perf: Factor out event accounting code to account_event()/__free_event()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
9ee318a7 148
108b02cf
PZ
149static LIST_HEAD(pmus);
150static DEFINE_MUTEX(pmus_lock);
151static struct srcu_struct pmus_srcu;
152
0764771d 153/*
cdd6c482 154 * perf event paranoia level:
0fbdea19
IM
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 157 * 1 - disallow cpu events for unpriv
0fbdea19 158 * 2 - disallow kernel profiling for unpriv
0764771d 159 */
cdd6c482 160int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 161
20443384
FW
162/* Minimum for 512 kiB + 1 user control page */
163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
164
165/*
cdd6c482 166 * max perf event sample rate
df58ab24 167 */
14c63f17
DH
168#define DEFAULT_MAX_SAMPLE_RATE 100000
169#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170#define DEFAULT_CPU_TIME_MAX_PERCENT 25
171
172int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
173
174static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
176
177static atomic_t perf_sample_allowed_ns __read_mostly =
178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179
180void update_perf_cpu_limits(void)
181{
182 u64 tmp = perf_sample_period_ns;
183
184 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 185 do_div(tmp, 100);
14c63f17
DH
186 atomic_set(&perf_sample_allowed_ns, tmp);
187}
163ec435 188
9e630205
SE
189static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190
163ec435
PZ
191int perf_proc_update_handler(struct ctl_table *table, int write,
192 void __user *buffer, size_t *lenp,
193 loff_t *ppos)
194{
195 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196
197 if (ret || !write)
198 return ret;
199
200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 update_perf_cpu_limits();
203
204 return 0;
205}
206
207int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208
209int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212{
213 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214
215 if (ret || !write)
216 return ret;
217
218 update_perf_cpu_limits();
163ec435
PZ
219
220 return 0;
221}
1ccd1549 222
14c63f17
DH
223/*
224 * perf samples are done in some very critical code paths (NMIs).
225 * If they take too much CPU time, the system can lock up and not
226 * get any real work done. This will drop the sample rate when
227 * we detect that events are taking too long.
228 */
229#define NR_ACCUMULATED_SAMPLES 128
230DEFINE_PER_CPU(u64, running_sample_length);
231
232void perf_sample_event_took(u64 sample_len_ns)
233{
234 u64 avg_local_sample_len;
e5302920 235 u64 local_samples_len;
14c63f17
DH
236
237 if (atomic_read(&perf_sample_allowed_ns) == 0)
238 return;
239
240 /* decay the counter by 1 average sample */
241 local_samples_len = __get_cpu_var(running_sample_length);
242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 local_samples_len += sample_len_ns;
244 __get_cpu_var(running_sample_length) = local_samples_len;
245
246 /*
247 * note: this will be biased artifically low until we have
248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
249 * from having to maintain a count.
250 */
251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252
253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 return;
255
256 if (max_samples_per_tick <= 1)
257 return;
258
259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262
263 printk_ratelimited(KERN_WARNING
264 "perf samples too long (%lld > %d), lowering "
265 "kernel.perf_event_max_sample_rate to %d\n",
266 avg_local_sample_len,
267 atomic_read(&perf_sample_allowed_ns),
268 sysctl_perf_event_sample_rate);
269
270 update_perf_cpu_limits();
271}
272
cdd6c482 273static atomic64_t perf_event_id;
a96bbc16 274
0b3fcf17
SE
275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 enum event_type_t event_type);
277
278static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
279 enum event_type_t event_type,
280 struct task_struct *task);
281
282static void update_context_time(struct perf_event_context *ctx);
283static u64 perf_event_time(struct perf_event *event);
0b3fcf17 284
cdd6c482 285void __weak perf_event_print_debug(void) { }
0793a61d 286
84c79910 287extern __weak const char *perf_pmu_name(void)
0793a61d 288{
84c79910 289 return "pmu";
0793a61d
TG
290}
291
0b3fcf17
SE
292static inline u64 perf_clock(void)
293{
294 return local_clock();
295}
296
e5d1367f
SE
297static inline struct perf_cpu_context *
298__get_cpu_context(struct perf_event_context *ctx)
299{
300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301}
302
facc4307
PZ
303static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 struct perf_event_context *ctx)
305{
306 raw_spin_lock(&cpuctx->ctx.lock);
307 if (ctx)
308 raw_spin_lock(&ctx->lock);
309}
310
311static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (ctx)
315 raw_spin_unlock(&ctx->lock);
316 raw_spin_unlock(&cpuctx->ctx.lock);
317}
318
e5d1367f
SE
319#ifdef CONFIG_CGROUP_PERF
320
877c6856
LZ
321/*
322 * perf_cgroup_info keeps track of time_enabled for a cgroup.
323 * This is a per-cpu dynamically allocated data structure.
324 */
325struct perf_cgroup_info {
326 u64 time;
327 u64 timestamp;
328};
329
330struct perf_cgroup {
331 struct cgroup_subsys_state css;
86e213e1 332 struct perf_cgroup_info __percpu *info;
877c6856
LZ
333};
334
3f7cce3c
SE
335/*
336 * Must ensure cgroup is pinned (css_get) before calling
337 * this function. In other words, we cannot call this function
338 * if there is no cgroup event for the current CPU context.
339 */
e5d1367f
SE
340static inline struct perf_cgroup *
341perf_cgroup_from_task(struct task_struct *task)
342{
343 return container_of(task_subsys_state(task, perf_subsys_id),
344 struct perf_cgroup, css);
345}
346
347static inline bool
348perf_cgroup_match(struct perf_event *event)
349{
350 struct perf_event_context *ctx = event->ctx;
351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352
ef824fa1
TH
353 /* @event doesn't care about cgroup */
354 if (!event->cgrp)
355 return true;
356
357 /* wants specific cgroup scope but @cpuctx isn't associated with any */
358 if (!cpuctx->cgrp)
359 return false;
360
361 /*
362 * Cgroup scoping is recursive. An event enabled for a cgroup is
363 * also enabled for all its descendant cgroups. If @cpuctx's
364 * cgroup is a descendant of @event's (the test covers identity
365 * case), it's a match.
366 */
367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 event->cgrp->css.cgroup);
e5d1367f
SE
369}
370
9c5da09d 371static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 372{
9c5da09d 373 return css_tryget(&event->cgrp->css);
e5d1367f
SE
374}
375
376static inline void perf_put_cgroup(struct perf_event *event)
377{
378 css_put(&event->cgrp->css);
379}
380
381static inline void perf_detach_cgroup(struct perf_event *event)
382{
383 perf_put_cgroup(event);
384 event->cgrp = NULL;
385}
386
387static inline int is_cgroup_event(struct perf_event *event)
388{
389 return event->cgrp != NULL;
390}
391
392static inline u64 perf_cgroup_event_time(struct perf_event *event)
393{
394 struct perf_cgroup_info *t;
395
396 t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 return t->time;
398}
399
400static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401{
402 struct perf_cgroup_info *info;
403 u64 now;
404
405 now = perf_clock();
406
407 info = this_cpu_ptr(cgrp->info);
408
409 info->time += now - info->timestamp;
410 info->timestamp = now;
411}
412
413static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414{
415 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 if (cgrp_out)
417 __update_cgrp_time(cgrp_out);
418}
419
420static inline void update_cgrp_time_from_event(struct perf_event *event)
421{
3f7cce3c
SE
422 struct perf_cgroup *cgrp;
423
e5d1367f 424 /*
3f7cce3c
SE
425 * ensure we access cgroup data only when needed and
426 * when we know the cgroup is pinned (css_get)
e5d1367f 427 */
3f7cce3c 428 if (!is_cgroup_event(event))
e5d1367f
SE
429 return;
430
3f7cce3c
SE
431 cgrp = perf_cgroup_from_task(current);
432 /*
433 * Do not update time when cgroup is not active
434 */
435 if (cgrp == event->cgrp)
436 __update_cgrp_time(event->cgrp);
e5d1367f
SE
437}
438
439static inline void
3f7cce3c
SE
440perf_cgroup_set_timestamp(struct task_struct *task,
441 struct perf_event_context *ctx)
e5d1367f
SE
442{
443 struct perf_cgroup *cgrp;
444 struct perf_cgroup_info *info;
445
3f7cce3c
SE
446 /*
447 * ctx->lock held by caller
448 * ensure we do not access cgroup data
449 * unless we have the cgroup pinned (css_get)
450 */
451 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
452 return;
453
454 cgrp = perf_cgroup_from_task(task);
455 info = this_cpu_ptr(cgrp->info);
3f7cce3c 456 info->timestamp = ctx->timestamp;
e5d1367f
SE
457}
458
459#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
460#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
461
462/*
463 * reschedule events based on the cgroup constraint of task.
464 *
465 * mode SWOUT : schedule out everything
466 * mode SWIN : schedule in based on cgroup for next
467 */
468void perf_cgroup_switch(struct task_struct *task, int mode)
469{
470 struct perf_cpu_context *cpuctx;
471 struct pmu *pmu;
472 unsigned long flags;
473
474 /*
475 * disable interrupts to avoid geting nr_cgroup
476 * changes via __perf_event_disable(). Also
477 * avoids preemption.
478 */
479 local_irq_save(flags);
480
481 /*
482 * we reschedule only in the presence of cgroup
483 * constrained events.
484 */
485 rcu_read_lock();
486
487 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
489 if (cpuctx->unique_pmu != pmu)
490 continue; /* ensure we process each cpuctx once */
e5d1367f 491
e5d1367f
SE
492 /*
493 * perf_cgroup_events says at least one
494 * context on this CPU has cgroup events.
495 *
496 * ctx->nr_cgroups reports the number of cgroup
497 * events for a context.
498 */
499 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
502
503 if (mode & PERF_CGROUP_SWOUT) {
504 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 /*
506 * must not be done before ctxswout due
507 * to event_filter_match() in event_sched_out()
508 */
509 cpuctx->cgrp = NULL;
510 }
511
512 if (mode & PERF_CGROUP_SWIN) {
e566b76e 513 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
514 /*
515 * set cgrp before ctxsw in to allow
516 * event_filter_match() to not have to pass
517 * task around
e5d1367f
SE
518 */
519 cpuctx->cgrp = perf_cgroup_from_task(task);
520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 }
facc4307
PZ
522 perf_pmu_enable(cpuctx->ctx.pmu);
523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 524 }
e5d1367f
SE
525 }
526
527 rcu_read_unlock();
528
529 local_irq_restore(flags);
530}
531
a8d757ef
SE
532static inline void perf_cgroup_sched_out(struct task_struct *task,
533 struct task_struct *next)
e5d1367f 534{
a8d757ef
SE
535 struct perf_cgroup *cgrp1;
536 struct perf_cgroup *cgrp2 = NULL;
537
538 /*
539 * we come here when we know perf_cgroup_events > 0
540 */
541 cgrp1 = perf_cgroup_from_task(task);
542
543 /*
544 * next is NULL when called from perf_event_enable_on_exec()
545 * that will systematically cause a cgroup_switch()
546 */
547 if (next)
548 cgrp2 = perf_cgroup_from_task(next);
549
550 /*
551 * only schedule out current cgroup events if we know
552 * that we are switching to a different cgroup. Otherwise,
553 * do no touch the cgroup events.
554 */
555 if (cgrp1 != cgrp2)
556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
557}
558
a8d757ef
SE
559static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 struct task_struct *task)
e5d1367f 561{
a8d757ef
SE
562 struct perf_cgroup *cgrp1;
563 struct perf_cgroup *cgrp2 = NULL;
564
565 /*
566 * we come here when we know perf_cgroup_events > 0
567 */
568 cgrp1 = perf_cgroup_from_task(task);
569
570 /* prev can never be NULL */
571 cgrp2 = perf_cgroup_from_task(prev);
572
573 /*
574 * only need to schedule in cgroup events if we are changing
575 * cgroup during ctxsw. Cgroup events were not scheduled
576 * out of ctxsw out if that was not the case.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
580}
581
582static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 struct perf_event_attr *attr,
584 struct perf_event *group_leader)
585{
586 struct perf_cgroup *cgrp;
587 struct cgroup_subsys_state *css;
2903ff01
AV
588 struct fd f = fdget(fd);
589 int ret = 0;
e5d1367f 590
2903ff01 591 if (!f.file)
e5d1367f
SE
592 return -EBADF;
593
2903ff01 594 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
595 if (IS_ERR(css)) {
596 ret = PTR_ERR(css);
597 goto out;
598 }
e5d1367f
SE
599
600 cgrp = container_of(css, struct perf_cgroup, css);
601 event->cgrp = cgrp;
602
f75e18cb 603 /* must be done before we fput() the file */
9c5da09d
SQ
604 if (!perf_tryget_cgroup(event)) {
605 event->cgrp = NULL;
606 ret = -ENOENT;
607 goto out;
608 }
f75e18cb 609
e5d1367f
SE
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
e5d1367f 618 }
3db272c0 619out:
2903ff01 620 fdput(f);
e5d1367f
SE
621 return ret;
622}
623
624static inline void
625perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626{
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630}
631
632static inline void
633perf_cgroup_defer_enabled(struct perf_event *event)
634{
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643}
644
645static inline void
646perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648{
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664}
665#else /* !CONFIG_CGROUP_PERF */
666
667static inline bool
668perf_cgroup_match(struct perf_event *event)
669{
670 return true;
671}
672
673static inline void perf_detach_cgroup(struct perf_event *event)
674{}
675
676static inline int is_cgroup_event(struct perf_event *event)
677{
678 return 0;
679}
680
681static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682{
683 return 0;
684}
685
686static inline void update_cgrp_time_from_event(struct perf_event *event)
687{
688}
689
690static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691{
692}
693
a8d757ef
SE
694static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
e5d1367f
SE
696{
697}
698
a8d757ef
SE
699static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
e5d1367f
SE
701{
702}
703
704static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707{
708 return -EINVAL;
709}
710
711static inline void
3f7cce3c
SE
712perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
e5d1367f
SE
714{
715}
716
717void
718perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719{
720}
721
722static inline void
723perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724{
725}
726
727static inline u64 perf_cgroup_event_time(struct perf_event *event)
728{
729 return 0;
730}
731
732static inline void
733perf_cgroup_defer_enabled(struct perf_event *event)
734{
735}
736
737static inline void
738perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740{
741}
742#endif
743
9e630205
SE
744/*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748#define PERF_CPU_HRTIMER (1000 / HZ)
749/*
750 * function must be called with interrupts disbled
751 */
752static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753{
754 struct perf_cpu_context *cpuctx;
755 enum hrtimer_restart ret = HRTIMER_NORESTART;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761
762 rotations = perf_rotate_context(cpuctx);
763
764 /*
765 * arm timer if needed
766 */
767 if (rotations) {
768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 ret = HRTIMER_RESTART;
770 }
771
772 return ret;
773}
774
775/* CPU is going down */
776void perf_cpu_hrtimer_cancel(int cpu)
777{
778 struct perf_cpu_context *cpuctx;
779 struct pmu *pmu;
780 unsigned long flags;
781
782 if (WARN_ON(cpu != smp_processor_id()))
783 return;
784
785 local_irq_save(flags);
786
787 rcu_read_lock();
788
789 list_for_each_entry_rcu(pmu, &pmus, entry) {
790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791
792 if (pmu->task_ctx_nr == perf_sw_context)
793 continue;
794
795 hrtimer_cancel(&cpuctx->hrtimer);
796 }
797
798 rcu_read_unlock();
799
800 local_irq_restore(flags);
801}
802
803static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804{
805 struct hrtimer *hr = &cpuctx->hrtimer;
806 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 807 int timer;
9e630205
SE
808
809 /* no multiplexing needed for SW PMU */
810 if (pmu->task_ctx_nr == perf_sw_context)
811 return;
812
62b85639
SE
813 /*
814 * check default is sane, if not set then force to
815 * default interval (1/tick)
816 */
817 timer = pmu->hrtimer_interval_ms;
818 if (timer < 1)
819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820
821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
822
823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 hr->function = perf_cpu_hrtimer_handler;
825}
826
827static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828{
829 struct hrtimer *hr = &cpuctx->hrtimer;
830 struct pmu *pmu = cpuctx->ctx.pmu;
831
832 /* not for SW PMU */
833 if (pmu->task_ctx_nr == perf_sw_context)
834 return;
835
836 if (hrtimer_active(hr))
837 return;
838
839 if (!hrtimer_callback_running(hr))
840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 0, HRTIMER_MODE_REL_PINNED, 0);
842}
843
33696fc0 844void perf_pmu_disable(struct pmu *pmu)
9e35ad38 845{
33696fc0
PZ
846 int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 if (!(*count)++)
848 pmu->pmu_disable(pmu);
9e35ad38 849}
9e35ad38 850
33696fc0 851void perf_pmu_enable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!--(*count))
855 pmu->pmu_enable(pmu);
9e35ad38 856}
9e35ad38 857
e9d2b064
PZ
858static DEFINE_PER_CPU(struct list_head, rotation_list);
859
860/*
861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862 * because they're strictly cpu affine and rotate_start is called with IRQs
863 * disabled, while rotate_context is called from IRQ context.
864 */
108b02cf 865static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 866{
108b02cf 867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 868 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 869
e9d2b064 870 WARN_ON(!irqs_disabled());
b5ab4cd5 871
12351ef8
FW
872 if (list_empty(&cpuctx->rotation_list)) {
873 int was_empty = list_empty(head);
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
875 if (was_empty)
876 tick_nohz_full_kick();
877 }
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902}
903
6844c09d
ACM
904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905{
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913}
914
915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916{
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924}
925
7f453c24 926/*
cdd6c482 927 * If we inherit events we want to return the parent event id
7f453c24
PZ
928 * to userspace.
929 */
cdd6c482 930static u64 primary_event_id(struct perf_event *event)
7f453c24 931{
cdd6c482 932 u64 id = event->id;
7f453c24 933
cdd6c482
IM
934 if (event->parent)
935 id = event->parent->id;
7f453c24
PZ
936
937 return id;
938}
939
25346b93 940/*
cdd6c482 941 * Get the perf_event_context for a task and lock it.
25346b93
PM
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
cdd6c482 945static struct perf_event_context *
8dc85d54 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 947{
cdd6c482 948 struct perf_event_context *ctx;
25346b93 949
9ed6060d 950retry:
058ebd0e
PZ
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
8dc85d54 962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
cdd6c482 967 * perf_event_task_sched_out, though the
25346b93
PM
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
e625cce1 974 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
977 rcu_read_unlock();
978 preempt_enable();
25346b93
PM
979 goto retry;
980 }
b49a9e7e
PZ
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
984 ctx = NULL;
985 }
25346b93
PM
986 }
987 rcu_read_unlock();
058ebd0e 988 preempt_enable();
25346b93
PM
989 return ctx;
990}
991
992/*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
8dc85d54
PZ
997static struct perf_event_context *
998perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 999{
cdd6c482 1000 struct perf_event_context *ctx;
25346b93
PM
1001 unsigned long flags;
1002
8dc85d54 1003 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1004 if (ctx) {
1005 ++ctx->pin_count;
e625cce1 1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1007 }
1008 return ctx;
1009}
1010
cdd6c482 1011static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1012{
1013 unsigned long flags;
1014
e625cce1 1015 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1016 --ctx->pin_count;
e625cce1 1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1018}
1019
f67218c3
PZ
1020/*
1021 * Update the record of the current time in a context.
1022 */
1023static void update_context_time(struct perf_event_context *ctx)
1024{
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029}
1030
4158755d
SE
1031static u64 perf_event_time(struct perf_event *event)
1032{
1033 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
4158755d
SE
1038 return ctx ? ctx->time : 0;
1039}
1040
f67218c3
PZ
1041/*
1042 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1043 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1044 */
1045static void update_event_times(struct perf_event *event)
1046{
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
e5d1367f
SE
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
46cd6a7f 1064 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
acd1d7c1
PZ
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
4158755d 1075 run_end = perf_event_time(event);
f67218c3
PZ
1076
1077 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1078
f67218c3
PZ
1079}
1080
96c21a46
PZ
1081/*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084static void update_group_times(struct perf_event *leader)
1085{
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091}
1092
889ff015
FW
1093static struct list_head *
1094ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095{
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100}
1101
fccc714b 1102/*
cdd6c482 1103 * Add a event from the lists for its context.
fccc714b
PZ
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
04289bb9 1106static void
cdd6c482 1107list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1108{
8a49542c
PZ
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1111
1112 /*
8a49542c
PZ
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1116 */
8a49542c 1117 if (event->group_leader == event) {
889ff015
FW
1118 struct list_head *list;
1119
d6f962b5
FW
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
889ff015
FW
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
5c148194 1125 }
592903cd 1126
08309379 1127 if (is_cgroup_event(event))
e5d1367f 1128 ctx->nr_cgroups++;
e5d1367f 1129
d010b332
SE
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
cdd6c482 1133 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1134 if (!ctx->nr_events)
108b02cf 1135 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
bfbd3381 1138 ctx->nr_stat++;
04289bb9
IM
1139}
1140
0231bb53
JO
1141/*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144static inline void perf_event__state_init(struct perf_event *event)
1145{
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148}
1149
c320c7b7
ACM
1150/*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154static void perf_event__read_size(struct perf_event *event)
1155{
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176}
1177
1178static void perf_event__header_size(struct perf_event *event)
1179{
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
6844c09d
ACM
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
c3feedf2
AK
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
6844c09d
ACM
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
d6be9ad6
SE
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
6844c09d
ACM
1204 event->header_size = size;
1205}
1206
1207static void perf_event__id_header_size(struct perf_event *event)
1208{
1209 struct perf_sample_data *data;
1210 u64 sample_type = event->attr.sample_type;
1211 u16 size = 0;
1212
c320c7b7
ACM
1213 if (sample_type & PERF_SAMPLE_TID)
1214 size += sizeof(data->tid_entry);
1215
1216 if (sample_type & PERF_SAMPLE_TIME)
1217 size += sizeof(data->time);
1218
c320c7b7
ACM
1219 if (sample_type & PERF_SAMPLE_ID)
1220 size += sizeof(data->id);
1221
1222 if (sample_type & PERF_SAMPLE_STREAM_ID)
1223 size += sizeof(data->stream_id);
1224
1225 if (sample_type & PERF_SAMPLE_CPU)
1226 size += sizeof(data->cpu_entry);
1227
6844c09d 1228 event->id_header_size = size;
c320c7b7
ACM
1229}
1230
8a49542c
PZ
1231static void perf_group_attach(struct perf_event *event)
1232{
c320c7b7 1233 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1234
74c3337c
PZ
1235 /*
1236 * We can have double attach due to group movement in perf_event_open.
1237 */
1238 if (event->attach_state & PERF_ATTACH_GROUP)
1239 return;
1240
8a49542c
PZ
1241 event->attach_state |= PERF_ATTACH_GROUP;
1242
1243 if (group_leader == event)
1244 return;
1245
1246 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247 !is_software_event(event))
1248 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249
1250 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251 group_leader->nr_siblings++;
c320c7b7
ACM
1252
1253 perf_event__header_size(group_leader);
1254
1255 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256 perf_event__header_size(pos);
8a49542c
PZ
1257}
1258
a63eaf34 1259/*
cdd6c482 1260 * Remove a event from the lists for its context.
fccc714b 1261 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1262 */
04289bb9 1263static void
cdd6c482 1264list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1265{
68cacd29 1266 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1267 /*
1268 * We can have double detach due to exit/hot-unplug + close.
1269 */
1270 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1271 return;
8a49542c
PZ
1272
1273 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274
68cacd29 1275 if (is_cgroup_event(event)) {
e5d1367f 1276 ctx->nr_cgroups--;
68cacd29
SE
1277 cpuctx = __get_cpu_context(ctx);
1278 /*
1279 * if there are no more cgroup events
1280 * then cler cgrp to avoid stale pointer
1281 * in update_cgrp_time_from_cpuctx()
1282 */
1283 if (!ctx->nr_cgroups)
1284 cpuctx->cgrp = NULL;
1285 }
e5d1367f 1286
d010b332
SE
1287 if (has_branch_stack(event))
1288 ctx->nr_branch_stack--;
1289
cdd6c482
IM
1290 ctx->nr_events--;
1291 if (event->attr.inherit_stat)
bfbd3381 1292 ctx->nr_stat--;
8bc20959 1293
cdd6c482 1294 list_del_rcu(&event->event_entry);
04289bb9 1295
8a49542c
PZ
1296 if (event->group_leader == event)
1297 list_del_init(&event->group_entry);
5c148194 1298
96c21a46 1299 update_group_times(event);
b2e74a26
SE
1300
1301 /*
1302 * If event was in error state, then keep it
1303 * that way, otherwise bogus counts will be
1304 * returned on read(). The only way to get out
1305 * of error state is by explicit re-enabling
1306 * of the event
1307 */
1308 if (event->state > PERF_EVENT_STATE_OFF)
1309 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1310}
1311
8a49542c 1312static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1313{
1314 struct perf_event *sibling, *tmp;
8a49542c
PZ
1315 struct list_head *list = NULL;
1316
1317 /*
1318 * We can have double detach due to exit/hot-unplug + close.
1319 */
1320 if (!(event->attach_state & PERF_ATTACH_GROUP))
1321 return;
1322
1323 event->attach_state &= ~PERF_ATTACH_GROUP;
1324
1325 /*
1326 * If this is a sibling, remove it from its group.
1327 */
1328 if (event->group_leader != event) {
1329 list_del_init(&event->group_entry);
1330 event->group_leader->nr_siblings--;
c320c7b7 1331 goto out;
8a49542c
PZ
1332 }
1333
1334 if (!list_empty(&event->group_entry))
1335 list = &event->group_entry;
2e2af50b 1336
04289bb9 1337 /*
cdd6c482
IM
1338 * If this was a group event with sibling events then
1339 * upgrade the siblings to singleton events by adding them
8a49542c 1340 * to whatever list we are on.
04289bb9 1341 */
cdd6c482 1342 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1343 if (list)
1344 list_move_tail(&sibling->group_entry, list);
04289bb9 1345 sibling->group_leader = sibling;
d6f962b5
FW
1346
1347 /* Inherit group flags from the previous leader */
1348 sibling->group_flags = event->group_flags;
04289bb9 1349 }
c320c7b7
ACM
1350
1351out:
1352 perf_event__header_size(event->group_leader);
1353
1354 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355 perf_event__header_size(tmp);
04289bb9
IM
1356}
1357
fa66f07a
SE
1358static inline int
1359event_filter_match(struct perf_event *event)
1360{
e5d1367f
SE
1361 return (event->cpu == -1 || event->cpu == smp_processor_id())
1362 && perf_cgroup_match(event);
fa66f07a
SE
1363}
1364
9ffcfa6f
SE
1365static void
1366event_sched_out(struct perf_event *event,
3b6f9e5c 1367 struct perf_cpu_context *cpuctx,
cdd6c482 1368 struct perf_event_context *ctx)
3b6f9e5c 1369{
4158755d 1370 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1371 u64 delta;
1372 /*
1373 * An event which could not be activated because of
1374 * filter mismatch still needs to have its timings
1375 * maintained, otherwise bogus information is return
1376 * via read() for time_enabled, time_running:
1377 */
1378 if (event->state == PERF_EVENT_STATE_INACTIVE
1379 && !event_filter_match(event)) {
e5d1367f 1380 delta = tstamp - event->tstamp_stopped;
fa66f07a 1381 event->tstamp_running += delta;
4158755d 1382 event->tstamp_stopped = tstamp;
fa66f07a
SE
1383 }
1384
cdd6c482 1385 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1386 return;
3b6f9e5c 1387
cdd6c482
IM
1388 event->state = PERF_EVENT_STATE_INACTIVE;
1389 if (event->pending_disable) {
1390 event->pending_disable = 0;
1391 event->state = PERF_EVENT_STATE_OFF;
970892a9 1392 }
4158755d 1393 event->tstamp_stopped = tstamp;
a4eaf7f1 1394 event->pmu->del(event, 0);
cdd6c482 1395 event->oncpu = -1;
3b6f9e5c 1396
cdd6c482 1397 if (!is_software_event(event))
3b6f9e5c
PM
1398 cpuctx->active_oncpu--;
1399 ctx->nr_active--;
0f5a2601
PZ
1400 if (event->attr.freq && event->attr.sample_freq)
1401 ctx->nr_freq--;
cdd6c482 1402 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1403 cpuctx->exclusive = 0;
1404}
1405
d859e29f 1406static void
cdd6c482 1407group_sched_out(struct perf_event *group_event,
d859e29f 1408 struct perf_cpu_context *cpuctx,
cdd6c482 1409 struct perf_event_context *ctx)
d859e29f 1410{
cdd6c482 1411 struct perf_event *event;
fa66f07a 1412 int state = group_event->state;
d859e29f 1413
cdd6c482 1414 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1415
1416 /*
1417 * Schedule out siblings (if any):
1418 */
cdd6c482
IM
1419 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420 event_sched_out(event, cpuctx, ctx);
d859e29f 1421
fa66f07a 1422 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1423 cpuctx->exclusive = 0;
1424}
1425
0793a61d 1426/*
cdd6c482 1427 * Cross CPU call to remove a performance event
0793a61d 1428 *
cdd6c482 1429 * We disable the event on the hardware level first. After that we
0793a61d
TG
1430 * remove it from the context list.
1431 */
fe4b04fa 1432static int __perf_remove_from_context(void *info)
0793a61d 1433{
cdd6c482
IM
1434 struct perf_event *event = info;
1435 struct perf_event_context *ctx = event->ctx;
108b02cf 1436 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1437
e625cce1 1438 raw_spin_lock(&ctx->lock);
cdd6c482 1439 event_sched_out(event, cpuctx, ctx);
cdd6c482 1440 list_del_event(event, ctx);
64ce3126
PZ
1441 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442 ctx->is_active = 0;
1443 cpuctx->task_ctx = NULL;
1444 }
e625cce1 1445 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1446
1447 return 0;
0793a61d
TG
1448}
1449
1450
1451/*
cdd6c482 1452 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1453 *
cdd6c482 1454 * CPU events are removed with a smp call. For task events we only
0793a61d 1455 * call when the task is on a CPU.
c93f7669 1456 *
cdd6c482
IM
1457 * If event->ctx is a cloned context, callers must make sure that
1458 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1459 * remains valid. This is OK when called from perf_release since
1460 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1461 * When called from perf_event_exit_task, it's OK because the
c93f7669 1462 * context has been detached from its task.
0793a61d 1463 */
fe4b04fa 1464static void perf_remove_from_context(struct perf_event *event)
0793a61d 1465{
cdd6c482 1466 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1467 struct task_struct *task = ctx->task;
1468
fe4b04fa
PZ
1469 lockdep_assert_held(&ctx->mutex);
1470
0793a61d
TG
1471 if (!task) {
1472 /*
cdd6c482 1473 * Per cpu events are removed via an smp call and
af901ca1 1474 * the removal is always successful.
0793a61d 1475 */
fe4b04fa 1476 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1477 return;
1478 }
1479
1480retry:
fe4b04fa
PZ
1481 if (!task_function_call(task, __perf_remove_from_context, event))
1482 return;
0793a61d 1483
e625cce1 1484 raw_spin_lock_irq(&ctx->lock);
0793a61d 1485 /*
fe4b04fa
PZ
1486 * If we failed to find a running task, but find the context active now
1487 * that we've acquired the ctx->lock, retry.
0793a61d 1488 */
fe4b04fa 1489 if (ctx->is_active) {
e625cce1 1490 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1491 goto retry;
1492 }
1493
1494 /*
fe4b04fa
PZ
1495 * Since the task isn't running, its safe to remove the event, us
1496 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1497 */
fe4b04fa 1498 list_del_event(event, ctx);
e625cce1 1499 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1500}
1501
d859e29f 1502/*
cdd6c482 1503 * Cross CPU call to disable a performance event
d859e29f 1504 */
500ad2d8 1505int __perf_event_disable(void *info)
d859e29f 1506{
cdd6c482 1507 struct perf_event *event = info;
cdd6c482 1508 struct perf_event_context *ctx = event->ctx;
108b02cf 1509 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1510
1511 /*
cdd6c482
IM
1512 * If this is a per-task event, need to check whether this
1513 * event's task is the current task on this cpu.
fe4b04fa
PZ
1514 *
1515 * Can trigger due to concurrent perf_event_context_sched_out()
1516 * flipping contexts around.
d859e29f 1517 */
665c2142 1518 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1519 return -EINVAL;
d859e29f 1520
e625cce1 1521 raw_spin_lock(&ctx->lock);
d859e29f
PM
1522
1523 /*
cdd6c482 1524 * If the event is on, turn it off.
d859e29f
PM
1525 * If it is in error state, leave it in error state.
1526 */
cdd6c482 1527 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1528 update_context_time(ctx);
e5d1367f 1529 update_cgrp_time_from_event(event);
cdd6c482
IM
1530 update_group_times(event);
1531 if (event == event->group_leader)
1532 group_sched_out(event, cpuctx, ctx);
d859e29f 1533 else
cdd6c482
IM
1534 event_sched_out(event, cpuctx, ctx);
1535 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1536 }
1537
e625cce1 1538 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1539
1540 return 0;
d859e29f
PM
1541}
1542
1543/*
cdd6c482 1544 * Disable a event.
c93f7669 1545 *
cdd6c482
IM
1546 * If event->ctx is a cloned context, callers must make sure that
1547 * every task struct that event->ctx->task could possibly point to
c93f7669 1548 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1549 * perf_event_for_each_child or perf_event_for_each because they
1550 * hold the top-level event's child_mutex, so any descendant that
1551 * goes to exit will block in sync_child_event.
1552 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1553 * is the current context on this CPU and preemption is disabled,
cdd6c482 1554 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1555 */
44234adc 1556void perf_event_disable(struct perf_event *event)
d859e29f 1557{
cdd6c482 1558 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1559 struct task_struct *task = ctx->task;
1560
1561 if (!task) {
1562 /*
cdd6c482 1563 * Disable the event on the cpu that it's on
d859e29f 1564 */
fe4b04fa 1565 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1566 return;
1567 }
1568
9ed6060d 1569retry:
fe4b04fa
PZ
1570 if (!task_function_call(task, __perf_event_disable, event))
1571 return;
d859e29f 1572
e625cce1 1573 raw_spin_lock_irq(&ctx->lock);
d859e29f 1574 /*
cdd6c482 1575 * If the event is still active, we need to retry the cross-call.
d859e29f 1576 */
cdd6c482 1577 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1578 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1579 /*
1580 * Reload the task pointer, it might have been changed by
1581 * a concurrent perf_event_context_sched_out().
1582 */
1583 task = ctx->task;
d859e29f
PM
1584 goto retry;
1585 }
1586
1587 /*
1588 * Since we have the lock this context can't be scheduled
1589 * in, so we can change the state safely.
1590 */
cdd6c482
IM
1591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592 update_group_times(event);
1593 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1594 }
e625cce1 1595 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1596}
dcfce4a0 1597EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1598
e5d1367f
SE
1599static void perf_set_shadow_time(struct perf_event *event,
1600 struct perf_event_context *ctx,
1601 u64 tstamp)
1602{
1603 /*
1604 * use the correct time source for the time snapshot
1605 *
1606 * We could get by without this by leveraging the
1607 * fact that to get to this function, the caller
1608 * has most likely already called update_context_time()
1609 * and update_cgrp_time_xx() and thus both timestamp
1610 * are identical (or very close). Given that tstamp is,
1611 * already adjusted for cgroup, we could say that:
1612 * tstamp - ctx->timestamp
1613 * is equivalent to
1614 * tstamp - cgrp->timestamp.
1615 *
1616 * Then, in perf_output_read(), the calculation would
1617 * work with no changes because:
1618 * - event is guaranteed scheduled in
1619 * - no scheduled out in between
1620 * - thus the timestamp would be the same
1621 *
1622 * But this is a bit hairy.
1623 *
1624 * So instead, we have an explicit cgroup call to remain
1625 * within the time time source all along. We believe it
1626 * is cleaner and simpler to understand.
1627 */
1628 if (is_cgroup_event(event))
1629 perf_cgroup_set_shadow_time(event, tstamp);
1630 else
1631 event->shadow_ctx_time = tstamp - ctx->timestamp;
1632}
1633
4fe757dd
PZ
1634#define MAX_INTERRUPTS (~0ULL)
1635
1636static void perf_log_throttle(struct perf_event *event, int enable);
1637
235c7fc7 1638static int
9ffcfa6f 1639event_sched_in(struct perf_event *event,
235c7fc7 1640 struct perf_cpu_context *cpuctx,
6e37738a 1641 struct perf_event_context *ctx)
235c7fc7 1642{
4158755d
SE
1643 u64 tstamp = perf_event_time(event);
1644
cdd6c482 1645 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1646 return 0;
1647
cdd6c482 1648 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1649 event->oncpu = smp_processor_id();
4fe757dd
PZ
1650
1651 /*
1652 * Unthrottle events, since we scheduled we might have missed several
1653 * ticks already, also for a heavily scheduling task there is little
1654 * guarantee it'll get a tick in a timely manner.
1655 */
1656 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657 perf_log_throttle(event, 1);
1658 event->hw.interrupts = 0;
1659 }
1660
235c7fc7
IM
1661 /*
1662 * The new state must be visible before we turn it on in the hardware:
1663 */
1664 smp_wmb();
1665
a4eaf7f1 1666 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1667 event->state = PERF_EVENT_STATE_INACTIVE;
1668 event->oncpu = -1;
235c7fc7
IM
1669 return -EAGAIN;
1670 }
1671
4158755d 1672 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1673
e5d1367f 1674 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1675
cdd6c482 1676 if (!is_software_event(event))
3b6f9e5c 1677 cpuctx->active_oncpu++;
235c7fc7 1678 ctx->nr_active++;
0f5a2601
PZ
1679 if (event->attr.freq && event->attr.sample_freq)
1680 ctx->nr_freq++;
235c7fc7 1681
cdd6c482 1682 if (event->attr.exclusive)
3b6f9e5c
PM
1683 cpuctx->exclusive = 1;
1684
235c7fc7
IM
1685 return 0;
1686}
1687
6751b71e 1688static int
cdd6c482 1689group_sched_in(struct perf_event *group_event,
6751b71e 1690 struct perf_cpu_context *cpuctx,
6e37738a 1691 struct perf_event_context *ctx)
6751b71e 1692{
6bde9b6c 1693 struct perf_event *event, *partial_group = NULL;
51b0fe39 1694 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1695 u64 now = ctx->time;
1696 bool simulate = false;
6751b71e 1697
cdd6c482 1698 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1699 return 0;
1700
ad5133b7 1701 pmu->start_txn(pmu);
6bde9b6c 1702
9ffcfa6f 1703 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1704 pmu->cancel_txn(pmu);
9e630205 1705 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1706 return -EAGAIN;
90151c35 1707 }
6751b71e
PM
1708
1709 /*
1710 * Schedule in siblings as one group (if any):
1711 */
cdd6c482 1712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1713 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1714 partial_group = event;
6751b71e
PM
1715 goto group_error;
1716 }
1717 }
1718
9ffcfa6f 1719 if (!pmu->commit_txn(pmu))
6e85158c 1720 return 0;
9ffcfa6f 1721
6751b71e
PM
1722group_error:
1723 /*
1724 * Groups can be scheduled in as one unit only, so undo any
1725 * partial group before returning:
d7842da4
SE
1726 * The events up to the failed event are scheduled out normally,
1727 * tstamp_stopped will be updated.
1728 *
1729 * The failed events and the remaining siblings need to have
1730 * their timings updated as if they had gone thru event_sched_in()
1731 * and event_sched_out(). This is required to get consistent timings
1732 * across the group. This also takes care of the case where the group
1733 * could never be scheduled by ensuring tstamp_stopped is set to mark
1734 * the time the event was actually stopped, such that time delta
1735 * calculation in update_event_times() is correct.
6751b71e 1736 */
cdd6c482
IM
1737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738 if (event == partial_group)
d7842da4
SE
1739 simulate = true;
1740
1741 if (simulate) {
1742 event->tstamp_running += now - event->tstamp_stopped;
1743 event->tstamp_stopped = now;
1744 } else {
1745 event_sched_out(event, cpuctx, ctx);
1746 }
6751b71e 1747 }
9ffcfa6f 1748 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1749
ad5133b7 1750 pmu->cancel_txn(pmu);
90151c35 1751
9e630205
SE
1752 perf_cpu_hrtimer_restart(cpuctx);
1753
6751b71e
PM
1754 return -EAGAIN;
1755}
1756
3b6f9e5c 1757/*
cdd6c482 1758 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1759 */
cdd6c482 1760static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1761 struct perf_cpu_context *cpuctx,
1762 int can_add_hw)
1763{
1764 /*
cdd6c482 1765 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1766 */
d6f962b5 1767 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1768 return 1;
1769 /*
1770 * If an exclusive group is already on, no other hardware
cdd6c482 1771 * events can go on.
3b6f9e5c
PM
1772 */
1773 if (cpuctx->exclusive)
1774 return 0;
1775 /*
1776 * If this group is exclusive and there are already
cdd6c482 1777 * events on the CPU, it can't go on.
3b6f9e5c 1778 */
cdd6c482 1779 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1780 return 0;
1781 /*
1782 * Otherwise, try to add it if all previous groups were able
1783 * to go on.
1784 */
1785 return can_add_hw;
1786}
1787
cdd6c482
IM
1788static void add_event_to_ctx(struct perf_event *event,
1789 struct perf_event_context *ctx)
53cfbf59 1790{
4158755d
SE
1791 u64 tstamp = perf_event_time(event);
1792
cdd6c482 1793 list_add_event(event, ctx);
8a49542c 1794 perf_group_attach(event);
4158755d
SE
1795 event->tstamp_enabled = tstamp;
1796 event->tstamp_running = tstamp;
1797 event->tstamp_stopped = tstamp;
53cfbf59
PM
1798}
1799
2c29ef0f
PZ
1800static void task_ctx_sched_out(struct perf_event_context *ctx);
1801static void
1802ctx_sched_in(struct perf_event_context *ctx,
1803 struct perf_cpu_context *cpuctx,
1804 enum event_type_t event_type,
1805 struct task_struct *task);
fe4b04fa 1806
dce5855b
PZ
1807static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808 struct perf_event_context *ctx,
1809 struct task_struct *task)
1810{
1811 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817}
1818
0793a61d 1819/*
cdd6c482 1820 * Cross CPU call to install and enable a performance event
682076ae
PZ
1821 *
1822 * Must be called with ctx->mutex held
0793a61d 1823 */
fe4b04fa 1824static int __perf_install_in_context(void *info)
0793a61d 1825{
cdd6c482
IM
1826 struct perf_event *event = info;
1827 struct perf_event_context *ctx = event->ctx;
108b02cf 1828 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1829 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830 struct task_struct *task = current;
1831
b58f6b0d 1832 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1833 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1834
1835 /*
2c29ef0f 1836 * If there was an active task_ctx schedule it out.
0793a61d 1837 */
b58f6b0d 1838 if (task_ctx)
2c29ef0f 1839 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1840
1841 /*
1842 * If the context we're installing events in is not the
1843 * active task_ctx, flip them.
1844 */
1845 if (ctx->task && task_ctx != ctx) {
1846 if (task_ctx)
1847 raw_spin_unlock(&task_ctx->lock);
1848 raw_spin_lock(&ctx->lock);
1849 task_ctx = ctx;
1850 }
1851
1852 if (task_ctx) {
1853 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1854 task = task_ctx->task;
1855 }
b58f6b0d 1856
2c29ef0f 1857 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1858
4af4998b 1859 update_context_time(ctx);
e5d1367f
SE
1860 /*
1861 * update cgrp time only if current cgrp
1862 * matches event->cgrp. Must be done before
1863 * calling add_event_to_ctx()
1864 */
1865 update_cgrp_time_from_event(event);
0793a61d 1866
cdd6c482 1867 add_event_to_ctx(event, ctx);
0793a61d 1868
d859e29f 1869 /*
2c29ef0f 1870 * Schedule everything back in
d859e29f 1871 */
dce5855b 1872 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1873
1874 perf_pmu_enable(cpuctx->ctx.pmu);
1875 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1876
1877 return 0;
0793a61d
TG
1878}
1879
1880/*
cdd6c482 1881 * Attach a performance event to a context
0793a61d 1882 *
cdd6c482
IM
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
0793a61d 1885 *
cdd6c482 1886 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890static void
cdd6c482
IM
1891perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
0793a61d
TG
1893 int cpu)
1894{
1895 struct task_struct *task = ctx->task;
1896
fe4b04fa
PZ
1897 lockdep_assert_held(&ctx->mutex);
1898
c3f00c70 1899 event->ctx = ctx;
0cda4c02
YZ
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
c3f00c70 1902
0793a61d
TG
1903 if (!task) {
1904 /*
cdd6c482 1905 * Per cpu events are installed via an smp call and
af901ca1 1906 * the install is always successful.
0793a61d 1907 */
fe4b04fa 1908 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1909 return;
1910 }
1911
0793a61d 1912retry:
fe4b04fa
PZ
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
0793a61d 1915
e625cce1 1916 raw_spin_lock_irq(&ctx->lock);
0793a61d 1917 /*
fe4b04fa
PZ
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
0793a61d 1920 */
fe4b04fa 1921 if (ctx->is_active) {
e625cce1 1922 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1923 goto retry;
1924 }
1925
1926 /*
fe4b04fa
PZ
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1929 */
fe4b04fa 1930 add_event_to_ctx(event, ctx);
e625cce1 1931 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1932}
1933
fa289bec 1934/*
cdd6c482 1935 * Put a event into inactive state and update time fields.
fa289bec
PM
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1d9b482e 1942static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1943{
cdd6c482 1944 struct perf_event *sub;
4158755d 1945 u64 tstamp = perf_event_time(event);
fa289bec 1946
cdd6c482 1947 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1952 }
fa289bec
PM
1953}
1954
d859e29f 1955/*
cdd6c482 1956 * Cross CPU call to enable a performance event
d859e29f 1957 */
fe4b04fa 1958static int __perf_event_enable(void *info)
04289bb9 1959{
cdd6c482 1960 struct perf_event *event = info;
cdd6c482
IM
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
108b02cf 1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1964 int err;
04289bb9 1965
06f41796
JO
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
fe4b04fa 1976 return -EINVAL;
3cbed429 1977
e625cce1 1978 raw_spin_lock(&ctx->lock);
4af4998b 1979 update_context_time(ctx);
d859e29f 1980
cdd6c482 1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1982 goto unlock;
e5d1367f
SE
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
3f7cce3c 1987 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1988
1d9b482e 1989 __perf_event_mark_enabled(event);
04289bb9 1990
e5d1367f
SE
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
f4c4176f 1994 goto unlock;
e5d1367f 1995 }
f4c4176f 1996
04289bb9 1997 /*
cdd6c482 1998 * If the event is in a group and isn't the group leader,
d859e29f 1999 * then don't put it on unless the group is on.
04289bb9 2000 */
cdd6c482 2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2002 goto unlock;
3b6f9e5c 2003
cdd6c482 2004 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2005 err = -EEXIST;
e758a33d 2006 } else {
cdd6c482 2007 if (event == leader)
6e37738a 2008 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2009 else
6e37738a 2010 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2011 }
d859e29f
PM
2012
2013 if (err) {
2014 /*
cdd6c482 2015 * If this event can't go on and it's part of a
d859e29f
PM
2016 * group, then the whole group has to come off.
2017 */
9e630205 2018 if (leader != event) {
d859e29f 2019 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
0d48696f 2022 if (leader->attr.pinned) {
53cfbf59 2023 update_group_times(leader);
cdd6c482 2024 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2025 }
d859e29f
PM
2026 }
2027
9ed6060d 2028unlock:
e625cce1 2029 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2030
2031 return 0;
d859e29f
PM
2032}
2033
2034/*
cdd6c482 2035 * Enable a event.
c93f7669 2036 *
cdd6c482
IM
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
c93f7669 2039 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
d859e29f 2042 */
44234adc 2043void perf_event_enable(struct perf_event *event)
d859e29f 2044{
cdd6c482 2045 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
cdd6c482 2050 * Enable the event on the cpu that it's on
d859e29f 2051 */
fe4b04fa 2052 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2053 return;
2054 }
2055
e625cce1 2056 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2058 goto out;
2059
2060 /*
cdd6c482
IM
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
d859e29f
PM
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
cdd6c482
IM
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2069
9ed6060d 2070retry:
fe4b04fa 2071 if (!ctx->is_active) {
1d9b482e 2072 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2073 goto out;
2074 }
2075
e625cce1 2076 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
d859e29f 2080
e625cce1 2081 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2082
2083 /*
cdd6c482 2084 * If the context is active and the event is still off,
d859e29f
PM
2085 * we need to retry the cross-call.
2086 */
fe4b04fa
PZ
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
d859e29f 2093 goto retry;
fe4b04fa 2094 }
fa289bec 2095
9ed6060d 2096out:
e625cce1 2097 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2098}
dcfce4a0 2099EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2100
26ca5c11 2101int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2102{
2023b359 2103 /*
cdd6c482 2104 * not supported on inherited events
2023b359 2105 */
2e939d1d 2106 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2107 return -EINVAL;
2108
cdd6c482
IM
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2023b359
PZ
2111
2112 return 0;
79f14641 2113}
26ca5c11 2114EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2115
5b0311e1
FW
2116static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
235c7fc7 2119{
cdd6c482 2120 struct perf_event *event;
db24d33e 2121 int is_active = ctx->is_active;
235c7fc7 2122
db24d33e 2123 ctx->is_active &= ~event_type;
cdd6c482 2124 if (likely(!ctx->nr_events))
facc4307
PZ
2125 return;
2126
4af4998b 2127 update_context_time(ctx);
e5d1367f 2128 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2129 if (!ctx->nr_active)
facc4307 2130 return;
5b0311e1 2131
075e0b00 2132 perf_pmu_disable(ctx->pmu);
db24d33e 2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
9ed6060d 2136 }
889ff015 2137
db24d33e 2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2140 group_sched_out(event, cpuctx, ctx);
9ed6060d 2141 }
1b9a644f 2142 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2143}
2144
564c2b21
PM
2145/*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
cdd6c482
IM
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
564c2b21 2152 * in them directly with an fd; we can only enable/disable all
cdd6c482 2153 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
cdd6c482
IM
2156static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
564c2b21
PM
2158{
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2160 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2161 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2162}
2163
cdd6c482
IM
2164static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
bfbd3381
PZ
2166{
2167 u64 value;
2168
cdd6c482 2169 if (!event->attr.inherit_stat)
bfbd3381
PZ
2170 return;
2171
2172 /*
cdd6c482 2173 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2176 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2177 * don't need to use it.
2178 */
cdd6c482
IM
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2181 event->pmu->read(event);
2182 /* fall-through */
bfbd3381 2183
cdd6c482
IM
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
bfbd3381
PZ
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
cdd6c482 2193 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2194 * values when we flip the contexts.
2195 */
e7850595
PZ
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
bfbd3381 2199
cdd6c482
IM
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2202
bfbd3381 2203 /*
19d2e755 2204 * Since we swizzled the values, update the user visible data too.
bfbd3381 2205 */
cdd6c482
IM
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
bfbd3381
PZ
2208}
2209
2210#define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
cdd6c482
IM
2213static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
bfbd3381 2215{
cdd6c482 2216 struct perf_event *event, *next_event;
bfbd3381
PZ
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
02ffdbc8
PZ
2221 update_context_time(ctx);
2222
cdd6c482
IM
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
bfbd3381 2225
cdd6c482
IM
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
bfbd3381 2228
cdd6c482
IM
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2231
cdd6c482 2232 __perf_event_sync_stat(event, next_event);
bfbd3381 2233
cdd6c482
IM
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2236 }
2237}
2238
fe4b04fa
PZ
2239static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
0793a61d 2241{
8dc85d54 2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
108b02cf 2245 struct perf_cpu_context *cpuctx;
c93f7669 2246 int do_switch = 1;
0793a61d 2247
108b02cf
PZ
2248 if (likely(!ctx))
2249 return;
10989fb2 2250
108b02cf
PZ
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
0793a61d
TG
2253 return;
2254
c93f7669
PM
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2257 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
e625cce1
TG
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2271 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2272 /*
2273 * XXX do we need a memory barrier of sorts
cdd6c482 2274 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2275 */
8dc85d54
PZ
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
bfbd3381 2281
cdd6c482 2282 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2283 }
e625cce1
TG
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
564c2b21 2286 }
c93f7669 2287 rcu_read_unlock();
564c2b21 2288
c93f7669 2289 if (do_switch) {
facc4307 2290 raw_spin_lock(&ctx->lock);
5b0311e1 2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2292 cpuctx->task_ctx = NULL;
facc4307 2293 raw_spin_unlock(&ctx->lock);
c93f7669 2294 }
0793a61d
TG
2295}
2296
8dc85d54
PZ
2297#define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300/*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
ab0cce56
JO
2311void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
8dc85d54
PZ
2313{
2314 int ctxn;
2315
8dc85d54
PZ
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2325 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2326}
2327
04dc2dbb 2328static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2329{
108b02cf 2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2331
a63eaf34
PM
2332 if (!cpuctx->task_ctx)
2333 return;
012b84da
IM
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
04dc2dbb 2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2339 cpuctx->task_ctx = NULL;
2340}
2341
5b0311e1
FW
2342/*
2343 * Called with IRQs disabled
2344 */
2345static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347{
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2349}
2350
235c7fc7 2351static void
5b0311e1 2352ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2353 struct perf_cpu_context *cpuctx)
0793a61d 2354{
cdd6c482 2355 struct perf_event *event;
0793a61d 2356
889ff015
FW
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2359 continue;
5632ab12 2360 if (!event_filter_match(event))
3b6f9e5c
PM
2361 continue;
2362
e5d1367f
SE
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
8c9ed8e1 2367 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2368 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
cdd6c482
IM
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2377 }
3b6f9e5c 2378 }
5b0311e1
FW
2379}
2380
2381static void
2382ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2383 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2384{
2385 struct perf_event *event;
2386 int can_add_hw = 1;
3b6f9e5c 2387
889ff015
FW
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2391 continue;
04289bb9
IM
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2394 * of events:
04289bb9 2395 */
5632ab12 2396 if (!event_filter_match(event))
0793a61d
TG
2397 continue;
2398
e5d1367f
SE
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
9ed6060d 2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2404 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2405 can_add_hw = 0;
9ed6060d 2406 }
0793a61d 2407 }
5b0311e1
FW
2408}
2409
2410static void
2411ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2413 enum event_type_t event_type,
2414 struct task_struct *task)
5b0311e1 2415{
e5d1367f 2416 u64 now;
db24d33e 2417 int is_active = ctx->is_active;
e5d1367f 2418
db24d33e 2419 ctx->is_active |= event_type;
5b0311e1 2420 if (likely(!ctx->nr_events))
facc4307 2421 return;
5b0311e1 2422
e5d1367f
SE
2423 now = perf_clock();
2424 ctx->timestamp = now;
3f7cce3c 2425 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
db24d33e 2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2431 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2432
2433 /* Then walk through the lower prio flexible groups */
db24d33e 2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2435 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2436}
2437
329c0e01 2438static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2439 enum event_type_t event_type,
2440 struct task_struct *task)
329c0e01
FW
2441{
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
e5d1367f 2444 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2445}
2446
e5d1367f
SE
2447static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
235c7fc7 2449{
108b02cf 2450 struct perf_cpu_context *cpuctx;
235c7fc7 2451
108b02cf 2452 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
facc4307 2456 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2457 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
1d5f003f
GN
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
9b33fa6b 2467
86b47c25
GN
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
facc4307
PZ
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
b5ab4cd5
PZ
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
108b02cf 2477 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2478}
2479
d010b332
SE
2480/*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498{
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538}
2539
8dc85d54
PZ
2540/*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
ab0cce56
JO
2551void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
8dc85d54
PZ
2553{
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
e5d1367f 2562 perf_event_context_sched_in(ctx, task);
8dc85d54 2563 }
e5d1367f
SE
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2570 perf_cgroup_sched_in(prev, task);
d010b332
SE
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2575}
2576
abd50713
PZ
2577static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578{
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
fe4b04fa 2604#define REDUCE_FLS(a, b) \
abd50713
PZ
2605do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613} while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
f6ab91ad
PZ
2644 if (!divisor)
2645 return dividend;
2646
abd50713
PZ
2647 return div64_u64(dividend, divisor);
2648}
2649
e050e3f0
SE
2650static DEFINE_PER_CPU(int, perf_throttled_count);
2651static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
f39d47ff 2653static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2654{
cdd6c482 2655 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2656 s64 period, sample_period;
bd2b5b12
PZ
2657 s64 delta;
2658
abd50713 2659 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
bd2b5b12 2669 hwc->sample_period = sample_period;
abd50713 2670
e7850595 2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
e7850595 2675 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2679 }
bd2b5b12
PZ
2680}
2681
e050e3f0
SE
2682/*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
60db5e09 2689{
cdd6c482
IM
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
e050e3f0 2692 u64 now, period = TICK_NSEC;
abd50713 2693 s64 delta;
60db5e09 2694
e050e3f0
SE
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2701 return;
2702
e050e3f0 2703 raw_spin_lock(&ctx->lock);
f39d47ff 2704 perf_pmu_disable(ctx->pmu);
e050e3f0 2705
03541f8b 2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2708 continue;
2709
5632ab12 2710 if (!event_filter_match(event))
5d27c23d
PZ
2711 continue;
2712
cdd6c482 2713 hwc = &event->hw;
6a24ed6c 2714
e050e3f0
SE
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
cdd6c482 2717 perf_log_throttle(event, 1);
a4eaf7f1 2718 event->pmu->start(event, 0);
a78ac325
PZ
2719 }
2720
cdd6c482 2721 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2722 continue;
2723
e050e3f0
SE
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
e7850595 2729 now = local64_read(&event->count);
abd50713
PZ
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
60db5e09 2732
e050e3f0
SE
2733 /*
2734 * restart the event
2735 * reload only if value has changed
f39d47ff
SE
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
e050e3f0 2739 */
abd50713 2740 if (delta > 0)
f39d47ff 2741 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2744 }
e050e3f0 2745
f39d47ff 2746 perf_pmu_enable(ctx->pmu);
e050e3f0 2747 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2748}
2749
235c7fc7 2750/*
cdd6c482 2751 * Round-robin a context's events:
235c7fc7 2752 */
cdd6c482 2753static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2754{
dddd3379
TG
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2761}
2762
b5ab4cd5 2763/*
e9d2b064
PZ
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2767 */
9e630205 2768static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2769{
8dc85d54 2770 struct perf_event_context *ctx = NULL;
e050e3f0 2771 int rotate = 0, remove = 1;
7fc23a53 2772
b5ab4cd5 2773 if (cpuctx->ctx.nr_events) {
e9d2b064 2774 remove = 0;
b5ab4cd5
PZ
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
235c7fc7 2778
8dc85d54 2779 ctx = cpuctx->task_ctx;
b5ab4cd5 2780 if (ctx && ctx->nr_events) {
e9d2b064 2781 remove = 0;
b5ab4cd5
PZ
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
9717e6cd 2785
e050e3f0 2786 if (!rotate)
0f5a2601
PZ
2787 goto done;
2788
facc4307 2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2790 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2791
e050e3f0
SE
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2795
e050e3f0
SE
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
235c7fc7 2799
e050e3f0 2800 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2801
0f5a2601
PZ
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2804done:
e9d2b064
PZ
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2807
2808 return rotate;
e9d2b064
PZ
2809}
2810
026249ef
FW
2811#ifdef CONFIG_NO_HZ_FULL
2812bool perf_event_can_stop_tick(void)
2813{
2814 if (list_empty(&__get_cpu_var(rotation_list)))
2815 return true;
2816 else
2817 return false;
2818}
2819#endif
2820
e9d2b064
PZ
2821void perf_event_task_tick(void)
2822{
2823 struct list_head *head = &__get_cpu_var(rotation_list);
2824 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2825 struct perf_event_context *ctx;
2826 int throttled;
b5ab4cd5 2827
e9d2b064
PZ
2828 WARN_ON(!irqs_disabled());
2829
e050e3f0
SE
2830 __this_cpu_inc(perf_throttled_seq);
2831 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2832
e9d2b064 2833 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2834 ctx = &cpuctx->ctx;
2835 perf_adjust_freq_unthr_context(ctx, throttled);
2836
2837 ctx = cpuctx->task_ctx;
2838 if (ctx)
2839 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2840 }
0793a61d
TG
2841}
2842
889ff015
FW
2843static int event_enable_on_exec(struct perf_event *event,
2844 struct perf_event_context *ctx)
2845{
2846 if (!event->attr.enable_on_exec)
2847 return 0;
2848
2849 event->attr.enable_on_exec = 0;
2850 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2851 return 0;
2852
1d9b482e 2853 __perf_event_mark_enabled(event);
889ff015
FW
2854
2855 return 1;
2856}
2857
57e7986e 2858/*
cdd6c482 2859 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2860 * This expects task == current.
2861 */
8dc85d54 2862static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2863{
cdd6c482 2864 struct perf_event *event;
57e7986e
PM
2865 unsigned long flags;
2866 int enabled = 0;
889ff015 2867 int ret;
57e7986e
PM
2868
2869 local_irq_save(flags);
cdd6c482 2870 if (!ctx || !ctx->nr_events)
57e7986e
PM
2871 goto out;
2872
e566b76e
SE
2873 /*
2874 * We must ctxsw out cgroup events to avoid conflict
2875 * when invoking perf_task_event_sched_in() later on
2876 * in this function. Otherwise we end up trying to
2877 * ctxswin cgroup events which are already scheduled
2878 * in.
2879 */
a8d757ef 2880 perf_cgroup_sched_out(current, NULL);
57e7986e 2881
e625cce1 2882 raw_spin_lock(&ctx->lock);
04dc2dbb 2883 task_ctx_sched_out(ctx);
57e7986e 2884
b79387ef 2885 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2886 ret = event_enable_on_exec(event, ctx);
2887 if (ret)
2888 enabled = 1;
57e7986e
PM
2889 }
2890
2891 /*
cdd6c482 2892 * Unclone this context if we enabled any event.
57e7986e 2893 */
71a851b4
PZ
2894 if (enabled)
2895 unclone_ctx(ctx);
57e7986e 2896
e625cce1 2897 raw_spin_unlock(&ctx->lock);
57e7986e 2898
e566b76e
SE
2899 /*
2900 * Also calls ctxswin for cgroup events, if any:
2901 */
e5d1367f 2902 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2903out:
57e7986e
PM
2904 local_irq_restore(flags);
2905}
2906
0793a61d 2907/*
cdd6c482 2908 * Cross CPU call to read the hardware event
0793a61d 2909 */
cdd6c482 2910static void __perf_event_read(void *info)
0793a61d 2911{
cdd6c482
IM
2912 struct perf_event *event = info;
2913 struct perf_event_context *ctx = event->ctx;
108b02cf 2914 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2915
e1ac3614
PM
2916 /*
2917 * If this is a task context, we need to check whether it is
2918 * the current task context of this cpu. If not it has been
2919 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2920 * event->count would have been updated to a recent sample
2921 * when the event was scheduled out.
e1ac3614
PM
2922 */
2923 if (ctx->task && cpuctx->task_ctx != ctx)
2924 return;
2925
e625cce1 2926 raw_spin_lock(&ctx->lock);
e5d1367f 2927 if (ctx->is_active) {
542e72fc 2928 update_context_time(ctx);
e5d1367f
SE
2929 update_cgrp_time_from_event(event);
2930 }
cdd6c482 2931 update_event_times(event);
542e72fc
PZ
2932 if (event->state == PERF_EVENT_STATE_ACTIVE)
2933 event->pmu->read(event);
e625cce1 2934 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2935}
2936
b5e58793
PZ
2937static inline u64 perf_event_count(struct perf_event *event)
2938{
e7850595 2939 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2940}
2941
cdd6c482 2942static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2943{
2944 /*
cdd6c482
IM
2945 * If event is enabled and currently active on a CPU, update the
2946 * value in the event structure:
0793a61d 2947 */
cdd6c482
IM
2948 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2949 smp_call_function_single(event->oncpu,
2950 __perf_event_read, event, 1);
2951 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2952 struct perf_event_context *ctx = event->ctx;
2953 unsigned long flags;
2954
e625cce1 2955 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2956 /*
2957 * may read while context is not active
2958 * (e.g., thread is blocked), in that case
2959 * we cannot update context time
2960 */
e5d1367f 2961 if (ctx->is_active) {
c530ccd9 2962 update_context_time(ctx);
e5d1367f
SE
2963 update_cgrp_time_from_event(event);
2964 }
cdd6c482 2965 update_event_times(event);
e625cce1 2966 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2967 }
2968
b5e58793 2969 return perf_event_count(event);
0793a61d
TG
2970}
2971
a63eaf34 2972/*
cdd6c482 2973 * Initialize the perf_event context in a task_struct:
a63eaf34 2974 */
eb184479 2975static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2976{
e625cce1 2977 raw_spin_lock_init(&ctx->lock);
a63eaf34 2978 mutex_init(&ctx->mutex);
889ff015
FW
2979 INIT_LIST_HEAD(&ctx->pinned_groups);
2980 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2981 INIT_LIST_HEAD(&ctx->event_list);
2982 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2983}
2984
2985static struct perf_event_context *
2986alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2987{
2988 struct perf_event_context *ctx;
2989
2990 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2991 if (!ctx)
2992 return NULL;
2993
2994 __perf_event_init_context(ctx);
2995 if (task) {
2996 ctx->task = task;
2997 get_task_struct(task);
0793a61d 2998 }
eb184479
PZ
2999 ctx->pmu = pmu;
3000
3001 return ctx;
a63eaf34
PM
3002}
3003
2ebd4ffb
MH
3004static struct task_struct *
3005find_lively_task_by_vpid(pid_t vpid)
3006{
3007 struct task_struct *task;
3008 int err;
0793a61d
TG
3009
3010 rcu_read_lock();
2ebd4ffb 3011 if (!vpid)
0793a61d
TG
3012 task = current;
3013 else
2ebd4ffb 3014 task = find_task_by_vpid(vpid);
0793a61d
TG
3015 if (task)
3016 get_task_struct(task);
3017 rcu_read_unlock();
3018
3019 if (!task)
3020 return ERR_PTR(-ESRCH);
3021
0793a61d 3022 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3023 err = -EACCES;
3024 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3025 goto errout;
3026
2ebd4ffb
MH
3027 return task;
3028errout:
3029 put_task_struct(task);
3030 return ERR_PTR(err);
3031
3032}
3033
fe4b04fa
PZ
3034/*
3035 * Returns a matching context with refcount and pincount.
3036 */
108b02cf 3037static struct perf_event_context *
38a81da2 3038find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3039{
cdd6c482 3040 struct perf_event_context *ctx;
22a4f650 3041 struct perf_cpu_context *cpuctx;
25346b93 3042 unsigned long flags;
8dc85d54 3043 int ctxn, err;
0793a61d 3044
22a4ec72 3045 if (!task) {
cdd6c482 3046 /* Must be root to operate on a CPU event: */
0764771d 3047 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3048 return ERR_PTR(-EACCES);
3049
0793a61d 3050 /*
cdd6c482 3051 * We could be clever and allow to attach a event to an
0793a61d
TG
3052 * offline CPU and activate it when the CPU comes up, but
3053 * that's for later.
3054 */
f6325e30 3055 if (!cpu_online(cpu))
0793a61d
TG
3056 return ERR_PTR(-ENODEV);
3057
108b02cf 3058 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3059 ctx = &cpuctx->ctx;
c93f7669 3060 get_ctx(ctx);
fe4b04fa 3061 ++ctx->pin_count;
0793a61d 3062
0793a61d
TG
3063 return ctx;
3064 }
3065
8dc85d54
PZ
3066 err = -EINVAL;
3067 ctxn = pmu->task_ctx_nr;
3068 if (ctxn < 0)
3069 goto errout;
3070
9ed6060d 3071retry:
8dc85d54 3072 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3073 if (ctx) {
71a851b4 3074 unclone_ctx(ctx);
fe4b04fa 3075 ++ctx->pin_count;
e625cce1 3076 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3077 } else {
eb184479 3078 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3079 err = -ENOMEM;
3080 if (!ctx)
3081 goto errout;
eb184479 3082
dbe08d82
ON
3083 err = 0;
3084 mutex_lock(&task->perf_event_mutex);
3085 /*
3086 * If it has already passed perf_event_exit_task().
3087 * we must see PF_EXITING, it takes this mutex too.
3088 */
3089 if (task->flags & PF_EXITING)
3090 err = -ESRCH;
3091 else if (task->perf_event_ctxp[ctxn])
3092 err = -EAGAIN;
fe4b04fa 3093 else {
9137fb28 3094 get_ctx(ctx);
fe4b04fa 3095 ++ctx->pin_count;
dbe08d82 3096 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3097 }
dbe08d82
ON
3098 mutex_unlock(&task->perf_event_mutex);
3099
3100 if (unlikely(err)) {
9137fb28 3101 put_ctx(ctx);
dbe08d82
ON
3102
3103 if (err == -EAGAIN)
3104 goto retry;
3105 goto errout;
a63eaf34
PM
3106 }
3107 }
3108
0793a61d 3109 return ctx;
c93f7669 3110
9ed6060d 3111errout:
c93f7669 3112 return ERR_PTR(err);
0793a61d
TG
3113}
3114
6fb2915d
LZ
3115static void perf_event_free_filter(struct perf_event *event);
3116
cdd6c482 3117static void free_event_rcu(struct rcu_head *head)
592903cd 3118{
cdd6c482 3119 struct perf_event *event;
592903cd 3120
cdd6c482
IM
3121 event = container_of(head, struct perf_event, rcu_head);
3122 if (event->ns)
3123 put_pid_ns(event->ns);
6fb2915d 3124 perf_event_free_filter(event);
cdd6c482 3125 kfree(event);
592903cd
PZ
3126}
3127
76369139 3128static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3129static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3130
766d6c07
FW
3131static void __free_event(struct perf_event *event)
3132{
3133 if (!event->parent) {
3134 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3135 put_callchain_buffers();
3136 }
3137
3138 if (event->destroy)
3139 event->destroy(event);
3140
3141 if (event->ctx)
3142 put_ctx(event->ctx);
3143
3144 call_rcu(&event->rcu_head, free_event_rcu);
3145}
cdd6c482 3146static void free_event(struct perf_event *event)
f1600952 3147{
e360adbe 3148 irq_work_sync(&event->pending);
925d519a 3149
cdd6c482 3150 if (!event->parent) {
82cd6def 3151 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 3152 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 3153 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
3154 atomic_dec(&nr_mmap_events);
3155 if (event->attr.comm)
3156 atomic_dec(&nr_comm_events);
3157 if (event->attr.task)
3158 atomic_dec(&nr_task_events);
08309379
PZ
3159 if (is_cgroup_event(event)) {
3160 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 3161 static_key_slow_dec_deferred(&perf_sched_events);
08309379 3162 }
d010b332
SE
3163
3164 if (has_branch_stack(event)) {
3165 static_key_slow_dec_deferred(&perf_sched_events);
3166 /* is system-wide event */
9bb5d40c 3167 if (!(event->attach_state & PERF_ATTACH_TASK)) {
d010b332
SE
3168 atomic_dec(&per_cpu(perf_branch_stack_events,
3169 event->cpu));
9bb5d40c 3170 }
d010b332 3171 }
f344011c 3172 }
9ee318a7 3173
76369139 3174 if (event->rb) {
9bb5d40c
PZ
3175 struct ring_buffer *rb;
3176
3177 /*
3178 * Can happen when we close an event with re-directed output.
3179 *
3180 * Since we have a 0 refcount, perf_mmap_close() will skip
3181 * over us; possibly making our ring_buffer_put() the last.
3182 */
3183 mutex_lock(&event->mmap_mutex);
3184 rb = event->rb;
3185 if (rb) {
3186 rcu_assign_pointer(event->rb, NULL);
3187 ring_buffer_detach(event, rb);
3188 ring_buffer_put(rb); /* could be last */
3189 }
3190 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3191 }
3192
e5d1367f
SE
3193 if (is_cgroup_event(event))
3194 perf_detach_cgroup(event);
3195
0c67b408 3196
766d6c07 3197 __free_event(event);
f1600952
PZ
3198}
3199
a66a3052 3200int perf_event_release_kernel(struct perf_event *event)
0793a61d 3201{
cdd6c482 3202 struct perf_event_context *ctx = event->ctx;
0793a61d 3203
ad3a37de 3204 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3205 /*
3206 * There are two ways this annotation is useful:
3207 *
3208 * 1) there is a lock recursion from perf_event_exit_task
3209 * see the comment there.
3210 *
3211 * 2) there is a lock-inversion with mmap_sem through
3212 * perf_event_read_group(), which takes faults while
3213 * holding ctx->mutex, however this is called after
3214 * the last filedesc died, so there is no possibility
3215 * to trigger the AB-BA case.
3216 */
3217 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3218 raw_spin_lock_irq(&ctx->lock);
8a49542c 3219 perf_group_detach(event);
050735b0 3220 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3221 perf_remove_from_context(event);
d859e29f 3222 mutex_unlock(&ctx->mutex);
0793a61d 3223
cdd6c482 3224 free_event(event);
0793a61d
TG
3225
3226 return 0;
3227}
a66a3052 3228EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3229
a66a3052
PZ
3230/*
3231 * Called when the last reference to the file is gone.
3232 */
a6fa941d 3233static void put_event(struct perf_event *event)
fb0459d7 3234{
8882135b 3235 struct task_struct *owner;
fb0459d7 3236
a6fa941d
AV
3237 if (!atomic_long_dec_and_test(&event->refcount))
3238 return;
fb0459d7 3239
8882135b
PZ
3240 rcu_read_lock();
3241 owner = ACCESS_ONCE(event->owner);
3242 /*
3243 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3244 * !owner it means the list deletion is complete and we can indeed
3245 * free this event, otherwise we need to serialize on
3246 * owner->perf_event_mutex.
3247 */
3248 smp_read_barrier_depends();
3249 if (owner) {
3250 /*
3251 * Since delayed_put_task_struct() also drops the last
3252 * task reference we can safely take a new reference
3253 * while holding the rcu_read_lock().
3254 */
3255 get_task_struct(owner);
3256 }
3257 rcu_read_unlock();
3258
3259 if (owner) {
3260 mutex_lock(&owner->perf_event_mutex);
3261 /*
3262 * We have to re-check the event->owner field, if it is cleared
3263 * we raced with perf_event_exit_task(), acquiring the mutex
3264 * ensured they're done, and we can proceed with freeing the
3265 * event.
3266 */
3267 if (event->owner)
3268 list_del_init(&event->owner_entry);
3269 mutex_unlock(&owner->perf_event_mutex);
3270 put_task_struct(owner);
3271 }
3272
a6fa941d
AV
3273 perf_event_release_kernel(event);
3274}
3275
3276static int perf_release(struct inode *inode, struct file *file)
3277{
3278 put_event(file->private_data);
3279 return 0;
fb0459d7 3280}
fb0459d7 3281
59ed446f 3282u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3283{
cdd6c482 3284 struct perf_event *child;
e53c0994
PZ
3285 u64 total = 0;
3286
59ed446f
PZ
3287 *enabled = 0;
3288 *running = 0;
3289
6f10581a 3290 mutex_lock(&event->child_mutex);
cdd6c482 3291 total += perf_event_read(event);
59ed446f
PZ
3292 *enabled += event->total_time_enabled +
3293 atomic64_read(&event->child_total_time_enabled);
3294 *running += event->total_time_running +
3295 atomic64_read(&event->child_total_time_running);
3296
3297 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3298 total += perf_event_read(child);
59ed446f
PZ
3299 *enabled += child->total_time_enabled;
3300 *running += child->total_time_running;
3301 }
6f10581a 3302 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3303
3304 return total;
3305}
fb0459d7 3306EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3307
cdd6c482 3308static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3309 u64 read_format, char __user *buf)
3310{
cdd6c482 3311 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3312 int n = 0, size = 0, ret = -EFAULT;
3313 struct perf_event_context *ctx = leader->ctx;
abf4868b 3314 u64 values[5];
59ed446f 3315 u64 count, enabled, running;
abf4868b 3316
6f10581a 3317 mutex_lock(&ctx->mutex);
59ed446f 3318 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3319
3320 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3321 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3322 values[n++] = enabled;
3323 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3324 values[n++] = running;
abf4868b
PZ
3325 values[n++] = count;
3326 if (read_format & PERF_FORMAT_ID)
3327 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3328
3329 size = n * sizeof(u64);
3330
3331 if (copy_to_user(buf, values, size))
6f10581a 3332 goto unlock;
3dab77fb 3333
6f10581a 3334 ret = size;
3dab77fb 3335
65abc865 3336 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3337 n = 0;
3dab77fb 3338
59ed446f 3339 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3340 if (read_format & PERF_FORMAT_ID)
3341 values[n++] = primary_event_id(sub);
3342
3343 size = n * sizeof(u64);
3344
184d3da8 3345 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3346 ret = -EFAULT;
3347 goto unlock;
3348 }
abf4868b
PZ
3349
3350 ret += size;
3dab77fb 3351 }
6f10581a
PZ
3352unlock:
3353 mutex_unlock(&ctx->mutex);
3dab77fb 3354
abf4868b 3355 return ret;
3dab77fb
PZ
3356}
3357
cdd6c482 3358static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3359 u64 read_format, char __user *buf)
3360{
59ed446f 3361 u64 enabled, running;
3dab77fb
PZ
3362 u64 values[4];
3363 int n = 0;
3364
59ed446f
PZ
3365 values[n++] = perf_event_read_value(event, &enabled, &running);
3366 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3367 values[n++] = enabled;
3368 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3369 values[n++] = running;
3dab77fb 3370 if (read_format & PERF_FORMAT_ID)
cdd6c482 3371 values[n++] = primary_event_id(event);
3dab77fb
PZ
3372
3373 if (copy_to_user(buf, values, n * sizeof(u64)))
3374 return -EFAULT;
3375
3376 return n * sizeof(u64);
3377}
3378
0793a61d 3379/*
cdd6c482 3380 * Read the performance event - simple non blocking version for now
0793a61d
TG
3381 */
3382static ssize_t
cdd6c482 3383perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3384{
cdd6c482 3385 u64 read_format = event->attr.read_format;
3dab77fb 3386 int ret;
0793a61d 3387
3b6f9e5c 3388 /*
cdd6c482 3389 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3390 * error state (i.e. because it was pinned but it couldn't be
3391 * scheduled on to the CPU at some point).
3392 */
cdd6c482 3393 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3394 return 0;
3395
c320c7b7 3396 if (count < event->read_size)
3dab77fb
PZ
3397 return -ENOSPC;
3398
cdd6c482 3399 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3400 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3401 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3402 else
cdd6c482 3403 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3404
3dab77fb 3405 return ret;
0793a61d
TG
3406}
3407
0793a61d
TG
3408static ssize_t
3409perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3410{
cdd6c482 3411 struct perf_event *event = file->private_data;
0793a61d 3412
cdd6c482 3413 return perf_read_hw(event, buf, count);
0793a61d
TG
3414}
3415
3416static unsigned int perf_poll(struct file *file, poll_table *wait)
3417{
cdd6c482 3418 struct perf_event *event = file->private_data;
76369139 3419 struct ring_buffer *rb;
c33a0bc4 3420 unsigned int events = POLL_HUP;
c7138f37 3421
10c6db11 3422 /*
9bb5d40c
PZ
3423 * Pin the event->rb by taking event->mmap_mutex; otherwise
3424 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3425 */
3426 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3427 rb = event->rb;
3428 if (rb)
76369139 3429 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3430 mutex_unlock(&event->mmap_mutex);
3431
cdd6c482 3432 poll_wait(file, &event->waitq, wait);
0793a61d 3433
0793a61d
TG
3434 return events;
3435}
3436
cdd6c482 3437static void perf_event_reset(struct perf_event *event)
6de6a7b9 3438{
cdd6c482 3439 (void)perf_event_read(event);
e7850595 3440 local64_set(&event->count, 0);
cdd6c482 3441 perf_event_update_userpage(event);
3df5edad
PZ
3442}
3443
c93f7669 3444/*
cdd6c482
IM
3445 * Holding the top-level event's child_mutex means that any
3446 * descendant process that has inherited this event will block
3447 * in sync_child_event if it goes to exit, thus satisfying the
3448 * task existence requirements of perf_event_enable/disable.
c93f7669 3449 */
cdd6c482
IM
3450static void perf_event_for_each_child(struct perf_event *event,
3451 void (*func)(struct perf_event *))
3df5edad 3452{
cdd6c482 3453 struct perf_event *child;
3df5edad 3454
cdd6c482
IM
3455 WARN_ON_ONCE(event->ctx->parent_ctx);
3456 mutex_lock(&event->child_mutex);
3457 func(event);
3458 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3459 func(child);
cdd6c482 3460 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3461}
3462
cdd6c482
IM
3463static void perf_event_for_each(struct perf_event *event,
3464 void (*func)(struct perf_event *))
3df5edad 3465{
cdd6c482
IM
3466 struct perf_event_context *ctx = event->ctx;
3467 struct perf_event *sibling;
3df5edad 3468
75f937f2
PZ
3469 WARN_ON_ONCE(ctx->parent_ctx);
3470 mutex_lock(&ctx->mutex);
cdd6c482 3471 event = event->group_leader;
75f937f2 3472
cdd6c482 3473 perf_event_for_each_child(event, func);
cdd6c482 3474 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3475 perf_event_for_each_child(sibling, func);
75f937f2 3476 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3477}
3478
cdd6c482 3479static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3480{
cdd6c482 3481 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3482 int ret = 0;
3483 u64 value;
3484
6c7e550f 3485 if (!is_sampling_event(event))
08247e31
PZ
3486 return -EINVAL;
3487
ad0cf347 3488 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3489 return -EFAULT;
3490
3491 if (!value)
3492 return -EINVAL;
3493
e625cce1 3494 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3495 if (event->attr.freq) {
3496 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3497 ret = -EINVAL;
3498 goto unlock;
3499 }
3500
cdd6c482 3501 event->attr.sample_freq = value;
08247e31 3502 } else {
cdd6c482
IM
3503 event->attr.sample_period = value;
3504 event->hw.sample_period = value;
08247e31
PZ
3505 }
3506unlock:
e625cce1 3507 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3508
3509 return ret;
3510}
3511
ac9721f3
PZ
3512static const struct file_operations perf_fops;
3513
2903ff01 3514static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3515{
2903ff01
AV
3516 struct fd f = fdget(fd);
3517 if (!f.file)
3518 return -EBADF;
ac9721f3 3519
2903ff01
AV
3520 if (f.file->f_op != &perf_fops) {
3521 fdput(f);
3522 return -EBADF;
ac9721f3 3523 }
2903ff01
AV
3524 *p = f;
3525 return 0;
ac9721f3
PZ
3526}
3527
3528static int perf_event_set_output(struct perf_event *event,
3529 struct perf_event *output_event);
6fb2915d 3530static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3531
d859e29f
PM
3532static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3533{
cdd6c482
IM
3534 struct perf_event *event = file->private_data;
3535 void (*func)(struct perf_event *);
3df5edad 3536 u32 flags = arg;
d859e29f
PM
3537
3538 switch (cmd) {
cdd6c482
IM
3539 case PERF_EVENT_IOC_ENABLE:
3540 func = perf_event_enable;
d859e29f 3541 break;
cdd6c482
IM
3542 case PERF_EVENT_IOC_DISABLE:
3543 func = perf_event_disable;
79f14641 3544 break;
cdd6c482
IM
3545 case PERF_EVENT_IOC_RESET:
3546 func = perf_event_reset;
6de6a7b9 3547 break;
3df5edad 3548
cdd6c482
IM
3549 case PERF_EVENT_IOC_REFRESH:
3550 return perf_event_refresh(event, arg);
08247e31 3551
cdd6c482
IM
3552 case PERF_EVENT_IOC_PERIOD:
3553 return perf_event_period(event, (u64 __user *)arg);
08247e31 3554
cdd6c482 3555 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3556 {
ac9721f3 3557 int ret;
ac9721f3 3558 if (arg != -1) {
2903ff01
AV
3559 struct perf_event *output_event;
3560 struct fd output;
3561 ret = perf_fget_light(arg, &output);
3562 if (ret)
3563 return ret;
3564 output_event = output.file->private_data;
3565 ret = perf_event_set_output(event, output_event);
3566 fdput(output);
3567 } else {
3568 ret = perf_event_set_output(event, NULL);
ac9721f3 3569 }
ac9721f3
PZ
3570 return ret;
3571 }
a4be7c27 3572
6fb2915d
LZ
3573 case PERF_EVENT_IOC_SET_FILTER:
3574 return perf_event_set_filter(event, (void __user *)arg);
3575
d859e29f 3576 default:
3df5edad 3577 return -ENOTTY;
d859e29f 3578 }
3df5edad
PZ
3579
3580 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3581 perf_event_for_each(event, func);
3df5edad 3582 else
cdd6c482 3583 perf_event_for_each_child(event, func);
3df5edad
PZ
3584
3585 return 0;
d859e29f
PM
3586}
3587
cdd6c482 3588int perf_event_task_enable(void)
771d7cde 3589{
cdd6c482 3590 struct perf_event *event;
771d7cde 3591
cdd6c482
IM
3592 mutex_lock(&current->perf_event_mutex);
3593 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3594 perf_event_for_each_child(event, perf_event_enable);
3595 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3596
3597 return 0;
3598}
3599
cdd6c482 3600int perf_event_task_disable(void)
771d7cde 3601{
cdd6c482 3602 struct perf_event *event;
771d7cde 3603
cdd6c482
IM
3604 mutex_lock(&current->perf_event_mutex);
3605 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3606 perf_event_for_each_child(event, perf_event_disable);
3607 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3608
3609 return 0;
3610}
3611
cdd6c482 3612static int perf_event_index(struct perf_event *event)
194002b2 3613{
a4eaf7f1
PZ
3614 if (event->hw.state & PERF_HES_STOPPED)
3615 return 0;
3616
cdd6c482 3617 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3618 return 0;
3619
35edc2a5 3620 return event->pmu->event_idx(event);
194002b2
PZ
3621}
3622
c4794295 3623static void calc_timer_values(struct perf_event *event,
e3f3541c 3624 u64 *now,
7f310a5d
EM
3625 u64 *enabled,
3626 u64 *running)
c4794295 3627{
e3f3541c 3628 u64 ctx_time;
c4794295 3629
e3f3541c
PZ
3630 *now = perf_clock();
3631 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3632 *enabled = ctx_time - event->tstamp_enabled;
3633 *running = ctx_time - event->tstamp_running;
3634}
3635
c7206205 3636void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3637{
3638}
3639
38ff667b
PZ
3640/*
3641 * Callers need to ensure there can be no nesting of this function, otherwise
3642 * the seqlock logic goes bad. We can not serialize this because the arch
3643 * code calls this from NMI context.
3644 */
cdd6c482 3645void perf_event_update_userpage(struct perf_event *event)
37d81828 3646{
cdd6c482 3647 struct perf_event_mmap_page *userpg;
76369139 3648 struct ring_buffer *rb;
e3f3541c 3649 u64 enabled, running, now;
38ff667b
PZ
3650
3651 rcu_read_lock();
0d641208
EM
3652 /*
3653 * compute total_time_enabled, total_time_running
3654 * based on snapshot values taken when the event
3655 * was last scheduled in.
3656 *
3657 * we cannot simply called update_context_time()
3658 * because of locking issue as we can be called in
3659 * NMI context
3660 */
e3f3541c 3661 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3662 rb = rcu_dereference(event->rb);
3663 if (!rb)
38ff667b
PZ
3664 goto unlock;
3665
76369139 3666 userpg = rb->user_page;
37d81828 3667
7b732a75
PZ
3668 /*
3669 * Disable preemption so as to not let the corresponding user-space
3670 * spin too long if we get preempted.
3671 */
3672 preempt_disable();
37d81828 3673 ++userpg->lock;
92f22a38 3674 barrier();
cdd6c482 3675 userpg->index = perf_event_index(event);
b5e58793 3676 userpg->offset = perf_event_count(event);
365a4038 3677 if (userpg->index)
e7850595 3678 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3679
0d641208 3680 userpg->time_enabled = enabled +
cdd6c482 3681 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3682
0d641208 3683 userpg->time_running = running +
cdd6c482 3684 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3685
c7206205 3686 arch_perf_update_userpage(userpg, now);
e3f3541c 3687
92f22a38 3688 barrier();
37d81828 3689 ++userpg->lock;
7b732a75 3690 preempt_enable();
38ff667b 3691unlock:
7b732a75 3692 rcu_read_unlock();
37d81828
PM
3693}
3694
906010b2
PZ
3695static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3696{
3697 struct perf_event *event = vma->vm_file->private_data;
76369139 3698 struct ring_buffer *rb;
906010b2
PZ
3699 int ret = VM_FAULT_SIGBUS;
3700
3701 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3702 if (vmf->pgoff == 0)
3703 ret = 0;
3704 return ret;
3705 }
3706
3707 rcu_read_lock();
76369139
FW
3708 rb = rcu_dereference(event->rb);
3709 if (!rb)
906010b2
PZ
3710 goto unlock;
3711
3712 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3713 goto unlock;
3714
76369139 3715 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3716 if (!vmf->page)
3717 goto unlock;
3718
3719 get_page(vmf->page);
3720 vmf->page->mapping = vma->vm_file->f_mapping;
3721 vmf->page->index = vmf->pgoff;
3722
3723 ret = 0;
3724unlock:
3725 rcu_read_unlock();
3726
3727 return ret;
3728}
3729
10c6db11
PZ
3730static void ring_buffer_attach(struct perf_event *event,
3731 struct ring_buffer *rb)
3732{
3733 unsigned long flags;
3734
3735 if (!list_empty(&event->rb_entry))
3736 return;
3737
3738 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3739 if (list_empty(&event->rb_entry))
3740 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3741 spin_unlock_irqrestore(&rb->event_lock, flags);
3742}
3743
9bb5d40c 3744static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3745{
3746 unsigned long flags;
3747
3748 if (list_empty(&event->rb_entry))
3749 return;
3750
3751 spin_lock_irqsave(&rb->event_lock, flags);
3752 list_del_init(&event->rb_entry);
3753 wake_up_all(&event->waitq);
3754 spin_unlock_irqrestore(&rb->event_lock, flags);
3755}
3756
3757static void ring_buffer_wakeup(struct perf_event *event)
3758{
3759 struct ring_buffer *rb;
3760
3761 rcu_read_lock();
3762 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3763 if (rb) {
3764 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3765 wake_up_all(&event->waitq);
3766 }
10c6db11
PZ
3767 rcu_read_unlock();
3768}
3769
76369139 3770static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3771{
76369139 3772 struct ring_buffer *rb;
906010b2 3773
76369139
FW
3774 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3775 rb_free(rb);
7b732a75
PZ
3776}
3777
76369139 3778static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3779{
76369139 3780 struct ring_buffer *rb;
7b732a75 3781
ac9721f3 3782 rcu_read_lock();
76369139
FW
3783 rb = rcu_dereference(event->rb);
3784 if (rb) {
3785 if (!atomic_inc_not_zero(&rb->refcount))
3786 rb = NULL;
ac9721f3
PZ
3787 }
3788 rcu_read_unlock();
3789
76369139 3790 return rb;
ac9721f3
PZ
3791}
3792
76369139 3793static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3794{
76369139 3795 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3796 return;
7b732a75 3797
9bb5d40c 3798 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3799
76369139 3800 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3801}
3802
3803static void perf_mmap_open(struct vm_area_struct *vma)
3804{
cdd6c482 3805 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3806
cdd6c482 3807 atomic_inc(&event->mmap_count);
9bb5d40c 3808 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3809}
3810
9bb5d40c
PZ
3811/*
3812 * A buffer can be mmap()ed multiple times; either directly through the same
3813 * event, or through other events by use of perf_event_set_output().
3814 *
3815 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3816 * the buffer here, where we still have a VM context. This means we need
3817 * to detach all events redirecting to us.
3818 */
7b732a75
PZ
3819static void perf_mmap_close(struct vm_area_struct *vma)
3820{
cdd6c482 3821 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3822
9bb5d40c
PZ
3823 struct ring_buffer *rb = event->rb;
3824 struct user_struct *mmap_user = rb->mmap_user;
3825 int mmap_locked = rb->mmap_locked;
3826 unsigned long size = perf_data_size(rb);
789f90fc 3827
9bb5d40c
PZ
3828 atomic_dec(&rb->mmap_count);
3829
3830 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3831 return;
3832
3833 /* Detach current event from the buffer. */
3834 rcu_assign_pointer(event->rb, NULL);
3835 ring_buffer_detach(event, rb);
3836 mutex_unlock(&event->mmap_mutex);
3837
3838 /* If there's still other mmap()s of this buffer, we're done. */
3839 if (atomic_read(&rb->mmap_count)) {
3840 ring_buffer_put(rb); /* can't be last */
3841 return;
3842 }
ac9721f3 3843
9bb5d40c
PZ
3844 /*
3845 * No other mmap()s, detach from all other events that might redirect
3846 * into the now unreachable buffer. Somewhat complicated by the
3847 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3848 */
3849again:
3850 rcu_read_lock();
3851 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3852 if (!atomic_long_inc_not_zero(&event->refcount)) {
3853 /*
3854 * This event is en-route to free_event() which will
3855 * detach it and remove it from the list.
3856 */
3857 continue;
3858 }
3859 rcu_read_unlock();
789f90fc 3860
9bb5d40c
PZ
3861 mutex_lock(&event->mmap_mutex);
3862 /*
3863 * Check we didn't race with perf_event_set_output() which can
3864 * swizzle the rb from under us while we were waiting to
3865 * acquire mmap_mutex.
3866 *
3867 * If we find a different rb; ignore this event, a next
3868 * iteration will no longer find it on the list. We have to
3869 * still restart the iteration to make sure we're not now
3870 * iterating the wrong list.
3871 */
3872 if (event->rb == rb) {
3873 rcu_assign_pointer(event->rb, NULL);
3874 ring_buffer_detach(event, rb);
3875 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3876 }
cdd6c482 3877 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3878 put_event(event);
ac9721f3 3879
9bb5d40c
PZ
3880 /*
3881 * Restart the iteration; either we're on the wrong list or
3882 * destroyed its integrity by doing a deletion.
3883 */
3884 goto again;
7b732a75 3885 }
9bb5d40c
PZ
3886 rcu_read_unlock();
3887
3888 /*
3889 * It could be there's still a few 0-ref events on the list; they'll
3890 * get cleaned up by free_event() -- they'll also still have their
3891 * ref on the rb and will free it whenever they are done with it.
3892 *
3893 * Aside from that, this buffer is 'fully' detached and unmapped,
3894 * undo the VM accounting.
3895 */
3896
3897 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3898 vma->vm_mm->pinned_vm -= mmap_locked;
3899 free_uid(mmap_user);
3900
3901 ring_buffer_put(rb); /* could be last */
37d81828
PM
3902}
3903
f0f37e2f 3904static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3905 .open = perf_mmap_open,
3906 .close = perf_mmap_close,
3907 .fault = perf_mmap_fault,
3908 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3909};
3910
3911static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3912{
cdd6c482 3913 struct perf_event *event = file->private_data;
22a4f650 3914 unsigned long user_locked, user_lock_limit;
789f90fc 3915 struct user_struct *user = current_user();
22a4f650 3916 unsigned long locked, lock_limit;
76369139 3917 struct ring_buffer *rb;
7b732a75
PZ
3918 unsigned long vma_size;
3919 unsigned long nr_pages;
789f90fc 3920 long user_extra, extra;
d57e34fd 3921 int ret = 0, flags = 0;
37d81828 3922
c7920614
PZ
3923 /*
3924 * Don't allow mmap() of inherited per-task counters. This would
3925 * create a performance issue due to all children writing to the
76369139 3926 * same rb.
c7920614
PZ
3927 */
3928 if (event->cpu == -1 && event->attr.inherit)
3929 return -EINVAL;
3930
43a21ea8 3931 if (!(vma->vm_flags & VM_SHARED))
37d81828 3932 return -EINVAL;
7b732a75
PZ
3933
3934 vma_size = vma->vm_end - vma->vm_start;
3935 nr_pages = (vma_size / PAGE_SIZE) - 1;
3936
7730d865 3937 /*
76369139 3938 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3939 * can do bitmasks instead of modulo.
3940 */
3941 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3942 return -EINVAL;
3943
7b732a75 3944 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3945 return -EINVAL;
3946
7b732a75
PZ
3947 if (vma->vm_pgoff != 0)
3948 return -EINVAL;
37d81828 3949
cdd6c482 3950 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3951again:
cdd6c482 3952 mutex_lock(&event->mmap_mutex);
76369139 3953 if (event->rb) {
9bb5d40c 3954 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3955 ret = -EINVAL;
9bb5d40c
PZ
3956 goto unlock;
3957 }
3958
3959 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3960 /*
3961 * Raced against perf_mmap_close() through
3962 * perf_event_set_output(). Try again, hope for better
3963 * luck.
3964 */
3965 mutex_unlock(&event->mmap_mutex);
3966 goto again;
3967 }
3968
ebb3c4c4
PZ
3969 goto unlock;
3970 }
3971
789f90fc 3972 user_extra = nr_pages + 1;
cdd6c482 3973 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3974
3975 /*
3976 * Increase the limit linearly with more CPUs:
3977 */
3978 user_lock_limit *= num_online_cpus();
3979
789f90fc 3980 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3981
789f90fc
PZ
3982 extra = 0;
3983 if (user_locked > user_lock_limit)
3984 extra = user_locked - user_lock_limit;
7b732a75 3985
78d7d407 3986 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3987 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3988 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3989
459ec28a
IM
3990 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3991 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3992 ret = -EPERM;
3993 goto unlock;
3994 }
7b732a75 3995
76369139 3996 WARN_ON(event->rb);
906010b2 3997
d57e34fd 3998 if (vma->vm_flags & VM_WRITE)
76369139 3999 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4000
4ec8363d
VW
4001 rb = rb_alloc(nr_pages,
4002 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4003 event->cpu, flags);
4004
76369139 4005 if (!rb) {
ac9721f3 4006 ret = -ENOMEM;
ebb3c4c4 4007 goto unlock;
ac9721f3 4008 }
26cb63ad 4009
9bb5d40c 4010 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4011 rb->mmap_locked = extra;
4012 rb->mmap_user = get_current_user();
43a21ea8 4013
ac9721f3 4014 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4015 vma->vm_mm->pinned_vm += extra;
4016
9bb5d40c 4017 ring_buffer_attach(event, rb);
26cb63ad 4018 rcu_assign_pointer(event->rb, rb);
ac9721f3 4019
9a0f05cb
PZ
4020 perf_event_update_userpage(event);
4021
ebb3c4c4 4022unlock:
ac9721f3
PZ
4023 if (!ret)
4024 atomic_inc(&event->mmap_count);
cdd6c482 4025 mutex_unlock(&event->mmap_mutex);
37d81828 4026
9bb5d40c
PZ
4027 /*
4028 * Since pinned accounting is per vm we cannot allow fork() to copy our
4029 * vma.
4030 */
26cb63ad 4031 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4032 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4033
4034 return ret;
37d81828
PM
4035}
4036
3c446b3d
PZ
4037static int perf_fasync(int fd, struct file *filp, int on)
4038{
496ad9aa 4039 struct inode *inode = file_inode(filp);
cdd6c482 4040 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4041 int retval;
4042
4043 mutex_lock(&inode->i_mutex);
cdd6c482 4044 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4045 mutex_unlock(&inode->i_mutex);
4046
4047 if (retval < 0)
4048 return retval;
4049
4050 return 0;
4051}
4052
0793a61d 4053static const struct file_operations perf_fops = {
3326c1ce 4054 .llseek = no_llseek,
0793a61d
TG
4055 .release = perf_release,
4056 .read = perf_read,
4057 .poll = perf_poll,
d859e29f
PM
4058 .unlocked_ioctl = perf_ioctl,
4059 .compat_ioctl = perf_ioctl,
37d81828 4060 .mmap = perf_mmap,
3c446b3d 4061 .fasync = perf_fasync,
0793a61d
TG
4062};
4063
925d519a 4064/*
cdd6c482 4065 * Perf event wakeup
925d519a
PZ
4066 *
4067 * If there's data, ensure we set the poll() state and publish everything
4068 * to user-space before waking everybody up.
4069 */
4070
cdd6c482 4071void perf_event_wakeup(struct perf_event *event)
925d519a 4072{
10c6db11 4073 ring_buffer_wakeup(event);
4c9e2542 4074
cdd6c482
IM
4075 if (event->pending_kill) {
4076 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4077 event->pending_kill = 0;
4c9e2542 4078 }
925d519a
PZ
4079}
4080
e360adbe 4081static void perf_pending_event(struct irq_work *entry)
79f14641 4082{
cdd6c482
IM
4083 struct perf_event *event = container_of(entry,
4084 struct perf_event, pending);
79f14641 4085
cdd6c482
IM
4086 if (event->pending_disable) {
4087 event->pending_disable = 0;
4088 __perf_event_disable(event);
79f14641
PZ
4089 }
4090
cdd6c482
IM
4091 if (event->pending_wakeup) {
4092 event->pending_wakeup = 0;
4093 perf_event_wakeup(event);
79f14641
PZ
4094 }
4095}
4096
39447b38
ZY
4097/*
4098 * We assume there is only KVM supporting the callbacks.
4099 * Later on, we might change it to a list if there is
4100 * another virtualization implementation supporting the callbacks.
4101 */
4102struct perf_guest_info_callbacks *perf_guest_cbs;
4103
4104int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4105{
4106 perf_guest_cbs = cbs;
4107 return 0;
4108}
4109EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4110
4111int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4112{
4113 perf_guest_cbs = NULL;
4114 return 0;
4115}
4116EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4117
4018994f
JO
4118static void
4119perf_output_sample_regs(struct perf_output_handle *handle,
4120 struct pt_regs *regs, u64 mask)
4121{
4122 int bit;
4123
4124 for_each_set_bit(bit, (const unsigned long *) &mask,
4125 sizeof(mask) * BITS_PER_BYTE) {
4126 u64 val;
4127
4128 val = perf_reg_value(regs, bit);
4129 perf_output_put(handle, val);
4130 }
4131}
4132
4133static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4134 struct pt_regs *regs)
4135{
4136 if (!user_mode(regs)) {
4137 if (current->mm)
4138 regs = task_pt_regs(current);
4139 else
4140 regs = NULL;
4141 }
4142
4143 if (regs) {
4144 regs_user->regs = regs;
4145 regs_user->abi = perf_reg_abi(current);
4146 }
4147}
4148
c5ebcedb
JO
4149/*
4150 * Get remaining task size from user stack pointer.
4151 *
4152 * It'd be better to take stack vma map and limit this more
4153 * precisly, but there's no way to get it safely under interrupt,
4154 * so using TASK_SIZE as limit.
4155 */
4156static u64 perf_ustack_task_size(struct pt_regs *regs)
4157{
4158 unsigned long addr = perf_user_stack_pointer(regs);
4159
4160 if (!addr || addr >= TASK_SIZE)
4161 return 0;
4162
4163 return TASK_SIZE - addr;
4164}
4165
4166static u16
4167perf_sample_ustack_size(u16 stack_size, u16 header_size,
4168 struct pt_regs *regs)
4169{
4170 u64 task_size;
4171
4172 /* No regs, no stack pointer, no dump. */
4173 if (!regs)
4174 return 0;
4175
4176 /*
4177 * Check if we fit in with the requested stack size into the:
4178 * - TASK_SIZE
4179 * If we don't, we limit the size to the TASK_SIZE.
4180 *
4181 * - remaining sample size
4182 * If we don't, we customize the stack size to
4183 * fit in to the remaining sample size.
4184 */
4185
4186 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4187 stack_size = min(stack_size, (u16) task_size);
4188
4189 /* Current header size plus static size and dynamic size. */
4190 header_size += 2 * sizeof(u64);
4191
4192 /* Do we fit in with the current stack dump size? */
4193 if ((u16) (header_size + stack_size) < header_size) {
4194 /*
4195 * If we overflow the maximum size for the sample,
4196 * we customize the stack dump size to fit in.
4197 */
4198 stack_size = USHRT_MAX - header_size - sizeof(u64);
4199 stack_size = round_up(stack_size, sizeof(u64));
4200 }
4201
4202 return stack_size;
4203}
4204
4205static void
4206perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4207 struct pt_regs *regs)
4208{
4209 /* Case of a kernel thread, nothing to dump */
4210 if (!regs) {
4211 u64 size = 0;
4212 perf_output_put(handle, size);
4213 } else {
4214 unsigned long sp;
4215 unsigned int rem;
4216 u64 dyn_size;
4217
4218 /*
4219 * We dump:
4220 * static size
4221 * - the size requested by user or the best one we can fit
4222 * in to the sample max size
4223 * data
4224 * - user stack dump data
4225 * dynamic size
4226 * - the actual dumped size
4227 */
4228
4229 /* Static size. */
4230 perf_output_put(handle, dump_size);
4231
4232 /* Data. */
4233 sp = perf_user_stack_pointer(regs);
4234 rem = __output_copy_user(handle, (void *) sp, dump_size);
4235 dyn_size = dump_size - rem;
4236
4237 perf_output_skip(handle, rem);
4238
4239 /* Dynamic size. */
4240 perf_output_put(handle, dyn_size);
4241 }
4242}
4243
c980d109
ACM
4244static void __perf_event_header__init_id(struct perf_event_header *header,
4245 struct perf_sample_data *data,
4246 struct perf_event *event)
6844c09d
ACM
4247{
4248 u64 sample_type = event->attr.sample_type;
4249
4250 data->type = sample_type;
4251 header->size += event->id_header_size;
4252
4253 if (sample_type & PERF_SAMPLE_TID) {
4254 /* namespace issues */
4255 data->tid_entry.pid = perf_event_pid(event, current);
4256 data->tid_entry.tid = perf_event_tid(event, current);
4257 }
4258
4259 if (sample_type & PERF_SAMPLE_TIME)
4260 data->time = perf_clock();
4261
4262 if (sample_type & PERF_SAMPLE_ID)
4263 data->id = primary_event_id(event);
4264
4265 if (sample_type & PERF_SAMPLE_STREAM_ID)
4266 data->stream_id = event->id;
4267
4268 if (sample_type & PERF_SAMPLE_CPU) {
4269 data->cpu_entry.cpu = raw_smp_processor_id();
4270 data->cpu_entry.reserved = 0;
4271 }
4272}
4273
76369139
FW
4274void perf_event_header__init_id(struct perf_event_header *header,
4275 struct perf_sample_data *data,
4276 struct perf_event *event)
c980d109
ACM
4277{
4278 if (event->attr.sample_id_all)
4279 __perf_event_header__init_id(header, data, event);
4280}
4281
4282static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4283 struct perf_sample_data *data)
4284{
4285 u64 sample_type = data->type;
4286
4287 if (sample_type & PERF_SAMPLE_TID)
4288 perf_output_put(handle, data->tid_entry);
4289
4290 if (sample_type & PERF_SAMPLE_TIME)
4291 perf_output_put(handle, data->time);
4292
4293 if (sample_type & PERF_SAMPLE_ID)
4294 perf_output_put(handle, data->id);
4295
4296 if (sample_type & PERF_SAMPLE_STREAM_ID)
4297 perf_output_put(handle, data->stream_id);
4298
4299 if (sample_type & PERF_SAMPLE_CPU)
4300 perf_output_put(handle, data->cpu_entry);
4301}
4302
76369139
FW
4303void perf_event__output_id_sample(struct perf_event *event,
4304 struct perf_output_handle *handle,
4305 struct perf_sample_data *sample)
c980d109
ACM
4306{
4307 if (event->attr.sample_id_all)
4308 __perf_event__output_id_sample(handle, sample);
4309}
4310
3dab77fb 4311static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4312 struct perf_event *event,
4313 u64 enabled, u64 running)
3dab77fb 4314{
cdd6c482 4315 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4316 u64 values[4];
4317 int n = 0;
4318
b5e58793 4319 values[n++] = perf_event_count(event);
3dab77fb 4320 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4321 values[n++] = enabled +
cdd6c482 4322 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4323 }
4324 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4325 values[n++] = running +
cdd6c482 4326 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4327 }
4328 if (read_format & PERF_FORMAT_ID)
cdd6c482 4329 values[n++] = primary_event_id(event);
3dab77fb 4330
76369139 4331 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4332}
4333
4334/*
cdd6c482 4335 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4336 */
4337static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4338 struct perf_event *event,
4339 u64 enabled, u64 running)
3dab77fb 4340{
cdd6c482
IM
4341 struct perf_event *leader = event->group_leader, *sub;
4342 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4343 u64 values[5];
4344 int n = 0;
4345
4346 values[n++] = 1 + leader->nr_siblings;
4347
4348 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4349 values[n++] = enabled;
3dab77fb
PZ
4350
4351 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4352 values[n++] = running;
3dab77fb 4353
cdd6c482 4354 if (leader != event)
3dab77fb
PZ
4355 leader->pmu->read(leader);
4356
b5e58793 4357 values[n++] = perf_event_count(leader);
3dab77fb 4358 if (read_format & PERF_FORMAT_ID)
cdd6c482 4359 values[n++] = primary_event_id(leader);
3dab77fb 4360
76369139 4361 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4362
65abc865 4363 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4364 n = 0;
4365
cdd6c482 4366 if (sub != event)
3dab77fb
PZ
4367 sub->pmu->read(sub);
4368
b5e58793 4369 values[n++] = perf_event_count(sub);
3dab77fb 4370 if (read_format & PERF_FORMAT_ID)
cdd6c482 4371 values[n++] = primary_event_id(sub);
3dab77fb 4372
76369139 4373 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4374 }
4375}
4376
eed01528
SE
4377#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4378 PERF_FORMAT_TOTAL_TIME_RUNNING)
4379
3dab77fb 4380static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4381 struct perf_event *event)
3dab77fb 4382{
e3f3541c 4383 u64 enabled = 0, running = 0, now;
eed01528
SE
4384 u64 read_format = event->attr.read_format;
4385
4386 /*
4387 * compute total_time_enabled, total_time_running
4388 * based on snapshot values taken when the event
4389 * was last scheduled in.
4390 *
4391 * we cannot simply called update_context_time()
4392 * because of locking issue as we are called in
4393 * NMI context
4394 */
c4794295 4395 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4396 calc_timer_values(event, &now, &enabled, &running);
eed01528 4397
cdd6c482 4398 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4399 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4400 else
eed01528 4401 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4402}
4403
5622f295
MM
4404void perf_output_sample(struct perf_output_handle *handle,
4405 struct perf_event_header *header,
4406 struct perf_sample_data *data,
cdd6c482 4407 struct perf_event *event)
5622f295
MM
4408{
4409 u64 sample_type = data->type;
4410
4411 perf_output_put(handle, *header);
4412
4413 if (sample_type & PERF_SAMPLE_IP)
4414 perf_output_put(handle, data->ip);
4415
4416 if (sample_type & PERF_SAMPLE_TID)
4417 perf_output_put(handle, data->tid_entry);
4418
4419 if (sample_type & PERF_SAMPLE_TIME)
4420 perf_output_put(handle, data->time);
4421
4422 if (sample_type & PERF_SAMPLE_ADDR)
4423 perf_output_put(handle, data->addr);
4424
4425 if (sample_type & PERF_SAMPLE_ID)
4426 perf_output_put(handle, data->id);
4427
4428 if (sample_type & PERF_SAMPLE_STREAM_ID)
4429 perf_output_put(handle, data->stream_id);
4430
4431 if (sample_type & PERF_SAMPLE_CPU)
4432 perf_output_put(handle, data->cpu_entry);
4433
4434 if (sample_type & PERF_SAMPLE_PERIOD)
4435 perf_output_put(handle, data->period);
4436
4437 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4438 perf_output_read(handle, event);
5622f295
MM
4439
4440 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4441 if (data->callchain) {
4442 int size = 1;
4443
4444 if (data->callchain)
4445 size += data->callchain->nr;
4446
4447 size *= sizeof(u64);
4448
76369139 4449 __output_copy(handle, data->callchain, size);
5622f295
MM
4450 } else {
4451 u64 nr = 0;
4452 perf_output_put(handle, nr);
4453 }
4454 }
4455
4456 if (sample_type & PERF_SAMPLE_RAW) {
4457 if (data->raw) {
4458 perf_output_put(handle, data->raw->size);
76369139
FW
4459 __output_copy(handle, data->raw->data,
4460 data->raw->size);
5622f295
MM
4461 } else {
4462 struct {
4463 u32 size;
4464 u32 data;
4465 } raw = {
4466 .size = sizeof(u32),
4467 .data = 0,
4468 };
4469 perf_output_put(handle, raw);
4470 }
4471 }
a7ac67ea 4472
bce38cd5
SE
4473 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4474 if (data->br_stack) {
4475 size_t size;
4476
4477 size = data->br_stack->nr
4478 * sizeof(struct perf_branch_entry);
4479
4480 perf_output_put(handle, data->br_stack->nr);
4481 perf_output_copy(handle, data->br_stack->entries, size);
4482 } else {
4483 /*
4484 * we always store at least the value of nr
4485 */
4486 u64 nr = 0;
4487 perf_output_put(handle, nr);
4488 }
4489 }
4018994f
JO
4490
4491 if (sample_type & PERF_SAMPLE_REGS_USER) {
4492 u64 abi = data->regs_user.abi;
4493
4494 /*
4495 * If there are no regs to dump, notice it through
4496 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4497 */
4498 perf_output_put(handle, abi);
4499
4500 if (abi) {
4501 u64 mask = event->attr.sample_regs_user;
4502 perf_output_sample_regs(handle,
4503 data->regs_user.regs,
4504 mask);
4505 }
4506 }
c5ebcedb 4507
a5cdd40c 4508 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4509 perf_output_sample_ustack(handle,
4510 data->stack_user_size,
4511 data->regs_user.regs);
a5cdd40c 4512 }
c3feedf2
AK
4513
4514 if (sample_type & PERF_SAMPLE_WEIGHT)
4515 perf_output_put(handle, data->weight);
d6be9ad6
SE
4516
4517 if (sample_type & PERF_SAMPLE_DATA_SRC)
4518 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4519
4520 if (!event->attr.watermark) {
4521 int wakeup_events = event->attr.wakeup_events;
4522
4523 if (wakeup_events) {
4524 struct ring_buffer *rb = handle->rb;
4525 int events = local_inc_return(&rb->events);
4526
4527 if (events >= wakeup_events) {
4528 local_sub(wakeup_events, &rb->events);
4529 local_inc(&rb->wakeup);
4530 }
4531 }
4532 }
5622f295
MM
4533}
4534
4535void perf_prepare_sample(struct perf_event_header *header,
4536 struct perf_sample_data *data,
cdd6c482 4537 struct perf_event *event,
5622f295 4538 struct pt_regs *regs)
7b732a75 4539{
cdd6c482 4540 u64 sample_type = event->attr.sample_type;
7b732a75 4541
cdd6c482 4542 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4543 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4544
4545 header->misc = 0;
4546 header->misc |= perf_misc_flags(regs);
6fab0192 4547
c980d109 4548 __perf_event_header__init_id(header, data, event);
6844c09d 4549
c320c7b7 4550 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4551 data->ip = perf_instruction_pointer(regs);
4552
b23f3325 4553 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4554 int size = 1;
394ee076 4555
e6dab5ff 4556 data->callchain = perf_callchain(event, regs);
5622f295
MM
4557
4558 if (data->callchain)
4559 size += data->callchain->nr;
4560
4561 header->size += size * sizeof(u64);
394ee076
PZ
4562 }
4563
3a43ce68 4564 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4565 int size = sizeof(u32);
4566
4567 if (data->raw)
4568 size += data->raw->size;
4569 else
4570 size += sizeof(u32);
4571
4572 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4573 header->size += size;
7f453c24 4574 }
bce38cd5
SE
4575
4576 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4577 int size = sizeof(u64); /* nr */
4578 if (data->br_stack) {
4579 size += data->br_stack->nr
4580 * sizeof(struct perf_branch_entry);
4581 }
4582 header->size += size;
4583 }
4018994f
JO
4584
4585 if (sample_type & PERF_SAMPLE_REGS_USER) {
4586 /* regs dump ABI info */
4587 int size = sizeof(u64);
4588
4589 perf_sample_regs_user(&data->regs_user, regs);
4590
4591 if (data->regs_user.regs) {
4592 u64 mask = event->attr.sample_regs_user;
4593 size += hweight64(mask) * sizeof(u64);
4594 }
4595
4596 header->size += size;
4597 }
c5ebcedb
JO
4598
4599 if (sample_type & PERF_SAMPLE_STACK_USER) {
4600 /*
4601 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4602 * processed as the last one or have additional check added
4603 * in case new sample type is added, because we could eat
4604 * up the rest of the sample size.
4605 */
4606 struct perf_regs_user *uregs = &data->regs_user;
4607 u16 stack_size = event->attr.sample_stack_user;
4608 u16 size = sizeof(u64);
4609
4610 if (!uregs->abi)
4611 perf_sample_regs_user(uregs, regs);
4612
4613 stack_size = perf_sample_ustack_size(stack_size, header->size,
4614 uregs->regs);
4615
4616 /*
4617 * If there is something to dump, add space for the dump
4618 * itself and for the field that tells the dynamic size,
4619 * which is how many have been actually dumped.
4620 */
4621 if (stack_size)
4622 size += sizeof(u64) + stack_size;
4623
4624 data->stack_user_size = stack_size;
4625 header->size += size;
4626 }
5622f295 4627}
7f453c24 4628
a8b0ca17 4629static void perf_event_output(struct perf_event *event,
5622f295
MM
4630 struct perf_sample_data *data,
4631 struct pt_regs *regs)
4632{
4633 struct perf_output_handle handle;
4634 struct perf_event_header header;
689802b2 4635
927c7a9e
FW
4636 /* protect the callchain buffers */
4637 rcu_read_lock();
4638
cdd6c482 4639 perf_prepare_sample(&header, data, event, regs);
5c148194 4640
a7ac67ea 4641 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4642 goto exit;
0322cd6e 4643
cdd6c482 4644 perf_output_sample(&handle, &header, data, event);
f413cdb8 4645
8a057d84 4646 perf_output_end(&handle);
927c7a9e
FW
4647
4648exit:
4649 rcu_read_unlock();
0322cd6e
PZ
4650}
4651
38b200d6 4652/*
cdd6c482 4653 * read event_id
38b200d6
PZ
4654 */
4655
4656struct perf_read_event {
4657 struct perf_event_header header;
4658
4659 u32 pid;
4660 u32 tid;
38b200d6
PZ
4661};
4662
4663static void
cdd6c482 4664perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4665 struct task_struct *task)
4666{
4667 struct perf_output_handle handle;
c980d109 4668 struct perf_sample_data sample;
dfc65094 4669 struct perf_read_event read_event = {
38b200d6 4670 .header = {
cdd6c482 4671 .type = PERF_RECORD_READ,
38b200d6 4672 .misc = 0,
c320c7b7 4673 .size = sizeof(read_event) + event->read_size,
38b200d6 4674 },
cdd6c482
IM
4675 .pid = perf_event_pid(event, task),
4676 .tid = perf_event_tid(event, task),
38b200d6 4677 };
3dab77fb 4678 int ret;
38b200d6 4679
c980d109 4680 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4681 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4682 if (ret)
4683 return;
4684
dfc65094 4685 perf_output_put(&handle, read_event);
cdd6c482 4686 perf_output_read(&handle, event);
c980d109 4687 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4688
38b200d6
PZ
4689 perf_output_end(&handle);
4690}
4691
52d857a8
JO
4692typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4693
4694static void
4695perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4696 perf_event_aux_output_cb output,
4697 void *data)
4698{
4699 struct perf_event *event;
4700
4701 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4702 if (event->state < PERF_EVENT_STATE_INACTIVE)
4703 continue;
4704 if (!event_filter_match(event))
4705 continue;
67516844 4706 output(event, data);
52d857a8
JO
4707 }
4708}
4709
4710static void
67516844 4711perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4712 struct perf_event_context *task_ctx)
4713{
4714 struct perf_cpu_context *cpuctx;
4715 struct perf_event_context *ctx;
4716 struct pmu *pmu;
4717 int ctxn;
4718
4719 rcu_read_lock();
4720 list_for_each_entry_rcu(pmu, &pmus, entry) {
4721 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4722 if (cpuctx->unique_pmu != pmu)
4723 goto next;
67516844 4724 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4725 if (task_ctx)
4726 goto next;
4727 ctxn = pmu->task_ctx_nr;
4728 if (ctxn < 0)
4729 goto next;
4730 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4731 if (ctx)
67516844 4732 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4733next:
4734 put_cpu_ptr(pmu->pmu_cpu_context);
4735 }
4736
4737 if (task_ctx) {
4738 preempt_disable();
67516844 4739 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4740 preempt_enable();
4741 }
4742 rcu_read_unlock();
4743}
4744
60313ebe 4745/*
9f498cc5
PZ
4746 * task tracking -- fork/exit
4747 *
3af9e859 4748 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4749 */
4750
9f498cc5 4751struct perf_task_event {
3a80b4a3 4752 struct task_struct *task;
cdd6c482 4753 struct perf_event_context *task_ctx;
60313ebe
PZ
4754
4755 struct {
4756 struct perf_event_header header;
4757
4758 u32 pid;
4759 u32 ppid;
9f498cc5
PZ
4760 u32 tid;
4761 u32 ptid;
393b2ad8 4762 u64 time;
cdd6c482 4763 } event_id;
60313ebe
PZ
4764};
4765
67516844
JO
4766static int perf_event_task_match(struct perf_event *event)
4767{
4768 return event->attr.comm || event->attr.mmap ||
4769 event->attr.mmap_data || event->attr.task;
4770}
4771
cdd6c482 4772static void perf_event_task_output(struct perf_event *event,
52d857a8 4773 void *data)
60313ebe 4774{
52d857a8 4775 struct perf_task_event *task_event = data;
60313ebe 4776 struct perf_output_handle handle;
c980d109 4777 struct perf_sample_data sample;
9f498cc5 4778 struct task_struct *task = task_event->task;
c980d109 4779 int ret, size = task_event->event_id.header.size;
8bb39f9a 4780
67516844
JO
4781 if (!perf_event_task_match(event))
4782 return;
4783
c980d109 4784 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4785
c980d109 4786 ret = perf_output_begin(&handle, event,
a7ac67ea 4787 task_event->event_id.header.size);
ef60777c 4788 if (ret)
c980d109 4789 goto out;
60313ebe 4790
cdd6c482
IM
4791 task_event->event_id.pid = perf_event_pid(event, task);
4792 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4793
cdd6c482
IM
4794 task_event->event_id.tid = perf_event_tid(event, task);
4795 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4796
cdd6c482 4797 perf_output_put(&handle, task_event->event_id);
393b2ad8 4798
c980d109
ACM
4799 perf_event__output_id_sample(event, &handle, &sample);
4800
60313ebe 4801 perf_output_end(&handle);
c980d109
ACM
4802out:
4803 task_event->event_id.header.size = size;
60313ebe
PZ
4804}
4805
cdd6c482
IM
4806static void perf_event_task(struct task_struct *task,
4807 struct perf_event_context *task_ctx,
3a80b4a3 4808 int new)
60313ebe 4809{
9f498cc5 4810 struct perf_task_event task_event;
60313ebe 4811
cdd6c482
IM
4812 if (!atomic_read(&nr_comm_events) &&
4813 !atomic_read(&nr_mmap_events) &&
4814 !atomic_read(&nr_task_events))
60313ebe
PZ
4815 return;
4816
9f498cc5 4817 task_event = (struct perf_task_event){
3a80b4a3
PZ
4818 .task = task,
4819 .task_ctx = task_ctx,
cdd6c482 4820 .event_id = {
60313ebe 4821 .header = {
cdd6c482 4822 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4823 .misc = 0,
cdd6c482 4824 .size = sizeof(task_event.event_id),
60313ebe 4825 },
573402db
PZ
4826 /* .pid */
4827 /* .ppid */
9f498cc5
PZ
4828 /* .tid */
4829 /* .ptid */
6f93d0a7 4830 .time = perf_clock(),
60313ebe
PZ
4831 },
4832 };
4833
67516844 4834 perf_event_aux(perf_event_task_output,
52d857a8
JO
4835 &task_event,
4836 task_ctx);
9f498cc5
PZ
4837}
4838
cdd6c482 4839void perf_event_fork(struct task_struct *task)
9f498cc5 4840{
cdd6c482 4841 perf_event_task(task, NULL, 1);
60313ebe
PZ
4842}
4843
8d1b2d93
PZ
4844/*
4845 * comm tracking
4846 */
4847
4848struct perf_comm_event {
22a4f650
IM
4849 struct task_struct *task;
4850 char *comm;
8d1b2d93
PZ
4851 int comm_size;
4852
4853 struct {
4854 struct perf_event_header header;
4855
4856 u32 pid;
4857 u32 tid;
cdd6c482 4858 } event_id;
8d1b2d93
PZ
4859};
4860
67516844
JO
4861static int perf_event_comm_match(struct perf_event *event)
4862{
4863 return event->attr.comm;
4864}
4865
cdd6c482 4866static void perf_event_comm_output(struct perf_event *event,
52d857a8 4867 void *data)
8d1b2d93 4868{
52d857a8 4869 struct perf_comm_event *comm_event = data;
8d1b2d93 4870 struct perf_output_handle handle;
c980d109 4871 struct perf_sample_data sample;
cdd6c482 4872 int size = comm_event->event_id.header.size;
c980d109
ACM
4873 int ret;
4874
67516844
JO
4875 if (!perf_event_comm_match(event))
4876 return;
4877
c980d109
ACM
4878 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4879 ret = perf_output_begin(&handle, event,
a7ac67ea 4880 comm_event->event_id.header.size);
8d1b2d93
PZ
4881
4882 if (ret)
c980d109 4883 goto out;
8d1b2d93 4884
cdd6c482
IM
4885 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4886 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4887
cdd6c482 4888 perf_output_put(&handle, comm_event->event_id);
76369139 4889 __output_copy(&handle, comm_event->comm,
8d1b2d93 4890 comm_event->comm_size);
c980d109
ACM
4891
4892 perf_event__output_id_sample(event, &handle, &sample);
4893
8d1b2d93 4894 perf_output_end(&handle);
c980d109
ACM
4895out:
4896 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4897}
4898
cdd6c482 4899static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4900{
413ee3b4 4901 char comm[TASK_COMM_LEN];
8d1b2d93 4902 unsigned int size;
8d1b2d93 4903
413ee3b4 4904 memset(comm, 0, sizeof(comm));
96b02d78 4905 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4906 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4907
4908 comm_event->comm = comm;
4909 comm_event->comm_size = size;
4910
cdd6c482 4911 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4912
67516844 4913 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4914 comm_event,
4915 NULL);
8d1b2d93
PZ
4916}
4917
cdd6c482 4918void perf_event_comm(struct task_struct *task)
8d1b2d93 4919{
9ee318a7 4920 struct perf_comm_event comm_event;
8dc85d54
PZ
4921 struct perf_event_context *ctx;
4922 int ctxn;
9ee318a7 4923
c79aa0d9 4924 rcu_read_lock();
8dc85d54
PZ
4925 for_each_task_context_nr(ctxn) {
4926 ctx = task->perf_event_ctxp[ctxn];
4927 if (!ctx)
4928 continue;
9ee318a7 4929
8dc85d54
PZ
4930 perf_event_enable_on_exec(ctx);
4931 }
c79aa0d9 4932 rcu_read_unlock();
9ee318a7 4933
cdd6c482 4934 if (!atomic_read(&nr_comm_events))
9ee318a7 4935 return;
a63eaf34 4936
9ee318a7 4937 comm_event = (struct perf_comm_event){
8d1b2d93 4938 .task = task,
573402db
PZ
4939 /* .comm */
4940 /* .comm_size */
cdd6c482 4941 .event_id = {
573402db 4942 .header = {
cdd6c482 4943 .type = PERF_RECORD_COMM,
573402db
PZ
4944 .misc = 0,
4945 /* .size */
4946 },
4947 /* .pid */
4948 /* .tid */
8d1b2d93
PZ
4949 },
4950 };
4951
cdd6c482 4952 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4953}
4954
0a4a9391
PZ
4955/*
4956 * mmap tracking
4957 */
4958
4959struct perf_mmap_event {
089dd79d
PZ
4960 struct vm_area_struct *vma;
4961
4962 const char *file_name;
4963 int file_size;
0a4a9391
PZ
4964
4965 struct {
4966 struct perf_event_header header;
4967
4968 u32 pid;
4969 u32 tid;
4970 u64 start;
4971 u64 len;
4972 u64 pgoff;
cdd6c482 4973 } event_id;
0a4a9391
PZ
4974};
4975
67516844
JO
4976static int perf_event_mmap_match(struct perf_event *event,
4977 void *data)
4978{
4979 struct perf_mmap_event *mmap_event = data;
4980 struct vm_area_struct *vma = mmap_event->vma;
4981 int executable = vma->vm_flags & VM_EXEC;
4982
4983 return (!executable && event->attr.mmap_data) ||
4984 (executable && event->attr.mmap);
4985}
4986
cdd6c482 4987static void perf_event_mmap_output(struct perf_event *event,
52d857a8 4988 void *data)
0a4a9391 4989{
52d857a8 4990 struct perf_mmap_event *mmap_event = data;
0a4a9391 4991 struct perf_output_handle handle;
c980d109 4992 struct perf_sample_data sample;
cdd6c482 4993 int size = mmap_event->event_id.header.size;
c980d109 4994 int ret;
0a4a9391 4995
67516844
JO
4996 if (!perf_event_mmap_match(event, data))
4997 return;
4998
c980d109
ACM
4999 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5000 ret = perf_output_begin(&handle, event,
a7ac67ea 5001 mmap_event->event_id.header.size);
0a4a9391 5002 if (ret)
c980d109 5003 goto out;
0a4a9391 5004
cdd6c482
IM
5005 mmap_event->event_id.pid = perf_event_pid(event, current);
5006 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5007
cdd6c482 5008 perf_output_put(&handle, mmap_event->event_id);
76369139 5009 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5010 mmap_event->file_size);
c980d109
ACM
5011
5012 perf_event__output_id_sample(event, &handle, &sample);
5013
78d613eb 5014 perf_output_end(&handle);
c980d109
ACM
5015out:
5016 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5017}
5018
cdd6c482 5019static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5020{
089dd79d
PZ
5021 struct vm_area_struct *vma = mmap_event->vma;
5022 struct file *file = vma->vm_file;
0a4a9391
PZ
5023 unsigned int size;
5024 char tmp[16];
5025 char *buf = NULL;
089dd79d 5026 const char *name;
0a4a9391 5027
413ee3b4
AB
5028 memset(tmp, 0, sizeof(tmp));
5029
0a4a9391 5030 if (file) {
413ee3b4 5031 /*
76369139 5032 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5033 * need to add enough zero bytes after the string to handle
5034 * the 64bit alignment we do later.
5035 */
5036 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5037 if (!buf) {
5038 name = strncpy(tmp, "//enomem", sizeof(tmp));
5039 goto got_name;
5040 }
d3d21c41 5041 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5042 if (IS_ERR(name)) {
5043 name = strncpy(tmp, "//toolong", sizeof(tmp));
5044 goto got_name;
5045 }
5046 } else {
413ee3b4
AB
5047 if (arch_vma_name(mmap_event->vma)) {
5048 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5049 sizeof(tmp) - 1);
5050 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5051 goto got_name;
413ee3b4 5052 }
089dd79d
PZ
5053
5054 if (!vma->vm_mm) {
5055 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5056 goto got_name;
3af9e859
EM
5057 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5058 vma->vm_end >= vma->vm_mm->brk) {
5059 name = strncpy(tmp, "[heap]", sizeof(tmp));
5060 goto got_name;
5061 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5062 vma->vm_end >= vma->vm_mm->start_stack) {
5063 name = strncpy(tmp, "[stack]", sizeof(tmp));
5064 goto got_name;
089dd79d
PZ
5065 }
5066
0a4a9391
PZ
5067 name = strncpy(tmp, "//anon", sizeof(tmp));
5068 goto got_name;
5069 }
5070
5071got_name:
888fcee0 5072 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5073
5074 mmap_event->file_name = name;
5075 mmap_event->file_size = size;
5076
2fe85427
SE
5077 if (!(vma->vm_flags & VM_EXEC))
5078 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5079
cdd6c482 5080 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5081
67516844 5082 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5083 mmap_event,
5084 NULL);
665c2142 5085
0a4a9391
PZ
5086 kfree(buf);
5087}
5088
3af9e859 5089void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5090{
9ee318a7
PZ
5091 struct perf_mmap_event mmap_event;
5092
cdd6c482 5093 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5094 return;
5095
5096 mmap_event = (struct perf_mmap_event){
089dd79d 5097 .vma = vma,
573402db
PZ
5098 /* .file_name */
5099 /* .file_size */
cdd6c482 5100 .event_id = {
573402db 5101 .header = {
cdd6c482 5102 .type = PERF_RECORD_MMAP,
39447b38 5103 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5104 /* .size */
5105 },
5106 /* .pid */
5107 /* .tid */
089dd79d
PZ
5108 .start = vma->vm_start,
5109 .len = vma->vm_end - vma->vm_start,
3a0304e9 5110 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5111 },
5112 };
5113
cdd6c482 5114 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5115}
5116
a78ac325
PZ
5117/*
5118 * IRQ throttle logging
5119 */
5120
cdd6c482 5121static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5122{
5123 struct perf_output_handle handle;
c980d109 5124 struct perf_sample_data sample;
a78ac325
PZ
5125 int ret;
5126
5127 struct {
5128 struct perf_event_header header;
5129 u64 time;
cca3f454 5130 u64 id;
7f453c24 5131 u64 stream_id;
a78ac325
PZ
5132 } throttle_event = {
5133 .header = {
cdd6c482 5134 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5135 .misc = 0,
5136 .size = sizeof(throttle_event),
5137 },
def0a9b2 5138 .time = perf_clock(),
cdd6c482
IM
5139 .id = primary_event_id(event),
5140 .stream_id = event->id,
a78ac325
PZ
5141 };
5142
966ee4d6 5143 if (enable)
cdd6c482 5144 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5145
c980d109
ACM
5146 perf_event_header__init_id(&throttle_event.header, &sample, event);
5147
5148 ret = perf_output_begin(&handle, event,
a7ac67ea 5149 throttle_event.header.size);
a78ac325
PZ
5150 if (ret)
5151 return;
5152
5153 perf_output_put(&handle, throttle_event);
c980d109 5154 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5155 perf_output_end(&handle);
5156}
5157
f6c7d5fe 5158/*
cdd6c482 5159 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5160 */
5161
a8b0ca17 5162static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5163 int throttle, struct perf_sample_data *data,
5164 struct pt_regs *regs)
f6c7d5fe 5165{
cdd6c482
IM
5166 int events = atomic_read(&event->event_limit);
5167 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5168 u64 seq;
79f14641
PZ
5169 int ret = 0;
5170
96398826
PZ
5171 /*
5172 * Non-sampling counters might still use the PMI to fold short
5173 * hardware counters, ignore those.
5174 */
5175 if (unlikely(!is_sampling_event(event)))
5176 return 0;
5177
e050e3f0
SE
5178 seq = __this_cpu_read(perf_throttled_seq);
5179 if (seq != hwc->interrupts_seq) {
5180 hwc->interrupts_seq = seq;
5181 hwc->interrupts = 1;
5182 } else {
5183 hwc->interrupts++;
5184 if (unlikely(throttle
5185 && hwc->interrupts >= max_samples_per_tick)) {
5186 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5187 hwc->interrupts = MAX_INTERRUPTS;
5188 perf_log_throttle(event, 0);
a78ac325
PZ
5189 ret = 1;
5190 }
e050e3f0 5191 }
60db5e09 5192
cdd6c482 5193 if (event->attr.freq) {
def0a9b2 5194 u64 now = perf_clock();
abd50713 5195 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5196
abd50713 5197 hwc->freq_time_stamp = now;
bd2b5b12 5198
abd50713 5199 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5200 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5201 }
5202
2023b359
PZ
5203 /*
5204 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5205 * events
2023b359
PZ
5206 */
5207
cdd6c482
IM
5208 event->pending_kill = POLL_IN;
5209 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5210 ret = 1;
cdd6c482 5211 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5212 event->pending_disable = 1;
5213 irq_work_queue(&event->pending);
79f14641
PZ
5214 }
5215
453f19ee 5216 if (event->overflow_handler)
a8b0ca17 5217 event->overflow_handler(event, data, regs);
453f19ee 5218 else
a8b0ca17 5219 perf_event_output(event, data, regs);
453f19ee 5220
f506b3dc 5221 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5222 event->pending_wakeup = 1;
5223 irq_work_queue(&event->pending);
f506b3dc
PZ
5224 }
5225
79f14641 5226 return ret;
f6c7d5fe
PZ
5227}
5228
a8b0ca17 5229int perf_event_overflow(struct perf_event *event,
5622f295
MM
5230 struct perf_sample_data *data,
5231 struct pt_regs *regs)
850bc73f 5232{
a8b0ca17 5233 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5234}
5235
15dbf27c 5236/*
cdd6c482 5237 * Generic software event infrastructure
15dbf27c
PZ
5238 */
5239
b28ab83c
PZ
5240struct swevent_htable {
5241 struct swevent_hlist *swevent_hlist;
5242 struct mutex hlist_mutex;
5243 int hlist_refcount;
5244
5245 /* Recursion avoidance in each contexts */
5246 int recursion[PERF_NR_CONTEXTS];
5247};
5248
5249static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5250
7b4b6658 5251/*
cdd6c482
IM
5252 * We directly increment event->count and keep a second value in
5253 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5254 * is kept in the range [-sample_period, 0] so that we can use the
5255 * sign as trigger.
5256 */
5257
ab573844 5258u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5259{
cdd6c482 5260 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5261 u64 period = hwc->last_period;
5262 u64 nr, offset;
5263 s64 old, val;
5264
5265 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5266
5267again:
e7850595 5268 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5269 if (val < 0)
5270 return 0;
15dbf27c 5271
7b4b6658
PZ
5272 nr = div64_u64(period + val, period);
5273 offset = nr * period;
5274 val -= offset;
e7850595 5275 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5276 goto again;
15dbf27c 5277
7b4b6658 5278 return nr;
15dbf27c
PZ
5279}
5280
0cff784a 5281static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5282 struct perf_sample_data *data,
5622f295 5283 struct pt_regs *regs)
15dbf27c 5284{
cdd6c482 5285 struct hw_perf_event *hwc = &event->hw;
850bc73f 5286 int throttle = 0;
15dbf27c 5287
0cff784a
PZ
5288 if (!overflow)
5289 overflow = perf_swevent_set_period(event);
15dbf27c 5290
7b4b6658
PZ
5291 if (hwc->interrupts == MAX_INTERRUPTS)
5292 return;
15dbf27c 5293
7b4b6658 5294 for (; overflow; overflow--) {
a8b0ca17 5295 if (__perf_event_overflow(event, throttle,
5622f295 5296 data, regs)) {
7b4b6658
PZ
5297 /*
5298 * We inhibit the overflow from happening when
5299 * hwc->interrupts == MAX_INTERRUPTS.
5300 */
5301 break;
5302 }
cf450a73 5303 throttle = 1;
7b4b6658 5304 }
15dbf27c
PZ
5305}
5306
a4eaf7f1 5307static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5308 struct perf_sample_data *data,
5622f295 5309 struct pt_regs *regs)
7b4b6658 5310{
cdd6c482 5311 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5312
e7850595 5313 local64_add(nr, &event->count);
d6d020e9 5314
0cff784a
PZ
5315 if (!regs)
5316 return;
5317
6c7e550f 5318 if (!is_sampling_event(event))
7b4b6658 5319 return;
d6d020e9 5320
5d81e5cf
AV
5321 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5322 data->period = nr;
5323 return perf_swevent_overflow(event, 1, data, regs);
5324 } else
5325 data->period = event->hw.last_period;
5326
0cff784a 5327 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5328 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5329
e7850595 5330 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5331 return;
df1a132b 5332
a8b0ca17 5333 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5334}
5335
f5ffe02e
FW
5336static int perf_exclude_event(struct perf_event *event,
5337 struct pt_regs *regs)
5338{
a4eaf7f1 5339 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5340 return 1;
a4eaf7f1 5341
f5ffe02e
FW
5342 if (regs) {
5343 if (event->attr.exclude_user && user_mode(regs))
5344 return 1;
5345
5346 if (event->attr.exclude_kernel && !user_mode(regs))
5347 return 1;
5348 }
5349
5350 return 0;
5351}
5352
cdd6c482 5353static int perf_swevent_match(struct perf_event *event,
1c432d89 5354 enum perf_type_id type,
6fb2915d
LZ
5355 u32 event_id,
5356 struct perf_sample_data *data,
5357 struct pt_regs *regs)
15dbf27c 5358{
cdd6c482 5359 if (event->attr.type != type)
a21ca2ca 5360 return 0;
f5ffe02e 5361
cdd6c482 5362 if (event->attr.config != event_id)
15dbf27c
PZ
5363 return 0;
5364
f5ffe02e
FW
5365 if (perf_exclude_event(event, regs))
5366 return 0;
15dbf27c
PZ
5367
5368 return 1;
5369}
5370
76e1d904
FW
5371static inline u64 swevent_hash(u64 type, u32 event_id)
5372{
5373 u64 val = event_id | (type << 32);
5374
5375 return hash_64(val, SWEVENT_HLIST_BITS);
5376}
5377
49f135ed
FW
5378static inline struct hlist_head *
5379__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5380{
49f135ed
FW
5381 u64 hash = swevent_hash(type, event_id);
5382
5383 return &hlist->heads[hash];
5384}
76e1d904 5385
49f135ed
FW
5386/* For the read side: events when they trigger */
5387static inline struct hlist_head *
b28ab83c 5388find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5389{
5390 struct swevent_hlist *hlist;
76e1d904 5391
b28ab83c 5392 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5393 if (!hlist)
5394 return NULL;
5395
49f135ed
FW
5396 return __find_swevent_head(hlist, type, event_id);
5397}
5398
5399/* For the event head insertion and removal in the hlist */
5400static inline struct hlist_head *
b28ab83c 5401find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5402{
5403 struct swevent_hlist *hlist;
5404 u32 event_id = event->attr.config;
5405 u64 type = event->attr.type;
5406
5407 /*
5408 * Event scheduling is always serialized against hlist allocation
5409 * and release. Which makes the protected version suitable here.
5410 * The context lock guarantees that.
5411 */
b28ab83c 5412 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5413 lockdep_is_held(&event->ctx->lock));
5414 if (!hlist)
5415 return NULL;
5416
5417 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5418}
5419
5420static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5421 u64 nr,
76e1d904
FW
5422 struct perf_sample_data *data,
5423 struct pt_regs *regs)
15dbf27c 5424{
b28ab83c 5425 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5426 struct perf_event *event;
76e1d904 5427 struct hlist_head *head;
15dbf27c 5428
76e1d904 5429 rcu_read_lock();
b28ab83c 5430 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5431 if (!head)
5432 goto end;
5433
b67bfe0d 5434 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5435 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5436 perf_swevent_event(event, nr, data, regs);
15dbf27c 5437 }
76e1d904
FW
5438end:
5439 rcu_read_unlock();
15dbf27c
PZ
5440}
5441
4ed7c92d 5442int perf_swevent_get_recursion_context(void)
96f6d444 5443{
b28ab83c 5444 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5445
b28ab83c 5446 return get_recursion_context(swhash->recursion);
96f6d444 5447}
645e8cc0 5448EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5449
fa9f90be 5450inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5451{
b28ab83c 5452 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5453
b28ab83c 5454 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5455}
15dbf27c 5456
a8b0ca17 5457void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5458{
a4234bfc 5459 struct perf_sample_data data;
4ed7c92d
PZ
5460 int rctx;
5461
1c024eca 5462 preempt_disable_notrace();
4ed7c92d
PZ
5463 rctx = perf_swevent_get_recursion_context();
5464 if (rctx < 0)
5465 return;
a4234bfc 5466
fd0d000b 5467 perf_sample_data_init(&data, addr, 0);
92bf309a 5468
a8b0ca17 5469 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5470
5471 perf_swevent_put_recursion_context(rctx);
1c024eca 5472 preempt_enable_notrace();
b8e83514
PZ
5473}
5474
cdd6c482 5475static void perf_swevent_read(struct perf_event *event)
15dbf27c 5476{
15dbf27c
PZ
5477}
5478
a4eaf7f1 5479static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5480{
b28ab83c 5481 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5482 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5483 struct hlist_head *head;
5484
6c7e550f 5485 if (is_sampling_event(event)) {
7b4b6658 5486 hwc->last_period = hwc->sample_period;
cdd6c482 5487 perf_swevent_set_period(event);
7b4b6658 5488 }
76e1d904 5489
a4eaf7f1
PZ
5490 hwc->state = !(flags & PERF_EF_START);
5491
b28ab83c 5492 head = find_swevent_head(swhash, event);
76e1d904
FW
5493 if (WARN_ON_ONCE(!head))
5494 return -EINVAL;
5495
5496 hlist_add_head_rcu(&event->hlist_entry, head);
5497
15dbf27c
PZ
5498 return 0;
5499}
5500
a4eaf7f1 5501static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5502{
76e1d904 5503 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5504}
5505
a4eaf7f1 5506static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5507{
a4eaf7f1 5508 event->hw.state = 0;
d6d020e9 5509}
aa9c4c0f 5510
a4eaf7f1 5511static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5512{
a4eaf7f1 5513 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5514}
5515
49f135ed
FW
5516/* Deref the hlist from the update side */
5517static inline struct swevent_hlist *
b28ab83c 5518swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5519{
b28ab83c
PZ
5520 return rcu_dereference_protected(swhash->swevent_hlist,
5521 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5522}
5523
b28ab83c 5524static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5525{
b28ab83c 5526 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5527
49f135ed 5528 if (!hlist)
76e1d904
FW
5529 return;
5530
b28ab83c 5531 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5532 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5533}
5534
5535static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5536{
b28ab83c 5537 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5538
b28ab83c 5539 mutex_lock(&swhash->hlist_mutex);
76e1d904 5540
b28ab83c
PZ
5541 if (!--swhash->hlist_refcount)
5542 swevent_hlist_release(swhash);
76e1d904 5543
b28ab83c 5544 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5545}
5546
5547static void swevent_hlist_put(struct perf_event *event)
5548{
5549 int cpu;
5550
5551 if (event->cpu != -1) {
5552 swevent_hlist_put_cpu(event, event->cpu);
5553 return;
5554 }
5555
5556 for_each_possible_cpu(cpu)
5557 swevent_hlist_put_cpu(event, cpu);
5558}
5559
5560static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5561{
b28ab83c 5562 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5563 int err = 0;
5564
b28ab83c 5565 mutex_lock(&swhash->hlist_mutex);
76e1d904 5566
b28ab83c 5567 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5568 struct swevent_hlist *hlist;
5569
5570 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5571 if (!hlist) {
5572 err = -ENOMEM;
5573 goto exit;
5574 }
b28ab83c 5575 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5576 }
b28ab83c 5577 swhash->hlist_refcount++;
9ed6060d 5578exit:
b28ab83c 5579 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5580
5581 return err;
5582}
5583
5584static int swevent_hlist_get(struct perf_event *event)
5585{
5586 int err;
5587 int cpu, failed_cpu;
5588
5589 if (event->cpu != -1)
5590 return swevent_hlist_get_cpu(event, event->cpu);
5591
5592 get_online_cpus();
5593 for_each_possible_cpu(cpu) {
5594 err = swevent_hlist_get_cpu(event, cpu);
5595 if (err) {
5596 failed_cpu = cpu;
5597 goto fail;
5598 }
5599 }
5600 put_online_cpus();
5601
5602 return 0;
9ed6060d 5603fail:
76e1d904
FW
5604 for_each_possible_cpu(cpu) {
5605 if (cpu == failed_cpu)
5606 break;
5607 swevent_hlist_put_cpu(event, cpu);
5608 }
5609
5610 put_online_cpus();
5611 return err;
5612}
5613
c5905afb 5614struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5615
b0a873eb
PZ
5616static void sw_perf_event_destroy(struct perf_event *event)
5617{
5618 u64 event_id = event->attr.config;
95476b64 5619
b0a873eb
PZ
5620 WARN_ON(event->parent);
5621
c5905afb 5622 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5623 swevent_hlist_put(event);
5624}
5625
5626static int perf_swevent_init(struct perf_event *event)
5627{
8176cced 5628 u64 event_id = event->attr.config;
b0a873eb
PZ
5629
5630 if (event->attr.type != PERF_TYPE_SOFTWARE)
5631 return -ENOENT;
5632
2481c5fa
SE
5633 /*
5634 * no branch sampling for software events
5635 */
5636 if (has_branch_stack(event))
5637 return -EOPNOTSUPP;
5638
b0a873eb
PZ
5639 switch (event_id) {
5640 case PERF_COUNT_SW_CPU_CLOCK:
5641 case PERF_COUNT_SW_TASK_CLOCK:
5642 return -ENOENT;
5643
5644 default:
5645 break;
5646 }
5647
ce677831 5648 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5649 return -ENOENT;
5650
5651 if (!event->parent) {
5652 int err;
5653
5654 err = swevent_hlist_get(event);
5655 if (err)
5656 return err;
5657
c5905afb 5658 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5659 event->destroy = sw_perf_event_destroy;
5660 }
5661
5662 return 0;
5663}
5664
35edc2a5
PZ
5665static int perf_swevent_event_idx(struct perf_event *event)
5666{
5667 return 0;
5668}
5669
b0a873eb 5670static struct pmu perf_swevent = {
89a1e187 5671 .task_ctx_nr = perf_sw_context,
95476b64 5672
b0a873eb 5673 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5674 .add = perf_swevent_add,
5675 .del = perf_swevent_del,
5676 .start = perf_swevent_start,
5677 .stop = perf_swevent_stop,
1c024eca 5678 .read = perf_swevent_read,
35edc2a5
PZ
5679
5680 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5681};
5682
b0a873eb
PZ
5683#ifdef CONFIG_EVENT_TRACING
5684
1c024eca
PZ
5685static int perf_tp_filter_match(struct perf_event *event,
5686 struct perf_sample_data *data)
5687{
5688 void *record = data->raw->data;
5689
5690 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5691 return 1;
5692 return 0;
5693}
5694
5695static int perf_tp_event_match(struct perf_event *event,
5696 struct perf_sample_data *data,
5697 struct pt_regs *regs)
5698{
a0f7d0f7
FW
5699 if (event->hw.state & PERF_HES_STOPPED)
5700 return 0;
580d607c
PZ
5701 /*
5702 * All tracepoints are from kernel-space.
5703 */
5704 if (event->attr.exclude_kernel)
1c024eca
PZ
5705 return 0;
5706
5707 if (!perf_tp_filter_match(event, data))
5708 return 0;
5709
5710 return 1;
5711}
5712
5713void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5714 struct pt_regs *regs, struct hlist_head *head, int rctx,
5715 struct task_struct *task)
95476b64
FW
5716{
5717 struct perf_sample_data data;
1c024eca 5718 struct perf_event *event;
1c024eca 5719
95476b64
FW
5720 struct perf_raw_record raw = {
5721 .size = entry_size,
5722 .data = record,
5723 };
5724
fd0d000b 5725 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5726 data.raw = &raw;
5727
b67bfe0d 5728 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5729 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5730 perf_swevent_event(event, count, &data, regs);
4f41c013 5731 }
ecc55f84 5732
e6dab5ff
AV
5733 /*
5734 * If we got specified a target task, also iterate its context and
5735 * deliver this event there too.
5736 */
5737 if (task && task != current) {
5738 struct perf_event_context *ctx;
5739 struct trace_entry *entry = record;
5740
5741 rcu_read_lock();
5742 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5743 if (!ctx)
5744 goto unlock;
5745
5746 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5747 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5748 continue;
5749 if (event->attr.config != entry->type)
5750 continue;
5751 if (perf_tp_event_match(event, &data, regs))
5752 perf_swevent_event(event, count, &data, regs);
5753 }
5754unlock:
5755 rcu_read_unlock();
5756 }
5757
ecc55f84 5758 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5759}
5760EXPORT_SYMBOL_GPL(perf_tp_event);
5761
cdd6c482 5762static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5763{
1c024eca 5764 perf_trace_destroy(event);
e077df4f
PZ
5765}
5766
b0a873eb 5767static int perf_tp_event_init(struct perf_event *event)
e077df4f 5768{
76e1d904
FW
5769 int err;
5770
b0a873eb
PZ
5771 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5772 return -ENOENT;
5773
2481c5fa
SE
5774 /*
5775 * no branch sampling for tracepoint events
5776 */
5777 if (has_branch_stack(event))
5778 return -EOPNOTSUPP;
5779
1c024eca
PZ
5780 err = perf_trace_init(event);
5781 if (err)
b0a873eb 5782 return err;
e077df4f 5783
cdd6c482 5784 event->destroy = tp_perf_event_destroy;
e077df4f 5785
b0a873eb
PZ
5786 return 0;
5787}
5788
5789static struct pmu perf_tracepoint = {
89a1e187
PZ
5790 .task_ctx_nr = perf_sw_context,
5791
b0a873eb 5792 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5793 .add = perf_trace_add,
5794 .del = perf_trace_del,
5795 .start = perf_swevent_start,
5796 .stop = perf_swevent_stop,
b0a873eb 5797 .read = perf_swevent_read,
35edc2a5
PZ
5798
5799 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5800};
5801
5802static inline void perf_tp_register(void)
5803{
2e80a82a 5804 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5805}
6fb2915d
LZ
5806
5807static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5808{
5809 char *filter_str;
5810 int ret;
5811
5812 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5813 return -EINVAL;
5814
5815 filter_str = strndup_user(arg, PAGE_SIZE);
5816 if (IS_ERR(filter_str))
5817 return PTR_ERR(filter_str);
5818
5819 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5820
5821 kfree(filter_str);
5822 return ret;
5823}
5824
5825static void perf_event_free_filter(struct perf_event *event)
5826{
5827 ftrace_profile_free_filter(event);
5828}
5829
e077df4f 5830#else
6fb2915d 5831
b0a873eb 5832static inline void perf_tp_register(void)
e077df4f 5833{
e077df4f 5834}
6fb2915d
LZ
5835
5836static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5837{
5838 return -ENOENT;
5839}
5840
5841static void perf_event_free_filter(struct perf_event *event)
5842{
5843}
5844
07b139c8 5845#endif /* CONFIG_EVENT_TRACING */
e077df4f 5846
24f1e32c 5847#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5848void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5849{
f5ffe02e
FW
5850 struct perf_sample_data sample;
5851 struct pt_regs *regs = data;
5852
fd0d000b 5853 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5854
a4eaf7f1 5855 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5856 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5857}
5858#endif
5859
b0a873eb
PZ
5860/*
5861 * hrtimer based swevent callback
5862 */
f29ac756 5863
b0a873eb 5864static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5865{
b0a873eb
PZ
5866 enum hrtimer_restart ret = HRTIMER_RESTART;
5867 struct perf_sample_data data;
5868 struct pt_regs *regs;
5869 struct perf_event *event;
5870 u64 period;
f29ac756 5871
b0a873eb 5872 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5873
5874 if (event->state != PERF_EVENT_STATE_ACTIVE)
5875 return HRTIMER_NORESTART;
5876
b0a873eb 5877 event->pmu->read(event);
f344011c 5878
fd0d000b 5879 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5880 regs = get_irq_regs();
5881
5882 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5883 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5884 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5885 ret = HRTIMER_NORESTART;
5886 }
24f1e32c 5887
b0a873eb
PZ
5888 period = max_t(u64, 10000, event->hw.sample_period);
5889 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5890
b0a873eb 5891 return ret;
f29ac756
PZ
5892}
5893
b0a873eb 5894static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5895{
b0a873eb 5896 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5897 s64 period;
5898
5899 if (!is_sampling_event(event))
5900 return;
f5ffe02e 5901
5d508e82
FBH
5902 period = local64_read(&hwc->period_left);
5903 if (period) {
5904 if (period < 0)
5905 period = 10000;
fa407f35 5906
5d508e82
FBH
5907 local64_set(&hwc->period_left, 0);
5908 } else {
5909 period = max_t(u64, 10000, hwc->sample_period);
5910 }
5911 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5912 ns_to_ktime(period), 0,
b5ab4cd5 5913 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5914}
b0a873eb
PZ
5915
5916static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5917{
b0a873eb
PZ
5918 struct hw_perf_event *hwc = &event->hw;
5919
6c7e550f 5920 if (is_sampling_event(event)) {
b0a873eb 5921 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5922 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5923
5924 hrtimer_cancel(&hwc->hrtimer);
5925 }
24f1e32c
FW
5926}
5927
ba3dd36c
PZ
5928static void perf_swevent_init_hrtimer(struct perf_event *event)
5929{
5930 struct hw_perf_event *hwc = &event->hw;
5931
5932 if (!is_sampling_event(event))
5933 return;
5934
5935 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5936 hwc->hrtimer.function = perf_swevent_hrtimer;
5937
5938 /*
5939 * Since hrtimers have a fixed rate, we can do a static freq->period
5940 * mapping and avoid the whole period adjust feedback stuff.
5941 */
5942 if (event->attr.freq) {
5943 long freq = event->attr.sample_freq;
5944
5945 event->attr.sample_period = NSEC_PER_SEC / freq;
5946 hwc->sample_period = event->attr.sample_period;
5947 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5948 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5949 event->attr.freq = 0;
5950 }
5951}
5952
b0a873eb
PZ
5953/*
5954 * Software event: cpu wall time clock
5955 */
5956
5957static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5958{
b0a873eb
PZ
5959 s64 prev;
5960 u64 now;
5961
a4eaf7f1 5962 now = local_clock();
b0a873eb
PZ
5963 prev = local64_xchg(&event->hw.prev_count, now);
5964 local64_add(now - prev, &event->count);
24f1e32c 5965}
24f1e32c 5966
a4eaf7f1 5967static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5968{
a4eaf7f1 5969 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5970 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5971}
5972
a4eaf7f1 5973static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5974{
b0a873eb
PZ
5975 perf_swevent_cancel_hrtimer(event);
5976 cpu_clock_event_update(event);
5977}
f29ac756 5978
a4eaf7f1
PZ
5979static int cpu_clock_event_add(struct perf_event *event, int flags)
5980{
5981 if (flags & PERF_EF_START)
5982 cpu_clock_event_start(event, flags);
5983
5984 return 0;
5985}
5986
5987static void cpu_clock_event_del(struct perf_event *event, int flags)
5988{
5989 cpu_clock_event_stop(event, flags);
5990}
5991
b0a873eb
PZ
5992static void cpu_clock_event_read(struct perf_event *event)
5993{
5994 cpu_clock_event_update(event);
5995}
f344011c 5996
b0a873eb
PZ
5997static int cpu_clock_event_init(struct perf_event *event)
5998{
5999 if (event->attr.type != PERF_TYPE_SOFTWARE)
6000 return -ENOENT;
6001
6002 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6003 return -ENOENT;
6004
2481c5fa
SE
6005 /*
6006 * no branch sampling for software events
6007 */
6008 if (has_branch_stack(event))
6009 return -EOPNOTSUPP;
6010
ba3dd36c
PZ
6011 perf_swevent_init_hrtimer(event);
6012
b0a873eb 6013 return 0;
f29ac756
PZ
6014}
6015
b0a873eb 6016static struct pmu perf_cpu_clock = {
89a1e187
PZ
6017 .task_ctx_nr = perf_sw_context,
6018
b0a873eb 6019 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6020 .add = cpu_clock_event_add,
6021 .del = cpu_clock_event_del,
6022 .start = cpu_clock_event_start,
6023 .stop = cpu_clock_event_stop,
b0a873eb 6024 .read = cpu_clock_event_read,
35edc2a5
PZ
6025
6026 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6027};
6028
6029/*
6030 * Software event: task time clock
6031 */
6032
6033static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6034{
b0a873eb
PZ
6035 u64 prev;
6036 s64 delta;
5c92d124 6037
b0a873eb
PZ
6038 prev = local64_xchg(&event->hw.prev_count, now);
6039 delta = now - prev;
6040 local64_add(delta, &event->count);
6041}
5c92d124 6042
a4eaf7f1 6043static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6044{
a4eaf7f1 6045 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6046 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6047}
6048
a4eaf7f1 6049static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6050{
6051 perf_swevent_cancel_hrtimer(event);
6052 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6053}
6054
6055static int task_clock_event_add(struct perf_event *event, int flags)
6056{
6057 if (flags & PERF_EF_START)
6058 task_clock_event_start(event, flags);
b0a873eb 6059
a4eaf7f1
PZ
6060 return 0;
6061}
6062
6063static void task_clock_event_del(struct perf_event *event, int flags)
6064{
6065 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6066}
6067
6068static void task_clock_event_read(struct perf_event *event)
6069{
768a06e2
PZ
6070 u64 now = perf_clock();
6071 u64 delta = now - event->ctx->timestamp;
6072 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6073
6074 task_clock_event_update(event, time);
6075}
6076
6077static int task_clock_event_init(struct perf_event *event)
6fb2915d 6078{
b0a873eb
PZ
6079 if (event->attr.type != PERF_TYPE_SOFTWARE)
6080 return -ENOENT;
6081
6082 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6083 return -ENOENT;
6084
2481c5fa
SE
6085 /*
6086 * no branch sampling for software events
6087 */
6088 if (has_branch_stack(event))
6089 return -EOPNOTSUPP;
6090
ba3dd36c
PZ
6091 perf_swevent_init_hrtimer(event);
6092
b0a873eb 6093 return 0;
6fb2915d
LZ
6094}
6095
b0a873eb 6096static struct pmu perf_task_clock = {
89a1e187
PZ
6097 .task_ctx_nr = perf_sw_context,
6098
b0a873eb 6099 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6100 .add = task_clock_event_add,
6101 .del = task_clock_event_del,
6102 .start = task_clock_event_start,
6103 .stop = task_clock_event_stop,
b0a873eb 6104 .read = task_clock_event_read,
35edc2a5
PZ
6105
6106 .event_idx = perf_swevent_event_idx,
b0a873eb 6107};
6fb2915d 6108
ad5133b7 6109static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6110{
e077df4f 6111}
6fb2915d 6112
ad5133b7 6113static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6114{
ad5133b7 6115 return 0;
6fb2915d
LZ
6116}
6117
ad5133b7 6118static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6119{
ad5133b7 6120 perf_pmu_disable(pmu);
6fb2915d
LZ
6121}
6122
ad5133b7
PZ
6123static int perf_pmu_commit_txn(struct pmu *pmu)
6124{
6125 perf_pmu_enable(pmu);
6126 return 0;
6127}
e077df4f 6128
ad5133b7 6129static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6130{
ad5133b7 6131 perf_pmu_enable(pmu);
24f1e32c
FW
6132}
6133
35edc2a5
PZ
6134static int perf_event_idx_default(struct perf_event *event)
6135{
6136 return event->hw.idx + 1;
6137}
6138
8dc85d54
PZ
6139/*
6140 * Ensures all contexts with the same task_ctx_nr have the same
6141 * pmu_cpu_context too.
6142 */
6143static void *find_pmu_context(int ctxn)
24f1e32c 6144{
8dc85d54 6145 struct pmu *pmu;
b326e956 6146
8dc85d54
PZ
6147 if (ctxn < 0)
6148 return NULL;
24f1e32c 6149
8dc85d54
PZ
6150 list_for_each_entry(pmu, &pmus, entry) {
6151 if (pmu->task_ctx_nr == ctxn)
6152 return pmu->pmu_cpu_context;
6153 }
24f1e32c 6154
8dc85d54 6155 return NULL;
24f1e32c
FW
6156}
6157
51676957 6158static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6159{
51676957
PZ
6160 int cpu;
6161
6162 for_each_possible_cpu(cpu) {
6163 struct perf_cpu_context *cpuctx;
6164
6165 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6166
3f1f3320
PZ
6167 if (cpuctx->unique_pmu == old_pmu)
6168 cpuctx->unique_pmu = pmu;
51676957
PZ
6169 }
6170}
6171
6172static void free_pmu_context(struct pmu *pmu)
6173{
6174 struct pmu *i;
f5ffe02e 6175
8dc85d54 6176 mutex_lock(&pmus_lock);
0475f9ea 6177 /*
8dc85d54 6178 * Like a real lame refcount.
0475f9ea 6179 */
51676957
PZ
6180 list_for_each_entry(i, &pmus, entry) {
6181 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6182 update_pmu_context(i, pmu);
8dc85d54 6183 goto out;
51676957 6184 }
8dc85d54 6185 }
d6d020e9 6186
51676957 6187 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6188out:
6189 mutex_unlock(&pmus_lock);
24f1e32c 6190}
2e80a82a 6191static struct idr pmu_idr;
d6d020e9 6192
abe43400
PZ
6193static ssize_t
6194type_show(struct device *dev, struct device_attribute *attr, char *page)
6195{
6196 struct pmu *pmu = dev_get_drvdata(dev);
6197
6198 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6199}
6200
62b85639
SE
6201static ssize_t
6202perf_event_mux_interval_ms_show(struct device *dev,
6203 struct device_attribute *attr,
6204 char *page)
6205{
6206 struct pmu *pmu = dev_get_drvdata(dev);
6207
6208 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6209}
6210
6211static ssize_t
6212perf_event_mux_interval_ms_store(struct device *dev,
6213 struct device_attribute *attr,
6214 const char *buf, size_t count)
6215{
6216 struct pmu *pmu = dev_get_drvdata(dev);
6217 int timer, cpu, ret;
6218
6219 ret = kstrtoint(buf, 0, &timer);
6220 if (ret)
6221 return ret;
6222
6223 if (timer < 1)
6224 return -EINVAL;
6225
6226 /* same value, noting to do */
6227 if (timer == pmu->hrtimer_interval_ms)
6228 return count;
6229
6230 pmu->hrtimer_interval_ms = timer;
6231
6232 /* update all cpuctx for this PMU */
6233 for_each_possible_cpu(cpu) {
6234 struct perf_cpu_context *cpuctx;
6235 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6236 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6237
6238 if (hrtimer_active(&cpuctx->hrtimer))
6239 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6240 }
6241
6242 return count;
6243}
6244
abe43400 6245static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6246 __ATTR_RO(type),
6247 __ATTR_RW(perf_event_mux_interval_ms),
6248 __ATTR_NULL,
abe43400
PZ
6249};
6250
6251static int pmu_bus_running;
6252static struct bus_type pmu_bus = {
6253 .name = "event_source",
6254 .dev_attrs = pmu_dev_attrs,
6255};
6256
6257static void pmu_dev_release(struct device *dev)
6258{
6259 kfree(dev);
6260}
6261
6262static int pmu_dev_alloc(struct pmu *pmu)
6263{
6264 int ret = -ENOMEM;
6265
6266 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6267 if (!pmu->dev)
6268 goto out;
6269
0c9d42ed 6270 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6271 device_initialize(pmu->dev);
6272 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6273 if (ret)
6274 goto free_dev;
6275
6276 dev_set_drvdata(pmu->dev, pmu);
6277 pmu->dev->bus = &pmu_bus;
6278 pmu->dev->release = pmu_dev_release;
6279 ret = device_add(pmu->dev);
6280 if (ret)
6281 goto free_dev;
6282
6283out:
6284 return ret;
6285
6286free_dev:
6287 put_device(pmu->dev);
6288 goto out;
6289}
6290
547e9fd7 6291static struct lock_class_key cpuctx_mutex;
facc4307 6292static struct lock_class_key cpuctx_lock;
547e9fd7 6293
03d8e80b 6294int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6295{
108b02cf 6296 int cpu, ret;
24f1e32c 6297
b0a873eb 6298 mutex_lock(&pmus_lock);
33696fc0
PZ
6299 ret = -ENOMEM;
6300 pmu->pmu_disable_count = alloc_percpu(int);
6301 if (!pmu->pmu_disable_count)
6302 goto unlock;
f29ac756 6303
2e80a82a
PZ
6304 pmu->type = -1;
6305 if (!name)
6306 goto skip_type;
6307 pmu->name = name;
6308
6309 if (type < 0) {
0e9c3be2
TH
6310 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6311 if (type < 0) {
6312 ret = type;
2e80a82a
PZ
6313 goto free_pdc;
6314 }
6315 }
6316 pmu->type = type;
6317
abe43400
PZ
6318 if (pmu_bus_running) {
6319 ret = pmu_dev_alloc(pmu);
6320 if (ret)
6321 goto free_idr;
6322 }
6323
2e80a82a 6324skip_type:
8dc85d54
PZ
6325 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6326 if (pmu->pmu_cpu_context)
6327 goto got_cpu_context;
f29ac756 6328
c4814202 6329 ret = -ENOMEM;
108b02cf
PZ
6330 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6331 if (!pmu->pmu_cpu_context)
abe43400 6332 goto free_dev;
f344011c 6333
108b02cf
PZ
6334 for_each_possible_cpu(cpu) {
6335 struct perf_cpu_context *cpuctx;
6336
6337 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6338 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6339 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6340 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6341 cpuctx->ctx.type = cpu_context;
108b02cf 6342 cpuctx->ctx.pmu = pmu;
9e630205
SE
6343
6344 __perf_cpu_hrtimer_init(cpuctx, cpu);
6345
e9d2b064 6346 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6347 cpuctx->unique_pmu = pmu;
108b02cf 6348 }
76e1d904 6349
8dc85d54 6350got_cpu_context:
ad5133b7
PZ
6351 if (!pmu->start_txn) {
6352 if (pmu->pmu_enable) {
6353 /*
6354 * If we have pmu_enable/pmu_disable calls, install
6355 * transaction stubs that use that to try and batch
6356 * hardware accesses.
6357 */
6358 pmu->start_txn = perf_pmu_start_txn;
6359 pmu->commit_txn = perf_pmu_commit_txn;
6360 pmu->cancel_txn = perf_pmu_cancel_txn;
6361 } else {
6362 pmu->start_txn = perf_pmu_nop_void;
6363 pmu->commit_txn = perf_pmu_nop_int;
6364 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6365 }
5c92d124 6366 }
15dbf27c 6367
ad5133b7
PZ
6368 if (!pmu->pmu_enable) {
6369 pmu->pmu_enable = perf_pmu_nop_void;
6370 pmu->pmu_disable = perf_pmu_nop_void;
6371 }
6372
35edc2a5
PZ
6373 if (!pmu->event_idx)
6374 pmu->event_idx = perf_event_idx_default;
6375
b0a873eb 6376 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6377 ret = 0;
6378unlock:
b0a873eb
PZ
6379 mutex_unlock(&pmus_lock);
6380
33696fc0 6381 return ret;
108b02cf 6382
abe43400
PZ
6383free_dev:
6384 device_del(pmu->dev);
6385 put_device(pmu->dev);
6386
2e80a82a
PZ
6387free_idr:
6388 if (pmu->type >= PERF_TYPE_MAX)
6389 idr_remove(&pmu_idr, pmu->type);
6390
108b02cf
PZ
6391free_pdc:
6392 free_percpu(pmu->pmu_disable_count);
6393 goto unlock;
f29ac756
PZ
6394}
6395
b0a873eb 6396void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6397{
b0a873eb
PZ
6398 mutex_lock(&pmus_lock);
6399 list_del_rcu(&pmu->entry);
6400 mutex_unlock(&pmus_lock);
5c92d124 6401
0475f9ea 6402 /*
cde8e884
PZ
6403 * We dereference the pmu list under both SRCU and regular RCU, so
6404 * synchronize against both of those.
0475f9ea 6405 */
b0a873eb 6406 synchronize_srcu(&pmus_srcu);
cde8e884 6407 synchronize_rcu();
d6d020e9 6408
33696fc0 6409 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6410 if (pmu->type >= PERF_TYPE_MAX)
6411 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6412 device_del(pmu->dev);
6413 put_device(pmu->dev);
51676957 6414 free_pmu_context(pmu);
b0a873eb 6415}
d6d020e9 6416
b0a873eb
PZ
6417struct pmu *perf_init_event(struct perf_event *event)
6418{
6419 struct pmu *pmu = NULL;
6420 int idx;
940c5b29 6421 int ret;
b0a873eb
PZ
6422
6423 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6424
6425 rcu_read_lock();
6426 pmu = idr_find(&pmu_idr, event->attr.type);
6427 rcu_read_unlock();
940c5b29 6428 if (pmu) {
7e5b2a01 6429 event->pmu = pmu;
940c5b29
LM
6430 ret = pmu->event_init(event);
6431 if (ret)
6432 pmu = ERR_PTR(ret);
2e80a82a 6433 goto unlock;
940c5b29 6434 }
2e80a82a 6435
b0a873eb 6436 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6437 event->pmu = pmu;
940c5b29 6438 ret = pmu->event_init(event);
b0a873eb 6439 if (!ret)
e5f4d339 6440 goto unlock;
76e1d904 6441
b0a873eb
PZ
6442 if (ret != -ENOENT) {
6443 pmu = ERR_PTR(ret);
e5f4d339 6444 goto unlock;
f344011c 6445 }
5c92d124 6446 }
e5f4d339
PZ
6447 pmu = ERR_PTR(-ENOENT);
6448unlock:
b0a873eb 6449 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6450
4aeb0b42 6451 return pmu;
5c92d124
IM
6452}
6453
766d6c07
FW
6454static void account_event(struct perf_event *event)
6455{
6456 if (event->attach_state & PERF_ATTACH_TASK)
6457 static_key_slow_inc(&perf_sched_events.key);
6458 if (event->attr.mmap || event->attr.mmap_data)
6459 atomic_inc(&nr_mmap_events);
6460 if (event->attr.comm)
6461 atomic_inc(&nr_comm_events);
6462 if (event->attr.task)
6463 atomic_inc(&nr_task_events);
6464 if (has_branch_stack(event)) {
6465 static_key_slow_inc(&perf_sched_events.key);
6466 if (!(event->attach_state & PERF_ATTACH_TASK))
6467 atomic_inc(&per_cpu(perf_branch_stack_events,
6468 event->cpu));
6469 }
6470
6471 if (is_cgroup_event(event)) {
6472 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6473 static_key_slow_inc(&perf_sched_events.key);
6474 }
6475}
6476
0793a61d 6477/*
cdd6c482 6478 * Allocate and initialize a event structure
0793a61d 6479 */
cdd6c482 6480static struct perf_event *
c3f00c70 6481perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6482 struct task_struct *task,
6483 struct perf_event *group_leader,
6484 struct perf_event *parent_event,
4dc0da86
AK
6485 perf_overflow_handler_t overflow_handler,
6486 void *context)
0793a61d 6487{
51b0fe39 6488 struct pmu *pmu;
cdd6c482
IM
6489 struct perf_event *event;
6490 struct hw_perf_event *hwc;
90983b16 6491 long err = -EINVAL;
0793a61d 6492
66832eb4
ON
6493 if ((unsigned)cpu >= nr_cpu_ids) {
6494 if (!task || cpu != -1)
6495 return ERR_PTR(-EINVAL);
6496 }
6497
c3f00c70 6498 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6499 if (!event)
d5d2bc0d 6500 return ERR_PTR(-ENOMEM);
0793a61d 6501
04289bb9 6502 /*
cdd6c482 6503 * Single events are their own group leaders, with an
04289bb9
IM
6504 * empty sibling list:
6505 */
6506 if (!group_leader)
cdd6c482 6507 group_leader = event;
04289bb9 6508
cdd6c482
IM
6509 mutex_init(&event->child_mutex);
6510 INIT_LIST_HEAD(&event->child_list);
fccc714b 6511
cdd6c482
IM
6512 INIT_LIST_HEAD(&event->group_entry);
6513 INIT_LIST_HEAD(&event->event_entry);
6514 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6515 INIT_LIST_HEAD(&event->rb_entry);
6516
cdd6c482 6517 init_waitqueue_head(&event->waitq);
e360adbe 6518 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6519
cdd6c482 6520 mutex_init(&event->mmap_mutex);
7b732a75 6521
a6fa941d 6522 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6523 event->cpu = cpu;
6524 event->attr = *attr;
6525 event->group_leader = group_leader;
6526 event->pmu = NULL;
cdd6c482 6527 event->oncpu = -1;
a96bbc16 6528
cdd6c482 6529 event->parent = parent_event;
b84fbc9f 6530
17cf22c3 6531 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6532 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6533
cdd6c482 6534 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6535
d580ff86
PZ
6536 if (task) {
6537 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6538
6539 if (attr->type == PERF_TYPE_TRACEPOINT)
6540 event->hw.tp_target = task;
d580ff86
PZ
6541#ifdef CONFIG_HAVE_HW_BREAKPOINT
6542 /*
6543 * hw_breakpoint is a bit difficult here..
6544 */
f22c1bb6 6545 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6546 event->hw.bp_target = task;
6547#endif
6548 }
6549
4dc0da86 6550 if (!overflow_handler && parent_event) {
b326e956 6551 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6552 context = parent_event->overflow_handler_context;
6553 }
66832eb4 6554
b326e956 6555 event->overflow_handler = overflow_handler;
4dc0da86 6556 event->overflow_handler_context = context;
97eaf530 6557
0231bb53 6558 perf_event__state_init(event);
a86ed508 6559
4aeb0b42 6560 pmu = NULL;
b8e83514 6561
cdd6c482 6562 hwc = &event->hw;
bd2b5b12 6563 hwc->sample_period = attr->sample_period;
0d48696f 6564 if (attr->freq && attr->sample_freq)
bd2b5b12 6565 hwc->sample_period = 1;
eced1dfc 6566 hwc->last_period = hwc->sample_period;
bd2b5b12 6567
e7850595 6568 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6569
2023b359 6570 /*
cdd6c482 6571 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6572 */
3dab77fb 6573 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6574 goto err_ns;
2023b359 6575
b0a873eb 6576 pmu = perf_init_event(event);
4aeb0b42 6577 if (!pmu)
90983b16
FW
6578 goto err_ns;
6579 else if (IS_ERR(pmu)) {
4aeb0b42 6580 err = PTR_ERR(pmu);
90983b16 6581 goto err_ns;
621a01ea 6582 }
d5d2bc0d 6583
cdd6c482 6584 if (!event->parent) {
90983b16
FW
6585 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6586 err = get_callchain_buffers();
6587 if (err)
6588 goto err_pmu;
6589 }
f344011c 6590 }
9ee318a7 6591
cdd6c482 6592 return event;
90983b16
FW
6593
6594err_pmu:
6595 if (event->destroy)
6596 event->destroy(event);
6597err_ns:
6598 if (event->ns)
6599 put_pid_ns(event->ns);
6600 kfree(event);
6601
6602 return ERR_PTR(err);
0793a61d
TG
6603}
6604
cdd6c482
IM
6605static int perf_copy_attr(struct perf_event_attr __user *uattr,
6606 struct perf_event_attr *attr)
974802ea 6607{
974802ea 6608 u32 size;
cdf8073d 6609 int ret;
974802ea
PZ
6610
6611 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6612 return -EFAULT;
6613
6614 /*
6615 * zero the full structure, so that a short copy will be nice.
6616 */
6617 memset(attr, 0, sizeof(*attr));
6618
6619 ret = get_user(size, &uattr->size);
6620 if (ret)
6621 return ret;
6622
6623 if (size > PAGE_SIZE) /* silly large */
6624 goto err_size;
6625
6626 if (!size) /* abi compat */
6627 size = PERF_ATTR_SIZE_VER0;
6628
6629 if (size < PERF_ATTR_SIZE_VER0)
6630 goto err_size;
6631
6632 /*
6633 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6634 * ensure all the unknown bits are 0 - i.e. new
6635 * user-space does not rely on any kernel feature
6636 * extensions we dont know about yet.
974802ea
PZ
6637 */
6638 if (size > sizeof(*attr)) {
cdf8073d
IS
6639 unsigned char __user *addr;
6640 unsigned char __user *end;
6641 unsigned char val;
974802ea 6642
cdf8073d
IS
6643 addr = (void __user *)uattr + sizeof(*attr);
6644 end = (void __user *)uattr + size;
974802ea 6645
cdf8073d 6646 for (; addr < end; addr++) {
974802ea
PZ
6647 ret = get_user(val, addr);
6648 if (ret)
6649 return ret;
6650 if (val)
6651 goto err_size;
6652 }
b3e62e35 6653 size = sizeof(*attr);
974802ea
PZ
6654 }
6655
6656 ret = copy_from_user(attr, uattr, size);
6657 if (ret)
6658 return -EFAULT;
6659
cd757645 6660 if (attr->__reserved_1)
974802ea
PZ
6661 return -EINVAL;
6662
6663 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6664 return -EINVAL;
6665
6666 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6667 return -EINVAL;
6668
bce38cd5
SE
6669 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6670 u64 mask = attr->branch_sample_type;
6671
6672 /* only using defined bits */
6673 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6674 return -EINVAL;
6675
6676 /* at least one branch bit must be set */
6677 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6678 return -EINVAL;
6679
bce38cd5
SE
6680 /* propagate priv level, when not set for branch */
6681 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6682
6683 /* exclude_kernel checked on syscall entry */
6684 if (!attr->exclude_kernel)
6685 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6686
6687 if (!attr->exclude_user)
6688 mask |= PERF_SAMPLE_BRANCH_USER;
6689
6690 if (!attr->exclude_hv)
6691 mask |= PERF_SAMPLE_BRANCH_HV;
6692 /*
6693 * adjust user setting (for HW filter setup)
6694 */
6695 attr->branch_sample_type = mask;
6696 }
e712209a
SE
6697 /* privileged levels capture (kernel, hv): check permissions */
6698 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6699 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6700 return -EACCES;
bce38cd5 6701 }
4018994f 6702
c5ebcedb 6703 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6704 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6705 if (ret)
6706 return ret;
6707 }
6708
6709 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6710 if (!arch_perf_have_user_stack_dump())
6711 return -ENOSYS;
6712
6713 /*
6714 * We have __u32 type for the size, but so far
6715 * we can only use __u16 as maximum due to the
6716 * __u16 sample size limit.
6717 */
6718 if (attr->sample_stack_user >= USHRT_MAX)
6719 ret = -EINVAL;
6720 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6721 ret = -EINVAL;
6722 }
4018994f 6723
974802ea
PZ
6724out:
6725 return ret;
6726
6727err_size:
6728 put_user(sizeof(*attr), &uattr->size);
6729 ret = -E2BIG;
6730 goto out;
6731}
6732
ac9721f3
PZ
6733static int
6734perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6735{
76369139 6736 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6737 int ret = -EINVAL;
6738
ac9721f3 6739 if (!output_event)
a4be7c27
PZ
6740 goto set;
6741
ac9721f3
PZ
6742 /* don't allow circular references */
6743 if (event == output_event)
a4be7c27
PZ
6744 goto out;
6745
0f139300
PZ
6746 /*
6747 * Don't allow cross-cpu buffers
6748 */
6749 if (output_event->cpu != event->cpu)
6750 goto out;
6751
6752 /*
76369139 6753 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6754 */
6755 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6756 goto out;
6757
a4be7c27 6758set:
cdd6c482 6759 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6760 /* Can't redirect output if we've got an active mmap() */
6761 if (atomic_read(&event->mmap_count))
6762 goto unlock;
a4be7c27 6763
9bb5d40c
PZ
6764 old_rb = event->rb;
6765
ac9721f3 6766 if (output_event) {
76369139
FW
6767 /* get the rb we want to redirect to */
6768 rb = ring_buffer_get(output_event);
6769 if (!rb)
ac9721f3 6770 goto unlock;
a4be7c27
PZ
6771 }
6772
10c6db11
PZ
6773 if (old_rb)
6774 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6775
6776 if (rb)
6777 ring_buffer_attach(event, rb);
6778
6779 rcu_assign_pointer(event->rb, rb);
6780
6781 if (old_rb) {
6782 ring_buffer_put(old_rb);
6783 /*
6784 * Since we detached before setting the new rb, so that we
6785 * could attach the new rb, we could have missed a wakeup.
6786 * Provide it now.
6787 */
6788 wake_up_all(&event->waitq);
6789 }
6790
a4be7c27 6791 ret = 0;
ac9721f3
PZ
6792unlock:
6793 mutex_unlock(&event->mmap_mutex);
6794
a4be7c27 6795out:
a4be7c27
PZ
6796 return ret;
6797}
6798
0793a61d 6799/**
cdd6c482 6800 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6801 *
cdd6c482 6802 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6803 * @pid: target pid
9f66a381 6804 * @cpu: target cpu
cdd6c482 6805 * @group_fd: group leader event fd
0793a61d 6806 */
cdd6c482
IM
6807SYSCALL_DEFINE5(perf_event_open,
6808 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6809 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6810{
b04243ef
PZ
6811 struct perf_event *group_leader = NULL, *output_event = NULL;
6812 struct perf_event *event, *sibling;
cdd6c482
IM
6813 struct perf_event_attr attr;
6814 struct perf_event_context *ctx;
6815 struct file *event_file = NULL;
2903ff01 6816 struct fd group = {NULL, 0};
38a81da2 6817 struct task_struct *task = NULL;
89a1e187 6818 struct pmu *pmu;
ea635c64 6819 int event_fd;
b04243ef 6820 int move_group = 0;
dc86cabe 6821 int err;
0793a61d 6822
2743a5b0 6823 /* for future expandability... */
e5d1367f 6824 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6825 return -EINVAL;
6826
dc86cabe
IM
6827 err = perf_copy_attr(attr_uptr, &attr);
6828 if (err)
6829 return err;
eab656ae 6830
0764771d
PZ
6831 if (!attr.exclude_kernel) {
6832 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6833 return -EACCES;
6834 }
6835
df58ab24 6836 if (attr.freq) {
cdd6c482 6837 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6838 return -EINVAL;
6839 }
6840
e5d1367f
SE
6841 /*
6842 * In cgroup mode, the pid argument is used to pass the fd
6843 * opened to the cgroup directory in cgroupfs. The cpu argument
6844 * designates the cpu on which to monitor threads from that
6845 * cgroup.
6846 */
6847 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6848 return -EINVAL;
6849
ab72a702 6850 event_fd = get_unused_fd();
ea635c64
AV
6851 if (event_fd < 0)
6852 return event_fd;
6853
ac9721f3 6854 if (group_fd != -1) {
2903ff01
AV
6855 err = perf_fget_light(group_fd, &group);
6856 if (err)
d14b12d7 6857 goto err_fd;
2903ff01 6858 group_leader = group.file->private_data;
ac9721f3
PZ
6859 if (flags & PERF_FLAG_FD_OUTPUT)
6860 output_event = group_leader;
6861 if (flags & PERF_FLAG_FD_NO_GROUP)
6862 group_leader = NULL;
6863 }
6864
e5d1367f 6865 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6866 task = find_lively_task_by_vpid(pid);
6867 if (IS_ERR(task)) {
6868 err = PTR_ERR(task);
6869 goto err_group_fd;
6870 }
6871 }
6872
fbfc623f
YZ
6873 get_online_cpus();
6874
4dc0da86
AK
6875 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6876 NULL, NULL);
d14b12d7
SE
6877 if (IS_ERR(event)) {
6878 err = PTR_ERR(event);
c6be5a5c 6879 goto err_task;
d14b12d7
SE
6880 }
6881
e5d1367f
SE
6882 if (flags & PERF_FLAG_PID_CGROUP) {
6883 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6884 if (err) {
6885 __free_event(event);
6886 goto err_task;
6887 }
e5d1367f
SE
6888 }
6889
766d6c07
FW
6890 account_event(event);
6891
89a1e187
PZ
6892 /*
6893 * Special case software events and allow them to be part of
6894 * any hardware group.
6895 */
6896 pmu = event->pmu;
b04243ef
PZ
6897
6898 if (group_leader &&
6899 (is_software_event(event) != is_software_event(group_leader))) {
6900 if (is_software_event(event)) {
6901 /*
6902 * If event and group_leader are not both a software
6903 * event, and event is, then group leader is not.
6904 *
6905 * Allow the addition of software events to !software
6906 * groups, this is safe because software events never
6907 * fail to schedule.
6908 */
6909 pmu = group_leader->pmu;
6910 } else if (is_software_event(group_leader) &&
6911 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6912 /*
6913 * In case the group is a pure software group, and we
6914 * try to add a hardware event, move the whole group to
6915 * the hardware context.
6916 */
6917 move_group = 1;
6918 }
6919 }
89a1e187
PZ
6920
6921 /*
6922 * Get the target context (task or percpu):
6923 */
e2d37cd2 6924 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6925 if (IS_ERR(ctx)) {
6926 err = PTR_ERR(ctx);
c6be5a5c 6927 goto err_alloc;
89a1e187
PZ
6928 }
6929
fd1edb3a
PZ
6930 if (task) {
6931 put_task_struct(task);
6932 task = NULL;
6933 }
6934
ccff286d 6935 /*
cdd6c482 6936 * Look up the group leader (we will attach this event to it):
04289bb9 6937 */
ac9721f3 6938 if (group_leader) {
dc86cabe 6939 err = -EINVAL;
04289bb9 6940
04289bb9 6941 /*
ccff286d
IM
6942 * Do not allow a recursive hierarchy (this new sibling
6943 * becoming part of another group-sibling):
6944 */
6945 if (group_leader->group_leader != group_leader)
c3f00c70 6946 goto err_context;
ccff286d
IM
6947 /*
6948 * Do not allow to attach to a group in a different
6949 * task or CPU context:
04289bb9 6950 */
b04243ef
PZ
6951 if (move_group) {
6952 if (group_leader->ctx->type != ctx->type)
6953 goto err_context;
6954 } else {
6955 if (group_leader->ctx != ctx)
6956 goto err_context;
6957 }
6958
3b6f9e5c
PM
6959 /*
6960 * Only a group leader can be exclusive or pinned
6961 */
0d48696f 6962 if (attr.exclusive || attr.pinned)
c3f00c70 6963 goto err_context;
ac9721f3
PZ
6964 }
6965
6966 if (output_event) {
6967 err = perf_event_set_output(event, output_event);
6968 if (err)
c3f00c70 6969 goto err_context;
ac9721f3 6970 }
0793a61d 6971
ea635c64
AV
6972 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6973 if (IS_ERR(event_file)) {
6974 err = PTR_ERR(event_file);
c3f00c70 6975 goto err_context;
ea635c64 6976 }
9b51f66d 6977
b04243ef
PZ
6978 if (move_group) {
6979 struct perf_event_context *gctx = group_leader->ctx;
6980
6981 mutex_lock(&gctx->mutex);
fe4b04fa 6982 perf_remove_from_context(group_leader);
0231bb53
JO
6983
6984 /*
6985 * Removing from the context ends up with disabled
6986 * event. What we want here is event in the initial
6987 * startup state, ready to be add into new context.
6988 */
6989 perf_event__state_init(group_leader);
b04243ef
PZ
6990 list_for_each_entry(sibling, &group_leader->sibling_list,
6991 group_entry) {
fe4b04fa 6992 perf_remove_from_context(sibling);
0231bb53 6993 perf_event__state_init(sibling);
b04243ef
PZ
6994 put_ctx(gctx);
6995 }
6996 mutex_unlock(&gctx->mutex);
6997 put_ctx(gctx);
ea635c64 6998 }
9b51f66d 6999
ad3a37de 7000 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7001 mutex_lock(&ctx->mutex);
b04243ef
PZ
7002
7003 if (move_group) {
0cda4c02 7004 synchronize_rcu();
e2d37cd2 7005 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7006 get_ctx(ctx);
7007 list_for_each_entry(sibling, &group_leader->sibling_list,
7008 group_entry) {
e2d37cd2 7009 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7010 get_ctx(ctx);
7011 }
7012 }
7013
e2d37cd2 7014 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7015 ++ctx->generation;
fe4b04fa 7016 perf_unpin_context(ctx);
d859e29f 7017 mutex_unlock(&ctx->mutex);
9b51f66d 7018
fbfc623f
YZ
7019 put_online_cpus();
7020
cdd6c482 7021 event->owner = current;
8882135b 7022
cdd6c482
IM
7023 mutex_lock(&current->perf_event_mutex);
7024 list_add_tail(&event->owner_entry, &current->perf_event_list);
7025 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7026
c320c7b7
ACM
7027 /*
7028 * Precalculate sample_data sizes
7029 */
7030 perf_event__header_size(event);
6844c09d 7031 perf_event__id_header_size(event);
c320c7b7 7032
8a49542c
PZ
7033 /*
7034 * Drop the reference on the group_event after placing the
7035 * new event on the sibling_list. This ensures destruction
7036 * of the group leader will find the pointer to itself in
7037 * perf_group_detach().
7038 */
2903ff01 7039 fdput(group);
ea635c64
AV
7040 fd_install(event_fd, event_file);
7041 return event_fd;
0793a61d 7042
c3f00c70 7043err_context:
fe4b04fa 7044 perf_unpin_context(ctx);
ea635c64 7045 put_ctx(ctx);
c6be5a5c 7046err_alloc:
ea635c64 7047 free_event(event);
e7d0bc04 7048err_task:
fbfc623f 7049 put_online_cpus();
e7d0bc04
PZ
7050 if (task)
7051 put_task_struct(task);
89a1e187 7052err_group_fd:
2903ff01 7053 fdput(group);
ea635c64
AV
7054err_fd:
7055 put_unused_fd(event_fd);
dc86cabe 7056 return err;
0793a61d
TG
7057}
7058
fb0459d7
AV
7059/**
7060 * perf_event_create_kernel_counter
7061 *
7062 * @attr: attributes of the counter to create
7063 * @cpu: cpu in which the counter is bound
38a81da2 7064 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7065 */
7066struct perf_event *
7067perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7068 struct task_struct *task,
4dc0da86
AK
7069 perf_overflow_handler_t overflow_handler,
7070 void *context)
fb0459d7 7071{
fb0459d7 7072 struct perf_event_context *ctx;
c3f00c70 7073 struct perf_event *event;
fb0459d7 7074 int err;
d859e29f 7075
fb0459d7
AV
7076 /*
7077 * Get the target context (task or percpu):
7078 */
d859e29f 7079
4dc0da86
AK
7080 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7081 overflow_handler, context);
c3f00c70
PZ
7082 if (IS_ERR(event)) {
7083 err = PTR_ERR(event);
7084 goto err;
7085 }
d859e29f 7086
766d6c07
FW
7087 account_event(event);
7088
38a81da2 7089 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7090 if (IS_ERR(ctx)) {
7091 err = PTR_ERR(ctx);
c3f00c70 7092 goto err_free;
d859e29f 7093 }
fb0459d7 7094
fb0459d7
AV
7095 WARN_ON_ONCE(ctx->parent_ctx);
7096 mutex_lock(&ctx->mutex);
7097 perf_install_in_context(ctx, event, cpu);
7098 ++ctx->generation;
fe4b04fa 7099 perf_unpin_context(ctx);
fb0459d7
AV
7100 mutex_unlock(&ctx->mutex);
7101
fb0459d7
AV
7102 return event;
7103
c3f00c70
PZ
7104err_free:
7105 free_event(event);
7106err:
c6567f64 7107 return ERR_PTR(err);
9b51f66d 7108}
fb0459d7 7109EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7110
0cda4c02
YZ
7111void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7112{
7113 struct perf_event_context *src_ctx;
7114 struct perf_event_context *dst_ctx;
7115 struct perf_event *event, *tmp;
7116 LIST_HEAD(events);
7117
7118 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7119 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7120
7121 mutex_lock(&src_ctx->mutex);
7122 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7123 event_entry) {
7124 perf_remove_from_context(event);
7125 put_ctx(src_ctx);
7126 list_add(&event->event_entry, &events);
7127 }
7128 mutex_unlock(&src_ctx->mutex);
7129
7130 synchronize_rcu();
7131
7132 mutex_lock(&dst_ctx->mutex);
7133 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7134 list_del(&event->event_entry);
7135 if (event->state >= PERF_EVENT_STATE_OFF)
7136 event->state = PERF_EVENT_STATE_INACTIVE;
7137 perf_install_in_context(dst_ctx, event, dst_cpu);
7138 get_ctx(dst_ctx);
7139 }
7140 mutex_unlock(&dst_ctx->mutex);
7141}
7142EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7143
cdd6c482 7144static void sync_child_event(struct perf_event *child_event,
38b200d6 7145 struct task_struct *child)
d859e29f 7146{
cdd6c482 7147 struct perf_event *parent_event = child_event->parent;
8bc20959 7148 u64 child_val;
d859e29f 7149
cdd6c482
IM
7150 if (child_event->attr.inherit_stat)
7151 perf_event_read_event(child_event, child);
38b200d6 7152
b5e58793 7153 child_val = perf_event_count(child_event);
d859e29f
PM
7154
7155 /*
7156 * Add back the child's count to the parent's count:
7157 */
a6e6dea6 7158 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7159 atomic64_add(child_event->total_time_enabled,
7160 &parent_event->child_total_time_enabled);
7161 atomic64_add(child_event->total_time_running,
7162 &parent_event->child_total_time_running);
d859e29f
PM
7163
7164 /*
cdd6c482 7165 * Remove this event from the parent's list
d859e29f 7166 */
cdd6c482
IM
7167 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7168 mutex_lock(&parent_event->child_mutex);
7169 list_del_init(&child_event->child_list);
7170 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7171
7172 /*
cdd6c482 7173 * Release the parent event, if this was the last
d859e29f
PM
7174 * reference to it.
7175 */
a6fa941d 7176 put_event(parent_event);
d859e29f
PM
7177}
7178
9b51f66d 7179static void
cdd6c482
IM
7180__perf_event_exit_task(struct perf_event *child_event,
7181 struct perf_event_context *child_ctx,
38b200d6 7182 struct task_struct *child)
9b51f66d 7183{
38b435b1
PZ
7184 if (child_event->parent) {
7185 raw_spin_lock_irq(&child_ctx->lock);
7186 perf_group_detach(child_event);
7187 raw_spin_unlock_irq(&child_ctx->lock);
7188 }
9b51f66d 7189
fe4b04fa 7190 perf_remove_from_context(child_event);
0cc0c027 7191
9b51f66d 7192 /*
38b435b1 7193 * It can happen that the parent exits first, and has events
9b51f66d 7194 * that are still around due to the child reference. These
38b435b1 7195 * events need to be zapped.
9b51f66d 7196 */
38b435b1 7197 if (child_event->parent) {
cdd6c482
IM
7198 sync_child_event(child_event, child);
7199 free_event(child_event);
4bcf349a 7200 }
9b51f66d
IM
7201}
7202
8dc85d54 7203static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7204{
cdd6c482
IM
7205 struct perf_event *child_event, *tmp;
7206 struct perf_event_context *child_ctx;
a63eaf34 7207 unsigned long flags;
9b51f66d 7208
8dc85d54 7209 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7210 perf_event_task(child, NULL, 0);
9b51f66d 7211 return;
9f498cc5 7212 }
9b51f66d 7213
a63eaf34 7214 local_irq_save(flags);
ad3a37de
PM
7215 /*
7216 * We can't reschedule here because interrupts are disabled,
7217 * and either child is current or it is a task that can't be
7218 * scheduled, so we are now safe from rescheduling changing
7219 * our context.
7220 */
806839b2 7221 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7222
7223 /*
7224 * Take the context lock here so that if find_get_context is
cdd6c482 7225 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7226 * incremented the context's refcount before we do put_ctx below.
7227 */
e625cce1 7228 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7229 task_ctx_sched_out(child_ctx);
8dc85d54 7230 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7231 /*
7232 * If this context is a clone; unclone it so it can't get
7233 * swapped to another process while we're removing all
cdd6c482 7234 * the events from it.
71a851b4
PZ
7235 */
7236 unclone_ctx(child_ctx);
5e942bb3 7237 update_context_time(child_ctx);
e625cce1 7238 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7239
7240 /*
cdd6c482
IM
7241 * Report the task dead after unscheduling the events so that we
7242 * won't get any samples after PERF_RECORD_EXIT. We can however still
7243 * get a few PERF_RECORD_READ events.
9f498cc5 7244 */
cdd6c482 7245 perf_event_task(child, child_ctx, 0);
a63eaf34 7246
66fff224
PZ
7247 /*
7248 * We can recurse on the same lock type through:
7249 *
cdd6c482
IM
7250 * __perf_event_exit_task()
7251 * sync_child_event()
a6fa941d
AV
7252 * put_event()
7253 * mutex_lock(&ctx->mutex)
66fff224
PZ
7254 *
7255 * But since its the parent context it won't be the same instance.
7256 */
a0507c84 7257 mutex_lock(&child_ctx->mutex);
a63eaf34 7258
8bc20959 7259again:
889ff015
FW
7260 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7261 group_entry)
7262 __perf_event_exit_task(child_event, child_ctx, child);
7263
7264 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7265 group_entry)
cdd6c482 7266 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7267
7268 /*
cdd6c482 7269 * If the last event was a group event, it will have appended all
8bc20959
PZ
7270 * its siblings to the list, but we obtained 'tmp' before that which
7271 * will still point to the list head terminating the iteration.
7272 */
889ff015
FW
7273 if (!list_empty(&child_ctx->pinned_groups) ||
7274 !list_empty(&child_ctx->flexible_groups))
8bc20959 7275 goto again;
a63eaf34
PM
7276
7277 mutex_unlock(&child_ctx->mutex);
7278
7279 put_ctx(child_ctx);
9b51f66d
IM
7280}
7281
8dc85d54
PZ
7282/*
7283 * When a child task exits, feed back event values to parent events.
7284 */
7285void perf_event_exit_task(struct task_struct *child)
7286{
8882135b 7287 struct perf_event *event, *tmp;
8dc85d54
PZ
7288 int ctxn;
7289
8882135b
PZ
7290 mutex_lock(&child->perf_event_mutex);
7291 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7292 owner_entry) {
7293 list_del_init(&event->owner_entry);
7294
7295 /*
7296 * Ensure the list deletion is visible before we clear
7297 * the owner, closes a race against perf_release() where
7298 * we need to serialize on the owner->perf_event_mutex.
7299 */
7300 smp_wmb();
7301 event->owner = NULL;
7302 }
7303 mutex_unlock(&child->perf_event_mutex);
7304
8dc85d54
PZ
7305 for_each_task_context_nr(ctxn)
7306 perf_event_exit_task_context(child, ctxn);
7307}
7308
889ff015
FW
7309static void perf_free_event(struct perf_event *event,
7310 struct perf_event_context *ctx)
7311{
7312 struct perf_event *parent = event->parent;
7313
7314 if (WARN_ON_ONCE(!parent))
7315 return;
7316
7317 mutex_lock(&parent->child_mutex);
7318 list_del_init(&event->child_list);
7319 mutex_unlock(&parent->child_mutex);
7320
a6fa941d 7321 put_event(parent);
889ff015 7322
8a49542c 7323 perf_group_detach(event);
889ff015
FW
7324 list_del_event(event, ctx);
7325 free_event(event);
7326}
7327
bbbee908
PZ
7328/*
7329 * free an unexposed, unused context as created by inheritance by
8dc85d54 7330 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7331 */
cdd6c482 7332void perf_event_free_task(struct task_struct *task)
bbbee908 7333{
8dc85d54 7334 struct perf_event_context *ctx;
cdd6c482 7335 struct perf_event *event, *tmp;
8dc85d54 7336 int ctxn;
bbbee908 7337
8dc85d54
PZ
7338 for_each_task_context_nr(ctxn) {
7339 ctx = task->perf_event_ctxp[ctxn];
7340 if (!ctx)
7341 continue;
bbbee908 7342
8dc85d54 7343 mutex_lock(&ctx->mutex);
bbbee908 7344again:
8dc85d54
PZ
7345 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7346 group_entry)
7347 perf_free_event(event, ctx);
bbbee908 7348
8dc85d54
PZ
7349 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7350 group_entry)
7351 perf_free_event(event, ctx);
bbbee908 7352
8dc85d54
PZ
7353 if (!list_empty(&ctx->pinned_groups) ||
7354 !list_empty(&ctx->flexible_groups))
7355 goto again;
bbbee908 7356
8dc85d54 7357 mutex_unlock(&ctx->mutex);
bbbee908 7358
8dc85d54
PZ
7359 put_ctx(ctx);
7360 }
889ff015
FW
7361}
7362
4e231c79
PZ
7363void perf_event_delayed_put(struct task_struct *task)
7364{
7365 int ctxn;
7366
7367 for_each_task_context_nr(ctxn)
7368 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7369}
7370
97dee4f3
PZ
7371/*
7372 * inherit a event from parent task to child task:
7373 */
7374static struct perf_event *
7375inherit_event(struct perf_event *parent_event,
7376 struct task_struct *parent,
7377 struct perf_event_context *parent_ctx,
7378 struct task_struct *child,
7379 struct perf_event *group_leader,
7380 struct perf_event_context *child_ctx)
7381{
7382 struct perf_event *child_event;
cee010ec 7383 unsigned long flags;
97dee4f3
PZ
7384
7385 /*
7386 * Instead of creating recursive hierarchies of events,
7387 * we link inherited events back to the original parent,
7388 * which has a filp for sure, which we use as the reference
7389 * count:
7390 */
7391 if (parent_event->parent)
7392 parent_event = parent_event->parent;
7393
7394 child_event = perf_event_alloc(&parent_event->attr,
7395 parent_event->cpu,
d580ff86 7396 child,
97dee4f3 7397 group_leader, parent_event,
4dc0da86 7398 NULL, NULL);
97dee4f3
PZ
7399 if (IS_ERR(child_event))
7400 return child_event;
a6fa941d
AV
7401
7402 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7403 free_event(child_event);
7404 return NULL;
7405 }
7406
97dee4f3
PZ
7407 get_ctx(child_ctx);
7408
7409 /*
7410 * Make the child state follow the state of the parent event,
7411 * not its attr.disabled bit. We hold the parent's mutex,
7412 * so we won't race with perf_event_{en, dis}able_family.
7413 */
7414 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7415 child_event->state = PERF_EVENT_STATE_INACTIVE;
7416 else
7417 child_event->state = PERF_EVENT_STATE_OFF;
7418
7419 if (parent_event->attr.freq) {
7420 u64 sample_period = parent_event->hw.sample_period;
7421 struct hw_perf_event *hwc = &child_event->hw;
7422
7423 hwc->sample_period = sample_period;
7424 hwc->last_period = sample_period;
7425
7426 local64_set(&hwc->period_left, sample_period);
7427 }
7428
7429 child_event->ctx = child_ctx;
7430 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7431 child_event->overflow_handler_context
7432 = parent_event->overflow_handler_context;
97dee4f3 7433
614b6780
TG
7434 /*
7435 * Precalculate sample_data sizes
7436 */
7437 perf_event__header_size(child_event);
6844c09d 7438 perf_event__id_header_size(child_event);
614b6780 7439
97dee4f3
PZ
7440 /*
7441 * Link it up in the child's context:
7442 */
cee010ec 7443 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7444 add_event_to_ctx(child_event, child_ctx);
cee010ec 7445 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7446
97dee4f3
PZ
7447 /*
7448 * Link this into the parent event's child list
7449 */
7450 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7451 mutex_lock(&parent_event->child_mutex);
7452 list_add_tail(&child_event->child_list, &parent_event->child_list);
7453 mutex_unlock(&parent_event->child_mutex);
7454
7455 return child_event;
7456}
7457
7458static int inherit_group(struct perf_event *parent_event,
7459 struct task_struct *parent,
7460 struct perf_event_context *parent_ctx,
7461 struct task_struct *child,
7462 struct perf_event_context *child_ctx)
7463{
7464 struct perf_event *leader;
7465 struct perf_event *sub;
7466 struct perf_event *child_ctr;
7467
7468 leader = inherit_event(parent_event, parent, parent_ctx,
7469 child, NULL, child_ctx);
7470 if (IS_ERR(leader))
7471 return PTR_ERR(leader);
7472 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7473 child_ctr = inherit_event(sub, parent, parent_ctx,
7474 child, leader, child_ctx);
7475 if (IS_ERR(child_ctr))
7476 return PTR_ERR(child_ctr);
7477 }
7478 return 0;
889ff015
FW
7479}
7480
7481static int
7482inherit_task_group(struct perf_event *event, struct task_struct *parent,
7483 struct perf_event_context *parent_ctx,
8dc85d54 7484 struct task_struct *child, int ctxn,
889ff015
FW
7485 int *inherited_all)
7486{
7487 int ret;
8dc85d54 7488 struct perf_event_context *child_ctx;
889ff015
FW
7489
7490 if (!event->attr.inherit) {
7491 *inherited_all = 0;
7492 return 0;
bbbee908
PZ
7493 }
7494
fe4b04fa 7495 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7496 if (!child_ctx) {
7497 /*
7498 * This is executed from the parent task context, so
7499 * inherit events that have been marked for cloning.
7500 * First allocate and initialize a context for the
7501 * child.
7502 */
bbbee908 7503
734df5ab 7504 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7505 if (!child_ctx)
7506 return -ENOMEM;
bbbee908 7507
8dc85d54 7508 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7509 }
7510
7511 ret = inherit_group(event, parent, parent_ctx,
7512 child, child_ctx);
7513
7514 if (ret)
7515 *inherited_all = 0;
7516
7517 return ret;
bbbee908
PZ
7518}
7519
9b51f66d 7520/*
cdd6c482 7521 * Initialize the perf_event context in task_struct
9b51f66d 7522 */
8dc85d54 7523int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7524{
889ff015 7525 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7526 struct perf_event_context *cloned_ctx;
7527 struct perf_event *event;
9b51f66d 7528 struct task_struct *parent = current;
564c2b21 7529 int inherited_all = 1;
dddd3379 7530 unsigned long flags;
6ab423e0 7531 int ret = 0;
9b51f66d 7532
8dc85d54 7533 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7534 return 0;
7535
ad3a37de 7536 /*
25346b93
PM
7537 * If the parent's context is a clone, pin it so it won't get
7538 * swapped under us.
ad3a37de 7539 */
8dc85d54 7540 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7541
ad3a37de
PM
7542 /*
7543 * No need to check if parent_ctx != NULL here; since we saw
7544 * it non-NULL earlier, the only reason for it to become NULL
7545 * is if we exit, and since we're currently in the middle of
7546 * a fork we can't be exiting at the same time.
7547 */
ad3a37de 7548
9b51f66d
IM
7549 /*
7550 * Lock the parent list. No need to lock the child - not PID
7551 * hashed yet and not running, so nobody can access it.
7552 */
d859e29f 7553 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7554
7555 /*
7556 * We dont have to disable NMIs - we are only looking at
7557 * the list, not manipulating it:
7558 */
889ff015 7559 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7560 ret = inherit_task_group(event, parent, parent_ctx,
7561 child, ctxn, &inherited_all);
889ff015
FW
7562 if (ret)
7563 break;
7564 }
b93f7978 7565
dddd3379
TG
7566 /*
7567 * We can't hold ctx->lock when iterating the ->flexible_group list due
7568 * to allocations, but we need to prevent rotation because
7569 * rotate_ctx() will change the list from interrupt context.
7570 */
7571 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7572 parent_ctx->rotate_disable = 1;
7573 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7574
889ff015 7575 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7576 ret = inherit_task_group(event, parent, parent_ctx,
7577 child, ctxn, &inherited_all);
889ff015 7578 if (ret)
9b51f66d 7579 break;
564c2b21
PM
7580 }
7581
dddd3379
TG
7582 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7583 parent_ctx->rotate_disable = 0;
dddd3379 7584
8dc85d54 7585 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7586
05cbaa28 7587 if (child_ctx && inherited_all) {
564c2b21
PM
7588 /*
7589 * Mark the child context as a clone of the parent
7590 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7591 *
7592 * Note that if the parent is a clone, the holding of
7593 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7594 */
c5ed5145 7595 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7596 if (cloned_ctx) {
7597 child_ctx->parent_ctx = cloned_ctx;
25346b93 7598 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7599 } else {
7600 child_ctx->parent_ctx = parent_ctx;
7601 child_ctx->parent_gen = parent_ctx->generation;
7602 }
7603 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7604 }
7605
c5ed5145 7606 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7607 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7608
25346b93 7609 perf_unpin_context(parent_ctx);
fe4b04fa 7610 put_ctx(parent_ctx);
ad3a37de 7611
6ab423e0 7612 return ret;
9b51f66d
IM
7613}
7614
8dc85d54
PZ
7615/*
7616 * Initialize the perf_event context in task_struct
7617 */
7618int perf_event_init_task(struct task_struct *child)
7619{
7620 int ctxn, ret;
7621
8550d7cb
ON
7622 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7623 mutex_init(&child->perf_event_mutex);
7624 INIT_LIST_HEAD(&child->perf_event_list);
7625
8dc85d54
PZ
7626 for_each_task_context_nr(ctxn) {
7627 ret = perf_event_init_context(child, ctxn);
7628 if (ret)
7629 return ret;
7630 }
7631
7632 return 0;
7633}
7634
220b140b
PM
7635static void __init perf_event_init_all_cpus(void)
7636{
b28ab83c 7637 struct swevent_htable *swhash;
220b140b 7638 int cpu;
220b140b
PM
7639
7640 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7641 swhash = &per_cpu(swevent_htable, cpu);
7642 mutex_init(&swhash->hlist_mutex);
e9d2b064 7643 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7644 }
7645}
7646
0db0628d 7647static void perf_event_init_cpu(int cpu)
0793a61d 7648{
108b02cf 7649 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7650
b28ab83c 7651 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7652 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7653 struct swevent_hlist *hlist;
7654
b28ab83c
PZ
7655 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7656 WARN_ON(!hlist);
7657 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7658 }
b28ab83c 7659 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7660}
7661
c277443c 7662#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7663static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7664{
e9d2b064
PZ
7665 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7666
7667 WARN_ON(!irqs_disabled());
7668
7669 list_del_init(&cpuctx->rotation_list);
7670}
7671
108b02cf 7672static void __perf_event_exit_context(void *__info)
0793a61d 7673{
108b02cf 7674 struct perf_event_context *ctx = __info;
cdd6c482 7675 struct perf_event *event, *tmp;
0793a61d 7676
108b02cf 7677 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7678
889ff015 7679 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7680 __perf_remove_from_context(event);
889ff015 7681 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7682 __perf_remove_from_context(event);
0793a61d 7683}
108b02cf
PZ
7684
7685static void perf_event_exit_cpu_context(int cpu)
7686{
7687 struct perf_event_context *ctx;
7688 struct pmu *pmu;
7689 int idx;
7690
7691 idx = srcu_read_lock(&pmus_srcu);
7692 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7693 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7694
7695 mutex_lock(&ctx->mutex);
7696 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7697 mutex_unlock(&ctx->mutex);
7698 }
7699 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7700}
7701
cdd6c482 7702static void perf_event_exit_cpu(int cpu)
0793a61d 7703{
b28ab83c 7704 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7705
b28ab83c
PZ
7706 mutex_lock(&swhash->hlist_mutex);
7707 swevent_hlist_release(swhash);
7708 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7709
108b02cf 7710 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7711}
7712#else
cdd6c482 7713static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7714#endif
7715
c277443c
PZ
7716static int
7717perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7718{
7719 int cpu;
7720
7721 for_each_online_cpu(cpu)
7722 perf_event_exit_cpu(cpu);
7723
7724 return NOTIFY_OK;
7725}
7726
7727/*
7728 * Run the perf reboot notifier at the very last possible moment so that
7729 * the generic watchdog code runs as long as possible.
7730 */
7731static struct notifier_block perf_reboot_notifier = {
7732 .notifier_call = perf_reboot,
7733 .priority = INT_MIN,
7734};
7735
0db0628d 7736static int
0793a61d
TG
7737perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7738{
7739 unsigned int cpu = (long)hcpu;
7740
4536e4d1 7741 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7742
7743 case CPU_UP_PREPARE:
5e11637e 7744 case CPU_DOWN_FAILED:
cdd6c482 7745 perf_event_init_cpu(cpu);
0793a61d
TG
7746 break;
7747
5e11637e 7748 case CPU_UP_CANCELED:
0793a61d 7749 case CPU_DOWN_PREPARE:
cdd6c482 7750 perf_event_exit_cpu(cpu);
0793a61d 7751 break;
0793a61d
TG
7752 default:
7753 break;
7754 }
7755
7756 return NOTIFY_OK;
7757}
7758
cdd6c482 7759void __init perf_event_init(void)
0793a61d 7760{
3c502e7a
JW
7761 int ret;
7762
2e80a82a
PZ
7763 idr_init(&pmu_idr);
7764
220b140b 7765 perf_event_init_all_cpus();
b0a873eb 7766 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7767 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7768 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7769 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7770 perf_tp_register();
7771 perf_cpu_notifier(perf_cpu_notify);
c277443c 7772 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7773
7774 ret = init_hw_breakpoint();
7775 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7776
7777 /* do not patch jump label more than once per second */
7778 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7779
7780 /*
7781 * Build time assertion that we keep the data_head at the intended
7782 * location. IOW, validation we got the __reserved[] size right.
7783 */
7784 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7785 != 1024);
0793a61d 7786}
abe43400
PZ
7787
7788static int __init perf_event_sysfs_init(void)
7789{
7790 struct pmu *pmu;
7791 int ret;
7792
7793 mutex_lock(&pmus_lock);
7794
7795 ret = bus_register(&pmu_bus);
7796 if (ret)
7797 goto unlock;
7798
7799 list_for_each_entry(pmu, &pmus, entry) {
7800 if (!pmu->name || pmu->type < 0)
7801 continue;
7802
7803 ret = pmu_dev_alloc(pmu);
7804 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7805 }
7806 pmu_bus_running = 1;
7807 ret = 0;
7808
7809unlock:
7810 mutex_unlock(&pmus_lock);
7811
7812 return ret;
7813}
7814device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7815
7816#ifdef CONFIG_CGROUP_PERF
92fb9748 7817static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7818{
7819 struct perf_cgroup *jc;
e5d1367f 7820
1b15d055 7821 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7822 if (!jc)
7823 return ERR_PTR(-ENOMEM);
7824
e5d1367f
SE
7825 jc->info = alloc_percpu(struct perf_cgroup_info);
7826 if (!jc->info) {
7827 kfree(jc);
7828 return ERR_PTR(-ENOMEM);
7829 }
7830
e5d1367f
SE
7831 return &jc->css;
7832}
7833
92fb9748 7834static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7835{
7836 struct perf_cgroup *jc;
7837 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7838 struct perf_cgroup, css);
7839 free_percpu(jc->info);
7840 kfree(jc);
7841}
7842
7843static int __perf_cgroup_move(void *info)
7844{
7845 struct task_struct *task = info;
7846 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7847 return 0;
7848}
7849
761b3ef5 7850static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7851{
bb9d97b6
TH
7852 struct task_struct *task;
7853
7854 cgroup_taskset_for_each(task, cgrp, tset)
7855 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7856}
7857
761b3ef5
LZ
7858static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7859 struct task_struct *task)
e5d1367f
SE
7860{
7861 /*
7862 * cgroup_exit() is called in the copy_process() failure path.
7863 * Ignore this case since the task hasn't ran yet, this avoids
7864 * trying to poke a half freed task state from generic code.
7865 */
7866 if (!(task->flags & PF_EXITING))
7867 return;
7868
bb9d97b6 7869 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7870}
7871
7872struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7873 .name = "perf_event",
7874 .subsys_id = perf_subsys_id,
92fb9748
TH
7875 .css_alloc = perf_cgroup_css_alloc,
7876 .css_free = perf_cgroup_css_free,
e7e7ee2e 7877 .exit = perf_cgroup_exit,
bb9d97b6 7878 .attach = perf_cgroup_attach,
e5d1367f
SE
7879};
7880#endif /* CONFIG_CGROUP_PERF */