watchdog: Make it work under full dynticks
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
ba8a75c1 144static DEFINE_PER_CPU(atomic_t, perf_freq_events);
e5d1367f 145
cdd6c482
IM
146static atomic_t nr_mmap_events __read_mostly;
147static atomic_t nr_comm_events __read_mostly;
148static atomic_t nr_task_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
14c63f17
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
231DEFINE_PER_CPU(u64, running_sample_length);
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
14c63f17
DH
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
2903ff01 595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
596 if (IS_ERR(css)) {
597 ret = PTR_ERR(css);
598 goto out;
599 }
e5d1367f
SE
600
601 cgrp = container_of(css, struct perf_cgroup, css);
602 event->cgrp = cgrp;
603
f75e18cb 604 /* must be done before we fput() the file */
9c5da09d
SQ
605 if (!perf_tryget_cgroup(event)) {
606 event->cgrp = NULL;
607 ret = -ENOENT;
608 goto out;
609 }
f75e18cb 610
e5d1367f
SE
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
753static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
754{
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
757 int rotations = 0;
758
759 WARN_ON(!irqs_disabled());
760
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
762
763 rotations = perf_rotate_context(cpuctx);
764
765 /*
766 * arm timer if needed
767 */
768 if (rotations) {
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
771 }
772
773 return ret;
774}
775
776/* CPU is going down */
777void perf_cpu_hrtimer_cancel(int cpu)
778{
779 struct perf_cpu_context *cpuctx;
780 struct pmu *pmu;
781 unsigned long flags;
782
783 if (WARN_ON(cpu != smp_processor_id()))
784 return;
785
786 local_irq_save(flags);
787
788 rcu_read_lock();
789
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
792
793 if (pmu->task_ctx_nr == perf_sw_context)
794 continue;
795
796 hrtimer_cancel(&cpuctx->hrtimer);
797 }
798
799 rcu_read_unlock();
800
801 local_irq_restore(flags);
802}
803
804static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
805{
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 808 int timer;
9e630205
SE
809
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
812 return;
813
62b85639
SE
814 /*
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
817 */
818 timer = pmu->hrtimer_interval_ms;
819 if (timer < 1)
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
821
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
823
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
826}
827
828static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
829{
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
832
833 /* not for SW PMU */
834 if (pmu->task_ctx_nr == perf_sw_context)
835 return;
836
837 if (hrtimer_active(hr))
838 return;
839
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
843}
844
33696fc0 845void perf_pmu_disable(struct pmu *pmu)
9e35ad38 846{
33696fc0
PZ
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
848 if (!(*count)++)
849 pmu->pmu_disable(pmu);
9e35ad38 850}
9e35ad38 851
33696fc0 852void perf_pmu_enable(struct pmu *pmu)
9e35ad38 853{
33696fc0
PZ
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
855 if (!--(*count))
856 pmu->pmu_enable(pmu);
9e35ad38 857}
9e35ad38 858
e9d2b064
PZ
859static DEFINE_PER_CPU(struct list_head, rotation_list);
860
861/*
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
865 */
108b02cf 866static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 867{
108b02cf 868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 869 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 870
e9d2b064 871 WARN_ON(!irqs_disabled());
b5ab4cd5 872
d84153d6 873 if (list_empty(&cpuctx->rotation_list))
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
cdd6c482 882static void put_ctx(struct perf_event_context *ctx)
a63eaf34 883{
564c2b21
PM
884 if (atomic_dec_and_test(&ctx->refcount)) {
885 if (ctx->parent_ctx)
886 put_ctx(ctx->parent_ctx);
c93f7669
PM
887 if (ctx->task)
888 put_task_struct(ctx->task);
cb796ff3 889 kfree_rcu(ctx, rcu_head);
564c2b21 890 }
a63eaf34
PM
891}
892
cdd6c482 893static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
894{
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
898 }
899}
900
6844c09d
ACM
901static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
902{
903 /*
904 * only top level events have the pid namespace they were created in
905 */
906 if (event->parent)
907 event = event->parent;
908
909 return task_tgid_nr_ns(p, event->ns);
910}
911
912static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
913{
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_pid_nr_ns(p, event->ns);
921}
922
7f453c24 923/*
cdd6c482 924 * If we inherit events we want to return the parent event id
7f453c24
PZ
925 * to userspace.
926 */
cdd6c482 927static u64 primary_event_id(struct perf_event *event)
7f453c24 928{
cdd6c482 929 u64 id = event->id;
7f453c24 930
cdd6c482
IM
931 if (event->parent)
932 id = event->parent->id;
7f453c24
PZ
933
934 return id;
935}
936
25346b93 937/*
cdd6c482 938 * Get the perf_event_context for a task and lock it.
25346b93
PM
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
941 */
cdd6c482 942static struct perf_event_context *
8dc85d54 943perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 944{
cdd6c482 945 struct perf_event_context *ctx;
25346b93 946
9ed6060d 947retry:
058ebd0e
PZ
948 /*
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
953 *
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
956 */
957 preempt_disable();
958 rcu_read_lock();
8dc85d54 959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
960 if (ctx) {
961 /*
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
cdd6c482 964 * perf_event_task_sched_out, though the
25346b93
PM
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
970 */
e625cce1 971 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
974 rcu_read_unlock();
975 preempt_enable();
25346b93
PM
976 goto retry;
977 }
b49a9e7e
PZ
978
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
981 ctx = NULL;
982 }
25346b93
PM
983 }
984 rcu_read_unlock();
058ebd0e 985 preempt_enable();
25346b93
PM
986 return ctx;
987}
988
989/*
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
993 */
8dc85d54
PZ
994static struct perf_event_context *
995perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 996{
cdd6c482 997 struct perf_event_context *ctx;
25346b93
PM
998 unsigned long flags;
999
8dc85d54 1000 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1001 if (ctx) {
1002 ++ctx->pin_count;
e625cce1 1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1004 }
1005 return ctx;
1006}
1007
cdd6c482 1008static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1009{
1010 unsigned long flags;
1011
e625cce1 1012 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1013 --ctx->pin_count;
e625cce1 1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1015}
1016
f67218c3
PZ
1017/*
1018 * Update the record of the current time in a context.
1019 */
1020static void update_context_time(struct perf_event_context *ctx)
1021{
1022 u64 now = perf_clock();
1023
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1026}
1027
4158755d
SE
1028static u64 perf_event_time(struct perf_event *event)
1029{
1030 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1031
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1034
4158755d
SE
1035 return ctx ? ctx->time : 0;
1036}
1037
f67218c3
PZ
1038/*
1039 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1040 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1041 */
1042static void update_event_times(struct perf_event *event)
1043{
1044 struct perf_event_context *ctx = event->ctx;
1045 u64 run_end;
1046
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1049 return;
e5d1367f
SE
1050 /*
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1056 *
1057 * That is why we treat cgroup events differently
1058 * here.
1059 */
1060 if (is_cgroup_event(event))
46cd6a7f 1061 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
acd1d7c1
PZ
1064 else
1065 run_end = event->tstamp_stopped;
1066
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1068
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1071 else
4158755d 1072 run_end = perf_event_time(event);
f67218c3
PZ
1073
1074 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1075
f67218c3
PZ
1076}
1077
96c21a46
PZ
1078/*
1079 * Update total_time_enabled and total_time_running for all events in a group.
1080 */
1081static void update_group_times(struct perf_event *leader)
1082{
1083 struct perf_event *event;
1084
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1088}
1089
889ff015
FW
1090static struct list_head *
1091ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1092{
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1095 else
1096 return &ctx->flexible_groups;
1097}
1098
fccc714b 1099/*
cdd6c482 1100 * Add a event from the lists for its context.
fccc714b
PZ
1101 * Must be called with ctx->mutex and ctx->lock held.
1102 */
04289bb9 1103static void
cdd6c482 1104list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1105{
8a49542c
PZ
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1108
1109 /*
8a49542c
PZ
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1113 */
8a49542c 1114 if (event->group_leader == event) {
889ff015
FW
1115 struct list_head *list;
1116
d6f962b5
FW
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1119
889ff015
FW
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
5c148194 1122 }
592903cd 1123
08309379 1124 if (is_cgroup_event(event))
e5d1367f 1125 ctx->nr_cgroups++;
e5d1367f 1126
d010b332
SE
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1129
cdd6c482 1130 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1131 if (!ctx->nr_events)
108b02cf 1132 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1133 ctx->nr_events++;
1134 if (event->attr.inherit_stat)
bfbd3381 1135 ctx->nr_stat++;
04289bb9
IM
1136}
1137
0231bb53
JO
1138/*
1139 * Initialize event state based on the perf_event_attr::disabled.
1140 */
1141static inline void perf_event__state_init(struct perf_event *event)
1142{
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1145}
1146
c320c7b7
ACM
1147/*
1148 * Called at perf_event creation and when events are attached/detached from a
1149 * group.
1150 */
1151static void perf_event__read_size(struct perf_event *event)
1152{
1153 int entry = sizeof(u64); /* value */
1154 int size = 0;
1155 int nr = 1;
1156
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1169 }
1170
1171 size += entry * nr;
1172 event->read_size = size;
1173}
1174
1175static void perf_event__header_size(struct perf_event *event)
1176{
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1179 u16 size = 0;
1180
1181 perf_event__read_size(event);
1182
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1185
6844c09d
ACM
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1188
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1191
c3feedf2
AK
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1194
6844c09d
ACM
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1197
d6be9ad6
SE
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1200
6844c09d
ACM
1201 event->header_size = size;
1202}
1203
1204static void perf_event__id_header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
c320c7b7
ACM
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1212
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1215
c320c7b7
ACM
1216 if (sample_type & PERF_SAMPLE_ID)
1217 size += sizeof(data->id);
1218
1219 if (sample_type & PERF_SAMPLE_STREAM_ID)
1220 size += sizeof(data->stream_id);
1221
1222 if (sample_type & PERF_SAMPLE_CPU)
1223 size += sizeof(data->cpu_entry);
1224
6844c09d 1225 event->id_header_size = size;
c320c7b7
ACM
1226}
1227
8a49542c
PZ
1228static void perf_group_attach(struct perf_event *event)
1229{
c320c7b7 1230 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1231
74c3337c
PZ
1232 /*
1233 * We can have double attach due to group movement in perf_event_open.
1234 */
1235 if (event->attach_state & PERF_ATTACH_GROUP)
1236 return;
1237
8a49542c
PZ
1238 event->attach_state |= PERF_ATTACH_GROUP;
1239
1240 if (group_leader == event)
1241 return;
1242
1243 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1244 !is_software_event(event))
1245 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1246
1247 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1248 group_leader->nr_siblings++;
c320c7b7
ACM
1249
1250 perf_event__header_size(group_leader);
1251
1252 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1253 perf_event__header_size(pos);
8a49542c
PZ
1254}
1255
a63eaf34 1256/*
cdd6c482 1257 * Remove a event from the lists for its context.
fccc714b 1258 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1259 */
04289bb9 1260static void
cdd6c482 1261list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1262{
68cacd29 1263 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1264 /*
1265 * We can have double detach due to exit/hot-unplug + close.
1266 */
1267 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1268 return;
8a49542c
PZ
1269
1270 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1271
68cacd29 1272 if (is_cgroup_event(event)) {
e5d1367f 1273 ctx->nr_cgroups--;
68cacd29
SE
1274 cpuctx = __get_cpu_context(ctx);
1275 /*
1276 * if there are no more cgroup events
1277 * then cler cgrp to avoid stale pointer
1278 * in update_cgrp_time_from_cpuctx()
1279 */
1280 if (!ctx->nr_cgroups)
1281 cpuctx->cgrp = NULL;
1282 }
e5d1367f 1283
d010b332
SE
1284 if (has_branch_stack(event))
1285 ctx->nr_branch_stack--;
1286
cdd6c482
IM
1287 ctx->nr_events--;
1288 if (event->attr.inherit_stat)
bfbd3381 1289 ctx->nr_stat--;
8bc20959 1290
cdd6c482 1291 list_del_rcu(&event->event_entry);
04289bb9 1292
8a49542c
PZ
1293 if (event->group_leader == event)
1294 list_del_init(&event->group_entry);
5c148194 1295
96c21a46 1296 update_group_times(event);
b2e74a26
SE
1297
1298 /*
1299 * If event was in error state, then keep it
1300 * that way, otherwise bogus counts will be
1301 * returned on read(). The only way to get out
1302 * of error state is by explicit re-enabling
1303 * of the event
1304 */
1305 if (event->state > PERF_EVENT_STATE_OFF)
1306 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1307}
1308
8a49542c 1309static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1310{
1311 struct perf_event *sibling, *tmp;
8a49542c
PZ
1312 struct list_head *list = NULL;
1313
1314 /*
1315 * We can have double detach due to exit/hot-unplug + close.
1316 */
1317 if (!(event->attach_state & PERF_ATTACH_GROUP))
1318 return;
1319
1320 event->attach_state &= ~PERF_ATTACH_GROUP;
1321
1322 /*
1323 * If this is a sibling, remove it from its group.
1324 */
1325 if (event->group_leader != event) {
1326 list_del_init(&event->group_entry);
1327 event->group_leader->nr_siblings--;
c320c7b7 1328 goto out;
8a49542c
PZ
1329 }
1330
1331 if (!list_empty(&event->group_entry))
1332 list = &event->group_entry;
2e2af50b 1333
04289bb9 1334 /*
cdd6c482
IM
1335 * If this was a group event with sibling events then
1336 * upgrade the siblings to singleton events by adding them
8a49542c 1337 * to whatever list we are on.
04289bb9 1338 */
cdd6c482 1339 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1340 if (list)
1341 list_move_tail(&sibling->group_entry, list);
04289bb9 1342 sibling->group_leader = sibling;
d6f962b5
FW
1343
1344 /* Inherit group flags from the previous leader */
1345 sibling->group_flags = event->group_flags;
04289bb9 1346 }
c320c7b7
ACM
1347
1348out:
1349 perf_event__header_size(event->group_leader);
1350
1351 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1352 perf_event__header_size(tmp);
04289bb9
IM
1353}
1354
fa66f07a
SE
1355static inline int
1356event_filter_match(struct perf_event *event)
1357{
e5d1367f
SE
1358 return (event->cpu == -1 || event->cpu == smp_processor_id())
1359 && perf_cgroup_match(event);
fa66f07a
SE
1360}
1361
9ffcfa6f
SE
1362static void
1363event_sched_out(struct perf_event *event,
3b6f9e5c 1364 struct perf_cpu_context *cpuctx,
cdd6c482 1365 struct perf_event_context *ctx)
3b6f9e5c 1366{
4158755d 1367 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1368 u64 delta;
1369 /*
1370 * An event which could not be activated because of
1371 * filter mismatch still needs to have its timings
1372 * maintained, otherwise bogus information is return
1373 * via read() for time_enabled, time_running:
1374 */
1375 if (event->state == PERF_EVENT_STATE_INACTIVE
1376 && !event_filter_match(event)) {
e5d1367f 1377 delta = tstamp - event->tstamp_stopped;
fa66f07a 1378 event->tstamp_running += delta;
4158755d 1379 event->tstamp_stopped = tstamp;
fa66f07a
SE
1380 }
1381
cdd6c482 1382 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1383 return;
3b6f9e5c 1384
cdd6c482
IM
1385 event->state = PERF_EVENT_STATE_INACTIVE;
1386 if (event->pending_disable) {
1387 event->pending_disable = 0;
1388 event->state = PERF_EVENT_STATE_OFF;
970892a9 1389 }
4158755d 1390 event->tstamp_stopped = tstamp;
a4eaf7f1 1391 event->pmu->del(event, 0);
cdd6c482 1392 event->oncpu = -1;
3b6f9e5c 1393
cdd6c482 1394 if (!is_software_event(event))
3b6f9e5c
PM
1395 cpuctx->active_oncpu--;
1396 ctx->nr_active--;
0f5a2601
PZ
1397 if (event->attr.freq && event->attr.sample_freq)
1398 ctx->nr_freq--;
cdd6c482 1399 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1400 cpuctx->exclusive = 0;
1401}
1402
d859e29f 1403static void
cdd6c482 1404group_sched_out(struct perf_event *group_event,
d859e29f 1405 struct perf_cpu_context *cpuctx,
cdd6c482 1406 struct perf_event_context *ctx)
d859e29f 1407{
cdd6c482 1408 struct perf_event *event;
fa66f07a 1409 int state = group_event->state;
d859e29f 1410
cdd6c482 1411 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1412
1413 /*
1414 * Schedule out siblings (if any):
1415 */
cdd6c482
IM
1416 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1417 event_sched_out(event, cpuctx, ctx);
d859e29f 1418
fa66f07a 1419 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1420 cpuctx->exclusive = 0;
1421}
1422
0793a61d 1423/*
cdd6c482 1424 * Cross CPU call to remove a performance event
0793a61d 1425 *
cdd6c482 1426 * We disable the event on the hardware level first. After that we
0793a61d
TG
1427 * remove it from the context list.
1428 */
fe4b04fa 1429static int __perf_remove_from_context(void *info)
0793a61d 1430{
cdd6c482
IM
1431 struct perf_event *event = info;
1432 struct perf_event_context *ctx = event->ctx;
108b02cf 1433 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1434
e625cce1 1435 raw_spin_lock(&ctx->lock);
cdd6c482 1436 event_sched_out(event, cpuctx, ctx);
cdd6c482 1437 list_del_event(event, ctx);
64ce3126
PZ
1438 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1439 ctx->is_active = 0;
1440 cpuctx->task_ctx = NULL;
1441 }
e625cce1 1442 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1443
1444 return 0;
0793a61d
TG
1445}
1446
1447
1448/*
cdd6c482 1449 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1450 *
cdd6c482 1451 * CPU events are removed with a smp call. For task events we only
0793a61d 1452 * call when the task is on a CPU.
c93f7669 1453 *
cdd6c482
IM
1454 * If event->ctx is a cloned context, callers must make sure that
1455 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1456 * remains valid. This is OK when called from perf_release since
1457 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1458 * When called from perf_event_exit_task, it's OK because the
c93f7669 1459 * context has been detached from its task.
0793a61d 1460 */
fe4b04fa 1461static void perf_remove_from_context(struct perf_event *event)
0793a61d 1462{
cdd6c482 1463 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1464 struct task_struct *task = ctx->task;
1465
fe4b04fa
PZ
1466 lockdep_assert_held(&ctx->mutex);
1467
0793a61d
TG
1468 if (!task) {
1469 /*
cdd6c482 1470 * Per cpu events are removed via an smp call and
af901ca1 1471 * the removal is always successful.
0793a61d 1472 */
fe4b04fa 1473 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1474 return;
1475 }
1476
1477retry:
fe4b04fa
PZ
1478 if (!task_function_call(task, __perf_remove_from_context, event))
1479 return;
0793a61d 1480
e625cce1 1481 raw_spin_lock_irq(&ctx->lock);
0793a61d 1482 /*
fe4b04fa
PZ
1483 * If we failed to find a running task, but find the context active now
1484 * that we've acquired the ctx->lock, retry.
0793a61d 1485 */
fe4b04fa 1486 if (ctx->is_active) {
e625cce1 1487 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1488 goto retry;
1489 }
1490
1491 /*
fe4b04fa
PZ
1492 * Since the task isn't running, its safe to remove the event, us
1493 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1494 */
fe4b04fa 1495 list_del_event(event, ctx);
e625cce1 1496 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1497}
1498
d859e29f 1499/*
cdd6c482 1500 * Cross CPU call to disable a performance event
d859e29f 1501 */
500ad2d8 1502int __perf_event_disable(void *info)
d859e29f 1503{
cdd6c482 1504 struct perf_event *event = info;
cdd6c482 1505 struct perf_event_context *ctx = event->ctx;
108b02cf 1506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1507
1508 /*
cdd6c482
IM
1509 * If this is a per-task event, need to check whether this
1510 * event's task is the current task on this cpu.
fe4b04fa
PZ
1511 *
1512 * Can trigger due to concurrent perf_event_context_sched_out()
1513 * flipping contexts around.
d859e29f 1514 */
665c2142 1515 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1516 return -EINVAL;
d859e29f 1517
e625cce1 1518 raw_spin_lock(&ctx->lock);
d859e29f
PM
1519
1520 /*
cdd6c482 1521 * If the event is on, turn it off.
d859e29f
PM
1522 * If it is in error state, leave it in error state.
1523 */
cdd6c482 1524 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1525 update_context_time(ctx);
e5d1367f 1526 update_cgrp_time_from_event(event);
cdd6c482
IM
1527 update_group_times(event);
1528 if (event == event->group_leader)
1529 group_sched_out(event, cpuctx, ctx);
d859e29f 1530 else
cdd6c482
IM
1531 event_sched_out(event, cpuctx, ctx);
1532 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1533 }
1534
e625cce1 1535 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1536
1537 return 0;
d859e29f
PM
1538}
1539
1540/*
cdd6c482 1541 * Disable a event.
c93f7669 1542 *
cdd6c482
IM
1543 * If event->ctx is a cloned context, callers must make sure that
1544 * every task struct that event->ctx->task could possibly point to
c93f7669 1545 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1546 * perf_event_for_each_child or perf_event_for_each because they
1547 * hold the top-level event's child_mutex, so any descendant that
1548 * goes to exit will block in sync_child_event.
1549 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1550 * is the current context on this CPU and preemption is disabled,
cdd6c482 1551 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1552 */
44234adc 1553void perf_event_disable(struct perf_event *event)
d859e29f 1554{
cdd6c482 1555 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1556 struct task_struct *task = ctx->task;
1557
1558 if (!task) {
1559 /*
cdd6c482 1560 * Disable the event on the cpu that it's on
d859e29f 1561 */
fe4b04fa 1562 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1563 return;
1564 }
1565
9ed6060d 1566retry:
fe4b04fa
PZ
1567 if (!task_function_call(task, __perf_event_disable, event))
1568 return;
d859e29f 1569
e625cce1 1570 raw_spin_lock_irq(&ctx->lock);
d859e29f 1571 /*
cdd6c482 1572 * If the event is still active, we need to retry the cross-call.
d859e29f 1573 */
cdd6c482 1574 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1575 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1576 /*
1577 * Reload the task pointer, it might have been changed by
1578 * a concurrent perf_event_context_sched_out().
1579 */
1580 task = ctx->task;
d859e29f
PM
1581 goto retry;
1582 }
1583
1584 /*
1585 * Since we have the lock this context can't be scheduled
1586 * in, so we can change the state safely.
1587 */
cdd6c482
IM
1588 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1589 update_group_times(event);
1590 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1591 }
e625cce1 1592 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1593}
dcfce4a0 1594EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1595
e5d1367f
SE
1596static void perf_set_shadow_time(struct perf_event *event,
1597 struct perf_event_context *ctx,
1598 u64 tstamp)
1599{
1600 /*
1601 * use the correct time source for the time snapshot
1602 *
1603 * We could get by without this by leveraging the
1604 * fact that to get to this function, the caller
1605 * has most likely already called update_context_time()
1606 * and update_cgrp_time_xx() and thus both timestamp
1607 * are identical (or very close). Given that tstamp is,
1608 * already adjusted for cgroup, we could say that:
1609 * tstamp - ctx->timestamp
1610 * is equivalent to
1611 * tstamp - cgrp->timestamp.
1612 *
1613 * Then, in perf_output_read(), the calculation would
1614 * work with no changes because:
1615 * - event is guaranteed scheduled in
1616 * - no scheduled out in between
1617 * - thus the timestamp would be the same
1618 *
1619 * But this is a bit hairy.
1620 *
1621 * So instead, we have an explicit cgroup call to remain
1622 * within the time time source all along. We believe it
1623 * is cleaner and simpler to understand.
1624 */
1625 if (is_cgroup_event(event))
1626 perf_cgroup_set_shadow_time(event, tstamp);
1627 else
1628 event->shadow_ctx_time = tstamp - ctx->timestamp;
1629}
1630
4fe757dd
PZ
1631#define MAX_INTERRUPTS (~0ULL)
1632
1633static void perf_log_throttle(struct perf_event *event, int enable);
1634
235c7fc7 1635static int
9ffcfa6f 1636event_sched_in(struct perf_event *event,
235c7fc7 1637 struct perf_cpu_context *cpuctx,
6e37738a 1638 struct perf_event_context *ctx)
235c7fc7 1639{
4158755d
SE
1640 u64 tstamp = perf_event_time(event);
1641
cdd6c482 1642 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1643 return 0;
1644
cdd6c482 1645 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1646 event->oncpu = smp_processor_id();
4fe757dd
PZ
1647
1648 /*
1649 * Unthrottle events, since we scheduled we might have missed several
1650 * ticks already, also for a heavily scheduling task there is little
1651 * guarantee it'll get a tick in a timely manner.
1652 */
1653 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1654 perf_log_throttle(event, 1);
1655 event->hw.interrupts = 0;
1656 }
1657
235c7fc7
IM
1658 /*
1659 * The new state must be visible before we turn it on in the hardware:
1660 */
1661 smp_wmb();
1662
a4eaf7f1 1663 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1664 event->state = PERF_EVENT_STATE_INACTIVE;
1665 event->oncpu = -1;
235c7fc7
IM
1666 return -EAGAIN;
1667 }
1668
4158755d 1669 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1670
e5d1367f 1671 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1672
cdd6c482 1673 if (!is_software_event(event))
3b6f9e5c 1674 cpuctx->active_oncpu++;
235c7fc7 1675 ctx->nr_active++;
0f5a2601
PZ
1676 if (event->attr.freq && event->attr.sample_freq)
1677 ctx->nr_freq++;
235c7fc7 1678
cdd6c482 1679 if (event->attr.exclusive)
3b6f9e5c
PM
1680 cpuctx->exclusive = 1;
1681
235c7fc7
IM
1682 return 0;
1683}
1684
6751b71e 1685static int
cdd6c482 1686group_sched_in(struct perf_event *group_event,
6751b71e 1687 struct perf_cpu_context *cpuctx,
6e37738a 1688 struct perf_event_context *ctx)
6751b71e 1689{
6bde9b6c 1690 struct perf_event *event, *partial_group = NULL;
51b0fe39 1691 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1692 u64 now = ctx->time;
1693 bool simulate = false;
6751b71e 1694
cdd6c482 1695 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1696 return 0;
1697
ad5133b7 1698 pmu->start_txn(pmu);
6bde9b6c 1699
9ffcfa6f 1700 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1701 pmu->cancel_txn(pmu);
9e630205 1702 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1703 return -EAGAIN;
90151c35 1704 }
6751b71e
PM
1705
1706 /*
1707 * Schedule in siblings as one group (if any):
1708 */
cdd6c482 1709 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1710 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1711 partial_group = event;
6751b71e
PM
1712 goto group_error;
1713 }
1714 }
1715
9ffcfa6f 1716 if (!pmu->commit_txn(pmu))
6e85158c 1717 return 0;
9ffcfa6f 1718
6751b71e
PM
1719group_error:
1720 /*
1721 * Groups can be scheduled in as one unit only, so undo any
1722 * partial group before returning:
d7842da4
SE
1723 * The events up to the failed event are scheduled out normally,
1724 * tstamp_stopped will be updated.
1725 *
1726 * The failed events and the remaining siblings need to have
1727 * their timings updated as if they had gone thru event_sched_in()
1728 * and event_sched_out(). This is required to get consistent timings
1729 * across the group. This also takes care of the case where the group
1730 * could never be scheduled by ensuring tstamp_stopped is set to mark
1731 * the time the event was actually stopped, such that time delta
1732 * calculation in update_event_times() is correct.
6751b71e 1733 */
cdd6c482
IM
1734 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1735 if (event == partial_group)
d7842da4
SE
1736 simulate = true;
1737
1738 if (simulate) {
1739 event->tstamp_running += now - event->tstamp_stopped;
1740 event->tstamp_stopped = now;
1741 } else {
1742 event_sched_out(event, cpuctx, ctx);
1743 }
6751b71e 1744 }
9ffcfa6f 1745 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1746
ad5133b7 1747 pmu->cancel_txn(pmu);
90151c35 1748
9e630205
SE
1749 perf_cpu_hrtimer_restart(cpuctx);
1750
6751b71e
PM
1751 return -EAGAIN;
1752}
1753
3b6f9e5c 1754/*
cdd6c482 1755 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1756 */
cdd6c482 1757static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1758 struct perf_cpu_context *cpuctx,
1759 int can_add_hw)
1760{
1761 /*
cdd6c482 1762 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1763 */
d6f962b5 1764 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1765 return 1;
1766 /*
1767 * If an exclusive group is already on, no other hardware
cdd6c482 1768 * events can go on.
3b6f9e5c
PM
1769 */
1770 if (cpuctx->exclusive)
1771 return 0;
1772 /*
1773 * If this group is exclusive and there are already
cdd6c482 1774 * events on the CPU, it can't go on.
3b6f9e5c 1775 */
cdd6c482 1776 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1777 return 0;
1778 /*
1779 * Otherwise, try to add it if all previous groups were able
1780 * to go on.
1781 */
1782 return can_add_hw;
1783}
1784
cdd6c482
IM
1785static void add_event_to_ctx(struct perf_event *event,
1786 struct perf_event_context *ctx)
53cfbf59 1787{
4158755d
SE
1788 u64 tstamp = perf_event_time(event);
1789
cdd6c482 1790 list_add_event(event, ctx);
8a49542c 1791 perf_group_attach(event);
4158755d
SE
1792 event->tstamp_enabled = tstamp;
1793 event->tstamp_running = tstamp;
1794 event->tstamp_stopped = tstamp;
53cfbf59
PM
1795}
1796
2c29ef0f
PZ
1797static void task_ctx_sched_out(struct perf_event_context *ctx);
1798static void
1799ctx_sched_in(struct perf_event_context *ctx,
1800 struct perf_cpu_context *cpuctx,
1801 enum event_type_t event_type,
1802 struct task_struct *task);
fe4b04fa 1803
dce5855b
PZ
1804static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1805 struct perf_event_context *ctx,
1806 struct task_struct *task)
1807{
1808 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1809 if (ctx)
1810 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1811 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1814}
1815
0793a61d 1816/*
cdd6c482 1817 * Cross CPU call to install and enable a performance event
682076ae
PZ
1818 *
1819 * Must be called with ctx->mutex held
0793a61d 1820 */
fe4b04fa 1821static int __perf_install_in_context(void *info)
0793a61d 1822{
cdd6c482
IM
1823 struct perf_event *event = info;
1824 struct perf_event_context *ctx = event->ctx;
108b02cf 1825 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1826 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1827 struct task_struct *task = current;
1828
b58f6b0d 1829 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1830 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1831
1832 /*
2c29ef0f 1833 * If there was an active task_ctx schedule it out.
0793a61d 1834 */
b58f6b0d 1835 if (task_ctx)
2c29ef0f 1836 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1837
1838 /*
1839 * If the context we're installing events in is not the
1840 * active task_ctx, flip them.
1841 */
1842 if (ctx->task && task_ctx != ctx) {
1843 if (task_ctx)
1844 raw_spin_unlock(&task_ctx->lock);
1845 raw_spin_lock(&ctx->lock);
1846 task_ctx = ctx;
1847 }
1848
1849 if (task_ctx) {
1850 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1851 task = task_ctx->task;
1852 }
b58f6b0d 1853
2c29ef0f 1854 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1855
4af4998b 1856 update_context_time(ctx);
e5d1367f
SE
1857 /*
1858 * update cgrp time only if current cgrp
1859 * matches event->cgrp. Must be done before
1860 * calling add_event_to_ctx()
1861 */
1862 update_cgrp_time_from_event(event);
0793a61d 1863
cdd6c482 1864 add_event_to_ctx(event, ctx);
0793a61d 1865
d859e29f 1866 /*
2c29ef0f 1867 * Schedule everything back in
d859e29f 1868 */
dce5855b 1869 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1870
1871 perf_pmu_enable(cpuctx->ctx.pmu);
1872 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 1873
d84153d6
FW
1874 if (atomic_read(&__get_cpu_var(perf_freq_events)))
1875 tick_nohz_full_kick();
1876
fe4b04fa 1877 return 0;
0793a61d
TG
1878}
1879
1880/*
cdd6c482 1881 * Attach a performance event to a context
0793a61d 1882 *
cdd6c482
IM
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
0793a61d 1885 *
cdd6c482 1886 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890static void
cdd6c482
IM
1891perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
0793a61d
TG
1893 int cpu)
1894{
1895 struct task_struct *task = ctx->task;
1896
fe4b04fa
PZ
1897 lockdep_assert_held(&ctx->mutex);
1898
c3f00c70 1899 event->ctx = ctx;
0cda4c02
YZ
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
c3f00c70 1902
0793a61d
TG
1903 if (!task) {
1904 /*
cdd6c482 1905 * Per cpu events are installed via an smp call and
af901ca1 1906 * the install is always successful.
0793a61d 1907 */
fe4b04fa 1908 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1909 return;
1910 }
1911
0793a61d 1912retry:
fe4b04fa
PZ
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
0793a61d 1915
e625cce1 1916 raw_spin_lock_irq(&ctx->lock);
0793a61d 1917 /*
fe4b04fa
PZ
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
0793a61d 1920 */
fe4b04fa 1921 if (ctx->is_active) {
e625cce1 1922 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1923 goto retry;
1924 }
1925
1926 /*
fe4b04fa
PZ
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1929 */
fe4b04fa 1930 add_event_to_ctx(event, ctx);
e625cce1 1931 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1932}
1933
fa289bec 1934/*
cdd6c482 1935 * Put a event into inactive state and update time fields.
fa289bec
PM
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1d9b482e 1942static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1943{
cdd6c482 1944 struct perf_event *sub;
4158755d 1945 u64 tstamp = perf_event_time(event);
fa289bec 1946
cdd6c482 1947 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1952 }
fa289bec
PM
1953}
1954
d859e29f 1955/*
cdd6c482 1956 * Cross CPU call to enable a performance event
d859e29f 1957 */
fe4b04fa 1958static int __perf_event_enable(void *info)
04289bb9 1959{
cdd6c482 1960 struct perf_event *event = info;
cdd6c482
IM
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
108b02cf 1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1964 int err;
04289bb9 1965
06f41796
JO
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
fe4b04fa 1976 return -EINVAL;
3cbed429 1977
e625cce1 1978 raw_spin_lock(&ctx->lock);
4af4998b 1979 update_context_time(ctx);
d859e29f 1980
cdd6c482 1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1982 goto unlock;
e5d1367f
SE
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
3f7cce3c 1987 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1988
1d9b482e 1989 __perf_event_mark_enabled(event);
04289bb9 1990
e5d1367f
SE
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
f4c4176f 1994 goto unlock;
e5d1367f 1995 }
f4c4176f 1996
04289bb9 1997 /*
cdd6c482 1998 * If the event is in a group and isn't the group leader,
d859e29f 1999 * then don't put it on unless the group is on.
04289bb9 2000 */
cdd6c482 2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2002 goto unlock;
3b6f9e5c 2003
cdd6c482 2004 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2005 err = -EEXIST;
e758a33d 2006 } else {
cdd6c482 2007 if (event == leader)
6e37738a 2008 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2009 else
6e37738a 2010 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2011 }
d859e29f
PM
2012
2013 if (err) {
2014 /*
cdd6c482 2015 * If this event can't go on and it's part of a
d859e29f
PM
2016 * group, then the whole group has to come off.
2017 */
9e630205 2018 if (leader != event) {
d859e29f 2019 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
0d48696f 2022 if (leader->attr.pinned) {
53cfbf59 2023 update_group_times(leader);
cdd6c482 2024 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2025 }
d859e29f
PM
2026 }
2027
9ed6060d 2028unlock:
e625cce1 2029 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2030
2031 return 0;
d859e29f
PM
2032}
2033
2034/*
cdd6c482 2035 * Enable a event.
c93f7669 2036 *
cdd6c482
IM
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
c93f7669 2039 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
d859e29f 2042 */
44234adc 2043void perf_event_enable(struct perf_event *event)
d859e29f 2044{
cdd6c482 2045 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
cdd6c482 2050 * Enable the event on the cpu that it's on
d859e29f 2051 */
fe4b04fa 2052 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2053 return;
2054 }
2055
e625cce1 2056 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2058 goto out;
2059
2060 /*
cdd6c482
IM
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
d859e29f
PM
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
cdd6c482
IM
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2069
9ed6060d 2070retry:
fe4b04fa 2071 if (!ctx->is_active) {
1d9b482e 2072 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2073 goto out;
2074 }
2075
e625cce1 2076 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
d859e29f 2080
e625cce1 2081 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2082
2083 /*
cdd6c482 2084 * If the context is active and the event is still off,
d859e29f
PM
2085 * we need to retry the cross-call.
2086 */
fe4b04fa
PZ
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
d859e29f 2093 goto retry;
fe4b04fa 2094 }
fa289bec 2095
9ed6060d 2096out:
e625cce1 2097 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2098}
dcfce4a0 2099EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2100
26ca5c11 2101int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2102{
2023b359 2103 /*
cdd6c482 2104 * not supported on inherited events
2023b359 2105 */
2e939d1d 2106 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2107 return -EINVAL;
2108
cdd6c482
IM
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2023b359
PZ
2111
2112 return 0;
79f14641 2113}
26ca5c11 2114EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2115
5b0311e1
FW
2116static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
235c7fc7 2119{
cdd6c482 2120 struct perf_event *event;
db24d33e 2121 int is_active = ctx->is_active;
235c7fc7 2122
db24d33e 2123 ctx->is_active &= ~event_type;
cdd6c482 2124 if (likely(!ctx->nr_events))
facc4307
PZ
2125 return;
2126
4af4998b 2127 update_context_time(ctx);
e5d1367f 2128 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2129 if (!ctx->nr_active)
facc4307 2130 return;
5b0311e1 2131
075e0b00 2132 perf_pmu_disable(ctx->pmu);
db24d33e 2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
9ed6060d 2136 }
889ff015 2137
db24d33e 2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2140 group_sched_out(event, cpuctx, ctx);
9ed6060d 2141 }
1b9a644f 2142 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2143}
2144
564c2b21
PM
2145/*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
cdd6c482
IM
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
564c2b21 2152 * in them directly with an fd; we can only enable/disable all
cdd6c482 2153 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
cdd6c482
IM
2156static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
564c2b21
PM
2158{
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2160 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2161 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2162}
2163
cdd6c482
IM
2164static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
bfbd3381
PZ
2166{
2167 u64 value;
2168
cdd6c482 2169 if (!event->attr.inherit_stat)
bfbd3381
PZ
2170 return;
2171
2172 /*
cdd6c482 2173 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2176 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2177 * don't need to use it.
2178 */
cdd6c482
IM
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2181 event->pmu->read(event);
2182 /* fall-through */
bfbd3381 2183
cdd6c482
IM
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
bfbd3381
PZ
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
cdd6c482 2193 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2194 * values when we flip the contexts.
2195 */
e7850595
PZ
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
bfbd3381 2199
cdd6c482
IM
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2202
bfbd3381 2203 /*
19d2e755 2204 * Since we swizzled the values, update the user visible data too.
bfbd3381 2205 */
cdd6c482
IM
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
bfbd3381
PZ
2208}
2209
2210#define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
cdd6c482
IM
2213static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
bfbd3381 2215{
cdd6c482 2216 struct perf_event *event, *next_event;
bfbd3381
PZ
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
02ffdbc8
PZ
2221 update_context_time(ctx);
2222
cdd6c482
IM
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
bfbd3381 2225
cdd6c482
IM
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
bfbd3381 2228
cdd6c482
IM
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2231
cdd6c482 2232 __perf_event_sync_stat(event, next_event);
bfbd3381 2233
cdd6c482
IM
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2236 }
2237}
2238
fe4b04fa
PZ
2239static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
0793a61d 2241{
8dc85d54 2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
108b02cf 2245 struct perf_cpu_context *cpuctx;
c93f7669 2246 int do_switch = 1;
0793a61d 2247
108b02cf
PZ
2248 if (likely(!ctx))
2249 return;
10989fb2 2250
108b02cf
PZ
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
0793a61d
TG
2253 return;
2254
c93f7669
PM
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2257 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
e625cce1
TG
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2271 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2272 /*
2273 * XXX do we need a memory barrier of sorts
cdd6c482 2274 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2275 */
8dc85d54
PZ
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
bfbd3381 2281
cdd6c482 2282 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2283 }
e625cce1
TG
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
564c2b21 2286 }
c93f7669 2287 rcu_read_unlock();
564c2b21 2288
c93f7669 2289 if (do_switch) {
facc4307 2290 raw_spin_lock(&ctx->lock);
5b0311e1 2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2292 cpuctx->task_ctx = NULL;
facc4307 2293 raw_spin_unlock(&ctx->lock);
c93f7669 2294 }
0793a61d
TG
2295}
2296
8dc85d54
PZ
2297#define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300/*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
ab0cce56
JO
2311void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
8dc85d54
PZ
2313{
2314 int ctxn;
2315
8dc85d54
PZ
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2325 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2326}
2327
04dc2dbb 2328static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2329{
108b02cf 2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2331
a63eaf34
PM
2332 if (!cpuctx->task_ctx)
2333 return;
012b84da
IM
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
04dc2dbb 2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2339 cpuctx->task_ctx = NULL;
2340}
2341
5b0311e1
FW
2342/*
2343 * Called with IRQs disabled
2344 */
2345static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347{
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2349}
2350
235c7fc7 2351static void
5b0311e1 2352ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2353 struct perf_cpu_context *cpuctx)
0793a61d 2354{
cdd6c482 2355 struct perf_event *event;
0793a61d 2356
889ff015
FW
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2359 continue;
5632ab12 2360 if (!event_filter_match(event))
3b6f9e5c
PM
2361 continue;
2362
e5d1367f
SE
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
8c9ed8e1 2367 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2368 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
cdd6c482
IM
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2377 }
3b6f9e5c 2378 }
5b0311e1
FW
2379}
2380
2381static void
2382ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2383 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2384{
2385 struct perf_event *event;
2386 int can_add_hw = 1;
3b6f9e5c 2387
889ff015
FW
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2391 continue;
04289bb9
IM
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2394 * of events:
04289bb9 2395 */
5632ab12 2396 if (!event_filter_match(event))
0793a61d
TG
2397 continue;
2398
e5d1367f
SE
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
9ed6060d 2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2404 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2405 can_add_hw = 0;
9ed6060d 2406 }
0793a61d 2407 }
5b0311e1
FW
2408}
2409
2410static void
2411ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2413 enum event_type_t event_type,
2414 struct task_struct *task)
5b0311e1 2415{
e5d1367f 2416 u64 now;
db24d33e 2417 int is_active = ctx->is_active;
e5d1367f 2418
db24d33e 2419 ctx->is_active |= event_type;
5b0311e1 2420 if (likely(!ctx->nr_events))
facc4307 2421 return;
5b0311e1 2422
e5d1367f
SE
2423 now = perf_clock();
2424 ctx->timestamp = now;
3f7cce3c 2425 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
db24d33e 2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2431 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2432
2433 /* Then walk through the lower prio flexible groups */
db24d33e 2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2435 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2436}
2437
329c0e01 2438static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2439 enum event_type_t event_type,
2440 struct task_struct *task)
329c0e01
FW
2441{
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
e5d1367f 2444 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2445}
2446
e5d1367f
SE
2447static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
235c7fc7 2449{
108b02cf 2450 struct perf_cpu_context *cpuctx;
235c7fc7 2451
108b02cf 2452 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
facc4307 2456 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2457 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
1d5f003f
GN
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
9b33fa6b 2467
86b47c25
GN
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
facc4307
PZ
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
b5ab4cd5
PZ
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
108b02cf 2477 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2478}
2479
d010b332
SE
2480/*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498{
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538}
2539
8dc85d54
PZ
2540/*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
ab0cce56
JO
2551void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
8dc85d54
PZ
2553{
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
e5d1367f 2562 perf_event_context_sched_in(ctx, task);
8dc85d54 2563 }
e5d1367f
SE
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2570 perf_cgroup_sched_in(prev, task);
d010b332
SE
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2575}
2576
abd50713
PZ
2577static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578{
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
fe4b04fa 2604#define REDUCE_FLS(a, b) \
abd50713
PZ
2605do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613} while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
f6ab91ad
PZ
2644 if (!divisor)
2645 return dividend;
2646
abd50713
PZ
2647 return div64_u64(dividend, divisor);
2648}
2649
e050e3f0
SE
2650static DEFINE_PER_CPU(int, perf_throttled_count);
2651static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
f39d47ff 2653static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2654{
cdd6c482 2655 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2656 s64 period, sample_period;
bd2b5b12
PZ
2657 s64 delta;
2658
abd50713 2659 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
bd2b5b12 2669 hwc->sample_period = sample_period;
abd50713 2670
e7850595 2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
e7850595 2675 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2679 }
bd2b5b12
PZ
2680}
2681
e050e3f0
SE
2682/*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
60db5e09 2689{
cdd6c482
IM
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
e050e3f0 2692 u64 now, period = TICK_NSEC;
abd50713 2693 s64 delta;
60db5e09 2694
e050e3f0
SE
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2701 return;
2702
e050e3f0 2703 raw_spin_lock(&ctx->lock);
f39d47ff 2704 perf_pmu_disable(ctx->pmu);
e050e3f0 2705
03541f8b 2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2708 continue;
2709
5632ab12 2710 if (!event_filter_match(event))
5d27c23d
PZ
2711 continue;
2712
cdd6c482 2713 hwc = &event->hw;
6a24ed6c 2714
e050e3f0
SE
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
cdd6c482 2717 perf_log_throttle(event, 1);
a4eaf7f1 2718 event->pmu->start(event, 0);
a78ac325
PZ
2719 }
2720
cdd6c482 2721 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2722 continue;
2723
e050e3f0
SE
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
e7850595 2729 now = local64_read(&event->count);
abd50713
PZ
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
60db5e09 2732
e050e3f0
SE
2733 /*
2734 * restart the event
2735 * reload only if value has changed
f39d47ff
SE
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
e050e3f0 2739 */
abd50713 2740 if (delta > 0)
f39d47ff 2741 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2744 }
e050e3f0 2745
f39d47ff 2746 perf_pmu_enable(ctx->pmu);
e050e3f0 2747 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2748}
2749
235c7fc7 2750/*
cdd6c482 2751 * Round-robin a context's events:
235c7fc7 2752 */
cdd6c482 2753static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2754{
dddd3379
TG
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2761}
2762
b5ab4cd5 2763/*
e9d2b064
PZ
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2767 */
9e630205 2768static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2769{
8dc85d54 2770 struct perf_event_context *ctx = NULL;
e050e3f0 2771 int rotate = 0, remove = 1;
7fc23a53 2772
b5ab4cd5 2773 if (cpuctx->ctx.nr_events) {
e9d2b064 2774 remove = 0;
b5ab4cd5
PZ
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
235c7fc7 2778
8dc85d54 2779 ctx = cpuctx->task_ctx;
b5ab4cd5 2780 if (ctx && ctx->nr_events) {
e9d2b064 2781 remove = 0;
b5ab4cd5
PZ
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
9717e6cd 2785
e050e3f0 2786 if (!rotate)
0f5a2601
PZ
2787 goto done;
2788
facc4307 2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2790 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2791
e050e3f0
SE
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2795
e050e3f0
SE
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
235c7fc7 2799
e050e3f0 2800 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2801
0f5a2601
PZ
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2804done:
e9d2b064
PZ
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2807
2808 return rotate;
e9d2b064
PZ
2809}
2810
026249ef
FW
2811#ifdef CONFIG_NO_HZ_FULL
2812bool perf_event_can_stop_tick(void)
2813{
d84153d6
FW
2814 if (atomic_read(&__get_cpu_var(perf_freq_events)) ||
2815 __this_cpu_read(perf_throttled_count))
026249ef 2816 return false;
d84153d6
FW
2817 else
2818 return true;
026249ef
FW
2819}
2820#endif
2821
e9d2b064
PZ
2822void perf_event_task_tick(void)
2823{
2824 struct list_head *head = &__get_cpu_var(rotation_list);
2825 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2826 struct perf_event_context *ctx;
2827 int throttled;
b5ab4cd5 2828
e9d2b064
PZ
2829 WARN_ON(!irqs_disabled());
2830
e050e3f0
SE
2831 __this_cpu_inc(perf_throttled_seq);
2832 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2833
e9d2b064 2834 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2835 ctx = &cpuctx->ctx;
2836 perf_adjust_freq_unthr_context(ctx, throttled);
2837
2838 ctx = cpuctx->task_ctx;
2839 if (ctx)
2840 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2841 }
0793a61d
TG
2842}
2843
889ff015
FW
2844static int event_enable_on_exec(struct perf_event *event,
2845 struct perf_event_context *ctx)
2846{
2847 if (!event->attr.enable_on_exec)
2848 return 0;
2849
2850 event->attr.enable_on_exec = 0;
2851 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2852 return 0;
2853
1d9b482e 2854 __perf_event_mark_enabled(event);
889ff015
FW
2855
2856 return 1;
2857}
2858
57e7986e 2859/*
cdd6c482 2860 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2861 * This expects task == current.
2862 */
8dc85d54 2863static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2864{
cdd6c482 2865 struct perf_event *event;
57e7986e
PM
2866 unsigned long flags;
2867 int enabled = 0;
889ff015 2868 int ret;
57e7986e
PM
2869
2870 local_irq_save(flags);
cdd6c482 2871 if (!ctx || !ctx->nr_events)
57e7986e
PM
2872 goto out;
2873
e566b76e
SE
2874 /*
2875 * We must ctxsw out cgroup events to avoid conflict
2876 * when invoking perf_task_event_sched_in() later on
2877 * in this function. Otherwise we end up trying to
2878 * ctxswin cgroup events which are already scheduled
2879 * in.
2880 */
a8d757ef 2881 perf_cgroup_sched_out(current, NULL);
57e7986e 2882
e625cce1 2883 raw_spin_lock(&ctx->lock);
04dc2dbb 2884 task_ctx_sched_out(ctx);
57e7986e 2885
b79387ef 2886 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2887 ret = event_enable_on_exec(event, ctx);
2888 if (ret)
2889 enabled = 1;
57e7986e
PM
2890 }
2891
2892 /*
cdd6c482 2893 * Unclone this context if we enabled any event.
57e7986e 2894 */
71a851b4
PZ
2895 if (enabled)
2896 unclone_ctx(ctx);
57e7986e 2897
e625cce1 2898 raw_spin_unlock(&ctx->lock);
57e7986e 2899
e566b76e
SE
2900 /*
2901 * Also calls ctxswin for cgroup events, if any:
2902 */
e5d1367f 2903 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2904out:
57e7986e
PM
2905 local_irq_restore(flags);
2906}
2907
0793a61d 2908/*
cdd6c482 2909 * Cross CPU call to read the hardware event
0793a61d 2910 */
cdd6c482 2911static void __perf_event_read(void *info)
0793a61d 2912{
cdd6c482
IM
2913 struct perf_event *event = info;
2914 struct perf_event_context *ctx = event->ctx;
108b02cf 2915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2916
e1ac3614
PM
2917 /*
2918 * If this is a task context, we need to check whether it is
2919 * the current task context of this cpu. If not it has been
2920 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2921 * event->count would have been updated to a recent sample
2922 * when the event was scheduled out.
e1ac3614
PM
2923 */
2924 if (ctx->task && cpuctx->task_ctx != ctx)
2925 return;
2926
e625cce1 2927 raw_spin_lock(&ctx->lock);
e5d1367f 2928 if (ctx->is_active) {
542e72fc 2929 update_context_time(ctx);
e5d1367f
SE
2930 update_cgrp_time_from_event(event);
2931 }
cdd6c482 2932 update_event_times(event);
542e72fc
PZ
2933 if (event->state == PERF_EVENT_STATE_ACTIVE)
2934 event->pmu->read(event);
e625cce1 2935 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2936}
2937
b5e58793
PZ
2938static inline u64 perf_event_count(struct perf_event *event)
2939{
e7850595 2940 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2941}
2942
cdd6c482 2943static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2944{
2945 /*
cdd6c482
IM
2946 * If event is enabled and currently active on a CPU, update the
2947 * value in the event structure:
0793a61d 2948 */
cdd6c482
IM
2949 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2950 smp_call_function_single(event->oncpu,
2951 __perf_event_read, event, 1);
2952 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2953 struct perf_event_context *ctx = event->ctx;
2954 unsigned long flags;
2955
e625cce1 2956 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2957 /*
2958 * may read while context is not active
2959 * (e.g., thread is blocked), in that case
2960 * we cannot update context time
2961 */
e5d1367f 2962 if (ctx->is_active) {
c530ccd9 2963 update_context_time(ctx);
e5d1367f
SE
2964 update_cgrp_time_from_event(event);
2965 }
cdd6c482 2966 update_event_times(event);
e625cce1 2967 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2968 }
2969
b5e58793 2970 return perf_event_count(event);
0793a61d
TG
2971}
2972
a63eaf34 2973/*
cdd6c482 2974 * Initialize the perf_event context in a task_struct:
a63eaf34 2975 */
eb184479 2976static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2977{
e625cce1 2978 raw_spin_lock_init(&ctx->lock);
a63eaf34 2979 mutex_init(&ctx->mutex);
889ff015
FW
2980 INIT_LIST_HEAD(&ctx->pinned_groups);
2981 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2982 INIT_LIST_HEAD(&ctx->event_list);
2983 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2984}
2985
2986static struct perf_event_context *
2987alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2988{
2989 struct perf_event_context *ctx;
2990
2991 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2992 if (!ctx)
2993 return NULL;
2994
2995 __perf_event_init_context(ctx);
2996 if (task) {
2997 ctx->task = task;
2998 get_task_struct(task);
0793a61d 2999 }
eb184479
PZ
3000 ctx->pmu = pmu;
3001
3002 return ctx;
a63eaf34
PM
3003}
3004
2ebd4ffb
MH
3005static struct task_struct *
3006find_lively_task_by_vpid(pid_t vpid)
3007{
3008 struct task_struct *task;
3009 int err;
0793a61d
TG
3010
3011 rcu_read_lock();
2ebd4ffb 3012 if (!vpid)
0793a61d
TG
3013 task = current;
3014 else
2ebd4ffb 3015 task = find_task_by_vpid(vpid);
0793a61d
TG
3016 if (task)
3017 get_task_struct(task);
3018 rcu_read_unlock();
3019
3020 if (!task)
3021 return ERR_PTR(-ESRCH);
3022
0793a61d 3023 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3024 err = -EACCES;
3025 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3026 goto errout;
3027
2ebd4ffb
MH
3028 return task;
3029errout:
3030 put_task_struct(task);
3031 return ERR_PTR(err);
3032
3033}
3034
fe4b04fa
PZ
3035/*
3036 * Returns a matching context with refcount and pincount.
3037 */
108b02cf 3038static struct perf_event_context *
38a81da2 3039find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3040{
cdd6c482 3041 struct perf_event_context *ctx;
22a4f650 3042 struct perf_cpu_context *cpuctx;
25346b93 3043 unsigned long flags;
8dc85d54 3044 int ctxn, err;
0793a61d 3045
22a4ec72 3046 if (!task) {
cdd6c482 3047 /* Must be root to operate on a CPU event: */
0764771d 3048 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3049 return ERR_PTR(-EACCES);
3050
0793a61d 3051 /*
cdd6c482 3052 * We could be clever and allow to attach a event to an
0793a61d
TG
3053 * offline CPU and activate it when the CPU comes up, but
3054 * that's for later.
3055 */
f6325e30 3056 if (!cpu_online(cpu))
0793a61d
TG
3057 return ERR_PTR(-ENODEV);
3058
108b02cf 3059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3060 ctx = &cpuctx->ctx;
c93f7669 3061 get_ctx(ctx);
fe4b04fa 3062 ++ctx->pin_count;
0793a61d 3063
0793a61d
TG
3064 return ctx;
3065 }
3066
8dc85d54
PZ
3067 err = -EINVAL;
3068 ctxn = pmu->task_ctx_nr;
3069 if (ctxn < 0)
3070 goto errout;
3071
9ed6060d 3072retry:
8dc85d54 3073 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3074 if (ctx) {
71a851b4 3075 unclone_ctx(ctx);
fe4b04fa 3076 ++ctx->pin_count;
e625cce1 3077 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3078 } else {
eb184479 3079 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3080 err = -ENOMEM;
3081 if (!ctx)
3082 goto errout;
eb184479 3083
dbe08d82
ON
3084 err = 0;
3085 mutex_lock(&task->perf_event_mutex);
3086 /*
3087 * If it has already passed perf_event_exit_task().
3088 * we must see PF_EXITING, it takes this mutex too.
3089 */
3090 if (task->flags & PF_EXITING)
3091 err = -ESRCH;
3092 else if (task->perf_event_ctxp[ctxn])
3093 err = -EAGAIN;
fe4b04fa 3094 else {
9137fb28 3095 get_ctx(ctx);
fe4b04fa 3096 ++ctx->pin_count;
dbe08d82 3097 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3098 }
dbe08d82
ON
3099 mutex_unlock(&task->perf_event_mutex);
3100
3101 if (unlikely(err)) {
9137fb28 3102 put_ctx(ctx);
dbe08d82
ON
3103
3104 if (err == -EAGAIN)
3105 goto retry;
3106 goto errout;
a63eaf34
PM
3107 }
3108 }
3109
0793a61d 3110 return ctx;
c93f7669 3111
9ed6060d 3112errout:
c93f7669 3113 return ERR_PTR(err);
0793a61d
TG
3114}
3115
6fb2915d
LZ
3116static void perf_event_free_filter(struct perf_event *event);
3117
cdd6c482 3118static void free_event_rcu(struct rcu_head *head)
592903cd 3119{
cdd6c482 3120 struct perf_event *event;
592903cd 3121
cdd6c482
IM
3122 event = container_of(head, struct perf_event, rcu_head);
3123 if (event->ns)
3124 put_pid_ns(event->ns);
6fb2915d 3125 perf_event_free_filter(event);
cdd6c482 3126 kfree(event);
592903cd
PZ
3127}
3128
76369139 3129static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3130static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3131
4beb31f3
FW
3132static void unaccount_event_cpu(struct perf_event *event, int cpu)
3133{
3134 if (event->parent)
3135 return;
3136
3137 if (has_branch_stack(event)) {
3138 if (!(event->attach_state & PERF_ATTACH_TASK))
3139 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3140 }
3141 if (is_cgroup_event(event))
3142 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
ba8a75c1
FW
3143
3144 if (event->attr.freq)
3145 atomic_dec(&per_cpu(perf_freq_events, cpu));
4beb31f3
FW
3146}
3147
3148static void unaccount_event(struct perf_event *event)
3149{
3150 if (event->parent)
3151 return;
3152
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
3161 if (is_cgroup_event(event))
3162 static_key_slow_dec_deferred(&perf_sched_events);
3163 if (has_branch_stack(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3165
3166 unaccount_event_cpu(event, event->cpu);
3167}
3168
766d6c07
FW
3169static void __free_event(struct perf_event *event)
3170{
3171 if (!event->parent) {
3172 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3173 put_callchain_buffers();
3174 }
3175
3176 if (event->destroy)
3177 event->destroy(event);
3178
3179 if (event->ctx)
3180 put_ctx(event->ctx);
3181
3182 call_rcu(&event->rcu_head, free_event_rcu);
3183}
cdd6c482 3184static void free_event(struct perf_event *event)
f1600952 3185{
e360adbe 3186 irq_work_sync(&event->pending);
925d519a 3187
4beb31f3 3188 unaccount_event(event);
9ee318a7 3189
76369139 3190 if (event->rb) {
9bb5d40c
PZ
3191 struct ring_buffer *rb;
3192
3193 /*
3194 * Can happen when we close an event with re-directed output.
3195 *
3196 * Since we have a 0 refcount, perf_mmap_close() will skip
3197 * over us; possibly making our ring_buffer_put() the last.
3198 */
3199 mutex_lock(&event->mmap_mutex);
3200 rb = event->rb;
3201 if (rb) {
3202 rcu_assign_pointer(event->rb, NULL);
3203 ring_buffer_detach(event, rb);
3204 ring_buffer_put(rb); /* could be last */
3205 }
3206 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3207 }
3208
e5d1367f
SE
3209 if (is_cgroup_event(event))
3210 perf_detach_cgroup(event);
3211
0c67b408 3212
766d6c07 3213 __free_event(event);
f1600952
PZ
3214}
3215
a66a3052 3216int perf_event_release_kernel(struct perf_event *event)
0793a61d 3217{
cdd6c482 3218 struct perf_event_context *ctx = event->ctx;
0793a61d 3219
ad3a37de 3220 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3221 /*
3222 * There are two ways this annotation is useful:
3223 *
3224 * 1) there is a lock recursion from perf_event_exit_task
3225 * see the comment there.
3226 *
3227 * 2) there is a lock-inversion with mmap_sem through
3228 * perf_event_read_group(), which takes faults while
3229 * holding ctx->mutex, however this is called after
3230 * the last filedesc died, so there is no possibility
3231 * to trigger the AB-BA case.
3232 */
3233 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3234 raw_spin_lock_irq(&ctx->lock);
8a49542c 3235 perf_group_detach(event);
050735b0 3236 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3237 perf_remove_from_context(event);
d859e29f 3238 mutex_unlock(&ctx->mutex);
0793a61d 3239
cdd6c482 3240 free_event(event);
0793a61d
TG
3241
3242 return 0;
3243}
a66a3052 3244EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3245
a66a3052
PZ
3246/*
3247 * Called when the last reference to the file is gone.
3248 */
a6fa941d 3249static void put_event(struct perf_event *event)
fb0459d7 3250{
8882135b 3251 struct task_struct *owner;
fb0459d7 3252
a6fa941d
AV
3253 if (!atomic_long_dec_and_test(&event->refcount))
3254 return;
fb0459d7 3255
8882135b
PZ
3256 rcu_read_lock();
3257 owner = ACCESS_ONCE(event->owner);
3258 /*
3259 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3260 * !owner it means the list deletion is complete and we can indeed
3261 * free this event, otherwise we need to serialize on
3262 * owner->perf_event_mutex.
3263 */
3264 smp_read_barrier_depends();
3265 if (owner) {
3266 /*
3267 * Since delayed_put_task_struct() also drops the last
3268 * task reference we can safely take a new reference
3269 * while holding the rcu_read_lock().
3270 */
3271 get_task_struct(owner);
3272 }
3273 rcu_read_unlock();
3274
3275 if (owner) {
3276 mutex_lock(&owner->perf_event_mutex);
3277 /*
3278 * We have to re-check the event->owner field, if it is cleared
3279 * we raced with perf_event_exit_task(), acquiring the mutex
3280 * ensured they're done, and we can proceed with freeing the
3281 * event.
3282 */
3283 if (event->owner)
3284 list_del_init(&event->owner_entry);
3285 mutex_unlock(&owner->perf_event_mutex);
3286 put_task_struct(owner);
3287 }
3288
a6fa941d
AV
3289 perf_event_release_kernel(event);
3290}
3291
3292static int perf_release(struct inode *inode, struct file *file)
3293{
3294 put_event(file->private_data);
3295 return 0;
fb0459d7 3296}
fb0459d7 3297
59ed446f 3298u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3299{
cdd6c482 3300 struct perf_event *child;
e53c0994
PZ
3301 u64 total = 0;
3302
59ed446f
PZ
3303 *enabled = 0;
3304 *running = 0;
3305
6f10581a 3306 mutex_lock(&event->child_mutex);
cdd6c482 3307 total += perf_event_read(event);
59ed446f
PZ
3308 *enabled += event->total_time_enabled +
3309 atomic64_read(&event->child_total_time_enabled);
3310 *running += event->total_time_running +
3311 atomic64_read(&event->child_total_time_running);
3312
3313 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3314 total += perf_event_read(child);
59ed446f
PZ
3315 *enabled += child->total_time_enabled;
3316 *running += child->total_time_running;
3317 }
6f10581a 3318 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3319
3320 return total;
3321}
fb0459d7 3322EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3323
cdd6c482 3324static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3325 u64 read_format, char __user *buf)
3326{
cdd6c482 3327 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3328 int n = 0, size = 0, ret = -EFAULT;
3329 struct perf_event_context *ctx = leader->ctx;
abf4868b 3330 u64 values[5];
59ed446f 3331 u64 count, enabled, running;
abf4868b 3332
6f10581a 3333 mutex_lock(&ctx->mutex);
59ed446f 3334 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3335
3336 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3337 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3338 values[n++] = enabled;
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3340 values[n++] = running;
abf4868b
PZ
3341 values[n++] = count;
3342 if (read_format & PERF_FORMAT_ID)
3343 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3344
3345 size = n * sizeof(u64);
3346
3347 if (copy_to_user(buf, values, size))
6f10581a 3348 goto unlock;
3dab77fb 3349
6f10581a 3350 ret = size;
3dab77fb 3351
65abc865 3352 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3353 n = 0;
3dab77fb 3354
59ed446f 3355 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3356 if (read_format & PERF_FORMAT_ID)
3357 values[n++] = primary_event_id(sub);
3358
3359 size = n * sizeof(u64);
3360
184d3da8 3361 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3362 ret = -EFAULT;
3363 goto unlock;
3364 }
abf4868b
PZ
3365
3366 ret += size;
3dab77fb 3367 }
6f10581a
PZ
3368unlock:
3369 mutex_unlock(&ctx->mutex);
3dab77fb 3370
abf4868b 3371 return ret;
3dab77fb
PZ
3372}
3373
cdd6c482 3374static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3375 u64 read_format, char __user *buf)
3376{
59ed446f 3377 u64 enabled, running;
3dab77fb
PZ
3378 u64 values[4];
3379 int n = 0;
3380
59ed446f
PZ
3381 values[n++] = perf_event_read_value(event, &enabled, &running);
3382 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3383 values[n++] = enabled;
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3385 values[n++] = running;
3dab77fb 3386 if (read_format & PERF_FORMAT_ID)
cdd6c482 3387 values[n++] = primary_event_id(event);
3dab77fb
PZ
3388
3389 if (copy_to_user(buf, values, n * sizeof(u64)))
3390 return -EFAULT;
3391
3392 return n * sizeof(u64);
3393}
3394
0793a61d 3395/*
cdd6c482 3396 * Read the performance event - simple non blocking version for now
0793a61d
TG
3397 */
3398static ssize_t
cdd6c482 3399perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3400{
cdd6c482 3401 u64 read_format = event->attr.read_format;
3dab77fb 3402 int ret;
0793a61d 3403
3b6f9e5c 3404 /*
cdd6c482 3405 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3406 * error state (i.e. because it was pinned but it couldn't be
3407 * scheduled on to the CPU at some point).
3408 */
cdd6c482 3409 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3410 return 0;
3411
c320c7b7 3412 if (count < event->read_size)
3dab77fb
PZ
3413 return -ENOSPC;
3414
cdd6c482 3415 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3416 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3417 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3418 else
cdd6c482 3419 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3420
3dab77fb 3421 return ret;
0793a61d
TG
3422}
3423
0793a61d
TG
3424static ssize_t
3425perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3426{
cdd6c482 3427 struct perf_event *event = file->private_data;
0793a61d 3428
cdd6c482 3429 return perf_read_hw(event, buf, count);
0793a61d
TG
3430}
3431
3432static unsigned int perf_poll(struct file *file, poll_table *wait)
3433{
cdd6c482 3434 struct perf_event *event = file->private_data;
76369139 3435 struct ring_buffer *rb;
c33a0bc4 3436 unsigned int events = POLL_HUP;
c7138f37 3437
10c6db11 3438 /*
9bb5d40c
PZ
3439 * Pin the event->rb by taking event->mmap_mutex; otherwise
3440 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3441 */
3442 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3443 rb = event->rb;
3444 if (rb)
76369139 3445 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3446 mutex_unlock(&event->mmap_mutex);
3447
cdd6c482 3448 poll_wait(file, &event->waitq, wait);
0793a61d 3449
0793a61d
TG
3450 return events;
3451}
3452
cdd6c482 3453static void perf_event_reset(struct perf_event *event)
6de6a7b9 3454{
cdd6c482 3455 (void)perf_event_read(event);
e7850595 3456 local64_set(&event->count, 0);
cdd6c482 3457 perf_event_update_userpage(event);
3df5edad
PZ
3458}
3459
c93f7669 3460/*
cdd6c482
IM
3461 * Holding the top-level event's child_mutex means that any
3462 * descendant process that has inherited this event will block
3463 * in sync_child_event if it goes to exit, thus satisfying the
3464 * task existence requirements of perf_event_enable/disable.
c93f7669 3465 */
cdd6c482
IM
3466static void perf_event_for_each_child(struct perf_event *event,
3467 void (*func)(struct perf_event *))
3df5edad 3468{
cdd6c482 3469 struct perf_event *child;
3df5edad 3470
cdd6c482
IM
3471 WARN_ON_ONCE(event->ctx->parent_ctx);
3472 mutex_lock(&event->child_mutex);
3473 func(event);
3474 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3475 func(child);
cdd6c482 3476 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3477}
3478
cdd6c482
IM
3479static void perf_event_for_each(struct perf_event *event,
3480 void (*func)(struct perf_event *))
3df5edad 3481{
cdd6c482
IM
3482 struct perf_event_context *ctx = event->ctx;
3483 struct perf_event *sibling;
3df5edad 3484
75f937f2
PZ
3485 WARN_ON_ONCE(ctx->parent_ctx);
3486 mutex_lock(&ctx->mutex);
cdd6c482 3487 event = event->group_leader;
75f937f2 3488
cdd6c482 3489 perf_event_for_each_child(event, func);
cdd6c482 3490 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3491 perf_event_for_each_child(sibling, func);
75f937f2 3492 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3493}
3494
cdd6c482 3495static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3496{
cdd6c482 3497 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3498 int ret = 0;
3499 u64 value;
3500
6c7e550f 3501 if (!is_sampling_event(event))
08247e31
PZ
3502 return -EINVAL;
3503
ad0cf347 3504 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3505 return -EFAULT;
3506
3507 if (!value)
3508 return -EINVAL;
3509
e625cce1 3510 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3511 if (event->attr.freq) {
3512 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3513 ret = -EINVAL;
3514 goto unlock;
3515 }
3516
cdd6c482 3517 event->attr.sample_freq = value;
08247e31 3518 } else {
cdd6c482
IM
3519 event->attr.sample_period = value;
3520 event->hw.sample_period = value;
08247e31
PZ
3521 }
3522unlock:
e625cce1 3523 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3524
3525 return ret;
3526}
3527
ac9721f3
PZ
3528static const struct file_operations perf_fops;
3529
2903ff01 3530static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3531{
2903ff01
AV
3532 struct fd f = fdget(fd);
3533 if (!f.file)
3534 return -EBADF;
ac9721f3 3535
2903ff01
AV
3536 if (f.file->f_op != &perf_fops) {
3537 fdput(f);
3538 return -EBADF;
ac9721f3 3539 }
2903ff01
AV
3540 *p = f;
3541 return 0;
ac9721f3
PZ
3542}
3543
3544static int perf_event_set_output(struct perf_event *event,
3545 struct perf_event *output_event);
6fb2915d 3546static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3547
d859e29f
PM
3548static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3549{
cdd6c482
IM
3550 struct perf_event *event = file->private_data;
3551 void (*func)(struct perf_event *);
3df5edad 3552 u32 flags = arg;
d859e29f
PM
3553
3554 switch (cmd) {
cdd6c482
IM
3555 case PERF_EVENT_IOC_ENABLE:
3556 func = perf_event_enable;
d859e29f 3557 break;
cdd6c482
IM
3558 case PERF_EVENT_IOC_DISABLE:
3559 func = perf_event_disable;
79f14641 3560 break;
cdd6c482
IM
3561 case PERF_EVENT_IOC_RESET:
3562 func = perf_event_reset;
6de6a7b9 3563 break;
3df5edad 3564
cdd6c482
IM
3565 case PERF_EVENT_IOC_REFRESH:
3566 return perf_event_refresh(event, arg);
08247e31 3567
cdd6c482
IM
3568 case PERF_EVENT_IOC_PERIOD:
3569 return perf_event_period(event, (u64 __user *)arg);
08247e31 3570
cdd6c482 3571 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3572 {
ac9721f3 3573 int ret;
ac9721f3 3574 if (arg != -1) {
2903ff01
AV
3575 struct perf_event *output_event;
3576 struct fd output;
3577 ret = perf_fget_light(arg, &output);
3578 if (ret)
3579 return ret;
3580 output_event = output.file->private_data;
3581 ret = perf_event_set_output(event, output_event);
3582 fdput(output);
3583 } else {
3584 ret = perf_event_set_output(event, NULL);
ac9721f3 3585 }
ac9721f3
PZ
3586 return ret;
3587 }
a4be7c27 3588
6fb2915d
LZ
3589 case PERF_EVENT_IOC_SET_FILTER:
3590 return perf_event_set_filter(event, (void __user *)arg);
3591
d859e29f 3592 default:
3df5edad 3593 return -ENOTTY;
d859e29f 3594 }
3df5edad
PZ
3595
3596 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3597 perf_event_for_each(event, func);
3df5edad 3598 else
cdd6c482 3599 perf_event_for_each_child(event, func);
3df5edad
PZ
3600
3601 return 0;
d859e29f
PM
3602}
3603
cdd6c482 3604int perf_event_task_enable(void)
771d7cde 3605{
cdd6c482 3606 struct perf_event *event;
771d7cde 3607
cdd6c482
IM
3608 mutex_lock(&current->perf_event_mutex);
3609 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3610 perf_event_for_each_child(event, perf_event_enable);
3611 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3612
3613 return 0;
3614}
3615
cdd6c482 3616int perf_event_task_disable(void)
771d7cde 3617{
cdd6c482 3618 struct perf_event *event;
771d7cde 3619
cdd6c482
IM
3620 mutex_lock(&current->perf_event_mutex);
3621 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3622 perf_event_for_each_child(event, perf_event_disable);
3623 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3624
3625 return 0;
3626}
3627
cdd6c482 3628static int perf_event_index(struct perf_event *event)
194002b2 3629{
a4eaf7f1
PZ
3630 if (event->hw.state & PERF_HES_STOPPED)
3631 return 0;
3632
cdd6c482 3633 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3634 return 0;
3635
35edc2a5 3636 return event->pmu->event_idx(event);
194002b2
PZ
3637}
3638
c4794295 3639static void calc_timer_values(struct perf_event *event,
e3f3541c 3640 u64 *now,
7f310a5d
EM
3641 u64 *enabled,
3642 u64 *running)
c4794295 3643{
e3f3541c 3644 u64 ctx_time;
c4794295 3645
e3f3541c
PZ
3646 *now = perf_clock();
3647 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3648 *enabled = ctx_time - event->tstamp_enabled;
3649 *running = ctx_time - event->tstamp_running;
3650}
3651
c7206205 3652void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3653{
3654}
3655
38ff667b
PZ
3656/*
3657 * Callers need to ensure there can be no nesting of this function, otherwise
3658 * the seqlock logic goes bad. We can not serialize this because the arch
3659 * code calls this from NMI context.
3660 */
cdd6c482 3661void perf_event_update_userpage(struct perf_event *event)
37d81828 3662{
cdd6c482 3663 struct perf_event_mmap_page *userpg;
76369139 3664 struct ring_buffer *rb;
e3f3541c 3665 u64 enabled, running, now;
38ff667b
PZ
3666
3667 rcu_read_lock();
0d641208
EM
3668 /*
3669 * compute total_time_enabled, total_time_running
3670 * based on snapshot values taken when the event
3671 * was last scheduled in.
3672 *
3673 * we cannot simply called update_context_time()
3674 * because of locking issue as we can be called in
3675 * NMI context
3676 */
e3f3541c 3677 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3678 rb = rcu_dereference(event->rb);
3679 if (!rb)
38ff667b
PZ
3680 goto unlock;
3681
76369139 3682 userpg = rb->user_page;
37d81828 3683
7b732a75
PZ
3684 /*
3685 * Disable preemption so as to not let the corresponding user-space
3686 * spin too long if we get preempted.
3687 */
3688 preempt_disable();
37d81828 3689 ++userpg->lock;
92f22a38 3690 barrier();
cdd6c482 3691 userpg->index = perf_event_index(event);
b5e58793 3692 userpg->offset = perf_event_count(event);
365a4038 3693 if (userpg->index)
e7850595 3694 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3695
0d641208 3696 userpg->time_enabled = enabled +
cdd6c482 3697 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3698
0d641208 3699 userpg->time_running = running +
cdd6c482 3700 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3701
c7206205 3702 arch_perf_update_userpage(userpg, now);
e3f3541c 3703
92f22a38 3704 barrier();
37d81828 3705 ++userpg->lock;
7b732a75 3706 preempt_enable();
38ff667b 3707unlock:
7b732a75 3708 rcu_read_unlock();
37d81828
PM
3709}
3710
906010b2
PZ
3711static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3712{
3713 struct perf_event *event = vma->vm_file->private_data;
76369139 3714 struct ring_buffer *rb;
906010b2
PZ
3715 int ret = VM_FAULT_SIGBUS;
3716
3717 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3718 if (vmf->pgoff == 0)
3719 ret = 0;
3720 return ret;
3721 }
3722
3723 rcu_read_lock();
76369139
FW
3724 rb = rcu_dereference(event->rb);
3725 if (!rb)
906010b2
PZ
3726 goto unlock;
3727
3728 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3729 goto unlock;
3730
76369139 3731 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3732 if (!vmf->page)
3733 goto unlock;
3734
3735 get_page(vmf->page);
3736 vmf->page->mapping = vma->vm_file->f_mapping;
3737 vmf->page->index = vmf->pgoff;
3738
3739 ret = 0;
3740unlock:
3741 rcu_read_unlock();
3742
3743 return ret;
3744}
3745
10c6db11
PZ
3746static void ring_buffer_attach(struct perf_event *event,
3747 struct ring_buffer *rb)
3748{
3749 unsigned long flags;
3750
3751 if (!list_empty(&event->rb_entry))
3752 return;
3753
3754 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3755 if (list_empty(&event->rb_entry))
3756 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3757 spin_unlock_irqrestore(&rb->event_lock, flags);
3758}
3759
9bb5d40c 3760static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3761{
3762 unsigned long flags;
3763
3764 if (list_empty(&event->rb_entry))
3765 return;
3766
3767 spin_lock_irqsave(&rb->event_lock, flags);
3768 list_del_init(&event->rb_entry);
3769 wake_up_all(&event->waitq);
3770 spin_unlock_irqrestore(&rb->event_lock, flags);
3771}
3772
3773static void ring_buffer_wakeup(struct perf_event *event)
3774{
3775 struct ring_buffer *rb;
3776
3777 rcu_read_lock();
3778 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3779 if (rb) {
3780 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3781 wake_up_all(&event->waitq);
3782 }
10c6db11
PZ
3783 rcu_read_unlock();
3784}
3785
76369139 3786static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3787{
76369139 3788 struct ring_buffer *rb;
906010b2 3789
76369139
FW
3790 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3791 rb_free(rb);
7b732a75
PZ
3792}
3793
76369139 3794static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3795{
76369139 3796 struct ring_buffer *rb;
7b732a75 3797
ac9721f3 3798 rcu_read_lock();
76369139
FW
3799 rb = rcu_dereference(event->rb);
3800 if (rb) {
3801 if (!atomic_inc_not_zero(&rb->refcount))
3802 rb = NULL;
ac9721f3
PZ
3803 }
3804 rcu_read_unlock();
3805
76369139 3806 return rb;
ac9721f3
PZ
3807}
3808
76369139 3809static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3810{
76369139 3811 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3812 return;
7b732a75 3813
9bb5d40c 3814 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3815
76369139 3816 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3817}
3818
3819static void perf_mmap_open(struct vm_area_struct *vma)
3820{
cdd6c482 3821 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3822
cdd6c482 3823 atomic_inc(&event->mmap_count);
9bb5d40c 3824 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3825}
3826
9bb5d40c
PZ
3827/*
3828 * A buffer can be mmap()ed multiple times; either directly through the same
3829 * event, or through other events by use of perf_event_set_output().
3830 *
3831 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3832 * the buffer here, where we still have a VM context. This means we need
3833 * to detach all events redirecting to us.
3834 */
7b732a75
PZ
3835static void perf_mmap_close(struct vm_area_struct *vma)
3836{
cdd6c482 3837 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3838
9bb5d40c
PZ
3839 struct ring_buffer *rb = event->rb;
3840 struct user_struct *mmap_user = rb->mmap_user;
3841 int mmap_locked = rb->mmap_locked;
3842 unsigned long size = perf_data_size(rb);
789f90fc 3843
9bb5d40c
PZ
3844 atomic_dec(&rb->mmap_count);
3845
3846 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3847 return;
3848
3849 /* Detach current event from the buffer. */
3850 rcu_assign_pointer(event->rb, NULL);
3851 ring_buffer_detach(event, rb);
3852 mutex_unlock(&event->mmap_mutex);
3853
3854 /* If there's still other mmap()s of this buffer, we're done. */
3855 if (atomic_read(&rb->mmap_count)) {
3856 ring_buffer_put(rb); /* can't be last */
3857 return;
3858 }
ac9721f3 3859
9bb5d40c
PZ
3860 /*
3861 * No other mmap()s, detach from all other events that might redirect
3862 * into the now unreachable buffer. Somewhat complicated by the
3863 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3864 */
3865again:
3866 rcu_read_lock();
3867 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3868 if (!atomic_long_inc_not_zero(&event->refcount)) {
3869 /*
3870 * This event is en-route to free_event() which will
3871 * detach it and remove it from the list.
3872 */
3873 continue;
3874 }
3875 rcu_read_unlock();
789f90fc 3876
9bb5d40c
PZ
3877 mutex_lock(&event->mmap_mutex);
3878 /*
3879 * Check we didn't race with perf_event_set_output() which can
3880 * swizzle the rb from under us while we were waiting to
3881 * acquire mmap_mutex.
3882 *
3883 * If we find a different rb; ignore this event, a next
3884 * iteration will no longer find it on the list. We have to
3885 * still restart the iteration to make sure we're not now
3886 * iterating the wrong list.
3887 */
3888 if (event->rb == rb) {
3889 rcu_assign_pointer(event->rb, NULL);
3890 ring_buffer_detach(event, rb);
3891 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3892 }
cdd6c482 3893 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3894 put_event(event);
ac9721f3 3895
9bb5d40c
PZ
3896 /*
3897 * Restart the iteration; either we're on the wrong list or
3898 * destroyed its integrity by doing a deletion.
3899 */
3900 goto again;
7b732a75 3901 }
9bb5d40c
PZ
3902 rcu_read_unlock();
3903
3904 /*
3905 * It could be there's still a few 0-ref events on the list; they'll
3906 * get cleaned up by free_event() -- they'll also still have their
3907 * ref on the rb and will free it whenever they are done with it.
3908 *
3909 * Aside from that, this buffer is 'fully' detached and unmapped,
3910 * undo the VM accounting.
3911 */
3912
3913 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3914 vma->vm_mm->pinned_vm -= mmap_locked;
3915 free_uid(mmap_user);
3916
3917 ring_buffer_put(rb); /* could be last */
37d81828
PM
3918}
3919
f0f37e2f 3920static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3921 .open = perf_mmap_open,
3922 .close = perf_mmap_close,
3923 .fault = perf_mmap_fault,
3924 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3925};
3926
3927static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3928{
cdd6c482 3929 struct perf_event *event = file->private_data;
22a4f650 3930 unsigned long user_locked, user_lock_limit;
789f90fc 3931 struct user_struct *user = current_user();
22a4f650 3932 unsigned long locked, lock_limit;
76369139 3933 struct ring_buffer *rb;
7b732a75
PZ
3934 unsigned long vma_size;
3935 unsigned long nr_pages;
789f90fc 3936 long user_extra, extra;
d57e34fd 3937 int ret = 0, flags = 0;
37d81828 3938
c7920614
PZ
3939 /*
3940 * Don't allow mmap() of inherited per-task counters. This would
3941 * create a performance issue due to all children writing to the
76369139 3942 * same rb.
c7920614
PZ
3943 */
3944 if (event->cpu == -1 && event->attr.inherit)
3945 return -EINVAL;
3946
43a21ea8 3947 if (!(vma->vm_flags & VM_SHARED))
37d81828 3948 return -EINVAL;
7b732a75
PZ
3949
3950 vma_size = vma->vm_end - vma->vm_start;
3951 nr_pages = (vma_size / PAGE_SIZE) - 1;
3952
7730d865 3953 /*
76369139 3954 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3955 * can do bitmasks instead of modulo.
3956 */
3957 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3958 return -EINVAL;
3959
7b732a75 3960 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3961 return -EINVAL;
3962
7b732a75
PZ
3963 if (vma->vm_pgoff != 0)
3964 return -EINVAL;
37d81828 3965
cdd6c482 3966 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3967again:
cdd6c482 3968 mutex_lock(&event->mmap_mutex);
76369139 3969 if (event->rb) {
9bb5d40c 3970 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3971 ret = -EINVAL;
9bb5d40c
PZ
3972 goto unlock;
3973 }
3974
3975 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3976 /*
3977 * Raced against perf_mmap_close() through
3978 * perf_event_set_output(). Try again, hope for better
3979 * luck.
3980 */
3981 mutex_unlock(&event->mmap_mutex);
3982 goto again;
3983 }
3984
ebb3c4c4
PZ
3985 goto unlock;
3986 }
3987
789f90fc 3988 user_extra = nr_pages + 1;
cdd6c482 3989 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3990
3991 /*
3992 * Increase the limit linearly with more CPUs:
3993 */
3994 user_lock_limit *= num_online_cpus();
3995
789f90fc 3996 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3997
789f90fc
PZ
3998 extra = 0;
3999 if (user_locked > user_lock_limit)
4000 extra = user_locked - user_lock_limit;
7b732a75 4001
78d7d407 4002 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4003 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4004 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4005
459ec28a
IM
4006 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4007 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4008 ret = -EPERM;
4009 goto unlock;
4010 }
7b732a75 4011
76369139 4012 WARN_ON(event->rb);
906010b2 4013
d57e34fd 4014 if (vma->vm_flags & VM_WRITE)
76369139 4015 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4016
4ec8363d
VW
4017 rb = rb_alloc(nr_pages,
4018 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4019 event->cpu, flags);
4020
76369139 4021 if (!rb) {
ac9721f3 4022 ret = -ENOMEM;
ebb3c4c4 4023 goto unlock;
ac9721f3 4024 }
26cb63ad 4025
9bb5d40c 4026 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4027 rb->mmap_locked = extra;
4028 rb->mmap_user = get_current_user();
43a21ea8 4029
ac9721f3 4030 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4031 vma->vm_mm->pinned_vm += extra;
4032
9bb5d40c 4033 ring_buffer_attach(event, rb);
26cb63ad 4034 rcu_assign_pointer(event->rb, rb);
ac9721f3 4035
9a0f05cb
PZ
4036 perf_event_update_userpage(event);
4037
ebb3c4c4 4038unlock:
ac9721f3
PZ
4039 if (!ret)
4040 atomic_inc(&event->mmap_count);
cdd6c482 4041 mutex_unlock(&event->mmap_mutex);
37d81828 4042
9bb5d40c
PZ
4043 /*
4044 * Since pinned accounting is per vm we cannot allow fork() to copy our
4045 * vma.
4046 */
26cb63ad 4047 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4048 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4049
4050 return ret;
37d81828
PM
4051}
4052
3c446b3d
PZ
4053static int perf_fasync(int fd, struct file *filp, int on)
4054{
496ad9aa 4055 struct inode *inode = file_inode(filp);
cdd6c482 4056 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4057 int retval;
4058
4059 mutex_lock(&inode->i_mutex);
cdd6c482 4060 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4061 mutex_unlock(&inode->i_mutex);
4062
4063 if (retval < 0)
4064 return retval;
4065
4066 return 0;
4067}
4068
0793a61d 4069static const struct file_operations perf_fops = {
3326c1ce 4070 .llseek = no_llseek,
0793a61d
TG
4071 .release = perf_release,
4072 .read = perf_read,
4073 .poll = perf_poll,
d859e29f
PM
4074 .unlocked_ioctl = perf_ioctl,
4075 .compat_ioctl = perf_ioctl,
37d81828 4076 .mmap = perf_mmap,
3c446b3d 4077 .fasync = perf_fasync,
0793a61d
TG
4078};
4079
925d519a 4080/*
cdd6c482 4081 * Perf event wakeup
925d519a
PZ
4082 *
4083 * If there's data, ensure we set the poll() state and publish everything
4084 * to user-space before waking everybody up.
4085 */
4086
cdd6c482 4087void perf_event_wakeup(struct perf_event *event)
925d519a 4088{
10c6db11 4089 ring_buffer_wakeup(event);
4c9e2542 4090
cdd6c482
IM
4091 if (event->pending_kill) {
4092 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4093 event->pending_kill = 0;
4c9e2542 4094 }
925d519a
PZ
4095}
4096
e360adbe 4097static void perf_pending_event(struct irq_work *entry)
79f14641 4098{
cdd6c482
IM
4099 struct perf_event *event = container_of(entry,
4100 struct perf_event, pending);
79f14641 4101
cdd6c482
IM
4102 if (event->pending_disable) {
4103 event->pending_disable = 0;
4104 __perf_event_disable(event);
79f14641
PZ
4105 }
4106
cdd6c482
IM
4107 if (event->pending_wakeup) {
4108 event->pending_wakeup = 0;
4109 perf_event_wakeup(event);
79f14641
PZ
4110 }
4111}
4112
39447b38
ZY
4113/*
4114 * We assume there is only KVM supporting the callbacks.
4115 * Later on, we might change it to a list if there is
4116 * another virtualization implementation supporting the callbacks.
4117 */
4118struct perf_guest_info_callbacks *perf_guest_cbs;
4119
4120int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4121{
4122 perf_guest_cbs = cbs;
4123 return 0;
4124}
4125EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4126
4127int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4128{
4129 perf_guest_cbs = NULL;
4130 return 0;
4131}
4132EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4133
4018994f
JO
4134static void
4135perf_output_sample_regs(struct perf_output_handle *handle,
4136 struct pt_regs *regs, u64 mask)
4137{
4138 int bit;
4139
4140 for_each_set_bit(bit, (const unsigned long *) &mask,
4141 sizeof(mask) * BITS_PER_BYTE) {
4142 u64 val;
4143
4144 val = perf_reg_value(regs, bit);
4145 perf_output_put(handle, val);
4146 }
4147}
4148
4149static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4150 struct pt_regs *regs)
4151{
4152 if (!user_mode(regs)) {
4153 if (current->mm)
4154 regs = task_pt_regs(current);
4155 else
4156 regs = NULL;
4157 }
4158
4159 if (regs) {
4160 regs_user->regs = regs;
4161 regs_user->abi = perf_reg_abi(current);
4162 }
4163}
4164
c5ebcedb
JO
4165/*
4166 * Get remaining task size from user stack pointer.
4167 *
4168 * It'd be better to take stack vma map and limit this more
4169 * precisly, but there's no way to get it safely under interrupt,
4170 * so using TASK_SIZE as limit.
4171 */
4172static u64 perf_ustack_task_size(struct pt_regs *regs)
4173{
4174 unsigned long addr = perf_user_stack_pointer(regs);
4175
4176 if (!addr || addr >= TASK_SIZE)
4177 return 0;
4178
4179 return TASK_SIZE - addr;
4180}
4181
4182static u16
4183perf_sample_ustack_size(u16 stack_size, u16 header_size,
4184 struct pt_regs *regs)
4185{
4186 u64 task_size;
4187
4188 /* No regs, no stack pointer, no dump. */
4189 if (!regs)
4190 return 0;
4191
4192 /*
4193 * Check if we fit in with the requested stack size into the:
4194 * - TASK_SIZE
4195 * If we don't, we limit the size to the TASK_SIZE.
4196 *
4197 * - remaining sample size
4198 * If we don't, we customize the stack size to
4199 * fit in to the remaining sample size.
4200 */
4201
4202 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4203 stack_size = min(stack_size, (u16) task_size);
4204
4205 /* Current header size plus static size and dynamic size. */
4206 header_size += 2 * sizeof(u64);
4207
4208 /* Do we fit in with the current stack dump size? */
4209 if ((u16) (header_size + stack_size) < header_size) {
4210 /*
4211 * If we overflow the maximum size for the sample,
4212 * we customize the stack dump size to fit in.
4213 */
4214 stack_size = USHRT_MAX - header_size - sizeof(u64);
4215 stack_size = round_up(stack_size, sizeof(u64));
4216 }
4217
4218 return stack_size;
4219}
4220
4221static void
4222perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4223 struct pt_regs *regs)
4224{
4225 /* Case of a kernel thread, nothing to dump */
4226 if (!regs) {
4227 u64 size = 0;
4228 perf_output_put(handle, size);
4229 } else {
4230 unsigned long sp;
4231 unsigned int rem;
4232 u64 dyn_size;
4233
4234 /*
4235 * We dump:
4236 * static size
4237 * - the size requested by user or the best one we can fit
4238 * in to the sample max size
4239 * data
4240 * - user stack dump data
4241 * dynamic size
4242 * - the actual dumped size
4243 */
4244
4245 /* Static size. */
4246 perf_output_put(handle, dump_size);
4247
4248 /* Data. */
4249 sp = perf_user_stack_pointer(regs);
4250 rem = __output_copy_user(handle, (void *) sp, dump_size);
4251 dyn_size = dump_size - rem;
4252
4253 perf_output_skip(handle, rem);
4254
4255 /* Dynamic size. */
4256 perf_output_put(handle, dyn_size);
4257 }
4258}
4259
c980d109
ACM
4260static void __perf_event_header__init_id(struct perf_event_header *header,
4261 struct perf_sample_data *data,
4262 struct perf_event *event)
6844c09d
ACM
4263{
4264 u64 sample_type = event->attr.sample_type;
4265
4266 data->type = sample_type;
4267 header->size += event->id_header_size;
4268
4269 if (sample_type & PERF_SAMPLE_TID) {
4270 /* namespace issues */
4271 data->tid_entry.pid = perf_event_pid(event, current);
4272 data->tid_entry.tid = perf_event_tid(event, current);
4273 }
4274
4275 if (sample_type & PERF_SAMPLE_TIME)
4276 data->time = perf_clock();
4277
4278 if (sample_type & PERF_SAMPLE_ID)
4279 data->id = primary_event_id(event);
4280
4281 if (sample_type & PERF_SAMPLE_STREAM_ID)
4282 data->stream_id = event->id;
4283
4284 if (sample_type & PERF_SAMPLE_CPU) {
4285 data->cpu_entry.cpu = raw_smp_processor_id();
4286 data->cpu_entry.reserved = 0;
4287 }
4288}
4289
76369139
FW
4290void perf_event_header__init_id(struct perf_event_header *header,
4291 struct perf_sample_data *data,
4292 struct perf_event *event)
c980d109
ACM
4293{
4294 if (event->attr.sample_id_all)
4295 __perf_event_header__init_id(header, data, event);
4296}
4297
4298static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4299 struct perf_sample_data *data)
4300{
4301 u64 sample_type = data->type;
4302
4303 if (sample_type & PERF_SAMPLE_TID)
4304 perf_output_put(handle, data->tid_entry);
4305
4306 if (sample_type & PERF_SAMPLE_TIME)
4307 perf_output_put(handle, data->time);
4308
4309 if (sample_type & PERF_SAMPLE_ID)
4310 perf_output_put(handle, data->id);
4311
4312 if (sample_type & PERF_SAMPLE_STREAM_ID)
4313 perf_output_put(handle, data->stream_id);
4314
4315 if (sample_type & PERF_SAMPLE_CPU)
4316 perf_output_put(handle, data->cpu_entry);
4317}
4318
76369139
FW
4319void perf_event__output_id_sample(struct perf_event *event,
4320 struct perf_output_handle *handle,
4321 struct perf_sample_data *sample)
c980d109
ACM
4322{
4323 if (event->attr.sample_id_all)
4324 __perf_event__output_id_sample(handle, sample);
4325}
4326
3dab77fb 4327static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4328 struct perf_event *event,
4329 u64 enabled, u64 running)
3dab77fb 4330{
cdd6c482 4331 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4332 u64 values[4];
4333 int n = 0;
4334
b5e58793 4335 values[n++] = perf_event_count(event);
3dab77fb 4336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4337 values[n++] = enabled +
cdd6c482 4338 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4339 }
4340 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4341 values[n++] = running +
cdd6c482 4342 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4343 }
4344 if (read_format & PERF_FORMAT_ID)
cdd6c482 4345 values[n++] = primary_event_id(event);
3dab77fb 4346
76369139 4347 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4348}
4349
4350/*
cdd6c482 4351 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4352 */
4353static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4354 struct perf_event *event,
4355 u64 enabled, u64 running)
3dab77fb 4356{
cdd6c482
IM
4357 struct perf_event *leader = event->group_leader, *sub;
4358 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4359 u64 values[5];
4360 int n = 0;
4361
4362 values[n++] = 1 + leader->nr_siblings;
4363
4364 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4365 values[n++] = enabled;
3dab77fb
PZ
4366
4367 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4368 values[n++] = running;
3dab77fb 4369
cdd6c482 4370 if (leader != event)
3dab77fb
PZ
4371 leader->pmu->read(leader);
4372
b5e58793 4373 values[n++] = perf_event_count(leader);
3dab77fb 4374 if (read_format & PERF_FORMAT_ID)
cdd6c482 4375 values[n++] = primary_event_id(leader);
3dab77fb 4376
76369139 4377 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4378
65abc865 4379 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4380 n = 0;
4381
cdd6c482 4382 if (sub != event)
3dab77fb
PZ
4383 sub->pmu->read(sub);
4384
b5e58793 4385 values[n++] = perf_event_count(sub);
3dab77fb 4386 if (read_format & PERF_FORMAT_ID)
cdd6c482 4387 values[n++] = primary_event_id(sub);
3dab77fb 4388
76369139 4389 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4390 }
4391}
4392
eed01528
SE
4393#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4394 PERF_FORMAT_TOTAL_TIME_RUNNING)
4395
3dab77fb 4396static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4397 struct perf_event *event)
3dab77fb 4398{
e3f3541c 4399 u64 enabled = 0, running = 0, now;
eed01528
SE
4400 u64 read_format = event->attr.read_format;
4401
4402 /*
4403 * compute total_time_enabled, total_time_running
4404 * based on snapshot values taken when the event
4405 * was last scheduled in.
4406 *
4407 * we cannot simply called update_context_time()
4408 * because of locking issue as we are called in
4409 * NMI context
4410 */
c4794295 4411 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4412 calc_timer_values(event, &now, &enabled, &running);
eed01528 4413
cdd6c482 4414 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4415 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4416 else
eed01528 4417 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4418}
4419
5622f295
MM
4420void perf_output_sample(struct perf_output_handle *handle,
4421 struct perf_event_header *header,
4422 struct perf_sample_data *data,
cdd6c482 4423 struct perf_event *event)
5622f295
MM
4424{
4425 u64 sample_type = data->type;
4426
4427 perf_output_put(handle, *header);
4428
4429 if (sample_type & PERF_SAMPLE_IP)
4430 perf_output_put(handle, data->ip);
4431
4432 if (sample_type & PERF_SAMPLE_TID)
4433 perf_output_put(handle, data->tid_entry);
4434
4435 if (sample_type & PERF_SAMPLE_TIME)
4436 perf_output_put(handle, data->time);
4437
4438 if (sample_type & PERF_SAMPLE_ADDR)
4439 perf_output_put(handle, data->addr);
4440
4441 if (sample_type & PERF_SAMPLE_ID)
4442 perf_output_put(handle, data->id);
4443
4444 if (sample_type & PERF_SAMPLE_STREAM_ID)
4445 perf_output_put(handle, data->stream_id);
4446
4447 if (sample_type & PERF_SAMPLE_CPU)
4448 perf_output_put(handle, data->cpu_entry);
4449
4450 if (sample_type & PERF_SAMPLE_PERIOD)
4451 perf_output_put(handle, data->period);
4452
4453 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4454 perf_output_read(handle, event);
5622f295
MM
4455
4456 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4457 if (data->callchain) {
4458 int size = 1;
4459
4460 if (data->callchain)
4461 size += data->callchain->nr;
4462
4463 size *= sizeof(u64);
4464
76369139 4465 __output_copy(handle, data->callchain, size);
5622f295
MM
4466 } else {
4467 u64 nr = 0;
4468 perf_output_put(handle, nr);
4469 }
4470 }
4471
4472 if (sample_type & PERF_SAMPLE_RAW) {
4473 if (data->raw) {
4474 perf_output_put(handle, data->raw->size);
76369139
FW
4475 __output_copy(handle, data->raw->data,
4476 data->raw->size);
5622f295
MM
4477 } else {
4478 struct {
4479 u32 size;
4480 u32 data;
4481 } raw = {
4482 .size = sizeof(u32),
4483 .data = 0,
4484 };
4485 perf_output_put(handle, raw);
4486 }
4487 }
a7ac67ea 4488
bce38cd5
SE
4489 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4490 if (data->br_stack) {
4491 size_t size;
4492
4493 size = data->br_stack->nr
4494 * sizeof(struct perf_branch_entry);
4495
4496 perf_output_put(handle, data->br_stack->nr);
4497 perf_output_copy(handle, data->br_stack->entries, size);
4498 } else {
4499 /*
4500 * we always store at least the value of nr
4501 */
4502 u64 nr = 0;
4503 perf_output_put(handle, nr);
4504 }
4505 }
4018994f
JO
4506
4507 if (sample_type & PERF_SAMPLE_REGS_USER) {
4508 u64 abi = data->regs_user.abi;
4509
4510 /*
4511 * If there are no regs to dump, notice it through
4512 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4513 */
4514 perf_output_put(handle, abi);
4515
4516 if (abi) {
4517 u64 mask = event->attr.sample_regs_user;
4518 perf_output_sample_regs(handle,
4519 data->regs_user.regs,
4520 mask);
4521 }
4522 }
c5ebcedb 4523
a5cdd40c 4524 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4525 perf_output_sample_ustack(handle,
4526 data->stack_user_size,
4527 data->regs_user.regs);
a5cdd40c 4528 }
c3feedf2
AK
4529
4530 if (sample_type & PERF_SAMPLE_WEIGHT)
4531 perf_output_put(handle, data->weight);
d6be9ad6
SE
4532
4533 if (sample_type & PERF_SAMPLE_DATA_SRC)
4534 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4535
4536 if (!event->attr.watermark) {
4537 int wakeup_events = event->attr.wakeup_events;
4538
4539 if (wakeup_events) {
4540 struct ring_buffer *rb = handle->rb;
4541 int events = local_inc_return(&rb->events);
4542
4543 if (events >= wakeup_events) {
4544 local_sub(wakeup_events, &rb->events);
4545 local_inc(&rb->wakeup);
4546 }
4547 }
4548 }
5622f295
MM
4549}
4550
4551void perf_prepare_sample(struct perf_event_header *header,
4552 struct perf_sample_data *data,
cdd6c482 4553 struct perf_event *event,
5622f295 4554 struct pt_regs *regs)
7b732a75 4555{
cdd6c482 4556 u64 sample_type = event->attr.sample_type;
7b732a75 4557
cdd6c482 4558 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4559 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4560
4561 header->misc = 0;
4562 header->misc |= perf_misc_flags(regs);
6fab0192 4563
c980d109 4564 __perf_event_header__init_id(header, data, event);
6844c09d 4565
c320c7b7 4566 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4567 data->ip = perf_instruction_pointer(regs);
4568
b23f3325 4569 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4570 int size = 1;
394ee076 4571
e6dab5ff 4572 data->callchain = perf_callchain(event, regs);
5622f295
MM
4573
4574 if (data->callchain)
4575 size += data->callchain->nr;
4576
4577 header->size += size * sizeof(u64);
394ee076
PZ
4578 }
4579
3a43ce68 4580 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4581 int size = sizeof(u32);
4582
4583 if (data->raw)
4584 size += data->raw->size;
4585 else
4586 size += sizeof(u32);
4587
4588 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4589 header->size += size;
7f453c24 4590 }
bce38cd5
SE
4591
4592 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4593 int size = sizeof(u64); /* nr */
4594 if (data->br_stack) {
4595 size += data->br_stack->nr
4596 * sizeof(struct perf_branch_entry);
4597 }
4598 header->size += size;
4599 }
4018994f
JO
4600
4601 if (sample_type & PERF_SAMPLE_REGS_USER) {
4602 /* regs dump ABI info */
4603 int size = sizeof(u64);
4604
4605 perf_sample_regs_user(&data->regs_user, regs);
4606
4607 if (data->regs_user.regs) {
4608 u64 mask = event->attr.sample_regs_user;
4609 size += hweight64(mask) * sizeof(u64);
4610 }
4611
4612 header->size += size;
4613 }
c5ebcedb
JO
4614
4615 if (sample_type & PERF_SAMPLE_STACK_USER) {
4616 /*
4617 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4618 * processed as the last one or have additional check added
4619 * in case new sample type is added, because we could eat
4620 * up the rest of the sample size.
4621 */
4622 struct perf_regs_user *uregs = &data->regs_user;
4623 u16 stack_size = event->attr.sample_stack_user;
4624 u16 size = sizeof(u64);
4625
4626 if (!uregs->abi)
4627 perf_sample_regs_user(uregs, regs);
4628
4629 stack_size = perf_sample_ustack_size(stack_size, header->size,
4630 uregs->regs);
4631
4632 /*
4633 * If there is something to dump, add space for the dump
4634 * itself and for the field that tells the dynamic size,
4635 * which is how many have been actually dumped.
4636 */
4637 if (stack_size)
4638 size += sizeof(u64) + stack_size;
4639
4640 data->stack_user_size = stack_size;
4641 header->size += size;
4642 }
5622f295 4643}
7f453c24 4644
a8b0ca17 4645static void perf_event_output(struct perf_event *event,
5622f295
MM
4646 struct perf_sample_data *data,
4647 struct pt_regs *regs)
4648{
4649 struct perf_output_handle handle;
4650 struct perf_event_header header;
689802b2 4651
927c7a9e
FW
4652 /* protect the callchain buffers */
4653 rcu_read_lock();
4654
cdd6c482 4655 perf_prepare_sample(&header, data, event, regs);
5c148194 4656
a7ac67ea 4657 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4658 goto exit;
0322cd6e 4659
cdd6c482 4660 perf_output_sample(&handle, &header, data, event);
f413cdb8 4661
8a057d84 4662 perf_output_end(&handle);
927c7a9e
FW
4663
4664exit:
4665 rcu_read_unlock();
0322cd6e
PZ
4666}
4667
38b200d6 4668/*
cdd6c482 4669 * read event_id
38b200d6
PZ
4670 */
4671
4672struct perf_read_event {
4673 struct perf_event_header header;
4674
4675 u32 pid;
4676 u32 tid;
38b200d6
PZ
4677};
4678
4679static void
cdd6c482 4680perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4681 struct task_struct *task)
4682{
4683 struct perf_output_handle handle;
c980d109 4684 struct perf_sample_data sample;
dfc65094 4685 struct perf_read_event read_event = {
38b200d6 4686 .header = {
cdd6c482 4687 .type = PERF_RECORD_READ,
38b200d6 4688 .misc = 0,
c320c7b7 4689 .size = sizeof(read_event) + event->read_size,
38b200d6 4690 },
cdd6c482
IM
4691 .pid = perf_event_pid(event, task),
4692 .tid = perf_event_tid(event, task),
38b200d6 4693 };
3dab77fb 4694 int ret;
38b200d6 4695
c980d109 4696 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4697 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4698 if (ret)
4699 return;
4700
dfc65094 4701 perf_output_put(&handle, read_event);
cdd6c482 4702 perf_output_read(&handle, event);
c980d109 4703 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4704
38b200d6
PZ
4705 perf_output_end(&handle);
4706}
4707
52d857a8
JO
4708typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4709
4710static void
4711perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4712 perf_event_aux_output_cb output,
4713 void *data)
4714{
4715 struct perf_event *event;
4716
4717 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4718 if (event->state < PERF_EVENT_STATE_INACTIVE)
4719 continue;
4720 if (!event_filter_match(event))
4721 continue;
67516844 4722 output(event, data);
52d857a8
JO
4723 }
4724}
4725
4726static void
67516844 4727perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4728 struct perf_event_context *task_ctx)
4729{
4730 struct perf_cpu_context *cpuctx;
4731 struct perf_event_context *ctx;
4732 struct pmu *pmu;
4733 int ctxn;
4734
4735 rcu_read_lock();
4736 list_for_each_entry_rcu(pmu, &pmus, entry) {
4737 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4738 if (cpuctx->unique_pmu != pmu)
4739 goto next;
67516844 4740 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4741 if (task_ctx)
4742 goto next;
4743 ctxn = pmu->task_ctx_nr;
4744 if (ctxn < 0)
4745 goto next;
4746 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4747 if (ctx)
67516844 4748 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4749next:
4750 put_cpu_ptr(pmu->pmu_cpu_context);
4751 }
4752
4753 if (task_ctx) {
4754 preempt_disable();
67516844 4755 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4756 preempt_enable();
4757 }
4758 rcu_read_unlock();
4759}
4760
60313ebe 4761/*
9f498cc5
PZ
4762 * task tracking -- fork/exit
4763 *
3af9e859 4764 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4765 */
4766
9f498cc5 4767struct perf_task_event {
3a80b4a3 4768 struct task_struct *task;
cdd6c482 4769 struct perf_event_context *task_ctx;
60313ebe
PZ
4770
4771 struct {
4772 struct perf_event_header header;
4773
4774 u32 pid;
4775 u32 ppid;
9f498cc5
PZ
4776 u32 tid;
4777 u32 ptid;
393b2ad8 4778 u64 time;
cdd6c482 4779 } event_id;
60313ebe
PZ
4780};
4781
67516844
JO
4782static int perf_event_task_match(struct perf_event *event)
4783{
4784 return event->attr.comm || event->attr.mmap ||
4785 event->attr.mmap_data || event->attr.task;
4786}
4787
cdd6c482 4788static void perf_event_task_output(struct perf_event *event,
52d857a8 4789 void *data)
60313ebe 4790{
52d857a8 4791 struct perf_task_event *task_event = data;
60313ebe 4792 struct perf_output_handle handle;
c980d109 4793 struct perf_sample_data sample;
9f498cc5 4794 struct task_struct *task = task_event->task;
c980d109 4795 int ret, size = task_event->event_id.header.size;
8bb39f9a 4796
67516844
JO
4797 if (!perf_event_task_match(event))
4798 return;
4799
c980d109 4800 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4801
c980d109 4802 ret = perf_output_begin(&handle, event,
a7ac67ea 4803 task_event->event_id.header.size);
ef60777c 4804 if (ret)
c980d109 4805 goto out;
60313ebe 4806
cdd6c482
IM
4807 task_event->event_id.pid = perf_event_pid(event, task);
4808 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4809
cdd6c482
IM
4810 task_event->event_id.tid = perf_event_tid(event, task);
4811 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4812
cdd6c482 4813 perf_output_put(&handle, task_event->event_id);
393b2ad8 4814
c980d109
ACM
4815 perf_event__output_id_sample(event, &handle, &sample);
4816
60313ebe 4817 perf_output_end(&handle);
c980d109
ACM
4818out:
4819 task_event->event_id.header.size = size;
60313ebe
PZ
4820}
4821
cdd6c482
IM
4822static void perf_event_task(struct task_struct *task,
4823 struct perf_event_context *task_ctx,
3a80b4a3 4824 int new)
60313ebe 4825{
9f498cc5 4826 struct perf_task_event task_event;
60313ebe 4827
cdd6c482
IM
4828 if (!atomic_read(&nr_comm_events) &&
4829 !atomic_read(&nr_mmap_events) &&
4830 !atomic_read(&nr_task_events))
60313ebe
PZ
4831 return;
4832
9f498cc5 4833 task_event = (struct perf_task_event){
3a80b4a3
PZ
4834 .task = task,
4835 .task_ctx = task_ctx,
cdd6c482 4836 .event_id = {
60313ebe 4837 .header = {
cdd6c482 4838 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4839 .misc = 0,
cdd6c482 4840 .size = sizeof(task_event.event_id),
60313ebe 4841 },
573402db
PZ
4842 /* .pid */
4843 /* .ppid */
9f498cc5
PZ
4844 /* .tid */
4845 /* .ptid */
6f93d0a7 4846 .time = perf_clock(),
60313ebe
PZ
4847 },
4848 };
4849
67516844 4850 perf_event_aux(perf_event_task_output,
52d857a8
JO
4851 &task_event,
4852 task_ctx);
9f498cc5
PZ
4853}
4854
cdd6c482 4855void perf_event_fork(struct task_struct *task)
9f498cc5 4856{
cdd6c482 4857 perf_event_task(task, NULL, 1);
60313ebe
PZ
4858}
4859
8d1b2d93
PZ
4860/*
4861 * comm tracking
4862 */
4863
4864struct perf_comm_event {
22a4f650
IM
4865 struct task_struct *task;
4866 char *comm;
8d1b2d93
PZ
4867 int comm_size;
4868
4869 struct {
4870 struct perf_event_header header;
4871
4872 u32 pid;
4873 u32 tid;
cdd6c482 4874 } event_id;
8d1b2d93
PZ
4875};
4876
67516844
JO
4877static int perf_event_comm_match(struct perf_event *event)
4878{
4879 return event->attr.comm;
4880}
4881
cdd6c482 4882static void perf_event_comm_output(struct perf_event *event,
52d857a8 4883 void *data)
8d1b2d93 4884{
52d857a8 4885 struct perf_comm_event *comm_event = data;
8d1b2d93 4886 struct perf_output_handle handle;
c980d109 4887 struct perf_sample_data sample;
cdd6c482 4888 int size = comm_event->event_id.header.size;
c980d109
ACM
4889 int ret;
4890
67516844
JO
4891 if (!perf_event_comm_match(event))
4892 return;
4893
c980d109
ACM
4894 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4895 ret = perf_output_begin(&handle, event,
a7ac67ea 4896 comm_event->event_id.header.size);
8d1b2d93
PZ
4897
4898 if (ret)
c980d109 4899 goto out;
8d1b2d93 4900
cdd6c482
IM
4901 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4902 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4903
cdd6c482 4904 perf_output_put(&handle, comm_event->event_id);
76369139 4905 __output_copy(&handle, comm_event->comm,
8d1b2d93 4906 comm_event->comm_size);
c980d109
ACM
4907
4908 perf_event__output_id_sample(event, &handle, &sample);
4909
8d1b2d93 4910 perf_output_end(&handle);
c980d109
ACM
4911out:
4912 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4913}
4914
cdd6c482 4915static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4916{
413ee3b4 4917 char comm[TASK_COMM_LEN];
8d1b2d93 4918 unsigned int size;
8d1b2d93 4919
413ee3b4 4920 memset(comm, 0, sizeof(comm));
96b02d78 4921 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4922 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4923
4924 comm_event->comm = comm;
4925 comm_event->comm_size = size;
4926
cdd6c482 4927 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4928
67516844 4929 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4930 comm_event,
4931 NULL);
8d1b2d93
PZ
4932}
4933
cdd6c482 4934void perf_event_comm(struct task_struct *task)
8d1b2d93 4935{
9ee318a7 4936 struct perf_comm_event comm_event;
8dc85d54
PZ
4937 struct perf_event_context *ctx;
4938 int ctxn;
9ee318a7 4939
c79aa0d9 4940 rcu_read_lock();
8dc85d54
PZ
4941 for_each_task_context_nr(ctxn) {
4942 ctx = task->perf_event_ctxp[ctxn];
4943 if (!ctx)
4944 continue;
9ee318a7 4945
8dc85d54
PZ
4946 perf_event_enable_on_exec(ctx);
4947 }
c79aa0d9 4948 rcu_read_unlock();
9ee318a7 4949
cdd6c482 4950 if (!atomic_read(&nr_comm_events))
9ee318a7 4951 return;
a63eaf34 4952
9ee318a7 4953 comm_event = (struct perf_comm_event){
8d1b2d93 4954 .task = task,
573402db
PZ
4955 /* .comm */
4956 /* .comm_size */
cdd6c482 4957 .event_id = {
573402db 4958 .header = {
cdd6c482 4959 .type = PERF_RECORD_COMM,
573402db
PZ
4960 .misc = 0,
4961 /* .size */
4962 },
4963 /* .pid */
4964 /* .tid */
8d1b2d93
PZ
4965 },
4966 };
4967
cdd6c482 4968 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4969}
4970
0a4a9391
PZ
4971/*
4972 * mmap tracking
4973 */
4974
4975struct perf_mmap_event {
089dd79d
PZ
4976 struct vm_area_struct *vma;
4977
4978 const char *file_name;
4979 int file_size;
0a4a9391
PZ
4980
4981 struct {
4982 struct perf_event_header header;
4983
4984 u32 pid;
4985 u32 tid;
4986 u64 start;
4987 u64 len;
4988 u64 pgoff;
cdd6c482 4989 } event_id;
0a4a9391
PZ
4990};
4991
67516844
JO
4992static int perf_event_mmap_match(struct perf_event *event,
4993 void *data)
4994{
4995 struct perf_mmap_event *mmap_event = data;
4996 struct vm_area_struct *vma = mmap_event->vma;
4997 int executable = vma->vm_flags & VM_EXEC;
4998
4999 return (!executable && event->attr.mmap_data) ||
5000 (executable && event->attr.mmap);
5001}
5002
cdd6c482 5003static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5004 void *data)
0a4a9391 5005{
52d857a8 5006 struct perf_mmap_event *mmap_event = data;
0a4a9391 5007 struct perf_output_handle handle;
c980d109 5008 struct perf_sample_data sample;
cdd6c482 5009 int size = mmap_event->event_id.header.size;
c980d109 5010 int ret;
0a4a9391 5011
67516844
JO
5012 if (!perf_event_mmap_match(event, data))
5013 return;
5014
c980d109
ACM
5015 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5016 ret = perf_output_begin(&handle, event,
a7ac67ea 5017 mmap_event->event_id.header.size);
0a4a9391 5018 if (ret)
c980d109 5019 goto out;
0a4a9391 5020
cdd6c482
IM
5021 mmap_event->event_id.pid = perf_event_pid(event, current);
5022 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5023
cdd6c482 5024 perf_output_put(&handle, mmap_event->event_id);
76369139 5025 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5026 mmap_event->file_size);
c980d109
ACM
5027
5028 perf_event__output_id_sample(event, &handle, &sample);
5029
78d613eb 5030 perf_output_end(&handle);
c980d109
ACM
5031out:
5032 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5033}
5034
cdd6c482 5035static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5036{
089dd79d
PZ
5037 struct vm_area_struct *vma = mmap_event->vma;
5038 struct file *file = vma->vm_file;
0a4a9391
PZ
5039 unsigned int size;
5040 char tmp[16];
5041 char *buf = NULL;
089dd79d 5042 const char *name;
0a4a9391 5043
413ee3b4
AB
5044 memset(tmp, 0, sizeof(tmp));
5045
0a4a9391 5046 if (file) {
413ee3b4 5047 /*
76369139 5048 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5049 * need to add enough zero bytes after the string to handle
5050 * the 64bit alignment we do later.
5051 */
5052 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5053 if (!buf) {
5054 name = strncpy(tmp, "//enomem", sizeof(tmp));
5055 goto got_name;
5056 }
d3d21c41 5057 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5058 if (IS_ERR(name)) {
5059 name = strncpy(tmp, "//toolong", sizeof(tmp));
5060 goto got_name;
5061 }
5062 } else {
413ee3b4
AB
5063 if (arch_vma_name(mmap_event->vma)) {
5064 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5065 sizeof(tmp) - 1);
5066 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5067 goto got_name;
413ee3b4 5068 }
089dd79d
PZ
5069
5070 if (!vma->vm_mm) {
5071 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5072 goto got_name;
3af9e859
EM
5073 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5074 vma->vm_end >= vma->vm_mm->brk) {
5075 name = strncpy(tmp, "[heap]", sizeof(tmp));
5076 goto got_name;
5077 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5078 vma->vm_end >= vma->vm_mm->start_stack) {
5079 name = strncpy(tmp, "[stack]", sizeof(tmp));
5080 goto got_name;
089dd79d
PZ
5081 }
5082
0a4a9391
PZ
5083 name = strncpy(tmp, "//anon", sizeof(tmp));
5084 goto got_name;
5085 }
5086
5087got_name:
888fcee0 5088 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5089
5090 mmap_event->file_name = name;
5091 mmap_event->file_size = size;
5092
2fe85427
SE
5093 if (!(vma->vm_flags & VM_EXEC))
5094 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5095
cdd6c482 5096 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5097
67516844 5098 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5099 mmap_event,
5100 NULL);
665c2142 5101
0a4a9391
PZ
5102 kfree(buf);
5103}
5104
3af9e859 5105void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5106{
9ee318a7
PZ
5107 struct perf_mmap_event mmap_event;
5108
cdd6c482 5109 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5110 return;
5111
5112 mmap_event = (struct perf_mmap_event){
089dd79d 5113 .vma = vma,
573402db
PZ
5114 /* .file_name */
5115 /* .file_size */
cdd6c482 5116 .event_id = {
573402db 5117 .header = {
cdd6c482 5118 .type = PERF_RECORD_MMAP,
39447b38 5119 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5120 /* .size */
5121 },
5122 /* .pid */
5123 /* .tid */
089dd79d
PZ
5124 .start = vma->vm_start,
5125 .len = vma->vm_end - vma->vm_start,
3a0304e9 5126 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5127 },
5128 };
5129
cdd6c482 5130 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5131}
5132
a78ac325
PZ
5133/*
5134 * IRQ throttle logging
5135 */
5136
cdd6c482 5137static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5138{
5139 struct perf_output_handle handle;
c980d109 5140 struct perf_sample_data sample;
a78ac325
PZ
5141 int ret;
5142
5143 struct {
5144 struct perf_event_header header;
5145 u64 time;
cca3f454 5146 u64 id;
7f453c24 5147 u64 stream_id;
a78ac325
PZ
5148 } throttle_event = {
5149 .header = {
cdd6c482 5150 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5151 .misc = 0,
5152 .size = sizeof(throttle_event),
5153 },
def0a9b2 5154 .time = perf_clock(),
cdd6c482
IM
5155 .id = primary_event_id(event),
5156 .stream_id = event->id,
a78ac325
PZ
5157 };
5158
966ee4d6 5159 if (enable)
cdd6c482 5160 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5161
c980d109
ACM
5162 perf_event_header__init_id(&throttle_event.header, &sample, event);
5163
5164 ret = perf_output_begin(&handle, event,
a7ac67ea 5165 throttle_event.header.size);
a78ac325
PZ
5166 if (ret)
5167 return;
5168
5169 perf_output_put(&handle, throttle_event);
c980d109 5170 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5171 perf_output_end(&handle);
5172}
5173
f6c7d5fe 5174/*
cdd6c482 5175 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5176 */
5177
a8b0ca17 5178static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5179 int throttle, struct perf_sample_data *data,
5180 struct pt_regs *regs)
f6c7d5fe 5181{
cdd6c482
IM
5182 int events = atomic_read(&event->event_limit);
5183 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5184 u64 seq;
79f14641
PZ
5185 int ret = 0;
5186
96398826
PZ
5187 /*
5188 * Non-sampling counters might still use the PMI to fold short
5189 * hardware counters, ignore those.
5190 */
5191 if (unlikely(!is_sampling_event(event)))
5192 return 0;
5193
e050e3f0
SE
5194 seq = __this_cpu_read(perf_throttled_seq);
5195 if (seq != hwc->interrupts_seq) {
5196 hwc->interrupts_seq = seq;
5197 hwc->interrupts = 1;
5198 } else {
5199 hwc->interrupts++;
5200 if (unlikely(throttle
5201 && hwc->interrupts >= max_samples_per_tick)) {
5202 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5203 hwc->interrupts = MAX_INTERRUPTS;
5204 perf_log_throttle(event, 0);
d84153d6 5205 tick_nohz_full_kick();
a78ac325
PZ
5206 ret = 1;
5207 }
e050e3f0 5208 }
60db5e09 5209
cdd6c482 5210 if (event->attr.freq) {
def0a9b2 5211 u64 now = perf_clock();
abd50713 5212 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5213
abd50713 5214 hwc->freq_time_stamp = now;
bd2b5b12 5215
abd50713 5216 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5217 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5218 }
5219
2023b359
PZ
5220 /*
5221 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5222 * events
2023b359
PZ
5223 */
5224
cdd6c482
IM
5225 event->pending_kill = POLL_IN;
5226 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5227 ret = 1;
cdd6c482 5228 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5229 event->pending_disable = 1;
5230 irq_work_queue(&event->pending);
79f14641
PZ
5231 }
5232
453f19ee 5233 if (event->overflow_handler)
a8b0ca17 5234 event->overflow_handler(event, data, regs);
453f19ee 5235 else
a8b0ca17 5236 perf_event_output(event, data, regs);
453f19ee 5237
f506b3dc 5238 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5239 event->pending_wakeup = 1;
5240 irq_work_queue(&event->pending);
f506b3dc
PZ
5241 }
5242
79f14641 5243 return ret;
f6c7d5fe
PZ
5244}
5245
a8b0ca17 5246int perf_event_overflow(struct perf_event *event,
5622f295
MM
5247 struct perf_sample_data *data,
5248 struct pt_regs *regs)
850bc73f 5249{
a8b0ca17 5250 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5251}
5252
15dbf27c 5253/*
cdd6c482 5254 * Generic software event infrastructure
15dbf27c
PZ
5255 */
5256
b28ab83c
PZ
5257struct swevent_htable {
5258 struct swevent_hlist *swevent_hlist;
5259 struct mutex hlist_mutex;
5260 int hlist_refcount;
5261
5262 /* Recursion avoidance in each contexts */
5263 int recursion[PERF_NR_CONTEXTS];
5264};
5265
5266static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5267
7b4b6658 5268/*
cdd6c482
IM
5269 * We directly increment event->count and keep a second value in
5270 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5271 * is kept in the range [-sample_period, 0] so that we can use the
5272 * sign as trigger.
5273 */
5274
ab573844 5275u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5276{
cdd6c482 5277 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5278 u64 period = hwc->last_period;
5279 u64 nr, offset;
5280 s64 old, val;
5281
5282 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5283
5284again:
e7850595 5285 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5286 if (val < 0)
5287 return 0;
15dbf27c 5288
7b4b6658
PZ
5289 nr = div64_u64(period + val, period);
5290 offset = nr * period;
5291 val -= offset;
e7850595 5292 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5293 goto again;
15dbf27c 5294
7b4b6658 5295 return nr;
15dbf27c
PZ
5296}
5297
0cff784a 5298static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5299 struct perf_sample_data *data,
5622f295 5300 struct pt_regs *regs)
15dbf27c 5301{
cdd6c482 5302 struct hw_perf_event *hwc = &event->hw;
850bc73f 5303 int throttle = 0;
15dbf27c 5304
0cff784a
PZ
5305 if (!overflow)
5306 overflow = perf_swevent_set_period(event);
15dbf27c 5307
7b4b6658
PZ
5308 if (hwc->interrupts == MAX_INTERRUPTS)
5309 return;
15dbf27c 5310
7b4b6658 5311 for (; overflow; overflow--) {
a8b0ca17 5312 if (__perf_event_overflow(event, throttle,
5622f295 5313 data, regs)) {
7b4b6658
PZ
5314 /*
5315 * We inhibit the overflow from happening when
5316 * hwc->interrupts == MAX_INTERRUPTS.
5317 */
5318 break;
5319 }
cf450a73 5320 throttle = 1;
7b4b6658 5321 }
15dbf27c
PZ
5322}
5323
a4eaf7f1 5324static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5325 struct perf_sample_data *data,
5622f295 5326 struct pt_regs *regs)
7b4b6658 5327{
cdd6c482 5328 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5329
e7850595 5330 local64_add(nr, &event->count);
d6d020e9 5331
0cff784a
PZ
5332 if (!regs)
5333 return;
5334
6c7e550f 5335 if (!is_sampling_event(event))
7b4b6658 5336 return;
d6d020e9 5337
5d81e5cf
AV
5338 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5339 data->period = nr;
5340 return perf_swevent_overflow(event, 1, data, regs);
5341 } else
5342 data->period = event->hw.last_period;
5343
0cff784a 5344 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5345 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5346
e7850595 5347 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5348 return;
df1a132b 5349
a8b0ca17 5350 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5351}
5352
f5ffe02e
FW
5353static int perf_exclude_event(struct perf_event *event,
5354 struct pt_regs *regs)
5355{
a4eaf7f1 5356 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5357 return 1;
a4eaf7f1 5358
f5ffe02e
FW
5359 if (regs) {
5360 if (event->attr.exclude_user && user_mode(regs))
5361 return 1;
5362
5363 if (event->attr.exclude_kernel && !user_mode(regs))
5364 return 1;
5365 }
5366
5367 return 0;
5368}
5369
cdd6c482 5370static int perf_swevent_match(struct perf_event *event,
1c432d89 5371 enum perf_type_id type,
6fb2915d
LZ
5372 u32 event_id,
5373 struct perf_sample_data *data,
5374 struct pt_regs *regs)
15dbf27c 5375{
cdd6c482 5376 if (event->attr.type != type)
a21ca2ca 5377 return 0;
f5ffe02e 5378
cdd6c482 5379 if (event->attr.config != event_id)
15dbf27c
PZ
5380 return 0;
5381
f5ffe02e
FW
5382 if (perf_exclude_event(event, regs))
5383 return 0;
15dbf27c
PZ
5384
5385 return 1;
5386}
5387
76e1d904
FW
5388static inline u64 swevent_hash(u64 type, u32 event_id)
5389{
5390 u64 val = event_id | (type << 32);
5391
5392 return hash_64(val, SWEVENT_HLIST_BITS);
5393}
5394
49f135ed
FW
5395static inline struct hlist_head *
5396__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5397{
49f135ed
FW
5398 u64 hash = swevent_hash(type, event_id);
5399
5400 return &hlist->heads[hash];
5401}
76e1d904 5402
49f135ed
FW
5403/* For the read side: events when they trigger */
5404static inline struct hlist_head *
b28ab83c 5405find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5406{
5407 struct swevent_hlist *hlist;
76e1d904 5408
b28ab83c 5409 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5410 if (!hlist)
5411 return NULL;
5412
49f135ed
FW
5413 return __find_swevent_head(hlist, type, event_id);
5414}
5415
5416/* For the event head insertion and removal in the hlist */
5417static inline struct hlist_head *
b28ab83c 5418find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5419{
5420 struct swevent_hlist *hlist;
5421 u32 event_id = event->attr.config;
5422 u64 type = event->attr.type;
5423
5424 /*
5425 * Event scheduling is always serialized against hlist allocation
5426 * and release. Which makes the protected version suitable here.
5427 * The context lock guarantees that.
5428 */
b28ab83c 5429 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5430 lockdep_is_held(&event->ctx->lock));
5431 if (!hlist)
5432 return NULL;
5433
5434 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5435}
5436
5437static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5438 u64 nr,
76e1d904
FW
5439 struct perf_sample_data *data,
5440 struct pt_regs *regs)
15dbf27c 5441{
b28ab83c 5442 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5443 struct perf_event *event;
76e1d904 5444 struct hlist_head *head;
15dbf27c 5445
76e1d904 5446 rcu_read_lock();
b28ab83c 5447 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5448 if (!head)
5449 goto end;
5450
b67bfe0d 5451 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5452 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5453 perf_swevent_event(event, nr, data, regs);
15dbf27c 5454 }
76e1d904
FW
5455end:
5456 rcu_read_unlock();
15dbf27c
PZ
5457}
5458
4ed7c92d 5459int perf_swevent_get_recursion_context(void)
96f6d444 5460{
b28ab83c 5461 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5462
b28ab83c 5463 return get_recursion_context(swhash->recursion);
96f6d444 5464}
645e8cc0 5465EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5466
fa9f90be 5467inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5468{
b28ab83c 5469 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5470
b28ab83c 5471 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5472}
15dbf27c 5473
a8b0ca17 5474void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5475{
a4234bfc 5476 struct perf_sample_data data;
4ed7c92d
PZ
5477 int rctx;
5478
1c024eca 5479 preempt_disable_notrace();
4ed7c92d
PZ
5480 rctx = perf_swevent_get_recursion_context();
5481 if (rctx < 0)
5482 return;
a4234bfc 5483
fd0d000b 5484 perf_sample_data_init(&data, addr, 0);
92bf309a 5485
a8b0ca17 5486 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5487
5488 perf_swevent_put_recursion_context(rctx);
1c024eca 5489 preempt_enable_notrace();
b8e83514
PZ
5490}
5491
cdd6c482 5492static void perf_swevent_read(struct perf_event *event)
15dbf27c 5493{
15dbf27c
PZ
5494}
5495
a4eaf7f1 5496static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5497{
b28ab83c 5498 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5499 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5500 struct hlist_head *head;
5501
6c7e550f 5502 if (is_sampling_event(event)) {
7b4b6658 5503 hwc->last_period = hwc->sample_period;
cdd6c482 5504 perf_swevent_set_period(event);
7b4b6658 5505 }
76e1d904 5506
a4eaf7f1
PZ
5507 hwc->state = !(flags & PERF_EF_START);
5508
b28ab83c 5509 head = find_swevent_head(swhash, event);
76e1d904
FW
5510 if (WARN_ON_ONCE(!head))
5511 return -EINVAL;
5512
5513 hlist_add_head_rcu(&event->hlist_entry, head);
5514
15dbf27c
PZ
5515 return 0;
5516}
5517
a4eaf7f1 5518static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5519{
76e1d904 5520 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5521}
5522
a4eaf7f1 5523static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5524{
a4eaf7f1 5525 event->hw.state = 0;
d6d020e9 5526}
aa9c4c0f 5527
a4eaf7f1 5528static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5529{
a4eaf7f1 5530 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5531}
5532
49f135ed
FW
5533/* Deref the hlist from the update side */
5534static inline struct swevent_hlist *
b28ab83c 5535swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5536{
b28ab83c
PZ
5537 return rcu_dereference_protected(swhash->swevent_hlist,
5538 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5539}
5540
b28ab83c 5541static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5542{
b28ab83c 5543 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5544
49f135ed 5545 if (!hlist)
76e1d904
FW
5546 return;
5547
b28ab83c 5548 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5549 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5550}
5551
5552static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5553{
b28ab83c 5554 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5555
b28ab83c 5556 mutex_lock(&swhash->hlist_mutex);
76e1d904 5557
b28ab83c
PZ
5558 if (!--swhash->hlist_refcount)
5559 swevent_hlist_release(swhash);
76e1d904 5560
b28ab83c 5561 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5562}
5563
5564static void swevent_hlist_put(struct perf_event *event)
5565{
5566 int cpu;
5567
5568 if (event->cpu != -1) {
5569 swevent_hlist_put_cpu(event, event->cpu);
5570 return;
5571 }
5572
5573 for_each_possible_cpu(cpu)
5574 swevent_hlist_put_cpu(event, cpu);
5575}
5576
5577static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5578{
b28ab83c 5579 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5580 int err = 0;
5581
b28ab83c 5582 mutex_lock(&swhash->hlist_mutex);
76e1d904 5583
b28ab83c 5584 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5585 struct swevent_hlist *hlist;
5586
5587 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5588 if (!hlist) {
5589 err = -ENOMEM;
5590 goto exit;
5591 }
b28ab83c 5592 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5593 }
b28ab83c 5594 swhash->hlist_refcount++;
9ed6060d 5595exit:
b28ab83c 5596 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5597
5598 return err;
5599}
5600
5601static int swevent_hlist_get(struct perf_event *event)
5602{
5603 int err;
5604 int cpu, failed_cpu;
5605
5606 if (event->cpu != -1)
5607 return swevent_hlist_get_cpu(event, event->cpu);
5608
5609 get_online_cpus();
5610 for_each_possible_cpu(cpu) {
5611 err = swevent_hlist_get_cpu(event, cpu);
5612 if (err) {
5613 failed_cpu = cpu;
5614 goto fail;
5615 }
5616 }
5617 put_online_cpus();
5618
5619 return 0;
9ed6060d 5620fail:
76e1d904
FW
5621 for_each_possible_cpu(cpu) {
5622 if (cpu == failed_cpu)
5623 break;
5624 swevent_hlist_put_cpu(event, cpu);
5625 }
5626
5627 put_online_cpus();
5628 return err;
5629}
5630
c5905afb 5631struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5632
b0a873eb
PZ
5633static void sw_perf_event_destroy(struct perf_event *event)
5634{
5635 u64 event_id = event->attr.config;
95476b64 5636
b0a873eb
PZ
5637 WARN_ON(event->parent);
5638
c5905afb 5639 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5640 swevent_hlist_put(event);
5641}
5642
5643static int perf_swevent_init(struct perf_event *event)
5644{
8176cced 5645 u64 event_id = event->attr.config;
b0a873eb
PZ
5646
5647 if (event->attr.type != PERF_TYPE_SOFTWARE)
5648 return -ENOENT;
5649
2481c5fa
SE
5650 /*
5651 * no branch sampling for software events
5652 */
5653 if (has_branch_stack(event))
5654 return -EOPNOTSUPP;
5655
b0a873eb
PZ
5656 switch (event_id) {
5657 case PERF_COUNT_SW_CPU_CLOCK:
5658 case PERF_COUNT_SW_TASK_CLOCK:
5659 return -ENOENT;
5660
5661 default:
5662 break;
5663 }
5664
ce677831 5665 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5666 return -ENOENT;
5667
5668 if (!event->parent) {
5669 int err;
5670
5671 err = swevent_hlist_get(event);
5672 if (err)
5673 return err;
5674
c5905afb 5675 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5676 event->destroy = sw_perf_event_destroy;
5677 }
5678
5679 return 0;
5680}
5681
35edc2a5
PZ
5682static int perf_swevent_event_idx(struct perf_event *event)
5683{
5684 return 0;
5685}
5686
b0a873eb 5687static struct pmu perf_swevent = {
89a1e187 5688 .task_ctx_nr = perf_sw_context,
95476b64 5689
b0a873eb 5690 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5691 .add = perf_swevent_add,
5692 .del = perf_swevent_del,
5693 .start = perf_swevent_start,
5694 .stop = perf_swevent_stop,
1c024eca 5695 .read = perf_swevent_read,
35edc2a5
PZ
5696
5697 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5698};
5699
b0a873eb
PZ
5700#ifdef CONFIG_EVENT_TRACING
5701
1c024eca
PZ
5702static int perf_tp_filter_match(struct perf_event *event,
5703 struct perf_sample_data *data)
5704{
5705 void *record = data->raw->data;
5706
5707 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5708 return 1;
5709 return 0;
5710}
5711
5712static int perf_tp_event_match(struct perf_event *event,
5713 struct perf_sample_data *data,
5714 struct pt_regs *regs)
5715{
a0f7d0f7
FW
5716 if (event->hw.state & PERF_HES_STOPPED)
5717 return 0;
580d607c
PZ
5718 /*
5719 * All tracepoints are from kernel-space.
5720 */
5721 if (event->attr.exclude_kernel)
1c024eca
PZ
5722 return 0;
5723
5724 if (!perf_tp_filter_match(event, data))
5725 return 0;
5726
5727 return 1;
5728}
5729
5730void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5731 struct pt_regs *regs, struct hlist_head *head, int rctx,
5732 struct task_struct *task)
95476b64
FW
5733{
5734 struct perf_sample_data data;
1c024eca 5735 struct perf_event *event;
1c024eca 5736
95476b64
FW
5737 struct perf_raw_record raw = {
5738 .size = entry_size,
5739 .data = record,
5740 };
5741
fd0d000b 5742 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5743 data.raw = &raw;
5744
b67bfe0d 5745 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5746 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5747 perf_swevent_event(event, count, &data, regs);
4f41c013 5748 }
ecc55f84 5749
e6dab5ff
AV
5750 /*
5751 * If we got specified a target task, also iterate its context and
5752 * deliver this event there too.
5753 */
5754 if (task && task != current) {
5755 struct perf_event_context *ctx;
5756 struct trace_entry *entry = record;
5757
5758 rcu_read_lock();
5759 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5760 if (!ctx)
5761 goto unlock;
5762
5763 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5764 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5765 continue;
5766 if (event->attr.config != entry->type)
5767 continue;
5768 if (perf_tp_event_match(event, &data, regs))
5769 perf_swevent_event(event, count, &data, regs);
5770 }
5771unlock:
5772 rcu_read_unlock();
5773 }
5774
ecc55f84 5775 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5776}
5777EXPORT_SYMBOL_GPL(perf_tp_event);
5778
cdd6c482 5779static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5780{
1c024eca 5781 perf_trace_destroy(event);
e077df4f
PZ
5782}
5783
b0a873eb 5784static int perf_tp_event_init(struct perf_event *event)
e077df4f 5785{
76e1d904
FW
5786 int err;
5787
b0a873eb
PZ
5788 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5789 return -ENOENT;
5790
2481c5fa
SE
5791 /*
5792 * no branch sampling for tracepoint events
5793 */
5794 if (has_branch_stack(event))
5795 return -EOPNOTSUPP;
5796
1c024eca
PZ
5797 err = perf_trace_init(event);
5798 if (err)
b0a873eb 5799 return err;
e077df4f 5800
cdd6c482 5801 event->destroy = tp_perf_event_destroy;
e077df4f 5802
b0a873eb
PZ
5803 return 0;
5804}
5805
5806static struct pmu perf_tracepoint = {
89a1e187
PZ
5807 .task_ctx_nr = perf_sw_context,
5808
b0a873eb 5809 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5810 .add = perf_trace_add,
5811 .del = perf_trace_del,
5812 .start = perf_swevent_start,
5813 .stop = perf_swevent_stop,
b0a873eb 5814 .read = perf_swevent_read,
35edc2a5
PZ
5815
5816 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5817};
5818
5819static inline void perf_tp_register(void)
5820{
2e80a82a 5821 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5822}
6fb2915d
LZ
5823
5824static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5825{
5826 char *filter_str;
5827 int ret;
5828
5829 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5830 return -EINVAL;
5831
5832 filter_str = strndup_user(arg, PAGE_SIZE);
5833 if (IS_ERR(filter_str))
5834 return PTR_ERR(filter_str);
5835
5836 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5837
5838 kfree(filter_str);
5839 return ret;
5840}
5841
5842static void perf_event_free_filter(struct perf_event *event)
5843{
5844 ftrace_profile_free_filter(event);
5845}
5846
e077df4f 5847#else
6fb2915d 5848
b0a873eb 5849static inline void perf_tp_register(void)
e077df4f 5850{
e077df4f 5851}
6fb2915d
LZ
5852
5853static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5854{
5855 return -ENOENT;
5856}
5857
5858static void perf_event_free_filter(struct perf_event *event)
5859{
5860}
5861
07b139c8 5862#endif /* CONFIG_EVENT_TRACING */
e077df4f 5863
24f1e32c 5864#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5865void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5866{
f5ffe02e
FW
5867 struct perf_sample_data sample;
5868 struct pt_regs *regs = data;
5869
fd0d000b 5870 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5871
a4eaf7f1 5872 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5873 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5874}
5875#endif
5876
b0a873eb
PZ
5877/*
5878 * hrtimer based swevent callback
5879 */
f29ac756 5880
b0a873eb 5881static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5882{
b0a873eb
PZ
5883 enum hrtimer_restart ret = HRTIMER_RESTART;
5884 struct perf_sample_data data;
5885 struct pt_regs *regs;
5886 struct perf_event *event;
5887 u64 period;
f29ac756 5888
b0a873eb 5889 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5890
5891 if (event->state != PERF_EVENT_STATE_ACTIVE)
5892 return HRTIMER_NORESTART;
5893
b0a873eb 5894 event->pmu->read(event);
f344011c 5895
fd0d000b 5896 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5897 regs = get_irq_regs();
5898
5899 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5900 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5901 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5902 ret = HRTIMER_NORESTART;
5903 }
24f1e32c 5904
b0a873eb
PZ
5905 period = max_t(u64, 10000, event->hw.sample_period);
5906 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5907
b0a873eb 5908 return ret;
f29ac756
PZ
5909}
5910
b0a873eb 5911static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5912{
b0a873eb 5913 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5914 s64 period;
5915
5916 if (!is_sampling_event(event))
5917 return;
f5ffe02e 5918
5d508e82
FBH
5919 period = local64_read(&hwc->period_left);
5920 if (period) {
5921 if (period < 0)
5922 period = 10000;
fa407f35 5923
5d508e82
FBH
5924 local64_set(&hwc->period_left, 0);
5925 } else {
5926 period = max_t(u64, 10000, hwc->sample_period);
5927 }
5928 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5929 ns_to_ktime(period), 0,
b5ab4cd5 5930 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5931}
b0a873eb
PZ
5932
5933static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5934{
b0a873eb
PZ
5935 struct hw_perf_event *hwc = &event->hw;
5936
6c7e550f 5937 if (is_sampling_event(event)) {
b0a873eb 5938 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5939 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5940
5941 hrtimer_cancel(&hwc->hrtimer);
5942 }
24f1e32c
FW
5943}
5944
ba3dd36c
PZ
5945static void perf_swevent_init_hrtimer(struct perf_event *event)
5946{
5947 struct hw_perf_event *hwc = &event->hw;
5948
5949 if (!is_sampling_event(event))
5950 return;
5951
5952 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5953 hwc->hrtimer.function = perf_swevent_hrtimer;
5954
5955 /*
5956 * Since hrtimers have a fixed rate, we can do a static freq->period
5957 * mapping and avoid the whole period adjust feedback stuff.
5958 */
5959 if (event->attr.freq) {
5960 long freq = event->attr.sample_freq;
5961
5962 event->attr.sample_period = NSEC_PER_SEC / freq;
5963 hwc->sample_period = event->attr.sample_period;
5964 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5965 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5966 event->attr.freq = 0;
5967 }
5968}
5969
b0a873eb
PZ
5970/*
5971 * Software event: cpu wall time clock
5972 */
5973
5974static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5975{
b0a873eb
PZ
5976 s64 prev;
5977 u64 now;
5978
a4eaf7f1 5979 now = local_clock();
b0a873eb
PZ
5980 prev = local64_xchg(&event->hw.prev_count, now);
5981 local64_add(now - prev, &event->count);
24f1e32c 5982}
24f1e32c 5983
a4eaf7f1 5984static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5985{
a4eaf7f1 5986 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5987 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5988}
5989
a4eaf7f1 5990static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5991{
b0a873eb
PZ
5992 perf_swevent_cancel_hrtimer(event);
5993 cpu_clock_event_update(event);
5994}
f29ac756 5995
a4eaf7f1
PZ
5996static int cpu_clock_event_add(struct perf_event *event, int flags)
5997{
5998 if (flags & PERF_EF_START)
5999 cpu_clock_event_start(event, flags);
6000
6001 return 0;
6002}
6003
6004static void cpu_clock_event_del(struct perf_event *event, int flags)
6005{
6006 cpu_clock_event_stop(event, flags);
6007}
6008
b0a873eb
PZ
6009static void cpu_clock_event_read(struct perf_event *event)
6010{
6011 cpu_clock_event_update(event);
6012}
f344011c 6013
b0a873eb
PZ
6014static int cpu_clock_event_init(struct perf_event *event)
6015{
6016 if (event->attr.type != PERF_TYPE_SOFTWARE)
6017 return -ENOENT;
6018
6019 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6020 return -ENOENT;
6021
2481c5fa
SE
6022 /*
6023 * no branch sampling for software events
6024 */
6025 if (has_branch_stack(event))
6026 return -EOPNOTSUPP;
6027
ba3dd36c
PZ
6028 perf_swevent_init_hrtimer(event);
6029
b0a873eb 6030 return 0;
f29ac756
PZ
6031}
6032
b0a873eb 6033static struct pmu perf_cpu_clock = {
89a1e187
PZ
6034 .task_ctx_nr = perf_sw_context,
6035
b0a873eb 6036 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6037 .add = cpu_clock_event_add,
6038 .del = cpu_clock_event_del,
6039 .start = cpu_clock_event_start,
6040 .stop = cpu_clock_event_stop,
b0a873eb 6041 .read = cpu_clock_event_read,
35edc2a5
PZ
6042
6043 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6044};
6045
6046/*
6047 * Software event: task time clock
6048 */
6049
6050static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6051{
b0a873eb
PZ
6052 u64 prev;
6053 s64 delta;
5c92d124 6054
b0a873eb
PZ
6055 prev = local64_xchg(&event->hw.prev_count, now);
6056 delta = now - prev;
6057 local64_add(delta, &event->count);
6058}
5c92d124 6059
a4eaf7f1 6060static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6061{
a4eaf7f1 6062 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6063 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6064}
6065
a4eaf7f1 6066static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6067{
6068 perf_swevent_cancel_hrtimer(event);
6069 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6070}
6071
6072static int task_clock_event_add(struct perf_event *event, int flags)
6073{
6074 if (flags & PERF_EF_START)
6075 task_clock_event_start(event, flags);
b0a873eb 6076
a4eaf7f1
PZ
6077 return 0;
6078}
6079
6080static void task_clock_event_del(struct perf_event *event, int flags)
6081{
6082 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6083}
6084
6085static void task_clock_event_read(struct perf_event *event)
6086{
768a06e2
PZ
6087 u64 now = perf_clock();
6088 u64 delta = now - event->ctx->timestamp;
6089 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6090
6091 task_clock_event_update(event, time);
6092}
6093
6094static int task_clock_event_init(struct perf_event *event)
6fb2915d 6095{
b0a873eb
PZ
6096 if (event->attr.type != PERF_TYPE_SOFTWARE)
6097 return -ENOENT;
6098
6099 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6100 return -ENOENT;
6101
2481c5fa
SE
6102 /*
6103 * no branch sampling for software events
6104 */
6105 if (has_branch_stack(event))
6106 return -EOPNOTSUPP;
6107
ba3dd36c
PZ
6108 perf_swevent_init_hrtimer(event);
6109
b0a873eb 6110 return 0;
6fb2915d
LZ
6111}
6112
b0a873eb 6113static struct pmu perf_task_clock = {
89a1e187
PZ
6114 .task_ctx_nr = perf_sw_context,
6115
b0a873eb 6116 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6117 .add = task_clock_event_add,
6118 .del = task_clock_event_del,
6119 .start = task_clock_event_start,
6120 .stop = task_clock_event_stop,
b0a873eb 6121 .read = task_clock_event_read,
35edc2a5
PZ
6122
6123 .event_idx = perf_swevent_event_idx,
b0a873eb 6124};
6fb2915d 6125
ad5133b7 6126static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6127{
e077df4f 6128}
6fb2915d 6129
ad5133b7 6130static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6131{
ad5133b7 6132 return 0;
6fb2915d
LZ
6133}
6134
ad5133b7 6135static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6136{
ad5133b7 6137 perf_pmu_disable(pmu);
6fb2915d
LZ
6138}
6139
ad5133b7
PZ
6140static int perf_pmu_commit_txn(struct pmu *pmu)
6141{
6142 perf_pmu_enable(pmu);
6143 return 0;
6144}
e077df4f 6145
ad5133b7 6146static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6147{
ad5133b7 6148 perf_pmu_enable(pmu);
24f1e32c
FW
6149}
6150
35edc2a5
PZ
6151static int perf_event_idx_default(struct perf_event *event)
6152{
6153 return event->hw.idx + 1;
6154}
6155
8dc85d54
PZ
6156/*
6157 * Ensures all contexts with the same task_ctx_nr have the same
6158 * pmu_cpu_context too.
6159 */
6160static void *find_pmu_context(int ctxn)
24f1e32c 6161{
8dc85d54 6162 struct pmu *pmu;
b326e956 6163
8dc85d54
PZ
6164 if (ctxn < 0)
6165 return NULL;
24f1e32c 6166
8dc85d54
PZ
6167 list_for_each_entry(pmu, &pmus, entry) {
6168 if (pmu->task_ctx_nr == ctxn)
6169 return pmu->pmu_cpu_context;
6170 }
24f1e32c 6171
8dc85d54 6172 return NULL;
24f1e32c
FW
6173}
6174
51676957 6175static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6176{
51676957
PZ
6177 int cpu;
6178
6179 for_each_possible_cpu(cpu) {
6180 struct perf_cpu_context *cpuctx;
6181
6182 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6183
3f1f3320
PZ
6184 if (cpuctx->unique_pmu == old_pmu)
6185 cpuctx->unique_pmu = pmu;
51676957
PZ
6186 }
6187}
6188
6189static void free_pmu_context(struct pmu *pmu)
6190{
6191 struct pmu *i;
f5ffe02e 6192
8dc85d54 6193 mutex_lock(&pmus_lock);
0475f9ea 6194 /*
8dc85d54 6195 * Like a real lame refcount.
0475f9ea 6196 */
51676957
PZ
6197 list_for_each_entry(i, &pmus, entry) {
6198 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6199 update_pmu_context(i, pmu);
8dc85d54 6200 goto out;
51676957 6201 }
8dc85d54 6202 }
d6d020e9 6203
51676957 6204 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6205out:
6206 mutex_unlock(&pmus_lock);
24f1e32c 6207}
2e80a82a 6208static struct idr pmu_idr;
d6d020e9 6209
abe43400
PZ
6210static ssize_t
6211type_show(struct device *dev, struct device_attribute *attr, char *page)
6212{
6213 struct pmu *pmu = dev_get_drvdata(dev);
6214
6215 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6216}
6217
62b85639
SE
6218static ssize_t
6219perf_event_mux_interval_ms_show(struct device *dev,
6220 struct device_attribute *attr,
6221 char *page)
6222{
6223 struct pmu *pmu = dev_get_drvdata(dev);
6224
6225 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6226}
6227
6228static ssize_t
6229perf_event_mux_interval_ms_store(struct device *dev,
6230 struct device_attribute *attr,
6231 const char *buf, size_t count)
6232{
6233 struct pmu *pmu = dev_get_drvdata(dev);
6234 int timer, cpu, ret;
6235
6236 ret = kstrtoint(buf, 0, &timer);
6237 if (ret)
6238 return ret;
6239
6240 if (timer < 1)
6241 return -EINVAL;
6242
6243 /* same value, noting to do */
6244 if (timer == pmu->hrtimer_interval_ms)
6245 return count;
6246
6247 pmu->hrtimer_interval_ms = timer;
6248
6249 /* update all cpuctx for this PMU */
6250 for_each_possible_cpu(cpu) {
6251 struct perf_cpu_context *cpuctx;
6252 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6253 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6254
6255 if (hrtimer_active(&cpuctx->hrtimer))
6256 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6257 }
6258
6259 return count;
6260}
6261
abe43400 6262static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6263 __ATTR_RO(type),
6264 __ATTR_RW(perf_event_mux_interval_ms),
6265 __ATTR_NULL,
abe43400
PZ
6266};
6267
6268static int pmu_bus_running;
6269static struct bus_type pmu_bus = {
6270 .name = "event_source",
6271 .dev_attrs = pmu_dev_attrs,
6272};
6273
6274static void pmu_dev_release(struct device *dev)
6275{
6276 kfree(dev);
6277}
6278
6279static int pmu_dev_alloc(struct pmu *pmu)
6280{
6281 int ret = -ENOMEM;
6282
6283 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6284 if (!pmu->dev)
6285 goto out;
6286
0c9d42ed 6287 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6288 device_initialize(pmu->dev);
6289 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6290 if (ret)
6291 goto free_dev;
6292
6293 dev_set_drvdata(pmu->dev, pmu);
6294 pmu->dev->bus = &pmu_bus;
6295 pmu->dev->release = pmu_dev_release;
6296 ret = device_add(pmu->dev);
6297 if (ret)
6298 goto free_dev;
6299
6300out:
6301 return ret;
6302
6303free_dev:
6304 put_device(pmu->dev);
6305 goto out;
6306}
6307
547e9fd7 6308static struct lock_class_key cpuctx_mutex;
facc4307 6309static struct lock_class_key cpuctx_lock;
547e9fd7 6310
03d8e80b 6311int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6312{
108b02cf 6313 int cpu, ret;
24f1e32c 6314
b0a873eb 6315 mutex_lock(&pmus_lock);
33696fc0
PZ
6316 ret = -ENOMEM;
6317 pmu->pmu_disable_count = alloc_percpu(int);
6318 if (!pmu->pmu_disable_count)
6319 goto unlock;
f29ac756 6320
2e80a82a
PZ
6321 pmu->type = -1;
6322 if (!name)
6323 goto skip_type;
6324 pmu->name = name;
6325
6326 if (type < 0) {
0e9c3be2
TH
6327 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6328 if (type < 0) {
6329 ret = type;
2e80a82a
PZ
6330 goto free_pdc;
6331 }
6332 }
6333 pmu->type = type;
6334
abe43400
PZ
6335 if (pmu_bus_running) {
6336 ret = pmu_dev_alloc(pmu);
6337 if (ret)
6338 goto free_idr;
6339 }
6340
2e80a82a 6341skip_type:
8dc85d54
PZ
6342 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6343 if (pmu->pmu_cpu_context)
6344 goto got_cpu_context;
f29ac756 6345
c4814202 6346 ret = -ENOMEM;
108b02cf
PZ
6347 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6348 if (!pmu->pmu_cpu_context)
abe43400 6349 goto free_dev;
f344011c 6350
108b02cf
PZ
6351 for_each_possible_cpu(cpu) {
6352 struct perf_cpu_context *cpuctx;
6353
6354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6355 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6356 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6357 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6358 cpuctx->ctx.type = cpu_context;
108b02cf 6359 cpuctx->ctx.pmu = pmu;
9e630205
SE
6360
6361 __perf_cpu_hrtimer_init(cpuctx, cpu);
6362
e9d2b064 6363 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6364 cpuctx->unique_pmu = pmu;
108b02cf 6365 }
76e1d904 6366
8dc85d54 6367got_cpu_context:
ad5133b7
PZ
6368 if (!pmu->start_txn) {
6369 if (pmu->pmu_enable) {
6370 /*
6371 * If we have pmu_enable/pmu_disable calls, install
6372 * transaction stubs that use that to try and batch
6373 * hardware accesses.
6374 */
6375 pmu->start_txn = perf_pmu_start_txn;
6376 pmu->commit_txn = perf_pmu_commit_txn;
6377 pmu->cancel_txn = perf_pmu_cancel_txn;
6378 } else {
6379 pmu->start_txn = perf_pmu_nop_void;
6380 pmu->commit_txn = perf_pmu_nop_int;
6381 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6382 }
5c92d124 6383 }
15dbf27c 6384
ad5133b7
PZ
6385 if (!pmu->pmu_enable) {
6386 pmu->pmu_enable = perf_pmu_nop_void;
6387 pmu->pmu_disable = perf_pmu_nop_void;
6388 }
6389
35edc2a5
PZ
6390 if (!pmu->event_idx)
6391 pmu->event_idx = perf_event_idx_default;
6392
b0a873eb 6393 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6394 ret = 0;
6395unlock:
b0a873eb
PZ
6396 mutex_unlock(&pmus_lock);
6397
33696fc0 6398 return ret;
108b02cf 6399
abe43400
PZ
6400free_dev:
6401 device_del(pmu->dev);
6402 put_device(pmu->dev);
6403
2e80a82a
PZ
6404free_idr:
6405 if (pmu->type >= PERF_TYPE_MAX)
6406 idr_remove(&pmu_idr, pmu->type);
6407
108b02cf
PZ
6408free_pdc:
6409 free_percpu(pmu->pmu_disable_count);
6410 goto unlock;
f29ac756
PZ
6411}
6412
b0a873eb 6413void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6414{
b0a873eb
PZ
6415 mutex_lock(&pmus_lock);
6416 list_del_rcu(&pmu->entry);
6417 mutex_unlock(&pmus_lock);
5c92d124 6418
0475f9ea 6419 /*
cde8e884
PZ
6420 * We dereference the pmu list under both SRCU and regular RCU, so
6421 * synchronize against both of those.
0475f9ea 6422 */
b0a873eb 6423 synchronize_srcu(&pmus_srcu);
cde8e884 6424 synchronize_rcu();
d6d020e9 6425
33696fc0 6426 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6427 if (pmu->type >= PERF_TYPE_MAX)
6428 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6429 device_del(pmu->dev);
6430 put_device(pmu->dev);
51676957 6431 free_pmu_context(pmu);
b0a873eb 6432}
d6d020e9 6433
b0a873eb
PZ
6434struct pmu *perf_init_event(struct perf_event *event)
6435{
6436 struct pmu *pmu = NULL;
6437 int idx;
940c5b29 6438 int ret;
b0a873eb
PZ
6439
6440 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6441
6442 rcu_read_lock();
6443 pmu = idr_find(&pmu_idr, event->attr.type);
6444 rcu_read_unlock();
940c5b29 6445 if (pmu) {
7e5b2a01 6446 event->pmu = pmu;
940c5b29
LM
6447 ret = pmu->event_init(event);
6448 if (ret)
6449 pmu = ERR_PTR(ret);
2e80a82a 6450 goto unlock;
940c5b29 6451 }
2e80a82a 6452
b0a873eb 6453 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6454 event->pmu = pmu;
940c5b29 6455 ret = pmu->event_init(event);
b0a873eb 6456 if (!ret)
e5f4d339 6457 goto unlock;
76e1d904 6458
b0a873eb
PZ
6459 if (ret != -ENOENT) {
6460 pmu = ERR_PTR(ret);
e5f4d339 6461 goto unlock;
f344011c 6462 }
5c92d124 6463 }
e5f4d339
PZ
6464 pmu = ERR_PTR(-ENOENT);
6465unlock:
b0a873eb 6466 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6467
4aeb0b42 6468 return pmu;
5c92d124
IM
6469}
6470
4beb31f3
FW
6471static void account_event_cpu(struct perf_event *event, int cpu)
6472{
6473 if (event->parent)
6474 return;
6475
6476 if (has_branch_stack(event)) {
6477 if (!(event->attach_state & PERF_ATTACH_TASK))
6478 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6479 }
6480 if (is_cgroup_event(event))
6481 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
ba8a75c1
FW
6482
6483 if (event->attr.freq)
6484 atomic_inc(&per_cpu(perf_freq_events, cpu));
4beb31f3
FW
6485}
6486
766d6c07
FW
6487static void account_event(struct perf_event *event)
6488{
4beb31f3
FW
6489 if (event->parent)
6490 return;
6491
766d6c07
FW
6492 if (event->attach_state & PERF_ATTACH_TASK)
6493 static_key_slow_inc(&perf_sched_events.key);
6494 if (event->attr.mmap || event->attr.mmap_data)
6495 atomic_inc(&nr_mmap_events);
6496 if (event->attr.comm)
6497 atomic_inc(&nr_comm_events);
6498 if (event->attr.task)
6499 atomic_inc(&nr_task_events);
4beb31f3 6500 if (has_branch_stack(event))
766d6c07 6501 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6502 if (is_cgroup_event(event))
766d6c07 6503 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6504
6505 account_event_cpu(event, event->cpu);
766d6c07
FW
6506}
6507
0793a61d 6508/*
cdd6c482 6509 * Allocate and initialize a event structure
0793a61d 6510 */
cdd6c482 6511static struct perf_event *
c3f00c70 6512perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6513 struct task_struct *task,
6514 struct perf_event *group_leader,
6515 struct perf_event *parent_event,
4dc0da86
AK
6516 perf_overflow_handler_t overflow_handler,
6517 void *context)
0793a61d 6518{
51b0fe39 6519 struct pmu *pmu;
cdd6c482
IM
6520 struct perf_event *event;
6521 struct hw_perf_event *hwc;
90983b16 6522 long err = -EINVAL;
0793a61d 6523
66832eb4
ON
6524 if ((unsigned)cpu >= nr_cpu_ids) {
6525 if (!task || cpu != -1)
6526 return ERR_PTR(-EINVAL);
6527 }
6528
c3f00c70 6529 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6530 if (!event)
d5d2bc0d 6531 return ERR_PTR(-ENOMEM);
0793a61d 6532
04289bb9 6533 /*
cdd6c482 6534 * Single events are their own group leaders, with an
04289bb9
IM
6535 * empty sibling list:
6536 */
6537 if (!group_leader)
cdd6c482 6538 group_leader = event;
04289bb9 6539
cdd6c482
IM
6540 mutex_init(&event->child_mutex);
6541 INIT_LIST_HEAD(&event->child_list);
fccc714b 6542
cdd6c482
IM
6543 INIT_LIST_HEAD(&event->group_entry);
6544 INIT_LIST_HEAD(&event->event_entry);
6545 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6546 INIT_LIST_HEAD(&event->rb_entry);
6547
cdd6c482 6548 init_waitqueue_head(&event->waitq);
e360adbe 6549 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6550
cdd6c482 6551 mutex_init(&event->mmap_mutex);
7b732a75 6552
a6fa941d 6553 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6554 event->cpu = cpu;
6555 event->attr = *attr;
6556 event->group_leader = group_leader;
6557 event->pmu = NULL;
cdd6c482 6558 event->oncpu = -1;
a96bbc16 6559
cdd6c482 6560 event->parent = parent_event;
b84fbc9f 6561
17cf22c3 6562 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6563 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6564
cdd6c482 6565 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6566
d580ff86
PZ
6567 if (task) {
6568 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6569
6570 if (attr->type == PERF_TYPE_TRACEPOINT)
6571 event->hw.tp_target = task;
d580ff86
PZ
6572#ifdef CONFIG_HAVE_HW_BREAKPOINT
6573 /*
6574 * hw_breakpoint is a bit difficult here..
6575 */
f22c1bb6 6576 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6577 event->hw.bp_target = task;
6578#endif
6579 }
6580
4dc0da86 6581 if (!overflow_handler && parent_event) {
b326e956 6582 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6583 context = parent_event->overflow_handler_context;
6584 }
66832eb4 6585
b326e956 6586 event->overflow_handler = overflow_handler;
4dc0da86 6587 event->overflow_handler_context = context;
97eaf530 6588
0231bb53 6589 perf_event__state_init(event);
a86ed508 6590
4aeb0b42 6591 pmu = NULL;
b8e83514 6592
cdd6c482 6593 hwc = &event->hw;
bd2b5b12 6594 hwc->sample_period = attr->sample_period;
0d48696f 6595 if (attr->freq && attr->sample_freq)
bd2b5b12 6596 hwc->sample_period = 1;
eced1dfc 6597 hwc->last_period = hwc->sample_period;
bd2b5b12 6598
e7850595 6599 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6600
2023b359 6601 /*
cdd6c482 6602 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6603 */
3dab77fb 6604 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6605 goto err_ns;
2023b359 6606
b0a873eb 6607 pmu = perf_init_event(event);
4aeb0b42 6608 if (!pmu)
90983b16
FW
6609 goto err_ns;
6610 else if (IS_ERR(pmu)) {
4aeb0b42 6611 err = PTR_ERR(pmu);
90983b16 6612 goto err_ns;
621a01ea 6613 }
d5d2bc0d 6614
cdd6c482 6615 if (!event->parent) {
90983b16
FW
6616 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6617 err = get_callchain_buffers();
6618 if (err)
6619 goto err_pmu;
6620 }
f344011c 6621 }
9ee318a7 6622
cdd6c482 6623 return event;
90983b16
FW
6624
6625err_pmu:
6626 if (event->destroy)
6627 event->destroy(event);
6628err_ns:
6629 if (event->ns)
6630 put_pid_ns(event->ns);
6631 kfree(event);
6632
6633 return ERR_PTR(err);
0793a61d
TG
6634}
6635
cdd6c482
IM
6636static int perf_copy_attr(struct perf_event_attr __user *uattr,
6637 struct perf_event_attr *attr)
974802ea 6638{
974802ea 6639 u32 size;
cdf8073d 6640 int ret;
974802ea
PZ
6641
6642 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6643 return -EFAULT;
6644
6645 /*
6646 * zero the full structure, so that a short copy will be nice.
6647 */
6648 memset(attr, 0, sizeof(*attr));
6649
6650 ret = get_user(size, &uattr->size);
6651 if (ret)
6652 return ret;
6653
6654 if (size > PAGE_SIZE) /* silly large */
6655 goto err_size;
6656
6657 if (!size) /* abi compat */
6658 size = PERF_ATTR_SIZE_VER0;
6659
6660 if (size < PERF_ATTR_SIZE_VER0)
6661 goto err_size;
6662
6663 /*
6664 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6665 * ensure all the unknown bits are 0 - i.e. new
6666 * user-space does not rely on any kernel feature
6667 * extensions we dont know about yet.
974802ea
PZ
6668 */
6669 if (size > sizeof(*attr)) {
cdf8073d
IS
6670 unsigned char __user *addr;
6671 unsigned char __user *end;
6672 unsigned char val;
974802ea 6673
cdf8073d
IS
6674 addr = (void __user *)uattr + sizeof(*attr);
6675 end = (void __user *)uattr + size;
974802ea 6676
cdf8073d 6677 for (; addr < end; addr++) {
974802ea
PZ
6678 ret = get_user(val, addr);
6679 if (ret)
6680 return ret;
6681 if (val)
6682 goto err_size;
6683 }
b3e62e35 6684 size = sizeof(*attr);
974802ea
PZ
6685 }
6686
6687 ret = copy_from_user(attr, uattr, size);
6688 if (ret)
6689 return -EFAULT;
6690
cd757645 6691 if (attr->__reserved_1)
974802ea
PZ
6692 return -EINVAL;
6693
6694 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6695 return -EINVAL;
6696
6697 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6698 return -EINVAL;
6699
bce38cd5
SE
6700 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6701 u64 mask = attr->branch_sample_type;
6702
6703 /* only using defined bits */
6704 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6705 return -EINVAL;
6706
6707 /* at least one branch bit must be set */
6708 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6709 return -EINVAL;
6710
bce38cd5
SE
6711 /* propagate priv level, when not set for branch */
6712 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6713
6714 /* exclude_kernel checked on syscall entry */
6715 if (!attr->exclude_kernel)
6716 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6717
6718 if (!attr->exclude_user)
6719 mask |= PERF_SAMPLE_BRANCH_USER;
6720
6721 if (!attr->exclude_hv)
6722 mask |= PERF_SAMPLE_BRANCH_HV;
6723 /*
6724 * adjust user setting (for HW filter setup)
6725 */
6726 attr->branch_sample_type = mask;
6727 }
e712209a
SE
6728 /* privileged levels capture (kernel, hv): check permissions */
6729 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6730 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6731 return -EACCES;
bce38cd5 6732 }
4018994f 6733
c5ebcedb 6734 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6735 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6736 if (ret)
6737 return ret;
6738 }
6739
6740 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6741 if (!arch_perf_have_user_stack_dump())
6742 return -ENOSYS;
6743
6744 /*
6745 * We have __u32 type for the size, but so far
6746 * we can only use __u16 as maximum due to the
6747 * __u16 sample size limit.
6748 */
6749 if (attr->sample_stack_user >= USHRT_MAX)
6750 ret = -EINVAL;
6751 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6752 ret = -EINVAL;
6753 }
4018994f 6754
974802ea
PZ
6755out:
6756 return ret;
6757
6758err_size:
6759 put_user(sizeof(*attr), &uattr->size);
6760 ret = -E2BIG;
6761 goto out;
6762}
6763
ac9721f3
PZ
6764static int
6765perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6766{
76369139 6767 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6768 int ret = -EINVAL;
6769
ac9721f3 6770 if (!output_event)
a4be7c27
PZ
6771 goto set;
6772
ac9721f3
PZ
6773 /* don't allow circular references */
6774 if (event == output_event)
a4be7c27
PZ
6775 goto out;
6776
0f139300
PZ
6777 /*
6778 * Don't allow cross-cpu buffers
6779 */
6780 if (output_event->cpu != event->cpu)
6781 goto out;
6782
6783 /*
76369139 6784 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6785 */
6786 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6787 goto out;
6788
a4be7c27 6789set:
cdd6c482 6790 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6791 /* Can't redirect output if we've got an active mmap() */
6792 if (atomic_read(&event->mmap_count))
6793 goto unlock;
a4be7c27 6794
9bb5d40c
PZ
6795 old_rb = event->rb;
6796
ac9721f3 6797 if (output_event) {
76369139
FW
6798 /* get the rb we want to redirect to */
6799 rb = ring_buffer_get(output_event);
6800 if (!rb)
ac9721f3 6801 goto unlock;
a4be7c27
PZ
6802 }
6803
10c6db11
PZ
6804 if (old_rb)
6805 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6806
6807 if (rb)
6808 ring_buffer_attach(event, rb);
6809
6810 rcu_assign_pointer(event->rb, rb);
6811
6812 if (old_rb) {
6813 ring_buffer_put(old_rb);
6814 /*
6815 * Since we detached before setting the new rb, so that we
6816 * could attach the new rb, we could have missed a wakeup.
6817 * Provide it now.
6818 */
6819 wake_up_all(&event->waitq);
6820 }
6821
a4be7c27 6822 ret = 0;
ac9721f3
PZ
6823unlock:
6824 mutex_unlock(&event->mmap_mutex);
6825
a4be7c27 6826out:
a4be7c27
PZ
6827 return ret;
6828}
6829
0793a61d 6830/**
cdd6c482 6831 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6832 *
cdd6c482 6833 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6834 * @pid: target pid
9f66a381 6835 * @cpu: target cpu
cdd6c482 6836 * @group_fd: group leader event fd
0793a61d 6837 */
cdd6c482
IM
6838SYSCALL_DEFINE5(perf_event_open,
6839 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6840 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6841{
b04243ef
PZ
6842 struct perf_event *group_leader = NULL, *output_event = NULL;
6843 struct perf_event *event, *sibling;
cdd6c482
IM
6844 struct perf_event_attr attr;
6845 struct perf_event_context *ctx;
6846 struct file *event_file = NULL;
2903ff01 6847 struct fd group = {NULL, 0};
38a81da2 6848 struct task_struct *task = NULL;
89a1e187 6849 struct pmu *pmu;
ea635c64 6850 int event_fd;
b04243ef 6851 int move_group = 0;
dc86cabe 6852 int err;
0793a61d 6853
2743a5b0 6854 /* for future expandability... */
e5d1367f 6855 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6856 return -EINVAL;
6857
dc86cabe
IM
6858 err = perf_copy_attr(attr_uptr, &attr);
6859 if (err)
6860 return err;
eab656ae 6861
0764771d
PZ
6862 if (!attr.exclude_kernel) {
6863 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6864 return -EACCES;
6865 }
6866
df58ab24 6867 if (attr.freq) {
cdd6c482 6868 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6869 return -EINVAL;
6870 }
6871
e5d1367f
SE
6872 /*
6873 * In cgroup mode, the pid argument is used to pass the fd
6874 * opened to the cgroup directory in cgroupfs. The cpu argument
6875 * designates the cpu on which to monitor threads from that
6876 * cgroup.
6877 */
6878 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6879 return -EINVAL;
6880
ab72a702 6881 event_fd = get_unused_fd();
ea635c64
AV
6882 if (event_fd < 0)
6883 return event_fd;
6884
ac9721f3 6885 if (group_fd != -1) {
2903ff01
AV
6886 err = perf_fget_light(group_fd, &group);
6887 if (err)
d14b12d7 6888 goto err_fd;
2903ff01 6889 group_leader = group.file->private_data;
ac9721f3
PZ
6890 if (flags & PERF_FLAG_FD_OUTPUT)
6891 output_event = group_leader;
6892 if (flags & PERF_FLAG_FD_NO_GROUP)
6893 group_leader = NULL;
6894 }
6895
e5d1367f 6896 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6897 task = find_lively_task_by_vpid(pid);
6898 if (IS_ERR(task)) {
6899 err = PTR_ERR(task);
6900 goto err_group_fd;
6901 }
6902 }
6903
fbfc623f
YZ
6904 get_online_cpus();
6905
4dc0da86
AK
6906 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6907 NULL, NULL);
d14b12d7
SE
6908 if (IS_ERR(event)) {
6909 err = PTR_ERR(event);
c6be5a5c 6910 goto err_task;
d14b12d7
SE
6911 }
6912
e5d1367f
SE
6913 if (flags & PERF_FLAG_PID_CGROUP) {
6914 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6915 if (err) {
6916 __free_event(event);
6917 goto err_task;
6918 }
e5d1367f
SE
6919 }
6920
766d6c07
FW
6921 account_event(event);
6922
89a1e187
PZ
6923 /*
6924 * Special case software events and allow them to be part of
6925 * any hardware group.
6926 */
6927 pmu = event->pmu;
b04243ef
PZ
6928
6929 if (group_leader &&
6930 (is_software_event(event) != is_software_event(group_leader))) {
6931 if (is_software_event(event)) {
6932 /*
6933 * If event and group_leader are not both a software
6934 * event, and event is, then group leader is not.
6935 *
6936 * Allow the addition of software events to !software
6937 * groups, this is safe because software events never
6938 * fail to schedule.
6939 */
6940 pmu = group_leader->pmu;
6941 } else if (is_software_event(group_leader) &&
6942 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6943 /*
6944 * In case the group is a pure software group, and we
6945 * try to add a hardware event, move the whole group to
6946 * the hardware context.
6947 */
6948 move_group = 1;
6949 }
6950 }
89a1e187
PZ
6951
6952 /*
6953 * Get the target context (task or percpu):
6954 */
e2d37cd2 6955 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6956 if (IS_ERR(ctx)) {
6957 err = PTR_ERR(ctx);
c6be5a5c 6958 goto err_alloc;
89a1e187
PZ
6959 }
6960
fd1edb3a
PZ
6961 if (task) {
6962 put_task_struct(task);
6963 task = NULL;
6964 }
6965
ccff286d 6966 /*
cdd6c482 6967 * Look up the group leader (we will attach this event to it):
04289bb9 6968 */
ac9721f3 6969 if (group_leader) {
dc86cabe 6970 err = -EINVAL;
04289bb9 6971
04289bb9 6972 /*
ccff286d
IM
6973 * Do not allow a recursive hierarchy (this new sibling
6974 * becoming part of another group-sibling):
6975 */
6976 if (group_leader->group_leader != group_leader)
c3f00c70 6977 goto err_context;
ccff286d
IM
6978 /*
6979 * Do not allow to attach to a group in a different
6980 * task or CPU context:
04289bb9 6981 */
b04243ef
PZ
6982 if (move_group) {
6983 if (group_leader->ctx->type != ctx->type)
6984 goto err_context;
6985 } else {
6986 if (group_leader->ctx != ctx)
6987 goto err_context;
6988 }
6989
3b6f9e5c
PM
6990 /*
6991 * Only a group leader can be exclusive or pinned
6992 */
0d48696f 6993 if (attr.exclusive || attr.pinned)
c3f00c70 6994 goto err_context;
ac9721f3
PZ
6995 }
6996
6997 if (output_event) {
6998 err = perf_event_set_output(event, output_event);
6999 if (err)
c3f00c70 7000 goto err_context;
ac9721f3 7001 }
0793a61d 7002
ea635c64
AV
7003 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7004 if (IS_ERR(event_file)) {
7005 err = PTR_ERR(event_file);
c3f00c70 7006 goto err_context;
ea635c64 7007 }
9b51f66d 7008
b04243ef
PZ
7009 if (move_group) {
7010 struct perf_event_context *gctx = group_leader->ctx;
7011
7012 mutex_lock(&gctx->mutex);
fe4b04fa 7013 perf_remove_from_context(group_leader);
0231bb53
JO
7014
7015 /*
7016 * Removing from the context ends up with disabled
7017 * event. What we want here is event in the initial
7018 * startup state, ready to be add into new context.
7019 */
7020 perf_event__state_init(group_leader);
b04243ef
PZ
7021 list_for_each_entry(sibling, &group_leader->sibling_list,
7022 group_entry) {
fe4b04fa 7023 perf_remove_from_context(sibling);
0231bb53 7024 perf_event__state_init(sibling);
b04243ef
PZ
7025 put_ctx(gctx);
7026 }
7027 mutex_unlock(&gctx->mutex);
7028 put_ctx(gctx);
ea635c64 7029 }
9b51f66d 7030
ad3a37de 7031 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7032 mutex_lock(&ctx->mutex);
b04243ef
PZ
7033
7034 if (move_group) {
0cda4c02 7035 synchronize_rcu();
e2d37cd2 7036 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7037 get_ctx(ctx);
7038 list_for_each_entry(sibling, &group_leader->sibling_list,
7039 group_entry) {
e2d37cd2 7040 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7041 get_ctx(ctx);
7042 }
7043 }
7044
e2d37cd2 7045 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7046 ++ctx->generation;
fe4b04fa 7047 perf_unpin_context(ctx);
d859e29f 7048 mutex_unlock(&ctx->mutex);
9b51f66d 7049
fbfc623f
YZ
7050 put_online_cpus();
7051
cdd6c482 7052 event->owner = current;
8882135b 7053
cdd6c482
IM
7054 mutex_lock(&current->perf_event_mutex);
7055 list_add_tail(&event->owner_entry, &current->perf_event_list);
7056 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7057
c320c7b7
ACM
7058 /*
7059 * Precalculate sample_data sizes
7060 */
7061 perf_event__header_size(event);
6844c09d 7062 perf_event__id_header_size(event);
c320c7b7 7063
8a49542c
PZ
7064 /*
7065 * Drop the reference on the group_event after placing the
7066 * new event on the sibling_list. This ensures destruction
7067 * of the group leader will find the pointer to itself in
7068 * perf_group_detach().
7069 */
2903ff01 7070 fdput(group);
ea635c64
AV
7071 fd_install(event_fd, event_file);
7072 return event_fd;
0793a61d 7073
c3f00c70 7074err_context:
fe4b04fa 7075 perf_unpin_context(ctx);
ea635c64 7076 put_ctx(ctx);
c6be5a5c 7077err_alloc:
ea635c64 7078 free_event(event);
e7d0bc04 7079err_task:
fbfc623f 7080 put_online_cpus();
e7d0bc04
PZ
7081 if (task)
7082 put_task_struct(task);
89a1e187 7083err_group_fd:
2903ff01 7084 fdput(group);
ea635c64
AV
7085err_fd:
7086 put_unused_fd(event_fd);
dc86cabe 7087 return err;
0793a61d
TG
7088}
7089
fb0459d7
AV
7090/**
7091 * perf_event_create_kernel_counter
7092 *
7093 * @attr: attributes of the counter to create
7094 * @cpu: cpu in which the counter is bound
38a81da2 7095 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7096 */
7097struct perf_event *
7098perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7099 struct task_struct *task,
4dc0da86
AK
7100 perf_overflow_handler_t overflow_handler,
7101 void *context)
fb0459d7 7102{
fb0459d7 7103 struct perf_event_context *ctx;
c3f00c70 7104 struct perf_event *event;
fb0459d7 7105 int err;
d859e29f 7106
fb0459d7
AV
7107 /*
7108 * Get the target context (task or percpu):
7109 */
d859e29f 7110
4dc0da86
AK
7111 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7112 overflow_handler, context);
c3f00c70
PZ
7113 if (IS_ERR(event)) {
7114 err = PTR_ERR(event);
7115 goto err;
7116 }
d859e29f 7117
766d6c07
FW
7118 account_event(event);
7119
38a81da2 7120 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7121 if (IS_ERR(ctx)) {
7122 err = PTR_ERR(ctx);
c3f00c70 7123 goto err_free;
d859e29f 7124 }
fb0459d7 7125
fb0459d7
AV
7126 WARN_ON_ONCE(ctx->parent_ctx);
7127 mutex_lock(&ctx->mutex);
7128 perf_install_in_context(ctx, event, cpu);
7129 ++ctx->generation;
fe4b04fa 7130 perf_unpin_context(ctx);
fb0459d7
AV
7131 mutex_unlock(&ctx->mutex);
7132
fb0459d7
AV
7133 return event;
7134
c3f00c70
PZ
7135err_free:
7136 free_event(event);
7137err:
c6567f64 7138 return ERR_PTR(err);
9b51f66d 7139}
fb0459d7 7140EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7141
0cda4c02
YZ
7142void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7143{
7144 struct perf_event_context *src_ctx;
7145 struct perf_event_context *dst_ctx;
7146 struct perf_event *event, *tmp;
7147 LIST_HEAD(events);
7148
7149 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7150 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7151
7152 mutex_lock(&src_ctx->mutex);
7153 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7154 event_entry) {
7155 perf_remove_from_context(event);
9a545de0 7156 unaccount_event_cpu(event, src_cpu);
0cda4c02
YZ
7157 put_ctx(src_ctx);
7158 list_add(&event->event_entry, &events);
7159 }
7160 mutex_unlock(&src_ctx->mutex);
7161
7162 synchronize_rcu();
7163
7164 mutex_lock(&dst_ctx->mutex);
7165 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7166 list_del(&event->event_entry);
7167 if (event->state >= PERF_EVENT_STATE_OFF)
7168 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7169 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7170 perf_install_in_context(dst_ctx, event, dst_cpu);
7171 get_ctx(dst_ctx);
7172 }
7173 mutex_unlock(&dst_ctx->mutex);
7174}
7175EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7176
cdd6c482 7177static void sync_child_event(struct perf_event *child_event,
38b200d6 7178 struct task_struct *child)
d859e29f 7179{
cdd6c482 7180 struct perf_event *parent_event = child_event->parent;
8bc20959 7181 u64 child_val;
d859e29f 7182
cdd6c482
IM
7183 if (child_event->attr.inherit_stat)
7184 perf_event_read_event(child_event, child);
38b200d6 7185
b5e58793 7186 child_val = perf_event_count(child_event);
d859e29f
PM
7187
7188 /*
7189 * Add back the child's count to the parent's count:
7190 */
a6e6dea6 7191 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7192 atomic64_add(child_event->total_time_enabled,
7193 &parent_event->child_total_time_enabled);
7194 atomic64_add(child_event->total_time_running,
7195 &parent_event->child_total_time_running);
d859e29f
PM
7196
7197 /*
cdd6c482 7198 * Remove this event from the parent's list
d859e29f 7199 */
cdd6c482
IM
7200 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7201 mutex_lock(&parent_event->child_mutex);
7202 list_del_init(&child_event->child_list);
7203 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7204
7205 /*
cdd6c482 7206 * Release the parent event, if this was the last
d859e29f
PM
7207 * reference to it.
7208 */
a6fa941d 7209 put_event(parent_event);
d859e29f
PM
7210}
7211
9b51f66d 7212static void
cdd6c482
IM
7213__perf_event_exit_task(struct perf_event *child_event,
7214 struct perf_event_context *child_ctx,
38b200d6 7215 struct task_struct *child)
9b51f66d 7216{
38b435b1
PZ
7217 if (child_event->parent) {
7218 raw_spin_lock_irq(&child_ctx->lock);
7219 perf_group_detach(child_event);
7220 raw_spin_unlock_irq(&child_ctx->lock);
7221 }
9b51f66d 7222
fe4b04fa 7223 perf_remove_from_context(child_event);
0cc0c027 7224
9b51f66d 7225 /*
38b435b1 7226 * It can happen that the parent exits first, and has events
9b51f66d 7227 * that are still around due to the child reference. These
38b435b1 7228 * events need to be zapped.
9b51f66d 7229 */
38b435b1 7230 if (child_event->parent) {
cdd6c482
IM
7231 sync_child_event(child_event, child);
7232 free_event(child_event);
4bcf349a 7233 }
9b51f66d
IM
7234}
7235
8dc85d54 7236static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7237{
cdd6c482
IM
7238 struct perf_event *child_event, *tmp;
7239 struct perf_event_context *child_ctx;
a63eaf34 7240 unsigned long flags;
9b51f66d 7241
8dc85d54 7242 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7243 perf_event_task(child, NULL, 0);
9b51f66d 7244 return;
9f498cc5 7245 }
9b51f66d 7246
a63eaf34 7247 local_irq_save(flags);
ad3a37de
PM
7248 /*
7249 * We can't reschedule here because interrupts are disabled,
7250 * and either child is current or it is a task that can't be
7251 * scheduled, so we are now safe from rescheduling changing
7252 * our context.
7253 */
806839b2 7254 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7255
7256 /*
7257 * Take the context lock here so that if find_get_context is
cdd6c482 7258 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7259 * incremented the context's refcount before we do put_ctx below.
7260 */
e625cce1 7261 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7262 task_ctx_sched_out(child_ctx);
8dc85d54 7263 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7264 /*
7265 * If this context is a clone; unclone it so it can't get
7266 * swapped to another process while we're removing all
cdd6c482 7267 * the events from it.
71a851b4
PZ
7268 */
7269 unclone_ctx(child_ctx);
5e942bb3 7270 update_context_time(child_ctx);
e625cce1 7271 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7272
7273 /*
cdd6c482
IM
7274 * Report the task dead after unscheduling the events so that we
7275 * won't get any samples after PERF_RECORD_EXIT. We can however still
7276 * get a few PERF_RECORD_READ events.
9f498cc5 7277 */
cdd6c482 7278 perf_event_task(child, child_ctx, 0);
a63eaf34 7279
66fff224
PZ
7280 /*
7281 * We can recurse on the same lock type through:
7282 *
cdd6c482
IM
7283 * __perf_event_exit_task()
7284 * sync_child_event()
a6fa941d
AV
7285 * put_event()
7286 * mutex_lock(&ctx->mutex)
66fff224
PZ
7287 *
7288 * But since its the parent context it won't be the same instance.
7289 */
a0507c84 7290 mutex_lock(&child_ctx->mutex);
a63eaf34 7291
8bc20959 7292again:
889ff015
FW
7293 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7294 group_entry)
7295 __perf_event_exit_task(child_event, child_ctx, child);
7296
7297 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7298 group_entry)
cdd6c482 7299 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7300
7301 /*
cdd6c482 7302 * If the last event was a group event, it will have appended all
8bc20959
PZ
7303 * its siblings to the list, but we obtained 'tmp' before that which
7304 * will still point to the list head terminating the iteration.
7305 */
889ff015
FW
7306 if (!list_empty(&child_ctx->pinned_groups) ||
7307 !list_empty(&child_ctx->flexible_groups))
8bc20959 7308 goto again;
a63eaf34
PM
7309
7310 mutex_unlock(&child_ctx->mutex);
7311
7312 put_ctx(child_ctx);
9b51f66d
IM
7313}
7314
8dc85d54
PZ
7315/*
7316 * When a child task exits, feed back event values to parent events.
7317 */
7318void perf_event_exit_task(struct task_struct *child)
7319{
8882135b 7320 struct perf_event *event, *tmp;
8dc85d54
PZ
7321 int ctxn;
7322
8882135b
PZ
7323 mutex_lock(&child->perf_event_mutex);
7324 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7325 owner_entry) {
7326 list_del_init(&event->owner_entry);
7327
7328 /*
7329 * Ensure the list deletion is visible before we clear
7330 * the owner, closes a race against perf_release() where
7331 * we need to serialize on the owner->perf_event_mutex.
7332 */
7333 smp_wmb();
7334 event->owner = NULL;
7335 }
7336 mutex_unlock(&child->perf_event_mutex);
7337
8dc85d54
PZ
7338 for_each_task_context_nr(ctxn)
7339 perf_event_exit_task_context(child, ctxn);
7340}
7341
889ff015
FW
7342static void perf_free_event(struct perf_event *event,
7343 struct perf_event_context *ctx)
7344{
7345 struct perf_event *parent = event->parent;
7346
7347 if (WARN_ON_ONCE(!parent))
7348 return;
7349
7350 mutex_lock(&parent->child_mutex);
7351 list_del_init(&event->child_list);
7352 mutex_unlock(&parent->child_mutex);
7353
a6fa941d 7354 put_event(parent);
889ff015 7355
8a49542c 7356 perf_group_detach(event);
889ff015
FW
7357 list_del_event(event, ctx);
7358 free_event(event);
7359}
7360
bbbee908
PZ
7361/*
7362 * free an unexposed, unused context as created by inheritance by
8dc85d54 7363 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7364 */
cdd6c482 7365void perf_event_free_task(struct task_struct *task)
bbbee908 7366{
8dc85d54 7367 struct perf_event_context *ctx;
cdd6c482 7368 struct perf_event *event, *tmp;
8dc85d54 7369 int ctxn;
bbbee908 7370
8dc85d54
PZ
7371 for_each_task_context_nr(ctxn) {
7372 ctx = task->perf_event_ctxp[ctxn];
7373 if (!ctx)
7374 continue;
bbbee908 7375
8dc85d54 7376 mutex_lock(&ctx->mutex);
bbbee908 7377again:
8dc85d54
PZ
7378 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7379 group_entry)
7380 perf_free_event(event, ctx);
bbbee908 7381
8dc85d54
PZ
7382 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7383 group_entry)
7384 perf_free_event(event, ctx);
bbbee908 7385
8dc85d54
PZ
7386 if (!list_empty(&ctx->pinned_groups) ||
7387 !list_empty(&ctx->flexible_groups))
7388 goto again;
bbbee908 7389
8dc85d54 7390 mutex_unlock(&ctx->mutex);
bbbee908 7391
8dc85d54
PZ
7392 put_ctx(ctx);
7393 }
889ff015
FW
7394}
7395
4e231c79
PZ
7396void perf_event_delayed_put(struct task_struct *task)
7397{
7398 int ctxn;
7399
7400 for_each_task_context_nr(ctxn)
7401 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7402}
7403
97dee4f3
PZ
7404/*
7405 * inherit a event from parent task to child task:
7406 */
7407static struct perf_event *
7408inherit_event(struct perf_event *parent_event,
7409 struct task_struct *parent,
7410 struct perf_event_context *parent_ctx,
7411 struct task_struct *child,
7412 struct perf_event *group_leader,
7413 struct perf_event_context *child_ctx)
7414{
7415 struct perf_event *child_event;
cee010ec 7416 unsigned long flags;
97dee4f3
PZ
7417
7418 /*
7419 * Instead of creating recursive hierarchies of events,
7420 * we link inherited events back to the original parent,
7421 * which has a filp for sure, which we use as the reference
7422 * count:
7423 */
7424 if (parent_event->parent)
7425 parent_event = parent_event->parent;
7426
7427 child_event = perf_event_alloc(&parent_event->attr,
7428 parent_event->cpu,
d580ff86 7429 child,
97dee4f3 7430 group_leader, parent_event,
4dc0da86 7431 NULL, NULL);
97dee4f3
PZ
7432 if (IS_ERR(child_event))
7433 return child_event;
a6fa941d
AV
7434
7435 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7436 free_event(child_event);
7437 return NULL;
7438 }
7439
97dee4f3
PZ
7440 get_ctx(child_ctx);
7441
7442 /*
7443 * Make the child state follow the state of the parent event,
7444 * not its attr.disabled bit. We hold the parent's mutex,
7445 * so we won't race with perf_event_{en, dis}able_family.
7446 */
7447 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7448 child_event->state = PERF_EVENT_STATE_INACTIVE;
7449 else
7450 child_event->state = PERF_EVENT_STATE_OFF;
7451
7452 if (parent_event->attr.freq) {
7453 u64 sample_period = parent_event->hw.sample_period;
7454 struct hw_perf_event *hwc = &child_event->hw;
7455
7456 hwc->sample_period = sample_period;
7457 hwc->last_period = sample_period;
7458
7459 local64_set(&hwc->period_left, sample_period);
7460 }
7461
7462 child_event->ctx = child_ctx;
7463 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7464 child_event->overflow_handler_context
7465 = parent_event->overflow_handler_context;
97dee4f3 7466
614b6780
TG
7467 /*
7468 * Precalculate sample_data sizes
7469 */
7470 perf_event__header_size(child_event);
6844c09d 7471 perf_event__id_header_size(child_event);
614b6780 7472
97dee4f3
PZ
7473 /*
7474 * Link it up in the child's context:
7475 */
cee010ec 7476 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7477 add_event_to_ctx(child_event, child_ctx);
cee010ec 7478 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7479
97dee4f3
PZ
7480 /*
7481 * Link this into the parent event's child list
7482 */
7483 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7484 mutex_lock(&parent_event->child_mutex);
7485 list_add_tail(&child_event->child_list, &parent_event->child_list);
7486 mutex_unlock(&parent_event->child_mutex);
7487
7488 return child_event;
7489}
7490
7491static int inherit_group(struct perf_event *parent_event,
7492 struct task_struct *parent,
7493 struct perf_event_context *parent_ctx,
7494 struct task_struct *child,
7495 struct perf_event_context *child_ctx)
7496{
7497 struct perf_event *leader;
7498 struct perf_event *sub;
7499 struct perf_event *child_ctr;
7500
7501 leader = inherit_event(parent_event, parent, parent_ctx,
7502 child, NULL, child_ctx);
7503 if (IS_ERR(leader))
7504 return PTR_ERR(leader);
7505 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7506 child_ctr = inherit_event(sub, parent, parent_ctx,
7507 child, leader, child_ctx);
7508 if (IS_ERR(child_ctr))
7509 return PTR_ERR(child_ctr);
7510 }
7511 return 0;
889ff015
FW
7512}
7513
7514static int
7515inherit_task_group(struct perf_event *event, struct task_struct *parent,
7516 struct perf_event_context *parent_ctx,
8dc85d54 7517 struct task_struct *child, int ctxn,
889ff015
FW
7518 int *inherited_all)
7519{
7520 int ret;
8dc85d54 7521 struct perf_event_context *child_ctx;
889ff015
FW
7522
7523 if (!event->attr.inherit) {
7524 *inherited_all = 0;
7525 return 0;
bbbee908
PZ
7526 }
7527
fe4b04fa 7528 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7529 if (!child_ctx) {
7530 /*
7531 * This is executed from the parent task context, so
7532 * inherit events that have been marked for cloning.
7533 * First allocate and initialize a context for the
7534 * child.
7535 */
bbbee908 7536
734df5ab 7537 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7538 if (!child_ctx)
7539 return -ENOMEM;
bbbee908 7540
8dc85d54 7541 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7542 }
7543
7544 ret = inherit_group(event, parent, parent_ctx,
7545 child, child_ctx);
7546
7547 if (ret)
7548 *inherited_all = 0;
7549
7550 return ret;
bbbee908
PZ
7551}
7552
9b51f66d 7553/*
cdd6c482 7554 * Initialize the perf_event context in task_struct
9b51f66d 7555 */
8dc85d54 7556int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7557{
889ff015 7558 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7559 struct perf_event_context *cloned_ctx;
7560 struct perf_event *event;
9b51f66d 7561 struct task_struct *parent = current;
564c2b21 7562 int inherited_all = 1;
dddd3379 7563 unsigned long flags;
6ab423e0 7564 int ret = 0;
9b51f66d 7565
8dc85d54 7566 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7567 return 0;
7568
ad3a37de 7569 /*
25346b93
PM
7570 * If the parent's context is a clone, pin it so it won't get
7571 * swapped under us.
ad3a37de 7572 */
8dc85d54 7573 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7574
ad3a37de
PM
7575 /*
7576 * No need to check if parent_ctx != NULL here; since we saw
7577 * it non-NULL earlier, the only reason for it to become NULL
7578 * is if we exit, and since we're currently in the middle of
7579 * a fork we can't be exiting at the same time.
7580 */
ad3a37de 7581
9b51f66d
IM
7582 /*
7583 * Lock the parent list. No need to lock the child - not PID
7584 * hashed yet and not running, so nobody can access it.
7585 */
d859e29f 7586 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7587
7588 /*
7589 * We dont have to disable NMIs - we are only looking at
7590 * the list, not manipulating it:
7591 */
889ff015 7592 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7593 ret = inherit_task_group(event, parent, parent_ctx,
7594 child, ctxn, &inherited_all);
889ff015
FW
7595 if (ret)
7596 break;
7597 }
b93f7978 7598
dddd3379
TG
7599 /*
7600 * We can't hold ctx->lock when iterating the ->flexible_group list due
7601 * to allocations, but we need to prevent rotation because
7602 * rotate_ctx() will change the list from interrupt context.
7603 */
7604 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7605 parent_ctx->rotate_disable = 1;
7606 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7607
889ff015 7608 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7609 ret = inherit_task_group(event, parent, parent_ctx,
7610 child, ctxn, &inherited_all);
889ff015 7611 if (ret)
9b51f66d 7612 break;
564c2b21
PM
7613 }
7614
dddd3379
TG
7615 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7616 parent_ctx->rotate_disable = 0;
dddd3379 7617
8dc85d54 7618 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7619
05cbaa28 7620 if (child_ctx && inherited_all) {
564c2b21
PM
7621 /*
7622 * Mark the child context as a clone of the parent
7623 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7624 *
7625 * Note that if the parent is a clone, the holding of
7626 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7627 */
c5ed5145 7628 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7629 if (cloned_ctx) {
7630 child_ctx->parent_ctx = cloned_ctx;
25346b93 7631 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7632 } else {
7633 child_ctx->parent_ctx = parent_ctx;
7634 child_ctx->parent_gen = parent_ctx->generation;
7635 }
7636 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7637 }
7638
c5ed5145 7639 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7640 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7641
25346b93 7642 perf_unpin_context(parent_ctx);
fe4b04fa 7643 put_ctx(parent_ctx);
ad3a37de 7644
6ab423e0 7645 return ret;
9b51f66d
IM
7646}
7647
8dc85d54
PZ
7648/*
7649 * Initialize the perf_event context in task_struct
7650 */
7651int perf_event_init_task(struct task_struct *child)
7652{
7653 int ctxn, ret;
7654
8550d7cb
ON
7655 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7656 mutex_init(&child->perf_event_mutex);
7657 INIT_LIST_HEAD(&child->perf_event_list);
7658
8dc85d54
PZ
7659 for_each_task_context_nr(ctxn) {
7660 ret = perf_event_init_context(child, ctxn);
7661 if (ret)
7662 return ret;
7663 }
7664
7665 return 0;
7666}
7667
220b140b
PM
7668static void __init perf_event_init_all_cpus(void)
7669{
b28ab83c 7670 struct swevent_htable *swhash;
220b140b 7671 int cpu;
220b140b
PM
7672
7673 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7674 swhash = &per_cpu(swevent_htable, cpu);
7675 mutex_init(&swhash->hlist_mutex);
e9d2b064 7676 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7677 }
7678}
7679
0db0628d 7680static void perf_event_init_cpu(int cpu)
0793a61d 7681{
108b02cf 7682 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7683
b28ab83c 7684 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7685 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7686 struct swevent_hlist *hlist;
7687
b28ab83c
PZ
7688 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7689 WARN_ON(!hlist);
7690 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7691 }
b28ab83c 7692 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7693}
7694
c277443c 7695#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7696static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7697{
e9d2b064
PZ
7698 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7699
7700 WARN_ON(!irqs_disabled());
7701
7702 list_del_init(&cpuctx->rotation_list);
7703}
7704
108b02cf 7705static void __perf_event_exit_context(void *__info)
0793a61d 7706{
108b02cf 7707 struct perf_event_context *ctx = __info;
cdd6c482 7708 struct perf_event *event, *tmp;
0793a61d 7709
108b02cf 7710 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7711
889ff015 7712 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7713 __perf_remove_from_context(event);
889ff015 7714 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7715 __perf_remove_from_context(event);
0793a61d 7716}
108b02cf
PZ
7717
7718static void perf_event_exit_cpu_context(int cpu)
7719{
7720 struct perf_event_context *ctx;
7721 struct pmu *pmu;
7722 int idx;
7723
7724 idx = srcu_read_lock(&pmus_srcu);
7725 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7726 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7727
7728 mutex_lock(&ctx->mutex);
7729 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7730 mutex_unlock(&ctx->mutex);
7731 }
7732 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7733}
7734
cdd6c482 7735static void perf_event_exit_cpu(int cpu)
0793a61d 7736{
b28ab83c 7737 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7738
b28ab83c
PZ
7739 mutex_lock(&swhash->hlist_mutex);
7740 swevent_hlist_release(swhash);
7741 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7742
108b02cf 7743 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7744}
7745#else
cdd6c482 7746static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7747#endif
7748
c277443c
PZ
7749static int
7750perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7751{
7752 int cpu;
7753
7754 for_each_online_cpu(cpu)
7755 perf_event_exit_cpu(cpu);
7756
7757 return NOTIFY_OK;
7758}
7759
7760/*
7761 * Run the perf reboot notifier at the very last possible moment so that
7762 * the generic watchdog code runs as long as possible.
7763 */
7764static struct notifier_block perf_reboot_notifier = {
7765 .notifier_call = perf_reboot,
7766 .priority = INT_MIN,
7767};
7768
0db0628d 7769static int
0793a61d
TG
7770perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7771{
7772 unsigned int cpu = (long)hcpu;
7773
4536e4d1 7774 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7775
7776 case CPU_UP_PREPARE:
5e11637e 7777 case CPU_DOWN_FAILED:
cdd6c482 7778 perf_event_init_cpu(cpu);
0793a61d
TG
7779 break;
7780
5e11637e 7781 case CPU_UP_CANCELED:
0793a61d 7782 case CPU_DOWN_PREPARE:
cdd6c482 7783 perf_event_exit_cpu(cpu);
0793a61d 7784 break;
0793a61d
TG
7785 default:
7786 break;
7787 }
7788
7789 return NOTIFY_OK;
7790}
7791
cdd6c482 7792void __init perf_event_init(void)
0793a61d 7793{
3c502e7a
JW
7794 int ret;
7795
2e80a82a
PZ
7796 idr_init(&pmu_idr);
7797
220b140b 7798 perf_event_init_all_cpus();
b0a873eb 7799 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7800 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7801 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7802 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7803 perf_tp_register();
7804 perf_cpu_notifier(perf_cpu_notify);
c277443c 7805 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7806
7807 ret = init_hw_breakpoint();
7808 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7809
7810 /* do not patch jump label more than once per second */
7811 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7812
7813 /*
7814 * Build time assertion that we keep the data_head at the intended
7815 * location. IOW, validation we got the __reserved[] size right.
7816 */
7817 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7818 != 1024);
0793a61d 7819}
abe43400
PZ
7820
7821static int __init perf_event_sysfs_init(void)
7822{
7823 struct pmu *pmu;
7824 int ret;
7825
7826 mutex_lock(&pmus_lock);
7827
7828 ret = bus_register(&pmu_bus);
7829 if (ret)
7830 goto unlock;
7831
7832 list_for_each_entry(pmu, &pmus, entry) {
7833 if (!pmu->name || pmu->type < 0)
7834 continue;
7835
7836 ret = pmu_dev_alloc(pmu);
7837 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7838 }
7839 pmu_bus_running = 1;
7840 ret = 0;
7841
7842unlock:
7843 mutex_unlock(&pmus_lock);
7844
7845 return ret;
7846}
7847device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7848
7849#ifdef CONFIG_CGROUP_PERF
92fb9748 7850static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7851{
7852 struct perf_cgroup *jc;
e5d1367f 7853
1b15d055 7854 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7855 if (!jc)
7856 return ERR_PTR(-ENOMEM);
7857
e5d1367f
SE
7858 jc->info = alloc_percpu(struct perf_cgroup_info);
7859 if (!jc->info) {
7860 kfree(jc);
7861 return ERR_PTR(-ENOMEM);
7862 }
7863
e5d1367f
SE
7864 return &jc->css;
7865}
7866
92fb9748 7867static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7868{
7869 struct perf_cgroup *jc;
7870 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7871 struct perf_cgroup, css);
7872 free_percpu(jc->info);
7873 kfree(jc);
7874}
7875
7876static int __perf_cgroup_move(void *info)
7877{
7878 struct task_struct *task = info;
7879 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7880 return 0;
7881}
7882
761b3ef5 7883static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7884{
bb9d97b6
TH
7885 struct task_struct *task;
7886
7887 cgroup_taskset_for_each(task, cgrp, tset)
7888 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7889}
7890
761b3ef5
LZ
7891static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7892 struct task_struct *task)
e5d1367f
SE
7893{
7894 /*
7895 * cgroup_exit() is called in the copy_process() failure path.
7896 * Ignore this case since the task hasn't ran yet, this avoids
7897 * trying to poke a half freed task state from generic code.
7898 */
7899 if (!(task->flags & PF_EXITING))
7900 return;
7901
bb9d97b6 7902 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7903}
7904
7905struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7906 .name = "perf_event",
7907 .subsys_id = perf_subsys_id,
92fb9748
TH
7908 .css_alloc = perf_cgroup_css_alloc,
7909 .css_free = perf_cgroup_css_free,
e7e7ee2e 7910 .exit = perf_cgroup_exit,
bb9d97b6 7911 .attach = perf_cgroup_attach,
e5d1367f
SE
7912};
7913#endif /* CONFIG_CGROUP_PERF */