perf/x86: Remove redundant calls to perf_pmu_{dis|en}able()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 156static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
e5d1367f
SE
354static inline bool
355perf_cgroup_match(struct perf_event *event)
356{
357 struct perf_event_context *ctx = event->ctx;
358 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
359
ef824fa1
TH
360 /* @event doesn't care about cgroup */
361 if (!event->cgrp)
362 return true;
363
364 /* wants specific cgroup scope but @cpuctx isn't associated with any */
365 if (!cpuctx->cgrp)
366 return false;
367
368 /*
369 * Cgroup scoping is recursive. An event enabled for a cgroup is
370 * also enabled for all its descendant cgroups. If @cpuctx's
371 * cgroup is a descendant of @event's (the test covers identity
372 * case), it's a match.
373 */
374 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
375 event->cgrp->css.cgroup);
e5d1367f
SE
376}
377
e5d1367f
SE
378static inline void perf_detach_cgroup(struct perf_event *event)
379{
4e2ba650 380 css_put(&event->cgrp->css);
e5d1367f
SE
381 event->cgrp = NULL;
382}
383
384static inline int is_cgroup_event(struct perf_event *event)
385{
386 return event->cgrp != NULL;
387}
388
389static inline u64 perf_cgroup_event_time(struct perf_event *event)
390{
391 struct perf_cgroup_info *t;
392
393 t = per_cpu_ptr(event->cgrp->info, event->cpu);
394 return t->time;
395}
396
397static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
398{
399 struct perf_cgroup_info *info;
400 u64 now;
401
402 now = perf_clock();
403
404 info = this_cpu_ptr(cgrp->info);
405
406 info->time += now - info->timestamp;
407 info->timestamp = now;
408}
409
410static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
411{
412 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
413 if (cgrp_out)
414 __update_cgrp_time(cgrp_out);
415}
416
417static inline void update_cgrp_time_from_event(struct perf_event *event)
418{
3f7cce3c
SE
419 struct perf_cgroup *cgrp;
420
e5d1367f 421 /*
3f7cce3c
SE
422 * ensure we access cgroup data only when needed and
423 * when we know the cgroup is pinned (css_get)
e5d1367f 424 */
3f7cce3c 425 if (!is_cgroup_event(event))
e5d1367f
SE
426 return;
427
3f7cce3c
SE
428 cgrp = perf_cgroup_from_task(current);
429 /*
430 * Do not update time when cgroup is not active
431 */
432 if (cgrp == event->cgrp)
433 __update_cgrp_time(event->cgrp);
e5d1367f
SE
434}
435
436static inline void
3f7cce3c
SE
437perf_cgroup_set_timestamp(struct task_struct *task,
438 struct perf_event_context *ctx)
e5d1367f
SE
439{
440 struct perf_cgroup *cgrp;
441 struct perf_cgroup_info *info;
442
3f7cce3c
SE
443 /*
444 * ctx->lock held by caller
445 * ensure we do not access cgroup data
446 * unless we have the cgroup pinned (css_get)
447 */
448 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
449 return;
450
451 cgrp = perf_cgroup_from_task(task);
452 info = this_cpu_ptr(cgrp->info);
3f7cce3c 453 info->timestamp = ctx->timestamp;
e5d1367f
SE
454}
455
456#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
457#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
458
459/*
460 * reschedule events based on the cgroup constraint of task.
461 *
462 * mode SWOUT : schedule out everything
463 * mode SWIN : schedule in based on cgroup for next
464 */
465void perf_cgroup_switch(struct task_struct *task, int mode)
466{
467 struct perf_cpu_context *cpuctx;
468 struct pmu *pmu;
469 unsigned long flags;
470
471 /*
472 * disable interrupts to avoid geting nr_cgroup
473 * changes via __perf_event_disable(). Also
474 * avoids preemption.
475 */
476 local_irq_save(flags);
477
478 /*
479 * we reschedule only in the presence of cgroup
480 * constrained events.
481 */
482 rcu_read_lock();
483
484 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 485 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
486 if (cpuctx->unique_pmu != pmu)
487 continue; /* ensure we process each cpuctx once */
e5d1367f 488
e5d1367f
SE
489 /*
490 * perf_cgroup_events says at least one
491 * context on this CPU has cgroup events.
492 *
493 * ctx->nr_cgroups reports the number of cgroup
494 * events for a context.
495 */
496 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
497 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
498 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
499
500 if (mode & PERF_CGROUP_SWOUT) {
501 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
502 /*
503 * must not be done before ctxswout due
504 * to event_filter_match() in event_sched_out()
505 */
506 cpuctx->cgrp = NULL;
507 }
508
509 if (mode & PERF_CGROUP_SWIN) {
e566b76e 510 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
511 /*
512 * set cgrp before ctxsw in to allow
513 * event_filter_match() to not have to pass
514 * task around
e5d1367f
SE
515 */
516 cpuctx->cgrp = perf_cgroup_from_task(task);
517 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
518 }
facc4307
PZ
519 perf_pmu_enable(cpuctx->ctx.pmu);
520 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 521 }
e5d1367f
SE
522 }
523
524 rcu_read_unlock();
525
526 local_irq_restore(flags);
527}
528
a8d757ef
SE
529static inline void perf_cgroup_sched_out(struct task_struct *task,
530 struct task_struct *next)
e5d1367f 531{
a8d757ef
SE
532 struct perf_cgroup *cgrp1;
533 struct perf_cgroup *cgrp2 = NULL;
534
535 /*
536 * we come here when we know perf_cgroup_events > 0
537 */
538 cgrp1 = perf_cgroup_from_task(task);
539
540 /*
541 * next is NULL when called from perf_event_enable_on_exec()
542 * that will systematically cause a cgroup_switch()
543 */
544 if (next)
545 cgrp2 = perf_cgroup_from_task(next);
546
547 /*
548 * only schedule out current cgroup events if we know
549 * that we are switching to a different cgroup. Otherwise,
550 * do no touch the cgroup events.
551 */
552 if (cgrp1 != cgrp2)
553 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
554}
555
a8d757ef
SE
556static inline void perf_cgroup_sched_in(struct task_struct *prev,
557 struct task_struct *task)
e5d1367f 558{
a8d757ef
SE
559 struct perf_cgroup *cgrp1;
560 struct perf_cgroup *cgrp2 = NULL;
561
562 /*
563 * we come here when we know perf_cgroup_events > 0
564 */
565 cgrp1 = perf_cgroup_from_task(task);
566
567 /* prev can never be NULL */
568 cgrp2 = perf_cgroup_from_task(prev);
569
570 /*
571 * only need to schedule in cgroup events if we are changing
572 * cgroup during ctxsw. Cgroup events were not scheduled
573 * out of ctxsw out if that was not the case.
574 */
575 if (cgrp1 != cgrp2)
576 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
577}
578
579static inline int perf_cgroup_connect(int fd, struct perf_event *event,
580 struct perf_event_attr *attr,
581 struct perf_event *group_leader)
582{
583 struct perf_cgroup *cgrp;
584 struct cgroup_subsys_state *css;
2903ff01
AV
585 struct fd f = fdget(fd);
586 int ret = 0;
e5d1367f 587
2903ff01 588 if (!f.file)
e5d1367f
SE
589 return -EBADF;
590
b583043e 591 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 592 &perf_event_cgrp_subsys);
3db272c0
LZ
593 if (IS_ERR(css)) {
594 ret = PTR_ERR(css);
595 goto out;
596 }
e5d1367f
SE
597
598 cgrp = container_of(css, struct perf_cgroup, css);
599 event->cgrp = cgrp;
600
601 /*
602 * all events in a group must monitor
603 * the same cgroup because a task belongs
604 * to only one perf cgroup at a time
605 */
606 if (group_leader && group_leader->cgrp != cgrp) {
607 perf_detach_cgroup(event);
608 ret = -EINVAL;
e5d1367f 609 }
3db272c0 610out:
2903ff01 611 fdput(f);
e5d1367f
SE
612 return ret;
613}
614
615static inline void
616perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
617{
618 struct perf_cgroup_info *t;
619 t = per_cpu_ptr(event->cgrp->info, event->cpu);
620 event->shadow_ctx_time = now - t->timestamp;
621}
622
623static inline void
624perf_cgroup_defer_enabled(struct perf_event *event)
625{
626 /*
627 * when the current task's perf cgroup does not match
628 * the event's, we need to remember to call the
629 * perf_mark_enable() function the first time a task with
630 * a matching perf cgroup is scheduled in.
631 */
632 if (is_cgroup_event(event) && !perf_cgroup_match(event))
633 event->cgrp_defer_enabled = 1;
634}
635
636static inline void
637perf_cgroup_mark_enabled(struct perf_event *event,
638 struct perf_event_context *ctx)
639{
640 struct perf_event *sub;
641 u64 tstamp = perf_event_time(event);
642
643 if (!event->cgrp_defer_enabled)
644 return;
645
646 event->cgrp_defer_enabled = 0;
647
648 event->tstamp_enabled = tstamp - event->total_time_enabled;
649 list_for_each_entry(sub, &event->sibling_list, group_entry) {
650 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
651 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
652 sub->cgrp_defer_enabled = 0;
653 }
654 }
655}
656#else /* !CONFIG_CGROUP_PERF */
657
658static inline bool
659perf_cgroup_match(struct perf_event *event)
660{
661 return true;
662}
663
664static inline void perf_detach_cgroup(struct perf_event *event)
665{}
666
667static inline int is_cgroup_event(struct perf_event *event)
668{
669 return 0;
670}
671
672static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
673{
674 return 0;
675}
676
677static inline void update_cgrp_time_from_event(struct perf_event *event)
678{
679}
680
681static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
682{
683}
684
a8d757ef
SE
685static inline void perf_cgroup_sched_out(struct task_struct *task,
686 struct task_struct *next)
e5d1367f
SE
687{
688}
689
a8d757ef
SE
690static inline void perf_cgroup_sched_in(struct task_struct *prev,
691 struct task_struct *task)
e5d1367f
SE
692{
693}
694
695static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
696 struct perf_event_attr *attr,
697 struct perf_event *group_leader)
698{
699 return -EINVAL;
700}
701
702static inline void
3f7cce3c
SE
703perf_cgroup_set_timestamp(struct task_struct *task,
704 struct perf_event_context *ctx)
e5d1367f
SE
705{
706}
707
708void
709perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
710{
711}
712
713static inline void
714perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
715{
716}
717
718static inline u64 perf_cgroup_event_time(struct perf_event *event)
719{
720 return 0;
721}
722
723static inline void
724perf_cgroup_defer_enabled(struct perf_event *event)
725{
726}
727
728static inline void
729perf_cgroup_mark_enabled(struct perf_event *event,
730 struct perf_event_context *ctx)
731{
732}
733#endif
734
9e630205
SE
735/*
736 * set default to be dependent on timer tick just
737 * like original code
738 */
739#define PERF_CPU_HRTIMER (1000 / HZ)
740/*
741 * function must be called with interrupts disbled
742 */
743static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
744{
745 struct perf_cpu_context *cpuctx;
746 enum hrtimer_restart ret = HRTIMER_NORESTART;
747 int rotations = 0;
748
749 WARN_ON(!irqs_disabled());
750
751 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
752
753 rotations = perf_rotate_context(cpuctx);
754
755 /*
756 * arm timer if needed
757 */
758 if (rotations) {
759 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
760 ret = HRTIMER_RESTART;
761 }
762
763 return ret;
764}
765
766/* CPU is going down */
767void perf_cpu_hrtimer_cancel(int cpu)
768{
769 struct perf_cpu_context *cpuctx;
770 struct pmu *pmu;
771 unsigned long flags;
772
773 if (WARN_ON(cpu != smp_processor_id()))
774 return;
775
776 local_irq_save(flags);
777
778 rcu_read_lock();
779
780 list_for_each_entry_rcu(pmu, &pmus, entry) {
781 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
782
783 if (pmu->task_ctx_nr == perf_sw_context)
784 continue;
785
786 hrtimer_cancel(&cpuctx->hrtimer);
787 }
788
789 rcu_read_unlock();
790
791 local_irq_restore(flags);
792}
793
794static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
795{
796 struct hrtimer *hr = &cpuctx->hrtimer;
797 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 798 int timer;
9e630205
SE
799
800 /* no multiplexing needed for SW PMU */
801 if (pmu->task_ctx_nr == perf_sw_context)
802 return;
803
62b85639
SE
804 /*
805 * check default is sane, if not set then force to
806 * default interval (1/tick)
807 */
808 timer = pmu->hrtimer_interval_ms;
809 if (timer < 1)
810 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
811
812 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
813
814 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
815 hr->function = perf_cpu_hrtimer_handler;
816}
817
818static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
819{
820 struct hrtimer *hr = &cpuctx->hrtimer;
821 struct pmu *pmu = cpuctx->ctx.pmu;
822
823 /* not for SW PMU */
824 if (pmu->task_ctx_nr == perf_sw_context)
825 return;
826
827 if (hrtimer_active(hr))
828 return;
829
830 if (!hrtimer_callback_running(hr))
831 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
832 0, HRTIMER_MODE_REL_PINNED, 0);
833}
834
33696fc0 835void perf_pmu_disable(struct pmu *pmu)
9e35ad38 836{
33696fc0
PZ
837 int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 if (!(*count)++)
839 pmu->pmu_disable(pmu);
9e35ad38 840}
9e35ad38 841
33696fc0 842void perf_pmu_enable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!--(*count))
846 pmu->pmu_enable(pmu);
9e35ad38 847}
9e35ad38 848
2fde4f94 849static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
850
851/*
2fde4f94
MR
852 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
853 * perf_event_task_tick() are fully serialized because they're strictly cpu
854 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
855 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 856 */
2fde4f94 857static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 858{
2fde4f94 859 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 860
e9d2b064 861 WARN_ON(!irqs_disabled());
b5ab4cd5 862
2fde4f94
MR
863 WARN_ON(!list_empty(&ctx->active_ctx_list));
864
865 list_add(&ctx->active_ctx_list, head);
866}
867
868static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
869{
870 WARN_ON(!irqs_disabled());
871
872 WARN_ON(list_empty(&ctx->active_ctx_list));
873
874 list_del_init(&ctx->active_ctx_list);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
4af57ef2
YZ
882static void free_ctx(struct rcu_head *head)
883{
884 struct perf_event_context *ctx;
885
886 ctx = container_of(head, struct perf_event_context, rcu_head);
887 kfree(ctx->task_ctx_data);
888 kfree(ctx);
889}
890
cdd6c482 891static void put_ctx(struct perf_event_context *ctx)
a63eaf34 892{
564c2b21
PM
893 if (atomic_dec_and_test(&ctx->refcount)) {
894 if (ctx->parent_ctx)
895 put_ctx(ctx->parent_ctx);
c93f7669
PM
896 if (ctx->task)
897 put_task_struct(ctx->task);
4af57ef2 898 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 899 }
a63eaf34
PM
900}
901
f63a8daa
PZ
902/*
903 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
904 * perf_pmu_migrate_context() we need some magic.
905 *
906 * Those places that change perf_event::ctx will hold both
907 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
908 *
909 * Lock ordering is by mutex address. There is one other site where
910 * perf_event_context::mutex nests and that is put_event(). But remember that
911 * that is a parent<->child context relation, and migration does not affect
912 * children, therefore these two orderings should not interact.
913 *
914 * The change in perf_event::ctx does not affect children (as claimed above)
915 * because the sys_perf_event_open() case will install a new event and break
916 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
917 * concerned with cpuctx and that doesn't have children.
918 *
919 * The places that change perf_event::ctx will issue:
920 *
921 * perf_remove_from_context();
922 * synchronize_rcu();
923 * perf_install_in_context();
924 *
925 * to affect the change. The remove_from_context() + synchronize_rcu() should
926 * quiesce the event, after which we can install it in the new location. This
927 * means that only external vectors (perf_fops, prctl) can perturb the event
928 * while in transit. Therefore all such accessors should also acquire
929 * perf_event_context::mutex to serialize against this.
930 *
931 * However; because event->ctx can change while we're waiting to acquire
932 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
933 * function.
934 *
935 * Lock order:
936 * task_struct::perf_event_mutex
937 * perf_event_context::mutex
938 * perf_event_context::lock
939 * perf_event::child_mutex;
940 * perf_event::mmap_mutex
941 * mmap_sem
942 */
a83fe28e
PZ
943static struct perf_event_context *
944perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
945{
946 struct perf_event_context *ctx;
947
948again:
949 rcu_read_lock();
950 ctx = ACCESS_ONCE(event->ctx);
951 if (!atomic_inc_not_zero(&ctx->refcount)) {
952 rcu_read_unlock();
953 goto again;
954 }
955 rcu_read_unlock();
956
a83fe28e 957 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
958 if (event->ctx != ctx) {
959 mutex_unlock(&ctx->mutex);
960 put_ctx(ctx);
961 goto again;
962 }
963
964 return ctx;
965}
966
a83fe28e
PZ
967static inline struct perf_event_context *
968perf_event_ctx_lock(struct perf_event *event)
969{
970 return perf_event_ctx_lock_nested(event, 0);
971}
972
f63a8daa
PZ
973static void perf_event_ctx_unlock(struct perf_event *event,
974 struct perf_event_context *ctx)
975{
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978}
979
211de6eb
PZ
980/*
981 * This must be done under the ctx->lock, such as to serialize against
982 * context_equiv(), therefore we cannot call put_ctx() since that might end up
983 * calling scheduler related locks and ctx->lock nests inside those.
984 */
985static __must_check struct perf_event_context *
986unclone_ctx(struct perf_event_context *ctx)
71a851b4 987{
211de6eb
PZ
988 struct perf_event_context *parent_ctx = ctx->parent_ctx;
989
990 lockdep_assert_held(&ctx->lock);
991
992 if (parent_ctx)
71a851b4 993 ctx->parent_ctx = NULL;
5a3126d4 994 ctx->generation++;
211de6eb
PZ
995
996 return parent_ctx;
71a851b4
PZ
997}
998
6844c09d
ACM
999static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1000{
1001 /*
1002 * only top level events have the pid namespace they were created in
1003 */
1004 if (event->parent)
1005 event = event->parent;
1006
1007 return task_tgid_nr_ns(p, event->ns);
1008}
1009
1010static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1011{
1012 /*
1013 * only top level events have the pid namespace they were created in
1014 */
1015 if (event->parent)
1016 event = event->parent;
1017
1018 return task_pid_nr_ns(p, event->ns);
1019}
1020
7f453c24 1021/*
cdd6c482 1022 * If we inherit events we want to return the parent event id
7f453c24
PZ
1023 * to userspace.
1024 */
cdd6c482 1025static u64 primary_event_id(struct perf_event *event)
7f453c24 1026{
cdd6c482 1027 u64 id = event->id;
7f453c24 1028
cdd6c482
IM
1029 if (event->parent)
1030 id = event->parent->id;
7f453c24
PZ
1031
1032 return id;
1033}
1034
25346b93 1035/*
cdd6c482 1036 * Get the perf_event_context for a task and lock it.
25346b93
PM
1037 * This has to cope with with the fact that until it is locked,
1038 * the context could get moved to another task.
1039 */
cdd6c482 1040static struct perf_event_context *
8dc85d54 1041perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1042{
cdd6c482 1043 struct perf_event_context *ctx;
25346b93 1044
9ed6060d 1045retry:
058ebd0e
PZ
1046 /*
1047 * One of the few rules of preemptible RCU is that one cannot do
1048 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1049 * part of the read side critical section was preemptible -- see
1050 * rcu_read_unlock_special().
1051 *
1052 * Since ctx->lock nests under rq->lock we must ensure the entire read
1053 * side critical section is non-preemptible.
1054 */
1055 preempt_disable();
1056 rcu_read_lock();
8dc85d54 1057 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1058 if (ctx) {
1059 /*
1060 * If this context is a clone of another, it might
1061 * get swapped for another underneath us by
cdd6c482 1062 * perf_event_task_sched_out, though the
25346b93
PM
1063 * rcu_read_lock() protects us from any context
1064 * getting freed. Lock the context and check if it
1065 * got swapped before we could get the lock, and retry
1066 * if so. If we locked the right context, then it
1067 * can't get swapped on us any more.
1068 */
e625cce1 1069 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1070 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1071 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1072 rcu_read_unlock();
1073 preempt_enable();
25346b93
PM
1074 goto retry;
1075 }
b49a9e7e
PZ
1076
1077 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1079 ctx = NULL;
1080 }
25346b93
PM
1081 }
1082 rcu_read_unlock();
058ebd0e 1083 preempt_enable();
25346b93
PM
1084 return ctx;
1085}
1086
1087/*
1088 * Get the context for a task and increment its pin_count so it
1089 * can't get swapped to another task. This also increments its
1090 * reference count so that the context can't get freed.
1091 */
8dc85d54
PZ
1092static struct perf_event_context *
1093perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1094{
cdd6c482 1095 struct perf_event_context *ctx;
25346b93
PM
1096 unsigned long flags;
1097
8dc85d54 1098 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1099 if (ctx) {
1100 ++ctx->pin_count;
e625cce1 1101 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1102 }
1103 return ctx;
1104}
1105
cdd6c482 1106static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1107{
1108 unsigned long flags;
1109
e625cce1 1110 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1111 --ctx->pin_count;
e625cce1 1112 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1113}
1114
f67218c3
PZ
1115/*
1116 * Update the record of the current time in a context.
1117 */
1118static void update_context_time(struct perf_event_context *ctx)
1119{
1120 u64 now = perf_clock();
1121
1122 ctx->time += now - ctx->timestamp;
1123 ctx->timestamp = now;
1124}
1125
4158755d
SE
1126static u64 perf_event_time(struct perf_event *event)
1127{
1128 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1129
1130 if (is_cgroup_event(event))
1131 return perf_cgroup_event_time(event);
1132
4158755d
SE
1133 return ctx ? ctx->time : 0;
1134}
1135
f67218c3
PZ
1136/*
1137 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1138 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1139 */
1140static void update_event_times(struct perf_event *event)
1141{
1142 struct perf_event_context *ctx = event->ctx;
1143 u64 run_end;
1144
1145 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1146 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1147 return;
e5d1367f
SE
1148 /*
1149 * in cgroup mode, time_enabled represents
1150 * the time the event was enabled AND active
1151 * tasks were in the monitored cgroup. This is
1152 * independent of the activity of the context as
1153 * there may be a mix of cgroup and non-cgroup events.
1154 *
1155 * That is why we treat cgroup events differently
1156 * here.
1157 */
1158 if (is_cgroup_event(event))
46cd6a7f 1159 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1160 else if (ctx->is_active)
1161 run_end = ctx->time;
acd1d7c1
PZ
1162 else
1163 run_end = event->tstamp_stopped;
1164
1165 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1166
1167 if (event->state == PERF_EVENT_STATE_INACTIVE)
1168 run_end = event->tstamp_stopped;
1169 else
4158755d 1170 run_end = perf_event_time(event);
f67218c3
PZ
1171
1172 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1173
f67218c3
PZ
1174}
1175
96c21a46
PZ
1176/*
1177 * Update total_time_enabled and total_time_running for all events in a group.
1178 */
1179static void update_group_times(struct perf_event *leader)
1180{
1181 struct perf_event *event;
1182
1183 update_event_times(leader);
1184 list_for_each_entry(event, &leader->sibling_list, group_entry)
1185 update_event_times(event);
1186}
1187
889ff015
FW
1188static struct list_head *
1189ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1190{
1191 if (event->attr.pinned)
1192 return &ctx->pinned_groups;
1193 else
1194 return &ctx->flexible_groups;
1195}
1196
fccc714b 1197/*
cdd6c482 1198 * Add a event from the lists for its context.
fccc714b
PZ
1199 * Must be called with ctx->mutex and ctx->lock held.
1200 */
04289bb9 1201static void
cdd6c482 1202list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1203{
8a49542c
PZ
1204 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1205 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1206
1207 /*
8a49542c
PZ
1208 * If we're a stand alone event or group leader, we go to the context
1209 * list, group events are kept attached to the group so that
1210 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1211 */
8a49542c 1212 if (event->group_leader == event) {
889ff015
FW
1213 struct list_head *list;
1214
d6f962b5
FW
1215 if (is_software_event(event))
1216 event->group_flags |= PERF_GROUP_SOFTWARE;
1217
889ff015
FW
1218 list = ctx_group_list(event, ctx);
1219 list_add_tail(&event->group_entry, list);
5c148194 1220 }
592903cd 1221
08309379 1222 if (is_cgroup_event(event))
e5d1367f 1223 ctx->nr_cgroups++;
e5d1367f 1224
cdd6c482
IM
1225 list_add_rcu(&event->event_entry, &ctx->event_list);
1226 ctx->nr_events++;
1227 if (event->attr.inherit_stat)
bfbd3381 1228 ctx->nr_stat++;
5a3126d4
PZ
1229
1230 ctx->generation++;
04289bb9
IM
1231}
1232
0231bb53
JO
1233/*
1234 * Initialize event state based on the perf_event_attr::disabled.
1235 */
1236static inline void perf_event__state_init(struct perf_event *event)
1237{
1238 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1239 PERF_EVENT_STATE_INACTIVE;
1240}
1241
c320c7b7
ACM
1242/*
1243 * Called at perf_event creation and when events are attached/detached from a
1244 * group.
1245 */
1246static void perf_event__read_size(struct perf_event *event)
1247{
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 nr += event->group_leader->nr_siblings;
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268}
1269
1270static void perf_event__header_size(struct perf_event *event)
1271{
1272 struct perf_sample_data *data;
1273 u64 sample_type = event->attr.sample_type;
1274 u16 size = 0;
1275
1276 perf_event__read_size(event);
1277
1278 if (sample_type & PERF_SAMPLE_IP)
1279 size += sizeof(data->ip);
1280
6844c09d
ACM
1281 if (sample_type & PERF_SAMPLE_ADDR)
1282 size += sizeof(data->addr);
1283
1284 if (sample_type & PERF_SAMPLE_PERIOD)
1285 size += sizeof(data->period);
1286
c3feedf2
AK
1287 if (sample_type & PERF_SAMPLE_WEIGHT)
1288 size += sizeof(data->weight);
1289
6844c09d
ACM
1290 if (sample_type & PERF_SAMPLE_READ)
1291 size += event->read_size;
1292
d6be9ad6
SE
1293 if (sample_type & PERF_SAMPLE_DATA_SRC)
1294 size += sizeof(data->data_src.val);
1295
fdfbbd07
AK
1296 if (sample_type & PERF_SAMPLE_TRANSACTION)
1297 size += sizeof(data->txn);
1298
6844c09d
ACM
1299 event->header_size = size;
1300}
1301
1302static void perf_event__id_header_size(struct perf_event *event)
1303{
1304 struct perf_sample_data *data;
1305 u64 sample_type = event->attr.sample_type;
1306 u16 size = 0;
1307
c320c7b7
ACM
1308 if (sample_type & PERF_SAMPLE_TID)
1309 size += sizeof(data->tid_entry);
1310
1311 if (sample_type & PERF_SAMPLE_TIME)
1312 size += sizeof(data->time);
1313
ff3d527c
AH
1314 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1315 size += sizeof(data->id);
1316
c320c7b7
ACM
1317 if (sample_type & PERF_SAMPLE_ID)
1318 size += sizeof(data->id);
1319
1320 if (sample_type & PERF_SAMPLE_STREAM_ID)
1321 size += sizeof(data->stream_id);
1322
1323 if (sample_type & PERF_SAMPLE_CPU)
1324 size += sizeof(data->cpu_entry);
1325
6844c09d 1326 event->id_header_size = size;
c320c7b7
ACM
1327}
1328
8a49542c
PZ
1329static void perf_group_attach(struct perf_event *event)
1330{
c320c7b7 1331 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1332
74c3337c
PZ
1333 /*
1334 * We can have double attach due to group movement in perf_event_open.
1335 */
1336 if (event->attach_state & PERF_ATTACH_GROUP)
1337 return;
1338
8a49542c
PZ
1339 event->attach_state |= PERF_ATTACH_GROUP;
1340
1341 if (group_leader == event)
1342 return;
1343
652884fe
PZ
1344 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1345
8a49542c
PZ
1346 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1347 !is_software_event(event))
1348 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1349
1350 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1351 group_leader->nr_siblings++;
c320c7b7
ACM
1352
1353 perf_event__header_size(group_leader);
1354
1355 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1356 perf_event__header_size(pos);
8a49542c
PZ
1357}
1358
a63eaf34 1359/*
cdd6c482 1360 * Remove a event from the lists for its context.
fccc714b 1361 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1362 */
04289bb9 1363static void
cdd6c482 1364list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1365{
68cacd29 1366 struct perf_cpu_context *cpuctx;
652884fe
PZ
1367
1368 WARN_ON_ONCE(event->ctx != ctx);
1369 lockdep_assert_held(&ctx->lock);
1370
8a49542c
PZ
1371 /*
1372 * We can have double detach due to exit/hot-unplug + close.
1373 */
1374 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1375 return;
8a49542c
PZ
1376
1377 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1378
68cacd29 1379 if (is_cgroup_event(event)) {
e5d1367f 1380 ctx->nr_cgroups--;
68cacd29
SE
1381 cpuctx = __get_cpu_context(ctx);
1382 /*
1383 * if there are no more cgroup events
1384 * then cler cgrp to avoid stale pointer
1385 * in update_cgrp_time_from_cpuctx()
1386 */
1387 if (!ctx->nr_cgroups)
1388 cpuctx->cgrp = NULL;
1389 }
e5d1367f 1390
cdd6c482
IM
1391 ctx->nr_events--;
1392 if (event->attr.inherit_stat)
bfbd3381 1393 ctx->nr_stat--;
8bc20959 1394
cdd6c482 1395 list_del_rcu(&event->event_entry);
04289bb9 1396
8a49542c
PZ
1397 if (event->group_leader == event)
1398 list_del_init(&event->group_entry);
5c148194 1399
96c21a46 1400 update_group_times(event);
b2e74a26
SE
1401
1402 /*
1403 * If event was in error state, then keep it
1404 * that way, otherwise bogus counts will be
1405 * returned on read(). The only way to get out
1406 * of error state is by explicit re-enabling
1407 * of the event
1408 */
1409 if (event->state > PERF_EVENT_STATE_OFF)
1410 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1411
1412 ctx->generation++;
050735b0
PZ
1413}
1414
8a49542c 1415static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1416{
1417 struct perf_event *sibling, *tmp;
8a49542c
PZ
1418 struct list_head *list = NULL;
1419
1420 /*
1421 * We can have double detach due to exit/hot-unplug + close.
1422 */
1423 if (!(event->attach_state & PERF_ATTACH_GROUP))
1424 return;
1425
1426 event->attach_state &= ~PERF_ATTACH_GROUP;
1427
1428 /*
1429 * If this is a sibling, remove it from its group.
1430 */
1431 if (event->group_leader != event) {
1432 list_del_init(&event->group_entry);
1433 event->group_leader->nr_siblings--;
c320c7b7 1434 goto out;
8a49542c
PZ
1435 }
1436
1437 if (!list_empty(&event->group_entry))
1438 list = &event->group_entry;
2e2af50b 1439
04289bb9 1440 /*
cdd6c482
IM
1441 * If this was a group event with sibling events then
1442 * upgrade the siblings to singleton events by adding them
8a49542c 1443 * to whatever list we are on.
04289bb9 1444 */
cdd6c482 1445 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1446 if (list)
1447 list_move_tail(&sibling->group_entry, list);
04289bb9 1448 sibling->group_leader = sibling;
d6f962b5
FW
1449
1450 /* Inherit group flags from the previous leader */
1451 sibling->group_flags = event->group_flags;
652884fe
PZ
1452
1453 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1454 }
c320c7b7
ACM
1455
1456out:
1457 perf_event__header_size(event->group_leader);
1458
1459 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1460 perf_event__header_size(tmp);
04289bb9
IM
1461}
1462
fadfe7be
JO
1463/*
1464 * User event without the task.
1465 */
1466static bool is_orphaned_event(struct perf_event *event)
1467{
1468 return event && !is_kernel_event(event) && !event->owner;
1469}
1470
1471/*
1472 * Event has a parent but parent's task finished and it's
1473 * alive only because of children holding refference.
1474 */
1475static bool is_orphaned_child(struct perf_event *event)
1476{
1477 return is_orphaned_event(event->parent);
1478}
1479
1480static void orphans_remove_work(struct work_struct *work);
1481
1482static void schedule_orphans_remove(struct perf_event_context *ctx)
1483{
1484 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1485 return;
1486
1487 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1488 get_ctx(ctx);
1489 ctx->orphans_remove_sched = true;
1490 }
1491}
1492
1493static int __init perf_workqueue_init(void)
1494{
1495 perf_wq = create_singlethread_workqueue("perf");
1496 WARN(!perf_wq, "failed to create perf workqueue\n");
1497 return perf_wq ? 0 : -1;
1498}
1499
1500core_initcall(perf_workqueue_init);
1501
fa66f07a
SE
1502static inline int
1503event_filter_match(struct perf_event *event)
1504{
e5d1367f
SE
1505 return (event->cpu == -1 || event->cpu == smp_processor_id())
1506 && perf_cgroup_match(event);
fa66f07a
SE
1507}
1508
9ffcfa6f
SE
1509static void
1510event_sched_out(struct perf_event *event,
3b6f9e5c 1511 struct perf_cpu_context *cpuctx,
cdd6c482 1512 struct perf_event_context *ctx)
3b6f9e5c 1513{
4158755d 1514 u64 tstamp = perf_event_time(event);
fa66f07a 1515 u64 delta;
652884fe
PZ
1516
1517 WARN_ON_ONCE(event->ctx != ctx);
1518 lockdep_assert_held(&ctx->lock);
1519
fa66f07a
SE
1520 /*
1521 * An event which could not be activated because of
1522 * filter mismatch still needs to have its timings
1523 * maintained, otherwise bogus information is return
1524 * via read() for time_enabled, time_running:
1525 */
1526 if (event->state == PERF_EVENT_STATE_INACTIVE
1527 && !event_filter_match(event)) {
e5d1367f 1528 delta = tstamp - event->tstamp_stopped;
fa66f07a 1529 event->tstamp_running += delta;
4158755d 1530 event->tstamp_stopped = tstamp;
fa66f07a
SE
1531 }
1532
cdd6c482 1533 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1534 return;
3b6f9e5c 1535
44377277
AS
1536 perf_pmu_disable(event->pmu);
1537
cdd6c482
IM
1538 event->state = PERF_EVENT_STATE_INACTIVE;
1539 if (event->pending_disable) {
1540 event->pending_disable = 0;
1541 event->state = PERF_EVENT_STATE_OFF;
970892a9 1542 }
4158755d 1543 event->tstamp_stopped = tstamp;
a4eaf7f1 1544 event->pmu->del(event, 0);
cdd6c482 1545 event->oncpu = -1;
3b6f9e5c 1546
cdd6c482 1547 if (!is_software_event(event))
3b6f9e5c 1548 cpuctx->active_oncpu--;
2fde4f94
MR
1549 if (!--ctx->nr_active)
1550 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1551 if (event->attr.freq && event->attr.sample_freq)
1552 ctx->nr_freq--;
cdd6c482 1553 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1554 cpuctx->exclusive = 0;
44377277 1555
fadfe7be
JO
1556 if (is_orphaned_child(event))
1557 schedule_orphans_remove(ctx);
1558
44377277 1559 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1560}
1561
d859e29f 1562static void
cdd6c482 1563group_sched_out(struct perf_event *group_event,
d859e29f 1564 struct perf_cpu_context *cpuctx,
cdd6c482 1565 struct perf_event_context *ctx)
d859e29f 1566{
cdd6c482 1567 struct perf_event *event;
fa66f07a 1568 int state = group_event->state;
d859e29f 1569
cdd6c482 1570 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1571
1572 /*
1573 * Schedule out siblings (if any):
1574 */
cdd6c482
IM
1575 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1576 event_sched_out(event, cpuctx, ctx);
d859e29f 1577
fa66f07a 1578 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1579 cpuctx->exclusive = 0;
1580}
1581
46ce0fe9
PZ
1582struct remove_event {
1583 struct perf_event *event;
1584 bool detach_group;
1585};
1586
0793a61d 1587/*
cdd6c482 1588 * Cross CPU call to remove a performance event
0793a61d 1589 *
cdd6c482 1590 * We disable the event on the hardware level first. After that we
0793a61d
TG
1591 * remove it from the context list.
1592 */
fe4b04fa 1593static int __perf_remove_from_context(void *info)
0793a61d 1594{
46ce0fe9
PZ
1595 struct remove_event *re = info;
1596 struct perf_event *event = re->event;
cdd6c482 1597 struct perf_event_context *ctx = event->ctx;
108b02cf 1598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1599
e625cce1 1600 raw_spin_lock(&ctx->lock);
cdd6c482 1601 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1602 if (re->detach_group)
1603 perf_group_detach(event);
cdd6c482 1604 list_del_event(event, ctx);
64ce3126
PZ
1605 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1606 ctx->is_active = 0;
1607 cpuctx->task_ctx = NULL;
1608 }
e625cce1 1609 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1610
1611 return 0;
0793a61d
TG
1612}
1613
1614
1615/*
cdd6c482 1616 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1617 *
cdd6c482 1618 * CPU events are removed with a smp call. For task events we only
0793a61d 1619 * call when the task is on a CPU.
c93f7669 1620 *
cdd6c482
IM
1621 * If event->ctx is a cloned context, callers must make sure that
1622 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1623 * remains valid. This is OK when called from perf_release since
1624 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1625 * When called from perf_event_exit_task, it's OK because the
c93f7669 1626 * context has been detached from its task.
0793a61d 1627 */
46ce0fe9 1628static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1629{
cdd6c482 1630 struct perf_event_context *ctx = event->ctx;
0793a61d 1631 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1632 struct remove_event re = {
1633 .event = event,
1634 .detach_group = detach_group,
1635 };
0793a61d 1636
fe4b04fa
PZ
1637 lockdep_assert_held(&ctx->mutex);
1638
0793a61d
TG
1639 if (!task) {
1640 /*
226424ee
MR
1641 * Per cpu events are removed via an smp call. The removal can
1642 * fail if the CPU is currently offline, but in that case we
1643 * already called __perf_remove_from_context from
1644 * perf_event_exit_cpu.
0793a61d 1645 */
46ce0fe9 1646 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1647 return;
1648 }
1649
1650retry:
46ce0fe9 1651 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1652 return;
0793a61d 1653
e625cce1 1654 raw_spin_lock_irq(&ctx->lock);
0793a61d 1655 /*
fe4b04fa
PZ
1656 * If we failed to find a running task, but find the context active now
1657 * that we've acquired the ctx->lock, retry.
0793a61d 1658 */
fe4b04fa 1659 if (ctx->is_active) {
e625cce1 1660 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1661 /*
1662 * Reload the task pointer, it might have been changed by
1663 * a concurrent perf_event_context_sched_out().
1664 */
1665 task = ctx->task;
0793a61d
TG
1666 goto retry;
1667 }
1668
1669 /*
fe4b04fa
PZ
1670 * Since the task isn't running, its safe to remove the event, us
1671 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1672 */
46ce0fe9
PZ
1673 if (detach_group)
1674 perf_group_detach(event);
fe4b04fa 1675 list_del_event(event, ctx);
e625cce1 1676 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1677}
1678
d859e29f 1679/*
cdd6c482 1680 * Cross CPU call to disable a performance event
d859e29f 1681 */
500ad2d8 1682int __perf_event_disable(void *info)
d859e29f 1683{
cdd6c482 1684 struct perf_event *event = info;
cdd6c482 1685 struct perf_event_context *ctx = event->ctx;
108b02cf 1686 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1687
1688 /*
cdd6c482
IM
1689 * If this is a per-task event, need to check whether this
1690 * event's task is the current task on this cpu.
fe4b04fa
PZ
1691 *
1692 * Can trigger due to concurrent perf_event_context_sched_out()
1693 * flipping contexts around.
d859e29f 1694 */
665c2142 1695 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1696 return -EINVAL;
d859e29f 1697
e625cce1 1698 raw_spin_lock(&ctx->lock);
d859e29f
PM
1699
1700 /*
cdd6c482 1701 * If the event is on, turn it off.
d859e29f
PM
1702 * If it is in error state, leave it in error state.
1703 */
cdd6c482 1704 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1705 update_context_time(ctx);
e5d1367f 1706 update_cgrp_time_from_event(event);
cdd6c482
IM
1707 update_group_times(event);
1708 if (event == event->group_leader)
1709 group_sched_out(event, cpuctx, ctx);
d859e29f 1710 else
cdd6c482
IM
1711 event_sched_out(event, cpuctx, ctx);
1712 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1713 }
1714
e625cce1 1715 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1716
1717 return 0;
d859e29f
PM
1718}
1719
1720/*
cdd6c482 1721 * Disable a event.
c93f7669 1722 *
cdd6c482
IM
1723 * If event->ctx is a cloned context, callers must make sure that
1724 * every task struct that event->ctx->task could possibly point to
c93f7669 1725 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1726 * perf_event_for_each_child or perf_event_for_each because they
1727 * hold the top-level event's child_mutex, so any descendant that
1728 * goes to exit will block in sync_child_event.
1729 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1730 * is the current context on this CPU and preemption is disabled,
cdd6c482 1731 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1732 */
f63a8daa 1733static void _perf_event_disable(struct perf_event *event)
d859e29f 1734{
cdd6c482 1735 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1736 struct task_struct *task = ctx->task;
1737
1738 if (!task) {
1739 /*
cdd6c482 1740 * Disable the event on the cpu that it's on
d859e29f 1741 */
fe4b04fa 1742 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1743 return;
1744 }
1745
9ed6060d 1746retry:
fe4b04fa
PZ
1747 if (!task_function_call(task, __perf_event_disable, event))
1748 return;
d859e29f 1749
e625cce1 1750 raw_spin_lock_irq(&ctx->lock);
d859e29f 1751 /*
cdd6c482 1752 * If the event is still active, we need to retry the cross-call.
d859e29f 1753 */
cdd6c482 1754 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1755 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1756 /*
1757 * Reload the task pointer, it might have been changed by
1758 * a concurrent perf_event_context_sched_out().
1759 */
1760 task = ctx->task;
d859e29f
PM
1761 goto retry;
1762 }
1763
1764 /*
1765 * Since we have the lock this context can't be scheduled
1766 * in, so we can change the state safely.
1767 */
cdd6c482
IM
1768 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1769 update_group_times(event);
1770 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1771 }
e625cce1 1772 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1773}
f63a8daa
PZ
1774
1775/*
1776 * Strictly speaking kernel users cannot create groups and therefore this
1777 * interface does not need the perf_event_ctx_lock() magic.
1778 */
1779void perf_event_disable(struct perf_event *event)
1780{
1781 struct perf_event_context *ctx;
1782
1783 ctx = perf_event_ctx_lock(event);
1784 _perf_event_disable(event);
1785 perf_event_ctx_unlock(event, ctx);
1786}
dcfce4a0 1787EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1788
e5d1367f
SE
1789static void perf_set_shadow_time(struct perf_event *event,
1790 struct perf_event_context *ctx,
1791 u64 tstamp)
1792{
1793 /*
1794 * use the correct time source for the time snapshot
1795 *
1796 * We could get by without this by leveraging the
1797 * fact that to get to this function, the caller
1798 * has most likely already called update_context_time()
1799 * and update_cgrp_time_xx() and thus both timestamp
1800 * are identical (or very close). Given that tstamp is,
1801 * already adjusted for cgroup, we could say that:
1802 * tstamp - ctx->timestamp
1803 * is equivalent to
1804 * tstamp - cgrp->timestamp.
1805 *
1806 * Then, in perf_output_read(), the calculation would
1807 * work with no changes because:
1808 * - event is guaranteed scheduled in
1809 * - no scheduled out in between
1810 * - thus the timestamp would be the same
1811 *
1812 * But this is a bit hairy.
1813 *
1814 * So instead, we have an explicit cgroup call to remain
1815 * within the time time source all along. We believe it
1816 * is cleaner and simpler to understand.
1817 */
1818 if (is_cgroup_event(event))
1819 perf_cgroup_set_shadow_time(event, tstamp);
1820 else
1821 event->shadow_ctx_time = tstamp - ctx->timestamp;
1822}
1823
4fe757dd
PZ
1824#define MAX_INTERRUPTS (~0ULL)
1825
1826static void perf_log_throttle(struct perf_event *event, int enable);
1827
235c7fc7 1828static int
9ffcfa6f 1829event_sched_in(struct perf_event *event,
235c7fc7 1830 struct perf_cpu_context *cpuctx,
6e37738a 1831 struct perf_event_context *ctx)
235c7fc7 1832{
4158755d 1833 u64 tstamp = perf_event_time(event);
44377277 1834 int ret = 0;
4158755d 1835
63342411
PZ
1836 lockdep_assert_held(&ctx->lock);
1837
cdd6c482 1838 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1839 return 0;
1840
cdd6c482 1841 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1842 event->oncpu = smp_processor_id();
4fe757dd
PZ
1843
1844 /*
1845 * Unthrottle events, since we scheduled we might have missed several
1846 * ticks already, also for a heavily scheduling task there is little
1847 * guarantee it'll get a tick in a timely manner.
1848 */
1849 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1850 perf_log_throttle(event, 1);
1851 event->hw.interrupts = 0;
1852 }
1853
235c7fc7
IM
1854 /*
1855 * The new state must be visible before we turn it on in the hardware:
1856 */
1857 smp_wmb();
1858
44377277
AS
1859 perf_pmu_disable(event->pmu);
1860
72f669c0
SL
1861 event->tstamp_running += tstamp - event->tstamp_stopped;
1862
1863 perf_set_shadow_time(event, ctx, tstamp);
1864
a4eaf7f1 1865 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1866 event->state = PERF_EVENT_STATE_INACTIVE;
1867 event->oncpu = -1;
44377277
AS
1868 ret = -EAGAIN;
1869 goto out;
235c7fc7
IM
1870 }
1871
cdd6c482 1872 if (!is_software_event(event))
3b6f9e5c 1873 cpuctx->active_oncpu++;
2fde4f94
MR
1874 if (!ctx->nr_active++)
1875 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1876 if (event->attr.freq && event->attr.sample_freq)
1877 ctx->nr_freq++;
235c7fc7 1878
cdd6c482 1879 if (event->attr.exclusive)
3b6f9e5c
PM
1880 cpuctx->exclusive = 1;
1881
fadfe7be
JO
1882 if (is_orphaned_child(event))
1883 schedule_orphans_remove(ctx);
1884
44377277
AS
1885out:
1886 perf_pmu_enable(event->pmu);
1887
1888 return ret;
235c7fc7
IM
1889}
1890
6751b71e 1891static int
cdd6c482 1892group_sched_in(struct perf_event *group_event,
6751b71e 1893 struct perf_cpu_context *cpuctx,
6e37738a 1894 struct perf_event_context *ctx)
6751b71e 1895{
6bde9b6c 1896 struct perf_event *event, *partial_group = NULL;
4a234593 1897 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1898 u64 now = ctx->time;
1899 bool simulate = false;
6751b71e 1900
cdd6c482 1901 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1902 return 0;
1903
ad5133b7 1904 pmu->start_txn(pmu);
6bde9b6c 1905
9ffcfa6f 1906 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1907 pmu->cancel_txn(pmu);
9e630205 1908 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1909 return -EAGAIN;
90151c35 1910 }
6751b71e
PM
1911
1912 /*
1913 * Schedule in siblings as one group (if any):
1914 */
cdd6c482 1915 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1916 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1917 partial_group = event;
6751b71e
PM
1918 goto group_error;
1919 }
1920 }
1921
9ffcfa6f 1922 if (!pmu->commit_txn(pmu))
6e85158c 1923 return 0;
9ffcfa6f 1924
6751b71e
PM
1925group_error:
1926 /*
1927 * Groups can be scheduled in as one unit only, so undo any
1928 * partial group before returning:
d7842da4
SE
1929 * The events up to the failed event are scheduled out normally,
1930 * tstamp_stopped will be updated.
1931 *
1932 * The failed events and the remaining siblings need to have
1933 * their timings updated as if they had gone thru event_sched_in()
1934 * and event_sched_out(). This is required to get consistent timings
1935 * across the group. This also takes care of the case where the group
1936 * could never be scheduled by ensuring tstamp_stopped is set to mark
1937 * the time the event was actually stopped, such that time delta
1938 * calculation in update_event_times() is correct.
6751b71e 1939 */
cdd6c482
IM
1940 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1941 if (event == partial_group)
d7842da4
SE
1942 simulate = true;
1943
1944 if (simulate) {
1945 event->tstamp_running += now - event->tstamp_stopped;
1946 event->tstamp_stopped = now;
1947 } else {
1948 event_sched_out(event, cpuctx, ctx);
1949 }
6751b71e 1950 }
9ffcfa6f 1951 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1952
ad5133b7 1953 pmu->cancel_txn(pmu);
90151c35 1954
9e630205
SE
1955 perf_cpu_hrtimer_restart(cpuctx);
1956
6751b71e
PM
1957 return -EAGAIN;
1958}
1959
3b6f9e5c 1960/*
cdd6c482 1961 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1962 */
cdd6c482 1963static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1964 struct perf_cpu_context *cpuctx,
1965 int can_add_hw)
1966{
1967 /*
cdd6c482 1968 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1969 */
d6f962b5 1970 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1971 return 1;
1972 /*
1973 * If an exclusive group is already on, no other hardware
cdd6c482 1974 * events can go on.
3b6f9e5c
PM
1975 */
1976 if (cpuctx->exclusive)
1977 return 0;
1978 /*
1979 * If this group is exclusive and there are already
cdd6c482 1980 * events on the CPU, it can't go on.
3b6f9e5c 1981 */
cdd6c482 1982 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1983 return 0;
1984 /*
1985 * Otherwise, try to add it if all previous groups were able
1986 * to go on.
1987 */
1988 return can_add_hw;
1989}
1990
cdd6c482
IM
1991static void add_event_to_ctx(struct perf_event *event,
1992 struct perf_event_context *ctx)
53cfbf59 1993{
4158755d
SE
1994 u64 tstamp = perf_event_time(event);
1995
cdd6c482 1996 list_add_event(event, ctx);
8a49542c 1997 perf_group_attach(event);
4158755d
SE
1998 event->tstamp_enabled = tstamp;
1999 event->tstamp_running = tstamp;
2000 event->tstamp_stopped = tstamp;
53cfbf59
PM
2001}
2002
2c29ef0f
PZ
2003static void task_ctx_sched_out(struct perf_event_context *ctx);
2004static void
2005ctx_sched_in(struct perf_event_context *ctx,
2006 struct perf_cpu_context *cpuctx,
2007 enum event_type_t event_type,
2008 struct task_struct *task);
fe4b04fa 2009
dce5855b
PZ
2010static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2011 struct perf_event_context *ctx,
2012 struct task_struct *task)
2013{
2014 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2015 if (ctx)
2016 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2017 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2018 if (ctx)
2019 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2020}
2021
0793a61d 2022/*
cdd6c482 2023 * Cross CPU call to install and enable a performance event
682076ae
PZ
2024 *
2025 * Must be called with ctx->mutex held
0793a61d 2026 */
fe4b04fa 2027static int __perf_install_in_context(void *info)
0793a61d 2028{
cdd6c482
IM
2029 struct perf_event *event = info;
2030 struct perf_event_context *ctx = event->ctx;
108b02cf 2031 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2032 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2033 struct task_struct *task = current;
2034
b58f6b0d 2035 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2036 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2037
2038 /*
2c29ef0f 2039 * If there was an active task_ctx schedule it out.
0793a61d 2040 */
b58f6b0d 2041 if (task_ctx)
2c29ef0f 2042 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2043
2044 /*
2045 * If the context we're installing events in is not the
2046 * active task_ctx, flip them.
2047 */
2048 if (ctx->task && task_ctx != ctx) {
2049 if (task_ctx)
2050 raw_spin_unlock(&task_ctx->lock);
2051 raw_spin_lock(&ctx->lock);
2052 task_ctx = ctx;
2053 }
2054
2055 if (task_ctx) {
2056 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2057 task = task_ctx->task;
2058 }
b58f6b0d 2059
2c29ef0f 2060 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2061
4af4998b 2062 update_context_time(ctx);
e5d1367f
SE
2063 /*
2064 * update cgrp time only if current cgrp
2065 * matches event->cgrp. Must be done before
2066 * calling add_event_to_ctx()
2067 */
2068 update_cgrp_time_from_event(event);
0793a61d 2069
cdd6c482 2070 add_event_to_ctx(event, ctx);
0793a61d 2071
d859e29f 2072 /*
2c29ef0f 2073 * Schedule everything back in
d859e29f 2074 */
dce5855b 2075 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2076
2077 perf_pmu_enable(cpuctx->ctx.pmu);
2078 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2079
2080 return 0;
0793a61d
TG
2081}
2082
2083/*
cdd6c482 2084 * Attach a performance event to a context
0793a61d 2085 *
cdd6c482
IM
2086 * First we add the event to the list with the hardware enable bit
2087 * in event->hw_config cleared.
0793a61d 2088 *
cdd6c482 2089 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2090 * call to enable it in the task context. The task might have been
2091 * scheduled away, but we check this in the smp call again.
2092 */
2093static void
cdd6c482
IM
2094perf_install_in_context(struct perf_event_context *ctx,
2095 struct perf_event *event,
0793a61d
TG
2096 int cpu)
2097{
2098 struct task_struct *task = ctx->task;
2099
fe4b04fa
PZ
2100 lockdep_assert_held(&ctx->mutex);
2101
c3f00c70 2102 event->ctx = ctx;
0cda4c02
YZ
2103 if (event->cpu != -1)
2104 event->cpu = cpu;
c3f00c70 2105
0793a61d
TG
2106 if (!task) {
2107 /*
cdd6c482 2108 * Per cpu events are installed via an smp call and
af901ca1 2109 * the install is always successful.
0793a61d 2110 */
fe4b04fa 2111 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2112 return;
2113 }
2114
0793a61d 2115retry:
fe4b04fa
PZ
2116 if (!task_function_call(task, __perf_install_in_context, event))
2117 return;
0793a61d 2118
e625cce1 2119 raw_spin_lock_irq(&ctx->lock);
0793a61d 2120 /*
fe4b04fa
PZ
2121 * If we failed to find a running task, but find the context active now
2122 * that we've acquired the ctx->lock, retry.
0793a61d 2123 */
fe4b04fa 2124 if (ctx->is_active) {
e625cce1 2125 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2126 /*
2127 * Reload the task pointer, it might have been changed by
2128 * a concurrent perf_event_context_sched_out().
2129 */
2130 task = ctx->task;
0793a61d
TG
2131 goto retry;
2132 }
2133
2134 /*
fe4b04fa
PZ
2135 * Since the task isn't running, its safe to add the event, us holding
2136 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2137 */
fe4b04fa 2138 add_event_to_ctx(event, ctx);
e625cce1 2139 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2140}
2141
fa289bec 2142/*
cdd6c482 2143 * Put a event into inactive state and update time fields.
fa289bec
PM
2144 * Enabling the leader of a group effectively enables all
2145 * the group members that aren't explicitly disabled, so we
2146 * have to update their ->tstamp_enabled also.
2147 * Note: this works for group members as well as group leaders
2148 * since the non-leader members' sibling_lists will be empty.
2149 */
1d9b482e 2150static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2151{
cdd6c482 2152 struct perf_event *sub;
4158755d 2153 u64 tstamp = perf_event_time(event);
fa289bec 2154
cdd6c482 2155 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2156 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2157 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2158 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2159 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2160 }
fa289bec
PM
2161}
2162
d859e29f 2163/*
cdd6c482 2164 * Cross CPU call to enable a performance event
d859e29f 2165 */
fe4b04fa 2166static int __perf_event_enable(void *info)
04289bb9 2167{
cdd6c482 2168 struct perf_event *event = info;
cdd6c482
IM
2169 struct perf_event_context *ctx = event->ctx;
2170 struct perf_event *leader = event->group_leader;
108b02cf 2171 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2172 int err;
04289bb9 2173
06f41796
JO
2174 /*
2175 * There's a time window between 'ctx->is_active' check
2176 * in perf_event_enable function and this place having:
2177 * - IRQs on
2178 * - ctx->lock unlocked
2179 *
2180 * where the task could be killed and 'ctx' deactivated
2181 * by perf_event_exit_task.
2182 */
2183 if (!ctx->is_active)
fe4b04fa 2184 return -EINVAL;
3cbed429 2185
e625cce1 2186 raw_spin_lock(&ctx->lock);
4af4998b 2187 update_context_time(ctx);
d859e29f 2188
cdd6c482 2189 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2190 goto unlock;
e5d1367f
SE
2191
2192 /*
2193 * set current task's cgroup time reference point
2194 */
3f7cce3c 2195 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2196
1d9b482e 2197 __perf_event_mark_enabled(event);
04289bb9 2198
e5d1367f
SE
2199 if (!event_filter_match(event)) {
2200 if (is_cgroup_event(event))
2201 perf_cgroup_defer_enabled(event);
f4c4176f 2202 goto unlock;
e5d1367f 2203 }
f4c4176f 2204
04289bb9 2205 /*
cdd6c482 2206 * If the event is in a group and isn't the group leader,
d859e29f 2207 * then don't put it on unless the group is on.
04289bb9 2208 */
cdd6c482 2209 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2210 goto unlock;
3b6f9e5c 2211
cdd6c482 2212 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2213 err = -EEXIST;
e758a33d 2214 } else {
cdd6c482 2215 if (event == leader)
6e37738a 2216 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2217 else
6e37738a 2218 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2219 }
d859e29f
PM
2220
2221 if (err) {
2222 /*
cdd6c482 2223 * If this event can't go on and it's part of a
d859e29f
PM
2224 * group, then the whole group has to come off.
2225 */
9e630205 2226 if (leader != event) {
d859e29f 2227 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2228 perf_cpu_hrtimer_restart(cpuctx);
2229 }
0d48696f 2230 if (leader->attr.pinned) {
53cfbf59 2231 update_group_times(leader);
cdd6c482 2232 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2233 }
d859e29f
PM
2234 }
2235
9ed6060d 2236unlock:
e625cce1 2237 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2238
2239 return 0;
d859e29f
PM
2240}
2241
2242/*
cdd6c482 2243 * Enable a event.
c93f7669 2244 *
cdd6c482
IM
2245 * If event->ctx is a cloned context, callers must make sure that
2246 * every task struct that event->ctx->task could possibly point to
c93f7669 2247 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2248 * perf_event_for_each_child or perf_event_for_each as described
2249 * for perf_event_disable.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_enable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2254 struct task_struct *task = ctx->task;
2255
2256 if (!task) {
2257 /*
cdd6c482 2258 * Enable the event on the cpu that it's on
d859e29f 2259 */
fe4b04fa 2260 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2261 return;
2262 }
2263
e625cce1 2264 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2265 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2266 goto out;
2267
2268 /*
cdd6c482
IM
2269 * If the event is in error state, clear that first.
2270 * That way, if we see the event in error state below, we
d859e29f
PM
2271 * know that it has gone back into error state, as distinct
2272 * from the task having been scheduled away before the
2273 * cross-call arrived.
2274 */
cdd6c482
IM
2275 if (event->state == PERF_EVENT_STATE_ERROR)
2276 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2277
9ed6060d 2278retry:
fe4b04fa 2279 if (!ctx->is_active) {
1d9b482e 2280 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2281 goto out;
2282 }
2283
e625cce1 2284 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2285
2286 if (!task_function_call(task, __perf_event_enable, event))
2287 return;
d859e29f 2288
e625cce1 2289 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2290
2291 /*
cdd6c482 2292 * If the context is active and the event is still off,
d859e29f
PM
2293 * we need to retry the cross-call.
2294 */
fe4b04fa
PZ
2295 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2296 /*
2297 * task could have been flipped by a concurrent
2298 * perf_event_context_sched_out()
2299 */
2300 task = ctx->task;
d859e29f 2301 goto retry;
fe4b04fa 2302 }
fa289bec 2303
9ed6060d 2304out:
e625cce1 2305 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2306}
f63a8daa
PZ
2307
2308/*
2309 * See perf_event_disable();
2310 */
2311void perf_event_enable(struct perf_event *event)
2312{
2313 struct perf_event_context *ctx;
2314
2315 ctx = perf_event_ctx_lock(event);
2316 _perf_event_enable(event);
2317 perf_event_ctx_unlock(event, ctx);
2318}
dcfce4a0 2319EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2320
f63a8daa 2321static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2322{
2023b359 2323 /*
cdd6c482 2324 * not supported on inherited events
2023b359 2325 */
2e939d1d 2326 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2327 return -EINVAL;
2328
cdd6c482 2329 atomic_add(refresh, &event->event_limit);
f63a8daa 2330 _perf_event_enable(event);
2023b359
PZ
2331
2332 return 0;
79f14641 2333}
f63a8daa
PZ
2334
2335/*
2336 * See perf_event_disable()
2337 */
2338int perf_event_refresh(struct perf_event *event, int refresh)
2339{
2340 struct perf_event_context *ctx;
2341 int ret;
2342
2343 ctx = perf_event_ctx_lock(event);
2344 ret = _perf_event_refresh(event, refresh);
2345 perf_event_ctx_unlock(event, ctx);
2346
2347 return ret;
2348}
26ca5c11 2349EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2350
5b0311e1
FW
2351static void ctx_sched_out(struct perf_event_context *ctx,
2352 struct perf_cpu_context *cpuctx,
2353 enum event_type_t event_type)
235c7fc7 2354{
cdd6c482 2355 struct perf_event *event;
db24d33e 2356 int is_active = ctx->is_active;
235c7fc7 2357
db24d33e 2358 ctx->is_active &= ~event_type;
cdd6c482 2359 if (likely(!ctx->nr_events))
facc4307
PZ
2360 return;
2361
4af4998b 2362 update_context_time(ctx);
e5d1367f 2363 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2364 if (!ctx->nr_active)
facc4307 2365 return;
5b0311e1 2366
075e0b00 2367 perf_pmu_disable(ctx->pmu);
db24d33e 2368 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2369 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2370 group_sched_out(event, cpuctx, ctx);
9ed6060d 2371 }
889ff015 2372
db24d33e 2373 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2374 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2375 group_sched_out(event, cpuctx, ctx);
9ed6060d 2376 }
1b9a644f 2377 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2378}
2379
564c2b21 2380/*
5a3126d4
PZ
2381 * Test whether two contexts are equivalent, i.e. whether they have both been
2382 * cloned from the same version of the same context.
2383 *
2384 * Equivalence is measured using a generation number in the context that is
2385 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2386 * and list_del_event().
564c2b21 2387 */
cdd6c482
IM
2388static int context_equiv(struct perf_event_context *ctx1,
2389 struct perf_event_context *ctx2)
564c2b21 2390{
211de6eb
PZ
2391 lockdep_assert_held(&ctx1->lock);
2392 lockdep_assert_held(&ctx2->lock);
2393
5a3126d4
PZ
2394 /* Pinning disables the swap optimization */
2395 if (ctx1->pin_count || ctx2->pin_count)
2396 return 0;
2397
2398 /* If ctx1 is the parent of ctx2 */
2399 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2400 return 1;
2401
2402 /* If ctx2 is the parent of ctx1 */
2403 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2404 return 1;
2405
2406 /*
2407 * If ctx1 and ctx2 have the same parent; we flatten the parent
2408 * hierarchy, see perf_event_init_context().
2409 */
2410 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2411 ctx1->parent_gen == ctx2->parent_gen)
2412 return 1;
2413
2414 /* Unmatched */
2415 return 0;
564c2b21
PM
2416}
2417
cdd6c482
IM
2418static void __perf_event_sync_stat(struct perf_event *event,
2419 struct perf_event *next_event)
bfbd3381
PZ
2420{
2421 u64 value;
2422
cdd6c482 2423 if (!event->attr.inherit_stat)
bfbd3381
PZ
2424 return;
2425
2426 /*
cdd6c482 2427 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2428 * because we're in the middle of a context switch and have IRQs
2429 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2430 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2431 * don't need to use it.
2432 */
cdd6c482
IM
2433 switch (event->state) {
2434 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2435 event->pmu->read(event);
2436 /* fall-through */
bfbd3381 2437
cdd6c482
IM
2438 case PERF_EVENT_STATE_INACTIVE:
2439 update_event_times(event);
bfbd3381
PZ
2440 break;
2441
2442 default:
2443 break;
2444 }
2445
2446 /*
cdd6c482 2447 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2448 * values when we flip the contexts.
2449 */
e7850595
PZ
2450 value = local64_read(&next_event->count);
2451 value = local64_xchg(&event->count, value);
2452 local64_set(&next_event->count, value);
bfbd3381 2453
cdd6c482
IM
2454 swap(event->total_time_enabled, next_event->total_time_enabled);
2455 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2456
bfbd3381 2457 /*
19d2e755 2458 * Since we swizzled the values, update the user visible data too.
bfbd3381 2459 */
cdd6c482
IM
2460 perf_event_update_userpage(event);
2461 perf_event_update_userpage(next_event);
bfbd3381
PZ
2462}
2463
cdd6c482
IM
2464static void perf_event_sync_stat(struct perf_event_context *ctx,
2465 struct perf_event_context *next_ctx)
bfbd3381 2466{
cdd6c482 2467 struct perf_event *event, *next_event;
bfbd3381
PZ
2468
2469 if (!ctx->nr_stat)
2470 return;
2471
02ffdbc8
PZ
2472 update_context_time(ctx);
2473
cdd6c482
IM
2474 event = list_first_entry(&ctx->event_list,
2475 struct perf_event, event_entry);
bfbd3381 2476
cdd6c482
IM
2477 next_event = list_first_entry(&next_ctx->event_list,
2478 struct perf_event, event_entry);
bfbd3381 2479
cdd6c482
IM
2480 while (&event->event_entry != &ctx->event_list &&
2481 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2482
cdd6c482 2483 __perf_event_sync_stat(event, next_event);
bfbd3381 2484
cdd6c482
IM
2485 event = list_next_entry(event, event_entry);
2486 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2487 }
2488}
2489
fe4b04fa
PZ
2490static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2491 struct task_struct *next)
0793a61d 2492{
8dc85d54 2493 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2494 struct perf_event_context *next_ctx;
5a3126d4 2495 struct perf_event_context *parent, *next_parent;
108b02cf 2496 struct perf_cpu_context *cpuctx;
c93f7669 2497 int do_switch = 1;
0793a61d 2498
108b02cf
PZ
2499 if (likely(!ctx))
2500 return;
10989fb2 2501
108b02cf
PZ
2502 cpuctx = __get_cpu_context(ctx);
2503 if (!cpuctx->task_ctx)
0793a61d
TG
2504 return;
2505
c93f7669 2506 rcu_read_lock();
8dc85d54 2507 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2508 if (!next_ctx)
2509 goto unlock;
2510
2511 parent = rcu_dereference(ctx->parent_ctx);
2512 next_parent = rcu_dereference(next_ctx->parent_ctx);
2513
2514 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2515 if (!parent && !next_parent)
5a3126d4
PZ
2516 goto unlock;
2517
2518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2519 /*
2520 * Looks like the two contexts are clones, so we might be
2521 * able to optimize the context switch. We lock both
2522 * contexts and check that they are clones under the
2523 * lock (including re-checking that neither has been
2524 * uncloned in the meantime). It doesn't matter which
2525 * order we take the locks because no other cpu could
2526 * be trying to lock both of these tasks.
2527 */
e625cce1
TG
2528 raw_spin_lock(&ctx->lock);
2529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2530 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2531 /*
2532 * XXX do we need a memory barrier of sorts
cdd6c482 2533 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2534 */
8dc85d54
PZ
2535 task->perf_event_ctxp[ctxn] = next_ctx;
2536 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2537 ctx->task = next;
2538 next_ctx->task = task;
5a158c3c
YZ
2539
2540 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2541
c93f7669 2542 do_switch = 0;
bfbd3381 2543
cdd6c482 2544 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2545 }
e625cce1
TG
2546 raw_spin_unlock(&next_ctx->lock);
2547 raw_spin_unlock(&ctx->lock);
564c2b21 2548 }
5a3126d4 2549unlock:
c93f7669 2550 rcu_read_unlock();
564c2b21 2551
c93f7669 2552 if (do_switch) {
facc4307 2553 raw_spin_lock(&ctx->lock);
5b0311e1 2554 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2555 cpuctx->task_ctx = NULL;
facc4307 2556 raw_spin_unlock(&ctx->lock);
c93f7669 2557 }
0793a61d
TG
2558}
2559
ba532500
YZ
2560void perf_sched_cb_dec(struct pmu *pmu)
2561{
2562 this_cpu_dec(perf_sched_cb_usages);
2563}
2564
2565void perf_sched_cb_inc(struct pmu *pmu)
2566{
2567 this_cpu_inc(perf_sched_cb_usages);
2568}
2569
2570/*
2571 * This function provides the context switch callback to the lower code
2572 * layer. It is invoked ONLY when the context switch callback is enabled.
2573 */
2574static void perf_pmu_sched_task(struct task_struct *prev,
2575 struct task_struct *next,
2576 bool sched_in)
2577{
2578 struct perf_cpu_context *cpuctx;
2579 struct pmu *pmu;
2580 unsigned long flags;
2581
2582 if (prev == next)
2583 return;
2584
2585 local_irq_save(flags);
2586
2587 rcu_read_lock();
2588
2589 list_for_each_entry_rcu(pmu, &pmus, entry) {
2590 if (pmu->sched_task) {
2591 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2592
2593 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2594
2595 perf_pmu_disable(pmu);
2596
2597 pmu->sched_task(cpuctx->task_ctx, sched_in);
2598
2599 perf_pmu_enable(pmu);
2600
2601 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2602 }
2603 }
2604
2605 rcu_read_unlock();
2606
2607 local_irq_restore(flags);
2608}
2609
8dc85d54
PZ
2610#define for_each_task_context_nr(ctxn) \
2611 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2612
2613/*
2614 * Called from scheduler to remove the events of the current task,
2615 * with interrupts disabled.
2616 *
2617 * We stop each event and update the event value in event->count.
2618 *
2619 * This does not protect us against NMI, but disable()
2620 * sets the disabled bit in the control field of event _before_
2621 * accessing the event control register. If a NMI hits, then it will
2622 * not restart the event.
2623 */
ab0cce56
JO
2624void __perf_event_task_sched_out(struct task_struct *task,
2625 struct task_struct *next)
8dc85d54
PZ
2626{
2627 int ctxn;
2628
ba532500
YZ
2629 if (__this_cpu_read(perf_sched_cb_usages))
2630 perf_pmu_sched_task(task, next, false);
2631
8dc85d54
PZ
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
4a32fea9 2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2641 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2642}
2643
04dc2dbb 2644static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2645{
108b02cf 2646 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2647
a63eaf34
PM
2648 if (!cpuctx->task_ctx)
2649 return;
012b84da
IM
2650
2651 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2652 return;
2653
04dc2dbb 2654 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2655 cpuctx->task_ctx = NULL;
2656}
2657
5b0311e1
FW
2658/*
2659 * Called with IRQs disabled
2660 */
2661static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type)
2663{
2664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2665}
2666
235c7fc7 2667static void
5b0311e1 2668ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2669 struct perf_cpu_context *cpuctx)
0793a61d 2670{
cdd6c482 2671 struct perf_event *event;
0793a61d 2672
889ff015
FW
2673 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2674 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2675 continue;
5632ab12 2676 if (!event_filter_match(event))
3b6f9e5c
PM
2677 continue;
2678
e5d1367f
SE
2679 /* may need to reset tstamp_enabled */
2680 if (is_cgroup_event(event))
2681 perf_cgroup_mark_enabled(event, ctx);
2682
8c9ed8e1 2683 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2684 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2685
2686 /*
2687 * If this pinned group hasn't been scheduled,
2688 * put it in error state.
2689 */
cdd6c482
IM
2690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2691 update_group_times(event);
2692 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2693 }
3b6f9e5c 2694 }
5b0311e1
FW
2695}
2696
2697static void
2698ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2699 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2700{
2701 struct perf_event *event;
2702 int can_add_hw = 1;
3b6f9e5c 2703
889ff015
FW
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2705 /* Ignore events in OFF or ERROR state */
2706 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2707 continue;
04289bb9
IM
2708 /*
2709 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2710 * of events:
04289bb9 2711 */
5632ab12 2712 if (!event_filter_match(event))
0793a61d
TG
2713 continue;
2714
e5d1367f
SE
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
9ed6060d 2719 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2720 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2721 can_add_hw = 0;
9ed6060d 2722 }
0793a61d 2723 }
5b0311e1
FW
2724}
2725
2726static void
2727ctx_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2729 enum event_type_t event_type,
2730 struct task_struct *task)
5b0311e1 2731{
e5d1367f 2732 u64 now;
db24d33e 2733 int is_active = ctx->is_active;
e5d1367f 2734
db24d33e 2735 ctx->is_active |= event_type;
5b0311e1 2736 if (likely(!ctx->nr_events))
facc4307 2737 return;
5b0311e1 2738
e5d1367f
SE
2739 now = perf_clock();
2740 ctx->timestamp = now;
3f7cce3c 2741 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2742 /*
2743 * First go through the list and put on any pinned groups
2744 * in order to give them the best chance of going on.
2745 */
db24d33e 2746 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2747 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2748
2749 /* Then walk through the lower prio flexible groups */
db24d33e 2750 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2751 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2752}
2753
329c0e01 2754static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2755 enum event_type_t event_type,
2756 struct task_struct *task)
329c0e01
FW
2757{
2758 struct perf_event_context *ctx = &cpuctx->ctx;
2759
e5d1367f 2760 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2761}
2762
e5d1367f
SE
2763static void perf_event_context_sched_in(struct perf_event_context *ctx,
2764 struct task_struct *task)
235c7fc7 2765{
108b02cf 2766 struct perf_cpu_context *cpuctx;
235c7fc7 2767
108b02cf 2768 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2769 if (cpuctx->task_ctx == ctx)
2770 return;
2771
facc4307 2772 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2773 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2774 /*
2775 * We want to keep the following priority order:
2776 * cpu pinned (that don't need to move), task pinned,
2777 * cpu flexible, task flexible.
2778 */
2779 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2780
1d5f003f
GN
2781 if (ctx->nr_events)
2782 cpuctx->task_ctx = ctx;
9b33fa6b 2783
86b47c25
GN
2784 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2785
facc4307
PZ
2786 perf_pmu_enable(ctx->pmu);
2787 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2788}
2789
8dc85d54
PZ
2790/*
2791 * Called from scheduler to add the events of the current task
2792 * with interrupts disabled.
2793 *
2794 * We restore the event value and then enable it.
2795 *
2796 * This does not protect us against NMI, but enable()
2797 * sets the enabled bit in the control field of event _before_
2798 * accessing the event control register. If a NMI hits, then it will
2799 * keep the event running.
2800 */
ab0cce56
JO
2801void __perf_event_task_sched_in(struct task_struct *prev,
2802 struct task_struct *task)
8dc85d54
PZ
2803{
2804 struct perf_event_context *ctx;
2805 int ctxn;
2806
2807 for_each_task_context_nr(ctxn) {
2808 ctx = task->perf_event_ctxp[ctxn];
2809 if (likely(!ctx))
2810 continue;
2811
e5d1367f 2812 perf_event_context_sched_in(ctx, task);
8dc85d54 2813 }
e5d1367f
SE
2814 /*
2815 * if cgroup events exist on this CPU, then we need
2816 * to check if we have to switch in PMU state.
2817 * cgroup event are system-wide mode only
2818 */
4a32fea9 2819 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2820 perf_cgroup_sched_in(prev, task);
d010b332 2821
ba532500
YZ
2822 if (__this_cpu_read(perf_sched_cb_usages))
2823 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2824}
2825
abd50713
PZ
2826static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2827{
2828 u64 frequency = event->attr.sample_freq;
2829 u64 sec = NSEC_PER_SEC;
2830 u64 divisor, dividend;
2831
2832 int count_fls, nsec_fls, frequency_fls, sec_fls;
2833
2834 count_fls = fls64(count);
2835 nsec_fls = fls64(nsec);
2836 frequency_fls = fls64(frequency);
2837 sec_fls = 30;
2838
2839 /*
2840 * We got @count in @nsec, with a target of sample_freq HZ
2841 * the target period becomes:
2842 *
2843 * @count * 10^9
2844 * period = -------------------
2845 * @nsec * sample_freq
2846 *
2847 */
2848
2849 /*
2850 * Reduce accuracy by one bit such that @a and @b converge
2851 * to a similar magnitude.
2852 */
fe4b04fa 2853#define REDUCE_FLS(a, b) \
abd50713
PZ
2854do { \
2855 if (a##_fls > b##_fls) { \
2856 a >>= 1; \
2857 a##_fls--; \
2858 } else { \
2859 b >>= 1; \
2860 b##_fls--; \
2861 } \
2862} while (0)
2863
2864 /*
2865 * Reduce accuracy until either term fits in a u64, then proceed with
2866 * the other, so that finally we can do a u64/u64 division.
2867 */
2868 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2869 REDUCE_FLS(nsec, frequency);
2870 REDUCE_FLS(sec, count);
2871 }
2872
2873 if (count_fls + sec_fls > 64) {
2874 divisor = nsec * frequency;
2875
2876 while (count_fls + sec_fls > 64) {
2877 REDUCE_FLS(count, sec);
2878 divisor >>= 1;
2879 }
2880
2881 dividend = count * sec;
2882 } else {
2883 dividend = count * sec;
2884
2885 while (nsec_fls + frequency_fls > 64) {
2886 REDUCE_FLS(nsec, frequency);
2887 dividend >>= 1;
2888 }
2889
2890 divisor = nsec * frequency;
2891 }
2892
f6ab91ad
PZ
2893 if (!divisor)
2894 return dividend;
2895
abd50713
PZ
2896 return div64_u64(dividend, divisor);
2897}
2898
e050e3f0
SE
2899static DEFINE_PER_CPU(int, perf_throttled_count);
2900static DEFINE_PER_CPU(u64, perf_throttled_seq);
2901
f39d47ff 2902static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2903{
cdd6c482 2904 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2905 s64 period, sample_period;
bd2b5b12
PZ
2906 s64 delta;
2907
abd50713 2908 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2909
2910 delta = (s64)(period - hwc->sample_period);
2911 delta = (delta + 7) / 8; /* low pass filter */
2912
2913 sample_period = hwc->sample_period + delta;
2914
2915 if (!sample_period)
2916 sample_period = 1;
2917
bd2b5b12 2918 hwc->sample_period = sample_period;
abd50713 2919
e7850595 2920 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2921 if (disable)
2922 event->pmu->stop(event, PERF_EF_UPDATE);
2923
e7850595 2924 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2925
2926 if (disable)
2927 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2928 }
bd2b5b12
PZ
2929}
2930
e050e3f0
SE
2931/*
2932 * combine freq adjustment with unthrottling to avoid two passes over the
2933 * events. At the same time, make sure, having freq events does not change
2934 * the rate of unthrottling as that would introduce bias.
2935 */
2936static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2937 int needs_unthr)
60db5e09 2938{
cdd6c482
IM
2939 struct perf_event *event;
2940 struct hw_perf_event *hwc;
e050e3f0 2941 u64 now, period = TICK_NSEC;
abd50713 2942 s64 delta;
60db5e09 2943
e050e3f0
SE
2944 /*
2945 * only need to iterate over all events iff:
2946 * - context have events in frequency mode (needs freq adjust)
2947 * - there are events to unthrottle on this cpu
2948 */
2949 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2950 return;
2951
e050e3f0 2952 raw_spin_lock(&ctx->lock);
f39d47ff 2953 perf_pmu_disable(ctx->pmu);
e050e3f0 2954
03541f8b 2955 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2956 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2957 continue;
2958
5632ab12 2959 if (!event_filter_match(event))
5d27c23d
PZ
2960 continue;
2961
44377277
AS
2962 perf_pmu_disable(event->pmu);
2963
cdd6c482 2964 hwc = &event->hw;
6a24ed6c 2965
ae23bff1 2966 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2967 hwc->interrupts = 0;
cdd6c482 2968 perf_log_throttle(event, 1);
a4eaf7f1 2969 event->pmu->start(event, 0);
a78ac325
PZ
2970 }
2971
cdd6c482 2972 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2973 goto next;
60db5e09 2974
e050e3f0
SE
2975 /*
2976 * stop the event and update event->count
2977 */
2978 event->pmu->stop(event, PERF_EF_UPDATE);
2979
e7850595 2980 now = local64_read(&event->count);
abd50713
PZ
2981 delta = now - hwc->freq_count_stamp;
2982 hwc->freq_count_stamp = now;
60db5e09 2983
e050e3f0
SE
2984 /*
2985 * restart the event
2986 * reload only if value has changed
f39d47ff
SE
2987 * we have stopped the event so tell that
2988 * to perf_adjust_period() to avoid stopping it
2989 * twice.
e050e3f0 2990 */
abd50713 2991 if (delta > 0)
f39d47ff 2992 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2993
2994 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2995 next:
2996 perf_pmu_enable(event->pmu);
60db5e09 2997 }
e050e3f0 2998
f39d47ff 2999 perf_pmu_enable(ctx->pmu);
e050e3f0 3000 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3001}
3002
235c7fc7 3003/*
cdd6c482 3004 * Round-robin a context's events:
235c7fc7 3005 */
cdd6c482 3006static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3007{
dddd3379
TG
3008 /*
3009 * Rotate the first entry last of non-pinned groups. Rotation might be
3010 * disabled by the inheritance code.
3011 */
3012 if (!ctx->rotate_disable)
3013 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3014}
3015
9e630205 3016static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3017{
8dc85d54 3018 struct perf_event_context *ctx = NULL;
2fde4f94 3019 int rotate = 0;
7fc23a53 3020
b5ab4cd5 3021 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3022 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3023 rotate = 1;
3024 }
235c7fc7 3025
8dc85d54 3026 ctx = cpuctx->task_ctx;
b5ab4cd5 3027 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3028 if (ctx->nr_events != ctx->nr_active)
3029 rotate = 1;
3030 }
9717e6cd 3031
e050e3f0 3032 if (!rotate)
0f5a2601
PZ
3033 goto done;
3034
facc4307 3035 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3036 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3037
e050e3f0
SE
3038 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3039 if (ctx)
3040 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3041
e050e3f0
SE
3042 rotate_ctx(&cpuctx->ctx);
3043 if (ctx)
3044 rotate_ctx(ctx);
235c7fc7 3045
e050e3f0 3046 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3047
0f5a2601
PZ
3048 perf_pmu_enable(cpuctx->ctx.pmu);
3049 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3050done:
9e630205
SE
3051
3052 return rotate;
e9d2b064
PZ
3053}
3054
026249ef
FW
3055#ifdef CONFIG_NO_HZ_FULL
3056bool perf_event_can_stop_tick(void)
3057{
948b26b6 3058 if (atomic_read(&nr_freq_events) ||
d84153d6 3059 __this_cpu_read(perf_throttled_count))
026249ef 3060 return false;
d84153d6
FW
3061 else
3062 return true;
026249ef
FW
3063}
3064#endif
3065
e9d2b064
PZ
3066void perf_event_task_tick(void)
3067{
2fde4f94
MR
3068 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3069 struct perf_event_context *ctx, *tmp;
e050e3f0 3070 int throttled;
b5ab4cd5 3071
e9d2b064
PZ
3072 WARN_ON(!irqs_disabled());
3073
e050e3f0
SE
3074 __this_cpu_inc(perf_throttled_seq);
3075 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3076
2fde4f94 3077 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3078 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3079}
3080
889ff015
FW
3081static int event_enable_on_exec(struct perf_event *event,
3082 struct perf_event_context *ctx)
3083{
3084 if (!event->attr.enable_on_exec)
3085 return 0;
3086
3087 event->attr.enable_on_exec = 0;
3088 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3089 return 0;
3090
1d9b482e 3091 __perf_event_mark_enabled(event);
889ff015
FW
3092
3093 return 1;
3094}
3095
57e7986e 3096/*
cdd6c482 3097 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3098 * This expects task == current.
3099 */
8dc85d54 3100static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3101{
211de6eb 3102 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3103 struct perf_event *event;
57e7986e
PM
3104 unsigned long flags;
3105 int enabled = 0;
889ff015 3106 int ret;
57e7986e
PM
3107
3108 local_irq_save(flags);
cdd6c482 3109 if (!ctx || !ctx->nr_events)
57e7986e
PM
3110 goto out;
3111
e566b76e
SE
3112 /*
3113 * We must ctxsw out cgroup events to avoid conflict
3114 * when invoking perf_task_event_sched_in() later on
3115 * in this function. Otherwise we end up trying to
3116 * ctxswin cgroup events which are already scheduled
3117 * in.
3118 */
a8d757ef 3119 perf_cgroup_sched_out(current, NULL);
57e7986e 3120
e625cce1 3121 raw_spin_lock(&ctx->lock);
04dc2dbb 3122 task_ctx_sched_out(ctx);
57e7986e 3123
b79387ef 3124 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3125 ret = event_enable_on_exec(event, ctx);
3126 if (ret)
3127 enabled = 1;
57e7986e
PM
3128 }
3129
3130 /*
cdd6c482 3131 * Unclone this context if we enabled any event.
57e7986e 3132 */
71a851b4 3133 if (enabled)
211de6eb 3134 clone_ctx = unclone_ctx(ctx);
57e7986e 3135
e625cce1 3136 raw_spin_unlock(&ctx->lock);
57e7986e 3137
e566b76e
SE
3138 /*
3139 * Also calls ctxswin for cgroup events, if any:
3140 */
e5d1367f 3141 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3142out:
57e7986e 3143 local_irq_restore(flags);
211de6eb
PZ
3144
3145 if (clone_ctx)
3146 put_ctx(clone_ctx);
57e7986e
PM
3147}
3148
e041e328
PZ
3149void perf_event_exec(void)
3150{
3151 struct perf_event_context *ctx;
3152 int ctxn;
3153
3154 rcu_read_lock();
3155 for_each_task_context_nr(ctxn) {
3156 ctx = current->perf_event_ctxp[ctxn];
3157 if (!ctx)
3158 continue;
3159
3160 perf_event_enable_on_exec(ctx);
3161 }
3162 rcu_read_unlock();
3163}
3164
0793a61d 3165/*
cdd6c482 3166 * Cross CPU call to read the hardware event
0793a61d 3167 */
cdd6c482 3168static void __perf_event_read(void *info)
0793a61d 3169{
cdd6c482
IM
3170 struct perf_event *event = info;
3171 struct perf_event_context *ctx = event->ctx;
108b02cf 3172 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3173
e1ac3614
PM
3174 /*
3175 * If this is a task context, we need to check whether it is
3176 * the current task context of this cpu. If not it has been
3177 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3178 * event->count would have been updated to a recent sample
3179 * when the event was scheduled out.
e1ac3614
PM
3180 */
3181 if (ctx->task && cpuctx->task_ctx != ctx)
3182 return;
3183
e625cce1 3184 raw_spin_lock(&ctx->lock);
e5d1367f 3185 if (ctx->is_active) {
542e72fc 3186 update_context_time(ctx);
e5d1367f
SE
3187 update_cgrp_time_from_event(event);
3188 }
cdd6c482 3189 update_event_times(event);
542e72fc
PZ
3190 if (event->state == PERF_EVENT_STATE_ACTIVE)
3191 event->pmu->read(event);
e625cce1 3192 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3193}
3194
b5e58793
PZ
3195static inline u64 perf_event_count(struct perf_event *event)
3196{
eacd3ecc
MF
3197 if (event->pmu->count)
3198 return event->pmu->count(event);
3199
3200 return __perf_event_count(event);
b5e58793
PZ
3201}
3202
cdd6c482 3203static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3204{
3205 /*
cdd6c482
IM
3206 * If event is enabled and currently active on a CPU, update the
3207 * value in the event structure:
0793a61d 3208 */
cdd6c482
IM
3209 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3210 smp_call_function_single(event->oncpu,
3211 __perf_event_read, event, 1);
3212 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3213 struct perf_event_context *ctx = event->ctx;
3214 unsigned long flags;
3215
e625cce1 3216 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3217 /*
3218 * may read while context is not active
3219 * (e.g., thread is blocked), in that case
3220 * we cannot update context time
3221 */
e5d1367f 3222 if (ctx->is_active) {
c530ccd9 3223 update_context_time(ctx);
e5d1367f
SE
3224 update_cgrp_time_from_event(event);
3225 }
cdd6c482 3226 update_event_times(event);
e625cce1 3227 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3228 }
3229
b5e58793 3230 return perf_event_count(event);
0793a61d
TG
3231}
3232
a63eaf34 3233/*
cdd6c482 3234 * Initialize the perf_event context in a task_struct:
a63eaf34 3235 */
eb184479 3236static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3237{
e625cce1 3238 raw_spin_lock_init(&ctx->lock);
a63eaf34 3239 mutex_init(&ctx->mutex);
2fde4f94 3240 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3241 INIT_LIST_HEAD(&ctx->pinned_groups);
3242 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3243 INIT_LIST_HEAD(&ctx->event_list);
3244 atomic_set(&ctx->refcount, 1);
fadfe7be 3245 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3246}
3247
3248static struct perf_event_context *
3249alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3250{
3251 struct perf_event_context *ctx;
3252
3253 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3254 if (!ctx)
3255 return NULL;
3256
3257 __perf_event_init_context(ctx);
3258 if (task) {
3259 ctx->task = task;
3260 get_task_struct(task);
0793a61d 3261 }
eb184479
PZ
3262 ctx->pmu = pmu;
3263
3264 return ctx;
a63eaf34
PM
3265}
3266
2ebd4ffb
MH
3267static struct task_struct *
3268find_lively_task_by_vpid(pid_t vpid)
3269{
3270 struct task_struct *task;
3271 int err;
0793a61d
TG
3272
3273 rcu_read_lock();
2ebd4ffb 3274 if (!vpid)
0793a61d
TG
3275 task = current;
3276 else
2ebd4ffb 3277 task = find_task_by_vpid(vpid);
0793a61d
TG
3278 if (task)
3279 get_task_struct(task);
3280 rcu_read_unlock();
3281
3282 if (!task)
3283 return ERR_PTR(-ESRCH);
3284
0793a61d 3285 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3286 err = -EACCES;
3287 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3288 goto errout;
3289
2ebd4ffb
MH
3290 return task;
3291errout:
3292 put_task_struct(task);
3293 return ERR_PTR(err);
3294
3295}
3296
fe4b04fa
PZ
3297/*
3298 * Returns a matching context with refcount and pincount.
3299 */
108b02cf 3300static struct perf_event_context *
4af57ef2
YZ
3301find_get_context(struct pmu *pmu, struct task_struct *task,
3302 struct perf_event *event)
0793a61d 3303{
211de6eb 3304 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3305 struct perf_cpu_context *cpuctx;
4af57ef2 3306 void *task_ctx_data = NULL;
25346b93 3307 unsigned long flags;
8dc85d54 3308 int ctxn, err;
4af57ef2 3309 int cpu = event->cpu;
0793a61d 3310
22a4ec72 3311 if (!task) {
cdd6c482 3312 /* Must be root to operate on a CPU event: */
0764771d 3313 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3314 return ERR_PTR(-EACCES);
3315
0793a61d 3316 /*
cdd6c482 3317 * We could be clever and allow to attach a event to an
0793a61d
TG
3318 * offline CPU and activate it when the CPU comes up, but
3319 * that's for later.
3320 */
f6325e30 3321 if (!cpu_online(cpu))
0793a61d
TG
3322 return ERR_PTR(-ENODEV);
3323
108b02cf 3324 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3325 ctx = &cpuctx->ctx;
c93f7669 3326 get_ctx(ctx);
fe4b04fa 3327 ++ctx->pin_count;
0793a61d 3328
0793a61d
TG
3329 return ctx;
3330 }
3331
8dc85d54
PZ
3332 err = -EINVAL;
3333 ctxn = pmu->task_ctx_nr;
3334 if (ctxn < 0)
3335 goto errout;
3336
4af57ef2
YZ
3337 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3338 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3339 if (!task_ctx_data) {
3340 err = -ENOMEM;
3341 goto errout;
3342 }
3343 }
3344
9ed6060d 3345retry:
8dc85d54 3346 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3347 if (ctx) {
211de6eb 3348 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3349 ++ctx->pin_count;
4af57ef2
YZ
3350
3351 if (task_ctx_data && !ctx->task_ctx_data) {
3352 ctx->task_ctx_data = task_ctx_data;
3353 task_ctx_data = NULL;
3354 }
e625cce1 3355 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3356
3357 if (clone_ctx)
3358 put_ctx(clone_ctx);
9137fb28 3359 } else {
eb184479 3360 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3361 err = -ENOMEM;
3362 if (!ctx)
3363 goto errout;
eb184479 3364
4af57ef2
YZ
3365 if (task_ctx_data) {
3366 ctx->task_ctx_data = task_ctx_data;
3367 task_ctx_data = NULL;
3368 }
3369
dbe08d82
ON
3370 err = 0;
3371 mutex_lock(&task->perf_event_mutex);
3372 /*
3373 * If it has already passed perf_event_exit_task().
3374 * we must see PF_EXITING, it takes this mutex too.
3375 */
3376 if (task->flags & PF_EXITING)
3377 err = -ESRCH;
3378 else if (task->perf_event_ctxp[ctxn])
3379 err = -EAGAIN;
fe4b04fa 3380 else {
9137fb28 3381 get_ctx(ctx);
fe4b04fa 3382 ++ctx->pin_count;
dbe08d82 3383 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3384 }
dbe08d82
ON
3385 mutex_unlock(&task->perf_event_mutex);
3386
3387 if (unlikely(err)) {
9137fb28 3388 put_ctx(ctx);
dbe08d82
ON
3389
3390 if (err == -EAGAIN)
3391 goto retry;
3392 goto errout;
a63eaf34
PM
3393 }
3394 }
3395
4af57ef2 3396 kfree(task_ctx_data);
0793a61d 3397 return ctx;
c93f7669 3398
9ed6060d 3399errout:
4af57ef2 3400 kfree(task_ctx_data);
c93f7669 3401 return ERR_PTR(err);
0793a61d
TG
3402}
3403
6fb2915d
LZ
3404static void perf_event_free_filter(struct perf_event *event);
3405
cdd6c482 3406static void free_event_rcu(struct rcu_head *head)
592903cd 3407{
cdd6c482 3408 struct perf_event *event;
592903cd 3409
cdd6c482
IM
3410 event = container_of(head, struct perf_event, rcu_head);
3411 if (event->ns)
3412 put_pid_ns(event->ns);
6fb2915d 3413 perf_event_free_filter(event);
cdd6c482 3414 kfree(event);
592903cd
PZ
3415}
3416
76369139 3417static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3418static void ring_buffer_attach(struct perf_event *event,
3419 struct ring_buffer *rb);
925d519a 3420
4beb31f3 3421static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3422{
4beb31f3
FW
3423 if (event->parent)
3424 return;
3425
4beb31f3
FW
3426 if (is_cgroup_event(event))
3427 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3428}
925d519a 3429
4beb31f3
FW
3430static void unaccount_event(struct perf_event *event)
3431{
3432 if (event->parent)
3433 return;
3434
3435 if (event->attach_state & PERF_ATTACH_TASK)
3436 static_key_slow_dec_deferred(&perf_sched_events);
3437 if (event->attr.mmap || event->attr.mmap_data)
3438 atomic_dec(&nr_mmap_events);
3439 if (event->attr.comm)
3440 atomic_dec(&nr_comm_events);
3441 if (event->attr.task)
3442 atomic_dec(&nr_task_events);
948b26b6
FW
3443 if (event->attr.freq)
3444 atomic_dec(&nr_freq_events);
4beb31f3
FW
3445 if (is_cgroup_event(event))
3446 static_key_slow_dec_deferred(&perf_sched_events);
3447 if (has_branch_stack(event))
3448 static_key_slow_dec_deferred(&perf_sched_events);
3449
3450 unaccount_event_cpu(event, event->cpu);
3451}
925d519a 3452
766d6c07
FW
3453static void __free_event(struct perf_event *event)
3454{
cdd6c482 3455 if (!event->parent) {
927c7a9e
FW
3456 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3457 put_callchain_buffers();
f344011c 3458 }
9ee318a7 3459
766d6c07
FW
3460 if (event->destroy)
3461 event->destroy(event);
3462
3463 if (event->ctx)
3464 put_ctx(event->ctx);
3465
c464c76e
YZ
3466 if (event->pmu)
3467 module_put(event->pmu->module);
3468
766d6c07
FW
3469 call_rcu(&event->rcu_head, free_event_rcu);
3470}
683ede43
PZ
3471
3472static void _free_event(struct perf_event *event)
f1600952 3473{
e360adbe 3474 irq_work_sync(&event->pending);
925d519a 3475
4beb31f3 3476 unaccount_event(event);
9ee318a7 3477
76369139 3478 if (event->rb) {
9bb5d40c
PZ
3479 /*
3480 * Can happen when we close an event with re-directed output.
3481 *
3482 * Since we have a 0 refcount, perf_mmap_close() will skip
3483 * over us; possibly making our ring_buffer_put() the last.
3484 */
3485 mutex_lock(&event->mmap_mutex);
b69cf536 3486 ring_buffer_attach(event, NULL);
9bb5d40c 3487 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3488 }
3489
e5d1367f
SE
3490 if (is_cgroup_event(event))
3491 perf_detach_cgroup(event);
3492
766d6c07 3493 __free_event(event);
f1600952
PZ
3494}
3495
683ede43
PZ
3496/*
3497 * Used to free events which have a known refcount of 1, such as in error paths
3498 * where the event isn't exposed yet and inherited events.
3499 */
3500static void free_event(struct perf_event *event)
0793a61d 3501{
683ede43
PZ
3502 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3503 "unexpected event refcount: %ld; ptr=%p\n",
3504 atomic_long_read(&event->refcount), event)) {
3505 /* leak to avoid use-after-free */
3506 return;
3507 }
0793a61d 3508
683ede43 3509 _free_event(event);
0793a61d
TG
3510}
3511
a66a3052 3512/*
f8697762 3513 * Remove user event from the owner task.
a66a3052 3514 */
f8697762 3515static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3516{
8882135b 3517 struct task_struct *owner;
fb0459d7 3518
8882135b
PZ
3519 rcu_read_lock();
3520 owner = ACCESS_ONCE(event->owner);
3521 /*
3522 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3523 * !owner it means the list deletion is complete and we can indeed
3524 * free this event, otherwise we need to serialize on
3525 * owner->perf_event_mutex.
3526 */
3527 smp_read_barrier_depends();
3528 if (owner) {
3529 /*
3530 * Since delayed_put_task_struct() also drops the last
3531 * task reference we can safely take a new reference
3532 * while holding the rcu_read_lock().
3533 */
3534 get_task_struct(owner);
3535 }
3536 rcu_read_unlock();
3537
3538 if (owner) {
f63a8daa
PZ
3539 /*
3540 * If we're here through perf_event_exit_task() we're already
3541 * holding ctx->mutex which would be an inversion wrt. the
3542 * normal lock order.
3543 *
3544 * However we can safely take this lock because its the child
3545 * ctx->mutex.
3546 */
3547 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3548
8882135b
PZ
3549 /*
3550 * We have to re-check the event->owner field, if it is cleared
3551 * we raced with perf_event_exit_task(), acquiring the mutex
3552 * ensured they're done, and we can proceed with freeing the
3553 * event.
3554 */
3555 if (event->owner)
3556 list_del_init(&event->owner_entry);
3557 mutex_unlock(&owner->perf_event_mutex);
3558 put_task_struct(owner);
3559 }
f8697762
JO
3560}
3561
3562/*
3563 * Called when the last reference to the file is gone.
3564 */
3565static void put_event(struct perf_event *event)
3566{
a83fe28e 3567 struct perf_event_context *ctx;
f8697762
JO
3568
3569 if (!atomic_long_dec_and_test(&event->refcount))
3570 return;
3571
3572 if (!is_kernel_event(event))
3573 perf_remove_from_owner(event);
8882135b 3574
683ede43
PZ
3575 /*
3576 * There are two ways this annotation is useful:
3577 *
3578 * 1) there is a lock recursion from perf_event_exit_task
3579 * see the comment there.
3580 *
3581 * 2) there is a lock-inversion with mmap_sem through
3582 * perf_event_read_group(), which takes faults while
3583 * holding ctx->mutex, however this is called after
3584 * the last filedesc died, so there is no possibility
3585 * to trigger the AB-BA case.
3586 */
a83fe28e
PZ
3587 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3588 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3589 perf_remove_from_context(event, true);
d415a7f1 3590 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3591
3592 _free_event(event);
a6fa941d
AV
3593}
3594
683ede43
PZ
3595int perf_event_release_kernel(struct perf_event *event)
3596{
3597 put_event(event);
3598 return 0;
3599}
3600EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3601
a6fa941d
AV
3602static int perf_release(struct inode *inode, struct file *file)
3603{
3604 put_event(file->private_data);
3605 return 0;
fb0459d7 3606}
fb0459d7 3607
fadfe7be
JO
3608/*
3609 * Remove all orphanes events from the context.
3610 */
3611static void orphans_remove_work(struct work_struct *work)
3612{
3613 struct perf_event_context *ctx;
3614 struct perf_event *event, *tmp;
3615
3616 ctx = container_of(work, struct perf_event_context,
3617 orphans_remove.work);
3618
3619 mutex_lock(&ctx->mutex);
3620 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3621 struct perf_event *parent_event = event->parent;
3622
3623 if (!is_orphaned_child(event))
3624 continue;
3625
3626 perf_remove_from_context(event, true);
3627
3628 mutex_lock(&parent_event->child_mutex);
3629 list_del_init(&event->child_list);
3630 mutex_unlock(&parent_event->child_mutex);
3631
3632 free_event(event);
3633 put_event(parent_event);
3634 }
3635
3636 raw_spin_lock_irq(&ctx->lock);
3637 ctx->orphans_remove_sched = false;
3638 raw_spin_unlock_irq(&ctx->lock);
3639 mutex_unlock(&ctx->mutex);
3640
3641 put_ctx(ctx);
3642}
3643
59ed446f 3644u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3645{
cdd6c482 3646 struct perf_event *child;
e53c0994
PZ
3647 u64 total = 0;
3648
59ed446f
PZ
3649 *enabled = 0;
3650 *running = 0;
3651
6f10581a 3652 mutex_lock(&event->child_mutex);
cdd6c482 3653 total += perf_event_read(event);
59ed446f
PZ
3654 *enabled += event->total_time_enabled +
3655 atomic64_read(&event->child_total_time_enabled);
3656 *running += event->total_time_running +
3657 atomic64_read(&event->child_total_time_running);
3658
3659 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3660 total += perf_event_read(child);
59ed446f
PZ
3661 *enabled += child->total_time_enabled;
3662 *running += child->total_time_running;
3663 }
6f10581a 3664 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3665
3666 return total;
3667}
fb0459d7 3668EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3669
cdd6c482 3670static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3671 u64 read_format, char __user *buf)
3672{
cdd6c482 3673 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3674 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3675 int n = 0, size = 0, ret;
59ed446f 3676 u64 count, enabled, running;
f63a8daa
PZ
3677 u64 values[5];
3678
3679 lockdep_assert_held(&ctx->mutex);
abf4868b 3680
59ed446f 3681 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3682
3683 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3684 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3685 values[n++] = enabled;
3686 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3687 values[n++] = running;
abf4868b
PZ
3688 values[n++] = count;
3689 if (read_format & PERF_FORMAT_ID)
3690 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3691
3692 size = n * sizeof(u64);
3693
3694 if (copy_to_user(buf, values, size))
f63a8daa 3695 return -EFAULT;
3dab77fb 3696
6f10581a 3697 ret = size;
3dab77fb 3698
65abc865 3699 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3700 n = 0;
3dab77fb 3701
59ed446f 3702 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3703 if (read_format & PERF_FORMAT_ID)
3704 values[n++] = primary_event_id(sub);
3705
3706 size = n * sizeof(u64);
3707
184d3da8 3708 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3709 return -EFAULT;
6f10581a 3710 }
abf4868b
PZ
3711
3712 ret += size;
3dab77fb
PZ
3713 }
3714
abf4868b 3715 return ret;
3dab77fb
PZ
3716}
3717
cdd6c482 3718static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3719 u64 read_format, char __user *buf)
3720{
59ed446f 3721 u64 enabled, running;
3dab77fb
PZ
3722 u64 values[4];
3723 int n = 0;
3724
59ed446f
PZ
3725 values[n++] = perf_event_read_value(event, &enabled, &running);
3726 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3727 values[n++] = enabled;
3728 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3729 values[n++] = running;
3dab77fb 3730 if (read_format & PERF_FORMAT_ID)
cdd6c482 3731 values[n++] = primary_event_id(event);
3dab77fb
PZ
3732
3733 if (copy_to_user(buf, values, n * sizeof(u64)))
3734 return -EFAULT;
3735
3736 return n * sizeof(u64);
3737}
3738
dc633982
JO
3739static bool is_event_hup(struct perf_event *event)
3740{
3741 bool no_children;
3742
3743 if (event->state != PERF_EVENT_STATE_EXIT)
3744 return false;
3745
3746 mutex_lock(&event->child_mutex);
3747 no_children = list_empty(&event->child_list);
3748 mutex_unlock(&event->child_mutex);
3749 return no_children;
3750}
3751
0793a61d 3752/*
cdd6c482 3753 * Read the performance event - simple non blocking version for now
0793a61d
TG
3754 */
3755static ssize_t
cdd6c482 3756perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3757{
cdd6c482 3758 u64 read_format = event->attr.read_format;
3dab77fb 3759 int ret;
0793a61d 3760
3b6f9e5c 3761 /*
cdd6c482 3762 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3763 * error state (i.e. because it was pinned but it couldn't be
3764 * scheduled on to the CPU at some point).
3765 */
cdd6c482 3766 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3767 return 0;
3768
c320c7b7 3769 if (count < event->read_size)
3dab77fb
PZ
3770 return -ENOSPC;
3771
cdd6c482 3772 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3773 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3774 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3775 else
cdd6c482 3776 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3777
3dab77fb 3778 return ret;
0793a61d
TG
3779}
3780
0793a61d
TG
3781static ssize_t
3782perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3783{
cdd6c482 3784 struct perf_event *event = file->private_data;
f63a8daa
PZ
3785 struct perf_event_context *ctx;
3786 int ret;
0793a61d 3787
f63a8daa
PZ
3788 ctx = perf_event_ctx_lock(event);
3789 ret = perf_read_hw(event, buf, count);
3790 perf_event_ctx_unlock(event, ctx);
3791
3792 return ret;
0793a61d
TG
3793}
3794
3795static unsigned int perf_poll(struct file *file, poll_table *wait)
3796{
cdd6c482 3797 struct perf_event *event = file->private_data;
76369139 3798 struct ring_buffer *rb;
61b67684 3799 unsigned int events = POLLHUP;
c7138f37 3800
e708d7ad 3801 poll_wait(file, &event->waitq, wait);
179033b3 3802
dc633982 3803 if (is_event_hup(event))
179033b3 3804 return events;
c7138f37 3805
10c6db11 3806 /*
9bb5d40c
PZ
3807 * Pin the event->rb by taking event->mmap_mutex; otherwise
3808 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3809 */
3810 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3811 rb = event->rb;
3812 if (rb)
76369139 3813 events = atomic_xchg(&rb->poll, 0);
10c6db11 3814 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3815 return events;
3816}
3817
f63a8daa 3818static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3819{
cdd6c482 3820 (void)perf_event_read(event);
e7850595 3821 local64_set(&event->count, 0);
cdd6c482 3822 perf_event_update_userpage(event);
3df5edad
PZ
3823}
3824
c93f7669 3825/*
cdd6c482
IM
3826 * Holding the top-level event's child_mutex means that any
3827 * descendant process that has inherited this event will block
3828 * in sync_child_event if it goes to exit, thus satisfying the
3829 * task existence requirements of perf_event_enable/disable.
c93f7669 3830 */
cdd6c482
IM
3831static void perf_event_for_each_child(struct perf_event *event,
3832 void (*func)(struct perf_event *))
3df5edad 3833{
cdd6c482 3834 struct perf_event *child;
3df5edad 3835
cdd6c482 3836 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3837
cdd6c482
IM
3838 mutex_lock(&event->child_mutex);
3839 func(event);
3840 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3841 func(child);
cdd6c482 3842 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3843}
3844
cdd6c482
IM
3845static void perf_event_for_each(struct perf_event *event,
3846 void (*func)(struct perf_event *))
3df5edad 3847{
cdd6c482
IM
3848 struct perf_event_context *ctx = event->ctx;
3849 struct perf_event *sibling;
3df5edad 3850
f63a8daa
PZ
3851 lockdep_assert_held(&ctx->mutex);
3852
cdd6c482 3853 event = event->group_leader;
75f937f2 3854
cdd6c482 3855 perf_event_for_each_child(event, func);
cdd6c482 3856 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3857 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3858}
3859
cdd6c482 3860static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3861{
cdd6c482 3862 struct perf_event_context *ctx = event->ctx;
bad7192b 3863 int ret = 0, active;
08247e31
PZ
3864 u64 value;
3865
6c7e550f 3866 if (!is_sampling_event(event))
08247e31
PZ
3867 return -EINVAL;
3868
ad0cf347 3869 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3870 return -EFAULT;
3871
3872 if (!value)
3873 return -EINVAL;
3874
e625cce1 3875 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3876 if (event->attr.freq) {
3877 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3878 ret = -EINVAL;
3879 goto unlock;
3880 }
3881
cdd6c482 3882 event->attr.sample_freq = value;
08247e31 3883 } else {
cdd6c482
IM
3884 event->attr.sample_period = value;
3885 event->hw.sample_period = value;
08247e31 3886 }
bad7192b
PZ
3887
3888 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3889 if (active) {
3890 perf_pmu_disable(ctx->pmu);
3891 event->pmu->stop(event, PERF_EF_UPDATE);
3892 }
3893
3894 local64_set(&event->hw.period_left, 0);
3895
3896 if (active) {
3897 event->pmu->start(event, PERF_EF_RELOAD);
3898 perf_pmu_enable(ctx->pmu);
3899 }
3900
08247e31 3901unlock:
e625cce1 3902 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3903
3904 return ret;
3905}
3906
ac9721f3
PZ
3907static const struct file_operations perf_fops;
3908
2903ff01 3909static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3910{
2903ff01
AV
3911 struct fd f = fdget(fd);
3912 if (!f.file)
3913 return -EBADF;
ac9721f3 3914
2903ff01
AV
3915 if (f.file->f_op != &perf_fops) {
3916 fdput(f);
3917 return -EBADF;
ac9721f3 3918 }
2903ff01
AV
3919 *p = f;
3920 return 0;
ac9721f3
PZ
3921}
3922
3923static int perf_event_set_output(struct perf_event *event,
3924 struct perf_event *output_event);
6fb2915d 3925static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3926
f63a8daa 3927static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3928{
cdd6c482 3929 void (*func)(struct perf_event *);
3df5edad 3930 u32 flags = arg;
d859e29f
PM
3931
3932 switch (cmd) {
cdd6c482 3933 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3934 func = _perf_event_enable;
d859e29f 3935 break;
cdd6c482 3936 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3937 func = _perf_event_disable;
79f14641 3938 break;
cdd6c482 3939 case PERF_EVENT_IOC_RESET:
f63a8daa 3940 func = _perf_event_reset;
6de6a7b9 3941 break;
3df5edad 3942
cdd6c482 3943 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3944 return _perf_event_refresh(event, arg);
08247e31 3945
cdd6c482
IM
3946 case PERF_EVENT_IOC_PERIOD:
3947 return perf_event_period(event, (u64 __user *)arg);
08247e31 3948
cf4957f1
JO
3949 case PERF_EVENT_IOC_ID:
3950 {
3951 u64 id = primary_event_id(event);
3952
3953 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3954 return -EFAULT;
3955 return 0;
3956 }
3957
cdd6c482 3958 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3959 {
ac9721f3 3960 int ret;
ac9721f3 3961 if (arg != -1) {
2903ff01
AV
3962 struct perf_event *output_event;
3963 struct fd output;
3964 ret = perf_fget_light(arg, &output);
3965 if (ret)
3966 return ret;
3967 output_event = output.file->private_data;
3968 ret = perf_event_set_output(event, output_event);
3969 fdput(output);
3970 } else {
3971 ret = perf_event_set_output(event, NULL);
ac9721f3 3972 }
ac9721f3
PZ
3973 return ret;
3974 }
a4be7c27 3975
6fb2915d
LZ
3976 case PERF_EVENT_IOC_SET_FILTER:
3977 return perf_event_set_filter(event, (void __user *)arg);
3978
d859e29f 3979 default:
3df5edad 3980 return -ENOTTY;
d859e29f 3981 }
3df5edad
PZ
3982
3983 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3984 perf_event_for_each(event, func);
3df5edad 3985 else
cdd6c482 3986 perf_event_for_each_child(event, func);
3df5edad
PZ
3987
3988 return 0;
d859e29f
PM
3989}
3990
f63a8daa
PZ
3991static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3992{
3993 struct perf_event *event = file->private_data;
3994 struct perf_event_context *ctx;
3995 long ret;
3996
3997 ctx = perf_event_ctx_lock(event);
3998 ret = _perf_ioctl(event, cmd, arg);
3999 perf_event_ctx_unlock(event, ctx);
4000
4001 return ret;
4002}
4003
b3f20785
PM
4004#ifdef CONFIG_COMPAT
4005static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4006 unsigned long arg)
4007{
4008 switch (_IOC_NR(cmd)) {
4009 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4010 case _IOC_NR(PERF_EVENT_IOC_ID):
4011 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4012 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4013 cmd &= ~IOCSIZE_MASK;
4014 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4015 }
4016 break;
4017 }
4018 return perf_ioctl(file, cmd, arg);
4019}
4020#else
4021# define perf_compat_ioctl NULL
4022#endif
4023
cdd6c482 4024int perf_event_task_enable(void)
771d7cde 4025{
f63a8daa 4026 struct perf_event_context *ctx;
cdd6c482 4027 struct perf_event *event;
771d7cde 4028
cdd6c482 4029 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4030 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4031 ctx = perf_event_ctx_lock(event);
4032 perf_event_for_each_child(event, _perf_event_enable);
4033 perf_event_ctx_unlock(event, ctx);
4034 }
cdd6c482 4035 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4036
4037 return 0;
4038}
4039
cdd6c482 4040int perf_event_task_disable(void)
771d7cde 4041{
f63a8daa 4042 struct perf_event_context *ctx;
cdd6c482 4043 struct perf_event *event;
771d7cde 4044
cdd6c482 4045 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4046 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4047 ctx = perf_event_ctx_lock(event);
4048 perf_event_for_each_child(event, _perf_event_disable);
4049 perf_event_ctx_unlock(event, ctx);
4050 }
cdd6c482 4051 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4052
4053 return 0;
4054}
4055
cdd6c482 4056static int perf_event_index(struct perf_event *event)
194002b2 4057{
a4eaf7f1
PZ
4058 if (event->hw.state & PERF_HES_STOPPED)
4059 return 0;
4060
cdd6c482 4061 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4062 return 0;
4063
35edc2a5 4064 return event->pmu->event_idx(event);
194002b2
PZ
4065}
4066
c4794295 4067static void calc_timer_values(struct perf_event *event,
e3f3541c 4068 u64 *now,
7f310a5d
EM
4069 u64 *enabled,
4070 u64 *running)
c4794295 4071{
e3f3541c 4072 u64 ctx_time;
c4794295 4073
e3f3541c
PZ
4074 *now = perf_clock();
4075 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4076 *enabled = ctx_time - event->tstamp_enabled;
4077 *running = ctx_time - event->tstamp_running;
4078}
4079
fa731587
PZ
4080static void perf_event_init_userpage(struct perf_event *event)
4081{
4082 struct perf_event_mmap_page *userpg;
4083 struct ring_buffer *rb;
4084
4085 rcu_read_lock();
4086 rb = rcu_dereference(event->rb);
4087 if (!rb)
4088 goto unlock;
4089
4090 userpg = rb->user_page;
4091
4092 /* Allow new userspace to detect that bit 0 is deprecated */
4093 userpg->cap_bit0_is_deprecated = 1;
4094 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4095
4096unlock:
4097 rcu_read_unlock();
4098}
4099
c1317ec2
AL
4100void __weak arch_perf_update_userpage(
4101 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4102{
4103}
4104
38ff667b
PZ
4105/*
4106 * Callers need to ensure there can be no nesting of this function, otherwise
4107 * the seqlock logic goes bad. We can not serialize this because the arch
4108 * code calls this from NMI context.
4109 */
cdd6c482 4110void perf_event_update_userpage(struct perf_event *event)
37d81828 4111{
cdd6c482 4112 struct perf_event_mmap_page *userpg;
76369139 4113 struct ring_buffer *rb;
e3f3541c 4114 u64 enabled, running, now;
38ff667b
PZ
4115
4116 rcu_read_lock();
5ec4c599
PZ
4117 rb = rcu_dereference(event->rb);
4118 if (!rb)
4119 goto unlock;
4120
0d641208
EM
4121 /*
4122 * compute total_time_enabled, total_time_running
4123 * based on snapshot values taken when the event
4124 * was last scheduled in.
4125 *
4126 * we cannot simply called update_context_time()
4127 * because of locking issue as we can be called in
4128 * NMI context
4129 */
e3f3541c 4130 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4131
76369139 4132 userpg = rb->user_page;
7b732a75
PZ
4133 /*
4134 * Disable preemption so as to not let the corresponding user-space
4135 * spin too long if we get preempted.
4136 */
4137 preempt_disable();
37d81828 4138 ++userpg->lock;
92f22a38 4139 barrier();
cdd6c482 4140 userpg->index = perf_event_index(event);
b5e58793 4141 userpg->offset = perf_event_count(event);
365a4038 4142 if (userpg->index)
e7850595 4143 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4144
0d641208 4145 userpg->time_enabled = enabled +
cdd6c482 4146 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4147
0d641208 4148 userpg->time_running = running +
cdd6c482 4149 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4150
c1317ec2 4151 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4152
92f22a38 4153 barrier();
37d81828 4154 ++userpg->lock;
7b732a75 4155 preempt_enable();
38ff667b 4156unlock:
7b732a75 4157 rcu_read_unlock();
37d81828
PM
4158}
4159
906010b2
PZ
4160static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4161{
4162 struct perf_event *event = vma->vm_file->private_data;
76369139 4163 struct ring_buffer *rb;
906010b2
PZ
4164 int ret = VM_FAULT_SIGBUS;
4165
4166 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4167 if (vmf->pgoff == 0)
4168 ret = 0;
4169 return ret;
4170 }
4171
4172 rcu_read_lock();
76369139
FW
4173 rb = rcu_dereference(event->rb);
4174 if (!rb)
906010b2
PZ
4175 goto unlock;
4176
4177 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4178 goto unlock;
4179
76369139 4180 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4181 if (!vmf->page)
4182 goto unlock;
4183
4184 get_page(vmf->page);
4185 vmf->page->mapping = vma->vm_file->f_mapping;
4186 vmf->page->index = vmf->pgoff;
4187
4188 ret = 0;
4189unlock:
4190 rcu_read_unlock();
4191
4192 return ret;
4193}
4194
10c6db11
PZ
4195static void ring_buffer_attach(struct perf_event *event,
4196 struct ring_buffer *rb)
4197{
b69cf536 4198 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4199 unsigned long flags;
4200
b69cf536
PZ
4201 if (event->rb) {
4202 /*
4203 * Should be impossible, we set this when removing
4204 * event->rb_entry and wait/clear when adding event->rb_entry.
4205 */
4206 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4207
b69cf536
PZ
4208 old_rb = event->rb;
4209 event->rcu_batches = get_state_synchronize_rcu();
4210 event->rcu_pending = 1;
10c6db11 4211
b69cf536
PZ
4212 spin_lock_irqsave(&old_rb->event_lock, flags);
4213 list_del_rcu(&event->rb_entry);
4214 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4215 }
10c6db11 4216
b69cf536
PZ
4217 if (event->rcu_pending && rb) {
4218 cond_synchronize_rcu(event->rcu_batches);
4219 event->rcu_pending = 0;
4220 }
10c6db11 4221
b69cf536
PZ
4222 if (rb) {
4223 spin_lock_irqsave(&rb->event_lock, flags);
4224 list_add_rcu(&event->rb_entry, &rb->event_list);
4225 spin_unlock_irqrestore(&rb->event_lock, flags);
4226 }
4227
4228 rcu_assign_pointer(event->rb, rb);
4229
4230 if (old_rb) {
4231 ring_buffer_put(old_rb);
4232 /*
4233 * Since we detached before setting the new rb, so that we
4234 * could attach the new rb, we could have missed a wakeup.
4235 * Provide it now.
4236 */
4237 wake_up_all(&event->waitq);
4238 }
10c6db11
PZ
4239}
4240
4241static void ring_buffer_wakeup(struct perf_event *event)
4242{
4243 struct ring_buffer *rb;
4244
4245 rcu_read_lock();
4246 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4247 if (rb) {
4248 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4249 wake_up_all(&event->waitq);
4250 }
10c6db11
PZ
4251 rcu_read_unlock();
4252}
4253
76369139 4254static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4255{
76369139 4256 struct ring_buffer *rb;
906010b2 4257
76369139
FW
4258 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4259 rb_free(rb);
7b732a75
PZ
4260}
4261
76369139 4262static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4263{
76369139 4264 struct ring_buffer *rb;
7b732a75 4265
ac9721f3 4266 rcu_read_lock();
76369139
FW
4267 rb = rcu_dereference(event->rb);
4268 if (rb) {
4269 if (!atomic_inc_not_zero(&rb->refcount))
4270 rb = NULL;
ac9721f3
PZ
4271 }
4272 rcu_read_unlock();
4273
76369139 4274 return rb;
ac9721f3
PZ
4275}
4276
76369139 4277static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4278{
76369139 4279 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4280 return;
7b732a75 4281
9bb5d40c 4282 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4283
76369139 4284 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4285}
4286
4287static void perf_mmap_open(struct vm_area_struct *vma)
4288{
cdd6c482 4289 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4290
cdd6c482 4291 atomic_inc(&event->mmap_count);
9bb5d40c 4292 atomic_inc(&event->rb->mmap_count);
1e0fb9ec
AL
4293
4294 if (event->pmu->event_mapped)
4295 event->pmu->event_mapped(event);
7b732a75
PZ
4296}
4297
9bb5d40c
PZ
4298/*
4299 * A buffer can be mmap()ed multiple times; either directly through the same
4300 * event, or through other events by use of perf_event_set_output().
4301 *
4302 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4303 * the buffer here, where we still have a VM context. This means we need
4304 * to detach all events redirecting to us.
4305 */
7b732a75
PZ
4306static void perf_mmap_close(struct vm_area_struct *vma)
4307{
cdd6c482 4308 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4309
b69cf536 4310 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4311 struct user_struct *mmap_user = rb->mmap_user;
4312 int mmap_locked = rb->mmap_locked;
4313 unsigned long size = perf_data_size(rb);
789f90fc 4314
1e0fb9ec
AL
4315 if (event->pmu->event_unmapped)
4316 event->pmu->event_unmapped(event);
4317
9bb5d40c
PZ
4318 atomic_dec(&rb->mmap_count);
4319
4320 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4321 goto out_put;
9bb5d40c 4322
b69cf536 4323 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4324 mutex_unlock(&event->mmap_mutex);
4325
4326 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4327 if (atomic_read(&rb->mmap_count))
4328 goto out_put;
ac9721f3 4329
9bb5d40c
PZ
4330 /*
4331 * No other mmap()s, detach from all other events that might redirect
4332 * into the now unreachable buffer. Somewhat complicated by the
4333 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4334 */
4335again:
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4338 if (!atomic_long_inc_not_zero(&event->refcount)) {
4339 /*
4340 * This event is en-route to free_event() which will
4341 * detach it and remove it from the list.
4342 */
4343 continue;
4344 }
4345 rcu_read_unlock();
789f90fc 4346
9bb5d40c
PZ
4347 mutex_lock(&event->mmap_mutex);
4348 /*
4349 * Check we didn't race with perf_event_set_output() which can
4350 * swizzle the rb from under us while we were waiting to
4351 * acquire mmap_mutex.
4352 *
4353 * If we find a different rb; ignore this event, a next
4354 * iteration will no longer find it on the list. We have to
4355 * still restart the iteration to make sure we're not now
4356 * iterating the wrong list.
4357 */
b69cf536
PZ
4358 if (event->rb == rb)
4359 ring_buffer_attach(event, NULL);
4360
cdd6c482 4361 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4362 put_event(event);
ac9721f3 4363
9bb5d40c
PZ
4364 /*
4365 * Restart the iteration; either we're on the wrong list or
4366 * destroyed its integrity by doing a deletion.
4367 */
4368 goto again;
7b732a75 4369 }
9bb5d40c
PZ
4370 rcu_read_unlock();
4371
4372 /*
4373 * It could be there's still a few 0-ref events on the list; they'll
4374 * get cleaned up by free_event() -- they'll also still have their
4375 * ref on the rb and will free it whenever they are done with it.
4376 *
4377 * Aside from that, this buffer is 'fully' detached and unmapped,
4378 * undo the VM accounting.
4379 */
4380
4381 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4382 vma->vm_mm->pinned_vm -= mmap_locked;
4383 free_uid(mmap_user);
4384
b69cf536 4385out_put:
9bb5d40c 4386 ring_buffer_put(rb); /* could be last */
37d81828
PM
4387}
4388
f0f37e2f 4389static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4390 .open = perf_mmap_open,
4391 .close = perf_mmap_close,
4392 .fault = perf_mmap_fault,
4393 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4394};
4395
4396static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4397{
cdd6c482 4398 struct perf_event *event = file->private_data;
22a4f650 4399 unsigned long user_locked, user_lock_limit;
789f90fc 4400 struct user_struct *user = current_user();
22a4f650 4401 unsigned long locked, lock_limit;
76369139 4402 struct ring_buffer *rb;
7b732a75
PZ
4403 unsigned long vma_size;
4404 unsigned long nr_pages;
789f90fc 4405 long user_extra, extra;
d57e34fd 4406 int ret = 0, flags = 0;
37d81828 4407
c7920614
PZ
4408 /*
4409 * Don't allow mmap() of inherited per-task counters. This would
4410 * create a performance issue due to all children writing to the
76369139 4411 * same rb.
c7920614
PZ
4412 */
4413 if (event->cpu == -1 && event->attr.inherit)
4414 return -EINVAL;
4415
43a21ea8 4416 if (!(vma->vm_flags & VM_SHARED))
37d81828 4417 return -EINVAL;
7b732a75
PZ
4418
4419 vma_size = vma->vm_end - vma->vm_start;
4420 nr_pages = (vma_size / PAGE_SIZE) - 1;
4421
7730d865 4422 /*
76369139 4423 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4424 * can do bitmasks instead of modulo.
4425 */
2ed11312 4426 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4427 return -EINVAL;
4428
7b732a75 4429 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4430 return -EINVAL;
4431
7b732a75
PZ
4432 if (vma->vm_pgoff != 0)
4433 return -EINVAL;
37d81828 4434
cdd6c482 4435 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4436again:
cdd6c482 4437 mutex_lock(&event->mmap_mutex);
76369139 4438 if (event->rb) {
9bb5d40c 4439 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4440 ret = -EINVAL;
9bb5d40c
PZ
4441 goto unlock;
4442 }
4443
4444 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4445 /*
4446 * Raced against perf_mmap_close() through
4447 * perf_event_set_output(). Try again, hope for better
4448 * luck.
4449 */
4450 mutex_unlock(&event->mmap_mutex);
4451 goto again;
4452 }
4453
ebb3c4c4
PZ
4454 goto unlock;
4455 }
4456
789f90fc 4457 user_extra = nr_pages + 1;
cdd6c482 4458 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4459
4460 /*
4461 * Increase the limit linearly with more CPUs:
4462 */
4463 user_lock_limit *= num_online_cpus();
4464
789f90fc 4465 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4466
789f90fc
PZ
4467 extra = 0;
4468 if (user_locked > user_lock_limit)
4469 extra = user_locked - user_lock_limit;
7b732a75 4470
78d7d407 4471 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4472 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4473 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4474
459ec28a
IM
4475 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4476 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4477 ret = -EPERM;
4478 goto unlock;
4479 }
7b732a75 4480
76369139 4481 WARN_ON(event->rb);
906010b2 4482
d57e34fd 4483 if (vma->vm_flags & VM_WRITE)
76369139 4484 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4485
4ec8363d
VW
4486 rb = rb_alloc(nr_pages,
4487 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4488 event->cpu, flags);
4489
76369139 4490 if (!rb) {
ac9721f3 4491 ret = -ENOMEM;
ebb3c4c4 4492 goto unlock;
ac9721f3 4493 }
26cb63ad 4494
9bb5d40c 4495 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4496 rb->mmap_locked = extra;
4497 rb->mmap_user = get_current_user();
43a21ea8 4498
ac9721f3 4499 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4500 vma->vm_mm->pinned_vm += extra;
4501
9bb5d40c 4502 ring_buffer_attach(event, rb);
ac9721f3 4503
fa731587 4504 perf_event_init_userpage(event);
9a0f05cb
PZ
4505 perf_event_update_userpage(event);
4506
ebb3c4c4 4507unlock:
ac9721f3
PZ
4508 if (!ret)
4509 atomic_inc(&event->mmap_count);
cdd6c482 4510 mutex_unlock(&event->mmap_mutex);
37d81828 4511
9bb5d40c
PZ
4512 /*
4513 * Since pinned accounting is per vm we cannot allow fork() to copy our
4514 * vma.
4515 */
26cb63ad 4516 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4517 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4518
1e0fb9ec
AL
4519 if (event->pmu->event_mapped)
4520 event->pmu->event_mapped(event);
4521
7b732a75 4522 return ret;
37d81828
PM
4523}
4524
3c446b3d
PZ
4525static int perf_fasync(int fd, struct file *filp, int on)
4526{
496ad9aa 4527 struct inode *inode = file_inode(filp);
cdd6c482 4528 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4529 int retval;
4530
4531 mutex_lock(&inode->i_mutex);
cdd6c482 4532 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4533 mutex_unlock(&inode->i_mutex);
4534
4535 if (retval < 0)
4536 return retval;
4537
4538 return 0;
4539}
4540
0793a61d 4541static const struct file_operations perf_fops = {
3326c1ce 4542 .llseek = no_llseek,
0793a61d
TG
4543 .release = perf_release,
4544 .read = perf_read,
4545 .poll = perf_poll,
d859e29f 4546 .unlocked_ioctl = perf_ioctl,
b3f20785 4547 .compat_ioctl = perf_compat_ioctl,
37d81828 4548 .mmap = perf_mmap,
3c446b3d 4549 .fasync = perf_fasync,
0793a61d
TG
4550};
4551
925d519a 4552/*
cdd6c482 4553 * Perf event wakeup
925d519a
PZ
4554 *
4555 * If there's data, ensure we set the poll() state and publish everything
4556 * to user-space before waking everybody up.
4557 */
4558
cdd6c482 4559void perf_event_wakeup(struct perf_event *event)
925d519a 4560{
10c6db11 4561 ring_buffer_wakeup(event);
4c9e2542 4562
cdd6c482
IM
4563 if (event->pending_kill) {
4564 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4565 event->pending_kill = 0;
4c9e2542 4566 }
925d519a
PZ
4567}
4568
e360adbe 4569static void perf_pending_event(struct irq_work *entry)
79f14641 4570{
cdd6c482
IM
4571 struct perf_event *event = container_of(entry,
4572 struct perf_event, pending);
d525211f
PZ
4573 int rctx;
4574
4575 rctx = perf_swevent_get_recursion_context();
4576 /*
4577 * If we 'fail' here, that's OK, it means recursion is already disabled
4578 * and we won't recurse 'further'.
4579 */
79f14641 4580
cdd6c482
IM
4581 if (event->pending_disable) {
4582 event->pending_disable = 0;
4583 __perf_event_disable(event);
79f14641
PZ
4584 }
4585
cdd6c482
IM
4586 if (event->pending_wakeup) {
4587 event->pending_wakeup = 0;
4588 perf_event_wakeup(event);
79f14641 4589 }
d525211f
PZ
4590
4591 if (rctx >= 0)
4592 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4593}
4594
39447b38
ZY
4595/*
4596 * We assume there is only KVM supporting the callbacks.
4597 * Later on, we might change it to a list if there is
4598 * another virtualization implementation supporting the callbacks.
4599 */
4600struct perf_guest_info_callbacks *perf_guest_cbs;
4601
4602int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4603{
4604 perf_guest_cbs = cbs;
4605 return 0;
4606}
4607EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4608
4609int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4610{
4611 perf_guest_cbs = NULL;
4612 return 0;
4613}
4614EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4615
4018994f
JO
4616static void
4617perf_output_sample_regs(struct perf_output_handle *handle,
4618 struct pt_regs *regs, u64 mask)
4619{
4620 int bit;
4621
4622 for_each_set_bit(bit, (const unsigned long *) &mask,
4623 sizeof(mask) * BITS_PER_BYTE) {
4624 u64 val;
4625
4626 val = perf_reg_value(regs, bit);
4627 perf_output_put(handle, val);
4628 }
4629}
4630
60e2364e 4631static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4632 struct pt_regs *regs,
4633 struct pt_regs *regs_user_copy)
4018994f 4634{
88a7c26a
AL
4635 if (user_mode(regs)) {
4636 regs_user->abi = perf_reg_abi(current);
2565711f 4637 regs_user->regs = regs;
88a7c26a
AL
4638 } else if (current->mm) {
4639 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4640 } else {
4641 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4642 regs_user->regs = NULL;
4018994f
JO
4643 }
4644}
4645
60e2364e
SE
4646static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4647 struct pt_regs *regs)
4648{
4649 regs_intr->regs = regs;
4650 regs_intr->abi = perf_reg_abi(current);
4651}
4652
4653
c5ebcedb
JO
4654/*
4655 * Get remaining task size from user stack pointer.
4656 *
4657 * It'd be better to take stack vma map and limit this more
4658 * precisly, but there's no way to get it safely under interrupt,
4659 * so using TASK_SIZE as limit.
4660 */
4661static u64 perf_ustack_task_size(struct pt_regs *regs)
4662{
4663 unsigned long addr = perf_user_stack_pointer(regs);
4664
4665 if (!addr || addr >= TASK_SIZE)
4666 return 0;
4667
4668 return TASK_SIZE - addr;
4669}
4670
4671static u16
4672perf_sample_ustack_size(u16 stack_size, u16 header_size,
4673 struct pt_regs *regs)
4674{
4675 u64 task_size;
4676
4677 /* No regs, no stack pointer, no dump. */
4678 if (!regs)
4679 return 0;
4680
4681 /*
4682 * Check if we fit in with the requested stack size into the:
4683 * - TASK_SIZE
4684 * If we don't, we limit the size to the TASK_SIZE.
4685 *
4686 * - remaining sample size
4687 * If we don't, we customize the stack size to
4688 * fit in to the remaining sample size.
4689 */
4690
4691 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4692 stack_size = min(stack_size, (u16) task_size);
4693
4694 /* Current header size plus static size and dynamic size. */
4695 header_size += 2 * sizeof(u64);
4696
4697 /* Do we fit in with the current stack dump size? */
4698 if ((u16) (header_size + stack_size) < header_size) {
4699 /*
4700 * If we overflow the maximum size for the sample,
4701 * we customize the stack dump size to fit in.
4702 */
4703 stack_size = USHRT_MAX - header_size - sizeof(u64);
4704 stack_size = round_up(stack_size, sizeof(u64));
4705 }
4706
4707 return stack_size;
4708}
4709
4710static void
4711perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4712 struct pt_regs *regs)
4713{
4714 /* Case of a kernel thread, nothing to dump */
4715 if (!regs) {
4716 u64 size = 0;
4717 perf_output_put(handle, size);
4718 } else {
4719 unsigned long sp;
4720 unsigned int rem;
4721 u64 dyn_size;
4722
4723 /*
4724 * We dump:
4725 * static size
4726 * - the size requested by user or the best one we can fit
4727 * in to the sample max size
4728 * data
4729 * - user stack dump data
4730 * dynamic size
4731 * - the actual dumped size
4732 */
4733
4734 /* Static size. */
4735 perf_output_put(handle, dump_size);
4736
4737 /* Data. */
4738 sp = perf_user_stack_pointer(regs);
4739 rem = __output_copy_user(handle, (void *) sp, dump_size);
4740 dyn_size = dump_size - rem;
4741
4742 perf_output_skip(handle, rem);
4743
4744 /* Dynamic size. */
4745 perf_output_put(handle, dyn_size);
4746 }
4747}
4748
c980d109
ACM
4749static void __perf_event_header__init_id(struct perf_event_header *header,
4750 struct perf_sample_data *data,
4751 struct perf_event *event)
6844c09d
ACM
4752{
4753 u64 sample_type = event->attr.sample_type;
4754
4755 data->type = sample_type;
4756 header->size += event->id_header_size;
4757
4758 if (sample_type & PERF_SAMPLE_TID) {
4759 /* namespace issues */
4760 data->tid_entry.pid = perf_event_pid(event, current);
4761 data->tid_entry.tid = perf_event_tid(event, current);
4762 }
4763
4764 if (sample_type & PERF_SAMPLE_TIME)
4765 data->time = perf_clock();
4766
ff3d527c 4767 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4768 data->id = primary_event_id(event);
4769
4770 if (sample_type & PERF_SAMPLE_STREAM_ID)
4771 data->stream_id = event->id;
4772
4773 if (sample_type & PERF_SAMPLE_CPU) {
4774 data->cpu_entry.cpu = raw_smp_processor_id();
4775 data->cpu_entry.reserved = 0;
4776 }
4777}
4778
76369139
FW
4779void perf_event_header__init_id(struct perf_event_header *header,
4780 struct perf_sample_data *data,
4781 struct perf_event *event)
c980d109
ACM
4782{
4783 if (event->attr.sample_id_all)
4784 __perf_event_header__init_id(header, data, event);
4785}
4786
4787static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4788 struct perf_sample_data *data)
4789{
4790 u64 sample_type = data->type;
4791
4792 if (sample_type & PERF_SAMPLE_TID)
4793 perf_output_put(handle, data->tid_entry);
4794
4795 if (sample_type & PERF_SAMPLE_TIME)
4796 perf_output_put(handle, data->time);
4797
4798 if (sample_type & PERF_SAMPLE_ID)
4799 perf_output_put(handle, data->id);
4800
4801 if (sample_type & PERF_SAMPLE_STREAM_ID)
4802 perf_output_put(handle, data->stream_id);
4803
4804 if (sample_type & PERF_SAMPLE_CPU)
4805 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4806
4807 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4808 perf_output_put(handle, data->id);
c980d109
ACM
4809}
4810
76369139
FW
4811void perf_event__output_id_sample(struct perf_event *event,
4812 struct perf_output_handle *handle,
4813 struct perf_sample_data *sample)
c980d109
ACM
4814{
4815 if (event->attr.sample_id_all)
4816 __perf_event__output_id_sample(handle, sample);
4817}
4818
3dab77fb 4819static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4820 struct perf_event *event,
4821 u64 enabled, u64 running)
3dab77fb 4822{
cdd6c482 4823 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4824 u64 values[4];
4825 int n = 0;
4826
b5e58793 4827 values[n++] = perf_event_count(event);
3dab77fb 4828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4829 values[n++] = enabled +
cdd6c482 4830 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4831 }
4832 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4833 values[n++] = running +
cdd6c482 4834 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4835 }
4836 if (read_format & PERF_FORMAT_ID)
cdd6c482 4837 values[n++] = primary_event_id(event);
3dab77fb 4838
76369139 4839 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4840}
4841
4842/*
cdd6c482 4843 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4844 */
4845static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4846 struct perf_event *event,
4847 u64 enabled, u64 running)
3dab77fb 4848{
cdd6c482
IM
4849 struct perf_event *leader = event->group_leader, *sub;
4850 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4851 u64 values[5];
4852 int n = 0;
4853
4854 values[n++] = 1 + leader->nr_siblings;
4855
4856 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4857 values[n++] = enabled;
3dab77fb
PZ
4858
4859 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4860 values[n++] = running;
3dab77fb 4861
cdd6c482 4862 if (leader != event)
3dab77fb
PZ
4863 leader->pmu->read(leader);
4864
b5e58793 4865 values[n++] = perf_event_count(leader);
3dab77fb 4866 if (read_format & PERF_FORMAT_ID)
cdd6c482 4867 values[n++] = primary_event_id(leader);
3dab77fb 4868
76369139 4869 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4870
65abc865 4871 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4872 n = 0;
4873
6f5ab001
JO
4874 if ((sub != event) &&
4875 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4876 sub->pmu->read(sub);
4877
b5e58793 4878 values[n++] = perf_event_count(sub);
3dab77fb 4879 if (read_format & PERF_FORMAT_ID)
cdd6c482 4880 values[n++] = primary_event_id(sub);
3dab77fb 4881
76369139 4882 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4883 }
4884}
4885
eed01528
SE
4886#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4887 PERF_FORMAT_TOTAL_TIME_RUNNING)
4888
3dab77fb 4889static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4890 struct perf_event *event)
3dab77fb 4891{
e3f3541c 4892 u64 enabled = 0, running = 0, now;
eed01528
SE
4893 u64 read_format = event->attr.read_format;
4894
4895 /*
4896 * compute total_time_enabled, total_time_running
4897 * based on snapshot values taken when the event
4898 * was last scheduled in.
4899 *
4900 * we cannot simply called update_context_time()
4901 * because of locking issue as we are called in
4902 * NMI context
4903 */
c4794295 4904 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4905 calc_timer_values(event, &now, &enabled, &running);
eed01528 4906
cdd6c482 4907 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4908 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4909 else
eed01528 4910 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4911}
4912
5622f295
MM
4913void perf_output_sample(struct perf_output_handle *handle,
4914 struct perf_event_header *header,
4915 struct perf_sample_data *data,
cdd6c482 4916 struct perf_event *event)
5622f295
MM
4917{
4918 u64 sample_type = data->type;
4919
4920 perf_output_put(handle, *header);
4921
ff3d527c
AH
4922 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4923 perf_output_put(handle, data->id);
4924
5622f295
MM
4925 if (sample_type & PERF_SAMPLE_IP)
4926 perf_output_put(handle, data->ip);
4927
4928 if (sample_type & PERF_SAMPLE_TID)
4929 perf_output_put(handle, data->tid_entry);
4930
4931 if (sample_type & PERF_SAMPLE_TIME)
4932 perf_output_put(handle, data->time);
4933
4934 if (sample_type & PERF_SAMPLE_ADDR)
4935 perf_output_put(handle, data->addr);
4936
4937 if (sample_type & PERF_SAMPLE_ID)
4938 perf_output_put(handle, data->id);
4939
4940 if (sample_type & PERF_SAMPLE_STREAM_ID)
4941 perf_output_put(handle, data->stream_id);
4942
4943 if (sample_type & PERF_SAMPLE_CPU)
4944 perf_output_put(handle, data->cpu_entry);
4945
4946 if (sample_type & PERF_SAMPLE_PERIOD)
4947 perf_output_put(handle, data->period);
4948
4949 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4950 perf_output_read(handle, event);
5622f295
MM
4951
4952 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4953 if (data->callchain) {
4954 int size = 1;
4955
4956 if (data->callchain)
4957 size += data->callchain->nr;
4958
4959 size *= sizeof(u64);
4960
76369139 4961 __output_copy(handle, data->callchain, size);
5622f295
MM
4962 } else {
4963 u64 nr = 0;
4964 perf_output_put(handle, nr);
4965 }
4966 }
4967
4968 if (sample_type & PERF_SAMPLE_RAW) {
4969 if (data->raw) {
4970 perf_output_put(handle, data->raw->size);
76369139
FW
4971 __output_copy(handle, data->raw->data,
4972 data->raw->size);
5622f295
MM
4973 } else {
4974 struct {
4975 u32 size;
4976 u32 data;
4977 } raw = {
4978 .size = sizeof(u32),
4979 .data = 0,
4980 };
4981 perf_output_put(handle, raw);
4982 }
4983 }
a7ac67ea 4984
bce38cd5
SE
4985 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4986 if (data->br_stack) {
4987 size_t size;
4988
4989 size = data->br_stack->nr
4990 * sizeof(struct perf_branch_entry);
4991
4992 perf_output_put(handle, data->br_stack->nr);
4993 perf_output_copy(handle, data->br_stack->entries, size);
4994 } else {
4995 /*
4996 * we always store at least the value of nr
4997 */
4998 u64 nr = 0;
4999 perf_output_put(handle, nr);
5000 }
5001 }
4018994f
JO
5002
5003 if (sample_type & PERF_SAMPLE_REGS_USER) {
5004 u64 abi = data->regs_user.abi;
5005
5006 /*
5007 * If there are no regs to dump, notice it through
5008 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5009 */
5010 perf_output_put(handle, abi);
5011
5012 if (abi) {
5013 u64 mask = event->attr.sample_regs_user;
5014 perf_output_sample_regs(handle,
5015 data->regs_user.regs,
5016 mask);
5017 }
5018 }
c5ebcedb 5019
a5cdd40c 5020 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5021 perf_output_sample_ustack(handle,
5022 data->stack_user_size,
5023 data->regs_user.regs);
a5cdd40c 5024 }
c3feedf2
AK
5025
5026 if (sample_type & PERF_SAMPLE_WEIGHT)
5027 perf_output_put(handle, data->weight);
d6be9ad6
SE
5028
5029 if (sample_type & PERF_SAMPLE_DATA_SRC)
5030 perf_output_put(handle, data->data_src.val);
a5cdd40c 5031
fdfbbd07
AK
5032 if (sample_type & PERF_SAMPLE_TRANSACTION)
5033 perf_output_put(handle, data->txn);
5034
60e2364e
SE
5035 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5036 u64 abi = data->regs_intr.abi;
5037 /*
5038 * If there are no regs to dump, notice it through
5039 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5040 */
5041 perf_output_put(handle, abi);
5042
5043 if (abi) {
5044 u64 mask = event->attr.sample_regs_intr;
5045
5046 perf_output_sample_regs(handle,
5047 data->regs_intr.regs,
5048 mask);
5049 }
5050 }
5051
a5cdd40c
PZ
5052 if (!event->attr.watermark) {
5053 int wakeup_events = event->attr.wakeup_events;
5054
5055 if (wakeup_events) {
5056 struct ring_buffer *rb = handle->rb;
5057 int events = local_inc_return(&rb->events);
5058
5059 if (events >= wakeup_events) {
5060 local_sub(wakeup_events, &rb->events);
5061 local_inc(&rb->wakeup);
5062 }
5063 }
5064 }
5622f295
MM
5065}
5066
5067void perf_prepare_sample(struct perf_event_header *header,
5068 struct perf_sample_data *data,
cdd6c482 5069 struct perf_event *event,
5622f295 5070 struct pt_regs *regs)
7b732a75 5071{
cdd6c482 5072 u64 sample_type = event->attr.sample_type;
7b732a75 5073
cdd6c482 5074 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5075 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5076
5077 header->misc = 0;
5078 header->misc |= perf_misc_flags(regs);
6fab0192 5079
c980d109 5080 __perf_event_header__init_id(header, data, event);
6844c09d 5081
c320c7b7 5082 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5083 data->ip = perf_instruction_pointer(regs);
5084
b23f3325 5085 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5086 int size = 1;
394ee076 5087
e6dab5ff 5088 data->callchain = perf_callchain(event, regs);
5622f295
MM
5089
5090 if (data->callchain)
5091 size += data->callchain->nr;
5092
5093 header->size += size * sizeof(u64);
394ee076
PZ
5094 }
5095
3a43ce68 5096 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5097 int size = sizeof(u32);
5098
5099 if (data->raw)
5100 size += data->raw->size;
5101 else
5102 size += sizeof(u32);
5103
5104 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5105 header->size += size;
7f453c24 5106 }
bce38cd5
SE
5107
5108 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5109 int size = sizeof(u64); /* nr */
5110 if (data->br_stack) {
5111 size += data->br_stack->nr
5112 * sizeof(struct perf_branch_entry);
5113 }
5114 header->size += size;
5115 }
4018994f 5116
2565711f 5117 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5118 perf_sample_regs_user(&data->regs_user, regs,
5119 &data->regs_user_copy);
2565711f 5120
4018994f
JO
5121 if (sample_type & PERF_SAMPLE_REGS_USER) {
5122 /* regs dump ABI info */
5123 int size = sizeof(u64);
5124
4018994f
JO
5125 if (data->regs_user.regs) {
5126 u64 mask = event->attr.sample_regs_user;
5127 size += hweight64(mask) * sizeof(u64);
5128 }
5129
5130 header->size += size;
5131 }
c5ebcedb
JO
5132
5133 if (sample_type & PERF_SAMPLE_STACK_USER) {
5134 /*
5135 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5136 * processed as the last one or have additional check added
5137 * in case new sample type is added, because we could eat
5138 * up the rest of the sample size.
5139 */
c5ebcedb
JO
5140 u16 stack_size = event->attr.sample_stack_user;
5141 u16 size = sizeof(u64);
5142
c5ebcedb 5143 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5144 data->regs_user.regs);
c5ebcedb
JO
5145
5146 /*
5147 * If there is something to dump, add space for the dump
5148 * itself and for the field that tells the dynamic size,
5149 * which is how many have been actually dumped.
5150 */
5151 if (stack_size)
5152 size += sizeof(u64) + stack_size;
5153
5154 data->stack_user_size = stack_size;
5155 header->size += size;
5156 }
60e2364e
SE
5157
5158 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5159 /* regs dump ABI info */
5160 int size = sizeof(u64);
5161
5162 perf_sample_regs_intr(&data->regs_intr, regs);
5163
5164 if (data->regs_intr.regs) {
5165 u64 mask = event->attr.sample_regs_intr;
5166
5167 size += hweight64(mask) * sizeof(u64);
5168 }
5169
5170 header->size += size;
5171 }
5622f295 5172}
7f453c24 5173
a8b0ca17 5174static void perf_event_output(struct perf_event *event,
5622f295
MM
5175 struct perf_sample_data *data,
5176 struct pt_regs *regs)
5177{
5178 struct perf_output_handle handle;
5179 struct perf_event_header header;
689802b2 5180
927c7a9e
FW
5181 /* protect the callchain buffers */
5182 rcu_read_lock();
5183
cdd6c482 5184 perf_prepare_sample(&header, data, event, regs);
5c148194 5185
a7ac67ea 5186 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5187 goto exit;
0322cd6e 5188
cdd6c482 5189 perf_output_sample(&handle, &header, data, event);
f413cdb8 5190
8a057d84 5191 perf_output_end(&handle);
927c7a9e
FW
5192
5193exit:
5194 rcu_read_unlock();
0322cd6e
PZ
5195}
5196
38b200d6 5197/*
cdd6c482 5198 * read event_id
38b200d6
PZ
5199 */
5200
5201struct perf_read_event {
5202 struct perf_event_header header;
5203
5204 u32 pid;
5205 u32 tid;
38b200d6
PZ
5206};
5207
5208static void
cdd6c482 5209perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5210 struct task_struct *task)
5211{
5212 struct perf_output_handle handle;
c980d109 5213 struct perf_sample_data sample;
dfc65094 5214 struct perf_read_event read_event = {
38b200d6 5215 .header = {
cdd6c482 5216 .type = PERF_RECORD_READ,
38b200d6 5217 .misc = 0,
c320c7b7 5218 .size = sizeof(read_event) + event->read_size,
38b200d6 5219 },
cdd6c482
IM
5220 .pid = perf_event_pid(event, task),
5221 .tid = perf_event_tid(event, task),
38b200d6 5222 };
3dab77fb 5223 int ret;
38b200d6 5224
c980d109 5225 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5226 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5227 if (ret)
5228 return;
5229
dfc65094 5230 perf_output_put(&handle, read_event);
cdd6c482 5231 perf_output_read(&handle, event);
c980d109 5232 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5233
38b200d6
PZ
5234 perf_output_end(&handle);
5235}
5236
52d857a8
JO
5237typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5238
5239static void
5240perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5241 perf_event_aux_output_cb output,
5242 void *data)
5243{
5244 struct perf_event *event;
5245
5246 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5247 if (event->state < PERF_EVENT_STATE_INACTIVE)
5248 continue;
5249 if (!event_filter_match(event))
5250 continue;
67516844 5251 output(event, data);
52d857a8
JO
5252 }
5253}
5254
5255static void
67516844 5256perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5257 struct perf_event_context *task_ctx)
5258{
5259 struct perf_cpu_context *cpuctx;
5260 struct perf_event_context *ctx;
5261 struct pmu *pmu;
5262 int ctxn;
5263
5264 rcu_read_lock();
5265 list_for_each_entry_rcu(pmu, &pmus, entry) {
5266 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5267 if (cpuctx->unique_pmu != pmu)
5268 goto next;
67516844 5269 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5270 if (task_ctx)
5271 goto next;
5272 ctxn = pmu->task_ctx_nr;
5273 if (ctxn < 0)
5274 goto next;
5275 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5276 if (ctx)
67516844 5277 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5278next:
5279 put_cpu_ptr(pmu->pmu_cpu_context);
5280 }
5281
5282 if (task_ctx) {
5283 preempt_disable();
67516844 5284 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5285 preempt_enable();
5286 }
5287 rcu_read_unlock();
5288}
5289
60313ebe 5290/*
9f498cc5
PZ
5291 * task tracking -- fork/exit
5292 *
13d7a241 5293 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5294 */
5295
9f498cc5 5296struct perf_task_event {
3a80b4a3 5297 struct task_struct *task;
cdd6c482 5298 struct perf_event_context *task_ctx;
60313ebe
PZ
5299
5300 struct {
5301 struct perf_event_header header;
5302
5303 u32 pid;
5304 u32 ppid;
9f498cc5
PZ
5305 u32 tid;
5306 u32 ptid;
393b2ad8 5307 u64 time;
cdd6c482 5308 } event_id;
60313ebe
PZ
5309};
5310
67516844
JO
5311static int perf_event_task_match(struct perf_event *event)
5312{
13d7a241
SE
5313 return event->attr.comm || event->attr.mmap ||
5314 event->attr.mmap2 || event->attr.mmap_data ||
5315 event->attr.task;
67516844
JO
5316}
5317
cdd6c482 5318static void perf_event_task_output(struct perf_event *event,
52d857a8 5319 void *data)
60313ebe 5320{
52d857a8 5321 struct perf_task_event *task_event = data;
60313ebe 5322 struct perf_output_handle handle;
c980d109 5323 struct perf_sample_data sample;
9f498cc5 5324 struct task_struct *task = task_event->task;
c980d109 5325 int ret, size = task_event->event_id.header.size;
8bb39f9a 5326
67516844
JO
5327 if (!perf_event_task_match(event))
5328 return;
5329
c980d109 5330 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5331
c980d109 5332 ret = perf_output_begin(&handle, event,
a7ac67ea 5333 task_event->event_id.header.size);
ef60777c 5334 if (ret)
c980d109 5335 goto out;
60313ebe 5336
cdd6c482
IM
5337 task_event->event_id.pid = perf_event_pid(event, task);
5338 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5339
cdd6c482
IM
5340 task_event->event_id.tid = perf_event_tid(event, task);
5341 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5342
cdd6c482 5343 perf_output_put(&handle, task_event->event_id);
393b2ad8 5344
c980d109
ACM
5345 perf_event__output_id_sample(event, &handle, &sample);
5346
60313ebe 5347 perf_output_end(&handle);
c980d109
ACM
5348out:
5349 task_event->event_id.header.size = size;
60313ebe
PZ
5350}
5351
cdd6c482
IM
5352static void perf_event_task(struct task_struct *task,
5353 struct perf_event_context *task_ctx,
3a80b4a3 5354 int new)
60313ebe 5355{
9f498cc5 5356 struct perf_task_event task_event;
60313ebe 5357
cdd6c482
IM
5358 if (!atomic_read(&nr_comm_events) &&
5359 !atomic_read(&nr_mmap_events) &&
5360 !atomic_read(&nr_task_events))
60313ebe
PZ
5361 return;
5362
9f498cc5 5363 task_event = (struct perf_task_event){
3a80b4a3
PZ
5364 .task = task,
5365 .task_ctx = task_ctx,
cdd6c482 5366 .event_id = {
60313ebe 5367 .header = {
cdd6c482 5368 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5369 .misc = 0,
cdd6c482 5370 .size = sizeof(task_event.event_id),
60313ebe 5371 },
573402db
PZ
5372 /* .pid */
5373 /* .ppid */
9f498cc5
PZ
5374 /* .tid */
5375 /* .ptid */
6f93d0a7 5376 .time = perf_clock(),
60313ebe
PZ
5377 },
5378 };
5379
67516844 5380 perf_event_aux(perf_event_task_output,
52d857a8
JO
5381 &task_event,
5382 task_ctx);
9f498cc5
PZ
5383}
5384
cdd6c482 5385void perf_event_fork(struct task_struct *task)
9f498cc5 5386{
cdd6c482 5387 perf_event_task(task, NULL, 1);
60313ebe
PZ
5388}
5389
8d1b2d93
PZ
5390/*
5391 * comm tracking
5392 */
5393
5394struct perf_comm_event {
22a4f650
IM
5395 struct task_struct *task;
5396 char *comm;
8d1b2d93
PZ
5397 int comm_size;
5398
5399 struct {
5400 struct perf_event_header header;
5401
5402 u32 pid;
5403 u32 tid;
cdd6c482 5404 } event_id;
8d1b2d93
PZ
5405};
5406
67516844
JO
5407static int perf_event_comm_match(struct perf_event *event)
5408{
5409 return event->attr.comm;
5410}
5411
cdd6c482 5412static void perf_event_comm_output(struct perf_event *event,
52d857a8 5413 void *data)
8d1b2d93 5414{
52d857a8 5415 struct perf_comm_event *comm_event = data;
8d1b2d93 5416 struct perf_output_handle handle;
c980d109 5417 struct perf_sample_data sample;
cdd6c482 5418 int size = comm_event->event_id.header.size;
c980d109
ACM
5419 int ret;
5420
67516844
JO
5421 if (!perf_event_comm_match(event))
5422 return;
5423
c980d109
ACM
5424 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5425 ret = perf_output_begin(&handle, event,
a7ac67ea 5426 comm_event->event_id.header.size);
8d1b2d93
PZ
5427
5428 if (ret)
c980d109 5429 goto out;
8d1b2d93 5430
cdd6c482
IM
5431 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5432 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5433
cdd6c482 5434 perf_output_put(&handle, comm_event->event_id);
76369139 5435 __output_copy(&handle, comm_event->comm,
8d1b2d93 5436 comm_event->comm_size);
c980d109
ACM
5437
5438 perf_event__output_id_sample(event, &handle, &sample);
5439
8d1b2d93 5440 perf_output_end(&handle);
c980d109
ACM
5441out:
5442 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5443}
5444
cdd6c482 5445static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5446{
413ee3b4 5447 char comm[TASK_COMM_LEN];
8d1b2d93 5448 unsigned int size;
8d1b2d93 5449
413ee3b4 5450 memset(comm, 0, sizeof(comm));
96b02d78 5451 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5452 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5453
5454 comm_event->comm = comm;
5455 comm_event->comm_size = size;
5456
cdd6c482 5457 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5458
67516844 5459 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5460 comm_event,
5461 NULL);
8d1b2d93
PZ
5462}
5463
82b89778 5464void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5465{
9ee318a7
PZ
5466 struct perf_comm_event comm_event;
5467
cdd6c482 5468 if (!atomic_read(&nr_comm_events))
9ee318a7 5469 return;
a63eaf34 5470
9ee318a7 5471 comm_event = (struct perf_comm_event){
8d1b2d93 5472 .task = task,
573402db
PZ
5473 /* .comm */
5474 /* .comm_size */
cdd6c482 5475 .event_id = {
573402db 5476 .header = {
cdd6c482 5477 .type = PERF_RECORD_COMM,
82b89778 5478 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5479 /* .size */
5480 },
5481 /* .pid */
5482 /* .tid */
8d1b2d93
PZ
5483 },
5484 };
5485
cdd6c482 5486 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5487}
5488
0a4a9391
PZ
5489/*
5490 * mmap tracking
5491 */
5492
5493struct perf_mmap_event {
089dd79d
PZ
5494 struct vm_area_struct *vma;
5495
5496 const char *file_name;
5497 int file_size;
13d7a241
SE
5498 int maj, min;
5499 u64 ino;
5500 u64 ino_generation;
f972eb63 5501 u32 prot, flags;
0a4a9391
PZ
5502
5503 struct {
5504 struct perf_event_header header;
5505
5506 u32 pid;
5507 u32 tid;
5508 u64 start;
5509 u64 len;
5510 u64 pgoff;
cdd6c482 5511 } event_id;
0a4a9391
PZ
5512};
5513
67516844
JO
5514static int perf_event_mmap_match(struct perf_event *event,
5515 void *data)
5516{
5517 struct perf_mmap_event *mmap_event = data;
5518 struct vm_area_struct *vma = mmap_event->vma;
5519 int executable = vma->vm_flags & VM_EXEC;
5520
5521 return (!executable && event->attr.mmap_data) ||
13d7a241 5522 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5523}
5524
cdd6c482 5525static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5526 void *data)
0a4a9391 5527{
52d857a8 5528 struct perf_mmap_event *mmap_event = data;
0a4a9391 5529 struct perf_output_handle handle;
c980d109 5530 struct perf_sample_data sample;
cdd6c482 5531 int size = mmap_event->event_id.header.size;
c980d109 5532 int ret;
0a4a9391 5533
67516844
JO
5534 if (!perf_event_mmap_match(event, data))
5535 return;
5536
13d7a241
SE
5537 if (event->attr.mmap2) {
5538 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5539 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5540 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5541 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5542 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5543 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5544 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5545 }
5546
c980d109
ACM
5547 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5548 ret = perf_output_begin(&handle, event,
a7ac67ea 5549 mmap_event->event_id.header.size);
0a4a9391 5550 if (ret)
c980d109 5551 goto out;
0a4a9391 5552
cdd6c482
IM
5553 mmap_event->event_id.pid = perf_event_pid(event, current);
5554 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5555
cdd6c482 5556 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5557
5558 if (event->attr.mmap2) {
5559 perf_output_put(&handle, mmap_event->maj);
5560 perf_output_put(&handle, mmap_event->min);
5561 perf_output_put(&handle, mmap_event->ino);
5562 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5563 perf_output_put(&handle, mmap_event->prot);
5564 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5565 }
5566
76369139 5567 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5568 mmap_event->file_size);
c980d109
ACM
5569
5570 perf_event__output_id_sample(event, &handle, &sample);
5571
78d613eb 5572 perf_output_end(&handle);
c980d109
ACM
5573out:
5574 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5575}
5576
cdd6c482 5577static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5578{
089dd79d
PZ
5579 struct vm_area_struct *vma = mmap_event->vma;
5580 struct file *file = vma->vm_file;
13d7a241
SE
5581 int maj = 0, min = 0;
5582 u64 ino = 0, gen = 0;
f972eb63 5583 u32 prot = 0, flags = 0;
0a4a9391
PZ
5584 unsigned int size;
5585 char tmp[16];
5586 char *buf = NULL;
2c42cfbf 5587 char *name;
413ee3b4 5588
0a4a9391 5589 if (file) {
13d7a241
SE
5590 struct inode *inode;
5591 dev_t dev;
3ea2f2b9 5592
2c42cfbf 5593 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5594 if (!buf) {
c7e548b4
ON
5595 name = "//enomem";
5596 goto cpy_name;
0a4a9391 5597 }
413ee3b4 5598 /*
3ea2f2b9 5599 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5600 * need to add enough zero bytes after the string to handle
5601 * the 64bit alignment we do later.
5602 */
3ea2f2b9 5603 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5604 if (IS_ERR(name)) {
c7e548b4
ON
5605 name = "//toolong";
5606 goto cpy_name;
0a4a9391 5607 }
13d7a241
SE
5608 inode = file_inode(vma->vm_file);
5609 dev = inode->i_sb->s_dev;
5610 ino = inode->i_ino;
5611 gen = inode->i_generation;
5612 maj = MAJOR(dev);
5613 min = MINOR(dev);
f972eb63
PZ
5614
5615 if (vma->vm_flags & VM_READ)
5616 prot |= PROT_READ;
5617 if (vma->vm_flags & VM_WRITE)
5618 prot |= PROT_WRITE;
5619 if (vma->vm_flags & VM_EXEC)
5620 prot |= PROT_EXEC;
5621
5622 if (vma->vm_flags & VM_MAYSHARE)
5623 flags = MAP_SHARED;
5624 else
5625 flags = MAP_PRIVATE;
5626
5627 if (vma->vm_flags & VM_DENYWRITE)
5628 flags |= MAP_DENYWRITE;
5629 if (vma->vm_flags & VM_MAYEXEC)
5630 flags |= MAP_EXECUTABLE;
5631 if (vma->vm_flags & VM_LOCKED)
5632 flags |= MAP_LOCKED;
5633 if (vma->vm_flags & VM_HUGETLB)
5634 flags |= MAP_HUGETLB;
5635
c7e548b4 5636 goto got_name;
0a4a9391 5637 } else {
fbe26abe
JO
5638 if (vma->vm_ops && vma->vm_ops->name) {
5639 name = (char *) vma->vm_ops->name(vma);
5640 if (name)
5641 goto cpy_name;
5642 }
5643
2c42cfbf 5644 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5645 if (name)
5646 goto cpy_name;
089dd79d 5647
32c5fb7e 5648 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5649 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5650 name = "[heap]";
5651 goto cpy_name;
32c5fb7e
ON
5652 }
5653 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5654 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5655 name = "[stack]";
5656 goto cpy_name;
089dd79d
PZ
5657 }
5658
c7e548b4
ON
5659 name = "//anon";
5660 goto cpy_name;
0a4a9391
PZ
5661 }
5662
c7e548b4
ON
5663cpy_name:
5664 strlcpy(tmp, name, sizeof(tmp));
5665 name = tmp;
0a4a9391 5666got_name:
2c42cfbf
PZ
5667 /*
5668 * Since our buffer works in 8 byte units we need to align our string
5669 * size to a multiple of 8. However, we must guarantee the tail end is
5670 * zero'd out to avoid leaking random bits to userspace.
5671 */
5672 size = strlen(name)+1;
5673 while (!IS_ALIGNED(size, sizeof(u64)))
5674 name[size++] = '\0';
0a4a9391
PZ
5675
5676 mmap_event->file_name = name;
5677 mmap_event->file_size = size;
13d7a241
SE
5678 mmap_event->maj = maj;
5679 mmap_event->min = min;
5680 mmap_event->ino = ino;
5681 mmap_event->ino_generation = gen;
f972eb63
PZ
5682 mmap_event->prot = prot;
5683 mmap_event->flags = flags;
0a4a9391 5684
2fe85427
SE
5685 if (!(vma->vm_flags & VM_EXEC))
5686 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5687
cdd6c482 5688 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5689
67516844 5690 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5691 mmap_event,
5692 NULL);
665c2142 5693
0a4a9391
PZ
5694 kfree(buf);
5695}
5696
3af9e859 5697void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5698{
9ee318a7
PZ
5699 struct perf_mmap_event mmap_event;
5700
cdd6c482 5701 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5702 return;
5703
5704 mmap_event = (struct perf_mmap_event){
089dd79d 5705 .vma = vma,
573402db
PZ
5706 /* .file_name */
5707 /* .file_size */
cdd6c482 5708 .event_id = {
573402db 5709 .header = {
cdd6c482 5710 .type = PERF_RECORD_MMAP,
39447b38 5711 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5712 /* .size */
5713 },
5714 /* .pid */
5715 /* .tid */
089dd79d
PZ
5716 .start = vma->vm_start,
5717 .len = vma->vm_end - vma->vm_start,
3a0304e9 5718 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5719 },
13d7a241
SE
5720 /* .maj (attr_mmap2 only) */
5721 /* .min (attr_mmap2 only) */
5722 /* .ino (attr_mmap2 only) */
5723 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5724 /* .prot (attr_mmap2 only) */
5725 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5726 };
5727
cdd6c482 5728 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5729}
5730
a78ac325
PZ
5731/*
5732 * IRQ throttle logging
5733 */
5734
cdd6c482 5735static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5736{
5737 struct perf_output_handle handle;
c980d109 5738 struct perf_sample_data sample;
a78ac325
PZ
5739 int ret;
5740
5741 struct {
5742 struct perf_event_header header;
5743 u64 time;
cca3f454 5744 u64 id;
7f453c24 5745 u64 stream_id;
a78ac325
PZ
5746 } throttle_event = {
5747 .header = {
cdd6c482 5748 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5749 .misc = 0,
5750 .size = sizeof(throttle_event),
5751 },
def0a9b2 5752 .time = perf_clock(),
cdd6c482
IM
5753 .id = primary_event_id(event),
5754 .stream_id = event->id,
a78ac325
PZ
5755 };
5756
966ee4d6 5757 if (enable)
cdd6c482 5758 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5759
c980d109
ACM
5760 perf_event_header__init_id(&throttle_event.header, &sample, event);
5761
5762 ret = perf_output_begin(&handle, event,
a7ac67ea 5763 throttle_event.header.size);
a78ac325
PZ
5764 if (ret)
5765 return;
5766
5767 perf_output_put(&handle, throttle_event);
c980d109 5768 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5769 perf_output_end(&handle);
5770}
5771
f6c7d5fe 5772/*
cdd6c482 5773 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5774 */
5775
a8b0ca17 5776static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5777 int throttle, struct perf_sample_data *data,
5778 struct pt_regs *regs)
f6c7d5fe 5779{
cdd6c482
IM
5780 int events = atomic_read(&event->event_limit);
5781 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5782 u64 seq;
79f14641
PZ
5783 int ret = 0;
5784
96398826
PZ
5785 /*
5786 * Non-sampling counters might still use the PMI to fold short
5787 * hardware counters, ignore those.
5788 */
5789 if (unlikely(!is_sampling_event(event)))
5790 return 0;
5791
e050e3f0
SE
5792 seq = __this_cpu_read(perf_throttled_seq);
5793 if (seq != hwc->interrupts_seq) {
5794 hwc->interrupts_seq = seq;
5795 hwc->interrupts = 1;
5796 } else {
5797 hwc->interrupts++;
5798 if (unlikely(throttle
5799 && hwc->interrupts >= max_samples_per_tick)) {
5800 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5801 hwc->interrupts = MAX_INTERRUPTS;
5802 perf_log_throttle(event, 0);
d84153d6 5803 tick_nohz_full_kick();
a78ac325
PZ
5804 ret = 1;
5805 }
e050e3f0 5806 }
60db5e09 5807
cdd6c482 5808 if (event->attr.freq) {
def0a9b2 5809 u64 now = perf_clock();
abd50713 5810 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5811
abd50713 5812 hwc->freq_time_stamp = now;
bd2b5b12 5813
abd50713 5814 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5815 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5816 }
5817
2023b359
PZ
5818 /*
5819 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5820 * events
2023b359
PZ
5821 */
5822
cdd6c482
IM
5823 event->pending_kill = POLL_IN;
5824 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5825 ret = 1;
cdd6c482 5826 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5827 event->pending_disable = 1;
5828 irq_work_queue(&event->pending);
79f14641
PZ
5829 }
5830
453f19ee 5831 if (event->overflow_handler)
a8b0ca17 5832 event->overflow_handler(event, data, regs);
453f19ee 5833 else
a8b0ca17 5834 perf_event_output(event, data, regs);
453f19ee 5835
f506b3dc 5836 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5837 event->pending_wakeup = 1;
5838 irq_work_queue(&event->pending);
f506b3dc
PZ
5839 }
5840
79f14641 5841 return ret;
f6c7d5fe
PZ
5842}
5843
a8b0ca17 5844int perf_event_overflow(struct perf_event *event,
5622f295
MM
5845 struct perf_sample_data *data,
5846 struct pt_regs *regs)
850bc73f 5847{
a8b0ca17 5848 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5849}
5850
15dbf27c 5851/*
cdd6c482 5852 * Generic software event infrastructure
15dbf27c
PZ
5853 */
5854
b28ab83c
PZ
5855struct swevent_htable {
5856 struct swevent_hlist *swevent_hlist;
5857 struct mutex hlist_mutex;
5858 int hlist_refcount;
5859
5860 /* Recursion avoidance in each contexts */
5861 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5862
5863 /* Keeps track of cpu being initialized/exited */
5864 bool online;
b28ab83c
PZ
5865};
5866
5867static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5868
7b4b6658 5869/*
cdd6c482
IM
5870 * We directly increment event->count and keep a second value in
5871 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5872 * is kept in the range [-sample_period, 0] so that we can use the
5873 * sign as trigger.
5874 */
5875
ab573844 5876u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5877{
cdd6c482 5878 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5879 u64 period = hwc->last_period;
5880 u64 nr, offset;
5881 s64 old, val;
5882
5883 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5884
5885again:
e7850595 5886 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5887 if (val < 0)
5888 return 0;
15dbf27c 5889
7b4b6658
PZ
5890 nr = div64_u64(period + val, period);
5891 offset = nr * period;
5892 val -= offset;
e7850595 5893 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5894 goto again;
15dbf27c 5895
7b4b6658 5896 return nr;
15dbf27c
PZ
5897}
5898
0cff784a 5899static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5900 struct perf_sample_data *data,
5622f295 5901 struct pt_regs *regs)
15dbf27c 5902{
cdd6c482 5903 struct hw_perf_event *hwc = &event->hw;
850bc73f 5904 int throttle = 0;
15dbf27c 5905
0cff784a
PZ
5906 if (!overflow)
5907 overflow = perf_swevent_set_period(event);
15dbf27c 5908
7b4b6658
PZ
5909 if (hwc->interrupts == MAX_INTERRUPTS)
5910 return;
15dbf27c 5911
7b4b6658 5912 for (; overflow; overflow--) {
a8b0ca17 5913 if (__perf_event_overflow(event, throttle,
5622f295 5914 data, regs)) {
7b4b6658
PZ
5915 /*
5916 * We inhibit the overflow from happening when
5917 * hwc->interrupts == MAX_INTERRUPTS.
5918 */
5919 break;
5920 }
cf450a73 5921 throttle = 1;
7b4b6658 5922 }
15dbf27c
PZ
5923}
5924
a4eaf7f1 5925static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5926 struct perf_sample_data *data,
5622f295 5927 struct pt_regs *regs)
7b4b6658 5928{
cdd6c482 5929 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5930
e7850595 5931 local64_add(nr, &event->count);
d6d020e9 5932
0cff784a
PZ
5933 if (!regs)
5934 return;
5935
6c7e550f 5936 if (!is_sampling_event(event))
7b4b6658 5937 return;
d6d020e9 5938
5d81e5cf
AV
5939 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5940 data->period = nr;
5941 return perf_swevent_overflow(event, 1, data, regs);
5942 } else
5943 data->period = event->hw.last_period;
5944
0cff784a 5945 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5946 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5947
e7850595 5948 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5949 return;
df1a132b 5950
a8b0ca17 5951 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5952}
5953
f5ffe02e
FW
5954static int perf_exclude_event(struct perf_event *event,
5955 struct pt_regs *regs)
5956{
a4eaf7f1 5957 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5958 return 1;
a4eaf7f1 5959
f5ffe02e
FW
5960 if (regs) {
5961 if (event->attr.exclude_user && user_mode(regs))
5962 return 1;
5963
5964 if (event->attr.exclude_kernel && !user_mode(regs))
5965 return 1;
5966 }
5967
5968 return 0;
5969}
5970
cdd6c482 5971static int perf_swevent_match(struct perf_event *event,
1c432d89 5972 enum perf_type_id type,
6fb2915d
LZ
5973 u32 event_id,
5974 struct perf_sample_data *data,
5975 struct pt_regs *regs)
15dbf27c 5976{
cdd6c482 5977 if (event->attr.type != type)
a21ca2ca 5978 return 0;
f5ffe02e 5979
cdd6c482 5980 if (event->attr.config != event_id)
15dbf27c
PZ
5981 return 0;
5982
f5ffe02e
FW
5983 if (perf_exclude_event(event, regs))
5984 return 0;
15dbf27c
PZ
5985
5986 return 1;
5987}
5988
76e1d904
FW
5989static inline u64 swevent_hash(u64 type, u32 event_id)
5990{
5991 u64 val = event_id | (type << 32);
5992
5993 return hash_64(val, SWEVENT_HLIST_BITS);
5994}
5995
49f135ed
FW
5996static inline struct hlist_head *
5997__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5998{
49f135ed
FW
5999 u64 hash = swevent_hash(type, event_id);
6000
6001 return &hlist->heads[hash];
6002}
76e1d904 6003
49f135ed
FW
6004/* For the read side: events when they trigger */
6005static inline struct hlist_head *
b28ab83c 6006find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6007{
6008 struct swevent_hlist *hlist;
76e1d904 6009
b28ab83c 6010 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6011 if (!hlist)
6012 return NULL;
6013
49f135ed
FW
6014 return __find_swevent_head(hlist, type, event_id);
6015}
6016
6017/* For the event head insertion and removal in the hlist */
6018static inline struct hlist_head *
b28ab83c 6019find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6020{
6021 struct swevent_hlist *hlist;
6022 u32 event_id = event->attr.config;
6023 u64 type = event->attr.type;
6024
6025 /*
6026 * Event scheduling is always serialized against hlist allocation
6027 * and release. Which makes the protected version suitable here.
6028 * The context lock guarantees that.
6029 */
b28ab83c 6030 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6031 lockdep_is_held(&event->ctx->lock));
6032 if (!hlist)
6033 return NULL;
6034
6035 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6036}
6037
6038static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6039 u64 nr,
76e1d904
FW
6040 struct perf_sample_data *data,
6041 struct pt_regs *regs)
15dbf27c 6042{
4a32fea9 6043 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6044 struct perf_event *event;
76e1d904 6045 struct hlist_head *head;
15dbf27c 6046
76e1d904 6047 rcu_read_lock();
b28ab83c 6048 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6049 if (!head)
6050 goto end;
6051
b67bfe0d 6052 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6053 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6054 perf_swevent_event(event, nr, data, regs);
15dbf27c 6055 }
76e1d904
FW
6056end:
6057 rcu_read_unlock();
15dbf27c
PZ
6058}
6059
86038c5e
PZI
6060DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6061
4ed7c92d 6062int perf_swevent_get_recursion_context(void)
96f6d444 6063{
4a32fea9 6064 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6065
b28ab83c 6066 return get_recursion_context(swhash->recursion);
96f6d444 6067}
645e8cc0 6068EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6069
fa9f90be 6070inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6071{
4a32fea9 6072 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6073
b28ab83c 6074 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6075}
15dbf27c 6076
86038c5e 6077void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6078{
a4234bfc 6079 struct perf_sample_data data;
4ed7c92d 6080
86038c5e 6081 if (WARN_ON_ONCE(!regs))
4ed7c92d 6082 return;
a4234bfc 6083
fd0d000b 6084 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6085 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6086}
6087
6088void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6089{
6090 int rctx;
6091
6092 preempt_disable_notrace();
6093 rctx = perf_swevent_get_recursion_context();
6094 if (unlikely(rctx < 0))
6095 goto fail;
6096
6097 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6098
6099 perf_swevent_put_recursion_context(rctx);
86038c5e 6100fail:
1c024eca 6101 preempt_enable_notrace();
b8e83514
PZ
6102}
6103
cdd6c482 6104static void perf_swevent_read(struct perf_event *event)
15dbf27c 6105{
15dbf27c
PZ
6106}
6107
a4eaf7f1 6108static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6109{
4a32fea9 6110 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6111 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6112 struct hlist_head *head;
6113
6c7e550f 6114 if (is_sampling_event(event)) {
7b4b6658 6115 hwc->last_period = hwc->sample_period;
cdd6c482 6116 perf_swevent_set_period(event);
7b4b6658 6117 }
76e1d904 6118
a4eaf7f1
PZ
6119 hwc->state = !(flags & PERF_EF_START);
6120
b28ab83c 6121 head = find_swevent_head(swhash, event);
39af6b16
JO
6122 if (!head) {
6123 /*
6124 * We can race with cpu hotplug code. Do not
6125 * WARN if the cpu just got unplugged.
6126 */
6127 WARN_ON_ONCE(swhash->online);
76e1d904 6128 return -EINVAL;
39af6b16 6129 }
76e1d904
FW
6130
6131 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6132 perf_event_update_userpage(event);
76e1d904 6133
15dbf27c
PZ
6134 return 0;
6135}
6136
a4eaf7f1 6137static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6138{
76e1d904 6139 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6140}
6141
a4eaf7f1 6142static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6143{
a4eaf7f1 6144 event->hw.state = 0;
d6d020e9 6145}
aa9c4c0f 6146
a4eaf7f1 6147static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6148{
a4eaf7f1 6149 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6150}
6151
49f135ed
FW
6152/* Deref the hlist from the update side */
6153static inline struct swevent_hlist *
b28ab83c 6154swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6155{
b28ab83c
PZ
6156 return rcu_dereference_protected(swhash->swevent_hlist,
6157 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6158}
6159
b28ab83c 6160static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6161{
b28ab83c 6162 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6163
49f135ed 6164 if (!hlist)
76e1d904
FW
6165 return;
6166
70691d4a 6167 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6168 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6169}
6170
6171static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6172{
b28ab83c 6173 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6174
b28ab83c 6175 mutex_lock(&swhash->hlist_mutex);
76e1d904 6176
b28ab83c
PZ
6177 if (!--swhash->hlist_refcount)
6178 swevent_hlist_release(swhash);
76e1d904 6179
b28ab83c 6180 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6181}
6182
6183static void swevent_hlist_put(struct perf_event *event)
6184{
6185 int cpu;
6186
76e1d904
FW
6187 for_each_possible_cpu(cpu)
6188 swevent_hlist_put_cpu(event, cpu);
6189}
6190
6191static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6192{
b28ab83c 6193 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6194 int err = 0;
6195
b28ab83c 6196 mutex_lock(&swhash->hlist_mutex);
76e1d904 6197
b28ab83c 6198 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6199 struct swevent_hlist *hlist;
6200
6201 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6202 if (!hlist) {
6203 err = -ENOMEM;
6204 goto exit;
6205 }
b28ab83c 6206 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6207 }
b28ab83c 6208 swhash->hlist_refcount++;
9ed6060d 6209exit:
b28ab83c 6210 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6211
6212 return err;
6213}
6214
6215static int swevent_hlist_get(struct perf_event *event)
6216{
6217 int err;
6218 int cpu, failed_cpu;
6219
76e1d904
FW
6220 get_online_cpus();
6221 for_each_possible_cpu(cpu) {
6222 err = swevent_hlist_get_cpu(event, cpu);
6223 if (err) {
6224 failed_cpu = cpu;
6225 goto fail;
6226 }
6227 }
6228 put_online_cpus();
6229
6230 return 0;
9ed6060d 6231fail:
76e1d904
FW
6232 for_each_possible_cpu(cpu) {
6233 if (cpu == failed_cpu)
6234 break;
6235 swevent_hlist_put_cpu(event, cpu);
6236 }
6237
6238 put_online_cpus();
6239 return err;
6240}
6241
c5905afb 6242struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6243
b0a873eb
PZ
6244static void sw_perf_event_destroy(struct perf_event *event)
6245{
6246 u64 event_id = event->attr.config;
95476b64 6247
b0a873eb
PZ
6248 WARN_ON(event->parent);
6249
c5905afb 6250 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6251 swevent_hlist_put(event);
6252}
6253
6254static int perf_swevent_init(struct perf_event *event)
6255{
8176cced 6256 u64 event_id = event->attr.config;
b0a873eb
PZ
6257
6258 if (event->attr.type != PERF_TYPE_SOFTWARE)
6259 return -ENOENT;
6260
2481c5fa
SE
6261 /*
6262 * no branch sampling for software events
6263 */
6264 if (has_branch_stack(event))
6265 return -EOPNOTSUPP;
6266
b0a873eb
PZ
6267 switch (event_id) {
6268 case PERF_COUNT_SW_CPU_CLOCK:
6269 case PERF_COUNT_SW_TASK_CLOCK:
6270 return -ENOENT;
6271
6272 default:
6273 break;
6274 }
6275
ce677831 6276 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6277 return -ENOENT;
6278
6279 if (!event->parent) {
6280 int err;
6281
6282 err = swevent_hlist_get(event);
6283 if (err)
6284 return err;
6285
c5905afb 6286 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6287 event->destroy = sw_perf_event_destroy;
6288 }
6289
6290 return 0;
6291}
6292
6293static struct pmu perf_swevent = {
89a1e187 6294 .task_ctx_nr = perf_sw_context,
95476b64 6295
b0a873eb 6296 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6297 .add = perf_swevent_add,
6298 .del = perf_swevent_del,
6299 .start = perf_swevent_start,
6300 .stop = perf_swevent_stop,
1c024eca 6301 .read = perf_swevent_read,
1c024eca
PZ
6302};
6303
b0a873eb
PZ
6304#ifdef CONFIG_EVENT_TRACING
6305
1c024eca
PZ
6306static int perf_tp_filter_match(struct perf_event *event,
6307 struct perf_sample_data *data)
6308{
6309 void *record = data->raw->data;
6310
6311 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6312 return 1;
6313 return 0;
6314}
6315
6316static int perf_tp_event_match(struct perf_event *event,
6317 struct perf_sample_data *data,
6318 struct pt_regs *regs)
6319{
a0f7d0f7
FW
6320 if (event->hw.state & PERF_HES_STOPPED)
6321 return 0;
580d607c
PZ
6322 /*
6323 * All tracepoints are from kernel-space.
6324 */
6325 if (event->attr.exclude_kernel)
1c024eca
PZ
6326 return 0;
6327
6328 if (!perf_tp_filter_match(event, data))
6329 return 0;
6330
6331 return 1;
6332}
6333
6334void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6335 struct pt_regs *regs, struct hlist_head *head, int rctx,
6336 struct task_struct *task)
95476b64
FW
6337{
6338 struct perf_sample_data data;
1c024eca 6339 struct perf_event *event;
1c024eca 6340
95476b64
FW
6341 struct perf_raw_record raw = {
6342 .size = entry_size,
6343 .data = record,
6344 };
6345
fd0d000b 6346 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6347 data.raw = &raw;
6348
b67bfe0d 6349 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6350 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6351 perf_swevent_event(event, count, &data, regs);
4f41c013 6352 }
ecc55f84 6353
e6dab5ff
AV
6354 /*
6355 * If we got specified a target task, also iterate its context and
6356 * deliver this event there too.
6357 */
6358 if (task && task != current) {
6359 struct perf_event_context *ctx;
6360 struct trace_entry *entry = record;
6361
6362 rcu_read_lock();
6363 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6364 if (!ctx)
6365 goto unlock;
6366
6367 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6368 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6369 continue;
6370 if (event->attr.config != entry->type)
6371 continue;
6372 if (perf_tp_event_match(event, &data, regs))
6373 perf_swevent_event(event, count, &data, regs);
6374 }
6375unlock:
6376 rcu_read_unlock();
6377 }
6378
ecc55f84 6379 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6380}
6381EXPORT_SYMBOL_GPL(perf_tp_event);
6382
cdd6c482 6383static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6384{
1c024eca 6385 perf_trace_destroy(event);
e077df4f
PZ
6386}
6387
b0a873eb 6388static int perf_tp_event_init(struct perf_event *event)
e077df4f 6389{
76e1d904
FW
6390 int err;
6391
b0a873eb
PZ
6392 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6393 return -ENOENT;
6394
2481c5fa
SE
6395 /*
6396 * no branch sampling for tracepoint events
6397 */
6398 if (has_branch_stack(event))
6399 return -EOPNOTSUPP;
6400
1c024eca
PZ
6401 err = perf_trace_init(event);
6402 if (err)
b0a873eb 6403 return err;
e077df4f 6404
cdd6c482 6405 event->destroy = tp_perf_event_destroy;
e077df4f 6406
b0a873eb
PZ
6407 return 0;
6408}
6409
6410static struct pmu perf_tracepoint = {
89a1e187
PZ
6411 .task_ctx_nr = perf_sw_context,
6412
b0a873eb 6413 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6414 .add = perf_trace_add,
6415 .del = perf_trace_del,
6416 .start = perf_swevent_start,
6417 .stop = perf_swevent_stop,
b0a873eb 6418 .read = perf_swevent_read,
b0a873eb
PZ
6419};
6420
6421static inline void perf_tp_register(void)
6422{
2e80a82a 6423 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6424}
6fb2915d
LZ
6425
6426static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6427{
6428 char *filter_str;
6429 int ret;
6430
6431 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6432 return -EINVAL;
6433
6434 filter_str = strndup_user(arg, PAGE_SIZE);
6435 if (IS_ERR(filter_str))
6436 return PTR_ERR(filter_str);
6437
6438 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6439
6440 kfree(filter_str);
6441 return ret;
6442}
6443
6444static void perf_event_free_filter(struct perf_event *event)
6445{
6446 ftrace_profile_free_filter(event);
6447}
6448
e077df4f 6449#else
6fb2915d 6450
b0a873eb 6451static inline void perf_tp_register(void)
e077df4f 6452{
e077df4f 6453}
6fb2915d
LZ
6454
6455static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6456{
6457 return -ENOENT;
6458}
6459
6460static void perf_event_free_filter(struct perf_event *event)
6461{
6462}
6463
07b139c8 6464#endif /* CONFIG_EVENT_TRACING */
e077df4f 6465
24f1e32c 6466#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6467void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6468{
f5ffe02e
FW
6469 struct perf_sample_data sample;
6470 struct pt_regs *regs = data;
6471
fd0d000b 6472 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6473
a4eaf7f1 6474 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6475 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6476}
6477#endif
6478
b0a873eb
PZ
6479/*
6480 * hrtimer based swevent callback
6481 */
f29ac756 6482
b0a873eb 6483static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6484{
b0a873eb
PZ
6485 enum hrtimer_restart ret = HRTIMER_RESTART;
6486 struct perf_sample_data data;
6487 struct pt_regs *regs;
6488 struct perf_event *event;
6489 u64 period;
f29ac756 6490
b0a873eb 6491 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6492
6493 if (event->state != PERF_EVENT_STATE_ACTIVE)
6494 return HRTIMER_NORESTART;
6495
b0a873eb 6496 event->pmu->read(event);
f344011c 6497
fd0d000b 6498 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6499 regs = get_irq_regs();
6500
6501 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6502 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6503 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6504 ret = HRTIMER_NORESTART;
6505 }
24f1e32c 6506
b0a873eb
PZ
6507 period = max_t(u64, 10000, event->hw.sample_period);
6508 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6509
b0a873eb 6510 return ret;
f29ac756
PZ
6511}
6512
b0a873eb 6513static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6514{
b0a873eb 6515 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6516 s64 period;
6517
6518 if (!is_sampling_event(event))
6519 return;
f5ffe02e 6520
5d508e82
FBH
6521 period = local64_read(&hwc->period_left);
6522 if (period) {
6523 if (period < 0)
6524 period = 10000;
fa407f35 6525
5d508e82
FBH
6526 local64_set(&hwc->period_left, 0);
6527 } else {
6528 period = max_t(u64, 10000, hwc->sample_period);
6529 }
6530 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6531 ns_to_ktime(period), 0,
b5ab4cd5 6532 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6533}
b0a873eb
PZ
6534
6535static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6536{
b0a873eb
PZ
6537 struct hw_perf_event *hwc = &event->hw;
6538
6c7e550f 6539 if (is_sampling_event(event)) {
b0a873eb 6540 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6541 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6542
6543 hrtimer_cancel(&hwc->hrtimer);
6544 }
24f1e32c
FW
6545}
6546
ba3dd36c
PZ
6547static void perf_swevent_init_hrtimer(struct perf_event *event)
6548{
6549 struct hw_perf_event *hwc = &event->hw;
6550
6551 if (!is_sampling_event(event))
6552 return;
6553
6554 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6555 hwc->hrtimer.function = perf_swevent_hrtimer;
6556
6557 /*
6558 * Since hrtimers have a fixed rate, we can do a static freq->period
6559 * mapping and avoid the whole period adjust feedback stuff.
6560 */
6561 if (event->attr.freq) {
6562 long freq = event->attr.sample_freq;
6563
6564 event->attr.sample_period = NSEC_PER_SEC / freq;
6565 hwc->sample_period = event->attr.sample_period;
6566 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6567 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6568 event->attr.freq = 0;
6569 }
6570}
6571
b0a873eb
PZ
6572/*
6573 * Software event: cpu wall time clock
6574 */
6575
6576static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6577{
b0a873eb
PZ
6578 s64 prev;
6579 u64 now;
6580
a4eaf7f1 6581 now = local_clock();
b0a873eb
PZ
6582 prev = local64_xchg(&event->hw.prev_count, now);
6583 local64_add(now - prev, &event->count);
24f1e32c 6584}
24f1e32c 6585
a4eaf7f1 6586static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6587{
a4eaf7f1 6588 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6589 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6590}
6591
a4eaf7f1 6592static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6593{
b0a873eb
PZ
6594 perf_swevent_cancel_hrtimer(event);
6595 cpu_clock_event_update(event);
6596}
f29ac756 6597
a4eaf7f1
PZ
6598static int cpu_clock_event_add(struct perf_event *event, int flags)
6599{
6600 if (flags & PERF_EF_START)
6601 cpu_clock_event_start(event, flags);
6a694a60 6602 perf_event_update_userpage(event);
a4eaf7f1
PZ
6603
6604 return 0;
6605}
6606
6607static void cpu_clock_event_del(struct perf_event *event, int flags)
6608{
6609 cpu_clock_event_stop(event, flags);
6610}
6611
b0a873eb
PZ
6612static void cpu_clock_event_read(struct perf_event *event)
6613{
6614 cpu_clock_event_update(event);
6615}
f344011c 6616
b0a873eb
PZ
6617static int cpu_clock_event_init(struct perf_event *event)
6618{
6619 if (event->attr.type != PERF_TYPE_SOFTWARE)
6620 return -ENOENT;
6621
6622 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6623 return -ENOENT;
6624
2481c5fa
SE
6625 /*
6626 * no branch sampling for software events
6627 */
6628 if (has_branch_stack(event))
6629 return -EOPNOTSUPP;
6630
ba3dd36c
PZ
6631 perf_swevent_init_hrtimer(event);
6632
b0a873eb 6633 return 0;
f29ac756
PZ
6634}
6635
b0a873eb 6636static struct pmu perf_cpu_clock = {
89a1e187
PZ
6637 .task_ctx_nr = perf_sw_context,
6638
b0a873eb 6639 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6640 .add = cpu_clock_event_add,
6641 .del = cpu_clock_event_del,
6642 .start = cpu_clock_event_start,
6643 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6644 .read = cpu_clock_event_read,
6645};
6646
6647/*
6648 * Software event: task time clock
6649 */
6650
6651static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6652{
b0a873eb
PZ
6653 u64 prev;
6654 s64 delta;
5c92d124 6655
b0a873eb
PZ
6656 prev = local64_xchg(&event->hw.prev_count, now);
6657 delta = now - prev;
6658 local64_add(delta, &event->count);
6659}
5c92d124 6660
a4eaf7f1 6661static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6662{
a4eaf7f1 6663 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6664 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6665}
6666
a4eaf7f1 6667static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6668{
6669 perf_swevent_cancel_hrtimer(event);
6670 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6671}
6672
6673static int task_clock_event_add(struct perf_event *event, int flags)
6674{
6675 if (flags & PERF_EF_START)
6676 task_clock_event_start(event, flags);
6a694a60 6677 perf_event_update_userpage(event);
b0a873eb 6678
a4eaf7f1
PZ
6679 return 0;
6680}
6681
6682static void task_clock_event_del(struct perf_event *event, int flags)
6683{
6684 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6685}
6686
6687static void task_clock_event_read(struct perf_event *event)
6688{
768a06e2
PZ
6689 u64 now = perf_clock();
6690 u64 delta = now - event->ctx->timestamp;
6691 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6692
6693 task_clock_event_update(event, time);
6694}
6695
6696static int task_clock_event_init(struct perf_event *event)
6fb2915d 6697{
b0a873eb
PZ
6698 if (event->attr.type != PERF_TYPE_SOFTWARE)
6699 return -ENOENT;
6700
6701 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6702 return -ENOENT;
6703
2481c5fa
SE
6704 /*
6705 * no branch sampling for software events
6706 */
6707 if (has_branch_stack(event))
6708 return -EOPNOTSUPP;
6709
ba3dd36c
PZ
6710 perf_swevent_init_hrtimer(event);
6711
b0a873eb 6712 return 0;
6fb2915d
LZ
6713}
6714
b0a873eb 6715static struct pmu perf_task_clock = {
89a1e187
PZ
6716 .task_ctx_nr = perf_sw_context,
6717
b0a873eb 6718 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6719 .add = task_clock_event_add,
6720 .del = task_clock_event_del,
6721 .start = task_clock_event_start,
6722 .stop = task_clock_event_stop,
b0a873eb
PZ
6723 .read = task_clock_event_read,
6724};
6fb2915d 6725
ad5133b7 6726static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6727{
e077df4f 6728}
6fb2915d 6729
ad5133b7 6730static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6731{
ad5133b7 6732 return 0;
6fb2915d
LZ
6733}
6734
ad5133b7 6735static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6736{
ad5133b7 6737 perf_pmu_disable(pmu);
6fb2915d
LZ
6738}
6739
ad5133b7
PZ
6740static int perf_pmu_commit_txn(struct pmu *pmu)
6741{
6742 perf_pmu_enable(pmu);
6743 return 0;
6744}
e077df4f 6745
ad5133b7 6746static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6747{
ad5133b7 6748 perf_pmu_enable(pmu);
24f1e32c
FW
6749}
6750
35edc2a5
PZ
6751static int perf_event_idx_default(struct perf_event *event)
6752{
c719f560 6753 return 0;
35edc2a5
PZ
6754}
6755
8dc85d54
PZ
6756/*
6757 * Ensures all contexts with the same task_ctx_nr have the same
6758 * pmu_cpu_context too.
6759 */
9e317041 6760static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6761{
8dc85d54 6762 struct pmu *pmu;
b326e956 6763
8dc85d54
PZ
6764 if (ctxn < 0)
6765 return NULL;
24f1e32c 6766
8dc85d54
PZ
6767 list_for_each_entry(pmu, &pmus, entry) {
6768 if (pmu->task_ctx_nr == ctxn)
6769 return pmu->pmu_cpu_context;
6770 }
24f1e32c 6771
8dc85d54 6772 return NULL;
24f1e32c
FW
6773}
6774
51676957 6775static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6776{
51676957
PZ
6777 int cpu;
6778
6779 for_each_possible_cpu(cpu) {
6780 struct perf_cpu_context *cpuctx;
6781
6782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6783
3f1f3320
PZ
6784 if (cpuctx->unique_pmu == old_pmu)
6785 cpuctx->unique_pmu = pmu;
51676957
PZ
6786 }
6787}
6788
6789static void free_pmu_context(struct pmu *pmu)
6790{
6791 struct pmu *i;
f5ffe02e 6792
8dc85d54 6793 mutex_lock(&pmus_lock);
0475f9ea 6794 /*
8dc85d54 6795 * Like a real lame refcount.
0475f9ea 6796 */
51676957
PZ
6797 list_for_each_entry(i, &pmus, entry) {
6798 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6799 update_pmu_context(i, pmu);
8dc85d54 6800 goto out;
51676957 6801 }
8dc85d54 6802 }
d6d020e9 6803
51676957 6804 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6805out:
6806 mutex_unlock(&pmus_lock);
24f1e32c 6807}
2e80a82a 6808static struct idr pmu_idr;
d6d020e9 6809
abe43400
PZ
6810static ssize_t
6811type_show(struct device *dev, struct device_attribute *attr, char *page)
6812{
6813 struct pmu *pmu = dev_get_drvdata(dev);
6814
6815 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6816}
90826ca7 6817static DEVICE_ATTR_RO(type);
abe43400 6818
62b85639
SE
6819static ssize_t
6820perf_event_mux_interval_ms_show(struct device *dev,
6821 struct device_attribute *attr,
6822 char *page)
6823{
6824 struct pmu *pmu = dev_get_drvdata(dev);
6825
6826 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6827}
6828
6829static ssize_t
6830perf_event_mux_interval_ms_store(struct device *dev,
6831 struct device_attribute *attr,
6832 const char *buf, size_t count)
6833{
6834 struct pmu *pmu = dev_get_drvdata(dev);
6835 int timer, cpu, ret;
6836
6837 ret = kstrtoint(buf, 0, &timer);
6838 if (ret)
6839 return ret;
6840
6841 if (timer < 1)
6842 return -EINVAL;
6843
6844 /* same value, noting to do */
6845 if (timer == pmu->hrtimer_interval_ms)
6846 return count;
6847
6848 pmu->hrtimer_interval_ms = timer;
6849
6850 /* update all cpuctx for this PMU */
6851 for_each_possible_cpu(cpu) {
6852 struct perf_cpu_context *cpuctx;
6853 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6854 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6855
6856 if (hrtimer_active(&cpuctx->hrtimer))
6857 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6858 }
6859
6860 return count;
6861}
90826ca7 6862static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6863
90826ca7
GKH
6864static struct attribute *pmu_dev_attrs[] = {
6865 &dev_attr_type.attr,
6866 &dev_attr_perf_event_mux_interval_ms.attr,
6867 NULL,
abe43400 6868};
90826ca7 6869ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6870
6871static int pmu_bus_running;
6872static struct bus_type pmu_bus = {
6873 .name = "event_source",
90826ca7 6874 .dev_groups = pmu_dev_groups,
abe43400
PZ
6875};
6876
6877static void pmu_dev_release(struct device *dev)
6878{
6879 kfree(dev);
6880}
6881
6882static int pmu_dev_alloc(struct pmu *pmu)
6883{
6884 int ret = -ENOMEM;
6885
6886 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6887 if (!pmu->dev)
6888 goto out;
6889
0c9d42ed 6890 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6891 device_initialize(pmu->dev);
6892 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6893 if (ret)
6894 goto free_dev;
6895
6896 dev_set_drvdata(pmu->dev, pmu);
6897 pmu->dev->bus = &pmu_bus;
6898 pmu->dev->release = pmu_dev_release;
6899 ret = device_add(pmu->dev);
6900 if (ret)
6901 goto free_dev;
6902
6903out:
6904 return ret;
6905
6906free_dev:
6907 put_device(pmu->dev);
6908 goto out;
6909}
6910
547e9fd7 6911static struct lock_class_key cpuctx_mutex;
facc4307 6912static struct lock_class_key cpuctx_lock;
547e9fd7 6913
03d8e80b 6914int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6915{
108b02cf 6916 int cpu, ret;
24f1e32c 6917
b0a873eb 6918 mutex_lock(&pmus_lock);
33696fc0
PZ
6919 ret = -ENOMEM;
6920 pmu->pmu_disable_count = alloc_percpu(int);
6921 if (!pmu->pmu_disable_count)
6922 goto unlock;
f29ac756 6923
2e80a82a
PZ
6924 pmu->type = -1;
6925 if (!name)
6926 goto skip_type;
6927 pmu->name = name;
6928
6929 if (type < 0) {
0e9c3be2
TH
6930 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6931 if (type < 0) {
6932 ret = type;
2e80a82a
PZ
6933 goto free_pdc;
6934 }
6935 }
6936 pmu->type = type;
6937
abe43400
PZ
6938 if (pmu_bus_running) {
6939 ret = pmu_dev_alloc(pmu);
6940 if (ret)
6941 goto free_idr;
6942 }
6943
2e80a82a 6944skip_type:
8dc85d54
PZ
6945 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6946 if (pmu->pmu_cpu_context)
6947 goto got_cpu_context;
f29ac756 6948
c4814202 6949 ret = -ENOMEM;
108b02cf
PZ
6950 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6951 if (!pmu->pmu_cpu_context)
abe43400 6952 goto free_dev;
f344011c 6953
108b02cf
PZ
6954 for_each_possible_cpu(cpu) {
6955 struct perf_cpu_context *cpuctx;
6956
6957 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6958 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6959 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6960 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6961 cpuctx->ctx.pmu = pmu;
9e630205
SE
6962
6963 __perf_cpu_hrtimer_init(cpuctx, cpu);
6964
3f1f3320 6965 cpuctx->unique_pmu = pmu;
108b02cf 6966 }
76e1d904 6967
8dc85d54 6968got_cpu_context:
ad5133b7
PZ
6969 if (!pmu->start_txn) {
6970 if (pmu->pmu_enable) {
6971 /*
6972 * If we have pmu_enable/pmu_disable calls, install
6973 * transaction stubs that use that to try and batch
6974 * hardware accesses.
6975 */
6976 pmu->start_txn = perf_pmu_start_txn;
6977 pmu->commit_txn = perf_pmu_commit_txn;
6978 pmu->cancel_txn = perf_pmu_cancel_txn;
6979 } else {
6980 pmu->start_txn = perf_pmu_nop_void;
6981 pmu->commit_txn = perf_pmu_nop_int;
6982 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6983 }
5c92d124 6984 }
15dbf27c 6985
ad5133b7
PZ
6986 if (!pmu->pmu_enable) {
6987 pmu->pmu_enable = perf_pmu_nop_void;
6988 pmu->pmu_disable = perf_pmu_nop_void;
6989 }
6990
35edc2a5
PZ
6991 if (!pmu->event_idx)
6992 pmu->event_idx = perf_event_idx_default;
6993
b0a873eb 6994 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6995 ret = 0;
6996unlock:
b0a873eb
PZ
6997 mutex_unlock(&pmus_lock);
6998
33696fc0 6999 return ret;
108b02cf 7000
abe43400
PZ
7001free_dev:
7002 device_del(pmu->dev);
7003 put_device(pmu->dev);
7004
2e80a82a
PZ
7005free_idr:
7006 if (pmu->type >= PERF_TYPE_MAX)
7007 idr_remove(&pmu_idr, pmu->type);
7008
108b02cf
PZ
7009free_pdc:
7010 free_percpu(pmu->pmu_disable_count);
7011 goto unlock;
f29ac756 7012}
c464c76e 7013EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7014
b0a873eb 7015void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7016{
b0a873eb
PZ
7017 mutex_lock(&pmus_lock);
7018 list_del_rcu(&pmu->entry);
7019 mutex_unlock(&pmus_lock);
5c92d124 7020
0475f9ea 7021 /*
cde8e884
PZ
7022 * We dereference the pmu list under both SRCU and regular RCU, so
7023 * synchronize against both of those.
0475f9ea 7024 */
b0a873eb 7025 synchronize_srcu(&pmus_srcu);
cde8e884 7026 synchronize_rcu();
d6d020e9 7027
33696fc0 7028 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7029 if (pmu->type >= PERF_TYPE_MAX)
7030 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7031 device_del(pmu->dev);
7032 put_device(pmu->dev);
51676957 7033 free_pmu_context(pmu);
b0a873eb 7034}
c464c76e 7035EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7036
cc34b98b
MR
7037static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7038{
7039 int ret;
7040
7041 if (!try_module_get(pmu->module))
7042 return -ENODEV;
7043 event->pmu = pmu;
7044 ret = pmu->event_init(event);
7045 if (ret)
7046 module_put(pmu->module);
7047
7048 return ret;
7049}
7050
b0a873eb
PZ
7051struct pmu *perf_init_event(struct perf_event *event)
7052{
7053 struct pmu *pmu = NULL;
7054 int idx;
940c5b29 7055 int ret;
b0a873eb
PZ
7056
7057 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7058
7059 rcu_read_lock();
7060 pmu = idr_find(&pmu_idr, event->attr.type);
7061 rcu_read_unlock();
940c5b29 7062 if (pmu) {
cc34b98b 7063 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7064 if (ret)
7065 pmu = ERR_PTR(ret);
2e80a82a 7066 goto unlock;
940c5b29 7067 }
2e80a82a 7068
b0a873eb 7069 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7070 ret = perf_try_init_event(pmu, event);
b0a873eb 7071 if (!ret)
e5f4d339 7072 goto unlock;
76e1d904 7073
b0a873eb
PZ
7074 if (ret != -ENOENT) {
7075 pmu = ERR_PTR(ret);
e5f4d339 7076 goto unlock;
f344011c 7077 }
5c92d124 7078 }
e5f4d339
PZ
7079 pmu = ERR_PTR(-ENOENT);
7080unlock:
b0a873eb 7081 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7082
4aeb0b42 7083 return pmu;
5c92d124
IM
7084}
7085
4beb31f3
FW
7086static void account_event_cpu(struct perf_event *event, int cpu)
7087{
7088 if (event->parent)
7089 return;
7090
4beb31f3
FW
7091 if (is_cgroup_event(event))
7092 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7093}
7094
766d6c07
FW
7095static void account_event(struct perf_event *event)
7096{
4beb31f3
FW
7097 if (event->parent)
7098 return;
7099
766d6c07
FW
7100 if (event->attach_state & PERF_ATTACH_TASK)
7101 static_key_slow_inc(&perf_sched_events.key);
7102 if (event->attr.mmap || event->attr.mmap_data)
7103 atomic_inc(&nr_mmap_events);
7104 if (event->attr.comm)
7105 atomic_inc(&nr_comm_events);
7106 if (event->attr.task)
7107 atomic_inc(&nr_task_events);
948b26b6
FW
7108 if (event->attr.freq) {
7109 if (atomic_inc_return(&nr_freq_events) == 1)
7110 tick_nohz_full_kick_all();
7111 }
4beb31f3 7112 if (has_branch_stack(event))
766d6c07 7113 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7114 if (is_cgroup_event(event))
766d6c07 7115 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7116
7117 account_event_cpu(event, event->cpu);
766d6c07
FW
7118}
7119
0793a61d 7120/*
cdd6c482 7121 * Allocate and initialize a event structure
0793a61d 7122 */
cdd6c482 7123static struct perf_event *
c3f00c70 7124perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7125 struct task_struct *task,
7126 struct perf_event *group_leader,
7127 struct perf_event *parent_event,
4dc0da86 7128 perf_overflow_handler_t overflow_handler,
79dff51e 7129 void *context, int cgroup_fd)
0793a61d 7130{
51b0fe39 7131 struct pmu *pmu;
cdd6c482
IM
7132 struct perf_event *event;
7133 struct hw_perf_event *hwc;
90983b16 7134 long err = -EINVAL;
0793a61d 7135
66832eb4
ON
7136 if ((unsigned)cpu >= nr_cpu_ids) {
7137 if (!task || cpu != -1)
7138 return ERR_PTR(-EINVAL);
7139 }
7140
c3f00c70 7141 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7142 if (!event)
d5d2bc0d 7143 return ERR_PTR(-ENOMEM);
0793a61d 7144
04289bb9 7145 /*
cdd6c482 7146 * Single events are their own group leaders, with an
04289bb9
IM
7147 * empty sibling list:
7148 */
7149 if (!group_leader)
cdd6c482 7150 group_leader = event;
04289bb9 7151
cdd6c482
IM
7152 mutex_init(&event->child_mutex);
7153 INIT_LIST_HEAD(&event->child_list);
fccc714b 7154
cdd6c482
IM
7155 INIT_LIST_HEAD(&event->group_entry);
7156 INIT_LIST_HEAD(&event->event_entry);
7157 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7158 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7159 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7160 INIT_HLIST_NODE(&event->hlist_entry);
7161
10c6db11 7162
cdd6c482 7163 init_waitqueue_head(&event->waitq);
e360adbe 7164 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7165
cdd6c482 7166 mutex_init(&event->mmap_mutex);
7b732a75 7167
a6fa941d 7168 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7169 event->cpu = cpu;
7170 event->attr = *attr;
7171 event->group_leader = group_leader;
7172 event->pmu = NULL;
cdd6c482 7173 event->oncpu = -1;
a96bbc16 7174
cdd6c482 7175 event->parent = parent_event;
b84fbc9f 7176
17cf22c3 7177 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7178 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7179
cdd6c482 7180 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7181
d580ff86
PZ
7182 if (task) {
7183 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7184 /*
50f16a8b
PZ
7185 * XXX pmu::event_init needs to know what task to account to
7186 * and we cannot use the ctx information because we need the
7187 * pmu before we get a ctx.
d580ff86 7188 */
50f16a8b 7189 event->hw.target = task;
d580ff86
PZ
7190 }
7191
4dc0da86 7192 if (!overflow_handler && parent_event) {
b326e956 7193 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7194 context = parent_event->overflow_handler_context;
7195 }
66832eb4 7196
b326e956 7197 event->overflow_handler = overflow_handler;
4dc0da86 7198 event->overflow_handler_context = context;
97eaf530 7199
0231bb53 7200 perf_event__state_init(event);
a86ed508 7201
4aeb0b42 7202 pmu = NULL;
b8e83514 7203
cdd6c482 7204 hwc = &event->hw;
bd2b5b12 7205 hwc->sample_period = attr->sample_period;
0d48696f 7206 if (attr->freq && attr->sample_freq)
bd2b5b12 7207 hwc->sample_period = 1;
eced1dfc 7208 hwc->last_period = hwc->sample_period;
bd2b5b12 7209
e7850595 7210 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7211
2023b359 7212 /*
cdd6c482 7213 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7214 */
3dab77fb 7215 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7216 goto err_ns;
a46a2300
YZ
7217
7218 if (!has_branch_stack(event))
7219 event->attr.branch_sample_type = 0;
2023b359 7220
79dff51e
MF
7221 if (cgroup_fd != -1) {
7222 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7223 if (err)
7224 goto err_ns;
7225 }
7226
b0a873eb 7227 pmu = perf_init_event(event);
4aeb0b42 7228 if (!pmu)
90983b16
FW
7229 goto err_ns;
7230 else if (IS_ERR(pmu)) {
4aeb0b42 7231 err = PTR_ERR(pmu);
90983b16 7232 goto err_ns;
621a01ea 7233 }
d5d2bc0d 7234
cdd6c482 7235 if (!event->parent) {
927c7a9e
FW
7236 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7237 err = get_callchain_buffers();
90983b16
FW
7238 if (err)
7239 goto err_pmu;
d010b332 7240 }
f344011c 7241 }
9ee318a7 7242
cdd6c482 7243 return event;
90983b16
FW
7244
7245err_pmu:
7246 if (event->destroy)
7247 event->destroy(event);
c464c76e 7248 module_put(pmu->module);
90983b16 7249err_ns:
79dff51e
MF
7250 if (is_cgroup_event(event))
7251 perf_detach_cgroup(event);
90983b16
FW
7252 if (event->ns)
7253 put_pid_ns(event->ns);
7254 kfree(event);
7255
7256 return ERR_PTR(err);
0793a61d
TG
7257}
7258
cdd6c482
IM
7259static int perf_copy_attr(struct perf_event_attr __user *uattr,
7260 struct perf_event_attr *attr)
974802ea 7261{
974802ea 7262 u32 size;
cdf8073d 7263 int ret;
974802ea
PZ
7264
7265 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7266 return -EFAULT;
7267
7268 /*
7269 * zero the full structure, so that a short copy will be nice.
7270 */
7271 memset(attr, 0, sizeof(*attr));
7272
7273 ret = get_user(size, &uattr->size);
7274 if (ret)
7275 return ret;
7276
7277 if (size > PAGE_SIZE) /* silly large */
7278 goto err_size;
7279
7280 if (!size) /* abi compat */
7281 size = PERF_ATTR_SIZE_VER0;
7282
7283 if (size < PERF_ATTR_SIZE_VER0)
7284 goto err_size;
7285
7286 /*
7287 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7288 * ensure all the unknown bits are 0 - i.e. new
7289 * user-space does not rely on any kernel feature
7290 * extensions we dont know about yet.
974802ea
PZ
7291 */
7292 if (size > sizeof(*attr)) {
cdf8073d
IS
7293 unsigned char __user *addr;
7294 unsigned char __user *end;
7295 unsigned char val;
974802ea 7296
cdf8073d
IS
7297 addr = (void __user *)uattr + sizeof(*attr);
7298 end = (void __user *)uattr + size;
974802ea 7299
cdf8073d 7300 for (; addr < end; addr++) {
974802ea
PZ
7301 ret = get_user(val, addr);
7302 if (ret)
7303 return ret;
7304 if (val)
7305 goto err_size;
7306 }
b3e62e35 7307 size = sizeof(*attr);
974802ea
PZ
7308 }
7309
7310 ret = copy_from_user(attr, uattr, size);
7311 if (ret)
7312 return -EFAULT;
7313
cd757645 7314 if (attr->__reserved_1)
974802ea
PZ
7315 return -EINVAL;
7316
7317 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7318 return -EINVAL;
7319
7320 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7321 return -EINVAL;
7322
bce38cd5
SE
7323 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7324 u64 mask = attr->branch_sample_type;
7325
7326 /* only using defined bits */
7327 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7328 return -EINVAL;
7329
7330 /* at least one branch bit must be set */
7331 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7332 return -EINVAL;
7333
bce38cd5
SE
7334 /* propagate priv level, when not set for branch */
7335 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7336
7337 /* exclude_kernel checked on syscall entry */
7338 if (!attr->exclude_kernel)
7339 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7340
7341 if (!attr->exclude_user)
7342 mask |= PERF_SAMPLE_BRANCH_USER;
7343
7344 if (!attr->exclude_hv)
7345 mask |= PERF_SAMPLE_BRANCH_HV;
7346 /*
7347 * adjust user setting (for HW filter setup)
7348 */
7349 attr->branch_sample_type = mask;
7350 }
e712209a
SE
7351 /* privileged levels capture (kernel, hv): check permissions */
7352 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7353 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7354 return -EACCES;
bce38cd5 7355 }
4018994f 7356
c5ebcedb 7357 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7358 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7359 if (ret)
7360 return ret;
7361 }
7362
7363 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7364 if (!arch_perf_have_user_stack_dump())
7365 return -ENOSYS;
7366
7367 /*
7368 * We have __u32 type for the size, but so far
7369 * we can only use __u16 as maximum due to the
7370 * __u16 sample size limit.
7371 */
7372 if (attr->sample_stack_user >= USHRT_MAX)
7373 ret = -EINVAL;
7374 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7375 ret = -EINVAL;
7376 }
4018994f 7377
60e2364e
SE
7378 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7379 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7380out:
7381 return ret;
7382
7383err_size:
7384 put_user(sizeof(*attr), &uattr->size);
7385 ret = -E2BIG;
7386 goto out;
7387}
7388
ac9721f3
PZ
7389static int
7390perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7391{
b69cf536 7392 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7393 int ret = -EINVAL;
7394
ac9721f3 7395 if (!output_event)
a4be7c27
PZ
7396 goto set;
7397
ac9721f3
PZ
7398 /* don't allow circular references */
7399 if (event == output_event)
a4be7c27
PZ
7400 goto out;
7401
0f139300
PZ
7402 /*
7403 * Don't allow cross-cpu buffers
7404 */
7405 if (output_event->cpu != event->cpu)
7406 goto out;
7407
7408 /*
76369139 7409 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7410 */
7411 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7412 goto out;
7413
a4be7c27 7414set:
cdd6c482 7415 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7416 /* Can't redirect output if we've got an active mmap() */
7417 if (atomic_read(&event->mmap_count))
7418 goto unlock;
a4be7c27 7419
ac9721f3 7420 if (output_event) {
76369139
FW
7421 /* get the rb we want to redirect to */
7422 rb = ring_buffer_get(output_event);
7423 if (!rb)
ac9721f3 7424 goto unlock;
a4be7c27
PZ
7425 }
7426
b69cf536 7427 ring_buffer_attach(event, rb);
9bb5d40c 7428
a4be7c27 7429 ret = 0;
ac9721f3
PZ
7430unlock:
7431 mutex_unlock(&event->mmap_mutex);
7432
a4be7c27 7433out:
a4be7c27
PZ
7434 return ret;
7435}
7436
f63a8daa
PZ
7437static void mutex_lock_double(struct mutex *a, struct mutex *b)
7438{
7439 if (b < a)
7440 swap(a, b);
7441
7442 mutex_lock(a);
7443 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7444}
7445
0793a61d 7446/**
cdd6c482 7447 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7448 *
cdd6c482 7449 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7450 * @pid: target pid
9f66a381 7451 * @cpu: target cpu
cdd6c482 7452 * @group_fd: group leader event fd
0793a61d 7453 */
cdd6c482
IM
7454SYSCALL_DEFINE5(perf_event_open,
7455 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7456 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7457{
b04243ef
PZ
7458 struct perf_event *group_leader = NULL, *output_event = NULL;
7459 struct perf_event *event, *sibling;
cdd6c482 7460 struct perf_event_attr attr;
f63a8daa 7461 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7462 struct file *event_file = NULL;
2903ff01 7463 struct fd group = {NULL, 0};
38a81da2 7464 struct task_struct *task = NULL;
89a1e187 7465 struct pmu *pmu;
ea635c64 7466 int event_fd;
b04243ef 7467 int move_group = 0;
dc86cabe 7468 int err;
a21b0b35 7469 int f_flags = O_RDWR;
79dff51e 7470 int cgroup_fd = -1;
0793a61d 7471
2743a5b0 7472 /* for future expandability... */
e5d1367f 7473 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7474 return -EINVAL;
7475
dc86cabe
IM
7476 err = perf_copy_attr(attr_uptr, &attr);
7477 if (err)
7478 return err;
eab656ae 7479
0764771d
PZ
7480 if (!attr.exclude_kernel) {
7481 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7482 return -EACCES;
7483 }
7484
df58ab24 7485 if (attr.freq) {
cdd6c482 7486 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7487 return -EINVAL;
0819b2e3
PZ
7488 } else {
7489 if (attr.sample_period & (1ULL << 63))
7490 return -EINVAL;
df58ab24
PZ
7491 }
7492
e5d1367f
SE
7493 /*
7494 * In cgroup mode, the pid argument is used to pass the fd
7495 * opened to the cgroup directory in cgroupfs. The cpu argument
7496 * designates the cpu on which to monitor threads from that
7497 * cgroup.
7498 */
7499 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7500 return -EINVAL;
7501
a21b0b35
YD
7502 if (flags & PERF_FLAG_FD_CLOEXEC)
7503 f_flags |= O_CLOEXEC;
7504
7505 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7506 if (event_fd < 0)
7507 return event_fd;
7508
ac9721f3 7509 if (group_fd != -1) {
2903ff01
AV
7510 err = perf_fget_light(group_fd, &group);
7511 if (err)
d14b12d7 7512 goto err_fd;
2903ff01 7513 group_leader = group.file->private_data;
ac9721f3
PZ
7514 if (flags & PERF_FLAG_FD_OUTPUT)
7515 output_event = group_leader;
7516 if (flags & PERF_FLAG_FD_NO_GROUP)
7517 group_leader = NULL;
7518 }
7519
e5d1367f 7520 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7521 task = find_lively_task_by_vpid(pid);
7522 if (IS_ERR(task)) {
7523 err = PTR_ERR(task);
7524 goto err_group_fd;
7525 }
7526 }
7527
1f4ee503
PZ
7528 if (task && group_leader &&
7529 group_leader->attr.inherit != attr.inherit) {
7530 err = -EINVAL;
7531 goto err_task;
7532 }
7533
fbfc623f
YZ
7534 get_online_cpus();
7535
79dff51e
MF
7536 if (flags & PERF_FLAG_PID_CGROUP)
7537 cgroup_fd = pid;
7538
4dc0da86 7539 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 7540 NULL, NULL, cgroup_fd);
d14b12d7
SE
7541 if (IS_ERR(event)) {
7542 err = PTR_ERR(event);
1f4ee503 7543 goto err_cpus;
d14b12d7
SE
7544 }
7545
53b25335
VW
7546 if (is_sampling_event(event)) {
7547 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7548 err = -ENOTSUPP;
7549 goto err_alloc;
7550 }
7551 }
7552
766d6c07
FW
7553 account_event(event);
7554
89a1e187
PZ
7555 /*
7556 * Special case software events and allow them to be part of
7557 * any hardware group.
7558 */
7559 pmu = event->pmu;
b04243ef
PZ
7560
7561 if (group_leader &&
7562 (is_software_event(event) != is_software_event(group_leader))) {
7563 if (is_software_event(event)) {
7564 /*
7565 * If event and group_leader are not both a software
7566 * event, and event is, then group leader is not.
7567 *
7568 * Allow the addition of software events to !software
7569 * groups, this is safe because software events never
7570 * fail to schedule.
7571 */
7572 pmu = group_leader->pmu;
7573 } else if (is_software_event(group_leader) &&
7574 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7575 /*
7576 * In case the group is a pure software group, and we
7577 * try to add a hardware event, move the whole group to
7578 * the hardware context.
7579 */
7580 move_group = 1;
7581 }
7582 }
89a1e187
PZ
7583
7584 /*
7585 * Get the target context (task or percpu):
7586 */
4af57ef2 7587 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
7588 if (IS_ERR(ctx)) {
7589 err = PTR_ERR(ctx);
c6be5a5c 7590 goto err_alloc;
89a1e187
PZ
7591 }
7592
fd1edb3a
PZ
7593 if (task) {
7594 put_task_struct(task);
7595 task = NULL;
7596 }
7597
ccff286d 7598 /*
cdd6c482 7599 * Look up the group leader (we will attach this event to it):
04289bb9 7600 */
ac9721f3 7601 if (group_leader) {
dc86cabe 7602 err = -EINVAL;
04289bb9 7603
04289bb9 7604 /*
ccff286d
IM
7605 * Do not allow a recursive hierarchy (this new sibling
7606 * becoming part of another group-sibling):
7607 */
7608 if (group_leader->group_leader != group_leader)
c3f00c70 7609 goto err_context;
ccff286d
IM
7610 /*
7611 * Do not allow to attach to a group in a different
7612 * task or CPU context:
04289bb9 7613 */
b04243ef 7614 if (move_group) {
c3c87e77
PZ
7615 /*
7616 * Make sure we're both on the same task, or both
7617 * per-cpu events.
7618 */
7619 if (group_leader->ctx->task != ctx->task)
7620 goto err_context;
7621
7622 /*
7623 * Make sure we're both events for the same CPU;
7624 * grouping events for different CPUs is broken; since
7625 * you can never concurrently schedule them anyhow.
7626 */
7627 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7628 goto err_context;
7629 } else {
7630 if (group_leader->ctx != ctx)
7631 goto err_context;
7632 }
7633
3b6f9e5c
PM
7634 /*
7635 * Only a group leader can be exclusive or pinned
7636 */
0d48696f 7637 if (attr.exclusive || attr.pinned)
c3f00c70 7638 goto err_context;
ac9721f3
PZ
7639 }
7640
7641 if (output_event) {
7642 err = perf_event_set_output(event, output_event);
7643 if (err)
c3f00c70 7644 goto err_context;
ac9721f3 7645 }
0793a61d 7646
a21b0b35
YD
7647 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7648 f_flags);
ea635c64
AV
7649 if (IS_ERR(event_file)) {
7650 err = PTR_ERR(event_file);
c3f00c70 7651 goto err_context;
ea635c64 7652 }
9b51f66d 7653
b04243ef 7654 if (move_group) {
f63a8daa
PZ
7655 gctx = group_leader->ctx;
7656
7657 /*
7658 * See perf_event_ctx_lock() for comments on the details
7659 * of swizzling perf_event::ctx.
7660 */
7661 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7662
46ce0fe9 7663 perf_remove_from_context(group_leader, false);
0231bb53 7664
b04243ef
PZ
7665 list_for_each_entry(sibling, &group_leader->sibling_list,
7666 group_entry) {
46ce0fe9 7667 perf_remove_from_context(sibling, false);
b04243ef
PZ
7668 put_ctx(gctx);
7669 }
f63a8daa
PZ
7670 } else {
7671 mutex_lock(&ctx->mutex);
ea635c64 7672 }
9b51f66d 7673
ad3a37de 7674 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7675
7676 if (move_group) {
f63a8daa
PZ
7677 /*
7678 * Wait for everybody to stop referencing the events through
7679 * the old lists, before installing it on new lists.
7680 */
0cda4c02 7681 synchronize_rcu();
f63a8daa 7682
8f95b435
PZI
7683 /*
7684 * Install the group siblings before the group leader.
7685 *
7686 * Because a group leader will try and install the entire group
7687 * (through the sibling list, which is still in-tact), we can
7688 * end up with siblings installed in the wrong context.
7689 *
7690 * By installing siblings first we NO-OP because they're not
7691 * reachable through the group lists.
7692 */
b04243ef
PZ
7693 list_for_each_entry(sibling, &group_leader->sibling_list,
7694 group_entry) {
8f95b435 7695 perf_event__state_init(sibling);
9fc81d87 7696 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7697 get_ctx(ctx);
7698 }
8f95b435
PZI
7699
7700 /*
7701 * Removing from the context ends up with disabled
7702 * event. What we want here is event in the initial
7703 * startup state, ready to be add into new context.
7704 */
7705 perf_event__state_init(group_leader);
7706 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7707 get_ctx(ctx);
b04243ef
PZ
7708 }
7709
e2d37cd2 7710 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7711 perf_unpin_context(ctx);
f63a8daa
PZ
7712
7713 if (move_group) {
7714 mutex_unlock(&gctx->mutex);
7715 put_ctx(gctx);
7716 }
d859e29f 7717 mutex_unlock(&ctx->mutex);
9b51f66d 7718
fbfc623f
YZ
7719 put_online_cpus();
7720
cdd6c482 7721 event->owner = current;
8882135b 7722
cdd6c482
IM
7723 mutex_lock(&current->perf_event_mutex);
7724 list_add_tail(&event->owner_entry, &current->perf_event_list);
7725 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7726
c320c7b7
ACM
7727 /*
7728 * Precalculate sample_data sizes
7729 */
7730 perf_event__header_size(event);
6844c09d 7731 perf_event__id_header_size(event);
c320c7b7 7732
8a49542c
PZ
7733 /*
7734 * Drop the reference on the group_event after placing the
7735 * new event on the sibling_list. This ensures destruction
7736 * of the group leader will find the pointer to itself in
7737 * perf_group_detach().
7738 */
2903ff01 7739 fdput(group);
ea635c64
AV
7740 fd_install(event_fd, event_file);
7741 return event_fd;
0793a61d 7742
c3f00c70 7743err_context:
fe4b04fa 7744 perf_unpin_context(ctx);
ea635c64 7745 put_ctx(ctx);
c6be5a5c 7746err_alloc:
ea635c64 7747 free_event(event);
1f4ee503 7748err_cpus:
fbfc623f 7749 put_online_cpus();
1f4ee503 7750err_task:
e7d0bc04
PZ
7751 if (task)
7752 put_task_struct(task);
89a1e187 7753err_group_fd:
2903ff01 7754 fdput(group);
ea635c64
AV
7755err_fd:
7756 put_unused_fd(event_fd);
dc86cabe 7757 return err;
0793a61d
TG
7758}
7759
fb0459d7
AV
7760/**
7761 * perf_event_create_kernel_counter
7762 *
7763 * @attr: attributes of the counter to create
7764 * @cpu: cpu in which the counter is bound
38a81da2 7765 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7766 */
7767struct perf_event *
7768perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7769 struct task_struct *task,
4dc0da86
AK
7770 perf_overflow_handler_t overflow_handler,
7771 void *context)
fb0459d7 7772{
fb0459d7 7773 struct perf_event_context *ctx;
c3f00c70 7774 struct perf_event *event;
fb0459d7 7775 int err;
d859e29f 7776
fb0459d7
AV
7777 /*
7778 * Get the target context (task or percpu):
7779 */
d859e29f 7780
4dc0da86 7781 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 7782 overflow_handler, context, -1);
c3f00c70
PZ
7783 if (IS_ERR(event)) {
7784 err = PTR_ERR(event);
7785 goto err;
7786 }
d859e29f 7787
f8697762
JO
7788 /* Mark owner so we could distinguish it from user events. */
7789 event->owner = EVENT_OWNER_KERNEL;
7790
766d6c07
FW
7791 account_event(event);
7792
4af57ef2 7793 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
7794 if (IS_ERR(ctx)) {
7795 err = PTR_ERR(ctx);
c3f00c70 7796 goto err_free;
d859e29f 7797 }
fb0459d7 7798
fb0459d7
AV
7799 WARN_ON_ONCE(ctx->parent_ctx);
7800 mutex_lock(&ctx->mutex);
7801 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7802 perf_unpin_context(ctx);
fb0459d7
AV
7803 mutex_unlock(&ctx->mutex);
7804
fb0459d7
AV
7805 return event;
7806
c3f00c70
PZ
7807err_free:
7808 free_event(event);
7809err:
c6567f64 7810 return ERR_PTR(err);
9b51f66d 7811}
fb0459d7 7812EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7813
0cda4c02
YZ
7814void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7815{
7816 struct perf_event_context *src_ctx;
7817 struct perf_event_context *dst_ctx;
7818 struct perf_event *event, *tmp;
7819 LIST_HEAD(events);
7820
7821 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7822 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7823
f63a8daa
PZ
7824 /*
7825 * See perf_event_ctx_lock() for comments on the details
7826 * of swizzling perf_event::ctx.
7827 */
7828 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7829 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7830 event_entry) {
46ce0fe9 7831 perf_remove_from_context(event, false);
9a545de0 7832 unaccount_event_cpu(event, src_cpu);
0cda4c02 7833 put_ctx(src_ctx);
9886167d 7834 list_add(&event->migrate_entry, &events);
0cda4c02 7835 }
0cda4c02 7836
8f95b435
PZI
7837 /*
7838 * Wait for the events to quiesce before re-instating them.
7839 */
0cda4c02
YZ
7840 synchronize_rcu();
7841
8f95b435
PZI
7842 /*
7843 * Re-instate events in 2 passes.
7844 *
7845 * Skip over group leaders and only install siblings on this first
7846 * pass, siblings will not get enabled without a leader, however a
7847 * leader will enable its siblings, even if those are still on the old
7848 * context.
7849 */
7850 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7851 if (event->group_leader == event)
7852 continue;
7853
7854 list_del(&event->migrate_entry);
7855 if (event->state >= PERF_EVENT_STATE_OFF)
7856 event->state = PERF_EVENT_STATE_INACTIVE;
7857 account_event_cpu(event, dst_cpu);
7858 perf_install_in_context(dst_ctx, event, dst_cpu);
7859 get_ctx(dst_ctx);
7860 }
7861
7862 /*
7863 * Once all the siblings are setup properly, install the group leaders
7864 * to make it go.
7865 */
9886167d
PZ
7866 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7867 list_del(&event->migrate_entry);
0cda4c02
YZ
7868 if (event->state >= PERF_EVENT_STATE_OFF)
7869 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7870 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7871 perf_install_in_context(dst_ctx, event, dst_cpu);
7872 get_ctx(dst_ctx);
7873 }
7874 mutex_unlock(&dst_ctx->mutex);
f63a8daa 7875 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
7876}
7877EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7878
cdd6c482 7879static void sync_child_event(struct perf_event *child_event,
38b200d6 7880 struct task_struct *child)
d859e29f 7881{
cdd6c482 7882 struct perf_event *parent_event = child_event->parent;
8bc20959 7883 u64 child_val;
d859e29f 7884
cdd6c482
IM
7885 if (child_event->attr.inherit_stat)
7886 perf_event_read_event(child_event, child);
38b200d6 7887
b5e58793 7888 child_val = perf_event_count(child_event);
d859e29f
PM
7889
7890 /*
7891 * Add back the child's count to the parent's count:
7892 */
a6e6dea6 7893 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7894 atomic64_add(child_event->total_time_enabled,
7895 &parent_event->child_total_time_enabled);
7896 atomic64_add(child_event->total_time_running,
7897 &parent_event->child_total_time_running);
d859e29f
PM
7898
7899 /*
cdd6c482 7900 * Remove this event from the parent's list
d859e29f 7901 */
cdd6c482
IM
7902 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7903 mutex_lock(&parent_event->child_mutex);
7904 list_del_init(&child_event->child_list);
7905 mutex_unlock(&parent_event->child_mutex);
d859e29f 7906
dc633982
JO
7907 /*
7908 * Make sure user/parent get notified, that we just
7909 * lost one event.
7910 */
7911 perf_event_wakeup(parent_event);
7912
d859e29f 7913 /*
cdd6c482 7914 * Release the parent event, if this was the last
d859e29f
PM
7915 * reference to it.
7916 */
a6fa941d 7917 put_event(parent_event);
d859e29f
PM
7918}
7919
9b51f66d 7920static void
cdd6c482
IM
7921__perf_event_exit_task(struct perf_event *child_event,
7922 struct perf_event_context *child_ctx,
38b200d6 7923 struct task_struct *child)
9b51f66d 7924{
1903d50c
PZ
7925 /*
7926 * Do not destroy the 'original' grouping; because of the context
7927 * switch optimization the original events could've ended up in a
7928 * random child task.
7929 *
7930 * If we were to destroy the original group, all group related
7931 * operations would cease to function properly after this random
7932 * child dies.
7933 *
7934 * Do destroy all inherited groups, we don't care about those
7935 * and being thorough is better.
7936 */
7937 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7938
9b51f66d 7939 /*
38b435b1 7940 * It can happen that the parent exits first, and has events
9b51f66d 7941 * that are still around due to the child reference. These
38b435b1 7942 * events need to be zapped.
9b51f66d 7943 */
38b435b1 7944 if (child_event->parent) {
cdd6c482
IM
7945 sync_child_event(child_event, child);
7946 free_event(child_event);
179033b3
JO
7947 } else {
7948 child_event->state = PERF_EVENT_STATE_EXIT;
7949 perf_event_wakeup(child_event);
4bcf349a 7950 }
9b51f66d
IM
7951}
7952
8dc85d54 7953static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7954{
ebf905fc 7955 struct perf_event *child_event, *next;
211de6eb 7956 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7957 unsigned long flags;
9b51f66d 7958
8dc85d54 7959 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7960 perf_event_task(child, NULL, 0);
9b51f66d 7961 return;
9f498cc5 7962 }
9b51f66d 7963
a63eaf34 7964 local_irq_save(flags);
ad3a37de
PM
7965 /*
7966 * We can't reschedule here because interrupts are disabled,
7967 * and either child is current or it is a task that can't be
7968 * scheduled, so we are now safe from rescheduling changing
7969 * our context.
7970 */
806839b2 7971 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7972
7973 /*
7974 * Take the context lock here so that if find_get_context is
cdd6c482 7975 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7976 * incremented the context's refcount before we do put_ctx below.
7977 */
e625cce1 7978 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7979 task_ctx_sched_out(child_ctx);
8dc85d54 7980 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7981
71a851b4
PZ
7982 /*
7983 * If this context is a clone; unclone it so it can't get
7984 * swapped to another process while we're removing all
cdd6c482 7985 * the events from it.
71a851b4 7986 */
211de6eb 7987 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7988 update_context_time(child_ctx);
e625cce1 7989 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7990
211de6eb
PZ
7991 if (clone_ctx)
7992 put_ctx(clone_ctx);
4a1c0f26 7993
9f498cc5 7994 /*
cdd6c482
IM
7995 * Report the task dead after unscheduling the events so that we
7996 * won't get any samples after PERF_RECORD_EXIT. We can however still
7997 * get a few PERF_RECORD_READ events.
9f498cc5 7998 */
cdd6c482 7999 perf_event_task(child, child_ctx, 0);
a63eaf34 8000
66fff224
PZ
8001 /*
8002 * We can recurse on the same lock type through:
8003 *
cdd6c482
IM
8004 * __perf_event_exit_task()
8005 * sync_child_event()
a6fa941d
AV
8006 * put_event()
8007 * mutex_lock(&ctx->mutex)
66fff224
PZ
8008 *
8009 * But since its the parent context it won't be the same instance.
8010 */
a0507c84 8011 mutex_lock(&child_ctx->mutex);
a63eaf34 8012
ebf905fc 8013 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8014 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8015
a63eaf34
PM
8016 mutex_unlock(&child_ctx->mutex);
8017
8018 put_ctx(child_ctx);
9b51f66d
IM
8019}
8020
8dc85d54
PZ
8021/*
8022 * When a child task exits, feed back event values to parent events.
8023 */
8024void perf_event_exit_task(struct task_struct *child)
8025{
8882135b 8026 struct perf_event *event, *tmp;
8dc85d54
PZ
8027 int ctxn;
8028
8882135b
PZ
8029 mutex_lock(&child->perf_event_mutex);
8030 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8031 owner_entry) {
8032 list_del_init(&event->owner_entry);
8033
8034 /*
8035 * Ensure the list deletion is visible before we clear
8036 * the owner, closes a race against perf_release() where
8037 * we need to serialize on the owner->perf_event_mutex.
8038 */
8039 smp_wmb();
8040 event->owner = NULL;
8041 }
8042 mutex_unlock(&child->perf_event_mutex);
8043
8dc85d54
PZ
8044 for_each_task_context_nr(ctxn)
8045 perf_event_exit_task_context(child, ctxn);
8046}
8047
889ff015
FW
8048static void perf_free_event(struct perf_event *event,
8049 struct perf_event_context *ctx)
8050{
8051 struct perf_event *parent = event->parent;
8052
8053 if (WARN_ON_ONCE(!parent))
8054 return;
8055
8056 mutex_lock(&parent->child_mutex);
8057 list_del_init(&event->child_list);
8058 mutex_unlock(&parent->child_mutex);
8059
a6fa941d 8060 put_event(parent);
889ff015 8061
652884fe 8062 raw_spin_lock_irq(&ctx->lock);
8a49542c 8063 perf_group_detach(event);
889ff015 8064 list_del_event(event, ctx);
652884fe 8065 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8066 free_event(event);
8067}
8068
bbbee908 8069/*
652884fe 8070 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8071 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8072 *
8073 * Not all locks are strictly required, but take them anyway to be nice and
8074 * help out with the lockdep assertions.
bbbee908 8075 */
cdd6c482 8076void perf_event_free_task(struct task_struct *task)
bbbee908 8077{
8dc85d54 8078 struct perf_event_context *ctx;
cdd6c482 8079 struct perf_event *event, *tmp;
8dc85d54 8080 int ctxn;
bbbee908 8081
8dc85d54
PZ
8082 for_each_task_context_nr(ctxn) {
8083 ctx = task->perf_event_ctxp[ctxn];
8084 if (!ctx)
8085 continue;
bbbee908 8086
8dc85d54 8087 mutex_lock(&ctx->mutex);
bbbee908 8088again:
8dc85d54
PZ
8089 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8090 group_entry)
8091 perf_free_event(event, ctx);
bbbee908 8092
8dc85d54
PZ
8093 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8094 group_entry)
8095 perf_free_event(event, ctx);
bbbee908 8096
8dc85d54
PZ
8097 if (!list_empty(&ctx->pinned_groups) ||
8098 !list_empty(&ctx->flexible_groups))
8099 goto again;
bbbee908 8100
8dc85d54 8101 mutex_unlock(&ctx->mutex);
bbbee908 8102
8dc85d54
PZ
8103 put_ctx(ctx);
8104 }
889ff015
FW
8105}
8106
4e231c79
PZ
8107void perf_event_delayed_put(struct task_struct *task)
8108{
8109 int ctxn;
8110
8111 for_each_task_context_nr(ctxn)
8112 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8113}
8114
97dee4f3
PZ
8115/*
8116 * inherit a event from parent task to child task:
8117 */
8118static struct perf_event *
8119inherit_event(struct perf_event *parent_event,
8120 struct task_struct *parent,
8121 struct perf_event_context *parent_ctx,
8122 struct task_struct *child,
8123 struct perf_event *group_leader,
8124 struct perf_event_context *child_ctx)
8125{
1929def9 8126 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8127 struct perf_event *child_event;
cee010ec 8128 unsigned long flags;
97dee4f3
PZ
8129
8130 /*
8131 * Instead of creating recursive hierarchies of events,
8132 * we link inherited events back to the original parent,
8133 * which has a filp for sure, which we use as the reference
8134 * count:
8135 */
8136 if (parent_event->parent)
8137 parent_event = parent_event->parent;
8138
8139 child_event = perf_event_alloc(&parent_event->attr,
8140 parent_event->cpu,
d580ff86 8141 child,
97dee4f3 8142 group_leader, parent_event,
79dff51e 8143 NULL, NULL, -1);
97dee4f3
PZ
8144 if (IS_ERR(child_event))
8145 return child_event;
a6fa941d 8146
fadfe7be
JO
8147 if (is_orphaned_event(parent_event) ||
8148 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8149 free_event(child_event);
8150 return NULL;
8151 }
8152
97dee4f3
PZ
8153 get_ctx(child_ctx);
8154
8155 /*
8156 * Make the child state follow the state of the parent event,
8157 * not its attr.disabled bit. We hold the parent's mutex,
8158 * so we won't race with perf_event_{en, dis}able_family.
8159 */
1929def9 8160 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8161 child_event->state = PERF_EVENT_STATE_INACTIVE;
8162 else
8163 child_event->state = PERF_EVENT_STATE_OFF;
8164
8165 if (parent_event->attr.freq) {
8166 u64 sample_period = parent_event->hw.sample_period;
8167 struct hw_perf_event *hwc = &child_event->hw;
8168
8169 hwc->sample_period = sample_period;
8170 hwc->last_period = sample_period;
8171
8172 local64_set(&hwc->period_left, sample_period);
8173 }
8174
8175 child_event->ctx = child_ctx;
8176 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8177 child_event->overflow_handler_context
8178 = parent_event->overflow_handler_context;
97dee4f3 8179
614b6780
TG
8180 /*
8181 * Precalculate sample_data sizes
8182 */
8183 perf_event__header_size(child_event);
6844c09d 8184 perf_event__id_header_size(child_event);
614b6780 8185
97dee4f3
PZ
8186 /*
8187 * Link it up in the child's context:
8188 */
cee010ec 8189 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8190 add_event_to_ctx(child_event, child_ctx);
cee010ec 8191 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8192
97dee4f3
PZ
8193 /*
8194 * Link this into the parent event's child list
8195 */
8196 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8197 mutex_lock(&parent_event->child_mutex);
8198 list_add_tail(&child_event->child_list, &parent_event->child_list);
8199 mutex_unlock(&parent_event->child_mutex);
8200
8201 return child_event;
8202}
8203
8204static int inherit_group(struct perf_event *parent_event,
8205 struct task_struct *parent,
8206 struct perf_event_context *parent_ctx,
8207 struct task_struct *child,
8208 struct perf_event_context *child_ctx)
8209{
8210 struct perf_event *leader;
8211 struct perf_event *sub;
8212 struct perf_event *child_ctr;
8213
8214 leader = inherit_event(parent_event, parent, parent_ctx,
8215 child, NULL, child_ctx);
8216 if (IS_ERR(leader))
8217 return PTR_ERR(leader);
8218 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8219 child_ctr = inherit_event(sub, parent, parent_ctx,
8220 child, leader, child_ctx);
8221 if (IS_ERR(child_ctr))
8222 return PTR_ERR(child_ctr);
8223 }
8224 return 0;
889ff015
FW
8225}
8226
8227static int
8228inherit_task_group(struct perf_event *event, struct task_struct *parent,
8229 struct perf_event_context *parent_ctx,
8dc85d54 8230 struct task_struct *child, int ctxn,
889ff015
FW
8231 int *inherited_all)
8232{
8233 int ret;
8dc85d54 8234 struct perf_event_context *child_ctx;
889ff015
FW
8235
8236 if (!event->attr.inherit) {
8237 *inherited_all = 0;
8238 return 0;
bbbee908
PZ
8239 }
8240
fe4b04fa 8241 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8242 if (!child_ctx) {
8243 /*
8244 * This is executed from the parent task context, so
8245 * inherit events that have been marked for cloning.
8246 * First allocate and initialize a context for the
8247 * child.
8248 */
bbbee908 8249
734df5ab 8250 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8251 if (!child_ctx)
8252 return -ENOMEM;
bbbee908 8253
8dc85d54 8254 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8255 }
8256
8257 ret = inherit_group(event, parent, parent_ctx,
8258 child, child_ctx);
8259
8260 if (ret)
8261 *inherited_all = 0;
8262
8263 return ret;
bbbee908
PZ
8264}
8265
9b51f66d 8266/*
cdd6c482 8267 * Initialize the perf_event context in task_struct
9b51f66d 8268 */
985c8dcb 8269static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8270{
889ff015 8271 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8272 struct perf_event_context *cloned_ctx;
8273 struct perf_event *event;
9b51f66d 8274 struct task_struct *parent = current;
564c2b21 8275 int inherited_all = 1;
dddd3379 8276 unsigned long flags;
6ab423e0 8277 int ret = 0;
9b51f66d 8278
8dc85d54 8279 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8280 return 0;
8281
ad3a37de 8282 /*
25346b93
PM
8283 * If the parent's context is a clone, pin it so it won't get
8284 * swapped under us.
ad3a37de 8285 */
8dc85d54 8286 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8287 if (!parent_ctx)
8288 return 0;
25346b93 8289
ad3a37de
PM
8290 /*
8291 * No need to check if parent_ctx != NULL here; since we saw
8292 * it non-NULL earlier, the only reason for it to become NULL
8293 * is if we exit, and since we're currently in the middle of
8294 * a fork we can't be exiting at the same time.
8295 */
ad3a37de 8296
9b51f66d
IM
8297 /*
8298 * Lock the parent list. No need to lock the child - not PID
8299 * hashed yet and not running, so nobody can access it.
8300 */
d859e29f 8301 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8302
8303 /*
8304 * We dont have to disable NMIs - we are only looking at
8305 * the list, not manipulating it:
8306 */
889ff015 8307 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8308 ret = inherit_task_group(event, parent, parent_ctx,
8309 child, ctxn, &inherited_all);
889ff015
FW
8310 if (ret)
8311 break;
8312 }
b93f7978 8313
dddd3379
TG
8314 /*
8315 * We can't hold ctx->lock when iterating the ->flexible_group list due
8316 * to allocations, but we need to prevent rotation because
8317 * rotate_ctx() will change the list from interrupt context.
8318 */
8319 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8320 parent_ctx->rotate_disable = 1;
8321 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8322
889ff015 8323 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8324 ret = inherit_task_group(event, parent, parent_ctx,
8325 child, ctxn, &inherited_all);
889ff015 8326 if (ret)
9b51f66d 8327 break;
564c2b21
PM
8328 }
8329
dddd3379
TG
8330 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8331 parent_ctx->rotate_disable = 0;
dddd3379 8332
8dc85d54 8333 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8334
05cbaa28 8335 if (child_ctx && inherited_all) {
564c2b21
PM
8336 /*
8337 * Mark the child context as a clone of the parent
8338 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8339 *
8340 * Note that if the parent is a clone, the holding of
8341 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8342 */
c5ed5145 8343 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8344 if (cloned_ctx) {
8345 child_ctx->parent_ctx = cloned_ctx;
25346b93 8346 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8347 } else {
8348 child_ctx->parent_ctx = parent_ctx;
8349 child_ctx->parent_gen = parent_ctx->generation;
8350 }
8351 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8352 }
8353
c5ed5145 8354 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8355 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8356
25346b93 8357 perf_unpin_context(parent_ctx);
fe4b04fa 8358 put_ctx(parent_ctx);
ad3a37de 8359
6ab423e0 8360 return ret;
9b51f66d
IM
8361}
8362
8dc85d54
PZ
8363/*
8364 * Initialize the perf_event context in task_struct
8365 */
8366int perf_event_init_task(struct task_struct *child)
8367{
8368 int ctxn, ret;
8369
8550d7cb
ON
8370 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8371 mutex_init(&child->perf_event_mutex);
8372 INIT_LIST_HEAD(&child->perf_event_list);
8373
8dc85d54
PZ
8374 for_each_task_context_nr(ctxn) {
8375 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8376 if (ret) {
8377 perf_event_free_task(child);
8dc85d54 8378 return ret;
6c72e350 8379 }
8dc85d54
PZ
8380 }
8381
8382 return 0;
8383}
8384
220b140b
PM
8385static void __init perf_event_init_all_cpus(void)
8386{
b28ab83c 8387 struct swevent_htable *swhash;
220b140b 8388 int cpu;
220b140b
PM
8389
8390 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8391 swhash = &per_cpu(swevent_htable, cpu);
8392 mutex_init(&swhash->hlist_mutex);
2fde4f94 8393 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8394 }
8395}
8396
0db0628d 8397static void perf_event_init_cpu(int cpu)
0793a61d 8398{
108b02cf 8399 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8400
b28ab83c 8401 mutex_lock(&swhash->hlist_mutex);
39af6b16 8402 swhash->online = true;
4536e4d1 8403 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8404 struct swevent_hlist *hlist;
8405
b28ab83c
PZ
8406 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8407 WARN_ON(!hlist);
8408 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8409 }
b28ab83c 8410 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8411}
8412
c277443c 8413#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8414static void __perf_event_exit_context(void *__info)
0793a61d 8415{
226424ee 8416 struct remove_event re = { .detach_group = true };
108b02cf 8417 struct perf_event_context *ctx = __info;
0793a61d 8418
e3703f8c 8419 rcu_read_lock();
46ce0fe9
PZ
8420 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8421 __perf_remove_from_context(&re);
e3703f8c 8422 rcu_read_unlock();
0793a61d 8423}
108b02cf
PZ
8424
8425static void perf_event_exit_cpu_context(int cpu)
8426{
8427 struct perf_event_context *ctx;
8428 struct pmu *pmu;
8429 int idx;
8430
8431 idx = srcu_read_lock(&pmus_srcu);
8432 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8433 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8434
8435 mutex_lock(&ctx->mutex);
8436 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8437 mutex_unlock(&ctx->mutex);
8438 }
8439 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8440}
8441
cdd6c482 8442static void perf_event_exit_cpu(int cpu)
0793a61d 8443{
b28ab83c 8444 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8445
e3703f8c
PZ
8446 perf_event_exit_cpu_context(cpu);
8447
b28ab83c 8448 mutex_lock(&swhash->hlist_mutex);
39af6b16 8449 swhash->online = false;
b28ab83c
PZ
8450 swevent_hlist_release(swhash);
8451 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8452}
8453#else
cdd6c482 8454static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8455#endif
8456
c277443c
PZ
8457static int
8458perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8459{
8460 int cpu;
8461
8462 for_each_online_cpu(cpu)
8463 perf_event_exit_cpu(cpu);
8464
8465 return NOTIFY_OK;
8466}
8467
8468/*
8469 * Run the perf reboot notifier at the very last possible moment so that
8470 * the generic watchdog code runs as long as possible.
8471 */
8472static struct notifier_block perf_reboot_notifier = {
8473 .notifier_call = perf_reboot,
8474 .priority = INT_MIN,
8475};
8476
0db0628d 8477static int
0793a61d
TG
8478perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8479{
8480 unsigned int cpu = (long)hcpu;
8481
4536e4d1 8482 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8483
8484 case CPU_UP_PREPARE:
5e11637e 8485 case CPU_DOWN_FAILED:
cdd6c482 8486 perf_event_init_cpu(cpu);
0793a61d
TG
8487 break;
8488
5e11637e 8489 case CPU_UP_CANCELED:
0793a61d 8490 case CPU_DOWN_PREPARE:
cdd6c482 8491 perf_event_exit_cpu(cpu);
0793a61d 8492 break;
0793a61d
TG
8493 default:
8494 break;
8495 }
8496
8497 return NOTIFY_OK;
8498}
8499
cdd6c482 8500void __init perf_event_init(void)
0793a61d 8501{
3c502e7a
JW
8502 int ret;
8503
2e80a82a
PZ
8504 idr_init(&pmu_idr);
8505
220b140b 8506 perf_event_init_all_cpus();
b0a873eb 8507 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8508 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8509 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8510 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8511 perf_tp_register();
8512 perf_cpu_notifier(perf_cpu_notify);
c277443c 8513 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8514
8515 ret = init_hw_breakpoint();
8516 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8517
8518 /* do not patch jump label more than once per second */
8519 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8520
8521 /*
8522 * Build time assertion that we keep the data_head at the intended
8523 * location. IOW, validation we got the __reserved[] size right.
8524 */
8525 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8526 != 1024);
0793a61d 8527}
abe43400 8528
fd979c01
CS
8529ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8530 char *page)
8531{
8532 struct perf_pmu_events_attr *pmu_attr =
8533 container_of(attr, struct perf_pmu_events_attr, attr);
8534
8535 if (pmu_attr->event_str)
8536 return sprintf(page, "%s\n", pmu_attr->event_str);
8537
8538 return 0;
8539}
8540
abe43400
PZ
8541static int __init perf_event_sysfs_init(void)
8542{
8543 struct pmu *pmu;
8544 int ret;
8545
8546 mutex_lock(&pmus_lock);
8547
8548 ret = bus_register(&pmu_bus);
8549 if (ret)
8550 goto unlock;
8551
8552 list_for_each_entry(pmu, &pmus, entry) {
8553 if (!pmu->name || pmu->type < 0)
8554 continue;
8555
8556 ret = pmu_dev_alloc(pmu);
8557 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8558 }
8559 pmu_bus_running = 1;
8560 ret = 0;
8561
8562unlock:
8563 mutex_unlock(&pmus_lock);
8564
8565 return ret;
8566}
8567device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8568
8569#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8570static struct cgroup_subsys_state *
8571perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8572{
8573 struct perf_cgroup *jc;
e5d1367f 8574
1b15d055 8575 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8576 if (!jc)
8577 return ERR_PTR(-ENOMEM);
8578
e5d1367f
SE
8579 jc->info = alloc_percpu(struct perf_cgroup_info);
8580 if (!jc->info) {
8581 kfree(jc);
8582 return ERR_PTR(-ENOMEM);
8583 }
8584
e5d1367f
SE
8585 return &jc->css;
8586}
8587
eb95419b 8588static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8589{
eb95419b
TH
8590 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8591
e5d1367f
SE
8592 free_percpu(jc->info);
8593 kfree(jc);
8594}
8595
8596static int __perf_cgroup_move(void *info)
8597{
8598 struct task_struct *task = info;
8599 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8600 return 0;
8601}
8602
eb95419b
TH
8603static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8604 struct cgroup_taskset *tset)
e5d1367f 8605{
bb9d97b6
TH
8606 struct task_struct *task;
8607
924f0d9a 8608 cgroup_taskset_for_each(task, tset)
bb9d97b6 8609 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8610}
8611
eb95419b
TH
8612static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8613 struct cgroup_subsys_state *old_css,
761b3ef5 8614 struct task_struct *task)
e5d1367f
SE
8615{
8616 /*
8617 * cgroup_exit() is called in the copy_process() failure path.
8618 * Ignore this case since the task hasn't ran yet, this avoids
8619 * trying to poke a half freed task state from generic code.
8620 */
8621 if (!(task->flags & PF_EXITING))
8622 return;
8623
bb9d97b6 8624 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8625}
8626
073219e9 8627struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8628 .css_alloc = perf_cgroup_css_alloc,
8629 .css_free = perf_cgroup_css_free,
e7e7ee2e 8630 .exit = perf_cgroup_exit,
bb9d97b6 8631 .attach = perf_cgroup_attach,
e5d1367f
SE
8632};
8633#endif /* CONFIG_CGROUP_PERF */