perf: Fix orphan hole
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
fae3fde6
PZ
129static inline struct perf_cpu_context *
130__get_cpu_context(struct perf_event_context *ctx)
131{
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133}
134
135static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137{
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141}
142
143static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145{
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149}
150
63b6da39
PZ
151#define TASK_TOMBSTONE ((void *)-1L)
152
153static bool is_kernel_event(struct perf_event *event)
154{
155 return event->owner == TASK_TOMBSTONE;
156}
157
39a43640
PZ
158/*
159 * On task ctx scheduling...
160 *
161 * When !ctx->nr_events a task context will not be scheduled. This means
162 * we can disable the scheduler hooks (for performance) without leaving
163 * pending task ctx state.
164 *
165 * This however results in two special cases:
166 *
167 * - removing the last event from a task ctx; this is relatively straight
168 * forward and is done in __perf_remove_from_context.
169 *
170 * - adding the first event to a task ctx; this is tricky because we cannot
171 * rely on ctx->is_active and therefore cannot use event_function_call().
172 * See perf_install_in_context().
173 *
174 * This is because we need a ctx->lock serialized variable (ctx->is_active)
175 * to reliably determine if a particular task/context is scheduled in. The
176 * task_curr() use in task_function_call() is racy in that a remote context
177 * switch is not a single atomic operation.
178 *
179 * As is, the situation is 'safe' because we set rq->curr before we do the
180 * actual context switch. This means that task_curr() will fail early, but
181 * we'll continue spinning on ctx->is_active until we've passed
182 * perf_event_task_sched_out().
183 *
184 * Without this ctx->lock serialized variable we could have race where we find
185 * the task (and hence the context) would not be active while in fact they are.
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39
PZ
216 if (ctx->task != current) {
217 ret = -EAGAIN;
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
0017960f 276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
281again:
63b6da39
PZ
282 if (task == TASK_TOMBSTONE)
283 return;
284
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task != TASK_TOMBSTONE) {
295 if (ctx->is_active) {
296 raw_spin_unlock_irq(&ctx->lock);
297 goto again;
298 }
299 func(event, NULL, ctx, data);
0017960f 300 }
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
320};
321
e5d1367f
SE
322/*
323 * perf_sched_events : >0 events exist
324 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
325 */
c5905afb 326struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 327static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 328static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 329
cdd6c482
IM
330static atomic_t nr_mmap_events __read_mostly;
331static atomic_t nr_comm_events __read_mostly;
332static atomic_t nr_task_events __read_mostly;
948b26b6 333static atomic_t nr_freq_events __read_mostly;
45ac1403 334static atomic_t nr_switch_events __read_mostly;
9ee318a7 335
108b02cf
PZ
336static LIST_HEAD(pmus);
337static DEFINE_MUTEX(pmus_lock);
338static struct srcu_struct pmus_srcu;
339
0764771d 340/*
cdd6c482 341 * perf event paranoia level:
0fbdea19
IM
342 * -1 - not paranoid at all
343 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 344 * 1 - disallow cpu events for unpriv
0fbdea19 345 * 2 - disallow kernel profiling for unpriv
0764771d 346 */
cdd6c482 347int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 348
20443384
FW
349/* Minimum for 512 kiB + 1 user control page */
350int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
351
352/*
cdd6c482 353 * max perf event sample rate
df58ab24 354 */
14c63f17
DH
355#define DEFAULT_MAX_SAMPLE_RATE 100000
356#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
357#define DEFAULT_CPU_TIME_MAX_PERCENT 25
358
359int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
360
361static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
362static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
363
d9494cb4
PZ
364static int perf_sample_allowed_ns __read_mostly =
365 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 366
18ab2cd3 367static void update_perf_cpu_limits(void)
14c63f17
DH
368{
369 u64 tmp = perf_sample_period_ns;
370
371 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 372 do_div(tmp, 100);
d9494cb4 373 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 374}
163ec435 375
9e630205
SE
376static int perf_rotate_context(struct perf_cpu_context *cpuctx);
377
163ec435
PZ
378int perf_proc_update_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381{
723478c8 382 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
383
384 if (ret || !write)
385 return ret;
386
387 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
388 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
389 update_perf_cpu_limits();
390
391 return 0;
392}
393
394int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
395
396int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399{
400 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
401
402 if (ret || !write)
403 return ret;
404
405 update_perf_cpu_limits();
163ec435
PZ
406
407 return 0;
408}
1ccd1549 409
14c63f17
DH
410/*
411 * perf samples are done in some very critical code paths (NMIs).
412 * If they take too much CPU time, the system can lock up and not
413 * get any real work done. This will drop the sample rate when
414 * we detect that events are taking too long.
415 */
416#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 417static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 418
6a02ad66 419static void perf_duration_warn(struct irq_work *w)
14c63f17 420{
6a02ad66 421 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 422 u64 avg_local_sample_len;
e5302920 423 u64 local_samples_len;
6a02ad66 424
4a32fea9 425 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
426 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
427
428 printk_ratelimited(KERN_WARNING
429 "perf interrupt took too long (%lld > %lld), lowering "
430 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 431 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
432 sysctl_perf_event_sample_rate);
433}
434
435static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
436
437void perf_sample_event_took(u64 sample_len_ns)
438{
d9494cb4 439 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
440 u64 avg_local_sample_len;
441 u64 local_samples_len;
14c63f17 442
d9494cb4 443 if (allowed_ns == 0)
14c63f17
DH
444 return;
445
446 /* decay the counter by 1 average sample */
4a32fea9 447 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
448 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
449 local_samples_len += sample_len_ns;
4a32fea9 450 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
451
452 /*
453 * note: this will be biased artifically low until we have
454 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
455 * from having to maintain a count.
456 */
457 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
458
d9494cb4 459 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
460 return;
461
462 if (max_samples_per_tick <= 1)
463 return;
464
465 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
466 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468
14c63f17 469 update_perf_cpu_limits();
6a02ad66 470
cd578abb
PZ
471 if (!irq_work_queue(&perf_duration_work)) {
472 early_printk("perf interrupt took too long (%lld > %lld), lowering "
473 "kernel.perf_event_max_sample_rate to %d\n",
474 avg_local_sample_len, allowed_ns >> 1,
475 sysctl_perf_event_sample_rate);
476 }
14c63f17
DH
477}
478
cdd6c482 479static atomic64_t perf_event_id;
a96bbc16 480
0b3fcf17
SE
481static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
482 enum event_type_t event_type);
483
484static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
485 enum event_type_t event_type,
486 struct task_struct *task);
487
488static void update_context_time(struct perf_event_context *ctx);
489static u64 perf_event_time(struct perf_event *event);
0b3fcf17 490
cdd6c482 491void __weak perf_event_print_debug(void) { }
0793a61d 492
84c79910 493extern __weak const char *perf_pmu_name(void)
0793a61d 494{
84c79910 495 return "pmu";
0793a61d
TG
496}
497
0b3fcf17
SE
498static inline u64 perf_clock(void)
499{
500 return local_clock();
501}
502
34f43927
PZ
503static inline u64 perf_event_clock(struct perf_event *event)
504{
505 return event->clock();
506}
507
e5d1367f
SE
508#ifdef CONFIG_CGROUP_PERF
509
e5d1367f
SE
510static inline bool
511perf_cgroup_match(struct perf_event *event)
512{
513 struct perf_event_context *ctx = event->ctx;
514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
515
ef824fa1
TH
516 /* @event doesn't care about cgroup */
517 if (!event->cgrp)
518 return true;
519
520 /* wants specific cgroup scope but @cpuctx isn't associated with any */
521 if (!cpuctx->cgrp)
522 return false;
523
524 /*
525 * Cgroup scoping is recursive. An event enabled for a cgroup is
526 * also enabled for all its descendant cgroups. If @cpuctx's
527 * cgroup is a descendant of @event's (the test covers identity
528 * case), it's a match.
529 */
530 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
531 event->cgrp->css.cgroup);
e5d1367f
SE
532}
533
e5d1367f
SE
534static inline void perf_detach_cgroup(struct perf_event *event)
535{
4e2ba650 536 css_put(&event->cgrp->css);
e5d1367f
SE
537 event->cgrp = NULL;
538}
539
540static inline int is_cgroup_event(struct perf_event *event)
541{
542 return event->cgrp != NULL;
543}
544
545static inline u64 perf_cgroup_event_time(struct perf_event *event)
546{
547 struct perf_cgroup_info *t;
548
549 t = per_cpu_ptr(event->cgrp->info, event->cpu);
550 return t->time;
551}
552
553static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
554{
555 struct perf_cgroup_info *info;
556 u64 now;
557
558 now = perf_clock();
559
560 info = this_cpu_ptr(cgrp->info);
561
562 info->time += now - info->timestamp;
563 info->timestamp = now;
564}
565
566static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
567{
568 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
569 if (cgrp_out)
570 __update_cgrp_time(cgrp_out);
571}
572
573static inline void update_cgrp_time_from_event(struct perf_event *event)
574{
3f7cce3c
SE
575 struct perf_cgroup *cgrp;
576
e5d1367f 577 /*
3f7cce3c
SE
578 * ensure we access cgroup data only when needed and
579 * when we know the cgroup is pinned (css_get)
e5d1367f 580 */
3f7cce3c 581 if (!is_cgroup_event(event))
e5d1367f
SE
582 return;
583
614e4c4e 584 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
585 /*
586 * Do not update time when cgroup is not active
587 */
588 if (cgrp == event->cgrp)
589 __update_cgrp_time(event->cgrp);
e5d1367f
SE
590}
591
592static inline void
3f7cce3c
SE
593perf_cgroup_set_timestamp(struct task_struct *task,
594 struct perf_event_context *ctx)
e5d1367f
SE
595{
596 struct perf_cgroup *cgrp;
597 struct perf_cgroup_info *info;
598
3f7cce3c
SE
599 /*
600 * ctx->lock held by caller
601 * ensure we do not access cgroup data
602 * unless we have the cgroup pinned (css_get)
603 */
604 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 608 info = this_cpu_ptr(cgrp->info);
3f7cce3c 609 info->timestamp = ctx->timestamp;
e5d1367f
SE
610}
611
612#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
613#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
614
615/*
616 * reschedule events based on the cgroup constraint of task.
617 *
618 * mode SWOUT : schedule out everything
619 * mode SWIN : schedule in based on cgroup for next
620 */
18ab2cd3 621static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
622{
623 struct perf_cpu_context *cpuctx;
624 struct pmu *pmu;
625 unsigned long flags;
626
627 /*
628 * disable interrupts to avoid geting nr_cgroup
629 * changes via __perf_event_disable(). Also
630 * avoids preemption.
631 */
632 local_irq_save(flags);
633
634 /*
635 * we reschedule only in the presence of cgroup
636 * constrained events.
637 */
e5d1367f
SE
638
639 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 640 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
641 if (cpuctx->unique_pmu != pmu)
642 continue; /* ensure we process each cpuctx once */
e5d1367f 643
e5d1367f
SE
644 /*
645 * perf_cgroup_events says at least one
646 * context on this CPU has cgroup events.
647 *
648 * ctx->nr_cgroups reports the number of cgroup
649 * events for a context.
650 */
651 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
652 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
653 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
654
655 if (mode & PERF_CGROUP_SWOUT) {
656 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
657 /*
658 * must not be done before ctxswout due
659 * to event_filter_match() in event_sched_out()
660 */
661 cpuctx->cgrp = NULL;
662 }
663
664 if (mode & PERF_CGROUP_SWIN) {
e566b76e 665 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
666 /*
667 * set cgrp before ctxsw in to allow
668 * event_filter_match() to not have to pass
669 * task around
614e4c4e
SE
670 * we pass the cpuctx->ctx to perf_cgroup_from_task()
671 * because cgorup events are only per-cpu
e5d1367f 672 */
614e4c4e 673 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
674 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
675 }
facc4307
PZ
676 perf_pmu_enable(cpuctx->ctx.pmu);
677 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 678 }
e5d1367f
SE
679 }
680
e5d1367f
SE
681 local_irq_restore(flags);
682}
683
a8d757ef
SE
684static inline void perf_cgroup_sched_out(struct task_struct *task,
685 struct task_struct *next)
e5d1367f 686{
a8d757ef
SE
687 struct perf_cgroup *cgrp1;
688 struct perf_cgroup *cgrp2 = NULL;
689
ddaaf4e2 690 rcu_read_lock();
a8d757ef
SE
691 /*
692 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
693 * we do not need to pass the ctx here because we know
694 * we are holding the rcu lock
a8d757ef 695 */
614e4c4e 696 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 697 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
698
699 /*
700 * only schedule out current cgroup events if we know
701 * that we are switching to a different cgroup. Otherwise,
702 * do no touch the cgroup events.
703 */
704 if (cgrp1 != cgrp2)
705 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
706
707 rcu_read_unlock();
e5d1367f
SE
708}
709
a8d757ef
SE
710static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
e5d1367f 712{
a8d757ef
SE
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
ddaaf4e2 716 rcu_read_lock();
a8d757ef
SE
717 /*
718 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
a8d757ef 721 */
614e4c4e 722 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 723 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
724
725 /*
726 * only need to schedule in cgroup events if we are changing
727 * cgroup during ctxsw. Cgroup events were not scheduled
728 * out of ctxsw out if that was not the case.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
732
733 rcu_read_unlock();
e5d1367f
SE
734}
735
736static inline int perf_cgroup_connect(int fd, struct perf_event *event,
737 struct perf_event_attr *attr,
738 struct perf_event *group_leader)
739{
740 struct perf_cgroup *cgrp;
741 struct cgroup_subsys_state *css;
2903ff01
AV
742 struct fd f = fdget(fd);
743 int ret = 0;
e5d1367f 744
2903ff01 745 if (!f.file)
e5d1367f
SE
746 return -EBADF;
747
b583043e 748 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 749 &perf_event_cgrp_subsys);
3db272c0
LZ
750 if (IS_ERR(css)) {
751 ret = PTR_ERR(css);
752 goto out;
753 }
e5d1367f
SE
754
755 cgrp = container_of(css, struct perf_cgroup, css);
756 event->cgrp = cgrp;
757
758 /*
759 * all events in a group must monitor
760 * the same cgroup because a task belongs
761 * to only one perf cgroup at a time
762 */
763 if (group_leader && group_leader->cgrp != cgrp) {
764 perf_detach_cgroup(event);
765 ret = -EINVAL;
e5d1367f 766 }
3db272c0 767out:
2903ff01 768 fdput(f);
e5d1367f
SE
769 return ret;
770}
771
772static inline void
773perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
774{
775 struct perf_cgroup_info *t;
776 t = per_cpu_ptr(event->cgrp->info, event->cpu);
777 event->shadow_ctx_time = now - t->timestamp;
778}
779
780static inline void
781perf_cgroup_defer_enabled(struct perf_event *event)
782{
783 /*
784 * when the current task's perf cgroup does not match
785 * the event's, we need to remember to call the
786 * perf_mark_enable() function the first time a task with
787 * a matching perf cgroup is scheduled in.
788 */
789 if (is_cgroup_event(event) && !perf_cgroup_match(event))
790 event->cgrp_defer_enabled = 1;
791}
792
793static inline void
794perf_cgroup_mark_enabled(struct perf_event *event,
795 struct perf_event_context *ctx)
796{
797 struct perf_event *sub;
798 u64 tstamp = perf_event_time(event);
799
800 if (!event->cgrp_defer_enabled)
801 return;
802
803 event->cgrp_defer_enabled = 0;
804
805 event->tstamp_enabled = tstamp - event->total_time_enabled;
806 list_for_each_entry(sub, &event->sibling_list, group_entry) {
807 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
808 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
809 sub->cgrp_defer_enabled = 0;
810 }
811 }
812}
813#else /* !CONFIG_CGROUP_PERF */
814
815static inline bool
816perf_cgroup_match(struct perf_event *event)
817{
818 return true;
819}
820
821static inline void perf_detach_cgroup(struct perf_event *event)
822{}
823
824static inline int is_cgroup_event(struct perf_event *event)
825{
826 return 0;
827}
828
829static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
830{
831 return 0;
832}
833
834static inline void update_cgrp_time_from_event(struct perf_event *event)
835{
836}
837
838static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
839{
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f
SE
844{
845}
846
a8d757ef
SE
847static inline void perf_cgroup_sched_in(struct task_struct *prev,
848 struct task_struct *task)
e5d1367f
SE
849{
850}
851
852static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
853 struct perf_event_attr *attr,
854 struct perf_event *group_leader)
855{
856 return -EINVAL;
857}
858
859static inline void
3f7cce3c
SE
860perf_cgroup_set_timestamp(struct task_struct *task,
861 struct perf_event_context *ctx)
e5d1367f
SE
862{
863}
864
865void
866perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
867{
868}
869
870static inline void
871perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
872{
873}
874
875static inline u64 perf_cgroup_event_time(struct perf_event *event)
876{
877 return 0;
878}
879
880static inline void
881perf_cgroup_defer_enabled(struct perf_event *event)
882{
883}
884
885static inline void
886perf_cgroup_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888{
889}
890#endif
891
9e630205
SE
892/*
893 * set default to be dependent on timer tick just
894 * like original code
895 */
896#define PERF_CPU_HRTIMER (1000 / HZ)
897/*
898 * function must be called with interrupts disbled
899 */
272325c4 900static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
901{
902 struct perf_cpu_context *cpuctx;
9e630205
SE
903 int rotations = 0;
904
905 WARN_ON(!irqs_disabled());
906
907 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
908 rotations = perf_rotate_context(cpuctx);
909
4cfafd30
PZ
910 raw_spin_lock(&cpuctx->hrtimer_lock);
911 if (rotations)
9e630205 912 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
913 else
914 cpuctx->hrtimer_active = 0;
915 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 916
4cfafd30 917 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
918}
919
272325c4 920static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 921{
272325c4 922 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 923 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 924 u64 interval;
9e630205
SE
925
926 /* no multiplexing needed for SW PMU */
927 if (pmu->task_ctx_nr == perf_sw_context)
928 return;
929
62b85639
SE
930 /*
931 * check default is sane, if not set then force to
932 * default interval (1/tick)
933 */
272325c4
PZ
934 interval = pmu->hrtimer_interval_ms;
935 if (interval < 1)
936 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 937
272325c4 938 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 939
4cfafd30
PZ
940 raw_spin_lock_init(&cpuctx->hrtimer_lock);
941 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 942 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
943}
944
272325c4 945static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 946{
272325c4 947 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 948 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 949 unsigned long flags;
9e630205
SE
950
951 /* not for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 953 return 0;
9e630205 954
4cfafd30
PZ
955 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
956 if (!cpuctx->hrtimer_active) {
957 cpuctx->hrtimer_active = 1;
958 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
959 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
960 }
961 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 962
272325c4 963 return 0;
9e630205
SE
964}
965
33696fc0 966void perf_pmu_disable(struct pmu *pmu)
9e35ad38 967{
33696fc0
PZ
968 int *count = this_cpu_ptr(pmu->pmu_disable_count);
969 if (!(*count)++)
970 pmu->pmu_disable(pmu);
9e35ad38 971}
9e35ad38 972
33696fc0 973void perf_pmu_enable(struct pmu *pmu)
9e35ad38 974{
33696fc0
PZ
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!--(*count))
977 pmu->pmu_enable(pmu);
9e35ad38 978}
9e35ad38 979
2fde4f94 980static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
981
982/*
2fde4f94
MR
983 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
984 * perf_event_task_tick() are fully serialized because they're strictly cpu
985 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
986 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 987 */
2fde4f94 988static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 989{
2fde4f94 990 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 991
e9d2b064 992 WARN_ON(!irqs_disabled());
b5ab4cd5 993
2fde4f94
MR
994 WARN_ON(!list_empty(&ctx->active_ctx_list));
995
996 list_add(&ctx->active_ctx_list, head);
997}
998
999static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1000{
1001 WARN_ON(!irqs_disabled());
1002
1003 WARN_ON(list_empty(&ctx->active_ctx_list));
1004
1005 list_del_init(&ctx->active_ctx_list);
9e35ad38 1006}
9e35ad38 1007
cdd6c482 1008static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1009{
e5289d4a 1010 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1011}
1012
4af57ef2
YZ
1013static void free_ctx(struct rcu_head *head)
1014{
1015 struct perf_event_context *ctx;
1016
1017 ctx = container_of(head, struct perf_event_context, rcu_head);
1018 kfree(ctx->task_ctx_data);
1019 kfree(ctx);
1020}
1021
cdd6c482 1022static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1023{
564c2b21
PM
1024 if (atomic_dec_and_test(&ctx->refcount)) {
1025 if (ctx->parent_ctx)
1026 put_ctx(ctx->parent_ctx);
63b6da39 1027 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1028 put_task_struct(ctx->task);
4af57ef2 1029 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1030 }
a63eaf34
PM
1031}
1032
f63a8daa
PZ
1033/*
1034 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1035 * perf_pmu_migrate_context() we need some magic.
1036 *
1037 * Those places that change perf_event::ctx will hold both
1038 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1039 *
8b10c5e2
PZ
1040 * Lock ordering is by mutex address. There are two other sites where
1041 * perf_event_context::mutex nests and those are:
1042 *
1043 * - perf_event_exit_task_context() [ child , 0 ]
1044 * __perf_event_exit_task()
1045 * sync_child_event()
1046 * put_event() [ parent, 1 ]
1047 *
1048 * - perf_event_init_context() [ parent, 0 ]
1049 * inherit_task_group()
1050 * inherit_group()
1051 * inherit_event()
1052 * perf_event_alloc()
1053 * perf_init_event()
1054 * perf_try_init_event() [ child , 1 ]
1055 *
1056 * While it appears there is an obvious deadlock here -- the parent and child
1057 * nesting levels are inverted between the two. This is in fact safe because
1058 * life-time rules separate them. That is an exiting task cannot fork, and a
1059 * spawning task cannot (yet) exit.
1060 *
1061 * But remember that that these are parent<->child context relations, and
1062 * migration does not affect children, therefore these two orderings should not
1063 * interact.
f63a8daa
PZ
1064 *
1065 * The change in perf_event::ctx does not affect children (as claimed above)
1066 * because the sys_perf_event_open() case will install a new event and break
1067 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1068 * concerned with cpuctx and that doesn't have children.
1069 *
1070 * The places that change perf_event::ctx will issue:
1071 *
1072 * perf_remove_from_context();
1073 * synchronize_rcu();
1074 * perf_install_in_context();
1075 *
1076 * to affect the change. The remove_from_context() + synchronize_rcu() should
1077 * quiesce the event, after which we can install it in the new location. This
1078 * means that only external vectors (perf_fops, prctl) can perturb the event
1079 * while in transit. Therefore all such accessors should also acquire
1080 * perf_event_context::mutex to serialize against this.
1081 *
1082 * However; because event->ctx can change while we're waiting to acquire
1083 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1084 * function.
1085 *
1086 * Lock order:
1087 * task_struct::perf_event_mutex
1088 * perf_event_context::mutex
1089 * perf_event_context::lock
1090 * perf_event::child_mutex;
1091 * perf_event::mmap_mutex
1092 * mmap_sem
1093 */
a83fe28e
PZ
1094static struct perf_event_context *
1095perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1096{
1097 struct perf_event_context *ctx;
1098
1099again:
1100 rcu_read_lock();
1101 ctx = ACCESS_ONCE(event->ctx);
1102 if (!atomic_inc_not_zero(&ctx->refcount)) {
1103 rcu_read_unlock();
1104 goto again;
1105 }
1106 rcu_read_unlock();
1107
a83fe28e 1108 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1109 if (event->ctx != ctx) {
1110 mutex_unlock(&ctx->mutex);
1111 put_ctx(ctx);
1112 goto again;
1113 }
1114
1115 return ctx;
1116}
1117
a83fe28e
PZ
1118static inline struct perf_event_context *
1119perf_event_ctx_lock(struct perf_event *event)
1120{
1121 return perf_event_ctx_lock_nested(event, 0);
1122}
1123
f63a8daa
PZ
1124static void perf_event_ctx_unlock(struct perf_event *event,
1125 struct perf_event_context *ctx)
1126{
1127 mutex_unlock(&ctx->mutex);
1128 put_ctx(ctx);
1129}
1130
211de6eb
PZ
1131/*
1132 * This must be done under the ctx->lock, such as to serialize against
1133 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1134 * calling scheduler related locks and ctx->lock nests inside those.
1135 */
1136static __must_check struct perf_event_context *
1137unclone_ctx(struct perf_event_context *ctx)
71a851b4 1138{
211de6eb
PZ
1139 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1140
1141 lockdep_assert_held(&ctx->lock);
1142
1143 if (parent_ctx)
71a851b4 1144 ctx->parent_ctx = NULL;
5a3126d4 1145 ctx->generation++;
211de6eb
PZ
1146
1147 return parent_ctx;
71a851b4
PZ
1148}
1149
6844c09d
ACM
1150static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1151{
1152 /*
1153 * only top level events have the pid namespace they were created in
1154 */
1155 if (event->parent)
1156 event = event->parent;
1157
1158 return task_tgid_nr_ns(p, event->ns);
1159}
1160
1161static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1162{
1163 /*
1164 * only top level events have the pid namespace they were created in
1165 */
1166 if (event->parent)
1167 event = event->parent;
1168
1169 return task_pid_nr_ns(p, event->ns);
1170}
1171
7f453c24 1172/*
cdd6c482 1173 * If we inherit events we want to return the parent event id
7f453c24
PZ
1174 * to userspace.
1175 */
cdd6c482 1176static u64 primary_event_id(struct perf_event *event)
7f453c24 1177{
cdd6c482 1178 u64 id = event->id;
7f453c24 1179
cdd6c482
IM
1180 if (event->parent)
1181 id = event->parent->id;
7f453c24
PZ
1182
1183 return id;
1184}
1185
25346b93 1186/*
cdd6c482 1187 * Get the perf_event_context for a task and lock it.
63b6da39 1188 *
25346b93
PM
1189 * This has to cope with with the fact that until it is locked,
1190 * the context could get moved to another task.
1191 */
cdd6c482 1192static struct perf_event_context *
8dc85d54 1193perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1194{
cdd6c482 1195 struct perf_event_context *ctx;
25346b93 1196
9ed6060d 1197retry:
058ebd0e
PZ
1198 /*
1199 * One of the few rules of preemptible RCU is that one cannot do
1200 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1201 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1202 * rcu_read_unlock_special().
1203 *
1204 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1205 * side critical section has interrupts disabled.
058ebd0e 1206 */
2fd59077 1207 local_irq_save(*flags);
058ebd0e 1208 rcu_read_lock();
8dc85d54 1209 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1210 if (ctx) {
1211 /*
1212 * If this context is a clone of another, it might
1213 * get swapped for another underneath us by
cdd6c482 1214 * perf_event_task_sched_out, though the
25346b93
PM
1215 * rcu_read_lock() protects us from any context
1216 * getting freed. Lock the context and check if it
1217 * got swapped before we could get the lock, and retry
1218 * if so. If we locked the right context, then it
1219 * can't get swapped on us any more.
1220 */
2fd59077 1221 raw_spin_lock(&ctx->lock);
8dc85d54 1222 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1223 raw_spin_unlock(&ctx->lock);
058ebd0e 1224 rcu_read_unlock();
2fd59077 1225 local_irq_restore(*flags);
25346b93
PM
1226 goto retry;
1227 }
b49a9e7e 1228
63b6da39
PZ
1229 if (ctx->task == TASK_TOMBSTONE ||
1230 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1231 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1232 ctx = NULL;
1233 }
63b6da39
PZ
1234
1235 WARN_ON_ONCE(ctx->task != task);
25346b93
PM
1236 }
1237 rcu_read_unlock();
2fd59077
PM
1238 if (!ctx)
1239 local_irq_restore(*flags);
25346b93
PM
1240 return ctx;
1241}
1242
1243/*
1244 * Get the context for a task and increment its pin_count so it
1245 * can't get swapped to another task. This also increments its
1246 * reference count so that the context can't get freed.
1247 */
8dc85d54
PZ
1248static struct perf_event_context *
1249perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1250{
cdd6c482 1251 struct perf_event_context *ctx;
25346b93
PM
1252 unsigned long flags;
1253
8dc85d54 1254 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1255 if (ctx) {
1256 ++ctx->pin_count;
e625cce1 1257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1258 }
1259 return ctx;
1260}
1261
cdd6c482 1262static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1263{
1264 unsigned long flags;
1265
e625cce1 1266 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1267 --ctx->pin_count;
e625cce1 1268 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1269}
1270
f67218c3
PZ
1271/*
1272 * Update the record of the current time in a context.
1273 */
1274static void update_context_time(struct perf_event_context *ctx)
1275{
1276 u64 now = perf_clock();
1277
1278 ctx->time += now - ctx->timestamp;
1279 ctx->timestamp = now;
1280}
1281
4158755d
SE
1282static u64 perf_event_time(struct perf_event *event)
1283{
1284 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1285
1286 if (is_cgroup_event(event))
1287 return perf_cgroup_event_time(event);
1288
4158755d
SE
1289 return ctx ? ctx->time : 0;
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1294 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1295 */
1296static void update_event_times(struct perf_event *event)
1297{
1298 struct perf_event_context *ctx = event->ctx;
1299 u64 run_end;
1300
1301 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1302 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1303 return;
e5d1367f
SE
1304 /*
1305 * in cgroup mode, time_enabled represents
1306 * the time the event was enabled AND active
1307 * tasks were in the monitored cgroup. This is
1308 * independent of the activity of the context as
1309 * there may be a mix of cgroup and non-cgroup events.
1310 *
1311 * That is why we treat cgroup events differently
1312 * here.
1313 */
1314 if (is_cgroup_event(event))
46cd6a7f 1315 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1316 else if (ctx->is_active)
1317 run_end = ctx->time;
acd1d7c1
PZ
1318 else
1319 run_end = event->tstamp_stopped;
1320
1321 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1322
1323 if (event->state == PERF_EVENT_STATE_INACTIVE)
1324 run_end = event->tstamp_stopped;
1325 else
4158755d 1326 run_end = perf_event_time(event);
f67218c3
PZ
1327
1328 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1329
f67218c3
PZ
1330}
1331
96c21a46
PZ
1332/*
1333 * Update total_time_enabled and total_time_running for all events in a group.
1334 */
1335static void update_group_times(struct perf_event *leader)
1336{
1337 struct perf_event *event;
1338
1339 update_event_times(leader);
1340 list_for_each_entry(event, &leader->sibling_list, group_entry)
1341 update_event_times(event);
1342}
1343
889ff015
FW
1344static struct list_head *
1345ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1346{
1347 if (event->attr.pinned)
1348 return &ctx->pinned_groups;
1349 else
1350 return &ctx->flexible_groups;
1351}
1352
fccc714b 1353/*
cdd6c482 1354 * Add a event from the lists for its context.
fccc714b
PZ
1355 * Must be called with ctx->mutex and ctx->lock held.
1356 */
04289bb9 1357static void
cdd6c482 1358list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1359{
c994d613
PZ
1360 lockdep_assert_held(&ctx->lock);
1361
8a49542c
PZ
1362 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1363 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1364
1365 /*
8a49542c
PZ
1366 * If we're a stand alone event or group leader, we go to the context
1367 * list, group events are kept attached to the group so that
1368 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1369 */
8a49542c 1370 if (event->group_leader == event) {
889ff015
FW
1371 struct list_head *list;
1372
d6f962b5
FW
1373 if (is_software_event(event))
1374 event->group_flags |= PERF_GROUP_SOFTWARE;
1375
889ff015
FW
1376 list = ctx_group_list(event, ctx);
1377 list_add_tail(&event->group_entry, list);
5c148194 1378 }
592903cd 1379
08309379 1380 if (is_cgroup_event(event))
e5d1367f 1381 ctx->nr_cgroups++;
e5d1367f 1382
cdd6c482
IM
1383 list_add_rcu(&event->event_entry, &ctx->event_list);
1384 ctx->nr_events++;
1385 if (event->attr.inherit_stat)
bfbd3381 1386 ctx->nr_stat++;
5a3126d4
PZ
1387
1388 ctx->generation++;
04289bb9
IM
1389}
1390
0231bb53
JO
1391/*
1392 * Initialize event state based on the perf_event_attr::disabled.
1393 */
1394static inline void perf_event__state_init(struct perf_event *event)
1395{
1396 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1397 PERF_EVENT_STATE_INACTIVE;
1398}
1399
a723968c 1400static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1401{
1402 int entry = sizeof(u64); /* value */
1403 int size = 0;
1404 int nr = 1;
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1410 size += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_ID)
1413 entry += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1416 nr += nr_siblings;
c320c7b7
ACM
1417 size += sizeof(u64);
1418 }
1419
1420 size += entry * nr;
1421 event->read_size = size;
1422}
1423
a723968c 1424static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1425{
1426 struct perf_sample_data *data;
c320c7b7
ACM
1427 u16 size = 0;
1428
c320c7b7
ACM
1429 if (sample_type & PERF_SAMPLE_IP)
1430 size += sizeof(data->ip);
1431
6844c09d
ACM
1432 if (sample_type & PERF_SAMPLE_ADDR)
1433 size += sizeof(data->addr);
1434
1435 if (sample_type & PERF_SAMPLE_PERIOD)
1436 size += sizeof(data->period);
1437
c3feedf2
AK
1438 if (sample_type & PERF_SAMPLE_WEIGHT)
1439 size += sizeof(data->weight);
1440
6844c09d
ACM
1441 if (sample_type & PERF_SAMPLE_READ)
1442 size += event->read_size;
1443
d6be9ad6
SE
1444 if (sample_type & PERF_SAMPLE_DATA_SRC)
1445 size += sizeof(data->data_src.val);
1446
fdfbbd07
AK
1447 if (sample_type & PERF_SAMPLE_TRANSACTION)
1448 size += sizeof(data->txn);
1449
6844c09d
ACM
1450 event->header_size = size;
1451}
1452
a723968c
PZ
1453/*
1454 * Called at perf_event creation and when events are attached/detached from a
1455 * group.
1456 */
1457static void perf_event__header_size(struct perf_event *event)
1458{
1459 __perf_event_read_size(event,
1460 event->group_leader->nr_siblings);
1461 __perf_event_header_size(event, event->attr.sample_type);
1462}
1463
6844c09d
ACM
1464static void perf_event__id_header_size(struct perf_event *event)
1465{
1466 struct perf_sample_data *data;
1467 u64 sample_type = event->attr.sample_type;
1468 u16 size = 0;
1469
c320c7b7
ACM
1470 if (sample_type & PERF_SAMPLE_TID)
1471 size += sizeof(data->tid_entry);
1472
1473 if (sample_type & PERF_SAMPLE_TIME)
1474 size += sizeof(data->time);
1475
ff3d527c
AH
1476 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1477 size += sizeof(data->id);
1478
c320c7b7
ACM
1479 if (sample_type & PERF_SAMPLE_ID)
1480 size += sizeof(data->id);
1481
1482 if (sample_type & PERF_SAMPLE_STREAM_ID)
1483 size += sizeof(data->stream_id);
1484
1485 if (sample_type & PERF_SAMPLE_CPU)
1486 size += sizeof(data->cpu_entry);
1487
6844c09d 1488 event->id_header_size = size;
c320c7b7
ACM
1489}
1490
a723968c
PZ
1491static bool perf_event_validate_size(struct perf_event *event)
1492{
1493 /*
1494 * The values computed here will be over-written when we actually
1495 * attach the event.
1496 */
1497 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1498 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1499 perf_event__id_header_size(event);
1500
1501 /*
1502 * Sum the lot; should not exceed the 64k limit we have on records.
1503 * Conservative limit to allow for callchains and other variable fields.
1504 */
1505 if (event->read_size + event->header_size +
1506 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1507 return false;
1508
1509 return true;
1510}
1511
8a49542c
PZ
1512static void perf_group_attach(struct perf_event *event)
1513{
c320c7b7 1514 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1515
74c3337c
PZ
1516 /*
1517 * We can have double attach due to group movement in perf_event_open.
1518 */
1519 if (event->attach_state & PERF_ATTACH_GROUP)
1520 return;
1521
8a49542c
PZ
1522 event->attach_state |= PERF_ATTACH_GROUP;
1523
1524 if (group_leader == event)
1525 return;
1526
652884fe
PZ
1527 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1528
8a49542c
PZ
1529 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1530 !is_software_event(event))
1531 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1532
1533 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1534 group_leader->nr_siblings++;
c320c7b7
ACM
1535
1536 perf_event__header_size(group_leader);
1537
1538 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1539 perf_event__header_size(pos);
8a49542c
PZ
1540}
1541
a63eaf34 1542/*
cdd6c482 1543 * Remove a event from the lists for its context.
fccc714b 1544 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1545 */
04289bb9 1546static void
cdd6c482 1547list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1548{
68cacd29 1549 struct perf_cpu_context *cpuctx;
652884fe
PZ
1550
1551 WARN_ON_ONCE(event->ctx != ctx);
1552 lockdep_assert_held(&ctx->lock);
1553
8a49542c
PZ
1554 /*
1555 * We can have double detach due to exit/hot-unplug + close.
1556 */
1557 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1558 return;
8a49542c
PZ
1559
1560 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1561
68cacd29 1562 if (is_cgroup_event(event)) {
e5d1367f 1563 ctx->nr_cgroups--;
70a01657
PZ
1564 /*
1565 * Because cgroup events are always per-cpu events, this will
1566 * always be called from the right CPU.
1567 */
68cacd29
SE
1568 cpuctx = __get_cpu_context(ctx);
1569 /*
70a01657
PZ
1570 * If there are no more cgroup events then clear cgrp to avoid
1571 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1572 */
1573 if (!ctx->nr_cgroups)
1574 cpuctx->cgrp = NULL;
1575 }
e5d1367f 1576
cdd6c482
IM
1577 ctx->nr_events--;
1578 if (event->attr.inherit_stat)
bfbd3381 1579 ctx->nr_stat--;
8bc20959 1580
cdd6c482 1581 list_del_rcu(&event->event_entry);
04289bb9 1582
8a49542c
PZ
1583 if (event->group_leader == event)
1584 list_del_init(&event->group_entry);
5c148194 1585
96c21a46 1586 update_group_times(event);
b2e74a26
SE
1587
1588 /*
1589 * If event was in error state, then keep it
1590 * that way, otherwise bogus counts will be
1591 * returned on read(). The only way to get out
1592 * of error state is by explicit re-enabling
1593 * of the event
1594 */
1595 if (event->state > PERF_EVENT_STATE_OFF)
1596 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1597
1598 ctx->generation++;
050735b0
PZ
1599}
1600
8a49542c 1601static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1602{
1603 struct perf_event *sibling, *tmp;
8a49542c
PZ
1604 struct list_head *list = NULL;
1605
1606 /*
1607 * We can have double detach due to exit/hot-unplug + close.
1608 */
1609 if (!(event->attach_state & PERF_ATTACH_GROUP))
1610 return;
1611
1612 event->attach_state &= ~PERF_ATTACH_GROUP;
1613
1614 /*
1615 * If this is a sibling, remove it from its group.
1616 */
1617 if (event->group_leader != event) {
1618 list_del_init(&event->group_entry);
1619 event->group_leader->nr_siblings--;
c320c7b7 1620 goto out;
8a49542c
PZ
1621 }
1622
1623 if (!list_empty(&event->group_entry))
1624 list = &event->group_entry;
2e2af50b 1625
04289bb9 1626 /*
cdd6c482
IM
1627 * If this was a group event with sibling events then
1628 * upgrade the siblings to singleton events by adding them
8a49542c 1629 * to whatever list we are on.
04289bb9 1630 */
cdd6c482 1631 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1632 if (list)
1633 list_move_tail(&sibling->group_entry, list);
04289bb9 1634 sibling->group_leader = sibling;
d6f962b5
FW
1635
1636 /* Inherit group flags from the previous leader */
1637 sibling->group_flags = event->group_flags;
652884fe
PZ
1638
1639 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1640 }
c320c7b7
ACM
1641
1642out:
1643 perf_event__header_size(event->group_leader);
1644
1645 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1646 perf_event__header_size(tmp);
04289bb9
IM
1647}
1648
fadfe7be
JO
1649/*
1650 * User event without the task.
1651 */
1652static bool is_orphaned_event(struct perf_event *event)
1653{
1654 return event && !is_kernel_event(event) && !event->owner;
1655}
1656
1657/*
1658 * Event has a parent but parent's task finished and it's
1659 * alive only because of children holding refference.
1660 */
1661static bool is_orphaned_child(struct perf_event *event)
1662{
1663 return is_orphaned_event(event->parent);
1664}
1665
1666static void orphans_remove_work(struct work_struct *work);
1667
1668static void schedule_orphans_remove(struct perf_event_context *ctx)
1669{
1670 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1671 return;
1672
1673 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1674 get_ctx(ctx);
1675 ctx->orphans_remove_sched = true;
1676 }
1677}
1678
1679static int __init perf_workqueue_init(void)
1680{
1681 perf_wq = create_singlethread_workqueue("perf");
1682 WARN(!perf_wq, "failed to create perf workqueue\n");
1683 return perf_wq ? 0 : -1;
1684}
1685
1686core_initcall(perf_workqueue_init);
1687
66eb579e
MR
1688static inline int pmu_filter_match(struct perf_event *event)
1689{
1690 struct pmu *pmu = event->pmu;
1691 return pmu->filter_match ? pmu->filter_match(event) : 1;
1692}
1693
fa66f07a
SE
1694static inline int
1695event_filter_match(struct perf_event *event)
1696{
e5d1367f 1697 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1698 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1699}
1700
9ffcfa6f
SE
1701static void
1702event_sched_out(struct perf_event *event,
3b6f9e5c 1703 struct perf_cpu_context *cpuctx,
cdd6c482 1704 struct perf_event_context *ctx)
3b6f9e5c 1705{
4158755d 1706 u64 tstamp = perf_event_time(event);
fa66f07a 1707 u64 delta;
652884fe
PZ
1708
1709 WARN_ON_ONCE(event->ctx != ctx);
1710 lockdep_assert_held(&ctx->lock);
1711
fa66f07a
SE
1712 /*
1713 * An event which could not be activated because of
1714 * filter mismatch still needs to have its timings
1715 * maintained, otherwise bogus information is return
1716 * via read() for time_enabled, time_running:
1717 */
1718 if (event->state == PERF_EVENT_STATE_INACTIVE
1719 && !event_filter_match(event)) {
e5d1367f 1720 delta = tstamp - event->tstamp_stopped;
fa66f07a 1721 event->tstamp_running += delta;
4158755d 1722 event->tstamp_stopped = tstamp;
fa66f07a
SE
1723 }
1724
cdd6c482 1725 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1726 return;
3b6f9e5c 1727
44377277
AS
1728 perf_pmu_disable(event->pmu);
1729
cdd6c482
IM
1730 event->state = PERF_EVENT_STATE_INACTIVE;
1731 if (event->pending_disable) {
1732 event->pending_disable = 0;
1733 event->state = PERF_EVENT_STATE_OFF;
970892a9 1734 }
4158755d 1735 event->tstamp_stopped = tstamp;
a4eaf7f1 1736 event->pmu->del(event, 0);
cdd6c482 1737 event->oncpu = -1;
3b6f9e5c 1738
cdd6c482 1739 if (!is_software_event(event))
3b6f9e5c 1740 cpuctx->active_oncpu--;
2fde4f94
MR
1741 if (!--ctx->nr_active)
1742 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1743 if (event->attr.freq && event->attr.sample_freq)
1744 ctx->nr_freq--;
cdd6c482 1745 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1746 cpuctx->exclusive = 0;
44377277 1747
fadfe7be
JO
1748 if (is_orphaned_child(event))
1749 schedule_orphans_remove(ctx);
1750
44377277 1751 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1752}
1753
d859e29f 1754static void
cdd6c482 1755group_sched_out(struct perf_event *group_event,
d859e29f 1756 struct perf_cpu_context *cpuctx,
cdd6c482 1757 struct perf_event_context *ctx)
d859e29f 1758{
cdd6c482 1759 struct perf_event *event;
fa66f07a 1760 int state = group_event->state;
d859e29f 1761
cdd6c482 1762 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1763
1764 /*
1765 * Schedule out siblings (if any):
1766 */
cdd6c482
IM
1767 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1768 event_sched_out(event, cpuctx, ctx);
d859e29f 1769
fa66f07a 1770 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1771 cpuctx->exclusive = 0;
1772}
1773
0793a61d 1774/*
cdd6c482 1775 * Cross CPU call to remove a performance event
0793a61d 1776 *
cdd6c482 1777 * We disable the event on the hardware level first. After that we
0793a61d
TG
1778 * remove it from the context list.
1779 */
fae3fde6
PZ
1780static void
1781__perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
0793a61d 1785{
fae3fde6 1786 bool detach_group = (unsigned long)info;
0793a61d 1787
cdd6c482 1788 event_sched_out(event, cpuctx, ctx);
fae3fde6 1789 if (detach_group)
46ce0fe9 1790 perf_group_detach(event);
cdd6c482 1791 list_del_event(event, ctx);
39a43640
PZ
1792
1793 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1794 ctx->is_active = 0;
39a43640
PZ
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
64ce3126 1799 }
0793a61d
TG
1800}
1801
0793a61d 1802/*
cdd6c482 1803 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1804 *
cdd6c482
IM
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1809 * When called from perf_event_exit_task, it's OK because the
c93f7669 1810 * context has been detached from its task.
0793a61d 1811 */
46ce0fe9 1812static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1813{
fae3fde6 1814 lockdep_assert_held(&event->ctx->mutex);
fe4b04fa 1815
0017960f 1816 event_function_call(event, __perf_remove_from_context,
fae3fde6 1817 (void *)(unsigned long)detach_group);
0793a61d
TG
1818}
1819
d859e29f 1820/*
cdd6c482 1821 * Cross CPU call to disable a performance event
d859e29f 1822 */
fae3fde6
PZ
1823static void __perf_event_disable(struct perf_event *event,
1824 struct perf_cpu_context *cpuctx,
1825 struct perf_event_context *ctx,
1826 void *info)
7b648018 1827{
fae3fde6
PZ
1828 if (event->state < PERF_EVENT_STATE_INACTIVE)
1829 return;
7b648018 1830
fae3fde6
PZ
1831 update_context_time(ctx);
1832 update_cgrp_time_from_event(event);
1833 update_group_times(event);
1834 if (event == event->group_leader)
1835 group_sched_out(event, cpuctx, ctx);
1836 else
1837 event_sched_out(event, cpuctx, ctx);
1838 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1839}
1840
d859e29f 1841/*
cdd6c482 1842 * Disable a event.
c93f7669 1843 *
cdd6c482
IM
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
c93f7669 1846 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1847 * perf_event_for_each_child or perf_event_for_each because they
1848 * hold the top-level event's child_mutex, so any descendant that
1849 * goes to exit will block in sync_child_event.
1850 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1851 * is the current context on this CPU and preemption is disabled,
cdd6c482 1852 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1853 */
f63a8daa 1854static void _perf_event_disable(struct perf_event *event)
d859e29f 1855{
cdd6c482 1856 struct perf_event_context *ctx = event->ctx;
d859e29f 1857
e625cce1 1858 raw_spin_lock_irq(&ctx->lock);
7b648018 1859 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1860 raw_spin_unlock_irq(&ctx->lock);
7b648018 1861 return;
53cfbf59 1862 }
e625cce1 1863 raw_spin_unlock_irq(&ctx->lock);
7b648018 1864
fae3fde6
PZ
1865 event_function_call(event, __perf_event_disable, NULL);
1866}
1867
1868void perf_event_disable_local(struct perf_event *event)
1869{
1870 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1871}
f63a8daa
PZ
1872
1873/*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877void perf_event_disable(struct perf_event *event)
1878{
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884}
dcfce4a0 1885EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1886
e5d1367f
SE
1887static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890{
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920}
1921
4fe757dd
PZ
1922#define MAX_INTERRUPTS (~0ULL)
1923
1924static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1925static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1926
235c7fc7 1927static int
9ffcfa6f 1928event_sched_in(struct perf_event *event,
235c7fc7 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
235c7fc7 1931{
4158755d 1932 u64 tstamp = perf_event_time(event);
44377277 1933 int ret = 0;
4158755d 1934
63342411
PZ
1935 lockdep_assert_held(&ctx->lock);
1936
cdd6c482 1937 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1938 return 0;
1939
cdd6c482 1940 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1941 event->oncpu = smp_processor_id();
4fe757dd
PZ
1942
1943 /*
1944 * Unthrottle events, since we scheduled we might have missed several
1945 * ticks already, also for a heavily scheduling task there is little
1946 * guarantee it'll get a tick in a timely manner.
1947 */
1948 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1949 perf_log_throttle(event, 1);
1950 event->hw.interrupts = 0;
1951 }
1952
235c7fc7
IM
1953 /*
1954 * The new state must be visible before we turn it on in the hardware:
1955 */
1956 smp_wmb();
1957
44377277
AS
1958 perf_pmu_disable(event->pmu);
1959
72f669c0
SL
1960 perf_set_shadow_time(event, ctx, tstamp);
1961
ec0d7729
AS
1962 perf_log_itrace_start(event);
1963
a4eaf7f1 1964 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1965 event->state = PERF_EVENT_STATE_INACTIVE;
1966 event->oncpu = -1;
44377277
AS
1967 ret = -EAGAIN;
1968 goto out;
235c7fc7
IM
1969 }
1970
00a2916f
PZ
1971 event->tstamp_running += tstamp - event->tstamp_stopped;
1972
cdd6c482 1973 if (!is_software_event(event))
3b6f9e5c 1974 cpuctx->active_oncpu++;
2fde4f94
MR
1975 if (!ctx->nr_active++)
1976 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1977 if (event->attr.freq && event->attr.sample_freq)
1978 ctx->nr_freq++;
235c7fc7 1979
cdd6c482 1980 if (event->attr.exclusive)
3b6f9e5c
PM
1981 cpuctx->exclusive = 1;
1982
fadfe7be
JO
1983 if (is_orphaned_child(event))
1984 schedule_orphans_remove(ctx);
1985
44377277
AS
1986out:
1987 perf_pmu_enable(event->pmu);
1988
1989 return ret;
235c7fc7
IM
1990}
1991
6751b71e 1992static int
cdd6c482 1993group_sched_in(struct perf_event *group_event,
6751b71e 1994 struct perf_cpu_context *cpuctx,
6e37738a 1995 struct perf_event_context *ctx)
6751b71e 1996{
6bde9b6c 1997 struct perf_event *event, *partial_group = NULL;
4a234593 1998 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1999 u64 now = ctx->time;
2000 bool simulate = false;
6751b71e 2001
cdd6c482 2002 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2003 return 0;
2004
fbbe0701 2005 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2006
9ffcfa6f 2007 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2008 pmu->cancel_txn(pmu);
272325c4 2009 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2010 return -EAGAIN;
90151c35 2011 }
6751b71e
PM
2012
2013 /*
2014 * Schedule in siblings as one group (if any):
2015 */
cdd6c482 2016 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2017 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2018 partial_group = event;
6751b71e
PM
2019 goto group_error;
2020 }
2021 }
2022
9ffcfa6f 2023 if (!pmu->commit_txn(pmu))
6e85158c 2024 return 0;
9ffcfa6f 2025
6751b71e
PM
2026group_error:
2027 /*
2028 * Groups can be scheduled in as one unit only, so undo any
2029 * partial group before returning:
d7842da4
SE
2030 * The events up to the failed event are scheduled out normally,
2031 * tstamp_stopped will be updated.
2032 *
2033 * The failed events and the remaining siblings need to have
2034 * their timings updated as if they had gone thru event_sched_in()
2035 * and event_sched_out(). This is required to get consistent timings
2036 * across the group. This also takes care of the case where the group
2037 * could never be scheduled by ensuring tstamp_stopped is set to mark
2038 * the time the event was actually stopped, such that time delta
2039 * calculation in update_event_times() is correct.
6751b71e 2040 */
cdd6c482
IM
2041 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2042 if (event == partial_group)
d7842da4
SE
2043 simulate = true;
2044
2045 if (simulate) {
2046 event->tstamp_running += now - event->tstamp_stopped;
2047 event->tstamp_stopped = now;
2048 } else {
2049 event_sched_out(event, cpuctx, ctx);
2050 }
6751b71e 2051 }
9ffcfa6f 2052 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2053
ad5133b7 2054 pmu->cancel_txn(pmu);
90151c35 2055
272325c4 2056 perf_mux_hrtimer_restart(cpuctx);
9e630205 2057
6751b71e
PM
2058 return -EAGAIN;
2059}
2060
3b6f9e5c 2061/*
cdd6c482 2062 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2063 */
cdd6c482 2064static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2065 struct perf_cpu_context *cpuctx,
2066 int can_add_hw)
2067{
2068 /*
cdd6c482 2069 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2070 */
d6f962b5 2071 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2072 return 1;
2073 /*
2074 * If an exclusive group is already on, no other hardware
cdd6c482 2075 * events can go on.
3b6f9e5c
PM
2076 */
2077 if (cpuctx->exclusive)
2078 return 0;
2079 /*
2080 * If this group is exclusive and there are already
cdd6c482 2081 * events on the CPU, it can't go on.
3b6f9e5c 2082 */
cdd6c482 2083 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2084 return 0;
2085 /*
2086 * Otherwise, try to add it if all previous groups were able
2087 * to go on.
2088 */
2089 return can_add_hw;
2090}
2091
cdd6c482
IM
2092static void add_event_to_ctx(struct perf_event *event,
2093 struct perf_event_context *ctx)
53cfbf59 2094{
4158755d
SE
2095 u64 tstamp = perf_event_time(event);
2096
cdd6c482 2097 list_add_event(event, ctx);
8a49542c 2098 perf_group_attach(event);
4158755d
SE
2099 event->tstamp_enabled = tstamp;
2100 event->tstamp_running = tstamp;
2101 event->tstamp_stopped = tstamp;
53cfbf59
PM
2102}
2103
3e349507
PZ
2104static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx);
2c29ef0f
PZ
2106static void
2107ctx_sched_in(struct perf_event_context *ctx,
2108 struct perf_cpu_context *cpuctx,
2109 enum event_type_t event_type,
2110 struct task_struct *task);
fe4b04fa 2111
dce5855b
PZ
2112static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115{
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122}
2123
3e349507
PZ
2124static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126{
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133}
2134
0793a61d 2135/*
cdd6c482 2136 * Cross CPU call to install and enable a performance event
682076ae
PZ
2137 *
2138 * Must be called with ctx->mutex held
0793a61d 2139 */
fe4b04fa 2140static int __perf_install_in_context(void *info)
0793a61d 2141{
39a43640 2142 struct perf_event_context *ctx = info;
108b02cf 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2c29ef0f 2145
63b6da39 2146 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2147 if (ctx->task) {
63b6da39 2148 raw_spin_lock(&ctx->lock);
39a43640
PZ
2149 /*
2150 * If we hit the 'wrong' task, we've since scheduled and
2151 * everything should be sorted, nothing to do!
2152 */
63b6da39 2153 task_ctx = ctx;
39a43640 2154 if (ctx->task != current)
63b6da39 2155 goto unlock;
b58f6b0d 2156
39a43640
PZ
2157 /*
2158 * If task_ctx is set, it had better be to us.
2159 */
2160 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2161 } else if (task_ctx) {
2162 raw_spin_lock(&task_ctx->lock);
b58f6b0d
PZ
2163 }
2164
39a43640 2165 ctx_resched(cpuctx, task_ctx);
63b6da39 2166unlock:
2c29ef0f 2167 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2168
2169 return 0;
0793a61d
TG
2170}
2171
2172/*
cdd6c482 2173 * Attach a performance event to a context
0793a61d
TG
2174 */
2175static void
cdd6c482
IM
2176perf_install_in_context(struct perf_event_context *ctx,
2177 struct perf_event *event,
0793a61d
TG
2178 int cpu)
2179{
39a43640
PZ
2180 struct task_struct *task = NULL;
2181
fe4b04fa
PZ
2182 lockdep_assert_held(&ctx->mutex);
2183
c3f00c70 2184 event->ctx = ctx;
0cda4c02
YZ
2185 if (event->cpu != -1)
2186 event->cpu = cpu;
c3f00c70 2187
39a43640
PZ
2188 /*
2189 * Installing events is tricky because we cannot rely on ctx->is_active
2190 * to be set in case this is the nr_events 0 -> 1 transition.
2191 *
2192 * So what we do is we add the event to the list here, which will allow
2193 * a future context switch to DTRT and then send a racy IPI. If the IPI
2194 * fails to hit the right task, this means a context switch must have
2195 * happened and that will have taken care of business.
2196 */
2197 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
2198 task = ctx->task;
2199 /*
2200 * Worse, we cannot even rely on the ctx actually existing anymore. If
2201 * between find_get_context() and perf_install_in_context() the task
2202 * went through perf_event_exit_task() its dead and we should not be
2203 * adding new events.
2204 */
2205 if (task == TASK_TOMBSTONE) {
2206 raw_spin_unlock_irq(&ctx->lock);
2207 return;
2208 }
39a43640
PZ
2209 update_context_time(ctx);
2210 /*
2211 * Update cgrp time only if current cgrp matches event->cgrp.
2212 * Must be done before calling add_event_to_ctx().
2213 */
2214 update_cgrp_time_from_event(event);
2215 add_event_to_ctx(event, ctx);
39a43640
PZ
2216 raw_spin_unlock_irq(&ctx->lock);
2217
2218 if (task)
2219 task_function_call(task, __perf_install_in_context, ctx);
2220 else
2221 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2222}
2223
fa289bec 2224/*
cdd6c482 2225 * Put a event into inactive state and update time fields.
fa289bec
PM
2226 * Enabling the leader of a group effectively enables all
2227 * the group members that aren't explicitly disabled, so we
2228 * have to update their ->tstamp_enabled also.
2229 * Note: this works for group members as well as group leaders
2230 * since the non-leader members' sibling_lists will be empty.
2231 */
1d9b482e 2232static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2233{
cdd6c482 2234 struct perf_event *sub;
4158755d 2235 u64 tstamp = perf_event_time(event);
fa289bec 2236
cdd6c482 2237 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2238 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2239 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2240 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2241 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2242 }
fa289bec
PM
2243}
2244
d859e29f 2245/*
cdd6c482 2246 * Cross CPU call to enable a performance event
d859e29f 2247 */
fae3fde6
PZ
2248static void __perf_event_enable(struct perf_event *event,
2249 struct perf_cpu_context *cpuctx,
2250 struct perf_event_context *ctx,
2251 void *info)
04289bb9 2252{
cdd6c482 2253 struct perf_event *leader = event->group_leader;
fae3fde6 2254 struct perf_event_context *task_ctx;
d859e29f 2255
cdd6c482 2256 if (event->state >= PERF_EVENT_STATE_INACTIVE)
fae3fde6 2257 return;
e5d1367f 2258
fae3fde6 2259 update_context_time(ctx);
1d9b482e 2260 __perf_event_mark_enabled(event);
04289bb9 2261
fae3fde6
PZ
2262 if (!ctx->is_active)
2263 return;
2264
e5d1367f 2265 if (!event_filter_match(event)) {
fae3fde6
PZ
2266 if (is_cgroup_event(event)) {
2267 perf_cgroup_set_timestamp(current, ctx); // XXX ?
e5d1367f 2268 perf_cgroup_defer_enabled(event);
fae3fde6
PZ
2269 }
2270 return;
e5d1367f 2271 }
f4c4176f 2272
04289bb9 2273 /*
cdd6c482 2274 * If the event is in a group and isn't the group leader,
d859e29f 2275 * then don't put it on unless the group is on.
04289bb9 2276 */
cdd6c482 2277 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
fae3fde6 2278 return;
3b6f9e5c 2279
fae3fde6
PZ
2280 task_ctx = cpuctx->task_ctx;
2281 if (ctx->task)
2282 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2283
fae3fde6 2284 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2285}
2286
d859e29f 2287/*
cdd6c482 2288 * Enable a event.
c93f7669 2289 *
cdd6c482
IM
2290 * If event->ctx is a cloned context, callers must make sure that
2291 * every task struct that event->ctx->task could possibly point to
c93f7669 2292 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2293 * perf_event_for_each_child or perf_event_for_each as described
2294 * for perf_event_disable.
d859e29f 2295 */
f63a8daa 2296static void _perf_event_enable(struct perf_event *event)
d859e29f 2297{
cdd6c482 2298 struct perf_event_context *ctx = event->ctx;
d859e29f 2299
7b648018
PZ
2300 raw_spin_lock_irq(&ctx->lock);
2301 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2302 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2303 return;
2304 }
2305
d859e29f 2306 /*
cdd6c482 2307 * If the event is in error state, clear that first.
7b648018
PZ
2308 *
2309 * That way, if we see the event in error state below, we know that it
2310 * has gone back into error state, as distinct from the task having
2311 * been scheduled away before the cross-call arrived.
d859e29f 2312 */
cdd6c482
IM
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2315 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2316
fae3fde6 2317 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2318}
f63a8daa
PZ
2319
2320/*
2321 * See perf_event_disable();
2322 */
2323void perf_event_enable(struct perf_event *event)
2324{
2325 struct perf_event_context *ctx;
2326
2327 ctx = perf_event_ctx_lock(event);
2328 _perf_event_enable(event);
2329 perf_event_ctx_unlock(event, ctx);
2330}
dcfce4a0 2331EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2332
f63a8daa 2333static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2334{
2023b359 2335 /*
cdd6c482 2336 * not supported on inherited events
2023b359 2337 */
2e939d1d 2338 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2339 return -EINVAL;
2340
cdd6c482 2341 atomic_add(refresh, &event->event_limit);
f63a8daa 2342 _perf_event_enable(event);
2023b359
PZ
2343
2344 return 0;
79f14641 2345}
f63a8daa
PZ
2346
2347/*
2348 * See perf_event_disable()
2349 */
2350int perf_event_refresh(struct perf_event *event, int refresh)
2351{
2352 struct perf_event_context *ctx;
2353 int ret;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 ret = _perf_event_refresh(event, refresh);
2357 perf_event_ctx_unlock(event, ctx);
2358
2359 return ret;
2360}
26ca5c11 2361EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2362
5b0311e1
FW
2363static void ctx_sched_out(struct perf_event_context *ctx,
2364 struct perf_cpu_context *cpuctx,
2365 enum event_type_t event_type)
235c7fc7 2366{
db24d33e 2367 int is_active = ctx->is_active;
c994d613
PZ
2368 struct perf_event *event;
2369
2370 lockdep_assert_held(&ctx->lock);
235c7fc7 2371
39a43640
PZ
2372 if (likely(!ctx->nr_events)) {
2373 /*
2374 * See __perf_remove_from_context().
2375 */
2376 WARN_ON_ONCE(ctx->is_active);
2377 if (ctx->task)
2378 WARN_ON_ONCE(cpuctx->task_ctx);
2379 return;
2380 }
2381
db24d33e 2382 ctx->is_active &= ~event_type;
63e30d3e
PZ
2383 if (ctx->task) {
2384 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2385 if (!ctx->is_active)
2386 cpuctx->task_ctx = NULL;
2387 }
2388
4af4998b 2389 update_context_time(ctx);
e5d1367f 2390 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2391 if (!ctx->nr_active)
facc4307 2392 return;
5b0311e1 2393
075e0b00 2394 perf_pmu_disable(ctx->pmu);
db24d33e 2395 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2396 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2397 group_sched_out(event, cpuctx, ctx);
9ed6060d 2398 }
889ff015 2399
db24d33e 2400 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2401 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2402 group_sched_out(event, cpuctx, ctx);
9ed6060d 2403 }
1b9a644f 2404 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2405}
2406
564c2b21 2407/*
5a3126d4
PZ
2408 * Test whether two contexts are equivalent, i.e. whether they have both been
2409 * cloned from the same version of the same context.
2410 *
2411 * Equivalence is measured using a generation number in the context that is
2412 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2413 * and list_del_event().
564c2b21 2414 */
cdd6c482
IM
2415static int context_equiv(struct perf_event_context *ctx1,
2416 struct perf_event_context *ctx2)
564c2b21 2417{
211de6eb
PZ
2418 lockdep_assert_held(&ctx1->lock);
2419 lockdep_assert_held(&ctx2->lock);
2420
5a3126d4
PZ
2421 /* Pinning disables the swap optimization */
2422 if (ctx1->pin_count || ctx2->pin_count)
2423 return 0;
2424
2425 /* If ctx1 is the parent of ctx2 */
2426 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2427 return 1;
2428
2429 /* If ctx2 is the parent of ctx1 */
2430 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2431 return 1;
2432
2433 /*
2434 * If ctx1 and ctx2 have the same parent; we flatten the parent
2435 * hierarchy, see perf_event_init_context().
2436 */
2437 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2438 ctx1->parent_gen == ctx2->parent_gen)
2439 return 1;
2440
2441 /* Unmatched */
2442 return 0;
564c2b21
PM
2443}
2444
cdd6c482
IM
2445static void __perf_event_sync_stat(struct perf_event *event,
2446 struct perf_event *next_event)
bfbd3381
PZ
2447{
2448 u64 value;
2449
cdd6c482 2450 if (!event->attr.inherit_stat)
bfbd3381
PZ
2451 return;
2452
2453 /*
cdd6c482 2454 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2455 * because we're in the middle of a context switch and have IRQs
2456 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2457 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2458 * don't need to use it.
2459 */
cdd6c482
IM
2460 switch (event->state) {
2461 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2462 event->pmu->read(event);
2463 /* fall-through */
bfbd3381 2464
cdd6c482
IM
2465 case PERF_EVENT_STATE_INACTIVE:
2466 update_event_times(event);
bfbd3381
PZ
2467 break;
2468
2469 default:
2470 break;
2471 }
2472
2473 /*
cdd6c482 2474 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2475 * values when we flip the contexts.
2476 */
e7850595
PZ
2477 value = local64_read(&next_event->count);
2478 value = local64_xchg(&event->count, value);
2479 local64_set(&next_event->count, value);
bfbd3381 2480
cdd6c482
IM
2481 swap(event->total_time_enabled, next_event->total_time_enabled);
2482 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2483
bfbd3381 2484 /*
19d2e755 2485 * Since we swizzled the values, update the user visible data too.
bfbd3381 2486 */
cdd6c482
IM
2487 perf_event_update_userpage(event);
2488 perf_event_update_userpage(next_event);
bfbd3381
PZ
2489}
2490
cdd6c482
IM
2491static void perf_event_sync_stat(struct perf_event_context *ctx,
2492 struct perf_event_context *next_ctx)
bfbd3381 2493{
cdd6c482 2494 struct perf_event *event, *next_event;
bfbd3381
PZ
2495
2496 if (!ctx->nr_stat)
2497 return;
2498
02ffdbc8
PZ
2499 update_context_time(ctx);
2500
cdd6c482
IM
2501 event = list_first_entry(&ctx->event_list,
2502 struct perf_event, event_entry);
bfbd3381 2503
cdd6c482
IM
2504 next_event = list_first_entry(&next_ctx->event_list,
2505 struct perf_event, event_entry);
bfbd3381 2506
cdd6c482
IM
2507 while (&event->event_entry != &ctx->event_list &&
2508 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2509
cdd6c482 2510 __perf_event_sync_stat(event, next_event);
bfbd3381 2511
cdd6c482
IM
2512 event = list_next_entry(event, event_entry);
2513 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2514 }
2515}
2516
fe4b04fa
PZ
2517static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2518 struct task_struct *next)
0793a61d 2519{
8dc85d54 2520 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2521 struct perf_event_context *next_ctx;
5a3126d4 2522 struct perf_event_context *parent, *next_parent;
108b02cf 2523 struct perf_cpu_context *cpuctx;
c93f7669 2524 int do_switch = 1;
0793a61d 2525
108b02cf
PZ
2526 if (likely(!ctx))
2527 return;
10989fb2 2528
108b02cf
PZ
2529 cpuctx = __get_cpu_context(ctx);
2530 if (!cpuctx->task_ctx)
0793a61d
TG
2531 return;
2532
c93f7669 2533 rcu_read_lock();
8dc85d54 2534 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2535 if (!next_ctx)
2536 goto unlock;
2537
2538 parent = rcu_dereference(ctx->parent_ctx);
2539 next_parent = rcu_dereference(next_ctx->parent_ctx);
2540
2541 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2542 if (!parent && !next_parent)
5a3126d4
PZ
2543 goto unlock;
2544
2545 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2546 /*
2547 * Looks like the two contexts are clones, so we might be
2548 * able to optimize the context switch. We lock both
2549 * contexts and check that they are clones under the
2550 * lock (including re-checking that neither has been
2551 * uncloned in the meantime). It doesn't matter which
2552 * order we take the locks because no other cpu could
2553 * be trying to lock both of these tasks.
2554 */
e625cce1
TG
2555 raw_spin_lock(&ctx->lock);
2556 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2557 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2558 WRITE_ONCE(ctx->task, next);
2559 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2560
2561 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2562
63b6da39
PZ
2563 /*
2564 * RCU_INIT_POINTER here is safe because we've not
2565 * modified the ctx and the above modification of
2566 * ctx->task and ctx->task_ctx_data are immaterial
2567 * since those values are always verified under
2568 * ctx->lock which we're now holding.
2569 */
2570 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2571 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2572
c93f7669 2573 do_switch = 0;
bfbd3381 2574
cdd6c482 2575 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2576 }
e625cce1
TG
2577 raw_spin_unlock(&next_ctx->lock);
2578 raw_spin_unlock(&ctx->lock);
564c2b21 2579 }
5a3126d4 2580unlock:
c93f7669 2581 rcu_read_unlock();
564c2b21 2582
c93f7669 2583 if (do_switch) {
facc4307 2584 raw_spin_lock(&ctx->lock);
8833d0e2 2585 task_ctx_sched_out(cpuctx, ctx);
facc4307 2586 raw_spin_unlock(&ctx->lock);
c93f7669 2587 }
0793a61d
TG
2588}
2589
ba532500
YZ
2590void perf_sched_cb_dec(struct pmu *pmu)
2591{
2592 this_cpu_dec(perf_sched_cb_usages);
2593}
2594
2595void perf_sched_cb_inc(struct pmu *pmu)
2596{
2597 this_cpu_inc(perf_sched_cb_usages);
2598}
2599
2600/*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604static void perf_pmu_sched_task(struct task_struct *prev,
2605 struct task_struct *next,
2606 bool sched_in)
2607{
2608 struct perf_cpu_context *cpuctx;
2609 struct pmu *pmu;
2610 unsigned long flags;
2611
2612 if (prev == next)
2613 return;
2614
2615 local_irq_save(flags);
2616
2617 rcu_read_lock();
2618
2619 list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 if (pmu->sched_task) {
2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625 perf_pmu_disable(pmu);
2626
2627 pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629 perf_pmu_enable(pmu);
2630
2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 }
2633 }
2634
2635 rcu_read_unlock();
2636
2637 local_irq_restore(flags);
2638}
2639
45ac1403
AH
2640static void perf_event_switch(struct task_struct *task,
2641 struct task_struct *next_prev, bool sched_in);
2642
8dc85d54
PZ
2643#define for_each_task_context_nr(ctxn) \
2644 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2645
2646/*
2647 * Called from scheduler to remove the events of the current task,
2648 * with interrupts disabled.
2649 *
2650 * We stop each event and update the event value in event->count.
2651 *
2652 * This does not protect us against NMI, but disable()
2653 * sets the disabled bit in the control field of event _before_
2654 * accessing the event control register. If a NMI hits, then it will
2655 * not restart the event.
2656 */
ab0cce56
JO
2657void __perf_event_task_sched_out(struct task_struct *task,
2658 struct task_struct *next)
8dc85d54
PZ
2659{
2660 int ctxn;
2661
ba532500
YZ
2662 if (__this_cpu_read(perf_sched_cb_usages))
2663 perf_pmu_sched_task(task, next, false);
2664
45ac1403
AH
2665 if (atomic_read(&nr_switch_events))
2666 perf_event_switch(task, next, false);
2667
8dc85d54
PZ
2668 for_each_task_context_nr(ctxn)
2669 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2670
2671 /*
2672 * if cgroup events exist on this CPU, then we need
2673 * to check if we have to switch out PMU state.
2674 * cgroup event are system-wide mode only
2675 */
4a32fea9 2676 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2677 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2678}
2679
3e349507
PZ
2680static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 struct perf_event_context *ctx)
a08b159f 2682{
a63eaf34
PM
2683 if (!cpuctx->task_ctx)
2684 return;
012b84da
IM
2685
2686 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2687 return;
2688
04dc2dbb 2689 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2690}
2691
5b0311e1
FW
2692/*
2693 * Called with IRQs disabled
2694 */
2695static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2696 enum event_type_t event_type)
2697{
2698 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2699}
2700
235c7fc7 2701static void
5b0311e1 2702ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2703 struct perf_cpu_context *cpuctx)
0793a61d 2704{
cdd6c482 2705 struct perf_event *event;
0793a61d 2706
889ff015
FW
2707 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2708 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2709 continue;
5632ab12 2710 if (!event_filter_match(event))
3b6f9e5c
PM
2711 continue;
2712
e5d1367f
SE
2713 /* may need to reset tstamp_enabled */
2714 if (is_cgroup_event(event))
2715 perf_cgroup_mark_enabled(event, ctx);
2716
8c9ed8e1 2717 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2718 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2719
2720 /*
2721 * If this pinned group hasn't been scheduled,
2722 * put it in error state.
2723 */
cdd6c482
IM
2724 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2725 update_group_times(event);
2726 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2727 }
3b6f9e5c 2728 }
5b0311e1
FW
2729}
2730
2731static void
2732ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2733 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2734{
2735 struct perf_event *event;
2736 int can_add_hw = 1;
3b6f9e5c 2737
889ff015
FW
2738 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2739 /* Ignore events in OFF or ERROR state */
2740 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2741 continue;
04289bb9
IM
2742 /*
2743 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2744 * of events:
04289bb9 2745 */
5632ab12 2746 if (!event_filter_match(event))
0793a61d
TG
2747 continue;
2748
e5d1367f
SE
2749 /* may need to reset tstamp_enabled */
2750 if (is_cgroup_event(event))
2751 perf_cgroup_mark_enabled(event, ctx);
2752
9ed6060d 2753 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2754 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2755 can_add_hw = 0;
9ed6060d 2756 }
0793a61d 2757 }
5b0311e1
FW
2758}
2759
2760static void
2761ctx_sched_in(struct perf_event_context *ctx,
2762 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2763 enum event_type_t event_type,
2764 struct task_struct *task)
5b0311e1 2765{
db24d33e 2766 int is_active = ctx->is_active;
c994d613
PZ
2767 u64 now;
2768
2769 lockdep_assert_held(&ctx->lock);
e5d1367f 2770
39a43640
PZ
2771 if (likely(!ctx->nr_events))
2772 return;
2773
db24d33e 2774 ctx->is_active |= event_type;
63e30d3e
PZ
2775 if (ctx->task) {
2776 if (!is_active)
2777 cpuctx->task_ctx = ctx;
2778 else
2779 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2780 }
2781
e5d1367f
SE
2782 now = perf_clock();
2783 ctx->timestamp = now;
3f7cce3c 2784 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2785 /*
2786 * First go through the list and put on any pinned groups
2787 * in order to give them the best chance of going on.
2788 */
db24d33e 2789 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2790 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2791
2792 /* Then walk through the lower prio flexible groups */
db24d33e 2793 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2794 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2795}
2796
329c0e01 2797static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2798 enum event_type_t event_type,
2799 struct task_struct *task)
329c0e01
FW
2800{
2801 struct perf_event_context *ctx = &cpuctx->ctx;
2802
e5d1367f 2803 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2804}
2805
e5d1367f
SE
2806static void perf_event_context_sched_in(struct perf_event_context *ctx,
2807 struct task_struct *task)
235c7fc7 2808{
108b02cf 2809 struct perf_cpu_context *cpuctx;
235c7fc7 2810
108b02cf 2811 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2812 if (cpuctx->task_ctx == ctx)
2813 return;
2814
facc4307 2815 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2816 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2817 /*
2818 * We want to keep the following priority order:
2819 * cpu pinned (that don't need to move), task pinned,
2820 * cpu flexible, task flexible.
2821 */
2822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2823 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2824 perf_pmu_enable(ctx->pmu);
2825 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2826}
2827
8dc85d54
PZ
2828/*
2829 * Called from scheduler to add the events of the current task
2830 * with interrupts disabled.
2831 *
2832 * We restore the event value and then enable it.
2833 *
2834 * This does not protect us against NMI, but enable()
2835 * sets the enabled bit in the control field of event _before_
2836 * accessing the event control register. If a NMI hits, then it will
2837 * keep the event running.
2838 */
ab0cce56
JO
2839void __perf_event_task_sched_in(struct task_struct *prev,
2840 struct task_struct *task)
8dc85d54
PZ
2841{
2842 struct perf_event_context *ctx;
2843 int ctxn;
2844
7e41d177
PZ
2845 /*
2846 * If cgroup events exist on this CPU, then we need to check if we have
2847 * to switch in PMU state; cgroup event are system-wide mode only.
2848 *
2849 * Since cgroup events are CPU events, we must schedule these in before
2850 * we schedule in the task events.
2851 */
2852 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2853 perf_cgroup_sched_in(prev, task);
2854
8dc85d54
PZ
2855 for_each_task_context_nr(ctxn) {
2856 ctx = task->perf_event_ctxp[ctxn];
2857 if (likely(!ctx))
2858 continue;
2859
e5d1367f 2860 perf_event_context_sched_in(ctx, task);
8dc85d54 2861 }
d010b332 2862
45ac1403
AH
2863 if (atomic_read(&nr_switch_events))
2864 perf_event_switch(task, prev, true);
2865
ba532500
YZ
2866 if (__this_cpu_read(perf_sched_cb_usages))
2867 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2868}
2869
abd50713
PZ
2870static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2871{
2872 u64 frequency = event->attr.sample_freq;
2873 u64 sec = NSEC_PER_SEC;
2874 u64 divisor, dividend;
2875
2876 int count_fls, nsec_fls, frequency_fls, sec_fls;
2877
2878 count_fls = fls64(count);
2879 nsec_fls = fls64(nsec);
2880 frequency_fls = fls64(frequency);
2881 sec_fls = 30;
2882
2883 /*
2884 * We got @count in @nsec, with a target of sample_freq HZ
2885 * the target period becomes:
2886 *
2887 * @count * 10^9
2888 * period = -------------------
2889 * @nsec * sample_freq
2890 *
2891 */
2892
2893 /*
2894 * Reduce accuracy by one bit such that @a and @b converge
2895 * to a similar magnitude.
2896 */
fe4b04fa 2897#define REDUCE_FLS(a, b) \
abd50713
PZ
2898do { \
2899 if (a##_fls > b##_fls) { \
2900 a >>= 1; \
2901 a##_fls--; \
2902 } else { \
2903 b >>= 1; \
2904 b##_fls--; \
2905 } \
2906} while (0)
2907
2908 /*
2909 * Reduce accuracy until either term fits in a u64, then proceed with
2910 * the other, so that finally we can do a u64/u64 division.
2911 */
2912 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2913 REDUCE_FLS(nsec, frequency);
2914 REDUCE_FLS(sec, count);
2915 }
2916
2917 if (count_fls + sec_fls > 64) {
2918 divisor = nsec * frequency;
2919
2920 while (count_fls + sec_fls > 64) {
2921 REDUCE_FLS(count, sec);
2922 divisor >>= 1;
2923 }
2924
2925 dividend = count * sec;
2926 } else {
2927 dividend = count * sec;
2928
2929 while (nsec_fls + frequency_fls > 64) {
2930 REDUCE_FLS(nsec, frequency);
2931 dividend >>= 1;
2932 }
2933
2934 divisor = nsec * frequency;
2935 }
2936
f6ab91ad
PZ
2937 if (!divisor)
2938 return dividend;
2939
abd50713
PZ
2940 return div64_u64(dividend, divisor);
2941}
2942
e050e3f0
SE
2943static DEFINE_PER_CPU(int, perf_throttled_count);
2944static DEFINE_PER_CPU(u64, perf_throttled_seq);
2945
f39d47ff 2946static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2947{
cdd6c482 2948 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2949 s64 period, sample_period;
bd2b5b12
PZ
2950 s64 delta;
2951
abd50713 2952 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2953
2954 delta = (s64)(period - hwc->sample_period);
2955 delta = (delta + 7) / 8; /* low pass filter */
2956
2957 sample_period = hwc->sample_period + delta;
2958
2959 if (!sample_period)
2960 sample_period = 1;
2961
bd2b5b12 2962 hwc->sample_period = sample_period;
abd50713 2963
e7850595 2964 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2965 if (disable)
2966 event->pmu->stop(event, PERF_EF_UPDATE);
2967
e7850595 2968 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2969
2970 if (disable)
2971 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2972 }
bd2b5b12
PZ
2973}
2974
e050e3f0
SE
2975/*
2976 * combine freq adjustment with unthrottling to avoid two passes over the
2977 * events. At the same time, make sure, having freq events does not change
2978 * the rate of unthrottling as that would introduce bias.
2979 */
2980static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2981 int needs_unthr)
60db5e09 2982{
cdd6c482
IM
2983 struct perf_event *event;
2984 struct hw_perf_event *hwc;
e050e3f0 2985 u64 now, period = TICK_NSEC;
abd50713 2986 s64 delta;
60db5e09 2987
e050e3f0
SE
2988 /*
2989 * only need to iterate over all events iff:
2990 * - context have events in frequency mode (needs freq adjust)
2991 * - there are events to unthrottle on this cpu
2992 */
2993 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2994 return;
2995
e050e3f0 2996 raw_spin_lock(&ctx->lock);
f39d47ff 2997 perf_pmu_disable(ctx->pmu);
e050e3f0 2998
03541f8b 2999 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3000 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3001 continue;
3002
5632ab12 3003 if (!event_filter_match(event))
5d27c23d
PZ
3004 continue;
3005
44377277
AS
3006 perf_pmu_disable(event->pmu);
3007
cdd6c482 3008 hwc = &event->hw;
6a24ed6c 3009
ae23bff1 3010 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3011 hwc->interrupts = 0;
cdd6c482 3012 perf_log_throttle(event, 1);
a4eaf7f1 3013 event->pmu->start(event, 0);
a78ac325
PZ
3014 }
3015
cdd6c482 3016 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3017 goto next;
60db5e09 3018
e050e3f0
SE
3019 /*
3020 * stop the event and update event->count
3021 */
3022 event->pmu->stop(event, PERF_EF_UPDATE);
3023
e7850595 3024 now = local64_read(&event->count);
abd50713
PZ
3025 delta = now - hwc->freq_count_stamp;
3026 hwc->freq_count_stamp = now;
60db5e09 3027
e050e3f0
SE
3028 /*
3029 * restart the event
3030 * reload only if value has changed
f39d47ff
SE
3031 * we have stopped the event so tell that
3032 * to perf_adjust_period() to avoid stopping it
3033 * twice.
e050e3f0 3034 */
abd50713 3035 if (delta > 0)
f39d47ff 3036 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3037
3038 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3039 next:
3040 perf_pmu_enable(event->pmu);
60db5e09 3041 }
e050e3f0 3042
f39d47ff 3043 perf_pmu_enable(ctx->pmu);
e050e3f0 3044 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3045}
3046
235c7fc7 3047/*
cdd6c482 3048 * Round-robin a context's events:
235c7fc7 3049 */
cdd6c482 3050static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3051{
dddd3379
TG
3052 /*
3053 * Rotate the first entry last of non-pinned groups. Rotation might be
3054 * disabled by the inheritance code.
3055 */
3056 if (!ctx->rotate_disable)
3057 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3058}
3059
9e630205 3060static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3061{
8dc85d54 3062 struct perf_event_context *ctx = NULL;
2fde4f94 3063 int rotate = 0;
7fc23a53 3064
b5ab4cd5 3065 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3066 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3067 rotate = 1;
3068 }
235c7fc7 3069
8dc85d54 3070 ctx = cpuctx->task_ctx;
b5ab4cd5 3071 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3072 if (ctx->nr_events != ctx->nr_active)
3073 rotate = 1;
3074 }
9717e6cd 3075
e050e3f0 3076 if (!rotate)
0f5a2601
PZ
3077 goto done;
3078
facc4307 3079 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3080 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3081
e050e3f0
SE
3082 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3083 if (ctx)
3084 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3085
e050e3f0
SE
3086 rotate_ctx(&cpuctx->ctx);
3087 if (ctx)
3088 rotate_ctx(ctx);
235c7fc7 3089
e050e3f0 3090 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3091
0f5a2601
PZ
3092 perf_pmu_enable(cpuctx->ctx.pmu);
3093 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3094done:
9e630205
SE
3095
3096 return rotate;
e9d2b064
PZ
3097}
3098
026249ef
FW
3099#ifdef CONFIG_NO_HZ_FULL
3100bool perf_event_can_stop_tick(void)
3101{
948b26b6 3102 if (atomic_read(&nr_freq_events) ||
d84153d6 3103 __this_cpu_read(perf_throttled_count))
026249ef 3104 return false;
d84153d6
FW
3105 else
3106 return true;
026249ef
FW
3107}
3108#endif
3109
e9d2b064
PZ
3110void perf_event_task_tick(void)
3111{
2fde4f94
MR
3112 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3113 struct perf_event_context *ctx, *tmp;
e050e3f0 3114 int throttled;
b5ab4cd5 3115
e9d2b064
PZ
3116 WARN_ON(!irqs_disabled());
3117
e050e3f0
SE
3118 __this_cpu_inc(perf_throttled_seq);
3119 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3120
2fde4f94 3121 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3122 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3123}
3124
889ff015
FW
3125static int event_enable_on_exec(struct perf_event *event,
3126 struct perf_event_context *ctx)
3127{
3128 if (!event->attr.enable_on_exec)
3129 return 0;
3130
3131 event->attr.enable_on_exec = 0;
3132 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3133 return 0;
3134
1d9b482e 3135 __perf_event_mark_enabled(event);
889ff015
FW
3136
3137 return 1;
3138}
3139
57e7986e 3140/*
cdd6c482 3141 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3142 * This expects task == current.
3143 */
c1274499 3144static void perf_event_enable_on_exec(int ctxn)
57e7986e 3145{
c1274499 3146 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3147 struct perf_cpu_context *cpuctx;
cdd6c482 3148 struct perf_event *event;
57e7986e
PM
3149 unsigned long flags;
3150 int enabled = 0;
3151
3152 local_irq_save(flags);
c1274499 3153 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3154 if (!ctx || !ctx->nr_events)
57e7986e
PM
3155 goto out;
3156
3e349507
PZ
3157 cpuctx = __get_cpu_context(ctx);
3158 perf_ctx_lock(cpuctx, ctx);
3159 list_for_each_entry(event, &ctx->event_list, event_entry)
3160 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3161
3162 /*
3e349507 3163 * Unclone and reschedule this context if we enabled any event.
57e7986e 3164 */
3e349507 3165 if (enabled) {
211de6eb 3166 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3167 ctx_resched(cpuctx, ctx);
3168 }
3169 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3170
9ed6060d 3171out:
57e7986e 3172 local_irq_restore(flags);
211de6eb
PZ
3173
3174 if (clone_ctx)
3175 put_ctx(clone_ctx);
57e7986e
PM
3176}
3177
e041e328
PZ
3178void perf_event_exec(void)
3179{
e041e328
PZ
3180 int ctxn;
3181
3182 rcu_read_lock();
c1274499
PZ
3183 for_each_task_context_nr(ctxn)
3184 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3185 rcu_read_unlock();
3186}
3187
0492d4c5
PZ
3188struct perf_read_data {
3189 struct perf_event *event;
3190 bool group;
7d88962e 3191 int ret;
0492d4c5
PZ
3192};
3193
0793a61d 3194/*
cdd6c482 3195 * Cross CPU call to read the hardware event
0793a61d 3196 */
cdd6c482 3197static void __perf_event_read(void *info)
0793a61d 3198{
0492d4c5
PZ
3199 struct perf_read_data *data = info;
3200 struct perf_event *sub, *event = data->event;
cdd6c482 3201 struct perf_event_context *ctx = event->ctx;
108b02cf 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3203 struct pmu *pmu = event->pmu;
621a01ea 3204
e1ac3614
PM
3205 /*
3206 * If this is a task context, we need to check whether it is
3207 * the current task context of this cpu. If not it has been
3208 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3209 * event->count would have been updated to a recent sample
3210 * when the event was scheduled out.
e1ac3614
PM
3211 */
3212 if (ctx->task && cpuctx->task_ctx != ctx)
3213 return;
3214
e625cce1 3215 raw_spin_lock(&ctx->lock);
e5d1367f 3216 if (ctx->is_active) {
542e72fc 3217 update_context_time(ctx);
e5d1367f
SE
3218 update_cgrp_time_from_event(event);
3219 }
0492d4c5 3220
cdd6c482 3221 update_event_times(event);
4a00c16e
SB
3222 if (event->state != PERF_EVENT_STATE_ACTIVE)
3223 goto unlock;
0492d4c5 3224
4a00c16e
SB
3225 if (!data->group) {
3226 pmu->read(event);
3227 data->ret = 0;
0492d4c5 3228 goto unlock;
4a00c16e
SB
3229 }
3230
3231 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3232
3233 pmu->read(event);
0492d4c5
PZ
3234
3235 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3236 update_event_times(sub);
4a00c16e
SB
3237 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3238 /*
3239 * Use sibling's PMU rather than @event's since
3240 * sibling could be on different (eg: software) PMU.
3241 */
0492d4c5 3242 sub->pmu->read(sub);
4a00c16e 3243 }
0492d4c5 3244 }
4a00c16e
SB
3245
3246 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3247
3248unlock:
e625cce1 3249 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3250}
3251
b5e58793
PZ
3252static inline u64 perf_event_count(struct perf_event *event)
3253{
eacd3ecc
MF
3254 if (event->pmu->count)
3255 return event->pmu->count(event);
3256
3257 return __perf_event_count(event);
b5e58793
PZ
3258}
3259
ffe8690c
KX
3260/*
3261 * NMI-safe method to read a local event, that is an event that
3262 * is:
3263 * - either for the current task, or for this CPU
3264 * - does not have inherit set, for inherited task events
3265 * will not be local and we cannot read them atomically
3266 * - must not have a pmu::count method
3267 */
3268u64 perf_event_read_local(struct perf_event *event)
3269{
3270 unsigned long flags;
3271 u64 val;
3272
3273 /*
3274 * Disabling interrupts avoids all counter scheduling (context
3275 * switches, timer based rotation and IPIs).
3276 */
3277 local_irq_save(flags);
3278
3279 /* If this is a per-task event, it must be for current */
3280 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3281 event->hw.target != current);
3282
3283 /* If this is a per-CPU event, it must be for this CPU */
3284 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3285 event->cpu != smp_processor_id());
3286
3287 /*
3288 * It must not be an event with inherit set, we cannot read
3289 * all child counters from atomic context.
3290 */
3291 WARN_ON_ONCE(event->attr.inherit);
3292
3293 /*
3294 * It must not have a pmu::count method, those are not
3295 * NMI safe.
3296 */
3297 WARN_ON_ONCE(event->pmu->count);
3298
3299 /*
3300 * If the event is currently on this CPU, its either a per-task event,
3301 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3302 * oncpu == -1).
3303 */
3304 if (event->oncpu == smp_processor_id())
3305 event->pmu->read(event);
3306
3307 val = local64_read(&event->count);
3308 local_irq_restore(flags);
3309
3310 return val;
3311}
3312
7d88962e 3313static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3314{
7d88962e
SB
3315 int ret = 0;
3316
0793a61d 3317 /*
cdd6c482
IM
3318 * If event is enabled and currently active on a CPU, update the
3319 * value in the event structure:
0793a61d 3320 */
cdd6c482 3321 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3322 struct perf_read_data data = {
3323 .event = event,
3324 .group = group,
7d88962e 3325 .ret = 0,
0492d4c5 3326 };
cdd6c482 3327 smp_call_function_single(event->oncpu,
0492d4c5 3328 __perf_event_read, &data, 1);
7d88962e 3329 ret = data.ret;
cdd6c482 3330 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3331 struct perf_event_context *ctx = event->ctx;
3332 unsigned long flags;
3333
e625cce1 3334 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3335 /*
3336 * may read while context is not active
3337 * (e.g., thread is blocked), in that case
3338 * we cannot update context time
3339 */
e5d1367f 3340 if (ctx->is_active) {
c530ccd9 3341 update_context_time(ctx);
e5d1367f
SE
3342 update_cgrp_time_from_event(event);
3343 }
0492d4c5
PZ
3344 if (group)
3345 update_group_times(event);
3346 else
3347 update_event_times(event);
e625cce1 3348 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3349 }
7d88962e
SB
3350
3351 return ret;
0793a61d
TG
3352}
3353
a63eaf34 3354/*
cdd6c482 3355 * Initialize the perf_event context in a task_struct:
a63eaf34 3356 */
eb184479 3357static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3358{
e625cce1 3359 raw_spin_lock_init(&ctx->lock);
a63eaf34 3360 mutex_init(&ctx->mutex);
2fde4f94 3361 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3362 INIT_LIST_HEAD(&ctx->pinned_groups);
3363 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3364 INIT_LIST_HEAD(&ctx->event_list);
3365 atomic_set(&ctx->refcount, 1);
fadfe7be 3366 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3367}
3368
3369static struct perf_event_context *
3370alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3371{
3372 struct perf_event_context *ctx;
3373
3374 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3375 if (!ctx)
3376 return NULL;
3377
3378 __perf_event_init_context(ctx);
3379 if (task) {
3380 ctx->task = task;
3381 get_task_struct(task);
0793a61d 3382 }
eb184479
PZ
3383 ctx->pmu = pmu;
3384
3385 return ctx;
a63eaf34
PM
3386}
3387
2ebd4ffb
MH
3388static struct task_struct *
3389find_lively_task_by_vpid(pid_t vpid)
3390{
3391 struct task_struct *task;
3392 int err;
0793a61d
TG
3393
3394 rcu_read_lock();
2ebd4ffb 3395 if (!vpid)
0793a61d
TG
3396 task = current;
3397 else
2ebd4ffb 3398 task = find_task_by_vpid(vpid);
0793a61d
TG
3399 if (task)
3400 get_task_struct(task);
3401 rcu_read_unlock();
3402
3403 if (!task)
3404 return ERR_PTR(-ESRCH);
3405
0793a61d 3406 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3407 err = -EACCES;
3408 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3409 goto errout;
3410
2ebd4ffb
MH
3411 return task;
3412errout:
3413 put_task_struct(task);
3414 return ERR_PTR(err);
3415
3416}
3417
fe4b04fa
PZ
3418/*
3419 * Returns a matching context with refcount and pincount.
3420 */
108b02cf 3421static struct perf_event_context *
4af57ef2
YZ
3422find_get_context(struct pmu *pmu, struct task_struct *task,
3423 struct perf_event *event)
0793a61d 3424{
211de6eb 3425 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3426 struct perf_cpu_context *cpuctx;
4af57ef2 3427 void *task_ctx_data = NULL;
25346b93 3428 unsigned long flags;
8dc85d54 3429 int ctxn, err;
4af57ef2 3430 int cpu = event->cpu;
0793a61d 3431
22a4ec72 3432 if (!task) {
cdd6c482 3433 /* Must be root to operate on a CPU event: */
0764771d 3434 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3435 return ERR_PTR(-EACCES);
3436
0793a61d 3437 /*
cdd6c482 3438 * We could be clever and allow to attach a event to an
0793a61d
TG
3439 * offline CPU and activate it when the CPU comes up, but
3440 * that's for later.
3441 */
f6325e30 3442 if (!cpu_online(cpu))
0793a61d
TG
3443 return ERR_PTR(-ENODEV);
3444
108b02cf 3445 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3446 ctx = &cpuctx->ctx;
c93f7669 3447 get_ctx(ctx);
fe4b04fa 3448 ++ctx->pin_count;
0793a61d 3449
0793a61d
TG
3450 return ctx;
3451 }
3452
8dc85d54
PZ
3453 err = -EINVAL;
3454 ctxn = pmu->task_ctx_nr;
3455 if (ctxn < 0)
3456 goto errout;
3457
4af57ef2
YZ
3458 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3459 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3460 if (!task_ctx_data) {
3461 err = -ENOMEM;
3462 goto errout;
3463 }
3464 }
3465
9ed6060d 3466retry:
8dc85d54 3467 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3468 if (ctx) {
211de6eb 3469 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3470 ++ctx->pin_count;
4af57ef2
YZ
3471
3472 if (task_ctx_data && !ctx->task_ctx_data) {
3473 ctx->task_ctx_data = task_ctx_data;
3474 task_ctx_data = NULL;
3475 }
e625cce1 3476 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3477
3478 if (clone_ctx)
3479 put_ctx(clone_ctx);
9137fb28 3480 } else {
eb184479 3481 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3482 err = -ENOMEM;
3483 if (!ctx)
3484 goto errout;
eb184479 3485
4af57ef2
YZ
3486 if (task_ctx_data) {
3487 ctx->task_ctx_data = task_ctx_data;
3488 task_ctx_data = NULL;
3489 }
3490
dbe08d82
ON
3491 err = 0;
3492 mutex_lock(&task->perf_event_mutex);
3493 /*
3494 * If it has already passed perf_event_exit_task().
3495 * we must see PF_EXITING, it takes this mutex too.
3496 */
3497 if (task->flags & PF_EXITING)
3498 err = -ESRCH;
3499 else if (task->perf_event_ctxp[ctxn])
3500 err = -EAGAIN;
fe4b04fa 3501 else {
9137fb28 3502 get_ctx(ctx);
fe4b04fa 3503 ++ctx->pin_count;
dbe08d82 3504 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3505 }
dbe08d82
ON
3506 mutex_unlock(&task->perf_event_mutex);
3507
3508 if (unlikely(err)) {
9137fb28 3509 put_ctx(ctx);
dbe08d82
ON
3510
3511 if (err == -EAGAIN)
3512 goto retry;
3513 goto errout;
a63eaf34
PM
3514 }
3515 }
3516
4af57ef2 3517 kfree(task_ctx_data);
0793a61d 3518 return ctx;
c93f7669 3519
9ed6060d 3520errout:
4af57ef2 3521 kfree(task_ctx_data);
c93f7669 3522 return ERR_PTR(err);
0793a61d
TG
3523}
3524
6fb2915d 3525static void perf_event_free_filter(struct perf_event *event);
2541517c 3526static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3527
cdd6c482 3528static void free_event_rcu(struct rcu_head *head)
592903cd 3529{
cdd6c482 3530 struct perf_event *event;
592903cd 3531
cdd6c482
IM
3532 event = container_of(head, struct perf_event, rcu_head);
3533 if (event->ns)
3534 put_pid_ns(event->ns);
6fb2915d 3535 perf_event_free_filter(event);
cdd6c482 3536 kfree(event);
592903cd
PZ
3537}
3538
b69cf536
PZ
3539static void ring_buffer_attach(struct perf_event *event,
3540 struct ring_buffer *rb);
925d519a 3541
4beb31f3 3542static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3543{
4beb31f3
FW
3544 if (event->parent)
3545 return;
3546
4beb31f3
FW
3547 if (is_cgroup_event(event))
3548 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3549}
925d519a 3550
4beb31f3
FW
3551static void unaccount_event(struct perf_event *event)
3552{
25432ae9
PZ
3553 bool dec = false;
3554
4beb31f3
FW
3555 if (event->parent)
3556 return;
3557
3558 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3559 dec = true;
4beb31f3
FW
3560 if (event->attr.mmap || event->attr.mmap_data)
3561 atomic_dec(&nr_mmap_events);
3562 if (event->attr.comm)
3563 atomic_dec(&nr_comm_events);
3564 if (event->attr.task)
3565 atomic_dec(&nr_task_events);
948b26b6
FW
3566 if (event->attr.freq)
3567 atomic_dec(&nr_freq_events);
45ac1403 3568 if (event->attr.context_switch) {
25432ae9 3569 dec = true;
45ac1403
AH
3570 atomic_dec(&nr_switch_events);
3571 }
4beb31f3 3572 if (is_cgroup_event(event))
25432ae9 3573 dec = true;
4beb31f3 3574 if (has_branch_stack(event))
25432ae9
PZ
3575 dec = true;
3576
3577 if (dec)
4beb31f3
FW
3578 static_key_slow_dec_deferred(&perf_sched_events);
3579
3580 unaccount_event_cpu(event, event->cpu);
3581}
925d519a 3582
bed5b25a
AS
3583/*
3584 * The following implement mutual exclusion of events on "exclusive" pmus
3585 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3586 * at a time, so we disallow creating events that might conflict, namely:
3587 *
3588 * 1) cpu-wide events in the presence of per-task events,
3589 * 2) per-task events in the presence of cpu-wide events,
3590 * 3) two matching events on the same context.
3591 *
3592 * The former two cases are handled in the allocation path (perf_event_alloc(),
3593 * __free_event()), the latter -- before the first perf_install_in_context().
3594 */
3595static int exclusive_event_init(struct perf_event *event)
3596{
3597 struct pmu *pmu = event->pmu;
3598
3599 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3600 return 0;
3601
3602 /*
3603 * Prevent co-existence of per-task and cpu-wide events on the
3604 * same exclusive pmu.
3605 *
3606 * Negative pmu::exclusive_cnt means there are cpu-wide
3607 * events on this "exclusive" pmu, positive means there are
3608 * per-task events.
3609 *
3610 * Since this is called in perf_event_alloc() path, event::ctx
3611 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3612 * to mean "per-task event", because unlike other attach states it
3613 * never gets cleared.
3614 */
3615 if (event->attach_state & PERF_ATTACH_TASK) {
3616 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3617 return -EBUSY;
3618 } else {
3619 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3620 return -EBUSY;
3621 }
3622
3623 return 0;
3624}
3625
3626static void exclusive_event_destroy(struct perf_event *event)
3627{
3628 struct pmu *pmu = event->pmu;
3629
3630 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3631 return;
3632
3633 /* see comment in exclusive_event_init() */
3634 if (event->attach_state & PERF_ATTACH_TASK)
3635 atomic_dec(&pmu->exclusive_cnt);
3636 else
3637 atomic_inc(&pmu->exclusive_cnt);
3638}
3639
3640static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3641{
3642 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3643 (e1->cpu == e2->cpu ||
3644 e1->cpu == -1 ||
3645 e2->cpu == -1))
3646 return true;
3647 return false;
3648}
3649
3650/* Called under the same ctx::mutex as perf_install_in_context() */
3651static bool exclusive_event_installable(struct perf_event *event,
3652 struct perf_event_context *ctx)
3653{
3654 struct perf_event *iter_event;
3655 struct pmu *pmu = event->pmu;
3656
3657 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3658 return true;
3659
3660 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3661 if (exclusive_event_match(iter_event, event))
3662 return false;
3663 }
3664
3665 return true;
3666}
3667
766d6c07
FW
3668static void __free_event(struct perf_event *event)
3669{
cdd6c482 3670 if (!event->parent) {
927c7a9e
FW
3671 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3672 put_callchain_buffers();
f344011c 3673 }
9ee318a7 3674
dead9f29
AS
3675 perf_event_free_bpf_prog(event);
3676
766d6c07
FW
3677 if (event->destroy)
3678 event->destroy(event);
3679
3680 if (event->ctx)
3681 put_ctx(event->ctx);
3682
bed5b25a
AS
3683 if (event->pmu) {
3684 exclusive_event_destroy(event);
c464c76e 3685 module_put(event->pmu->module);
bed5b25a 3686 }
c464c76e 3687
766d6c07
FW
3688 call_rcu(&event->rcu_head, free_event_rcu);
3689}
683ede43
PZ
3690
3691static void _free_event(struct perf_event *event)
f1600952 3692{
e360adbe 3693 irq_work_sync(&event->pending);
925d519a 3694
4beb31f3 3695 unaccount_event(event);
9ee318a7 3696
76369139 3697 if (event->rb) {
9bb5d40c
PZ
3698 /*
3699 * Can happen when we close an event with re-directed output.
3700 *
3701 * Since we have a 0 refcount, perf_mmap_close() will skip
3702 * over us; possibly making our ring_buffer_put() the last.
3703 */
3704 mutex_lock(&event->mmap_mutex);
b69cf536 3705 ring_buffer_attach(event, NULL);
9bb5d40c 3706 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3707 }
3708
e5d1367f
SE
3709 if (is_cgroup_event(event))
3710 perf_detach_cgroup(event);
3711
766d6c07 3712 __free_event(event);
f1600952
PZ
3713}
3714
683ede43
PZ
3715/*
3716 * Used to free events which have a known refcount of 1, such as in error paths
3717 * where the event isn't exposed yet and inherited events.
3718 */
3719static void free_event(struct perf_event *event)
0793a61d 3720{
683ede43
PZ
3721 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3722 "unexpected event refcount: %ld; ptr=%p\n",
3723 atomic_long_read(&event->refcount), event)) {
3724 /* leak to avoid use-after-free */
3725 return;
3726 }
0793a61d 3727
683ede43 3728 _free_event(event);
0793a61d
TG
3729}
3730
a66a3052 3731/*
f8697762 3732 * Remove user event from the owner task.
a66a3052 3733 */
f8697762 3734static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3735{
8882135b 3736 struct task_struct *owner;
fb0459d7 3737
8882135b
PZ
3738 rcu_read_lock();
3739 owner = ACCESS_ONCE(event->owner);
3740 /*
3741 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3742 * !owner it means the list deletion is complete and we can indeed
3743 * free this event, otherwise we need to serialize on
3744 * owner->perf_event_mutex.
3745 */
3746 smp_read_barrier_depends();
3747 if (owner) {
3748 /*
3749 * Since delayed_put_task_struct() also drops the last
3750 * task reference we can safely take a new reference
3751 * while holding the rcu_read_lock().
3752 */
3753 get_task_struct(owner);
3754 }
3755 rcu_read_unlock();
3756
3757 if (owner) {
f63a8daa
PZ
3758 /*
3759 * If we're here through perf_event_exit_task() we're already
3760 * holding ctx->mutex which would be an inversion wrt. the
3761 * normal lock order.
3762 *
3763 * However we can safely take this lock because its the child
3764 * ctx->mutex.
3765 */
3766 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3767
8882135b
PZ
3768 /*
3769 * We have to re-check the event->owner field, if it is cleared
3770 * we raced with perf_event_exit_task(), acquiring the mutex
3771 * ensured they're done, and we can proceed with freeing the
3772 * event.
3773 */
3774 if (event->owner)
3775 list_del_init(&event->owner_entry);
3776 mutex_unlock(&owner->perf_event_mutex);
3777 put_task_struct(owner);
3778 }
f8697762
JO
3779}
3780
f8697762
JO
3781static void put_event(struct perf_event *event)
3782{
a83fe28e 3783 struct perf_event_context *ctx;
f8697762
JO
3784
3785 if (!atomic_long_dec_and_test(&event->refcount))
3786 return;
3787
3788 if (!is_kernel_event(event))
3789 perf_remove_from_owner(event);
8882135b 3790
683ede43
PZ
3791 /*
3792 * There are two ways this annotation is useful:
3793 *
3794 * 1) there is a lock recursion from perf_event_exit_task
3795 * see the comment there.
3796 *
3797 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3798 * perf_read_group(), which takes faults while
683ede43
PZ
3799 * holding ctx->mutex, however this is called after
3800 * the last filedesc died, so there is no possibility
3801 * to trigger the AB-BA case.
3802 */
a83fe28e
PZ
3803 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3804 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3805 perf_remove_from_context(event, true);
d415a7f1 3806 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3807
3808 _free_event(event);
a6fa941d
AV
3809}
3810
683ede43
PZ
3811int perf_event_release_kernel(struct perf_event *event)
3812{
3813 put_event(event);
3814 return 0;
3815}
3816EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3817
8b10c5e2
PZ
3818/*
3819 * Called when the last reference to the file is gone.
3820 */
a6fa941d
AV
3821static int perf_release(struct inode *inode, struct file *file)
3822{
3823 put_event(file->private_data);
3824 return 0;
fb0459d7 3825}
fb0459d7 3826
fadfe7be
JO
3827/*
3828 * Remove all orphanes events from the context.
3829 */
3830static void orphans_remove_work(struct work_struct *work)
3831{
3832 struct perf_event_context *ctx;
3833 struct perf_event *event, *tmp;
3834
3835 ctx = container_of(work, struct perf_event_context,
3836 orphans_remove.work);
3837
3838 mutex_lock(&ctx->mutex);
3839 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3840 struct perf_event *parent_event = event->parent;
3841
3842 if (!is_orphaned_child(event))
3843 continue;
3844
3845 perf_remove_from_context(event, true);
3846
3847 mutex_lock(&parent_event->child_mutex);
3848 list_del_init(&event->child_list);
3849 mutex_unlock(&parent_event->child_mutex);
3850
3851 free_event(event);
3852 put_event(parent_event);
3853 }
3854
3855 raw_spin_lock_irq(&ctx->lock);
3856 ctx->orphans_remove_sched = false;
3857 raw_spin_unlock_irq(&ctx->lock);
3858 mutex_unlock(&ctx->mutex);
3859
3860 put_ctx(ctx);
3861}
3862
59ed446f 3863u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3864{
cdd6c482 3865 struct perf_event *child;
e53c0994
PZ
3866 u64 total = 0;
3867
59ed446f
PZ
3868 *enabled = 0;
3869 *running = 0;
3870
6f10581a 3871 mutex_lock(&event->child_mutex);
01add3ea 3872
7d88962e 3873 (void)perf_event_read(event, false);
01add3ea
SB
3874 total += perf_event_count(event);
3875
59ed446f
PZ
3876 *enabled += event->total_time_enabled +
3877 atomic64_read(&event->child_total_time_enabled);
3878 *running += event->total_time_running +
3879 atomic64_read(&event->child_total_time_running);
3880
3881 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3882 (void)perf_event_read(child, false);
01add3ea 3883 total += perf_event_count(child);
59ed446f
PZ
3884 *enabled += child->total_time_enabled;
3885 *running += child->total_time_running;
3886 }
6f10581a 3887 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3888
3889 return total;
3890}
fb0459d7 3891EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3892
7d88962e 3893static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3894 u64 read_format, u64 *values)
3dab77fb 3895{
fa8c2693
PZ
3896 struct perf_event *sub;
3897 int n = 1; /* skip @nr */
7d88962e 3898 int ret;
f63a8daa 3899
7d88962e
SB
3900 ret = perf_event_read(leader, true);
3901 if (ret)
3902 return ret;
abf4868b 3903
fa8c2693
PZ
3904 /*
3905 * Since we co-schedule groups, {enabled,running} times of siblings
3906 * will be identical to those of the leader, so we only publish one
3907 * set.
3908 */
3909 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3910 values[n++] += leader->total_time_enabled +
3911 atomic64_read(&leader->child_total_time_enabled);
3912 }
3dab77fb 3913
fa8c2693
PZ
3914 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3915 values[n++] += leader->total_time_running +
3916 atomic64_read(&leader->child_total_time_running);
3917 }
3918
3919 /*
3920 * Write {count,id} tuples for every sibling.
3921 */
3922 values[n++] += perf_event_count(leader);
abf4868b
PZ
3923 if (read_format & PERF_FORMAT_ID)
3924 values[n++] = primary_event_id(leader);
3dab77fb 3925
fa8c2693
PZ
3926 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3927 values[n++] += perf_event_count(sub);
3928 if (read_format & PERF_FORMAT_ID)
3929 values[n++] = primary_event_id(sub);
3930 }
7d88962e
SB
3931
3932 return 0;
fa8c2693 3933}
3dab77fb 3934
fa8c2693
PZ
3935static int perf_read_group(struct perf_event *event,
3936 u64 read_format, char __user *buf)
3937{
3938 struct perf_event *leader = event->group_leader, *child;
3939 struct perf_event_context *ctx = leader->ctx;
7d88962e 3940 int ret;
fa8c2693 3941 u64 *values;
3dab77fb 3942
fa8c2693 3943 lockdep_assert_held(&ctx->mutex);
3dab77fb 3944
fa8c2693
PZ
3945 values = kzalloc(event->read_size, GFP_KERNEL);
3946 if (!values)
3947 return -ENOMEM;
3dab77fb 3948
fa8c2693
PZ
3949 values[0] = 1 + leader->nr_siblings;
3950
3951 /*
3952 * By locking the child_mutex of the leader we effectively
3953 * lock the child list of all siblings.. XXX explain how.
3954 */
3955 mutex_lock(&leader->child_mutex);
abf4868b 3956
7d88962e
SB
3957 ret = __perf_read_group_add(leader, read_format, values);
3958 if (ret)
3959 goto unlock;
3960
3961 list_for_each_entry(child, &leader->child_list, child_list) {
3962 ret = __perf_read_group_add(child, read_format, values);
3963 if (ret)
3964 goto unlock;
3965 }
abf4868b 3966
fa8c2693 3967 mutex_unlock(&leader->child_mutex);
abf4868b 3968
7d88962e 3969 ret = event->read_size;
fa8c2693
PZ
3970 if (copy_to_user(buf, values, event->read_size))
3971 ret = -EFAULT;
7d88962e 3972 goto out;
fa8c2693 3973
7d88962e
SB
3974unlock:
3975 mutex_unlock(&leader->child_mutex);
3976out:
fa8c2693 3977 kfree(values);
abf4868b 3978 return ret;
3dab77fb
PZ
3979}
3980
b15f495b 3981static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3982 u64 read_format, char __user *buf)
3983{
59ed446f 3984 u64 enabled, running;
3dab77fb
PZ
3985 u64 values[4];
3986 int n = 0;
3987
59ed446f
PZ
3988 values[n++] = perf_event_read_value(event, &enabled, &running);
3989 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3990 values[n++] = enabled;
3991 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3992 values[n++] = running;
3dab77fb 3993 if (read_format & PERF_FORMAT_ID)
cdd6c482 3994 values[n++] = primary_event_id(event);
3dab77fb
PZ
3995
3996 if (copy_to_user(buf, values, n * sizeof(u64)))
3997 return -EFAULT;
3998
3999 return n * sizeof(u64);
4000}
4001
dc633982
JO
4002static bool is_event_hup(struct perf_event *event)
4003{
4004 bool no_children;
4005
4006 if (event->state != PERF_EVENT_STATE_EXIT)
4007 return false;
4008
4009 mutex_lock(&event->child_mutex);
4010 no_children = list_empty(&event->child_list);
4011 mutex_unlock(&event->child_mutex);
4012 return no_children;
4013}
4014
0793a61d 4015/*
cdd6c482 4016 * Read the performance event - simple non blocking version for now
0793a61d
TG
4017 */
4018static ssize_t
b15f495b 4019__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4020{
cdd6c482 4021 u64 read_format = event->attr.read_format;
3dab77fb 4022 int ret;
0793a61d 4023
3b6f9e5c 4024 /*
cdd6c482 4025 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4026 * error state (i.e. because it was pinned but it couldn't be
4027 * scheduled on to the CPU at some point).
4028 */
cdd6c482 4029 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4030 return 0;
4031
c320c7b7 4032 if (count < event->read_size)
3dab77fb
PZ
4033 return -ENOSPC;
4034
cdd6c482 4035 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4036 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4037 ret = perf_read_group(event, read_format, buf);
3dab77fb 4038 else
b15f495b 4039 ret = perf_read_one(event, read_format, buf);
0793a61d 4040
3dab77fb 4041 return ret;
0793a61d
TG
4042}
4043
0793a61d
TG
4044static ssize_t
4045perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4046{
cdd6c482 4047 struct perf_event *event = file->private_data;
f63a8daa
PZ
4048 struct perf_event_context *ctx;
4049 int ret;
0793a61d 4050
f63a8daa 4051 ctx = perf_event_ctx_lock(event);
b15f495b 4052 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4053 perf_event_ctx_unlock(event, ctx);
4054
4055 return ret;
0793a61d
TG
4056}
4057
4058static unsigned int perf_poll(struct file *file, poll_table *wait)
4059{
cdd6c482 4060 struct perf_event *event = file->private_data;
76369139 4061 struct ring_buffer *rb;
61b67684 4062 unsigned int events = POLLHUP;
c7138f37 4063
e708d7ad 4064 poll_wait(file, &event->waitq, wait);
179033b3 4065
dc633982 4066 if (is_event_hup(event))
179033b3 4067 return events;
c7138f37 4068
10c6db11 4069 /*
9bb5d40c
PZ
4070 * Pin the event->rb by taking event->mmap_mutex; otherwise
4071 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4072 */
4073 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4074 rb = event->rb;
4075 if (rb)
76369139 4076 events = atomic_xchg(&rb->poll, 0);
10c6db11 4077 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4078 return events;
4079}
4080
f63a8daa 4081static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4082{
7d88962e 4083 (void)perf_event_read(event, false);
e7850595 4084 local64_set(&event->count, 0);
cdd6c482 4085 perf_event_update_userpage(event);
3df5edad
PZ
4086}
4087
c93f7669 4088/*
cdd6c482
IM
4089 * Holding the top-level event's child_mutex means that any
4090 * descendant process that has inherited this event will block
4091 * in sync_child_event if it goes to exit, thus satisfying the
4092 * task existence requirements of perf_event_enable/disable.
c93f7669 4093 */
cdd6c482
IM
4094static void perf_event_for_each_child(struct perf_event *event,
4095 void (*func)(struct perf_event *))
3df5edad 4096{
cdd6c482 4097 struct perf_event *child;
3df5edad 4098
cdd6c482 4099 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4100
cdd6c482
IM
4101 mutex_lock(&event->child_mutex);
4102 func(event);
4103 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4104 func(child);
cdd6c482 4105 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4106}
4107
cdd6c482
IM
4108static void perf_event_for_each(struct perf_event *event,
4109 void (*func)(struct perf_event *))
3df5edad 4110{
cdd6c482
IM
4111 struct perf_event_context *ctx = event->ctx;
4112 struct perf_event *sibling;
3df5edad 4113
f63a8daa
PZ
4114 lockdep_assert_held(&ctx->mutex);
4115
cdd6c482 4116 event = event->group_leader;
75f937f2 4117
cdd6c482 4118 perf_event_for_each_child(event, func);
cdd6c482 4119 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4120 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4121}
4122
fae3fde6
PZ
4123static void __perf_event_period(struct perf_event *event,
4124 struct perf_cpu_context *cpuctx,
4125 struct perf_event_context *ctx,
4126 void *info)
c7999c6f 4127{
fae3fde6 4128 u64 value = *((u64 *)info);
c7999c6f 4129 bool active;
08247e31 4130
cdd6c482 4131 if (event->attr.freq) {
cdd6c482 4132 event->attr.sample_freq = value;
08247e31 4133 } else {
cdd6c482
IM
4134 event->attr.sample_period = value;
4135 event->hw.sample_period = value;
08247e31 4136 }
bad7192b
PZ
4137
4138 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4139 if (active) {
4140 perf_pmu_disable(ctx->pmu);
4141 event->pmu->stop(event, PERF_EF_UPDATE);
4142 }
4143
4144 local64_set(&event->hw.period_left, 0);
4145
4146 if (active) {
4147 event->pmu->start(event, PERF_EF_RELOAD);
4148 perf_pmu_enable(ctx->pmu);
4149 }
c7999c6f
PZ
4150}
4151
4152static int perf_event_period(struct perf_event *event, u64 __user *arg)
4153{
c7999c6f
PZ
4154 u64 value;
4155
4156 if (!is_sampling_event(event))
4157 return -EINVAL;
4158
4159 if (copy_from_user(&value, arg, sizeof(value)))
4160 return -EFAULT;
4161
4162 if (!value)
4163 return -EINVAL;
4164
4165 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4166 return -EINVAL;
4167
fae3fde6 4168 event_function_call(event, __perf_event_period, &value);
08247e31 4169
c7999c6f 4170 return 0;
08247e31
PZ
4171}
4172
ac9721f3
PZ
4173static const struct file_operations perf_fops;
4174
2903ff01 4175static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4176{
2903ff01
AV
4177 struct fd f = fdget(fd);
4178 if (!f.file)
4179 return -EBADF;
ac9721f3 4180
2903ff01
AV
4181 if (f.file->f_op != &perf_fops) {
4182 fdput(f);
4183 return -EBADF;
ac9721f3 4184 }
2903ff01
AV
4185 *p = f;
4186 return 0;
ac9721f3
PZ
4187}
4188
4189static int perf_event_set_output(struct perf_event *event,
4190 struct perf_event *output_event);
6fb2915d 4191static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4192static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4193
f63a8daa 4194static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4195{
cdd6c482 4196 void (*func)(struct perf_event *);
3df5edad 4197 u32 flags = arg;
d859e29f
PM
4198
4199 switch (cmd) {
cdd6c482 4200 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4201 func = _perf_event_enable;
d859e29f 4202 break;
cdd6c482 4203 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4204 func = _perf_event_disable;
79f14641 4205 break;
cdd6c482 4206 case PERF_EVENT_IOC_RESET:
f63a8daa 4207 func = _perf_event_reset;
6de6a7b9 4208 break;
3df5edad 4209
cdd6c482 4210 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4211 return _perf_event_refresh(event, arg);
08247e31 4212
cdd6c482
IM
4213 case PERF_EVENT_IOC_PERIOD:
4214 return perf_event_period(event, (u64 __user *)arg);
08247e31 4215
cf4957f1
JO
4216 case PERF_EVENT_IOC_ID:
4217 {
4218 u64 id = primary_event_id(event);
4219
4220 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4221 return -EFAULT;
4222 return 0;
4223 }
4224
cdd6c482 4225 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4226 {
ac9721f3 4227 int ret;
ac9721f3 4228 if (arg != -1) {
2903ff01
AV
4229 struct perf_event *output_event;
4230 struct fd output;
4231 ret = perf_fget_light(arg, &output);
4232 if (ret)
4233 return ret;
4234 output_event = output.file->private_data;
4235 ret = perf_event_set_output(event, output_event);
4236 fdput(output);
4237 } else {
4238 ret = perf_event_set_output(event, NULL);
ac9721f3 4239 }
ac9721f3
PZ
4240 return ret;
4241 }
a4be7c27 4242
6fb2915d
LZ
4243 case PERF_EVENT_IOC_SET_FILTER:
4244 return perf_event_set_filter(event, (void __user *)arg);
4245
2541517c
AS
4246 case PERF_EVENT_IOC_SET_BPF:
4247 return perf_event_set_bpf_prog(event, arg);
4248
d859e29f 4249 default:
3df5edad 4250 return -ENOTTY;
d859e29f 4251 }
3df5edad
PZ
4252
4253 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4254 perf_event_for_each(event, func);
3df5edad 4255 else
cdd6c482 4256 perf_event_for_each_child(event, func);
3df5edad
PZ
4257
4258 return 0;
d859e29f
PM
4259}
4260
f63a8daa
PZ
4261static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4262{
4263 struct perf_event *event = file->private_data;
4264 struct perf_event_context *ctx;
4265 long ret;
4266
4267 ctx = perf_event_ctx_lock(event);
4268 ret = _perf_ioctl(event, cmd, arg);
4269 perf_event_ctx_unlock(event, ctx);
4270
4271 return ret;
4272}
4273
b3f20785
PM
4274#ifdef CONFIG_COMPAT
4275static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4276 unsigned long arg)
4277{
4278 switch (_IOC_NR(cmd)) {
4279 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4280 case _IOC_NR(PERF_EVENT_IOC_ID):
4281 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4282 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4283 cmd &= ~IOCSIZE_MASK;
4284 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4285 }
4286 break;
4287 }
4288 return perf_ioctl(file, cmd, arg);
4289}
4290#else
4291# define perf_compat_ioctl NULL
4292#endif
4293
cdd6c482 4294int perf_event_task_enable(void)
771d7cde 4295{
f63a8daa 4296 struct perf_event_context *ctx;
cdd6c482 4297 struct perf_event *event;
771d7cde 4298
cdd6c482 4299 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4300 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4301 ctx = perf_event_ctx_lock(event);
4302 perf_event_for_each_child(event, _perf_event_enable);
4303 perf_event_ctx_unlock(event, ctx);
4304 }
cdd6c482 4305 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4306
4307 return 0;
4308}
4309
cdd6c482 4310int perf_event_task_disable(void)
771d7cde 4311{
f63a8daa 4312 struct perf_event_context *ctx;
cdd6c482 4313 struct perf_event *event;
771d7cde 4314
cdd6c482 4315 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4316 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4317 ctx = perf_event_ctx_lock(event);
4318 perf_event_for_each_child(event, _perf_event_disable);
4319 perf_event_ctx_unlock(event, ctx);
4320 }
cdd6c482 4321 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4322
4323 return 0;
4324}
4325
cdd6c482 4326static int perf_event_index(struct perf_event *event)
194002b2 4327{
a4eaf7f1
PZ
4328 if (event->hw.state & PERF_HES_STOPPED)
4329 return 0;
4330
cdd6c482 4331 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4332 return 0;
4333
35edc2a5 4334 return event->pmu->event_idx(event);
194002b2
PZ
4335}
4336
c4794295 4337static void calc_timer_values(struct perf_event *event,
e3f3541c 4338 u64 *now,
7f310a5d
EM
4339 u64 *enabled,
4340 u64 *running)
c4794295 4341{
e3f3541c 4342 u64 ctx_time;
c4794295 4343
e3f3541c
PZ
4344 *now = perf_clock();
4345 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4346 *enabled = ctx_time - event->tstamp_enabled;
4347 *running = ctx_time - event->tstamp_running;
4348}
4349
fa731587
PZ
4350static void perf_event_init_userpage(struct perf_event *event)
4351{
4352 struct perf_event_mmap_page *userpg;
4353 struct ring_buffer *rb;
4354
4355 rcu_read_lock();
4356 rb = rcu_dereference(event->rb);
4357 if (!rb)
4358 goto unlock;
4359
4360 userpg = rb->user_page;
4361
4362 /* Allow new userspace to detect that bit 0 is deprecated */
4363 userpg->cap_bit0_is_deprecated = 1;
4364 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4365 userpg->data_offset = PAGE_SIZE;
4366 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4367
4368unlock:
4369 rcu_read_unlock();
4370}
4371
c1317ec2
AL
4372void __weak arch_perf_update_userpage(
4373 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4374{
4375}
4376
38ff667b
PZ
4377/*
4378 * Callers need to ensure there can be no nesting of this function, otherwise
4379 * the seqlock logic goes bad. We can not serialize this because the arch
4380 * code calls this from NMI context.
4381 */
cdd6c482 4382void perf_event_update_userpage(struct perf_event *event)
37d81828 4383{
cdd6c482 4384 struct perf_event_mmap_page *userpg;
76369139 4385 struct ring_buffer *rb;
e3f3541c 4386 u64 enabled, running, now;
38ff667b
PZ
4387
4388 rcu_read_lock();
5ec4c599
PZ
4389 rb = rcu_dereference(event->rb);
4390 if (!rb)
4391 goto unlock;
4392
0d641208
EM
4393 /*
4394 * compute total_time_enabled, total_time_running
4395 * based on snapshot values taken when the event
4396 * was last scheduled in.
4397 *
4398 * we cannot simply called update_context_time()
4399 * because of locking issue as we can be called in
4400 * NMI context
4401 */
e3f3541c 4402 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4403
76369139 4404 userpg = rb->user_page;
7b732a75
PZ
4405 /*
4406 * Disable preemption so as to not let the corresponding user-space
4407 * spin too long if we get preempted.
4408 */
4409 preempt_disable();
37d81828 4410 ++userpg->lock;
92f22a38 4411 barrier();
cdd6c482 4412 userpg->index = perf_event_index(event);
b5e58793 4413 userpg->offset = perf_event_count(event);
365a4038 4414 if (userpg->index)
e7850595 4415 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4416
0d641208 4417 userpg->time_enabled = enabled +
cdd6c482 4418 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4419
0d641208 4420 userpg->time_running = running +
cdd6c482 4421 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4422
c1317ec2 4423 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4424
92f22a38 4425 barrier();
37d81828 4426 ++userpg->lock;
7b732a75 4427 preempt_enable();
38ff667b 4428unlock:
7b732a75 4429 rcu_read_unlock();
37d81828
PM
4430}
4431
906010b2
PZ
4432static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4433{
4434 struct perf_event *event = vma->vm_file->private_data;
76369139 4435 struct ring_buffer *rb;
906010b2
PZ
4436 int ret = VM_FAULT_SIGBUS;
4437
4438 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4439 if (vmf->pgoff == 0)
4440 ret = 0;
4441 return ret;
4442 }
4443
4444 rcu_read_lock();
76369139
FW
4445 rb = rcu_dereference(event->rb);
4446 if (!rb)
906010b2
PZ
4447 goto unlock;
4448
4449 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4450 goto unlock;
4451
76369139 4452 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4453 if (!vmf->page)
4454 goto unlock;
4455
4456 get_page(vmf->page);
4457 vmf->page->mapping = vma->vm_file->f_mapping;
4458 vmf->page->index = vmf->pgoff;
4459
4460 ret = 0;
4461unlock:
4462 rcu_read_unlock();
4463
4464 return ret;
4465}
4466
10c6db11
PZ
4467static void ring_buffer_attach(struct perf_event *event,
4468 struct ring_buffer *rb)
4469{
b69cf536 4470 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4471 unsigned long flags;
4472
b69cf536
PZ
4473 if (event->rb) {
4474 /*
4475 * Should be impossible, we set this when removing
4476 * event->rb_entry and wait/clear when adding event->rb_entry.
4477 */
4478 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4479
b69cf536 4480 old_rb = event->rb;
b69cf536
PZ
4481 spin_lock_irqsave(&old_rb->event_lock, flags);
4482 list_del_rcu(&event->rb_entry);
4483 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4484
2f993cf0
ON
4485 event->rcu_batches = get_state_synchronize_rcu();
4486 event->rcu_pending = 1;
b69cf536 4487 }
10c6db11 4488
b69cf536 4489 if (rb) {
2f993cf0
ON
4490 if (event->rcu_pending) {
4491 cond_synchronize_rcu(event->rcu_batches);
4492 event->rcu_pending = 0;
4493 }
4494
b69cf536
PZ
4495 spin_lock_irqsave(&rb->event_lock, flags);
4496 list_add_rcu(&event->rb_entry, &rb->event_list);
4497 spin_unlock_irqrestore(&rb->event_lock, flags);
4498 }
4499
4500 rcu_assign_pointer(event->rb, rb);
4501
4502 if (old_rb) {
4503 ring_buffer_put(old_rb);
4504 /*
4505 * Since we detached before setting the new rb, so that we
4506 * could attach the new rb, we could have missed a wakeup.
4507 * Provide it now.
4508 */
4509 wake_up_all(&event->waitq);
4510 }
10c6db11
PZ
4511}
4512
4513static void ring_buffer_wakeup(struct perf_event *event)
4514{
4515 struct ring_buffer *rb;
4516
4517 rcu_read_lock();
4518 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4519 if (rb) {
4520 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4521 wake_up_all(&event->waitq);
4522 }
10c6db11
PZ
4523 rcu_read_unlock();
4524}
4525
fdc26706 4526struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4527{
76369139 4528 struct ring_buffer *rb;
7b732a75 4529
ac9721f3 4530 rcu_read_lock();
76369139
FW
4531 rb = rcu_dereference(event->rb);
4532 if (rb) {
4533 if (!atomic_inc_not_zero(&rb->refcount))
4534 rb = NULL;
ac9721f3
PZ
4535 }
4536 rcu_read_unlock();
4537
76369139 4538 return rb;
ac9721f3
PZ
4539}
4540
fdc26706 4541void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4542{
76369139 4543 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4544 return;
7b732a75 4545
9bb5d40c 4546 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4547
76369139 4548 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4549}
4550
4551static void perf_mmap_open(struct vm_area_struct *vma)
4552{
cdd6c482 4553 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4554
cdd6c482 4555 atomic_inc(&event->mmap_count);
9bb5d40c 4556 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4557
45bfb2e5
PZ
4558 if (vma->vm_pgoff)
4559 atomic_inc(&event->rb->aux_mmap_count);
4560
1e0fb9ec
AL
4561 if (event->pmu->event_mapped)
4562 event->pmu->event_mapped(event);
7b732a75
PZ
4563}
4564
9bb5d40c
PZ
4565/*
4566 * A buffer can be mmap()ed multiple times; either directly through the same
4567 * event, or through other events by use of perf_event_set_output().
4568 *
4569 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4570 * the buffer here, where we still have a VM context. This means we need
4571 * to detach all events redirecting to us.
4572 */
7b732a75
PZ
4573static void perf_mmap_close(struct vm_area_struct *vma)
4574{
cdd6c482 4575 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4576
b69cf536 4577 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4578 struct user_struct *mmap_user = rb->mmap_user;
4579 int mmap_locked = rb->mmap_locked;
4580 unsigned long size = perf_data_size(rb);
789f90fc 4581
1e0fb9ec
AL
4582 if (event->pmu->event_unmapped)
4583 event->pmu->event_unmapped(event);
4584
45bfb2e5
PZ
4585 /*
4586 * rb->aux_mmap_count will always drop before rb->mmap_count and
4587 * event->mmap_count, so it is ok to use event->mmap_mutex to
4588 * serialize with perf_mmap here.
4589 */
4590 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4591 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4592 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4593 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4594
4595 rb_free_aux(rb);
4596 mutex_unlock(&event->mmap_mutex);
4597 }
4598
9bb5d40c
PZ
4599 atomic_dec(&rb->mmap_count);
4600
4601 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4602 goto out_put;
9bb5d40c 4603
b69cf536 4604 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4605 mutex_unlock(&event->mmap_mutex);
4606
4607 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4608 if (atomic_read(&rb->mmap_count))
4609 goto out_put;
ac9721f3 4610
9bb5d40c
PZ
4611 /*
4612 * No other mmap()s, detach from all other events that might redirect
4613 * into the now unreachable buffer. Somewhat complicated by the
4614 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4615 */
4616again:
4617 rcu_read_lock();
4618 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4619 if (!atomic_long_inc_not_zero(&event->refcount)) {
4620 /*
4621 * This event is en-route to free_event() which will
4622 * detach it and remove it from the list.
4623 */
4624 continue;
4625 }
4626 rcu_read_unlock();
789f90fc 4627
9bb5d40c
PZ
4628 mutex_lock(&event->mmap_mutex);
4629 /*
4630 * Check we didn't race with perf_event_set_output() which can
4631 * swizzle the rb from under us while we were waiting to
4632 * acquire mmap_mutex.
4633 *
4634 * If we find a different rb; ignore this event, a next
4635 * iteration will no longer find it on the list. We have to
4636 * still restart the iteration to make sure we're not now
4637 * iterating the wrong list.
4638 */
b69cf536
PZ
4639 if (event->rb == rb)
4640 ring_buffer_attach(event, NULL);
4641
cdd6c482 4642 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4643 put_event(event);
ac9721f3 4644
9bb5d40c
PZ
4645 /*
4646 * Restart the iteration; either we're on the wrong list or
4647 * destroyed its integrity by doing a deletion.
4648 */
4649 goto again;
7b732a75 4650 }
9bb5d40c
PZ
4651 rcu_read_unlock();
4652
4653 /*
4654 * It could be there's still a few 0-ref events on the list; they'll
4655 * get cleaned up by free_event() -- they'll also still have their
4656 * ref on the rb and will free it whenever they are done with it.
4657 *
4658 * Aside from that, this buffer is 'fully' detached and unmapped,
4659 * undo the VM accounting.
4660 */
4661
4662 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4663 vma->vm_mm->pinned_vm -= mmap_locked;
4664 free_uid(mmap_user);
4665
b69cf536 4666out_put:
9bb5d40c 4667 ring_buffer_put(rb); /* could be last */
37d81828
PM
4668}
4669
f0f37e2f 4670static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4671 .open = perf_mmap_open,
45bfb2e5 4672 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4673 .fault = perf_mmap_fault,
4674 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4675};
4676
4677static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4678{
cdd6c482 4679 struct perf_event *event = file->private_data;
22a4f650 4680 unsigned long user_locked, user_lock_limit;
789f90fc 4681 struct user_struct *user = current_user();
22a4f650 4682 unsigned long locked, lock_limit;
45bfb2e5 4683 struct ring_buffer *rb = NULL;
7b732a75
PZ
4684 unsigned long vma_size;
4685 unsigned long nr_pages;
45bfb2e5 4686 long user_extra = 0, extra = 0;
d57e34fd 4687 int ret = 0, flags = 0;
37d81828 4688
c7920614
PZ
4689 /*
4690 * Don't allow mmap() of inherited per-task counters. This would
4691 * create a performance issue due to all children writing to the
76369139 4692 * same rb.
c7920614
PZ
4693 */
4694 if (event->cpu == -1 && event->attr.inherit)
4695 return -EINVAL;
4696
43a21ea8 4697 if (!(vma->vm_flags & VM_SHARED))
37d81828 4698 return -EINVAL;
7b732a75
PZ
4699
4700 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4701
4702 if (vma->vm_pgoff == 0) {
4703 nr_pages = (vma_size / PAGE_SIZE) - 1;
4704 } else {
4705 /*
4706 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4707 * mapped, all subsequent mappings should have the same size
4708 * and offset. Must be above the normal perf buffer.
4709 */
4710 u64 aux_offset, aux_size;
4711
4712 if (!event->rb)
4713 return -EINVAL;
4714
4715 nr_pages = vma_size / PAGE_SIZE;
4716
4717 mutex_lock(&event->mmap_mutex);
4718 ret = -EINVAL;
4719
4720 rb = event->rb;
4721 if (!rb)
4722 goto aux_unlock;
4723
4724 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4725 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4726
4727 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4728 goto aux_unlock;
4729
4730 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4731 goto aux_unlock;
4732
4733 /* already mapped with a different offset */
4734 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4735 goto aux_unlock;
4736
4737 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4738 goto aux_unlock;
4739
4740 /* already mapped with a different size */
4741 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4742 goto aux_unlock;
4743
4744 if (!is_power_of_2(nr_pages))
4745 goto aux_unlock;
4746
4747 if (!atomic_inc_not_zero(&rb->mmap_count))
4748 goto aux_unlock;
4749
4750 if (rb_has_aux(rb)) {
4751 atomic_inc(&rb->aux_mmap_count);
4752 ret = 0;
4753 goto unlock;
4754 }
4755
4756 atomic_set(&rb->aux_mmap_count, 1);
4757 user_extra = nr_pages;
4758
4759 goto accounting;
4760 }
7b732a75 4761
7730d865 4762 /*
76369139 4763 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4764 * can do bitmasks instead of modulo.
4765 */
2ed11312 4766 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4767 return -EINVAL;
4768
7b732a75 4769 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4770 return -EINVAL;
4771
cdd6c482 4772 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4773again:
cdd6c482 4774 mutex_lock(&event->mmap_mutex);
76369139 4775 if (event->rb) {
9bb5d40c 4776 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4777 ret = -EINVAL;
9bb5d40c
PZ
4778 goto unlock;
4779 }
4780
4781 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4782 /*
4783 * Raced against perf_mmap_close() through
4784 * perf_event_set_output(). Try again, hope for better
4785 * luck.
4786 */
4787 mutex_unlock(&event->mmap_mutex);
4788 goto again;
4789 }
4790
ebb3c4c4
PZ
4791 goto unlock;
4792 }
4793
789f90fc 4794 user_extra = nr_pages + 1;
45bfb2e5
PZ
4795
4796accounting:
cdd6c482 4797 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4798
4799 /*
4800 * Increase the limit linearly with more CPUs:
4801 */
4802 user_lock_limit *= num_online_cpus();
4803
789f90fc 4804 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4805
789f90fc
PZ
4806 if (user_locked > user_lock_limit)
4807 extra = user_locked - user_lock_limit;
7b732a75 4808
78d7d407 4809 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4810 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4811 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4812
459ec28a
IM
4813 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4814 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4815 ret = -EPERM;
4816 goto unlock;
4817 }
7b732a75 4818
45bfb2e5 4819 WARN_ON(!rb && event->rb);
906010b2 4820
d57e34fd 4821 if (vma->vm_flags & VM_WRITE)
76369139 4822 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4823
76369139 4824 if (!rb) {
45bfb2e5
PZ
4825 rb = rb_alloc(nr_pages,
4826 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4827 event->cpu, flags);
26cb63ad 4828
45bfb2e5
PZ
4829 if (!rb) {
4830 ret = -ENOMEM;
4831 goto unlock;
4832 }
43a21ea8 4833
45bfb2e5
PZ
4834 atomic_set(&rb->mmap_count, 1);
4835 rb->mmap_user = get_current_user();
4836 rb->mmap_locked = extra;
26cb63ad 4837
45bfb2e5 4838 ring_buffer_attach(event, rb);
ac9721f3 4839
45bfb2e5
PZ
4840 perf_event_init_userpage(event);
4841 perf_event_update_userpage(event);
4842 } else {
1a594131
AS
4843 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4844 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4845 if (!ret)
4846 rb->aux_mmap_locked = extra;
4847 }
9a0f05cb 4848
ebb3c4c4 4849unlock:
45bfb2e5
PZ
4850 if (!ret) {
4851 atomic_long_add(user_extra, &user->locked_vm);
4852 vma->vm_mm->pinned_vm += extra;
4853
ac9721f3 4854 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4855 } else if (rb) {
4856 atomic_dec(&rb->mmap_count);
4857 }
4858aux_unlock:
cdd6c482 4859 mutex_unlock(&event->mmap_mutex);
37d81828 4860
9bb5d40c
PZ
4861 /*
4862 * Since pinned accounting is per vm we cannot allow fork() to copy our
4863 * vma.
4864 */
26cb63ad 4865 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4866 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4867
1e0fb9ec
AL
4868 if (event->pmu->event_mapped)
4869 event->pmu->event_mapped(event);
4870
7b732a75 4871 return ret;
37d81828
PM
4872}
4873
3c446b3d
PZ
4874static int perf_fasync(int fd, struct file *filp, int on)
4875{
496ad9aa 4876 struct inode *inode = file_inode(filp);
cdd6c482 4877 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4878 int retval;
4879
4880 mutex_lock(&inode->i_mutex);
cdd6c482 4881 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4882 mutex_unlock(&inode->i_mutex);
4883
4884 if (retval < 0)
4885 return retval;
4886
4887 return 0;
4888}
4889
0793a61d 4890static const struct file_operations perf_fops = {
3326c1ce 4891 .llseek = no_llseek,
0793a61d
TG
4892 .release = perf_release,
4893 .read = perf_read,
4894 .poll = perf_poll,
d859e29f 4895 .unlocked_ioctl = perf_ioctl,
b3f20785 4896 .compat_ioctl = perf_compat_ioctl,
37d81828 4897 .mmap = perf_mmap,
3c446b3d 4898 .fasync = perf_fasync,
0793a61d
TG
4899};
4900
925d519a 4901/*
cdd6c482 4902 * Perf event wakeup
925d519a
PZ
4903 *
4904 * If there's data, ensure we set the poll() state and publish everything
4905 * to user-space before waking everybody up.
4906 */
4907
fed66e2c
PZ
4908static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4909{
4910 /* only the parent has fasync state */
4911 if (event->parent)
4912 event = event->parent;
4913 return &event->fasync;
4914}
4915
cdd6c482 4916void perf_event_wakeup(struct perf_event *event)
925d519a 4917{
10c6db11 4918 ring_buffer_wakeup(event);
4c9e2542 4919
cdd6c482 4920 if (event->pending_kill) {
fed66e2c 4921 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4922 event->pending_kill = 0;
4c9e2542 4923 }
925d519a
PZ
4924}
4925
e360adbe 4926static void perf_pending_event(struct irq_work *entry)
79f14641 4927{
cdd6c482
IM
4928 struct perf_event *event = container_of(entry,
4929 struct perf_event, pending);
d525211f
PZ
4930 int rctx;
4931
4932 rctx = perf_swevent_get_recursion_context();
4933 /*
4934 * If we 'fail' here, that's OK, it means recursion is already disabled
4935 * and we won't recurse 'further'.
4936 */
79f14641 4937
cdd6c482
IM
4938 if (event->pending_disable) {
4939 event->pending_disable = 0;
fae3fde6 4940 perf_event_disable_local(event);
79f14641
PZ
4941 }
4942
cdd6c482
IM
4943 if (event->pending_wakeup) {
4944 event->pending_wakeup = 0;
4945 perf_event_wakeup(event);
79f14641 4946 }
d525211f
PZ
4947
4948 if (rctx >= 0)
4949 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4950}
4951
39447b38
ZY
4952/*
4953 * We assume there is only KVM supporting the callbacks.
4954 * Later on, we might change it to a list if there is
4955 * another virtualization implementation supporting the callbacks.
4956 */
4957struct perf_guest_info_callbacks *perf_guest_cbs;
4958
4959int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4960{
4961 perf_guest_cbs = cbs;
4962 return 0;
4963}
4964EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4965
4966int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4967{
4968 perf_guest_cbs = NULL;
4969 return 0;
4970}
4971EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4972
4018994f
JO
4973static void
4974perf_output_sample_regs(struct perf_output_handle *handle,
4975 struct pt_regs *regs, u64 mask)
4976{
4977 int bit;
4978
4979 for_each_set_bit(bit, (const unsigned long *) &mask,
4980 sizeof(mask) * BITS_PER_BYTE) {
4981 u64 val;
4982
4983 val = perf_reg_value(regs, bit);
4984 perf_output_put(handle, val);
4985 }
4986}
4987
60e2364e 4988static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4989 struct pt_regs *regs,
4990 struct pt_regs *regs_user_copy)
4018994f 4991{
88a7c26a
AL
4992 if (user_mode(regs)) {
4993 regs_user->abi = perf_reg_abi(current);
2565711f 4994 regs_user->regs = regs;
88a7c26a
AL
4995 } else if (current->mm) {
4996 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4997 } else {
4998 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4999 regs_user->regs = NULL;
4018994f
JO
5000 }
5001}
5002
60e2364e
SE
5003static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5004 struct pt_regs *regs)
5005{
5006 regs_intr->regs = regs;
5007 regs_intr->abi = perf_reg_abi(current);
5008}
5009
5010
c5ebcedb
JO
5011/*
5012 * Get remaining task size from user stack pointer.
5013 *
5014 * It'd be better to take stack vma map and limit this more
5015 * precisly, but there's no way to get it safely under interrupt,
5016 * so using TASK_SIZE as limit.
5017 */
5018static u64 perf_ustack_task_size(struct pt_regs *regs)
5019{
5020 unsigned long addr = perf_user_stack_pointer(regs);
5021
5022 if (!addr || addr >= TASK_SIZE)
5023 return 0;
5024
5025 return TASK_SIZE - addr;
5026}
5027
5028static u16
5029perf_sample_ustack_size(u16 stack_size, u16 header_size,
5030 struct pt_regs *regs)
5031{
5032 u64 task_size;
5033
5034 /* No regs, no stack pointer, no dump. */
5035 if (!regs)
5036 return 0;
5037
5038 /*
5039 * Check if we fit in with the requested stack size into the:
5040 * - TASK_SIZE
5041 * If we don't, we limit the size to the TASK_SIZE.
5042 *
5043 * - remaining sample size
5044 * If we don't, we customize the stack size to
5045 * fit in to the remaining sample size.
5046 */
5047
5048 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5049 stack_size = min(stack_size, (u16) task_size);
5050
5051 /* Current header size plus static size and dynamic size. */
5052 header_size += 2 * sizeof(u64);
5053
5054 /* Do we fit in with the current stack dump size? */
5055 if ((u16) (header_size + stack_size) < header_size) {
5056 /*
5057 * If we overflow the maximum size for the sample,
5058 * we customize the stack dump size to fit in.
5059 */
5060 stack_size = USHRT_MAX - header_size - sizeof(u64);
5061 stack_size = round_up(stack_size, sizeof(u64));
5062 }
5063
5064 return stack_size;
5065}
5066
5067static void
5068perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5069 struct pt_regs *regs)
5070{
5071 /* Case of a kernel thread, nothing to dump */
5072 if (!regs) {
5073 u64 size = 0;
5074 perf_output_put(handle, size);
5075 } else {
5076 unsigned long sp;
5077 unsigned int rem;
5078 u64 dyn_size;
5079
5080 /*
5081 * We dump:
5082 * static size
5083 * - the size requested by user or the best one we can fit
5084 * in to the sample max size
5085 * data
5086 * - user stack dump data
5087 * dynamic size
5088 * - the actual dumped size
5089 */
5090
5091 /* Static size. */
5092 perf_output_put(handle, dump_size);
5093
5094 /* Data. */
5095 sp = perf_user_stack_pointer(regs);
5096 rem = __output_copy_user(handle, (void *) sp, dump_size);
5097 dyn_size = dump_size - rem;
5098
5099 perf_output_skip(handle, rem);
5100
5101 /* Dynamic size. */
5102 perf_output_put(handle, dyn_size);
5103 }
5104}
5105
c980d109
ACM
5106static void __perf_event_header__init_id(struct perf_event_header *header,
5107 struct perf_sample_data *data,
5108 struct perf_event *event)
6844c09d
ACM
5109{
5110 u64 sample_type = event->attr.sample_type;
5111
5112 data->type = sample_type;
5113 header->size += event->id_header_size;
5114
5115 if (sample_type & PERF_SAMPLE_TID) {
5116 /* namespace issues */
5117 data->tid_entry.pid = perf_event_pid(event, current);
5118 data->tid_entry.tid = perf_event_tid(event, current);
5119 }
5120
5121 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5122 data->time = perf_event_clock(event);
6844c09d 5123
ff3d527c 5124 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5125 data->id = primary_event_id(event);
5126
5127 if (sample_type & PERF_SAMPLE_STREAM_ID)
5128 data->stream_id = event->id;
5129
5130 if (sample_type & PERF_SAMPLE_CPU) {
5131 data->cpu_entry.cpu = raw_smp_processor_id();
5132 data->cpu_entry.reserved = 0;
5133 }
5134}
5135
76369139
FW
5136void perf_event_header__init_id(struct perf_event_header *header,
5137 struct perf_sample_data *data,
5138 struct perf_event *event)
c980d109
ACM
5139{
5140 if (event->attr.sample_id_all)
5141 __perf_event_header__init_id(header, data, event);
5142}
5143
5144static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5145 struct perf_sample_data *data)
5146{
5147 u64 sample_type = data->type;
5148
5149 if (sample_type & PERF_SAMPLE_TID)
5150 perf_output_put(handle, data->tid_entry);
5151
5152 if (sample_type & PERF_SAMPLE_TIME)
5153 perf_output_put(handle, data->time);
5154
5155 if (sample_type & PERF_SAMPLE_ID)
5156 perf_output_put(handle, data->id);
5157
5158 if (sample_type & PERF_SAMPLE_STREAM_ID)
5159 perf_output_put(handle, data->stream_id);
5160
5161 if (sample_type & PERF_SAMPLE_CPU)
5162 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5163
5164 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5165 perf_output_put(handle, data->id);
c980d109
ACM
5166}
5167
76369139
FW
5168void perf_event__output_id_sample(struct perf_event *event,
5169 struct perf_output_handle *handle,
5170 struct perf_sample_data *sample)
c980d109
ACM
5171{
5172 if (event->attr.sample_id_all)
5173 __perf_event__output_id_sample(handle, sample);
5174}
5175
3dab77fb 5176static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5177 struct perf_event *event,
5178 u64 enabled, u64 running)
3dab77fb 5179{
cdd6c482 5180 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5181 u64 values[4];
5182 int n = 0;
5183
b5e58793 5184 values[n++] = perf_event_count(event);
3dab77fb 5185 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5186 values[n++] = enabled +
cdd6c482 5187 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5188 }
5189 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5190 values[n++] = running +
cdd6c482 5191 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5192 }
5193 if (read_format & PERF_FORMAT_ID)
cdd6c482 5194 values[n++] = primary_event_id(event);
3dab77fb 5195
76369139 5196 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5197}
5198
5199/*
cdd6c482 5200 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5201 */
5202static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5203 struct perf_event *event,
5204 u64 enabled, u64 running)
3dab77fb 5205{
cdd6c482
IM
5206 struct perf_event *leader = event->group_leader, *sub;
5207 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5208 u64 values[5];
5209 int n = 0;
5210
5211 values[n++] = 1 + leader->nr_siblings;
5212
5213 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5214 values[n++] = enabled;
3dab77fb
PZ
5215
5216 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5217 values[n++] = running;
3dab77fb 5218
cdd6c482 5219 if (leader != event)
3dab77fb
PZ
5220 leader->pmu->read(leader);
5221
b5e58793 5222 values[n++] = perf_event_count(leader);
3dab77fb 5223 if (read_format & PERF_FORMAT_ID)
cdd6c482 5224 values[n++] = primary_event_id(leader);
3dab77fb 5225
76369139 5226 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5227
65abc865 5228 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5229 n = 0;
5230
6f5ab001
JO
5231 if ((sub != event) &&
5232 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5233 sub->pmu->read(sub);
5234
b5e58793 5235 values[n++] = perf_event_count(sub);
3dab77fb 5236 if (read_format & PERF_FORMAT_ID)
cdd6c482 5237 values[n++] = primary_event_id(sub);
3dab77fb 5238
76369139 5239 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5240 }
5241}
5242
eed01528
SE
5243#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5244 PERF_FORMAT_TOTAL_TIME_RUNNING)
5245
3dab77fb 5246static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5247 struct perf_event *event)
3dab77fb 5248{
e3f3541c 5249 u64 enabled = 0, running = 0, now;
eed01528
SE
5250 u64 read_format = event->attr.read_format;
5251
5252 /*
5253 * compute total_time_enabled, total_time_running
5254 * based on snapshot values taken when the event
5255 * was last scheduled in.
5256 *
5257 * we cannot simply called update_context_time()
5258 * because of locking issue as we are called in
5259 * NMI context
5260 */
c4794295 5261 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5262 calc_timer_values(event, &now, &enabled, &running);
eed01528 5263
cdd6c482 5264 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5265 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5266 else
eed01528 5267 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5268}
5269
5622f295
MM
5270void perf_output_sample(struct perf_output_handle *handle,
5271 struct perf_event_header *header,
5272 struct perf_sample_data *data,
cdd6c482 5273 struct perf_event *event)
5622f295
MM
5274{
5275 u64 sample_type = data->type;
5276
5277 perf_output_put(handle, *header);
5278
ff3d527c
AH
5279 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5280 perf_output_put(handle, data->id);
5281
5622f295
MM
5282 if (sample_type & PERF_SAMPLE_IP)
5283 perf_output_put(handle, data->ip);
5284
5285 if (sample_type & PERF_SAMPLE_TID)
5286 perf_output_put(handle, data->tid_entry);
5287
5288 if (sample_type & PERF_SAMPLE_TIME)
5289 perf_output_put(handle, data->time);
5290
5291 if (sample_type & PERF_SAMPLE_ADDR)
5292 perf_output_put(handle, data->addr);
5293
5294 if (sample_type & PERF_SAMPLE_ID)
5295 perf_output_put(handle, data->id);
5296
5297 if (sample_type & PERF_SAMPLE_STREAM_ID)
5298 perf_output_put(handle, data->stream_id);
5299
5300 if (sample_type & PERF_SAMPLE_CPU)
5301 perf_output_put(handle, data->cpu_entry);
5302
5303 if (sample_type & PERF_SAMPLE_PERIOD)
5304 perf_output_put(handle, data->period);
5305
5306 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5307 perf_output_read(handle, event);
5622f295
MM
5308
5309 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5310 if (data->callchain) {
5311 int size = 1;
5312
5313 if (data->callchain)
5314 size += data->callchain->nr;
5315
5316 size *= sizeof(u64);
5317
76369139 5318 __output_copy(handle, data->callchain, size);
5622f295
MM
5319 } else {
5320 u64 nr = 0;
5321 perf_output_put(handle, nr);
5322 }
5323 }
5324
5325 if (sample_type & PERF_SAMPLE_RAW) {
5326 if (data->raw) {
fa128e6a
AS
5327 u32 raw_size = data->raw->size;
5328 u32 real_size = round_up(raw_size + sizeof(u32),
5329 sizeof(u64)) - sizeof(u32);
5330 u64 zero = 0;
5331
5332 perf_output_put(handle, real_size);
5333 __output_copy(handle, data->raw->data, raw_size);
5334 if (real_size - raw_size)
5335 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5336 } else {
5337 struct {
5338 u32 size;
5339 u32 data;
5340 } raw = {
5341 .size = sizeof(u32),
5342 .data = 0,
5343 };
5344 perf_output_put(handle, raw);
5345 }
5346 }
a7ac67ea 5347
bce38cd5
SE
5348 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5349 if (data->br_stack) {
5350 size_t size;
5351
5352 size = data->br_stack->nr
5353 * sizeof(struct perf_branch_entry);
5354
5355 perf_output_put(handle, data->br_stack->nr);
5356 perf_output_copy(handle, data->br_stack->entries, size);
5357 } else {
5358 /*
5359 * we always store at least the value of nr
5360 */
5361 u64 nr = 0;
5362 perf_output_put(handle, nr);
5363 }
5364 }
4018994f
JO
5365
5366 if (sample_type & PERF_SAMPLE_REGS_USER) {
5367 u64 abi = data->regs_user.abi;
5368
5369 /*
5370 * If there are no regs to dump, notice it through
5371 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5372 */
5373 perf_output_put(handle, abi);
5374
5375 if (abi) {
5376 u64 mask = event->attr.sample_regs_user;
5377 perf_output_sample_regs(handle,
5378 data->regs_user.regs,
5379 mask);
5380 }
5381 }
c5ebcedb 5382
a5cdd40c 5383 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5384 perf_output_sample_ustack(handle,
5385 data->stack_user_size,
5386 data->regs_user.regs);
a5cdd40c 5387 }
c3feedf2
AK
5388
5389 if (sample_type & PERF_SAMPLE_WEIGHT)
5390 perf_output_put(handle, data->weight);
d6be9ad6
SE
5391
5392 if (sample_type & PERF_SAMPLE_DATA_SRC)
5393 perf_output_put(handle, data->data_src.val);
a5cdd40c 5394
fdfbbd07
AK
5395 if (sample_type & PERF_SAMPLE_TRANSACTION)
5396 perf_output_put(handle, data->txn);
5397
60e2364e
SE
5398 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5399 u64 abi = data->regs_intr.abi;
5400 /*
5401 * If there are no regs to dump, notice it through
5402 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5403 */
5404 perf_output_put(handle, abi);
5405
5406 if (abi) {
5407 u64 mask = event->attr.sample_regs_intr;
5408
5409 perf_output_sample_regs(handle,
5410 data->regs_intr.regs,
5411 mask);
5412 }
5413 }
5414
a5cdd40c
PZ
5415 if (!event->attr.watermark) {
5416 int wakeup_events = event->attr.wakeup_events;
5417
5418 if (wakeup_events) {
5419 struct ring_buffer *rb = handle->rb;
5420 int events = local_inc_return(&rb->events);
5421
5422 if (events >= wakeup_events) {
5423 local_sub(wakeup_events, &rb->events);
5424 local_inc(&rb->wakeup);
5425 }
5426 }
5427 }
5622f295
MM
5428}
5429
5430void perf_prepare_sample(struct perf_event_header *header,
5431 struct perf_sample_data *data,
cdd6c482 5432 struct perf_event *event,
5622f295 5433 struct pt_regs *regs)
7b732a75 5434{
cdd6c482 5435 u64 sample_type = event->attr.sample_type;
7b732a75 5436
cdd6c482 5437 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5438 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5439
5440 header->misc = 0;
5441 header->misc |= perf_misc_flags(regs);
6fab0192 5442
c980d109 5443 __perf_event_header__init_id(header, data, event);
6844c09d 5444
c320c7b7 5445 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5446 data->ip = perf_instruction_pointer(regs);
5447
b23f3325 5448 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5449 int size = 1;
394ee076 5450
e6dab5ff 5451 data->callchain = perf_callchain(event, regs);
5622f295
MM
5452
5453 if (data->callchain)
5454 size += data->callchain->nr;
5455
5456 header->size += size * sizeof(u64);
394ee076
PZ
5457 }
5458
3a43ce68 5459 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5460 int size = sizeof(u32);
5461
5462 if (data->raw)
5463 size += data->raw->size;
5464 else
5465 size += sizeof(u32);
5466
fa128e6a 5467 header->size += round_up(size, sizeof(u64));
7f453c24 5468 }
bce38cd5
SE
5469
5470 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5471 int size = sizeof(u64); /* nr */
5472 if (data->br_stack) {
5473 size += data->br_stack->nr
5474 * sizeof(struct perf_branch_entry);
5475 }
5476 header->size += size;
5477 }
4018994f 5478
2565711f 5479 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5480 perf_sample_regs_user(&data->regs_user, regs,
5481 &data->regs_user_copy);
2565711f 5482
4018994f
JO
5483 if (sample_type & PERF_SAMPLE_REGS_USER) {
5484 /* regs dump ABI info */
5485 int size = sizeof(u64);
5486
4018994f
JO
5487 if (data->regs_user.regs) {
5488 u64 mask = event->attr.sample_regs_user;
5489 size += hweight64(mask) * sizeof(u64);
5490 }
5491
5492 header->size += size;
5493 }
c5ebcedb
JO
5494
5495 if (sample_type & PERF_SAMPLE_STACK_USER) {
5496 /*
5497 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5498 * processed as the last one or have additional check added
5499 * in case new sample type is added, because we could eat
5500 * up the rest of the sample size.
5501 */
c5ebcedb
JO
5502 u16 stack_size = event->attr.sample_stack_user;
5503 u16 size = sizeof(u64);
5504
c5ebcedb 5505 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5506 data->regs_user.regs);
c5ebcedb
JO
5507
5508 /*
5509 * If there is something to dump, add space for the dump
5510 * itself and for the field that tells the dynamic size,
5511 * which is how many have been actually dumped.
5512 */
5513 if (stack_size)
5514 size += sizeof(u64) + stack_size;
5515
5516 data->stack_user_size = stack_size;
5517 header->size += size;
5518 }
60e2364e
SE
5519
5520 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5521 /* regs dump ABI info */
5522 int size = sizeof(u64);
5523
5524 perf_sample_regs_intr(&data->regs_intr, regs);
5525
5526 if (data->regs_intr.regs) {
5527 u64 mask = event->attr.sample_regs_intr;
5528
5529 size += hweight64(mask) * sizeof(u64);
5530 }
5531
5532 header->size += size;
5533 }
5622f295 5534}
7f453c24 5535
21509084
YZ
5536void perf_event_output(struct perf_event *event,
5537 struct perf_sample_data *data,
5538 struct pt_regs *regs)
5622f295
MM
5539{
5540 struct perf_output_handle handle;
5541 struct perf_event_header header;
689802b2 5542
927c7a9e
FW
5543 /* protect the callchain buffers */
5544 rcu_read_lock();
5545
cdd6c482 5546 perf_prepare_sample(&header, data, event, regs);
5c148194 5547
a7ac67ea 5548 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5549 goto exit;
0322cd6e 5550
cdd6c482 5551 perf_output_sample(&handle, &header, data, event);
f413cdb8 5552
8a057d84 5553 perf_output_end(&handle);
927c7a9e
FW
5554
5555exit:
5556 rcu_read_unlock();
0322cd6e
PZ
5557}
5558
38b200d6 5559/*
cdd6c482 5560 * read event_id
38b200d6
PZ
5561 */
5562
5563struct perf_read_event {
5564 struct perf_event_header header;
5565
5566 u32 pid;
5567 u32 tid;
38b200d6
PZ
5568};
5569
5570static void
cdd6c482 5571perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5572 struct task_struct *task)
5573{
5574 struct perf_output_handle handle;
c980d109 5575 struct perf_sample_data sample;
dfc65094 5576 struct perf_read_event read_event = {
38b200d6 5577 .header = {
cdd6c482 5578 .type = PERF_RECORD_READ,
38b200d6 5579 .misc = 0,
c320c7b7 5580 .size = sizeof(read_event) + event->read_size,
38b200d6 5581 },
cdd6c482
IM
5582 .pid = perf_event_pid(event, task),
5583 .tid = perf_event_tid(event, task),
38b200d6 5584 };
3dab77fb 5585 int ret;
38b200d6 5586
c980d109 5587 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5588 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5589 if (ret)
5590 return;
5591
dfc65094 5592 perf_output_put(&handle, read_event);
cdd6c482 5593 perf_output_read(&handle, event);
c980d109 5594 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5595
38b200d6
PZ
5596 perf_output_end(&handle);
5597}
5598
52d857a8
JO
5599typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5600
5601static void
5602perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5603 perf_event_aux_output_cb output,
5604 void *data)
5605{
5606 struct perf_event *event;
5607
5608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5609 if (event->state < PERF_EVENT_STATE_INACTIVE)
5610 continue;
5611 if (!event_filter_match(event))
5612 continue;
67516844 5613 output(event, data);
52d857a8
JO
5614 }
5615}
5616
4e93ad60
JO
5617static void
5618perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5619 struct perf_event_context *task_ctx)
5620{
5621 rcu_read_lock();
5622 preempt_disable();
5623 perf_event_aux_ctx(task_ctx, output, data);
5624 preempt_enable();
5625 rcu_read_unlock();
5626}
5627
52d857a8 5628static void
67516844 5629perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5630 struct perf_event_context *task_ctx)
5631{
5632 struct perf_cpu_context *cpuctx;
5633 struct perf_event_context *ctx;
5634 struct pmu *pmu;
5635 int ctxn;
5636
4e93ad60
JO
5637 /*
5638 * If we have task_ctx != NULL we only notify
5639 * the task context itself. The task_ctx is set
5640 * only for EXIT events before releasing task
5641 * context.
5642 */
5643 if (task_ctx) {
5644 perf_event_aux_task_ctx(output, data, task_ctx);
5645 return;
5646 }
5647
52d857a8
JO
5648 rcu_read_lock();
5649 list_for_each_entry_rcu(pmu, &pmus, entry) {
5650 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5651 if (cpuctx->unique_pmu != pmu)
5652 goto next;
67516844 5653 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5654 ctxn = pmu->task_ctx_nr;
5655 if (ctxn < 0)
5656 goto next;
5657 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5658 if (ctx)
67516844 5659 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5660next:
5661 put_cpu_ptr(pmu->pmu_cpu_context);
5662 }
52d857a8
JO
5663 rcu_read_unlock();
5664}
5665
60313ebe 5666/*
9f498cc5
PZ
5667 * task tracking -- fork/exit
5668 *
13d7a241 5669 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5670 */
5671
9f498cc5 5672struct perf_task_event {
3a80b4a3 5673 struct task_struct *task;
cdd6c482 5674 struct perf_event_context *task_ctx;
60313ebe
PZ
5675
5676 struct {
5677 struct perf_event_header header;
5678
5679 u32 pid;
5680 u32 ppid;
9f498cc5
PZ
5681 u32 tid;
5682 u32 ptid;
393b2ad8 5683 u64 time;
cdd6c482 5684 } event_id;
60313ebe
PZ
5685};
5686
67516844
JO
5687static int perf_event_task_match(struct perf_event *event)
5688{
13d7a241
SE
5689 return event->attr.comm || event->attr.mmap ||
5690 event->attr.mmap2 || event->attr.mmap_data ||
5691 event->attr.task;
67516844
JO
5692}
5693
cdd6c482 5694static void perf_event_task_output(struct perf_event *event,
52d857a8 5695 void *data)
60313ebe 5696{
52d857a8 5697 struct perf_task_event *task_event = data;
60313ebe 5698 struct perf_output_handle handle;
c980d109 5699 struct perf_sample_data sample;
9f498cc5 5700 struct task_struct *task = task_event->task;
c980d109 5701 int ret, size = task_event->event_id.header.size;
8bb39f9a 5702
67516844
JO
5703 if (!perf_event_task_match(event))
5704 return;
5705
c980d109 5706 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5707
c980d109 5708 ret = perf_output_begin(&handle, event,
a7ac67ea 5709 task_event->event_id.header.size);
ef60777c 5710 if (ret)
c980d109 5711 goto out;
60313ebe 5712
cdd6c482
IM
5713 task_event->event_id.pid = perf_event_pid(event, task);
5714 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5715
cdd6c482
IM
5716 task_event->event_id.tid = perf_event_tid(event, task);
5717 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5718
34f43927
PZ
5719 task_event->event_id.time = perf_event_clock(event);
5720
cdd6c482 5721 perf_output_put(&handle, task_event->event_id);
393b2ad8 5722
c980d109
ACM
5723 perf_event__output_id_sample(event, &handle, &sample);
5724
60313ebe 5725 perf_output_end(&handle);
c980d109
ACM
5726out:
5727 task_event->event_id.header.size = size;
60313ebe
PZ
5728}
5729
cdd6c482
IM
5730static void perf_event_task(struct task_struct *task,
5731 struct perf_event_context *task_ctx,
3a80b4a3 5732 int new)
60313ebe 5733{
9f498cc5 5734 struct perf_task_event task_event;
60313ebe 5735
cdd6c482
IM
5736 if (!atomic_read(&nr_comm_events) &&
5737 !atomic_read(&nr_mmap_events) &&
5738 !atomic_read(&nr_task_events))
60313ebe
PZ
5739 return;
5740
9f498cc5 5741 task_event = (struct perf_task_event){
3a80b4a3
PZ
5742 .task = task,
5743 .task_ctx = task_ctx,
cdd6c482 5744 .event_id = {
60313ebe 5745 .header = {
cdd6c482 5746 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5747 .misc = 0,
cdd6c482 5748 .size = sizeof(task_event.event_id),
60313ebe 5749 },
573402db
PZ
5750 /* .pid */
5751 /* .ppid */
9f498cc5
PZ
5752 /* .tid */
5753 /* .ptid */
34f43927 5754 /* .time */
60313ebe
PZ
5755 },
5756 };
5757
67516844 5758 perf_event_aux(perf_event_task_output,
52d857a8
JO
5759 &task_event,
5760 task_ctx);
9f498cc5
PZ
5761}
5762
cdd6c482 5763void perf_event_fork(struct task_struct *task)
9f498cc5 5764{
cdd6c482 5765 perf_event_task(task, NULL, 1);
60313ebe
PZ
5766}
5767
8d1b2d93
PZ
5768/*
5769 * comm tracking
5770 */
5771
5772struct perf_comm_event {
22a4f650
IM
5773 struct task_struct *task;
5774 char *comm;
8d1b2d93
PZ
5775 int comm_size;
5776
5777 struct {
5778 struct perf_event_header header;
5779
5780 u32 pid;
5781 u32 tid;
cdd6c482 5782 } event_id;
8d1b2d93
PZ
5783};
5784
67516844
JO
5785static int perf_event_comm_match(struct perf_event *event)
5786{
5787 return event->attr.comm;
5788}
5789
cdd6c482 5790static void perf_event_comm_output(struct perf_event *event,
52d857a8 5791 void *data)
8d1b2d93 5792{
52d857a8 5793 struct perf_comm_event *comm_event = data;
8d1b2d93 5794 struct perf_output_handle handle;
c980d109 5795 struct perf_sample_data sample;
cdd6c482 5796 int size = comm_event->event_id.header.size;
c980d109
ACM
5797 int ret;
5798
67516844
JO
5799 if (!perf_event_comm_match(event))
5800 return;
5801
c980d109
ACM
5802 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5803 ret = perf_output_begin(&handle, event,
a7ac67ea 5804 comm_event->event_id.header.size);
8d1b2d93
PZ
5805
5806 if (ret)
c980d109 5807 goto out;
8d1b2d93 5808
cdd6c482
IM
5809 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5810 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5811
cdd6c482 5812 perf_output_put(&handle, comm_event->event_id);
76369139 5813 __output_copy(&handle, comm_event->comm,
8d1b2d93 5814 comm_event->comm_size);
c980d109
ACM
5815
5816 perf_event__output_id_sample(event, &handle, &sample);
5817
8d1b2d93 5818 perf_output_end(&handle);
c980d109
ACM
5819out:
5820 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5821}
5822
cdd6c482 5823static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5824{
413ee3b4 5825 char comm[TASK_COMM_LEN];
8d1b2d93 5826 unsigned int size;
8d1b2d93 5827
413ee3b4 5828 memset(comm, 0, sizeof(comm));
96b02d78 5829 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5830 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5831
5832 comm_event->comm = comm;
5833 comm_event->comm_size = size;
5834
cdd6c482 5835 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5836
67516844 5837 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5838 comm_event,
5839 NULL);
8d1b2d93
PZ
5840}
5841
82b89778 5842void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5843{
9ee318a7
PZ
5844 struct perf_comm_event comm_event;
5845
cdd6c482 5846 if (!atomic_read(&nr_comm_events))
9ee318a7 5847 return;
a63eaf34 5848
9ee318a7 5849 comm_event = (struct perf_comm_event){
8d1b2d93 5850 .task = task,
573402db
PZ
5851 /* .comm */
5852 /* .comm_size */
cdd6c482 5853 .event_id = {
573402db 5854 .header = {
cdd6c482 5855 .type = PERF_RECORD_COMM,
82b89778 5856 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5857 /* .size */
5858 },
5859 /* .pid */
5860 /* .tid */
8d1b2d93
PZ
5861 },
5862 };
5863
cdd6c482 5864 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5865}
5866
0a4a9391
PZ
5867/*
5868 * mmap tracking
5869 */
5870
5871struct perf_mmap_event {
089dd79d
PZ
5872 struct vm_area_struct *vma;
5873
5874 const char *file_name;
5875 int file_size;
13d7a241
SE
5876 int maj, min;
5877 u64 ino;
5878 u64 ino_generation;
f972eb63 5879 u32 prot, flags;
0a4a9391
PZ
5880
5881 struct {
5882 struct perf_event_header header;
5883
5884 u32 pid;
5885 u32 tid;
5886 u64 start;
5887 u64 len;
5888 u64 pgoff;
cdd6c482 5889 } event_id;
0a4a9391
PZ
5890};
5891
67516844
JO
5892static int perf_event_mmap_match(struct perf_event *event,
5893 void *data)
5894{
5895 struct perf_mmap_event *mmap_event = data;
5896 struct vm_area_struct *vma = mmap_event->vma;
5897 int executable = vma->vm_flags & VM_EXEC;
5898
5899 return (!executable && event->attr.mmap_data) ||
13d7a241 5900 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5901}
5902
cdd6c482 5903static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5904 void *data)
0a4a9391 5905{
52d857a8 5906 struct perf_mmap_event *mmap_event = data;
0a4a9391 5907 struct perf_output_handle handle;
c980d109 5908 struct perf_sample_data sample;
cdd6c482 5909 int size = mmap_event->event_id.header.size;
c980d109 5910 int ret;
0a4a9391 5911
67516844
JO
5912 if (!perf_event_mmap_match(event, data))
5913 return;
5914
13d7a241
SE
5915 if (event->attr.mmap2) {
5916 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5917 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5918 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5919 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5920 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5921 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5922 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5923 }
5924
c980d109
ACM
5925 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5926 ret = perf_output_begin(&handle, event,
a7ac67ea 5927 mmap_event->event_id.header.size);
0a4a9391 5928 if (ret)
c980d109 5929 goto out;
0a4a9391 5930
cdd6c482
IM
5931 mmap_event->event_id.pid = perf_event_pid(event, current);
5932 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5933
cdd6c482 5934 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5935
5936 if (event->attr.mmap2) {
5937 perf_output_put(&handle, mmap_event->maj);
5938 perf_output_put(&handle, mmap_event->min);
5939 perf_output_put(&handle, mmap_event->ino);
5940 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5941 perf_output_put(&handle, mmap_event->prot);
5942 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5943 }
5944
76369139 5945 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5946 mmap_event->file_size);
c980d109
ACM
5947
5948 perf_event__output_id_sample(event, &handle, &sample);
5949
78d613eb 5950 perf_output_end(&handle);
c980d109
ACM
5951out:
5952 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5953}
5954
cdd6c482 5955static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5956{
089dd79d
PZ
5957 struct vm_area_struct *vma = mmap_event->vma;
5958 struct file *file = vma->vm_file;
13d7a241
SE
5959 int maj = 0, min = 0;
5960 u64 ino = 0, gen = 0;
f972eb63 5961 u32 prot = 0, flags = 0;
0a4a9391
PZ
5962 unsigned int size;
5963 char tmp[16];
5964 char *buf = NULL;
2c42cfbf 5965 char *name;
413ee3b4 5966
0a4a9391 5967 if (file) {
13d7a241
SE
5968 struct inode *inode;
5969 dev_t dev;
3ea2f2b9 5970
2c42cfbf 5971 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5972 if (!buf) {
c7e548b4
ON
5973 name = "//enomem";
5974 goto cpy_name;
0a4a9391 5975 }
413ee3b4 5976 /*
3ea2f2b9 5977 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5978 * need to add enough zero bytes after the string to handle
5979 * the 64bit alignment we do later.
5980 */
9bf39ab2 5981 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5982 if (IS_ERR(name)) {
c7e548b4
ON
5983 name = "//toolong";
5984 goto cpy_name;
0a4a9391 5985 }
13d7a241
SE
5986 inode = file_inode(vma->vm_file);
5987 dev = inode->i_sb->s_dev;
5988 ino = inode->i_ino;
5989 gen = inode->i_generation;
5990 maj = MAJOR(dev);
5991 min = MINOR(dev);
f972eb63
PZ
5992
5993 if (vma->vm_flags & VM_READ)
5994 prot |= PROT_READ;
5995 if (vma->vm_flags & VM_WRITE)
5996 prot |= PROT_WRITE;
5997 if (vma->vm_flags & VM_EXEC)
5998 prot |= PROT_EXEC;
5999
6000 if (vma->vm_flags & VM_MAYSHARE)
6001 flags = MAP_SHARED;
6002 else
6003 flags = MAP_PRIVATE;
6004
6005 if (vma->vm_flags & VM_DENYWRITE)
6006 flags |= MAP_DENYWRITE;
6007 if (vma->vm_flags & VM_MAYEXEC)
6008 flags |= MAP_EXECUTABLE;
6009 if (vma->vm_flags & VM_LOCKED)
6010 flags |= MAP_LOCKED;
6011 if (vma->vm_flags & VM_HUGETLB)
6012 flags |= MAP_HUGETLB;
6013
c7e548b4 6014 goto got_name;
0a4a9391 6015 } else {
fbe26abe
JO
6016 if (vma->vm_ops && vma->vm_ops->name) {
6017 name = (char *) vma->vm_ops->name(vma);
6018 if (name)
6019 goto cpy_name;
6020 }
6021
2c42cfbf 6022 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6023 if (name)
6024 goto cpy_name;
089dd79d 6025
32c5fb7e 6026 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6027 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6028 name = "[heap]";
6029 goto cpy_name;
32c5fb7e
ON
6030 }
6031 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6032 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6033 name = "[stack]";
6034 goto cpy_name;
089dd79d
PZ
6035 }
6036
c7e548b4
ON
6037 name = "//anon";
6038 goto cpy_name;
0a4a9391
PZ
6039 }
6040
c7e548b4
ON
6041cpy_name:
6042 strlcpy(tmp, name, sizeof(tmp));
6043 name = tmp;
0a4a9391 6044got_name:
2c42cfbf
PZ
6045 /*
6046 * Since our buffer works in 8 byte units we need to align our string
6047 * size to a multiple of 8. However, we must guarantee the tail end is
6048 * zero'd out to avoid leaking random bits to userspace.
6049 */
6050 size = strlen(name)+1;
6051 while (!IS_ALIGNED(size, sizeof(u64)))
6052 name[size++] = '\0';
0a4a9391
PZ
6053
6054 mmap_event->file_name = name;
6055 mmap_event->file_size = size;
13d7a241
SE
6056 mmap_event->maj = maj;
6057 mmap_event->min = min;
6058 mmap_event->ino = ino;
6059 mmap_event->ino_generation = gen;
f972eb63
PZ
6060 mmap_event->prot = prot;
6061 mmap_event->flags = flags;
0a4a9391 6062
2fe85427
SE
6063 if (!(vma->vm_flags & VM_EXEC))
6064 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6065
cdd6c482 6066 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6067
67516844 6068 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6069 mmap_event,
6070 NULL);
665c2142 6071
0a4a9391
PZ
6072 kfree(buf);
6073}
6074
3af9e859 6075void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6076{
9ee318a7
PZ
6077 struct perf_mmap_event mmap_event;
6078
cdd6c482 6079 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6080 return;
6081
6082 mmap_event = (struct perf_mmap_event){
089dd79d 6083 .vma = vma,
573402db
PZ
6084 /* .file_name */
6085 /* .file_size */
cdd6c482 6086 .event_id = {
573402db 6087 .header = {
cdd6c482 6088 .type = PERF_RECORD_MMAP,
39447b38 6089 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6090 /* .size */
6091 },
6092 /* .pid */
6093 /* .tid */
089dd79d
PZ
6094 .start = vma->vm_start,
6095 .len = vma->vm_end - vma->vm_start,
3a0304e9 6096 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6097 },
13d7a241
SE
6098 /* .maj (attr_mmap2 only) */
6099 /* .min (attr_mmap2 only) */
6100 /* .ino (attr_mmap2 only) */
6101 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6102 /* .prot (attr_mmap2 only) */
6103 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6104 };
6105
cdd6c482 6106 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6107}
6108
68db7e98
AS
6109void perf_event_aux_event(struct perf_event *event, unsigned long head,
6110 unsigned long size, u64 flags)
6111{
6112 struct perf_output_handle handle;
6113 struct perf_sample_data sample;
6114 struct perf_aux_event {
6115 struct perf_event_header header;
6116 u64 offset;
6117 u64 size;
6118 u64 flags;
6119 } rec = {
6120 .header = {
6121 .type = PERF_RECORD_AUX,
6122 .misc = 0,
6123 .size = sizeof(rec),
6124 },
6125 .offset = head,
6126 .size = size,
6127 .flags = flags,
6128 };
6129 int ret;
6130
6131 perf_event_header__init_id(&rec.header, &sample, event);
6132 ret = perf_output_begin(&handle, event, rec.header.size);
6133
6134 if (ret)
6135 return;
6136
6137 perf_output_put(&handle, rec);
6138 perf_event__output_id_sample(event, &handle, &sample);
6139
6140 perf_output_end(&handle);
6141}
6142
f38b0dbb
KL
6143/*
6144 * Lost/dropped samples logging
6145 */
6146void perf_log_lost_samples(struct perf_event *event, u64 lost)
6147{
6148 struct perf_output_handle handle;
6149 struct perf_sample_data sample;
6150 int ret;
6151
6152 struct {
6153 struct perf_event_header header;
6154 u64 lost;
6155 } lost_samples_event = {
6156 .header = {
6157 .type = PERF_RECORD_LOST_SAMPLES,
6158 .misc = 0,
6159 .size = sizeof(lost_samples_event),
6160 },
6161 .lost = lost,
6162 };
6163
6164 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6165
6166 ret = perf_output_begin(&handle, event,
6167 lost_samples_event.header.size);
6168 if (ret)
6169 return;
6170
6171 perf_output_put(&handle, lost_samples_event);
6172 perf_event__output_id_sample(event, &handle, &sample);
6173 perf_output_end(&handle);
6174}
6175
45ac1403
AH
6176/*
6177 * context_switch tracking
6178 */
6179
6180struct perf_switch_event {
6181 struct task_struct *task;
6182 struct task_struct *next_prev;
6183
6184 struct {
6185 struct perf_event_header header;
6186 u32 next_prev_pid;
6187 u32 next_prev_tid;
6188 } event_id;
6189};
6190
6191static int perf_event_switch_match(struct perf_event *event)
6192{
6193 return event->attr.context_switch;
6194}
6195
6196static void perf_event_switch_output(struct perf_event *event, void *data)
6197{
6198 struct perf_switch_event *se = data;
6199 struct perf_output_handle handle;
6200 struct perf_sample_data sample;
6201 int ret;
6202
6203 if (!perf_event_switch_match(event))
6204 return;
6205
6206 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6207 if (event->ctx->task) {
6208 se->event_id.header.type = PERF_RECORD_SWITCH;
6209 se->event_id.header.size = sizeof(se->event_id.header);
6210 } else {
6211 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6212 se->event_id.header.size = sizeof(se->event_id);
6213 se->event_id.next_prev_pid =
6214 perf_event_pid(event, se->next_prev);
6215 se->event_id.next_prev_tid =
6216 perf_event_tid(event, se->next_prev);
6217 }
6218
6219 perf_event_header__init_id(&se->event_id.header, &sample, event);
6220
6221 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6222 if (ret)
6223 return;
6224
6225 if (event->ctx->task)
6226 perf_output_put(&handle, se->event_id.header);
6227 else
6228 perf_output_put(&handle, se->event_id);
6229
6230 perf_event__output_id_sample(event, &handle, &sample);
6231
6232 perf_output_end(&handle);
6233}
6234
6235static void perf_event_switch(struct task_struct *task,
6236 struct task_struct *next_prev, bool sched_in)
6237{
6238 struct perf_switch_event switch_event;
6239
6240 /* N.B. caller checks nr_switch_events != 0 */
6241
6242 switch_event = (struct perf_switch_event){
6243 .task = task,
6244 .next_prev = next_prev,
6245 .event_id = {
6246 .header = {
6247 /* .type */
6248 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6249 /* .size */
6250 },
6251 /* .next_prev_pid */
6252 /* .next_prev_tid */
6253 },
6254 };
6255
6256 perf_event_aux(perf_event_switch_output,
6257 &switch_event,
6258 NULL);
6259}
6260
a78ac325
PZ
6261/*
6262 * IRQ throttle logging
6263 */
6264
cdd6c482 6265static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6266{
6267 struct perf_output_handle handle;
c980d109 6268 struct perf_sample_data sample;
a78ac325
PZ
6269 int ret;
6270
6271 struct {
6272 struct perf_event_header header;
6273 u64 time;
cca3f454 6274 u64 id;
7f453c24 6275 u64 stream_id;
a78ac325
PZ
6276 } throttle_event = {
6277 .header = {
cdd6c482 6278 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6279 .misc = 0,
6280 .size = sizeof(throttle_event),
6281 },
34f43927 6282 .time = perf_event_clock(event),
cdd6c482
IM
6283 .id = primary_event_id(event),
6284 .stream_id = event->id,
a78ac325
PZ
6285 };
6286
966ee4d6 6287 if (enable)
cdd6c482 6288 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6289
c980d109
ACM
6290 perf_event_header__init_id(&throttle_event.header, &sample, event);
6291
6292 ret = perf_output_begin(&handle, event,
a7ac67ea 6293 throttle_event.header.size);
a78ac325
PZ
6294 if (ret)
6295 return;
6296
6297 perf_output_put(&handle, throttle_event);
c980d109 6298 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6299 perf_output_end(&handle);
6300}
6301
ec0d7729
AS
6302static void perf_log_itrace_start(struct perf_event *event)
6303{
6304 struct perf_output_handle handle;
6305 struct perf_sample_data sample;
6306 struct perf_aux_event {
6307 struct perf_event_header header;
6308 u32 pid;
6309 u32 tid;
6310 } rec;
6311 int ret;
6312
6313 if (event->parent)
6314 event = event->parent;
6315
6316 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6317 event->hw.itrace_started)
6318 return;
6319
ec0d7729
AS
6320 rec.header.type = PERF_RECORD_ITRACE_START;
6321 rec.header.misc = 0;
6322 rec.header.size = sizeof(rec);
6323 rec.pid = perf_event_pid(event, current);
6324 rec.tid = perf_event_tid(event, current);
6325
6326 perf_event_header__init_id(&rec.header, &sample, event);
6327 ret = perf_output_begin(&handle, event, rec.header.size);
6328
6329 if (ret)
6330 return;
6331
6332 perf_output_put(&handle, rec);
6333 perf_event__output_id_sample(event, &handle, &sample);
6334
6335 perf_output_end(&handle);
6336}
6337
f6c7d5fe 6338/*
cdd6c482 6339 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6340 */
6341
a8b0ca17 6342static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6343 int throttle, struct perf_sample_data *data,
6344 struct pt_regs *regs)
f6c7d5fe 6345{
cdd6c482
IM
6346 int events = atomic_read(&event->event_limit);
6347 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6348 u64 seq;
79f14641
PZ
6349 int ret = 0;
6350
96398826
PZ
6351 /*
6352 * Non-sampling counters might still use the PMI to fold short
6353 * hardware counters, ignore those.
6354 */
6355 if (unlikely(!is_sampling_event(event)))
6356 return 0;
6357
e050e3f0
SE
6358 seq = __this_cpu_read(perf_throttled_seq);
6359 if (seq != hwc->interrupts_seq) {
6360 hwc->interrupts_seq = seq;
6361 hwc->interrupts = 1;
6362 } else {
6363 hwc->interrupts++;
6364 if (unlikely(throttle
6365 && hwc->interrupts >= max_samples_per_tick)) {
6366 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6367 hwc->interrupts = MAX_INTERRUPTS;
6368 perf_log_throttle(event, 0);
d84153d6 6369 tick_nohz_full_kick();
a78ac325
PZ
6370 ret = 1;
6371 }
e050e3f0 6372 }
60db5e09 6373
cdd6c482 6374 if (event->attr.freq) {
def0a9b2 6375 u64 now = perf_clock();
abd50713 6376 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6377
abd50713 6378 hwc->freq_time_stamp = now;
bd2b5b12 6379
abd50713 6380 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6381 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6382 }
6383
2023b359
PZ
6384 /*
6385 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6386 * events
2023b359
PZ
6387 */
6388
cdd6c482
IM
6389 event->pending_kill = POLL_IN;
6390 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6391 ret = 1;
cdd6c482 6392 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6393 event->pending_disable = 1;
6394 irq_work_queue(&event->pending);
79f14641
PZ
6395 }
6396
453f19ee 6397 if (event->overflow_handler)
a8b0ca17 6398 event->overflow_handler(event, data, regs);
453f19ee 6399 else
a8b0ca17 6400 perf_event_output(event, data, regs);
453f19ee 6401
fed66e2c 6402 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6403 event->pending_wakeup = 1;
6404 irq_work_queue(&event->pending);
f506b3dc
PZ
6405 }
6406
79f14641 6407 return ret;
f6c7d5fe
PZ
6408}
6409
a8b0ca17 6410int perf_event_overflow(struct perf_event *event,
5622f295
MM
6411 struct perf_sample_data *data,
6412 struct pt_regs *regs)
850bc73f 6413{
a8b0ca17 6414 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6415}
6416
15dbf27c 6417/*
cdd6c482 6418 * Generic software event infrastructure
15dbf27c
PZ
6419 */
6420
b28ab83c
PZ
6421struct swevent_htable {
6422 struct swevent_hlist *swevent_hlist;
6423 struct mutex hlist_mutex;
6424 int hlist_refcount;
6425
6426 /* Recursion avoidance in each contexts */
6427 int recursion[PERF_NR_CONTEXTS];
6428};
6429
6430static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6431
7b4b6658 6432/*
cdd6c482
IM
6433 * We directly increment event->count and keep a second value in
6434 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6435 * is kept in the range [-sample_period, 0] so that we can use the
6436 * sign as trigger.
6437 */
6438
ab573844 6439u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6440{
cdd6c482 6441 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6442 u64 period = hwc->last_period;
6443 u64 nr, offset;
6444 s64 old, val;
6445
6446 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6447
6448again:
e7850595 6449 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6450 if (val < 0)
6451 return 0;
15dbf27c 6452
7b4b6658
PZ
6453 nr = div64_u64(period + val, period);
6454 offset = nr * period;
6455 val -= offset;
e7850595 6456 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6457 goto again;
15dbf27c 6458
7b4b6658 6459 return nr;
15dbf27c
PZ
6460}
6461
0cff784a 6462static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6463 struct perf_sample_data *data,
5622f295 6464 struct pt_regs *regs)
15dbf27c 6465{
cdd6c482 6466 struct hw_perf_event *hwc = &event->hw;
850bc73f 6467 int throttle = 0;
15dbf27c 6468
0cff784a
PZ
6469 if (!overflow)
6470 overflow = perf_swevent_set_period(event);
15dbf27c 6471
7b4b6658
PZ
6472 if (hwc->interrupts == MAX_INTERRUPTS)
6473 return;
15dbf27c 6474
7b4b6658 6475 for (; overflow; overflow--) {
a8b0ca17 6476 if (__perf_event_overflow(event, throttle,
5622f295 6477 data, regs)) {
7b4b6658
PZ
6478 /*
6479 * We inhibit the overflow from happening when
6480 * hwc->interrupts == MAX_INTERRUPTS.
6481 */
6482 break;
6483 }
cf450a73 6484 throttle = 1;
7b4b6658 6485 }
15dbf27c
PZ
6486}
6487
a4eaf7f1 6488static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6489 struct perf_sample_data *data,
5622f295 6490 struct pt_regs *regs)
7b4b6658 6491{
cdd6c482 6492 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6493
e7850595 6494 local64_add(nr, &event->count);
d6d020e9 6495
0cff784a
PZ
6496 if (!regs)
6497 return;
6498
6c7e550f 6499 if (!is_sampling_event(event))
7b4b6658 6500 return;
d6d020e9 6501
5d81e5cf
AV
6502 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6503 data->period = nr;
6504 return perf_swevent_overflow(event, 1, data, regs);
6505 } else
6506 data->period = event->hw.last_period;
6507
0cff784a 6508 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6509 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6510
e7850595 6511 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6512 return;
df1a132b 6513
a8b0ca17 6514 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6515}
6516
f5ffe02e
FW
6517static int perf_exclude_event(struct perf_event *event,
6518 struct pt_regs *regs)
6519{
a4eaf7f1 6520 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6521 return 1;
a4eaf7f1 6522
f5ffe02e
FW
6523 if (regs) {
6524 if (event->attr.exclude_user && user_mode(regs))
6525 return 1;
6526
6527 if (event->attr.exclude_kernel && !user_mode(regs))
6528 return 1;
6529 }
6530
6531 return 0;
6532}
6533
cdd6c482 6534static int perf_swevent_match(struct perf_event *event,
1c432d89 6535 enum perf_type_id type,
6fb2915d
LZ
6536 u32 event_id,
6537 struct perf_sample_data *data,
6538 struct pt_regs *regs)
15dbf27c 6539{
cdd6c482 6540 if (event->attr.type != type)
a21ca2ca 6541 return 0;
f5ffe02e 6542
cdd6c482 6543 if (event->attr.config != event_id)
15dbf27c
PZ
6544 return 0;
6545
f5ffe02e
FW
6546 if (perf_exclude_event(event, regs))
6547 return 0;
15dbf27c
PZ
6548
6549 return 1;
6550}
6551
76e1d904
FW
6552static inline u64 swevent_hash(u64 type, u32 event_id)
6553{
6554 u64 val = event_id | (type << 32);
6555
6556 return hash_64(val, SWEVENT_HLIST_BITS);
6557}
6558
49f135ed
FW
6559static inline struct hlist_head *
6560__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6561{
49f135ed
FW
6562 u64 hash = swevent_hash(type, event_id);
6563
6564 return &hlist->heads[hash];
6565}
76e1d904 6566
49f135ed
FW
6567/* For the read side: events when they trigger */
6568static inline struct hlist_head *
b28ab83c 6569find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6570{
6571 struct swevent_hlist *hlist;
76e1d904 6572
b28ab83c 6573 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6574 if (!hlist)
6575 return NULL;
6576
49f135ed
FW
6577 return __find_swevent_head(hlist, type, event_id);
6578}
6579
6580/* For the event head insertion and removal in the hlist */
6581static inline struct hlist_head *
b28ab83c 6582find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6583{
6584 struct swevent_hlist *hlist;
6585 u32 event_id = event->attr.config;
6586 u64 type = event->attr.type;
6587
6588 /*
6589 * Event scheduling is always serialized against hlist allocation
6590 * and release. Which makes the protected version suitable here.
6591 * The context lock guarantees that.
6592 */
b28ab83c 6593 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6594 lockdep_is_held(&event->ctx->lock));
6595 if (!hlist)
6596 return NULL;
6597
6598 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6599}
6600
6601static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6602 u64 nr,
76e1d904
FW
6603 struct perf_sample_data *data,
6604 struct pt_regs *regs)
15dbf27c 6605{
4a32fea9 6606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6607 struct perf_event *event;
76e1d904 6608 struct hlist_head *head;
15dbf27c 6609
76e1d904 6610 rcu_read_lock();
b28ab83c 6611 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6612 if (!head)
6613 goto end;
6614
b67bfe0d 6615 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6616 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6617 perf_swevent_event(event, nr, data, regs);
15dbf27c 6618 }
76e1d904
FW
6619end:
6620 rcu_read_unlock();
15dbf27c
PZ
6621}
6622
86038c5e
PZI
6623DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6624
4ed7c92d 6625int perf_swevent_get_recursion_context(void)
96f6d444 6626{
4a32fea9 6627 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6628
b28ab83c 6629 return get_recursion_context(swhash->recursion);
96f6d444 6630}
645e8cc0 6631EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6632
fa9f90be 6633inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6634{
4a32fea9 6635 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6636
b28ab83c 6637 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6638}
15dbf27c 6639
86038c5e 6640void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6641{
a4234bfc 6642 struct perf_sample_data data;
4ed7c92d 6643
86038c5e 6644 if (WARN_ON_ONCE(!regs))
4ed7c92d 6645 return;
a4234bfc 6646
fd0d000b 6647 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6648 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6649}
6650
6651void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6652{
6653 int rctx;
6654
6655 preempt_disable_notrace();
6656 rctx = perf_swevent_get_recursion_context();
6657 if (unlikely(rctx < 0))
6658 goto fail;
6659
6660 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6661
6662 perf_swevent_put_recursion_context(rctx);
86038c5e 6663fail:
1c024eca 6664 preempt_enable_notrace();
b8e83514
PZ
6665}
6666
cdd6c482 6667static void perf_swevent_read(struct perf_event *event)
15dbf27c 6668{
15dbf27c
PZ
6669}
6670
a4eaf7f1 6671static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6672{
4a32fea9 6673 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6674 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6675 struct hlist_head *head;
6676
6c7e550f 6677 if (is_sampling_event(event)) {
7b4b6658 6678 hwc->last_period = hwc->sample_period;
cdd6c482 6679 perf_swevent_set_period(event);
7b4b6658 6680 }
76e1d904 6681
a4eaf7f1
PZ
6682 hwc->state = !(flags & PERF_EF_START);
6683
b28ab83c 6684 head = find_swevent_head(swhash, event);
12ca6ad2 6685 if (WARN_ON_ONCE(!head))
76e1d904
FW
6686 return -EINVAL;
6687
6688 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6689 perf_event_update_userpage(event);
76e1d904 6690
15dbf27c
PZ
6691 return 0;
6692}
6693
a4eaf7f1 6694static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6695{
76e1d904 6696 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6697}
6698
a4eaf7f1 6699static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6700{
a4eaf7f1 6701 event->hw.state = 0;
d6d020e9 6702}
aa9c4c0f 6703
a4eaf7f1 6704static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6705{
a4eaf7f1 6706 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6707}
6708
49f135ed
FW
6709/* Deref the hlist from the update side */
6710static inline struct swevent_hlist *
b28ab83c 6711swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6712{
b28ab83c
PZ
6713 return rcu_dereference_protected(swhash->swevent_hlist,
6714 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6715}
6716
b28ab83c 6717static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6718{
b28ab83c 6719 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6720
49f135ed 6721 if (!hlist)
76e1d904
FW
6722 return;
6723
70691d4a 6724 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6725 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6726}
6727
6728static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6729{
b28ab83c 6730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6731
b28ab83c 6732 mutex_lock(&swhash->hlist_mutex);
76e1d904 6733
b28ab83c
PZ
6734 if (!--swhash->hlist_refcount)
6735 swevent_hlist_release(swhash);
76e1d904 6736
b28ab83c 6737 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6738}
6739
6740static void swevent_hlist_put(struct perf_event *event)
6741{
6742 int cpu;
6743
76e1d904
FW
6744 for_each_possible_cpu(cpu)
6745 swevent_hlist_put_cpu(event, cpu);
6746}
6747
6748static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6749{
b28ab83c 6750 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6751 int err = 0;
6752
b28ab83c 6753 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6754 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6755 struct swevent_hlist *hlist;
6756
6757 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6758 if (!hlist) {
6759 err = -ENOMEM;
6760 goto exit;
6761 }
b28ab83c 6762 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6763 }
b28ab83c 6764 swhash->hlist_refcount++;
9ed6060d 6765exit:
b28ab83c 6766 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6767
6768 return err;
6769}
6770
6771static int swevent_hlist_get(struct perf_event *event)
6772{
6773 int err;
6774 int cpu, failed_cpu;
6775
76e1d904
FW
6776 get_online_cpus();
6777 for_each_possible_cpu(cpu) {
6778 err = swevent_hlist_get_cpu(event, cpu);
6779 if (err) {
6780 failed_cpu = cpu;
6781 goto fail;
6782 }
6783 }
6784 put_online_cpus();
6785
6786 return 0;
9ed6060d 6787fail:
76e1d904
FW
6788 for_each_possible_cpu(cpu) {
6789 if (cpu == failed_cpu)
6790 break;
6791 swevent_hlist_put_cpu(event, cpu);
6792 }
6793
6794 put_online_cpus();
6795 return err;
6796}
6797
c5905afb 6798struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6799
b0a873eb
PZ
6800static void sw_perf_event_destroy(struct perf_event *event)
6801{
6802 u64 event_id = event->attr.config;
95476b64 6803
b0a873eb
PZ
6804 WARN_ON(event->parent);
6805
c5905afb 6806 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6807 swevent_hlist_put(event);
6808}
6809
6810static int perf_swevent_init(struct perf_event *event)
6811{
8176cced 6812 u64 event_id = event->attr.config;
b0a873eb
PZ
6813
6814 if (event->attr.type != PERF_TYPE_SOFTWARE)
6815 return -ENOENT;
6816
2481c5fa
SE
6817 /*
6818 * no branch sampling for software events
6819 */
6820 if (has_branch_stack(event))
6821 return -EOPNOTSUPP;
6822
b0a873eb
PZ
6823 switch (event_id) {
6824 case PERF_COUNT_SW_CPU_CLOCK:
6825 case PERF_COUNT_SW_TASK_CLOCK:
6826 return -ENOENT;
6827
6828 default:
6829 break;
6830 }
6831
ce677831 6832 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6833 return -ENOENT;
6834
6835 if (!event->parent) {
6836 int err;
6837
6838 err = swevent_hlist_get(event);
6839 if (err)
6840 return err;
6841
c5905afb 6842 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6843 event->destroy = sw_perf_event_destroy;
6844 }
6845
6846 return 0;
6847}
6848
6849static struct pmu perf_swevent = {
89a1e187 6850 .task_ctx_nr = perf_sw_context,
95476b64 6851
34f43927
PZ
6852 .capabilities = PERF_PMU_CAP_NO_NMI,
6853
b0a873eb 6854 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6855 .add = perf_swevent_add,
6856 .del = perf_swevent_del,
6857 .start = perf_swevent_start,
6858 .stop = perf_swevent_stop,
1c024eca 6859 .read = perf_swevent_read,
1c024eca
PZ
6860};
6861
b0a873eb
PZ
6862#ifdef CONFIG_EVENT_TRACING
6863
1c024eca
PZ
6864static int perf_tp_filter_match(struct perf_event *event,
6865 struct perf_sample_data *data)
6866{
6867 void *record = data->raw->data;
6868
b71b437e
PZ
6869 /* only top level events have filters set */
6870 if (event->parent)
6871 event = event->parent;
6872
1c024eca
PZ
6873 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6874 return 1;
6875 return 0;
6876}
6877
6878static int perf_tp_event_match(struct perf_event *event,
6879 struct perf_sample_data *data,
6880 struct pt_regs *regs)
6881{
a0f7d0f7
FW
6882 if (event->hw.state & PERF_HES_STOPPED)
6883 return 0;
580d607c
PZ
6884 /*
6885 * All tracepoints are from kernel-space.
6886 */
6887 if (event->attr.exclude_kernel)
1c024eca
PZ
6888 return 0;
6889
6890 if (!perf_tp_filter_match(event, data))
6891 return 0;
6892
6893 return 1;
6894}
6895
6896void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6897 struct pt_regs *regs, struct hlist_head *head, int rctx,
6898 struct task_struct *task)
95476b64
FW
6899{
6900 struct perf_sample_data data;
1c024eca 6901 struct perf_event *event;
1c024eca 6902
95476b64
FW
6903 struct perf_raw_record raw = {
6904 .size = entry_size,
6905 .data = record,
6906 };
6907
fd0d000b 6908 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6909 data.raw = &raw;
6910
b67bfe0d 6911 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6912 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6913 perf_swevent_event(event, count, &data, regs);
4f41c013 6914 }
ecc55f84 6915
e6dab5ff
AV
6916 /*
6917 * If we got specified a target task, also iterate its context and
6918 * deliver this event there too.
6919 */
6920 if (task && task != current) {
6921 struct perf_event_context *ctx;
6922 struct trace_entry *entry = record;
6923
6924 rcu_read_lock();
6925 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6926 if (!ctx)
6927 goto unlock;
6928
6929 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6930 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6931 continue;
6932 if (event->attr.config != entry->type)
6933 continue;
6934 if (perf_tp_event_match(event, &data, regs))
6935 perf_swevent_event(event, count, &data, regs);
6936 }
6937unlock:
6938 rcu_read_unlock();
6939 }
6940
ecc55f84 6941 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6942}
6943EXPORT_SYMBOL_GPL(perf_tp_event);
6944
cdd6c482 6945static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6946{
1c024eca 6947 perf_trace_destroy(event);
e077df4f
PZ
6948}
6949
b0a873eb 6950static int perf_tp_event_init(struct perf_event *event)
e077df4f 6951{
76e1d904
FW
6952 int err;
6953
b0a873eb
PZ
6954 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6955 return -ENOENT;
6956
2481c5fa
SE
6957 /*
6958 * no branch sampling for tracepoint events
6959 */
6960 if (has_branch_stack(event))
6961 return -EOPNOTSUPP;
6962
1c024eca
PZ
6963 err = perf_trace_init(event);
6964 if (err)
b0a873eb 6965 return err;
e077df4f 6966
cdd6c482 6967 event->destroy = tp_perf_event_destroy;
e077df4f 6968
b0a873eb
PZ
6969 return 0;
6970}
6971
6972static struct pmu perf_tracepoint = {
89a1e187
PZ
6973 .task_ctx_nr = perf_sw_context,
6974
b0a873eb 6975 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6976 .add = perf_trace_add,
6977 .del = perf_trace_del,
6978 .start = perf_swevent_start,
6979 .stop = perf_swevent_stop,
b0a873eb 6980 .read = perf_swevent_read,
b0a873eb
PZ
6981};
6982
6983static inline void perf_tp_register(void)
6984{
2e80a82a 6985 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6986}
6fb2915d
LZ
6987
6988static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6989{
6990 char *filter_str;
6991 int ret;
6992
6993 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6994 return -EINVAL;
6995
6996 filter_str = strndup_user(arg, PAGE_SIZE);
6997 if (IS_ERR(filter_str))
6998 return PTR_ERR(filter_str);
6999
7000 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7001
7002 kfree(filter_str);
7003 return ret;
7004}
7005
7006static void perf_event_free_filter(struct perf_event *event)
7007{
7008 ftrace_profile_free_filter(event);
7009}
7010
2541517c
AS
7011static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7012{
7013 struct bpf_prog *prog;
7014
7015 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7016 return -EINVAL;
7017
7018 if (event->tp_event->prog)
7019 return -EEXIST;
7020
04a22fae
WN
7021 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7022 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7023 return -EINVAL;
7024
7025 prog = bpf_prog_get(prog_fd);
7026 if (IS_ERR(prog))
7027 return PTR_ERR(prog);
7028
6c373ca8 7029 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7030 /* valid fd, but invalid bpf program type */
7031 bpf_prog_put(prog);
7032 return -EINVAL;
7033 }
7034
7035 event->tp_event->prog = prog;
7036
7037 return 0;
7038}
7039
7040static void perf_event_free_bpf_prog(struct perf_event *event)
7041{
7042 struct bpf_prog *prog;
7043
7044 if (!event->tp_event)
7045 return;
7046
7047 prog = event->tp_event->prog;
7048 if (prog) {
7049 event->tp_event->prog = NULL;
7050 bpf_prog_put(prog);
7051 }
7052}
7053
e077df4f 7054#else
6fb2915d 7055
b0a873eb 7056static inline void perf_tp_register(void)
e077df4f 7057{
e077df4f 7058}
6fb2915d
LZ
7059
7060static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7061{
7062 return -ENOENT;
7063}
7064
7065static void perf_event_free_filter(struct perf_event *event)
7066{
7067}
7068
2541517c
AS
7069static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7070{
7071 return -ENOENT;
7072}
7073
7074static void perf_event_free_bpf_prog(struct perf_event *event)
7075{
7076}
07b139c8 7077#endif /* CONFIG_EVENT_TRACING */
e077df4f 7078
24f1e32c 7079#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7080void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7081{
f5ffe02e
FW
7082 struct perf_sample_data sample;
7083 struct pt_regs *regs = data;
7084
fd0d000b 7085 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7086
a4eaf7f1 7087 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7088 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7089}
7090#endif
7091
b0a873eb
PZ
7092/*
7093 * hrtimer based swevent callback
7094 */
f29ac756 7095
b0a873eb 7096static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7097{
b0a873eb
PZ
7098 enum hrtimer_restart ret = HRTIMER_RESTART;
7099 struct perf_sample_data data;
7100 struct pt_regs *regs;
7101 struct perf_event *event;
7102 u64 period;
f29ac756 7103
b0a873eb 7104 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7105
7106 if (event->state != PERF_EVENT_STATE_ACTIVE)
7107 return HRTIMER_NORESTART;
7108
b0a873eb 7109 event->pmu->read(event);
f344011c 7110
fd0d000b 7111 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7112 regs = get_irq_regs();
7113
7114 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7115 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7116 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7117 ret = HRTIMER_NORESTART;
7118 }
24f1e32c 7119
b0a873eb
PZ
7120 period = max_t(u64, 10000, event->hw.sample_period);
7121 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7122
b0a873eb 7123 return ret;
f29ac756
PZ
7124}
7125
b0a873eb 7126static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7127{
b0a873eb 7128 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7129 s64 period;
7130
7131 if (!is_sampling_event(event))
7132 return;
f5ffe02e 7133
5d508e82
FBH
7134 period = local64_read(&hwc->period_left);
7135 if (period) {
7136 if (period < 0)
7137 period = 10000;
fa407f35 7138
5d508e82
FBH
7139 local64_set(&hwc->period_left, 0);
7140 } else {
7141 period = max_t(u64, 10000, hwc->sample_period);
7142 }
3497d206
TG
7143 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7144 HRTIMER_MODE_REL_PINNED);
24f1e32c 7145}
b0a873eb
PZ
7146
7147static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7148{
b0a873eb
PZ
7149 struct hw_perf_event *hwc = &event->hw;
7150
6c7e550f 7151 if (is_sampling_event(event)) {
b0a873eb 7152 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7153 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7154
7155 hrtimer_cancel(&hwc->hrtimer);
7156 }
24f1e32c
FW
7157}
7158
ba3dd36c
PZ
7159static void perf_swevent_init_hrtimer(struct perf_event *event)
7160{
7161 struct hw_perf_event *hwc = &event->hw;
7162
7163 if (!is_sampling_event(event))
7164 return;
7165
7166 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7167 hwc->hrtimer.function = perf_swevent_hrtimer;
7168
7169 /*
7170 * Since hrtimers have a fixed rate, we can do a static freq->period
7171 * mapping and avoid the whole period adjust feedback stuff.
7172 */
7173 if (event->attr.freq) {
7174 long freq = event->attr.sample_freq;
7175
7176 event->attr.sample_period = NSEC_PER_SEC / freq;
7177 hwc->sample_period = event->attr.sample_period;
7178 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7179 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7180 event->attr.freq = 0;
7181 }
7182}
7183
b0a873eb
PZ
7184/*
7185 * Software event: cpu wall time clock
7186 */
7187
7188static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7189{
b0a873eb
PZ
7190 s64 prev;
7191 u64 now;
7192
a4eaf7f1 7193 now = local_clock();
b0a873eb
PZ
7194 prev = local64_xchg(&event->hw.prev_count, now);
7195 local64_add(now - prev, &event->count);
24f1e32c 7196}
24f1e32c 7197
a4eaf7f1 7198static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7199{
a4eaf7f1 7200 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7201 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7202}
7203
a4eaf7f1 7204static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7205{
b0a873eb
PZ
7206 perf_swevent_cancel_hrtimer(event);
7207 cpu_clock_event_update(event);
7208}
f29ac756 7209
a4eaf7f1
PZ
7210static int cpu_clock_event_add(struct perf_event *event, int flags)
7211{
7212 if (flags & PERF_EF_START)
7213 cpu_clock_event_start(event, flags);
6a694a60 7214 perf_event_update_userpage(event);
a4eaf7f1
PZ
7215
7216 return 0;
7217}
7218
7219static void cpu_clock_event_del(struct perf_event *event, int flags)
7220{
7221 cpu_clock_event_stop(event, flags);
7222}
7223
b0a873eb
PZ
7224static void cpu_clock_event_read(struct perf_event *event)
7225{
7226 cpu_clock_event_update(event);
7227}
f344011c 7228
b0a873eb
PZ
7229static int cpu_clock_event_init(struct perf_event *event)
7230{
7231 if (event->attr.type != PERF_TYPE_SOFTWARE)
7232 return -ENOENT;
7233
7234 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7235 return -ENOENT;
7236
2481c5fa
SE
7237 /*
7238 * no branch sampling for software events
7239 */
7240 if (has_branch_stack(event))
7241 return -EOPNOTSUPP;
7242
ba3dd36c
PZ
7243 perf_swevent_init_hrtimer(event);
7244
b0a873eb 7245 return 0;
f29ac756
PZ
7246}
7247
b0a873eb 7248static struct pmu perf_cpu_clock = {
89a1e187
PZ
7249 .task_ctx_nr = perf_sw_context,
7250
34f43927
PZ
7251 .capabilities = PERF_PMU_CAP_NO_NMI,
7252
b0a873eb 7253 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7254 .add = cpu_clock_event_add,
7255 .del = cpu_clock_event_del,
7256 .start = cpu_clock_event_start,
7257 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7258 .read = cpu_clock_event_read,
7259};
7260
7261/*
7262 * Software event: task time clock
7263 */
7264
7265static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7266{
b0a873eb
PZ
7267 u64 prev;
7268 s64 delta;
5c92d124 7269
b0a873eb
PZ
7270 prev = local64_xchg(&event->hw.prev_count, now);
7271 delta = now - prev;
7272 local64_add(delta, &event->count);
7273}
5c92d124 7274
a4eaf7f1 7275static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7276{
a4eaf7f1 7277 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7278 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7279}
7280
a4eaf7f1 7281static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7282{
7283 perf_swevent_cancel_hrtimer(event);
7284 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7285}
7286
7287static int task_clock_event_add(struct perf_event *event, int flags)
7288{
7289 if (flags & PERF_EF_START)
7290 task_clock_event_start(event, flags);
6a694a60 7291 perf_event_update_userpage(event);
b0a873eb 7292
a4eaf7f1
PZ
7293 return 0;
7294}
7295
7296static void task_clock_event_del(struct perf_event *event, int flags)
7297{
7298 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7299}
7300
7301static void task_clock_event_read(struct perf_event *event)
7302{
768a06e2
PZ
7303 u64 now = perf_clock();
7304 u64 delta = now - event->ctx->timestamp;
7305 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7306
7307 task_clock_event_update(event, time);
7308}
7309
7310static int task_clock_event_init(struct perf_event *event)
6fb2915d 7311{
b0a873eb
PZ
7312 if (event->attr.type != PERF_TYPE_SOFTWARE)
7313 return -ENOENT;
7314
7315 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7316 return -ENOENT;
7317
2481c5fa
SE
7318 /*
7319 * no branch sampling for software events
7320 */
7321 if (has_branch_stack(event))
7322 return -EOPNOTSUPP;
7323
ba3dd36c
PZ
7324 perf_swevent_init_hrtimer(event);
7325
b0a873eb 7326 return 0;
6fb2915d
LZ
7327}
7328
b0a873eb 7329static struct pmu perf_task_clock = {
89a1e187
PZ
7330 .task_ctx_nr = perf_sw_context,
7331
34f43927
PZ
7332 .capabilities = PERF_PMU_CAP_NO_NMI,
7333
b0a873eb 7334 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7335 .add = task_clock_event_add,
7336 .del = task_clock_event_del,
7337 .start = task_clock_event_start,
7338 .stop = task_clock_event_stop,
b0a873eb
PZ
7339 .read = task_clock_event_read,
7340};
6fb2915d 7341
ad5133b7 7342static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7343{
e077df4f 7344}
6fb2915d 7345
fbbe0701
SB
7346static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7347{
7348}
7349
ad5133b7 7350static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7351{
ad5133b7 7352 return 0;
6fb2915d
LZ
7353}
7354
18ab2cd3 7355static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7356
7357static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7358{
fbbe0701
SB
7359 __this_cpu_write(nop_txn_flags, flags);
7360
7361 if (flags & ~PERF_PMU_TXN_ADD)
7362 return;
7363
ad5133b7 7364 perf_pmu_disable(pmu);
6fb2915d
LZ
7365}
7366
ad5133b7
PZ
7367static int perf_pmu_commit_txn(struct pmu *pmu)
7368{
fbbe0701
SB
7369 unsigned int flags = __this_cpu_read(nop_txn_flags);
7370
7371 __this_cpu_write(nop_txn_flags, 0);
7372
7373 if (flags & ~PERF_PMU_TXN_ADD)
7374 return 0;
7375
ad5133b7
PZ
7376 perf_pmu_enable(pmu);
7377 return 0;
7378}
e077df4f 7379
ad5133b7 7380static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7381{
fbbe0701
SB
7382 unsigned int flags = __this_cpu_read(nop_txn_flags);
7383
7384 __this_cpu_write(nop_txn_flags, 0);
7385
7386 if (flags & ~PERF_PMU_TXN_ADD)
7387 return;
7388
ad5133b7 7389 perf_pmu_enable(pmu);
24f1e32c
FW
7390}
7391
35edc2a5
PZ
7392static int perf_event_idx_default(struct perf_event *event)
7393{
c719f560 7394 return 0;
35edc2a5
PZ
7395}
7396
8dc85d54
PZ
7397/*
7398 * Ensures all contexts with the same task_ctx_nr have the same
7399 * pmu_cpu_context too.
7400 */
9e317041 7401static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7402{
8dc85d54 7403 struct pmu *pmu;
b326e956 7404
8dc85d54
PZ
7405 if (ctxn < 0)
7406 return NULL;
24f1e32c 7407
8dc85d54
PZ
7408 list_for_each_entry(pmu, &pmus, entry) {
7409 if (pmu->task_ctx_nr == ctxn)
7410 return pmu->pmu_cpu_context;
7411 }
24f1e32c 7412
8dc85d54 7413 return NULL;
24f1e32c
FW
7414}
7415
51676957 7416static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7417{
51676957
PZ
7418 int cpu;
7419
7420 for_each_possible_cpu(cpu) {
7421 struct perf_cpu_context *cpuctx;
7422
7423 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7424
3f1f3320
PZ
7425 if (cpuctx->unique_pmu == old_pmu)
7426 cpuctx->unique_pmu = pmu;
51676957
PZ
7427 }
7428}
7429
7430static void free_pmu_context(struct pmu *pmu)
7431{
7432 struct pmu *i;
f5ffe02e 7433
8dc85d54 7434 mutex_lock(&pmus_lock);
0475f9ea 7435 /*
8dc85d54 7436 * Like a real lame refcount.
0475f9ea 7437 */
51676957
PZ
7438 list_for_each_entry(i, &pmus, entry) {
7439 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7440 update_pmu_context(i, pmu);
8dc85d54 7441 goto out;
51676957 7442 }
8dc85d54 7443 }
d6d020e9 7444
51676957 7445 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7446out:
7447 mutex_unlock(&pmus_lock);
24f1e32c 7448}
2e80a82a 7449static struct idr pmu_idr;
d6d020e9 7450
abe43400
PZ
7451static ssize_t
7452type_show(struct device *dev, struct device_attribute *attr, char *page)
7453{
7454 struct pmu *pmu = dev_get_drvdata(dev);
7455
7456 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7457}
90826ca7 7458static DEVICE_ATTR_RO(type);
abe43400 7459
62b85639
SE
7460static ssize_t
7461perf_event_mux_interval_ms_show(struct device *dev,
7462 struct device_attribute *attr,
7463 char *page)
7464{
7465 struct pmu *pmu = dev_get_drvdata(dev);
7466
7467 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7468}
7469
272325c4
PZ
7470static DEFINE_MUTEX(mux_interval_mutex);
7471
62b85639
SE
7472static ssize_t
7473perf_event_mux_interval_ms_store(struct device *dev,
7474 struct device_attribute *attr,
7475 const char *buf, size_t count)
7476{
7477 struct pmu *pmu = dev_get_drvdata(dev);
7478 int timer, cpu, ret;
7479
7480 ret = kstrtoint(buf, 0, &timer);
7481 if (ret)
7482 return ret;
7483
7484 if (timer < 1)
7485 return -EINVAL;
7486
7487 /* same value, noting to do */
7488 if (timer == pmu->hrtimer_interval_ms)
7489 return count;
7490
272325c4 7491 mutex_lock(&mux_interval_mutex);
62b85639
SE
7492 pmu->hrtimer_interval_ms = timer;
7493
7494 /* update all cpuctx for this PMU */
272325c4
PZ
7495 get_online_cpus();
7496 for_each_online_cpu(cpu) {
62b85639
SE
7497 struct perf_cpu_context *cpuctx;
7498 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7499 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7500
272325c4
PZ
7501 cpu_function_call(cpu,
7502 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7503 }
272325c4
PZ
7504 put_online_cpus();
7505 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7506
7507 return count;
7508}
90826ca7 7509static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7510
90826ca7
GKH
7511static struct attribute *pmu_dev_attrs[] = {
7512 &dev_attr_type.attr,
7513 &dev_attr_perf_event_mux_interval_ms.attr,
7514 NULL,
abe43400 7515};
90826ca7 7516ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7517
7518static int pmu_bus_running;
7519static struct bus_type pmu_bus = {
7520 .name = "event_source",
90826ca7 7521 .dev_groups = pmu_dev_groups,
abe43400
PZ
7522};
7523
7524static void pmu_dev_release(struct device *dev)
7525{
7526 kfree(dev);
7527}
7528
7529static int pmu_dev_alloc(struct pmu *pmu)
7530{
7531 int ret = -ENOMEM;
7532
7533 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7534 if (!pmu->dev)
7535 goto out;
7536
0c9d42ed 7537 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7538 device_initialize(pmu->dev);
7539 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7540 if (ret)
7541 goto free_dev;
7542
7543 dev_set_drvdata(pmu->dev, pmu);
7544 pmu->dev->bus = &pmu_bus;
7545 pmu->dev->release = pmu_dev_release;
7546 ret = device_add(pmu->dev);
7547 if (ret)
7548 goto free_dev;
7549
7550out:
7551 return ret;
7552
7553free_dev:
7554 put_device(pmu->dev);
7555 goto out;
7556}
7557
547e9fd7 7558static struct lock_class_key cpuctx_mutex;
facc4307 7559static struct lock_class_key cpuctx_lock;
547e9fd7 7560
03d8e80b 7561int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7562{
108b02cf 7563 int cpu, ret;
24f1e32c 7564
b0a873eb 7565 mutex_lock(&pmus_lock);
33696fc0
PZ
7566 ret = -ENOMEM;
7567 pmu->pmu_disable_count = alloc_percpu(int);
7568 if (!pmu->pmu_disable_count)
7569 goto unlock;
f29ac756 7570
2e80a82a
PZ
7571 pmu->type = -1;
7572 if (!name)
7573 goto skip_type;
7574 pmu->name = name;
7575
7576 if (type < 0) {
0e9c3be2
TH
7577 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7578 if (type < 0) {
7579 ret = type;
2e80a82a
PZ
7580 goto free_pdc;
7581 }
7582 }
7583 pmu->type = type;
7584
abe43400
PZ
7585 if (pmu_bus_running) {
7586 ret = pmu_dev_alloc(pmu);
7587 if (ret)
7588 goto free_idr;
7589 }
7590
2e80a82a 7591skip_type:
8dc85d54
PZ
7592 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7593 if (pmu->pmu_cpu_context)
7594 goto got_cpu_context;
f29ac756 7595
c4814202 7596 ret = -ENOMEM;
108b02cf
PZ
7597 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7598 if (!pmu->pmu_cpu_context)
abe43400 7599 goto free_dev;
f344011c 7600
108b02cf
PZ
7601 for_each_possible_cpu(cpu) {
7602 struct perf_cpu_context *cpuctx;
7603
7604 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7605 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7606 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7607 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7608 cpuctx->ctx.pmu = pmu;
9e630205 7609
272325c4 7610 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7611
3f1f3320 7612 cpuctx->unique_pmu = pmu;
108b02cf 7613 }
76e1d904 7614
8dc85d54 7615got_cpu_context:
ad5133b7
PZ
7616 if (!pmu->start_txn) {
7617 if (pmu->pmu_enable) {
7618 /*
7619 * If we have pmu_enable/pmu_disable calls, install
7620 * transaction stubs that use that to try and batch
7621 * hardware accesses.
7622 */
7623 pmu->start_txn = perf_pmu_start_txn;
7624 pmu->commit_txn = perf_pmu_commit_txn;
7625 pmu->cancel_txn = perf_pmu_cancel_txn;
7626 } else {
fbbe0701 7627 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7628 pmu->commit_txn = perf_pmu_nop_int;
7629 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7630 }
5c92d124 7631 }
15dbf27c 7632
ad5133b7
PZ
7633 if (!pmu->pmu_enable) {
7634 pmu->pmu_enable = perf_pmu_nop_void;
7635 pmu->pmu_disable = perf_pmu_nop_void;
7636 }
7637
35edc2a5
PZ
7638 if (!pmu->event_idx)
7639 pmu->event_idx = perf_event_idx_default;
7640
b0a873eb 7641 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7642 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7643 ret = 0;
7644unlock:
b0a873eb
PZ
7645 mutex_unlock(&pmus_lock);
7646
33696fc0 7647 return ret;
108b02cf 7648
abe43400
PZ
7649free_dev:
7650 device_del(pmu->dev);
7651 put_device(pmu->dev);
7652
2e80a82a
PZ
7653free_idr:
7654 if (pmu->type >= PERF_TYPE_MAX)
7655 idr_remove(&pmu_idr, pmu->type);
7656
108b02cf
PZ
7657free_pdc:
7658 free_percpu(pmu->pmu_disable_count);
7659 goto unlock;
f29ac756 7660}
c464c76e 7661EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7662
b0a873eb 7663void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7664{
b0a873eb
PZ
7665 mutex_lock(&pmus_lock);
7666 list_del_rcu(&pmu->entry);
7667 mutex_unlock(&pmus_lock);
5c92d124 7668
0475f9ea 7669 /*
cde8e884
PZ
7670 * We dereference the pmu list under both SRCU and regular RCU, so
7671 * synchronize against both of those.
0475f9ea 7672 */
b0a873eb 7673 synchronize_srcu(&pmus_srcu);
cde8e884 7674 synchronize_rcu();
d6d020e9 7675
33696fc0 7676 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7677 if (pmu->type >= PERF_TYPE_MAX)
7678 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7679 device_del(pmu->dev);
7680 put_device(pmu->dev);
51676957 7681 free_pmu_context(pmu);
b0a873eb 7682}
c464c76e 7683EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7684
cc34b98b
MR
7685static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7686{
ccd41c86 7687 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7688 int ret;
7689
7690 if (!try_module_get(pmu->module))
7691 return -ENODEV;
ccd41c86
PZ
7692
7693 if (event->group_leader != event) {
8b10c5e2
PZ
7694 /*
7695 * This ctx->mutex can nest when we're called through
7696 * inheritance. See the perf_event_ctx_lock_nested() comment.
7697 */
7698 ctx = perf_event_ctx_lock_nested(event->group_leader,
7699 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7700 BUG_ON(!ctx);
7701 }
7702
cc34b98b
MR
7703 event->pmu = pmu;
7704 ret = pmu->event_init(event);
ccd41c86
PZ
7705
7706 if (ctx)
7707 perf_event_ctx_unlock(event->group_leader, ctx);
7708
cc34b98b
MR
7709 if (ret)
7710 module_put(pmu->module);
7711
7712 return ret;
7713}
7714
18ab2cd3 7715static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7716{
7717 struct pmu *pmu = NULL;
7718 int idx;
940c5b29 7719 int ret;
b0a873eb
PZ
7720
7721 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7722
7723 rcu_read_lock();
7724 pmu = idr_find(&pmu_idr, event->attr.type);
7725 rcu_read_unlock();
940c5b29 7726 if (pmu) {
cc34b98b 7727 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7728 if (ret)
7729 pmu = ERR_PTR(ret);
2e80a82a 7730 goto unlock;
940c5b29 7731 }
2e80a82a 7732
b0a873eb 7733 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7734 ret = perf_try_init_event(pmu, event);
b0a873eb 7735 if (!ret)
e5f4d339 7736 goto unlock;
76e1d904 7737
b0a873eb
PZ
7738 if (ret != -ENOENT) {
7739 pmu = ERR_PTR(ret);
e5f4d339 7740 goto unlock;
f344011c 7741 }
5c92d124 7742 }
e5f4d339
PZ
7743 pmu = ERR_PTR(-ENOENT);
7744unlock:
b0a873eb 7745 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7746
4aeb0b42 7747 return pmu;
5c92d124
IM
7748}
7749
4beb31f3
FW
7750static void account_event_cpu(struct perf_event *event, int cpu)
7751{
7752 if (event->parent)
7753 return;
7754
4beb31f3
FW
7755 if (is_cgroup_event(event))
7756 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7757}
7758
766d6c07
FW
7759static void account_event(struct perf_event *event)
7760{
25432ae9
PZ
7761 bool inc = false;
7762
4beb31f3
FW
7763 if (event->parent)
7764 return;
7765
766d6c07 7766 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7767 inc = true;
766d6c07
FW
7768 if (event->attr.mmap || event->attr.mmap_data)
7769 atomic_inc(&nr_mmap_events);
7770 if (event->attr.comm)
7771 atomic_inc(&nr_comm_events);
7772 if (event->attr.task)
7773 atomic_inc(&nr_task_events);
948b26b6
FW
7774 if (event->attr.freq) {
7775 if (atomic_inc_return(&nr_freq_events) == 1)
7776 tick_nohz_full_kick_all();
7777 }
45ac1403
AH
7778 if (event->attr.context_switch) {
7779 atomic_inc(&nr_switch_events);
25432ae9 7780 inc = true;
45ac1403 7781 }
4beb31f3 7782 if (has_branch_stack(event))
25432ae9 7783 inc = true;
4beb31f3 7784 if (is_cgroup_event(event))
25432ae9
PZ
7785 inc = true;
7786
7787 if (inc)
766d6c07 7788 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7789
7790 account_event_cpu(event, event->cpu);
766d6c07
FW
7791}
7792
0793a61d 7793/*
cdd6c482 7794 * Allocate and initialize a event structure
0793a61d 7795 */
cdd6c482 7796static struct perf_event *
c3f00c70 7797perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7798 struct task_struct *task,
7799 struct perf_event *group_leader,
7800 struct perf_event *parent_event,
4dc0da86 7801 perf_overflow_handler_t overflow_handler,
79dff51e 7802 void *context, int cgroup_fd)
0793a61d 7803{
51b0fe39 7804 struct pmu *pmu;
cdd6c482
IM
7805 struct perf_event *event;
7806 struct hw_perf_event *hwc;
90983b16 7807 long err = -EINVAL;
0793a61d 7808
66832eb4
ON
7809 if ((unsigned)cpu >= nr_cpu_ids) {
7810 if (!task || cpu != -1)
7811 return ERR_PTR(-EINVAL);
7812 }
7813
c3f00c70 7814 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7815 if (!event)
d5d2bc0d 7816 return ERR_PTR(-ENOMEM);
0793a61d 7817
04289bb9 7818 /*
cdd6c482 7819 * Single events are their own group leaders, with an
04289bb9
IM
7820 * empty sibling list:
7821 */
7822 if (!group_leader)
cdd6c482 7823 group_leader = event;
04289bb9 7824
cdd6c482
IM
7825 mutex_init(&event->child_mutex);
7826 INIT_LIST_HEAD(&event->child_list);
fccc714b 7827
cdd6c482
IM
7828 INIT_LIST_HEAD(&event->group_entry);
7829 INIT_LIST_HEAD(&event->event_entry);
7830 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7831 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7832 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7833 INIT_HLIST_NODE(&event->hlist_entry);
7834
10c6db11 7835
cdd6c482 7836 init_waitqueue_head(&event->waitq);
e360adbe 7837 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7838
cdd6c482 7839 mutex_init(&event->mmap_mutex);
7b732a75 7840
a6fa941d 7841 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7842 event->cpu = cpu;
7843 event->attr = *attr;
7844 event->group_leader = group_leader;
7845 event->pmu = NULL;
cdd6c482 7846 event->oncpu = -1;
a96bbc16 7847
cdd6c482 7848 event->parent = parent_event;
b84fbc9f 7849
17cf22c3 7850 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7851 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7852
cdd6c482 7853 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7854
d580ff86
PZ
7855 if (task) {
7856 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7857 /*
50f16a8b
PZ
7858 * XXX pmu::event_init needs to know what task to account to
7859 * and we cannot use the ctx information because we need the
7860 * pmu before we get a ctx.
d580ff86 7861 */
50f16a8b 7862 event->hw.target = task;
d580ff86
PZ
7863 }
7864
34f43927
PZ
7865 event->clock = &local_clock;
7866 if (parent_event)
7867 event->clock = parent_event->clock;
7868
4dc0da86 7869 if (!overflow_handler && parent_event) {
b326e956 7870 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7871 context = parent_event->overflow_handler_context;
7872 }
66832eb4 7873
b326e956 7874 event->overflow_handler = overflow_handler;
4dc0da86 7875 event->overflow_handler_context = context;
97eaf530 7876
0231bb53 7877 perf_event__state_init(event);
a86ed508 7878
4aeb0b42 7879 pmu = NULL;
b8e83514 7880
cdd6c482 7881 hwc = &event->hw;
bd2b5b12 7882 hwc->sample_period = attr->sample_period;
0d48696f 7883 if (attr->freq && attr->sample_freq)
bd2b5b12 7884 hwc->sample_period = 1;
eced1dfc 7885 hwc->last_period = hwc->sample_period;
bd2b5b12 7886
e7850595 7887 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7888
2023b359 7889 /*
cdd6c482 7890 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7891 */
3dab77fb 7892 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7893 goto err_ns;
a46a2300
YZ
7894
7895 if (!has_branch_stack(event))
7896 event->attr.branch_sample_type = 0;
2023b359 7897
79dff51e
MF
7898 if (cgroup_fd != -1) {
7899 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7900 if (err)
7901 goto err_ns;
7902 }
7903
b0a873eb 7904 pmu = perf_init_event(event);
4aeb0b42 7905 if (!pmu)
90983b16
FW
7906 goto err_ns;
7907 else if (IS_ERR(pmu)) {
4aeb0b42 7908 err = PTR_ERR(pmu);
90983b16 7909 goto err_ns;
621a01ea 7910 }
d5d2bc0d 7911
bed5b25a
AS
7912 err = exclusive_event_init(event);
7913 if (err)
7914 goto err_pmu;
7915
cdd6c482 7916 if (!event->parent) {
927c7a9e
FW
7917 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7918 err = get_callchain_buffers();
90983b16 7919 if (err)
bed5b25a 7920 goto err_per_task;
d010b332 7921 }
f344011c 7922 }
9ee318a7 7923
cdd6c482 7924 return event;
90983b16 7925
bed5b25a
AS
7926err_per_task:
7927 exclusive_event_destroy(event);
7928
90983b16
FW
7929err_pmu:
7930 if (event->destroy)
7931 event->destroy(event);
c464c76e 7932 module_put(pmu->module);
90983b16 7933err_ns:
79dff51e
MF
7934 if (is_cgroup_event(event))
7935 perf_detach_cgroup(event);
90983b16
FW
7936 if (event->ns)
7937 put_pid_ns(event->ns);
7938 kfree(event);
7939
7940 return ERR_PTR(err);
0793a61d
TG
7941}
7942
cdd6c482
IM
7943static int perf_copy_attr(struct perf_event_attr __user *uattr,
7944 struct perf_event_attr *attr)
974802ea 7945{
974802ea 7946 u32 size;
cdf8073d 7947 int ret;
974802ea
PZ
7948
7949 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7950 return -EFAULT;
7951
7952 /*
7953 * zero the full structure, so that a short copy will be nice.
7954 */
7955 memset(attr, 0, sizeof(*attr));
7956
7957 ret = get_user(size, &uattr->size);
7958 if (ret)
7959 return ret;
7960
7961 if (size > PAGE_SIZE) /* silly large */
7962 goto err_size;
7963
7964 if (!size) /* abi compat */
7965 size = PERF_ATTR_SIZE_VER0;
7966
7967 if (size < PERF_ATTR_SIZE_VER0)
7968 goto err_size;
7969
7970 /*
7971 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7972 * ensure all the unknown bits are 0 - i.e. new
7973 * user-space does not rely on any kernel feature
7974 * extensions we dont know about yet.
974802ea
PZ
7975 */
7976 if (size > sizeof(*attr)) {
cdf8073d
IS
7977 unsigned char __user *addr;
7978 unsigned char __user *end;
7979 unsigned char val;
974802ea 7980
cdf8073d
IS
7981 addr = (void __user *)uattr + sizeof(*attr);
7982 end = (void __user *)uattr + size;
974802ea 7983
cdf8073d 7984 for (; addr < end; addr++) {
974802ea
PZ
7985 ret = get_user(val, addr);
7986 if (ret)
7987 return ret;
7988 if (val)
7989 goto err_size;
7990 }
b3e62e35 7991 size = sizeof(*attr);
974802ea
PZ
7992 }
7993
7994 ret = copy_from_user(attr, uattr, size);
7995 if (ret)
7996 return -EFAULT;
7997
cd757645 7998 if (attr->__reserved_1)
974802ea
PZ
7999 return -EINVAL;
8000
8001 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8002 return -EINVAL;
8003
8004 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8005 return -EINVAL;
8006
bce38cd5
SE
8007 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8008 u64 mask = attr->branch_sample_type;
8009
8010 /* only using defined bits */
8011 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8012 return -EINVAL;
8013
8014 /* at least one branch bit must be set */
8015 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8016 return -EINVAL;
8017
bce38cd5
SE
8018 /* propagate priv level, when not set for branch */
8019 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8020
8021 /* exclude_kernel checked on syscall entry */
8022 if (!attr->exclude_kernel)
8023 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8024
8025 if (!attr->exclude_user)
8026 mask |= PERF_SAMPLE_BRANCH_USER;
8027
8028 if (!attr->exclude_hv)
8029 mask |= PERF_SAMPLE_BRANCH_HV;
8030 /*
8031 * adjust user setting (for HW filter setup)
8032 */
8033 attr->branch_sample_type = mask;
8034 }
e712209a
SE
8035 /* privileged levels capture (kernel, hv): check permissions */
8036 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8037 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8038 return -EACCES;
bce38cd5 8039 }
4018994f 8040
c5ebcedb 8041 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8042 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8043 if (ret)
8044 return ret;
8045 }
8046
8047 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8048 if (!arch_perf_have_user_stack_dump())
8049 return -ENOSYS;
8050
8051 /*
8052 * We have __u32 type for the size, but so far
8053 * we can only use __u16 as maximum due to the
8054 * __u16 sample size limit.
8055 */
8056 if (attr->sample_stack_user >= USHRT_MAX)
8057 ret = -EINVAL;
8058 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8059 ret = -EINVAL;
8060 }
4018994f 8061
60e2364e
SE
8062 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8063 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8064out:
8065 return ret;
8066
8067err_size:
8068 put_user(sizeof(*attr), &uattr->size);
8069 ret = -E2BIG;
8070 goto out;
8071}
8072
ac9721f3
PZ
8073static int
8074perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8075{
b69cf536 8076 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8077 int ret = -EINVAL;
8078
ac9721f3 8079 if (!output_event)
a4be7c27
PZ
8080 goto set;
8081
ac9721f3
PZ
8082 /* don't allow circular references */
8083 if (event == output_event)
a4be7c27
PZ
8084 goto out;
8085
0f139300
PZ
8086 /*
8087 * Don't allow cross-cpu buffers
8088 */
8089 if (output_event->cpu != event->cpu)
8090 goto out;
8091
8092 /*
76369139 8093 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8094 */
8095 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8096 goto out;
8097
34f43927
PZ
8098 /*
8099 * Mixing clocks in the same buffer is trouble you don't need.
8100 */
8101 if (output_event->clock != event->clock)
8102 goto out;
8103
45bfb2e5
PZ
8104 /*
8105 * If both events generate aux data, they must be on the same PMU
8106 */
8107 if (has_aux(event) && has_aux(output_event) &&
8108 event->pmu != output_event->pmu)
8109 goto out;
8110
a4be7c27 8111set:
cdd6c482 8112 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8113 /* Can't redirect output if we've got an active mmap() */
8114 if (atomic_read(&event->mmap_count))
8115 goto unlock;
a4be7c27 8116
ac9721f3 8117 if (output_event) {
76369139
FW
8118 /* get the rb we want to redirect to */
8119 rb = ring_buffer_get(output_event);
8120 if (!rb)
ac9721f3 8121 goto unlock;
a4be7c27
PZ
8122 }
8123
b69cf536 8124 ring_buffer_attach(event, rb);
9bb5d40c 8125
a4be7c27 8126 ret = 0;
ac9721f3
PZ
8127unlock:
8128 mutex_unlock(&event->mmap_mutex);
8129
a4be7c27 8130out:
a4be7c27
PZ
8131 return ret;
8132}
8133
f63a8daa
PZ
8134static void mutex_lock_double(struct mutex *a, struct mutex *b)
8135{
8136 if (b < a)
8137 swap(a, b);
8138
8139 mutex_lock(a);
8140 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8141}
8142
34f43927
PZ
8143static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8144{
8145 bool nmi_safe = false;
8146
8147 switch (clk_id) {
8148 case CLOCK_MONOTONIC:
8149 event->clock = &ktime_get_mono_fast_ns;
8150 nmi_safe = true;
8151 break;
8152
8153 case CLOCK_MONOTONIC_RAW:
8154 event->clock = &ktime_get_raw_fast_ns;
8155 nmi_safe = true;
8156 break;
8157
8158 case CLOCK_REALTIME:
8159 event->clock = &ktime_get_real_ns;
8160 break;
8161
8162 case CLOCK_BOOTTIME:
8163 event->clock = &ktime_get_boot_ns;
8164 break;
8165
8166 case CLOCK_TAI:
8167 event->clock = &ktime_get_tai_ns;
8168 break;
8169
8170 default:
8171 return -EINVAL;
8172 }
8173
8174 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8175 return -EINVAL;
8176
8177 return 0;
8178}
8179
0793a61d 8180/**
cdd6c482 8181 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8182 *
cdd6c482 8183 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8184 * @pid: target pid
9f66a381 8185 * @cpu: target cpu
cdd6c482 8186 * @group_fd: group leader event fd
0793a61d 8187 */
cdd6c482
IM
8188SYSCALL_DEFINE5(perf_event_open,
8189 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8190 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8191{
b04243ef
PZ
8192 struct perf_event *group_leader = NULL, *output_event = NULL;
8193 struct perf_event *event, *sibling;
cdd6c482 8194 struct perf_event_attr attr;
f63a8daa 8195 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8196 struct file *event_file = NULL;
2903ff01 8197 struct fd group = {NULL, 0};
38a81da2 8198 struct task_struct *task = NULL;
89a1e187 8199 struct pmu *pmu;
ea635c64 8200 int event_fd;
b04243ef 8201 int move_group = 0;
dc86cabe 8202 int err;
a21b0b35 8203 int f_flags = O_RDWR;
79dff51e 8204 int cgroup_fd = -1;
0793a61d 8205
2743a5b0 8206 /* for future expandability... */
e5d1367f 8207 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8208 return -EINVAL;
8209
dc86cabe
IM
8210 err = perf_copy_attr(attr_uptr, &attr);
8211 if (err)
8212 return err;
eab656ae 8213
0764771d
PZ
8214 if (!attr.exclude_kernel) {
8215 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8216 return -EACCES;
8217 }
8218
df58ab24 8219 if (attr.freq) {
cdd6c482 8220 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8221 return -EINVAL;
0819b2e3
PZ
8222 } else {
8223 if (attr.sample_period & (1ULL << 63))
8224 return -EINVAL;
df58ab24
PZ
8225 }
8226
e5d1367f
SE
8227 /*
8228 * In cgroup mode, the pid argument is used to pass the fd
8229 * opened to the cgroup directory in cgroupfs. The cpu argument
8230 * designates the cpu on which to monitor threads from that
8231 * cgroup.
8232 */
8233 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8234 return -EINVAL;
8235
a21b0b35
YD
8236 if (flags & PERF_FLAG_FD_CLOEXEC)
8237 f_flags |= O_CLOEXEC;
8238
8239 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8240 if (event_fd < 0)
8241 return event_fd;
8242
ac9721f3 8243 if (group_fd != -1) {
2903ff01
AV
8244 err = perf_fget_light(group_fd, &group);
8245 if (err)
d14b12d7 8246 goto err_fd;
2903ff01 8247 group_leader = group.file->private_data;
ac9721f3
PZ
8248 if (flags & PERF_FLAG_FD_OUTPUT)
8249 output_event = group_leader;
8250 if (flags & PERF_FLAG_FD_NO_GROUP)
8251 group_leader = NULL;
8252 }
8253
e5d1367f 8254 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8255 task = find_lively_task_by_vpid(pid);
8256 if (IS_ERR(task)) {
8257 err = PTR_ERR(task);
8258 goto err_group_fd;
8259 }
8260 }
8261
1f4ee503
PZ
8262 if (task && group_leader &&
8263 group_leader->attr.inherit != attr.inherit) {
8264 err = -EINVAL;
8265 goto err_task;
8266 }
8267
fbfc623f
YZ
8268 get_online_cpus();
8269
79dff51e
MF
8270 if (flags & PERF_FLAG_PID_CGROUP)
8271 cgroup_fd = pid;
8272
4dc0da86 8273 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8274 NULL, NULL, cgroup_fd);
d14b12d7
SE
8275 if (IS_ERR(event)) {
8276 err = PTR_ERR(event);
1f4ee503 8277 goto err_cpus;
d14b12d7
SE
8278 }
8279
53b25335
VW
8280 if (is_sampling_event(event)) {
8281 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8282 err = -ENOTSUPP;
8283 goto err_alloc;
8284 }
8285 }
8286
766d6c07
FW
8287 account_event(event);
8288
89a1e187
PZ
8289 /*
8290 * Special case software events and allow them to be part of
8291 * any hardware group.
8292 */
8293 pmu = event->pmu;
b04243ef 8294
34f43927
PZ
8295 if (attr.use_clockid) {
8296 err = perf_event_set_clock(event, attr.clockid);
8297 if (err)
8298 goto err_alloc;
8299 }
8300
b04243ef
PZ
8301 if (group_leader &&
8302 (is_software_event(event) != is_software_event(group_leader))) {
8303 if (is_software_event(event)) {
8304 /*
8305 * If event and group_leader are not both a software
8306 * event, and event is, then group leader is not.
8307 *
8308 * Allow the addition of software events to !software
8309 * groups, this is safe because software events never
8310 * fail to schedule.
8311 */
8312 pmu = group_leader->pmu;
8313 } else if (is_software_event(group_leader) &&
8314 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8315 /*
8316 * In case the group is a pure software group, and we
8317 * try to add a hardware event, move the whole group to
8318 * the hardware context.
8319 */
8320 move_group = 1;
8321 }
8322 }
89a1e187
PZ
8323
8324 /*
8325 * Get the target context (task or percpu):
8326 */
4af57ef2 8327 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8328 if (IS_ERR(ctx)) {
8329 err = PTR_ERR(ctx);
c6be5a5c 8330 goto err_alloc;
89a1e187
PZ
8331 }
8332
bed5b25a
AS
8333 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8334 err = -EBUSY;
8335 goto err_context;
8336 }
8337
fd1edb3a
PZ
8338 if (task) {
8339 put_task_struct(task);
8340 task = NULL;
8341 }
8342
ccff286d 8343 /*
cdd6c482 8344 * Look up the group leader (we will attach this event to it):
04289bb9 8345 */
ac9721f3 8346 if (group_leader) {
dc86cabe 8347 err = -EINVAL;
04289bb9 8348
04289bb9 8349 /*
ccff286d
IM
8350 * Do not allow a recursive hierarchy (this new sibling
8351 * becoming part of another group-sibling):
8352 */
8353 if (group_leader->group_leader != group_leader)
c3f00c70 8354 goto err_context;
34f43927
PZ
8355
8356 /* All events in a group should have the same clock */
8357 if (group_leader->clock != event->clock)
8358 goto err_context;
8359
ccff286d
IM
8360 /*
8361 * Do not allow to attach to a group in a different
8362 * task or CPU context:
04289bb9 8363 */
b04243ef 8364 if (move_group) {
c3c87e77
PZ
8365 /*
8366 * Make sure we're both on the same task, or both
8367 * per-cpu events.
8368 */
8369 if (group_leader->ctx->task != ctx->task)
8370 goto err_context;
8371
8372 /*
8373 * Make sure we're both events for the same CPU;
8374 * grouping events for different CPUs is broken; since
8375 * you can never concurrently schedule them anyhow.
8376 */
8377 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8378 goto err_context;
8379 } else {
8380 if (group_leader->ctx != ctx)
8381 goto err_context;
8382 }
8383
3b6f9e5c
PM
8384 /*
8385 * Only a group leader can be exclusive or pinned
8386 */
0d48696f 8387 if (attr.exclusive || attr.pinned)
c3f00c70 8388 goto err_context;
ac9721f3
PZ
8389 }
8390
8391 if (output_event) {
8392 err = perf_event_set_output(event, output_event);
8393 if (err)
c3f00c70 8394 goto err_context;
ac9721f3 8395 }
0793a61d 8396
a21b0b35
YD
8397 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8398 f_flags);
ea635c64
AV
8399 if (IS_ERR(event_file)) {
8400 err = PTR_ERR(event_file);
c3f00c70 8401 goto err_context;
ea635c64 8402 }
9b51f66d 8403
b04243ef 8404 if (move_group) {
f63a8daa 8405 gctx = group_leader->ctx;
f55fc2a5
PZ
8406 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8407 } else {
8408 mutex_lock(&ctx->mutex);
8409 }
8410
a723968c
PZ
8411 if (!perf_event_validate_size(event)) {
8412 err = -E2BIG;
8413 goto err_locked;
8414 }
8415
f55fc2a5
PZ
8416 /*
8417 * Must be under the same ctx::mutex as perf_install_in_context(),
8418 * because we need to serialize with concurrent event creation.
8419 */
8420 if (!exclusive_event_installable(event, ctx)) {
8421 /* exclusive and group stuff are assumed mutually exclusive */
8422 WARN_ON_ONCE(move_group);
f63a8daa 8423
f55fc2a5
PZ
8424 err = -EBUSY;
8425 goto err_locked;
8426 }
f63a8daa 8427
f55fc2a5
PZ
8428 WARN_ON_ONCE(ctx->parent_ctx);
8429
8430 if (move_group) {
f63a8daa
PZ
8431 /*
8432 * See perf_event_ctx_lock() for comments on the details
8433 * of swizzling perf_event::ctx.
8434 */
46ce0fe9 8435 perf_remove_from_context(group_leader, false);
0231bb53 8436
b04243ef
PZ
8437 list_for_each_entry(sibling, &group_leader->sibling_list,
8438 group_entry) {
46ce0fe9 8439 perf_remove_from_context(sibling, false);
b04243ef
PZ
8440 put_ctx(gctx);
8441 }
b04243ef 8442
f63a8daa
PZ
8443 /*
8444 * Wait for everybody to stop referencing the events through
8445 * the old lists, before installing it on new lists.
8446 */
0cda4c02 8447 synchronize_rcu();
f63a8daa 8448
8f95b435
PZI
8449 /*
8450 * Install the group siblings before the group leader.
8451 *
8452 * Because a group leader will try and install the entire group
8453 * (through the sibling list, which is still in-tact), we can
8454 * end up with siblings installed in the wrong context.
8455 *
8456 * By installing siblings first we NO-OP because they're not
8457 * reachable through the group lists.
8458 */
b04243ef
PZ
8459 list_for_each_entry(sibling, &group_leader->sibling_list,
8460 group_entry) {
8f95b435 8461 perf_event__state_init(sibling);
9fc81d87 8462 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8463 get_ctx(ctx);
8464 }
8f95b435
PZI
8465
8466 /*
8467 * Removing from the context ends up with disabled
8468 * event. What we want here is event in the initial
8469 * startup state, ready to be add into new context.
8470 */
8471 perf_event__state_init(group_leader);
8472 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8473 get_ctx(ctx);
b04243ef 8474
f55fc2a5
PZ
8475 /*
8476 * Now that all events are installed in @ctx, nothing
8477 * references @gctx anymore, so drop the last reference we have
8478 * on it.
8479 */
8480 put_ctx(gctx);
bed5b25a
AS
8481 }
8482
f73e22ab
PZ
8483 /*
8484 * Precalculate sample_data sizes; do while holding ctx::mutex such
8485 * that we're serialized against further additions and before
8486 * perf_install_in_context() which is the point the event is active and
8487 * can use these values.
8488 */
8489 perf_event__header_size(event);
8490 perf_event__id_header_size(event);
8491
78cd2c74
PZ
8492 event->owner = current;
8493
e2d37cd2 8494 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8495 perf_unpin_context(ctx);
f63a8daa 8496
f55fc2a5 8497 if (move_group)
f63a8daa 8498 mutex_unlock(&gctx->mutex);
d859e29f 8499 mutex_unlock(&ctx->mutex);
9b51f66d 8500
fbfc623f
YZ
8501 put_online_cpus();
8502
cdd6c482
IM
8503 mutex_lock(&current->perf_event_mutex);
8504 list_add_tail(&event->owner_entry, &current->perf_event_list);
8505 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8506
8a49542c
PZ
8507 /*
8508 * Drop the reference on the group_event after placing the
8509 * new event on the sibling_list. This ensures destruction
8510 * of the group leader will find the pointer to itself in
8511 * perf_group_detach().
8512 */
2903ff01 8513 fdput(group);
ea635c64
AV
8514 fd_install(event_fd, event_file);
8515 return event_fd;
0793a61d 8516
f55fc2a5
PZ
8517err_locked:
8518 if (move_group)
8519 mutex_unlock(&gctx->mutex);
8520 mutex_unlock(&ctx->mutex);
8521/* err_file: */
8522 fput(event_file);
c3f00c70 8523err_context:
fe4b04fa 8524 perf_unpin_context(ctx);
ea635c64 8525 put_ctx(ctx);
c6be5a5c 8526err_alloc:
ea635c64 8527 free_event(event);
1f4ee503 8528err_cpus:
fbfc623f 8529 put_online_cpus();
1f4ee503 8530err_task:
e7d0bc04
PZ
8531 if (task)
8532 put_task_struct(task);
89a1e187 8533err_group_fd:
2903ff01 8534 fdput(group);
ea635c64
AV
8535err_fd:
8536 put_unused_fd(event_fd);
dc86cabe 8537 return err;
0793a61d
TG
8538}
8539
fb0459d7
AV
8540/**
8541 * perf_event_create_kernel_counter
8542 *
8543 * @attr: attributes of the counter to create
8544 * @cpu: cpu in which the counter is bound
38a81da2 8545 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8546 */
8547struct perf_event *
8548perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8549 struct task_struct *task,
4dc0da86
AK
8550 perf_overflow_handler_t overflow_handler,
8551 void *context)
fb0459d7 8552{
fb0459d7 8553 struct perf_event_context *ctx;
c3f00c70 8554 struct perf_event *event;
fb0459d7 8555 int err;
d859e29f 8556
fb0459d7
AV
8557 /*
8558 * Get the target context (task or percpu):
8559 */
d859e29f 8560
4dc0da86 8561 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8562 overflow_handler, context, -1);
c3f00c70
PZ
8563 if (IS_ERR(event)) {
8564 err = PTR_ERR(event);
8565 goto err;
8566 }
d859e29f 8567
f8697762 8568 /* Mark owner so we could distinguish it from user events. */
63b6da39 8569 event->owner = TASK_TOMBSTONE;
f8697762 8570
766d6c07
FW
8571 account_event(event);
8572
4af57ef2 8573 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8574 if (IS_ERR(ctx)) {
8575 err = PTR_ERR(ctx);
c3f00c70 8576 goto err_free;
d859e29f 8577 }
fb0459d7 8578
fb0459d7
AV
8579 WARN_ON_ONCE(ctx->parent_ctx);
8580 mutex_lock(&ctx->mutex);
bed5b25a
AS
8581 if (!exclusive_event_installable(event, ctx)) {
8582 mutex_unlock(&ctx->mutex);
8583 perf_unpin_context(ctx);
8584 put_ctx(ctx);
8585 err = -EBUSY;
8586 goto err_free;
8587 }
8588
fb0459d7 8589 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8590 perf_unpin_context(ctx);
fb0459d7
AV
8591 mutex_unlock(&ctx->mutex);
8592
fb0459d7
AV
8593 return event;
8594
c3f00c70
PZ
8595err_free:
8596 free_event(event);
8597err:
c6567f64 8598 return ERR_PTR(err);
9b51f66d 8599}
fb0459d7 8600EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8601
0cda4c02
YZ
8602void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8603{
8604 struct perf_event_context *src_ctx;
8605 struct perf_event_context *dst_ctx;
8606 struct perf_event *event, *tmp;
8607 LIST_HEAD(events);
8608
8609 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8610 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8611
f63a8daa
PZ
8612 /*
8613 * See perf_event_ctx_lock() for comments on the details
8614 * of swizzling perf_event::ctx.
8615 */
8616 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8617 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8618 event_entry) {
46ce0fe9 8619 perf_remove_from_context(event, false);
9a545de0 8620 unaccount_event_cpu(event, src_cpu);
0cda4c02 8621 put_ctx(src_ctx);
9886167d 8622 list_add(&event->migrate_entry, &events);
0cda4c02 8623 }
0cda4c02 8624
8f95b435
PZI
8625 /*
8626 * Wait for the events to quiesce before re-instating them.
8627 */
0cda4c02
YZ
8628 synchronize_rcu();
8629
8f95b435
PZI
8630 /*
8631 * Re-instate events in 2 passes.
8632 *
8633 * Skip over group leaders and only install siblings on this first
8634 * pass, siblings will not get enabled without a leader, however a
8635 * leader will enable its siblings, even if those are still on the old
8636 * context.
8637 */
8638 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8639 if (event->group_leader == event)
8640 continue;
8641
8642 list_del(&event->migrate_entry);
8643 if (event->state >= PERF_EVENT_STATE_OFF)
8644 event->state = PERF_EVENT_STATE_INACTIVE;
8645 account_event_cpu(event, dst_cpu);
8646 perf_install_in_context(dst_ctx, event, dst_cpu);
8647 get_ctx(dst_ctx);
8648 }
8649
8650 /*
8651 * Once all the siblings are setup properly, install the group leaders
8652 * to make it go.
8653 */
9886167d
PZ
8654 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8655 list_del(&event->migrate_entry);
0cda4c02
YZ
8656 if (event->state >= PERF_EVENT_STATE_OFF)
8657 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8658 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8659 perf_install_in_context(dst_ctx, event, dst_cpu);
8660 get_ctx(dst_ctx);
8661 }
8662 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8663 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8664}
8665EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8666
cdd6c482 8667static void sync_child_event(struct perf_event *child_event,
38b200d6 8668 struct task_struct *child)
d859e29f 8669{
cdd6c482 8670 struct perf_event *parent_event = child_event->parent;
8bc20959 8671 u64 child_val;
d859e29f 8672
cdd6c482
IM
8673 if (child_event->attr.inherit_stat)
8674 perf_event_read_event(child_event, child);
38b200d6 8675
b5e58793 8676 child_val = perf_event_count(child_event);
d859e29f
PM
8677
8678 /*
8679 * Add back the child's count to the parent's count:
8680 */
a6e6dea6 8681 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8682 atomic64_add(child_event->total_time_enabled,
8683 &parent_event->child_total_time_enabled);
8684 atomic64_add(child_event->total_time_running,
8685 &parent_event->child_total_time_running);
d859e29f
PM
8686
8687 /*
cdd6c482 8688 * Remove this event from the parent's list
d859e29f 8689 */
cdd6c482
IM
8690 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8691 mutex_lock(&parent_event->child_mutex);
8692 list_del_init(&child_event->child_list);
8693 mutex_unlock(&parent_event->child_mutex);
d859e29f 8694
dc633982
JO
8695 /*
8696 * Make sure user/parent get notified, that we just
8697 * lost one event.
8698 */
8699 perf_event_wakeup(parent_event);
8700
d859e29f 8701 /*
cdd6c482 8702 * Release the parent event, if this was the last
d859e29f
PM
8703 * reference to it.
8704 */
a6fa941d 8705 put_event(parent_event);
d859e29f
PM
8706}
8707
9b51f66d 8708static void
cdd6c482
IM
8709__perf_event_exit_task(struct perf_event *child_event,
8710 struct perf_event_context *child_ctx,
38b200d6 8711 struct task_struct *child)
9b51f66d 8712{
1903d50c
PZ
8713 /*
8714 * Do not destroy the 'original' grouping; because of the context
8715 * switch optimization the original events could've ended up in a
8716 * random child task.
8717 *
8718 * If we were to destroy the original group, all group related
8719 * operations would cease to function properly after this random
8720 * child dies.
8721 *
8722 * Do destroy all inherited groups, we don't care about those
8723 * and being thorough is better.
8724 */
32132a3d
PZ
8725 raw_spin_lock_irq(&child_ctx->lock);
8726 WARN_ON_ONCE(child_ctx->is_active);
8727
8728 if (!!child_event->parent)
8729 perf_group_detach(child_event);
8730 list_del_event(child_event, child_ctx);
8731 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8732
9b51f66d 8733 /*
38b435b1 8734 * It can happen that the parent exits first, and has events
9b51f66d 8735 * that are still around due to the child reference. These
38b435b1 8736 * events need to be zapped.
9b51f66d 8737 */
38b435b1 8738 if (child_event->parent) {
cdd6c482
IM
8739 sync_child_event(child_event, child);
8740 free_event(child_event);
179033b3
JO
8741 } else {
8742 child_event->state = PERF_EVENT_STATE_EXIT;
8743 perf_event_wakeup(child_event);
4bcf349a 8744 }
9b51f66d
IM
8745}
8746
8dc85d54 8747static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8748{
211de6eb 8749 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39
PZ
8750 struct perf_event *child_event, *next;
8751 unsigned long flags;
8752
8753 WARN_ON_ONCE(child != current);
9b51f66d 8754
63b6da39
PZ
8755 child_ctx = perf_lock_task_context(child, ctxn, &flags);
8756 if (!child_ctx)
9b51f66d
IM
8757 return;
8758
63b6da39 8759 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
c93f7669
PM
8760
8761 /*
63b6da39
PZ
8762 * Now that the context is inactive, destroy the task <-> ctx relation
8763 * and mark the context dead.
c93f7669 8764 */
63b6da39
PZ
8765 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8766 put_ctx(child_ctx); /* cannot be last */
8767 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8768 put_task_struct(current); /* cannot be last */
4a1c0f26 8769
71a851b4
PZ
8770 /*
8771 * If this context is a clone; unclone it so it can't get
8772 * swapped to another process while we're removing all
cdd6c482 8773 * the events from it.
71a851b4 8774 */
211de6eb 8775 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8776 update_context_time(child_ctx);
63b6da39 8777 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8778
211de6eb
PZ
8779 if (clone_ctx)
8780 put_ctx(clone_ctx);
4a1c0f26 8781
9f498cc5 8782 /*
cdd6c482
IM
8783 * Report the task dead after unscheduling the events so that we
8784 * won't get any samples after PERF_RECORD_EXIT. We can however still
8785 * get a few PERF_RECORD_READ events.
9f498cc5 8786 */
cdd6c482 8787 perf_event_task(child, child_ctx, 0);
a63eaf34 8788
66fff224
PZ
8789 /*
8790 * We can recurse on the same lock type through:
8791 *
cdd6c482
IM
8792 * __perf_event_exit_task()
8793 * sync_child_event()
a6fa941d
AV
8794 * put_event()
8795 * mutex_lock(&ctx->mutex)
66fff224
PZ
8796 *
8797 * But since its the parent context it won't be the same instance.
8798 */
a0507c84 8799 mutex_lock(&child_ctx->mutex);
a63eaf34 8800
ebf905fc 8801 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8802 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8803
a63eaf34
PM
8804 mutex_unlock(&child_ctx->mutex);
8805
8806 put_ctx(child_ctx);
9b51f66d
IM
8807}
8808
8dc85d54
PZ
8809/*
8810 * When a child task exits, feed back event values to parent events.
8811 */
8812void perf_event_exit_task(struct task_struct *child)
8813{
8882135b 8814 struct perf_event *event, *tmp;
8dc85d54
PZ
8815 int ctxn;
8816
8882135b
PZ
8817 mutex_lock(&child->perf_event_mutex);
8818 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8819 owner_entry) {
8820 list_del_init(&event->owner_entry);
8821
8822 /*
8823 * Ensure the list deletion is visible before we clear
8824 * the owner, closes a race against perf_release() where
8825 * we need to serialize on the owner->perf_event_mutex.
8826 */
8827 smp_wmb();
8828 event->owner = NULL;
8829 }
8830 mutex_unlock(&child->perf_event_mutex);
8831
8dc85d54
PZ
8832 for_each_task_context_nr(ctxn)
8833 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8834
8835 /*
8836 * The perf_event_exit_task_context calls perf_event_task
8837 * with child's task_ctx, which generates EXIT events for
8838 * child contexts and sets child->perf_event_ctxp[] to NULL.
8839 * At this point we need to send EXIT events to cpu contexts.
8840 */
8841 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8842}
8843
889ff015
FW
8844static void perf_free_event(struct perf_event *event,
8845 struct perf_event_context *ctx)
8846{
8847 struct perf_event *parent = event->parent;
8848
8849 if (WARN_ON_ONCE(!parent))
8850 return;
8851
8852 mutex_lock(&parent->child_mutex);
8853 list_del_init(&event->child_list);
8854 mutex_unlock(&parent->child_mutex);
8855
a6fa941d 8856 put_event(parent);
889ff015 8857
652884fe 8858 raw_spin_lock_irq(&ctx->lock);
8a49542c 8859 perf_group_detach(event);
889ff015 8860 list_del_event(event, ctx);
652884fe 8861 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8862 free_event(event);
8863}
8864
bbbee908 8865/*
652884fe 8866 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8867 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8868 *
8869 * Not all locks are strictly required, but take them anyway to be nice and
8870 * help out with the lockdep assertions.
bbbee908 8871 */
cdd6c482 8872void perf_event_free_task(struct task_struct *task)
bbbee908 8873{
8dc85d54 8874 struct perf_event_context *ctx;
cdd6c482 8875 struct perf_event *event, *tmp;
8dc85d54 8876 int ctxn;
bbbee908 8877
8dc85d54
PZ
8878 for_each_task_context_nr(ctxn) {
8879 ctx = task->perf_event_ctxp[ctxn];
8880 if (!ctx)
8881 continue;
bbbee908 8882
8dc85d54 8883 mutex_lock(&ctx->mutex);
bbbee908 8884again:
8dc85d54
PZ
8885 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8886 group_entry)
8887 perf_free_event(event, ctx);
bbbee908 8888
8dc85d54
PZ
8889 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8890 group_entry)
8891 perf_free_event(event, ctx);
bbbee908 8892
8dc85d54
PZ
8893 if (!list_empty(&ctx->pinned_groups) ||
8894 !list_empty(&ctx->flexible_groups))
8895 goto again;
bbbee908 8896
8dc85d54 8897 mutex_unlock(&ctx->mutex);
bbbee908 8898
8dc85d54
PZ
8899 put_ctx(ctx);
8900 }
889ff015
FW
8901}
8902
4e231c79
PZ
8903void perf_event_delayed_put(struct task_struct *task)
8904{
8905 int ctxn;
8906
8907 for_each_task_context_nr(ctxn)
8908 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8909}
8910
ffe8690c
KX
8911struct perf_event *perf_event_get(unsigned int fd)
8912{
8913 int err;
8914 struct fd f;
8915 struct perf_event *event;
8916
8917 err = perf_fget_light(fd, &f);
8918 if (err)
8919 return ERR_PTR(err);
8920
8921 event = f.file->private_data;
8922 atomic_long_inc(&event->refcount);
8923 fdput(f);
8924
8925 return event;
8926}
8927
8928const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8929{
8930 if (!event)
8931 return ERR_PTR(-EINVAL);
8932
8933 return &event->attr;
8934}
8935
97dee4f3
PZ
8936/*
8937 * inherit a event from parent task to child task:
8938 */
8939static struct perf_event *
8940inherit_event(struct perf_event *parent_event,
8941 struct task_struct *parent,
8942 struct perf_event_context *parent_ctx,
8943 struct task_struct *child,
8944 struct perf_event *group_leader,
8945 struct perf_event_context *child_ctx)
8946{
1929def9 8947 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8948 struct perf_event *child_event;
cee010ec 8949 unsigned long flags;
97dee4f3
PZ
8950
8951 /*
8952 * Instead of creating recursive hierarchies of events,
8953 * we link inherited events back to the original parent,
8954 * which has a filp for sure, which we use as the reference
8955 * count:
8956 */
8957 if (parent_event->parent)
8958 parent_event = parent_event->parent;
8959
8960 child_event = perf_event_alloc(&parent_event->attr,
8961 parent_event->cpu,
d580ff86 8962 child,
97dee4f3 8963 group_leader, parent_event,
79dff51e 8964 NULL, NULL, -1);
97dee4f3
PZ
8965 if (IS_ERR(child_event))
8966 return child_event;
a6fa941d 8967
fadfe7be
JO
8968 if (is_orphaned_event(parent_event) ||
8969 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8970 free_event(child_event);
8971 return NULL;
8972 }
8973
97dee4f3
PZ
8974 get_ctx(child_ctx);
8975
8976 /*
8977 * Make the child state follow the state of the parent event,
8978 * not its attr.disabled bit. We hold the parent's mutex,
8979 * so we won't race with perf_event_{en, dis}able_family.
8980 */
1929def9 8981 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8982 child_event->state = PERF_EVENT_STATE_INACTIVE;
8983 else
8984 child_event->state = PERF_EVENT_STATE_OFF;
8985
8986 if (parent_event->attr.freq) {
8987 u64 sample_period = parent_event->hw.sample_period;
8988 struct hw_perf_event *hwc = &child_event->hw;
8989
8990 hwc->sample_period = sample_period;
8991 hwc->last_period = sample_period;
8992
8993 local64_set(&hwc->period_left, sample_period);
8994 }
8995
8996 child_event->ctx = child_ctx;
8997 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8998 child_event->overflow_handler_context
8999 = parent_event->overflow_handler_context;
97dee4f3 9000
614b6780
TG
9001 /*
9002 * Precalculate sample_data sizes
9003 */
9004 perf_event__header_size(child_event);
6844c09d 9005 perf_event__id_header_size(child_event);
614b6780 9006
97dee4f3
PZ
9007 /*
9008 * Link it up in the child's context:
9009 */
cee010ec 9010 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9011 add_event_to_ctx(child_event, child_ctx);
cee010ec 9012 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9013
97dee4f3
PZ
9014 /*
9015 * Link this into the parent event's child list
9016 */
9017 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9018 mutex_lock(&parent_event->child_mutex);
9019 list_add_tail(&child_event->child_list, &parent_event->child_list);
9020 mutex_unlock(&parent_event->child_mutex);
9021
9022 return child_event;
9023}
9024
9025static int inherit_group(struct perf_event *parent_event,
9026 struct task_struct *parent,
9027 struct perf_event_context *parent_ctx,
9028 struct task_struct *child,
9029 struct perf_event_context *child_ctx)
9030{
9031 struct perf_event *leader;
9032 struct perf_event *sub;
9033 struct perf_event *child_ctr;
9034
9035 leader = inherit_event(parent_event, parent, parent_ctx,
9036 child, NULL, child_ctx);
9037 if (IS_ERR(leader))
9038 return PTR_ERR(leader);
9039 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9040 child_ctr = inherit_event(sub, parent, parent_ctx,
9041 child, leader, child_ctx);
9042 if (IS_ERR(child_ctr))
9043 return PTR_ERR(child_ctr);
9044 }
9045 return 0;
889ff015
FW
9046}
9047
9048static int
9049inherit_task_group(struct perf_event *event, struct task_struct *parent,
9050 struct perf_event_context *parent_ctx,
8dc85d54 9051 struct task_struct *child, int ctxn,
889ff015
FW
9052 int *inherited_all)
9053{
9054 int ret;
8dc85d54 9055 struct perf_event_context *child_ctx;
889ff015
FW
9056
9057 if (!event->attr.inherit) {
9058 *inherited_all = 0;
9059 return 0;
bbbee908
PZ
9060 }
9061
fe4b04fa 9062 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9063 if (!child_ctx) {
9064 /*
9065 * This is executed from the parent task context, so
9066 * inherit events that have been marked for cloning.
9067 * First allocate and initialize a context for the
9068 * child.
9069 */
bbbee908 9070
734df5ab 9071 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9072 if (!child_ctx)
9073 return -ENOMEM;
bbbee908 9074
8dc85d54 9075 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9076 }
9077
9078 ret = inherit_group(event, parent, parent_ctx,
9079 child, child_ctx);
9080
9081 if (ret)
9082 *inherited_all = 0;
9083
9084 return ret;
bbbee908
PZ
9085}
9086
9b51f66d 9087/*
cdd6c482 9088 * Initialize the perf_event context in task_struct
9b51f66d 9089 */
985c8dcb 9090static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9091{
889ff015 9092 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9093 struct perf_event_context *cloned_ctx;
9094 struct perf_event *event;
9b51f66d 9095 struct task_struct *parent = current;
564c2b21 9096 int inherited_all = 1;
dddd3379 9097 unsigned long flags;
6ab423e0 9098 int ret = 0;
9b51f66d 9099
8dc85d54 9100 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9101 return 0;
9102
ad3a37de 9103 /*
25346b93
PM
9104 * If the parent's context is a clone, pin it so it won't get
9105 * swapped under us.
ad3a37de 9106 */
8dc85d54 9107 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9108 if (!parent_ctx)
9109 return 0;
25346b93 9110
ad3a37de
PM
9111 /*
9112 * No need to check if parent_ctx != NULL here; since we saw
9113 * it non-NULL earlier, the only reason for it to become NULL
9114 * is if we exit, and since we're currently in the middle of
9115 * a fork we can't be exiting at the same time.
9116 */
ad3a37de 9117
9b51f66d
IM
9118 /*
9119 * Lock the parent list. No need to lock the child - not PID
9120 * hashed yet and not running, so nobody can access it.
9121 */
d859e29f 9122 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9123
9124 /*
9125 * We dont have to disable NMIs - we are only looking at
9126 * the list, not manipulating it:
9127 */
889ff015 9128 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9129 ret = inherit_task_group(event, parent, parent_ctx,
9130 child, ctxn, &inherited_all);
889ff015
FW
9131 if (ret)
9132 break;
9133 }
b93f7978 9134
dddd3379
TG
9135 /*
9136 * We can't hold ctx->lock when iterating the ->flexible_group list due
9137 * to allocations, but we need to prevent rotation because
9138 * rotate_ctx() will change the list from interrupt context.
9139 */
9140 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9141 parent_ctx->rotate_disable = 1;
9142 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9143
889ff015 9144 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9145 ret = inherit_task_group(event, parent, parent_ctx,
9146 child, ctxn, &inherited_all);
889ff015 9147 if (ret)
9b51f66d 9148 break;
564c2b21
PM
9149 }
9150
dddd3379
TG
9151 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9152 parent_ctx->rotate_disable = 0;
dddd3379 9153
8dc85d54 9154 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9155
05cbaa28 9156 if (child_ctx && inherited_all) {
564c2b21
PM
9157 /*
9158 * Mark the child context as a clone of the parent
9159 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9160 *
9161 * Note that if the parent is a clone, the holding of
9162 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9163 */
c5ed5145 9164 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9165 if (cloned_ctx) {
9166 child_ctx->parent_ctx = cloned_ctx;
25346b93 9167 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9168 } else {
9169 child_ctx->parent_ctx = parent_ctx;
9170 child_ctx->parent_gen = parent_ctx->generation;
9171 }
9172 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9173 }
9174
c5ed5145 9175 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9176 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9177
25346b93 9178 perf_unpin_context(parent_ctx);
fe4b04fa 9179 put_ctx(parent_ctx);
ad3a37de 9180
6ab423e0 9181 return ret;
9b51f66d
IM
9182}
9183
8dc85d54
PZ
9184/*
9185 * Initialize the perf_event context in task_struct
9186 */
9187int perf_event_init_task(struct task_struct *child)
9188{
9189 int ctxn, ret;
9190
8550d7cb
ON
9191 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9192 mutex_init(&child->perf_event_mutex);
9193 INIT_LIST_HEAD(&child->perf_event_list);
9194
8dc85d54
PZ
9195 for_each_task_context_nr(ctxn) {
9196 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9197 if (ret) {
9198 perf_event_free_task(child);
8dc85d54 9199 return ret;
6c72e350 9200 }
8dc85d54
PZ
9201 }
9202
9203 return 0;
9204}
9205
220b140b
PM
9206static void __init perf_event_init_all_cpus(void)
9207{
b28ab83c 9208 struct swevent_htable *swhash;
220b140b 9209 int cpu;
220b140b
PM
9210
9211 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9212 swhash = &per_cpu(swevent_htable, cpu);
9213 mutex_init(&swhash->hlist_mutex);
2fde4f94 9214 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9215 }
9216}
9217
0db0628d 9218static void perf_event_init_cpu(int cpu)
0793a61d 9219{
108b02cf 9220 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9221
b28ab83c 9222 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9223 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9224 struct swevent_hlist *hlist;
9225
b28ab83c
PZ
9226 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9227 WARN_ON(!hlist);
9228 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9229 }
b28ab83c 9230 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9231}
9232
2965faa5 9233#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9234static void __perf_event_exit_context(void *__info)
0793a61d 9235{
108b02cf 9236 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9238 struct perf_event *event;
0793a61d 9239
fae3fde6
PZ
9240 raw_spin_lock(&ctx->lock);
9241 list_for_each_entry(event, &ctx->event_list, event_entry)
9242 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9243 raw_spin_unlock(&ctx->lock);
0793a61d 9244}
108b02cf
PZ
9245
9246static void perf_event_exit_cpu_context(int cpu)
9247{
9248 struct perf_event_context *ctx;
9249 struct pmu *pmu;
9250 int idx;
9251
9252 idx = srcu_read_lock(&pmus_srcu);
9253 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9254 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9255
9256 mutex_lock(&ctx->mutex);
9257 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9258 mutex_unlock(&ctx->mutex);
9259 }
9260 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9261}
9262
cdd6c482 9263static void perf_event_exit_cpu(int cpu)
0793a61d 9264{
e3703f8c 9265 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9266}
9267#else
cdd6c482 9268static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9269#endif
9270
c277443c
PZ
9271static int
9272perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9273{
9274 int cpu;
9275
9276 for_each_online_cpu(cpu)
9277 perf_event_exit_cpu(cpu);
9278
9279 return NOTIFY_OK;
9280}
9281
9282/*
9283 * Run the perf reboot notifier at the very last possible moment so that
9284 * the generic watchdog code runs as long as possible.
9285 */
9286static struct notifier_block perf_reboot_notifier = {
9287 .notifier_call = perf_reboot,
9288 .priority = INT_MIN,
9289};
9290
0db0628d 9291static int
0793a61d
TG
9292perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9293{
9294 unsigned int cpu = (long)hcpu;
9295
4536e4d1 9296 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9297
9298 case CPU_UP_PREPARE:
5e11637e 9299 case CPU_DOWN_FAILED:
cdd6c482 9300 perf_event_init_cpu(cpu);
0793a61d
TG
9301 break;
9302
5e11637e 9303 case CPU_UP_CANCELED:
0793a61d 9304 case CPU_DOWN_PREPARE:
cdd6c482 9305 perf_event_exit_cpu(cpu);
0793a61d 9306 break;
0793a61d
TG
9307 default:
9308 break;
9309 }
9310
9311 return NOTIFY_OK;
9312}
9313
cdd6c482 9314void __init perf_event_init(void)
0793a61d 9315{
3c502e7a
JW
9316 int ret;
9317
2e80a82a
PZ
9318 idr_init(&pmu_idr);
9319
220b140b 9320 perf_event_init_all_cpus();
b0a873eb 9321 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9322 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9323 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9324 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9325 perf_tp_register();
9326 perf_cpu_notifier(perf_cpu_notify);
c277443c 9327 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9328
9329 ret = init_hw_breakpoint();
9330 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9331
9332 /* do not patch jump label more than once per second */
9333 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9334
9335 /*
9336 * Build time assertion that we keep the data_head at the intended
9337 * location. IOW, validation we got the __reserved[] size right.
9338 */
9339 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9340 != 1024);
0793a61d 9341}
abe43400 9342
fd979c01
CS
9343ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9344 char *page)
9345{
9346 struct perf_pmu_events_attr *pmu_attr =
9347 container_of(attr, struct perf_pmu_events_attr, attr);
9348
9349 if (pmu_attr->event_str)
9350 return sprintf(page, "%s\n", pmu_attr->event_str);
9351
9352 return 0;
9353}
9354
abe43400
PZ
9355static int __init perf_event_sysfs_init(void)
9356{
9357 struct pmu *pmu;
9358 int ret;
9359
9360 mutex_lock(&pmus_lock);
9361
9362 ret = bus_register(&pmu_bus);
9363 if (ret)
9364 goto unlock;
9365
9366 list_for_each_entry(pmu, &pmus, entry) {
9367 if (!pmu->name || pmu->type < 0)
9368 continue;
9369
9370 ret = pmu_dev_alloc(pmu);
9371 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9372 }
9373 pmu_bus_running = 1;
9374 ret = 0;
9375
9376unlock:
9377 mutex_unlock(&pmus_lock);
9378
9379 return ret;
9380}
9381device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9382
9383#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9384static struct cgroup_subsys_state *
9385perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9386{
9387 struct perf_cgroup *jc;
e5d1367f 9388
1b15d055 9389 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9390 if (!jc)
9391 return ERR_PTR(-ENOMEM);
9392
e5d1367f
SE
9393 jc->info = alloc_percpu(struct perf_cgroup_info);
9394 if (!jc->info) {
9395 kfree(jc);
9396 return ERR_PTR(-ENOMEM);
9397 }
9398
e5d1367f
SE
9399 return &jc->css;
9400}
9401
eb95419b 9402static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9403{
eb95419b
TH
9404 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9405
e5d1367f
SE
9406 free_percpu(jc->info);
9407 kfree(jc);
9408}
9409
9410static int __perf_cgroup_move(void *info)
9411{
9412 struct task_struct *task = info;
ddaaf4e2 9413 rcu_read_lock();
e5d1367f 9414 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9415 rcu_read_unlock();
e5d1367f
SE
9416 return 0;
9417}
9418
1f7dd3e5 9419static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9420{
bb9d97b6 9421 struct task_struct *task;
1f7dd3e5 9422 struct cgroup_subsys_state *css;
bb9d97b6 9423
1f7dd3e5 9424 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9425 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9426}
9427
073219e9 9428struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9429 .css_alloc = perf_cgroup_css_alloc,
9430 .css_free = perf_cgroup_css_free,
bb9d97b6 9431 .attach = perf_cgroup_attach,
e5d1367f
SE
9432};
9433#endif /* CONFIG_CGROUP_PERF */