perf/ring_buffer: Introduce new ioctl options to pause and resume the ring-buffer
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
91a612ee
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100) {
416 printk(KERN_WARNING
417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 WRITE_ONCE(perf_sample_allowed_ns, 0);
419 } else {
420 update_perf_cpu_limits();
421 }
163ec435
PZ
422
423 return 0;
424}
1ccd1549 425
14c63f17
DH
426/*
427 * perf samples are done in some very critical code paths (NMIs).
428 * If they take too much CPU time, the system can lock up and not
429 * get any real work done. This will drop the sample rate when
430 * we detect that events are taking too long.
431 */
432#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 433static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 434
91a612ee
PZ
435static u64 __report_avg;
436static u64 __report_allowed;
437
6a02ad66 438static void perf_duration_warn(struct irq_work *w)
14c63f17 439{
6a02ad66 440 printk_ratelimited(KERN_WARNING
91a612ee
PZ
441 "perf: interrupt took too long (%lld > %lld), lowering "
442 "kernel.perf_event_max_sample_rate to %d\n",
443 __report_avg, __report_allowed,
444 sysctl_perf_event_sample_rate);
6a02ad66
PZ
445}
446
447static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448
449void perf_sample_event_took(u64 sample_len_ns)
450{
91a612ee
PZ
451 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 u64 running_len;
453 u64 avg_len;
454 u32 max;
14c63f17 455
91a612ee 456 if (max_len == 0)
14c63f17
DH
457 return;
458
91a612ee
PZ
459 /* Decay the counter by 1 average sample. */
460 running_len = __this_cpu_read(running_sample_length);
461 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 running_len += sample_len_ns;
463 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
464
465 /*
91a612ee
PZ
466 * Note: this will be biased artifically low until we have
467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
468 * from having to maintain a count.
469 */
91a612ee
PZ
470 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 if (avg_len <= max_len)
14c63f17
DH
472 return;
473
91a612ee
PZ
474 __report_avg = avg_len;
475 __report_allowed = max_len;
14c63f17 476
91a612ee
PZ
477 /*
478 * Compute a throttle threshold 25% below the current duration.
479 */
480 avg_len += avg_len / 4;
481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 if (avg_len < max)
483 max /= (u32)avg_len;
484 else
485 max = 1;
14c63f17 486
91a612ee
PZ
487 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 WRITE_ONCE(max_samples_per_tick, max);
489
490 sysctl_perf_event_sample_rate = max * HZ;
491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 492
cd578abb 493 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 494 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 495 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 496 __report_avg, __report_allowed,
cd578abb
PZ
497 sysctl_perf_event_sample_rate);
498 }
14c63f17
DH
499}
500
cdd6c482 501static atomic64_t perf_event_id;
a96bbc16 502
0b3fcf17
SE
503static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 enum event_type_t event_type);
505
506static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
507 enum event_type_t event_type,
508 struct task_struct *task);
509
510static void update_context_time(struct perf_event_context *ctx);
511static u64 perf_event_time(struct perf_event *event);
0b3fcf17 512
cdd6c482 513void __weak perf_event_print_debug(void) { }
0793a61d 514
84c79910 515extern __weak const char *perf_pmu_name(void)
0793a61d 516{
84c79910 517 return "pmu";
0793a61d
TG
518}
519
0b3fcf17
SE
520static inline u64 perf_clock(void)
521{
522 return local_clock();
523}
524
34f43927
PZ
525static inline u64 perf_event_clock(struct perf_event *event)
526{
527 return event->clock();
528}
529
e5d1367f
SE
530#ifdef CONFIG_CGROUP_PERF
531
e5d1367f
SE
532static inline bool
533perf_cgroup_match(struct perf_event *event)
534{
535 struct perf_event_context *ctx = event->ctx;
536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537
ef824fa1
TH
538 /* @event doesn't care about cgroup */
539 if (!event->cgrp)
540 return true;
541
542 /* wants specific cgroup scope but @cpuctx isn't associated with any */
543 if (!cpuctx->cgrp)
544 return false;
545
546 /*
547 * Cgroup scoping is recursive. An event enabled for a cgroup is
548 * also enabled for all its descendant cgroups. If @cpuctx's
549 * cgroup is a descendant of @event's (the test covers identity
550 * case), it's a match.
551 */
552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 event->cgrp->css.cgroup);
e5d1367f
SE
554}
555
e5d1367f
SE
556static inline void perf_detach_cgroup(struct perf_event *event)
557{
4e2ba650 558 css_put(&event->cgrp->css);
e5d1367f
SE
559 event->cgrp = NULL;
560}
561
562static inline int is_cgroup_event(struct perf_event *event)
563{
564 return event->cgrp != NULL;
565}
566
567static inline u64 perf_cgroup_event_time(struct perf_event *event)
568{
569 struct perf_cgroup_info *t;
570
571 t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 return t->time;
573}
574
575static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576{
577 struct perf_cgroup_info *info;
578 u64 now;
579
580 now = perf_clock();
581
582 info = this_cpu_ptr(cgrp->info);
583
584 info->time += now - info->timestamp;
585 info->timestamp = now;
586}
587
588static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589{
590 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 if (cgrp_out)
592 __update_cgrp_time(cgrp_out);
593}
594
595static inline void update_cgrp_time_from_event(struct perf_event *event)
596{
3f7cce3c
SE
597 struct perf_cgroup *cgrp;
598
e5d1367f 599 /*
3f7cce3c
SE
600 * ensure we access cgroup data only when needed and
601 * when we know the cgroup is pinned (css_get)
e5d1367f 602 */
3f7cce3c 603 if (!is_cgroup_event(event))
e5d1367f
SE
604 return;
605
614e4c4e 606 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
607 /*
608 * Do not update time when cgroup is not active
609 */
610 if (cgrp == event->cgrp)
611 __update_cgrp_time(event->cgrp);
e5d1367f
SE
612}
613
614static inline void
3f7cce3c
SE
615perf_cgroup_set_timestamp(struct task_struct *task,
616 struct perf_event_context *ctx)
e5d1367f
SE
617{
618 struct perf_cgroup *cgrp;
619 struct perf_cgroup_info *info;
620
3f7cce3c
SE
621 /*
622 * ctx->lock held by caller
623 * ensure we do not access cgroup data
624 * unless we have the cgroup pinned (css_get)
625 */
626 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
627 return;
628
614e4c4e 629 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 630 info = this_cpu_ptr(cgrp->info);
3f7cce3c 631 info->timestamp = ctx->timestamp;
e5d1367f
SE
632}
633
634#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
635#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
636
637/*
638 * reschedule events based on the cgroup constraint of task.
639 *
640 * mode SWOUT : schedule out everything
641 * mode SWIN : schedule in based on cgroup for next
642 */
18ab2cd3 643static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
644{
645 struct perf_cpu_context *cpuctx;
646 struct pmu *pmu;
647 unsigned long flags;
648
649 /*
650 * disable interrupts to avoid geting nr_cgroup
651 * changes via __perf_event_disable(). Also
652 * avoids preemption.
653 */
654 local_irq_save(flags);
655
656 /*
657 * we reschedule only in the presence of cgroup
658 * constrained events.
659 */
e5d1367f
SE
660
661 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
663 if (cpuctx->unique_pmu != pmu)
664 continue; /* ensure we process each cpuctx once */
e5d1367f 665
e5d1367f
SE
666 /*
667 * perf_cgroup_events says at least one
668 * context on this CPU has cgroup events.
669 *
670 * ctx->nr_cgroups reports the number of cgroup
671 * events for a context.
672 */
673 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
674 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
676
677 if (mode & PERF_CGROUP_SWOUT) {
678 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 /*
680 * must not be done before ctxswout due
681 * to event_filter_match() in event_sched_out()
682 */
683 cpuctx->cgrp = NULL;
684 }
685
686 if (mode & PERF_CGROUP_SWIN) {
e566b76e 687 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
688 /*
689 * set cgrp before ctxsw in to allow
690 * event_filter_match() to not have to pass
691 * task around
614e4c4e
SE
692 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 * because cgorup events are only per-cpu
e5d1367f 694 */
614e4c4e 695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 }
facc4307
PZ
698 perf_pmu_enable(cpuctx->ctx.pmu);
699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 700 }
e5d1367f
SE
701 }
702
e5d1367f
SE
703 local_irq_restore(flags);
704}
705
a8d757ef
SE
706static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
e5d1367f 708{
a8d757ef
SE
709 struct perf_cgroup *cgrp1;
710 struct perf_cgroup *cgrp2 = NULL;
711
ddaaf4e2 712 rcu_read_lock();
a8d757ef
SE
713 /*
714 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
715 * we do not need to pass the ctx here because we know
716 * we are holding the rcu lock
a8d757ef 717 */
614e4c4e 718 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 719 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
720
721 /*
722 * only schedule out current cgroup events if we know
723 * that we are switching to a different cgroup. Otherwise,
724 * do no touch the cgroup events.
725 */
726 if (cgrp1 != cgrp2)
727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
728
729 rcu_read_unlock();
e5d1367f
SE
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f 734{
a8d757ef
SE
735 struct perf_cgroup *cgrp1;
736 struct perf_cgroup *cgrp2 = NULL;
737
ddaaf4e2 738 rcu_read_lock();
a8d757ef
SE
739 /*
740 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
741 * we do not need to pass the ctx here because we know
742 * we are holding the rcu lock
a8d757ef 743 */
614e4c4e 744 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 745 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
746
747 /*
748 * only need to schedule in cgroup events if we are changing
749 * cgroup during ctxsw. Cgroup events were not scheduled
750 * out of ctxsw out if that was not the case.
751 */
752 if (cgrp1 != cgrp2)
753 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
754
755 rcu_read_unlock();
e5d1367f
SE
756}
757
758static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 struct perf_event_attr *attr,
760 struct perf_event *group_leader)
761{
762 struct perf_cgroup *cgrp;
763 struct cgroup_subsys_state *css;
2903ff01
AV
764 struct fd f = fdget(fd);
765 int ret = 0;
e5d1367f 766
2903ff01 767 if (!f.file)
e5d1367f
SE
768 return -EBADF;
769
b583043e 770 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 771 &perf_event_cgrp_subsys);
3db272c0
LZ
772 if (IS_ERR(css)) {
773 ret = PTR_ERR(css);
774 goto out;
775 }
e5d1367f
SE
776
777 cgrp = container_of(css, struct perf_cgroup, css);
778 event->cgrp = cgrp;
779
780 /*
781 * all events in a group must monitor
782 * the same cgroup because a task belongs
783 * to only one perf cgroup at a time
784 */
785 if (group_leader && group_leader->cgrp != cgrp) {
786 perf_detach_cgroup(event);
787 ret = -EINVAL;
e5d1367f 788 }
3db272c0 789out:
2903ff01 790 fdput(f);
e5d1367f
SE
791 return ret;
792}
793
794static inline void
795perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796{
797 struct perf_cgroup_info *t;
798 t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 event->shadow_ctx_time = now - t->timestamp;
800}
801
802static inline void
803perf_cgroup_defer_enabled(struct perf_event *event)
804{
805 /*
806 * when the current task's perf cgroup does not match
807 * the event's, we need to remember to call the
808 * perf_mark_enable() function the first time a task with
809 * a matching perf cgroup is scheduled in.
810 */
811 if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 event->cgrp_defer_enabled = 1;
813}
814
815static inline void
816perf_cgroup_mark_enabled(struct perf_event *event,
817 struct perf_event_context *ctx)
818{
819 struct perf_event *sub;
820 u64 tstamp = perf_event_time(event);
821
822 if (!event->cgrp_defer_enabled)
823 return;
824
825 event->cgrp_defer_enabled = 0;
826
827 event->tstamp_enabled = tstamp - event->total_time_enabled;
828 list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 sub->cgrp_defer_enabled = 0;
832 }
833 }
834}
835#else /* !CONFIG_CGROUP_PERF */
836
837static inline bool
838perf_cgroup_match(struct perf_event *event)
839{
840 return true;
841}
842
843static inline void perf_detach_cgroup(struct perf_event *event)
844{}
845
846static inline int is_cgroup_event(struct perf_event *event)
847{
848 return 0;
849}
850
851static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852{
853 return 0;
854}
855
856static inline void update_cgrp_time_from_event(struct perf_event *event)
857{
858}
859
860static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861{
862}
863
a8d757ef
SE
864static inline void perf_cgroup_sched_out(struct task_struct *task,
865 struct task_struct *next)
e5d1367f
SE
866{
867}
868
a8d757ef
SE
869static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
e5d1367f
SE
871{
872}
873
874static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 struct perf_event_attr *attr,
876 struct perf_event *group_leader)
877{
878 return -EINVAL;
879}
880
881static inline void
3f7cce3c
SE
882perf_cgroup_set_timestamp(struct task_struct *task,
883 struct perf_event_context *ctx)
e5d1367f
SE
884{
885}
886
887void
888perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889{
890}
891
892static inline void
893perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894{
895}
896
897static inline u64 perf_cgroup_event_time(struct perf_event *event)
898{
899 return 0;
900}
901
902static inline void
903perf_cgroup_defer_enabled(struct perf_event *event)
904{
905}
906
907static inline void
908perf_cgroup_mark_enabled(struct perf_event *event,
909 struct perf_event_context *ctx)
910{
911}
912#endif
913
9e630205
SE
914/*
915 * set default to be dependent on timer tick just
916 * like original code
917 */
918#define PERF_CPU_HRTIMER (1000 / HZ)
919/*
920 * function must be called with interrupts disbled
921 */
272325c4 922static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
923{
924 struct perf_cpu_context *cpuctx;
9e630205
SE
925 int rotations = 0;
926
927 WARN_ON(!irqs_disabled());
928
929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
930 rotations = perf_rotate_context(cpuctx);
931
4cfafd30
PZ
932 raw_spin_lock(&cpuctx->hrtimer_lock);
933 if (rotations)
9e630205 934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
935 else
936 cpuctx->hrtimer_active = 0;
937 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 938
4cfafd30 939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
940}
941
272325c4 942static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 943{
272325c4 944 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 945 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 946 u64 interval;
9e630205
SE
947
948 /* no multiplexing needed for SW PMU */
949 if (pmu->task_ctx_nr == perf_sw_context)
950 return;
951
62b85639
SE
952 /*
953 * check default is sane, if not set then force to
954 * default interval (1/tick)
955 */
272325c4
PZ
956 interval = pmu->hrtimer_interval_ms;
957 if (interval < 1)
958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 959
272325c4 960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 961
4cfafd30
PZ
962 raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 964 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
965}
966
272325c4 967static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 968{
272325c4 969 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 970 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 971 unsigned long flags;
9e630205
SE
972
973 /* not for SW PMU */
974 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 975 return 0;
9e630205 976
4cfafd30
PZ
977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 if (!cpuctx->hrtimer_active) {
979 cpuctx->hrtimer_active = 1;
980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 }
983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 984
272325c4 985 return 0;
9e630205
SE
986}
987
33696fc0 988void perf_pmu_disable(struct pmu *pmu)
9e35ad38 989{
33696fc0
PZ
990 int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 if (!(*count)++)
992 pmu->pmu_disable(pmu);
9e35ad38 993}
9e35ad38 994
33696fc0 995void perf_pmu_enable(struct pmu *pmu)
9e35ad38 996{
33696fc0
PZ
997 int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 if (!--(*count))
999 pmu->pmu_enable(pmu);
9e35ad38 1000}
9e35ad38 1001
2fde4f94 1002static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1003
1004/*
2fde4f94
MR
1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006 * perf_event_task_tick() are fully serialized because they're strictly cpu
1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1009 */
2fde4f94 1010static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1011{
2fde4f94 1012 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1013
e9d2b064 1014 WARN_ON(!irqs_disabled());
b5ab4cd5 1015
2fde4f94
MR
1016 WARN_ON(!list_empty(&ctx->active_ctx_list));
1017
1018 list_add(&ctx->active_ctx_list, head);
1019}
1020
1021static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022{
1023 WARN_ON(!irqs_disabled());
1024
1025 WARN_ON(list_empty(&ctx->active_ctx_list));
1026
1027 list_del_init(&ctx->active_ctx_list);
9e35ad38 1028}
9e35ad38 1029
cdd6c482 1030static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1031{
e5289d4a 1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1033}
1034
4af57ef2
YZ
1035static void free_ctx(struct rcu_head *head)
1036{
1037 struct perf_event_context *ctx;
1038
1039 ctx = container_of(head, struct perf_event_context, rcu_head);
1040 kfree(ctx->task_ctx_data);
1041 kfree(ctx);
1042}
1043
cdd6c482 1044static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1045{
564c2b21
PM
1046 if (atomic_dec_and_test(&ctx->refcount)) {
1047 if (ctx->parent_ctx)
1048 put_ctx(ctx->parent_ctx);
63b6da39 1049 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1050 put_task_struct(ctx->task);
4af57ef2 1051 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1052 }
a63eaf34
PM
1053}
1054
f63a8daa
PZ
1055/*
1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057 * perf_pmu_migrate_context() we need some magic.
1058 *
1059 * Those places that change perf_event::ctx will hold both
1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061 *
8b10c5e2
PZ
1062 * Lock ordering is by mutex address. There are two other sites where
1063 * perf_event_context::mutex nests and those are:
1064 *
1065 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1066 * perf_event_exit_event()
1067 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1068 *
1069 * - perf_event_init_context() [ parent, 0 ]
1070 * inherit_task_group()
1071 * inherit_group()
1072 * inherit_event()
1073 * perf_event_alloc()
1074 * perf_init_event()
1075 * perf_try_init_event() [ child , 1 ]
1076 *
1077 * While it appears there is an obvious deadlock here -- the parent and child
1078 * nesting levels are inverted between the two. This is in fact safe because
1079 * life-time rules separate them. That is an exiting task cannot fork, and a
1080 * spawning task cannot (yet) exit.
1081 *
1082 * But remember that that these are parent<->child context relations, and
1083 * migration does not affect children, therefore these two orderings should not
1084 * interact.
f63a8daa
PZ
1085 *
1086 * The change in perf_event::ctx does not affect children (as claimed above)
1087 * because the sys_perf_event_open() case will install a new event and break
1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089 * concerned with cpuctx and that doesn't have children.
1090 *
1091 * The places that change perf_event::ctx will issue:
1092 *
1093 * perf_remove_from_context();
1094 * synchronize_rcu();
1095 * perf_install_in_context();
1096 *
1097 * to affect the change. The remove_from_context() + synchronize_rcu() should
1098 * quiesce the event, after which we can install it in the new location. This
1099 * means that only external vectors (perf_fops, prctl) can perturb the event
1100 * while in transit. Therefore all such accessors should also acquire
1101 * perf_event_context::mutex to serialize against this.
1102 *
1103 * However; because event->ctx can change while we're waiting to acquire
1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105 * function.
1106 *
1107 * Lock order:
1108 * task_struct::perf_event_mutex
1109 * perf_event_context::mutex
f63a8daa 1110 * perf_event::child_mutex;
07c4a776 1111 * perf_event_context::lock
f63a8daa
PZ
1112 * perf_event::mmap_mutex
1113 * mmap_sem
1114 */
a83fe28e
PZ
1115static struct perf_event_context *
1116perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1117{
1118 struct perf_event_context *ctx;
1119
1120again:
1121 rcu_read_lock();
1122 ctx = ACCESS_ONCE(event->ctx);
1123 if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 rcu_read_unlock();
1125 goto again;
1126 }
1127 rcu_read_unlock();
1128
a83fe28e 1129 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1130 if (event->ctx != ctx) {
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133 goto again;
1134 }
1135
1136 return ctx;
1137}
1138
a83fe28e
PZ
1139static inline struct perf_event_context *
1140perf_event_ctx_lock(struct perf_event *event)
1141{
1142 return perf_event_ctx_lock_nested(event, 0);
1143}
1144
f63a8daa
PZ
1145static void perf_event_ctx_unlock(struct perf_event *event,
1146 struct perf_event_context *ctx)
1147{
1148 mutex_unlock(&ctx->mutex);
1149 put_ctx(ctx);
1150}
1151
211de6eb
PZ
1152/*
1153 * This must be done under the ctx->lock, such as to serialize against
1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155 * calling scheduler related locks and ctx->lock nests inside those.
1156 */
1157static __must_check struct perf_event_context *
1158unclone_ctx(struct perf_event_context *ctx)
71a851b4 1159{
211de6eb
PZ
1160 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161
1162 lockdep_assert_held(&ctx->lock);
1163
1164 if (parent_ctx)
71a851b4 1165 ctx->parent_ctx = NULL;
5a3126d4 1166 ctx->generation++;
211de6eb
PZ
1167
1168 return parent_ctx;
71a851b4
PZ
1169}
1170
6844c09d
ACM
1171static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172{
1173 /*
1174 * only top level events have the pid namespace they were created in
1175 */
1176 if (event->parent)
1177 event = event->parent;
1178
1179 return task_tgid_nr_ns(p, event->ns);
1180}
1181
1182static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183{
1184 /*
1185 * only top level events have the pid namespace they were created in
1186 */
1187 if (event->parent)
1188 event = event->parent;
1189
1190 return task_pid_nr_ns(p, event->ns);
1191}
1192
7f453c24 1193/*
cdd6c482 1194 * If we inherit events we want to return the parent event id
7f453c24
PZ
1195 * to userspace.
1196 */
cdd6c482 1197static u64 primary_event_id(struct perf_event *event)
7f453c24 1198{
cdd6c482 1199 u64 id = event->id;
7f453c24 1200
cdd6c482
IM
1201 if (event->parent)
1202 id = event->parent->id;
7f453c24
PZ
1203
1204 return id;
1205}
1206
25346b93 1207/*
cdd6c482 1208 * Get the perf_event_context for a task and lock it.
63b6da39 1209 *
25346b93
PM
1210 * This has to cope with with the fact that until it is locked,
1211 * the context could get moved to another task.
1212 */
cdd6c482 1213static struct perf_event_context *
8dc85d54 1214perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1215{
cdd6c482 1216 struct perf_event_context *ctx;
25346b93 1217
9ed6060d 1218retry:
058ebd0e
PZ
1219 /*
1220 * One of the few rules of preemptible RCU is that one cannot do
1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1222 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1223 * rcu_read_unlock_special().
1224 *
1225 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1226 * side critical section has interrupts disabled.
058ebd0e 1227 */
2fd59077 1228 local_irq_save(*flags);
058ebd0e 1229 rcu_read_lock();
8dc85d54 1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1231 if (ctx) {
1232 /*
1233 * If this context is a clone of another, it might
1234 * get swapped for another underneath us by
cdd6c482 1235 * perf_event_task_sched_out, though the
25346b93
PM
1236 * rcu_read_lock() protects us from any context
1237 * getting freed. Lock the context and check if it
1238 * got swapped before we could get the lock, and retry
1239 * if so. If we locked the right context, then it
1240 * can't get swapped on us any more.
1241 */
2fd59077 1242 raw_spin_lock(&ctx->lock);
8dc85d54 1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1244 raw_spin_unlock(&ctx->lock);
058ebd0e 1245 rcu_read_unlock();
2fd59077 1246 local_irq_restore(*flags);
25346b93
PM
1247 goto retry;
1248 }
b49a9e7e 1249
63b6da39
PZ
1250 if (ctx->task == TASK_TOMBSTONE ||
1251 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1252 raw_spin_unlock(&ctx->lock);
b49a9e7e 1253 ctx = NULL;
828b6f0e
PZ
1254 } else {
1255 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1256 }
25346b93
PM
1257 }
1258 rcu_read_unlock();
2fd59077
PM
1259 if (!ctx)
1260 local_irq_restore(*flags);
25346b93
PM
1261 return ctx;
1262}
1263
1264/*
1265 * Get the context for a task and increment its pin_count so it
1266 * can't get swapped to another task. This also increments its
1267 * reference count so that the context can't get freed.
1268 */
8dc85d54
PZ
1269static struct perf_event_context *
1270perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1271{
cdd6c482 1272 struct perf_event_context *ctx;
25346b93
PM
1273 unsigned long flags;
1274
8dc85d54 1275 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1276 if (ctx) {
1277 ++ctx->pin_count;
e625cce1 1278 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1279 }
1280 return ctx;
1281}
1282
cdd6c482 1283static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1284{
1285 unsigned long flags;
1286
e625cce1 1287 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1288 --ctx->pin_count;
e625cce1 1289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the record of the current time in a context.
1294 */
1295static void update_context_time(struct perf_event_context *ctx)
1296{
1297 u64 now = perf_clock();
1298
1299 ctx->time += now - ctx->timestamp;
1300 ctx->timestamp = now;
1301}
1302
4158755d
SE
1303static u64 perf_event_time(struct perf_event *event)
1304{
1305 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1306
1307 if (is_cgroup_event(event))
1308 return perf_cgroup_event_time(event);
1309
4158755d
SE
1310 return ctx ? ctx->time : 0;
1311}
1312
f67218c3
PZ
1313/*
1314 * Update the total_time_enabled and total_time_running fields for a event.
1315 */
1316static void update_event_times(struct perf_event *event)
1317{
1318 struct perf_event_context *ctx = event->ctx;
1319 u64 run_end;
1320
3cbaa590
PZ
1321 lockdep_assert_held(&ctx->lock);
1322
f67218c3
PZ
1323 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 return;
3cbaa590 1326
e5d1367f
SE
1327 /*
1328 * in cgroup mode, time_enabled represents
1329 * the time the event was enabled AND active
1330 * tasks were in the monitored cgroup. This is
1331 * independent of the activity of the context as
1332 * there may be a mix of cgroup and non-cgroup events.
1333 *
1334 * That is why we treat cgroup events differently
1335 * here.
1336 */
1337 if (is_cgroup_event(event))
46cd6a7f 1338 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1339 else if (ctx->is_active)
1340 run_end = ctx->time;
acd1d7c1
PZ
1341 else
1342 run_end = event->tstamp_stopped;
1343
1344 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1345
1346 if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 run_end = event->tstamp_stopped;
1348 else
4158755d 1349 run_end = perf_event_time(event);
f67218c3
PZ
1350
1351 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1352
f67218c3
PZ
1353}
1354
96c21a46
PZ
1355/*
1356 * Update total_time_enabled and total_time_running for all events in a group.
1357 */
1358static void update_group_times(struct perf_event *leader)
1359{
1360 struct perf_event *event;
1361
1362 update_event_times(leader);
1363 list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 update_event_times(event);
1365}
1366
889ff015
FW
1367static struct list_head *
1368ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369{
1370 if (event->attr.pinned)
1371 return &ctx->pinned_groups;
1372 else
1373 return &ctx->flexible_groups;
1374}
1375
fccc714b 1376/*
cdd6c482 1377 * Add a event from the lists for its context.
fccc714b
PZ
1378 * Must be called with ctx->mutex and ctx->lock held.
1379 */
04289bb9 1380static void
cdd6c482 1381list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1382{
c994d613
PZ
1383 lockdep_assert_held(&ctx->lock);
1384
8a49542c
PZ
1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1387
1388 /*
8a49542c
PZ
1389 * If we're a stand alone event or group leader, we go to the context
1390 * list, group events are kept attached to the group so that
1391 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1392 */
8a49542c 1393 if (event->group_leader == event) {
889ff015
FW
1394 struct list_head *list;
1395
d6f962b5
FW
1396 if (is_software_event(event))
1397 event->group_flags |= PERF_GROUP_SOFTWARE;
1398
889ff015
FW
1399 list = ctx_group_list(event, ctx);
1400 list_add_tail(&event->group_entry, list);
5c148194 1401 }
592903cd 1402
08309379 1403 if (is_cgroup_event(event))
e5d1367f 1404 ctx->nr_cgroups++;
e5d1367f 1405
cdd6c482
IM
1406 list_add_rcu(&event->event_entry, &ctx->event_list);
1407 ctx->nr_events++;
1408 if (event->attr.inherit_stat)
bfbd3381 1409 ctx->nr_stat++;
5a3126d4
PZ
1410
1411 ctx->generation++;
04289bb9
IM
1412}
1413
0231bb53
JO
1414/*
1415 * Initialize event state based on the perf_event_attr::disabled.
1416 */
1417static inline void perf_event__state_init(struct perf_event *event)
1418{
1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 PERF_EVENT_STATE_INACTIVE;
1421}
1422
a723968c 1423static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1424{
1425 int entry = sizeof(u64); /* value */
1426 int size = 0;
1427 int nr = 1;
1428
1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 size += sizeof(u64);
1431
1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 size += sizeof(u64);
1434
1435 if (event->attr.read_format & PERF_FORMAT_ID)
1436 entry += sizeof(u64);
1437
1438 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1439 nr += nr_siblings;
c320c7b7
ACM
1440 size += sizeof(u64);
1441 }
1442
1443 size += entry * nr;
1444 event->read_size = size;
1445}
1446
a723968c 1447static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1448{
1449 struct perf_sample_data *data;
c320c7b7
ACM
1450 u16 size = 0;
1451
c320c7b7
ACM
1452 if (sample_type & PERF_SAMPLE_IP)
1453 size += sizeof(data->ip);
1454
6844c09d
ACM
1455 if (sample_type & PERF_SAMPLE_ADDR)
1456 size += sizeof(data->addr);
1457
1458 if (sample_type & PERF_SAMPLE_PERIOD)
1459 size += sizeof(data->period);
1460
c3feedf2
AK
1461 if (sample_type & PERF_SAMPLE_WEIGHT)
1462 size += sizeof(data->weight);
1463
6844c09d
ACM
1464 if (sample_type & PERF_SAMPLE_READ)
1465 size += event->read_size;
1466
d6be9ad6
SE
1467 if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 size += sizeof(data->data_src.val);
1469
fdfbbd07
AK
1470 if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 size += sizeof(data->txn);
1472
6844c09d
ACM
1473 event->header_size = size;
1474}
1475
a723968c
PZ
1476/*
1477 * Called at perf_event creation and when events are attached/detached from a
1478 * group.
1479 */
1480static void perf_event__header_size(struct perf_event *event)
1481{
1482 __perf_event_read_size(event,
1483 event->group_leader->nr_siblings);
1484 __perf_event_header_size(event, event->attr.sample_type);
1485}
1486
6844c09d
ACM
1487static void perf_event__id_header_size(struct perf_event *event)
1488{
1489 struct perf_sample_data *data;
1490 u64 sample_type = event->attr.sample_type;
1491 u16 size = 0;
1492
c320c7b7
ACM
1493 if (sample_type & PERF_SAMPLE_TID)
1494 size += sizeof(data->tid_entry);
1495
1496 if (sample_type & PERF_SAMPLE_TIME)
1497 size += sizeof(data->time);
1498
ff3d527c
AH
1499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 size += sizeof(data->id);
1501
c320c7b7
ACM
1502 if (sample_type & PERF_SAMPLE_ID)
1503 size += sizeof(data->id);
1504
1505 if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 size += sizeof(data->stream_id);
1507
1508 if (sample_type & PERF_SAMPLE_CPU)
1509 size += sizeof(data->cpu_entry);
1510
6844c09d 1511 event->id_header_size = size;
c320c7b7
ACM
1512}
1513
a723968c
PZ
1514static bool perf_event_validate_size(struct perf_event *event)
1515{
1516 /*
1517 * The values computed here will be over-written when we actually
1518 * attach the event.
1519 */
1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 perf_event__id_header_size(event);
1523
1524 /*
1525 * Sum the lot; should not exceed the 64k limit we have on records.
1526 * Conservative limit to allow for callchains and other variable fields.
1527 */
1528 if (event->read_size + event->header_size +
1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 return false;
1531
1532 return true;
1533}
1534
8a49542c
PZ
1535static void perf_group_attach(struct perf_event *event)
1536{
c320c7b7 1537 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1538
74c3337c
PZ
1539 /*
1540 * We can have double attach due to group movement in perf_event_open.
1541 */
1542 if (event->attach_state & PERF_ATTACH_GROUP)
1543 return;
1544
8a49542c
PZ
1545 event->attach_state |= PERF_ATTACH_GROUP;
1546
1547 if (group_leader == event)
1548 return;
1549
652884fe
PZ
1550 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551
8a49542c
PZ
1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 !is_software_event(event))
1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555
1556 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 group_leader->nr_siblings++;
c320c7b7
ACM
1558
1559 perf_event__header_size(group_leader);
1560
1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 perf_event__header_size(pos);
8a49542c
PZ
1563}
1564
a63eaf34 1565/*
cdd6c482 1566 * Remove a event from the lists for its context.
fccc714b 1567 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1568 */
04289bb9 1569static void
cdd6c482 1570list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1571{
68cacd29 1572 struct perf_cpu_context *cpuctx;
652884fe
PZ
1573
1574 WARN_ON_ONCE(event->ctx != ctx);
1575 lockdep_assert_held(&ctx->lock);
1576
8a49542c
PZ
1577 /*
1578 * We can have double detach due to exit/hot-unplug + close.
1579 */
1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1581 return;
8a49542c
PZ
1582
1583 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584
68cacd29 1585 if (is_cgroup_event(event)) {
e5d1367f 1586 ctx->nr_cgroups--;
70a01657
PZ
1587 /*
1588 * Because cgroup events are always per-cpu events, this will
1589 * always be called from the right CPU.
1590 */
68cacd29
SE
1591 cpuctx = __get_cpu_context(ctx);
1592 /*
70a01657
PZ
1593 * If there are no more cgroup events then clear cgrp to avoid
1594 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1595 */
1596 if (!ctx->nr_cgroups)
1597 cpuctx->cgrp = NULL;
1598 }
e5d1367f 1599
cdd6c482
IM
1600 ctx->nr_events--;
1601 if (event->attr.inherit_stat)
bfbd3381 1602 ctx->nr_stat--;
8bc20959 1603
cdd6c482 1604 list_del_rcu(&event->event_entry);
04289bb9 1605
8a49542c
PZ
1606 if (event->group_leader == event)
1607 list_del_init(&event->group_entry);
5c148194 1608
96c21a46 1609 update_group_times(event);
b2e74a26
SE
1610
1611 /*
1612 * If event was in error state, then keep it
1613 * that way, otherwise bogus counts will be
1614 * returned on read(). The only way to get out
1615 * of error state is by explicit re-enabling
1616 * of the event
1617 */
1618 if (event->state > PERF_EVENT_STATE_OFF)
1619 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1620
1621 ctx->generation++;
050735b0
PZ
1622}
1623
8a49542c 1624static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1625{
1626 struct perf_event *sibling, *tmp;
8a49542c
PZ
1627 struct list_head *list = NULL;
1628
1629 /*
1630 * We can have double detach due to exit/hot-unplug + close.
1631 */
1632 if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 return;
1634
1635 event->attach_state &= ~PERF_ATTACH_GROUP;
1636
1637 /*
1638 * If this is a sibling, remove it from its group.
1639 */
1640 if (event->group_leader != event) {
1641 list_del_init(&event->group_entry);
1642 event->group_leader->nr_siblings--;
c320c7b7 1643 goto out;
8a49542c
PZ
1644 }
1645
1646 if (!list_empty(&event->group_entry))
1647 list = &event->group_entry;
2e2af50b 1648
04289bb9 1649 /*
cdd6c482
IM
1650 * If this was a group event with sibling events then
1651 * upgrade the siblings to singleton events by adding them
8a49542c 1652 * to whatever list we are on.
04289bb9 1653 */
cdd6c482 1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1655 if (list)
1656 list_move_tail(&sibling->group_entry, list);
04289bb9 1657 sibling->group_leader = sibling;
d6f962b5
FW
1658
1659 /* Inherit group flags from the previous leader */
1660 sibling->group_flags = event->group_flags;
652884fe
PZ
1661
1662 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1663 }
c320c7b7
ACM
1664
1665out:
1666 perf_event__header_size(event->group_leader);
1667
1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 perf_event__header_size(tmp);
04289bb9
IM
1670}
1671
fadfe7be
JO
1672static bool is_orphaned_event(struct perf_event *event)
1673{
a69b0ca4 1674 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1675}
1676
66eb579e
MR
1677static inline int pmu_filter_match(struct perf_event *event)
1678{
1679 struct pmu *pmu = event->pmu;
1680 return pmu->filter_match ? pmu->filter_match(event) : 1;
1681}
1682
fa66f07a
SE
1683static inline int
1684event_filter_match(struct perf_event *event)
1685{
e5d1367f 1686 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1687 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1688}
1689
9ffcfa6f
SE
1690static void
1691event_sched_out(struct perf_event *event,
3b6f9e5c 1692 struct perf_cpu_context *cpuctx,
cdd6c482 1693 struct perf_event_context *ctx)
3b6f9e5c 1694{
4158755d 1695 u64 tstamp = perf_event_time(event);
fa66f07a 1696 u64 delta;
652884fe
PZ
1697
1698 WARN_ON_ONCE(event->ctx != ctx);
1699 lockdep_assert_held(&ctx->lock);
1700
fa66f07a
SE
1701 /*
1702 * An event which could not be activated because of
1703 * filter mismatch still needs to have its timings
1704 * maintained, otherwise bogus information is return
1705 * via read() for time_enabled, time_running:
1706 */
1707 if (event->state == PERF_EVENT_STATE_INACTIVE
1708 && !event_filter_match(event)) {
e5d1367f 1709 delta = tstamp - event->tstamp_stopped;
fa66f07a 1710 event->tstamp_running += delta;
4158755d 1711 event->tstamp_stopped = tstamp;
fa66f07a
SE
1712 }
1713
cdd6c482 1714 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1715 return;
3b6f9e5c 1716
44377277
AS
1717 perf_pmu_disable(event->pmu);
1718
28a967c3
PZ
1719 event->tstamp_stopped = tstamp;
1720 event->pmu->del(event, 0);
1721 event->oncpu = -1;
cdd6c482
IM
1722 event->state = PERF_EVENT_STATE_INACTIVE;
1723 if (event->pending_disable) {
1724 event->pending_disable = 0;
1725 event->state = PERF_EVENT_STATE_OFF;
970892a9 1726 }
3b6f9e5c 1727
cdd6c482 1728 if (!is_software_event(event))
3b6f9e5c 1729 cpuctx->active_oncpu--;
2fde4f94
MR
1730 if (!--ctx->nr_active)
1731 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1732 if (event->attr.freq && event->attr.sample_freq)
1733 ctx->nr_freq--;
cdd6c482 1734 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1735 cpuctx->exclusive = 0;
44377277
AS
1736
1737 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1738}
1739
d859e29f 1740static void
cdd6c482 1741group_sched_out(struct perf_event *group_event,
d859e29f 1742 struct perf_cpu_context *cpuctx,
cdd6c482 1743 struct perf_event_context *ctx)
d859e29f 1744{
cdd6c482 1745 struct perf_event *event;
fa66f07a 1746 int state = group_event->state;
d859e29f 1747
cdd6c482 1748 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1749
1750 /*
1751 * Schedule out siblings (if any):
1752 */
cdd6c482
IM
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 event_sched_out(event, cpuctx, ctx);
d859e29f 1755
fa66f07a 1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1757 cpuctx->exclusive = 0;
1758}
1759
45a0e07a 1760#define DETACH_GROUP 0x01UL
0017960f 1761
0793a61d 1762/*
cdd6c482 1763 * Cross CPU call to remove a performance event
0793a61d 1764 *
cdd6c482 1765 * We disable the event on the hardware level first. After that we
0793a61d
TG
1766 * remove it from the context list.
1767 */
fae3fde6
PZ
1768static void
1769__perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
0793a61d 1773{
45a0e07a 1774 unsigned long flags = (unsigned long)info;
0793a61d 1775
cdd6c482 1776 event_sched_out(event, cpuctx, ctx);
45a0e07a 1777 if (flags & DETACH_GROUP)
46ce0fe9 1778 perf_group_detach(event);
cdd6c482 1779 list_del_event(event, ctx);
39a43640
PZ
1780
1781 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1782 ctx->is_active = 0;
39a43640
PZ
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
64ce3126 1787 }
0793a61d
TG
1788}
1789
0793a61d 1790/*
cdd6c482 1791 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1792 *
cdd6c482
IM
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1797 * When called from perf_event_exit_task, it's OK because the
c93f7669 1798 * context has been detached from its task.
0793a61d 1799 */
45a0e07a 1800static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1801{
fae3fde6 1802 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1803
45a0e07a 1804 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1805}
1806
d859e29f 1807/*
cdd6c482 1808 * Cross CPU call to disable a performance event
d859e29f 1809 */
fae3fde6
PZ
1810static void __perf_event_disable(struct perf_event *event,
1811 struct perf_cpu_context *cpuctx,
1812 struct perf_event_context *ctx,
1813 void *info)
7b648018 1814{
fae3fde6
PZ
1815 if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 return;
7b648018 1817
fae3fde6
PZ
1818 update_context_time(ctx);
1819 update_cgrp_time_from_event(event);
1820 update_group_times(event);
1821 if (event == event->group_leader)
1822 group_sched_out(event, cpuctx, ctx);
1823 else
1824 event_sched_out(event, cpuctx, ctx);
1825 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1826}
1827
d859e29f 1828/*
cdd6c482 1829 * Disable a event.
c93f7669 1830 *
cdd6c482
IM
1831 * If event->ctx is a cloned context, callers must make sure that
1832 * every task struct that event->ctx->task could possibly point to
c93f7669 1833 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1834 * perf_event_for_each_child or perf_event_for_each because they
1835 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1836 * goes to exit will block in perf_event_exit_event().
1837 *
cdd6c482 1838 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1839 * is the current context on this CPU and preemption is disabled,
cdd6c482 1840 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1841 */
f63a8daa 1842static void _perf_event_disable(struct perf_event *event)
d859e29f 1843{
cdd6c482 1844 struct perf_event_context *ctx = event->ctx;
d859e29f 1845
e625cce1 1846 raw_spin_lock_irq(&ctx->lock);
7b648018 1847 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1848 raw_spin_unlock_irq(&ctx->lock);
7b648018 1849 return;
53cfbf59 1850 }
e625cce1 1851 raw_spin_unlock_irq(&ctx->lock);
7b648018 1852
fae3fde6
PZ
1853 event_function_call(event, __perf_event_disable, NULL);
1854}
1855
1856void perf_event_disable_local(struct perf_event *event)
1857{
1858 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1859}
f63a8daa
PZ
1860
1861/*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865void perf_event_disable(struct perf_event *event)
1866{
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872}
dcfce4a0 1873EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1874
e5d1367f
SE
1875static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878{
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908}
1909
4fe757dd
PZ
1910#define MAX_INTERRUPTS (~0ULL)
1911
1912static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1913static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1914
235c7fc7 1915static int
9ffcfa6f 1916event_sched_in(struct perf_event *event,
235c7fc7 1917 struct perf_cpu_context *cpuctx,
6e37738a 1918 struct perf_event_context *ctx)
235c7fc7 1919{
4158755d 1920 u64 tstamp = perf_event_time(event);
44377277 1921 int ret = 0;
4158755d 1922
63342411
PZ
1923 lockdep_assert_held(&ctx->lock);
1924
cdd6c482 1925 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1926 return 0;
1927
95ff4ca2
AS
1928 WRITE_ONCE(event->oncpu, smp_processor_id());
1929 /*
1930 * Order event::oncpu write to happen before the ACTIVE state
1931 * is visible.
1932 */
1933 smp_wmb();
1934 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1935
1936 /*
1937 * Unthrottle events, since we scheduled we might have missed several
1938 * ticks already, also for a heavily scheduling task there is little
1939 * guarantee it'll get a tick in a timely manner.
1940 */
1941 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1942 perf_log_throttle(event, 1);
1943 event->hw.interrupts = 0;
1944 }
1945
235c7fc7
IM
1946 /*
1947 * The new state must be visible before we turn it on in the hardware:
1948 */
1949 smp_wmb();
1950
44377277
AS
1951 perf_pmu_disable(event->pmu);
1952
72f669c0
SL
1953 perf_set_shadow_time(event, ctx, tstamp);
1954
ec0d7729
AS
1955 perf_log_itrace_start(event);
1956
a4eaf7f1 1957 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1958 event->state = PERF_EVENT_STATE_INACTIVE;
1959 event->oncpu = -1;
44377277
AS
1960 ret = -EAGAIN;
1961 goto out;
235c7fc7
IM
1962 }
1963
00a2916f
PZ
1964 event->tstamp_running += tstamp - event->tstamp_stopped;
1965
cdd6c482 1966 if (!is_software_event(event))
3b6f9e5c 1967 cpuctx->active_oncpu++;
2fde4f94
MR
1968 if (!ctx->nr_active++)
1969 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1970 if (event->attr.freq && event->attr.sample_freq)
1971 ctx->nr_freq++;
235c7fc7 1972
cdd6c482 1973 if (event->attr.exclusive)
3b6f9e5c
PM
1974 cpuctx->exclusive = 1;
1975
44377277
AS
1976out:
1977 perf_pmu_enable(event->pmu);
1978
1979 return ret;
235c7fc7
IM
1980}
1981
6751b71e 1982static int
cdd6c482 1983group_sched_in(struct perf_event *group_event,
6751b71e 1984 struct perf_cpu_context *cpuctx,
6e37738a 1985 struct perf_event_context *ctx)
6751b71e 1986{
6bde9b6c 1987 struct perf_event *event, *partial_group = NULL;
4a234593 1988 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1989 u64 now = ctx->time;
1990 bool simulate = false;
6751b71e 1991
cdd6c482 1992 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1993 return 0;
1994
fbbe0701 1995 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1996
9ffcfa6f 1997 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1998 pmu->cancel_txn(pmu);
272325c4 1999 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2000 return -EAGAIN;
90151c35 2001 }
6751b71e
PM
2002
2003 /*
2004 * Schedule in siblings as one group (if any):
2005 */
cdd6c482 2006 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2007 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2008 partial_group = event;
6751b71e
PM
2009 goto group_error;
2010 }
2011 }
2012
9ffcfa6f 2013 if (!pmu->commit_txn(pmu))
6e85158c 2014 return 0;
9ffcfa6f 2015
6751b71e
PM
2016group_error:
2017 /*
2018 * Groups can be scheduled in as one unit only, so undo any
2019 * partial group before returning:
d7842da4
SE
2020 * The events up to the failed event are scheduled out normally,
2021 * tstamp_stopped will be updated.
2022 *
2023 * The failed events and the remaining siblings need to have
2024 * their timings updated as if they had gone thru event_sched_in()
2025 * and event_sched_out(). This is required to get consistent timings
2026 * across the group. This also takes care of the case where the group
2027 * could never be scheduled by ensuring tstamp_stopped is set to mark
2028 * the time the event was actually stopped, such that time delta
2029 * calculation in update_event_times() is correct.
6751b71e 2030 */
cdd6c482
IM
2031 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2032 if (event == partial_group)
d7842da4
SE
2033 simulate = true;
2034
2035 if (simulate) {
2036 event->tstamp_running += now - event->tstamp_stopped;
2037 event->tstamp_stopped = now;
2038 } else {
2039 event_sched_out(event, cpuctx, ctx);
2040 }
6751b71e 2041 }
9ffcfa6f 2042 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2043
ad5133b7 2044 pmu->cancel_txn(pmu);
90151c35 2045
272325c4 2046 perf_mux_hrtimer_restart(cpuctx);
9e630205 2047
6751b71e
PM
2048 return -EAGAIN;
2049}
2050
3b6f9e5c 2051/*
cdd6c482 2052 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2053 */
cdd6c482 2054static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2055 struct perf_cpu_context *cpuctx,
2056 int can_add_hw)
2057{
2058 /*
cdd6c482 2059 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2060 */
d6f962b5 2061 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2062 return 1;
2063 /*
2064 * If an exclusive group is already on, no other hardware
cdd6c482 2065 * events can go on.
3b6f9e5c
PM
2066 */
2067 if (cpuctx->exclusive)
2068 return 0;
2069 /*
2070 * If this group is exclusive and there are already
cdd6c482 2071 * events on the CPU, it can't go on.
3b6f9e5c 2072 */
cdd6c482 2073 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2074 return 0;
2075 /*
2076 * Otherwise, try to add it if all previous groups were able
2077 * to go on.
2078 */
2079 return can_add_hw;
2080}
2081
cdd6c482
IM
2082static void add_event_to_ctx(struct perf_event *event,
2083 struct perf_event_context *ctx)
53cfbf59 2084{
4158755d
SE
2085 u64 tstamp = perf_event_time(event);
2086
cdd6c482 2087 list_add_event(event, ctx);
8a49542c 2088 perf_group_attach(event);
4158755d
SE
2089 event->tstamp_enabled = tstamp;
2090 event->tstamp_running = tstamp;
2091 event->tstamp_stopped = tstamp;
53cfbf59
PM
2092}
2093
bd2afa49
PZ
2094static void ctx_sched_out(struct perf_event_context *ctx,
2095 struct perf_cpu_context *cpuctx,
2096 enum event_type_t event_type);
2c29ef0f
PZ
2097static void
2098ctx_sched_in(struct perf_event_context *ctx,
2099 struct perf_cpu_context *cpuctx,
2100 enum event_type_t event_type,
2101 struct task_struct *task);
fe4b04fa 2102
bd2afa49
PZ
2103static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2104 struct perf_event_context *ctx)
2105{
2106 if (!cpuctx->task_ctx)
2107 return;
2108
2109 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2110 return;
2111
2112 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2113}
2114
dce5855b
PZ
2115static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2116 struct perf_event_context *ctx,
2117 struct task_struct *task)
2118{
2119 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2122 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2123 if (ctx)
2124 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2125}
2126
3e349507
PZ
2127static void ctx_resched(struct perf_cpu_context *cpuctx,
2128 struct perf_event_context *task_ctx)
0017960f 2129{
3e349507
PZ
2130 perf_pmu_disable(cpuctx->ctx.pmu);
2131 if (task_ctx)
2132 task_ctx_sched_out(cpuctx, task_ctx);
2133 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2134 perf_event_sched_in(cpuctx, task_ctx, current);
2135 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2136}
2137
0793a61d 2138/*
cdd6c482 2139 * Cross CPU call to install and enable a performance event
682076ae 2140 *
a096309b
PZ
2141 * Very similar to remote_function() + event_function() but cannot assume that
2142 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2143 */
fe4b04fa 2144static int __perf_install_in_context(void *info)
0793a61d 2145{
a096309b
PZ
2146 struct perf_event *event = info;
2147 struct perf_event_context *ctx = event->ctx;
108b02cf 2148 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2149 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2150 bool activate = true;
2151 int ret = 0;
0793a61d 2152
63b6da39 2153 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2154 if (ctx->task) {
b58f6b0d
PZ
2155 raw_spin_lock(&ctx->lock);
2156 task_ctx = ctx;
a096309b
PZ
2157
2158 /* If we're on the wrong CPU, try again */
2159 if (task_cpu(ctx->task) != smp_processor_id()) {
2160 ret = -ESRCH;
63b6da39 2161 goto unlock;
a096309b 2162 }
b58f6b0d 2163
39a43640 2164 /*
a096309b
PZ
2165 * If we're on the right CPU, see if the task we target is
2166 * current, if not we don't have to activate the ctx, a future
2167 * context switch will do that for us.
39a43640 2168 */
a096309b
PZ
2169 if (ctx->task != current)
2170 activate = false;
2171 else
2172 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2173
63b6da39
PZ
2174 } else if (task_ctx) {
2175 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2176 }
b58f6b0d 2177
a096309b
PZ
2178 if (activate) {
2179 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2180 add_event_to_ctx(event, ctx);
2181 ctx_resched(cpuctx, task_ctx);
2182 } else {
2183 add_event_to_ctx(event, ctx);
2184 }
2185
63b6da39 2186unlock:
2c29ef0f 2187 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2188
a096309b 2189 return ret;
0793a61d
TG
2190}
2191
2192/*
a096309b
PZ
2193 * Attach a performance event to a context.
2194 *
2195 * Very similar to event_function_call, see comment there.
0793a61d
TG
2196 */
2197static void
cdd6c482
IM
2198perf_install_in_context(struct perf_event_context *ctx,
2199 struct perf_event *event,
0793a61d
TG
2200 int cpu)
2201{
a096309b 2202 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2203
fe4b04fa
PZ
2204 lockdep_assert_held(&ctx->mutex);
2205
c3f00c70 2206 event->ctx = ctx;
0cda4c02
YZ
2207 if (event->cpu != -1)
2208 event->cpu = cpu;
c3f00c70 2209
a096309b
PZ
2210 if (!task) {
2211 cpu_function_call(cpu, __perf_install_in_context, event);
2212 return;
2213 }
2214
2215 /*
2216 * Should not happen, we validate the ctx is still alive before calling.
2217 */
2218 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2219 return;
2220
39a43640
PZ
2221 /*
2222 * Installing events is tricky because we cannot rely on ctx->is_active
2223 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2224 */
a096309b 2225again:
63b6da39 2226 /*
a096309b
PZ
2227 * Cannot use task_function_call() because we need to run on the task's
2228 * CPU regardless of whether its current or not.
63b6da39 2229 */
a096309b
PZ
2230 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2231 return;
2232
2233 raw_spin_lock_irq(&ctx->lock);
2234 task = ctx->task;
84c4e620 2235 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2236 /*
2237 * Cannot happen because we already checked above (which also
2238 * cannot happen), and we hold ctx->mutex, which serializes us
2239 * against perf_event_exit_task_context().
2240 */
63b6da39
PZ
2241 raw_spin_unlock_irq(&ctx->lock);
2242 return;
2243 }
39a43640 2244 raw_spin_unlock_irq(&ctx->lock);
39a43640 2245 /*
a096309b
PZ
2246 * Since !ctx->is_active doesn't mean anything, we must IPI
2247 * unconditionally.
39a43640 2248 */
a096309b 2249 goto again;
0793a61d
TG
2250}
2251
fa289bec 2252/*
cdd6c482 2253 * Put a event into inactive state and update time fields.
fa289bec
PM
2254 * Enabling the leader of a group effectively enables all
2255 * the group members that aren't explicitly disabled, so we
2256 * have to update their ->tstamp_enabled also.
2257 * Note: this works for group members as well as group leaders
2258 * since the non-leader members' sibling_lists will be empty.
2259 */
1d9b482e 2260static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2261{
cdd6c482 2262 struct perf_event *sub;
4158755d 2263 u64 tstamp = perf_event_time(event);
fa289bec 2264
cdd6c482 2265 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2266 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2267 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2268 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2269 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2270 }
fa289bec
PM
2271}
2272
d859e29f 2273/*
cdd6c482 2274 * Cross CPU call to enable a performance event
d859e29f 2275 */
fae3fde6
PZ
2276static void __perf_event_enable(struct perf_event *event,
2277 struct perf_cpu_context *cpuctx,
2278 struct perf_event_context *ctx,
2279 void *info)
04289bb9 2280{
cdd6c482 2281 struct perf_event *leader = event->group_leader;
fae3fde6 2282 struct perf_event_context *task_ctx;
04289bb9 2283
6e801e01
PZ
2284 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2285 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2286 return;
3cbed429 2287
bd2afa49
PZ
2288 if (ctx->is_active)
2289 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2290
1d9b482e 2291 __perf_event_mark_enabled(event);
04289bb9 2292
fae3fde6
PZ
2293 if (!ctx->is_active)
2294 return;
2295
e5d1367f 2296 if (!event_filter_match(event)) {
bd2afa49 2297 if (is_cgroup_event(event))
e5d1367f 2298 perf_cgroup_defer_enabled(event);
bd2afa49 2299 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2300 return;
e5d1367f 2301 }
f4c4176f 2302
04289bb9 2303 /*
cdd6c482 2304 * If the event is in a group and isn't the group leader,
d859e29f 2305 * then don't put it on unless the group is on.
04289bb9 2306 */
bd2afa49
PZ
2307 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2308 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2309 return;
bd2afa49 2310 }
fe4b04fa 2311
fae3fde6
PZ
2312 task_ctx = cpuctx->task_ctx;
2313 if (ctx->task)
2314 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2315
fae3fde6 2316 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2317}
2318
d859e29f 2319/*
cdd6c482 2320 * Enable a event.
c93f7669 2321 *
cdd6c482
IM
2322 * If event->ctx is a cloned context, callers must make sure that
2323 * every task struct that event->ctx->task could possibly point to
c93f7669 2324 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2325 * perf_event_for_each_child or perf_event_for_each as described
2326 * for perf_event_disable.
d859e29f 2327 */
f63a8daa 2328static void _perf_event_enable(struct perf_event *event)
d859e29f 2329{
cdd6c482 2330 struct perf_event_context *ctx = event->ctx;
d859e29f 2331
7b648018 2332 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2333 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2334 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2335 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2336 return;
2337 }
2338
d859e29f 2339 /*
cdd6c482 2340 * If the event is in error state, clear that first.
7b648018
PZ
2341 *
2342 * That way, if we see the event in error state below, we know that it
2343 * has gone back into error state, as distinct from the task having
2344 * been scheduled away before the cross-call arrived.
d859e29f 2345 */
cdd6c482
IM
2346 if (event->state == PERF_EVENT_STATE_ERROR)
2347 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2348 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2349
fae3fde6 2350 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2351}
f63a8daa
PZ
2352
2353/*
2354 * See perf_event_disable();
2355 */
2356void perf_event_enable(struct perf_event *event)
2357{
2358 struct perf_event_context *ctx;
2359
2360 ctx = perf_event_ctx_lock(event);
2361 _perf_event_enable(event);
2362 perf_event_ctx_unlock(event, ctx);
2363}
dcfce4a0 2364EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2365
95ff4ca2
AS
2366static int __perf_event_stop(void *info)
2367{
2368 struct perf_event *event = info;
2369
2370 /* for AUX events, our job is done if the event is already inactive */
2371 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2372 return 0;
2373
2374 /* matches smp_wmb() in event_sched_in() */
2375 smp_rmb();
2376
2377 /*
2378 * There is a window with interrupts enabled before we get here,
2379 * so we need to check again lest we try to stop another CPU's event.
2380 */
2381 if (READ_ONCE(event->oncpu) != smp_processor_id())
2382 return -EAGAIN;
2383
2384 event->pmu->stop(event, PERF_EF_UPDATE);
2385
2386 return 0;
2387}
2388
f63a8daa 2389static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2390{
2023b359 2391 /*
cdd6c482 2392 * not supported on inherited events
2023b359 2393 */
2e939d1d 2394 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2395 return -EINVAL;
2396
cdd6c482 2397 atomic_add(refresh, &event->event_limit);
f63a8daa 2398 _perf_event_enable(event);
2023b359
PZ
2399
2400 return 0;
79f14641 2401}
f63a8daa
PZ
2402
2403/*
2404 * See perf_event_disable()
2405 */
2406int perf_event_refresh(struct perf_event *event, int refresh)
2407{
2408 struct perf_event_context *ctx;
2409 int ret;
2410
2411 ctx = perf_event_ctx_lock(event);
2412 ret = _perf_event_refresh(event, refresh);
2413 perf_event_ctx_unlock(event, ctx);
2414
2415 return ret;
2416}
26ca5c11 2417EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2418
5b0311e1
FW
2419static void ctx_sched_out(struct perf_event_context *ctx,
2420 struct perf_cpu_context *cpuctx,
2421 enum event_type_t event_type)
235c7fc7 2422{
db24d33e 2423 int is_active = ctx->is_active;
c994d613 2424 struct perf_event *event;
235c7fc7 2425
c994d613 2426 lockdep_assert_held(&ctx->lock);
235c7fc7 2427
39a43640
PZ
2428 if (likely(!ctx->nr_events)) {
2429 /*
2430 * See __perf_remove_from_context().
2431 */
2432 WARN_ON_ONCE(ctx->is_active);
2433 if (ctx->task)
2434 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2435 return;
39a43640
PZ
2436 }
2437
db24d33e 2438 ctx->is_active &= ~event_type;
3cbaa590
PZ
2439 if (!(ctx->is_active & EVENT_ALL))
2440 ctx->is_active = 0;
2441
63e30d3e
PZ
2442 if (ctx->task) {
2443 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2444 if (!ctx->is_active)
2445 cpuctx->task_ctx = NULL;
2446 }
facc4307 2447
8fdc6539
PZ
2448 /*
2449 * Always update time if it was set; not only when it changes.
2450 * Otherwise we can 'forget' to update time for any but the last
2451 * context we sched out. For example:
2452 *
2453 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2454 * ctx_sched_out(.event_type = EVENT_PINNED)
2455 *
2456 * would only update time for the pinned events.
2457 */
3cbaa590
PZ
2458 if (is_active & EVENT_TIME) {
2459 /* update (and stop) ctx time */
2460 update_context_time(ctx);
2461 update_cgrp_time_from_cpuctx(cpuctx);
2462 }
2463
8fdc6539
PZ
2464 is_active ^= ctx->is_active; /* changed bits */
2465
3cbaa590 2466 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2467 return;
5b0311e1 2468
075e0b00 2469 perf_pmu_disable(ctx->pmu);
3cbaa590 2470 if (is_active & EVENT_PINNED) {
889ff015
FW
2471 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2472 group_sched_out(event, cpuctx, ctx);
9ed6060d 2473 }
889ff015 2474
3cbaa590 2475 if (is_active & EVENT_FLEXIBLE) {
889ff015 2476 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2477 group_sched_out(event, cpuctx, ctx);
9ed6060d 2478 }
1b9a644f 2479 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2480}
2481
564c2b21 2482/*
5a3126d4
PZ
2483 * Test whether two contexts are equivalent, i.e. whether they have both been
2484 * cloned from the same version of the same context.
2485 *
2486 * Equivalence is measured using a generation number in the context that is
2487 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2488 * and list_del_event().
564c2b21 2489 */
cdd6c482
IM
2490static int context_equiv(struct perf_event_context *ctx1,
2491 struct perf_event_context *ctx2)
564c2b21 2492{
211de6eb
PZ
2493 lockdep_assert_held(&ctx1->lock);
2494 lockdep_assert_held(&ctx2->lock);
2495
5a3126d4
PZ
2496 /* Pinning disables the swap optimization */
2497 if (ctx1->pin_count || ctx2->pin_count)
2498 return 0;
2499
2500 /* If ctx1 is the parent of ctx2 */
2501 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2502 return 1;
2503
2504 /* If ctx2 is the parent of ctx1 */
2505 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2506 return 1;
2507
2508 /*
2509 * If ctx1 and ctx2 have the same parent; we flatten the parent
2510 * hierarchy, see perf_event_init_context().
2511 */
2512 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2513 ctx1->parent_gen == ctx2->parent_gen)
2514 return 1;
2515
2516 /* Unmatched */
2517 return 0;
564c2b21
PM
2518}
2519
cdd6c482
IM
2520static void __perf_event_sync_stat(struct perf_event *event,
2521 struct perf_event *next_event)
bfbd3381
PZ
2522{
2523 u64 value;
2524
cdd6c482 2525 if (!event->attr.inherit_stat)
bfbd3381
PZ
2526 return;
2527
2528 /*
cdd6c482 2529 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2530 * because we're in the middle of a context switch and have IRQs
2531 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2532 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2533 * don't need to use it.
2534 */
cdd6c482
IM
2535 switch (event->state) {
2536 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2537 event->pmu->read(event);
2538 /* fall-through */
bfbd3381 2539
cdd6c482
IM
2540 case PERF_EVENT_STATE_INACTIVE:
2541 update_event_times(event);
bfbd3381
PZ
2542 break;
2543
2544 default:
2545 break;
2546 }
2547
2548 /*
cdd6c482 2549 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2550 * values when we flip the contexts.
2551 */
e7850595
PZ
2552 value = local64_read(&next_event->count);
2553 value = local64_xchg(&event->count, value);
2554 local64_set(&next_event->count, value);
bfbd3381 2555
cdd6c482
IM
2556 swap(event->total_time_enabled, next_event->total_time_enabled);
2557 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2558
bfbd3381 2559 /*
19d2e755 2560 * Since we swizzled the values, update the user visible data too.
bfbd3381 2561 */
cdd6c482
IM
2562 perf_event_update_userpage(event);
2563 perf_event_update_userpage(next_event);
bfbd3381
PZ
2564}
2565
cdd6c482
IM
2566static void perf_event_sync_stat(struct perf_event_context *ctx,
2567 struct perf_event_context *next_ctx)
bfbd3381 2568{
cdd6c482 2569 struct perf_event *event, *next_event;
bfbd3381
PZ
2570
2571 if (!ctx->nr_stat)
2572 return;
2573
02ffdbc8
PZ
2574 update_context_time(ctx);
2575
cdd6c482
IM
2576 event = list_first_entry(&ctx->event_list,
2577 struct perf_event, event_entry);
bfbd3381 2578
cdd6c482
IM
2579 next_event = list_first_entry(&next_ctx->event_list,
2580 struct perf_event, event_entry);
bfbd3381 2581
cdd6c482
IM
2582 while (&event->event_entry != &ctx->event_list &&
2583 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2584
cdd6c482 2585 __perf_event_sync_stat(event, next_event);
bfbd3381 2586
cdd6c482
IM
2587 event = list_next_entry(event, event_entry);
2588 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2589 }
2590}
2591
fe4b04fa
PZ
2592static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2593 struct task_struct *next)
0793a61d 2594{
8dc85d54 2595 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2596 struct perf_event_context *next_ctx;
5a3126d4 2597 struct perf_event_context *parent, *next_parent;
108b02cf 2598 struct perf_cpu_context *cpuctx;
c93f7669 2599 int do_switch = 1;
0793a61d 2600
108b02cf
PZ
2601 if (likely(!ctx))
2602 return;
10989fb2 2603
108b02cf
PZ
2604 cpuctx = __get_cpu_context(ctx);
2605 if (!cpuctx->task_ctx)
0793a61d
TG
2606 return;
2607
c93f7669 2608 rcu_read_lock();
8dc85d54 2609 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2610 if (!next_ctx)
2611 goto unlock;
2612
2613 parent = rcu_dereference(ctx->parent_ctx);
2614 next_parent = rcu_dereference(next_ctx->parent_ctx);
2615
2616 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2617 if (!parent && !next_parent)
5a3126d4
PZ
2618 goto unlock;
2619
2620 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2621 /*
2622 * Looks like the two contexts are clones, so we might be
2623 * able to optimize the context switch. We lock both
2624 * contexts and check that they are clones under the
2625 * lock (including re-checking that neither has been
2626 * uncloned in the meantime). It doesn't matter which
2627 * order we take the locks because no other cpu could
2628 * be trying to lock both of these tasks.
2629 */
e625cce1
TG
2630 raw_spin_lock(&ctx->lock);
2631 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2632 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2633 WRITE_ONCE(ctx->task, next);
2634 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2635
2636 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2637
63b6da39
PZ
2638 /*
2639 * RCU_INIT_POINTER here is safe because we've not
2640 * modified the ctx and the above modification of
2641 * ctx->task and ctx->task_ctx_data are immaterial
2642 * since those values are always verified under
2643 * ctx->lock which we're now holding.
2644 */
2645 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2646 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2647
c93f7669 2648 do_switch = 0;
bfbd3381 2649
cdd6c482 2650 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2651 }
e625cce1
TG
2652 raw_spin_unlock(&next_ctx->lock);
2653 raw_spin_unlock(&ctx->lock);
564c2b21 2654 }
5a3126d4 2655unlock:
c93f7669 2656 rcu_read_unlock();
564c2b21 2657
c93f7669 2658 if (do_switch) {
facc4307 2659 raw_spin_lock(&ctx->lock);
8833d0e2 2660 task_ctx_sched_out(cpuctx, ctx);
facc4307 2661 raw_spin_unlock(&ctx->lock);
c93f7669 2662 }
0793a61d
TG
2663}
2664
ba532500
YZ
2665void perf_sched_cb_dec(struct pmu *pmu)
2666{
2667 this_cpu_dec(perf_sched_cb_usages);
2668}
2669
2670void perf_sched_cb_inc(struct pmu *pmu)
2671{
2672 this_cpu_inc(perf_sched_cb_usages);
2673}
2674
2675/*
2676 * This function provides the context switch callback to the lower code
2677 * layer. It is invoked ONLY when the context switch callback is enabled.
2678 */
2679static void perf_pmu_sched_task(struct task_struct *prev,
2680 struct task_struct *next,
2681 bool sched_in)
2682{
2683 struct perf_cpu_context *cpuctx;
2684 struct pmu *pmu;
2685 unsigned long flags;
2686
2687 if (prev == next)
2688 return;
2689
2690 local_irq_save(flags);
2691
2692 rcu_read_lock();
2693
2694 list_for_each_entry_rcu(pmu, &pmus, entry) {
2695 if (pmu->sched_task) {
2696 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2697
2698 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2699
2700 perf_pmu_disable(pmu);
2701
2702 pmu->sched_task(cpuctx->task_ctx, sched_in);
2703
2704 perf_pmu_enable(pmu);
2705
2706 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2707 }
2708 }
2709
2710 rcu_read_unlock();
2711
2712 local_irq_restore(flags);
2713}
2714
45ac1403
AH
2715static void perf_event_switch(struct task_struct *task,
2716 struct task_struct *next_prev, bool sched_in);
2717
8dc85d54
PZ
2718#define for_each_task_context_nr(ctxn) \
2719 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2720
2721/*
2722 * Called from scheduler to remove the events of the current task,
2723 * with interrupts disabled.
2724 *
2725 * We stop each event and update the event value in event->count.
2726 *
2727 * This does not protect us against NMI, but disable()
2728 * sets the disabled bit in the control field of event _before_
2729 * accessing the event control register. If a NMI hits, then it will
2730 * not restart the event.
2731 */
ab0cce56
JO
2732void __perf_event_task_sched_out(struct task_struct *task,
2733 struct task_struct *next)
8dc85d54
PZ
2734{
2735 int ctxn;
2736
ba532500
YZ
2737 if (__this_cpu_read(perf_sched_cb_usages))
2738 perf_pmu_sched_task(task, next, false);
2739
45ac1403
AH
2740 if (atomic_read(&nr_switch_events))
2741 perf_event_switch(task, next, false);
2742
8dc85d54
PZ
2743 for_each_task_context_nr(ctxn)
2744 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2745
2746 /*
2747 * if cgroup events exist on this CPU, then we need
2748 * to check if we have to switch out PMU state.
2749 * cgroup event are system-wide mode only
2750 */
4a32fea9 2751 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2752 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2753}
2754
5b0311e1
FW
2755/*
2756 * Called with IRQs disabled
2757 */
2758static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2759 enum event_type_t event_type)
2760{
2761 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2762}
2763
235c7fc7 2764static void
5b0311e1 2765ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2766 struct perf_cpu_context *cpuctx)
0793a61d 2767{
cdd6c482 2768 struct perf_event *event;
0793a61d 2769
889ff015
FW
2770 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2771 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2772 continue;
5632ab12 2773 if (!event_filter_match(event))
3b6f9e5c
PM
2774 continue;
2775
e5d1367f
SE
2776 /* may need to reset tstamp_enabled */
2777 if (is_cgroup_event(event))
2778 perf_cgroup_mark_enabled(event, ctx);
2779
8c9ed8e1 2780 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2781 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2782
2783 /*
2784 * If this pinned group hasn't been scheduled,
2785 * put it in error state.
2786 */
cdd6c482
IM
2787 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2788 update_group_times(event);
2789 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2790 }
3b6f9e5c 2791 }
5b0311e1
FW
2792}
2793
2794static void
2795ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2796 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2797{
2798 struct perf_event *event;
2799 int can_add_hw = 1;
3b6f9e5c 2800
889ff015
FW
2801 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2802 /* Ignore events in OFF or ERROR state */
2803 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2804 continue;
04289bb9
IM
2805 /*
2806 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2807 * of events:
04289bb9 2808 */
5632ab12 2809 if (!event_filter_match(event))
0793a61d
TG
2810 continue;
2811
e5d1367f
SE
2812 /* may need to reset tstamp_enabled */
2813 if (is_cgroup_event(event))
2814 perf_cgroup_mark_enabled(event, ctx);
2815
9ed6060d 2816 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2817 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2818 can_add_hw = 0;
9ed6060d 2819 }
0793a61d 2820 }
5b0311e1
FW
2821}
2822
2823static void
2824ctx_sched_in(struct perf_event_context *ctx,
2825 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2826 enum event_type_t event_type,
2827 struct task_struct *task)
5b0311e1 2828{
db24d33e 2829 int is_active = ctx->is_active;
c994d613
PZ
2830 u64 now;
2831
2832 lockdep_assert_held(&ctx->lock);
e5d1367f 2833
5b0311e1 2834 if (likely(!ctx->nr_events))
facc4307 2835 return;
5b0311e1 2836
3cbaa590 2837 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2838 if (ctx->task) {
2839 if (!is_active)
2840 cpuctx->task_ctx = ctx;
2841 else
2842 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2843 }
2844
3cbaa590
PZ
2845 is_active ^= ctx->is_active; /* changed bits */
2846
2847 if (is_active & EVENT_TIME) {
2848 /* start ctx time */
2849 now = perf_clock();
2850 ctx->timestamp = now;
2851 perf_cgroup_set_timestamp(task, ctx);
2852 }
2853
5b0311e1
FW
2854 /*
2855 * First go through the list and put on any pinned groups
2856 * in order to give them the best chance of going on.
2857 */
3cbaa590 2858 if (is_active & EVENT_PINNED)
6e37738a 2859 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2860
2861 /* Then walk through the lower prio flexible groups */
3cbaa590 2862 if (is_active & EVENT_FLEXIBLE)
6e37738a 2863 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2864}
2865
329c0e01 2866static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2867 enum event_type_t event_type,
2868 struct task_struct *task)
329c0e01
FW
2869{
2870 struct perf_event_context *ctx = &cpuctx->ctx;
2871
e5d1367f 2872 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2873}
2874
e5d1367f
SE
2875static void perf_event_context_sched_in(struct perf_event_context *ctx,
2876 struct task_struct *task)
235c7fc7 2877{
108b02cf 2878 struct perf_cpu_context *cpuctx;
235c7fc7 2879
108b02cf 2880 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2881 if (cpuctx->task_ctx == ctx)
2882 return;
2883
facc4307 2884 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2885 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2886 /*
2887 * We want to keep the following priority order:
2888 * cpu pinned (that don't need to move), task pinned,
2889 * cpu flexible, task flexible.
2890 */
2891 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2892 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2893 perf_pmu_enable(ctx->pmu);
2894 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2895}
2896
8dc85d54
PZ
2897/*
2898 * Called from scheduler to add the events of the current task
2899 * with interrupts disabled.
2900 *
2901 * We restore the event value and then enable it.
2902 *
2903 * This does not protect us against NMI, but enable()
2904 * sets the enabled bit in the control field of event _before_
2905 * accessing the event control register. If a NMI hits, then it will
2906 * keep the event running.
2907 */
ab0cce56
JO
2908void __perf_event_task_sched_in(struct task_struct *prev,
2909 struct task_struct *task)
8dc85d54
PZ
2910{
2911 struct perf_event_context *ctx;
2912 int ctxn;
2913
7e41d177
PZ
2914 /*
2915 * If cgroup events exist on this CPU, then we need to check if we have
2916 * to switch in PMU state; cgroup event are system-wide mode only.
2917 *
2918 * Since cgroup events are CPU events, we must schedule these in before
2919 * we schedule in the task events.
2920 */
2921 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2922 perf_cgroup_sched_in(prev, task);
2923
8dc85d54
PZ
2924 for_each_task_context_nr(ctxn) {
2925 ctx = task->perf_event_ctxp[ctxn];
2926 if (likely(!ctx))
2927 continue;
2928
e5d1367f 2929 perf_event_context_sched_in(ctx, task);
8dc85d54 2930 }
d010b332 2931
45ac1403
AH
2932 if (atomic_read(&nr_switch_events))
2933 perf_event_switch(task, prev, true);
2934
ba532500
YZ
2935 if (__this_cpu_read(perf_sched_cb_usages))
2936 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2937}
2938
abd50713
PZ
2939static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2940{
2941 u64 frequency = event->attr.sample_freq;
2942 u64 sec = NSEC_PER_SEC;
2943 u64 divisor, dividend;
2944
2945 int count_fls, nsec_fls, frequency_fls, sec_fls;
2946
2947 count_fls = fls64(count);
2948 nsec_fls = fls64(nsec);
2949 frequency_fls = fls64(frequency);
2950 sec_fls = 30;
2951
2952 /*
2953 * We got @count in @nsec, with a target of sample_freq HZ
2954 * the target period becomes:
2955 *
2956 * @count * 10^9
2957 * period = -------------------
2958 * @nsec * sample_freq
2959 *
2960 */
2961
2962 /*
2963 * Reduce accuracy by one bit such that @a and @b converge
2964 * to a similar magnitude.
2965 */
fe4b04fa 2966#define REDUCE_FLS(a, b) \
abd50713
PZ
2967do { \
2968 if (a##_fls > b##_fls) { \
2969 a >>= 1; \
2970 a##_fls--; \
2971 } else { \
2972 b >>= 1; \
2973 b##_fls--; \
2974 } \
2975} while (0)
2976
2977 /*
2978 * Reduce accuracy until either term fits in a u64, then proceed with
2979 * the other, so that finally we can do a u64/u64 division.
2980 */
2981 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2982 REDUCE_FLS(nsec, frequency);
2983 REDUCE_FLS(sec, count);
2984 }
2985
2986 if (count_fls + sec_fls > 64) {
2987 divisor = nsec * frequency;
2988
2989 while (count_fls + sec_fls > 64) {
2990 REDUCE_FLS(count, sec);
2991 divisor >>= 1;
2992 }
2993
2994 dividend = count * sec;
2995 } else {
2996 dividend = count * sec;
2997
2998 while (nsec_fls + frequency_fls > 64) {
2999 REDUCE_FLS(nsec, frequency);
3000 dividend >>= 1;
3001 }
3002
3003 divisor = nsec * frequency;
3004 }
3005
f6ab91ad
PZ
3006 if (!divisor)
3007 return dividend;
3008
abd50713
PZ
3009 return div64_u64(dividend, divisor);
3010}
3011
e050e3f0
SE
3012static DEFINE_PER_CPU(int, perf_throttled_count);
3013static DEFINE_PER_CPU(u64, perf_throttled_seq);
3014
f39d47ff 3015static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3016{
cdd6c482 3017 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3018 s64 period, sample_period;
bd2b5b12
PZ
3019 s64 delta;
3020
abd50713 3021 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3022
3023 delta = (s64)(period - hwc->sample_period);
3024 delta = (delta + 7) / 8; /* low pass filter */
3025
3026 sample_period = hwc->sample_period + delta;
3027
3028 if (!sample_period)
3029 sample_period = 1;
3030
bd2b5b12 3031 hwc->sample_period = sample_period;
abd50713 3032
e7850595 3033 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3034 if (disable)
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
e7850595 3037 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3038
3039 if (disable)
3040 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3041 }
bd2b5b12
PZ
3042}
3043
e050e3f0
SE
3044/*
3045 * combine freq adjustment with unthrottling to avoid two passes over the
3046 * events. At the same time, make sure, having freq events does not change
3047 * the rate of unthrottling as that would introduce bias.
3048 */
3049static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3050 int needs_unthr)
60db5e09 3051{
cdd6c482
IM
3052 struct perf_event *event;
3053 struct hw_perf_event *hwc;
e050e3f0 3054 u64 now, period = TICK_NSEC;
abd50713 3055 s64 delta;
60db5e09 3056
e050e3f0
SE
3057 /*
3058 * only need to iterate over all events iff:
3059 * - context have events in frequency mode (needs freq adjust)
3060 * - there are events to unthrottle on this cpu
3061 */
3062 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3063 return;
3064
e050e3f0 3065 raw_spin_lock(&ctx->lock);
f39d47ff 3066 perf_pmu_disable(ctx->pmu);
e050e3f0 3067
03541f8b 3068 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3069 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3070 continue;
3071
5632ab12 3072 if (!event_filter_match(event))
5d27c23d
PZ
3073 continue;
3074
44377277
AS
3075 perf_pmu_disable(event->pmu);
3076
cdd6c482 3077 hwc = &event->hw;
6a24ed6c 3078
ae23bff1 3079 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3080 hwc->interrupts = 0;
cdd6c482 3081 perf_log_throttle(event, 1);
a4eaf7f1 3082 event->pmu->start(event, 0);
a78ac325
PZ
3083 }
3084
cdd6c482 3085 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3086 goto next;
60db5e09 3087
e050e3f0
SE
3088 /*
3089 * stop the event and update event->count
3090 */
3091 event->pmu->stop(event, PERF_EF_UPDATE);
3092
e7850595 3093 now = local64_read(&event->count);
abd50713
PZ
3094 delta = now - hwc->freq_count_stamp;
3095 hwc->freq_count_stamp = now;
60db5e09 3096
e050e3f0
SE
3097 /*
3098 * restart the event
3099 * reload only if value has changed
f39d47ff
SE
3100 * we have stopped the event so tell that
3101 * to perf_adjust_period() to avoid stopping it
3102 * twice.
e050e3f0 3103 */
abd50713 3104 if (delta > 0)
f39d47ff 3105 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3106
3107 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3108 next:
3109 perf_pmu_enable(event->pmu);
60db5e09 3110 }
e050e3f0 3111
f39d47ff 3112 perf_pmu_enable(ctx->pmu);
e050e3f0 3113 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3114}
3115
235c7fc7 3116/*
cdd6c482 3117 * Round-robin a context's events:
235c7fc7 3118 */
cdd6c482 3119static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3120{
dddd3379
TG
3121 /*
3122 * Rotate the first entry last of non-pinned groups. Rotation might be
3123 * disabled by the inheritance code.
3124 */
3125 if (!ctx->rotate_disable)
3126 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3127}
3128
9e630205 3129static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3130{
8dc85d54 3131 struct perf_event_context *ctx = NULL;
2fde4f94 3132 int rotate = 0;
7fc23a53 3133
b5ab4cd5 3134 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3135 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3136 rotate = 1;
3137 }
235c7fc7 3138
8dc85d54 3139 ctx = cpuctx->task_ctx;
b5ab4cd5 3140 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3141 if (ctx->nr_events != ctx->nr_active)
3142 rotate = 1;
3143 }
9717e6cd 3144
e050e3f0 3145 if (!rotate)
0f5a2601
PZ
3146 goto done;
3147
facc4307 3148 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3149 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3150
e050e3f0
SE
3151 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3152 if (ctx)
3153 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3154
e050e3f0
SE
3155 rotate_ctx(&cpuctx->ctx);
3156 if (ctx)
3157 rotate_ctx(ctx);
235c7fc7 3158
e050e3f0 3159 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3160
0f5a2601
PZ
3161 perf_pmu_enable(cpuctx->ctx.pmu);
3162 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3163done:
9e630205
SE
3164
3165 return rotate;
e9d2b064
PZ
3166}
3167
3168void perf_event_task_tick(void)
3169{
2fde4f94
MR
3170 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3171 struct perf_event_context *ctx, *tmp;
e050e3f0 3172 int throttled;
b5ab4cd5 3173
e9d2b064
PZ
3174 WARN_ON(!irqs_disabled());
3175
e050e3f0
SE
3176 __this_cpu_inc(perf_throttled_seq);
3177 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3178 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3179
2fde4f94 3180 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3181 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3182}
3183
889ff015
FW
3184static int event_enable_on_exec(struct perf_event *event,
3185 struct perf_event_context *ctx)
3186{
3187 if (!event->attr.enable_on_exec)
3188 return 0;
3189
3190 event->attr.enable_on_exec = 0;
3191 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3192 return 0;
3193
1d9b482e 3194 __perf_event_mark_enabled(event);
889ff015
FW
3195
3196 return 1;
3197}
3198
57e7986e 3199/*
cdd6c482 3200 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3201 * This expects task == current.
3202 */
c1274499 3203static void perf_event_enable_on_exec(int ctxn)
57e7986e 3204{
c1274499 3205 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3206 struct perf_cpu_context *cpuctx;
cdd6c482 3207 struct perf_event *event;
57e7986e
PM
3208 unsigned long flags;
3209 int enabled = 0;
3210
3211 local_irq_save(flags);
c1274499 3212 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3213 if (!ctx || !ctx->nr_events)
57e7986e
PM
3214 goto out;
3215
3e349507
PZ
3216 cpuctx = __get_cpu_context(ctx);
3217 perf_ctx_lock(cpuctx, ctx);
7fce2509 3218 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3219 list_for_each_entry(event, &ctx->event_list, event_entry)
3220 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3221
3222 /*
3e349507 3223 * Unclone and reschedule this context if we enabled any event.
57e7986e 3224 */
3e349507 3225 if (enabled) {
211de6eb 3226 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3227 ctx_resched(cpuctx, ctx);
3228 }
3229 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3230
9ed6060d 3231out:
57e7986e 3232 local_irq_restore(flags);
211de6eb
PZ
3233
3234 if (clone_ctx)
3235 put_ctx(clone_ctx);
57e7986e
PM
3236}
3237
e041e328
PZ
3238void perf_event_exec(void)
3239{
e041e328
PZ
3240 int ctxn;
3241
3242 rcu_read_lock();
c1274499
PZ
3243 for_each_task_context_nr(ctxn)
3244 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3245 rcu_read_unlock();
3246}
3247
0492d4c5
PZ
3248struct perf_read_data {
3249 struct perf_event *event;
3250 bool group;
7d88962e 3251 int ret;
0492d4c5
PZ
3252};
3253
0793a61d 3254/*
cdd6c482 3255 * Cross CPU call to read the hardware event
0793a61d 3256 */
cdd6c482 3257static void __perf_event_read(void *info)
0793a61d 3258{
0492d4c5
PZ
3259 struct perf_read_data *data = info;
3260 struct perf_event *sub, *event = data->event;
cdd6c482 3261 struct perf_event_context *ctx = event->ctx;
108b02cf 3262 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3263 struct pmu *pmu = event->pmu;
621a01ea 3264
e1ac3614
PM
3265 /*
3266 * If this is a task context, we need to check whether it is
3267 * the current task context of this cpu. If not it has been
3268 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3269 * event->count would have been updated to a recent sample
3270 * when the event was scheduled out.
e1ac3614
PM
3271 */
3272 if (ctx->task && cpuctx->task_ctx != ctx)
3273 return;
3274
e625cce1 3275 raw_spin_lock(&ctx->lock);
e5d1367f 3276 if (ctx->is_active) {
542e72fc 3277 update_context_time(ctx);
e5d1367f
SE
3278 update_cgrp_time_from_event(event);
3279 }
0492d4c5 3280
cdd6c482 3281 update_event_times(event);
4a00c16e
SB
3282 if (event->state != PERF_EVENT_STATE_ACTIVE)
3283 goto unlock;
0492d4c5 3284
4a00c16e
SB
3285 if (!data->group) {
3286 pmu->read(event);
3287 data->ret = 0;
0492d4c5 3288 goto unlock;
4a00c16e
SB
3289 }
3290
3291 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3292
3293 pmu->read(event);
0492d4c5
PZ
3294
3295 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3296 update_event_times(sub);
4a00c16e
SB
3297 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3298 /*
3299 * Use sibling's PMU rather than @event's since
3300 * sibling could be on different (eg: software) PMU.
3301 */
0492d4c5 3302 sub->pmu->read(sub);
4a00c16e 3303 }
0492d4c5 3304 }
4a00c16e
SB
3305
3306 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3307
3308unlock:
e625cce1 3309 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3310}
3311
b5e58793
PZ
3312static inline u64 perf_event_count(struct perf_event *event)
3313{
eacd3ecc
MF
3314 if (event->pmu->count)
3315 return event->pmu->count(event);
3316
3317 return __perf_event_count(event);
b5e58793
PZ
3318}
3319
ffe8690c
KX
3320/*
3321 * NMI-safe method to read a local event, that is an event that
3322 * is:
3323 * - either for the current task, or for this CPU
3324 * - does not have inherit set, for inherited task events
3325 * will not be local and we cannot read them atomically
3326 * - must not have a pmu::count method
3327 */
3328u64 perf_event_read_local(struct perf_event *event)
3329{
3330 unsigned long flags;
3331 u64 val;
3332
3333 /*
3334 * Disabling interrupts avoids all counter scheduling (context
3335 * switches, timer based rotation and IPIs).
3336 */
3337 local_irq_save(flags);
3338
3339 /* If this is a per-task event, it must be for current */
3340 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3341 event->hw.target != current);
3342
3343 /* If this is a per-CPU event, it must be for this CPU */
3344 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3345 event->cpu != smp_processor_id());
3346
3347 /*
3348 * It must not be an event with inherit set, we cannot read
3349 * all child counters from atomic context.
3350 */
3351 WARN_ON_ONCE(event->attr.inherit);
3352
3353 /*
3354 * It must not have a pmu::count method, those are not
3355 * NMI safe.
3356 */
3357 WARN_ON_ONCE(event->pmu->count);
3358
3359 /*
3360 * If the event is currently on this CPU, its either a per-task event,
3361 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3362 * oncpu == -1).
3363 */
3364 if (event->oncpu == smp_processor_id())
3365 event->pmu->read(event);
3366
3367 val = local64_read(&event->count);
3368 local_irq_restore(flags);
3369
3370 return val;
3371}
3372
7d88962e 3373static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3374{
7d88962e
SB
3375 int ret = 0;
3376
0793a61d 3377 /*
cdd6c482
IM
3378 * If event is enabled and currently active on a CPU, update the
3379 * value in the event structure:
0793a61d 3380 */
cdd6c482 3381 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3382 struct perf_read_data data = {
3383 .event = event,
3384 .group = group,
7d88962e 3385 .ret = 0,
0492d4c5 3386 };
cdd6c482 3387 smp_call_function_single(event->oncpu,
0492d4c5 3388 __perf_event_read, &data, 1);
7d88962e 3389 ret = data.ret;
cdd6c482 3390 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3391 struct perf_event_context *ctx = event->ctx;
3392 unsigned long flags;
3393
e625cce1 3394 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3395 /*
3396 * may read while context is not active
3397 * (e.g., thread is blocked), in that case
3398 * we cannot update context time
3399 */
e5d1367f 3400 if (ctx->is_active) {
c530ccd9 3401 update_context_time(ctx);
e5d1367f
SE
3402 update_cgrp_time_from_event(event);
3403 }
0492d4c5
PZ
3404 if (group)
3405 update_group_times(event);
3406 else
3407 update_event_times(event);
e625cce1 3408 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3409 }
7d88962e
SB
3410
3411 return ret;
0793a61d
TG
3412}
3413
a63eaf34 3414/*
cdd6c482 3415 * Initialize the perf_event context in a task_struct:
a63eaf34 3416 */
eb184479 3417static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3418{
e625cce1 3419 raw_spin_lock_init(&ctx->lock);
a63eaf34 3420 mutex_init(&ctx->mutex);
2fde4f94 3421 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3422 INIT_LIST_HEAD(&ctx->pinned_groups);
3423 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3424 INIT_LIST_HEAD(&ctx->event_list);
3425 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3426}
3427
3428static struct perf_event_context *
3429alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3430{
3431 struct perf_event_context *ctx;
3432
3433 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3434 if (!ctx)
3435 return NULL;
3436
3437 __perf_event_init_context(ctx);
3438 if (task) {
3439 ctx->task = task;
3440 get_task_struct(task);
0793a61d 3441 }
eb184479
PZ
3442 ctx->pmu = pmu;
3443
3444 return ctx;
a63eaf34
PM
3445}
3446
2ebd4ffb
MH
3447static struct task_struct *
3448find_lively_task_by_vpid(pid_t vpid)
3449{
3450 struct task_struct *task;
3451 int err;
0793a61d
TG
3452
3453 rcu_read_lock();
2ebd4ffb 3454 if (!vpid)
0793a61d
TG
3455 task = current;
3456 else
2ebd4ffb 3457 task = find_task_by_vpid(vpid);
0793a61d
TG
3458 if (task)
3459 get_task_struct(task);
3460 rcu_read_unlock();
3461
3462 if (!task)
3463 return ERR_PTR(-ESRCH);
3464
0793a61d 3465 /* Reuse ptrace permission checks for now. */
c93f7669 3466 err = -EACCES;
caaee623 3467 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3468 goto errout;
3469
2ebd4ffb
MH
3470 return task;
3471errout:
3472 put_task_struct(task);
3473 return ERR_PTR(err);
3474
3475}
3476
fe4b04fa
PZ
3477/*
3478 * Returns a matching context with refcount and pincount.
3479 */
108b02cf 3480static struct perf_event_context *
4af57ef2
YZ
3481find_get_context(struct pmu *pmu, struct task_struct *task,
3482 struct perf_event *event)
0793a61d 3483{
211de6eb 3484 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3485 struct perf_cpu_context *cpuctx;
4af57ef2 3486 void *task_ctx_data = NULL;
25346b93 3487 unsigned long flags;
8dc85d54 3488 int ctxn, err;
4af57ef2 3489 int cpu = event->cpu;
0793a61d 3490
22a4ec72 3491 if (!task) {
cdd6c482 3492 /* Must be root to operate on a CPU event: */
0764771d 3493 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3494 return ERR_PTR(-EACCES);
3495
0793a61d 3496 /*
cdd6c482 3497 * We could be clever and allow to attach a event to an
0793a61d
TG
3498 * offline CPU and activate it when the CPU comes up, but
3499 * that's for later.
3500 */
f6325e30 3501 if (!cpu_online(cpu))
0793a61d
TG
3502 return ERR_PTR(-ENODEV);
3503
108b02cf 3504 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3505 ctx = &cpuctx->ctx;
c93f7669 3506 get_ctx(ctx);
fe4b04fa 3507 ++ctx->pin_count;
0793a61d 3508
0793a61d
TG
3509 return ctx;
3510 }
3511
8dc85d54
PZ
3512 err = -EINVAL;
3513 ctxn = pmu->task_ctx_nr;
3514 if (ctxn < 0)
3515 goto errout;
3516
4af57ef2
YZ
3517 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3518 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3519 if (!task_ctx_data) {
3520 err = -ENOMEM;
3521 goto errout;
3522 }
3523 }
3524
9ed6060d 3525retry:
8dc85d54 3526 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3527 if (ctx) {
211de6eb 3528 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3529 ++ctx->pin_count;
4af57ef2
YZ
3530
3531 if (task_ctx_data && !ctx->task_ctx_data) {
3532 ctx->task_ctx_data = task_ctx_data;
3533 task_ctx_data = NULL;
3534 }
e625cce1 3535 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3536
3537 if (clone_ctx)
3538 put_ctx(clone_ctx);
9137fb28 3539 } else {
eb184479 3540 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3541 err = -ENOMEM;
3542 if (!ctx)
3543 goto errout;
eb184479 3544
4af57ef2
YZ
3545 if (task_ctx_data) {
3546 ctx->task_ctx_data = task_ctx_data;
3547 task_ctx_data = NULL;
3548 }
3549
dbe08d82
ON
3550 err = 0;
3551 mutex_lock(&task->perf_event_mutex);
3552 /*
3553 * If it has already passed perf_event_exit_task().
3554 * we must see PF_EXITING, it takes this mutex too.
3555 */
3556 if (task->flags & PF_EXITING)
3557 err = -ESRCH;
3558 else if (task->perf_event_ctxp[ctxn])
3559 err = -EAGAIN;
fe4b04fa 3560 else {
9137fb28 3561 get_ctx(ctx);
fe4b04fa 3562 ++ctx->pin_count;
dbe08d82 3563 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3564 }
dbe08d82
ON
3565 mutex_unlock(&task->perf_event_mutex);
3566
3567 if (unlikely(err)) {
9137fb28 3568 put_ctx(ctx);
dbe08d82
ON
3569
3570 if (err == -EAGAIN)
3571 goto retry;
3572 goto errout;
a63eaf34
PM
3573 }
3574 }
3575
4af57ef2 3576 kfree(task_ctx_data);
0793a61d 3577 return ctx;
c93f7669 3578
9ed6060d 3579errout:
4af57ef2 3580 kfree(task_ctx_data);
c93f7669 3581 return ERR_PTR(err);
0793a61d
TG
3582}
3583
6fb2915d 3584static void perf_event_free_filter(struct perf_event *event);
2541517c 3585static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3586
cdd6c482 3587static void free_event_rcu(struct rcu_head *head)
592903cd 3588{
cdd6c482 3589 struct perf_event *event;
592903cd 3590
cdd6c482
IM
3591 event = container_of(head, struct perf_event, rcu_head);
3592 if (event->ns)
3593 put_pid_ns(event->ns);
6fb2915d 3594 perf_event_free_filter(event);
cdd6c482 3595 kfree(event);
592903cd
PZ
3596}
3597
b69cf536
PZ
3598static void ring_buffer_attach(struct perf_event *event,
3599 struct ring_buffer *rb);
925d519a 3600
4beb31f3 3601static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3602{
4beb31f3
FW
3603 if (event->parent)
3604 return;
3605
4beb31f3
FW
3606 if (is_cgroup_event(event))
3607 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3608}
925d519a 3609
555e0c1e
FW
3610#ifdef CONFIG_NO_HZ_FULL
3611static DEFINE_SPINLOCK(nr_freq_lock);
3612#endif
3613
3614static void unaccount_freq_event_nohz(void)
3615{
3616#ifdef CONFIG_NO_HZ_FULL
3617 spin_lock(&nr_freq_lock);
3618 if (atomic_dec_and_test(&nr_freq_events))
3619 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3620 spin_unlock(&nr_freq_lock);
3621#endif
3622}
3623
3624static void unaccount_freq_event(void)
3625{
3626 if (tick_nohz_full_enabled())
3627 unaccount_freq_event_nohz();
3628 else
3629 atomic_dec(&nr_freq_events);
3630}
3631
4beb31f3
FW
3632static void unaccount_event(struct perf_event *event)
3633{
25432ae9
PZ
3634 bool dec = false;
3635
4beb31f3
FW
3636 if (event->parent)
3637 return;
3638
3639 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3640 dec = true;
4beb31f3
FW
3641 if (event->attr.mmap || event->attr.mmap_data)
3642 atomic_dec(&nr_mmap_events);
3643 if (event->attr.comm)
3644 atomic_dec(&nr_comm_events);
3645 if (event->attr.task)
3646 atomic_dec(&nr_task_events);
948b26b6 3647 if (event->attr.freq)
555e0c1e 3648 unaccount_freq_event();
45ac1403 3649 if (event->attr.context_switch) {
25432ae9 3650 dec = true;
45ac1403
AH
3651 atomic_dec(&nr_switch_events);
3652 }
4beb31f3 3653 if (is_cgroup_event(event))
25432ae9 3654 dec = true;
4beb31f3 3655 if (has_branch_stack(event))
25432ae9
PZ
3656 dec = true;
3657
9107c89e
PZ
3658 if (dec) {
3659 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3660 schedule_delayed_work(&perf_sched_work, HZ);
3661 }
4beb31f3
FW
3662
3663 unaccount_event_cpu(event, event->cpu);
3664}
925d519a 3665
9107c89e
PZ
3666static void perf_sched_delayed(struct work_struct *work)
3667{
3668 mutex_lock(&perf_sched_mutex);
3669 if (atomic_dec_and_test(&perf_sched_count))
3670 static_branch_disable(&perf_sched_events);
3671 mutex_unlock(&perf_sched_mutex);
3672}
3673
bed5b25a
AS
3674/*
3675 * The following implement mutual exclusion of events on "exclusive" pmus
3676 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3677 * at a time, so we disallow creating events that might conflict, namely:
3678 *
3679 * 1) cpu-wide events in the presence of per-task events,
3680 * 2) per-task events in the presence of cpu-wide events,
3681 * 3) two matching events on the same context.
3682 *
3683 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3684 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3685 */
3686static int exclusive_event_init(struct perf_event *event)
3687{
3688 struct pmu *pmu = event->pmu;
3689
3690 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3691 return 0;
3692
3693 /*
3694 * Prevent co-existence of per-task and cpu-wide events on the
3695 * same exclusive pmu.
3696 *
3697 * Negative pmu::exclusive_cnt means there are cpu-wide
3698 * events on this "exclusive" pmu, positive means there are
3699 * per-task events.
3700 *
3701 * Since this is called in perf_event_alloc() path, event::ctx
3702 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3703 * to mean "per-task event", because unlike other attach states it
3704 * never gets cleared.
3705 */
3706 if (event->attach_state & PERF_ATTACH_TASK) {
3707 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3708 return -EBUSY;
3709 } else {
3710 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3711 return -EBUSY;
3712 }
3713
3714 return 0;
3715}
3716
3717static void exclusive_event_destroy(struct perf_event *event)
3718{
3719 struct pmu *pmu = event->pmu;
3720
3721 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3722 return;
3723
3724 /* see comment in exclusive_event_init() */
3725 if (event->attach_state & PERF_ATTACH_TASK)
3726 atomic_dec(&pmu->exclusive_cnt);
3727 else
3728 atomic_inc(&pmu->exclusive_cnt);
3729}
3730
3731static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3732{
3733 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3734 (e1->cpu == e2->cpu ||
3735 e1->cpu == -1 ||
3736 e2->cpu == -1))
3737 return true;
3738 return false;
3739}
3740
3741/* Called under the same ctx::mutex as perf_install_in_context() */
3742static bool exclusive_event_installable(struct perf_event *event,
3743 struct perf_event_context *ctx)
3744{
3745 struct perf_event *iter_event;
3746 struct pmu *pmu = event->pmu;
3747
3748 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3749 return true;
3750
3751 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3752 if (exclusive_event_match(iter_event, event))
3753 return false;
3754 }
3755
3756 return true;
3757}
3758
683ede43 3759static void _free_event(struct perf_event *event)
f1600952 3760{
e360adbe 3761 irq_work_sync(&event->pending);
925d519a 3762
4beb31f3 3763 unaccount_event(event);
9ee318a7 3764
76369139 3765 if (event->rb) {
9bb5d40c
PZ
3766 /*
3767 * Can happen when we close an event with re-directed output.
3768 *
3769 * Since we have a 0 refcount, perf_mmap_close() will skip
3770 * over us; possibly making our ring_buffer_put() the last.
3771 */
3772 mutex_lock(&event->mmap_mutex);
b69cf536 3773 ring_buffer_attach(event, NULL);
9bb5d40c 3774 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3775 }
3776
e5d1367f
SE
3777 if (is_cgroup_event(event))
3778 perf_detach_cgroup(event);
3779
a0733e69
PZ
3780 if (!event->parent) {
3781 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3782 put_callchain_buffers();
3783 }
3784
3785 perf_event_free_bpf_prog(event);
3786
3787 if (event->destroy)
3788 event->destroy(event);
3789
3790 if (event->ctx)
3791 put_ctx(event->ctx);
3792
3793 if (event->pmu) {
3794 exclusive_event_destroy(event);
3795 module_put(event->pmu->module);
3796 }
3797
3798 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3799}
3800
683ede43
PZ
3801/*
3802 * Used to free events which have a known refcount of 1, such as in error paths
3803 * where the event isn't exposed yet and inherited events.
3804 */
3805static void free_event(struct perf_event *event)
0793a61d 3806{
683ede43
PZ
3807 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3808 "unexpected event refcount: %ld; ptr=%p\n",
3809 atomic_long_read(&event->refcount), event)) {
3810 /* leak to avoid use-after-free */
3811 return;
3812 }
0793a61d 3813
683ede43 3814 _free_event(event);
0793a61d
TG
3815}
3816
a66a3052 3817/*
f8697762 3818 * Remove user event from the owner task.
a66a3052 3819 */
f8697762 3820static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3821{
8882135b 3822 struct task_struct *owner;
fb0459d7 3823
8882135b 3824 rcu_read_lock();
8882135b 3825 /*
f47c02c0
PZ
3826 * Matches the smp_store_release() in perf_event_exit_task(). If we
3827 * observe !owner it means the list deletion is complete and we can
3828 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3829 * owner->perf_event_mutex.
3830 */
f47c02c0 3831 owner = lockless_dereference(event->owner);
8882135b
PZ
3832 if (owner) {
3833 /*
3834 * Since delayed_put_task_struct() also drops the last
3835 * task reference we can safely take a new reference
3836 * while holding the rcu_read_lock().
3837 */
3838 get_task_struct(owner);
3839 }
3840 rcu_read_unlock();
3841
3842 if (owner) {
f63a8daa
PZ
3843 /*
3844 * If we're here through perf_event_exit_task() we're already
3845 * holding ctx->mutex which would be an inversion wrt. the
3846 * normal lock order.
3847 *
3848 * However we can safely take this lock because its the child
3849 * ctx->mutex.
3850 */
3851 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3852
8882135b
PZ
3853 /*
3854 * We have to re-check the event->owner field, if it is cleared
3855 * we raced with perf_event_exit_task(), acquiring the mutex
3856 * ensured they're done, and we can proceed with freeing the
3857 * event.
3858 */
f47c02c0 3859 if (event->owner) {
8882135b 3860 list_del_init(&event->owner_entry);
f47c02c0
PZ
3861 smp_store_release(&event->owner, NULL);
3862 }
8882135b
PZ
3863 mutex_unlock(&owner->perf_event_mutex);
3864 put_task_struct(owner);
3865 }
f8697762
JO
3866}
3867
f8697762
JO
3868static void put_event(struct perf_event *event)
3869{
f8697762
JO
3870 if (!atomic_long_dec_and_test(&event->refcount))
3871 return;
3872
c6e5b732
PZ
3873 _free_event(event);
3874}
3875
3876/*
3877 * Kill an event dead; while event:refcount will preserve the event
3878 * object, it will not preserve its functionality. Once the last 'user'
3879 * gives up the object, we'll destroy the thing.
3880 */
3881int perf_event_release_kernel(struct perf_event *event)
3882{
a4f4bb6d 3883 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3884 struct perf_event *child, *tmp;
3885
a4f4bb6d
PZ
3886 /*
3887 * If we got here through err_file: fput(event_file); we will not have
3888 * attached to a context yet.
3889 */
3890 if (!ctx) {
3891 WARN_ON_ONCE(event->attach_state &
3892 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3893 goto no_ctx;
3894 }
3895
f8697762
JO
3896 if (!is_kernel_event(event))
3897 perf_remove_from_owner(event);
8882135b 3898
5fa7c8ec 3899 ctx = perf_event_ctx_lock(event);
a83fe28e 3900 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3901 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3902
a69b0ca4 3903 raw_spin_lock_irq(&ctx->lock);
683ede43 3904 /*
a69b0ca4
PZ
3905 * Mark this even as STATE_DEAD, there is no external reference to it
3906 * anymore.
683ede43 3907 *
a69b0ca4
PZ
3908 * Anybody acquiring event->child_mutex after the below loop _must_
3909 * also see this, most importantly inherit_event() which will avoid
3910 * placing more children on the list.
683ede43 3911 *
c6e5b732
PZ
3912 * Thus this guarantees that we will in fact observe and kill _ALL_
3913 * child events.
683ede43 3914 */
a69b0ca4
PZ
3915 event->state = PERF_EVENT_STATE_DEAD;
3916 raw_spin_unlock_irq(&ctx->lock);
3917
3918 perf_event_ctx_unlock(event, ctx);
683ede43 3919
c6e5b732
PZ
3920again:
3921 mutex_lock(&event->child_mutex);
3922 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3923
c6e5b732
PZ
3924 /*
3925 * Cannot change, child events are not migrated, see the
3926 * comment with perf_event_ctx_lock_nested().
3927 */
3928 ctx = lockless_dereference(child->ctx);
3929 /*
3930 * Since child_mutex nests inside ctx::mutex, we must jump
3931 * through hoops. We start by grabbing a reference on the ctx.
3932 *
3933 * Since the event cannot get freed while we hold the
3934 * child_mutex, the context must also exist and have a !0
3935 * reference count.
3936 */
3937 get_ctx(ctx);
3938
3939 /*
3940 * Now that we have a ctx ref, we can drop child_mutex, and
3941 * acquire ctx::mutex without fear of it going away. Then we
3942 * can re-acquire child_mutex.
3943 */
3944 mutex_unlock(&event->child_mutex);
3945 mutex_lock(&ctx->mutex);
3946 mutex_lock(&event->child_mutex);
3947
3948 /*
3949 * Now that we hold ctx::mutex and child_mutex, revalidate our
3950 * state, if child is still the first entry, it didn't get freed
3951 * and we can continue doing so.
3952 */
3953 tmp = list_first_entry_or_null(&event->child_list,
3954 struct perf_event, child_list);
3955 if (tmp == child) {
3956 perf_remove_from_context(child, DETACH_GROUP);
3957 list_del(&child->child_list);
3958 free_event(child);
3959 /*
3960 * This matches the refcount bump in inherit_event();
3961 * this can't be the last reference.
3962 */
3963 put_event(event);
3964 }
3965
3966 mutex_unlock(&event->child_mutex);
3967 mutex_unlock(&ctx->mutex);
3968 put_ctx(ctx);
3969 goto again;
3970 }
3971 mutex_unlock(&event->child_mutex);
3972
a4f4bb6d
PZ
3973no_ctx:
3974 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3975 return 0;
3976}
3977EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3978
8b10c5e2
PZ
3979/*
3980 * Called when the last reference to the file is gone.
3981 */
a6fa941d
AV
3982static int perf_release(struct inode *inode, struct file *file)
3983{
c6e5b732 3984 perf_event_release_kernel(file->private_data);
a6fa941d 3985 return 0;
fb0459d7 3986}
fb0459d7 3987
59ed446f 3988u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3989{
cdd6c482 3990 struct perf_event *child;
e53c0994
PZ
3991 u64 total = 0;
3992
59ed446f
PZ
3993 *enabled = 0;
3994 *running = 0;
3995
6f10581a 3996 mutex_lock(&event->child_mutex);
01add3ea 3997
7d88962e 3998 (void)perf_event_read(event, false);
01add3ea
SB
3999 total += perf_event_count(event);
4000
59ed446f
PZ
4001 *enabled += event->total_time_enabled +
4002 atomic64_read(&event->child_total_time_enabled);
4003 *running += event->total_time_running +
4004 atomic64_read(&event->child_total_time_running);
4005
4006 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4007 (void)perf_event_read(child, false);
01add3ea 4008 total += perf_event_count(child);
59ed446f
PZ
4009 *enabled += child->total_time_enabled;
4010 *running += child->total_time_running;
4011 }
6f10581a 4012 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4013
4014 return total;
4015}
fb0459d7 4016EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4017
7d88962e 4018static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4019 u64 read_format, u64 *values)
3dab77fb 4020{
fa8c2693
PZ
4021 struct perf_event *sub;
4022 int n = 1; /* skip @nr */
7d88962e 4023 int ret;
f63a8daa 4024
7d88962e
SB
4025 ret = perf_event_read(leader, true);
4026 if (ret)
4027 return ret;
abf4868b 4028
fa8c2693
PZ
4029 /*
4030 * Since we co-schedule groups, {enabled,running} times of siblings
4031 * will be identical to those of the leader, so we only publish one
4032 * set.
4033 */
4034 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4035 values[n++] += leader->total_time_enabled +
4036 atomic64_read(&leader->child_total_time_enabled);
4037 }
3dab77fb 4038
fa8c2693
PZ
4039 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4040 values[n++] += leader->total_time_running +
4041 atomic64_read(&leader->child_total_time_running);
4042 }
4043
4044 /*
4045 * Write {count,id} tuples for every sibling.
4046 */
4047 values[n++] += perf_event_count(leader);
abf4868b
PZ
4048 if (read_format & PERF_FORMAT_ID)
4049 values[n++] = primary_event_id(leader);
3dab77fb 4050
fa8c2693
PZ
4051 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4052 values[n++] += perf_event_count(sub);
4053 if (read_format & PERF_FORMAT_ID)
4054 values[n++] = primary_event_id(sub);
4055 }
7d88962e
SB
4056
4057 return 0;
fa8c2693 4058}
3dab77fb 4059
fa8c2693
PZ
4060static int perf_read_group(struct perf_event *event,
4061 u64 read_format, char __user *buf)
4062{
4063 struct perf_event *leader = event->group_leader, *child;
4064 struct perf_event_context *ctx = leader->ctx;
7d88962e 4065 int ret;
fa8c2693 4066 u64 *values;
3dab77fb 4067
fa8c2693 4068 lockdep_assert_held(&ctx->mutex);
3dab77fb 4069
fa8c2693
PZ
4070 values = kzalloc(event->read_size, GFP_KERNEL);
4071 if (!values)
4072 return -ENOMEM;
3dab77fb 4073
fa8c2693
PZ
4074 values[0] = 1 + leader->nr_siblings;
4075
4076 /*
4077 * By locking the child_mutex of the leader we effectively
4078 * lock the child list of all siblings.. XXX explain how.
4079 */
4080 mutex_lock(&leader->child_mutex);
abf4868b 4081
7d88962e
SB
4082 ret = __perf_read_group_add(leader, read_format, values);
4083 if (ret)
4084 goto unlock;
4085
4086 list_for_each_entry(child, &leader->child_list, child_list) {
4087 ret = __perf_read_group_add(child, read_format, values);
4088 if (ret)
4089 goto unlock;
4090 }
abf4868b 4091
fa8c2693 4092 mutex_unlock(&leader->child_mutex);
abf4868b 4093
7d88962e 4094 ret = event->read_size;
fa8c2693
PZ
4095 if (copy_to_user(buf, values, event->read_size))
4096 ret = -EFAULT;
7d88962e 4097 goto out;
fa8c2693 4098
7d88962e
SB
4099unlock:
4100 mutex_unlock(&leader->child_mutex);
4101out:
fa8c2693 4102 kfree(values);
abf4868b 4103 return ret;
3dab77fb
PZ
4104}
4105
b15f495b 4106static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4107 u64 read_format, char __user *buf)
4108{
59ed446f 4109 u64 enabled, running;
3dab77fb
PZ
4110 u64 values[4];
4111 int n = 0;
4112
59ed446f
PZ
4113 values[n++] = perf_event_read_value(event, &enabled, &running);
4114 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4115 values[n++] = enabled;
4116 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4117 values[n++] = running;
3dab77fb 4118 if (read_format & PERF_FORMAT_ID)
cdd6c482 4119 values[n++] = primary_event_id(event);
3dab77fb
PZ
4120
4121 if (copy_to_user(buf, values, n * sizeof(u64)))
4122 return -EFAULT;
4123
4124 return n * sizeof(u64);
4125}
4126
dc633982
JO
4127static bool is_event_hup(struct perf_event *event)
4128{
4129 bool no_children;
4130
a69b0ca4 4131 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4132 return false;
4133
4134 mutex_lock(&event->child_mutex);
4135 no_children = list_empty(&event->child_list);
4136 mutex_unlock(&event->child_mutex);
4137 return no_children;
4138}
4139
0793a61d 4140/*
cdd6c482 4141 * Read the performance event - simple non blocking version for now
0793a61d
TG
4142 */
4143static ssize_t
b15f495b 4144__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4145{
cdd6c482 4146 u64 read_format = event->attr.read_format;
3dab77fb 4147 int ret;
0793a61d 4148
3b6f9e5c 4149 /*
cdd6c482 4150 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4151 * error state (i.e. because it was pinned but it couldn't be
4152 * scheduled on to the CPU at some point).
4153 */
cdd6c482 4154 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4155 return 0;
4156
c320c7b7 4157 if (count < event->read_size)
3dab77fb
PZ
4158 return -ENOSPC;
4159
cdd6c482 4160 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4161 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4162 ret = perf_read_group(event, read_format, buf);
3dab77fb 4163 else
b15f495b 4164 ret = perf_read_one(event, read_format, buf);
0793a61d 4165
3dab77fb 4166 return ret;
0793a61d
TG
4167}
4168
0793a61d
TG
4169static ssize_t
4170perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4171{
cdd6c482 4172 struct perf_event *event = file->private_data;
f63a8daa
PZ
4173 struct perf_event_context *ctx;
4174 int ret;
0793a61d 4175
f63a8daa 4176 ctx = perf_event_ctx_lock(event);
b15f495b 4177 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4178 perf_event_ctx_unlock(event, ctx);
4179
4180 return ret;
0793a61d
TG
4181}
4182
4183static unsigned int perf_poll(struct file *file, poll_table *wait)
4184{
cdd6c482 4185 struct perf_event *event = file->private_data;
76369139 4186 struct ring_buffer *rb;
61b67684 4187 unsigned int events = POLLHUP;
c7138f37 4188
e708d7ad 4189 poll_wait(file, &event->waitq, wait);
179033b3 4190
dc633982 4191 if (is_event_hup(event))
179033b3 4192 return events;
c7138f37 4193
10c6db11 4194 /*
9bb5d40c
PZ
4195 * Pin the event->rb by taking event->mmap_mutex; otherwise
4196 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4197 */
4198 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4199 rb = event->rb;
4200 if (rb)
76369139 4201 events = atomic_xchg(&rb->poll, 0);
10c6db11 4202 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4203 return events;
4204}
4205
f63a8daa 4206static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4207{
7d88962e 4208 (void)perf_event_read(event, false);
e7850595 4209 local64_set(&event->count, 0);
cdd6c482 4210 perf_event_update_userpage(event);
3df5edad
PZ
4211}
4212
c93f7669 4213/*
cdd6c482
IM
4214 * Holding the top-level event's child_mutex means that any
4215 * descendant process that has inherited this event will block
8ba289b8 4216 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4217 * task existence requirements of perf_event_enable/disable.
c93f7669 4218 */
cdd6c482
IM
4219static void perf_event_for_each_child(struct perf_event *event,
4220 void (*func)(struct perf_event *))
3df5edad 4221{
cdd6c482 4222 struct perf_event *child;
3df5edad 4223
cdd6c482 4224 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4225
cdd6c482
IM
4226 mutex_lock(&event->child_mutex);
4227 func(event);
4228 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4229 func(child);
cdd6c482 4230 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4231}
4232
cdd6c482
IM
4233static void perf_event_for_each(struct perf_event *event,
4234 void (*func)(struct perf_event *))
3df5edad 4235{
cdd6c482
IM
4236 struct perf_event_context *ctx = event->ctx;
4237 struct perf_event *sibling;
3df5edad 4238
f63a8daa
PZ
4239 lockdep_assert_held(&ctx->mutex);
4240
cdd6c482 4241 event = event->group_leader;
75f937f2 4242
cdd6c482 4243 perf_event_for_each_child(event, func);
cdd6c482 4244 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4245 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4246}
4247
fae3fde6
PZ
4248static void __perf_event_period(struct perf_event *event,
4249 struct perf_cpu_context *cpuctx,
4250 struct perf_event_context *ctx,
4251 void *info)
c7999c6f 4252{
fae3fde6 4253 u64 value = *((u64 *)info);
c7999c6f 4254 bool active;
08247e31 4255
cdd6c482 4256 if (event->attr.freq) {
cdd6c482 4257 event->attr.sample_freq = value;
08247e31 4258 } else {
cdd6c482
IM
4259 event->attr.sample_period = value;
4260 event->hw.sample_period = value;
08247e31 4261 }
bad7192b
PZ
4262
4263 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4264 if (active) {
4265 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4266 /*
4267 * We could be throttled; unthrottle now to avoid the tick
4268 * trying to unthrottle while we already re-started the event.
4269 */
4270 if (event->hw.interrupts == MAX_INTERRUPTS) {
4271 event->hw.interrupts = 0;
4272 perf_log_throttle(event, 1);
4273 }
bad7192b
PZ
4274 event->pmu->stop(event, PERF_EF_UPDATE);
4275 }
4276
4277 local64_set(&event->hw.period_left, 0);
4278
4279 if (active) {
4280 event->pmu->start(event, PERF_EF_RELOAD);
4281 perf_pmu_enable(ctx->pmu);
4282 }
c7999c6f
PZ
4283}
4284
4285static int perf_event_period(struct perf_event *event, u64 __user *arg)
4286{
c7999c6f
PZ
4287 u64 value;
4288
4289 if (!is_sampling_event(event))
4290 return -EINVAL;
4291
4292 if (copy_from_user(&value, arg, sizeof(value)))
4293 return -EFAULT;
4294
4295 if (!value)
4296 return -EINVAL;
4297
4298 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4299 return -EINVAL;
4300
fae3fde6 4301 event_function_call(event, __perf_event_period, &value);
08247e31 4302
c7999c6f 4303 return 0;
08247e31
PZ
4304}
4305
ac9721f3
PZ
4306static const struct file_operations perf_fops;
4307
2903ff01 4308static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4309{
2903ff01
AV
4310 struct fd f = fdget(fd);
4311 if (!f.file)
4312 return -EBADF;
ac9721f3 4313
2903ff01
AV
4314 if (f.file->f_op != &perf_fops) {
4315 fdput(f);
4316 return -EBADF;
ac9721f3 4317 }
2903ff01
AV
4318 *p = f;
4319 return 0;
ac9721f3
PZ
4320}
4321
4322static int perf_event_set_output(struct perf_event *event,
4323 struct perf_event *output_event);
6fb2915d 4324static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4325static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4326
f63a8daa 4327static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4328{
cdd6c482 4329 void (*func)(struct perf_event *);
3df5edad 4330 u32 flags = arg;
d859e29f
PM
4331
4332 switch (cmd) {
cdd6c482 4333 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4334 func = _perf_event_enable;
d859e29f 4335 break;
cdd6c482 4336 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4337 func = _perf_event_disable;
79f14641 4338 break;
cdd6c482 4339 case PERF_EVENT_IOC_RESET:
f63a8daa 4340 func = _perf_event_reset;
6de6a7b9 4341 break;
3df5edad 4342
cdd6c482 4343 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4344 return _perf_event_refresh(event, arg);
08247e31 4345
cdd6c482
IM
4346 case PERF_EVENT_IOC_PERIOD:
4347 return perf_event_period(event, (u64 __user *)arg);
08247e31 4348
cf4957f1
JO
4349 case PERF_EVENT_IOC_ID:
4350 {
4351 u64 id = primary_event_id(event);
4352
4353 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4354 return -EFAULT;
4355 return 0;
4356 }
4357
cdd6c482 4358 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4359 {
ac9721f3 4360 int ret;
ac9721f3 4361 if (arg != -1) {
2903ff01
AV
4362 struct perf_event *output_event;
4363 struct fd output;
4364 ret = perf_fget_light(arg, &output);
4365 if (ret)
4366 return ret;
4367 output_event = output.file->private_data;
4368 ret = perf_event_set_output(event, output_event);
4369 fdput(output);
4370 } else {
4371 ret = perf_event_set_output(event, NULL);
ac9721f3 4372 }
ac9721f3
PZ
4373 return ret;
4374 }
a4be7c27 4375
6fb2915d
LZ
4376 case PERF_EVENT_IOC_SET_FILTER:
4377 return perf_event_set_filter(event, (void __user *)arg);
4378
2541517c
AS
4379 case PERF_EVENT_IOC_SET_BPF:
4380 return perf_event_set_bpf_prog(event, arg);
4381
86e7972f
WN
4382 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4383 struct ring_buffer *rb;
4384
4385 rcu_read_lock();
4386 rb = rcu_dereference(event->rb);
4387 if (!rb || !rb->nr_pages) {
4388 rcu_read_unlock();
4389 return -EINVAL;
4390 }
4391 rb_toggle_paused(rb, !!arg);
4392 rcu_read_unlock();
4393 return 0;
4394 }
d859e29f 4395 default:
3df5edad 4396 return -ENOTTY;
d859e29f 4397 }
3df5edad
PZ
4398
4399 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4400 perf_event_for_each(event, func);
3df5edad 4401 else
cdd6c482 4402 perf_event_for_each_child(event, func);
3df5edad
PZ
4403
4404 return 0;
d859e29f
PM
4405}
4406
f63a8daa
PZ
4407static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4408{
4409 struct perf_event *event = file->private_data;
4410 struct perf_event_context *ctx;
4411 long ret;
4412
4413 ctx = perf_event_ctx_lock(event);
4414 ret = _perf_ioctl(event, cmd, arg);
4415 perf_event_ctx_unlock(event, ctx);
4416
4417 return ret;
4418}
4419
b3f20785
PM
4420#ifdef CONFIG_COMPAT
4421static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4422 unsigned long arg)
4423{
4424 switch (_IOC_NR(cmd)) {
4425 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4426 case _IOC_NR(PERF_EVENT_IOC_ID):
4427 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4428 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4429 cmd &= ~IOCSIZE_MASK;
4430 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4431 }
4432 break;
4433 }
4434 return perf_ioctl(file, cmd, arg);
4435}
4436#else
4437# define perf_compat_ioctl NULL
4438#endif
4439
cdd6c482 4440int perf_event_task_enable(void)
771d7cde 4441{
f63a8daa 4442 struct perf_event_context *ctx;
cdd6c482 4443 struct perf_event *event;
771d7cde 4444
cdd6c482 4445 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4446 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4447 ctx = perf_event_ctx_lock(event);
4448 perf_event_for_each_child(event, _perf_event_enable);
4449 perf_event_ctx_unlock(event, ctx);
4450 }
cdd6c482 4451 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4452
4453 return 0;
4454}
4455
cdd6c482 4456int perf_event_task_disable(void)
771d7cde 4457{
f63a8daa 4458 struct perf_event_context *ctx;
cdd6c482 4459 struct perf_event *event;
771d7cde 4460
cdd6c482 4461 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4462 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4463 ctx = perf_event_ctx_lock(event);
4464 perf_event_for_each_child(event, _perf_event_disable);
4465 perf_event_ctx_unlock(event, ctx);
4466 }
cdd6c482 4467 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4468
4469 return 0;
4470}
4471
cdd6c482 4472static int perf_event_index(struct perf_event *event)
194002b2 4473{
a4eaf7f1
PZ
4474 if (event->hw.state & PERF_HES_STOPPED)
4475 return 0;
4476
cdd6c482 4477 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4478 return 0;
4479
35edc2a5 4480 return event->pmu->event_idx(event);
194002b2
PZ
4481}
4482
c4794295 4483static void calc_timer_values(struct perf_event *event,
e3f3541c 4484 u64 *now,
7f310a5d
EM
4485 u64 *enabled,
4486 u64 *running)
c4794295 4487{
e3f3541c 4488 u64 ctx_time;
c4794295 4489
e3f3541c
PZ
4490 *now = perf_clock();
4491 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4492 *enabled = ctx_time - event->tstamp_enabled;
4493 *running = ctx_time - event->tstamp_running;
4494}
4495
fa731587
PZ
4496static void perf_event_init_userpage(struct perf_event *event)
4497{
4498 struct perf_event_mmap_page *userpg;
4499 struct ring_buffer *rb;
4500
4501 rcu_read_lock();
4502 rb = rcu_dereference(event->rb);
4503 if (!rb)
4504 goto unlock;
4505
4506 userpg = rb->user_page;
4507
4508 /* Allow new userspace to detect that bit 0 is deprecated */
4509 userpg->cap_bit0_is_deprecated = 1;
4510 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4511 userpg->data_offset = PAGE_SIZE;
4512 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4513
4514unlock:
4515 rcu_read_unlock();
4516}
4517
c1317ec2
AL
4518void __weak arch_perf_update_userpage(
4519 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4520{
4521}
4522
38ff667b
PZ
4523/*
4524 * Callers need to ensure there can be no nesting of this function, otherwise
4525 * the seqlock logic goes bad. We can not serialize this because the arch
4526 * code calls this from NMI context.
4527 */
cdd6c482 4528void perf_event_update_userpage(struct perf_event *event)
37d81828 4529{
cdd6c482 4530 struct perf_event_mmap_page *userpg;
76369139 4531 struct ring_buffer *rb;
e3f3541c 4532 u64 enabled, running, now;
38ff667b
PZ
4533
4534 rcu_read_lock();
5ec4c599
PZ
4535 rb = rcu_dereference(event->rb);
4536 if (!rb)
4537 goto unlock;
4538
0d641208
EM
4539 /*
4540 * compute total_time_enabled, total_time_running
4541 * based on snapshot values taken when the event
4542 * was last scheduled in.
4543 *
4544 * we cannot simply called update_context_time()
4545 * because of locking issue as we can be called in
4546 * NMI context
4547 */
e3f3541c 4548 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4549
76369139 4550 userpg = rb->user_page;
7b732a75
PZ
4551 /*
4552 * Disable preemption so as to not let the corresponding user-space
4553 * spin too long if we get preempted.
4554 */
4555 preempt_disable();
37d81828 4556 ++userpg->lock;
92f22a38 4557 barrier();
cdd6c482 4558 userpg->index = perf_event_index(event);
b5e58793 4559 userpg->offset = perf_event_count(event);
365a4038 4560 if (userpg->index)
e7850595 4561 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4562
0d641208 4563 userpg->time_enabled = enabled +
cdd6c482 4564 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4565
0d641208 4566 userpg->time_running = running +
cdd6c482 4567 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4568
c1317ec2 4569 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4570
92f22a38 4571 barrier();
37d81828 4572 ++userpg->lock;
7b732a75 4573 preempt_enable();
38ff667b 4574unlock:
7b732a75 4575 rcu_read_unlock();
37d81828
PM
4576}
4577
906010b2
PZ
4578static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4579{
4580 struct perf_event *event = vma->vm_file->private_data;
76369139 4581 struct ring_buffer *rb;
906010b2
PZ
4582 int ret = VM_FAULT_SIGBUS;
4583
4584 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4585 if (vmf->pgoff == 0)
4586 ret = 0;
4587 return ret;
4588 }
4589
4590 rcu_read_lock();
76369139
FW
4591 rb = rcu_dereference(event->rb);
4592 if (!rb)
906010b2
PZ
4593 goto unlock;
4594
4595 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4596 goto unlock;
4597
76369139 4598 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4599 if (!vmf->page)
4600 goto unlock;
4601
4602 get_page(vmf->page);
4603 vmf->page->mapping = vma->vm_file->f_mapping;
4604 vmf->page->index = vmf->pgoff;
4605
4606 ret = 0;
4607unlock:
4608 rcu_read_unlock();
4609
4610 return ret;
4611}
4612
10c6db11
PZ
4613static void ring_buffer_attach(struct perf_event *event,
4614 struct ring_buffer *rb)
4615{
b69cf536 4616 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4617 unsigned long flags;
4618
b69cf536
PZ
4619 if (event->rb) {
4620 /*
4621 * Should be impossible, we set this when removing
4622 * event->rb_entry and wait/clear when adding event->rb_entry.
4623 */
4624 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4625
b69cf536 4626 old_rb = event->rb;
b69cf536
PZ
4627 spin_lock_irqsave(&old_rb->event_lock, flags);
4628 list_del_rcu(&event->rb_entry);
4629 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4630
2f993cf0
ON
4631 event->rcu_batches = get_state_synchronize_rcu();
4632 event->rcu_pending = 1;
b69cf536 4633 }
10c6db11 4634
b69cf536 4635 if (rb) {
2f993cf0
ON
4636 if (event->rcu_pending) {
4637 cond_synchronize_rcu(event->rcu_batches);
4638 event->rcu_pending = 0;
4639 }
4640
b69cf536
PZ
4641 spin_lock_irqsave(&rb->event_lock, flags);
4642 list_add_rcu(&event->rb_entry, &rb->event_list);
4643 spin_unlock_irqrestore(&rb->event_lock, flags);
4644 }
4645
4646 rcu_assign_pointer(event->rb, rb);
4647
4648 if (old_rb) {
4649 ring_buffer_put(old_rb);
4650 /*
4651 * Since we detached before setting the new rb, so that we
4652 * could attach the new rb, we could have missed a wakeup.
4653 * Provide it now.
4654 */
4655 wake_up_all(&event->waitq);
4656 }
10c6db11
PZ
4657}
4658
4659static void ring_buffer_wakeup(struct perf_event *event)
4660{
4661 struct ring_buffer *rb;
4662
4663 rcu_read_lock();
4664 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4665 if (rb) {
4666 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4667 wake_up_all(&event->waitq);
4668 }
10c6db11
PZ
4669 rcu_read_unlock();
4670}
4671
fdc26706 4672struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4673{
76369139 4674 struct ring_buffer *rb;
7b732a75 4675
ac9721f3 4676 rcu_read_lock();
76369139
FW
4677 rb = rcu_dereference(event->rb);
4678 if (rb) {
4679 if (!atomic_inc_not_zero(&rb->refcount))
4680 rb = NULL;
ac9721f3
PZ
4681 }
4682 rcu_read_unlock();
4683
76369139 4684 return rb;
ac9721f3
PZ
4685}
4686
fdc26706 4687void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4688{
76369139 4689 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4690 return;
7b732a75 4691
9bb5d40c 4692 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4693
76369139 4694 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4695}
4696
4697static void perf_mmap_open(struct vm_area_struct *vma)
4698{
cdd6c482 4699 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4700
cdd6c482 4701 atomic_inc(&event->mmap_count);
9bb5d40c 4702 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4703
45bfb2e5
PZ
4704 if (vma->vm_pgoff)
4705 atomic_inc(&event->rb->aux_mmap_count);
4706
1e0fb9ec
AL
4707 if (event->pmu->event_mapped)
4708 event->pmu->event_mapped(event);
7b732a75
PZ
4709}
4710
95ff4ca2
AS
4711static void perf_pmu_output_stop(struct perf_event *event);
4712
9bb5d40c
PZ
4713/*
4714 * A buffer can be mmap()ed multiple times; either directly through the same
4715 * event, or through other events by use of perf_event_set_output().
4716 *
4717 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4718 * the buffer here, where we still have a VM context. This means we need
4719 * to detach all events redirecting to us.
4720 */
7b732a75
PZ
4721static void perf_mmap_close(struct vm_area_struct *vma)
4722{
cdd6c482 4723 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4724
b69cf536 4725 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4726 struct user_struct *mmap_user = rb->mmap_user;
4727 int mmap_locked = rb->mmap_locked;
4728 unsigned long size = perf_data_size(rb);
789f90fc 4729
1e0fb9ec
AL
4730 if (event->pmu->event_unmapped)
4731 event->pmu->event_unmapped(event);
4732
45bfb2e5
PZ
4733 /*
4734 * rb->aux_mmap_count will always drop before rb->mmap_count and
4735 * event->mmap_count, so it is ok to use event->mmap_mutex to
4736 * serialize with perf_mmap here.
4737 */
4738 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4739 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4740 /*
4741 * Stop all AUX events that are writing to this buffer,
4742 * so that we can free its AUX pages and corresponding PMU
4743 * data. Note that after rb::aux_mmap_count dropped to zero,
4744 * they won't start any more (see perf_aux_output_begin()).
4745 */
4746 perf_pmu_output_stop(event);
4747
4748 /* now it's safe to free the pages */
45bfb2e5
PZ
4749 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4750 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4751
95ff4ca2 4752 /* this has to be the last one */
45bfb2e5 4753 rb_free_aux(rb);
95ff4ca2
AS
4754 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4755
45bfb2e5
PZ
4756 mutex_unlock(&event->mmap_mutex);
4757 }
4758
9bb5d40c
PZ
4759 atomic_dec(&rb->mmap_count);
4760
4761 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4762 goto out_put;
9bb5d40c 4763
b69cf536 4764 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4765 mutex_unlock(&event->mmap_mutex);
4766
4767 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4768 if (atomic_read(&rb->mmap_count))
4769 goto out_put;
ac9721f3 4770
9bb5d40c
PZ
4771 /*
4772 * No other mmap()s, detach from all other events that might redirect
4773 * into the now unreachable buffer. Somewhat complicated by the
4774 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4775 */
4776again:
4777 rcu_read_lock();
4778 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4779 if (!atomic_long_inc_not_zero(&event->refcount)) {
4780 /*
4781 * This event is en-route to free_event() which will
4782 * detach it and remove it from the list.
4783 */
4784 continue;
4785 }
4786 rcu_read_unlock();
789f90fc 4787
9bb5d40c
PZ
4788 mutex_lock(&event->mmap_mutex);
4789 /*
4790 * Check we didn't race with perf_event_set_output() which can
4791 * swizzle the rb from under us while we were waiting to
4792 * acquire mmap_mutex.
4793 *
4794 * If we find a different rb; ignore this event, a next
4795 * iteration will no longer find it on the list. We have to
4796 * still restart the iteration to make sure we're not now
4797 * iterating the wrong list.
4798 */
b69cf536
PZ
4799 if (event->rb == rb)
4800 ring_buffer_attach(event, NULL);
4801
cdd6c482 4802 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4803 put_event(event);
ac9721f3 4804
9bb5d40c
PZ
4805 /*
4806 * Restart the iteration; either we're on the wrong list or
4807 * destroyed its integrity by doing a deletion.
4808 */
4809 goto again;
7b732a75 4810 }
9bb5d40c
PZ
4811 rcu_read_unlock();
4812
4813 /*
4814 * It could be there's still a few 0-ref events on the list; they'll
4815 * get cleaned up by free_event() -- they'll also still have their
4816 * ref on the rb and will free it whenever they are done with it.
4817 *
4818 * Aside from that, this buffer is 'fully' detached and unmapped,
4819 * undo the VM accounting.
4820 */
4821
4822 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4823 vma->vm_mm->pinned_vm -= mmap_locked;
4824 free_uid(mmap_user);
4825
b69cf536 4826out_put:
9bb5d40c 4827 ring_buffer_put(rb); /* could be last */
37d81828
PM
4828}
4829
f0f37e2f 4830static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4831 .open = perf_mmap_open,
45bfb2e5 4832 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4833 .fault = perf_mmap_fault,
4834 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4835};
4836
4837static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4838{
cdd6c482 4839 struct perf_event *event = file->private_data;
22a4f650 4840 unsigned long user_locked, user_lock_limit;
789f90fc 4841 struct user_struct *user = current_user();
22a4f650 4842 unsigned long locked, lock_limit;
45bfb2e5 4843 struct ring_buffer *rb = NULL;
7b732a75
PZ
4844 unsigned long vma_size;
4845 unsigned long nr_pages;
45bfb2e5 4846 long user_extra = 0, extra = 0;
d57e34fd 4847 int ret = 0, flags = 0;
37d81828 4848
c7920614
PZ
4849 /*
4850 * Don't allow mmap() of inherited per-task counters. This would
4851 * create a performance issue due to all children writing to the
76369139 4852 * same rb.
c7920614
PZ
4853 */
4854 if (event->cpu == -1 && event->attr.inherit)
4855 return -EINVAL;
4856
43a21ea8 4857 if (!(vma->vm_flags & VM_SHARED))
37d81828 4858 return -EINVAL;
7b732a75
PZ
4859
4860 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4861
4862 if (vma->vm_pgoff == 0) {
4863 nr_pages = (vma_size / PAGE_SIZE) - 1;
4864 } else {
4865 /*
4866 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4867 * mapped, all subsequent mappings should have the same size
4868 * and offset. Must be above the normal perf buffer.
4869 */
4870 u64 aux_offset, aux_size;
4871
4872 if (!event->rb)
4873 return -EINVAL;
4874
4875 nr_pages = vma_size / PAGE_SIZE;
4876
4877 mutex_lock(&event->mmap_mutex);
4878 ret = -EINVAL;
4879
4880 rb = event->rb;
4881 if (!rb)
4882 goto aux_unlock;
4883
4884 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4885 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4886
4887 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4888 goto aux_unlock;
4889
4890 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4891 goto aux_unlock;
4892
4893 /* already mapped with a different offset */
4894 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4895 goto aux_unlock;
4896
4897 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4898 goto aux_unlock;
4899
4900 /* already mapped with a different size */
4901 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4902 goto aux_unlock;
4903
4904 if (!is_power_of_2(nr_pages))
4905 goto aux_unlock;
4906
4907 if (!atomic_inc_not_zero(&rb->mmap_count))
4908 goto aux_unlock;
4909
4910 if (rb_has_aux(rb)) {
4911 atomic_inc(&rb->aux_mmap_count);
4912 ret = 0;
4913 goto unlock;
4914 }
4915
4916 atomic_set(&rb->aux_mmap_count, 1);
4917 user_extra = nr_pages;
4918
4919 goto accounting;
4920 }
7b732a75 4921
7730d865 4922 /*
76369139 4923 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4924 * can do bitmasks instead of modulo.
4925 */
2ed11312 4926 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4927 return -EINVAL;
4928
7b732a75 4929 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4930 return -EINVAL;
4931
cdd6c482 4932 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4933again:
cdd6c482 4934 mutex_lock(&event->mmap_mutex);
76369139 4935 if (event->rb) {
9bb5d40c 4936 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4937 ret = -EINVAL;
9bb5d40c
PZ
4938 goto unlock;
4939 }
4940
4941 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4942 /*
4943 * Raced against perf_mmap_close() through
4944 * perf_event_set_output(). Try again, hope for better
4945 * luck.
4946 */
4947 mutex_unlock(&event->mmap_mutex);
4948 goto again;
4949 }
4950
ebb3c4c4
PZ
4951 goto unlock;
4952 }
4953
789f90fc 4954 user_extra = nr_pages + 1;
45bfb2e5
PZ
4955
4956accounting:
cdd6c482 4957 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4958
4959 /*
4960 * Increase the limit linearly with more CPUs:
4961 */
4962 user_lock_limit *= num_online_cpus();
4963
789f90fc 4964 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4965
789f90fc
PZ
4966 if (user_locked > user_lock_limit)
4967 extra = user_locked - user_lock_limit;
7b732a75 4968
78d7d407 4969 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4970 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4971 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4972
459ec28a
IM
4973 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4974 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4975 ret = -EPERM;
4976 goto unlock;
4977 }
7b732a75 4978
45bfb2e5 4979 WARN_ON(!rb && event->rb);
906010b2 4980
d57e34fd 4981 if (vma->vm_flags & VM_WRITE)
76369139 4982 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4983
76369139 4984 if (!rb) {
45bfb2e5
PZ
4985 rb = rb_alloc(nr_pages,
4986 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4987 event->cpu, flags);
26cb63ad 4988
45bfb2e5
PZ
4989 if (!rb) {
4990 ret = -ENOMEM;
4991 goto unlock;
4992 }
43a21ea8 4993
45bfb2e5
PZ
4994 atomic_set(&rb->mmap_count, 1);
4995 rb->mmap_user = get_current_user();
4996 rb->mmap_locked = extra;
26cb63ad 4997
45bfb2e5 4998 ring_buffer_attach(event, rb);
ac9721f3 4999
45bfb2e5
PZ
5000 perf_event_init_userpage(event);
5001 perf_event_update_userpage(event);
5002 } else {
1a594131
AS
5003 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5004 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5005 if (!ret)
5006 rb->aux_mmap_locked = extra;
5007 }
9a0f05cb 5008
ebb3c4c4 5009unlock:
45bfb2e5
PZ
5010 if (!ret) {
5011 atomic_long_add(user_extra, &user->locked_vm);
5012 vma->vm_mm->pinned_vm += extra;
5013
ac9721f3 5014 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5015 } else if (rb) {
5016 atomic_dec(&rb->mmap_count);
5017 }
5018aux_unlock:
cdd6c482 5019 mutex_unlock(&event->mmap_mutex);
37d81828 5020
9bb5d40c
PZ
5021 /*
5022 * Since pinned accounting is per vm we cannot allow fork() to copy our
5023 * vma.
5024 */
26cb63ad 5025 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5026 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5027
1e0fb9ec
AL
5028 if (event->pmu->event_mapped)
5029 event->pmu->event_mapped(event);
5030
7b732a75 5031 return ret;
37d81828
PM
5032}
5033
3c446b3d
PZ
5034static int perf_fasync(int fd, struct file *filp, int on)
5035{
496ad9aa 5036 struct inode *inode = file_inode(filp);
cdd6c482 5037 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5038 int retval;
5039
5955102c 5040 inode_lock(inode);
cdd6c482 5041 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5042 inode_unlock(inode);
3c446b3d
PZ
5043
5044 if (retval < 0)
5045 return retval;
5046
5047 return 0;
5048}
5049
0793a61d 5050static const struct file_operations perf_fops = {
3326c1ce 5051 .llseek = no_llseek,
0793a61d
TG
5052 .release = perf_release,
5053 .read = perf_read,
5054 .poll = perf_poll,
d859e29f 5055 .unlocked_ioctl = perf_ioctl,
b3f20785 5056 .compat_ioctl = perf_compat_ioctl,
37d81828 5057 .mmap = perf_mmap,
3c446b3d 5058 .fasync = perf_fasync,
0793a61d
TG
5059};
5060
925d519a 5061/*
cdd6c482 5062 * Perf event wakeup
925d519a
PZ
5063 *
5064 * If there's data, ensure we set the poll() state and publish everything
5065 * to user-space before waking everybody up.
5066 */
5067
fed66e2c
PZ
5068static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5069{
5070 /* only the parent has fasync state */
5071 if (event->parent)
5072 event = event->parent;
5073 return &event->fasync;
5074}
5075
cdd6c482 5076void perf_event_wakeup(struct perf_event *event)
925d519a 5077{
10c6db11 5078 ring_buffer_wakeup(event);
4c9e2542 5079
cdd6c482 5080 if (event->pending_kill) {
fed66e2c 5081 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5082 event->pending_kill = 0;
4c9e2542 5083 }
925d519a
PZ
5084}
5085
e360adbe 5086static void perf_pending_event(struct irq_work *entry)
79f14641 5087{
cdd6c482
IM
5088 struct perf_event *event = container_of(entry,
5089 struct perf_event, pending);
d525211f
PZ
5090 int rctx;
5091
5092 rctx = perf_swevent_get_recursion_context();
5093 /*
5094 * If we 'fail' here, that's OK, it means recursion is already disabled
5095 * and we won't recurse 'further'.
5096 */
79f14641 5097
cdd6c482
IM
5098 if (event->pending_disable) {
5099 event->pending_disable = 0;
fae3fde6 5100 perf_event_disable_local(event);
79f14641
PZ
5101 }
5102
cdd6c482
IM
5103 if (event->pending_wakeup) {
5104 event->pending_wakeup = 0;
5105 perf_event_wakeup(event);
79f14641 5106 }
d525211f
PZ
5107
5108 if (rctx >= 0)
5109 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5110}
5111
39447b38
ZY
5112/*
5113 * We assume there is only KVM supporting the callbacks.
5114 * Later on, we might change it to a list if there is
5115 * another virtualization implementation supporting the callbacks.
5116 */
5117struct perf_guest_info_callbacks *perf_guest_cbs;
5118
5119int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5120{
5121 perf_guest_cbs = cbs;
5122 return 0;
5123}
5124EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5125
5126int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5127{
5128 perf_guest_cbs = NULL;
5129 return 0;
5130}
5131EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5132
4018994f
JO
5133static void
5134perf_output_sample_regs(struct perf_output_handle *handle,
5135 struct pt_regs *regs, u64 mask)
5136{
5137 int bit;
5138
5139 for_each_set_bit(bit, (const unsigned long *) &mask,
5140 sizeof(mask) * BITS_PER_BYTE) {
5141 u64 val;
5142
5143 val = perf_reg_value(regs, bit);
5144 perf_output_put(handle, val);
5145 }
5146}
5147
60e2364e 5148static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5149 struct pt_regs *regs,
5150 struct pt_regs *regs_user_copy)
4018994f 5151{
88a7c26a
AL
5152 if (user_mode(regs)) {
5153 regs_user->abi = perf_reg_abi(current);
2565711f 5154 regs_user->regs = regs;
88a7c26a
AL
5155 } else if (current->mm) {
5156 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5157 } else {
5158 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5159 regs_user->regs = NULL;
4018994f
JO
5160 }
5161}
5162
60e2364e
SE
5163static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5164 struct pt_regs *regs)
5165{
5166 regs_intr->regs = regs;
5167 regs_intr->abi = perf_reg_abi(current);
5168}
5169
5170
c5ebcedb
JO
5171/*
5172 * Get remaining task size from user stack pointer.
5173 *
5174 * It'd be better to take stack vma map and limit this more
5175 * precisly, but there's no way to get it safely under interrupt,
5176 * so using TASK_SIZE as limit.
5177 */
5178static u64 perf_ustack_task_size(struct pt_regs *regs)
5179{
5180 unsigned long addr = perf_user_stack_pointer(regs);
5181
5182 if (!addr || addr >= TASK_SIZE)
5183 return 0;
5184
5185 return TASK_SIZE - addr;
5186}
5187
5188static u16
5189perf_sample_ustack_size(u16 stack_size, u16 header_size,
5190 struct pt_regs *regs)
5191{
5192 u64 task_size;
5193
5194 /* No regs, no stack pointer, no dump. */
5195 if (!regs)
5196 return 0;
5197
5198 /*
5199 * Check if we fit in with the requested stack size into the:
5200 * - TASK_SIZE
5201 * If we don't, we limit the size to the TASK_SIZE.
5202 *
5203 * - remaining sample size
5204 * If we don't, we customize the stack size to
5205 * fit in to the remaining sample size.
5206 */
5207
5208 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5209 stack_size = min(stack_size, (u16) task_size);
5210
5211 /* Current header size plus static size and dynamic size. */
5212 header_size += 2 * sizeof(u64);
5213
5214 /* Do we fit in with the current stack dump size? */
5215 if ((u16) (header_size + stack_size) < header_size) {
5216 /*
5217 * If we overflow the maximum size for the sample,
5218 * we customize the stack dump size to fit in.
5219 */
5220 stack_size = USHRT_MAX - header_size - sizeof(u64);
5221 stack_size = round_up(stack_size, sizeof(u64));
5222 }
5223
5224 return stack_size;
5225}
5226
5227static void
5228perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5229 struct pt_regs *regs)
5230{
5231 /* Case of a kernel thread, nothing to dump */
5232 if (!regs) {
5233 u64 size = 0;
5234 perf_output_put(handle, size);
5235 } else {
5236 unsigned long sp;
5237 unsigned int rem;
5238 u64 dyn_size;
5239
5240 /*
5241 * We dump:
5242 * static size
5243 * - the size requested by user or the best one we can fit
5244 * in to the sample max size
5245 * data
5246 * - user stack dump data
5247 * dynamic size
5248 * - the actual dumped size
5249 */
5250
5251 /* Static size. */
5252 perf_output_put(handle, dump_size);
5253
5254 /* Data. */
5255 sp = perf_user_stack_pointer(regs);
5256 rem = __output_copy_user(handle, (void *) sp, dump_size);
5257 dyn_size = dump_size - rem;
5258
5259 perf_output_skip(handle, rem);
5260
5261 /* Dynamic size. */
5262 perf_output_put(handle, dyn_size);
5263 }
5264}
5265
c980d109
ACM
5266static void __perf_event_header__init_id(struct perf_event_header *header,
5267 struct perf_sample_data *data,
5268 struct perf_event *event)
6844c09d
ACM
5269{
5270 u64 sample_type = event->attr.sample_type;
5271
5272 data->type = sample_type;
5273 header->size += event->id_header_size;
5274
5275 if (sample_type & PERF_SAMPLE_TID) {
5276 /* namespace issues */
5277 data->tid_entry.pid = perf_event_pid(event, current);
5278 data->tid_entry.tid = perf_event_tid(event, current);
5279 }
5280
5281 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5282 data->time = perf_event_clock(event);
6844c09d 5283
ff3d527c 5284 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5285 data->id = primary_event_id(event);
5286
5287 if (sample_type & PERF_SAMPLE_STREAM_ID)
5288 data->stream_id = event->id;
5289
5290 if (sample_type & PERF_SAMPLE_CPU) {
5291 data->cpu_entry.cpu = raw_smp_processor_id();
5292 data->cpu_entry.reserved = 0;
5293 }
5294}
5295
76369139
FW
5296void perf_event_header__init_id(struct perf_event_header *header,
5297 struct perf_sample_data *data,
5298 struct perf_event *event)
c980d109
ACM
5299{
5300 if (event->attr.sample_id_all)
5301 __perf_event_header__init_id(header, data, event);
5302}
5303
5304static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5305 struct perf_sample_data *data)
5306{
5307 u64 sample_type = data->type;
5308
5309 if (sample_type & PERF_SAMPLE_TID)
5310 perf_output_put(handle, data->tid_entry);
5311
5312 if (sample_type & PERF_SAMPLE_TIME)
5313 perf_output_put(handle, data->time);
5314
5315 if (sample_type & PERF_SAMPLE_ID)
5316 perf_output_put(handle, data->id);
5317
5318 if (sample_type & PERF_SAMPLE_STREAM_ID)
5319 perf_output_put(handle, data->stream_id);
5320
5321 if (sample_type & PERF_SAMPLE_CPU)
5322 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5323
5324 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5325 perf_output_put(handle, data->id);
c980d109
ACM
5326}
5327
76369139
FW
5328void perf_event__output_id_sample(struct perf_event *event,
5329 struct perf_output_handle *handle,
5330 struct perf_sample_data *sample)
c980d109
ACM
5331{
5332 if (event->attr.sample_id_all)
5333 __perf_event__output_id_sample(handle, sample);
5334}
5335
3dab77fb 5336static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5337 struct perf_event *event,
5338 u64 enabled, u64 running)
3dab77fb 5339{
cdd6c482 5340 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5341 u64 values[4];
5342 int n = 0;
5343
b5e58793 5344 values[n++] = perf_event_count(event);
3dab77fb 5345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5346 values[n++] = enabled +
cdd6c482 5347 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5348 }
5349 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5350 values[n++] = running +
cdd6c482 5351 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5352 }
5353 if (read_format & PERF_FORMAT_ID)
cdd6c482 5354 values[n++] = primary_event_id(event);
3dab77fb 5355
76369139 5356 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5357}
5358
5359/*
cdd6c482 5360 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5361 */
5362static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5363 struct perf_event *event,
5364 u64 enabled, u64 running)
3dab77fb 5365{
cdd6c482
IM
5366 struct perf_event *leader = event->group_leader, *sub;
5367 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5368 u64 values[5];
5369 int n = 0;
5370
5371 values[n++] = 1 + leader->nr_siblings;
5372
5373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5374 values[n++] = enabled;
3dab77fb
PZ
5375
5376 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5377 values[n++] = running;
3dab77fb 5378
cdd6c482 5379 if (leader != event)
3dab77fb
PZ
5380 leader->pmu->read(leader);
5381
b5e58793 5382 values[n++] = perf_event_count(leader);
3dab77fb 5383 if (read_format & PERF_FORMAT_ID)
cdd6c482 5384 values[n++] = primary_event_id(leader);
3dab77fb 5385
76369139 5386 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5387
65abc865 5388 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5389 n = 0;
5390
6f5ab001
JO
5391 if ((sub != event) &&
5392 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5393 sub->pmu->read(sub);
5394
b5e58793 5395 values[n++] = perf_event_count(sub);
3dab77fb 5396 if (read_format & PERF_FORMAT_ID)
cdd6c482 5397 values[n++] = primary_event_id(sub);
3dab77fb 5398
76369139 5399 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5400 }
5401}
5402
eed01528
SE
5403#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5404 PERF_FORMAT_TOTAL_TIME_RUNNING)
5405
3dab77fb 5406static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5407 struct perf_event *event)
3dab77fb 5408{
e3f3541c 5409 u64 enabled = 0, running = 0, now;
eed01528
SE
5410 u64 read_format = event->attr.read_format;
5411
5412 /*
5413 * compute total_time_enabled, total_time_running
5414 * based on snapshot values taken when the event
5415 * was last scheduled in.
5416 *
5417 * we cannot simply called update_context_time()
5418 * because of locking issue as we are called in
5419 * NMI context
5420 */
c4794295 5421 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5422 calc_timer_values(event, &now, &enabled, &running);
eed01528 5423
cdd6c482 5424 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5425 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5426 else
eed01528 5427 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5428}
5429
5622f295
MM
5430void perf_output_sample(struct perf_output_handle *handle,
5431 struct perf_event_header *header,
5432 struct perf_sample_data *data,
cdd6c482 5433 struct perf_event *event)
5622f295
MM
5434{
5435 u64 sample_type = data->type;
5436
5437 perf_output_put(handle, *header);
5438
ff3d527c
AH
5439 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5440 perf_output_put(handle, data->id);
5441
5622f295
MM
5442 if (sample_type & PERF_SAMPLE_IP)
5443 perf_output_put(handle, data->ip);
5444
5445 if (sample_type & PERF_SAMPLE_TID)
5446 perf_output_put(handle, data->tid_entry);
5447
5448 if (sample_type & PERF_SAMPLE_TIME)
5449 perf_output_put(handle, data->time);
5450
5451 if (sample_type & PERF_SAMPLE_ADDR)
5452 perf_output_put(handle, data->addr);
5453
5454 if (sample_type & PERF_SAMPLE_ID)
5455 perf_output_put(handle, data->id);
5456
5457 if (sample_type & PERF_SAMPLE_STREAM_ID)
5458 perf_output_put(handle, data->stream_id);
5459
5460 if (sample_type & PERF_SAMPLE_CPU)
5461 perf_output_put(handle, data->cpu_entry);
5462
5463 if (sample_type & PERF_SAMPLE_PERIOD)
5464 perf_output_put(handle, data->period);
5465
5466 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5467 perf_output_read(handle, event);
5622f295
MM
5468
5469 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5470 if (data->callchain) {
5471 int size = 1;
5472
5473 if (data->callchain)
5474 size += data->callchain->nr;
5475
5476 size *= sizeof(u64);
5477
76369139 5478 __output_copy(handle, data->callchain, size);
5622f295
MM
5479 } else {
5480 u64 nr = 0;
5481 perf_output_put(handle, nr);
5482 }
5483 }
5484
5485 if (sample_type & PERF_SAMPLE_RAW) {
5486 if (data->raw) {
fa128e6a
AS
5487 u32 raw_size = data->raw->size;
5488 u32 real_size = round_up(raw_size + sizeof(u32),
5489 sizeof(u64)) - sizeof(u32);
5490 u64 zero = 0;
5491
5492 perf_output_put(handle, real_size);
5493 __output_copy(handle, data->raw->data, raw_size);
5494 if (real_size - raw_size)
5495 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5496 } else {
5497 struct {
5498 u32 size;
5499 u32 data;
5500 } raw = {
5501 .size = sizeof(u32),
5502 .data = 0,
5503 };
5504 perf_output_put(handle, raw);
5505 }
5506 }
a7ac67ea 5507
bce38cd5
SE
5508 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5509 if (data->br_stack) {
5510 size_t size;
5511
5512 size = data->br_stack->nr
5513 * sizeof(struct perf_branch_entry);
5514
5515 perf_output_put(handle, data->br_stack->nr);
5516 perf_output_copy(handle, data->br_stack->entries, size);
5517 } else {
5518 /*
5519 * we always store at least the value of nr
5520 */
5521 u64 nr = 0;
5522 perf_output_put(handle, nr);
5523 }
5524 }
4018994f
JO
5525
5526 if (sample_type & PERF_SAMPLE_REGS_USER) {
5527 u64 abi = data->regs_user.abi;
5528
5529 /*
5530 * If there are no regs to dump, notice it through
5531 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5532 */
5533 perf_output_put(handle, abi);
5534
5535 if (abi) {
5536 u64 mask = event->attr.sample_regs_user;
5537 perf_output_sample_regs(handle,
5538 data->regs_user.regs,
5539 mask);
5540 }
5541 }
c5ebcedb 5542
a5cdd40c 5543 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5544 perf_output_sample_ustack(handle,
5545 data->stack_user_size,
5546 data->regs_user.regs);
a5cdd40c 5547 }
c3feedf2
AK
5548
5549 if (sample_type & PERF_SAMPLE_WEIGHT)
5550 perf_output_put(handle, data->weight);
d6be9ad6
SE
5551
5552 if (sample_type & PERF_SAMPLE_DATA_SRC)
5553 perf_output_put(handle, data->data_src.val);
a5cdd40c 5554
fdfbbd07
AK
5555 if (sample_type & PERF_SAMPLE_TRANSACTION)
5556 perf_output_put(handle, data->txn);
5557
60e2364e
SE
5558 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5559 u64 abi = data->regs_intr.abi;
5560 /*
5561 * If there are no regs to dump, notice it through
5562 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5563 */
5564 perf_output_put(handle, abi);
5565
5566 if (abi) {
5567 u64 mask = event->attr.sample_regs_intr;
5568
5569 perf_output_sample_regs(handle,
5570 data->regs_intr.regs,
5571 mask);
5572 }
5573 }
5574
a5cdd40c
PZ
5575 if (!event->attr.watermark) {
5576 int wakeup_events = event->attr.wakeup_events;
5577
5578 if (wakeup_events) {
5579 struct ring_buffer *rb = handle->rb;
5580 int events = local_inc_return(&rb->events);
5581
5582 if (events >= wakeup_events) {
5583 local_sub(wakeup_events, &rb->events);
5584 local_inc(&rb->wakeup);
5585 }
5586 }
5587 }
5622f295
MM
5588}
5589
5590void perf_prepare_sample(struct perf_event_header *header,
5591 struct perf_sample_data *data,
cdd6c482 5592 struct perf_event *event,
5622f295 5593 struct pt_regs *regs)
7b732a75 5594{
cdd6c482 5595 u64 sample_type = event->attr.sample_type;
7b732a75 5596
cdd6c482 5597 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5598 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5599
5600 header->misc = 0;
5601 header->misc |= perf_misc_flags(regs);
6fab0192 5602
c980d109 5603 __perf_event_header__init_id(header, data, event);
6844c09d 5604
c320c7b7 5605 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5606 data->ip = perf_instruction_pointer(regs);
5607
b23f3325 5608 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5609 int size = 1;
394ee076 5610
e6dab5ff 5611 data->callchain = perf_callchain(event, regs);
5622f295
MM
5612
5613 if (data->callchain)
5614 size += data->callchain->nr;
5615
5616 header->size += size * sizeof(u64);
394ee076
PZ
5617 }
5618
3a43ce68 5619 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5620 int size = sizeof(u32);
5621
5622 if (data->raw)
5623 size += data->raw->size;
5624 else
5625 size += sizeof(u32);
5626
fa128e6a 5627 header->size += round_up(size, sizeof(u64));
7f453c24 5628 }
bce38cd5
SE
5629
5630 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5631 int size = sizeof(u64); /* nr */
5632 if (data->br_stack) {
5633 size += data->br_stack->nr
5634 * sizeof(struct perf_branch_entry);
5635 }
5636 header->size += size;
5637 }
4018994f 5638
2565711f 5639 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5640 perf_sample_regs_user(&data->regs_user, regs,
5641 &data->regs_user_copy);
2565711f 5642
4018994f
JO
5643 if (sample_type & PERF_SAMPLE_REGS_USER) {
5644 /* regs dump ABI info */
5645 int size = sizeof(u64);
5646
4018994f
JO
5647 if (data->regs_user.regs) {
5648 u64 mask = event->attr.sample_regs_user;
5649 size += hweight64(mask) * sizeof(u64);
5650 }
5651
5652 header->size += size;
5653 }
c5ebcedb
JO
5654
5655 if (sample_type & PERF_SAMPLE_STACK_USER) {
5656 /*
5657 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5658 * processed as the last one or have additional check added
5659 * in case new sample type is added, because we could eat
5660 * up the rest of the sample size.
5661 */
c5ebcedb
JO
5662 u16 stack_size = event->attr.sample_stack_user;
5663 u16 size = sizeof(u64);
5664
c5ebcedb 5665 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5666 data->regs_user.regs);
c5ebcedb
JO
5667
5668 /*
5669 * If there is something to dump, add space for the dump
5670 * itself and for the field that tells the dynamic size,
5671 * which is how many have been actually dumped.
5672 */
5673 if (stack_size)
5674 size += sizeof(u64) + stack_size;
5675
5676 data->stack_user_size = stack_size;
5677 header->size += size;
5678 }
60e2364e
SE
5679
5680 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5681 /* regs dump ABI info */
5682 int size = sizeof(u64);
5683
5684 perf_sample_regs_intr(&data->regs_intr, regs);
5685
5686 if (data->regs_intr.regs) {
5687 u64 mask = event->attr.sample_regs_intr;
5688
5689 size += hweight64(mask) * sizeof(u64);
5690 }
5691
5692 header->size += size;
5693 }
5622f295 5694}
7f453c24 5695
21509084
YZ
5696void perf_event_output(struct perf_event *event,
5697 struct perf_sample_data *data,
5698 struct pt_regs *regs)
5622f295
MM
5699{
5700 struct perf_output_handle handle;
5701 struct perf_event_header header;
689802b2 5702
927c7a9e
FW
5703 /* protect the callchain buffers */
5704 rcu_read_lock();
5705
cdd6c482 5706 perf_prepare_sample(&header, data, event, regs);
5c148194 5707
a7ac67ea 5708 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5709 goto exit;
0322cd6e 5710
cdd6c482 5711 perf_output_sample(&handle, &header, data, event);
f413cdb8 5712
8a057d84 5713 perf_output_end(&handle);
927c7a9e
FW
5714
5715exit:
5716 rcu_read_unlock();
0322cd6e
PZ
5717}
5718
38b200d6 5719/*
cdd6c482 5720 * read event_id
38b200d6
PZ
5721 */
5722
5723struct perf_read_event {
5724 struct perf_event_header header;
5725
5726 u32 pid;
5727 u32 tid;
38b200d6
PZ
5728};
5729
5730static void
cdd6c482 5731perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5732 struct task_struct *task)
5733{
5734 struct perf_output_handle handle;
c980d109 5735 struct perf_sample_data sample;
dfc65094 5736 struct perf_read_event read_event = {
38b200d6 5737 .header = {
cdd6c482 5738 .type = PERF_RECORD_READ,
38b200d6 5739 .misc = 0,
c320c7b7 5740 .size = sizeof(read_event) + event->read_size,
38b200d6 5741 },
cdd6c482
IM
5742 .pid = perf_event_pid(event, task),
5743 .tid = perf_event_tid(event, task),
38b200d6 5744 };
3dab77fb 5745 int ret;
38b200d6 5746
c980d109 5747 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5748 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5749 if (ret)
5750 return;
5751
dfc65094 5752 perf_output_put(&handle, read_event);
cdd6c482 5753 perf_output_read(&handle, event);
c980d109 5754 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5755
38b200d6
PZ
5756 perf_output_end(&handle);
5757}
5758
52d857a8
JO
5759typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5760
5761static void
5762perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5763 perf_event_aux_output_cb output,
5764 void *data)
5765{
5766 struct perf_event *event;
5767
5768 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5769 if (event->state < PERF_EVENT_STATE_INACTIVE)
5770 continue;
5771 if (!event_filter_match(event))
5772 continue;
67516844 5773 output(event, data);
52d857a8
JO
5774 }
5775}
5776
4e93ad60
JO
5777static void
5778perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5779 struct perf_event_context *task_ctx)
5780{
5781 rcu_read_lock();
5782 preempt_disable();
5783 perf_event_aux_ctx(task_ctx, output, data);
5784 preempt_enable();
5785 rcu_read_unlock();
5786}
5787
52d857a8 5788static void
67516844 5789perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5790 struct perf_event_context *task_ctx)
5791{
5792 struct perf_cpu_context *cpuctx;
5793 struct perf_event_context *ctx;
5794 struct pmu *pmu;
5795 int ctxn;
5796
4e93ad60
JO
5797 /*
5798 * If we have task_ctx != NULL we only notify
5799 * the task context itself. The task_ctx is set
5800 * only for EXIT events before releasing task
5801 * context.
5802 */
5803 if (task_ctx) {
5804 perf_event_aux_task_ctx(output, data, task_ctx);
5805 return;
5806 }
5807
52d857a8
JO
5808 rcu_read_lock();
5809 list_for_each_entry_rcu(pmu, &pmus, entry) {
5810 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5811 if (cpuctx->unique_pmu != pmu)
5812 goto next;
67516844 5813 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5814 ctxn = pmu->task_ctx_nr;
5815 if (ctxn < 0)
5816 goto next;
5817 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5818 if (ctx)
67516844 5819 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5820next:
5821 put_cpu_ptr(pmu->pmu_cpu_context);
5822 }
52d857a8 5823 rcu_read_unlock();
95ff4ca2
AS
5824}
5825
5826struct remote_output {
5827 struct ring_buffer *rb;
5828 int err;
5829};
5830
5831static void __perf_event_output_stop(struct perf_event *event, void *data)
5832{
5833 struct perf_event *parent = event->parent;
5834 struct remote_output *ro = data;
5835 struct ring_buffer *rb = ro->rb;
5836
5837 if (!has_aux(event))
5838 return;
5839
5840 if (!parent)
5841 parent = event;
5842
5843 /*
5844 * In case of inheritance, it will be the parent that links to the
5845 * ring-buffer, but it will be the child that's actually using it:
5846 */
5847 if (rcu_dereference(parent->rb) == rb)
5848 ro->err = __perf_event_stop(event);
5849}
5850
5851static int __perf_pmu_output_stop(void *info)
5852{
5853 struct perf_event *event = info;
5854 struct pmu *pmu = event->pmu;
5855 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5856 struct remote_output ro = {
5857 .rb = event->rb,
5858 };
5859
5860 rcu_read_lock();
5861 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro);
5862 if (cpuctx->task_ctx)
5863 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
5864 &ro);
5865 rcu_read_unlock();
5866
5867 return ro.err;
5868}
5869
5870static void perf_pmu_output_stop(struct perf_event *event)
5871{
5872 struct perf_event *iter;
5873 int err, cpu;
5874
5875restart:
5876 rcu_read_lock();
5877 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
5878 /*
5879 * For per-CPU events, we need to make sure that neither they
5880 * nor their children are running; for cpu==-1 events it's
5881 * sufficient to stop the event itself if it's active, since
5882 * it can't have children.
5883 */
5884 cpu = iter->cpu;
5885 if (cpu == -1)
5886 cpu = READ_ONCE(iter->oncpu);
5887
5888 if (cpu == -1)
5889 continue;
5890
5891 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
5892 if (err == -EAGAIN) {
5893 rcu_read_unlock();
5894 goto restart;
5895 }
5896 }
5897 rcu_read_unlock();
52d857a8
JO
5898}
5899
60313ebe 5900/*
9f498cc5
PZ
5901 * task tracking -- fork/exit
5902 *
13d7a241 5903 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5904 */
5905
9f498cc5 5906struct perf_task_event {
3a80b4a3 5907 struct task_struct *task;
cdd6c482 5908 struct perf_event_context *task_ctx;
60313ebe
PZ
5909
5910 struct {
5911 struct perf_event_header header;
5912
5913 u32 pid;
5914 u32 ppid;
9f498cc5
PZ
5915 u32 tid;
5916 u32 ptid;
393b2ad8 5917 u64 time;
cdd6c482 5918 } event_id;
60313ebe
PZ
5919};
5920
67516844
JO
5921static int perf_event_task_match(struct perf_event *event)
5922{
13d7a241
SE
5923 return event->attr.comm || event->attr.mmap ||
5924 event->attr.mmap2 || event->attr.mmap_data ||
5925 event->attr.task;
67516844
JO
5926}
5927
cdd6c482 5928static void perf_event_task_output(struct perf_event *event,
52d857a8 5929 void *data)
60313ebe 5930{
52d857a8 5931 struct perf_task_event *task_event = data;
60313ebe 5932 struct perf_output_handle handle;
c980d109 5933 struct perf_sample_data sample;
9f498cc5 5934 struct task_struct *task = task_event->task;
c980d109 5935 int ret, size = task_event->event_id.header.size;
8bb39f9a 5936
67516844
JO
5937 if (!perf_event_task_match(event))
5938 return;
5939
c980d109 5940 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5941
c980d109 5942 ret = perf_output_begin(&handle, event,
a7ac67ea 5943 task_event->event_id.header.size);
ef60777c 5944 if (ret)
c980d109 5945 goto out;
60313ebe 5946
cdd6c482
IM
5947 task_event->event_id.pid = perf_event_pid(event, task);
5948 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5949
cdd6c482
IM
5950 task_event->event_id.tid = perf_event_tid(event, task);
5951 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5952
34f43927
PZ
5953 task_event->event_id.time = perf_event_clock(event);
5954
cdd6c482 5955 perf_output_put(&handle, task_event->event_id);
393b2ad8 5956
c980d109
ACM
5957 perf_event__output_id_sample(event, &handle, &sample);
5958
60313ebe 5959 perf_output_end(&handle);
c980d109
ACM
5960out:
5961 task_event->event_id.header.size = size;
60313ebe
PZ
5962}
5963
cdd6c482
IM
5964static void perf_event_task(struct task_struct *task,
5965 struct perf_event_context *task_ctx,
3a80b4a3 5966 int new)
60313ebe 5967{
9f498cc5 5968 struct perf_task_event task_event;
60313ebe 5969
cdd6c482
IM
5970 if (!atomic_read(&nr_comm_events) &&
5971 !atomic_read(&nr_mmap_events) &&
5972 !atomic_read(&nr_task_events))
60313ebe
PZ
5973 return;
5974
9f498cc5 5975 task_event = (struct perf_task_event){
3a80b4a3
PZ
5976 .task = task,
5977 .task_ctx = task_ctx,
cdd6c482 5978 .event_id = {
60313ebe 5979 .header = {
cdd6c482 5980 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5981 .misc = 0,
cdd6c482 5982 .size = sizeof(task_event.event_id),
60313ebe 5983 },
573402db
PZ
5984 /* .pid */
5985 /* .ppid */
9f498cc5
PZ
5986 /* .tid */
5987 /* .ptid */
34f43927 5988 /* .time */
60313ebe
PZ
5989 },
5990 };
5991
67516844 5992 perf_event_aux(perf_event_task_output,
52d857a8
JO
5993 &task_event,
5994 task_ctx);
9f498cc5
PZ
5995}
5996
cdd6c482 5997void perf_event_fork(struct task_struct *task)
9f498cc5 5998{
cdd6c482 5999 perf_event_task(task, NULL, 1);
60313ebe
PZ
6000}
6001
8d1b2d93
PZ
6002/*
6003 * comm tracking
6004 */
6005
6006struct perf_comm_event {
22a4f650
IM
6007 struct task_struct *task;
6008 char *comm;
8d1b2d93
PZ
6009 int comm_size;
6010
6011 struct {
6012 struct perf_event_header header;
6013
6014 u32 pid;
6015 u32 tid;
cdd6c482 6016 } event_id;
8d1b2d93
PZ
6017};
6018
67516844
JO
6019static int perf_event_comm_match(struct perf_event *event)
6020{
6021 return event->attr.comm;
6022}
6023
cdd6c482 6024static void perf_event_comm_output(struct perf_event *event,
52d857a8 6025 void *data)
8d1b2d93 6026{
52d857a8 6027 struct perf_comm_event *comm_event = data;
8d1b2d93 6028 struct perf_output_handle handle;
c980d109 6029 struct perf_sample_data sample;
cdd6c482 6030 int size = comm_event->event_id.header.size;
c980d109
ACM
6031 int ret;
6032
67516844
JO
6033 if (!perf_event_comm_match(event))
6034 return;
6035
c980d109
ACM
6036 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6037 ret = perf_output_begin(&handle, event,
a7ac67ea 6038 comm_event->event_id.header.size);
8d1b2d93
PZ
6039
6040 if (ret)
c980d109 6041 goto out;
8d1b2d93 6042
cdd6c482
IM
6043 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6044 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6045
cdd6c482 6046 perf_output_put(&handle, comm_event->event_id);
76369139 6047 __output_copy(&handle, comm_event->comm,
8d1b2d93 6048 comm_event->comm_size);
c980d109
ACM
6049
6050 perf_event__output_id_sample(event, &handle, &sample);
6051
8d1b2d93 6052 perf_output_end(&handle);
c980d109
ACM
6053out:
6054 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6055}
6056
cdd6c482 6057static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6058{
413ee3b4 6059 char comm[TASK_COMM_LEN];
8d1b2d93 6060 unsigned int size;
8d1b2d93 6061
413ee3b4 6062 memset(comm, 0, sizeof(comm));
96b02d78 6063 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6064 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6065
6066 comm_event->comm = comm;
6067 comm_event->comm_size = size;
6068
cdd6c482 6069 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6070
67516844 6071 perf_event_aux(perf_event_comm_output,
52d857a8
JO
6072 comm_event,
6073 NULL);
8d1b2d93
PZ
6074}
6075
82b89778 6076void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6077{
9ee318a7
PZ
6078 struct perf_comm_event comm_event;
6079
cdd6c482 6080 if (!atomic_read(&nr_comm_events))
9ee318a7 6081 return;
a63eaf34 6082
9ee318a7 6083 comm_event = (struct perf_comm_event){
8d1b2d93 6084 .task = task,
573402db
PZ
6085 /* .comm */
6086 /* .comm_size */
cdd6c482 6087 .event_id = {
573402db 6088 .header = {
cdd6c482 6089 .type = PERF_RECORD_COMM,
82b89778 6090 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6091 /* .size */
6092 },
6093 /* .pid */
6094 /* .tid */
8d1b2d93
PZ
6095 },
6096 };
6097
cdd6c482 6098 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6099}
6100
0a4a9391
PZ
6101/*
6102 * mmap tracking
6103 */
6104
6105struct perf_mmap_event {
089dd79d
PZ
6106 struct vm_area_struct *vma;
6107
6108 const char *file_name;
6109 int file_size;
13d7a241
SE
6110 int maj, min;
6111 u64 ino;
6112 u64 ino_generation;
f972eb63 6113 u32 prot, flags;
0a4a9391
PZ
6114
6115 struct {
6116 struct perf_event_header header;
6117
6118 u32 pid;
6119 u32 tid;
6120 u64 start;
6121 u64 len;
6122 u64 pgoff;
cdd6c482 6123 } event_id;
0a4a9391
PZ
6124};
6125
67516844
JO
6126static int perf_event_mmap_match(struct perf_event *event,
6127 void *data)
6128{
6129 struct perf_mmap_event *mmap_event = data;
6130 struct vm_area_struct *vma = mmap_event->vma;
6131 int executable = vma->vm_flags & VM_EXEC;
6132
6133 return (!executable && event->attr.mmap_data) ||
13d7a241 6134 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6135}
6136
cdd6c482 6137static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6138 void *data)
0a4a9391 6139{
52d857a8 6140 struct perf_mmap_event *mmap_event = data;
0a4a9391 6141 struct perf_output_handle handle;
c980d109 6142 struct perf_sample_data sample;
cdd6c482 6143 int size = mmap_event->event_id.header.size;
c980d109 6144 int ret;
0a4a9391 6145
67516844
JO
6146 if (!perf_event_mmap_match(event, data))
6147 return;
6148
13d7a241
SE
6149 if (event->attr.mmap2) {
6150 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6151 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6152 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6153 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6154 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6155 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6156 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6157 }
6158
c980d109
ACM
6159 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6160 ret = perf_output_begin(&handle, event,
a7ac67ea 6161 mmap_event->event_id.header.size);
0a4a9391 6162 if (ret)
c980d109 6163 goto out;
0a4a9391 6164
cdd6c482
IM
6165 mmap_event->event_id.pid = perf_event_pid(event, current);
6166 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6167
cdd6c482 6168 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6169
6170 if (event->attr.mmap2) {
6171 perf_output_put(&handle, mmap_event->maj);
6172 perf_output_put(&handle, mmap_event->min);
6173 perf_output_put(&handle, mmap_event->ino);
6174 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6175 perf_output_put(&handle, mmap_event->prot);
6176 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6177 }
6178
76369139 6179 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6180 mmap_event->file_size);
c980d109
ACM
6181
6182 perf_event__output_id_sample(event, &handle, &sample);
6183
78d613eb 6184 perf_output_end(&handle);
c980d109
ACM
6185out:
6186 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6187}
6188
cdd6c482 6189static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6190{
089dd79d
PZ
6191 struct vm_area_struct *vma = mmap_event->vma;
6192 struct file *file = vma->vm_file;
13d7a241
SE
6193 int maj = 0, min = 0;
6194 u64 ino = 0, gen = 0;
f972eb63 6195 u32 prot = 0, flags = 0;
0a4a9391
PZ
6196 unsigned int size;
6197 char tmp[16];
6198 char *buf = NULL;
2c42cfbf 6199 char *name;
413ee3b4 6200
0a4a9391 6201 if (file) {
13d7a241
SE
6202 struct inode *inode;
6203 dev_t dev;
3ea2f2b9 6204
2c42cfbf 6205 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6206 if (!buf) {
c7e548b4
ON
6207 name = "//enomem";
6208 goto cpy_name;
0a4a9391 6209 }
413ee3b4 6210 /*
3ea2f2b9 6211 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6212 * need to add enough zero bytes after the string to handle
6213 * the 64bit alignment we do later.
6214 */
9bf39ab2 6215 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6216 if (IS_ERR(name)) {
c7e548b4
ON
6217 name = "//toolong";
6218 goto cpy_name;
0a4a9391 6219 }
13d7a241
SE
6220 inode = file_inode(vma->vm_file);
6221 dev = inode->i_sb->s_dev;
6222 ino = inode->i_ino;
6223 gen = inode->i_generation;
6224 maj = MAJOR(dev);
6225 min = MINOR(dev);
f972eb63
PZ
6226
6227 if (vma->vm_flags & VM_READ)
6228 prot |= PROT_READ;
6229 if (vma->vm_flags & VM_WRITE)
6230 prot |= PROT_WRITE;
6231 if (vma->vm_flags & VM_EXEC)
6232 prot |= PROT_EXEC;
6233
6234 if (vma->vm_flags & VM_MAYSHARE)
6235 flags = MAP_SHARED;
6236 else
6237 flags = MAP_PRIVATE;
6238
6239 if (vma->vm_flags & VM_DENYWRITE)
6240 flags |= MAP_DENYWRITE;
6241 if (vma->vm_flags & VM_MAYEXEC)
6242 flags |= MAP_EXECUTABLE;
6243 if (vma->vm_flags & VM_LOCKED)
6244 flags |= MAP_LOCKED;
6245 if (vma->vm_flags & VM_HUGETLB)
6246 flags |= MAP_HUGETLB;
6247
c7e548b4 6248 goto got_name;
0a4a9391 6249 } else {
fbe26abe
JO
6250 if (vma->vm_ops && vma->vm_ops->name) {
6251 name = (char *) vma->vm_ops->name(vma);
6252 if (name)
6253 goto cpy_name;
6254 }
6255
2c42cfbf 6256 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6257 if (name)
6258 goto cpy_name;
089dd79d 6259
32c5fb7e 6260 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6261 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6262 name = "[heap]";
6263 goto cpy_name;
32c5fb7e
ON
6264 }
6265 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6266 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6267 name = "[stack]";
6268 goto cpy_name;
089dd79d
PZ
6269 }
6270
c7e548b4
ON
6271 name = "//anon";
6272 goto cpy_name;
0a4a9391
PZ
6273 }
6274
c7e548b4
ON
6275cpy_name:
6276 strlcpy(tmp, name, sizeof(tmp));
6277 name = tmp;
0a4a9391 6278got_name:
2c42cfbf
PZ
6279 /*
6280 * Since our buffer works in 8 byte units we need to align our string
6281 * size to a multiple of 8. However, we must guarantee the tail end is
6282 * zero'd out to avoid leaking random bits to userspace.
6283 */
6284 size = strlen(name)+1;
6285 while (!IS_ALIGNED(size, sizeof(u64)))
6286 name[size++] = '\0';
0a4a9391
PZ
6287
6288 mmap_event->file_name = name;
6289 mmap_event->file_size = size;
13d7a241
SE
6290 mmap_event->maj = maj;
6291 mmap_event->min = min;
6292 mmap_event->ino = ino;
6293 mmap_event->ino_generation = gen;
f972eb63
PZ
6294 mmap_event->prot = prot;
6295 mmap_event->flags = flags;
0a4a9391 6296
2fe85427
SE
6297 if (!(vma->vm_flags & VM_EXEC))
6298 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6299
cdd6c482 6300 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6301
67516844 6302 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6303 mmap_event,
6304 NULL);
665c2142 6305
0a4a9391
PZ
6306 kfree(buf);
6307}
6308
3af9e859 6309void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6310{
9ee318a7
PZ
6311 struct perf_mmap_event mmap_event;
6312
cdd6c482 6313 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6314 return;
6315
6316 mmap_event = (struct perf_mmap_event){
089dd79d 6317 .vma = vma,
573402db
PZ
6318 /* .file_name */
6319 /* .file_size */
cdd6c482 6320 .event_id = {
573402db 6321 .header = {
cdd6c482 6322 .type = PERF_RECORD_MMAP,
39447b38 6323 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6324 /* .size */
6325 },
6326 /* .pid */
6327 /* .tid */
089dd79d
PZ
6328 .start = vma->vm_start,
6329 .len = vma->vm_end - vma->vm_start,
3a0304e9 6330 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6331 },
13d7a241
SE
6332 /* .maj (attr_mmap2 only) */
6333 /* .min (attr_mmap2 only) */
6334 /* .ino (attr_mmap2 only) */
6335 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6336 /* .prot (attr_mmap2 only) */
6337 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6338 };
6339
cdd6c482 6340 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6341}
6342
68db7e98
AS
6343void perf_event_aux_event(struct perf_event *event, unsigned long head,
6344 unsigned long size, u64 flags)
6345{
6346 struct perf_output_handle handle;
6347 struct perf_sample_data sample;
6348 struct perf_aux_event {
6349 struct perf_event_header header;
6350 u64 offset;
6351 u64 size;
6352 u64 flags;
6353 } rec = {
6354 .header = {
6355 .type = PERF_RECORD_AUX,
6356 .misc = 0,
6357 .size = sizeof(rec),
6358 },
6359 .offset = head,
6360 .size = size,
6361 .flags = flags,
6362 };
6363 int ret;
6364
6365 perf_event_header__init_id(&rec.header, &sample, event);
6366 ret = perf_output_begin(&handle, event, rec.header.size);
6367
6368 if (ret)
6369 return;
6370
6371 perf_output_put(&handle, rec);
6372 perf_event__output_id_sample(event, &handle, &sample);
6373
6374 perf_output_end(&handle);
6375}
6376
f38b0dbb
KL
6377/*
6378 * Lost/dropped samples logging
6379 */
6380void perf_log_lost_samples(struct perf_event *event, u64 lost)
6381{
6382 struct perf_output_handle handle;
6383 struct perf_sample_data sample;
6384 int ret;
6385
6386 struct {
6387 struct perf_event_header header;
6388 u64 lost;
6389 } lost_samples_event = {
6390 .header = {
6391 .type = PERF_RECORD_LOST_SAMPLES,
6392 .misc = 0,
6393 .size = sizeof(lost_samples_event),
6394 },
6395 .lost = lost,
6396 };
6397
6398 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6399
6400 ret = perf_output_begin(&handle, event,
6401 lost_samples_event.header.size);
6402 if (ret)
6403 return;
6404
6405 perf_output_put(&handle, lost_samples_event);
6406 perf_event__output_id_sample(event, &handle, &sample);
6407 perf_output_end(&handle);
6408}
6409
45ac1403
AH
6410/*
6411 * context_switch tracking
6412 */
6413
6414struct perf_switch_event {
6415 struct task_struct *task;
6416 struct task_struct *next_prev;
6417
6418 struct {
6419 struct perf_event_header header;
6420 u32 next_prev_pid;
6421 u32 next_prev_tid;
6422 } event_id;
6423};
6424
6425static int perf_event_switch_match(struct perf_event *event)
6426{
6427 return event->attr.context_switch;
6428}
6429
6430static void perf_event_switch_output(struct perf_event *event, void *data)
6431{
6432 struct perf_switch_event *se = data;
6433 struct perf_output_handle handle;
6434 struct perf_sample_data sample;
6435 int ret;
6436
6437 if (!perf_event_switch_match(event))
6438 return;
6439
6440 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6441 if (event->ctx->task) {
6442 se->event_id.header.type = PERF_RECORD_SWITCH;
6443 se->event_id.header.size = sizeof(se->event_id.header);
6444 } else {
6445 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6446 se->event_id.header.size = sizeof(se->event_id);
6447 se->event_id.next_prev_pid =
6448 perf_event_pid(event, se->next_prev);
6449 se->event_id.next_prev_tid =
6450 perf_event_tid(event, se->next_prev);
6451 }
6452
6453 perf_event_header__init_id(&se->event_id.header, &sample, event);
6454
6455 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6456 if (ret)
6457 return;
6458
6459 if (event->ctx->task)
6460 perf_output_put(&handle, se->event_id.header);
6461 else
6462 perf_output_put(&handle, se->event_id);
6463
6464 perf_event__output_id_sample(event, &handle, &sample);
6465
6466 perf_output_end(&handle);
6467}
6468
6469static void perf_event_switch(struct task_struct *task,
6470 struct task_struct *next_prev, bool sched_in)
6471{
6472 struct perf_switch_event switch_event;
6473
6474 /* N.B. caller checks nr_switch_events != 0 */
6475
6476 switch_event = (struct perf_switch_event){
6477 .task = task,
6478 .next_prev = next_prev,
6479 .event_id = {
6480 .header = {
6481 /* .type */
6482 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6483 /* .size */
6484 },
6485 /* .next_prev_pid */
6486 /* .next_prev_tid */
6487 },
6488 };
6489
6490 perf_event_aux(perf_event_switch_output,
6491 &switch_event,
6492 NULL);
6493}
6494
a78ac325
PZ
6495/*
6496 * IRQ throttle logging
6497 */
6498
cdd6c482 6499static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6500{
6501 struct perf_output_handle handle;
c980d109 6502 struct perf_sample_data sample;
a78ac325
PZ
6503 int ret;
6504
6505 struct {
6506 struct perf_event_header header;
6507 u64 time;
cca3f454 6508 u64 id;
7f453c24 6509 u64 stream_id;
a78ac325
PZ
6510 } throttle_event = {
6511 .header = {
cdd6c482 6512 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6513 .misc = 0,
6514 .size = sizeof(throttle_event),
6515 },
34f43927 6516 .time = perf_event_clock(event),
cdd6c482
IM
6517 .id = primary_event_id(event),
6518 .stream_id = event->id,
a78ac325
PZ
6519 };
6520
966ee4d6 6521 if (enable)
cdd6c482 6522 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6523
c980d109
ACM
6524 perf_event_header__init_id(&throttle_event.header, &sample, event);
6525
6526 ret = perf_output_begin(&handle, event,
a7ac67ea 6527 throttle_event.header.size);
a78ac325
PZ
6528 if (ret)
6529 return;
6530
6531 perf_output_put(&handle, throttle_event);
c980d109 6532 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6533 perf_output_end(&handle);
6534}
6535
ec0d7729
AS
6536static void perf_log_itrace_start(struct perf_event *event)
6537{
6538 struct perf_output_handle handle;
6539 struct perf_sample_data sample;
6540 struct perf_aux_event {
6541 struct perf_event_header header;
6542 u32 pid;
6543 u32 tid;
6544 } rec;
6545 int ret;
6546
6547 if (event->parent)
6548 event = event->parent;
6549
6550 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6551 event->hw.itrace_started)
6552 return;
6553
ec0d7729
AS
6554 rec.header.type = PERF_RECORD_ITRACE_START;
6555 rec.header.misc = 0;
6556 rec.header.size = sizeof(rec);
6557 rec.pid = perf_event_pid(event, current);
6558 rec.tid = perf_event_tid(event, current);
6559
6560 perf_event_header__init_id(&rec.header, &sample, event);
6561 ret = perf_output_begin(&handle, event, rec.header.size);
6562
6563 if (ret)
6564 return;
6565
6566 perf_output_put(&handle, rec);
6567 perf_event__output_id_sample(event, &handle, &sample);
6568
6569 perf_output_end(&handle);
6570}
6571
f6c7d5fe 6572/*
cdd6c482 6573 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6574 */
6575
a8b0ca17 6576static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6577 int throttle, struct perf_sample_data *data,
6578 struct pt_regs *regs)
f6c7d5fe 6579{
cdd6c482
IM
6580 int events = atomic_read(&event->event_limit);
6581 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6582 u64 seq;
79f14641
PZ
6583 int ret = 0;
6584
96398826
PZ
6585 /*
6586 * Non-sampling counters might still use the PMI to fold short
6587 * hardware counters, ignore those.
6588 */
6589 if (unlikely(!is_sampling_event(event)))
6590 return 0;
6591
e050e3f0
SE
6592 seq = __this_cpu_read(perf_throttled_seq);
6593 if (seq != hwc->interrupts_seq) {
6594 hwc->interrupts_seq = seq;
6595 hwc->interrupts = 1;
6596 } else {
6597 hwc->interrupts++;
6598 if (unlikely(throttle
6599 && hwc->interrupts >= max_samples_per_tick)) {
6600 __this_cpu_inc(perf_throttled_count);
555e0c1e 6601 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6602 hwc->interrupts = MAX_INTERRUPTS;
6603 perf_log_throttle(event, 0);
a78ac325
PZ
6604 ret = 1;
6605 }
e050e3f0 6606 }
60db5e09 6607
cdd6c482 6608 if (event->attr.freq) {
def0a9b2 6609 u64 now = perf_clock();
abd50713 6610 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6611
abd50713 6612 hwc->freq_time_stamp = now;
bd2b5b12 6613
abd50713 6614 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6615 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6616 }
6617
2023b359
PZ
6618 /*
6619 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6620 * events
2023b359
PZ
6621 */
6622
cdd6c482
IM
6623 event->pending_kill = POLL_IN;
6624 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6625 ret = 1;
cdd6c482 6626 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6627 event->pending_disable = 1;
6628 irq_work_queue(&event->pending);
79f14641
PZ
6629 }
6630
453f19ee 6631 if (event->overflow_handler)
a8b0ca17 6632 event->overflow_handler(event, data, regs);
453f19ee 6633 else
a8b0ca17 6634 perf_event_output(event, data, regs);
453f19ee 6635
fed66e2c 6636 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6637 event->pending_wakeup = 1;
6638 irq_work_queue(&event->pending);
f506b3dc
PZ
6639 }
6640
79f14641 6641 return ret;
f6c7d5fe
PZ
6642}
6643
a8b0ca17 6644int perf_event_overflow(struct perf_event *event,
5622f295
MM
6645 struct perf_sample_data *data,
6646 struct pt_regs *regs)
850bc73f 6647{
a8b0ca17 6648 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6649}
6650
15dbf27c 6651/*
cdd6c482 6652 * Generic software event infrastructure
15dbf27c
PZ
6653 */
6654
b28ab83c
PZ
6655struct swevent_htable {
6656 struct swevent_hlist *swevent_hlist;
6657 struct mutex hlist_mutex;
6658 int hlist_refcount;
6659
6660 /* Recursion avoidance in each contexts */
6661 int recursion[PERF_NR_CONTEXTS];
6662};
6663
6664static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6665
7b4b6658 6666/*
cdd6c482
IM
6667 * We directly increment event->count and keep a second value in
6668 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6669 * is kept in the range [-sample_period, 0] so that we can use the
6670 * sign as trigger.
6671 */
6672
ab573844 6673u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6674{
cdd6c482 6675 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6676 u64 period = hwc->last_period;
6677 u64 nr, offset;
6678 s64 old, val;
6679
6680 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6681
6682again:
e7850595 6683 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6684 if (val < 0)
6685 return 0;
15dbf27c 6686
7b4b6658
PZ
6687 nr = div64_u64(period + val, period);
6688 offset = nr * period;
6689 val -= offset;
e7850595 6690 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6691 goto again;
15dbf27c 6692
7b4b6658 6693 return nr;
15dbf27c
PZ
6694}
6695
0cff784a 6696static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6697 struct perf_sample_data *data,
5622f295 6698 struct pt_regs *regs)
15dbf27c 6699{
cdd6c482 6700 struct hw_perf_event *hwc = &event->hw;
850bc73f 6701 int throttle = 0;
15dbf27c 6702
0cff784a
PZ
6703 if (!overflow)
6704 overflow = perf_swevent_set_period(event);
15dbf27c 6705
7b4b6658
PZ
6706 if (hwc->interrupts == MAX_INTERRUPTS)
6707 return;
15dbf27c 6708
7b4b6658 6709 for (; overflow; overflow--) {
a8b0ca17 6710 if (__perf_event_overflow(event, throttle,
5622f295 6711 data, regs)) {
7b4b6658
PZ
6712 /*
6713 * We inhibit the overflow from happening when
6714 * hwc->interrupts == MAX_INTERRUPTS.
6715 */
6716 break;
6717 }
cf450a73 6718 throttle = 1;
7b4b6658 6719 }
15dbf27c
PZ
6720}
6721
a4eaf7f1 6722static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6723 struct perf_sample_data *data,
5622f295 6724 struct pt_regs *regs)
7b4b6658 6725{
cdd6c482 6726 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6727
e7850595 6728 local64_add(nr, &event->count);
d6d020e9 6729
0cff784a
PZ
6730 if (!regs)
6731 return;
6732
6c7e550f 6733 if (!is_sampling_event(event))
7b4b6658 6734 return;
d6d020e9 6735
5d81e5cf
AV
6736 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6737 data->period = nr;
6738 return perf_swevent_overflow(event, 1, data, regs);
6739 } else
6740 data->period = event->hw.last_period;
6741
0cff784a 6742 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6743 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6744
e7850595 6745 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6746 return;
df1a132b 6747
a8b0ca17 6748 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6749}
6750
f5ffe02e
FW
6751static int perf_exclude_event(struct perf_event *event,
6752 struct pt_regs *regs)
6753{
a4eaf7f1 6754 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6755 return 1;
a4eaf7f1 6756
f5ffe02e
FW
6757 if (regs) {
6758 if (event->attr.exclude_user && user_mode(regs))
6759 return 1;
6760
6761 if (event->attr.exclude_kernel && !user_mode(regs))
6762 return 1;
6763 }
6764
6765 return 0;
6766}
6767
cdd6c482 6768static int perf_swevent_match(struct perf_event *event,
1c432d89 6769 enum perf_type_id type,
6fb2915d
LZ
6770 u32 event_id,
6771 struct perf_sample_data *data,
6772 struct pt_regs *regs)
15dbf27c 6773{
cdd6c482 6774 if (event->attr.type != type)
a21ca2ca 6775 return 0;
f5ffe02e 6776
cdd6c482 6777 if (event->attr.config != event_id)
15dbf27c
PZ
6778 return 0;
6779
f5ffe02e
FW
6780 if (perf_exclude_event(event, regs))
6781 return 0;
15dbf27c
PZ
6782
6783 return 1;
6784}
6785
76e1d904
FW
6786static inline u64 swevent_hash(u64 type, u32 event_id)
6787{
6788 u64 val = event_id | (type << 32);
6789
6790 return hash_64(val, SWEVENT_HLIST_BITS);
6791}
6792
49f135ed
FW
6793static inline struct hlist_head *
6794__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6795{
49f135ed
FW
6796 u64 hash = swevent_hash(type, event_id);
6797
6798 return &hlist->heads[hash];
6799}
76e1d904 6800
49f135ed
FW
6801/* For the read side: events when they trigger */
6802static inline struct hlist_head *
b28ab83c 6803find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6804{
6805 struct swevent_hlist *hlist;
76e1d904 6806
b28ab83c 6807 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6808 if (!hlist)
6809 return NULL;
6810
49f135ed
FW
6811 return __find_swevent_head(hlist, type, event_id);
6812}
6813
6814/* For the event head insertion and removal in the hlist */
6815static inline struct hlist_head *
b28ab83c 6816find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6817{
6818 struct swevent_hlist *hlist;
6819 u32 event_id = event->attr.config;
6820 u64 type = event->attr.type;
6821
6822 /*
6823 * Event scheduling is always serialized against hlist allocation
6824 * and release. Which makes the protected version suitable here.
6825 * The context lock guarantees that.
6826 */
b28ab83c 6827 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6828 lockdep_is_held(&event->ctx->lock));
6829 if (!hlist)
6830 return NULL;
6831
6832 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6833}
6834
6835static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6836 u64 nr,
76e1d904
FW
6837 struct perf_sample_data *data,
6838 struct pt_regs *regs)
15dbf27c 6839{
4a32fea9 6840 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6841 struct perf_event *event;
76e1d904 6842 struct hlist_head *head;
15dbf27c 6843
76e1d904 6844 rcu_read_lock();
b28ab83c 6845 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6846 if (!head)
6847 goto end;
6848
b67bfe0d 6849 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6850 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6851 perf_swevent_event(event, nr, data, regs);
15dbf27c 6852 }
76e1d904
FW
6853end:
6854 rcu_read_unlock();
15dbf27c
PZ
6855}
6856
86038c5e
PZI
6857DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6858
4ed7c92d 6859int perf_swevent_get_recursion_context(void)
96f6d444 6860{
4a32fea9 6861 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6862
b28ab83c 6863 return get_recursion_context(swhash->recursion);
96f6d444 6864}
645e8cc0 6865EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6866
fa9f90be 6867inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6868{
4a32fea9 6869 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6870
b28ab83c 6871 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6872}
15dbf27c 6873
86038c5e 6874void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6875{
a4234bfc 6876 struct perf_sample_data data;
4ed7c92d 6877
86038c5e 6878 if (WARN_ON_ONCE(!regs))
4ed7c92d 6879 return;
a4234bfc 6880
fd0d000b 6881 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6882 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6883}
6884
6885void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6886{
6887 int rctx;
6888
6889 preempt_disable_notrace();
6890 rctx = perf_swevent_get_recursion_context();
6891 if (unlikely(rctx < 0))
6892 goto fail;
6893
6894 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6895
6896 perf_swevent_put_recursion_context(rctx);
86038c5e 6897fail:
1c024eca 6898 preempt_enable_notrace();
b8e83514
PZ
6899}
6900
cdd6c482 6901static void perf_swevent_read(struct perf_event *event)
15dbf27c 6902{
15dbf27c
PZ
6903}
6904
a4eaf7f1 6905static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6906{
4a32fea9 6907 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6908 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6909 struct hlist_head *head;
6910
6c7e550f 6911 if (is_sampling_event(event)) {
7b4b6658 6912 hwc->last_period = hwc->sample_period;
cdd6c482 6913 perf_swevent_set_period(event);
7b4b6658 6914 }
76e1d904 6915
a4eaf7f1
PZ
6916 hwc->state = !(flags & PERF_EF_START);
6917
b28ab83c 6918 head = find_swevent_head(swhash, event);
12ca6ad2 6919 if (WARN_ON_ONCE(!head))
76e1d904
FW
6920 return -EINVAL;
6921
6922 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6923 perf_event_update_userpage(event);
76e1d904 6924
15dbf27c
PZ
6925 return 0;
6926}
6927
a4eaf7f1 6928static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6929{
76e1d904 6930 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6931}
6932
a4eaf7f1 6933static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6934{
a4eaf7f1 6935 event->hw.state = 0;
d6d020e9 6936}
aa9c4c0f 6937
a4eaf7f1 6938static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6939{
a4eaf7f1 6940 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6941}
6942
49f135ed
FW
6943/* Deref the hlist from the update side */
6944static inline struct swevent_hlist *
b28ab83c 6945swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6946{
b28ab83c
PZ
6947 return rcu_dereference_protected(swhash->swevent_hlist,
6948 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6949}
6950
b28ab83c 6951static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6952{
b28ab83c 6953 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6954
49f135ed 6955 if (!hlist)
76e1d904
FW
6956 return;
6957
70691d4a 6958 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6959 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6960}
6961
3b364d7b 6962static void swevent_hlist_put_cpu(int cpu)
76e1d904 6963{
b28ab83c 6964 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6965
b28ab83c 6966 mutex_lock(&swhash->hlist_mutex);
76e1d904 6967
b28ab83c
PZ
6968 if (!--swhash->hlist_refcount)
6969 swevent_hlist_release(swhash);
76e1d904 6970
b28ab83c 6971 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6972}
6973
3b364d7b 6974static void swevent_hlist_put(void)
76e1d904
FW
6975{
6976 int cpu;
6977
76e1d904 6978 for_each_possible_cpu(cpu)
3b364d7b 6979 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6980}
6981
3b364d7b 6982static int swevent_hlist_get_cpu(int cpu)
76e1d904 6983{
b28ab83c 6984 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6985 int err = 0;
6986
b28ab83c 6987 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6988 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6989 struct swevent_hlist *hlist;
6990
6991 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6992 if (!hlist) {
6993 err = -ENOMEM;
6994 goto exit;
6995 }
b28ab83c 6996 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6997 }
b28ab83c 6998 swhash->hlist_refcount++;
9ed6060d 6999exit:
b28ab83c 7000 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7001
7002 return err;
7003}
7004
3b364d7b 7005static int swevent_hlist_get(void)
76e1d904 7006{
3b364d7b 7007 int err, cpu, failed_cpu;
76e1d904 7008
76e1d904
FW
7009 get_online_cpus();
7010 for_each_possible_cpu(cpu) {
3b364d7b 7011 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7012 if (err) {
7013 failed_cpu = cpu;
7014 goto fail;
7015 }
7016 }
7017 put_online_cpus();
7018
7019 return 0;
9ed6060d 7020fail:
76e1d904
FW
7021 for_each_possible_cpu(cpu) {
7022 if (cpu == failed_cpu)
7023 break;
3b364d7b 7024 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7025 }
7026
7027 put_online_cpus();
7028 return err;
7029}
7030
c5905afb 7031struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7032
b0a873eb
PZ
7033static void sw_perf_event_destroy(struct perf_event *event)
7034{
7035 u64 event_id = event->attr.config;
95476b64 7036
b0a873eb
PZ
7037 WARN_ON(event->parent);
7038
c5905afb 7039 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7040 swevent_hlist_put();
b0a873eb
PZ
7041}
7042
7043static int perf_swevent_init(struct perf_event *event)
7044{
8176cced 7045 u64 event_id = event->attr.config;
b0a873eb
PZ
7046
7047 if (event->attr.type != PERF_TYPE_SOFTWARE)
7048 return -ENOENT;
7049
2481c5fa
SE
7050 /*
7051 * no branch sampling for software events
7052 */
7053 if (has_branch_stack(event))
7054 return -EOPNOTSUPP;
7055
b0a873eb
PZ
7056 switch (event_id) {
7057 case PERF_COUNT_SW_CPU_CLOCK:
7058 case PERF_COUNT_SW_TASK_CLOCK:
7059 return -ENOENT;
7060
7061 default:
7062 break;
7063 }
7064
ce677831 7065 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7066 return -ENOENT;
7067
7068 if (!event->parent) {
7069 int err;
7070
3b364d7b 7071 err = swevent_hlist_get();
b0a873eb
PZ
7072 if (err)
7073 return err;
7074
c5905afb 7075 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7076 event->destroy = sw_perf_event_destroy;
7077 }
7078
7079 return 0;
7080}
7081
7082static struct pmu perf_swevent = {
89a1e187 7083 .task_ctx_nr = perf_sw_context,
95476b64 7084
34f43927
PZ
7085 .capabilities = PERF_PMU_CAP_NO_NMI,
7086
b0a873eb 7087 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7088 .add = perf_swevent_add,
7089 .del = perf_swevent_del,
7090 .start = perf_swevent_start,
7091 .stop = perf_swevent_stop,
1c024eca 7092 .read = perf_swevent_read,
1c024eca
PZ
7093};
7094
b0a873eb
PZ
7095#ifdef CONFIG_EVENT_TRACING
7096
1c024eca
PZ
7097static int perf_tp_filter_match(struct perf_event *event,
7098 struct perf_sample_data *data)
7099{
7100 void *record = data->raw->data;
7101
b71b437e
PZ
7102 /* only top level events have filters set */
7103 if (event->parent)
7104 event = event->parent;
7105
1c024eca
PZ
7106 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7107 return 1;
7108 return 0;
7109}
7110
7111static int perf_tp_event_match(struct perf_event *event,
7112 struct perf_sample_data *data,
7113 struct pt_regs *regs)
7114{
a0f7d0f7
FW
7115 if (event->hw.state & PERF_HES_STOPPED)
7116 return 0;
580d607c
PZ
7117 /*
7118 * All tracepoints are from kernel-space.
7119 */
7120 if (event->attr.exclude_kernel)
1c024eca
PZ
7121 return 0;
7122
7123 if (!perf_tp_filter_match(event, data))
7124 return 0;
7125
7126 return 1;
7127}
7128
7129void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7130 struct pt_regs *regs, struct hlist_head *head, int rctx,
7131 struct task_struct *task)
95476b64
FW
7132{
7133 struct perf_sample_data data;
1c024eca 7134 struct perf_event *event;
1c024eca 7135
95476b64
FW
7136 struct perf_raw_record raw = {
7137 .size = entry_size,
7138 .data = record,
7139 };
7140
fd0d000b 7141 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7142 data.raw = &raw;
7143
b67bfe0d 7144 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7145 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7146 perf_swevent_event(event, count, &data, regs);
4f41c013 7147 }
ecc55f84 7148
e6dab5ff
AV
7149 /*
7150 * If we got specified a target task, also iterate its context and
7151 * deliver this event there too.
7152 */
7153 if (task && task != current) {
7154 struct perf_event_context *ctx;
7155 struct trace_entry *entry = record;
7156
7157 rcu_read_lock();
7158 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7159 if (!ctx)
7160 goto unlock;
7161
7162 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7163 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7164 continue;
7165 if (event->attr.config != entry->type)
7166 continue;
7167 if (perf_tp_event_match(event, &data, regs))
7168 perf_swevent_event(event, count, &data, regs);
7169 }
7170unlock:
7171 rcu_read_unlock();
7172 }
7173
ecc55f84 7174 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7175}
7176EXPORT_SYMBOL_GPL(perf_tp_event);
7177
cdd6c482 7178static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7179{
1c024eca 7180 perf_trace_destroy(event);
e077df4f
PZ
7181}
7182
b0a873eb 7183static int perf_tp_event_init(struct perf_event *event)
e077df4f 7184{
76e1d904
FW
7185 int err;
7186
b0a873eb
PZ
7187 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7188 return -ENOENT;
7189
2481c5fa
SE
7190 /*
7191 * no branch sampling for tracepoint events
7192 */
7193 if (has_branch_stack(event))
7194 return -EOPNOTSUPP;
7195
1c024eca
PZ
7196 err = perf_trace_init(event);
7197 if (err)
b0a873eb 7198 return err;
e077df4f 7199
cdd6c482 7200 event->destroy = tp_perf_event_destroy;
e077df4f 7201
b0a873eb
PZ
7202 return 0;
7203}
7204
7205static struct pmu perf_tracepoint = {
89a1e187
PZ
7206 .task_ctx_nr = perf_sw_context,
7207
b0a873eb 7208 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7209 .add = perf_trace_add,
7210 .del = perf_trace_del,
7211 .start = perf_swevent_start,
7212 .stop = perf_swevent_stop,
b0a873eb 7213 .read = perf_swevent_read,
b0a873eb
PZ
7214};
7215
7216static inline void perf_tp_register(void)
7217{
2e80a82a 7218 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7219}
6fb2915d
LZ
7220
7221static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7222{
7223 char *filter_str;
7224 int ret;
7225
7226 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7227 return -EINVAL;
7228
7229 filter_str = strndup_user(arg, PAGE_SIZE);
7230 if (IS_ERR(filter_str))
7231 return PTR_ERR(filter_str);
7232
7233 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7234
7235 kfree(filter_str);
7236 return ret;
7237}
7238
7239static void perf_event_free_filter(struct perf_event *event)
7240{
7241 ftrace_profile_free_filter(event);
7242}
7243
2541517c
AS
7244static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7245{
7246 struct bpf_prog *prog;
7247
7248 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7249 return -EINVAL;
7250
7251 if (event->tp_event->prog)
7252 return -EEXIST;
7253
04a22fae
WN
7254 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7255 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7256 return -EINVAL;
7257
7258 prog = bpf_prog_get(prog_fd);
7259 if (IS_ERR(prog))
7260 return PTR_ERR(prog);
7261
6c373ca8 7262 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7263 /* valid fd, but invalid bpf program type */
7264 bpf_prog_put(prog);
7265 return -EINVAL;
7266 }
7267
7268 event->tp_event->prog = prog;
7269
7270 return 0;
7271}
7272
7273static void perf_event_free_bpf_prog(struct perf_event *event)
7274{
7275 struct bpf_prog *prog;
7276
7277 if (!event->tp_event)
7278 return;
7279
7280 prog = event->tp_event->prog;
7281 if (prog) {
7282 event->tp_event->prog = NULL;
7283 bpf_prog_put(prog);
7284 }
7285}
7286
e077df4f 7287#else
6fb2915d 7288
b0a873eb 7289static inline void perf_tp_register(void)
e077df4f 7290{
e077df4f 7291}
6fb2915d
LZ
7292
7293static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7294{
7295 return -ENOENT;
7296}
7297
7298static void perf_event_free_filter(struct perf_event *event)
7299{
7300}
7301
2541517c
AS
7302static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7303{
7304 return -ENOENT;
7305}
7306
7307static void perf_event_free_bpf_prog(struct perf_event *event)
7308{
7309}
07b139c8 7310#endif /* CONFIG_EVENT_TRACING */
e077df4f 7311
24f1e32c 7312#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7313void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7314{
f5ffe02e
FW
7315 struct perf_sample_data sample;
7316 struct pt_regs *regs = data;
7317
fd0d000b 7318 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7319
a4eaf7f1 7320 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7321 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7322}
7323#endif
7324
b0a873eb
PZ
7325/*
7326 * hrtimer based swevent callback
7327 */
f29ac756 7328
b0a873eb 7329static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7330{
b0a873eb
PZ
7331 enum hrtimer_restart ret = HRTIMER_RESTART;
7332 struct perf_sample_data data;
7333 struct pt_regs *regs;
7334 struct perf_event *event;
7335 u64 period;
f29ac756 7336
b0a873eb 7337 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7338
7339 if (event->state != PERF_EVENT_STATE_ACTIVE)
7340 return HRTIMER_NORESTART;
7341
b0a873eb 7342 event->pmu->read(event);
f344011c 7343
fd0d000b 7344 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7345 regs = get_irq_regs();
7346
7347 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7348 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7349 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7350 ret = HRTIMER_NORESTART;
7351 }
24f1e32c 7352
b0a873eb
PZ
7353 period = max_t(u64, 10000, event->hw.sample_period);
7354 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7355
b0a873eb 7356 return ret;
f29ac756
PZ
7357}
7358
b0a873eb 7359static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7360{
b0a873eb 7361 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7362 s64 period;
7363
7364 if (!is_sampling_event(event))
7365 return;
f5ffe02e 7366
5d508e82
FBH
7367 period = local64_read(&hwc->period_left);
7368 if (period) {
7369 if (period < 0)
7370 period = 10000;
fa407f35 7371
5d508e82
FBH
7372 local64_set(&hwc->period_left, 0);
7373 } else {
7374 period = max_t(u64, 10000, hwc->sample_period);
7375 }
3497d206
TG
7376 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7377 HRTIMER_MODE_REL_PINNED);
24f1e32c 7378}
b0a873eb
PZ
7379
7380static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7381{
b0a873eb
PZ
7382 struct hw_perf_event *hwc = &event->hw;
7383
6c7e550f 7384 if (is_sampling_event(event)) {
b0a873eb 7385 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7386 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7387
7388 hrtimer_cancel(&hwc->hrtimer);
7389 }
24f1e32c
FW
7390}
7391
ba3dd36c
PZ
7392static void perf_swevent_init_hrtimer(struct perf_event *event)
7393{
7394 struct hw_perf_event *hwc = &event->hw;
7395
7396 if (!is_sampling_event(event))
7397 return;
7398
7399 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7400 hwc->hrtimer.function = perf_swevent_hrtimer;
7401
7402 /*
7403 * Since hrtimers have a fixed rate, we can do a static freq->period
7404 * mapping and avoid the whole period adjust feedback stuff.
7405 */
7406 if (event->attr.freq) {
7407 long freq = event->attr.sample_freq;
7408
7409 event->attr.sample_period = NSEC_PER_SEC / freq;
7410 hwc->sample_period = event->attr.sample_period;
7411 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7412 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7413 event->attr.freq = 0;
7414 }
7415}
7416
b0a873eb
PZ
7417/*
7418 * Software event: cpu wall time clock
7419 */
7420
7421static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7422{
b0a873eb
PZ
7423 s64 prev;
7424 u64 now;
7425
a4eaf7f1 7426 now = local_clock();
b0a873eb
PZ
7427 prev = local64_xchg(&event->hw.prev_count, now);
7428 local64_add(now - prev, &event->count);
24f1e32c 7429}
24f1e32c 7430
a4eaf7f1 7431static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7432{
a4eaf7f1 7433 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7434 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7435}
7436
a4eaf7f1 7437static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7438{
b0a873eb
PZ
7439 perf_swevent_cancel_hrtimer(event);
7440 cpu_clock_event_update(event);
7441}
f29ac756 7442
a4eaf7f1
PZ
7443static int cpu_clock_event_add(struct perf_event *event, int flags)
7444{
7445 if (flags & PERF_EF_START)
7446 cpu_clock_event_start(event, flags);
6a694a60 7447 perf_event_update_userpage(event);
a4eaf7f1
PZ
7448
7449 return 0;
7450}
7451
7452static void cpu_clock_event_del(struct perf_event *event, int flags)
7453{
7454 cpu_clock_event_stop(event, flags);
7455}
7456
b0a873eb
PZ
7457static void cpu_clock_event_read(struct perf_event *event)
7458{
7459 cpu_clock_event_update(event);
7460}
f344011c 7461
b0a873eb
PZ
7462static int cpu_clock_event_init(struct perf_event *event)
7463{
7464 if (event->attr.type != PERF_TYPE_SOFTWARE)
7465 return -ENOENT;
7466
7467 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7468 return -ENOENT;
7469
2481c5fa
SE
7470 /*
7471 * no branch sampling for software events
7472 */
7473 if (has_branch_stack(event))
7474 return -EOPNOTSUPP;
7475
ba3dd36c
PZ
7476 perf_swevent_init_hrtimer(event);
7477
b0a873eb 7478 return 0;
f29ac756
PZ
7479}
7480
b0a873eb 7481static struct pmu perf_cpu_clock = {
89a1e187
PZ
7482 .task_ctx_nr = perf_sw_context,
7483
34f43927
PZ
7484 .capabilities = PERF_PMU_CAP_NO_NMI,
7485
b0a873eb 7486 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7487 .add = cpu_clock_event_add,
7488 .del = cpu_clock_event_del,
7489 .start = cpu_clock_event_start,
7490 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7491 .read = cpu_clock_event_read,
7492};
7493
7494/*
7495 * Software event: task time clock
7496 */
7497
7498static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7499{
b0a873eb
PZ
7500 u64 prev;
7501 s64 delta;
5c92d124 7502
b0a873eb
PZ
7503 prev = local64_xchg(&event->hw.prev_count, now);
7504 delta = now - prev;
7505 local64_add(delta, &event->count);
7506}
5c92d124 7507
a4eaf7f1 7508static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7509{
a4eaf7f1 7510 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7511 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7512}
7513
a4eaf7f1 7514static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7515{
7516 perf_swevent_cancel_hrtimer(event);
7517 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7518}
7519
7520static int task_clock_event_add(struct perf_event *event, int flags)
7521{
7522 if (flags & PERF_EF_START)
7523 task_clock_event_start(event, flags);
6a694a60 7524 perf_event_update_userpage(event);
b0a873eb 7525
a4eaf7f1
PZ
7526 return 0;
7527}
7528
7529static void task_clock_event_del(struct perf_event *event, int flags)
7530{
7531 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7532}
7533
7534static void task_clock_event_read(struct perf_event *event)
7535{
768a06e2
PZ
7536 u64 now = perf_clock();
7537 u64 delta = now - event->ctx->timestamp;
7538 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7539
7540 task_clock_event_update(event, time);
7541}
7542
7543static int task_clock_event_init(struct perf_event *event)
6fb2915d 7544{
b0a873eb
PZ
7545 if (event->attr.type != PERF_TYPE_SOFTWARE)
7546 return -ENOENT;
7547
7548 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7549 return -ENOENT;
7550
2481c5fa
SE
7551 /*
7552 * no branch sampling for software events
7553 */
7554 if (has_branch_stack(event))
7555 return -EOPNOTSUPP;
7556
ba3dd36c
PZ
7557 perf_swevent_init_hrtimer(event);
7558
b0a873eb 7559 return 0;
6fb2915d
LZ
7560}
7561
b0a873eb 7562static struct pmu perf_task_clock = {
89a1e187
PZ
7563 .task_ctx_nr = perf_sw_context,
7564
34f43927
PZ
7565 .capabilities = PERF_PMU_CAP_NO_NMI,
7566
b0a873eb 7567 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7568 .add = task_clock_event_add,
7569 .del = task_clock_event_del,
7570 .start = task_clock_event_start,
7571 .stop = task_clock_event_stop,
b0a873eb
PZ
7572 .read = task_clock_event_read,
7573};
6fb2915d 7574
ad5133b7 7575static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7576{
e077df4f 7577}
6fb2915d 7578
fbbe0701
SB
7579static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7580{
7581}
7582
ad5133b7 7583static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7584{
ad5133b7 7585 return 0;
6fb2915d
LZ
7586}
7587
18ab2cd3 7588static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7589
7590static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7591{
fbbe0701
SB
7592 __this_cpu_write(nop_txn_flags, flags);
7593
7594 if (flags & ~PERF_PMU_TXN_ADD)
7595 return;
7596
ad5133b7 7597 perf_pmu_disable(pmu);
6fb2915d
LZ
7598}
7599
ad5133b7
PZ
7600static int perf_pmu_commit_txn(struct pmu *pmu)
7601{
fbbe0701
SB
7602 unsigned int flags = __this_cpu_read(nop_txn_flags);
7603
7604 __this_cpu_write(nop_txn_flags, 0);
7605
7606 if (flags & ~PERF_PMU_TXN_ADD)
7607 return 0;
7608
ad5133b7
PZ
7609 perf_pmu_enable(pmu);
7610 return 0;
7611}
e077df4f 7612
ad5133b7 7613static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7614{
fbbe0701
SB
7615 unsigned int flags = __this_cpu_read(nop_txn_flags);
7616
7617 __this_cpu_write(nop_txn_flags, 0);
7618
7619 if (flags & ~PERF_PMU_TXN_ADD)
7620 return;
7621
ad5133b7 7622 perf_pmu_enable(pmu);
24f1e32c
FW
7623}
7624
35edc2a5
PZ
7625static int perf_event_idx_default(struct perf_event *event)
7626{
c719f560 7627 return 0;
35edc2a5
PZ
7628}
7629
8dc85d54
PZ
7630/*
7631 * Ensures all contexts with the same task_ctx_nr have the same
7632 * pmu_cpu_context too.
7633 */
9e317041 7634static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7635{
8dc85d54 7636 struct pmu *pmu;
b326e956 7637
8dc85d54
PZ
7638 if (ctxn < 0)
7639 return NULL;
24f1e32c 7640
8dc85d54
PZ
7641 list_for_each_entry(pmu, &pmus, entry) {
7642 if (pmu->task_ctx_nr == ctxn)
7643 return pmu->pmu_cpu_context;
7644 }
24f1e32c 7645
8dc85d54 7646 return NULL;
24f1e32c
FW
7647}
7648
51676957 7649static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7650{
51676957
PZ
7651 int cpu;
7652
7653 for_each_possible_cpu(cpu) {
7654 struct perf_cpu_context *cpuctx;
7655
7656 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7657
3f1f3320
PZ
7658 if (cpuctx->unique_pmu == old_pmu)
7659 cpuctx->unique_pmu = pmu;
51676957
PZ
7660 }
7661}
7662
7663static void free_pmu_context(struct pmu *pmu)
7664{
7665 struct pmu *i;
f5ffe02e 7666
8dc85d54 7667 mutex_lock(&pmus_lock);
0475f9ea 7668 /*
8dc85d54 7669 * Like a real lame refcount.
0475f9ea 7670 */
51676957
PZ
7671 list_for_each_entry(i, &pmus, entry) {
7672 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7673 update_pmu_context(i, pmu);
8dc85d54 7674 goto out;
51676957 7675 }
8dc85d54 7676 }
d6d020e9 7677
51676957 7678 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7679out:
7680 mutex_unlock(&pmus_lock);
24f1e32c 7681}
2e80a82a 7682static struct idr pmu_idr;
d6d020e9 7683
abe43400
PZ
7684static ssize_t
7685type_show(struct device *dev, struct device_attribute *attr, char *page)
7686{
7687 struct pmu *pmu = dev_get_drvdata(dev);
7688
7689 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7690}
90826ca7 7691static DEVICE_ATTR_RO(type);
abe43400 7692
62b85639
SE
7693static ssize_t
7694perf_event_mux_interval_ms_show(struct device *dev,
7695 struct device_attribute *attr,
7696 char *page)
7697{
7698 struct pmu *pmu = dev_get_drvdata(dev);
7699
7700 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7701}
7702
272325c4
PZ
7703static DEFINE_MUTEX(mux_interval_mutex);
7704
62b85639
SE
7705static ssize_t
7706perf_event_mux_interval_ms_store(struct device *dev,
7707 struct device_attribute *attr,
7708 const char *buf, size_t count)
7709{
7710 struct pmu *pmu = dev_get_drvdata(dev);
7711 int timer, cpu, ret;
7712
7713 ret = kstrtoint(buf, 0, &timer);
7714 if (ret)
7715 return ret;
7716
7717 if (timer < 1)
7718 return -EINVAL;
7719
7720 /* same value, noting to do */
7721 if (timer == pmu->hrtimer_interval_ms)
7722 return count;
7723
272325c4 7724 mutex_lock(&mux_interval_mutex);
62b85639
SE
7725 pmu->hrtimer_interval_ms = timer;
7726
7727 /* update all cpuctx for this PMU */
272325c4
PZ
7728 get_online_cpus();
7729 for_each_online_cpu(cpu) {
62b85639
SE
7730 struct perf_cpu_context *cpuctx;
7731 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7732 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7733
272325c4
PZ
7734 cpu_function_call(cpu,
7735 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7736 }
272325c4
PZ
7737 put_online_cpus();
7738 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7739
7740 return count;
7741}
90826ca7 7742static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7743
90826ca7
GKH
7744static struct attribute *pmu_dev_attrs[] = {
7745 &dev_attr_type.attr,
7746 &dev_attr_perf_event_mux_interval_ms.attr,
7747 NULL,
abe43400 7748};
90826ca7 7749ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7750
7751static int pmu_bus_running;
7752static struct bus_type pmu_bus = {
7753 .name = "event_source",
90826ca7 7754 .dev_groups = pmu_dev_groups,
abe43400
PZ
7755};
7756
7757static void pmu_dev_release(struct device *dev)
7758{
7759 kfree(dev);
7760}
7761
7762static int pmu_dev_alloc(struct pmu *pmu)
7763{
7764 int ret = -ENOMEM;
7765
7766 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7767 if (!pmu->dev)
7768 goto out;
7769
0c9d42ed 7770 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7771 device_initialize(pmu->dev);
7772 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7773 if (ret)
7774 goto free_dev;
7775
7776 dev_set_drvdata(pmu->dev, pmu);
7777 pmu->dev->bus = &pmu_bus;
7778 pmu->dev->release = pmu_dev_release;
7779 ret = device_add(pmu->dev);
7780 if (ret)
7781 goto free_dev;
7782
7783out:
7784 return ret;
7785
7786free_dev:
7787 put_device(pmu->dev);
7788 goto out;
7789}
7790
547e9fd7 7791static struct lock_class_key cpuctx_mutex;
facc4307 7792static struct lock_class_key cpuctx_lock;
547e9fd7 7793
03d8e80b 7794int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7795{
108b02cf 7796 int cpu, ret;
24f1e32c 7797
b0a873eb 7798 mutex_lock(&pmus_lock);
33696fc0
PZ
7799 ret = -ENOMEM;
7800 pmu->pmu_disable_count = alloc_percpu(int);
7801 if (!pmu->pmu_disable_count)
7802 goto unlock;
f29ac756 7803
2e80a82a
PZ
7804 pmu->type = -1;
7805 if (!name)
7806 goto skip_type;
7807 pmu->name = name;
7808
7809 if (type < 0) {
0e9c3be2
TH
7810 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7811 if (type < 0) {
7812 ret = type;
2e80a82a
PZ
7813 goto free_pdc;
7814 }
7815 }
7816 pmu->type = type;
7817
abe43400
PZ
7818 if (pmu_bus_running) {
7819 ret = pmu_dev_alloc(pmu);
7820 if (ret)
7821 goto free_idr;
7822 }
7823
2e80a82a 7824skip_type:
26657848
PZ
7825 if (pmu->task_ctx_nr == perf_hw_context) {
7826 static int hw_context_taken = 0;
7827
7828 if (WARN_ON_ONCE(hw_context_taken))
7829 pmu->task_ctx_nr = perf_invalid_context;
7830
7831 hw_context_taken = 1;
7832 }
7833
8dc85d54
PZ
7834 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7835 if (pmu->pmu_cpu_context)
7836 goto got_cpu_context;
f29ac756 7837
c4814202 7838 ret = -ENOMEM;
108b02cf
PZ
7839 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7840 if (!pmu->pmu_cpu_context)
abe43400 7841 goto free_dev;
f344011c 7842
108b02cf
PZ
7843 for_each_possible_cpu(cpu) {
7844 struct perf_cpu_context *cpuctx;
7845
7846 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7847 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7848 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7849 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7850 cpuctx->ctx.pmu = pmu;
9e630205 7851
272325c4 7852 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7853
3f1f3320 7854 cpuctx->unique_pmu = pmu;
108b02cf 7855 }
76e1d904 7856
8dc85d54 7857got_cpu_context:
ad5133b7
PZ
7858 if (!pmu->start_txn) {
7859 if (pmu->pmu_enable) {
7860 /*
7861 * If we have pmu_enable/pmu_disable calls, install
7862 * transaction stubs that use that to try and batch
7863 * hardware accesses.
7864 */
7865 pmu->start_txn = perf_pmu_start_txn;
7866 pmu->commit_txn = perf_pmu_commit_txn;
7867 pmu->cancel_txn = perf_pmu_cancel_txn;
7868 } else {
fbbe0701 7869 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7870 pmu->commit_txn = perf_pmu_nop_int;
7871 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7872 }
5c92d124 7873 }
15dbf27c 7874
ad5133b7
PZ
7875 if (!pmu->pmu_enable) {
7876 pmu->pmu_enable = perf_pmu_nop_void;
7877 pmu->pmu_disable = perf_pmu_nop_void;
7878 }
7879
35edc2a5
PZ
7880 if (!pmu->event_idx)
7881 pmu->event_idx = perf_event_idx_default;
7882
b0a873eb 7883 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7884 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7885 ret = 0;
7886unlock:
b0a873eb
PZ
7887 mutex_unlock(&pmus_lock);
7888
33696fc0 7889 return ret;
108b02cf 7890
abe43400
PZ
7891free_dev:
7892 device_del(pmu->dev);
7893 put_device(pmu->dev);
7894
2e80a82a
PZ
7895free_idr:
7896 if (pmu->type >= PERF_TYPE_MAX)
7897 idr_remove(&pmu_idr, pmu->type);
7898
108b02cf
PZ
7899free_pdc:
7900 free_percpu(pmu->pmu_disable_count);
7901 goto unlock;
f29ac756 7902}
c464c76e 7903EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7904
b0a873eb 7905void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7906{
b0a873eb
PZ
7907 mutex_lock(&pmus_lock);
7908 list_del_rcu(&pmu->entry);
7909 mutex_unlock(&pmus_lock);
5c92d124 7910
0475f9ea 7911 /*
cde8e884
PZ
7912 * We dereference the pmu list under both SRCU and regular RCU, so
7913 * synchronize against both of those.
0475f9ea 7914 */
b0a873eb 7915 synchronize_srcu(&pmus_srcu);
cde8e884 7916 synchronize_rcu();
d6d020e9 7917
33696fc0 7918 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7919 if (pmu->type >= PERF_TYPE_MAX)
7920 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7921 device_del(pmu->dev);
7922 put_device(pmu->dev);
51676957 7923 free_pmu_context(pmu);
b0a873eb 7924}
c464c76e 7925EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7926
cc34b98b
MR
7927static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7928{
ccd41c86 7929 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7930 int ret;
7931
7932 if (!try_module_get(pmu->module))
7933 return -ENODEV;
ccd41c86
PZ
7934
7935 if (event->group_leader != event) {
8b10c5e2
PZ
7936 /*
7937 * This ctx->mutex can nest when we're called through
7938 * inheritance. See the perf_event_ctx_lock_nested() comment.
7939 */
7940 ctx = perf_event_ctx_lock_nested(event->group_leader,
7941 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7942 BUG_ON(!ctx);
7943 }
7944
cc34b98b
MR
7945 event->pmu = pmu;
7946 ret = pmu->event_init(event);
ccd41c86
PZ
7947
7948 if (ctx)
7949 perf_event_ctx_unlock(event->group_leader, ctx);
7950
cc34b98b
MR
7951 if (ret)
7952 module_put(pmu->module);
7953
7954 return ret;
7955}
7956
18ab2cd3 7957static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7958{
7959 struct pmu *pmu = NULL;
7960 int idx;
940c5b29 7961 int ret;
b0a873eb
PZ
7962
7963 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7964
7965 rcu_read_lock();
7966 pmu = idr_find(&pmu_idr, event->attr.type);
7967 rcu_read_unlock();
940c5b29 7968 if (pmu) {
cc34b98b 7969 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7970 if (ret)
7971 pmu = ERR_PTR(ret);
2e80a82a 7972 goto unlock;
940c5b29 7973 }
2e80a82a 7974
b0a873eb 7975 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7976 ret = perf_try_init_event(pmu, event);
b0a873eb 7977 if (!ret)
e5f4d339 7978 goto unlock;
76e1d904 7979
b0a873eb
PZ
7980 if (ret != -ENOENT) {
7981 pmu = ERR_PTR(ret);
e5f4d339 7982 goto unlock;
f344011c 7983 }
5c92d124 7984 }
e5f4d339
PZ
7985 pmu = ERR_PTR(-ENOENT);
7986unlock:
b0a873eb 7987 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7988
4aeb0b42 7989 return pmu;
5c92d124
IM
7990}
7991
4beb31f3
FW
7992static void account_event_cpu(struct perf_event *event, int cpu)
7993{
7994 if (event->parent)
7995 return;
7996
4beb31f3
FW
7997 if (is_cgroup_event(event))
7998 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7999}
8000
555e0c1e
FW
8001/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8002static void account_freq_event_nohz(void)
8003{
8004#ifdef CONFIG_NO_HZ_FULL
8005 /* Lock so we don't race with concurrent unaccount */
8006 spin_lock(&nr_freq_lock);
8007 if (atomic_inc_return(&nr_freq_events) == 1)
8008 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8009 spin_unlock(&nr_freq_lock);
8010#endif
8011}
8012
8013static void account_freq_event(void)
8014{
8015 if (tick_nohz_full_enabled())
8016 account_freq_event_nohz();
8017 else
8018 atomic_inc(&nr_freq_events);
8019}
8020
8021
766d6c07
FW
8022static void account_event(struct perf_event *event)
8023{
25432ae9
PZ
8024 bool inc = false;
8025
4beb31f3
FW
8026 if (event->parent)
8027 return;
8028
766d6c07 8029 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8030 inc = true;
766d6c07
FW
8031 if (event->attr.mmap || event->attr.mmap_data)
8032 atomic_inc(&nr_mmap_events);
8033 if (event->attr.comm)
8034 atomic_inc(&nr_comm_events);
8035 if (event->attr.task)
8036 atomic_inc(&nr_task_events);
555e0c1e
FW
8037 if (event->attr.freq)
8038 account_freq_event();
45ac1403
AH
8039 if (event->attr.context_switch) {
8040 atomic_inc(&nr_switch_events);
25432ae9 8041 inc = true;
45ac1403 8042 }
4beb31f3 8043 if (has_branch_stack(event))
25432ae9 8044 inc = true;
4beb31f3 8045 if (is_cgroup_event(event))
25432ae9
PZ
8046 inc = true;
8047
9107c89e
PZ
8048 if (inc) {
8049 if (atomic_inc_not_zero(&perf_sched_count))
8050 goto enabled;
8051
8052 mutex_lock(&perf_sched_mutex);
8053 if (!atomic_read(&perf_sched_count)) {
8054 static_branch_enable(&perf_sched_events);
8055 /*
8056 * Guarantee that all CPUs observe they key change and
8057 * call the perf scheduling hooks before proceeding to
8058 * install events that need them.
8059 */
8060 synchronize_sched();
8061 }
8062 /*
8063 * Now that we have waited for the sync_sched(), allow further
8064 * increments to by-pass the mutex.
8065 */
8066 atomic_inc(&perf_sched_count);
8067 mutex_unlock(&perf_sched_mutex);
8068 }
8069enabled:
4beb31f3
FW
8070
8071 account_event_cpu(event, event->cpu);
766d6c07
FW
8072}
8073
0793a61d 8074/*
cdd6c482 8075 * Allocate and initialize a event structure
0793a61d 8076 */
cdd6c482 8077static struct perf_event *
c3f00c70 8078perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8079 struct task_struct *task,
8080 struct perf_event *group_leader,
8081 struct perf_event *parent_event,
4dc0da86 8082 perf_overflow_handler_t overflow_handler,
79dff51e 8083 void *context, int cgroup_fd)
0793a61d 8084{
51b0fe39 8085 struct pmu *pmu;
cdd6c482
IM
8086 struct perf_event *event;
8087 struct hw_perf_event *hwc;
90983b16 8088 long err = -EINVAL;
0793a61d 8089
66832eb4
ON
8090 if ((unsigned)cpu >= nr_cpu_ids) {
8091 if (!task || cpu != -1)
8092 return ERR_PTR(-EINVAL);
8093 }
8094
c3f00c70 8095 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8096 if (!event)
d5d2bc0d 8097 return ERR_PTR(-ENOMEM);
0793a61d 8098
04289bb9 8099 /*
cdd6c482 8100 * Single events are their own group leaders, with an
04289bb9
IM
8101 * empty sibling list:
8102 */
8103 if (!group_leader)
cdd6c482 8104 group_leader = event;
04289bb9 8105
cdd6c482
IM
8106 mutex_init(&event->child_mutex);
8107 INIT_LIST_HEAD(&event->child_list);
fccc714b 8108
cdd6c482
IM
8109 INIT_LIST_HEAD(&event->group_entry);
8110 INIT_LIST_HEAD(&event->event_entry);
8111 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8112 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8113 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
8114 INIT_HLIST_NODE(&event->hlist_entry);
8115
10c6db11 8116
cdd6c482 8117 init_waitqueue_head(&event->waitq);
e360adbe 8118 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8119
cdd6c482 8120 mutex_init(&event->mmap_mutex);
7b732a75 8121
a6fa941d 8122 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8123 event->cpu = cpu;
8124 event->attr = *attr;
8125 event->group_leader = group_leader;
8126 event->pmu = NULL;
cdd6c482 8127 event->oncpu = -1;
a96bbc16 8128
cdd6c482 8129 event->parent = parent_event;
b84fbc9f 8130
17cf22c3 8131 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8132 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8133
cdd6c482 8134 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8135
d580ff86
PZ
8136 if (task) {
8137 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8138 /*
50f16a8b
PZ
8139 * XXX pmu::event_init needs to know what task to account to
8140 * and we cannot use the ctx information because we need the
8141 * pmu before we get a ctx.
d580ff86 8142 */
50f16a8b 8143 event->hw.target = task;
d580ff86
PZ
8144 }
8145
34f43927
PZ
8146 event->clock = &local_clock;
8147 if (parent_event)
8148 event->clock = parent_event->clock;
8149
4dc0da86 8150 if (!overflow_handler && parent_event) {
b326e956 8151 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8152 context = parent_event->overflow_handler_context;
8153 }
66832eb4 8154
b326e956 8155 event->overflow_handler = overflow_handler;
4dc0da86 8156 event->overflow_handler_context = context;
97eaf530 8157
0231bb53 8158 perf_event__state_init(event);
a86ed508 8159
4aeb0b42 8160 pmu = NULL;
b8e83514 8161
cdd6c482 8162 hwc = &event->hw;
bd2b5b12 8163 hwc->sample_period = attr->sample_period;
0d48696f 8164 if (attr->freq && attr->sample_freq)
bd2b5b12 8165 hwc->sample_period = 1;
eced1dfc 8166 hwc->last_period = hwc->sample_period;
bd2b5b12 8167
e7850595 8168 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8169
2023b359 8170 /*
cdd6c482 8171 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8172 */
3dab77fb 8173 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8174 goto err_ns;
a46a2300
YZ
8175
8176 if (!has_branch_stack(event))
8177 event->attr.branch_sample_type = 0;
2023b359 8178
79dff51e
MF
8179 if (cgroup_fd != -1) {
8180 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8181 if (err)
8182 goto err_ns;
8183 }
8184
b0a873eb 8185 pmu = perf_init_event(event);
4aeb0b42 8186 if (!pmu)
90983b16
FW
8187 goto err_ns;
8188 else if (IS_ERR(pmu)) {
4aeb0b42 8189 err = PTR_ERR(pmu);
90983b16 8190 goto err_ns;
621a01ea 8191 }
d5d2bc0d 8192
bed5b25a
AS
8193 err = exclusive_event_init(event);
8194 if (err)
8195 goto err_pmu;
8196
cdd6c482 8197 if (!event->parent) {
927c7a9e
FW
8198 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8199 err = get_callchain_buffers();
90983b16 8200 if (err)
bed5b25a 8201 goto err_per_task;
d010b332 8202 }
f344011c 8203 }
9ee318a7 8204
927a5570
AS
8205 /* symmetric to unaccount_event() in _free_event() */
8206 account_event(event);
8207
cdd6c482 8208 return event;
90983b16 8209
bed5b25a
AS
8210err_per_task:
8211 exclusive_event_destroy(event);
8212
90983b16
FW
8213err_pmu:
8214 if (event->destroy)
8215 event->destroy(event);
c464c76e 8216 module_put(pmu->module);
90983b16 8217err_ns:
79dff51e
MF
8218 if (is_cgroup_event(event))
8219 perf_detach_cgroup(event);
90983b16
FW
8220 if (event->ns)
8221 put_pid_ns(event->ns);
8222 kfree(event);
8223
8224 return ERR_PTR(err);
0793a61d
TG
8225}
8226
cdd6c482
IM
8227static int perf_copy_attr(struct perf_event_attr __user *uattr,
8228 struct perf_event_attr *attr)
974802ea 8229{
974802ea 8230 u32 size;
cdf8073d 8231 int ret;
974802ea
PZ
8232
8233 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8234 return -EFAULT;
8235
8236 /*
8237 * zero the full structure, so that a short copy will be nice.
8238 */
8239 memset(attr, 0, sizeof(*attr));
8240
8241 ret = get_user(size, &uattr->size);
8242 if (ret)
8243 return ret;
8244
8245 if (size > PAGE_SIZE) /* silly large */
8246 goto err_size;
8247
8248 if (!size) /* abi compat */
8249 size = PERF_ATTR_SIZE_VER0;
8250
8251 if (size < PERF_ATTR_SIZE_VER0)
8252 goto err_size;
8253
8254 /*
8255 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8256 * ensure all the unknown bits are 0 - i.e. new
8257 * user-space does not rely on any kernel feature
8258 * extensions we dont know about yet.
974802ea
PZ
8259 */
8260 if (size > sizeof(*attr)) {
cdf8073d
IS
8261 unsigned char __user *addr;
8262 unsigned char __user *end;
8263 unsigned char val;
974802ea 8264
cdf8073d
IS
8265 addr = (void __user *)uattr + sizeof(*attr);
8266 end = (void __user *)uattr + size;
974802ea 8267
cdf8073d 8268 for (; addr < end; addr++) {
974802ea
PZ
8269 ret = get_user(val, addr);
8270 if (ret)
8271 return ret;
8272 if (val)
8273 goto err_size;
8274 }
b3e62e35 8275 size = sizeof(*attr);
974802ea
PZ
8276 }
8277
8278 ret = copy_from_user(attr, uattr, size);
8279 if (ret)
8280 return -EFAULT;
8281
cd757645 8282 if (attr->__reserved_1)
974802ea
PZ
8283 return -EINVAL;
8284
8285 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8286 return -EINVAL;
8287
8288 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8289 return -EINVAL;
8290
bce38cd5
SE
8291 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8292 u64 mask = attr->branch_sample_type;
8293
8294 /* only using defined bits */
8295 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8296 return -EINVAL;
8297
8298 /* at least one branch bit must be set */
8299 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8300 return -EINVAL;
8301
bce38cd5
SE
8302 /* propagate priv level, when not set for branch */
8303 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8304
8305 /* exclude_kernel checked on syscall entry */
8306 if (!attr->exclude_kernel)
8307 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8308
8309 if (!attr->exclude_user)
8310 mask |= PERF_SAMPLE_BRANCH_USER;
8311
8312 if (!attr->exclude_hv)
8313 mask |= PERF_SAMPLE_BRANCH_HV;
8314 /*
8315 * adjust user setting (for HW filter setup)
8316 */
8317 attr->branch_sample_type = mask;
8318 }
e712209a
SE
8319 /* privileged levels capture (kernel, hv): check permissions */
8320 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8321 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8322 return -EACCES;
bce38cd5 8323 }
4018994f 8324
c5ebcedb 8325 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8326 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8327 if (ret)
8328 return ret;
8329 }
8330
8331 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8332 if (!arch_perf_have_user_stack_dump())
8333 return -ENOSYS;
8334
8335 /*
8336 * We have __u32 type for the size, but so far
8337 * we can only use __u16 as maximum due to the
8338 * __u16 sample size limit.
8339 */
8340 if (attr->sample_stack_user >= USHRT_MAX)
8341 ret = -EINVAL;
8342 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8343 ret = -EINVAL;
8344 }
4018994f 8345
60e2364e
SE
8346 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8347 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8348out:
8349 return ret;
8350
8351err_size:
8352 put_user(sizeof(*attr), &uattr->size);
8353 ret = -E2BIG;
8354 goto out;
8355}
8356
ac9721f3
PZ
8357static int
8358perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8359{
b69cf536 8360 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8361 int ret = -EINVAL;
8362
ac9721f3 8363 if (!output_event)
a4be7c27
PZ
8364 goto set;
8365
ac9721f3
PZ
8366 /* don't allow circular references */
8367 if (event == output_event)
a4be7c27
PZ
8368 goto out;
8369
0f139300
PZ
8370 /*
8371 * Don't allow cross-cpu buffers
8372 */
8373 if (output_event->cpu != event->cpu)
8374 goto out;
8375
8376 /*
76369139 8377 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8378 */
8379 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8380 goto out;
8381
34f43927
PZ
8382 /*
8383 * Mixing clocks in the same buffer is trouble you don't need.
8384 */
8385 if (output_event->clock != event->clock)
8386 goto out;
8387
45bfb2e5
PZ
8388 /*
8389 * If both events generate aux data, they must be on the same PMU
8390 */
8391 if (has_aux(event) && has_aux(output_event) &&
8392 event->pmu != output_event->pmu)
8393 goto out;
8394
a4be7c27 8395set:
cdd6c482 8396 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8397 /* Can't redirect output if we've got an active mmap() */
8398 if (atomic_read(&event->mmap_count))
8399 goto unlock;
a4be7c27 8400
ac9721f3 8401 if (output_event) {
76369139
FW
8402 /* get the rb we want to redirect to */
8403 rb = ring_buffer_get(output_event);
8404 if (!rb)
ac9721f3 8405 goto unlock;
a4be7c27
PZ
8406 }
8407
b69cf536 8408 ring_buffer_attach(event, rb);
9bb5d40c 8409
a4be7c27 8410 ret = 0;
ac9721f3
PZ
8411unlock:
8412 mutex_unlock(&event->mmap_mutex);
8413
a4be7c27 8414out:
a4be7c27
PZ
8415 return ret;
8416}
8417
f63a8daa
PZ
8418static void mutex_lock_double(struct mutex *a, struct mutex *b)
8419{
8420 if (b < a)
8421 swap(a, b);
8422
8423 mutex_lock(a);
8424 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8425}
8426
34f43927
PZ
8427static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8428{
8429 bool nmi_safe = false;
8430
8431 switch (clk_id) {
8432 case CLOCK_MONOTONIC:
8433 event->clock = &ktime_get_mono_fast_ns;
8434 nmi_safe = true;
8435 break;
8436
8437 case CLOCK_MONOTONIC_RAW:
8438 event->clock = &ktime_get_raw_fast_ns;
8439 nmi_safe = true;
8440 break;
8441
8442 case CLOCK_REALTIME:
8443 event->clock = &ktime_get_real_ns;
8444 break;
8445
8446 case CLOCK_BOOTTIME:
8447 event->clock = &ktime_get_boot_ns;
8448 break;
8449
8450 case CLOCK_TAI:
8451 event->clock = &ktime_get_tai_ns;
8452 break;
8453
8454 default:
8455 return -EINVAL;
8456 }
8457
8458 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8459 return -EINVAL;
8460
8461 return 0;
8462}
8463
0793a61d 8464/**
cdd6c482 8465 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8466 *
cdd6c482 8467 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8468 * @pid: target pid
9f66a381 8469 * @cpu: target cpu
cdd6c482 8470 * @group_fd: group leader event fd
0793a61d 8471 */
cdd6c482
IM
8472SYSCALL_DEFINE5(perf_event_open,
8473 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8474 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8475{
b04243ef
PZ
8476 struct perf_event *group_leader = NULL, *output_event = NULL;
8477 struct perf_event *event, *sibling;
cdd6c482 8478 struct perf_event_attr attr;
f63a8daa 8479 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8480 struct file *event_file = NULL;
2903ff01 8481 struct fd group = {NULL, 0};
38a81da2 8482 struct task_struct *task = NULL;
89a1e187 8483 struct pmu *pmu;
ea635c64 8484 int event_fd;
b04243ef 8485 int move_group = 0;
dc86cabe 8486 int err;
a21b0b35 8487 int f_flags = O_RDWR;
79dff51e 8488 int cgroup_fd = -1;
0793a61d 8489
2743a5b0 8490 /* for future expandability... */
e5d1367f 8491 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8492 return -EINVAL;
8493
dc86cabe
IM
8494 err = perf_copy_attr(attr_uptr, &attr);
8495 if (err)
8496 return err;
eab656ae 8497
0764771d
PZ
8498 if (!attr.exclude_kernel) {
8499 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8500 return -EACCES;
8501 }
8502
df58ab24 8503 if (attr.freq) {
cdd6c482 8504 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8505 return -EINVAL;
0819b2e3
PZ
8506 } else {
8507 if (attr.sample_period & (1ULL << 63))
8508 return -EINVAL;
df58ab24
PZ
8509 }
8510
e5d1367f
SE
8511 /*
8512 * In cgroup mode, the pid argument is used to pass the fd
8513 * opened to the cgroup directory in cgroupfs. The cpu argument
8514 * designates the cpu on which to monitor threads from that
8515 * cgroup.
8516 */
8517 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8518 return -EINVAL;
8519
a21b0b35
YD
8520 if (flags & PERF_FLAG_FD_CLOEXEC)
8521 f_flags |= O_CLOEXEC;
8522
8523 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8524 if (event_fd < 0)
8525 return event_fd;
8526
ac9721f3 8527 if (group_fd != -1) {
2903ff01
AV
8528 err = perf_fget_light(group_fd, &group);
8529 if (err)
d14b12d7 8530 goto err_fd;
2903ff01 8531 group_leader = group.file->private_data;
ac9721f3
PZ
8532 if (flags & PERF_FLAG_FD_OUTPUT)
8533 output_event = group_leader;
8534 if (flags & PERF_FLAG_FD_NO_GROUP)
8535 group_leader = NULL;
8536 }
8537
e5d1367f 8538 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8539 task = find_lively_task_by_vpid(pid);
8540 if (IS_ERR(task)) {
8541 err = PTR_ERR(task);
8542 goto err_group_fd;
8543 }
8544 }
8545
1f4ee503
PZ
8546 if (task && group_leader &&
8547 group_leader->attr.inherit != attr.inherit) {
8548 err = -EINVAL;
8549 goto err_task;
8550 }
8551
fbfc623f
YZ
8552 get_online_cpus();
8553
79dff51e
MF
8554 if (flags & PERF_FLAG_PID_CGROUP)
8555 cgroup_fd = pid;
8556
4dc0da86 8557 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8558 NULL, NULL, cgroup_fd);
d14b12d7
SE
8559 if (IS_ERR(event)) {
8560 err = PTR_ERR(event);
1f4ee503 8561 goto err_cpus;
d14b12d7
SE
8562 }
8563
53b25335
VW
8564 if (is_sampling_event(event)) {
8565 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8566 err = -ENOTSUPP;
8567 goto err_alloc;
8568 }
8569 }
8570
89a1e187
PZ
8571 /*
8572 * Special case software events and allow them to be part of
8573 * any hardware group.
8574 */
8575 pmu = event->pmu;
b04243ef 8576
34f43927
PZ
8577 if (attr.use_clockid) {
8578 err = perf_event_set_clock(event, attr.clockid);
8579 if (err)
8580 goto err_alloc;
8581 }
8582
b04243ef
PZ
8583 if (group_leader &&
8584 (is_software_event(event) != is_software_event(group_leader))) {
8585 if (is_software_event(event)) {
8586 /*
8587 * If event and group_leader are not both a software
8588 * event, and event is, then group leader is not.
8589 *
8590 * Allow the addition of software events to !software
8591 * groups, this is safe because software events never
8592 * fail to schedule.
8593 */
8594 pmu = group_leader->pmu;
8595 } else if (is_software_event(group_leader) &&
8596 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8597 /*
8598 * In case the group is a pure software group, and we
8599 * try to add a hardware event, move the whole group to
8600 * the hardware context.
8601 */
8602 move_group = 1;
8603 }
8604 }
89a1e187
PZ
8605
8606 /*
8607 * Get the target context (task or percpu):
8608 */
4af57ef2 8609 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8610 if (IS_ERR(ctx)) {
8611 err = PTR_ERR(ctx);
c6be5a5c 8612 goto err_alloc;
89a1e187
PZ
8613 }
8614
bed5b25a
AS
8615 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8616 err = -EBUSY;
8617 goto err_context;
8618 }
8619
fd1edb3a
PZ
8620 if (task) {
8621 put_task_struct(task);
8622 task = NULL;
8623 }
8624
ccff286d 8625 /*
cdd6c482 8626 * Look up the group leader (we will attach this event to it):
04289bb9 8627 */
ac9721f3 8628 if (group_leader) {
dc86cabe 8629 err = -EINVAL;
04289bb9 8630
04289bb9 8631 /*
ccff286d
IM
8632 * Do not allow a recursive hierarchy (this new sibling
8633 * becoming part of another group-sibling):
8634 */
8635 if (group_leader->group_leader != group_leader)
c3f00c70 8636 goto err_context;
34f43927
PZ
8637
8638 /* All events in a group should have the same clock */
8639 if (group_leader->clock != event->clock)
8640 goto err_context;
8641
ccff286d
IM
8642 /*
8643 * Do not allow to attach to a group in a different
8644 * task or CPU context:
04289bb9 8645 */
b04243ef 8646 if (move_group) {
c3c87e77
PZ
8647 /*
8648 * Make sure we're both on the same task, or both
8649 * per-cpu events.
8650 */
8651 if (group_leader->ctx->task != ctx->task)
8652 goto err_context;
8653
8654 /*
8655 * Make sure we're both events for the same CPU;
8656 * grouping events for different CPUs is broken; since
8657 * you can never concurrently schedule them anyhow.
8658 */
8659 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8660 goto err_context;
8661 } else {
8662 if (group_leader->ctx != ctx)
8663 goto err_context;
8664 }
8665
3b6f9e5c
PM
8666 /*
8667 * Only a group leader can be exclusive or pinned
8668 */
0d48696f 8669 if (attr.exclusive || attr.pinned)
c3f00c70 8670 goto err_context;
ac9721f3
PZ
8671 }
8672
8673 if (output_event) {
8674 err = perf_event_set_output(event, output_event);
8675 if (err)
c3f00c70 8676 goto err_context;
ac9721f3 8677 }
0793a61d 8678
a21b0b35
YD
8679 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8680 f_flags);
ea635c64
AV
8681 if (IS_ERR(event_file)) {
8682 err = PTR_ERR(event_file);
201c2f85 8683 event_file = NULL;
c3f00c70 8684 goto err_context;
ea635c64 8685 }
9b51f66d 8686
b04243ef 8687 if (move_group) {
f63a8daa 8688 gctx = group_leader->ctx;
f55fc2a5 8689 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8690 if (gctx->task == TASK_TOMBSTONE) {
8691 err = -ESRCH;
8692 goto err_locked;
8693 }
f55fc2a5
PZ
8694 } else {
8695 mutex_lock(&ctx->mutex);
8696 }
8697
84c4e620
PZ
8698 if (ctx->task == TASK_TOMBSTONE) {
8699 err = -ESRCH;
8700 goto err_locked;
8701 }
8702
a723968c
PZ
8703 if (!perf_event_validate_size(event)) {
8704 err = -E2BIG;
8705 goto err_locked;
8706 }
8707
f55fc2a5
PZ
8708 /*
8709 * Must be under the same ctx::mutex as perf_install_in_context(),
8710 * because we need to serialize with concurrent event creation.
8711 */
8712 if (!exclusive_event_installable(event, ctx)) {
8713 /* exclusive and group stuff are assumed mutually exclusive */
8714 WARN_ON_ONCE(move_group);
f63a8daa 8715
f55fc2a5
PZ
8716 err = -EBUSY;
8717 goto err_locked;
8718 }
f63a8daa 8719
f55fc2a5
PZ
8720 WARN_ON_ONCE(ctx->parent_ctx);
8721
8722 if (move_group) {
f63a8daa
PZ
8723 /*
8724 * See perf_event_ctx_lock() for comments on the details
8725 * of swizzling perf_event::ctx.
8726 */
45a0e07a 8727 perf_remove_from_context(group_leader, 0);
0231bb53 8728
b04243ef
PZ
8729 list_for_each_entry(sibling, &group_leader->sibling_list,
8730 group_entry) {
45a0e07a 8731 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8732 put_ctx(gctx);
8733 }
b04243ef 8734
f63a8daa
PZ
8735 /*
8736 * Wait for everybody to stop referencing the events through
8737 * the old lists, before installing it on new lists.
8738 */
0cda4c02 8739 synchronize_rcu();
f63a8daa 8740
8f95b435
PZI
8741 /*
8742 * Install the group siblings before the group leader.
8743 *
8744 * Because a group leader will try and install the entire group
8745 * (through the sibling list, which is still in-tact), we can
8746 * end up with siblings installed in the wrong context.
8747 *
8748 * By installing siblings first we NO-OP because they're not
8749 * reachable through the group lists.
8750 */
b04243ef
PZ
8751 list_for_each_entry(sibling, &group_leader->sibling_list,
8752 group_entry) {
8f95b435 8753 perf_event__state_init(sibling);
9fc81d87 8754 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8755 get_ctx(ctx);
8756 }
8f95b435
PZI
8757
8758 /*
8759 * Removing from the context ends up with disabled
8760 * event. What we want here is event in the initial
8761 * startup state, ready to be add into new context.
8762 */
8763 perf_event__state_init(group_leader);
8764 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8765 get_ctx(ctx);
b04243ef 8766
f55fc2a5
PZ
8767 /*
8768 * Now that all events are installed in @ctx, nothing
8769 * references @gctx anymore, so drop the last reference we have
8770 * on it.
8771 */
8772 put_ctx(gctx);
bed5b25a
AS
8773 }
8774
f73e22ab
PZ
8775 /*
8776 * Precalculate sample_data sizes; do while holding ctx::mutex such
8777 * that we're serialized against further additions and before
8778 * perf_install_in_context() which is the point the event is active and
8779 * can use these values.
8780 */
8781 perf_event__header_size(event);
8782 perf_event__id_header_size(event);
8783
78cd2c74
PZ
8784 event->owner = current;
8785
e2d37cd2 8786 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8787 perf_unpin_context(ctx);
f63a8daa 8788
f55fc2a5 8789 if (move_group)
f63a8daa 8790 mutex_unlock(&gctx->mutex);
d859e29f 8791 mutex_unlock(&ctx->mutex);
9b51f66d 8792
fbfc623f
YZ
8793 put_online_cpus();
8794
cdd6c482
IM
8795 mutex_lock(&current->perf_event_mutex);
8796 list_add_tail(&event->owner_entry, &current->perf_event_list);
8797 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8798
8a49542c
PZ
8799 /*
8800 * Drop the reference on the group_event after placing the
8801 * new event on the sibling_list. This ensures destruction
8802 * of the group leader will find the pointer to itself in
8803 * perf_group_detach().
8804 */
2903ff01 8805 fdput(group);
ea635c64
AV
8806 fd_install(event_fd, event_file);
8807 return event_fd;
0793a61d 8808
f55fc2a5
PZ
8809err_locked:
8810 if (move_group)
8811 mutex_unlock(&gctx->mutex);
8812 mutex_unlock(&ctx->mutex);
8813/* err_file: */
8814 fput(event_file);
c3f00c70 8815err_context:
fe4b04fa 8816 perf_unpin_context(ctx);
ea635c64 8817 put_ctx(ctx);
c6be5a5c 8818err_alloc:
13005627
PZ
8819 /*
8820 * If event_file is set, the fput() above will have called ->release()
8821 * and that will take care of freeing the event.
8822 */
8823 if (!event_file)
8824 free_event(event);
1f4ee503 8825err_cpus:
fbfc623f 8826 put_online_cpus();
1f4ee503 8827err_task:
e7d0bc04
PZ
8828 if (task)
8829 put_task_struct(task);
89a1e187 8830err_group_fd:
2903ff01 8831 fdput(group);
ea635c64
AV
8832err_fd:
8833 put_unused_fd(event_fd);
dc86cabe 8834 return err;
0793a61d
TG
8835}
8836
fb0459d7
AV
8837/**
8838 * perf_event_create_kernel_counter
8839 *
8840 * @attr: attributes of the counter to create
8841 * @cpu: cpu in which the counter is bound
38a81da2 8842 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8843 */
8844struct perf_event *
8845perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8846 struct task_struct *task,
4dc0da86
AK
8847 perf_overflow_handler_t overflow_handler,
8848 void *context)
fb0459d7 8849{
fb0459d7 8850 struct perf_event_context *ctx;
c3f00c70 8851 struct perf_event *event;
fb0459d7 8852 int err;
d859e29f 8853
fb0459d7
AV
8854 /*
8855 * Get the target context (task or percpu):
8856 */
d859e29f 8857
4dc0da86 8858 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8859 overflow_handler, context, -1);
c3f00c70
PZ
8860 if (IS_ERR(event)) {
8861 err = PTR_ERR(event);
8862 goto err;
8863 }
d859e29f 8864
f8697762 8865 /* Mark owner so we could distinguish it from user events. */
63b6da39 8866 event->owner = TASK_TOMBSTONE;
f8697762 8867
4af57ef2 8868 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8869 if (IS_ERR(ctx)) {
8870 err = PTR_ERR(ctx);
c3f00c70 8871 goto err_free;
d859e29f 8872 }
fb0459d7 8873
fb0459d7
AV
8874 WARN_ON_ONCE(ctx->parent_ctx);
8875 mutex_lock(&ctx->mutex);
84c4e620
PZ
8876 if (ctx->task == TASK_TOMBSTONE) {
8877 err = -ESRCH;
8878 goto err_unlock;
8879 }
8880
bed5b25a 8881 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8882 err = -EBUSY;
84c4e620 8883 goto err_unlock;
bed5b25a
AS
8884 }
8885
fb0459d7 8886 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8887 perf_unpin_context(ctx);
fb0459d7
AV
8888 mutex_unlock(&ctx->mutex);
8889
fb0459d7
AV
8890 return event;
8891
84c4e620
PZ
8892err_unlock:
8893 mutex_unlock(&ctx->mutex);
8894 perf_unpin_context(ctx);
8895 put_ctx(ctx);
c3f00c70
PZ
8896err_free:
8897 free_event(event);
8898err:
c6567f64 8899 return ERR_PTR(err);
9b51f66d 8900}
fb0459d7 8901EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8902
0cda4c02
YZ
8903void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8904{
8905 struct perf_event_context *src_ctx;
8906 struct perf_event_context *dst_ctx;
8907 struct perf_event *event, *tmp;
8908 LIST_HEAD(events);
8909
8910 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8911 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8912
f63a8daa
PZ
8913 /*
8914 * See perf_event_ctx_lock() for comments on the details
8915 * of swizzling perf_event::ctx.
8916 */
8917 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8918 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8919 event_entry) {
45a0e07a 8920 perf_remove_from_context(event, 0);
9a545de0 8921 unaccount_event_cpu(event, src_cpu);
0cda4c02 8922 put_ctx(src_ctx);
9886167d 8923 list_add(&event->migrate_entry, &events);
0cda4c02 8924 }
0cda4c02 8925
8f95b435
PZI
8926 /*
8927 * Wait for the events to quiesce before re-instating them.
8928 */
0cda4c02
YZ
8929 synchronize_rcu();
8930
8f95b435
PZI
8931 /*
8932 * Re-instate events in 2 passes.
8933 *
8934 * Skip over group leaders and only install siblings on this first
8935 * pass, siblings will not get enabled without a leader, however a
8936 * leader will enable its siblings, even if those are still on the old
8937 * context.
8938 */
8939 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8940 if (event->group_leader == event)
8941 continue;
8942
8943 list_del(&event->migrate_entry);
8944 if (event->state >= PERF_EVENT_STATE_OFF)
8945 event->state = PERF_EVENT_STATE_INACTIVE;
8946 account_event_cpu(event, dst_cpu);
8947 perf_install_in_context(dst_ctx, event, dst_cpu);
8948 get_ctx(dst_ctx);
8949 }
8950
8951 /*
8952 * Once all the siblings are setup properly, install the group leaders
8953 * to make it go.
8954 */
9886167d
PZ
8955 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8956 list_del(&event->migrate_entry);
0cda4c02
YZ
8957 if (event->state >= PERF_EVENT_STATE_OFF)
8958 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8959 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8960 perf_install_in_context(dst_ctx, event, dst_cpu);
8961 get_ctx(dst_ctx);
8962 }
8963 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8964 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8965}
8966EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8967
cdd6c482 8968static void sync_child_event(struct perf_event *child_event,
38b200d6 8969 struct task_struct *child)
d859e29f 8970{
cdd6c482 8971 struct perf_event *parent_event = child_event->parent;
8bc20959 8972 u64 child_val;
d859e29f 8973
cdd6c482
IM
8974 if (child_event->attr.inherit_stat)
8975 perf_event_read_event(child_event, child);
38b200d6 8976
b5e58793 8977 child_val = perf_event_count(child_event);
d859e29f
PM
8978
8979 /*
8980 * Add back the child's count to the parent's count:
8981 */
a6e6dea6 8982 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8983 atomic64_add(child_event->total_time_enabled,
8984 &parent_event->child_total_time_enabled);
8985 atomic64_add(child_event->total_time_running,
8986 &parent_event->child_total_time_running);
d859e29f
PM
8987}
8988
9b51f66d 8989static void
8ba289b8
PZ
8990perf_event_exit_event(struct perf_event *child_event,
8991 struct perf_event_context *child_ctx,
8992 struct task_struct *child)
9b51f66d 8993{
8ba289b8
PZ
8994 struct perf_event *parent_event = child_event->parent;
8995
1903d50c
PZ
8996 /*
8997 * Do not destroy the 'original' grouping; because of the context
8998 * switch optimization the original events could've ended up in a
8999 * random child task.
9000 *
9001 * If we were to destroy the original group, all group related
9002 * operations would cease to function properly after this random
9003 * child dies.
9004 *
9005 * Do destroy all inherited groups, we don't care about those
9006 * and being thorough is better.
9007 */
32132a3d
PZ
9008 raw_spin_lock_irq(&child_ctx->lock);
9009 WARN_ON_ONCE(child_ctx->is_active);
9010
8ba289b8 9011 if (parent_event)
32132a3d
PZ
9012 perf_group_detach(child_event);
9013 list_del_event(child_event, child_ctx);
a69b0ca4 9014 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9015 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9016
9b51f66d 9017 /*
8ba289b8 9018 * Parent events are governed by their filedesc, retain them.
9b51f66d 9019 */
8ba289b8 9020 if (!parent_event) {
179033b3 9021 perf_event_wakeup(child_event);
8ba289b8 9022 return;
4bcf349a 9023 }
8ba289b8
PZ
9024 /*
9025 * Child events can be cleaned up.
9026 */
9027
9028 sync_child_event(child_event, child);
9029
9030 /*
9031 * Remove this event from the parent's list
9032 */
9033 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9034 mutex_lock(&parent_event->child_mutex);
9035 list_del_init(&child_event->child_list);
9036 mutex_unlock(&parent_event->child_mutex);
9037
9038 /*
9039 * Kick perf_poll() for is_event_hup().
9040 */
9041 perf_event_wakeup(parent_event);
9042 free_event(child_event);
9043 put_event(parent_event);
9b51f66d
IM
9044}
9045
8dc85d54 9046static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9047{
211de6eb 9048 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9049 struct perf_event *child_event, *next;
63b6da39
PZ
9050
9051 WARN_ON_ONCE(child != current);
9b51f66d 9052
6a3351b6 9053 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9054 if (!child_ctx)
9b51f66d
IM
9055 return;
9056
ad3a37de 9057 /*
6a3351b6
PZ
9058 * In order to reduce the amount of tricky in ctx tear-down, we hold
9059 * ctx::mutex over the entire thing. This serializes against almost
9060 * everything that wants to access the ctx.
9061 *
9062 * The exception is sys_perf_event_open() /
9063 * perf_event_create_kernel_count() which does find_get_context()
9064 * without ctx::mutex (it cannot because of the move_group double mutex
9065 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9066 */
6a3351b6 9067 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9068
9069 /*
6a3351b6
PZ
9070 * In a single ctx::lock section, de-schedule the events and detach the
9071 * context from the task such that we cannot ever get it scheduled back
9072 * in.
c93f7669 9073 */
6a3351b6 9074 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9075 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9076
71a851b4 9077 /*
63b6da39
PZ
9078 * Now that the context is inactive, destroy the task <-> ctx relation
9079 * and mark the context dead.
71a851b4 9080 */
63b6da39
PZ
9081 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9082 put_ctx(child_ctx); /* cannot be last */
9083 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9084 put_task_struct(current); /* cannot be last */
4a1c0f26 9085
211de6eb 9086 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9087 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9088
211de6eb
PZ
9089 if (clone_ctx)
9090 put_ctx(clone_ctx);
4a1c0f26 9091
9f498cc5 9092 /*
cdd6c482
IM
9093 * Report the task dead after unscheduling the events so that we
9094 * won't get any samples after PERF_RECORD_EXIT. We can however still
9095 * get a few PERF_RECORD_READ events.
9f498cc5 9096 */
cdd6c482 9097 perf_event_task(child, child_ctx, 0);
a63eaf34 9098
ebf905fc 9099 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9100 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9101
a63eaf34
PM
9102 mutex_unlock(&child_ctx->mutex);
9103
9104 put_ctx(child_ctx);
9b51f66d
IM
9105}
9106
8dc85d54
PZ
9107/*
9108 * When a child task exits, feed back event values to parent events.
9109 */
9110void perf_event_exit_task(struct task_struct *child)
9111{
8882135b 9112 struct perf_event *event, *tmp;
8dc85d54
PZ
9113 int ctxn;
9114
8882135b
PZ
9115 mutex_lock(&child->perf_event_mutex);
9116 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9117 owner_entry) {
9118 list_del_init(&event->owner_entry);
9119
9120 /*
9121 * Ensure the list deletion is visible before we clear
9122 * the owner, closes a race against perf_release() where
9123 * we need to serialize on the owner->perf_event_mutex.
9124 */
f47c02c0 9125 smp_store_release(&event->owner, NULL);
8882135b
PZ
9126 }
9127 mutex_unlock(&child->perf_event_mutex);
9128
8dc85d54
PZ
9129 for_each_task_context_nr(ctxn)
9130 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9131
9132 /*
9133 * The perf_event_exit_task_context calls perf_event_task
9134 * with child's task_ctx, which generates EXIT events for
9135 * child contexts and sets child->perf_event_ctxp[] to NULL.
9136 * At this point we need to send EXIT events to cpu contexts.
9137 */
9138 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9139}
9140
889ff015
FW
9141static void perf_free_event(struct perf_event *event,
9142 struct perf_event_context *ctx)
9143{
9144 struct perf_event *parent = event->parent;
9145
9146 if (WARN_ON_ONCE(!parent))
9147 return;
9148
9149 mutex_lock(&parent->child_mutex);
9150 list_del_init(&event->child_list);
9151 mutex_unlock(&parent->child_mutex);
9152
a6fa941d 9153 put_event(parent);
889ff015 9154
652884fe 9155 raw_spin_lock_irq(&ctx->lock);
8a49542c 9156 perf_group_detach(event);
889ff015 9157 list_del_event(event, ctx);
652884fe 9158 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9159 free_event(event);
9160}
9161
bbbee908 9162/*
652884fe 9163 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9164 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9165 *
9166 * Not all locks are strictly required, but take them anyway to be nice and
9167 * help out with the lockdep assertions.
bbbee908 9168 */
cdd6c482 9169void perf_event_free_task(struct task_struct *task)
bbbee908 9170{
8dc85d54 9171 struct perf_event_context *ctx;
cdd6c482 9172 struct perf_event *event, *tmp;
8dc85d54 9173 int ctxn;
bbbee908 9174
8dc85d54
PZ
9175 for_each_task_context_nr(ctxn) {
9176 ctx = task->perf_event_ctxp[ctxn];
9177 if (!ctx)
9178 continue;
bbbee908 9179
8dc85d54 9180 mutex_lock(&ctx->mutex);
bbbee908 9181again:
8dc85d54
PZ
9182 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9183 group_entry)
9184 perf_free_event(event, ctx);
bbbee908 9185
8dc85d54
PZ
9186 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9187 group_entry)
9188 perf_free_event(event, ctx);
bbbee908 9189
8dc85d54
PZ
9190 if (!list_empty(&ctx->pinned_groups) ||
9191 !list_empty(&ctx->flexible_groups))
9192 goto again;
bbbee908 9193
8dc85d54 9194 mutex_unlock(&ctx->mutex);
bbbee908 9195
8dc85d54
PZ
9196 put_ctx(ctx);
9197 }
889ff015
FW
9198}
9199
4e231c79
PZ
9200void perf_event_delayed_put(struct task_struct *task)
9201{
9202 int ctxn;
9203
9204 for_each_task_context_nr(ctxn)
9205 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9206}
9207
e03e7ee3 9208struct file *perf_event_get(unsigned int fd)
ffe8690c 9209{
e03e7ee3 9210 struct file *file;
ffe8690c 9211
e03e7ee3
AS
9212 file = fget_raw(fd);
9213 if (!file)
9214 return ERR_PTR(-EBADF);
ffe8690c 9215
e03e7ee3
AS
9216 if (file->f_op != &perf_fops) {
9217 fput(file);
9218 return ERR_PTR(-EBADF);
9219 }
ffe8690c 9220
e03e7ee3 9221 return file;
ffe8690c
KX
9222}
9223
9224const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9225{
9226 if (!event)
9227 return ERR_PTR(-EINVAL);
9228
9229 return &event->attr;
9230}
9231
97dee4f3
PZ
9232/*
9233 * inherit a event from parent task to child task:
9234 */
9235static struct perf_event *
9236inherit_event(struct perf_event *parent_event,
9237 struct task_struct *parent,
9238 struct perf_event_context *parent_ctx,
9239 struct task_struct *child,
9240 struct perf_event *group_leader,
9241 struct perf_event_context *child_ctx)
9242{
1929def9 9243 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9244 struct perf_event *child_event;
cee010ec 9245 unsigned long flags;
97dee4f3
PZ
9246
9247 /*
9248 * Instead of creating recursive hierarchies of events,
9249 * we link inherited events back to the original parent,
9250 * which has a filp for sure, which we use as the reference
9251 * count:
9252 */
9253 if (parent_event->parent)
9254 parent_event = parent_event->parent;
9255
9256 child_event = perf_event_alloc(&parent_event->attr,
9257 parent_event->cpu,
d580ff86 9258 child,
97dee4f3 9259 group_leader, parent_event,
79dff51e 9260 NULL, NULL, -1);
97dee4f3
PZ
9261 if (IS_ERR(child_event))
9262 return child_event;
a6fa941d 9263
c6e5b732
PZ
9264 /*
9265 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9266 * must be under the same lock in order to serialize against
9267 * perf_event_release_kernel(), such that either we must observe
9268 * is_orphaned_event() or they will observe us on the child_list.
9269 */
9270 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9271 if (is_orphaned_event(parent_event) ||
9272 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9273 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9274 free_event(child_event);
9275 return NULL;
9276 }
9277
97dee4f3
PZ
9278 get_ctx(child_ctx);
9279
9280 /*
9281 * Make the child state follow the state of the parent event,
9282 * not its attr.disabled bit. We hold the parent's mutex,
9283 * so we won't race with perf_event_{en, dis}able_family.
9284 */
1929def9 9285 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9286 child_event->state = PERF_EVENT_STATE_INACTIVE;
9287 else
9288 child_event->state = PERF_EVENT_STATE_OFF;
9289
9290 if (parent_event->attr.freq) {
9291 u64 sample_period = parent_event->hw.sample_period;
9292 struct hw_perf_event *hwc = &child_event->hw;
9293
9294 hwc->sample_period = sample_period;
9295 hwc->last_period = sample_period;
9296
9297 local64_set(&hwc->period_left, sample_period);
9298 }
9299
9300 child_event->ctx = child_ctx;
9301 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9302 child_event->overflow_handler_context
9303 = parent_event->overflow_handler_context;
97dee4f3 9304
614b6780
TG
9305 /*
9306 * Precalculate sample_data sizes
9307 */
9308 perf_event__header_size(child_event);
6844c09d 9309 perf_event__id_header_size(child_event);
614b6780 9310
97dee4f3
PZ
9311 /*
9312 * Link it up in the child's context:
9313 */
cee010ec 9314 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9315 add_event_to_ctx(child_event, child_ctx);
cee010ec 9316 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9317
97dee4f3
PZ
9318 /*
9319 * Link this into the parent event's child list
9320 */
97dee4f3
PZ
9321 list_add_tail(&child_event->child_list, &parent_event->child_list);
9322 mutex_unlock(&parent_event->child_mutex);
9323
9324 return child_event;
9325}
9326
9327static int inherit_group(struct perf_event *parent_event,
9328 struct task_struct *parent,
9329 struct perf_event_context *parent_ctx,
9330 struct task_struct *child,
9331 struct perf_event_context *child_ctx)
9332{
9333 struct perf_event *leader;
9334 struct perf_event *sub;
9335 struct perf_event *child_ctr;
9336
9337 leader = inherit_event(parent_event, parent, parent_ctx,
9338 child, NULL, child_ctx);
9339 if (IS_ERR(leader))
9340 return PTR_ERR(leader);
9341 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9342 child_ctr = inherit_event(sub, parent, parent_ctx,
9343 child, leader, child_ctx);
9344 if (IS_ERR(child_ctr))
9345 return PTR_ERR(child_ctr);
9346 }
9347 return 0;
889ff015
FW
9348}
9349
9350static int
9351inherit_task_group(struct perf_event *event, struct task_struct *parent,
9352 struct perf_event_context *parent_ctx,
8dc85d54 9353 struct task_struct *child, int ctxn,
889ff015
FW
9354 int *inherited_all)
9355{
9356 int ret;
8dc85d54 9357 struct perf_event_context *child_ctx;
889ff015
FW
9358
9359 if (!event->attr.inherit) {
9360 *inherited_all = 0;
9361 return 0;
bbbee908
PZ
9362 }
9363
fe4b04fa 9364 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9365 if (!child_ctx) {
9366 /*
9367 * This is executed from the parent task context, so
9368 * inherit events that have been marked for cloning.
9369 * First allocate and initialize a context for the
9370 * child.
9371 */
bbbee908 9372
734df5ab 9373 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9374 if (!child_ctx)
9375 return -ENOMEM;
bbbee908 9376
8dc85d54 9377 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9378 }
9379
9380 ret = inherit_group(event, parent, parent_ctx,
9381 child, child_ctx);
9382
9383 if (ret)
9384 *inherited_all = 0;
9385
9386 return ret;
bbbee908
PZ
9387}
9388
9b51f66d 9389/*
cdd6c482 9390 * Initialize the perf_event context in task_struct
9b51f66d 9391 */
985c8dcb 9392static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9393{
889ff015 9394 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9395 struct perf_event_context *cloned_ctx;
9396 struct perf_event *event;
9b51f66d 9397 struct task_struct *parent = current;
564c2b21 9398 int inherited_all = 1;
dddd3379 9399 unsigned long flags;
6ab423e0 9400 int ret = 0;
9b51f66d 9401
8dc85d54 9402 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9403 return 0;
9404
ad3a37de 9405 /*
25346b93
PM
9406 * If the parent's context is a clone, pin it so it won't get
9407 * swapped under us.
ad3a37de 9408 */
8dc85d54 9409 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9410 if (!parent_ctx)
9411 return 0;
25346b93 9412
ad3a37de
PM
9413 /*
9414 * No need to check if parent_ctx != NULL here; since we saw
9415 * it non-NULL earlier, the only reason for it to become NULL
9416 * is if we exit, and since we're currently in the middle of
9417 * a fork we can't be exiting at the same time.
9418 */
ad3a37de 9419
9b51f66d
IM
9420 /*
9421 * Lock the parent list. No need to lock the child - not PID
9422 * hashed yet and not running, so nobody can access it.
9423 */
d859e29f 9424 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9425
9426 /*
9427 * We dont have to disable NMIs - we are only looking at
9428 * the list, not manipulating it:
9429 */
889ff015 9430 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9431 ret = inherit_task_group(event, parent, parent_ctx,
9432 child, ctxn, &inherited_all);
889ff015
FW
9433 if (ret)
9434 break;
9435 }
b93f7978 9436
dddd3379
TG
9437 /*
9438 * We can't hold ctx->lock when iterating the ->flexible_group list due
9439 * to allocations, but we need to prevent rotation because
9440 * rotate_ctx() will change the list from interrupt context.
9441 */
9442 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9443 parent_ctx->rotate_disable = 1;
9444 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9445
889ff015 9446 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9447 ret = inherit_task_group(event, parent, parent_ctx,
9448 child, ctxn, &inherited_all);
889ff015 9449 if (ret)
9b51f66d 9450 break;
564c2b21
PM
9451 }
9452
dddd3379
TG
9453 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9454 parent_ctx->rotate_disable = 0;
dddd3379 9455
8dc85d54 9456 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9457
05cbaa28 9458 if (child_ctx && inherited_all) {
564c2b21
PM
9459 /*
9460 * Mark the child context as a clone of the parent
9461 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9462 *
9463 * Note that if the parent is a clone, the holding of
9464 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9465 */
c5ed5145 9466 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9467 if (cloned_ctx) {
9468 child_ctx->parent_ctx = cloned_ctx;
25346b93 9469 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9470 } else {
9471 child_ctx->parent_ctx = parent_ctx;
9472 child_ctx->parent_gen = parent_ctx->generation;
9473 }
9474 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9475 }
9476
c5ed5145 9477 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9478 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9479
25346b93 9480 perf_unpin_context(parent_ctx);
fe4b04fa 9481 put_ctx(parent_ctx);
ad3a37de 9482
6ab423e0 9483 return ret;
9b51f66d
IM
9484}
9485
8dc85d54
PZ
9486/*
9487 * Initialize the perf_event context in task_struct
9488 */
9489int perf_event_init_task(struct task_struct *child)
9490{
9491 int ctxn, ret;
9492
8550d7cb
ON
9493 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9494 mutex_init(&child->perf_event_mutex);
9495 INIT_LIST_HEAD(&child->perf_event_list);
9496
8dc85d54
PZ
9497 for_each_task_context_nr(ctxn) {
9498 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9499 if (ret) {
9500 perf_event_free_task(child);
8dc85d54 9501 return ret;
6c72e350 9502 }
8dc85d54
PZ
9503 }
9504
9505 return 0;
9506}
9507
220b140b
PM
9508static void __init perf_event_init_all_cpus(void)
9509{
b28ab83c 9510 struct swevent_htable *swhash;
220b140b 9511 int cpu;
220b140b
PM
9512
9513 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9514 swhash = &per_cpu(swevent_htable, cpu);
9515 mutex_init(&swhash->hlist_mutex);
2fde4f94 9516 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9517 }
9518}
9519
0db0628d 9520static void perf_event_init_cpu(int cpu)
0793a61d 9521{
108b02cf 9522 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9523
b28ab83c 9524 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9525 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9526 struct swevent_hlist *hlist;
9527
b28ab83c
PZ
9528 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9529 WARN_ON(!hlist);
9530 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9531 }
b28ab83c 9532 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9533}
9534
2965faa5 9535#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9536static void __perf_event_exit_context(void *__info)
0793a61d 9537{
108b02cf 9538 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9540 struct perf_event *event;
0793a61d 9541
fae3fde6
PZ
9542 raw_spin_lock(&ctx->lock);
9543 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9544 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9545 raw_spin_unlock(&ctx->lock);
0793a61d 9546}
108b02cf
PZ
9547
9548static void perf_event_exit_cpu_context(int cpu)
9549{
9550 struct perf_event_context *ctx;
9551 struct pmu *pmu;
9552 int idx;
9553
9554 idx = srcu_read_lock(&pmus_srcu);
9555 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9556 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9557
9558 mutex_lock(&ctx->mutex);
9559 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9560 mutex_unlock(&ctx->mutex);
9561 }
9562 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9563}
9564
cdd6c482 9565static void perf_event_exit_cpu(int cpu)
0793a61d 9566{
e3703f8c 9567 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9568}
9569#else
cdd6c482 9570static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9571#endif
9572
c277443c
PZ
9573static int
9574perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9575{
9576 int cpu;
9577
9578 for_each_online_cpu(cpu)
9579 perf_event_exit_cpu(cpu);
9580
9581 return NOTIFY_OK;
9582}
9583
9584/*
9585 * Run the perf reboot notifier at the very last possible moment so that
9586 * the generic watchdog code runs as long as possible.
9587 */
9588static struct notifier_block perf_reboot_notifier = {
9589 .notifier_call = perf_reboot,
9590 .priority = INT_MIN,
9591};
9592
0db0628d 9593static int
0793a61d
TG
9594perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9595{
9596 unsigned int cpu = (long)hcpu;
9597
4536e4d1 9598 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9599
9600 case CPU_UP_PREPARE:
1dcaac1c
PZ
9601 /*
9602 * This must be done before the CPU comes alive, because the
9603 * moment we can run tasks we can encounter (software) events.
9604 *
9605 * Specifically, someone can have inherited events on kthreadd
9606 * or a pre-existing worker thread that gets re-bound.
9607 */
cdd6c482 9608 perf_event_init_cpu(cpu);
0793a61d
TG
9609 break;
9610
9611 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9612 /*
9613 * This must be done before the CPU dies because after that an
9614 * active event might want to IPI the CPU and that'll not work
9615 * so great for dead CPUs.
9616 *
9617 * XXX smp_call_function_single() return -ENXIO without a warn
9618 * so we could possibly deal with this.
9619 *
9620 * This is safe against new events arriving because
9621 * sys_perf_event_open() serializes against hotplug using
9622 * get_online_cpus().
9623 */
cdd6c482 9624 perf_event_exit_cpu(cpu);
0793a61d 9625 break;
0793a61d
TG
9626 default:
9627 break;
9628 }
9629
9630 return NOTIFY_OK;
9631}
9632
cdd6c482 9633void __init perf_event_init(void)
0793a61d 9634{
3c502e7a
JW
9635 int ret;
9636
2e80a82a
PZ
9637 idr_init(&pmu_idr);
9638
220b140b 9639 perf_event_init_all_cpus();
b0a873eb 9640 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9641 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9642 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9643 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9644 perf_tp_register();
9645 perf_cpu_notifier(perf_cpu_notify);
c277443c 9646 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9647
9648 ret = init_hw_breakpoint();
9649 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9650
b01c3a00
JO
9651 /*
9652 * Build time assertion that we keep the data_head at the intended
9653 * location. IOW, validation we got the __reserved[] size right.
9654 */
9655 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9656 != 1024);
0793a61d 9657}
abe43400 9658
fd979c01
CS
9659ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9660 char *page)
9661{
9662 struct perf_pmu_events_attr *pmu_attr =
9663 container_of(attr, struct perf_pmu_events_attr, attr);
9664
9665 if (pmu_attr->event_str)
9666 return sprintf(page, "%s\n", pmu_attr->event_str);
9667
9668 return 0;
9669}
675965b0 9670EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9671
abe43400
PZ
9672static int __init perf_event_sysfs_init(void)
9673{
9674 struct pmu *pmu;
9675 int ret;
9676
9677 mutex_lock(&pmus_lock);
9678
9679 ret = bus_register(&pmu_bus);
9680 if (ret)
9681 goto unlock;
9682
9683 list_for_each_entry(pmu, &pmus, entry) {
9684 if (!pmu->name || pmu->type < 0)
9685 continue;
9686
9687 ret = pmu_dev_alloc(pmu);
9688 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9689 }
9690 pmu_bus_running = 1;
9691 ret = 0;
9692
9693unlock:
9694 mutex_unlock(&pmus_lock);
9695
9696 return ret;
9697}
9698device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9699
9700#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9701static struct cgroup_subsys_state *
9702perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9703{
9704 struct perf_cgroup *jc;
e5d1367f 9705
1b15d055 9706 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9707 if (!jc)
9708 return ERR_PTR(-ENOMEM);
9709
e5d1367f
SE
9710 jc->info = alloc_percpu(struct perf_cgroup_info);
9711 if (!jc->info) {
9712 kfree(jc);
9713 return ERR_PTR(-ENOMEM);
9714 }
9715
e5d1367f
SE
9716 return &jc->css;
9717}
9718
eb95419b 9719static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9720{
eb95419b
TH
9721 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9722
e5d1367f
SE
9723 free_percpu(jc->info);
9724 kfree(jc);
9725}
9726
9727static int __perf_cgroup_move(void *info)
9728{
9729 struct task_struct *task = info;
ddaaf4e2 9730 rcu_read_lock();
e5d1367f 9731 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9732 rcu_read_unlock();
e5d1367f
SE
9733 return 0;
9734}
9735
1f7dd3e5 9736static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9737{
bb9d97b6 9738 struct task_struct *task;
1f7dd3e5 9739 struct cgroup_subsys_state *css;
bb9d97b6 9740
1f7dd3e5 9741 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9742 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9743}
9744
073219e9 9745struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9746 .css_alloc = perf_cgroup_css_alloc,
9747 .css_free = perf_cgroup_css_free,
bb9d97b6 9748 .attach = perf_cgroup_attach,
e5d1367f
SE
9749};
9750#endif /* CONFIG_CGROUP_PERF */