perf/core: Add return value for perf_event_read()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
fbbe0701 1917 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0492d4c5
PZ
3187struct perf_read_data {
3188 struct perf_event *event;
3189 bool group;
7d88962e 3190 int ret;
0492d4c5
PZ
3191};
3192
0793a61d 3193/*
cdd6c482 3194 * Cross CPU call to read the hardware event
0793a61d 3195 */
cdd6c482 3196static void __perf_event_read(void *info)
0793a61d 3197{
0492d4c5
PZ
3198 struct perf_read_data *data = info;
3199 struct perf_event *sub, *event = data->event;
cdd6c482 3200 struct perf_event_context *ctx = event->ctx;
108b02cf 3201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3202
e1ac3614
PM
3203 /*
3204 * If this is a task context, we need to check whether it is
3205 * the current task context of this cpu. If not it has been
3206 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3207 * event->count would have been updated to a recent sample
3208 * when the event was scheduled out.
e1ac3614
PM
3209 */
3210 if (ctx->task && cpuctx->task_ctx != ctx)
3211 return;
3212
e625cce1 3213 raw_spin_lock(&ctx->lock);
e5d1367f 3214 if (ctx->is_active) {
542e72fc 3215 update_context_time(ctx);
e5d1367f
SE
3216 update_cgrp_time_from_event(event);
3217 }
0492d4c5 3218
cdd6c482 3219 update_event_times(event);
542e72fc
PZ
3220 if (event->state == PERF_EVENT_STATE_ACTIVE)
3221 event->pmu->read(event);
0492d4c5
PZ
3222
3223 if (!data->group)
3224 goto unlock;
3225
3226 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3227 update_event_times(sub);
3228 if (sub->state == PERF_EVENT_STATE_ACTIVE)
3229 sub->pmu->read(sub);
3230 }
7d88962e 3231 data->ret = 0;
0492d4c5
PZ
3232
3233unlock:
e625cce1 3234 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3235}
3236
b5e58793
PZ
3237static inline u64 perf_event_count(struct perf_event *event)
3238{
eacd3ecc
MF
3239 if (event->pmu->count)
3240 return event->pmu->count(event);
3241
3242 return __perf_event_count(event);
b5e58793
PZ
3243}
3244
ffe8690c
KX
3245/*
3246 * NMI-safe method to read a local event, that is an event that
3247 * is:
3248 * - either for the current task, or for this CPU
3249 * - does not have inherit set, for inherited task events
3250 * will not be local and we cannot read them atomically
3251 * - must not have a pmu::count method
3252 */
3253u64 perf_event_read_local(struct perf_event *event)
3254{
3255 unsigned long flags;
3256 u64 val;
3257
3258 /*
3259 * Disabling interrupts avoids all counter scheduling (context
3260 * switches, timer based rotation and IPIs).
3261 */
3262 local_irq_save(flags);
3263
3264 /* If this is a per-task event, it must be for current */
3265 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3266 event->hw.target != current);
3267
3268 /* If this is a per-CPU event, it must be for this CPU */
3269 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3270 event->cpu != smp_processor_id());
3271
3272 /*
3273 * It must not be an event with inherit set, we cannot read
3274 * all child counters from atomic context.
3275 */
3276 WARN_ON_ONCE(event->attr.inherit);
3277
3278 /*
3279 * It must not have a pmu::count method, those are not
3280 * NMI safe.
3281 */
3282 WARN_ON_ONCE(event->pmu->count);
3283
3284 /*
3285 * If the event is currently on this CPU, its either a per-task event,
3286 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3287 * oncpu == -1).
3288 */
3289 if (event->oncpu == smp_processor_id())
3290 event->pmu->read(event);
3291
3292 val = local64_read(&event->count);
3293 local_irq_restore(flags);
3294
3295 return val;
3296}
3297
7d88962e 3298static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3299{
7d88962e
SB
3300 int ret = 0;
3301
0793a61d 3302 /*
cdd6c482
IM
3303 * If event is enabled and currently active on a CPU, update the
3304 * value in the event structure:
0793a61d 3305 */
cdd6c482 3306 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3307 struct perf_read_data data = {
3308 .event = event,
3309 .group = group,
7d88962e 3310 .ret = 0,
0492d4c5 3311 };
cdd6c482 3312 smp_call_function_single(event->oncpu,
0492d4c5 3313 __perf_event_read, &data, 1);
7d88962e 3314 ret = data.ret;
cdd6c482 3315 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3316 struct perf_event_context *ctx = event->ctx;
3317 unsigned long flags;
3318
e625cce1 3319 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3320 /*
3321 * may read while context is not active
3322 * (e.g., thread is blocked), in that case
3323 * we cannot update context time
3324 */
e5d1367f 3325 if (ctx->is_active) {
c530ccd9 3326 update_context_time(ctx);
e5d1367f
SE
3327 update_cgrp_time_from_event(event);
3328 }
0492d4c5
PZ
3329 if (group)
3330 update_group_times(event);
3331 else
3332 update_event_times(event);
e625cce1 3333 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3334 }
7d88962e
SB
3335
3336 return ret;
0793a61d
TG
3337}
3338
a63eaf34 3339/*
cdd6c482 3340 * Initialize the perf_event context in a task_struct:
a63eaf34 3341 */
eb184479 3342static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3343{
e625cce1 3344 raw_spin_lock_init(&ctx->lock);
a63eaf34 3345 mutex_init(&ctx->mutex);
2fde4f94 3346 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3347 INIT_LIST_HEAD(&ctx->pinned_groups);
3348 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3349 INIT_LIST_HEAD(&ctx->event_list);
3350 atomic_set(&ctx->refcount, 1);
fadfe7be 3351 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3352}
3353
3354static struct perf_event_context *
3355alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3356{
3357 struct perf_event_context *ctx;
3358
3359 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3360 if (!ctx)
3361 return NULL;
3362
3363 __perf_event_init_context(ctx);
3364 if (task) {
3365 ctx->task = task;
3366 get_task_struct(task);
0793a61d 3367 }
eb184479
PZ
3368 ctx->pmu = pmu;
3369
3370 return ctx;
a63eaf34
PM
3371}
3372
2ebd4ffb
MH
3373static struct task_struct *
3374find_lively_task_by_vpid(pid_t vpid)
3375{
3376 struct task_struct *task;
3377 int err;
0793a61d
TG
3378
3379 rcu_read_lock();
2ebd4ffb 3380 if (!vpid)
0793a61d
TG
3381 task = current;
3382 else
2ebd4ffb 3383 task = find_task_by_vpid(vpid);
0793a61d
TG
3384 if (task)
3385 get_task_struct(task);
3386 rcu_read_unlock();
3387
3388 if (!task)
3389 return ERR_PTR(-ESRCH);
3390
0793a61d 3391 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3392 err = -EACCES;
3393 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3394 goto errout;
3395
2ebd4ffb
MH
3396 return task;
3397errout:
3398 put_task_struct(task);
3399 return ERR_PTR(err);
3400
3401}
3402
fe4b04fa
PZ
3403/*
3404 * Returns a matching context with refcount and pincount.
3405 */
108b02cf 3406static struct perf_event_context *
4af57ef2
YZ
3407find_get_context(struct pmu *pmu, struct task_struct *task,
3408 struct perf_event *event)
0793a61d 3409{
211de6eb 3410 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3411 struct perf_cpu_context *cpuctx;
4af57ef2 3412 void *task_ctx_data = NULL;
25346b93 3413 unsigned long flags;
8dc85d54 3414 int ctxn, err;
4af57ef2 3415 int cpu = event->cpu;
0793a61d 3416
22a4ec72 3417 if (!task) {
cdd6c482 3418 /* Must be root to operate on a CPU event: */
0764771d 3419 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3420 return ERR_PTR(-EACCES);
3421
0793a61d 3422 /*
cdd6c482 3423 * We could be clever and allow to attach a event to an
0793a61d
TG
3424 * offline CPU and activate it when the CPU comes up, but
3425 * that's for later.
3426 */
f6325e30 3427 if (!cpu_online(cpu))
0793a61d
TG
3428 return ERR_PTR(-ENODEV);
3429
108b02cf 3430 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3431 ctx = &cpuctx->ctx;
c93f7669 3432 get_ctx(ctx);
fe4b04fa 3433 ++ctx->pin_count;
0793a61d 3434
0793a61d
TG
3435 return ctx;
3436 }
3437
8dc85d54
PZ
3438 err = -EINVAL;
3439 ctxn = pmu->task_ctx_nr;
3440 if (ctxn < 0)
3441 goto errout;
3442
4af57ef2
YZ
3443 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3444 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3445 if (!task_ctx_data) {
3446 err = -ENOMEM;
3447 goto errout;
3448 }
3449 }
3450
9ed6060d 3451retry:
8dc85d54 3452 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3453 if (ctx) {
211de6eb 3454 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3455 ++ctx->pin_count;
4af57ef2
YZ
3456
3457 if (task_ctx_data && !ctx->task_ctx_data) {
3458 ctx->task_ctx_data = task_ctx_data;
3459 task_ctx_data = NULL;
3460 }
e625cce1 3461 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3462
3463 if (clone_ctx)
3464 put_ctx(clone_ctx);
9137fb28 3465 } else {
eb184479 3466 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3467 err = -ENOMEM;
3468 if (!ctx)
3469 goto errout;
eb184479 3470
4af57ef2
YZ
3471 if (task_ctx_data) {
3472 ctx->task_ctx_data = task_ctx_data;
3473 task_ctx_data = NULL;
3474 }
3475
dbe08d82
ON
3476 err = 0;
3477 mutex_lock(&task->perf_event_mutex);
3478 /*
3479 * If it has already passed perf_event_exit_task().
3480 * we must see PF_EXITING, it takes this mutex too.
3481 */
3482 if (task->flags & PF_EXITING)
3483 err = -ESRCH;
3484 else if (task->perf_event_ctxp[ctxn])
3485 err = -EAGAIN;
fe4b04fa 3486 else {
9137fb28 3487 get_ctx(ctx);
fe4b04fa 3488 ++ctx->pin_count;
dbe08d82 3489 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3490 }
dbe08d82
ON
3491 mutex_unlock(&task->perf_event_mutex);
3492
3493 if (unlikely(err)) {
9137fb28 3494 put_ctx(ctx);
dbe08d82
ON
3495
3496 if (err == -EAGAIN)
3497 goto retry;
3498 goto errout;
a63eaf34
PM
3499 }
3500 }
3501
4af57ef2 3502 kfree(task_ctx_data);
0793a61d 3503 return ctx;
c93f7669 3504
9ed6060d 3505errout:
4af57ef2 3506 kfree(task_ctx_data);
c93f7669 3507 return ERR_PTR(err);
0793a61d
TG
3508}
3509
6fb2915d 3510static void perf_event_free_filter(struct perf_event *event);
2541517c 3511static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3512
cdd6c482 3513static void free_event_rcu(struct rcu_head *head)
592903cd 3514{
cdd6c482 3515 struct perf_event *event;
592903cd 3516
cdd6c482
IM
3517 event = container_of(head, struct perf_event, rcu_head);
3518 if (event->ns)
3519 put_pid_ns(event->ns);
6fb2915d 3520 perf_event_free_filter(event);
cdd6c482 3521 kfree(event);
592903cd
PZ
3522}
3523
b69cf536
PZ
3524static void ring_buffer_attach(struct perf_event *event,
3525 struct ring_buffer *rb);
925d519a 3526
4beb31f3 3527static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3528{
4beb31f3
FW
3529 if (event->parent)
3530 return;
3531
4beb31f3
FW
3532 if (is_cgroup_event(event))
3533 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3534}
925d519a 3535
4beb31f3
FW
3536static void unaccount_event(struct perf_event *event)
3537{
3538 if (event->parent)
3539 return;
3540
3541 if (event->attach_state & PERF_ATTACH_TASK)
3542 static_key_slow_dec_deferred(&perf_sched_events);
3543 if (event->attr.mmap || event->attr.mmap_data)
3544 atomic_dec(&nr_mmap_events);
3545 if (event->attr.comm)
3546 atomic_dec(&nr_comm_events);
3547 if (event->attr.task)
3548 atomic_dec(&nr_task_events);
948b26b6
FW
3549 if (event->attr.freq)
3550 atomic_dec(&nr_freq_events);
45ac1403
AH
3551 if (event->attr.context_switch) {
3552 static_key_slow_dec_deferred(&perf_sched_events);
3553 atomic_dec(&nr_switch_events);
3554 }
4beb31f3
FW
3555 if (is_cgroup_event(event))
3556 static_key_slow_dec_deferred(&perf_sched_events);
3557 if (has_branch_stack(event))
3558 static_key_slow_dec_deferred(&perf_sched_events);
3559
3560 unaccount_event_cpu(event, event->cpu);
3561}
925d519a 3562
bed5b25a
AS
3563/*
3564 * The following implement mutual exclusion of events on "exclusive" pmus
3565 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3566 * at a time, so we disallow creating events that might conflict, namely:
3567 *
3568 * 1) cpu-wide events in the presence of per-task events,
3569 * 2) per-task events in the presence of cpu-wide events,
3570 * 3) two matching events on the same context.
3571 *
3572 * The former two cases are handled in the allocation path (perf_event_alloc(),
3573 * __free_event()), the latter -- before the first perf_install_in_context().
3574 */
3575static int exclusive_event_init(struct perf_event *event)
3576{
3577 struct pmu *pmu = event->pmu;
3578
3579 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3580 return 0;
3581
3582 /*
3583 * Prevent co-existence of per-task and cpu-wide events on the
3584 * same exclusive pmu.
3585 *
3586 * Negative pmu::exclusive_cnt means there are cpu-wide
3587 * events on this "exclusive" pmu, positive means there are
3588 * per-task events.
3589 *
3590 * Since this is called in perf_event_alloc() path, event::ctx
3591 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3592 * to mean "per-task event", because unlike other attach states it
3593 * never gets cleared.
3594 */
3595 if (event->attach_state & PERF_ATTACH_TASK) {
3596 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3597 return -EBUSY;
3598 } else {
3599 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3600 return -EBUSY;
3601 }
3602
3603 return 0;
3604}
3605
3606static void exclusive_event_destroy(struct perf_event *event)
3607{
3608 struct pmu *pmu = event->pmu;
3609
3610 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3611 return;
3612
3613 /* see comment in exclusive_event_init() */
3614 if (event->attach_state & PERF_ATTACH_TASK)
3615 atomic_dec(&pmu->exclusive_cnt);
3616 else
3617 atomic_inc(&pmu->exclusive_cnt);
3618}
3619
3620static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3621{
3622 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3623 (e1->cpu == e2->cpu ||
3624 e1->cpu == -1 ||
3625 e2->cpu == -1))
3626 return true;
3627 return false;
3628}
3629
3630/* Called under the same ctx::mutex as perf_install_in_context() */
3631static bool exclusive_event_installable(struct perf_event *event,
3632 struct perf_event_context *ctx)
3633{
3634 struct perf_event *iter_event;
3635 struct pmu *pmu = event->pmu;
3636
3637 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3638 return true;
3639
3640 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3641 if (exclusive_event_match(iter_event, event))
3642 return false;
3643 }
3644
3645 return true;
3646}
3647
766d6c07
FW
3648static void __free_event(struct perf_event *event)
3649{
cdd6c482 3650 if (!event->parent) {
927c7a9e
FW
3651 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3652 put_callchain_buffers();
f344011c 3653 }
9ee318a7 3654
dead9f29
AS
3655 perf_event_free_bpf_prog(event);
3656
766d6c07
FW
3657 if (event->destroy)
3658 event->destroy(event);
3659
3660 if (event->ctx)
3661 put_ctx(event->ctx);
3662
bed5b25a
AS
3663 if (event->pmu) {
3664 exclusive_event_destroy(event);
c464c76e 3665 module_put(event->pmu->module);
bed5b25a 3666 }
c464c76e 3667
766d6c07
FW
3668 call_rcu(&event->rcu_head, free_event_rcu);
3669}
683ede43
PZ
3670
3671static void _free_event(struct perf_event *event)
f1600952 3672{
e360adbe 3673 irq_work_sync(&event->pending);
925d519a 3674
4beb31f3 3675 unaccount_event(event);
9ee318a7 3676
76369139 3677 if (event->rb) {
9bb5d40c
PZ
3678 /*
3679 * Can happen when we close an event with re-directed output.
3680 *
3681 * Since we have a 0 refcount, perf_mmap_close() will skip
3682 * over us; possibly making our ring_buffer_put() the last.
3683 */
3684 mutex_lock(&event->mmap_mutex);
b69cf536 3685 ring_buffer_attach(event, NULL);
9bb5d40c 3686 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3687 }
3688
e5d1367f
SE
3689 if (is_cgroup_event(event))
3690 perf_detach_cgroup(event);
3691
766d6c07 3692 __free_event(event);
f1600952
PZ
3693}
3694
683ede43
PZ
3695/*
3696 * Used to free events which have a known refcount of 1, such as in error paths
3697 * where the event isn't exposed yet and inherited events.
3698 */
3699static void free_event(struct perf_event *event)
0793a61d 3700{
683ede43
PZ
3701 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3702 "unexpected event refcount: %ld; ptr=%p\n",
3703 atomic_long_read(&event->refcount), event)) {
3704 /* leak to avoid use-after-free */
3705 return;
3706 }
0793a61d 3707
683ede43 3708 _free_event(event);
0793a61d
TG
3709}
3710
a66a3052 3711/*
f8697762 3712 * Remove user event from the owner task.
a66a3052 3713 */
f8697762 3714static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3715{
8882135b 3716 struct task_struct *owner;
fb0459d7 3717
8882135b
PZ
3718 rcu_read_lock();
3719 owner = ACCESS_ONCE(event->owner);
3720 /*
3721 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3722 * !owner it means the list deletion is complete and we can indeed
3723 * free this event, otherwise we need to serialize on
3724 * owner->perf_event_mutex.
3725 */
3726 smp_read_barrier_depends();
3727 if (owner) {
3728 /*
3729 * Since delayed_put_task_struct() also drops the last
3730 * task reference we can safely take a new reference
3731 * while holding the rcu_read_lock().
3732 */
3733 get_task_struct(owner);
3734 }
3735 rcu_read_unlock();
3736
3737 if (owner) {
f63a8daa
PZ
3738 /*
3739 * If we're here through perf_event_exit_task() we're already
3740 * holding ctx->mutex which would be an inversion wrt. the
3741 * normal lock order.
3742 *
3743 * However we can safely take this lock because its the child
3744 * ctx->mutex.
3745 */
3746 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3747
8882135b
PZ
3748 /*
3749 * We have to re-check the event->owner field, if it is cleared
3750 * we raced with perf_event_exit_task(), acquiring the mutex
3751 * ensured they're done, and we can proceed with freeing the
3752 * event.
3753 */
3754 if (event->owner)
3755 list_del_init(&event->owner_entry);
3756 mutex_unlock(&owner->perf_event_mutex);
3757 put_task_struct(owner);
3758 }
f8697762
JO
3759}
3760
f8697762
JO
3761static void put_event(struct perf_event *event)
3762{
a83fe28e 3763 struct perf_event_context *ctx;
f8697762
JO
3764
3765 if (!atomic_long_dec_and_test(&event->refcount))
3766 return;
3767
3768 if (!is_kernel_event(event))
3769 perf_remove_from_owner(event);
8882135b 3770
683ede43
PZ
3771 /*
3772 * There are two ways this annotation is useful:
3773 *
3774 * 1) there is a lock recursion from perf_event_exit_task
3775 * see the comment there.
3776 *
3777 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3778 * perf_read_group(), which takes faults while
683ede43
PZ
3779 * holding ctx->mutex, however this is called after
3780 * the last filedesc died, so there is no possibility
3781 * to trigger the AB-BA case.
3782 */
a83fe28e
PZ
3783 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3784 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3785 perf_remove_from_context(event, true);
d415a7f1 3786 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3787
3788 _free_event(event);
a6fa941d
AV
3789}
3790
683ede43
PZ
3791int perf_event_release_kernel(struct perf_event *event)
3792{
3793 put_event(event);
3794 return 0;
3795}
3796EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3797
8b10c5e2
PZ
3798/*
3799 * Called when the last reference to the file is gone.
3800 */
a6fa941d
AV
3801static int perf_release(struct inode *inode, struct file *file)
3802{
3803 put_event(file->private_data);
3804 return 0;
fb0459d7 3805}
fb0459d7 3806
fadfe7be
JO
3807/*
3808 * Remove all orphanes events from the context.
3809 */
3810static void orphans_remove_work(struct work_struct *work)
3811{
3812 struct perf_event_context *ctx;
3813 struct perf_event *event, *tmp;
3814
3815 ctx = container_of(work, struct perf_event_context,
3816 orphans_remove.work);
3817
3818 mutex_lock(&ctx->mutex);
3819 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3820 struct perf_event *parent_event = event->parent;
3821
3822 if (!is_orphaned_child(event))
3823 continue;
3824
3825 perf_remove_from_context(event, true);
3826
3827 mutex_lock(&parent_event->child_mutex);
3828 list_del_init(&event->child_list);
3829 mutex_unlock(&parent_event->child_mutex);
3830
3831 free_event(event);
3832 put_event(parent_event);
3833 }
3834
3835 raw_spin_lock_irq(&ctx->lock);
3836 ctx->orphans_remove_sched = false;
3837 raw_spin_unlock_irq(&ctx->lock);
3838 mutex_unlock(&ctx->mutex);
3839
3840 put_ctx(ctx);
3841}
3842
59ed446f 3843u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3844{
cdd6c482 3845 struct perf_event *child;
e53c0994
PZ
3846 u64 total = 0;
3847
59ed446f
PZ
3848 *enabled = 0;
3849 *running = 0;
3850
6f10581a 3851 mutex_lock(&event->child_mutex);
01add3ea 3852
7d88962e 3853 (void)perf_event_read(event, false);
01add3ea
SB
3854 total += perf_event_count(event);
3855
59ed446f
PZ
3856 *enabled += event->total_time_enabled +
3857 atomic64_read(&event->child_total_time_enabled);
3858 *running += event->total_time_running +
3859 atomic64_read(&event->child_total_time_running);
3860
3861 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3862 (void)perf_event_read(child, false);
01add3ea 3863 total += perf_event_count(child);
59ed446f
PZ
3864 *enabled += child->total_time_enabled;
3865 *running += child->total_time_running;
3866 }
6f10581a 3867 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3868
3869 return total;
3870}
fb0459d7 3871EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3872
7d88962e 3873static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3874 u64 read_format, u64 *values)
3dab77fb 3875{
fa8c2693
PZ
3876 struct perf_event *sub;
3877 int n = 1; /* skip @nr */
7d88962e 3878 int ret;
f63a8daa 3879
7d88962e
SB
3880 ret = perf_event_read(leader, true);
3881 if (ret)
3882 return ret;
abf4868b 3883
fa8c2693
PZ
3884 /*
3885 * Since we co-schedule groups, {enabled,running} times of siblings
3886 * will be identical to those of the leader, so we only publish one
3887 * set.
3888 */
3889 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3890 values[n++] += leader->total_time_enabled +
3891 atomic64_read(&leader->child_total_time_enabled);
3892 }
3dab77fb 3893
fa8c2693
PZ
3894 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3895 values[n++] += leader->total_time_running +
3896 atomic64_read(&leader->child_total_time_running);
3897 }
3898
3899 /*
3900 * Write {count,id} tuples for every sibling.
3901 */
3902 values[n++] += perf_event_count(leader);
abf4868b
PZ
3903 if (read_format & PERF_FORMAT_ID)
3904 values[n++] = primary_event_id(leader);
3dab77fb 3905
fa8c2693
PZ
3906 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3907 values[n++] += perf_event_count(sub);
3908 if (read_format & PERF_FORMAT_ID)
3909 values[n++] = primary_event_id(sub);
3910 }
7d88962e
SB
3911
3912 return 0;
fa8c2693 3913}
3dab77fb 3914
fa8c2693
PZ
3915static int perf_read_group(struct perf_event *event,
3916 u64 read_format, char __user *buf)
3917{
3918 struct perf_event *leader = event->group_leader, *child;
3919 struct perf_event_context *ctx = leader->ctx;
7d88962e 3920 int ret;
fa8c2693 3921 u64 *values;
3dab77fb 3922
fa8c2693 3923 lockdep_assert_held(&ctx->mutex);
3dab77fb 3924
fa8c2693
PZ
3925 values = kzalloc(event->read_size, GFP_KERNEL);
3926 if (!values)
3927 return -ENOMEM;
3dab77fb 3928
fa8c2693
PZ
3929 values[0] = 1 + leader->nr_siblings;
3930
3931 /*
3932 * By locking the child_mutex of the leader we effectively
3933 * lock the child list of all siblings.. XXX explain how.
3934 */
3935 mutex_lock(&leader->child_mutex);
abf4868b 3936
7d88962e
SB
3937 ret = __perf_read_group_add(leader, read_format, values);
3938 if (ret)
3939 goto unlock;
3940
3941 list_for_each_entry(child, &leader->child_list, child_list) {
3942 ret = __perf_read_group_add(child, read_format, values);
3943 if (ret)
3944 goto unlock;
3945 }
abf4868b 3946
fa8c2693 3947 mutex_unlock(&leader->child_mutex);
abf4868b 3948
7d88962e 3949 ret = event->read_size;
fa8c2693
PZ
3950 if (copy_to_user(buf, values, event->read_size))
3951 ret = -EFAULT;
7d88962e 3952 goto out;
fa8c2693 3953
7d88962e
SB
3954unlock:
3955 mutex_unlock(&leader->child_mutex);
3956out:
fa8c2693 3957 kfree(values);
abf4868b 3958 return ret;
3dab77fb
PZ
3959}
3960
b15f495b 3961static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3962 u64 read_format, char __user *buf)
3963{
59ed446f 3964 u64 enabled, running;
3dab77fb
PZ
3965 u64 values[4];
3966 int n = 0;
3967
59ed446f
PZ
3968 values[n++] = perf_event_read_value(event, &enabled, &running);
3969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3970 values[n++] = enabled;
3971 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3972 values[n++] = running;
3dab77fb 3973 if (read_format & PERF_FORMAT_ID)
cdd6c482 3974 values[n++] = primary_event_id(event);
3dab77fb
PZ
3975
3976 if (copy_to_user(buf, values, n * sizeof(u64)))
3977 return -EFAULT;
3978
3979 return n * sizeof(u64);
3980}
3981
dc633982
JO
3982static bool is_event_hup(struct perf_event *event)
3983{
3984 bool no_children;
3985
3986 if (event->state != PERF_EVENT_STATE_EXIT)
3987 return false;
3988
3989 mutex_lock(&event->child_mutex);
3990 no_children = list_empty(&event->child_list);
3991 mutex_unlock(&event->child_mutex);
3992 return no_children;
3993}
3994
0793a61d 3995/*
cdd6c482 3996 * Read the performance event - simple non blocking version for now
0793a61d
TG
3997 */
3998static ssize_t
b15f495b 3999__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4000{
cdd6c482 4001 u64 read_format = event->attr.read_format;
3dab77fb 4002 int ret;
0793a61d 4003
3b6f9e5c 4004 /*
cdd6c482 4005 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4006 * error state (i.e. because it was pinned but it couldn't be
4007 * scheduled on to the CPU at some point).
4008 */
cdd6c482 4009 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4010 return 0;
4011
c320c7b7 4012 if (count < event->read_size)
3dab77fb
PZ
4013 return -ENOSPC;
4014
cdd6c482 4015 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4016 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4017 ret = perf_read_group(event, read_format, buf);
3dab77fb 4018 else
b15f495b 4019 ret = perf_read_one(event, read_format, buf);
0793a61d 4020
3dab77fb 4021 return ret;
0793a61d
TG
4022}
4023
0793a61d
TG
4024static ssize_t
4025perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4026{
cdd6c482 4027 struct perf_event *event = file->private_data;
f63a8daa
PZ
4028 struct perf_event_context *ctx;
4029 int ret;
0793a61d 4030
f63a8daa 4031 ctx = perf_event_ctx_lock(event);
b15f495b 4032 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4033 perf_event_ctx_unlock(event, ctx);
4034
4035 return ret;
0793a61d
TG
4036}
4037
4038static unsigned int perf_poll(struct file *file, poll_table *wait)
4039{
cdd6c482 4040 struct perf_event *event = file->private_data;
76369139 4041 struct ring_buffer *rb;
61b67684 4042 unsigned int events = POLLHUP;
c7138f37 4043
e708d7ad 4044 poll_wait(file, &event->waitq, wait);
179033b3 4045
dc633982 4046 if (is_event_hup(event))
179033b3 4047 return events;
c7138f37 4048
10c6db11 4049 /*
9bb5d40c
PZ
4050 * Pin the event->rb by taking event->mmap_mutex; otherwise
4051 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4052 */
4053 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4054 rb = event->rb;
4055 if (rb)
76369139 4056 events = atomic_xchg(&rb->poll, 0);
10c6db11 4057 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4058 return events;
4059}
4060
f63a8daa 4061static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4062{
7d88962e 4063 (void)perf_event_read(event, false);
e7850595 4064 local64_set(&event->count, 0);
cdd6c482 4065 perf_event_update_userpage(event);
3df5edad
PZ
4066}
4067
c93f7669 4068/*
cdd6c482
IM
4069 * Holding the top-level event's child_mutex means that any
4070 * descendant process that has inherited this event will block
4071 * in sync_child_event if it goes to exit, thus satisfying the
4072 * task existence requirements of perf_event_enable/disable.
c93f7669 4073 */
cdd6c482
IM
4074static void perf_event_for_each_child(struct perf_event *event,
4075 void (*func)(struct perf_event *))
3df5edad 4076{
cdd6c482 4077 struct perf_event *child;
3df5edad 4078
cdd6c482 4079 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4080
cdd6c482
IM
4081 mutex_lock(&event->child_mutex);
4082 func(event);
4083 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4084 func(child);
cdd6c482 4085 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4086}
4087
cdd6c482
IM
4088static void perf_event_for_each(struct perf_event *event,
4089 void (*func)(struct perf_event *))
3df5edad 4090{
cdd6c482
IM
4091 struct perf_event_context *ctx = event->ctx;
4092 struct perf_event *sibling;
3df5edad 4093
f63a8daa
PZ
4094 lockdep_assert_held(&ctx->mutex);
4095
cdd6c482 4096 event = event->group_leader;
75f937f2 4097
cdd6c482 4098 perf_event_for_each_child(event, func);
cdd6c482 4099 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4100 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4101}
4102
c7999c6f
PZ
4103struct period_event {
4104 struct perf_event *event;
08247e31 4105 u64 value;
c7999c6f 4106};
08247e31 4107
c7999c6f
PZ
4108static int __perf_event_period(void *info)
4109{
4110 struct period_event *pe = info;
4111 struct perf_event *event = pe->event;
4112 struct perf_event_context *ctx = event->ctx;
4113 u64 value = pe->value;
4114 bool active;
08247e31 4115
c7999c6f 4116 raw_spin_lock(&ctx->lock);
cdd6c482 4117 if (event->attr.freq) {
cdd6c482 4118 event->attr.sample_freq = value;
08247e31 4119 } else {
cdd6c482
IM
4120 event->attr.sample_period = value;
4121 event->hw.sample_period = value;
08247e31 4122 }
bad7192b
PZ
4123
4124 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4125 if (active) {
4126 perf_pmu_disable(ctx->pmu);
4127 event->pmu->stop(event, PERF_EF_UPDATE);
4128 }
4129
4130 local64_set(&event->hw.period_left, 0);
4131
4132 if (active) {
4133 event->pmu->start(event, PERF_EF_RELOAD);
4134 perf_pmu_enable(ctx->pmu);
4135 }
c7999c6f 4136 raw_spin_unlock(&ctx->lock);
bad7192b 4137
c7999c6f
PZ
4138 return 0;
4139}
4140
4141static int perf_event_period(struct perf_event *event, u64 __user *arg)
4142{
4143 struct period_event pe = { .event = event, };
4144 struct perf_event_context *ctx = event->ctx;
4145 struct task_struct *task;
4146 u64 value;
4147
4148 if (!is_sampling_event(event))
4149 return -EINVAL;
4150
4151 if (copy_from_user(&value, arg, sizeof(value)))
4152 return -EFAULT;
4153
4154 if (!value)
4155 return -EINVAL;
4156
4157 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4158 return -EINVAL;
4159
4160 task = ctx->task;
4161 pe.value = value;
4162
4163 if (!task) {
4164 cpu_function_call(event->cpu, __perf_event_period, &pe);
4165 return 0;
4166 }
4167
4168retry:
4169 if (!task_function_call(task, __perf_event_period, &pe))
4170 return 0;
4171
4172 raw_spin_lock_irq(&ctx->lock);
4173 if (ctx->is_active) {
4174 raw_spin_unlock_irq(&ctx->lock);
4175 task = ctx->task;
4176 goto retry;
4177 }
4178
4179 __perf_event_period(&pe);
e625cce1 4180 raw_spin_unlock_irq(&ctx->lock);
08247e31 4181
c7999c6f 4182 return 0;
08247e31
PZ
4183}
4184
ac9721f3
PZ
4185static const struct file_operations perf_fops;
4186
2903ff01 4187static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4188{
2903ff01
AV
4189 struct fd f = fdget(fd);
4190 if (!f.file)
4191 return -EBADF;
ac9721f3 4192
2903ff01
AV
4193 if (f.file->f_op != &perf_fops) {
4194 fdput(f);
4195 return -EBADF;
ac9721f3 4196 }
2903ff01
AV
4197 *p = f;
4198 return 0;
ac9721f3
PZ
4199}
4200
4201static int perf_event_set_output(struct perf_event *event,
4202 struct perf_event *output_event);
6fb2915d 4203static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4204static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4205
f63a8daa 4206static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4207{
cdd6c482 4208 void (*func)(struct perf_event *);
3df5edad 4209 u32 flags = arg;
d859e29f
PM
4210
4211 switch (cmd) {
cdd6c482 4212 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4213 func = _perf_event_enable;
d859e29f 4214 break;
cdd6c482 4215 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4216 func = _perf_event_disable;
79f14641 4217 break;
cdd6c482 4218 case PERF_EVENT_IOC_RESET:
f63a8daa 4219 func = _perf_event_reset;
6de6a7b9 4220 break;
3df5edad 4221
cdd6c482 4222 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4223 return _perf_event_refresh(event, arg);
08247e31 4224
cdd6c482
IM
4225 case PERF_EVENT_IOC_PERIOD:
4226 return perf_event_period(event, (u64 __user *)arg);
08247e31 4227
cf4957f1
JO
4228 case PERF_EVENT_IOC_ID:
4229 {
4230 u64 id = primary_event_id(event);
4231
4232 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4233 return -EFAULT;
4234 return 0;
4235 }
4236
cdd6c482 4237 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4238 {
ac9721f3 4239 int ret;
ac9721f3 4240 if (arg != -1) {
2903ff01
AV
4241 struct perf_event *output_event;
4242 struct fd output;
4243 ret = perf_fget_light(arg, &output);
4244 if (ret)
4245 return ret;
4246 output_event = output.file->private_data;
4247 ret = perf_event_set_output(event, output_event);
4248 fdput(output);
4249 } else {
4250 ret = perf_event_set_output(event, NULL);
ac9721f3 4251 }
ac9721f3
PZ
4252 return ret;
4253 }
a4be7c27 4254
6fb2915d
LZ
4255 case PERF_EVENT_IOC_SET_FILTER:
4256 return perf_event_set_filter(event, (void __user *)arg);
4257
2541517c
AS
4258 case PERF_EVENT_IOC_SET_BPF:
4259 return perf_event_set_bpf_prog(event, arg);
4260
d859e29f 4261 default:
3df5edad 4262 return -ENOTTY;
d859e29f 4263 }
3df5edad
PZ
4264
4265 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4266 perf_event_for_each(event, func);
3df5edad 4267 else
cdd6c482 4268 perf_event_for_each_child(event, func);
3df5edad
PZ
4269
4270 return 0;
d859e29f
PM
4271}
4272
f63a8daa
PZ
4273static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4274{
4275 struct perf_event *event = file->private_data;
4276 struct perf_event_context *ctx;
4277 long ret;
4278
4279 ctx = perf_event_ctx_lock(event);
4280 ret = _perf_ioctl(event, cmd, arg);
4281 perf_event_ctx_unlock(event, ctx);
4282
4283 return ret;
4284}
4285
b3f20785
PM
4286#ifdef CONFIG_COMPAT
4287static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4288 unsigned long arg)
4289{
4290 switch (_IOC_NR(cmd)) {
4291 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4292 case _IOC_NR(PERF_EVENT_IOC_ID):
4293 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4294 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4295 cmd &= ~IOCSIZE_MASK;
4296 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4297 }
4298 break;
4299 }
4300 return perf_ioctl(file, cmd, arg);
4301}
4302#else
4303# define perf_compat_ioctl NULL
4304#endif
4305
cdd6c482 4306int perf_event_task_enable(void)
771d7cde 4307{
f63a8daa 4308 struct perf_event_context *ctx;
cdd6c482 4309 struct perf_event *event;
771d7cde 4310
cdd6c482 4311 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4312 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4313 ctx = perf_event_ctx_lock(event);
4314 perf_event_for_each_child(event, _perf_event_enable);
4315 perf_event_ctx_unlock(event, ctx);
4316 }
cdd6c482 4317 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4318
4319 return 0;
4320}
4321
cdd6c482 4322int perf_event_task_disable(void)
771d7cde 4323{
f63a8daa 4324 struct perf_event_context *ctx;
cdd6c482 4325 struct perf_event *event;
771d7cde 4326
cdd6c482 4327 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4328 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4329 ctx = perf_event_ctx_lock(event);
4330 perf_event_for_each_child(event, _perf_event_disable);
4331 perf_event_ctx_unlock(event, ctx);
4332 }
cdd6c482 4333 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4334
4335 return 0;
4336}
4337
cdd6c482 4338static int perf_event_index(struct perf_event *event)
194002b2 4339{
a4eaf7f1
PZ
4340 if (event->hw.state & PERF_HES_STOPPED)
4341 return 0;
4342
cdd6c482 4343 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4344 return 0;
4345
35edc2a5 4346 return event->pmu->event_idx(event);
194002b2
PZ
4347}
4348
c4794295 4349static void calc_timer_values(struct perf_event *event,
e3f3541c 4350 u64 *now,
7f310a5d
EM
4351 u64 *enabled,
4352 u64 *running)
c4794295 4353{
e3f3541c 4354 u64 ctx_time;
c4794295 4355
e3f3541c
PZ
4356 *now = perf_clock();
4357 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4358 *enabled = ctx_time - event->tstamp_enabled;
4359 *running = ctx_time - event->tstamp_running;
4360}
4361
fa731587
PZ
4362static void perf_event_init_userpage(struct perf_event *event)
4363{
4364 struct perf_event_mmap_page *userpg;
4365 struct ring_buffer *rb;
4366
4367 rcu_read_lock();
4368 rb = rcu_dereference(event->rb);
4369 if (!rb)
4370 goto unlock;
4371
4372 userpg = rb->user_page;
4373
4374 /* Allow new userspace to detect that bit 0 is deprecated */
4375 userpg->cap_bit0_is_deprecated = 1;
4376 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4377 userpg->data_offset = PAGE_SIZE;
4378 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4379
4380unlock:
4381 rcu_read_unlock();
4382}
4383
c1317ec2
AL
4384void __weak arch_perf_update_userpage(
4385 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4386{
4387}
4388
38ff667b
PZ
4389/*
4390 * Callers need to ensure there can be no nesting of this function, otherwise
4391 * the seqlock logic goes bad. We can not serialize this because the arch
4392 * code calls this from NMI context.
4393 */
cdd6c482 4394void perf_event_update_userpage(struct perf_event *event)
37d81828 4395{
cdd6c482 4396 struct perf_event_mmap_page *userpg;
76369139 4397 struct ring_buffer *rb;
e3f3541c 4398 u64 enabled, running, now;
38ff667b
PZ
4399
4400 rcu_read_lock();
5ec4c599
PZ
4401 rb = rcu_dereference(event->rb);
4402 if (!rb)
4403 goto unlock;
4404
0d641208
EM
4405 /*
4406 * compute total_time_enabled, total_time_running
4407 * based on snapshot values taken when the event
4408 * was last scheduled in.
4409 *
4410 * we cannot simply called update_context_time()
4411 * because of locking issue as we can be called in
4412 * NMI context
4413 */
e3f3541c 4414 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4415
76369139 4416 userpg = rb->user_page;
7b732a75
PZ
4417 /*
4418 * Disable preemption so as to not let the corresponding user-space
4419 * spin too long if we get preempted.
4420 */
4421 preempt_disable();
37d81828 4422 ++userpg->lock;
92f22a38 4423 barrier();
cdd6c482 4424 userpg->index = perf_event_index(event);
b5e58793 4425 userpg->offset = perf_event_count(event);
365a4038 4426 if (userpg->index)
e7850595 4427 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4428
0d641208 4429 userpg->time_enabled = enabled +
cdd6c482 4430 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4431
0d641208 4432 userpg->time_running = running +
cdd6c482 4433 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4434
c1317ec2 4435 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4436
92f22a38 4437 barrier();
37d81828 4438 ++userpg->lock;
7b732a75 4439 preempt_enable();
38ff667b 4440unlock:
7b732a75 4441 rcu_read_unlock();
37d81828
PM
4442}
4443
906010b2
PZ
4444static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4445{
4446 struct perf_event *event = vma->vm_file->private_data;
76369139 4447 struct ring_buffer *rb;
906010b2
PZ
4448 int ret = VM_FAULT_SIGBUS;
4449
4450 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4451 if (vmf->pgoff == 0)
4452 ret = 0;
4453 return ret;
4454 }
4455
4456 rcu_read_lock();
76369139
FW
4457 rb = rcu_dereference(event->rb);
4458 if (!rb)
906010b2
PZ
4459 goto unlock;
4460
4461 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4462 goto unlock;
4463
76369139 4464 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4465 if (!vmf->page)
4466 goto unlock;
4467
4468 get_page(vmf->page);
4469 vmf->page->mapping = vma->vm_file->f_mapping;
4470 vmf->page->index = vmf->pgoff;
4471
4472 ret = 0;
4473unlock:
4474 rcu_read_unlock();
4475
4476 return ret;
4477}
4478
10c6db11
PZ
4479static void ring_buffer_attach(struct perf_event *event,
4480 struct ring_buffer *rb)
4481{
b69cf536 4482 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4483 unsigned long flags;
4484
b69cf536
PZ
4485 if (event->rb) {
4486 /*
4487 * Should be impossible, we set this when removing
4488 * event->rb_entry and wait/clear when adding event->rb_entry.
4489 */
4490 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4491
b69cf536 4492 old_rb = event->rb;
b69cf536
PZ
4493 spin_lock_irqsave(&old_rb->event_lock, flags);
4494 list_del_rcu(&event->rb_entry);
4495 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4496
2f993cf0
ON
4497 event->rcu_batches = get_state_synchronize_rcu();
4498 event->rcu_pending = 1;
b69cf536 4499 }
10c6db11 4500
b69cf536 4501 if (rb) {
2f993cf0
ON
4502 if (event->rcu_pending) {
4503 cond_synchronize_rcu(event->rcu_batches);
4504 event->rcu_pending = 0;
4505 }
4506
b69cf536
PZ
4507 spin_lock_irqsave(&rb->event_lock, flags);
4508 list_add_rcu(&event->rb_entry, &rb->event_list);
4509 spin_unlock_irqrestore(&rb->event_lock, flags);
4510 }
4511
4512 rcu_assign_pointer(event->rb, rb);
4513
4514 if (old_rb) {
4515 ring_buffer_put(old_rb);
4516 /*
4517 * Since we detached before setting the new rb, so that we
4518 * could attach the new rb, we could have missed a wakeup.
4519 * Provide it now.
4520 */
4521 wake_up_all(&event->waitq);
4522 }
10c6db11
PZ
4523}
4524
4525static void ring_buffer_wakeup(struct perf_event *event)
4526{
4527 struct ring_buffer *rb;
4528
4529 rcu_read_lock();
4530 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4531 if (rb) {
4532 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4533 wake_up_all(&event->waitq);
4534 }
10c6db11
PZ
4535 rcu_read_unlock();
4536}
4537
fdc26706 4538struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4539{
76369139 4540 struct ring_buffer *rb;
7b732a75 4541
ac9721f3 4542 rcu_read_lock();
76369139
FW
4543 rb = rcu_dereference(event->rb);
4544 if (rb) {
4545 if (!atomic_inc_not_zero(&rb->refcount))
4546 rb = NULL;
ac9721f3
PZ
4547 }
4548 rcu_read_unlock();
4549
76369139 4550 return rb;
ac9721f3
PZ
4551}
4552
fdc26706 4553void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4554{
76369139 4555 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4556 return;
7b732a75 4557
9bb5d40c 4558 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4559
76369139 4560 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4561}
4562
4563static void perf_mmap_open(struct vm_area_struct *vma)
4564{
cdd6c482 4565 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4566
cdd6c482 4567 atomic_inc(&event->mmap_count);
9bb5d40c 4568 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4569
45bfb2e5
PZ
4570 if (vma->vm_pgoff)
4571 atomic_inc(&event->rb->aux_mmap_count);
4572
1e0fb9ec
AL
4573 if (event->pmu->event_mapped)
4574 event->pmu->event_mapped(event);
7b732a75
PZ
4575}
4576
9bb5d40c
PZ
4577/*
4578 * A buffer can be mmap()ed multiple times; either directly through the same
4579 * event, or through other events by use of perf_event_set_output().
4580 *
4581 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4582 * the buffer here, where we still have a VM context. This means we need
4583 * to detach all events redirecting to us.
4584 */
7b732a75
PZ
4585static void perf_mmap_close(struct vm_area_struct *vma)
4586{
cdd6c482 4587 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4588
b69cf536 4589 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4590 struct user_struct *mmap_user = rb->mmap_user;
4591 int mmap_locked = rb->mmap_locked;
4592 unsigned long size = perf_data_size(rb);
789f90fc 4593
1e0fb9ec
AL
4594 if (event->pmu->event_unmapped)
4595 event->pmu->event_unmapped(event);
4596
45bfb2e5
PZ
4597 /*
4598 * rb->aux_mmap_count will always drop before rb->mmap_count and
4599 * event->mmap_count, so it is ok to use event->mmap_mutex to
4600 * serialize with perf_mmap here.
4601 */
4602 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4603 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4604 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4605 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4606
4607 rb_free_aux(rb);
4608 mutex_unlock(&event->mmap_mutex);
4609 }
4610
9bb5d40c
PZ
4611 atomic_dec(&rb->mmap_count);
4612
4613 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4614 goto out_put;
9bb5d40c 4615
b69cf536 4616 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4617 mutex_unlock(&event->mmap_mutex);
4618
4619 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4620 if (atomic_read(&rb->mmap_count))
4621 goto out_put;
ac9721f3 4622
9bb5d40c
PZ
4623 /*
4624 * No other mmap()s, detach from all other events that might redirect
4625 * into the now unreachable buffer. Somewhat complicated by the
4626 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4627 */
4628again:
4629 rcu_read_lock();
4630 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4631 if (!atomic_long_inc_not_zero(&event->refcount)) {
4632 /*
4633 * This event is en-route to free_event() which will
4634 * detach it and remove it from the list.
4635 */
4636 continue;
4637 }
4638 rcu_read_unlock();
789f90fc 4639
9bb5d40c
PZ
4640 mutex_lock(&event->mmap_mutex);
4641 /*
4642 * Check we didn't race with perf_event_set_output() which can
4643 * swizzle the rb from under us while we were waiting to
4644 * acquire mmap_mutex.
4645 *
4646 * If we find a different rb; ignore this event, a next
4647 * iteration will no longer find it on the list. We have to
4648 * still restart the iteration to make sure we're not now
4649 * iterating the wrong list.
4650 */
b69cf536
PZ
4651 if (event->rb == rb)
4652 ring_buffer_attach(event, NULL);
4653
cdd6c482 4654 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4655 put_event(event);
ac9721f3 4656
9bb5d40c
PZ
4657 /*
4658 * Restart the iteration; either we're on the wrong list or
4659 * destroyed its integrity by doing a deletion.
4660 */
4661 goto again;
7b732a75 4662 }
9bb5d40c
PZ
4663 rcu_read_unlock();
4664
4665 /*
4666 * It could be there's still a few 0-ref events on the list; they'll
4667 * get cleaned up by free_event() -- they'll also still have their
4668 * ref on the rb and will free it whenever they are done with it.
4669 *
4670 * Aside from that, this buffer is 'fully' detached and unmapped,
4671 * undo the VM accounting.
4672 */
4673
4674 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4675 vma->vm_mm->pinned_vm -= mmap_locked;
4676 free_uid(mmap_user);
4677
b69cf536 4678out_put:
9bb5d40c 4679 ring_buffer_put(rb); /* could be last */
37d81828
PM
4680}
4681
f0f37e2f 4682static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4683 .open = perf_mmap_open,
45bfb2e5 4684 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4685 .fault = perf_mmap_fault,
4686 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4687};
4688
4689static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4690{
cdd6c482 4691 struct perf_event *event = file->private_data;
22a4f650 4692 unsigned long user_locked, user_lock_limit;
789f90fc 4693 struct user_struct *user = current_user();
22a4f650 4694 unsigned long locked, lock_limit;
45bfb2e5 4695 struct ring_buffer *rb = NULL;
7b732a75
PZ
4696 unsigned long vma_size;
4697 unsigned long nr_pages;
45bfb2e5 4698 long user_extra = 0, extra = 0;
d57e34fd 4699 int ret = 0, flags = 0;
37d81828 4700
c7920614
PZ
4701 /*
4702 * Don't allow mmap() of inherited per-task counters. This would
4703 * create a performance issue due to all children writing to the
76369139 4704 * same rb.
c7920614
PZ
4705 */
4706 if (event->cpu == -1 && event->attr.inherit)
4707 return -EINVAL;
4708
43a21ea8 4709 if (!(vma->vm_flags & VM_SHARED))
37d81828 4710 return -EINVAL;
7b732a75
PZ
4711
4712 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4713
4714 if (vma->vm_pgoff == 0) {
4715 nr_pages = (vma_size / PAGE_SIZE) - 1;
4716 } else {
4717 /*
4718 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4719 * mapped, all subsequent mappings should have the same size
4720 * and offset. Must be above the normal perf buffer.
4721 */
4722 u64 aux_offset, aux_size;
4723
4724 if (!event->rb)
4725 return -EINVAL;
4726
4727 nr_pages = vma_size / PAGE_SIZE;
4728
4729 mutex_lock(&event->mmap_mutex);
4730 ret = -EINVAL;
4731
4732 rb = event->rb;
4733 if (!rb)
4734 goto aux_unlock;
4735
4736 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4737 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4738
4739 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4740 goto aux_unlock;
4741
4742 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4743 goto aux_unlock;
4744
4745 /* already mapped with a different offset */
4746 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4747 goto aux_unlock;
4748
4749 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4750 goto aux_unlock;
4751
4752 /* already mapped with a different size */
4753 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4754 goto aux_unlock;
4755
4756 if (!is_power_of_2(nr_pages))
4757 goto aux_unlock;
4758
4759 if (!atomic_inc_not_zero(&rb->mmap_count))
4760 goto aux_unlock;
4761
4762 if (rb_has_aux(rb)) {
4763 atomic_inc(&rb->aux_mmap_count);
4764 ret = 0;
4765 goto unlock;
4766 }
4767
4768 atomic_set(&rb->aux_mmap_count, 1);
4769 user_extra = nr_pages;
4770
4771 goto accounting;
4772 }
7b732a75 4773
7730d865 4774 /*
76369139 4775 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4776 * can do bitmasks instead of modulo.
4777 */
2ed11312 4778 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4779 return -EINVAL;
4780
7b732a75 4781 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4782 return -EINVAL;
4783
cdd6c482 4784 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4785again:
cdd6c482 4786 mutex_lock(&event->mmap_mutex);
76369139 4787 if (event->rb) {
9bb5d40c 4788 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4789 ret = -EINVAL;
9bb5d40c
PZ
4790 goto unlock;
4791 }
4792
4793 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4794 /*
4795 * Raced against perf_mmap_close() through
4796 * perf_event_set_output(). Try again, hope for better
4797 * luck.
4798 */
4799 mutex_unlock(&event->mmap_mutex);
4800 goto again;
4801 }
4802
ebb3c4c4
PZ
4803 goto unlock;
4804 }
4805
789f90fc 4806 user_extra = nr_pages + 1;
45bfb2e5
PZ
4807
4808accounting:
cdd6c482 4809 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4810
4811 /*
4812 * Increase the limit linearly with more CPUs:
4813 */
4814 user_lock_limit *= num_online_cpus();
4815
789f90fc 4816 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4817
789f90fc
PZ
4818 if (user_locked > user_lock_limit)
4819 extra = user_locked - user_lock_limit;
7b732a75 4820
78d7d407 4821 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4822 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4823 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4824
459ec28a
IM
4825 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4826 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4827 ret = -EPERM;
4828 goto unlock;
4829 }
7b732a75 4830
45bfb2e5 4831 WARN_ON(!rb && event->rb);
906010b2 4832
d57e34fd 4833 if (vma->vm_flags & VM_WRITE)
76369139 4834 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4835
76369139 4836 if (!rb) {
45bfb2e5
PZ
4837 rb = rb_alloc(nr_pages,
4838 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4839 event->cpu, flags);
26cb63ad 4840
45bfb2e5
PZ
4841 if (!rb) {
4842 ret = -ENOMEM;
4843 goto unlock;
4844 }
43a21ea8 4845
45bfb2e5
PZ
4846 atomic_set(&rb->mmap_count, 1);
4847 rb->mmap_user = get_current_user();
4848 rb->mmap_locked = extra;
26cb63ad 4849
45bfb2e5 4850 ring_buffer_attach(event, rb);
ac9721f3 4851
45bfb2e5
PZ
4852 perf_event_init_userpage(event);
4853 perf_event_update_userpage(event);
4854 } else {
1a594131
AS
4855 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4856 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4857 if (!ret)
4858 rb->aux_mmap_locked = extra;
4859 }
9a0f05cb 4860
ebb3c4c4 4861unlock:
45bfb2e5
PZ
4862 if (!ret) {
4863 atomic_long_add(user_extra, &user->locked_vm);
4864 vma->vm_mm->pinned_vm += extra;
4865
ac9721f3 4866 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4867 } else if (rb) {
4868 atomic_dec(&rb->mmap_count);
4869 }
4870aux_unlock:
cdd6c482 4871 mutex_unlock(&event->mmap_mutex);
37d81828 4872
9bb5d40c
PZ
4873 /*
4874 * Since pinned accounting is per vm we cannot allow fork() to copy our
4875 * vma.
4876 */
26cb63ad 4877 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4878 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4879
1e0fb9ec
AL
4880 if (event->pmu->event_mapped)
4881 event->pmu->event_mapped(event);
4882
7b732a75 4883 return ret;
37d81828
PM
4884}
4885
3c446b3d
PZ
4886static int perf_fasync(int fd, struct file *filp, int on)
4887{
496ad9aa 4888 struct inode *inode = file_inode(filp);
cdd6c482 4889 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4890 int retval;
4891
4892 mutex_lock(&inode->i_mutex);
cdd6c482 4893 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4894 mutex_unlock(&inode->i_mutex);
4895
4896 if (retval < 0)
4897 return retval;
4898
4899 return 0;
4900}
4901
0793a61d 4902static const struct file_operations perf_fops = {
3326c1ce 4903 .llseek = no_llseek,
0793a61d
TG
4904 .release = perf_release,
4905 .read = perf_read,
4906 .poll = perf_poll,
d859e29f 4907 .unlocked_ioctl = perf_ioctl,
b3f20785 4908 .compat_ioctl = perf_compat_ioctl,
37d81828 4909 .mmap = perf_mmap,
3c446b3d 4910 .fasync = perf_fasync,
0793a61d
TG
4911};
4912
925d519a 4913/*
cdd6c482 4914 * Perf event wakeup
925d519a
PZ
4915 *
4916 * If there's data, ensure we set the poll() state and publish everything
4917 * to user-space before waking everybody up.
4918 */
4919
fed66e2c
PZ
4920static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4921{
4922 /* only the parent has fasync state */
4923 if (event->parent)
4924 event = event->parent;
4925 return &event->fasync;
4926}
4927
cdd6c482 4928void perf_event_wakeup(struct perf_event *event)
925d519a 4929{
10c6db11 4930 ring_buffer_wakeup(event);
4c9e2542 4931
cdd6c482 4932 if (event->pending_kill) {
fed66e2c 4933 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4934 event->pending_kill = 0;
4c9e2542 4935 }
925d519a
PZ
4936}
4937
e360adbe 4938static void perf_pending_event(struct irq_work *entry)
79f14641 4939{
cdd6c482
IM
4940 struct perf_event *event = container_of(entry,
4941 struct perf_event, pending);
d525211f
PZ
4942 int rctx;
4943
4944 rctx = perf_swevent_get_recursion_context();
4945 /*
4946 * If we 'fail' here, that's OK, it means recursion is already disabled
4947 * and we won't recurse 'further'.
4948 */
79f14641 4949
cdd6c482
IM
4950 if (event->pending_disable) {
4951 event->pending_disable = 0;
4952 __perf_event_disable(event);
79f14641
PZ
4953 }
4954
cdd6c482
IM
4955 if (event->pending_wakeup) {
4956 event->pending_wakeup = 0;
4957 perf_event_wakeup(event);
79f14641 4958 }
d525211f
PZ
4959
4960 if (rctx >= 0)
4961 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4962}
4963
39447b38
ZY
4964/*
4965 * We assume there is only KVM supporting the callbacks.
4966 * Later on, we might change it to a list if there is
4967 * another virtualization implementation supporting the callbacks.
4968 */
4969struct perf_guest_info_callbacks *perf_guest_cbs;
4970
4971int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4972{
4973 perf_guest_cbs = cbs;
4974 return 0;
4975}
4976EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4977
4978int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4979{
4980 perf_guest_cbs = NULL;
4981 return 0;
4982}
4983EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4984
4018994f
JO
4985static void
4986perf_output_sample_regs(struct perf_output_handle *handle,
4987 struct pt_regs *regs, u64 mask)
4988{
4989 int bit;
4990
4991 for_each_set_bit(bit, (const unsigned long *) &mask,
4992 sizeof(mask) * BITS_PER_BYTE) {
4993 u64 val;
4994
4995 val = perf_reg_value(regs, bit);
4996 perf_output_put(handle, val);
4997 }
4998}
4999
60e2364e 5000static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5001 struct pt_regs *regs,
5002 struct pt_regs *regs_user_copy)
4018994f 5003{
88a7c26a
AL
5004 if (user_mode(regs)) {
5005 regs_user->abi = perf_reg_abi(current);
2565711f 5006 regs_user->regs = regs;
88a7c26a
AL
5007 } else if (current->mm) {
5008 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5009 } else {
5010 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5011 regs_user->regs = NULL;
4018994f
JO
5012 }
5013}
5014
60e2364e
SE
5015static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5016 struct pt_regs *regs)
5017{
5018 regs_intr->regs = regs;
5019 regs_intr->abi = perf_reg_abi(current);
5020}
5021
5022
c5ebcedb
JO
5023/*
5024 * Get remaining task size from user stack pointer.
5025 *
5026 * It'd be better to take stack vma map and limit this more
5027 * precisly, but there's no way to get it safely under interrupt,
5028 * so using TASK_SIZE as limit.
5029 */
5030static u64 perf_ustack_task_size(struct pt_regs *regs)
5031{
5032 unsigned long addr = perf_user_stack_pointer(regs);
5033
5034 if (!addr || addr >= TASK_SIZE)
5035 return 0;
5036
5037 return TASK_SIZE - addr;
5038}
5039
5040static u16
5041perf_sample_ustack_size(u16 stack_size, u16 header_size,
5042 struct pt_regs *regs)
5043{
5044 u64 task_size;
5045
5046 /* No regs, no stack pointer, no dump. */
5047 if (!regs)
5048 return 0;
5049
5050 /*
5051 * Check if we fit in with the requested stack size into the:
5052 * - TASK_SIZE
5053 * If we don't, we limit the size to the TASK_SIZE.
5054 *
5055 * - remaining sample size
5056 * If we don't, we customize the stack size to
5057 * fit in to the remaining sample size.
5058 */
5059
5060 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5061 stack_size = min(stack_size, (u16) task_size);
5062
5063 /* Current header size plus static size and dynamic size. */
5064 header_size += 2 * sizeof(u64);
5065
5066 /* Do we fit in with the current stack dump size? */
5067 if ((u16) (header_size + stack_size) < header_size) {
5068 /*
5069 * If we overflow the maximum size for the sample,
5070 * we customize the stack dump size to fit in.
5071 */
5072 stack_size = USHRT_MAX - header_size - sizeof(u64);
5073 stack_size = round_up(stack_size, sizeof(u64));
5074 }
5075
5076 return stack_size;
5077}
5078
5079static void
5080perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5081 struct pt_regs *regs)
5082{
5083 /* Case of a kernel thread, nothing to dump */
5084 if (!regs) {
5085 u64 size = 0;
5086 perf_output_put(handle, size);
5087 } else {
5088 unsigned long sp;
5089 unsigned int rem;
5090 u64 dyn_size;
5091
5092 /*
5093 * We dump:
5094 * static size
5095 * - the size requested by user or the best one we can fit
5096 * in to the sample max size
5097 * data
5098 * - user stack dump data
5099 * dynamic size
5100 * - the actual dumped size
5101 */
5102
5103 /* Static size. */
5104 perf_output_put(handle, dump_size);
5105
5106 /* Data. */
5107 sp = perf_user_stack_pointer(regs);
5108 rem = __output_copy_user(handle, (void *) sp, dump_size);
5109 dyn_size = dump_size - rem;
5110
5111 perf_output_skip(handle, rem);
5112
5113 /* Dynamic size. */
5114 perf_output_put(handle, dyn_size);
5115 }
5116}
5117
c980d109
ACM
5118static void __perf_event_header__init_id(struct perf_event_header *header,
5119 struct perf_sample_data *data,
5120 struct perf_event *event)
6844c09d
ACM
5121{
5122 u64 sample_type = event->attr.sample_type;
5123
5124 data->type = sample_type;
5125 header->size += event->id_header_size;
5126
5127 if (sample_type & PERF_SAMPLE_TID) {
5128 /* namespace issues */
5129 data->tid_entry.pid = perf_event_pid(event, current);
5130 data->tid_entry.tid = perf_event_tid(event, current);
5131 }
5132
5133 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5134 data->time = perf_event_clock(event);
6844c09d 5135
ff3d527c 5136 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5137 data->id = primary_event_id(event);
5138
5139 if (sample_type & PERF_SAMPLE_STREAM_ID)
5140 data->stream_id = event->id;
5141
5142 if (sample_type & PERF_SAMPLE_CPU) {
5143 data->cpu_entry.cpu = raw_smp_processor_id();
5144 data->cpu_entry.reserved = 0;
5145 }
5146}
5147
76369139
FW
5148void perf_event_header__init_id(struct perf_event_header *header,
5149 struct perf_sample_data *data,
5150 struct perf_event *event)
c980d109
ACM
5151{
5152 if (event->attr.sample_id_all)
5153 __perf_event_header__init_id(header, data, event);
5154}
5155
5156static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5157 struct perf_sample_data *data)
5158{
5159 u64 sample_type = data->type;
5160
5161 if (sample_type & PERF_SAMPLE_TID)
5162 perf_output_put(handle, data->tid_entry);
5163
5164 if (sample_type & PERF_SAMPLE_TIME)
5165 perf_output_put(handle, data->time);
5166
5167 if (sample_type & PERF_SAMPLE_ID)
5168 perf_output_put(handle, data->id);
5169
5170 if (sample_type & PERF_SAMPLE_STREAM_ID)
5171 perf_output_put(handle, data->stream_id);
5172
5173 if (sample_type & PERF_SAMPLE_CPU)
5174 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5175
5176 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5177 perf_output_put(handle, data->id);
c980d109
ACM
5178}
5179
76369139
FW
5180void perf_event__output_id_sample(struct perf_event *event,
5181 struct perf_output_handle *handle,
5182 struct perf_sample_data *sample)
c980d109
ACM
5183{
5184 if (event->attr.sample_id_all)
5185 __perf_event__output_id_sample(handle, sample);
5186}
5187
3dab77fb 5188static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5189 struct perf_event *event,
5190 u64 enabled, u64 running)
3dab77fb 5191{
cdd6c482 5192 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5193 u64 values[4];
5194 int n = 0;
5195
b5e58793 5196 values[n++] = perf_event_count(event);
3dab77fb 5197 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5198 values[n++] = enabled +
cdd6c482 5199 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5200 }
5201 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5202 values[n++] = running +
cdd6c482 5203 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5204 }
5205 if (read_format & PERF_FORMAT_ID)
cdd6c482 5206 values[n++] = primary_event_id(event);
3dab77fb 5207
76369139 5208 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5209}
5210
5211/*
cdd6c482 5212 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5213 */
5214static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5215 struct perf_event *event,
5216 u64 enabled, u64 running)
3dab77fb 5217{
cdd6c482
IM
5218 struct perf_event *leader = event->group_leader, *sub;
5219 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5220 u64 values[5];
5221 int n = 0;
5222
5223 values[n++] = 1 + leader->nr_siblings;
5224
5225 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5226 values[n++] = enabled;
3dab77fb
PZ
5227
5228 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5229 values[n++] = running;
3dab77fb 5230
cdd6c482 5231 if (leader != event)
3dab77fb
PZ
5232 leader->pmu->read(leader);
5233
b5e58793 5234 values[n++] = perf_event_count(leader);
3dab77fb 5235 if (read_format & PERF_FORMAT_ID)
cdd6c482 5236 values[n++] = primary_event_id(leader);
3dab77fb 5237
76369139 5238 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5239
65abc865 5240 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5241 n = 0;
5242
6f5ab001
JO
5243 if ((sub != event) &&
5244 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5245 sub->pmu->read(sub);
5246
b5e58793 5247 values[n++] = perf_event_count(sub);
3dab77fb 5248 if (read_format & PERF_FORMAT_ID)
cdd6c482 5249 values[n++] = primary_event_id(sub);
3dab77fb 5250
76369139 5251 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5252 }
5253}
5254
eed01528
SE
5255#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5256 PERF_FORMAT_TOTAL_TIME_RUNNING)
5257
3dab77fb 5258static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5259 struct perf_event *event)
3dab77fb 5260{
e3f3541c 5261 u64 enabled = 0, running = 0, now;
eed01528
SE
5262 u64 read_format = event->attr.read_format;
5263
5264 /*
5265 * compute total_time_enabled, total_time_running
5266 * based on snapshot values taken when the event
5267 * was last scheduled in.
5268 *
5269 * we cannot simply called update_context_time()
5270 * because of locking issue as we are called in
5271 * NMI context
5272 */
c4794295 5273 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5274 calc_timer_values(event, &now, &enabled, &running);
eed01528 5275
cdd6c482 5276 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5277 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5278 else
eed01528 5279 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5280}
5281
5622f295
MM
5282void perf_output_sample(struct perf_output_handle *handle,
5283 struct perf_event_header *header,
5284 struct perf_sample_data *data,
cdd6c482 5285 struct perf_event *event)
5622f295
MM
5286{
5287 u64 sample_type = data->type;
5288
5289 perf_output_put(handle, *header);
5290
ff3d527c
AH
5291 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5292 perf_output_put(handle, data->id);
5293
5622f295
MM
5294 if (sample_type & PERF_SAMPLE_IP)
5295 perf_output_put(handle, data->ip);
5296
5297 if (sample_type & PERF_SAMPLE_TID)
5298 perf_output_put(handle, data->tid_entry);
5299
5300 if (sample_type & PERF_SAMPLE_TIME)
5301 perf_output_put(handle, data->time);
5302
5303 if (sample_type & PERF_SAMPLE_ADDR)
5304 perf_output_put(handle, data->addr);
5305
5306 if (sample_type & PERF_SAMPLE_ID)
5307 perf_output_put(handle, data->id);
5308
5309 if (sample_type & PERF_SAMPLE_STREAM_ID)
5310 perf_output_put(handle, data->stream_id);
5311
5312 if (sample_type & PERF_SAMPLE_CPU)
5313 perf_output_put(handle, data->cpu_entry);
5314
5315 if (sample_type & PERF_SAMPLE_PERIOD)
5316 perf_output_put(handle, data->period);
5317
5318 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5319 perf_output_read(handle, event);
5622f295
MM
5320
5321 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5322 if (data->callchain) {
5323 int size = 1;
5324
5325 if (data->callchain)
5326 size += data->callchain->nr;
5327
5328 size *= sizeof(u64);
5329
76369139 5330 __output_copy(handle, data->callchain, size);
5622f295
MM
5331 } else {
5332 u64 nr = 0;
5333 perf_output_put(handle, nr);
5334 }
5335 }
5336
5337 if (sample_type & PERF_SAMPLE_RAW) {
5338 if (data->raw) {
5339 perf_output_put(handle, data->raw->size);
76369139
FW
5340 __output_copy(handle, data->raw->data,
5341 data->raw->size);
5622f295
MM
5342 } else {
5343 struct {
5344 u32 size;
5345 u32 data;
5346 } raw = {
5347 .size = sizeof(u32),
5348 .data = 0,
5349 };
5350 perf_output_put(handle, raw);
5351 }
5352 }
a7ac67ea 5353
bce38cd5
SE
5354 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5355 if (data->br_stack) {
5356 size_t size;
5357
5358 size = data->br_stack->nr
5359 * sizeof(struct perf_branch_entry);
5360
5361 perf_output_put(handle, data->br_stack->nr);
5362 perf_output_copy(handle, data->br_stack->entries, size);
5363 } else {
5364 /*
5365 * we always store at least the value of nr
5366 */
5367 u64 nr = 0;
5368 perf_output_put(handle, nr);
5369 }
5370 }
4018994f
JO
5371
5372 if (sample_type & PERF_SAMPLE_REGS_USER) {
5373 u64 abi = data->regs_user.abi;
5374
5375 /*
5376 * If there are no regs to dump, notice it through
5377 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5378 */
5379 perf_output_put(handle, abi);
5380
5381 if (abi) {
5382 u64 mask = event->attr.sample_regs_user;
5383 perf_output_sample_regs(handle,
5384 data->regs_user.regs,
5385 mask);
5386 }
5387 }
c5ebcedb 5388
a5cdd40c 5389 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5390 perf_output_sample_ustack(handle,
5391 data->stack_user_size,
5392 data->regs_user.regs);
a5cdd40c 5393 }
c3feedf2
AK
5394
5395 if (sample_type & PERF_SAMPLE_WEIGHT)
5396 perf_output_put(handle, data->weight);
d6be9ad6
SE
5397
5398 if (sample_type & PERF_SAMPLE_DATA_SRC)
5399 perf_output_put(handle, data->data_src.val);
a5cdd40c 5400
fdfbbd07
AK
5401 if (sample_type & PERF_SAMPLE_TRANSACTION)
5402 perf_output_put(handle, data->txn);
5403
60e2364e
SE
5404 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5405 u64 abi = data->regs_intr.abi;
5406 /*
5407 * If there are no regs to dump, notice it through
5408 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5409 */
5410 perf_output_put(handle, abi);
5411
5412 if (abi) {
5413 u64 mask = event->attr.sample_regs_intr;
5414
5415 perf_output_sample_regs(handle,
5416 data->regs_intr.regs,
5417 mask);
5418 }
5419 }
5420
a5cdd40c
PZ
5421 if (!event->attr.watermark) {
5422 int wakeup_events = event->attr.wakeup_events;
5423
5424 if (wakeup_events) {
5425 struct ring_buffer *rb = handle->rb;
5426 int events = local_inc_return(&rb->events);
5427
5428 if (events >= wakeup_events) {
5429 local_sub(wakeup_events, &rb->events);
5430 local_inc(&rb->wakeup);
5431 }
5432 }
5433 }
5622f295
MM
5434}
5435
5436void perf_prepare_sample(struct perf_event_header *header,
5437 struct perf_sample_data *data,
cdd6c482 5438 struct perf_event *event,
5622f295 5439 struct pt_regs *regs)
7b732a75 5440{
cdd6c482 5441 u64 sample_type = event->attr.sample_type;
7b732a75 5442
cdd6c482 5443 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5444 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5445
5446 header->misc = 0;
5447 header->misc |= perf_misc_flags(regs);
6fab0192 5448
c980d109 5449 __perf_event_header__init_id(header, data, event);
6844c09d 5450
c320c7b7 5451 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5452 data->ip = perf_instruction_pointer(regs);
5453
b23f3325 5454 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5455 int size = 1;
394ee076 5456
e6dab5ff 5457 data->callchain = perf_callchain(event, regs);
5622f295
MM
5458
5459 if (data->callchain)
5460 size += data->callchain->nr;
5461
5462 header->size += size * sizeof(u64);
394ee076
PZ
5463 }
5464
3a43ce68 5465 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5466 int size = sizeof(u32);
5467
5468 if (data->raw)
5469 size += data->raw->size;
5470 else
5471 size += sizeof(u32);
5472
5473 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5474 header->size += size;
7f453c24 5475 }
bce38cd5
SE
5476
5477 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5478 int size = sizeof(u64); /* nr */
5479 if (data->br_stack) {
5480 size += data->br_stack->nr
5481 * sizeof(struct perf_branch_entry);
5482 }
5483 header->size += size;
5484 }
4018994f 5485
2565711f 5486 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5487 perf_sample_regs_user(&data->regs_user, regs,
5488 &data->regs_user_copy);
2565711f 5489
4018994f
JO
5490 if (sample_type & PERF_SAMPLE_REGS_USER) {
5491 /* regs dump ABI info */
5492 int size = sizeof(u64);
5493
4018994f
JO
5494 if (data->regs_user.regs) {
5495 u64 mask = event->attr.sample_regs_user;
5496 size += hweight64(mask) * sizeof(u64);
5497 }
5498
5499 header->size += size;
5500 }
c5ebcedb
JO
5501
5502 if (sample_type & PERF_SAMPLE_STACK_USER) {
5503 /*
5504 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5505 * processed as the last one or have additional check added
5506 * in case new sample type is added, because we could eat
5507 * up the rest of the sample size.
5508 */
c5ebcedb
JO
5509 u16 stack_size = event->attr.sample_stack_user;
5510 u16 size = sizeof(u64);
5511
c5ebcedb 5512 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5513 data->regs_user.regs);
c5ebcedb
JO
5514
5515 /*
5516 * If there is something to dump, add space for the dump
5517 * itself and for the field that tells the dynamic size,
5518 * which is how many have been actually dumped.
5519 */
5520 if (stack_size)
5521 size += sizeof(u64) + stack_size;
5522
5523 data->stack_user_size = stack_size;
5524 header->size += size;
5525 }
60e2364e
SE
5526
5527 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5528 /* regs dump ABI info */
5529 int size = sizeof(u64);
5530
5531 perf_sample_regs_intr(&data->regs_intr, regs);
5532
5533 if (data->regs_intr.regs) {
5534 u64 mask = event->attr.sample_regs_intr;
5535
5536 size += hweight64(mask) * sizeof(u64);
5537 }
5538
5539 header->size += size;
5540 }
5622f295 5541}
7f453c24 5542
21509084
YZ
5543void perf_event_output(struct perf_event *event,
5544 struct perf_sample_data *data,
5545 struct pt_regs *regs)
5622f295
MM
5546{
5547 struct perf_output_handle handle;
5548 struct perf_event_header header;
689802b2 5549
927c7a9e
FW
5550 /* protect the callchain buffers */
5551 rcu_read_lock();
5552
cdd6c482 5553 perf_prepare_sample(&header, data, event, regs);
5c148194 5554
a7ac67ea 5555 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5556 goto exit;
0322cd6e 5557
cdd6c482 5558 perf_output_sample(&handle, &header, data, event);
f413cdb8 5559
8a057d84 5560 perf_output_end(&handle);
927c7a9e
FW
5561
5562exit:
5563 rcu_read_unlock();
0322cd6e
PZ
5564}
5565
38b200d6 5566/*
cdd6c482 5567 * read event_id
38b200d6
PZ
5568 */
5569
5570struct perf_read_event {
5571 struct perf_event_header header;
5572
5573 u32 pid;
5574 u32 tid;
38b200d6
PZ
5575};
5576
5577static void
cdd6c482 5578perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5579 struct task_struct *task)
5580{
5581 struct perf_output_handle handle;
c980d109 5582 struct perf_sample_data sample;
dfc65094 5583 struct perf_read_event read_event = {
38b200d6 5584 .header = {
cdd6c482 5585 .type = PERF_RECORD_READ,
38b200d6 5586 .misc = 0,
c320c7b7 5587 .size = sizeof(read_event) + event->read_size,
38b200d6 5588 },
cdd6c482
IM
5589 .pid = perf_event_pid(event, task),
5590 .tid = perf_event_tid(event, task),
38b200d6 5591 };
3dab77fb 5592 int ret;
38b200d6 5593
c980d109 5594 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5595 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5596 if (ret)
5597 return;
5598
dfc65094 5599 perf_output_put(&handle, read_event);
cdd6c482 5600 perf_output_read(&handle, event);
c980d109 5601 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5602
38b200d6
PZ
5603 perf_output_end(&handle);
5604}
5605
52d857a8
JO
5606typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5607
5608static void
5609perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5610 perf_event_aux_output_cb output,
5611 void *data)
5612{
5613 struct perf_event *event;
5614
5615 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5616 if (event->state < PERF_EVENT_STATE_INACTIVE)
5617 continue;
5618 if (!event_filter_match(event))
5619 continue;
67516844 5620 output(event, data);
52d857a8
JO
5621 }
5622}
5623
5624static void
67516844 5625perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5626 struct perf_event_context *task_ctx)
5627{
5628 struct perf_cpu_context *cpuctx;
5629 struct perf_event_context *ctx;
5630 struct pmu *pmu;
5631 int ctxn;
5632
5633 rcu_read_lock();
5634 list_for_each_entry_rcu(pmu, &pmus, entry) {
5635 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5636 if (cpuctx->unique_pmu != pmu)
5637 goto next;
67516844 5638 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5639 if (task_ctx)
5640 goto next;
5641 ctxn = pmu->task_ctx_nr;
5642 if (ctxn < 0)
5643 goto next;
5644 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5645 if (ctx)
67516844 5646 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5647next:
5648 put_cpu_ptr(pmu->pmu_cpu_context);
5649 }
5650
5651 if (task_ctx) {
5652 preempt_disable();
67516844 5653 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5654 preempt_enable();
5655 }
5656 rcu_read_unlock();
5657}
5658
60313ebe 5659/*
9f498cc5
PZ
5660 * task tracking -- fork/exit
5661 *
13d7a241 5662 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5663 */
5664
9f498cc5 5665struct perf_task_event {
3a80b4a3 5666 struct task_struct *task;
cdd6c482 5667 struct perf_event_context *task_ctx;
60313ebe
PZ
5668
5669 struct {
5670 struct perf_event_header header;
5671
5672 u32 pid;
5673 u32 ppid;
9f498cc5
PZ
5674 u32 tid;
5675 u32 ptid;
393b2ad8 5676 u64 time;
cdd6c482 5677 } event_id;
60313ebe
PZ
5678};
5679
67516844
JO
5680static int perf_event_task_match(struct perf_event *event)
5681{
13d7a241
SE
5682 return event->attr.comm || event->attr.mmap ||
5683 event->attr.mmap2 || event->attr.mmap_data ||
5684 event->attr.task;
67516844
JO
5685}
5686
cdd6c482 5687static void perf_event_task_output(struct perf_event *event,
52d857a8 5688 void *data)
60313ebe 5689{
52d857a8 5690 struct perf_task_event *task_event = data;
60313ebe 5691 struct perf_output_handle handle;
c980d109 5692 struct perf_sample_data sample;
9f498cc5 5693 struct task_struct *task = task_event->task;
c980d109 5694 int ret, size = task_event->event_id.header.size;
8bb39f9a 5695
67516844
JO
5696 if (!perf_event_task_match(event))
5697 return;
5698
c980d109 5699 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5700
c980d109 5701 ret = perf_output_begin(&handle, event,
a7ac67ea 5702 task_event->event_id.header.size);
ef60777c 5703 if (ret)
c980d109 5704 goto out;
60313ebe 5705
cdd6c482
IM
5706 task_event->event_id.pid = perf_event_pid(event, task);
5707 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5708
cdd6c482
IM
5709 task_event->event_id.tid = perf_event_tid(event, task);
5710 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5711
34f43927
PZ
5712 task_event->event_id.time = perf_event_clock(event);
5713
cdd6c482 5714 perf_output_put(&handle, task_event->event_id);
393b2ad8 5715
c980d109
ACM
5716 perf_event__output_id_sample(event, &handle, &sample);
5717
60313ebe 5718 perf_output_end(&handle);
c980d109
ACM
5719out:
5720 task_event->event_id.header.size = size;
60313ebe
PZ
5721}
5722
cdd6c482
IM
5723static void perf_event_task(struct task_struct *task,
5724 struct perf_event_context *task_ctx,
3a80b4a3 5725 int new)
60313ebe 5726{
9f498cc5 5727 struct perf_task_event task_event;
60313ebe 5728
cdd6c482
IM
5729 if (!atomic_read(&nr_comm_events) &&
5730 !atomic_read(&nr_mmap_events) &&
5731 !atomic_read(&nr_task_events))
60313ebe
PZ
5732 return;
5733
9f498cc5 5734 task_event = (struct perf_task_event){
3a80b4a3
PZ
5735 .task = task,
5736 .task_ctx = task_ctx,
cdd6c482 5737 .event_id = {
60313ebe 5738 .header = {
cdd6c482 5739 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5740 .misc = 0,
cdd6c482 5741 .size = sizeof(task_event.event_id),
60313ebe 5742 },
573402db
PZ
5743 /* .pid */
5744 /* .ppid */
9f498cc5
PZ
5745 /* .tid */
5746 /* .ptid */
34f43927 5747 /* .time */
60313ebe
PZ
5748 },
5749 };
5750
67516844 5751 perf_event_aux(perf_event_task_output,
52d857a8
JO
5752 &task_event,
5753 task_ctx);
9f498cc5
PZ
5754}
5755
cdd6c482 5756void perf_event_fork(struct task_struct *task)
9f498cc5 5757{
cdd6c482 5758 perf_event_task(task, NULL, 1);
60313ebe
PZ
5759}
5760
8d1b2d93
PZ
5761/*
5762 * comm tracking
5763 */
5764
5765struct perf_comm_event {
22a4f650
IM
5766 struct task_struct *task;
5767 char *comm;
8d1b2d93
PZ
5768 int comm_size;
5769
5770 struct {
5771 struct perf_event_header header;
5772
5773 u32 pid;
5774 u32 tid;
cdd6c482 5775 } event_id;
8d1b2d93
PZ
5776};
5777
67516844
JO
5778static int perf_event_comm_match(struct perf_event *event)
5779{
5780 return event->attr.comm;
5781}
5782
cdd6c482 5783static void perf_event_comm_output(struct perf_event *event,
52d857a8 5784 void *data)
8d1b2d93 5785{
52d857a8 5786 struct perf_comm_event *comm_event = data;
8d1b2d93 5787 struct perf_output_handle handle;
c980d109 5788 struct perf_sample_data sample;
cdd6c482 5789 int size = comm_event->event_id.header.size;
c980d109
ACM
5790 int ret;
5791
67516844
JO
5792 if (!perf_event_comm_match(event))
5793 return;
5794
c980d109
ACM
5795 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5796 ret = perf_output_begin(&handle, event,
a7ac67ea 5797 comm_event->event_id.header.size);
8d1b2d93
PZ
5798
5799 if (ret)
c980d109 5800 goto out;
8d1b2d93 5801
cdd6c482
IM
5802 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5803 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5804
cdd6c482 5805 perf_output_put(&handle, comm_event->event_id);
76369139 5806 __output_copy(&handle, comm_event->comm,
8d1b2d93 5807 comm_event->comm_size);
c980d109
ACM
5808
5809 perf_event__output_id_sample(event, &handle, &sample);
5810
8d1b2d93 5811 perf_output_end(&handle);
c980d109
ACM
5812out:
5813 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5814}
5815
cdd6c482 5816static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5817{
413ee3b4 5818 char comm[TASK_COMM_LEN];
8d1b2d93 5819 unsigned int size;
8d1b2d93 5820
413ee3b4 5821 memset(comm, 0, sizeof(comm));
96b02d78 5822 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5823 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5824
5825 comm_event->comm = comm;
5826 comm_event->comm_size = size;
5827
cdd6c482 5828 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5829
67516844 5830 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5831 comm_event,
5832 NULL);
8d1b2d93
PZ
5833}
5834
82b89778 5835void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5836{
9ee318a7
PZ
5837 struct perf_comm_event comm_event;
5838
cdd6c482 5839 if (!atomic_read(&nr_comm_events))
9ee318a7 5840 return;
a63eaf34 5841
9ee318a7 5842 comm_event = (struct perf_comm_event){
8d1b2d93 5843 .task = task,
573402db
PZ
5844 /* .comm */
5845 /* .comm_size */
cdd6c482 5846 .event_id = {
573402db 5847 .header = {
cdd6c482 5848 .type = PERF_RECORD_COMM,
82b89778 5849 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5850 /* .size */
5851 },
5852 /* .pid */
5853 /* .tid */
8d1b2d93
PZ
5854 },
5855 };
5856
cdd6c482 5857 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5858}
5859
0a4a9391
PZ
5860/*
5861 * mmap tracking
5862 */
5863
5864struct perf_mmap_event {
089dd79d
PZ
5865 struct vm_area_struct *vma;
5866
5867 const char *file_name;
5868 int file_size;
13d7a241
SE
5869 int maj, min;
5870 u64 ino;
5871 u64 ino_generation;
f972eb63 5872 u32 prot, flags;
0a4a9391
PZ
5873
5874 struct {
5875 struct perf_event_header header;
5876
5877 u32 pid;
5878 u32 tid;
5879 u64 start;
5880 u64 len;
5881 u64 pgoff;
cdd6c482 5882 } event_id;
0a4a9391
PZ
5883};
5884
67516844
JO
5885static int perf_event_mmap_match(struct perf_event *event,
5886 void *data)
5887{
5888 struct perf_mmap_event *mmap_event = data;
5889 struct vm_area_struct *vma = mmap_event->vma;
5890 int executable = vma->vm_flags & VM_EXEC;
5891
5892 return (!executable && event->attr.mmap_data) ||
13d7a241 5893 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5894}
5895
cdd6c482 5896static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5897 void *data)
0a4a9391 5898{
52d857a8 5899 struct perf_mmap_event *mmap_event = data;
0a4a9391 5900 struct perf_output_handle handle;
c980d109 5901 struct perf_sample_data sample;
cdd6c482 5902 int size = mmap_event->event_id.header.size;
c980d109 5903 int ret;
0a4a9391 5904
67516844
JO
5905 if (!perf_event_mmap_match(event, data))
5906 return;
5907
13d7a241
SE
5908 if (event->attr.mmap2) {
5909 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5910 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5911 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5912 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5913 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5914 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5915 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5916 }
5917
c980d109
ACM
5918 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5919 ret = perf_output_begin(&handle, event,
a7ac67ea 5920 mmap_event->event_id.header.size);
0a4a9391 5921 if (ret)
c980d109 5922 goto out;
0a4a9391 5923
cdd6c482
IM
5924 mmap_event->event_id.pid = perf_event_pid(event, current);
5925 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5926
cdd6c482 5927 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5928
5929 if (event->attr.mmap2) {
5930 perf_output_put(&handle, mmap_event->maj);
5931 perf_output_put(&handle, mmap_event->min);
5932 perf_output_put(&handle, mmap_event->ino);
5933 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5934 perf_output_put(&handle, mmap_event->prot);
5935 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5936 }
5937
76369139 5938 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5939 mmap_event->file_size);
c980d109
ACM
5940
5941 perf_event__output_id_sample(event, &handle, &sample);
5942
78d613eb 5943 perf_output_end(&handle);
c980d109
ACM
5944out:
5945 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5946}
5947
cdd6c482 5948static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5949{
089dd79d
PZ
5950 struct vm_area_struct *vma = mmap_event->vma;
5951 struct file *file = vma->vm_file;
13d7a241
SE
5952 int maj = 0, min = 0;
5953 u64 ino = 0, gen = 0;
f972eb63 5954 u32 prot = 0, flags = 0;
0a4a9391
PZ
5955 unsigned int size;
5956 char tmp[16];
5957 char *buf = NULL;
2c42cfbf 5958 char *name;
413ee3b4 5959
0a4a9391 5960 if (file) {
13d7a241
SE
5961 struct inode *inode;
5962 dev_t dev;
3ea2f2b9 5963
2c42cfbf 5964 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5965 if (!buf) {
c7e548b4
ON
5966 name = "//enomem";
5967 goto cpy_name;
0a4a9391 5968 }
413ee3b4 5969 /*
3ea2f2b9 5970 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5971 * need to add enough zero bytes after the string to handle
5972 * the 64bit alignment we do later.
5973 */
9bf39ab2 5974 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5975 if (IS_ERR(name)) {
c7e548b4
ON
5976 name = "//toolong";
5977 goto cpy_name;
0a4a9391 5978 }
13d7a241
SE
5979 inode = file_inode(vma->vm_file);
5980 dev = inode->i_sb->s_dev;
5981 ino = inode->i_ino;
5982 gen = inode->i_generation;
5983 maj = MAJOR(dev);
5984 min = MINOR(dev);
f972eb63
PZ
5985
5986 if (vma->vm_flags & VM_READ)
5987 prot |= PROT_READ;
5988 if (vma->vm_flags & VM_WRITE)
5989 prot |= PROT_WRITE;
5990 if (vma->vm_flags & VM_EXEC)
5991 prot |= PROT_EXEC;
5992
5993 if (vma->vm_flags & VM_MAYSHARE)
5994 flags = MAP_SHARED;
5995 else
5996 flags = MAP_PRIVATE;
5997
5998 if (vma->vm_flags & VM_DENYWRITE)
5999 flags |= MAP_DENYWRITE;
6000 if (vma->vm_flags & VM_MAYEXEC)
6001 flags |= MAP_EXECUTABLE;
6002 if (vma->vm_flags & VM_LOCKED)
6003 flags |= MAP_LOCKED;
6004 if (vma->vm_flags & VM_HUGETLB)
6005 flags |= MAP_HUGETLB;
6006
c7e548b4 6007 goto got_name;
0a4a9391 6008 } else {
fbe26abe
JO
6009 if (vma->vm_ops && vma->vm_ops->name) {
6010 name = (char *) vma->vm_ops->name(vma);
6011 if (name)
6012 goto cpy_name;
6013 }
6014
2c42cfbf 6015 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6016 if (name)
6017 goto cpy_name;
089dd79d 6018
32c5fb7e 6019 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6020 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6021 name = "[heap]";
6022 goto cpy_name;
32c5fb7e
ON
6023 }
6024 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6025 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6026 name = "[stack]";
6027 goto cpy_name;
089dd79d
PZ
6028 }
6029
c7e548b4
ON
6030 name = "//anon";
6031 goto cpy_name;
0a4a9391
PZ
6032 }
6033
c7e548b4
ON
6034cpy_name:
6035 strlcpy(tmp, name, sizeof(tmp));
6036 name = tmp;
0a4a9391 6037got_name:
2c42cfbf
PZ
6038 /*
6039 * Since our buffer works in 8 byte units we need to align our string
6040 * size to a multiple of 8. However, we must guarantee the tail end is
6041 * zero'd out to avoid leaking random bits to userspace.
6042 */
6043 size = strlen(name)+1;
6044 while (!IS_ALIGNED(size, sizeof(u64)))
6045 name[size++] = '\0';
0a4a9391
PZ
6046
6047 mmap_event->file_name = name;
6048 mmap_event->file_size = size;
13d7a241
SE
6049 mmap_event->maj = maj;
6050 mmap_event->min = min;
6051 mmap_event->ino = ino;
6052 mmap_event->ino_generation = gen;
f972eb63
PZ
6053 mmap_event->prot = prot;
6054 mmap_event->flags = flags;
0a4a9391 6055
2fe85427
SE
6056 if (!(vma->vm_flags & VM_EXEC))
6057 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6058
cdd6c482 6059 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6060
67516844 6061 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6062 mmap_event,
6063 NULL);
665c2142 6064
0a4a9391
PZ
6065 kfree(buf);
6066}
6067
3af9e859 6068void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6069{
9ee318a7
PZ
6070 struct perf_mmap_event mmap_event;
6071
cdd6c482 6072 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6073 return;
6074
6075 mmap_event = (struct perf_mmap_event){
089dd79d 6076 .vma = vma,
573402db
PZ
6077 /* .file_name */
6078 /* .file_size */
cdd6c482 6079 .event_id = {
573402db 6080 .header = {
cdd6c482 6081 .type = PERF_RECORD_MMAP,
39447b38 6082 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6083 /* .size */
6084 },
6085 /* .pid */
6086 /* .tid */
089dd79d
PZ
6087 .start = vma->vm_start,
6088 .len = vma->vm_end - vma->vm_start,
3a0304e9 6089 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6090 },
13d7a241
SE
6091 /* .maj (attr_mmap2 only) */
6092 /* .min (attr_mmap2 only) */
6093 /* .ino (attr_mmap2 only) */
6094 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6095 /* .prot (attr_mmap2 only) */
6096 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6097 };
6098
cdd6c482 6099 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6100}
6101
68db7e98
AS
6102void perf_event_aux_event(struct perf_event *event, unsigned long head,
6103 unsigned long size, u64 flags)
6104{
6105 struct perf_output_handle handle;
6106 struct perf_sample_data sample;
6107 struct perf_aux_event {
6108 struct perf_event_header header;
6109 u64 offset;
6110 u64 size;
6111 u64 flags;
6112 } rec = {
6113 .header = {
6114 .type = PERF_RECORD_AUX,
6115 .misc = 0,
6116 .size = sizeof(rec),
6117 },
6118 .offset = head,
6119 .size = size,
6120 .flags = flags,
6121 };
6122 int ret;
6123
6124 perf_event_header__init_id(&rec.header, &sample, event);
6125 ret = perf_output_begin(&handle, event, rec.header.size);
6126
6127 if (ret)
6128 return;
6129
6130 perf_output_put(&handle, rec);
6131 perf_event__output_id_sample(event, &handle, &sample);
6132
6133 perf_output_end(&handle);
6134}
6135
f38b0dbb
KL
6136/*
6137 * Lost/dropped samples logging
6138 */
6139void perf_log_lost_samples(struct perf_event *event, u64 lost)
6140{
6141 struct perf_output_handle handle;
6142 struct perf_sample_data sample;
6143 int ret;
6144
6145 struct {
6146 struct perf_event_header header;
6147 u64 lost;
6148 } lost_samples_event = {
6149 .header = {
6150 .type = PERF_RECORD_LOST_SAMPLES,
6151 .misc = 0,
6152 .size = sizeof(lost_samples_event),
6153 },
6154 .lost = lost,
6155 };
6156
6157 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6158
6159 ret = perf_output_begin(&handle, event,
6160 lost_samples_event.header.size);
6161 if (ret)
6162 return;
6163
6164 perf_output_put(&handle, lost_samples_event);
6165 perf_event__output_id_sample(event, &handle, &sample);
6166 perf_output_end(&handle);
6167}
6168
45ac1403
AH
6169/*
6170 * context_switch tracking
6171 */
6172
6173struct perf_switch_event {
6174 struct task_struct *task;
6175 struct task_struct *next_prev;
6176
6177 struct {
6178 struct perf_event_header header;
6179 u32 next_prev_pid;
6180 u32 next_prev_tid;
6181 } event_id;
6182};
6183
6184static int perf_event_switch_match(struct perf_event *event)
6185{
6186 return event->attr.context_switch;
6187}
6188
6189static void perf_event_switch_output(struct perf_event *event, void *data)
6190{
6191 struct perf_switch_event *se = data;
6192 struct perf_output_handle handle;
6193 struct perf_sample_data sample;
6194 int ret;
6195
6196 if (!perf_event_switch_match(event))
6197 return;
6198
6199 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6200 if (event->ctx->task) {
6201 se->event_id.header.type = PERF_RECORD_SWITCH;
6202 se->event_id.header.size = sizeof(se->event_id.header);
6203 } else {
6204 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6205 se->event_id.header.size = sizeof(se->event_id);
6206 se->event_id.next_prev_pid =
6207 perf_event_pid(event, se->next_prev);
6208 se->event_id.next_prev_tid =
6209 perf_event_tid(event, se->next_prev);
6210 }
6211
6212 perf_event_header__init_id(&se->event_id.header, &sample, event);
6213
6214 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6215 if (ret)
6216 return;
6217
6218 if (event->ctx->task)
6219 perf_output_put(&handle, se->event_id.header);
6220 else
6221 perf_output_put(&handle, se->event_id);
6222
6223 perf_event__output_id_sample(event, &handle, &sample);
6224
6225 perf_output_end(&handle);
6226}
6227
6228static void perf_event_switch(struct task_struct *task,
6229 struct task_struct *next_prev, bool sched_in)
6230{
6231 struct perf_switch_event switch_event;
6232
6233 /* N.B. caller checks nr_switch_events != 0 */
6234
6235 switch_event = (struct perf_switch_event){
6236 .task = task,
6237 .next_prev = next_prev,
6238 .event_id = {
6239 .header = {
6240 /* .type */
6241 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6242 /* .size */
6243 },
6244 /* .next_prev_pid */
6245 /* .next_prev_tid */
6246 },
6247 };
6248
6249 perf_event_aux(perf_event_switch_output,
6250 &switch_event,
6251 NULL);
6252}
6253
a78ac325
PZ
6254/*
6255 * IRQ throttle logging
6256 */
6257
cdd6c482 6258static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6259{
6260 struct perf_output_handle handle;
c980d109 6261 struct perf_sample_data sample;
a78ac325
PZ
6262 int ret;
6263
6264 struct {
6265 struct perf_event_header header;
6266 u64 time;
cca3f454 6267 u64 id;
7f453c24 6268 u64 stream_id;
a78ac325
PZ
6269 } throttle_event = {
6270 .header = {
cdd6c482 6271 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6272 .misc = 0,
6273 .size = sizeof(throttle_event),
6274 },
34f43927 6275 .time = perf_event_clock(event),
cdd6c482
IM
6276 .id = primary_event_id(event),
6277 .stream_id = event->id,
a78ac325
PZ
6278 };
6279
966ee4d6 6280 if (enable)
cdd6c482 6281 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6282
c980d109
ACM
6283 perf_event_header__init_id(&throttle_event.header, &sample, event);
6284
6285 ret = perf_output_begin(&handle, event,
a7ac67ea 6286 throttle_event.header.size);
a78ac325
PZ
6287 if (ret)
6288 return;
6289
6290 perf_output_put(&handle, throttle_event);
c980d109 6291 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6292 perf_output_end(&handle);
6293}
6294
ec0d7729
AS
6295static void perf_log_itrace_start(struct perf_event *event)
6296{
6297 struct perf_output_handle handle;
6298 struct perf_sample_data sample;
6299 struct perf_aux_event {
6300 struct perf_event_header header;
6301 u32 pid;
6302 u32 tid;
6303 } rec;
6304 int ret;
6305
6306 if (event->parent)
6307 event = event->parent;
6308
6309 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6310 event->hw.itrace_started)
6311 return;
6312
ec0d7729
AS
6313 rec.header.type = PERF_RECORD_ITRACE_START;
6314 rec.header.misc = 0;
6315 rec.header.size = sizeof(rec);
6316 rec.pid = perf_event_pid(event, current);
6317 rec.tid = perf_event_tid(event, current);
6318
6319 perf_event_header__init_id(&rec.header, &sample, event);
6320 ret = perf_output_begin(&handle, event, rec.header.size);
6321
6322 if (ret)
6323 return;
6324
6325 perf_output_put(&handle, rec);
6326 perf_event__output_id_sample(event, &handle, &sample);
6327
6328 perf_output_end(&handle);
6329}
6330
f6c7d5fe 6331/*
cdd6c482 6332 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6333 */
6334
a8b0ca17 6335static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6336 int throttle, struct perf_sample_data *data,
6337 struct pt_regs *regs)
f6c7d5fe 6338{
cdd6c482
IM
6339 int events = atomic_read(&event->event_limit);
6340 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6341 u64 seq;
79f14641
PZ
6342 int ret = 0;
6343
96398826
PZ
6344 /*
6345 * Non-sampling counters might still use the PMI to fold short
6346 * hardware counters, ignore those.
6347 */
6348 if (unlikely(!is_sampling_event(event)))
6349 return 0;
6350
e050e3f0
SE
6351 seq = __this_cpu_read(perf_throttled_seq);
6352 if (seq != hwc->interrupts_seq) {
6353 hwc->interrupts_seq = seq;
6354 hwc->interrupts = 1;
6355 } else {
6356 hwc->interrupts++;
6357 if (unlikely(throttle
6358 && hwc->interrupts >= max_samples_per_tick)) {
6359 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6360 hwc->interrupts = MAX_INTERRUPTS;
6361 perf_log_throttle(event, 0);
d84153d6 6362 tick_nohz_full_kick();
a78ac325
PZ
6363 ret = 1;
6364 }
e050e3f0 6365 }
60db5e09 6366
cdd6c482 6367 if (event->attr.freq) {
def0a9b2 6368 u64 now = perf_clock();
abd50713 6369 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6370
abd50713 6371 hwc->freq_time_stamp = now;
bd2b5b12 6372
abd50713 6373 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6374 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6375 }
6376
2023b359
PZ
6377 /*
6378 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6379 * events
2023b359
PZ
6380 */
6381
cdd6c482
IM
6382 event->pending_kill = POLL_IN;
6383 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6384 ret = 1;
cdd6c482 6385 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6386 event->pending_disable = 1;
6387 irq_work_queue(&event->pending);
79f14641
PZ
6388 }
6389
453f19ee 6390 if (event->overflow_handler)
a8b0ca17 6391 event->overflow_handler(event, data, regs);
453f19ee 6392 else
a8b0ca17 6393 perf_event_output(event, data, regs);
453f19ee 6394
fed66e2c 6395 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6396 event->pending_wakeup = 1;
6397 irq_work_queue(&event->pending);
f506b3dc
PZ
6398 }
6399
79f14641 6400 return ret;
f6c7d5fe
PZ
6401}
6402
a8b0ca17 6403int perf_event_overflow(struct perf_event *event,
5622f295
MM
6404 struct perf_sample_data *data,
6405 struct pt_regs *regs)
850bc73f 6406{
a8b0ca17 6407 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6408}
6409
15dbf27c 6410/*
cdd6c482 6411 * Generic software event infrastructure
15dbf27c
PZ
6412 */
6413
b28ab83c
PZ
6414struct swevent_htable {
6415 struct swevent_hlist *swevent_hlist;
6416 struct mutex hlist_mutex;
6417 int hlist_refcount;
6418
6419 /* Recursion avoidance in each contexts */
6420 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6421
6422 /* Keeps track of cpu being initialized/exited */
6423 bool online;
b28ab83c
PZ
6424};
6425
6426static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6427
7b4b6658 6428/*
cdd6c482
IM
6429 * We directly increment event->count and keep a second value in
6430 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6431 * is kept in the range [-sample_period, 0] so that we can use the
6432 * sign as trigger.
6433 */
6434
ab573844 6435u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6436{
cdd6c482 6437 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6438 u64 period = hwc->last_period;
6439 u64 nr, offset;
6440 s64 old, val;
6441
6442 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6443
6444again:
e7850595 6445 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6446 if (val < 0)
6447 return 0;
15dbf27c 6448
7b4b6658
PZ
6449 nr = div64_u64(period + val, period);
6450 offset = nr * period;
6451 val -= offset;
e7850595 6452 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6453 goto again;
15dbf27c 6454
7b4b6658 6455 return nr;
15dbf27c
PZ
6456}
6457
0cff784a 6458static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6459 struct perf_sample_data *data,
5622f295 6460 struct pt_regs *regs)
15dbf27c 6461{
cdd6c482 6462 struct hw_perf_event *hwc = &event->hw;
850bc73f 6463 int throttle = 0;
15dbf27c 6464
0cff784a
PZ
6465 if (!overflow)
6466 overflow = perf_swevent_set_period(event);
15dbf27c 6467
7b4b6658
PZ
6468 if (hwc->interrupts == MAX_INTERRUPTS)
6469 return;
15dbf27c 6470
7b4b6658 6471 for (; overflow; overflow--) {
a8b0ca17 6472 if (__perf_event_overflow(event, throttle,
5622f295 6473 data, regs)) {
7b4b6658
PZ
6474 /*
6475 * We inhibit the overflow from happening when
6476 * hwc->interrupts == MAX_INTERRUPTS.
6477 */
6478 break;
6479 }
cf450a73 6480 throttle = 1;
7b4b6658 6481 }
15dbf27c
PZ
6482}
6483
a4eaf7f1 6484static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6485 struct perf_sample_data *data,
5622f295 6486 struct pt_regs *regs)
7b4b6658 6487{
cdd6c482 6488 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6489
e7850595 6490 local64_add(nr, &event->count);
d6d020e9 6491
0cff784a
PZ
6492 if (!regs)
6493 return;
6494
6c7e550f 6495 if (!is_sampling_event(event))
7b4b6658 6496 return;
d6d020e9 6497
5d81e5cf
AV
6498 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6499 data->period = nr;
6500 return perf_swevent_overflow(event, 1, data, regs);
6501 } else
6502 data->period = event->hw.last_period;
6503
0cff784a 6504 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6505 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6506
e7850595 6507 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6508 return;
df1a132b 6509
a8b0ca17 6510 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6511}
6512
f5ffe02e
FW
6513static int perf_exclude_event(struct perf_event *event,
6514 struct pt_regs *regs)
6515{
a4eaf7f1 6516 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6517 return 1;
a4eaf7f1 6518
f5ffe02e
FW
6519 if (regs) {
6520 if (event->attr.exclude_user && user_mode(regs))
6521 return 1;
6522
6523 if (event->attr.exclude_kernel && !user_mode(regs))
6524 return 1;
6525 }
6526
6527 return 0;
6528}
6529
cdd6c482 6530static int perf_swevent_match(struct perf_event *event,
1c432d89 6531 enum perf_type_id type,
6fb2915d
LZ
6532 u32 event_id,
6533 struct perf_sample_data *data,
6534 struct pt_regs *regs)
15dbf27c 6535{
cdd6c482 6536 if (event->attr.type != type)
a21ca2ca 6537 return 0;
f5ffe02e 6538
cdd6c482 6539 if (event->attr.config != event_id)
15dbf27c
PZ
6540 return 0;
6541
f5ffe02e
FW
6542 if (perf_exclude_event(event, regs))
6543 return 0;
15dbf27c
PZ
6544
6545 return 1;
6546}
6547
76e1d904
FW
6548static inline u64 swevent_hash(u64 type, u32 event_id)
6549{
6550 u64 val = event_id | (type << 32);
6551
6552 return hash_64(val, SWEVENT_HLIST_BITS);
6553}
6554
49f135ed
FW
6555static inline struct hlist_head *
6556__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6557{
49f135ed
FW
6558 u64 hash = swevent_hash(type, event_id);
6559
6560 return &hlist->heads[hash];
6561}
76e1d904 6562
49f135ed
FW
6563/* For the read side: events when they trigger */
6564static inline struct hlist_head *
b28ab83c 6565find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6566{
6567 struct swevent_hlist *hlist;
76e1d904 6568
b28ab83c 6569 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6570 if (!hlist)
6571 return NULL;
6572
49f135ed
FW
6573 return __find_swevent_head(hlist, type, event_id);
6574}
6575
6576/* For the event head insertion and removal in the hlist */
6577static inline struct hlist_head *
b28ab83c 6578find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6579{
6580 struct swevent_hlist *hlist;
6581 u32 event_id = event->attr.config;
6582 u64 type = event->attr.type;
6583
6584 /*
6585 * Event scheduling is always serialized against hlist allocation
6586 * and release. Which makes the protected version suitable here.
6587 * The context lock guarantees that.
6588 */
b28ab83c 6589 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6590 lockdep_is_held(&event->ctx->lock));
6591 if (!hlist)
6592 return NULL;
6593
6594 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6595}
6596
6597static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6598 u64 nr,
76e1d904
FW
6599 struct perf_sample_data *data,
6600 struct pt_regs *regs)
15dbf27c 6601{
4a32fea9 6602 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6603 struct perf_event *event;
76e1d904 6604 struct hlist_head *head;
15dbf27c 6605
76e1d904 6606 rcu_read_lock();
b28ab83c 6607 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6608 if (!head)
6609 goto end;
6610
b67bfe0d 6611 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6612 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6613 perf_swevent_event(event, nr, data, regs);
15dbf27c 6614 }
76e1d904
FW
6615end:
6616 rcu_read_unlock();
15dbf27c
PZ
6617}
6618
86038c5e
PZI
6619DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6620
4ed7c92d 6621int perf_swevent_get_recursion_context(void)
96f6d444 6622{
4a32fea9 6623 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6624
b28ab83c 6625 return get_recursion_context(swhash->recursion);
96f6d444 6626}
645e8cc0 6627EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6628
fa9f90be 6629inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6630{
4a32fea9 6631 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6632
b28ab83c 6633 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6634}
15dbf27c 6635
86038c5e 6636void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6637{
a4234bfc 6638 struct perf_sample_data data;
4ed7c92d 6639
86038c5e 6640 if (WARN_ON_ONCE(!regs))
4ed7c92d 6641 return;
a4234bfc 6642
fd0d000b 6643 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6644 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6645}
6646
6647void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6648{
6649 int rctx;
6650
6651 preempt_disable_notrace();
6652 rctx = perf_swevent_get_recursion_context();
6653 if (unlikely(rctx < 0))
6654 goto fail;
6655
6656 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6657
6658 perf_swevent_put_recursion_context(rctx);
86038c5e 6659fail:
1c024eca 6660 preempt_enable_notrace();
b8e83514
PZ
6661}
6662
cdd6c482 6663static void perf_swevent_read(struct perf_event *event)
15dbf27c 6664{
15dbf27c
PZ
6665}
6666
a4eaf7f1 6667static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6668{
4a32fea9 6669 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6670 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6671 struct hlist_head *head;
6672
6c7e550f 6673 if (is_sampling_event(event)) {
7b4b6658 6674 hwc->last_period = hwc->sample_period;
cdd6c482 6675 perf_swevent_set_period(event);
7b4b6658 6676 }
76e1d904 6677
a4eaf7f1
PZ
6678 hwc->state = !(flags & PERF_EF_START);
6679
b28ab83c 6680 head = find_swevent_head(swhash, event);
39af6b16
JO
6681 if (!head) {
6682 /*
6683 * We can race with cpu hotplug code. Do not
6684 * WARN if the cpu just got unplugged.
6685 */
6686 WARN_ON_ONCE(swhash->online);
76e1d904 6687 return -EINVAL;
39af6b16 6688 }
76e1d904
FW
6689
6690 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6691 perf_event_update_userpage(event);
76e1d904 6692
15dbf27c
PZ
6693 return 0;
6694}
6695
a4eaf7f1 6696static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6697{
76e1d904 6698 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6699}
6700
a4eaf7f1 6701static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6702{
a4eaf7f1 6703 event->hw.state = 0;
d6d020e9 6704}
aa9c4c0f 6705
a4eaf7f1 6706static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6707{
a4eaf7f1 6708 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6709}
6710
49f135ed
FW
6711/* Deref the hlist from the update side */
6712static inline struct swevent_hlist *
b28ab83c 6713swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6714{
b28ab83c
PZ
6715 return rcu_dereference_protected(swhash->swevent_hlist,
6716 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6717}
6718
b28ab83c 6719static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6720{
b28ab83c 6721 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6722
49f135ed 6723 if (!hlist)
76e1d904
FW
6724 return;
6725
70691d4a 6726 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6727 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6728}
6729
6730static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6731{
b28ab83c 6732 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6733
b28ab83c 6734 mutex_lock(&swhash->hlist_mutex);
76e1d904 6735
b28ab83c
PZ
6736 if (!--swhash->hlist_refcount)
6737 swevent_hlist_release(swhash);
76e1d904 6738
b28ab83c 6739 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6740}
6741
6742static void swevent_hlist_put(struct perf_event *event)
6743{
6744 int cpu;
6745
76e1d904
FW
6746 for_each_possible_cpu(cpu)
6747 swevent_hlist_put_cpu(event, cpu);
6748}
6749
6750static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6751{
b28ab83c 6752 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6753 int err = 0;
6754
b28ab83c 6755 mutex_lock(&swhash->hlist_mutex);
76e1d904 6756
b28ab83c 6757 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6758 struct swevent_hlist *hlist;
6759
6760 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6761 if (!hlist) {
6762 err = -ENOMEM;
6763 goto exit;
6764 }
b28ab83c 6765 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6766 }
b28ab83c 6767 swhash->hlist_refcount++;
9ed6060d 6768exit:
b28ab83c 6769 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6770
6771 return err;
6772}
6773
6774static int swevent_hlist_get(struct perf_event *event)
6775{
6776 int err;
6777 int cpu, failed_cpu;
6778
76e1d904
FW
6779 get_online_cpus();
6780 for_each_possible_cpu(cpu) {
6781 err = swevent_hlist_get_cpu(event, cpu);
6782 if (err) {
6783 failed_cpu = cpu;
6784 goto fail;
6785 }
6786 }
6787 put_online_cpus();
6788
6789 return 0;
9ed6060d 6790fail:
76e1d904
FW
6791 for_each_possible_cpu(cpu) {
6792 if (cpu == failed_cpu)
6793 break;
6794 swevent_hlist_put_cpu(event, cpu);
6795 }
6796
6797 put_online_cpus();
6798 return err;
6799}
6800
c5905afb 6801struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6802
b0a873eb
PZ
6803static void sw_perf_event_destroy(struct perf_event *event)
6804{
6805 u64 event_id = event->attr.config;
95476b64 6806
b0a873eb
PZ
6807 WARN_ON(event->parent);
6808
c5905afb 6809 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6810 swevent_hlist_put(event);
6811}
6812
6813static int perf_swevent_init(struct perf_event *event)
6814{
8176cced 6815 u64 event_id = event->attr.config;
b0a873eb
PZ
6816
6817 if (event->attr.type != PERF_TYPE_SOFTWARE)
6818 return -ENOENT;
6819
2481c5fa
SE
6820 /*
6821 * no branch sampling for software events
6822 */
6823 if (has_branch_stack(event))
6824 return -EOPNOTSUPP;
6825
b0a873eb
PZ
6826 switch (event_id) {
6827 case PERF_COUNT_SW_CPU_CLOCK:
6828 case PERF_COUNT_SW_TASK_CLOCK:
6829 return -ENOENT;
6830
6831 default:
6832 break;
6833 }
6834
ce677831 6835 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6836 return -ENOENT;
6837
6838 if (!event->parent) {
6839 int err;
6840
6841 err = swevent_hlist_get(event);
6842 if (err)
6843 return err;
6844
c5905afb 6845 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6846 event->destroy = sw_perf_event_destroy;
6847 }
6848
6849 return 0;
6850}
6851
6852static struct pmu perf_swevent = {
89a1e187 6853 .task_ctx_nr = perf_sw_context,
95476b64 6854
34f43927
PZ
6855 .capabilities = PERF_PMU_CAP_NO_NMI,
6856
b0a873eb 6857 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6858 .add = perf_swevent_add,
6859 .del = perf_swevent_del,
6860 .start = perf_swevent_start,
6861 .stop = perf_swevent_stop,
1c024eca 6862 .read = perf_swevent_read,
1c024eca
PZ
6863};
6864
b0a873eb
PZ
6865#ifdef CONFIG_EVENT_TRACING
6866
1c024eca
PZ
6867static int perf_tp_filter_match(struct perf_event *event,
6868 struct perf_sample_data *data)
6869{
6870 void *record = data->raw->data;
6871
6872 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6873 return 1;
6874 return 0;
6875}
6876
6877static int perf_tp_event_match(struct perf_event *event,
6878 struct perf_sample_data *data,
6879 struct pt_regs *regs)
6880{
a0f7d0f7
FW
6881 if (event->hw.state & PERF_HES_STOPPED)
6882 return 0;
580d607c
PZ
6883 /*
6884 * All tracepoints are from kernel-space.
6885 */
6886 if (event->attr.exclude_kernel)
1c024eca
PZ
6887 return 0;
6888
6889 if (!perf_tp_filter_match(event, data))
6890 return 0;
6891
6892 return 1;
6893}
6894
6895void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6896 struct pt_regs *regs, struct hlist_head *head, int rctx,
6897 struct task_struct *task)
95476b64
FW
6898{
6899 struct perf_sample_data data;
1c024eca 6900 struct perf_event *event;
1c024eca 6901
95476b64
FW
6902 struct perf_raw_record raw = {
6903 .size = entry_size,
6904 .data = record,
6905 };
6906
fd0d000b 6907 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6908 data.raw = &raw;
6909
b67bfe0d 6910 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6911 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6912 perf_swevent_event(event, count, &data, regs);
4f41c013 6913 }
ecc55f84 6914
e6dab5ff
AV
6915 /*
6916 * If we got specified a target task, also iterate its context and
6917 * deliver this event there too.
6918 */
6919 if (task && task != current) {
6920 struct perf_event_context *ctx;
6921 struct trace_entry *entry = record;
6922
6923 rcu_read_lock();
6924 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6925 if (!ctx)
6926 goto unlock;
6927
6928 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6929 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6930 continue;
6931 if (event->attr.config != entry->type)
6932 continue;
6933 if (perf_tp_event_match(event, &data, regs))
6934 perf_swevent_event(event, count, &data, regs);
6935 }
6936unlock:
6937 rcu_read_unlock();
6938 }
6939
ecc55f84 6940 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6941}
6942EXPORT_SYMBOL_GPL(perf_tp_event);
6943
cdd6c482 6944static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6945{
1c024eca 6946 perf_trace_destroy(event);
e077df4f
PZ
6947}
6948
b0a873eb 6949static int perf_tp_event_init(struct perf_event *event)
e077df4f 6950{
76e1d904
FW
6951 int err;
6952
b0a873eb
PZ
6953 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6954 return -ENOENT;
6955
2481c5fa
SE
6956 /*
6957 * no branch sampling for tracepoint events
6958 */
6959 if (has_branch_stack(event))
6960 return -EOPNOTSUPP;
6961
1c024eca
PZ
6962 err = perf_trace_init(event);
6963 if (err)
b0a873eb 6964 return err;
e077df4f 6965
cdd6c482 6966 event->destroy = tp_perf_event_destroy;
e077df4f 6967
b0a873eb
PZ
6968 return 0;
6969}
6970
6971static struct pmu perf_tracepoint = {
89a1e187
PZ
6972 .task_ctx_nr = perf_sw_context,
6973
b0a873eb 6974 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6975 .add = perf_trace_add,
6976 .del = perf_trace_del,
6977 .start = perf_swevent_start,
6978 .stop = perf_swevent_stop,
b0a873eb 6979 .read = perf_swevent_read,
b0a873eb
PZ
6980};
6981
6982static inline void perf_tp_register(void)
6983{
2e80a82a 6984 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6985}
6fb2915d
LZ
6986
6987static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6988{
6989 char *filter_str;
6990 int ret;
6991
6992 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6993 return -EINVAL;
6994
6995 filter_str = strndup_user(arg, PAGE_SIZE);
6996 if (IS_ERR(filter_str))
6997 return PTR_ERR(filter_str);
6998
6999 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7000
7001 kfree(filter_str);
7002 return ret;
7003}
7004
7005static void perf_event_free_filter(struct perf_event *event)
7006{
7007 ftrace_profile_free_filter(event);
7008}
7009
2541517c
AS
7010static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7011{
7012 struct bpf_prog *prog;
7013
7014 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7015 return -EINVAL;
7016
7017 if (event->tp_event->prog)
7018 return -EEXIST;
7019
04a22fae
WN
7020 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7021 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7022 return -EINVAL;
7023
7024 prog = bpf_prog_get(prog_fd);
7025 if (IS_ERR(prog))
7026 return PTR_ERR(prog);
7027
6c373ca8 7028 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7029 /* valid fd, but invalid bpf program type */
7030 bpf_prog_put(prog);
7031 return -EINVAL;
7032 }
7033
7034 event->tp_event->prog = prog;
7035
7036 return 0;
7037}
7038
7039static void perf_event_free_bpf_prog(struct perf_event *event)
7040{
7041 struct bpf_prog *prog;
7042
7043 if (!event->tp_event)
7044 return;
7045
7046 prog = event->tp_event->prog;
7047 if (prog) {
7048 event->tp_event->prog = NULL;
7049 bpf_prog_put(prog);
7050 }
7051}
7052
e077df4f 7053#else
6fb2915d 7054
b0a873eb 7055static inline void perf_tp_register(void)
e077df4f 7056{
e077df4f 7057}
6fb2915d
LZ
7058
7059static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7060{
7061 return -ENOENT;
7062}
7063
7064static void perf_event_free_filter(struct perf_event *event)
7065{
7066}
7067
2541517c
AS
7068static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7069{
7070 return -ENOENT;
7071}
7072
7073static void perf_event_free_bpf_prog(struct perf_event *event)
7074{
7075}
07b139c8 7076#endif /* CONFIG_EVENT_TRACING */
e077df4f 7077
24f1e32c 7078#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7079void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7080{
f5ffe02e
FW
7081 struct perf_sample_data sample;
7082 struct pt_regs *regs = data;
7083
fd0d000b 7084 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7085
a4eaf7f1 7086 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7087 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7088}
7089#endif
7090
b0a873eb
PZ
7091/*
7092 * hrtimer based swevent callback
7093 */
f29ac756 7094
b0a873eb 7095static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7096{
b0a873eb
PZ
7097 enum hrtimer_restart ret = HRTIMER_RESTART;
7098 struct perf_sample_data data;
7099 struct pt_regs *regs;
7100 struct perf_event *event;
7101 u64 period;
f29ac756 7102
b0a873eb 7103 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7104
7105 if (event->state != PERF_EVENT_STATE_ACTIVE)
7106 return HRTIMER_NORESTART;
7107
b0a873eb 7108 event->pmu->read(event);
f344011c 7109
fd0d000b 7110 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7111 regs = get_irq_regs();
7112
7113 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7114 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7115 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7116 ret = HRTIMER_NORESTART;
7117 }
24f1e32c 7118
b0a873eb
PZ
7119 period = max_t(u64, 10000, event->hw.sample_period);
7120 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7121
b0a873eb 7122 return ret;
f29ac756
PZ
7123}
7124
b0a873eb 7125static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7126{
b0a873eb 7127 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7128 s64 period;
7129
7130 if (!is_sampling_event(event))
7131 return;
f5ffe02e 7132
5d508e82
FBH
7133 period = local64_read(&hwc->period_left);
7134 if (period) {
7135 if (period < 0)
7136 period = 10000;
fa407f35 7137
5d508e82
FBH
7138 local64_set(&hwc->period_left, 0);
7139 } else {
7140 period = max_t(u64, 10000, hwc->sample_period);
7141 }
3497d206
TG
7142 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7143 HRTIMER_MODE_REL_PINNED);
24f1e32c 7144}
b0a873eb
PZ
7145
7146static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7147{
b0a873eb
PZ
7148 struct hw_perf_event *hwc = &event->hw;
7149
6c7e550f 7150 if (is_sampling_event(event)) {
b0a873eb 7151 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7152 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7153
7154 hrtimer_cancel(&hwc->hrtimer);
7155 }
24f1e32c
FW
7156}
7157
ba3dd36c
PZ
7158static void perf_swevent_init_hrtimer(struct perf_event *event)
7159{
7160 struct hw_perf_event *hwc = &event->hw;
7161
7162 if (!is_sampling_event(event))
7163 return;
7164
7165 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7166 hwc->hrtimer.function = perf_swevent_hrtimer;
7167
7168 /*
7169 * Since hrtimers have a fixed rate, we can do a static freq->period
7170 * mapping and avoid the whole period adjust feedback stuff.
7171 */
7172 if (event->attr.freq) {
7173 long freq = event->attr.sample_freq;
7174
7175 event->attr.sample_period = NSEC_PER_SEC / freq;
7176 hwc->sample_period = event->attr.sample_period;
7177 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7178 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7179 event->attr.freq = 0;
7180 }
7181}
7182
b0a873eb
PZ
7183/*
7184 * Software event: cpu wall time clock
7185 */
7186
7187static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7188{
b0a873eb
PZ
7189 s64 prev;
7190 u64 now;
7191
a4eaf7f1 7192 now = local_clock();
b0a873eb
PZ
7193 prev = local64_xchg(&event->hw.prev_count, now);
7194 local64_add(now - prev, &event->count);
24f1e32c 7195}
24f1e32c 7196
a4eaf7f1 7197static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7198{
a4eaf7f1 7199 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7200 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7201}
7202
a4eaf7f1 7203static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7204{
b0a873eb
PZ
7205 perf_swevent_cancel_hrtimer(event);
7206 cpu_clock_event_update(event);
7207}
f29ac756 7208
a4eaf7f1
PZ
7209static int cpu_clock_event_add(struct perf_event *event, int flags)
7210{
7211 if (flags & PERF_EF_START)
7212 cpu_clock_event_start(event, flags);
6a694a60 7213 perf_event_update_userpage(event);
a4eaf7f1
PZ
7214
7215 return 0;
7216}
7217
7218static void cpu_clock_event_del(struct perf_event *event, int flags)
7219{
7220 cpu_clock_event_stop(event, flags);
7221}
7222
b0a873eb
PZ
7223static void cpu_clock_event_read(struct perf_event *event)
7224{
7225 cpu_clock_event_update(event);
7226}
f344011c 7227
b0a873eb
PZ
7228static int cpu_clock_event_init(struct perf_event *event)
7229{
7230 if (event->attr.type != PERF_TYPE_SOFTWARE)
7231 return -ENOENT;
7232
7233 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7234 return -ENOENT;
7235
2481c5fa
SE
7236 /*
7237 * no branch sampling for software events
7238 */
7239 if (has_branch_stack(event))
7240 return -EOPNOTSUPP;
7241
ba3dd36c
PZ
7242 perf_swevent_init_hrtimer(event);
7243
b0a873eb 7244 return 0;
f29ac756
PZ
7245}
7246
b0a873eb 7247static struct pmu perf_cpu_clock = {
89a1e187
PZ
7248 .task_ctx_nr = perf_sw_context,
7249
34f43927
PZ
7250 .capabilities = PERF_PMU_CAP_NO_NMI,
7251
b0a873eb 7252 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7253 .add = cpu_clock_event_add,
7254 .del = cpu_clock_event_del,
7255 .start = cpu_clock_event_start,
7256 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7257 .read = cpu_clock_event_read,
7258};
7259
7260/*
7261 * Software event: task time clock
7262 */
7263
7264static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7265{
b0a873eb
PZ
7266 u64 prev;
7267 s64 delta;
5c92d124 7268
b0a873eb
PZ
7269 prev = local64_xchg(&event->hw.prev_count, now);
7270 delta = now - prev;
7271 local64_add(delta, &event->count);
7272}
5c92d124 7273
a4eaf7f1 7274static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7275{
a4eaf7f1 7276 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7277 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7278}
7279
a4eaf7f1 7280static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7281{
7282 perf_swevent_cancel_hrtimer(event);
7283 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7284}
7285
7286static int task_clock_event_add(struct perf_event *event, int flags)
7287{
7288 if (flags & PERF_EF_START)
7289 task_clock_event_start(event, flags);
6a694a60 7290 perf_event_update_userpage(event);
b0a873eb 7291
a4eaf7f1
PZ
7292 return 0;
7293}
7294
7295static void task_clock_event_del(struct perf_event *event, int flags)
7296{
7297 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7298}
7299
7300static void task_clock_event_read(struct perf_event *event)
7301{
768a06e2
PZ
7302 u64 now = perf_clock();
7303 u64 delta = now - event->ctx->timestamp;
7304 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7305
7306 task_clock_event_update(event, time);
7307}
7308
7309static int task_clock_event_init(struct perf_event *event)
6fb2915d 7310{
b0a873eb
PZ
7311 if (event->attr.type != PERF_TYPE_SOFTWARE)
7312 return -ENOENT;
7313
7314 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7315 return -ENOENT;
7316
2481c5fa
SE
7317 /*
7318 * no branch sampling for software events
7319 */
7320 if (has_branch_stack(event))
7321 return -EOPNOTSUPP;
7322
ba3dd36c
PZ
7323 perf_swevent_init_hrtimer(event);
7324
b0a873eb 7325 return 0;
6fb2915d
LZ
7326}
7327
b0a873eb 7328static struct pmu perf_task_clock = {
89a1e187
PZ
7329 .task_ctx_nr = perf_sw_context,
7330
34f43927
PZ
7331 .capabilities = PERF_PMU_CAP_NO_NMI,
7332
b0a873eb 7333 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7334 .add = task_clock_event_add,
7335 .del = task_clock_event_del,
7336 .start = task_clock_event_start,
7337 .stop = task_clock_event_stop,
b0a873eb
PZ
7338 .read = task_clock_event_read,
7339};
6fb2915d 7340
ad5133b7 7341static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7342{
e077df4f 7343}
6fb2915d 7344
fbbe0701
SB
7345static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7346{
7347}
7348
ad5133b7 7349static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7350{
ad5133b7 7351 return 0;
6fb2915d
LZ
7352}
7353
fbbe0701
SB
7354DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7355
7356static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7357{
fbbe0701
SB
7358 __this_cpu_write(nop_txn_flags, flags);
7359
7360 if (flags & ~PERF_PMU_TXN_ADD)
7361 return;
7362
ad5133b7 7363 perf_pmu_disable(pmu);
6fb2915d
LZ
7364}
7365
ad5133b7
PZ
7366static int perf_pmu_commit_txn(struct pmu *pmu)
7367{
fbbe0701
SB
7368 unsigned int flags = __this_cpu_read(nop_txn_flags);
7369
7370 __this_cpu_write(nop_txn_flags, 0);
7371
7372 if (flags & ~PERF_PMU_TXN_ADD)
7373 return 0;
7374
ad5133b7
PZ
7375 perf_pmu_enable(pmu);
7376 return 0;
7377}
e077df4f 7378
ad5133b7 7379static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7380{
fbbe0701
SB
7381 unsigned int flags = __this_cpu_read(nop_txn_flags);
7382
7383 __this_cpu_write(nop_txn_flags, 0);
7384
7385 if (flags & ~PERF_PMU_TXN_ADD)
7386 return;
7387
ad5133b7 7388 perf_pmu_enable(pmu);
24f1e32c
FW
7389}
7390
35edc2a5
PZ
7391static int perf_event_idx_default(struct perf_event *event)
7392{
c719f560 7393 return 0;
35edc2a5
PZ
7394}
7395
8dc85d54
PZ
7396/*
7397 * Ensures all contexts with the same task_ctx_nr have the same
7398 * pmu_cpu_context too.
7399 */
9e317041 7400static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7401{
8dc85d54 7402 struct pmu *pmu;
b326e956 7403
8dc85d54
PZ
7404 if (ctxn < 0)
7405 return NULL;
24f1e32c 7406
8dc85d54
PZ
7407 list_for_each_entry(pmu, &pmus, entry) {
7408 if (pmu->task_ctx_nr == ctxn)
7409 return pmu->pmu_cpu_context;
7410 }
24f1e32c 7411
8dc85d54 7412 return NULL;
24f1e32c
FW
7413}
7414
51676957 7415static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7416{
51676957
PZ
7417 int cpu;
7418
7419 for_each_possible_cpu(cpu) {
7420 struct perf_cpu_context *cpuctx;
7421
7422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7423
3f1f3320
PZ
7424 if (cpuctx->unique_pmu == old_pmu)
7425 cpuctx->unique_pmu = pmu;
51676957
PZ
7426 }
7427}
7428
7429static void free_pmu_context(struct pmu *pmu)
7430{
7431 struct pmu *i;
f5ffe02e 7432
8dc85d54 7433 mutex_lock(&pmus_lock);
0475f9ea 7434 /*
8dc85d54 7435 * Like a real lame refcount.
0475f9ea 7436 */
51676957
PZ
7437 list_for_each_entry(i, &pmus, entry) {
7438 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7439 update_pmu_context(i, pmu);
8dc85d54 7440 goto out;
51676957 7441 }
8dc85d54 7442 }
d6d020e9 7443
51676957 7444 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7445out:
7446 mutex_unlock(&pmus_lock);
24f1e32c 7447}
2e80a82a 7448static struct idr pmu_idr;
d6d020e9 7449
abe43400
PZ
7450static ssize_t
7451type_show(struct device *dev, struct device_attribute *attr, char *page)
7452{
7453 struct pmu *pmu = dev_get_drvdata(dev);
7454
7455 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7456}
90826ca7 7457static DEVICE_ATTR_RO(type);
abe43400 7458
62b85639
SE
7459static ssize_t
7460perf_event_mux_interval_ms_show(struct device *dev,
7461 struct device_attribute *attr,
7462 char *page)
7463{
7464 struct pmu *pmu = dev_get_drvdata(dev);
7465
7466 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7467}
7468
272325c4
PZ
7469static DEFINE_MUTEX(mux_interval_mutex);
7470
62b85639
SE
7471static ssize_t
7472perf_event_mux_interval_ms_store(struct device *dev,
7473 struct device_attribute *attr,
7474 const char *buf, size_t count)
7475{
7476 struct pmu *pmu = dev_get_drvdata(dev);
7477 int timer, cpu, ret;
7478
7479 ret = kstrtoint(buf, 0, &timer);
7480 if (ret)
7481 return ret;
7482
7483 if (timer < 1)
7484 return -EINVAL;
7485
7486 /* same value, noting to do */
7487 if (timer == pmu->hrtimer_interval_ms)
7488 return count;
7489
272325c4 7490 mutex_lock(&mux_interval_mutex);
62b85639
SE
7491 pmu->hrtimer_interval_ms = timer;
7492
7493 /* update all cpuctx for this PMU */
272325c4
PZ
7494 get_online_cpus();
7495 for_each_online_cpu(cpu) {
62b85639
SE
7496 struct perf_cpu_context *cpuctx;
7497 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7498 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7499
272325c4
PZ
7500 cpu_function_call(cpu,
7501 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7502 }
272325c4
PZ
7503 put_online_cpus();
7504 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7505
7506 return count;
7507}
90826ca7 7508static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7509
90826ca7
GKH
7510static struct attribute *pmu_dev_attrs[] = {
7511 &dev_attr_type.attr,
7512 &dev_attr_perf_event_mux_interval_ms.attr,
7513 NULL,
abe43400 7514};
90826ca7 7515ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7516
7517static int pmu_bus_running;
7518static struct bus_type pmu_bus = {
7519 .name = "event_source",
90826ca7 7520 .dev_groups = pmu_dev_groups,
abe43400
PZ
7521};
7522
7523static void pmu_dev_release(struct device *dev)
7524{
7525 kfree(dev);
7526}
7527
7528static int pmu_dev_alloc(struct pmu *pmu)
7529{
7530 int ret = -ENOMEM;
7531
7532 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7533 if (!pmu->dev)
7534 goto out;
7535
0c9d42ed 7536 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7537 device_initialize(pmu->dev);
7538 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7539 if (ret)
7540 goto free_dev;
7541
7542 dev_set_drvdata(pmu->dev, pmu);
7543 pmu->dev->bus = &pmu_bus;
7544 pmu->dev->release = pmu_dev_release;
7545 ret = device_add(pmu->dev);
7546 if (ret)
7547 goto free_dev;
7548
7549out:
7550 return ret;
7551
7552free_dev:
7553 put_device(pmu->dev);
7554 goto out;
7555}
7556
547e9fd7 7557static struct lock_class_key cpuctx_mutex;
facc4307 7558static struct lock_class_key cpuctx_lock;
547e9fd7 7559
03d8e80b 7560int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7561{
108b02cf 7562 int cpu, ret;
24f1e32c 7563
b0a873eb 7564 mutex_lock(&pmus_lock);
33696fc0
PZ
7565 ret = -ENOMEM;
7566 pmu->pmu_disable_count = alloc_percpu(int);
7567 if (!pmu->pmu_disable_count)
7568 goto unlock;
f29ac756 7569
2e80a82a
PZ
7570 pmu->type = -1;
7571 if (!name)
7572 goto skip_type;
7573 pmu->name = name;
7574
7575 if (type < 0) {
0e9c3be2
TH
7576 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7577 if (type < 0) {
7578 ret = type;
2e80a82a
PZ
7579 goto free_pdc;
7580 }
7581 }
7582 pmu->type = type;
7583
abe43400
PZ
7584 if (pmu_bus_running) {
7585 ret = pmu_dev_alloc(pmu);
7586 if (ret)
7587 goto free_idr;
7588 }
7589
2e80a82a 7590skip_type:
8dc85d54
PZ
7591 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7592 if (pmu->pmu_cpu_context)
7593 goto got_cpu_context;
f29ac756 7594
c4814202 7595 ret = -ENOMEM;
108b02cf
PZ
7596 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7597 if (!pmu->pmu_cpu_context)
abe43400 7598 goto free_dev;
f344011c 7599
108b02cf
PZ
7600 for_each_possible_cpu(cpu) {
7601 struct perf_cpu_context *cpuctx;
7602
7603 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7604 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7605 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7606 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7607 cpuctx->ctx.pmu = pmu;
9e630205 7608
272325c4 7609 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7610
3f1f3320 7611 cpuctx->unique_pmu = pmu;
108b02cf 7612 }
76e1d904 7613
8dc85d54 7614got_cpu_context:
ad5133b7
PZ
7615 if (!pmu->start_txn) {
7616 if (pmu->pmu_enable) {
7617 /*
7618 * If we have pmu_enable/pmu_disable calls, install
7619 * transaction stubs that use that to try and batch
7620 * hardware accesses.
7621 */
7622 pmu->start_txn = perf_pmu_start_txn;
7623 pmu->commit_txn = perf_pmu_commit_txn;
7624 pmu->cancel_txn = perf_pmu_cancel_txn;
7625 } else {
fbbe0701 7626 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7627 pmu->commit_txn = perf_pmu_nop_int;
7628 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7629 }
5c92d124 7630 }
15dbf27c 7631
ad5133b7
PZ
7632 if (!pmu->pmu_enable) {
7633 pmu->pmu_enable = perf_pmu_nop_void;
7634 pmu->pmu_disable = perf_pmu_nop_void;
7635 }
7636
35edc2a5
PZ
7637 if (!pmu->event_idx)
7638 pmu->event_idx = perf_event_idx_default;
7639
b0a873eb 7640 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7641 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7642 ret = 0;
7643unlock:
b0a873eb
PZ
7644 mutex_unlock(&pmus_lock);
7645
33696fc0 7646 return ret;
108b02cf 7647
abe43400
PZ
7648free_dev:
7649 device_del(pmu->dev);
7650 put_device(pmu->dev);
7651
2e80a82a
PZ
7652free_idr:
7653 if (pmu->type >= PERF_TYPE_MAX)
7654 idr_remove(&pmu_idr, pmu->type);
7655
108b02cf
PZ
7656free_pdc:
7657 free_percpu(pmu->pmu_disable_count);
7658 goto unlock;
f29ac756 7659}
c464c76e 7660EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7661
b0a873eb 7662void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7663{
b0a873eb
PZ
7664 mutex_lock(&pmus_lock);
7665 list_del_rcu(&pmu->entry);
7666 mutex_unlock(&pmus_lock);
5c92d124 7667
0475f9ea 7668 /*
cde8e884
PZ
7669 * We dereference the pmu list under both SRCU and regular RCU, so
7670 * synchronize against both of those.
0475f9ea 7671 */
b0a873eb 7672 synchronize_srcu(&pmus_srcu);
cde8e884 7673 synchronize_rcu();
d6d020e9 7674
33696fc0 7675 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7676 if (pmu->type >= PERF_TYPE_MAX)
7677 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7678 device_del(pmu->dev);
7679 put_device(pmu->dev);
51676957 7680 free_pmu_context(pmu);
b0a873eb 7681}
c464c76e 7682EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7683
cc34b98b
MR
7684static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7685{
ccd41c86 7686 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7687 int ret;
7688
7689 if (!try_module_get(pmu->module))
7690 return -ENODEV;
ccd41c86
PZ
7691
7692 if (event->group_leader != event) {
8b10c5e2
PZ
7693 /*
7694 * This ctx->mutex can nest when we're called through
7695 * inheritance. See the perf_event_ctx_lock_nested() comment.
7696 */
7697 ctx = perf_event_ctx_lock_nested(event->group_leader,
7698 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7699 BUG_ON(!ctx);
7700 }
7701
cc34b98b
MR
7702 event->pmu = pmu;
7703 ret = pmu->event_init(event);
ccd41c86
PZ
7704
7705 if (ctx)
7706 perf_event_ctx_unlock(event->group_leader, ctx);
7707
cc34b98b
MR
7708 if (ret)
7709 module_put(pmu->module);
7710
7711 return ret;
7712}
7713
b0a873eb
PZ
7714struct pmu *perf_init_event(struct perf_event *event)
7715{
7716 struct pmu *pmu = NULL;
7717 int idx;
940c5b29 7718 int ret;
b0a873eb
PZ
7719
7720 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7721
7722 rcu_read_lock();
7723 pmu = idr_find(&pmu_idr, event->attr.type);
7724 rcu_read_unlock();
940c5b29 7725 if (pmu) {
cc34b98b 7726 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7727 if (ret)
7728 pmu = ERR_PTR(ret);
2e80a82a 7729 goto unlock;
940c5b29 7730 }
2e80a82a 7731
b0a873eb 7732 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7733 ret = perf_try_init_event(pmu, event);
b0a873eb 7734 if (!ret)
e5f4d339 7735 goto unlock;
76e1d904 7736
b0a873eb
PZ
7737 if (ret != -ENOENT) {
7738 pmu = ERR_PTR(ret);
e5f4d339 7739 goto unlock;
f344011c 7740 }
5c92d124 7741 }
e5f4d339
PZ
7742 pmu = ERR_PTR(-ENOENT);
7743unlock:
b0a873eb 7744 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7745
4aeb0b42 7746 return pmu;
5c92d124
IM
7747}
7748
4beb31f3
FW
7749static void account_event_cpu(struct perf_event *event, int cpu)
7750{
7751 if (event->parent)
7752 return;
7753
4beb31f3
FW
7754 if (is_cgroup_event(event))
7755 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7756}
7757
766d6c07
FW
7758static void account_event(struct perf_event *event)
7759{
4beb31f3
FW
7760 if (event->parent)
7761 return;
7762
766d6c07
FW
7763 if (event->attach_state & PERF_ATTACH_TASK)
7764 static_key_slow_inc(&perf_sched_events.key);
7765 if (event->attr.mmap || event->attr.mmap_data)
7766 atomic_inc(&nr_mmap_events);
7767 if (event->attr.comm)
7768 atomic_inc(&nr_comm_events);
7769 if (event->attr.task)
7770 atomic_inc(&nr_task_events);
948b26b6
FW
7771 if (event->attr.freq) {
7772 if (atomic_inc_return(&nr_freq_events) == 1)
7773 tick_nohz_full_kick_all();
7774 }
45ac1403
AH
7775 if (event->attr.context_switch) {
7776 atomic_inc(&nr_switch_events);
7777 static_key_slow_inc(&perf_sched_events.key);
7778 }
4beb31f3 7779 if (has_branch_stack(event))
766d6c07 7780 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7781 if (is_cgroup_event(event))
766d6c07 7782 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7783
7784 account_event_cpu(event, event->cpu);
766d6c07
FW
7785}
7786
0793a61d 7787/*
cdd6c482 7788 * Allocate and initialize a event structure
0793a61d 7789 */
cdd6c482 7790static struct perf_event *
c3f00c70 7791perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7792 struct task_struct *task,
7793 struct perf_event *group_leader,
7794 struct perf_event *parent_event,
4dc0da86 7795 perf_overflow_handler_t overflow_handler,
79dff51e 7796 void *context, int cgroup_fd)
0793a61d 7797{
51b0fe39 7798 struct pmu *pmu;
cdd6c482
IM
7799 struct perf_event *event;
7800 struct hw_perf_event *hwc;
90983b16 7801 long err = -EINVAL;
0793a61d 7802
66832eb4
ON
7803 if ((unsigned)cpu >= nr_cpu_ids) {
7804 if (!task || cpu != -1)
7805 return ERR_PTR(-EINVAL);
7806 }
7807
c3f00c70 7808 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7809 if (!event)
d5d2bc0d 7810 return ERR_PTR(-ENOMEM);
0793a61d 7811
04289bb9 7812 /*
cdd6c482 7813 * Single events are their own group leaders, with an
04289bb9
IM
7814 * empty sibling list:
7815 */
7816 if (!group_leader)
cdd6c482 7817 group_leader = event;
04289bb9 7818
cdd6c482
IM
7819 mutex_init(&event->child_mutex);
7820 INIT_LIST_HEAD(&event->child_list);
fccc714b 7821
cdd6c482
IM
7822 INIT_LIST_HEAD(&event->group_entry);
7823 INIT_LIST_HEAD(&event->event_entry);
7824 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7825 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7826 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7827 INIT_HLIST_NODE(&event->hlist_entry);
7828
10c6db11 7829
cdd6c482 7830 init_waitqueue_head(&event->waitq);
e360adbe 7831 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7832
cdd6c482 7833 mutex_init(&event->mmap_mutex);
7b732a75 7834
a6fa941d 7835 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7836 event->cpu = cpu;
7837 event->attr = *attr;
7838 event->group_leader = group_leader;
7839 event->pmu = NULL;
cdd6c482 7840 event->oncpu = -1;
a96bbc16 7841
cdd6c482 7842 event->parent = parent_event;
b84fbc9f 7843
17cf22c3 7844 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7845 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7846
cdd6c482 7847 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7848
d580ff86
PZ
7849 if (task) {
7850 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7851 /*
50f16a8b
PZ
7852 * XXX pmu::event_init needs to know what task to account to
7853 * and we cannot use the ctx information because we need the
7854 * pmu before we get a ctx.
d580ff86 7855 */
50f16a8b 7856 event->hw.target = task;
d580ff86
PZ
7857 }
7858
34f43927
PZ
7859 event->clock = &local_clock;
7860 if (parent_event)
7861 event->clock = parent_event->clock;
7862
4dc0da86 7863 if (!overflow_handler && parent_event) {
b326e956 7864 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7865 context = parent_event->overflow_handler_context;
7866 }
66832eb4 7867
b326e956 7868 event->overflow_handler = overflow_handler;
4dc0da86 7869 event->overflow_handler_context = context;
97eaf530 7870
0231bb53 7871 perf_event__state_init(event);
a86ed508 7872
4aeb0b42 7873 pmu = NULL;
b8e83514 7874
cdd6c482 7875 hwc = &event->hw;
bd2b5b12 7876 hwc->sample_period = attr->sample_period;
0d48696f 7877 if (attr->freq && attr->sample_freq)
bd2b5b12 7878 hwc->sample_period = 1;
eced1dfc 7879 hwc->last_period = hwc->sample_period;
bd2b5b12 7880
e7850595 7881 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7882
2023b359 7883 /*
cdd6c482 7884 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7885 */
3dab77fb 7886 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7887 goto err_ns;
a46a2300
YZ
7888
7889 if (!has_branch_stack(event))
7890 event->attr.branch_sample_type = 0;
2023b359 7891
79dff51e
MF
7892 if (cgroup_fd != -1) {
7893 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7894 if (err)
7895 goto err_ns;
7896 }
7897
b0a873eb 7898 pmu = perf_init_event(event);
4aeb0b42 7899 if (!pmu)
90983b16
FW
7900 goto err_ns;
7901 else if (IS_ERR(pmu)) {
4aeb0b42 7902 err = PTR_ERR(pmu);
90983b16 7903 goto err_ns;
621a01ea 7904 }
d5d2bc0d 7905
bed5b25a
AS
7906 err = exclusive_event_init(event);
7907 if (err)
7908 goto err_pmu;
7909
cdd6c482 7910 if (!event->parent) {
927c7a9e
FW
7911 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7912 err = get_callchain_buffers();
90983b16 7913 if (err)
bed5b25a 7914 goto err_per_task;
d010b332 7915 }
f344011c 7916 }
9ee318a7 7917
cdd6c482 7918 return event;
90983b16 7919
bed5b25a
AS
7920err_per_task:
7921 exclusive_event_destroy(event);
7922
90983b16
FW
7923err_pmu:
7924 if (event->destroy)
7925 event->destroy(event);
c464c76e 7926 module_put(pmu->module);
90983b16 7927err_ns:
79dff51e
MF
7928 if (is_cgroup_event(event))
7929 perf_detach_cgroup(event);
90983b16
FW
7930 if (event->ns)
7931 put_pid_ns(event->ns);
7932 kfree(event);
7933
7934 return ERR_PTR(err);
0793a61d
TG
7935}
7936
cdd6c482
IM
7937static int perf_copy_attr(struct perf_event_attr __user *uattr,
7938 struct perf_event_attr *attr)
974802ea 7939{
974802ea 7940 u32 size;
cdf8073d 7941 int ret;
974802ea
PZ
7942
7943 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7944 return -EFAULT;
7945
7946 /*
7947 * zero the full structure, so that a short copy will be nice.
7948 */
7949 memset(attr, 0, sizeof(*attr));
7950
7951 ret = get_user(size, &uattr->size);
7952 if (ret)
7953 return ret;
7954
7955 if (size > PAGE_SIZE) /* silly large */
7956 goto err_size;
7957
7958 if (!size) /* abi compat */
7959 size = PERF_ATTR_SIZE_VER0;
7960
7961 if (size < PERF_ATTR_SIZE_VER0)
7962 goto err_size;
7963
7964 /*
7965 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7966 * ensure all the unknown bits are 0 - i.e. new
7967 * user-space does not rely on any kernel feature
7968 * extensions we dont know about yet.
974802ea
PZ
7969 */
7970 if (size > sizeof(*attr)) {
cdf8073d
IS
7971 unsigned char __user *addr;
7972 unsigned char __user *end;
7973 unsigned char val;
974802ea 7974
cdf8073d
IS
7975 addr = (void __user *)uattr + sizeof(*attr);
7976 end = (void __user *)uattr + size;
974802ea 7977
cdf8073d 7978 for (; addr < end; addr++) {
974802ea
PZ
7979 ret = get_user(val, addr);
7980 if (ret)
7981 return ret;
7982 if (val)
7983 goto err_size;
7984 }
b3e62e35 7985 size = sizeof(*attr);
974802ea
PZ
7986 }
7987
7988 ret = copy_from_user(attr, uattr, size);
7989 if (ret)
7990 return -EFAULT;
7991
cd757645 7992 if (attr->__reserved_1)
974802ea
PZ
7993 return -EINVAL;
7994
7995 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7996 return -EINVAL;
7997
7998 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7999 return -EINVAL;
8000
bce38cd5
SE
8001 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8002 u64 mask = attr->branch_sample_type;
8003
8004 /* only using defined bits */
8005 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8006 return -EINVAL;
8007
8008 /* at least one branch bit must be set */
8009 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8010 return -EINVAL;
8011
bce38cd5
SE
8012 /* propagate priv level, when not set for branch */
8013 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8014
8015 /* exclude_kernel checked on syscall entry */
8016 if (!attr->exclude_kernel)
8017 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8018
8019 if (!attr->exclude_user)
8020 mask |= PERF_SAMPLE_BRANCH_USER;
8021
8022 if (!attr->exclude_hv)
8023 mask |= PERF_SAMPLE_BRANCH_HV;
8024 /*
8025 * adjust user setting (for HW filter setup)
8026 */
8027 attr->branch_sample_type = mask;
8028 }
e712209a
SE
8029 /* privileged levels capture (kernel, hv): check permissions */
8030 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8031 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8032 return -EACCES;
bce38cd5 8033 }
4018994f 8034
c5ebcedb 8035 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8036 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8037 if (ret)
8038 return ret;
8039 }
8040
8041 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8042 if (!arch_perf_have_user_stack_dump())
8043 return -ENOSYS;
8044
8045 /*
8046 * We have __u32 type for the size, but so far
8047 * we can only use __u16 as maximum due to the
8048 * __u16 sample size limit.
8049 */
8050 if (attr->sample_stack_user >= USHRT_MAX)
8051 ret = -EINVAL;
8052 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8053 ret = -EINVAL;
8054 }
4018994f 8055
60e2364e
SE
8056 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8057 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8058out:
8059 return ret;
8060
8061err_size:
8062 put_user(sizeof(*attr), &uattr->size);
8063 ret = -E2BIG;
8064 goto out;
8065}
8066
ac9721f3
PZ
8067static int
8068perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8069{
b69cf536 8070 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8071 int ret = -EINVAL;
8072
ac9721f3 8073 if (!output_event)
a4be7c27
PZ
8074 goto set;
8075
ac9721f3
PZ
8076 /* don't allow circular references */
8077 if (event == output_event)
a4be7c27
PZ
8078 goto out;
8079
0f139300
PZ
8080 /*
8081 * Don't allow cross-cpu buffers
8082 */
8083 if (output_event->cpu != event->cpu)
8084 goto out;
8085
8086 /*
76369139 8087 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8088 */
8089 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8090 goto out;
8091
34f43927
PZ
8092 /*
8093 * Mixing clocks in the same buffer is trouble you don't need.
8094 */
8095 if (output_event->clock != event->clock)
8096 goto out;
8097
45bfb2e5
PZ
8098 /*
8099 * If both events generate aux data, they must be on the same PMU
8100 */
8101 if (has_aux(event) && has_aux(output_event) &&
8102 event->pmu != output_event->pmu)
8103 goto out;
8104
a4be7c27 8105set:
cdd6c482 8106 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8107 /* Can't redirect output if we've got an active mmap() */
8108 if (atomic_read(&event->mmap_count))
8109 goto unlock;
a4be7c27 8110
ac9721f3 8111 if (output_event) {
76369139
FW
8112 /* get the rb we want to redirect to */
8113 rb = ring_buffer_get(output_event);
8114 if (!rb)
ac9721f3 8115 goto unlock;
a4be7c27
PZ
8116 }
8117
b69cf536 8118 ring_buffer_attach(event, rb);
9bb5d40c 8119
a4be7c27 8120 ret = 0;
ac9721f3
PZ
8121unlock:
8122 mutex_unlock(&event->mmap_mutex);
8123
a4be7c27 8124out:
a4be7c27
PZ
8125 return ret;
8126}
8127
f63a8daa
PZ
8128static void mutex_lock_double(struct mutex *a, struct mutex *b)
8129{
8130 if (b < a)
8131 swap(a, b);
8132
8133 mutex_lock(a);
8134 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8135}
8136
34f43927
PZ
8137static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8138{
8139 bool nmi_safe = false;
8140
8141 switch (clk_id) {
8142 case CLOCK_MONOTONIC:
8143 event->clock = &ktime_get_mono_fast_ns;
8144 nmi_safe = true;
8145 break;
8146
8147 case CLOCK_MONOTONIC_RAW:
8148 event->clock = &ktime_get_raw_fast_ns;
8149 nmi_safe = true;
8150 break;
8151
8152 case CLOCK_REALTIME:
8153 event->clock = &ktime_get_real_ns;
8154 break;
8155
8156 case CLOCK_BOOTTIME:
8157 event->clock = &ktime_get_boot_ns;
8158 break;
8159
8160 case CLOCK_TAI:
8161 event->clock = &ktime_get_tai_ns;
8162 break;
8163
8164 default:
8165 return -EINVAL;
8166 }
8167
8168 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8169 return -EINVAL;
8170
8171 return 0;
8172}
8173
0793a61d 8174/**
cdd6c482 8175 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8176 *
cdd6c482 8177 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8178 * @pid: target pid
9f66a381 8179 * @cpu: target cpu
cdd6c482 8180 * @group_fd: group leader event fd
0793a61d 8181 */
cdd6c482
IM
8182SYSCALL_DEFINE5(perf_event_open,
8183 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8184 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8185{
b04243ef
PZ
8186 struct perf_event *group_leader = NULL, *output_event = NULL;
8187 struct perf_event *event, *sibling;
cdd6c482 8188 struct perf_event_attr attr;
f63a8daa 8189 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8190 struct file *event_file = NULL;
2903ff01 8191 struct fd group = {NULL, 0};
38a81da2 8192 struct task_struct *task = NULL;
89a1e187 8193 struct pmu *pmu;
ea635c64 8194 int event_fd;
b04243ef 8195 int move_group = 0;
dc86cabe 8196 int err;
a21b0b35 8197 int f_flags = O_RDWR;
79dff51e 8198 int cgroup_fd = -1;
0793a61d 8199
2743a5b0 8200 /* for future expandability... */
e5d1367f 8201 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8202 return -EINVAL;
8203
dc86cabe
IM
8204 err = perf_copy_attr(attr_uptr, &attr);
8205 if (err)
8206 return err;
eab656ae 8207
0764771d
PZ
8208 if (!attr.exclude_kernel) {
8209 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8210 return -EACCES;
8211 }
8212
df58ab24 8213 if (attr.freq) {
cdd6c482 8214 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8215 return -EINVAL;
0819b2e3
PZ
8216 } else {
8217 if (attr.sample_period & (1ULL << 63))
8218 return -EINVAL;
df58ab24
PZ
8219 }
8220
e5d1367f
SE
8221 /*
8222 * In cgroup mode, the pid argument is used to pass the fd
8223 * opened to the cgroup directory in cgroupfs. The cpu argument
8224 * designates the cpu on which to monitor threads from that
8225 * cgroup.
8226 */
8227 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8228 return -EINVAL;
8229
a21b0b35
YD
8230 if (flags & PERF_FLAG_FD_CLOEXEC)
8231 f_flags |= O_CLOEXEC;
8232
8233 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8234 if (event_fd < 0)
8235 return event_fd;
8236
ac9721f3 8237 if (group_fd != -1) {
2903ff01
AV
8238 err = perf_fget_light(group_fd, &group);
8239 if (err)
d14b12d7 8240 goto err_fd;
2903ff01 8241 group_leader = group.file->private_data;
ac9721f3
PZ
8242 if (flags & PERF_FLAG_FD_OUTPUT)
8243 output_event = group_leader;
8244 if (flags & PERF_FLAG_FD_NO_GROUP)
8245 group_leader = NULL;
8246 }
8247
e5d1367f 8248 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8249 task = find_lively_task_by_vpid(pid);
8250 if (IS_ERR(task)) {
8251 err = PTR_ERR(task);
8252 goto err_group_fd;
8253 }
8254 }
8255
1f4ee503
PZ
8256 if (task && group_leader &&
8257 group_leader->attr.inherit != attr.inherit) {
8258 err = -EINVAL;
8259 goto err_task;
8260 }
8261
fbfc623f
YZ
8262 get_online_cpus();
8263
79dff51e
MF
8264 if (flags & PERF_FLAG_PID_CGROUP)
8265 cgroup_fd = pid;
8266
4dc0da86 8267 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8268 NULL, NULL, cgroup_fd);
d14b12d7
SE
8269 if (IS_ERR(event)) {
8270 err = PTR_ERR(event);
1f4ee503 8271 goto err_cpus;
d14b12d7
SE
8272 }
8273
53b25335
VW
8274 if (is_sampling_event(event)) {
8275 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8276 err = -ENOTSUPP;
8277 goto err_alloc;
8278 }
8279 }
8280
766d6c07
FW
8281 account_event(event);
8282
89a1e187
PZ
8283 /*
8284 * Special case software events and allow them to be part of
8285 * any hardware group.
8286 */
8287 pmu = event->pmu;
b04243ef 8288
34f43927
PZ
8289 if (attr.use_clockid) {
8290 err = perf_event_set_clock(event, attr.clockid);
8291 if (err)
8292 goto err_alloc;
8293 }
8294
b04243ef
PZ
8295 if (group_leader &&
8296 (is_software_event(event) != is_software_event(group_leader))) {
8297 if (is_software_event(event)) {
8298 /*
8299 * If event and group_leader are not both a software
8300 * event, and event is, then group leader is not.
8301 *
8302 * Allow the addition of software events to !software
8303 * groups, this is safe because software events never
8304 * fail to schedule.
8305 */
8306 pmu = group_leader->pmu;
8307 } else if (is_software_event(group_leader) &&
8308 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8309 /*
8310 * In case the group is a pure software group, and we
8311 * try to add a hardware event, move the whole group to
8312 * the hardware context.
8313 */
8314 move_group = 1;
8315 }
8316 }
89a1e187
PZ
8317
8318 /*
8319 * Get the target context (task or percpu):
8320 */
4af57ef2 8321 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8322 if (IS_ERR(ctx)) {
8323 err = PTR_ERR(ctx);
c6be5a5c 8324 goto err_alloc;
89a1e187
PZ
8325 }
8326
bed5b25a
AS
8327 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8328 err = -EBUSY;
8329 goto err_context;
8330 }
8331
fd1edb3a
PZ
8332 if (task) {
8333 put_task_struct(task);
8334 task = NULL;
8335 }
8336
ccff286d 8337 /*
cdd6c482 8338 * Look up the group leader (we will attach this event to it):
04289bb9 8339 */
ac9721f3 8340 if (group_leader) {
dc86cabe 8341 err = -EINVAL;
04289bb9 8342
04289bb9 8343 /*
ccff286d
IM
8344 * Do not allow a recursive hierarchy (this new sibling
8345 * becoming part of another group-sibling):
8346 */
8347 if (group_leader->group_leader != group_leader)
c3f00c70 8348 goto err_context;
34f43927
PZ
8349
8350 /* All events in a group should have the same clock */
8351 if (group_leader->clock != event->clock)
8352 goto err_context;
8353
ccff286d
IM
8354 /*
8355 * Do not allow to attach to a group in a different
8356 * task or CPU context:
04289bb9 8357 */
b04243ef 8358 if (move_group) {
c3c87e77
PZ
8359 /*
8360 * Make sure we're both on the same task, or both
8361 * per-cpu events.
8362 */
8363 if (group_leader->ctx->task != ctx->task)
8364 goto err_context;
8365
8366 /*
8367 * Make sure we're both events for the same CPU;
8368 * grouping events for different CPUs is broken; since
8369 * you can never concurrently schedule them anyhow.
8370 */
8371 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8372 goto err_context;
8373 } else {
8374 if (group_leader->ctx != ctx)
8375 goto err_context;
8376 }
8377
3b6f9e5c
PM
8378 /*
8379 * Only a group leader can be exclusive or pinned
8380 */
0d48696f 8381 if (attr.exclusive || attr.pinned)
c3f00c70 8382 goto err_context;
ac9721f3
PZ
8383 }
8384
8385 if (output_event) {
8386 err = perf_event_set_output(event, output_event);
8387 if (err)
c3f00c70 8388 goto err_context;
ac9721f3 8389 }
0793a61d 8390
a21b0b35
YD
8391 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8392 f_flags);
ea635c64
AV
8393 if (IS_ERR(event_file)) {
8394 err = PTR_ERR(event_file);
c3f00c70 8395 goto err_context;
ea635c64 8396 }
9b51f66d 8397
b04243ef 8398 if (move_group) {
f63a8daa
PZ
8399 gctx = group_leader->ctx;
8400
8401 /*
8402 * See perf_event_ctx_lock() for comments on the details
8403 * of swizzling perf_event::ctx.
8404 */
8405 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8406
46ce0fe9 8407 perf_remove_from_context(group_leader, false);
0231bb53 8408
b04243ef
PZ
8409 list_for_each_entry(sibling, &group_leader->sibling_list,
8410 group_entry) {
46ce0fe9 8411 perf_remove_from_context(sibling, false);
b04243ef
PZ
8412 put_ctx(gctx);
8413 }
f63a8daa
PZ
8414 } else {
8415 mutex_lock(&ctx->mutex);
ea635c64 8416 }
9b51f66d 8417
ad3a37de 8418 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8419
8420 if (move_group) {
f63a8daa
PZ
8421 /*
8422 * Wait for everybody to stop referencing the events through
8423 * the old lists, before installing it on new lists.
8424 */
0cda4c02 8425 synchronize_rcu();
f63a8daa 8426
8f95b435
PZI
8427 /*
8428 * Install the group siblings before the group leader.
8429 *
8430 * Because a group leader will try and install the entire group
8431 * (through the sibling list, which is still in-tact), we can
8432 * end up with siblings installed in the wrong context.
8433 *
8434 * By installing siblings first we NO-OP because they're not
8435 * reachable through the group lists.
8436 */
b04243ef
PZ
8437 list_for_each_entry(sibling, &group_leader->sibling_list,
8438 group_entry) {
8f95b435 8439 perf_event__state_init(sibling);
9fc81d87 8440 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8441 get_ctx(ctx);
8442 }
8f95b435
PZI
8443
8444 /*
8445 * Removing from the context ends up with disabled
8446 * event. What we want here is event in the initial
8447 * startup state, ready to be add into new context.
8448 */
8449 perf_event__state_init(group_leader);
8450 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8451 get_ctx(ctx);
b04243ef
PZ
8452 }
8453
bed5b25a
AS
8454 if (!exclusive_event_installable(event, ctx)) {
8455 err = -EBUSY;
8456 mutex_unlock(&ctx->mutex);
8457 fput(event_file);
8458 goto err_context;
8459 }
8460
e2d37cd2 8461 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8462 perf_unpin_context(ctx);
f63a8daa
PZ
8463
8464 if (move_group) {
8465 mutex_unlock(&gctx->mutex);
8466 put_ctx(gctx);
8467 }
d859e29f 8468 mutex_unlock(&ctx->mutex);
9b51f66d 8469
fbfc623f
YZ
8470 put_online_cpus();
8471
cdd6c482 8472 event->owner = current;
8882135b 8473
cdd6c482
IM
8474 mutex_lock(&current->perf_event_mutex);
8475 list_add_tail(&event->owner_entry, &current->perf_event_list);
8476 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8477
c320c7b7
ACM
8478 /*
8479 * Precalculate sample_data sizes
8480 */
8481 perf_event__header_size(event);
6844c09d 8482 perf_event__id_header_size(event);
c320c7b7 8483
8a49542c
PZ
8484 /*
8485 * Drop the reference on the group_event after placing the
8486 * new event on the sibling_list. This ensures destruction
8487 * of the group leader will find the pointer to itself in
8488 * perf_group_detach().
8489 */
2903ff01 8490 fdput(group);
ea635c64
AV
8491 fd_install(event_fd, event_file);
8492 return event_fd;
0793a61d 8493
c3f00c70 8494err_context:
fe4b04fa 8495 perf_unpin_context(ctx);
ea635c64 8496 put_ctx(ctx);
c6be5a5c 8497err_alloc:
ea635c64 8498 free_event(event);
1f4ee503 8499err_cpus:
fbfc623f 8500 put_online_cpus();
1f4ee503 8501err_task:
e7d0bc04
PZ
8502 if (task)
8503 put_task_struct(task);
89a1e187 8504err_group_fd:
2903ff01 8505 fdput(group);
ea635c64
AV
8506err_fd:
8507 put_unused_fd(event_fd);
dc86cabe 8508 return err;
0793a61d
TG
8509}
8510
fb0459d7
AV
8511/**
8512 * perf_event_create_kernel_counter
8513 *
8514 * @attr: attributes of the counter to create
8515 * @cpu: cpu in which the counter is bound
38a81da2 8516 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8517 */
8518struct perf_event *
8519perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8520 struct task_struct *task,
4dc0da86
AK
8521 perf_overflow_handler_t overflow_handler,
8522 void *context)
fb0459d7 8523{
fb0459d7 8524 struct perf_event_context *ctx;
c3f00c70 8525 struct perf_event *event;
fb0459d7 8526 int err;
d859e29f 8527
fb0459d7
AV
8528 /*
8529 * Get the target context (task or percpu):
8530 */
d859e29f 8531
4dc0da86 8532 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8533 overflow_handler, context, -1);
c3f00c70
PZ
8534 if (IS_ERR(event)) {
8535 err = PTR_ERR(event);
8536 goto err;
8537 }
d859e29f 8538
f8697762
JO
8539 /* Mark owner so we could distinguish it from user events. */
8540 event->owner = EVENT_OWNER_KERNEL;
8541
766d6c07
FW
8542 account_event(event);
8543
4af57ef2 8544 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8545 if (IS_ERR(ctx)) {
8546 err = PTR_ERR(ctx);
c3f00c70 8547 goto err_free;
d859e29f 8548 }
fb0459d7 8549
fb0459d7
AV
8550 WARN_ON_ONCE(ctx->parent_ctx);
8551 mutex_lock(&ctx->mutex);
bed5b25a
AS
8552 if (!exclusive_event_installable(event, ctx)) {
8553 mutex_unlock(&ctx->mutex);
8554 perf_unpin_context(ctx);
8555 put_ctx(ctx);
8556 err = -EBUSY;
8557 goto err_free;
8558 }
8559
fb0459d7 8560 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8561 perf_unpin_context(ctx);
fb0459d7
AV
8562 mutex_unlock(&ctx->mutex);
8563
fb0459d7
AV
8564 return event;
8565
c3f00c70
PZ
8566err_free:
8567 free_event(event);
8568err:
c6567f64 8569 return ERR_PTR(err);
9b51f66d 8570}
fb0459d7 8571EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8572
0cda4c02
YZ
8573void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8574{
8575 struct perf_event_context *src_ctx;
8576 struct perf_event_context *dst_ctx;
8577 struct perf_event *event, *tmp;
8578 LIST_HEAD(events);
8579
8580 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8581 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8582
f63a8daa
PZ
8583 /*
8584 * See perf_event_ctx_lock() for comments on the details
8585 * of swizzling perf_event::ctx.
8586 */
8587 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8588 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8589 event_entry) {
46ce0fe9 8590 perf_remove_from_context(event, false);
9a545de0 8591 unaccount_event_cpu(event, src_cpu);
0cda4c02 8592 put_ctx(src_ctx);
9886167d 8593 list_add(&event->migrate_entry, &events);
0cda4c02 8594 }
0cda4c02 8595
8f95b435
PZI
8596 /*
8597 * Wait for the events to quiesce before re-instating them.
8598 */
0cda4c02
YZ
8599 synchronize_rcu();
8600
8f95b435
PZI
8601 /*
8602 * Re-instate events in 2 passes.
8603 *
8604 * Skip over group leaders and only install siblings on this first
8605 * pass, siblings will not get enabled without a leader, however a
8606 * leader will enable its siblings, even if those are still on the old
8607 * context.
8608 */
8609 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8610 if (event->group_leader == event)
8611 continue;
8612
8613 list_del(&event->migrate_entry);
8614 if (event->state >= PERF_EVENT_STATE_OFF)
8615 event->state = PERF_EVENT_STATE_INACTIVE;
8616 account_event_cpu(event, dst_cpu);
8617 perf_install_in_context(dst_ctx, event, dst_cpu);
8618 get_ctx(dst_ctx);
8619 }
8620
8621 /*
8622 * Once all the siblings are setup properly, install the group leaders
8623 * to make it go.
8624 */
9886167d
PZ
8625 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8626 list_del(&event->migrate_entry);
0cda4c02
YZ
8627 if (event->state >= PERF_EVENT_STATE_OFF)
8628 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8629 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8630 perf_install_in_context(dst_ctx, event, dst_cpu);
8631 get_ctx(dst_ctx);
8632 }
8633 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8634 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8635}
8636EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8637
cdd6c482 8638static void sync_child_event(struct perf_event *child_event,
38b200d6 8639 struct task_struct *child)
d859e29f 8640{
cdd6c482 8641 struct perf_event *parent_event = child_event->parent;
8bc20959 8642 u64 child_val;
d859e29f 8643
cdd6c482
IM
8644 if (child_event->attr.inherit_stat)
8645 perf_event_read_event(child_event, child);
38b200d6 8646
b5e58793 8647 child_val = perf_event_count(child_event);
d859e29f
PM
8648
8649 /*
8650 * Add back the child's count to the parent's count:
8651 */
a6e6dea6 8652 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8653 atomic64_add(child_event->total_time_enabled,
8654 &parent_event->child_total_time_enabled);
8655 atomic64_add(child_event->total_time_running,
8656 &parent_event->child_total_time_running);
d859e29f
PM
8657
8658 /*
cdd6c482 8659 * Remove this event from the parent's list
d859e29f 8660 */
cdd6c482
IM
8661 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8662 mutex_lock(&parent_event->child_mutex);
8663 list_del_init(&child_event->child_list);
8664 mutex_unlock(&parent_event->child_mutex);
d859e29f 8665
dc633982
JO
8666 /*
8667 * Make sure user/parent get notified, that we just
8668 * lost one event.
8669 */
8670 perf_event_wakeup(parent_event);
8671
d859e29f 8672 /*
cdd6c482 8673 * Release the parent event, if this was the last
d859e29f
PM
8674 * reference to it.
8675 */
a6fa941d 8676 put_event(parent_event);
d859e29f
PM
8677}
8678
9b51f66d 8679static void
cdd6c482
IM
8680__perf_event_exit_task(struct perf_event *child_event,
8681 struct perf_event_context *child_ctx,
38b200d6 8682 struct task_struct *child)
9b51f66d 8683{
1903d50c
PZ
8684 /*
8685 * Do not destroy the 'original' grouping; because of the context
8686 * switch optimization the original events could've ended up in a
8687 * random child task.
8688 *
8689 * If we were to destroy the original group, all group related
8690 * operations would cease to function properly after this random
8691 * child dies.
8692 *
8693 * Do destroy all inherited groups, we don't care about those
8694 * and being thorough is better.
8695 */
8696 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8697
9b51f66d 8698 /*
38b435b1 8699 * It can happen that the parent exits first, and has events
9b51f66d 8700 * that are still around due to the child reference. These
38b435b1 8701 * events need to be zapped.
9b51f66d 8702 */
38b435b1 8703 if (child_event->parent) {
cdd6c482
IM
8704 sync_child_event(child_event, child);
8705 free_event(child_event);
179033b3
JO
8706 } else {
8707 child_event->state = PERF_EVENT_STATE_EXIT;
8708 perf_event_wakeup(child_event);
4bcf349a 8709 }
9b51f66d
IM
8710}
8711
8dc85d54 8712static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8713{
ebf905fc 8714 struct perf_event *child_event, *next;
211de6eb 8715 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8716 unsigned long flags;
9b51f66d 8717
8dc85d54 8718 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8719 perf_event_task(child, NULL, 0);
9b51f66d 8720 return;
9f498cc5 8721 }
9b51f66d 8722
a63eaf34 8723 local_irq_save(flags);
ad3a37de
PM
8724 /*
8725 * We can't reschedule here because interrupts are disabled,
8726 * and either child is current or it is a task that can't be
8727 * scheduled, so we are now safe from rescheduling changing
8728 * our context.
8729 */
806839b2 8730 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8731
8732 /*
8733 * Take the context lock here so that if find_get_context is
cdd6c482 8734 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8735 * incremented the context's refcount before we do put_ctx below.
8736 */
e625cce1 8737 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8738 task_ctx_sched_out(child_ctx);
8dc85d54 8739 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8740
71a851b4
PZ
8741 /*
8742 * If this context is a clone; unclone it so it can't get
8743 * swapped to another process while we're removing all
cdd6c482 8744 * the events from it.
71a851b4 8745 */
211de6eb 8746 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8747 update_context_time(child_ctx);
e625cce1 8748 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8749
211de6eb
PZ
8750 if (clone_ctx)
8751 put_ctx(clone_ctx);
4a1c0f26 8752
9f498cc5 8753 /*
cdd6c482
IM
8754 * Report the task dead after unscheduling the events so that we
8755 * won't get any samples after PERF_RECORD_EXIT. We can however still
8756 * get a few PERF_RECORD_READ events.
9f498cc5 8757 */
cdd6c482 8758 perf_event_task(child, child_ctx, 0);
a63eaf34 8759
66fff224
PZ
8760 /*
8761 * We can recurse on the same lock type through:
8762 *
cdd6c482
IM
8763 * __perf_event_exit_task()
8764 * sync_child_event()
a6fa941d
AV
8765 * put_event()
8766 * mutex_lock(&ctx->mutex)
66fff224
PZ
8767 *
8768 * But since its the parent context it won't be the same instance.
8769 */
a0507c84 8770 mutex_lock(&child_ctx->mutex);
a63eaf34 8771
ebf905fc 8772 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8773 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8774
a63eaf34
PM
8775 mutex_unlock(&child_ctx->mutex);
8776
8777 put_ctx(child_ctx);
9b51f66d
IM
8778}
8779
8dc85d54
PZ
8780/*
8781 * When a child task exits, feed back event values to parent events.
8782 */
8783void perf_event_exit_task(struct task_struct *child)
8784{
8882135b 8785 struct perf_event *event, *tmp;
8dc85d54
PZ
8786 int ctxn;
8787
8882135b
PZ
8788 mutex_lock(&child->perf_event_mutex);
8789 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8790 owner_entry) {
8791 list_del_init(&event->owner_entry);
8792
8793 /*
8794 * Ensure the list deletion is visible before we clear
8795 * the owner, closes a race against perf_release() where
8796 * we need to serialize on the owner->perf_event_mutex.
8797 */
8798 smp_wmb();
8799 event->owner = NULL;
8800 }
8801 mutex_unlock(&child->perf_event_mutex);
8802
8dc85d54
PZ
8803 for_each_task_context_nr(ctxn)
8804 perf_event_exit_task_context(child, ctxn);
8805}
8806
889ff015
FW
8807static void perf_free_event(struct perf_event *event,
8808 struct perf_event_context *ctx)
8809{
8810 struct perf_event *parent = event->parent;
8811
8812 if (WARN_ON_ONCE(!parent))
8813 return;
8814
8815 mutex_lock(&parent->child_mutex);
8816 list_del_init(&event->child_list);
8817 mutex_unlock(&parent->child_mutex);
8818
a6fa941d 8819 put_event(parent);
889ff015 8820
652884fe 8821 raw_spin_lock_irq(&ctx->lock);
8a49542c 8822 perf_group_detach(event);
889ff015 8823 list_del_event(event, ctx);
652884fe 8824 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8825 free_event(event);
8826}
8827
bbbee908 8828/*
652884fe 8829 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8830 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8831 *
8832 * Not all locks are strictly required, but take them anyway to be nice and
8833 * help out with the lockdep assertions.
bbbee908 8834 */
cdd6c482 8835void perf_event_free_task(struct task_struct *task)
bbbee908 8836{
8dc85d54 8837 struct perf_event_context *ctx;
cdd6c482 8838 struct perf_event *event, *tmp;
8dc85d54 8839 int ctxn;
bbbee908 8840
8dc85d54
PZ
8841 for_each_task_context_nr(ctxn) {
8842 ctx = task->perf_event_ctxp[ctxn];
8843 if (!ctx)
8844 continue;
bbbee908 8845
8dc85d54 8846 mutex_lock(&ctx->mutex);
bbbee908 8847again:
8dc85d54
PZ
8848 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8849 group_entry)
8850 perf_free_event(event, ctx);
bbbee908 8851
8dc85d54
PZ
8852 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8853 group_entry)
8854 perf_free_event(event, ctx);
bbbee908 8855
8dc85d54
PZ
8856 if (!list_empty(&ctx->pinned_groups) ||
8857 !list_empty(&ctx->flexible_groups))
8858 goto again;
bbbee908 8859
8dc85d54 8860 mutex_unlock(&ctx->mutex);
bbbee908 8861
8dc85d54
PZ
8862 put_ctx(ctx);
8863 }
889ff015
FW
8864}
8865
4e231c79
PZ
8866void perf_event_delayed_put(struct task_struct *task)
8867{
8868 int ctxn;
8869
8870 for_each_task_context_nr(ctxn)
8871 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8872}
8873
ffe8690c
KX
8874struct perf_event *perf_event_get(unsigned int fd)
8875{
8876 int err;
8877 struct fd f;
8878 struct perf_event *event;
8879
8880 err = perf_fget_light(fd, &f);
8881 if (err)
8882 return ERR_PTR(err);
8883
8884 event = f.file->private_data;
8885 atomic_long_inc(&event->refcount);
8886 fdput(f);
8887
8888 return event;
8889}
8890
8891const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8892{
8893 if (!event)
8894 return ERR_PTR(-EINVAL);
8895
8896 return &event->attr;
8897}
8898
97dee4f3
PZ
8899/*
8900 * inherit a event from parent task to child task:
8901 */
8902static struct perf_event *
8903inherit_event(struct perf_event *parent_event,
8904 struct task_struct *parent,
8905 struct perf_event_context *parent_ctx,
8906 struct task_struct *child,
8907 struct perf_event *group_leader,
8908 struct perf_event_context *child_ctx)
8909{
1929def9 8910 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8911 struct perf_event *child_event;
cee010ec 8912 unsigned long flags;
97dee4f3
PZ
8913
8914 /*
8915 * Instead of creating recursive hierarchies of events,
8916 * we link inherited events back to the original parent,
8917 * which has a filp for sure, which we use as the reference
8918 * count:
8919 */
8920 if (parent_event->parent)
8921 parent_event = parent_event->parent;
8922
8923 child_event = perf_event_alloc(&parent_event->attr,
8924 parent_event->cpu,
d580ff86 8925 child,
97dee4f3 8926 group_leader, parent_event,
79dff51e 8927 NULL, NULL, -1);
97dee4f3
PZ
8928 if (IS_ERR(child_event))
8929 return child_event;
a6fa941d 8930
fadfe7be
JO
8931 if (is_orphaned_event(parent_event) ||
8932 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8933 free_event(child_event);
8934 return NULL;
8935 }
8936
97dee4f3
PZ
8937 get_ctx(child_ctx);
8938
8939 /*
8940 * Make the child state follow the state of the parent event,
8941 * not its attr.disabled bit. We hold the parent's mutex,
8942 * so we won't race with perf_event_{en, dis}able_family.
8943 */
1929def9 8944 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8945 child_event->state = PERF_EVENT_STATE_INACTIVE;
8946 else
8947 child_event->state = PERF_EVENT_STATE_OFF;
8948
8949 if (parent_event->attr.freq) {
8950 u64 sample_period = parent_event->hw.sample_period;
8951 struct hw_perf_event *hwc = &child_event->hw;
8952
8953 hwc->sample_period = sample_period;
8954 hwc->last_period = sample_period;
8955
8956 local64_set(&hwc->period_left, sample_period);
8957 }
8958
8959 child_event->ctx = child_ctx;
8960 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8961 child_event->overflow_handler_context
8962 = parent_event->overflow_handler_context;
97dee4f3 8963
614b6780
TG
8964 /*
8965 * Precalculate sample_data sizes
8966 */
8967 perf_event__header_size(child_event);
6844c09d 8968 perf_event__id_header_size(child_event);
614b6780 8969
97dee4f3
PZ
8970 /*
8971 * Link it up in the child's context:
8972 */
cee010ec 8973 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8974 add_event_to_ctx(child_event, child_ctx);
cee010ec 8975 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8976
97dee4f3
PZ
8977 /*
8978 * Link this into the parent event's child list
8979 */
8980 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8981 mutex_lock(&parent_event->child_mutex);
8982 list_add_tail(&child_event->child_list, &parent_event->child_list);
8983 mutex_unlock(&parent_event->child_mutex);
8984
8985 return child_event;
8986}
8987
8988static int inherit_group(struct perf_event *parent_event,
8989 struct task_struct *parent,
8990 struct perf_event_context *parent_ctx,
8991 struct task_struct *child,
8992 struct perf_event_context *child_ctx)
8993{
8994 struct perf_event *leader;
8995 struct perf_event *sub;
8996 struct perf_event *child_ctr;
8997
8998 leader = inherit_event(parent_event, parent, parent_ctx,
8999 child, NULL, child_ctx);
9000 if (IS_ERR(leader))
9001 return PTR_ERR(leader);
9002 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9003 child_ctr = inherit_event(sub, parent, parent_ctx,
9004 child, leader, child_ctx);
9005 if (IS_ERR(child_ctr))
9006 return PTR_ERR(child_ctr);
9007 }
9008 return 0;
889ff015
FW
9009}
9010
9011static int
9012inherit_task_group(struct perf_event *event, struct task_struct *parent,
9013 struct perf_event_context *parent_ctx,
8dc85d54 9014 struct task_struct *child, int ctxn,
889ff015
FW
9015 int *inherited_all)
9016{
9017 int ret;
8dc85d54 9018 struct perf_event_context *child_ctx;
889ff015
FW
9019
9020 if (!event->attr.inherit) {
9021 *inherited_all = 0;
9022 return 0;
bbbee908
PZ
9023 }
9024
fe4b04fa 9025 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9026 if (!child_ctx) {
9027 /*
9028 * This is executed from the parent task context, so
9029 * inherit events that have been marked for cloning.
9030 * First allocate and initialize a context for the
9031 * child.
9032 */
bbbee908 9033
734df5ab 9034 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9035 if (!child_ctx)
9036 return -ENOMEM;
bbbee908 9037
8dc85d54 9038 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9039 }
9040
9041 ret = inherit_group(event, parent, parent_ctx,
9042 child, child_ctx);
9043
9044 if (ret)
9045 *inherited_all = 0;
9046
9047 return ret;
bbbee908
PZ
9048}
9049
9b51f66d 9050/*
cdd6c482 9051 * Initialize the perf_event context in task_struct
9b51f66d 9052 */
985c8dcb 9053static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9054{
889ff015 9055 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9056 struct perf_event_context *cloned_ctx;
9057 struct perf_event *event;
9b51f66d 9058 struct task_struct *parent = current;
564c2b21 9059 int inherited_all = 1;
dddd3379 9060 unsigned long flags;
6ab423e0 9061 int ret = 0;
9b51f66d 9062
8dc85d54 9063 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9064 return 0;
9065
ad3a37de 9066 /*
25346b93
PM
9067 * If the parent's context is a clone, pin it so it won't get
9068 * swapped under us.
ad3a37de 9069 */
8dc85d54 9070 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9071 if (!parent_ctx)
9072 return 0;
25346b93 9073
ad3a37de
PM
9074 /*
9075 * No need to check if parent_ctx != NULL here; since we saw
9076 * it non-NULL earlier, the only reason for it to become NULL
9077 * is if we exit, and since we're currently in the middle of
9078 * a fork we can't be exiting at the same time.
9079 */
ad3a37de 9080
9b51f66d
IM
9081 /*
9082 * Lock the parent list. No need to lock the child - not PID
9083 * hashed yet and not running, so nobody can access it.
9084 */
d859e29f 9085 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9086
9087 /*
9088 * We dont have to disable NMIs - we are only looking at
9089 * the list, not manipulating it:
9090 */
889ff015 9091 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9092 ret = inherit_task_group(event, parent, parent_ctx,
9093 child, ctxn, &inherited_all);
889ff015
FW
9094 if (ret)
9095 break;
9096 }
b93f7978 9097
dddd3379
TG
9098 /*
9099 * We can't hold ctx->lock when iterating the ->flexible_group list due
9100 * to allocations, but we need to prevent rotation because
9101 * rotate_ctx() will change the list from interrupt context.
9102 */
9103 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9104 parent_ctx->rotate_disable = 1;
9105 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9106
889ff015 9107 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9108 ret = inherit_task_group(event, parent, parent_ctx,
9109 child, ctxn, &inherited_all);
889ff015 9110 if (ret)
9b51f66d 9111 break;
564c2b21
PM
9112 }
9113
dddd3379
TG
9114 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9115 parent_ctx->rotate_disable = 0;
dddd3379 9116
8dc85d54 9117 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9118
05cbaa28 9119 if (child_ctx && inherited_all) {
564c2b21
PM
9120 /*
9121 * Mark the child context as a clone of the parent
9122 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9123 *
9124 * Note that if the parent is a clone, the holding of
9125 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9126 */
c5ed5145 9127 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9128 if (cloned_ctx) {
9129 child_ctx->parent_ctx = cloned_ctx;
25346b93 9130 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9131 } else {
9132 child_ctx->parent_ctx = parent_ctx;
9133 child_ctx->parent_gen = parent_ctx->generation;
9134 }
9135 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9136 }
9137
c5ed5145 9138 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9139 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9140
25346b93 9141 perf_unpin_context(parent_ctx);
fe4b04fa 9142 put_ctx(parent_ctx);
ad3a37de 9143
6ab423e0 9144 return ret;
9b51f66d
IM
9145}
9146
8dc85d54
PZ
9147/*
9148 * Initialize the perf_event context in task_struct
9149 */
9150int perf_event_init_task(struct task_struct *child)
9151{
9152 int ctxn, ret;
9153
8550d7cb
ON
9154 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9155 mutex_init(&child->perf_event_mutex);
9156 INIT_LIST_HEAD(&child->perf_event_list);
9157
8dc85d54
PZ
9158 for_each_task_context_nr(ctxn) {
9159 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9160 if (ret) {
9161 perf_event_free_task(child);
8dc85d54 9162 return ret;
6c72e350 9163 }
8dc85d54
PZ
9164 }
9165
9166 return 0;
9167}
9168
220b140b
PM
9169static void __init perf_event_init_all_cpus(void)
9170{
b28ab83c 9171 struct swevent_htable *swhash;
220b140b 9172 int cpu;
220b140b
PM
9173
9174 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9175 swhash = &per_cpu(swevent_htable, cpu);
9176 mutex_init(&swhash->hlist_mutex);
2fde4f94 9177 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9178 }
9179}
9180
0db0628d 9181static void perf_event_init_cpu(int cpu)
0793a61d 9182{
108b02cf 9183 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9184
b28ab83c 9185 mutex_lock(&swhash->hlist_mutex);
39af6b16 9186 swhash->online = true;
4536e4d1 9187 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9188 struct swevent_hlist *hlist;
9189
b28ab83c
PZ
9190 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9191 WARN_ON(!hlist);
9192 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9193 }
b28ab83c 9194 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9195}
9196
2965faa5 9197#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9198static void __perf_event_exit_context(void *__info)
0793a61d 9199{
226424ee 9200 struct remove_event re = { .detach_group = true };
108b02cf 9201 struct perf_event_context *ctx = __info;
0793a61d 9202
e3703f8c 9203 rcu_read_lock();
46ce0fe9
PZ
9204 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9205 __perf_remove_from_context(&re);
e3703f8c 9206 rcu_read_unlock();
0793a61d 9207}
108b02cf
PZ
9208
9209static void perf_event_exit_cpu_context(int cpu)
9210{
9211 struct perf_event_context *ctx;
9212 struct pmu *pmu;
9213 int idx;
9214
9215 idx = srcu_read_lock(&pmus_srcu);
9216 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9217 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9218
9219 mutex_lock(&ctx->mutex);
9220 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9221 mutex_unlock(&ctx->mutex);
9222 }
9223 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9224}
9225
cdd6c482 9226static void perf_event_exit_cpu(int cpu)
0793a61d 9227{
b28ab83c 9228 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9229
e3703f8c
PZ
9230 perf_event_exit_cpu_context(cpu);
9231
b28ab83c 9232 mutex_lock(&swhash->hlist_mutex);
39af6b16 9233 swhash->online = false;
b28ab83c
PZ
9234 swevent_hlist_release(swhash);
9235 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9236}
9237#else
cdd6c482 9238static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9239#endif
9240
c277443c
PZ
9241static int
9242perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9243{
9244 int cpu;
9245
9246 for_each_online_cpu(cpu)
9247 perf_event_exit_cpu(cpu);
9248
9249 return NOTIFY_OK;
9250}
9251
9252/*
9253 * Run the perf reboot notifier at the very last possible moment so that
9254 * the generic watchdog code runs as long as possible.
9255 */
9256static struct notifier_block perf_reboot_notifier = {
9257 .notifier_call = perf_reboot,
9258 .priority = INT_MIN,
9259};
9260
0db0628d 9261static int
0793a61d
TG
9262perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9263{
9264 unsigned int cpu = (long)hcpu;
9265
4536e4d1 9266 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9267
9268 case CPU_UP_PREPARE:
5e11637e 9269 case CPU_DOWN_FAILED:
cdd6c482 9270 perf_event_init_cpu(cpu);
0793a61d
TG
9271 break;
9272
5e11637e 9273 case CPU_UP_CANCELED:
0793a61d 9274 case CPU_DOWN_PREPARE:
cdd6c482 9275 perf_event_exit_cpu(cpu);
0793a61d 9276 break;
0793a61d
TG
9277 default:
9278 break;
9279 }
9280
9281 return NOTIFY_OK;
9282}
9283
cdd6c482 9284void __init perf_event_init(void)
0793a61d 9285{
3c502e7a
JW
9286 int ret;
9287
2e80a82a
PZ
9288 idr_init(&pmu_idr);
9289
220b140b 9290 perf_event_init_all_cpus();
b0a873eb 9291 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9292 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9293 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9294 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9295 perf_tp_register();
9296 perf_cpu_notifier(perf_cpu_notify);
c277443c 9297 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9298
9299 ret = init_hw_breakpoint();
9300 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9301
9302 /* do not patch jump label more than once per second */
9303 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9304
9305 /*
9306 * Build time assertion that we keep the data_head at the intended
9307 * location. IOW, validation we got the __reserved[] size right.
9308 */
9309 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9310 != 1024);
0793a61d 9311}
abe43400 9312
fd979c01
CS
9313ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9314 char *page)
9315{
9316 struct perf_pmu_events_attr *pmu_attr =
9317 container_of(attr, struct perf_pmu_events_attr, attr);
9318
9319 if (pmu_attr->event_str)
9320 return sprintf(page, "%s\n", pmu_attr->event_str);
9321
9322 return 0;
9323}
9324
abe43400
PZ
9325static int __init perf_event_sysfs_init(void)
9326{
9327 struct pmu *pmu;
9328 int ret;
9329
9330 mutex_lock(&pmus_lock);
9331
9332 ret = bus_register(&pmu_bus);
9333 if (ret)
9334 goto unlock;
9335
9336 list_for_each_entry(pmu, &pmus, entry) {
9337 if (!pmu->name || pmu->type < 0)
9338 continue;
9339
9340 ret = pmu_dev_alloc(pmu);
9341 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9342 }
9343 pmu_bus_running = 1;
9344 ret = 0;
9345
9346unlock:
9347 mutex_unlock(&pmus_lock);
9348
9349 return ret;
9350}
9351device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9352
9353#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9354static struct cgroup_subsys_state *
9355perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9356{
9357 struct perf_cgroup *jc;
e5d1367f 9358
1b15d055 9359 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9360 if (!jc)
9361 return ERR_PTR(-ENOMEM);
9362
e5d1367f
SE
9363 jc->info = alloc_percpu(struct perf_cgroup_info);
9364 if (!jc->info) {
9365 kfree(jc);
9366 return ERR_PTR(-ENOMEM);
9367 }
9368
e5d1367f
SE
9369 return &jc->css;
9370}
9371
eb95419b 9372static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9373{
eb95419b
TH
9374 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9375
e5d1367f
SE
9376 free_percpu(jc->info);
9377 kfree(jc);
9378}
9379
9380static int __perf_cgroup_move(void *info)
9381{
9382 struct task_struct *task = info;
9383 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9384 return 0;
9385}
9386
eb95419b
TH
9387static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9388 struct cgroup_taskset *tset)
e5d1367f 9389{
bb9d97b6
TH
9390 struct task_struct *task;
9391
924f0d9a 9392 cgroup_taskset_for_each(task, tset)
bb9d97b6 9393 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9394}
9395
eb95419b
TH
9396static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9397 struct cgroup_subsys_state *old_css,
761b3ef5 9398 struct task_struct *task)
e5d1367f 9399{
bb9d97b6 9400 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9401}
9402
073219e9 9403struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9404 .css_alloc = perf_cgroup_css_alloc,
9405 .css_free = perf_cgroup_css_free,
e7e7ee2e 9406 .exit = perf_cgroup_exit,
bb9d97b6 9407 .attach = perf_cgroup_attach,
e5d1367f
SE
9408};
9409#endif /* CONFIG_CGROUP_PERF */