff01 6896 group_leader = group.file->private_data;
ac9721f3
PZ
6897 if (flags & PERF_FLAG_FD_OUTPUT)
6898 output_event = group_leader;
6899 if (flags & PERF_FLAG_FD_NO_GROUP)
6900 group_leader = NULL;
6901 }
6902
e5d1367f 6903 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6904 task = find_lively_task_by_vpid(pid);
6905 if (IS_ERR(task)) {
6906 err = PTR_ERR(task);
6907 goto err_group_fd;
6908 }
6909 }
6910
fbfc623f
YZ
6911 get_online_cpus();
6912
4dc0da86
AK
6913 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6914 NULL, NULL);
d14b12d7
SE
6915 if (IS_ERR(event)) {
6916 err = PTR_ERR(event);
c6be5a5c 6917 goto err_task;
d14b12d7
SE
6918 }
6919
e5d1367f
SE
6920 if (flags & PERF_FLAG_PID_CGROUP) {
6921 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6922 if (err) {
6923 __free_event(event);
6924 goto err_task;
6925 }
e5d1367f
SE
6926 }
6927
766d6c07
FW
6928 account_event(event);
6929
89a1e187
PZ
6930 /*
6931 * Special case software events and allow them to be part of
6932 * any hardware group.
6933 */
6934 pmu = event->pmu;
b04243ef
PZ
6935
6936 if (group_leader &&
6937 (is_software_event(event) != is_software_event(group_leader))) {
6938 if (is_software_event(event)) {
6939 /*
6940 * If event and group_leader are not both a software
6941 * event, and event is, then group leader is not.
6942 *
6943 * Allow the addition of software events to !software
6944 * groups, this is safe because software events never
6945 * fail to schedule.
6946 */
6947 pmu = group_leader->pmu;
6948 } else if (is_software_event(group_leader) &&
6949 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6950 /*
6951 * In case the group is a pure software group, and we
6952 * try to add a hardware event, move the whole group to
6953 * the hardware context.
6954 */
6955 move_group = 1;
6956 }
6957 }
89a1e187
PZ
6958
6959 /*
6960 * Get the target context (task or percpu):
6961 */
e2d37cd2 6962 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6963 if (IS_ERR(ctx)) {
6964 err = PTR_ERR(ctx);
c6be5a5c 6965 goto err_alloc;
89a1e187
PZ
6966 }
6967
fd1edb3a
PZ
6968 if (task) {
6969 put_task_struct(task);
6970 task = NULL;
6971 }
6972
ccff286d 6973 /*
cdd6c482 6974 * Look up the group leader (we will attach this event to it):
04289bb9 6975 */
ac9721f3 6976 if (group_leader) {
dc86cabe 6977 err = -EINVAL;
04289bb9 6978
04289bb9 6979 /*
ccff286d
IM
6980 * Do not allow a recursive hierarchy (this new sibling
6981 * becoming part of another group-sibling):
6982 */
6983 if (group_leader->group_leader != group_leader)
c3f00c70 6984 goto err_context;
ccff286d
IM
6985 /*
6986 * Do not allow to attach to a group in a different
6987 * task or CPU context:
04289bb9 6988 */
b04243ef
PZ
6989 if (move_group) {
6990 if (group_leader->ctx->type != ctx->type)
6991 goto err_context;
6992 } else {
6993 if (group_leader->ctx != ctx)
6994 goto err_context;
6995 }
6996
3b6f9e5c
PM
6997 /*
6998 * Only a group leader can be exclusive or pinned
6999 */
0d48696f 7000 if (attr.exclusive || attr.pinned)
c3f00c70 7001 goto err_context;
ac9721f3
PZ
7002 }
7003
7004 if (output_event) {
7005 err = perf_event_set_output(event, output_event);
7006 if (err)
c3f00c70 7007 goto err_context;
ac9721f3 7008 }
0793a61d 7009
ea635c64
AV
7010 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7011 if (IS_ERR(event_file)) {
7012 err = PTR_ERR(event_file);
c3f00c70 7013 goto err_context;
ea635c64 7014 }
9b51f66d 7015
b04243ef
PZ
7016 if (move_group) {
7017 struct perf_event_context *gctx = group_leader->ctx;
7018
7019 mutex_lock(&gctx->mutex);
fe4b04fa 7020 perf_remove_from_context(group_leader);
0231bb53
JO
7021
7022 /*
7023 * Removing from the context ends up with disabled
7024 * event. What we want here is event in the initial
7025 * startup state, ready to be add into new context.
7026 */
7027 perf_event__state_init(group_leader);
b04243ef
PZ
7028 list_for_each_entry(sibling, &group_leader->sibling_list,
7029 group_entry) {
fe4b04fa 7030 perf_remove_from_context(sibling);
0231bb53 7031 perf_event__state_init(sibling);
b04243ef
PZ
7032 put_ctx(gctx);
7033 }
7034 mutex_unlock(&gctx->mutex);
7035 put_ctx(gctx);
ea635c64 7036 }
9b51f66d 7037
ad3a37de 7038 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7039 mutex_lock(&ctx->mutex);
b04243ef
PZ
7040
7041 if (move_group) {
0cda4c02 7042 synchronize_rcu();
e2d37cd2 7043 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7044 get_ctx(ctx);
7045 list_for_each_entry(sibling, &group_leader->sibling_list,
7046 group_entry) {
e2d37cd2 7047 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7048 get_ctx(ctx);
7049 }
7050 }
7051
e2d37cd2 7052 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7053 ++ctx->generation;
fe4b04fa 7054 perf_unpin_context(ctx);
d859e29f 7055 mutex_unlock(&ctx->mutex);
9b51f66d 7056
fbfc623f
YZ
7057 put_online_cpus();
7058
cdd6c482 7059 event->owner = current;
8882135b 7060
cdd6c482
IM
7061 mutex_lock(&current->perf_event_mutex);
7062 list_add_tail(&event->owner_entry, &current->perf_event_list);
7063 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7064
c320c7b7
ACM
7065 /*
7066 * Precalculate sample_data sizes
7067 */
7068 perf_event__header_size(event);
6844c09d 7069 perf_event__id_header_size(event);
c320c7b7 7070
8a49542c
PZ
7071 /*
7072 * Drop the reference on the group_event after placing the
7073 * new event on the sibling_list. This ensures destruction
7074 * of the group leader will find the pointer to itself in
7075 * perf_group_detach().
7076 */
2903ff01 7077 fdput(group);
ea635c64
AV
7078 fd_install(event_fd, event_file);
7079 return event_fd;
0793a61d 7080
c3f00c70 7081err_context:
fe4b04fa 7082 perf_unpin_context(ctx);
ea635c64 7083 put_ctx(ctx);
c6be5a5c 7084err_alloc:
ea635c64 7085 free_event(event);
e7d0bc04 7086err_task:
fbfc623f 7087 put_online_cpus();
e7d0bc04
PZ
7088 if (task)
7089 put_task_struct(task);
89a1e187 7090err_group_fd:
2903ff01 7091 fdput(group);
ea635c64
AV
7092err_fd:
7093 put_unused_fd(event_fd);
dc86cabe 7094 return err;
0793a61d
TG
7095}
7096
fb0459d7
AV
7097/**
7098 * perf_event_create_kernel_counter
7099 *
7100 * @attr: attributes of the counter to create
7101 * @cpu: cpu in which the counter is bound
38a81da2 7102 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7103 */
7104struct perf_event *
7105perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7106 struct task_struct *task,
4dc0da86
AK
7107 perf_overflow_handler_t overflow_handler,
7108 void *context)
fb0459d7 7109{
fb0459d7 7110 struct perf_event_context *ctx;
c3f00c70 7111 struct perf_event *event;
fb0459d7 7112 int err;
d859e29f 7113
fb0459d7
AV
7114 /*
7115 * Get the target context (task or percpu):
7116 */
d859e29f 7117
4dc0da86
AK
7118 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7119 overflow_handler, context);
c3f00c70
PZ
7120 if (IS_ERR(event)) {
7121 err = PTR_ERR(event);
7122 goto err;
7123 }
d859e29f 7124
766d6c07
FW
7125 account_event(event);
7126
38a81da2 7127 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7128 if (IS_ERR(ctx)) {
7129 err = PTR_ERR(ctx);
c3f00c70 7130 goto err_free;
d859e29f 7131 }
fb0459d7 7132
fb0459d7
AV
7133 WARN_ON_ONCE(ctx->parent_ctx);
7134 mutex_lock(&ctx->mutex);
7135 perf_install_in_context(ctx, event, cpu);
7136 ++ctx->generation;
fe4b04fa 7137 perf_unpin_context(ctx);
fb0459d7
AV
7138 mutex_unlock(&ctx->mutex);
7139
fb0459d7
AV
7140 return event;
7141
c3f00c70
PZ
7142err_free:
7143 free_event(event);
7144err:
c6567f64 7145 return ERR_PTR(err);
9b51f66d 7146}
fb0459d7 7147EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7148
0cda4c02
YZ
7149void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7150{
7151 struct perf_event_context *src_ctx;
7152 struct perf_event_context *dst_ctx;
7153 struct perf_event *event, *tmp;
7154 LIST_HEAD(events);
7155
7156 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7157 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7158
7159 mutex_lock(&src_ctx->mutex);
7160 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7161 event_entry) {
7162 perf_remove_from_context(event);
9a545de0 7163 unaccount_event_cpu(event, src_cpu);
0cda4c02
YZ
7164 put_ctx(src_ctx);
7165 list_add(&event->event_entry, &events);
7166 }
7167 mutex_unlock(&src_ctx->mutex);
7168
7169 synchronize_rcu();
7170
7171 mutex_lock(&dst_ctx->mutex);
7172 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7173 list_del(&event->event_entry);
7174 if (event->state >= PERF_EVENT_STATE_OFF)
7175 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7176 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7177 perf_install_in_context(dst_ctx, event, dst_cpu);
7178 get_ctx(dst_ctx);
7179 }
7180 mutex_unlock(&dst_ctx->mutex);
7181}
7182EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7183
cdd6c482 7184static void sync_child_event(struct perf_event *child_event,
38b200d6 7185 struct task_struct *child)
d859e29f 7186{
cdd6c482 7187 struct perf_event *parent_event = child_event->parent;
8bc20959 7188 u64 child_val;
d859e29f 7189
cdd6c482
IM
7190 if (child_event->attr.inherit_stat)
7191 perf_event_read_event(child_event, child);
38b200d6 7192
b5e58793 7193 child_val = perf_event_count(child_event);
d859e29f
PM
7194
7195 /*
7196 * Add back the child's count to the parent's count:
7197 */
a6e6dea6 7198 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7199 atomic64_add(child_event->total_time_enabled,
7200 &parent_event->child_total_time_enabled);
7201 atomic64_add(child_event->total_time_running,
7202 &parent_event->child_total_time_running);
d859e29f
PM
7203
7204 /*
cdd6c482 7205 * Remove this event from the parent's list
d859e29f 7206 */
cdd6c482
IM
7207 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7208 mutex_lock(&parent_event->child_mutex);
7209 list_del_init(&child_event->child_list);
7210 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7211
7212 /*
cdd6c482 7213 * Release the parent event, if this was the last
d859e29f
PM
7214 * reference to it.
7215 */
a6fa941d 7216 put_event(parent_event);
d859e29f
PM
7217}
7218
9b51f66d 7219static void
cdd6c482
IM
7220__perf_event_exit_task(struct perf_event *child_event,
7221 struct perf_event_context *child_ctx,
38b200d6 7222 struct task_struct *child)
9b51f66d 7223{
38b435b1
PZ
7224 if (child_event->parent) {
7225 raw_spin_lock_irq(&child_ctx->lock);
7226 perf_group_detach(child_event);
7227 raw_spin_unlock_irq(&child_ctx->lock);
7228 }
9b51f66d 7229
fe4b04fa 7230 perf_remove_from_context(child_event);
0cc0c027 7231
9b51f66d 7232 /*
38b435b1 7233 * It can happen that the parent exits first, and has events
9b51f66d 7234 * that are still around due to the child reference. These
38b435b1 7235 * events need to be zapped.
9b51f66d 7236 */
38b435b1 7237 if (child_event->parent) {
cdd6c482
IM
7238 sync_child_event(child_event, child);
7239 free_event(child_event);
4bcf349a 7240 }
9b51f66d
IM
7241}
7242
8dc85d54 7243static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7244{
cdd6c482
IM
7245 struct perf_event *child_event, *tmp;
7246 struct perf_event_context *child_ctx;
a63eaf34 7247 unsigned long flags;
9b51f66d 7248
8dc85d54 7249 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7250 perf_event_task(child, NULL, 0);
9b51f66d 7251 return;
9f498cc5 7252 }
9b51f66d 7253
a63eaf34 7254 local_irq_save(flags);
ad3a37de
PM
7255 /*
7256 * We can't reschedule here because interrupts are disabled,
7257 * and either child is current or it is a task that can't be
7258 * scheduled, so we are now safe from rescheduling changing
7259 * our context.
7260 */
806839b2 7261 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7262
7263 /*
7264 * Take the context lock here so that if find_get_context is
cdd6c482 7265 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7266 * incremented the context's refcount before we do put_ctx below.
7267 */
e625cce1 7268 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7269 task_ctx_sched_out(child_ctx);
8dc85d54 7270 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7271 /*
7272 * If this context is a clone; unclone it so it can't get
7273 * swapped to another process while we're removing all
cdd6c482 7274 * the events from it.
71a851b4
PZ
7275 */
7276 unclone_ctx(child_ctx);
5e942bb3 7277 update_context_time(child_ctx);
e625cce1 7278 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7279
7280 /*
cdd6c482
IM
7281 * Report the task dead after unscheduling the events so that we
7282 * won't get any samples after PERF_RECORD_EXIT. We can however still
7283 * get a few PERF_RECORD_READ events.
9f498cc5 7284 */
cdd6c482 7285 perf_event_task(child, child_ctx, 0);
a63eaf34 7286
66fff224
PZ
7287 /*
7288 * We can recurse on the same lock type through:
7289 *
cdd6c482
IM
7290 * __perf_event_exit_task()
7291 * sync_child_event()
a6fa941d
AV
7292 * put_event()
7293 * mutex_lock(&ctx->mutex)
66fff224
PZ
7294 *
7295 * But since its the parent context it won't be the same instance.
7296 */
a0507c84 7297 mutex_lock(&child_ctx->mutex);
a63eaf34 7298
8bc20959 7299again:
889ff015
FW
7300 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7301 group_entry)
7302 __perf_event_exit_task(child_event, child_ctx, child);
7303
7304 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7305 group_entry)
cdd6c482 7306 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7307
7308 /*
cdd6c482 7309 * If the last event was a group event, it will have appended all
8bc20959
PZ
7310 * its siblings to the list, but we obtained 'tmp' before that which
7311 * will still point to the list head terminating the iteration.
7312 */
889ff015
FW
7313 if (!list_empty(&child_ctx->pinned_groups) ||
7314 !list_empty(&child_ctx->flexible_groups))
8bc20959 7315 goto again;
a63eaf34
PM
7316
7317 mutex_unlock(&child_ctx->mutex);
7318
7319 put_ctx(child_ctx);
9b51f66d
IM
7320}
7321
8dc85d54
PZ
7322/*
7323 * When a child task exits, feed back event values to parent events.
7324 */
7325void perf_event_exit_task(struct task_struct *child)
7326{
8882135b 7327 struct perf_event *event, *tmp;
8dc85d54
PZ
7328 int ctxn;
7329
8882135b
PZ
7330 mutex_lock(&child->perf_event_mutex);
7331 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7332 owner_entry) {
7333 list_del_init(&event->owner_entry);
7334
7335 /*
7336 * Ensure the list deletion is visible before we clear
7337 * the owner, closes a race against perf_release() where
7338 * we need to serialize on the owner->perf_event_mutex.
7339 */
7340 smp_wmb();
7341 event->owner = NULL;
7342 }
7343 mutex_unlock(&child->perf_event_mutex);
7344
8dc85d54
PZ
7345 for_each_task_context_nr(ctxn)
7346 perf_event_exit_task_context(child, ctxn);
7347}
7348
889ff015
FW
7349static void perf_free_event(struct perf_event *event,
7350 struct perf_event_context *ctx)
7351{
7352 struct perf_event *parent = event->parent;
7353
7354 if (WARN_ON_ONCE(!parent))
7355 return;
7356
7357 mutex_lock(&parent->child_mutex);
7358 list_del_init(&event->child_list);
7359 mutex_unlock(&parent->child_mutex);
7360
a6fa941d 7361 put_event(parent);
889ff015 7362
8a49542c 7363 perf_group_detach(event);
889ff015
FW
7364 list_del_event(event, ctx);
7365 free_event(event);
7366}
7367
bbbee908
PZ
7368/*
7369 * free an unexposed, unused context as created by inheritance by
8dc85d54 7370 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7371 */
cdd6c482 7372void perf_event_free_task(struct task_struct *task)
bbbee908 7373{
8dc85d54 7374 struct perf_event_context *ctx;
cdd6c482 7375 struct perf_event *event, *tmp;
8dc85d54 7376 int ctxn;
bbbee908 7377
8dc85d54
PZ
7378 for_each_task_context_nr(ctxn) {
7379 ctx = task->perf_event_ctxp[ctxn];
7380 if (!ctx)
7381 continue;
bbbee908 7382
8dc85d54 7383 mutex_lock(&ctx->mutex);
bbbee908 7384again:
8dc85d54
PZ
7385 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7386 group_entry)
7387 perf_free_event(event, ctx);
bbbee908 7388
8dc85d54
PZ
7389 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7390 group_entry)
7391 perf_free_event(event, ctx);
bbbee908 7392
8dc85d54
PZ
7393 if (!list_empty(&ctx->pinned_groups) ||
7394 !list_empty(&ctx->flexible_groups))
7395 goto again;
bbbee908 7396
8dc85d54 7397 mutex_unlock(&ctx->mutex);
bbbee908 7398
8dc85d54
PZ
7399 put_ctx(ctx);
7400 }
889ff015
FW
7401}
7402
4e231c79
PZ
7403void perf_event_delayed_put(struct task_struct *task)
7404{
7405 int ctxn;
7406
7407 for_each_task_context_nr(ctxn)
7408 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7409}
7410
97dee4f3
PZ
7411/*
7412 * inherit a event from parent task to child task:
7413 */
7414static struct perf_event *
7415inherit_event(struct perf_event *parent_event,
7416 struct task_struct *parent,
7417 struct perf_event_context *parent_ctx,
7418 struct task_struct *child,
7419 struct perf_event *group_leader,
7420 struct perf_event_context *child_ctx)
7421{
7422 struct perf_event *child_event;
cee010ec 7423 unsigned long flags;
97dee4f3
PZ
7424
7425 /*
7426 * Instead of creating recursive hierarchies of events,
7427 * we link inherited events back to the original parent,
7428 * which has a filp for sure, which we use as the reference
7429 * count:
7430 */
7431 if (parent_event->parent)
7432 parent_event = parent_event->parent;
7433
7434 child_event = perf_event_alloc(&parent_event->attr,
7435 parent_event->cpu,
d580ff86 7436 child,
97dee4f3 7437 group_leader, parent_event,
4dc0da86 7438 NULL, NULL);
97dee4f3
PZ
7439 if (IS_ERR(child_event))
7440 return child_event;
a6fa941d
AV
7441
7442 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7443 free_event(child_event);
7444 return NULL;
7445 }
7446
97dee4f3
PZ
7447 get_ctx(child_ctx);
7448
7449 /*
7450 * Make the child state follow the state of the parent event,
7451 * not its attr.disabled bit. We hold the parent's mutex,
7452 * so we won't race with perf_event_{en, dis}able_family.
7453 */
7454 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7455 child_event->state = PERF_EVENT_STATE_INACTIVE;
7456 else
7457 child_event->state = PERF_EVENT_STATE_OFF;
7458
7459 if (parent_event->attr.freq) {
7460 u64 sample_period = parent_event->hw.sample_period;
7461 struct hw_perf_event *hwc = &child_event->hw;
7462
7463 hwc->sample_period = sample_period;
7464 hwc->last_period = sample_period;
7465
7466 local64_set(&hwc->period_left, sample_period);
7467 }
7468
7469 child_event->ctx = child_ctx;
7470 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7471 child_event->overflow_handler_context
7472 = parent_event->overflow_handler_context;
97dee4f3 7473
614b6780
TG
7474 /*
7475 * Precalculate sample_data sizes
7476 */
7477 perf_event__header_size(child_event);
6844c09d 7478 perf_event__id_header_size(child_event);
614b6780 7479
97dee4f3
PZ
7480 /*
7481 * Link it up in the child's context:
7482 */
cee010ec 7483 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7484 add_event_to_ctx(child_event, child_ctx);
cee010ec 7485 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7486
97dee4f3
PZ
7487 /*
7488 * Link this into the parent event's child list
7489 */
7490 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7491 mutex_lock(&parent_event->child_mutex);
7492 list_add_tail(&child_event->child_list, &parent_event->child_list);
7493 mutex_unlock(&parent_event->child_mutex);
7494
7495 return child_event;
7496}
7497
7498static int inherit_group(struct perf_event *parent_event,
7499 struct task_struct *parent,
7500 struct perf_event_context *parent_ctx,
7501 struct task_struct *child,
7502 struct perf_event_context *child_ctx)
7503{
7504 struct perf_event *leader;
7505 struct perf_event *sub;
7506 struct perf_event *child_ctr;
7507
7508 leader = inherit_event(parent_event, parent, parent_ctx,
7509 child, NULL, child_ctx);
7510 if (IS_ERR(leader))
7511 return PTR_ERR(leader);
7512 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7513 child_ctr = inherit_event(sub, parent, parent_ctx,
7514 child, leader, child_ctx);
7515 if (IS_ERR(child_ctr))
7516 return PTR_ERR(child_ctr);
7517 }
7518 return 0;
889ff015
FW
7519}
7520
7521static int
7522inherit_task_group(struct perf_event *event, struct task_struct *parent,
7523 struct perf_event_context *parent_ctx,
8dc85d54 7524 struct task_struct *child, int ctxn,
889ff015
FW
7525 int *inherited_all)
7526{
7527 int ret;
8dc85d54 7528 struct perf_event_context *child_ctx;
889ff015
FW
7529
7530 if (!event->attr.inherit) {
7531 *inherited_all = 0;
7532 return 0;
bbbee908
PZ
7533 }
7534
fe4b04fa 7535 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7536 if (!child_ctx) {
7537 /*
7538 * This is executed from the parent task context, so
7539 * inherit events that have been marked for cloning.
7540 * First allocate and initialize a context for the
7541 * child.
7542 */
bbbee908 7543
734df5ab 7544 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7545 if (!child_ctx)
7546 return -ENOMEM;
bbbee908 7547
8dc85d54 7548 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7549 }
7550
7551 ret = inherit_group(event, parent, parent_ctx,
7552 child, child_ctx);
7553
7554 if (ret)
7555 *inherited_all = 0;
7556
7557 return ret;
bbbee908
PZ
7558}
7559
9b51f66d 7560/*
cdd6c482 7561 * Initialize the perf_event context in task_struct
9b51f66d 7562 */
8dc85d54 7563int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7564{
889ff015 7565 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7566 struct perf_event_context *cloned_ctx;
7567 struct perf_event *event;
9b51f66d 7568 struct task_struct *parent = current;
564c2b21 7569 int inherited_all = 1;
dddd3379 7570 unsigned long flags;
6ab423e0 7571 int ret = 0;
9b51f66d 7572
8dc85d54 7573 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7574 return 0;
7575
ad3a37de 7576 /*
25346b93
PM
7577 * If the parent's context is a clone, pin it so it won't get
7578 * swapped under us.
ad3a37de 7579 */
8dc85d54 7580 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7581
ad3a37de
PM
7582 /*
7583 * No need to check if parent_ctx != NULL here; since we saw
7584 * it non-NULL earlier, the only reason for it to become NULL
7585 * is if we exit, and since we're currently in the middle of
7586 * a fork we can't be exiting at the same time.
7587 */
ad3a37de 7588
9b51f66d
IM
7589 /*
7590 * Lock the parent list. No need to lock the child - not PID
7591 * hashed yet and not running, so nobody can access it.
7592 */
d859e29f 7593 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7594
7595 /*
7596 * We dont have to disable NMIs - we are only looking at
7597 * the list, not manipulating it:
7598 */
889ff015 7599 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7600 ret = inherit_task_group(event, parent, parent_ctx,
7601 child, ctxn, &inherited_all);
889ff015
FW
7602 if (ret)
7603 break;
7604 }
b93f7978 7605
dddd3379
TG
7606 /*
7607 * We can't hold ctx->lock when iterating the ->flexible_group list due
7608 * to allocations, but we need to prevent rotation because
7609 * rotate_ctx() will change the list from interrupt context.
7610 */
7611 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7612 parent_ctx->rotate_disable = 1;
7613 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7614
889ff015 7615 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7616 ret = inherit_task_group(event, parent, parent_ctx,
7617 child, ctxn, &inherited_all);
889ff015 7618 if (ret)
9b51f66d 7619 break;
564c2b21
PM
7620 }
7621
dddd3379
TG
7622 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7623 parent_ctx->rotate_disable = 0;
dddd3379 7624
8dc85d54 7625 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7626
05cbaa28 7627 if (child_ctx && inherited_all) {
564c2b21
PM
7628 /*
7629 * Mark the child context as a clone of the parent
7630 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7631 *
7632 * Note that if the parent is a clone, the holding of
7633 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7634 */
c5ed5145 7635 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7636 if (cloned_ctx) {
7637 child_ctx->parent_ctx = cloned_ctx;
25346b93 7638 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7639 } else {
7640 child_ctx->parent_ctx = parent_ctx;
7641 child_ctx->parent_gen = parent_ctx->generation;
7642 }
7643 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7644 }
7645
c5ed5145 7646 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7647 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7648
25346b93 7649 perf_unpin_context(parent_ctx);
fe4b04fa 7650 put_ctx(parent_ctx);
ad3a37de 7651
6ab423e0 7652 return ret;
9b51f66d
IM
7653}
7654
8dc85d54
PZ
7655/*
7656 * Initialize the perf_event context in task_struct
7657 */
7658int perf_event_init_task(struct task_struct *child)
7659{
7660 int ctxn, ret;
7661
8550d7cb
ON
7662 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7663 mutex_init(&child->perf_event_mutex);
7664 INIT_LIST_HEAD(&child->perf_event_list);
7665
8dc85d54
PZ
7666 for_each_task_context_nr(ctxn) {
7667 ret = perf_event_init_context(child, ctxn);
7668 if (ret)
7669 return ret;
7670 }
7671
7672 return 0;
7673}
7674
220b140b
PM
7675static void __init perf_event_init_all_cpus(void)
7676{
b28ab83c 7677 struct swevent_htable *swhash;
220b140b 7678 int cpu;
220b140b
PM
7679
7680 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7681 swhash = &per_cpu(swevent_htable, cpu);
7682 mutex_init(&swhash->hlist_mutex);
e9d2b064 7683 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7684 }
7685}
7686
0db0628d 7687static void perf_event_init_cpu(int cpu)
0793a61d 7688{
108b02cf 7689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7690
b28ab83c 7691 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7692 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7693 struct swevent_hlist *hlist;
7694
b28ab83c
PZ
7695 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7696 WARN_ON(!hlist);
7697 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7698 }
b28ab83c 7699 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7700}
7701
c277443c 7702#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7703static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7704{
e9d2b064
PZ
7705 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7706
7707 WARN_ON(!irqs_disabled());
7708
7709 list_del_init(&cpuctx->rotation_list);
7710}
7711
108b02cf 7712static void __perf_event_exit_context(void *__info)
0793a61d 7713{
108b02cf 7714 struct perf_event_context *ctx = __info;
cdd6c482 7715 struct perf_event *event, *tmp;
0793a61d 7716
108b02cf 7717 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7718
889ff015 7719 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7720 __perf_remove_from_context(event);
889ff015 7721 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7722 __perf_remove_from_context(event);
0793a61d 7723}
108b02cf
PZ
7724
7725static void perf_event_exit_cpu_context(int cpu)
7726{
7727 struct perf_event_context *ctx;
7728 struct pmu *pmu;
7729 int idx;
7730
7731 idx = srcu_read_lock(&pmus_srcu);
7732 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7733 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7734
7735 mutex_lock(&ctx->mutex);
7736 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7737 mutex_unlock(&ctx->mutex);
7738 }
7739 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7740}
7741
cdd6c482 7742static void perf_event_exit_cpu(int cpu)
0793a61d 7743{
b28ab83c 7744 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7745
b28ab83c
PZ
7746 mutex_lock(&swhash->hlist_mutex);
7747 swevent_hlist_release(swhash);
7748 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7749
108b02cf 7750 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7751}
7752#else
cdd6c482 7753static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7754#endif
7755
c277443c
PZ
7756static int
7757perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7758{
7759 int cpu;
7760
7761 for_each_online_cpu(cpu)
7762 perf_event_exit_cpu(cpu);
7763
7764 return NOTIFY_OK;
7765}
7766
7767/*
7768 * Run the perf reboot notifier at the very last possible moment so that
7769 * the generic watchdog code runs as long as possible.
7770 */
7771static struct notifier_block perf_reboot_notifier = {
7772 .notifier_call = perf_reboot,
7773 .priority = INT_MIN,
7774};
7775
0db0628d 7776static int
0793a61d
TG
7777perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7778{
7779 unsigned int cpu = (long)hcpu;
7780
4536e4d1 7781 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7782
7783 case CPU_UP_PREPARE:
5e11637e 7784 case CPU_DOWN_FAILED:
cdd6c482 7785 perf_event_init_cpu(cpu);
0793a61d
TG
7786 break;
7787
5e11637e 7788 case CPU_UP_CANCELED:
0793a61d 7789 case CPU_DOWN_PREPARE:
cdd6c482 7790 perf_event_exit_cpu(cpu);
0793a61d 7791 break;
0793a61d
TG
7792 default:
7793 break;
7794 }
7795
7796 return NOTIFY_OK;
7797}
7798
cdd6c482 7799void __init perf_event_init(void)
0793a61d 7800{
3c502e7a
JW
7801 int ret;
7802
2e80a82a
PZ
7803 idr_init(&pmu_idr);
7804
220b140b 7805 perf_event_init_all_cpus();
b0a873eb 7806 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7807 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7808 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7809 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7810 perf_tp_register();
7811 perf_cpu_notifier(perf_cpu_notify);
c277443c 7812 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7813
7814 ret = init_hw_breakpoint();
7815 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7816
7817 /* do not patch jump label more than once per second */
7818 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7819
7820 /*
7821 * Build time assertion that we keep the data_head at the intended
7822 * location. IOW, validation we got the __reserved[] size right.
7823 */
7824 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7825 != 1024);
0793a61d 7826}
abe43400
PZ
7827
7828static int __init perf_event_sysfs_init(void)
7829{
7830 struct pmu *pmu;
7831 int ret;
7832
7833 mutex_lock(&pmus_lock);
7834
7835 ret = bus_register(&pmu_bus);
7836 if (ret)
7837 goto unlock;
7838
7839 list_for_each_entry(pmu, &pmus, entry) {
7840 if (!pmu->name || pmu->type < 0)
7841 continue;
7842
7843 ret = pmu_dev_alloc(pmu);
7844 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7845 }
7846 pmu_bus_running = 1;
7847 ret = 0;
7848
7849unlock:
7850 mutex_unlock(&pmus_lock);
7851
7852 return ret;
7853}
7854device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7855
7856#ifdef CONFIG_CGROUP_PERF
92fb9748 7857static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7858{
7859 struct perf_cgroup *jc;
e5d1367f 7860
1b15d055 7861 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7862 if (!jc)
7863 return ERR_PTR(-ENOMEM);
7864
e5d1367f
SE
7865 jc->info = alloc_percpu(struct perf_cgroup_info);
7866 if (!jc->info) {
7867 kfree(jc);
7868 return ERR_PTR(-ENOMEM);
7869 }
7870
e5d1367f
SE
7871 return &jc->css;
7872}
7873
92fb9748 7874static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7875{
7876 struct perf_cgroup *jc;
7877 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7878 struct perf_cgroup, css);
7879 free_percpu(jc->info);
7880 kfree(jc);
7881}
7882
7883static int __perf_cgroup_move(void *info)
7884{
7885 struct task_struct *task = info;
7886 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7887 return 0;
7888}
7889
761b3ef5 7890static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7891{
bb9d97b6
TH
7892 struct task_struct *task;
7893
7894 cgroup_taskset_for_each(task, cgrp, tset)
7895 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7896}
7897
761b3ef5
LZ
7898static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7899 struct task_struct *task)
e5d1367f
SE
7900{
7901 /*
7902 * cgroup_exit() is called in the copy_process() failure path.
7903 * Ignore this case since the task hasn't ran yet, this avoids
7904 * trying to poke a half freed task state from generic code.
7905 */
7906 if (!(task->flags & PF_EXITING))
7907 return;
7908
bb9d97b6 7909 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7910}
7911
7912struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7913 .name = "perf_event",
7914 .subsys_id = perf_subsys_id,
92fb9748
TH
7915 .css_alloc = perf_cgroup_css_alloc,
7916 .css_free = perf_cgroup_css_free,
e7e7ee2e 7917 .exit = perf_cgroup_exit,
bb9d97b6 7918 .attach = perf_cgroup_attach,
e5d1367f
SE
7919};
7920#endif /* CONFIG_CGROUP_PERF */