Merge branch 'perf/urgent' into perf/core
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
0b3fcf17
SE
121enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125};
126
e5d1367f
SE
127/*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
c5905afb 131struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f
SE
132static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
cdd6c482
IM
134static atomic_t nr_mmap_events __read_mostly;
135static atomic_t nr_comm_events __read_mostly;
136static atomic_t nr_task_events __read_mostly;
9ee318a7 137
108b02cf
PZ
138static LIST_HEAD(pmus);
139static DEFINE_MUTEX(pmus_lock);
140static struct srcu_struct pmus_srcu;
141
0764771d 142/*
cdd6c482 143 * perf event paranoia level:
0fbdea19
IM
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 146 * 1 - disallow cpu events for unpriv
0fbdea19 147 * 2 - disallow kernel profiling for unpriv
0764771d 148 */
cdd6c482 149int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 150
20443384
FW
151/* Minimum for 512 kiB + 1 user control page */
152int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
153
154/*
cdd6c482 155 * max perf event sample rate
df58ab24 156 */
163ec435
PZ
157#define DEFAULT_MAX_SAMPLE_RATE 100000
158int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165{
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174}
1ccd1549 175
cdd6c482 176static atomic64_t perf_event_id;
a96bbc16 177
0b3fcf17
SE
178static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185static void update_context_time(struct perf_event_context *ctx);
186static u64 perf_event_time(struct perf_event *event);
0b3fcf17 187
10c6db11
PZ
188static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
cdd6c482 191void __weak perf_event_print_debug(void) { }
0793a61d 192
84c79910 193extern __weak const char *perf_pmu_name(void)
0793a61d 194{
84c79910 195 return "pmu";
0793a61d
TG
196}
197
0b3fcf17
SE
198static inline u64 perf_clock(void)
199{
200 return local_clock();
201}
202
e5d1367f
SE
203static inline struct perf_cpu_context *
204__get_cpu_context(struct perf_event_context *ctx)
205{
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207}
208
facc4307
PZ
209static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211{
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215}
216
217static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223}
224
e5d1367f
SE
225#ifdef CONFIG_CGROUP_PERF
226
3f7cce3c
SE
227/*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
e5d1367f
SE
232static inline struct perf_cgroup *
233perf_cgroup_from_task(struct task_struct *task)
234{
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237}
238
239static inline bool
240perf_cgroup_match(struct perf_event *event)
241{
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246}
247
248static inline void perf_get_cgroup(struct perf_event *event)
249{
250 css_get(&event->cgrp->css);
251}
252
253static inline void perf_put_cgroup(struct perf_event *event)
254{
255 css_put(&event->cgrp->css);
256}
257
258static inline void perf_detach_cgroup(struct perf_event *event)
259{
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262}
263
264static inline int is_cgroup_event(struct perf_event *event)
265{
266 return event->cgrp != NULL;
267}
268
269static inline u64 perf_cgroup_event_time(struct perf_event *event)
270{
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275}
276
277static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278{
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288}
289
290static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291{
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295}
296
297static inline void update_cgrp_time_from_event(struct perf_event *event)
298{
3f7cce3c
SE
299 struct perf_cgroup *cgrp;
300
e5d1367f 301 /*
3f7cce3c
SE
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
e5d1367f 304 */
3f7cce3c 305 if (!is_cgroup_event(event))
e5d1367f
SE
306 return;
307
3f7cce3c
SE
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
e5d1367f
SE
314}
315
316static inline void
3f7cce3c
SE
317perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
e5d1367f
SE
319{
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
3f7cce3c
SE
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
3f7cce3c 333 info->timestamp = ctx->timestamp;
e5d1367f
SE
334}
335
336#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339/*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345void perf_cgroup_switch(struct task_struct *task, int mode)
346{
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
e5d1367f
SE
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
e566b76e 388 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
facc4307
PZ
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 398 }
e5d1367f
SE
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404}
405
a8d757ef
SE
406static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
e5d1367f 408{
a8d757ef
SE
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
431}
432
a8d757ef
SE
433static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
e5d1367f 435{
a8d757ef
SE
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
454}
455
456static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459{
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
e5d1367f
SE
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
f75e18cb
LZ
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
e5d1367f
SE
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
e5d1367f 489 }
3db272c0 490out:
e5d1367f
SE
491 fput_light(file, fput_needed);
492 return ret;
493}
494
495static inline void
496perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497{
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501}
502
503static inline void
504perf_cgroup_defer_enabled(struct perf_event *event)
505{
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514}
515
516static inline void
517perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519{
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535}
536#else /* !CONFIG_CGROUP_PERF */
537
538static inline bool
539perf_cgroup_match(struct perf_event *event)
540{
541 return true;
542}
543
544static inline void perf_detach_cgroup(struct perf_event *event)
545{}
546
547static inline int is_cgroup_event(struct perf_event *event)
548{
549 return 0;
550}
551
552static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553{
554 return 0;
555}
556
557static inline void update_cgrp_time_from_event(struct perf_event *event)
558{
559}
560
561static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562{
563}
564
a8d757ef
SE
565static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
e5d1367f
SE
567{
568}
569
a8d757ef
SE
570static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
e5d1367f
SE
572{
573}
574
575static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578{
579 return -EINVAL;
580}
581
582static inline void
3f7cce3c
SE
583perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
e5d1367f
SE
585{
586}
587
588void
589perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590{
591}
592
593static inline void
594perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595{
596}
597
598static inline u64 perf_cgroup_event_time(struct perf_event *event)
599{
600 return 0;
601}
602
603static inline void
604perf_cgroup_defer_enabled(struct perf_event *event)
605{
606}
607
608static inline void
609perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611{
612}
613#endif
614
33696fc0 615void perf_pmu_disable(struct pmu *pmu)
9e35ad38 616{
33696fc0
PZ
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
9e35ad38 620}
9e35ad38 621
33696fc0 622void perf_pmu_enable(struct pmu *pmu)
9e35ad38 623{
33696fc0
PZ
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
9e35ad38 627}
9e35ad38 628
e9d2b064
PZ
629static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631/*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
108b02cf 636static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 637{
108b02cf 638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 639 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 640
e9d2b064 641 WARN_ON(!irqs_disabled());
b5ab4cd5 642
e9d2b064
PZ
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
9e35ad38 645}
9e35ad38 646
cdd6c482 647static void get_ctx(struct perf_event_context *ctx)
a63eaf34 648{
e5289d4a 649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
650}
651
cdd6c482 652static void put_ctx(struct perf_event_context *ctx)
a63eaf34 653{
564c2b21
PM
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
c93f7669
PM
657 if (ctx->task)
658 put_task_struct(ctx->task);
cb796ff3 659 kfree_rcu(ctx, rcu_head);
564c2b21 660 }
a63eaf34
PM
661}
662
cdd6c482 663static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
664{
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669}
670
6844c09d
ACM
671static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672{
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680}
681
682static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683{
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691}
692
7f453c24 693/*
cdd6c482 694 * If we inherit events we want to return the parent event id
7f453c24
PZ
695 * to userspace.
696 */
cdd6c482 697static u64 primary_event_id(struct perf_event *event)
7f453c24 698{
cdd6c482 699 u64 id = event->id;
7f453c24 700
cdd6c482
IM
701 if (event->parent)
702 id = event->parent->id;
7f453c24
PZ
703
704 return id;
705}
706
25346b93 707/*
cdd6c482 708 * Get the perf_event_context for a task and lock it.
25346b93
PM
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
cdd6c482 712static struct perf_event_context *
8dc85d54 713perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 714{
cdd6c482 715 struct perf_event_context *ctx;
25346b93
PM
716
717 rcu_read_lock();
9ed6060d 718retry:
8dc85d54 719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
cdd6c482 724 * perf_event_task_sched_out, though the
25346b93
PM
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
e625cce1 731 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
734 goto retry;
735 }
b49a9e7e
PZ
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
739 ctx = NULL;
740 }
25346b93
PM
741 }
742 rcu_read_unlock();
743 return ctx;
744}
745
746/*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
8dc85d54
PZ
751static struct perf_event_context *
752perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 753{
cdd6c482 754 struct perf_event_context *ctx;
25346b93
PM
755 unsigned long flags;
756
8dc85d54 757 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
758 if (ctx) {
759 ++ctx->pin_count;
e625cce1 760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
761 }
762 return ctx;
763}
764
cdd6c482 765static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
766{
767 unsigned long flags;
768
e625cce1 769 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 770 --ctx->pin_count;
e625cce1 771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
772}
773
f67218c3
PZ
774/*
775 * Update the record of the current time in a context.
776 */
777static void update_context_time(struct perf_event_context *ctx)
778{
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783}
784
4158755d
SE
785static u64 perf_event_time(struct perf_event *event)
786{
787 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
4158755d
SE
792 return ctx ? ctx->time : 0;
793}
794
f67218c3
PZ
795/*
796 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 797 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
798 */
799static void update_event_times(struct perf_event *event)
800{
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
e5d1367f
SE
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
46cd6a7f 818 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
819 else if (ctx->is_active)
820 run_end = ctx->time;
acd1d7c1
PZ
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
4158755d 829 run_end = perf_event_time(event);
f67218c3
PZ
830
831 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 832
f67218c3
PZ
833}
834
96c21a46
PZ
835/*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838static void update_group_times(struct perf_event *leader)
839{
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845}
846
889ff015
FW
847static struct list_head *
848ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849{
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854}
855
fccc714b 856/*
cdd6c482 857 * Add a event from the lists for its context.
fccc714b
PZ
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
04289bb9 860static void
cdd6c482 861list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 862{
8a49542c
PZ
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
865
866 /*
8a49542c
PZ
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
04289bb9 870 */
8a49542c 871 if (event->group_leader == event) {
889ff015
FW
872 struct list_head *list;
873
d6f962b5
FW
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
889ff015
FW
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
5c148194 879 }
592903cd 880
08309379 881 if (is_cgroup_event(event))
e5d1367f 882 ctx->nr_cgroups++;
e5d1367f 883
cdd6c482 884 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 885 if (!ctx->nr_events)
108b02cf 886 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
bfbd3381 889 ctx->nr_stat++;
04289bb9
IM
890}
891
c320c7b7
ACM
892/*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896static void perf_event__read_size(struct perf_event *event)
897{
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918}
919
920static void perf_event__header_size(struct perf_event *event)
921{
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
6844c09d
ACM
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941}
942
943static void perf_event__id_header_size(struct perf_event *event)
944{
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
c320c7b7
ACM
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
c320c7b7
ACM
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
6844c09d 964 event->id_header_size = size;
c320c7b7
ACM
965}
966
8a49542c
PZ
967static void perf_group_attach(struct perf_event *event)
968{
c320c7b7 969 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 970
74c3337c
PZ
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
8a49542c
PZ
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
c320c7b7
ACM
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
8a49542c
PZ
993}
994
a63eaf34 995/*
cdd6c482 996 * Remove a event from the lists for its context.
fccc714b 997 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 998 */
04289bb9 999static void
cdd6c482 1000list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1001{
68cacd29 1002 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1007 return;
8a49542c
PZ
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
68cacd29 1011 if (is_cgroup_event(event)) {
e5d1367f 1012 ctx->nr_cgroups--;
68cacd29
SE
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
e5d1367f 1022
cdd6c482
IM
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
bfbd3381 1025 ctx->nr_stat--;
8bc20959 1026
cdd6c482 1027 list_del_rcu(&event->event_entry);
04289bb9 1028
8a49542c
PZ
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
5c148194 1031
96c21a46 1032 update_group_times(event);
b2e74a26
SE
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1043}
1044
8a49542c 1045static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1046{
1047 struct perf_event *sibling, *tmp;
8a49542c
PZ
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
c320c7b7 1064 goto out;
8a49542c
PZ
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
2e2af50b 1069
04289bb9 1070 /*
cdd6c482
IM
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
8a49542c 1073 * to whatever list we are on.
04289bb9 1074 */
cdd6c482 1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
04289bb9 1078 sibling->group_leader = sibling;
d6f962b5
FW
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
04289bb9 1082 }
c320c7b7
ACM
1083
1084out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
04289bb9
IM
1089}
1090
fa66f07a
SE
1091static inline int
1092event_filter_match(struct perf_event *event)
1093{
e5d1367f
SE
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
fa66f07a
SE
1096}
1097
9ffcfa6f
SE
1098static void
1099event_sched_out(struct perf_event *event,
3b6f9e5c 1100 struct perf_cpu_context *cpuctx,
cdd6c482 1101 struct perf_event_context *ctx)
3b6f9e5c 1102{
4158755d 1103 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
e5d1367f 1113 delta = tstamp - event->tstamp_stopped;
fa66f07a 1114 event->tstamp_running += delta;
4158755d 1115 event->tstamp_stopped = tstamp;
fa66f07a
SE
1116 }
1117
cdd6c482 1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1119 return;
3b6f9e5c 1120
cdd6c482
IM
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
970892a9 1125 }
4158755d 1126 event->tstamp_stopped = tstamp;
a4eaf7f1 1127 event->pmu->del(event, 0);
cdd6c482 1128 event->oncpu = -1;
3b6f9e5c 1129
cdd6c482 1130 if (!is_software_event(event))
3b6f9e5c
PM
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
0f5a2601
PZ
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
cdd6c482 1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1136 cpuctx->exclusive = 0;
1137}
1138
d859e29f 1139static void
cdd6c482 1140group_sched_out(struct perf_event *group_event,
d859e29f 1141 struct perf_cpu_context *cpuctx,
cdd6c482 1142 struct perf_event_context *ctx)
d859e29f 1143{
cdd6c482 1144 struct perf_event *event;
fa66f07a 1145 int state = group_event->state;
d859e29f 1146
cdd6c482 1147 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
cdd6c482
IM
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
d859e29f 1154
fa66f07a 1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1156 cpuctx->exclusive = 0;
1157}
1158
0793a61d 1159/*
cdd6c482 1160 * Cross CPU call to remove a performance event
0793a61d 1161 *
cdd6c482 1162 * We disable the event on the hardware level first. After that we
0793a61d
TG
1163 * remove it from the context list.
1164 */
fe4b04fa 1165static int __perf_remove_from_context(void *info)
0793a61d 1166{
cdd6c482
IM
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
108b02cf 1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1170
e625cce1 1171 raw_spin_lock(&ctx->lock);
cdd6c482 1172 event_sched_out(event, cpuctx, ctx);
cdd6c482 1173 list_del_event(event, ctx);
64ce3126
PZ
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
e625cce1 1178 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1179
1180 return 0;
0793a61d
TG
1181}
1182
1183
1184/*
cdd6c482 1185 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1186 *
cdd6c482 1187 * CPU events are removed with a smp call. For task events we only
0793a61d 1188 * call when the task is on a CPU.
c93f7669 1189 *
cdd6c482
IM
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1194 * When called from perf_event_exit_task, it's OK because the
c93f7669 1195 * context has been detached from its task.
0793a61d 1196 */
fe4b04fa 1197static void perf_remove_from_context(struct perf_event *event)
0793a61d 1198{
cdd6c482 1199 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1200 struct task_struct *task = ctx->task;
1201
fe4b04fa
PZ
1202 lockdep_assert_held(&ctx->mutex);
1203
0793a61d
TG
1204 if (!task) {
1205 /*
cdd6c482 1206 * Per cpu events are removed via an smp call and
af901ca1 1207 * the removal is always successful.
0793a61d 1208 */
fe4b04fa 1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1210 return;
1211 }
1212
1213retry:
fe4b04fa
PZ
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
0793a61d 1216
e625cce1 1217 raw_spin_lock_irq(&ctx->lock);
0793a61d 1218 /*
fe4b04fa
PZ
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
0793a61d 1221 */
fe4b04fa 1222 if (ctx->is_active) {
e625cce1 1223 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1224 goto retry;
1225 }
1226
1227 /*
fe4b04fa
PZ
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1230 */
fe4b04fa 1231 list_del_event(event, ctx);
e625cce1 1232 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1233}
1234
d859e29f 1235/*
cdd6c482 1236 * Cross CPU call to disable a performance event
d859e29f 1237 */
fe4b04fa 1238static int __perf_event_disable(void *info)
d859e29f 1239{
cdd6c482 1240 struct perf_event *event = info;
cdd6c482 1241 struct perf_event_context *ctx = event->ctx;
108b02cf 1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1243
1244 /*
cdd6c482
IM
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
fe4b04fa
PZ
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
d859e29f 1250 */
665c2142 1251 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1252 return -EINVAL;
d859e29f 1253
e625cce1 1254 raw_spin_lock(&ctx->lock);
d859e29f
PM
1255
1256 /*
cdd6c482 1257 * If the event is on, turn it off.
d859e29f
PM
1258 * If it is in error state, leave it in error state.
1259 */
cdd6c482 1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1261 update_context_time(ctx);
e5d1367f 1262 update_cgrp_time_from_event(event);
cdd6c482
IM
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
d859e29f 1266 else
cdd6c482
IM
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1269 }
1270
e625cce1 1271 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1272
1273 return 0;
d859e29f
PM
1274}
1275
1276/*
cdd6c482 1277 * Disable a event.
c93f7669 1278 *
cdd6c482
IM
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
c93f7669 1281 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1286 * is the current context on this CPU and preemption is disabled,
cdd6c482 1287 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1288 */
44234adc 1289void perf_event_disable(struct perf_event *event)
d859e29f 1290{
cdd6c482 1291 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
cdd6c482 1296 * Disable the event on the cpu that it's on
d859e29f 1297 */
fe4b04fa 1298 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1299 return;
1300 }
1301
9ed6060d 1302retry:
fe4b04fa
PZ
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
d859e29f 1305
e625cce1 1306 raw_spin_lock_irq(&ctx->lock);
d859e29f 1307 /*
cdd6c482 1308 * If the event is still active, we need to retry the cross-call.
d859e29f 1309 */
cdd6c482 1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1311 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
d859e29f
PM
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
cdd6c482
IM
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1327 }
e625cce1 1328 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1329}
dcfce4a0 1330EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1331
e5d1367f
SE
1332static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335{
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365}
1366
4fe757dd
PZ
1367#define MAX_INTERRUPTS (~0ULL)
1368
1369static void perf_log_throttle(struct perf_event *event, int enable);
1370
235c7fc7 1371static int
9ffcfa6f 1372event_sched_in(struct perf_event *event,
235c7fc7 1373 struct perf_cpu_context *cpuctx,
6e37738a 1374 struct perf_event_context *ctx)
235c7fc7 1375{
4158755d
SE
1376 u64 tstamp = perf_event_time(event);
1377
cdd6c482 1378 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1379 return 0;
1380
cdd6c482 1381 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1382 event->oncpu = smp_processor_id();
4fe757dd
PZ
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
235c7fc7
IM
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
a4eaf7f1 1399 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
235c7fc7
IM
1402 return -EAGAIN;
1403 }
1404
4158755d 1405 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1406
e5d1367f 1407 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1408
cdd6c482 1409 if (!is_software_event(event))
3b6f9e5c 1410 cpuctx->active_oncpu++;
235c7fc7 1411 ctx->nr_active++;
0f5a2601
PZ
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
235c7fc7 1414
cdd6c482 1415 if (event->attr.exclusive)
3b6f9e5c
PM
1416 cpuctx->exclusive = 1;
1417
235c7fc7
IM
1418 return 0;
1419}
1420
6751b71e 1421static int
cdd6c482 1422group_sched_in(struct perf_event *group_event,
6751b71e 1423 struct perf_cpu_context *cpuctx,
6e37738a 1424 struct perf_event_context *ctx)
6751b71e 1425{
6bde9b6c 1426 struct perf_event *event, *partial_group = NULL;
51b0fe39 1427 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1428 u64 now = ctx->time;
1429 bool simulate = false;
6751b71e 1430
cdd6c482 1431 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1432 return 0;
1433
ad5133b7 1434 pmu->start_txn(pmu);
6bde9b6c 1435
9ffcfa6f 1436 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1437 pmu->cancel_txn(pmu);
6751b71e 1438 return -EAGAIN;
90151c35 1439 }
6751b71e
PM
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
cdd6c482 1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1445 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1446 partial_group = event;
6751b71e
PM
1447 goto group_error;
1448 }
1449 }
1450
9ffcfa6f 1451 if (!pmu->commit_txn(pmu))
6e85158c 1452 return 0;
9ffcfa6f 1453
6751b71e
PM
1454group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
d7842da4
SE
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
6751b71e 1468 */
cdd6c482
IM
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
d7842da4
SE
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
6751b71e 1479 }
9ffcfa6f 1480 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1481
ad5133b7 1482 pmu->cancel_txn(pmu);
90151c35 1483
6751b71e
PM
1484 return -EAGAIN;
1485}
1486
3b6f9e5c 1487/*
cdd6c482 1488 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1489 */
cdd6c482 1490static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493{
1494 /*
cdd6c482 1495 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1496 */
d6f962b5 1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
cdd6c482 1501 * events can go on.
3b6f9e5c
PM
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
cdd6c482 1507 * events on the CPU, it can't go on.
3b6f9e5c 1508 */
cdd6c482 1509 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516}
1517
cdd6c482
IM
1518static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
53cfbf59 1520{
4158755d
SE
1521 u64 tstamp = perf_event_time(event);
1522
cdd6c482 1523 list_add_event(event, ctx);
8a49542c 1524 perf_group_attach(event);
4158755d
SE
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
53cfbf59
PM
1528}
1529
2c29ef0f
PZ
1530static void task_ctx_sched_out(struct perf_event_context *ctx);
1531static void
1532ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
fe4b04fa 1536
dce5855b
PZ
1537static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540{
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547}
1548
0793a61d 1549/*
cdd6c482 1550 * Cross CPU call to install and enable a performance event
682076ae
PZ
1551 *
1552 * Must be called with ctx->mutex held
0793a61d 1553 */
fe4b04fa 1554static int __perf_install_in_context(void *info)
0793a61d 1555{
cdd6c482
IM
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
108b02cf 1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
b58f6b0d 1562 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1563 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1564
1565 /*
2c29ef0f 1566 * If there was an active task_ctx schedule it out.
0793a61d 1567 */
b58f6b0d 1568 if (task_ctx)
2c29ef0f 1569 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1584 task = task_ctx->task;
1585 }
b58f6b0d 1586
2c29ef0f 1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1588
4af4998b 1589 update_context_time(ctx);
e5d1367f
SE
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
0793a61d 1596
cdd6c482 1597 add_event_to_ctx(event, ctx);
0793a61d 1598
d859e29f 1599 /*
2c29ef0f 1600 * Schedule everything back in
d859e29f 1601 */
dce5855b 1602 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1606
1607 return 0;
0793a61d
TG
1608}
1609
1610/*
cdd6c482 1611 * Attach a performance event to a context
0793a61d 1612 *
cdd6c482
IM
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
0793a61d 1615 *
cdd6c482 1616 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620static void
cdd6c482
IM
1621perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
0793a61d
TG
1623 int cpu)
1624{
1625 struct task_struct *task = ctx->task;
1626
fe4b04fa
PZ
1627 lockdep_assert_held(&ctx->mutex);
1628
c3f00c70
PZ
1629 event->ctx = ctx;
1630
0793a61d
TG
1631 if (!task) {
1632 /*
cdd6c482 1633 * Per cpu events are installed via an smp call and
af901ca1 1634 * the install is always successful.
0793a61d 1635 */
fe4b04fa 1636 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1637 return;
1638 }
1639
0793a61d 1640retry:
fe4b04fa
PZ
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
0793a61d 1643
e625cce1 1644 raw_spin_lock_irq(&ctx->lock);
0793a61d 1645 /*
fe4b04fa
PZ
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
0793a61d 1648 */
fe4b04fa 1649 if (ctx->is_active) {
e625cce1 1650 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1651 goto retry;
1652 }
1653
1654 /*
fe4b04fa
PZ
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1657 */
fe4b04fa 1658 add_event_to_ctx(event, ctx);
e625cce1 1659 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1660}
1661
fa289bec 1662/*
cdd6c482 1663 * Put a event into inactive state and update time fields.
fa289bec
PM
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1d9b482e 1670static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1671{
cdd6c482 1672 struct perf_event *sub;
4158755d 1673 u64 tstamp = perf_event_time(event);
fa289bec 1674
cdd6c482 1675 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1680 }
fa289bec
PM
1681}
1682
d859e29f 1683/*
cdd6c482 1684 * Cross CPU call to enable a performance event
d859e29f 1685 */
fe4b04fa 1686static int __perf_event_enable(void *info)
04289bb9 1687{
cdd6c482 1688 struct perf_event *event = info;
cdd6c482
IM
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
108b02cf 1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1692 int err;
04289bb9 1693
fe4b04fa
PZ
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
3cbed429 1696
e625cce1 1697 raw_spin_lock(&ctx->lock);
4af4998b 1698 update_context_time(ctx);
d859e29f 1699
cdd6c482 1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1701 goto unlock;
e5d1367f
SE
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
3f7cce3c 1706 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1707
1d9b482e 1708 __perf_event_mark_enabled(event);
04289bb9 1709
e5d1367f
SE
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
f4c4176f 1713 goto unlock;
e5d1367f 1714 }
f4c4176f 1715
04289bb9 1716 /*
cdd6c482 1717 * If the event is in a group and isn't the group leader,
d859e29f 1718 * then don't put it on unless the group is on.
04289bb9 1719 */
cdd6c482 1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1721 goto unlock;
3b6f9e5c 1722
cdd6c482 1723 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1724 err = -EEXIST;
e758a33d 1725 } else {
cdd6c482 1726 if (event == leader)
6e37738a 1727 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1728 else
6e37738a 1729 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1730 }
d859e29f
PM
1731
1732 if (err) {
1733 /*
cdd6c482 1734 * If this event can't go on and it's part of a
d859e29f
PM
1735 * group, then the whole group has to come off.
1736 */
cdd6c482 1737 if (leader != event)
d859e29f 1738 group_sched_out(leader, cpuctx, ctx);
0d48696f 1739 if (leader->attr.pinned) {
53cfbf59 1740 update_group_times(leader);
cdd6c482 1741 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1742 }
d859e29f
PM
1743 }
1744
9ed6060d 1745unlock:
e625cce1 1746 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1747
1748 return 0;
d859e29f
PM
1749}
1750
1751/*
cdd6c482 1752 * Enable a event.
c93f7669 1753 *
cdd6c482
IM
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
c93f7669 1756 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
d859e29f 1759 */
44234adc 1760void perf_event_enable(struct perf_event *event)
d859e29f 1761{
cdd6c482 1762 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
cdd6c482 1767 * Enable the event on the cpu that it's on
d859e29f 1768 */
fe4b04fa 1769 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1770 return;
1771 }
1772
e625cce1 1773 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1775 goto out;
1776
1777 /*
cdd6c482
IM
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
d859e29f
PM
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
cdd6c482
IM
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1786
9ed6060d 1787retry:
fe4b04fa 1788 if (!ctx->is_active) {
1d9b482e 1789 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1790 goto out;
1791 }
1792
e625cce1 1793 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
d859e29f 1797
e625cce1 1798 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1799
1800 /*
cdd6c482 1801 * If the context is active and the event is still off,
d859e29f
PM
1802 * we need to retry the cross-call.
1803 */
fe4b04fa
PZ
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
d859e29f 1810 goto retry;
fe4b04fa 1811 }
fa289bec 1812
9ed6060d 1813out:
e625cce1 1814 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1815}
dcfce4a0 1816EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1817
26ca5c11 1818int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1819{
2023b359 1820 /*
cdd6c482 1821 * not supported on inherited events
2023b359 1822 */
2e939d1d 1823 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1824 return -EINVAL;
1825
cdd6c482
IM
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
2023b359
PZ
1828
1829 return 0;
79f14641 1830}
26ca5c11 1831EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1832
5b0311e1
FW
1833static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
235c7fc7 1836{
cdd6c482 1837 struct perf_event *event;
db24d33e 1838 int is_active = ctx->is_active;
235c7fc7 1839
db24d33e 1840 ctx->is_active &= ~event_type;
cdd6c482 1841 if (likely(!ctx->nr_events))
facc4307
PZ
1842 return;
1843
4af4998b 1844 update_context_time(ctx);
e5d1367f 1845 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1846 if (!ctx->nr_active)
facc4307 1847 return;
5b0311e1 1848
075e0b00 1849 perf_pmu_disable(ctx->pmu);
db24d33e 1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
9ed6060d 1853 }
889ff015 1854
db24d33e 1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1857 group_sched_out(event, cpuctx, ctx);
9ed6060d 1858 }
1b9a644f 1859 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1860}
1861
564c2b21
PM
1862/*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
cdd6c482
IM
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
564c2b21 1869 * in them directly with an fd; we can only enable/disable all
cdd6c482 1870 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
cdd6c482
IM
1873static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
564c2b21
PM
1875{
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1877 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1878 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1879}
1880
cdd6c482
IM
1881static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
bfbd3381
PZ
1883{
1884 u64 value;
1885
cdd6c482 1886 if (!event->attr.inherit_stat)
bfbd3381
PZ
1887 return;
1888
1889 /*
cdd6c482 1890 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1893 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1894 * don't need to use it.
1895 */
cdd6c482
IM
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1898 event->pmu->read(event);
1899 /* fall-through */
bfbd3381 1900
cdd6c482
IM
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
bfbd3381
PZ
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
cdd6c482 1910 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1911 * values when we flip the contexts.
1912 */
e7850595
PZ
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
bfbd3381 1916
cdd6c482
IM
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1919
bfbd3381 1920 /*
19d2e755 1921 * Since we swizzled the values, update the user visible data too.
bfbd3381 1922 */
cdd6c482
IM
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
bfbd3381
PZ
1925}
1926
1927#define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
cdd6c482
IM
1930static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
bfbd3381 1932{
cdd6c482 1933 struct perf_event *event, *next_event;
bfbd3381
PZ
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
02ffdbc8
PZ
1938 update_context_time(ctx);
1939
cdd6c482
IM
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
bfbd3381 1942
cdd6c482
IM
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
bfbd3381 1945
cdd6c482
IM
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1948
cdd6c482 1949 __perf_event_sync_stat(event, next_event);
bfbd3381 1950
cdd6c482
IM
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1953 }
1954}
1955
fe4b04fa
PZ
1956static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
0793a61d 1958{
8dc85d54 1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
108b02cf 1962 struct perf_cpu_context *cpuctx;
c93f7669 1963 int do_switch = 1;
0793a61d 1964
108b02cf
PZ
1965 if (likely(!ctx))
1966 return;
10989fb2 1967
108b02cf
PZ
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
0793a61d
TG
1970 return;
1971
c93f7669
PM
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1974 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
e625cce1
TG
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 1988 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
1989 /*
1990 * XXX do we need a memory barrier of sorts
cdd6c482 1991 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 1992 */
8dc85d54
PZ
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
bfbd3381 1998
cdd6c482 1999 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2000 }
e625cce1
TG
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
564c2b21 2003 }
c93f7669 2004 rcu_read_unlock();
564c2b21 2005
c93f7669 2006 if (do_switch) {
facc4307 2007 raw_spin_lock(&ctx->lock);
5b0311e1 2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2009 cpuctx->task_ctx = NULL;
facc4307 2010 raw_spin_unlock(&ctx->lock);
c93f7669 2011 }
0793a61d
TG
2012}
2013
8dc85d54
PZ
2014#define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017/*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
82cd6def
PZ
2028void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
8dc85d54
PZ
2030{
2031 int ctxn;
2032
8dc85d54
PZ
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2042 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2043}
2044
04dc2dbb 2045static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2046{
108b02cf 2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2048
a63eaf34
PM
2049 if (!cpuctx->task_ctx)
2050 return;
012b84da
IM
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
04dc2dbb 2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2056 cpuctx->task_ctx = NULL;
2057}
2058
5b0311e1
FW
2059/*
2060 * Called with IRQs disabled
2061 */
2062static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064{
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2066}
2067
235c7fc7 2068static void
5b0311e1 2069ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2070 struct perf_cpu_context *cpuctx)
0793a61d 2071{
cdd6c482 2072 struct perf_event *event;
0793a61d 2073
889ff015
FW
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2076 continue;
5632ab12 2077 if (!event_filter_match(event))
3b6f9e5c
PM
2078 continue;
2079
e5d1367f
SE
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
8c9ed8e1 2084 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2085 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
cdd6c482
IM
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2094 }
3b6f9e5c 2095 }
5b0311e1
FW
2096}
2097
2098static void
2099ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2100 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2101{
2102 struct perf_event *event;
2103 int can_add_hw = 1;
3b6f9e5c 2104
889ff015
FW
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2108 continue;
04289bb9
IM
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2111 * of events:
04289bb9 2112 */
5632ab12 2113 if (!event_filter_match(event))
0793a61d
TG
2114 continue;
2115
e5d1367f
SE
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
9ed6060d 2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2121 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2122 can_add_hw = 0;
9ed6060d 2123 }
0793a61d 2124 }
5b0311e1
FW
2125}
2126
2127static void
2128ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2130 enum event_type_t event_type,
2131 struct task_struct *task)
5b0311e1 2132{
e5d1367f 2133 u64 now;
db24d33e 2134 int is_active = ctx->is_active;
e5d1367f 2135
db24d33e 2136 ctx->is_active |= event_type;
5b0311e1 2137 if (likely(!ctx->nr_events))
facc4307 2138 return;
5b0311e1 2139
e5d1367f
SE
2140 now = perf_clock();
2141 ctx->timestamp = now;
3f7cce3c 2142 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
db24d33e 2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2148 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2149
2150 /* Then walk through the lower prio flexible groups */
db24d33e 2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2152 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2153}
2154
329c0e01 2155static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2156 enum event_type_t event_type,
2157 struct task_struct *task)
329c0e01
FW
2158{
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
e5d1367f 2161 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2162}
2163
e5d1367f
SE
2164static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
235c7fc7 2166{
108b02cf 2167 struct perf_cpu_context *cpuctx;
235c7fc7 2168
108b02cf 2169 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
facc4307 2173 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2174 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
1d5f003f
GN
2182 if (ctx->nr_events)
2183 cpuctx->task_ctx = ctx;
9b33fa6b 2184
86b47c25
GN
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
facc4307
PZ
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
b5ab4cd5
PZ
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
108b02cf 2194 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2195}
2196
8dc85d54
PZ
2197/*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
a8d757ef
SE
2208void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
8dc85d54
PZ
2210{
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
e5d1367f 2219 perf_event_context_sched_in(ctx, task);
8dc85d54 2220 }
e5d1367f
SE
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2227 perf_cgroup_sched_in(prev, task);
235c7fc7
IM
2228}
2229
abd50713
PZ
2230static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231{
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
fe4b04fa 2257#define REDUCE_FLS(a, b) \
abd50713
PZ
2258do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266} while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
f6ab91ad
PZ
2297 if (!divisor)
2298 return dividend;
2299
abd50713
PZ
2300 return div64_u64(dividend, divisor);
2301}
2302
e050e3f0
SE
2303static DEFINE_PER_CPU(int, perf_throttled_count);
2304static DEFINE_PER_CPU(u64, perf_throttled_seq);
2305
f39d47ff 2306static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2307{
cdd6c482 2308 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2309 s64 period, sample_period;
bd2b5b12
PZ
2310 s64 delta;
2311
abd50713 2312 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2313
2314 delta = (s64)(period - hwc->sample_period);
2315 delta = (delta + 7) / 8; /* low pass filter */
2316
2317 sample_period = hwc->sample_period + delta;
2318
2319 if (!sample_period)
2320 sample_period = 1;
2321
bd2b5b12 2322 hwc->sample_period = sample_period;
abd50713 2323
e7850595 2324 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2325 if (disable)
2326 event->pmu->stop(event, PERF_EF_UPDATE);
2327
e7850595 2328 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2329
2330 if (disable)
2331 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2332 }
bd2b5b12
PZ
2333}
2334
e050e3f0
SE
2335/*
2336 * combine freq adjustment with unthrottling to avoid two passes over the
2337 * events. At the same time, make sure, having freq events does not change
2338 * the rate of unthrottling as that would introduce bias.
2339 */
2340static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2341 int needs_unthr)
60db5e09 2342{
cdd6c482
IM
2343 struct perf_event *event;
2344 struct hw_perf_event *hwc;
e050e3f0 2345 u64 now, period = TICK_NSEC;
abd50713 2346 s64 delta;
60db5e09 2347
e050e3f0
SE
2348 /*
2349 * only need to iterate over all events iff:
2350 * - context have events in frequency mode (needs freq adjust)
2351 * - there are events to unthrottle on this cpu
2352 */
2353 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2354 return;
2355
e050e3f0 2356 raw_spin_lock(&ctx->lock);
f39d47ff 2357 perf_pmu_disable(ctx->pmu);
e050e3f0 2358
03541f8b 2359 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2360 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2361 continue;
2362
5632ab12 2363 if (!event_filter_match(event))
5d27c23d
PZ
2364 continue;
2365
cdd6c482 2366 hwc = &event->hw;
6a24ed6c 2367
e050e3f0
SE
2368 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2369 hwc->interrupts = 0;
cdd6c482 2370 perf_log_throttle(event, 1);
a4eaf7f1 2371 event->pmu->start(event, 0);
a78ac325
PZ
2372 }
2373
cdd6c482 2374 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2375 continue;
2376
e050e3f0
SE
2377 /*
2378 * stop the event and update event->count
2379 */
2380 event->pmu->stop(event, PERF_EF_UPDATE);
2381
e7850595 2382 now = local64_read(&event->count);
abd50713
PZ
2383 delta = now - hwc->freq_count_stamp;
2384 hwc->freq_count_stamp = now;
60db5e09 2385
e050e3f0
SE
2386 /*
2387 * restart the event
2388 * reload only if value has changed
f39d47ff
SE
2389 * we have stopped the event so tell that
2390 * to perf_adjust_period() to avoid stopping it
2391 * twice.
e050e3f0 2392 */
abd50713 2393 if (delta > 0)
f39d47ff 2394 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2395
2396 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2397 }
e050e3f0 2398
f39d47ff 2399 perf_pmu_enable(ctx->pmu);
e050e3f0 2400 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2401}
2402
235c7fc7 2403/*
cdd6c482 2404 * Round-robin a context's events:
235c7fc7 2405 */
cdd6c482 2406static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2407{
dddd3379
TG
2408 /*
2409 * Rotate the first entry last of non-pinned groups. Rotation might be
2410 * disabled by the inheritance code.
2411 */
2412 if (!ctx->rotate_disable)
2413 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2414}
2415
b5ab4cd5 2416/*
e9d2b064
PZ
2417 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2418 * because they're strictly cpu affine and rotate_start is called with IRQs
2419 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2420 */
e9d2b064 2421static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2422{
8dc85d54 2423 struct perf_event_context *ctx = NULL;
e050e3f0 2424 int rotate = 0, remove = 1;
7fc23a53 2425
b5ab4cd5 2426 if (cpuctx->ctx.nr_events) {
e9d2b064 2427 remove = 0;
b5ab4cd5
PZ
2428 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2429 rotate = 1;
2430 }
235c7fc7 2431
8dc85d54 2432 ctx = cpuctx->task_ctx;
b5ab4cd5 2433 if (ctx && ctx->nr_events) {
e9d2b064 2434 remove = 0;
b5ab4cd5
PZ
2435 if (ctx->nr_events != ctx->nr_active)
2436 rotate = 1;
2437 }
9717e6cd 2438
e050e3f0 2439 if (!rotate)
0f5a2601
PZ
2440 goto done;
2441
facc4307 2442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2443 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2444
e050e3f0
SE
2445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2446 if (ctx)
2447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2448
e050e3f0
SE
2449 rotate_ctx(&cpuctx->ctx);
2450 if (ctx)
2451 rotate_ctx(ctx);
235c7fc7 2452
e050e3f0 2453 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2454
0f5a2601
PZ
2455 perf_pmu_enable(cpuctx->ctx.pmu);
2456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2457done:
e9d2b064
PZ
2458 if (remove)
2459 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2460}
2461
2462void perf_event_task_tick(void)
2463{
2464 struct list_head *head = &__get_cpu_var(rotation_list);
2465 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2466 struct perf_event_context *ctx;
2467 int throttled;
b5ab4cd5 2468
e9d2b064
PZ
2469 WARN_ON(!irqs_disabled());
2470
e050e3f0
SE
2471 __this_cpu_inc(perf_throttled_seq);
2472 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2473
e9d2b064 2474 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2475 ctx = &cpuctx->ctx;
2476 perf_adjust_freq_unthr_context(ctx, throttled);
2477
2478 ctx = cpuctx->task_ctx;
2479 if (ctx)
2480 perf_adjust_freq_unthr_context(ctx, throttled);
2481
e9d2b064
PZ
2482 if (cpuctx->jiffies_interval == 1 ||
2483 !(jiffies % cpuctx->jiffies_interval))
2484 perf_rotate_context(cpuctx);
2485 }
0793a61d
TG
2486}
2487
889ff015
FW
2488static int event_enable_on_exec(struct perf_event *event,
2489 struct perf_event_context *ctx)
2490{
2491 if (!event->attr.enable_on_exec)
2492 return 0;
2493
2494 event->attr.enable_on_exec = 0;
2495 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2496 return 0;
2497
1d9b482e 2498 __perf_event_mark_enabled(event);
889ff015
FW
2499
2500 return 1;
2501}
2502
57e7986e 2503/*
cdd6c482 2504 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2505 * This expects task == current.
2506 */
8dc85d54 2507static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2508{
cdd6c482 2509 struct perf_event *event;
57e7986e
PM
2510 unsigned long flags;
2511 int enabled = 0;
889ff015 2512 int ret;
57e7986e
PM
2513
2514 local_irq_save(flags);
cdd6c482 2515 if (!ctx || !ctx->nr_events)
57e7986e
PM
2516 goto out;
2517
e566b76e
SE
2518 /*
2519 * We must ctxsw out cgroup events to avoid conflict
2520 * when invoking perf_task_event_sched_in() later on
2521 * in this function. Otherwise we end up trying to
2522 * ctxswin cgroup events which are already scheduled
2523 * in.
2524 */
a8d757ef 2525 perf_cgroup_sched_out(current, NULL);
57e7986e 2526
e625cce1 2527 raw_spin_lock(&ctx->lock);
04dc2dbb 2528 task_ctx_sched_out(ctx);
57e7986e 2529
b79387ef 2530 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2531 ret = event_enable_on_exec(event, ctx);
2532 if (ret)
2533 enabled = 1;
57e7986e
PM
2534 }
2535
2536 /*
cdd6c482 2537 * Unclone this context if we enabled any event.
57e7986e 2538 */
71a851b4
PZ
2539 if (enabled)
2540 unclone_ctx(ctx);
57e7986e 2541
e625cce1 2542 raw_spin_unlock(&ctx->lock);
57e7986e 2543
e566b76e
SE
2544 /*
2545 * Also calls ctxswin for cgroup events, if any:
2546 */
e5d1367f 2547 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2548out:
57e7986e
PM
2549 local_irq_restore(flags);
2550}
2551
0793a61d 2552/*
cdd6c482 2553 * Cross CPU call to read the hardware event
0793a61d 2554 */
cdd6c482 2555static void __perf_event_read(void *info)
0793a61d 2556{
cdd6c482
IM
2557 struct perf_event *event = info;
2558 struct perf_event_context *ctx = event->ctx;
108b02cf 2559 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2560
e1ac3614
PM
2561 /*
2562 * If this is a task context, we need to check whether it is
2563 * the current task context of this cpu. If not it has been
2564 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2565 * event->count would have been updated to a recent sample
2566 * when the event was scheduled out.
e1ac3614
PM
2567 */
2568 if (ctx->task && cpuctx->task_ctx != ctx)
2569 return;
2570
e625cce1 2571 raw_spin_lock(&ctx->lock);
e5d1367f 2572 if (ctx->is_active) {
542e72fc 2573 update_context_time(ctx);
e5d1367f
SE
2574 update_cgrp_time_from_event(event);
2575 }
cdd6c482 2576 update_event_times(event);
542e72fc
PZ
2577 if (event->state == PERF_EVENT_STATE_ACTIVE)
2578 event->pmu->read(event);
e625cce1 2579 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2580}
2581
b5e58793
PZ
2582static inline u64 perf_event_count(struct perf_event *event)
2583{
e7850595 2584 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2585}
2586
cdd6c482 2587static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2588{
2589 /*
cdd6c482
IM
2590 * If event is enabled and currently active on a CPU, update the
2591 * value in the event structure:
0793a61d 2592 */
cdd6c482
IM
2593 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2594 smp_call_function_single(event->oncpu,
2595 __perf_event_read, event, 1);
2596 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2597 struct perf_event_context *ctx = event->ctx;
2598 unsigned long flags;
2599
e625cce1 2600 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2601 /*
2602 * may read while context is not active
2603 * (e.g., thread is blocked), in that case
2604 * we cannot update context time
2605 */
e5d1367f 2606 if (ctx->is_active) {
c530ccd9 2607 update_context_time(ctx);
e5d1367f
SE
2608 update_cgrp_time_from_event(event);
2609 }
cdd6c482 2610 update_event_times(event);
e625cce1 2611 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2612 }
2613
b5e58793 2614 return perf_event_count(event);
0793a61d
TG
2615}
2616
a63eaf34 2617/*
cdd6c482 2618 * Initialize the perf_event context in a task_struct:
a63eaf34 2619 */
eb184479 2620static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2621{
e625cce1 2622 raw_spin_lock_init(&ctx->lock);
a63eaf34 2623 mutex_init(&ctx->mutex);
889ff015
FW
2624 INIT_LIST_HEAD(&ctx->pinned_groups);
2625 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2626 INIT_LIST_HEAD(&ctx->event_list);
2627 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2628}
2629
2630static struct perf_event_context *
2631alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2632{
2633 struct perf_event_context *ctx;
2634
2635 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2636 if (!ctx)
2637 return NULL;
2638
2639 __perf_event_init_context(ctx);
2640 if (task) {
2641 ctx->task = task;
2642 get_task_struct(task);
0793a61d 2643 }
eb184479
PZ
2644 ctx->pmu = pmu;
2645
2646 return ctx;
a63eaf34
PM
2647}
2648
2ebd4ffb
MH
2649static struct task_struct *
2650find_lively_task_by_vpid(pid_t vpid)
2651{
2652 struct task_struct *task;
2653 int err;
0793a61d
TG
2654
2655 rcu_read_lock();
2ebd4ffb 2656 if (!vpid)
0793a61d
TG
2657 task = current;
2658 else
2ebd4ffb 2659 task = find_task_by_vpid(vpid);
0793a61d
TG
2660 if (task)
2661 get_task_struct(task);
2662 rcu_read_unlock();
2663
2664 if (!task)
2665 return ERR_PTR(-ESRCH);
2666
0793a61d 2667 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2668 err = -EACCES;
2669 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2670 goto errout;
2671
2ebd4ffb
MH
2672 return task;
2673errout:
2674 put_task_struct(task);
2675 return ERR_PTR(err);
2676
2677}
2678
fe4b04fa
PZ
2679/*
2680 * Returns a matching context with refcount and pincount.
2681 */
108b02cf 2682static struct perf_event_context *
38a81da2 2683find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2684{
cdd6c482 2685 struct perf_event_context *ctx;
22a4f650 2686 struct perf_cpu_context *cpuctx;
25346b93 2687 unsigned long flags;
8dc85d54 2688 int ctxn, err;
0793a61d 2689
22a4ec72 2690 if (!task) {
cdd6c482 2691 /* Must be root to operate on a CPU event: */
0764771d 2692 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2693 return ERR_PTR(-EACCES);
2694
0793a61d 2695 /*
cdd6c482 2696 * We could be clever and allow to attach a event to an
0793a61d
TG
2697 * offline CPU and activate it when the CPU comes up, but
2698 * that's for later.
2699 */
f6325e30 2700 if (!cpu_online(cpu))
0793a61d
TG
2701 return ERR_PTR(-ENODEV);
2702
108b02cf 2703 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2704 ctx = &cpuctx->ctx;
c93f7669 2705 get_ctx(ctx);
fe4b04fa 2706 ++ctx->pin_count;
0793a61d 2707
0793a61d
TG
2708 return ctx;
2709 }
2710
8dc85d54
PZ
2711 err = -EINVAL;
2712 ctxn = pmu->task_ctx_nr;
2713 if (ctxn < 0)
2714 goto errout;
2715
9ed6060d 2716retry:
8dc85d54 2717 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2718 if (ctx) {
71a851b4 2719 unclone_ctx(ctx);
fe4b04fa 2720 ++ctx->pin_count;
e625cce1 2721 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2722 } else {
eb184479 2723 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2724 err = -ENOMEM;
2725 if (!ctx)
2726 goto errout;
eb184479 2727
dbe08d82
ON
2728 err = 0;
2729 mutex_lock(&task->perf_event_mutex);
2730 /*
2731 * If it has already passed perf_event_exit_task().
2732 * we must see PF_EXITING, it takes this mutex too.
2733 */
2734 if (task->flags & PF_EXITING)
2735 err = -ESRCH;
2736 else if (task->perf_event_ctxp[ctxn])
2737 err = -EAGAIN;
fe4b04fa 2738 else {
9137fb28 2739 get_ctx(ctx);
fe4b04fa 2740 ++ctx->pin_count;
dbe08d82 2741 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2742 }
dbe08d82
ON
2743 mutex_unlock(&task->perf_event_mutex);
2744
2745 if (unlikely(err)) {
9137fb28 2746 put_ctx(ctx);
dbe08d82
ON
2747
2748 if (err == -EAGAIN)
2749 goto retry;
2750 goto errout;
a63eaf34
PM
2751 }
2752 }
2753
0793a61d 2754 return ctx;
c93f7669 2755
9ed6060d 2756errout:
c93f7669 2757 return ERR_PTR(err);
0793a61d
TG
2758}
2759
6fb2915d
LZ
2760static void perf_event_free_filter(struct perf_event *event);
2761
cdd6c482 2762static void free_event_rcu(struct rcu_head *head)
592903cd 2763{
cdd6c482 2764 struct perf_event *event;
592903cd 2765
cdd6c482
IM
2766 event = container_of(head, struct perf_event, rcu_head);
2767 if (event->ns)
2768 put_pid_ns(event->ns);
6fb2915d 2769 perf_event_free_filter(event);
cdd6c482 2770 kfree(event);
592903cd
PZ
2771}
2772
76369139 2773static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2774
cdd6c482 2775static void free_event(struct perf_event *event)
f1600952 2776{
e360adbe 2777 irq_work_sync(&event->pending);
925d519a 2778
cdd6c482 2779 if (!event->parent) {
82cd6def 2780 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2781 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2782 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2783 atomic_dec(&nr_mmap_events);
2784 if (event->attr.comm)
2785 atomic_dec(&nr_comm_events);
2786 if (event->attr.task)
2787 atomic_dec(&nr_task_events);
927c7a9e
FW
2788 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2789 put_callchain_buffers();
08309379
PZ
2790 if (is_cgroup_event(event)) {
2791 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2792 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2793 }
f344011c 2794 }
9ee318a7 2795
76369139
FW
2796 if (event->rb) {
2797 ring_buffer_put(event->rb);
2798 event->rb = NULL;
a4be7c27
PZ
2799 }
2800
e5d1367f
SE
2801 if (is_cgroup_event(event))
2802 perf_detach_cgroup(event);
2803
cdd6c482
IM
2804 if (event->destroy)
2805 event->destroy(event);
e077df4f 2806
0c67b408
PZ
2807 if (event->ctx)
2808 put_ctx(event->ctx);
2809
cdd6c482 2810 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2811}
2812
a66a3052 2813int perf_event_release_kernel(struct perf_event *event)
0793a61d 2814{
cdd6c482 2815 struct perf_event_context *ctx = event->ctx;
0793a61d 2816
ad3a37de 2817 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2818 /*
2819 * There are two ways this annotation is useful:
2820 *
2821 * 1) there is a lock recursion from perf_event_exit_task
2822 * see the comment there.
2823 *
2824 * 2) there is a lock-inversion with mmap_sem through
2825 * perf_event_read_group(), which takes faults while
2826 * holding ctx->mutex, however this is called after
2827 * the last filedesc died, so there is no possibility
2828 * to trigger the AB-BA case.
2829 */
2830 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2831 raw_spin_lock_irq(&ctx->lock);
8a49542c 2832 perf_group_detach(event);
050735b0 2833 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2834 perf_remove_from_context(event);
d859e29f 2835 mutex_unlock(&ctx->mutex);
0793a61d 2836
cdd6c482 2837 free_event(event);
0793a61d
TG
2838
2839 return 0;
2840}
a66a3052 2841EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2842
a66a3052
PZ
2843/*
2844 * Called when the last reference to the file is gone.
2845 */
2846static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2847{
a66a3052 2848 struct perf_event *event = file->private_data;
8882135b 2849 struct task_struct *owner;
fb0459d7 2850
a66a3052 2851 file->private_data = NULL;
fb0459d7 2852
8882135b
PZ
2853 rcu_read_lock();
2854 owner = ACCESS_ONCE(event->owner);
2855 /*
2856 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2857 * !owner it means the list deletion is complete and we can indeed
2858 * free this event, otherwise we need to serialize on
2859 * owner->perf_event_mutex.
2860 */
2861 smp_read_barrier_depends();
2862 if (owner) {
2863 /*
2864 * Since delayed_put_task_struct() also drops the last
2865 * task reference we can safely take a new reference
2866 * while holding the rcu_read_lock().
2867 */
2868 get_task_struct(owner);
2869 }
2870 rcu_read_unlock();
2871
2872 if (owner) {
2873 mutex_lock(&owner->perf_event_mutex);
2874 /*
2875 * We have to re-check the event->owner field, if it is cleared
2876 * we raced with perf_event_exit_task(), acquiring the mutex
2877 * ensured they're done, and we can proceed with freeing the
2878 * event.
2879 */
2880 if (event->owner)
2881 list_del_init(&event->owner_entry);
2882 mutex_unlock(&owner->perf_event_mutex);
2883 put_task_struct(owner);
2884 }
2885
a66a3052 2886 return perf_event_release_kernel(event);
fb0459d7 2887}
fb0459d7 2888
59ed446f 2889u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2890{
cdd6c482 2891 struct perf_event *child;
e53c0994
PZ
2892 u64 total = 0;
2893
59ed446f
PZ
2894 *enabled = 0;
2895 *running = 0;
2896
6f10581a 2897 mutex_lock(&event->child_mutex);
cdd6c482 2898 total += perf_event_read(event);
59ed446f
PZ
2899 *enabled += event->total_time_enabled +
2900 atomic64_read(&event->child_total_time_enabled);
2901 *running += event->total_time_running +
2902 atomic64_read(&event->child_total_time_running);
2903
2904 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2905 total += perf_event_read(child);
59ed446f
PZ
2906 *enabled += child->total_time_enabled;
2907 *running += child->total_time_running;
2908 }
6f10581a 2909 mutex_unlock(&event->child_mutex);
e53c0994
PZ
2910
2911 return total;
2912}
fb0459d7 2913EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 2914
cdd6c482 2915static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
2916 u64 read_format, char __user *buf)
2917{
cdd6c482 2918 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
2919 int n = 0, size = 0, ret = -EFAULT;
2920 struct perf_event_context *ctx = leader->ctx;
abf4868b 2921 u64 values[5];
59ed446f 2922 u64 count, enabled, running;
abf4868b 2923
6f10581a 2924 mutex_lock(&ctx->mutex);
59ed446f 2925 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
2926
2927 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
2928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2929 values[n++] = enabled;
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2931 values[n++] = running;
abf4868b
PZ
2932 values[n++] = count;
2933 if (read_format & PERF_FORMAT_ID)
2934 values[n++] = primary_event_id(leader);
3dab77fb
PZ
2935
2936 size = n * sizeof(u64);
2937
2938 if (copy_to_user(buf, values, size))
6f10581a 2939 goto unlock;
3dab77fb 2940
6f10581a 2941 ret = size;
3dab77fb 2942
65abc865 2943 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 2944 n = 0;
3dab77fb 2945
59ed446f 2946 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(sub);
2949
2950 size = n * sizeof(u64);
2951
184d3da8 2952 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
2953 ret = -EFAULT;
2954 goto unlock;
2955 }
abf4868b
PZ
2956
2957 ret += size;
3dab77fb 2958 }
6f10581a
PZ
2959unlock:
2960 mutex_unlock(&ctx->mutex);
3dab77fb 2961
abf4868b 2962 return ret;
3dab77fb
PZ
2963}
2964
cdd6c482 2965static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
2966 u64 read_format, char __user *buf)
2967{
59ed446f 2968 u64 enabled, running;
3dab77fb
PZ
2969 u64 values[4];
2970 int n = 0;
2971
59ed446f
PZ
2972 values[n++] = perf_event_read_value(event, &enabled, &running);
2973 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2974 values[n++] = enabled;
2975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2976 values[n++] = running;
3dab77fb 2977 if (read_format & PERF_FORMAT_ID)
cdd6c482 2978 values[n++] = primary_event_id(event);
3dab77fb
PZ
2979
2980 if (copy_to_user(buf, values, n * sizeof(u64)))
2981 return -EFAULT;
2982
2983 return n * sizeof(u64);
2984}
2985
0793a61d 2986/*
cdd6c482 2987 * Read the performance event - simple non blocking version for now
0793a61d
TG
2988 */
2989static ssize_t
cdd6c482 2990perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 2991{
cdd6c482 2992 u64 read_format = event->attr.read_format;
3dab77fb 2993 int ret;
0793a61d 2994
3b6f9e5c 2995 /*
cdd6c482 2996 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
2997 * error state (i.e. because it was pinned but it couldn't be
2998 * scheduled on to the CPU at some point).
2999 */
cdd6c482 3000 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3001 return 0;
3002
c320c7b7 3003 if (count < event->read_size)
3dab77fb
PZ
3004 return -ENOSPC;
3005
cdd6c482 3006 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3007 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3008 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3009 else
cdd6c482 3010 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3011
3dab77fb 3012 return ret;
0793a61d
TG
3013}
3014
0793a61d
TG
3015static ssize_t
3016perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3017{
cdd6c482 3018 struct perf_event *event = file->private_data;
0793a61d 3019
cdd6c482 3020 return perf_read_hw(event, buf, count);
0793a61d
TG
3021}
3022
3023static unsigned int perf_poll(struct file *file, poll_table *wait)
3024{
cdd6c482 3025 struct perf_event *event = file->private_data;
76369139 3026 struct ring_buffer *rb;
c33a0bc4 3027 unsigned int events = POLL_HUP;
c7138f37 3028
10c6db11
PZ
3029 /*
3030 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3031 * grabs the rb reference but perf_event_set_output() overrides it.
3032 * Here is the timeline for two threads T1, T2:
3033 * t0: T1, rb = rcu_dereference(event->rb)
3034 * t1: T2, old_rb = event->rb
3035 * t2: T2, event->rb = new rb
3036 * t3: T2, ring_buffer_detach(old_rb)
3037 * t4: T1, ring_buffer_attach(rb1)
3038 * t5: T1, poll_wait(event->waitq)
3039 *
3040 * To avoid this problem, we grab mmap_mutex in perf_poll()
3041 * thereby ensuring that the assignment of the new ring buffer
3042 * and the detachment of the old buffer appear atomic to perf_poll()
3043 */
3044 mutex_lock(&event->mmap_mutex);
3045
c7138f37 3046 rcu_read_lock();
76369139 3047 rb = rcu_dereference(event->rb);
10c6db11
PZ
3048 if (rb) {
3049 ring_buffer_attach(event, rb);
76369139 3050 events = atomic_xchg(&rb->poll, 0);
10c6db11 3051 }
c7138f37 3052 rcu_read_unlock();
0793a61d 3053
10c6db11
PZ
3054 mutex_unlock(&event->mmap_mutex);
3055
cdd6c482 3056 poll_wait(file, &event->waitq, wait);
0793a61d 3057
0793a61d
TG
3058 return events;
3059}
3060
cdd6c482 3061static void perf_event_reset(struct perf_event *event)
6de6a7b9 3062{
cdd6c482 3063 (void)perf_event_read(event);
e7850595 3064 local64_set(&event->count, 0);
cdd6c482 3065 perf_event_update_userpage(event);
3df5edad
PZ
3066}
3067
c93f7669 3068/*
cdd6c482
IM
3069 * Holding the top-level event's child_mutex means that any
3070 * descendant process that has inherited this event will block
3071 * in sync_child_event if it goes to exit, thus satisfying the
3072 * task existence requirements of perf_event_enable/disable.
c93f7669 3073 */
cdd6c482
IM
3074static void perf_event_for_each_child(struct perf_event *event,
3075 void (*func)(struct perf_event *))
3df5edad 3076{
cdd6c482 3077 struct perf_event *child;
3df5edad 3078
cdd6c482
IM
3079 WARN_ON_ONCE(event->ctx->parent_ctx);
3080 mutex_lock(&event->child_mutex);
3081 func(event);
3082 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3083 func(child);
cdd6c482 3084 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3085}
3086
cdd6c482
IM
3087static void perf_event_for_each(struct perf_event *event,
3088 void (*func)(struct perf_event *))
3df5edad 3089{
cdd6c482
IM
3090 struct perf_event_context *ctx = event->ctx;
3091 struct perf_event *sibling;
3df5edad 3092
75f937f2
PZ
3093 WARN_ON_ONCE(ctx->parent_ctx);
3094 mutex_lock(&ctx->mutex);
cdd6c482 3095 event = event->group_leader;
75f937f2 3096
cdd6c482
IM
3097 perf_event_for_each_child(event, func);
3098 func(event);
3099 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3100 perf_event_for_each_child(event, func);
75f937f2 3101 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3102}
3103
cdd6c482 3104static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3105{
cdd6c482 3106 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3107 int ret = 0;
3108 u64 value;
3109
6c7e550f 3110 if (!is_sampling_event(event))
08247e31
PZ
3111 return -EINVAL;
3112
ad0cf347 3113 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3114 return -EFAULT;
3115
3116 if (!value)
3117 return -EINVAL;
3118
e625cce1 3119 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3120 if (event->attr.freq) {
3121 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3122 ret = -EINVAL;
3123 goto unlock;
3124 }
3125
cdd6c482 3126 event->attr.sample_freq = value;
08247e31 3127 } else {
cdd6c482
IM
3128 event->attr.sample_period = value;
3129 event->hw.sample_period = value;
08247e31
PZ
3130 }
3131unlock:
e625cce1 3132 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3133
3134 return ret;
3135}
3136
ac9721f3
PZ
3137static const struct file_operations perf_fops;
3138
3139static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3140{
3141 struct file *file;
3142
3143 file = fget_light(fd, fput_needed);
3144 if (!file)
3145 return ERR_PTR(-EBADF);
3146
3147 if (file->f_op != &perf_fops) {
3148 fput_light(file, *fput_needed);
3149 *fput_needed = 0;
3150 return ERR_PTR(-EBADF);
3151 }
3152
3153 return file->private_data;
3154}
3155
3156static int perf_event_set_output(struct perf_event *event,
3157 struct perf_event *output_event);
6fb2915d 3158static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3159
d859e29f
PM
3160static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3161{
cdd6c482
IM
3162 struct perf_event *event = file->private_data;
3163 void (*func)(struct perf_event *);
3df5edad 3164 u32 flags = arg;
d859e29f
PM
3165
3166 switch (cmd) {
cdd6c482
IM
3167 case PERF_EVENT_IOC_ENABLE:
3168 func = perf_event_enable;
d859e29f 3169 break;
cdd6c482
IM
3170 case PERF_EVENT_IOC_DISABLE:
3171 func = perf_event_disable;
79f14641 3172 break;
cdd6c482
IM
3173 case PERF_EVENT_IOC_RESET:
3174 func = perf_event_reset;
6de6a7b9 3175 break;
3df5edad 3176
cdd6c482
IM
3177 case PERF_EVENT_IOC_REFRESH:
3178 return perf_event_refresh(event, arg);
08247e31 3179
cdd6c482
IM
3180 case PERF_EVENT_IOC_PERIOD:
3181 return perf_event_period(event, (u64 __user *)arg);
08247e31 3182
cdd6c482 3183 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3184 {
3185 struct perf_event *output_event = NULL;
3186 int fput_needed = 0;
3187 int ret;
3188
3189 if (arg != -1) {
3190 output_event = perf_fget_light(arg, &fput_needed);
3191 if (IS_ERR(output_event))
3192 return PTR_ERR(output_event);
3193 }
3194
3195 ret = perf_event_set_output(event, output_event);
3196 if (output_event)
3197 fput_light(output_event->filp, fput_needed);
3198
3199 return ret;
3200 }
a4be7c27 3201
6fb2915d
LZ
3202 case PERF_EVENT_IOC_SET_FILTER:
3203 return perf_event_set_filter(event, (void __user *)arg);
3204
d859e29f 3205 default:
3df5edad 3206 return -ENOTTY;
d859e29f 3207 }
3df5edad
PZ
3208
3209 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3210 perf_event_for_each(event, func);
3df5edad 3211 else
cdd6c482 3212 perf_event_for_each_child(event, func);
3df5edad
PZ
3213
3214 return 0;
d859e29f
PM
3215}
3216
cdd6c482 3217int perf_event_task_enable(void)
771d7cde 3218{
cdd6c482 3219 struct perf_event *event;
771d7cde 3220
cdd6c482
IM
3221 mutex_lock(&current->perf_event_mutex);
3222 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3223 perf_event_for_each_child(event, perf_event_enable);
3224 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3225
3226 return 0;
3227}
3228
cdd6c482 3229int perf_event_task_disable(void)
771d7cde 3230{
cdd6c482 3231 struct perf_event *event;
771d7cde 3232
cdd6c482
IM
3233 mutex_lock(&current->perf_event_mutex);
3234 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3235 perf_event_for_each_child(event, perf_event_disable);
3236 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3237
3238 return 0;
3239}
3240
cdd6c482 3241static int perf_event_index(struct perf_event *event)
194002b2 3242{
a4eaf7f1
PZ
3243 if (event->hw.state & PERF_HES_STOPPED)
3244 return 0;
3245
cdd6c482 3246 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3247 return 0;
3248
35edc2a5 3249 return event->pmu->event_idx(event);
194002b2
PZ
3250}
3251
c4794295 3252static void calc_timer_values(struct perf_event *event,
e3f3541c 3253 u64 *now,
7f310a5d
EM
3254 u64 *enabled,
3255 u64 *running)
c4794295 3256{
e3f3541c 3257 u64 ctx_time;
c4794295 3258
e3f3541c
PZ
3259 *now = perf_clock();
3260 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3261 *enabled = ctx_time - event->tstamp_enabled;
3262 *running = ctx_time - event->tstamp_running;
3263}
3264
e3f3541c
PZ
3265void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
3266{
3267}
3268
38ff667b
PZ
3269/*
3270 * Callers need to ensure there can be no nesting of this function, otherwise
3271 * the seqlock logic goes bad. We can not serialize this because the arch
3272 * code calls this from NMI context.
3273 */
cdd6c482 3274void perf_event_update_userpage(struct perf_event *event)
37d81828 3275{
cdd6c482 3276 struct perf_event_mmap_page *userpg;
76369139 3277 struct ring_buffer *rb;
e3f3541c 3278 u64 enabled, running, now;
38ff667b
PZ
3279
3280 rcu_read_lock();
0d641208
EM
3281 /*
3282 * compute total_time_enabled, total_time_running
3283 * based on snapshot values taken when the event
3284 * was last scheduled in.
3285 *
3286 * we cannot simply called update_context_time()
3287 * because of locking issue as we can be called in
3288 * NMI context
3289 */
e3f3541c 3290 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3291 rb = rcu_dereference(event->rb);
3292 if (!rb)
38ff667b
PZ
3293 goto unlock;
3294
76369139 3295 userpg = rb->user_page;
37d81828 3296
7b732a75
PZ
3297 /*
3298 * Disable preemption so as to not let the corresponding user-space
3299 * spin too long if we get preempted.
3300 */
3301 preempt_disable();
37d81828 3302 ++userpg->lock;
92f22a38 3303 barrier();
cdd6c482 3304 userpg->index = perf_event_index(event);
b5e58793 3305 userpg->offset = perf_event_count(event);
365a4038 3306 if (userpg->index)
e7850595 3307 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3308
0d641208 3309 userpg->time_enabled = enabled +
cdd6c482 3310 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3311
0d641208 3312 userpg->time_running = running +
cdd6c482 3313 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3314
e3f3541c
PZ
3315 perf_update_user_clock(userpg, now);
3316
92f22a38 3317 barrier();
37d81828 3318 ++userpg->lock;
7b732a75 3319 preempt_enable();
38ff667b 3320unlock:
7b732a75 3321 rcu_read_unlock();
37d81828
PM
3322}
3323
906010b2
PZ
3324static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3325{
3326 struct perf_event *event = vma->vm_file->private_data;
76369139 3327 struct ring_buffer *rb;
906010b2
PZ
3328 int ret = VM_FAULT_SIGBUS;
3329
3330 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3331 if (vmf->pgoff == 0)
3332 ret = 0;
3333 return ret;
3334 }
3335
3336 rcu_read_lock();
76369139
FW
3337 rb = rcu_dereference(event->rb);
3338 if (!rb)
906010b2
PZ
3339 goto unlock;
3340
3341 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3342 goto unlock;
3343
76369139 3344 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3345 if (!vmf->page)
3346 goto unlock;
3347
3348 get_page(vmf->page);
3349 vmf->page->mapping = vma->vm_file->f_mapping;
3350 vmf->page->index = vmf->pgoff;
3351
3352 ret = 0;
3353unlock:
3354 rcu_read_unlock();
3355
3356 return ret;
3357}
3358
10c6db11
PZ
3359static void ring_buffer_attach(struct perf_event *event,
3360 struct ring_buffer *rb)
3361{
3362 unsigned long flags;
3363
3364 if (!list_empty(&event->rb_entry))
3365 return;
3366
3367 spin_lock_irqsave(&rb->event_lock, flags);
3368 if (!list_empty(&event->rb_entry))
3369 goto unlock;
3370
3371 list_add(&event->rb_entry, &rb->event_list);
3372unlock:
3373 spin_unlock_irqrestore(&rb->event_lock, flags);
3374}
3375
3376static void ring_buffer_detach(struct perf_event *event,
3377 struct ring_buffer *rb)
3378{
3379 unsigned long flags;
3380
3381 if (list_empty(&event->rb_entry))
3382 return;
3383
3384 spin_lock_irqsave(&rb->event_lock, flags);
3385 list_del_init(&event->rb_entry);
3386 wake_up_all(&event->waitq);
3387 spin_unlock_irqrestore(&rb->event_lock, flags);
3388}
3389
3390static void ring_buffer_wakeup(struct perf_event *event)
3391{
3392 struct ring_buffer *rb;
3393
3394 rcu_read_lock();
3395 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3396 if (!rb)
3397 goto unlock;
3398
3399 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3400 wake_up_all(&event->waitq);
44b7f4b9
WD
3401
3402unlock:
10c6db11
PZ
3403 rcu_read_unlock();
3404}
3405
76369139 3406static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3407{
76369139 3408 struct ring_buffer *rb;
906010b2 3409
76369139
FW
3410 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3411 rb_free(rb);
7b732a75
PZ
3412}
3413
76369139 3414static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3415{
76369139 3416 struct ring_buffer *rb;
7b732a75 3417
ac9721f3 3418 rcu_read_lock();
76369139
FW
3419 rb = rcu_dereference(event->rb);
3420 if (rb) {
3421 if (!atomic_inc_not_zero(&rb->refcount))
3422 rb = NULL;
ac9721f3
PZ
3423 }
3424 rcu_read_unlock();
3425
76369139 3426 return rb;
ac9721f3
PZ
3427}
3428
76369139 3429static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3430{
10c6db11
PZ
3431 struct perf_event *event, *n;
3432 unsigned long flags;
3433
76369139 3434 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3435 return;
7b732a75 3436
10c6db11
PZ
3437 spin_lock_irqsave(&rb->event_lock, flags);
3438 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3439 list_del_init(&event->rb_entry);
3440 wake_up_all(&event->waitq);
3441 }
3442 spin_unlock_irqrestore(&rb->event_lock, flags);
3443
76369139 3444 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3445}
3446
3447static void perf_mmap_open(struct vm_area_struct *vma)
3448{
cdd6c482 3449 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3450
cdd6c482 3451 atomic_inc(&event->mmap_count);
7b732a75
PZ
3452}
3453
3454static void perf_mmap_close(struct vm_area_struct *vma)
3455{
cdd6c482 3456 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3457
cdd6c482 3458 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3459 unsigned long size = perf_data_size(event->rb);
ac9721f3 3460 struct user_struct *user = event->mmap_user;
76369139 3461 struct ring_buffer *rb = event->rb;
789f90fc 3462
906010b2 3463 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3464 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3465 rcu_assign_pointer(event->rb, NULL);
10c6db11 3466 ring_buffer_detach(event, rb);
cdd6c482 3467 mutex_unlock(&event->mmap_mutex);
ac9721f3 3468
76369139 3469 ring_buffer_put(rb);
ac9721f3 3470 free_uid(user);
7b732a75 3471 }
37d81828
PM
3472}
3473
f0f37e2f 3474static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3475 .open = perf_mmap_open,
3476 .close = perf_mmap_close,
3477 .fault = perf_mmap_fault,
3478 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3479};
3480
3481static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3482{
cdd6c482 3483 struct perf_event *event = file->private_data;
22a4f650 3484 unsigned long user_locked, user_lock_limit;
789f90fc 3485 struct user_struct *user = current_user();
22a4f650 3486 unsigned long locked, lock_limit;
76369139 3487 struct ring_buffer *rb;
7b732a75
PZ
3488 unsigned long vma_size;
3489 unsigned long nr_pages;
789f90fc 3490 long user_extra, extra;
d57e34fd 3491 int ret = 0, flags = 0;
37d81828 3492
c7920614
PZ
3493 /*
3494 * Don't allow mmap() of inherited per-task counters. This would
3495 * create a performance issue due to all children writing to the
76369139 3496 * same rb.
c7920614
PZ
3497 */
3498 if (event->cpu == -1 && event->attr.inherit)
3499 return -EINVAL;
3500
43a21ea8 3501 if (!(vma->vm_flags & VM_SHARED))
37d81828 3502 return -EINVAL;
7b732a75
PZ
3503
3504 vma_size = vma->vm_end - vma->vm_start;
3505 nr_pages = (vma_size / PAGE_SIZE) - 1;
3506
7730d865 3507 /*
76369139 3508 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3509 * can do bitmasks instead of modulo.
3510 */
3511 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3512 return -EINVAL;
3513
7b732a75 3514 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3515 return -EINVAL;
3516
7b732a75
PZ
3517 if (vma->vm_pgoff != 0)
3518 return -EINVAL;
37d81828 3519
cdd6c482
IM
3520 WARN_ON_ONCE(event->ctx->parent_ctx);
3521 mutex_lock(&event->mmap_mutex);
76369139
FW
3522 if (event->rb) {
3523 if (event->rb->nr_pages == nr_pages)
3524 atomic_inc(&event->rb->refcount);
ac9721f3 3525 else
ebb3c4c4
PZ
3526 ret = -EINVAL;
3527 goto unlock;
3528 }
3529
789f90fc 3530 user_extra = nr_pages + 1;
cdd6c482 3531 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3532
3533 /*
3534 * Increase the limit linearly with more CPUs:
3535 */
3536 user_lock_limit *= num_online_cpus();
3537
789f90fc 3538 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3539
789f90fc
PZ
3540 extra = 0;
3541 if (user_locked > user_lock_limit)
3542 extra = user_locked - user_lock_limit;
7b732a75 3543
78d7d407 3544 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3545 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3546 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3547
459ec28a
IM
3548 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3549 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3550 ret = -EPERM;
3551 goto unlock;
3552 }
7b732a75 3553
76369139 3554 WARN_ON(event->rb);
906010b2 3555
d57e34fd 3556 if (vma->vm_flags & VM_WRITE)
76369139 3557 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3558
4ec8363d
VW
3559 rb = rb_alloc(nr_pages,
3560 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3561 event->cpu, flags);
3562
76369139 3563 if (!rb) {
ac9721f3 3564 ret = -ENOMEM;
ebb3c4c4 3565 goto unlock;
ac9721f3 3566 }
76369139 3567 rcu_assign_pointer(event->rb, rb);
43a21ea8 3568
ac9721f3
PZ
3569 atomic_long_add(user_extra, &user->locked_vm);
3570 event->mmap_locked = extra;
3571 event->mmap_user = get_current_user();
bc3e53f6 3572 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3573
9a0f05cb
PZ
3574 perf_event_update_userpage(event);
3575
ebb3c4c4 3576unlock:
ac9721f3
PZ
3577 if (!ret)
3578 atomic_inc(&event->mmap_count);
cdd6c482 3579 mutex_unlock(&event->mmap_mutex);
37d81828 3580
37d81828
PM
3581 vma->vm_flags |= VM_RESERVED;
3582 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3583
3584 return ret;
37d81828
PM
3585}
3586
3c446b3d
PZ
3587static int perf_fasync(int fd, struct file *filp, int on)
3588{
3c446b3d 3589 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3590 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3591 int retval;
3592
3593 mutex_lock(&inode->i_mutex);
cdd6c482 3594 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3595 mutex_unlock(&inode->i_mutex);
3596
3597 if (retval < 0)
3598 return retval;
3599
3600 return 0;
3601}
3602
0793a61d 3603static const struct file_operations perf_fops = {
3326c1ce 3604 .llseek = no_llseek,
0793a61d
TG
3605 .release = perf_release,
3606 .read = perf_read,
3607 .poll = perf_poll,
d859e29f
PM
3608 .unlocked_ioctl = perf_ioctl,
3609 .compat_ioctl = perf_ioctl,
37d81828 3610 .mmap = perf_mmap,
3c446b3d 3611 .fasync = perf_fasync,
0793a61d
TG
3612};
3613
925d519a 3614/*
cdd6c482 3615 * Perf event wakeup
925d519a
PZ
3616 *
3617 * If there's data, ensure we set the poll() state and publish everything
3618 * to user-space before waking everybody up.
3619 */
3620
cdd6c482 3621void perf_event_wakeup(struct perf_event *event)
925d519a 3622{
10c6db11 3623 ring_buffer_wakeup(event);
4c9e2542 3624
cdd6c482
IM
3625 if (event->pending_kill) {
3626 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3627 event->pending_kill = 0;
4c9e2542 3628 }
925d519a
PZ
3629}
3630
e360adbe 3631static void perf_pending_event(struct irq_work *entry)
79f14641 3632{
cdd6c482
IM
3633 struct perf_event *event = container_of(entry,
3634 struct perf_event, pending);
79f14641 3635
cdd6c482
IM
3636 if (event->pending_disable) {
3637 event->pending_disable = 0;
3638 __perf_event_disable(event);
79f14641
PZ
3639 }
3640
cdd6c482
IM
3641 if (event->pending_wakeup) {
3642 event->pending_wakeup = 0;
3643 perf_event_wakeup(event);
79f14641
PZ
3644 }
3645}
3646
39447b38
ZY
3647/*
3648 * We assume there is only KVM supporting the callbacks.
3649 * Later on, we might change it to a list if there is
3650 * another virtualization implementation supporting the callbacks.
3651 */
3652struct perf_guest_info_callbacks *perf_guest_cbs;
3653
3654int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3655{
3656 perf_guest_cbs = cbs;
3657 return 0;
3658}
3659EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3660
3661int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3662{
3663 perf_guest_cbs = NULL;
3664 return 0;
3665}
3666EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3667
c980d109
ACM
3668static void __perf_event_header__init_id(struct perf_event_header *header,
3669 struct perf_sample_data *data,
3670 struct perf_event *event)
6844c09d
ACM
3671{
3672 u64 sample_type = event->attr.sample_type;
3673
3674 data->type = sample_type;
3675 header->size += event->id_header_size;
3676
3677 if (sample_type & PERF_SAMPLE_TID) {
3678 /* namespace issues */
3679 data->tid_entry.pid = perf_event_pid(event, current);
3680 data->tid_entry.tid = perf_event_tid(event, current);
3681 }
3682
3683 if (sample_type & PERF_SAMPLE_TIME)
3684 data->time = perf_clock();
3685
3686 if (sample_type & PERF_SAMPLE_ID)
3687 data->id = primary_event_id(event);
3688
3689 if (sample_type & PERF_SAMPLE_STREAM_ID)
3690 data->stream_id = event->id;
3691
3692 if (sample_type & PERF_SAMPLE_CPU) {
3693 data->cpu_entry.cpu = raw_smp_processor_id();
3694 data->cpu_entry.reserved = 0;
3695 }
3696}
3697
76369139
FW
3698void perf_event_header__init_id(struct perf_event_header *header,
3699 struct perf_sample_data *data,
3700 struct perf_event *event)
c980d109
ACM
3701{
3702 if (event->attr.sample_id_all)
3703 __perf_event_header__init_id(header, data, event);
3704}
3705
3706static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3707 struct perf_sample_data *data)
3708{
3709 u64 sample_type = data->type;
3710
3711 if (sample_type & PERF_SAMPLE_TID)
3712 perf_output_put(handle, data->tid_entry);
3713
3714 if (sample_type & PERF_SAMPLE_TIME)
3715 perf_output_put(handle, data->time);
3716
3717 if (sample_type & PERF_SAMPLE_ID)
3718 perf_output_put(handle, data->id);
3719
3720 if (sample_type & PERF_SAMPLE_STREAM_ID)
3721 perf_output_put(handle, data->stream_id);
3722
3723 if (sample_type & PERF_SAMPLE_CPU)
3724 perf_output_put(handle, data->cpu_entry);
3725}
3726
76369139
FW
3727void perf_event__output_id_sample(struct perf_event *event,
3728 struct perf_output_handle *handle,
3729 struct perf_sample_data *sample)
c980d109
ACM
3730{
3731 if (event->attr.sample_id_all)
3732 __perf_event__output_id_sample(handle, sample);
3733}
3734
3dab77fb 3735static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3736 struct perf_event *event,
3737 u64 enabled, u64 running)
3dab77fb 3738{
cdd6c482 3739 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3740 u64 values[4];
3741 int n = 0;
3742
b5e58793 3743 values[n++] = perf_event_count(event);
3dab77fb 3744 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3745 values[n++] = enabled +
cdd6c482 3746 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3747 }
3748 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3749 values[n++] = running +
cdd6c482 3750 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3751 }
3752 if (read_format & PERF_FORMAT_ID)
cdd6c482 3753 values[n++] = primary_event_id(event);
3dab77fb 3754
76369139 3755 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3756}
3757
3758/*
cdd6c482 3759 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3760 */
3761static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3762 struct perf_event *event,
3763 u64 enabled, u64 running)
3dab77fb 3764{
cdd6c482
IM
3765 struct perf_event *leader = event->group_leader, *sub;
3766 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3767 u64 values[5];
3768 int n = 0;
3769
3770 values[n++] = 1 + leader->nr_siblings;
3771
3772 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3773 values[n++] = enabled;
3dab77fb
PZ
3774
3775 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3776 values[n++] = running;
3dab77fb 3777
cdd6c482 3778 if (leader != event)
3dab77fb
PZ
3779 leader->pmu->read(leader);
3780
b5e58793 3781 values[n++] = perf_event_count(leader);
3dab77fb 3782 if (read_format & PERF_FORMAT_ID)
cdd6c482 3783 values[n++] = primary_event_id(leader);
3dab77fb 3784
76369139 3785 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3786
65abc865 3787 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3788 n = 0;
3789
cdd6c482 3790 if (sub != event)
3dab77fb
PZ
3791 sub->pmu->read(sub);
3792
b5e58793 3793 values[n++] = perf_event_count(sub);
3dab77fb 3794 if (read_format & PERF_FORMAT_ID)
cdd6c482 3795 values[n++] = primary_event_id(sub);
3dab77fb 3796
76369139 3797 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3798 }
3799}
3800
eed01528
SE
3801#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3802 PERF_FORMAT_TOTAL_TIME_RUNNING)
3803
3dab77fb 3804static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3805 struct perf_event *event)
3dab77fb 3806{
e3f3541c 3807 u64 enabled = 0, running = 0, now;
eed01528
SE
3808 u64 read_format = event->attr.read_format;
3809
3810 /*
3811 * compute total_time_enabled, total_time_running
3812 * based on snapshot values taken when the event
3813 * was last scheduled in.
3814 *
3815 * we cannot simply called update_context_time()
3816 * because of locking issue as we are called in
3817 * NMI context
3818 */
c4794295 3819 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3820 calc_timer_values(event, &now, &enabled, &running);
eed01528 3821
cdd6c482 3822 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3823 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3824 else
eed01528 3825 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3826}
3827
5622f295
MM
3828void perf_output_sample(struct perf_output_handle *handle,
3829 struct perf_event_header *header,
3830 struct perf_sample_data *data,
cdd6c482 3831 struct perf_event *event)
5622f295
MM
3832{
3833 u64 sample_type = data->type;
3834
3835 perf_output_put(handle, *header);
3836
3837 if (sample_type & PERF_SAMPLE_IP)
3838 perf_output_put(handle, data->ip);
3839
3840 if (sample_type & PERF_SAMPLE_TID)
3841 perf_output_put(handle, data->tid_entry);
3842
3843 if (sample_type & PERF_SAMPLE_TIME)
3844 perf_output_put(handle, data->time);
3845
3846 if (sample_type & PERF_SAMPLE_ADDR)
3847 perf_output_put(handle, data->addr);
3848
3849 if (sample_type & PERF_SAMPLE_ID)
3850 perf_output_put(handle, data->id);
3851
3852 if (sample_type & PERF_SAMPLE_STREAM_ID)
3853 perf_output_put(handle, data->stream_id);
3854
3855 if (sample_type & PERF_SAMPLE_CPU)
3856 perf_output_put(handle, data->cpu_entry);
3857
3858 if (sample_type & PERF_SAMPLE_PERIOD)
3859 perf_output_put(handle, data->period);
3860
3861 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3862 perf_output_read(handle, event);
5622f295
MM
3863
3864 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3865 if (data->callchain) {
3866 int size = 1;
3867
3868 if (data->callchain)
3869 size += data->callchain->nr;
3870
3871 size *= sizeof(u64);
3872
76369139 3873 __output_copy(handle, data->callchain, size);
5622f295
MM
3874 } else {
3875 u64 nr = 0;
3876 perf_output_put(handle, nr);
3877 }
3878 }
3879
3880 if (sample_type & PERF_SAMPLE_RAW) {
3881 if (data->raw) {
3882 perf_output_put(handle, data->raw->size);
76369139
FW
3883 __output_copy(handle, data->raw->data,
3884 data->raw->size);
5622f295
MM
3885 } else {
3886 struct {
3887 u32 size;
3888 u32 data;
3889 } raw = {
3890 .size = sizeof(u32),
3891 .data = 0,
3892 };
3893 perf_output_put(handle, raw);
3894 }
3895 }
a7ac67ea
PZ
3896
3897 if (!event->attr.watermark) {
3898 int wakeup_events = event->attr.wakeup_events;
3899
3900 if (wakeup_events) {
3901 struct ring_buffer *rb = handle->rb;
3902 int events = local_inc_return(&rb->events);
3903
3904 if (events >= wakeup_events) {
3905 local_sub(wakeup_events, &rb->events);
3906 local_inc(&rb->wakeup);
3907 }
3908 }
3909 }
5622f295
MM
3910}
3911
3912void perf_prepare_sample(struct perf_event_header *header,
3913 struct perf_sample_data *data,
cdd6c482 3914 struct perf_event *event,
5622f295 3915 struct pt_regs *regs)
7b732a75 3916{
cdd6c482 3917 u64 sample_type = event->attr.sample_type;
7b732a75 3918
cdd6c482 3919 header->type = PERF_RECORD_SAMPLE;
c320c7b7 3920 header->size = sizeof(*header) + event->header_size;
5622f295
MM
3921
3922 header->misc = 0;
3923 header->misc |= perf_misc_flags(regs);
6fab0192 3924
c980d109 3925 __perf_event_header__init_id(header, data, event);
6844c09d 3926
c320c7b7 3927 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
3928 data->ip = perf_instruction_pointer(regs);
3929
b23f3325 3930 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 3931 int size = 1;
394ee076 3932
5622f295
MM
3933 data->callchain = perf_callchain(regs);
3934
3935 if (data->callchain)
3936 size += data->callchain->nr;
3937
3938 header->size += size * sizeof(u64);
394ee076
PZ
3939 }
3940
3a43ce68 3941 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
3942 int size = sizeof(u32);
3943
3944 if (data->raw)
3945 size += data->raw->size;
3946 else
3947 size += sizeof(u32);
3948
3949 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 3950 header->size += size;
7f453c24 3951 }
5622f295 3952}
7f453c24 3953
a8b0ca17 3954static void perf_event_output(struct perf_event *event,
5622f295
MM
3955 struct perf_sample_data *data,
3956 struct pt_regs *regs)
3957{
3958 struct perf_output_handle handle;
3959 struct perf_event_header header;
689802b2 3960
927c7a9e
FW
3961 /* protect the callchain buffers */
3962 rcu_read_lock();
3963
cdd6c482 3964 perf_prepare_sample(&header, data, event, regs);
5c148194 3965
a7ac67ea 3966 if (perf_output_begin(&handle, event, header.size))
927c7a9e 3967 goto exit;
0322cd6e 3968
cdd6c482 3969 perf_output_sample(&handle, &header, data, event);
f413cdb8 3970
8a057d84 3971 perf_output_end(&handle);
927c7a9e
FW
3972
3973exit:
3974 rcu_read_unlock();
0322cd6e
PZ
3975}
3976
38b200d6 3977/*
cdd6c482 3978 * read event_id
38b200d6
PZ
3979 */
3980
3981struct perf_read_event {
3982 struct perf_event_header header;
3983
3984 u32 pid;
3985 u32 tid;
38b200d6
PZ
3986};
3987
3988static void
cdd6c482 3989perf_event_read_event(struct perf_event *event,
38b200d6
PZ
3990 struct task_struct *task)
3991{
3992 struct perf_output_handle handle;
c980d109 3993 struct perf_sample_data sample;
dfc65094 3994 struct perf_read_event read_event = {
38b200d6 3995 .header = {
cdd6c482 3996 .type = PERF_RECORD_READ,
38b200d6 3997 .misc = 0,
c320c7b7 3998 .size = sizeof(read_event) + event->read_size,
38b200d6 3999 },
cdd6c482
IM
4000 .pid = perf_event_pid(event, task),
4001 .tid = perf_event_tid(event, task),
38b200d6 4002 };
3dab77fb 4003 int ret;
38b200d6 4004
c980d109 4005 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4006 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4007 if (ret)
4008 return;
4009
dfc65094 4010 perf_output_put(&handle, read_event);
cdd6c482 4011 perf_output_read(&handle, event);
c980d109 4012 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4013
38b200d6
PZ
4014 perf_output_end(&handle);
4015}
4016
60313ebe 4017/*
9f498cc5
PZ
4018 * task tracking -- fork/exit
4019 *
3af9e859 4020 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4021 */
4022
9f498cc5 4023struct perf_task_event {
3a80b4a3 4024 struct task_struct *task;
cdd6c482 4025 struct perf_event_context *task_ctx;
60313ebe
PZ
4026
4027 struct {
4028 struct perf_event_header header;
4029
4030 u32 pid;
4031 u32 ppid;
9f498cc5
PZ
4032 u32 tid;
4033 u32 ptid;
393b2ad8 4034 u64 time;
cdd6c482 4035 } event_id;
60313ebe
PZ
4036};
4037
cdd6c482 4038static void perf_event_task_output(struct perf_event *event,
9f498cc5 4039 struct perf_task_event *task_event)
60313ebe
PZ
4040{
4041 struct perf_output_handle handle;
c980d109 4042 struct perf_sample_data sample;
9f498cc5 4043 struct task_struct *task = task_event->task;
c980d109 4044 int ret, size = task_event->event_id.header.size;
8bb39f9a 4045
c980d109 4046 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4047
c980d109 4048 ret = perf_output_begin(&handle, event,
a7ac67ea 4049 task_event->event_id.header.size);
ef60777c 4050 if (ret)
c980d109 4051 goto out;
60313ebe 4052
cdd6c482
IM
4053 task_event->event_id.pid = perf_event_pid(event, task);
4054 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4055
cdd6c482
IM
4056 task_event->event_id.tid = perf_event_tid(event, task);
4057 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4058
cdd6c482 4059 perf_output_put(&handle, task_event->event_id);
393b2ad8 4060
c980d109
ACM
4061 perf_event__output_id_sample(event, &handle, &sample);
4062
60313ebe 4063 perf_output_end(&handle);
c980d109
ACM
4064out:
4065 task_event->event_id.header.size = size;
60313ebe
PZ
4066}
4067
cdd6c482 4068static int perf_event_task_match(struct perf_event *event)
60313ebe 4069{
6f93d0a7 4070 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4071 return 0;
4072
5632ab12 4073 if (!event_filter_match(event))
5d27c23d
PZ
4074 return 0;
4075
3af9e859
EM
4076 if (event->attr.comm || event->attr.mmap ||
4077 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4078 return 1;
4079
4080 return 0;
4081}
4082
cdd6c482 4083static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4084 struct perf_task_event *task_event)
60313ebe 4085{
cdd6c482 4086 struct perf_event *event;
60313ebe 4087
cdd6c482
IM
4088 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4089 if (perf_event_task_match(event))
4090 perf_event_task_output(event, task_event);
60313ebe 4091 }
60313ebe
PZ
4092}
4093
cdd6c482 4094static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4095{
4096 struct perf_cpu_context *cpuctx;
8dc85d54 4097 struct perf_event_context *ctx;
108b02cf 4098 struct pmu *pmu;
8dc85d54 4099 int ctxn;
60313ebe 4100
d6ff86cf 4101 rcu_read_lock();
108b02cf 4102 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4103 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4104 if (cpuctx->active_pmu != pmu)
4105 goto next;
108b02cf 4106 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4107
4108 ctx = task_event->task_ctx;
4109 if (!ctx) {
4110 ctxn = pmu->task_ctx_nr;
4111 if (ctxn < 0)
41945f6c 4112 goto next;
8dc85d54
PZ
4113 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4114 }
4115 if (ctx)
4116 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4117next:
4118 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4119 }
60313ebe
PZ
4120 rcu_read_unlock();
4121}
4122
cdd6c482
IM
4123static void perf_event_task(struct task_struct *task,
4124 struct perf_event_context *task_ctx,
3a80b4a3 4125 int new)
60313ebe 4126{
9f498cc5 4127 struct perf_task_event task_event;
60313ebe 4128
cdd6c482
IM
4129 if (!atomic_read(&nr_comm_events) &&
4130 !atomic_read(&nr_mmap_events) &&
4131 !atomic_read(&nr_task_events))
60313ebe
PZ
4132 return;
4133
9f498cc5 4134 task_event = (struct perf_task_event){
3a80b4a3
PZ
4135 .task = task,
4136 .task_ctx = task_ctx,
cdd6c482 4137 .event_id = {
60313ebe 4138 .header = {
cdd6c482 4139 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4140 .misc = 0,
cdd6c482 4141 .size = sizeof(task_event.event_id),
60313ebe 4142 },
573402db
PZ
4143 /* .pid */
4144 /* .ppid */
9f498cc5
PZ
4145 /* .tid */
4146 /* .ptid */
6f93d0a7 4147 .time = perf_clock(),
60313ebe
PZ
4148 },
4149 };
4150
cdd6c482 4151 perf_event_task_event(&task_event);
9f498cc5
PZ
4152}
4153
cdd6c482 4154void perf_event_fork(struct task_struct *task)
9f498cc5 4155{
cdd6c482 4156 perf_event_task(task, NULL, 1);
60313ebe
PZ
4157}
4158
8d1b2d93
PZ
4159/*
4160 * comm tracking
4161 */
4162
4163struct perf_comm_event {
22a4f650
IM
4164 struct task_struct *task;
4165 char *comm;
8d1b2d93
PZ
4166 int comm_size;
4167
4168 struct {
4169 struct perf_event_header header;
4170
4171 u32 pid;
4172 u32 tid;
cdd6c482 4173 } event_id;
8d1b2d93
PZ
4174};
4175
cdd6c482 4176static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4177 struct perf_comm_event *comm_event)
4178{
4179 struct perf_output_handle handle;
c980d109 4180 struct perf_sample_data sample;
cdd6c482 4181 int size = comm_event->event_id.header.size;
c980d109
ACM
4182 int ret;
4183
4184 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4185 ret = perf_output_begin(&handle, event,
a7ac67ea 4186 comm_event->event_id.header.size);
8d1b2d93
PZ
4187
4188 if (ret)
c980d109 4189 goto out;
8d1b2d93 4190
cdd6c482
IM
4191 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4192 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4193
cdd6c482 4194 perf_output_put(&handle, comm_event->event_id);
76369139 4195 __output_copy(&handle, comm_event->comm,
8d1b2d93 4196 comm_event->comm_size);
c980d109
ACM
4197
4198 perf_event__output_id_sample(event, &handle, &sample);
4199
8d1b2d93 4200 perf_output_end(&handle);
c980d109
ACM
4201out:
4202 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4203}
4204
cdd6c482 4205static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4206{
6f93d0a7 4207 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4208 return 0;
4209
5632ab12 4210 if (!event_filter_match(event))
5d27c23d
PZ
4211 return 0;
4212
cdd6c482 4213 if (event->attr.comm)
8d1b2d93
PZ
4214 return 1;
4215
4216 return 0;
4217}
4218
cdd6c482 4219static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4220 struct perf_comm_event *comm_event)
4221{
cdd6c482 4222 struct perf_event *event;
8d1b2d93 4223
cdd6c482
IM
4224 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4225 if (perf_event_comm_match(event))
4226 perf_event_comm_output(event, comm_event);
8d1b2d93 4227 }
8d1b2d93
PZ
4228}
4229
cdd6c482 4230static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4231{
4232 struct perf_cpu_context *cpuctx;
cdd6c482 4233 struct perf_event_context *ctx;
413ee3b4 4234 char comm[TASK_COMM_LEN];
8d1b2d93 4235 unsigned int size;
108b02cf 4236 struct pmu *pmu;
8dc85d54 4237 int ctxn;
8d1b2d93 4238
413ee3b4 4239 memset(comm, 0, sizeof(comm));
96b02d78 4240 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4241 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4242
4243 comm_event->comm = comm;
4244 comm_event->comm_size = size;
4245
cdd6c482 4246 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4247 rcu_read_lock();
108b02cf 4248 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4249 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4250 if (cpuctx->active_pmu != pmu)
4251 goto next;
108b02cf 4252 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4253
4254 ctxn = pmu->task_ctx_nr;
4255 if (ctxn < 0)
41945f6c 4256 goto next;
8dc85d54
PZ
4257
4258 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4259 if (ctx)
4260 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4261next:
4262 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4263 }
665c2142 4264 rcu_read_unlock();
8d1b2d93
PZ
4265}
4266
cdd6c482 4267void perf_event_comm(struct task_struct *task)
8d1b2d93 4268{
9ee318a7 4269 struct perf_comm_event comm_event;
8dc85d54
PZ
4270 struct perf_event_context *ctx;
4271 int ctxn;
9ee318a7 4272
8dc85d54
PZ
4273 for_each_task_context_nr(ctxn) {
4274 ctx = task->perf_event_ctxp[ctxn];
4275 if (!ctx)
4276 continue;
9ee318a7 4277
8dc85d54
PZ
4278 perf_event_enable_on_exec(ctx);
4279 }
9ee318a7 4280
cdd6c482 4281 if (!atomic_read(&nr_comm_events))
9ee318a7 4282 return;
a63eaf34 4283
9ee318a7 4284 comm_event = (struct perf_comm_event){
8d1b2d93 4285 .task = task,
573402db
PZ
4286 /* .comm */
4287 /* .comm_size */
cdd6c482 4288 .event_id = {
573402db 4289 .header = {
cdd6c482 4290 .type = PERF_RECORD_COMM,
573402db
PZ
4291 .misc = 0,
4292 /* .size */
4293 },
4294 /* .pid */
4295 /* .tid */
8d1b2d93
PZ
4296 },
4297 };
4298
cdd6c482 4299 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4300}
4301
0a4a9391
PZ
4302/*
4303 * mmap tracking
4304 */
4305
4306struct perf_mmap_event {
089dd79d
PZ
4307 struct vm_area_struct *vma;
4308
4309 const char *file_name;
4310 int file_size;
0a4a9391
PZ
4311
4312 struct {
4313 struct perf_event_header header;
4314
4315 u32 pid;
4316 u32 tid;
4317 u64 start;
4318 u64 len;
4319 u64 pgoff;
cdd6c482 4320 } event_id;
0a4a9391
PZ
4321};
4322
cdd6c482 4323static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4324 struct perf_mmap_event *mmap_event)
4325{
4326 struct perf_output_handle handle;
c980d109 4327 struct perf_sample_data sample;
cdd6c482 4328 int size = mmap_event->event_id.header.size;
c980d109 4329 int ret;
0a4a9391 4330
c980d109
ACM
4331 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4332 ret = perf_output_begin(&handle, event,
a7ac67ea 4333 mmap_event->event_id.header.size);
0a4a9391 4334 if (ret)
c980d109 4335 goto out;
0a4a9391 4336
cdd6c482
IM
4337 mmap_event->event_id.pid = perf_event_pid(event, current);
4338 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4339
cdd6c482 4340 perf_output_put(&handle, mmap_event->event_id);
76369139 4341 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4342 mmap_event->file_size);
c980d109
ACM
4343
4344 perf_event__output_id_sample(event, &handle, &sample);
4345
78d613eb 4346 perf_output_end(&handle);
c980d109
ACM
4347out:
4348 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4349}
4350
cdd6c482 4351static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4352 struct perf_mmap_event *mmap_event,
4353 int executable)
0a4a9391 4354{
6f93d0a7 4355 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4356 return 0;
4357
5632ab12 4358 if (!event_filter_match(event))
5d27c23d
PZ
4359 return 0;
4360
3af9e859
EM
4361 if ((!executable && event->attr.mmap_data) ||
4362 (executable && event->attr.mmap))
0a4a9391
PZ
4363 return 1;
4364
4365 return 0;
4366}
4367
cdd6c482 4368static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4369 struct perf_mmap_event *mmap_event,
4370 int executable)
0a4a9391 4371{
cdd6c482 4372 struct perf_event *event;
0a4a9391 4373
cdd6c482 4374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4375 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4376 perf_event_mmap_output(event, mmap_event);
0a4a9391 4377 }
0a4a9391
PZ
4378}
4379
cdd6c482 4380static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4381{
4382 struct perf_cpu_context *cpuctx;
cdd6c482 4383 struct perf_event_context *ctx;
089dd79d
PZ
4384 struct vm_area_struct *vma = mmap_event->vma;
4385 struct file *file = vma->vm_file;
0a4a9391
PZ
4386 unsigned int size;
4387 char tmp[16];
4388 char *buf = NULL;
089dd79d 4389 const char *name;
108b02cf 4390 struct pmu *pmu;
8dc85d54 4391 int ctxn;
0a4a9391 4392
413ee3b4
AB
4393 memset(tmp, 0, sizeof(tmp));
4394
0a4a9391 4395 if (file) {
413ee3b4 4396 /*
76369139 4397 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4398 * need to add enough zero bytes after the string to handle
4399 * the 64bit alignment we do later.
4400 */
4401 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4402 if (!buf) {
4403 name = strncpy(tmp, "//enomem", sizeof(tmp));
4404 goto got_name;
4405 }
d3d21c41 4406 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4407 if (IS_ERR(name)) {
4408 name = strncpy(tmp, "//toolong", sizeof(tmp));
4409 goto got_name;
4410 }
4411 } else {
413ee3b4
AB
4412 if (arch_vma_name(mmap_event->vma)) {
4413 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4414 sizeof(tmp));
089dd79d 4415 goto got_name;
413ee3b4 4416 }
089dd79d
PZ
4417
4418 if (!vma->vm_mm) {
4419 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4420 goto got_name;
3af9e859
EM
4421 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4422 vma->vm_end >= vma->vm_mm->brk) {
4423 name = strncpy(tmp, "[heap]", sizeof(tmp));
4424 goto got_name;
4425 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4426 vma->vm_end >= vma->vm_mm->start_stack) {
4427 name = strncpy(tmp, "[stack]", sizeof(tmp));
4428 goto got_name;
089dd79d
PZ
4429 }
4430
0a4a9391
PZ
4431 name = strncpy(tmp, "//anon", sizeof(tmp));
4432 goto got_name;
4433 }
4434
4435got_name:
888fcee0 4436 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4437
4438 mmap_event->file_name = name;
4439 mmap_event->file_size = size;
4440
cdd6c482 4441 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4442
f6d9dd23 4443 rcu_read_lock();
108b02cf 4444 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4445 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4446 if (cpuctx->active_pmu != pmu)
4447 goto next;
108b02cf
PZ
4448 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4449 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4450
4451 ctxn = pmu->task_ctx_nr;
4452 if (ctxn < 0)
41945f6c 4453 goto next;
8dc85d54
PZ
4454
4455 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4456 if (ctx) {
4457 perf_event_mmap_ctx(ctx, mmap_event,
4458 vma->vm_flags & VM_EXEC);
4459 }
41945f6c
PZ
4460next:
4461 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4462 }
665c2142
PZ
4463 rcu_read_unlock();
4464
0a4a9391
PZ
4465 kfree(buf);
4466}
4467
3af9e859 4468void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4469{
9ee318a7
PZ
4470 struct perf_mmap_event mmap_event;
4471
cdd6c482 4472 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4473 return;
4474
4475 mmap_event = (struct perf_mmap_event){
089dd79d 4476 .vma = vma,
573402db
PZ
4477 /* .file_name */
4478 /* .file_size */
cdd6c482 4479 .event_id = {
573402db 4480 .header = {
cdd6c482 4481 .type = PERF_RECORD_MMAP,
39447b38 4482 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4483 /* .size */
4484 },
4485 /* .pid */
4486 /* .tid */
089dd79d
PZ
4487 .start = vma->vm_start,
4488 .len = vma->vm_end - vma->vm_start,
3a0304e9 4489 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4490 },
4491 };
4492
cdd6c482 4493 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4494}
4495
a78ac325
PZ
4496/*
4497 * IRQ throttle logging
4498 */
4499
cdd6c482 4500static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4501{
4502 struct perf_output_handle handle;
c980d109 4503 struct perf_sample_data sample;
a78ac325
PZ
4504 int ret;
4505
4506 struct {
4507 struct perf_event_header header;
4508 u64 time;
cca3f454 4509 u64 id;
7f453c24 4510 u64 stream_id;
a78ac325
PZ
4511 } throttle_event = {
4512 .header = {
cdd6c482 4513 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4514 .misc = 0,
4515 .size = sizeof(throttle_event),
4516 },
def0a9b2 4517 .time = perf_clock(),
cdd6c482
IM
4518 .id = primary_event_id(event),
4519 .stream_id = event->id,
a78ac325
PZ
4520 };
4521
966ee4d6 4522 if (enable)
cdd6c482 4523 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4524
c980d109
ACM
4525 perf_event_header__init_id(&throttle_event.header, &sample, event);
4526
4527 ret = perf_output_begin(&handle, event,
a7ac67ea 4528 throttle_event.header.size);
a78ac325
PZ
4529 if (ret)
4530 return;
4531
4532 perf_output_put(&handle, throttle_event);
c980d109 4533 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4534 perf_output_end(&handle);
4535}
4536
f6c7d5fe 4537/*
cdd6c482 4538 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4539 */
4540
a8b0ca17 4541static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4542 int throttle, struct perf_sample_data *data,
4543 struct pt_regs *regs)
f6c7d5fe 4544{
cdd6c482
IM
4545 int events = atomic_read(&event->event_limit);
4546 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4547 u64 seq;
79f14641
PZ
4548 int ret = 0;
4549
96398826
PZ
4550 /*
4551 * Non-sampling counters might still use the PMI to fold short
4552 * hardware counters, ignore those.
4553 */
4554 if (unlikely(!is_sampling_event(event)))
4555 return 0;
4556
e050e3f0
SE
4557 seq = __this_cpu_read(perf_throttled_seq);
4558 if (seq != hwc->interrupts_seq) {
4559 hwc->interrupts_seq = seq;
4560 hwc->interrupts = 1;
4561 } else {
4562 hwc->interrupts++;
4563 if (unlikely(throttle
4564 && hwc->interrupts >= max_samples_per_tick)) {
4565 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4566 hwc->interrupts = MAX_INTERRUPTS;
4567 perf_log_throttle(event, 0);
a78ac325
PZ
4568 ret = 1;
4569 }
e050e3f0 4570 }
60db5e09 4571
cdd6c482 4572 if (event->attr.freq) {
def0a9b2 4573 u64 now = perf_clock();
abd50713 4574 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4575
abd50713 4576 hwc->freq_time_stamp = now;
bd2b5b12 4577
abd50713 4578 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4579 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4580 }
4581
2023b359
PZ
4582 /*
4583 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4584 * events
2023b359
PZ
4585 */
4586
cdd6c482
IM
4587 event->pending_kill = POLL_IN;
4588 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4589 ret = 1;
cdd6c482 4590 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4591 event->pending_disable = 1;
4592 irq_work_queue(&event->pending);
79f14641
PZ
4593 }
4594
453f19ee 4595 if (event->overflow_handler)
a8b0ca17 4596 event->overflow_handler(event, data, regs);
453f19ee 4597 else
a8b0ca17 4598 perf_event_output(event, data, regs);
453f19ee 4599
f506b3dc 4600 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4601 event->pending_wakeup = 1;
4602 irq_work_queue(&event->pending);
f506b3dc
PZ
4603 }
4604
79f14641 4605 return ret;
f6c7d5fe
PZ
4606}
4607
a8b0ca17 4608int perf_event_overflow(struct perf_event *event,
5622f295
MM
4609 struct perf_sample_data *data,
4610 struct pt_regs *regs)
850bc73f 4611{
a8b0ca17 4612 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4613}
4614
15dbf27c 4615/*
cdd6c482 4616 * Generic software event infrastructure
15dbf27c
PZ
4617 */
4618
b28ab83c
PZ
4619struct swevent_htable {
4620 struct swevent_hlist *swevent_hlist;
4621 struct mutex hlist_mutex;
4622 int hlist_refcount;
4623
4624 /* Recursion avoidance in each contexts */
4625 int recursion[PERF_NR_CONTEXTS];
4626};
4627
4628static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4629
7b4b6658 4630/*
cdd6c482
IM
4631 * We directly increment event->count and keep a second value in
4632 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4633 * is kept in the range [-sample_period, 0] so that we can use the
4634 * sign as trigger.
4635 */
4636
cdd6c482 4637static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4638{
cdd6c482 4639 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4640 u64 period = hwc->last_period;
4641 u64 nr, offset;
4642 s64 old, val;
4643
4644 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4645
4646again:
e7850595 4647 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4648 if (val < 0)
4649 return 0;
15dbf27c 4650
7b4b6658
PZ
4651 nr = div64_u64(period + val, period);
4652 offset = nr * period;
4653 val -= offset;
e7850595 4654 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4655 goto again;
15dbf27c 4656
7b4b6658 4657 return nr;
15dbf27c
PZ
4658}
4659
0cff784a 4660static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4661 struct perf_sample_data *data,
5622f295 4662 struct pt_regs *regs)
15dbf27c 4663{
cdd6c482 4664 struct hw_perf_event *hwc = &event->hw;
850bc73f 4665 int throttle = 0;
15dbf27c 4666
0cff784a
PZ
4667 if (!overflow)
4668 overflow = perf_swevent_set_period(event);
15dbf27c 4669
7b4b6658
PZ
4670 if (hwc->interrupts == MAX_INTERRUPTS)
4671 return;
15dbf27c 4672
7b4b6658 4673 for (; overflow; overflow--) {
a8b0ca17 4674 if (__perf_event_overflow(event, throttle,
5622f295 4675 data, regs)) {
7b4b6658
PZ
4676 /*
4677 * We inhibit the overflow from happening when
4678 * hwc->interrupts == MAX_INTERRUPTS.
4679 */
4680 break;
4681 }
cf450a73 4682 throttle = 1;
7b4b6658 4683 }
15dbf27c
PZ
4684}
4685
a4eaf7f1 4686static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4687 struct perf_sample_data *data,
5622f295 4688 struct pt_regs *regs)
7b4b6658 4689{
cdd6c482 4690 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4691
e7850595 4692 local64_add(nr, &event->count);
d6d020e9 4693
0cff784a
PZ
4694 if (!regs)
4695 return;
4696
6c7e550f 4697 if (!is_sampling_event(event))
7b4b6658 4698 return;
d6d020e9 4699
5d81e5cf
AV
4700 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4701 data->period = nr;
4702 return perf_swevent_overflow(event, 1, data, regs);
4703 } else
4704 data->period = event->hw.last_period;
4705
0cff784a 4706 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4707 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4708
e7850595 4709 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4710 return;
df1a132b 4711
a8b0ca17 4712 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4713}
4714
f5ffe02e
FW
4715static int perf_exclude_event(struct perf_event *event,
4716 struct pt_regs *regs)
4717{
a4eaf7f1 4718 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4719 return 1;
a4eaf7f1 4720
f5ffe02e
FW
4721 if (regs) {
4722 if (event->attr.exclude_user && user_mode(regs))
4723 return 1;
4724
4725 if (event->attr.exclude_kernel && !user_mode(regs))
4726 return 1;
4727 }
4728
4729 return 0;
4730}
4731
cdd6c482 4732static int perf_swevent_match(struct perf_event *event,
1c432d89 4733 enum perf_type_id type,
6fb2915d
LZ
4734 u32 event_id,
4735 struct perf_sample_data *data,
4736 struct pt_regs *regs)
15dbf27c 4737{
cdd6c482 4738 if (event->attr.type != type)
a21ca2ca 4739 return 0;
f5ffe02e 4740
cdd6c482 4741 if (event->attr.config != event_id)
15dbf27c
PZ
4742 return 0;
4743
f5ffe02e
FW
4744 if (perf_exclude_event(event, regs))
4745 return 0;
15dbf27c
PZ
4746
4747 return 1;
4748}
4749
76e1d904
FW
4750static inline u64 swevent_hash(u64 type, u32 event_id)
4751{
4752 u64 val = event_id | (type << 32);
4753
4754 return hash_64(val, SWEVENT_HLIST_BITS);
4755}
4756
49f135ed
FW
4757static inline struct hlist_head *
4758__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4759{
49f135ed
FW
4760 u64 hash = swevent_hash(type, event_id);
4761
4762 return &hlist->heads[hash];
4763}
76e1d904 4764
49f135ed
FW
4765/* For the read side: events when they trigger */
4766static inline struct hlist_head *
b28ab83c 4767find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4768{
4769 struct swevent_hlist *hlist;
76e1d904 4770
b28ab83c 4771 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4772 if (!hlist)
4773 return NULL;
4774
49f135ed
FW
4775 return __find_swevent_head(hlist, type, event_id);
4776}
4777
4778/* For the event head insertion and removal in the hlist */
4779static inline struct hlist_head *
b28ab83c 4780find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4781{
4782 struct swevent_hlist *hlist;
4783 u32 event_id = event->attr.config;
4784 u64 type = event->attr.type;
4785
4786 /*
4787 * Event scheduling is always serialized against hlist allocation
4788 * and release. Which makes the protected version suitable here.
4789 * The context lock guarantees that.
4790 */
b28ab83c 4791 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4792 lockdep_is_held(&event->ctx->lock));
4793 if (!hlist)
4794 return NULL;
4795
4796 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4797}
4798
4799static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4800 u64 nr,
76e1d904
FW
4801 struct perf_sample_data *data,
4802 struct pt_regs *regs)
15dbf27c 4803{
b28ab83c 4804 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4805 struct perf_event *event;
76e1d904
FW
4806 struct hlist_node *node;
4807 struct hlist_head *head;
15dbf27c 4808
76e1d904 4809 rcu_read_lock();
b28ab83c 4810 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4811 if (!head)
4812 goto end;
4813
4814 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4815 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4816 perf_swevent_event(event, nr, data, regs);
15dbf27c 4817 }
76e1d904
FW
4818end:
4819 rcu_read_unlock();
15dbf27c
PZ
4820}
4821
4ed7c92d 4822int perf_swevent_get_recursion_context(void)
96f6d444 4823{
b28ab83c 4824 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4825
b28ab83c 4826 return get_recursion_context(swhash->recursion);
96f6d444 4827}
645e8cc0 4828EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4829
fa9f90be 4830inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4831{
b28ab83c 4832 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4833
b28ab83c 4834 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4835}
15dbf27c 4836
a8b0ca17 4837void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4838{
a4234bfc 4839 struct perf_sample_data data;
4ed7c92d
PZ
4840 int rctx;
4841
1c024eca 4842 preempt_disable_notrace();
4ed7c92d
PZ
4843 rctx = perf_swevent_get_recursion_context();
4844 if (rctx < 0)
4845 return;
a4234bfc 4846
dc1d628a 4847 perf_sample_data_init(&data, addr);
92bf309a 4848
a8b0ca17 4849 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4850
4851 perf_swevent_put_recursion_context(rctx);
1c024eca 4852 preempt_enable_notrace();
b8e83514
PZ
4853}
4854
cdd6c482 4855static void perf_swevent_read(struct perf_event *event)
15dbf27c 4856{
15dbf27c
PZ
4857}
4858
a4eaf7f1 4859static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4860{
b28ab83c 4861 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4862 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4863 struct hlist_head *head;
4864
6c7e550f 4865 if (is_sampling_event(event)) {
7b4b6658 4866 hwc->last_period = hwc->sample_period;
cdd6c482 4867 perf_swevent_set_period(event);
7b4b6658 4868 }
76e1d904 4869
a4eaf7f1
PZ
4870 hwc->state = !(flags & PERF_EF_START);
4871
b28ab83c 4872 head = find_swevent_head(swhash, event);
76e1d904
FW
4873 if (WARN_ON_ONCE(!head))
4874 return -EINVAL;
4875
4876 hlist_add_head_rcu(&event->hlist_entry, head);
4877
15dbf27c
PZ
4878 return 0;
4879}
4880
a4eaf7f1 4881static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 4882{
76e1d904 4883 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
4884}
4885
a4eaf7f1 4886static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 4887{
a4eaf7f1 4888 event->hw.state = 0;
d6d020e9 4889}
aa9c4c0f 4890
a4eaf7f1 4891static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 4892{
a4eaf7f1 4893 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
4894}
4895
49f135ed
FW
4896/* Deref the hlist from the update side */
4897static inline struct swevent_hlist *
b28ab83c 4898swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 4899{
b28ab83c
PZ
4900 return rcu_dereference_protected(swhash->swevent_hlist,
4901 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
4902}
4903
b28ab83c 4904static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 4905{
b28ab83c 4906 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 4907
49f135ed 4908 if (!hlist)
76e1d904
FW
4909 return;
4910
b28ab83c 4911 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 4912 kfree_rcu(hlist, rcu_head);
76e1d904
FW
4913}
4914
4915static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4916{
b28ab83c 4917 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 4918
b28ab83c 4919 mutex_lock(&swhash->hlist_mutex);
76e1d904 4920
b28ab83c
PZ
4921 if (!--swhash->hlist_refcount)
4922 swevent_hlist_release(swhash);
76e1d904 4923
b28ab83c 4924 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4925}
4926
4927static void swevent_hlist_put(struct perf_event *event)
4928{
4929 int cpu;
4930
4931 if (event->cpu != -1) {
4932 swevent_hlist_put_cpu(event, event->cpu);
4933 return;
4934 }
4935
4936 for_each_possible_cpu(cpu)
4937 swevent_hlist_put_cpu(event, cpu);
4938}
4939
4940static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4941{
b28ab83c 4942 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
4943 int err = 0;
4944
b28ab83c 4945 mutex_lock(&swhash->hlist_mutex);
76e1d904 4946
b28ab83c 4947 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
4948 struct swevent_hlist *hlist;
4949
4950 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4951 if (!hlist) {
4952 err = -ENOMEM;
4953 goto exit;
4954 }
b28ab83c 4955 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 4956 }
b28ab83c 4957 swhash->hlist_refcount++;
9ed6060d 4958exit:
b28ab83c 4959 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4960
4961 return err;
4962}
4963
4964static int swevent_hlist_get(struct perf_event *event)
4965{
4966 int err;
4967 int cpu, failed_cpu;
4968
4969 if (event->cpu != -1)
4970 return swevent_hlist_get_cpu(event, event->cpu);
4971
4972 get_online_cpus();
4973 for_each_possible_cpu(cpu) {
4974 err = swevent_hlist_get_cpu(event, cpu);
4975 if (err) {
4976 failed_cpu = cpu;
4977 goto fail;
4978 }
4979 }
4980 put_online_cpus();
4981
4982 return 0;
9ed6060d 4983fail:
76e1d904
FW
4984 for_each_possible_cpu(cpu) {
4985 if (cpu == failed_cpu)
4986 break;
4987 swevent_hlist_put_cpu(event, cpu);
4988 }
4989
4990 put_online_cpus();
4991 return err;
4992}
4993
c5905afb 4994struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 4995
b0a873eb
PZ
4996static void sw_perf_event_destroy(struct perf_event *event)
4997{
4998 u64 event_id = event->attr.config;
95476b64 4999
b0a873eb
PZ
5000 WARN_ON(event->parent);
5001
c5905afb 5002 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5003 swevent_hlist_put(event);
5004}
5005
5006static int perf_swevent_init(struct perf_event *event)
5007{
5008 int event_id = event->attr.config;
5009
5010 if (event->attr.type != PERF_TYPE_SOFTWARE)
5011 return -ENOENT;
5012
5013 switch (event_id) {
5014 case PERF_COUNT_SW_CPU_CLOCK:
5015 case PERF_COUNT_SW_TASK_CLOCK:
5016 return -ENOENT;
5017
5018 default:
5019 break;
5020 }
5021
ce677831 5022 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5023 return -ENOENT;
5024
5025 if (!event->parent) {
5026 int err;
5027
5028 err = swevent_hlist_get(event);
5029 if (err)
5030 return err;
5031
c5905afb 5032 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5033 event->destroy = sw_perf_event_destroy;
5034 }
5035
5036 return 0;
5037}
5038
35edc2a5
PZ
5039static int perf_swevent_event_idx(struct perf_event *event)
5040{
5041 return 0;
5042}
5043
b0a873eb 5044static struct pmu perf_swevent = {
89a1e187 5045 .task_ctx_nr = perf_sw_context,
95476b64 5046
b0a873eb 5047 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5048 .add = perf_swevent_add,
5049 .del = perf_swevent_del,
5050 .start = perf_swevent_start,
5051 .stop = perf_swevent_stop,
1c024eca 5052 .read = perf_swevent_read,
35edc2a5
PZ
5053
5054 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5055};
5056
b0a873eb
PZ
5057#ifdef CONFIG_EVENT_TRACING
5058
1c024eca
PZ
5059static int perf_tp_filter_match(struct perf_event *event,
5060 struct perf_sample_data *data)
5061{
5062 void *record = data->raw->data;
5063
5064 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5065 return 1;
5066 return 0;
5067}
5068
5069static int perf_tp_event_match(struct perf_event *event,
5070 struct perf_sample_data *data,
5071 struct pt_regs *regs)
5072{
a0f7d0f7
FW
5073 if (event->hw.state & PERF_HES_STOPPED)
5074 return 0;
580d607c
PZ
5075 /*
5076 * All tracepoints are from kernel-space.
5077 */
5078 if (event->attr.exclude_kernel)
1c024eca
PZ
5079 return 0;
5080
5081 if (!perf_tp_filter_match(event, data))
5082 return 0;
5083
5084 return 1;
5085}
5086
5087void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
ecc55f84 5088 struct pt_regs *regs, struct hlist_head *head, int rctx)
95476b64
FW
5089{
5090 struct perf_sample_data data;
1c024eca
PZ
5091 struct perf_event *event;
5092 struct hlist_node *node;
5093
95476b64
FW
5094 struct perf_raw_record raw = {
5095 .size = entry_size,
5096 .data = record,
5097 };
5098
5099 perf_sample_data_init(&data, addr);
5100 data.raw = &raw;
5101
1c024eca
PZ
5102 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5103 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5104 perf_swevent_event(event, count, &data, regs);
4f41c013 5105 }
ecc55f84
PZ
5106
5107 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5108}
5109EXPORT_SYMBOL_GPL(perf_tp_event);
5110
cdd6c482 5111static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5112{
1c024eca 5113 perf_trace_destroy(event);
e077df4f
PZ
5114}
5115
b0a873eb 5116static int perf_tp_event_init(struct perf_event *event)
e077df4f 5117{
76e1d904
FW
5118 int err;
5119
b0a873eb
PZ
5120 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5121 return -ENOENT;
5122
1c024eca
PZ
5123 err = perf_trace_init(event);
5124 if (err)
b0a873eb 5125 return err;
e077df4f 5126
cdd6c482 5127 event->destroy = tp_perf_event_destroy;
e077df4f 5128
b0a873eb
PZ
5129 return 0;
5130}
5131
5132static struct pmu perf_tracepoint = {
89a1e187
PZ
5133 .task_ctx_nr = perf_sw_context,
5134
b0a873eb 5135 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5136 .add = perf_trace_add,
5137 .del = perf_trace_del,
5138 .start = perf_swevent_start,
5139 .stop = perf_swevent_stop,
b0a873eb 5140 .read = perf_swevent_read,
35edc2a5
PZ
5141
5142 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5143};
5144
5145static inline void perf_tp_register(void)
5146{
2e80a82a 5147 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5148}
6fb2915d
LZ
5149
5150static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5151{
5152 char *filter_str;
5153 int ret;
5154
5155 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5156 return -EINVAL;
5157
5158 filter_str = strndup_user(arg, PAGE_SIZE);
5159 if (IS_ERR(filter_str))
5160 return PTR_ERR(filter_str);
5161
5162 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5163
5164 kfree(filter_str);
5165 return ret;
5166}
5167
5168static void perf_event_free_filter(struct perf_event *event)
5169{
5170 ftrace_profile_free_filter(event);
5171}
5172
e077df4f 5173#else
6fb2915d 5174
b0a873eb 5175static inline void perf_tp_register(void)
e077df4f 5176{
e077df4f 5177}
6fb2915d
LZ
5178
5179static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5180{
5181 return -ENOENT;
5182}
5183
5184static void perf_event_free_filter(struct perf_event *event)
5185{
5186}
5187
07b139c8 5188#endif /* CONFIG_EVENT_TRACING */
e077df4f 5189
24f1e32c 5190#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5191void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5192{
f5ffe02e
FW
5193 struct perf_sample_data sample;
5194 struct pt_regs *regs = data;
5195
dc1d628a 5196 perf_sample_data_init(&sample, bp->attr.bp_addr);
f5ffe02e 5197
a4eaf7f1 5198 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5199 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5200}
5201#endif
5202
b0a873eb
PZ
5203/*
5204 * hrtimer based swevent callback
5205 */
f29ac756 5206
b0a873eb 5207static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5208{
b0a873eb
PZ
5209 enum hrtimer_restart ret = HRTIMER_RESTART;
5210 struct perf_sample_data data;
5211 struct pt_regs *regs;
5212 struct perf_event *event;
5213 u64 period;
f29ac756 5214
b0a873eb 5215 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5216
5217 if (event->state != PERF_EVENT_STATE_ACTIVE)
5218 return HRTIMER_NORESTART;
5219
b0a873eb 5220 event->pmu->read(event);
f344011c 5221
b0a873eb
PZ
5222 perf_sample_data_init(&data, 0);
5223 data.period = event->hw.last_period;
5224 regs = get_irq_regs();
5225
5226 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5227 if (!(event->attr.exclude_idle && is_idle_task(current)))
a8b0ca17 5228 if (perf_event_overflow(event, &data, regs))
b0a873eb
PZ
5229 ret = HRTIMER_NORESTART;
5230 }
24f1e32c 5231
b0a873eb
PZ
5232 period = max_t(u64, 10000, event->hw.sample_period);
5233 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5234
b0a873eb 5235 return ret;
f29ac756
PZ
5236}
5237
b0a873eb 5238static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5239{
b0a873eb 5240 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5241 s64 period;
5242
5243 if (!is_sampling_event(event))
5244 return;
f5ffe02e 5245
5d508e82
FBH
5246 period = local64_read(&hwc->period_left);
5247 if (period) {
5248 if (period < 0)
5249 period = 10000;
fa407f35 5250
5d508e82
FBH
5251 local64_set(&hwc->period_left, 0);
5252 } else {
5253 period = max_t(u64, 10000, hwc->sample_period);
5254 }
5255 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5256 ns_to_ktime(period), 0,
b5ab4cd5 5257 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5258}
b0a873eb
PZ
5259
5260static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5261{
b0a873eb
PZ
5262 struct hw_perf_event *hwc = &event->hw;
5263
6c7e550f 5264 if (is_sampling_event(event)) {
b0a873eb 5265 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5266 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5267
5268 hrtimer_cancel(&hwc->hrtimer);
5269 }
24f1e32c
FW
5270}
5271
ba3dd36c
PZ
5272static void perf_swevent_init_hrtimer(struct perf_event *event)
5273{
5274 struct hw_perf_event *hwc = &event->hw;
5275
5276 if (!is_sampling_event(event))
5277 return;
5278
5279 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5280 hwc->hrtimer.function = perf_swevent_hrtimer;
5281
5282 /*
5283 * Since hrtimers have a fixed rate, we can do a static freq->period
5284 * mapping and avoid the whole period adjust feedback stuff.
5285 */
5286 if (event->attr.freq) {
5287 long freq = event->attr.sample_freq;
5288
5289 event->attr.sample_period = NSEC_PER_SEC / freq;
5290 hwc->sample_period = event->attr.sample_period;
5291 local64_set(&hwc->period_left, hwc->sample_period);
5292 event->attr.freq = 0;
5293 }
5294}
5295
b0a873eb
PZ
5296/*
5297 * Software event: cpu wall time clock
5298 */
5299
5300static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5301{
b0a873eb
PZ
5302 s64 prev;
5303 u64 now;
5304
a4eaf7f1 5305 now = local_clock();
b0a873eb
PZ
5306 prev = local64_xchg(&event->hw.prev_count, now);
5307 local64_add(now - prev, &event->count);
24f1e32c 5308}
24f1e32c 5309
a4eaf7f1 5310static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5311{
a4eaf7f1 5312 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5313 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5314}
5315
a4eaf7f1 5316static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5317{
b0a873eb
PZ
5318 perf_swevent_cancel_hrtimer(event);
5319 cpu_clock_event_update(event);
5320}
f29ac756 5321
a4eaf7f1
PZ
5322static int cpu_clock_event_add(struct perf_event *event, int flags)
5323{
5324 if (flags & PERF_EF_START)
5325 cpu_clock_event_start(event, flags);
5326
5327 return 0;
5328}
5329
5330static void cpu_clock_event_del(struct perf_event *event, int flags)
5331{
5332 cpu_clock_event_stop(event, flags);
5333}
5334
b0a873eb
PZ
5335static void cpu_clock_event_read(struct perf_event *event)
5336{
5337 cpu_clock_event_update(event);
5338}
f344011c 5339
b0a873eb
PZ
5340static int cpu_clock_event_init(struct perf_event *event)
5341{
5342 if (event->attr.type != PERF_TYPE_SOFTWARE)
5343 return -ENOENT;
5344
5345 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5346 return -ENOENT;
5347
ba3dd36c
PZ
5348 perf_swevent_init_hrtimer(event);
5349
b0a873eb 5350 return 0;
f29ac756
PZ
5351}
5352
b0a873eb 5353static struct pmu perf_cpu_clock = {
89a1e187
PZ
5354 .task_ctx_nr = perf_sw_context,
5355
b0a873eb 5356 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5357 .add = cpu_clock_event_add,
5358 .del = cpu_clock_event_del,
5359 .start = cpu_clock_event_start,
5360 .stop = cpu_clock_event_stop,
b0a873eb 5361 .read = cpu_clock_event_read,
35edc2a5
PZ
5362
5363 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5364};
5365
5366/*
5367 * Software event: task time clock
5368 */
5369
5370static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5371{
b0a873eb
PZ
5372 u64 prev;
5373 s64 delta;
5c92d124 5374
b0a873eb
PZ
5375 prev = local64_xchg(&event->hw.prev_count, now);
5376 delta = now - prev;
5377 local64_add(delta, &event->count);
5378}
5c92d124 5379
a4eaf7f1 5380static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5381{
a4eaf7f1 5382 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5383 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5384}
5385
a4eaf7f1 5386static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5387{
5388 perf_swevent_cancel_hrtimer(event);
5389 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5390}
5391
5392static int task_clock_event_add(struct perf_event *event, int flags)
5393{
5394 if (flags & PERF_EF_START)
5395 task_clock_event_start(event, flags);
b0a873eb 5396
a4eaf7f1
PZ
5397 return 0;
5398}
5399
5400static void task_clock_event_del(struct perf_event *event, int flags)
5401{
5402 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5403}
5404
5405static void task_clock_event_read(struct perf_event *event)
5406{
768a06e2
PZ
5407 u64 now = perf_clock();
5408 u64 delta = now - event->ctx->timestamp;
5409 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5410
5411 task_clock_event_update(event, time);
5412}
5413
5414static int task_clock_event_init(struct perf_event *event)
6fb2915d 5415{
b0a873eb
PZ
5416 if (event->attr.type != PERF_TYPE_SOFTWARE)
5417 return -ENOENT;
5418
5419 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5420 return -ENOENT;
5421
ba3dd36c
PZ
5422 perf_swevent_init_hrtimer(event);
5423
b0a873eb 5424 return 0;
6fb2915d
LZ
5425}
5426
b0a873eb 5427static struct pmu perf_task_clock = {
89a1e187
PZ
5428 .task_ctx_nr = perf_sw_context,
5429
b0a873eb 5430 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5431 .add = task_clock_event_add,
5432 .del = task_clock_event_del,
5433 .start = task_clock_event_start,
5434 .stop = task_clock_event_stop,
b0a873eb 5435 .read = task_clock_event_read,
35edc2a5
PZ
5436
5437 .event_idx = perf_swevent_event_idx,
b0a873eb 5438};
6fb2915d 5439
ad5133b7 5440static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5441{
e077df4f 5442}
6fb2915d 5443
ad5133b7 5444static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5445{
ad5133b7 5446 return 0;
6fb2915d
LZ
5447}
5448
ad5133b7 5449static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5450{
ad5133b7 5451 perf_pmu_disable(pmu);
6fb2915d
LZ
5452}
5453
ad5133b7
PZ
5454static int perf_pmu_commit_txn(struct pmu *pmu)
5455{
5456 perf_pmu_enable(pmu);
5457 return 0;
5458}
e077df4f 5459
ad5133b7 5460static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5461{
ad5133b7 5462 perf_pmu_enable(pmu);
24f1e32c
FW
5463}
5464
35edc2a5
PZ
5465static int perf_event_idx_default(struct perf_event *event)
5466{
5467 return event->hw.idx + 1;
5468}
5469
8dc85d54
PZ
5470/*
5471 * Ensures all contexts with the same task_ctx_nr have the same
5472 * pmu_cpu_context too.
5473 */
5474static void *find_pmu_context(int ctxn)
24f1e32c 5475{
8dc85d54 5476 struct pmu *pmu;
b326e956 5477
8dc85d54
PZ
5478 if (ctxn < 0)
5479 return NULL;
24f1e32c 5480
8dc85d54
PZ
5481 list_for_each_entry(pmu, &pmus, entry) {
5482 if (pmu->task_ctx_nr == ctxn)
5483 return pmu->pmu_cpu_context;
5484 }
24f1e32c 5485
8dc85d54 5486 return NULL;
24f1e32c
FW
5487}
5488
51676957 5489static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5490{
51676957
PZ
5491 int cpu;
5492
5493 for_each_possible_cpu(cpu) {
5494 struct perf_cpu_context *cpuctx;
5495
5496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5497
5498 if (cpuctx->active_pmu == old_pmu)
5499 cpuctx->active_pmu = pmu;
5500 }
5501}
5502
5503static void free_pmu_context(struct pmu *pmu)
5504{
5505 struct pmu *i;
f5ffe02e 5506
8dc85d54 5507 mutex_lock(&pmus_lock);
0475f9ea 5508 /*
8dc85d54 5509 * Like a real lame refcount.
0475f9ea 5510 */
51676957
PZ
5511 list_for_each_entry(i, &pmus, entry) {
5512 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5513 update_pmu_context(i, pmu);
8dc85d54 5514 goto out;
51676957 5515 }
8dc85d54 5516 }
d6d020e9 5517
51676957 5518 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5519out:
5520 mutex_unlock(&pmus_lock);
24f1e32c 5521}
2e80a82a 5522static struct idr pmu_idr;
d6d020e9 5523
abe43400
PZ
5524static ssize_t
5525type_show(struct device *dev, struct device_attribute *attr, char *page)
5526{
5527 struct pmu *pmu = dev_get_drvdata(dev);
5528
5529 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5530}
5531
5532static struct device_attribute pmu_dev_attrs[] = {
5533 __ATTR_RO(type),
5534 __ATTR_NULL,
5535};
5536
5537static int pmu_bus_running;
5538static struct bus_type pmu_bus = {
5539 .name = "event_source",
5540 .dev_attrs = pmu_dev_attrs,
5541};
5542
5543static void pmu_dev_release(struct device *dev)
5544{
5545 kfree(dev);
5546}
5547
5548static int pmu_dev_alloc(struct pmu *pmu)
5549{
5550 int ret = -ENOMEM;
5551
5552 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5553 if (!pmu->dev)
5554 goto out;
5555
0c9d42ed 5556 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5557 device_initialize(pmu->dev);
5558 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5559 if (ret)
5560 goto free_dev;
5561
5562 dev_set_drvdata(pmu->dev, pmu);
5563 pmu->dev->bus = &pmu_bus;
5564 pmu->dev->release = pmu_dev_release;
5565 ret = device_add(pmu->dev);
5566 if (ret)
5567 goto free_dev;
5568
5569out:
5570 return ret;
5571
5572free_dev:
5573 put_device(pmu->dev);
5574 goto out;
5575}
5576
547e9fd7 5577static struct lock_class_key cpuctx_mutex;
facc4307 5578static struct lock_class_key cpuctx_lock;
547e9fd7 5579
2e80a82a 5580int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5581{
108b02cf 5582 int cpu, ret;
24f1e32c 5583
b0a873eb 5584 mutex_lock(&pmus_lock);
33696fc0
PZ
5585 ret = -ENOMEM;
5586 pmu->pmu_disable_count = alloc_percpu(int);
5587 if (!pmu->pmu_disable_count)
5588 goto unlock;
f29ac756 5589
2e80a82a
PZ
5590 pmu->type = -1;
5591 if (!name)
5592 goto skip_type;
5593 pmu->name = name;
5594
5595 if (type < 0) {
5596 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5597 if (!err)
5598 goto free_pdc;
5599
5600 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5601 if (err) {
5602 ret = err;
5603 goto free_pdc;
5604 }
5605 }
5606 pmu->type = type;
5607
abe43400
PZ
5608 if (pmu_bus_running) {
5609 ret = pmu_dev_alloc(pmu);
5610 if (ret)
5611 goto free_idr;
5612 }
5613
2e80a82a 5614skip_type:
8dc85d54
PZ
5615 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5616 if (pmu->pmu_cpu_context)
5617 goto got_cpu_context;
f29ac756 5618
108b02cf
PZ
5619 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5620 if (!pmu->pmu_cpu_context)
abe43400 5621 goto free_dev;
f344011c 5622
108b02cf
PZ
5623 for_each_possible_cpu(cpu) {
5624 struct perf_cpu_context *cpuctx;
5625
5626 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5627 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5628 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5629 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5630 cpuctx->ctx.type = cpu_context;
108b02cf 5631 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5632 cpuctx->jiffies_interval = 1;
5633 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5634 cpuctx->active_pmu = pmu;
108b02cf 5635 }
76e1d904 5636
8dc85d54 5637got_cpu_context:
ad5133b7
PZ
5638 if (!pmu->start_txn) {
5639 if (pmu->pmu_enable) {
5640 /*
5641 * If we have pmu_enable/pmu_disable calls, install
5642 * transaction stubs that use that to try and batch
5643 * hardware accesses.
5644 */
5645 pmu->start_txn = perf_pmu_start_txn;
5646 pmu->commit_txn = perf_pmu_commit_txn;
5647 pmu->cancel_txn = perf_pmu_cancel_txn;
5648 } else {
5649 pmu->start_txn = perf_pmu_nop_void;
5650 pmu->commit_txn = perf_pmu_nop_int;
5651 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5652 }
5c92d124 5653 }
15dbf27c 5654
ad5133b7
PZ
5655 if (!pmu->pmu_enable) {
5656 pmu->pmu_enable = perf_pmu_nop_void;
5657 pmu->pmu_disable = perf_pmu_nop_void;
5658 }
5659
35edc2a5
PZ
5660 if (!pmu->event_idx)
5661 pmu->event_idx = perf_event_idx_default;
5662
b0a873eb 5663 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5664 ret = 0;
5665unlock:
b0a873eb
PZ
5666 mutex_unlock(&pmus_lock);
5667
33696fc0 5668 return ret;
108b02cf 5669
abe43400
PZ
5670free_dev:
5671 device_del(pmu->dev);
5672 put_device(pmu->dev);
5673
2e80a82a
PZ
5674free_idr:
5675 if (pmu->type >= PERF_TYPE_MAX)
5676 idr_remove(&pmu_idr, pmu->type);
5677
108b02cf
PZ
5678free_pdc:
5679 free_percpu(pmu->pmu_disable_count);
5680 goto unlock;
f29ac756
PZ
5681}
5682
b0a873eb 5683void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5684{
b0a873eb
PZ
5685 mutex_lock(&pmus_lock);
5686 list_del_rcu(&pmu->entry);
5687 mutex_unlock(&pmus_lock);
5c92d124 5688
0475f9ea 5689 /*
cde8e884
PZ
5690 * We dereference the pmu list under both SRCU and regular RCU, so
5691 * synchronize against both of those.
0475f9ea 5692 */
b0a873eb 5693 synchronize_srcu(&pmus_srcu);
cde8e884 5694 synchronize_rcu();
d6d020e9 5695
33696fc0 5696 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5697 if (pmu->type >= PERF_TYPE_MAX)
5698 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5699 device_del(pmu->dev);
5700 put_device(pmu->dev);
51676957 5701 free_pmu_context(pmu);
b0a873eb 5702}
d6d020e9 5703
b0a873eb
PZ
5704struct pmu *perf_init_event(struct perf_event *event)
5705{
5706 struct pmu *pmu = NULL;
5707 int idx;
940c5b29 5708 int ret;
b0a873eb
PZ
5709
5710 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5711
5712 rcu_read_lock();
5713 pmu = idr_find(&pmu_idr, event->attr.type);
5714 rcu_read_unlock();
940c5b29 5715 if (pmu) {
7e5b2a01 5716 event->pmu = pmu;
940c5b29
LM
5717 ret = pmu->event_init(event);
5718 if (ret)
5719 pmu = ERR_PTR(ret);
2e80a82a 5720 goto unlock;
940c5b29 5721 }
2e80a82a 5722
b0a873eb 5723 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5724 event->pmu = pmu;
940c5b29 5725 ret = pmu->event_init(event);
b0a873eb 5726 if (!ret)
e5f4d339 5727 goto unlock;
76e1d904 5728
b0a873eb
PZ
5729 if (ret != -ENOENT) {
5730 pmu = ERR_PTR(ret);
e5f4d339 5731 goto unlock;
f344011c 5732 }
5c92d124 5733 }
e5f4d339
PZ
5734 pmu = ERR_PTR(-ENOENT);
5735unlock:
b0a873eb 5736 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5737
4aeb0b42 5738 return pmu;
5c92d124
IM
5739}
5740
0793a61d 5741/*
cdd6c482 5742 * Allocate and initialize a event structure
0793a61d 5743 */
cdd6c482 5744static struct perf_event *
c3f00c70 5745perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5746 struct task_struct *task,
5747 struct perf_event *group_leader,
5748 struct perf_event *parent_event,
4dc0da86
AK
5749 perf_overflow_handler_t overflow_handler,
5750 void *context)
0793a61d 5751{
51b0fe39 5752 struct pmu *pmu;
cdd6c482
IM
5753 struct perf_event *event;
5754 struct hw_perf_event *hwc;
d5d2bc0d 5755 long err;
0793a61d 5756
66832eb4
ON
5757 if ((unsigned)cpu >= nr_cpu_ids) {
5758 if (!task || cpu != -1)
5759 return ERR_PTR(-EINVAL);
5760 }
5761
c3f00c70 5762 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5763 if (!event)
d5d2bc0d 5764 return ERR_PTR(-ENOMEM);
0793a61d 5765
04289bb9 5766 /*
cdd6c482 5767 * Single events are their own group leaders, with an
04289bb9
IM
5768 * empty sibling list:
5769 */
5770 if (!group_leader)
cdd6c482 5771 group_leader = event;
04289bb9 5772
cdd6c482
IM
5773 mutex_init(&event->child_mutex);
5774 INIT_LIST_HEAD(&event->child_list);
fccc714b 5775
cdd6c482
IM
5776 INIT_LIST_HEAD(&event->group_entry);
5777 INIT_LIST_HEAD(&event->event_entry);
5778 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5779 INIT_LIST_HEAD(&event->rb_entry);
5780
cdd6c482 5781 init_waitqueue_head(&event->waitq);
e360adbe 5782 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5783
cdd6c482 5784 mutex_init(&event->mmap_mutex);
7b732a75 5785
cdd6c482
IM
5786 event->cpu = cpu;
5787 event->attr = *attr;
5788 event->group_leader = group_leader;
5789 event->pmu = NULL;
cdd6c482 5790 event->oncpu = -1;
a96bbc16 5791
cdd6c482 5792 event->parent = parent_event;
b84fbc9f 5793
cdd6c482
IM
5794 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5795 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5796
cdd6c482 5797 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5798
d580ff86
PZ
5799 if (task) {
5800 event->attach_state = PERF_ATTACH_TASK;
5801#ifdef CONFIG_HAVE_HW_BREAKPOINT
5802 /*
5803 * hw_breakpoint is a bit difficult here..
5804 */
5805 if (attr->type == PERF_TYPE_BREAKPOINT)
5806 event->hw.bp_target = task;
5807#endif
5808 }
5809
4dc0da86 5810 if (!overflow_handler && parent_event) {
b326e956 5811 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5812 context = parent_event->overflow_handler_context;
5813 }
66832eb4 5814
b326e956 5815 event->overflow_handler = overflow_handler;
4dc0da86 5816 event->overflow_handler_context = context;
97eaf530 5817
0d48696f 5818 if (attr->disabled)
cdd6c482 5819 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5820
4aeb0b42 5821 pmu = NULL;
b8e83514 5822
cdd6c482 5823 hwc = &event->hw;
bd2b5b12 5824 hwc->sample_period = attr->sample_period;
0d48696f 5825 if (attr->freq && attr->sample_freq)
bd2b5b12 5826 hwc->sample_period = 1;
eced1dfc 5827 hwc->last_period = hwc->sample_period;
bd2b5b12 5828
e7850595 5829 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5830
2023b359 5831 /*
cdd6c482 5832 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 5833 */
3dab77fb 5834 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
5835 goto done;
5836
b0a873eb 5837 pmu = perf_init_event(event);
974802ea 5838
d5d2bc0d
PM
5839done:
5840 err = 0;
4aeb0b42 5841 if (!pmu)
d5d2bc0d 5842 err = -EINVAL;
4aeb0b42
RR
5843 else if (IS_ERR(pmu))
5844 err = PTR_ERR(pmu);
5c92d124 5845
d5d2bc0d 5846 if (err) {
cdd6c482
IM
5847 if (event->ns)
5848 put_pid_ns(event->ns);
5849 kfree(event);
d5d2bc0d 5850 return ERR_PTR(err);
621a01ea 5851 }
d5d2bc0d 5852
cdd6c482 5853 if (!event->parent) {
82cd6def 5854 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 5855 static_key_slow_inc(&perf_sched_events.key);
3af9e859 5856 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
5857 atomic_inc(&nr_mmap_events);
5858 if (event->attr.comm)
5859 atomic_inc(&nr_comm_events);
5860 if (event->attr.task)
5861 atomic_inc(&nr_task_events);
927c7a9e
FW
5862 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5863 err = get_callchain_buffers();
5864 if (err) {
5865 free_event(event);
5866 return ERR_PTR(err);
5867 }
5868 }
f344011c 5869 }
9ee318a7 5870
cdd6c482 5871 return event;
0793a61d
TG
5872}
5873
cdd6c482
IM
5874static int perf_copy_attr(struct perf_event_attr __user *uattr,
5875 struct perf_event_attr *attr)
974802ea 5876{
974802ea 5877 u32 size;
cdf8073d 5878 int ret;
974802ea
PZ
5879
5880 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5881 return -EFAULT;
5882
5883 /*
5884 * zero the full structure, so that a short copy will be nice.
5885 */
5886 memset(attr, 0, sizeof(*attr));
5887
5888 ret = get_user(size, &uattr->size);
5889 if (ret)
5890 return ret;
5891
5892 if (size > PAGE_SIZE) /* silly large */
5893 goto err_size;
5894
5895 if (!size) /* abi compat */
5896 size = PERF_ATTR_SIZE_VER0;
5897
5898 if (size < PERF_ATTR_SIZE_VER0)
5899 goto err_size;
5900
5901 /*
5902 * If we're handed a bigger struct than we know of,
cdf8073d
IS
5903 * ensure all the unknown bits are 0 - i.e. new
5904 * user-space does not rely on any kernel feature
5905 * extensions we dont know about yet.
974802ea
PZ
5906 */
5907 if (size > sizeof(*attr)) {
cdf8073d
IS
5908 unsigned char __user *addr;
5909 unsigned char __user *end;
5910 unsigned char val;
974802ea 5911
cdf8073d
IS
5912 addr = (void __user *)uattr + sizeof(*attr);
5913 end = (void __user *)uattr + size;
974802ea 5914
cdf8073d 5915 for (; addr < end; addr++) {
974802ea
PZ
5916 ret = get_user(val, addr);
5917 if (ret)
5918 return ret;
5919 if (val)
5920 goto err_size;
5921 }
b3e62e35 5922 size = sizeof(*attr);
974802ea
PZ
5923 }
5924
5925 ret = copy_from_user(attr, uattr, size);
5926 if (ret)
5927 return -EFAULT;
5928
cd757645 5929 if (attr->__reserved_1)
974802ea
PZ
5930 return -EINVAL;
5931
5932 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5933 return -EINVAL;
5934
5935 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5936 return -EINVAL;
5937
5938out:
5939 return ret;
5940
5941err_size:
5942 put_user(sizeof(*attr), &uattr->size);
5943 ret = -E2BIG;
5944 goto out;
5945}
5946
ac9721f3
PZ
5947static int
5948perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 5949{
76369139 5950 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
5951 int ret = -EINVAL;
5952
ac9721f3 5953 if (!output_event)
a4be7c27
PZ
5954 goto set;
5955
ac9721f3
PZ
5956 /* don't allow circular references */
5957 if (event == output_event)
a4be7c27
PZ
5958 goto out;
5959
0f139300
PZ
5960 /*
5961 * Don't allow cross-cpu buffers
5962 */
5963 if (output_event->cpu != event->cpu)
5964 goto out;
5965
5966 /*
76369139 5967 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
5968 */
5969 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5970 goto out;
5971
a4be7c27 5972set:
cdd6c482 5973 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
5974 /* Can't redirect output if we've got an active mmap() */
5975 if (atomic_read(&event->mmap_count))
5976 goto unlock;
a4be7c27 5977
ac9721f3 5978 if (output_event) {
76369139
FW
5979 /* get the rb we want to redirect to */
5980 rb = ring_buffer_get(output_event);
5981 if (!rb)
ac9721f3 5982 goto unlock;
a4be7c27
PZ
5983 }
5984
76369139
FW
5985 old_rb = event->rb;
5986 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
5987 if (old_rb)
5988 ring_buffer_detach(event, old_rb);
a4be7c27 5989 ret = 0;
ac9721f3
PZ
5990unlock:
5991 mutex_unlock(&event->mmap_mutex);
5992
76369139
FW
5993 if (old_rb)
5994 ring_buffer_put(old_rb);
a4be7c27 5995out:
a4be7c27
PZ
5996 return ret;
5997}
5998
0793a61d 5999/**
cdd6c482 6000 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6001 *
cdd6c482 6002 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6003 * @pid: target pid
9f66a381 6004 * @cpu: target cpu
cdd6c482 6005 * @group_fd: group leader event fd
0793a61d 6006 */
cdd6c482
IM
6007SYSCALL_DEFINE5(perf_event_open,
6008 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6009 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6010{
b04243ef
PZ
6011 struct perf_event *group_leader = NULL, *output_event = NULL;
6012 struct perf_event *event, *sibling;
cdd6c482
IM
6013 struct perf_event_attr attr;
6014 struct perf_event_context *ctx;
6015 struct file *event_file = NULL;
04289bb9 6016 struct file *group_file = NULL;
38a81da2 6017 struct task_struct *task = NULL;
89a1e187 6018 struct pmu *pmu;
ea635c64 6019 int event_fd;
b04243ef 6020 int move_group = 0;
04289bb9 6021 int fput_needed = 0;
dc86cabe 6022 int err;
0793a61d 6023
2743a5b0 6024 /* for future expandability... */
e5d1367f 6025 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6026 return -EINVAL;
6027
dc86cabe
IM
6028 err = perf_copy_attr(attr_uptr, &attr);
6029 if (err)
6030 return err;
eab656ae 6031
0764771d
PZ
6032 if (!attr.exclude_kernel) {
6033 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6034 return -EACCES;
6035 }
6036
df58ab24 6037 if (attr.freq) {
cdd6c482 6038 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6039 return -EINVAL;
6040 }
6041
e5d1367f
SE
6042 /*
6043 * In cgroup mode, the pid argument is used to pass the fd
6044 * opened to the cgroup directory in cgroupfs. The cpu argument
6045 * designates the cpu on which to monitor threads from that
6046 * cgroup.
6047 */
6048 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6049 return -EINVAL;
6050
ea635c64
AV
6051 event_fd = get_unused_fd_flags(O_RDWR);
6052 if (event_fd < 0)
6053 return event_fd;
6054
ac9721f3
PZ
6055 if (group_fd != -1) {
6056 group_leader = perf_fget_light(group_fd, &fput_needed);
6057 if (IS_ERR(group_leader)) {
6058 err = PTR_ERR(group_leader);
d14b12d7 6059 goto err_fd;
ac9721f3
PZ
6060 }
6061 group_file = group_leader->filp;
6062 if (flags & PERF_FLAG_FD_OUTPUT)
6063 output_event = group_leader;
6064 if (flags & PERF_FLAG_FD_NO_GROUP)
6065 group_leader = NULL;
6066 }
6067
e5d1367f 6068 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6069 task = find_lively_task_by_vpid(pid);
6070 if (IS_ERR(task)) {
6071 err = PTR_ERR(task);
6072 goto err_group_fd;
6073 }
6074 }
6075
4dc0da86
AK
6076 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6077 NULL, NULL);
d14b12d7
SE
6078 if (IS_ERR(event)) {
6079 err = PTR_ERR(event);
c6be5a5c 6080 goto err_task;
d14b12d7
SE
6081 }
6082
e5d1367f
SE
6083 if (flags & PERF_FLAG_PID_CGROUP) {
6084 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6085 if (err)
6086 goto err_alloc;
08309379
PZ
6087 /*
6088 * one more event:
6089 * - that has cgroup constraint on event->cpu
6090 * - that may need work on context switch
6091 */
6092 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6093 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6094 }
6095
89a1e187
PZ
6096 /*
6097 * Special case software events and allow them to be part of
6098 * any hardware group.
6099 */
6100 pmu = event->pmu;
b04243ef
PZ
6101
6102 if (group_leader &&
6103 (is_software_event(event) != is_software_event(group_leader))) {
6104 if (is_software_event(event)) {
6105 /*
6106 * If event and group_leader are not both a software
6107 * event, and event is, then group leader is not.
6108 *
6109 * Allow the addition of software events to !software
6110 * groups, this is safe because software events never
6111 * fail to schedule.
6112 */
6113 pmu = group_leader->pmu;
6114 } else if (is_software_event(group_leader) &&
6115 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6116 /*
6117 * In case the group is a pure software group, and we
6118 * try to add a hardware event, move the whole group to
6119 * the hardware context.
6120 */
6121 move_group = 1;
6122 }
6123 }
89a1e187
PZ
6124
6125 /*
6126 * Get the target context (task or percpu):
6127 */
38a81da2 6128 ctx = find_get_context(pmu, task, cpu);
89a1e187
PZ
6129 if (IS_ERR(ctx)) {
6130 err = PTR_ERR(ctx);
c6be5a5c 6131 goto err_alloc;
89a1e187
PZ
6132 }
6133
fd1edb3a
PZ
6134 if (task) {
6135 put_task_struct(task);
6136 task = NULL;
6137 }
6138
ccff286d 6139 /*
cdd6c482 6140 * Look up the group leader (we will attach this event to it):
04289bb9 6141 */
ac9721f3 6142 if (group_leader) {
dc86cabe 6143 err = -EINVAL;
04289bb9 6144
04289bb9 6145 /*
ccff286d
IM
6146 * Do not allow a recursive hierarchy (this new sibling
6147 * becoming part of another group-sibling):
6148 */
6149 if (group_leader->group_leader != group_leader)
c3f00c70 6150 goto err_context;
ccff286d
IM
6151 /*
6152 * Do not allow to attach to a group in a different
6153 * task or CPU context:
04289bb9 6154 */
b04243ef
PZ
6155 if (move_group) {
6156 if (group_leader->ctx->type != ctx->type)
6157 goto err_context;
6158 } else {
6159 if (group_leader->ctx != ctx)
6160 goto err_context;
6161 }
6162
3b6f9e5c
PM
6163 /*
6164 * Only a group leader can be exclusive or pinned
6165 */
0d48696f 6166 if (attr.exclusive || attr.pinned)
c3f00c70 6167 goto err_context;
ac9721f3
PZ
6168 }
6169
6170 if (output_event) {
6171 err = perf_event_set_output(event, output_event);
6172 if (err)
c3f00c70 6173 goto err_context;
ac9721f3 6174 }
0793a61d 6175
ea635c64
AV
6176 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6177 if (IS_ERR(event_file)) {
6178 err = PTR_ERR(event_file);
c3f00c70 6179 goto err_context;
ea635c64 6180 }
9b51f66d 6181
b04243ef
PZ
6182 if (move_group) {
6183 struct perf_event_context *gctx = group_leader->ctx;
6184
6185 mutex_lock(&gctx->mutex);
fe4b04fa 6186 perf_remove_from_context(group_leader);
b04243ef
PZ
6187 list_for_each_entry(sibling, &group_leader->sibling_list,
6188 group_entry) {
fe4b04fa 6189 perf_remove_from_context(sibling);
b04243ef
PZ
6190 put_ctx(gctx);
6191 }
6192 mutex_unlock(&gctx->mutex);
6193 put_ctx(gctx);
ea635c64 6194 }
9b51f66d 6195
cdd6c482 6196 event->filp = event_file;
ad3a37de 6197 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6198 mutex_lock(&ctx->mutex);
b04243ef
PZ
6199
6200 if (move_group) {
6201 perf_install_in_context(ctx, group_leader, cpu);
6202 get_ctx(ctx);
6203 list_for_each_entry(sibling, &group_leader->sibling_list,
6204 group_entry) {
6205 perf_install_in_context(ctx, sibling, cpu);
6206 get_ctx(ctx);
6207 }
6208 }
6209
cdd6c482 6210 perf_install_in_context(ctx, event, cpu);
ad3a37de 6211 ++ctx->generation;
fe4b04fa 6212 perf_unpin_context(ctx);
d859e29f 6213 mutex_unlock(&ctx->mutex);
9b51f66d 6214
cdd6c482 6215 event->owner = current;
8882135b 6216
cdd6c482
IM
6217 mutex_lock(&current->perf_event_mutex);
6218 list_add_tail(&event->owner_entry, &current->perf_event_list);
6219 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6220
c320c7b7
ACM
6221 /*
6222 * Precalculate sample_data sizes
6223 */
6224 perf_event__header_size(event);
6844c09d 6225 perf_event__id_header_size(event);
c320c7b7 6226
8a49542c
PZ
6227 /*
6228 * Drop the reference on the group_event after placing the
6229 * new event on the sibling_list. This ensures destruction
6230 * of the group leader will find the pointer to itself in
6231 * perf_group_detach().
6232 */
ea635c64
AV
6233 fput_light(group_file, fput_needed);
6234 fd_install(event_fd, event_file);
6235 return event_fd;
0793a61d 6236
c3f00c70 6237err_context:
fe4b04fa 6238 perf_unpin_context(ctx);
ea635c64 6239 put_ctx(ctx);
c6be5a5c 6240err_alloc:
ea635c64 6241 free_event(event);
e7d0bc04
PZ
6242err_task:
6243 if (task)
6244 put_task_struct(task);
89a1e187 6245err_group_fd:
dc86cabe 6246 fput_light(group_file, fput_needed);
ea635c64
AV
6247err_fd:
6248 put_unused_fd(event_fd);
dc86cabe 6249 return err;
0793a61d
TG
6250}
6251
fb0459d7
AV
6252/**
6253 * perf_event_create_kernel_counter
6254 *
6255 * @attr: attributes of the counter to create
6256 * @cpu: cpu in which the counter is bound
38a81da2 6257 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6258 */
6259struct perf_event *
6260perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6261 struct task_struct *task,
4dc0da86
AK
6262 perf_overflow_handler_t overflow_handler,
6263 void *context)
fb0459d7 6264{
fb0459d7 6265 struct perf_event_context *ctx;
c3f00c70 6266 struct perf_event *event;
fb0459d7 6267 int err;
d859e29f 6268
fb0459d7
AV
6269 /*
6270 * Get the target context (task or percpu):
6271 */
d859e29f 6272
4dc0da86
AK
6273 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6274 overflow_handler, context);
c3f00c70
PZ
6275 if (IS_ERR(event)) {
6276 err = PTR_ERR(event);
6277 goto err;
6278 }
d859e29f 6279
38a81da2 6280 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6281 if (IS_ERR(ctx)) {
6282 err = PTR_ERR(ctx);
c3f00c70 6283 goto err_free;
d859e29f 6284 }
fb0459d7
AV
6285
6286 event->filp = NULL;
6287 WARN_ON_ONCE(ctx->parent_ctx);
6288 mutex_lock(&ctx->mutex);
6289 perf_install_in_context(ctx, event, cpu);
6290 ++ctx->generation;
fe4b04fa 6291 perf_unpin_context(ctx);
fb0459d7
AV
6292 mutex_unlock(&ctx->mutex);
6293
fb0459d7
AV
6294 return event;
6295
c3f00c70
PZ
6296err_free:
6297 free_event(event);
6298err:
c6567f64 6299 return ERR_PTR(err);
9b51f66d 6300}
fb0459d7 6301EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6302
cdd6c482 6303static void sync_child_event(struct perf_event *child_event,
38b200d6 6304 struct task_struct *child)
d859e29f 6305{
cdd6c482 6306 struct perf_event *parent_event = child_event->parent;
8bc20959 6307 u64 child_val;
d859e29f 6308
cdd6c482
IM
6309 if (child_event->attr.inherit_stat)
6310 perf_event_read_event(child_event, child);
38b200d6 6311
b5e58793 6312 child_val = perf_event_count(child_event);
d859e29f
PM
6313
6314 /*
6315 * Add back the child's count to the parent's count:
6316 */
a6e6dea6 6317 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6318 atomic64_add(child_event->total_time_enabled,
6319 &parent_event->child_total_time_enabled);
6320 atomic64_add(child_event->total_time_running,
6321 &parent_event->child_total_time_running);
d859e29f
PM
6322
6323 /*
cdd6c482 6324 * Remove this event from the parent's list
d859e29f 6325 */
cdd6c482
IM
6326 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6327 mutex_lock(&parent_event->child_mutex);
6328 list_del_init(&child_event->child_list);
6329 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6330
6331 /*
cdd6c482 6332 * Release the parent event, if this was the last
d859e29f
PM
6333 * reference to it.
6334 */
cdd6c482 6335 fput(parent_event->filp);
d859e29f
PM
6336}
6337
9b51f66d 6338static void
cdd6c482
IM
6339__perf_event_exit_task(struct perf_event *child_event,
6340 struct perf_event_context *child_ctx,
38b200d6 6341 struct task_struct *child)
9b51f66d 6342{
38b435b1
PZ
6343 if (child_event->parent) {
6344 raw_spin_lock_irq(&child_ctx->lock);
6345 perf_group_detach(child_event);
6346 raw_spin_unlock_irq(&child_ctx->lock);
6347 }
9b51f66d 6348
fe4b04fa 6349 perf_remove_from_context(child_event);
0cc0c027 6350
9b51f66d 6351 /*
38b435b1 6352 * It can happen that the parent exits first, and has events
9b51f66d 6353 * that are still around due to the child reference. These
38b435b1 6354 * events need to be zapped.
9b51f66d 6355 */
38b435b1 6356 if (child_event->parent) {
cdd6c482
IM
6357 sync_child_event(child_event, child);
6358 free_event(child_event);
4bcf349a 6359 }
9b51f66d
IM
6360}
6361
8dc85d54 6362static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6363{
cdd6c482
IM
6364 struct perf_event *child_event, *tmp;
6365 struct perf_event_context *child_ctx;
a63eaf34 6366 unsigned long flags;
9b51f66d 6367
8dc85d54 6368 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6369 perf_event_task(child, NULL, 0);
9b51f66d 6370 return;
9f498cc5 6371 }
9b51f66d 6372
a63eaf34 6373 local_irq_save(flags);
ad3a37de
PM
6374 /*
6375 * We can't reschedule here because interrupts are disabled,
6376 * and either child is current or it is a task that can't be
6377 * scheduled, so we are now safe from rescheduling changing
6378 * our context.
6379 */
806839b2 6380 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6381
6382 /*
6383 * Take the context lock here so that if find_get_context is
cdd6c482 6384 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6385 * incremented the context's refcount before we do put_ctx below.
6386 */
e625cce1 6387 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6388 task_ctx_sched_out(child_ctx);
8dc85d54 6389 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6390 /*
6391 * If this context is a clone; unclone it so it can't get
6392 * swapped to another process while we're removing all
cdd6c482 6393 * the events from it.
71a851b4
PZ
6394 */
6395 unclone_ctx(child_ctx);
5e942bb3 6396 update_context_time(child_ctx);
e625cce1 6397 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6398
6399 /*
cdd6c482
IM
6400 * Report the task dead after unscheduling the events so that we
6401 * won't get any samples after PERF_RECORD_EXIT. We can however still
6402 * get a few PERF_RECORD_READ events.
9f498cc5 6403 */
cdd6c482 6404 perf_event_task(child, child_ctx, 0);
a63eaf34 6405
66fff224
PZ
6406 /*
6407 * We can recurse on the same lock type through:
6408 *
cdd6c482
IM
6409 * __perf_event_exit_task()
6410 * sync_child_event()
6411 * fput(parent_event->filp)
66fff224
PZ
6412 * perf_release()
6413 * mutex_lock(&ctx->mutex)
6414 *
6415 * But since its the parent context it won't be the same instance.
6416 */
a0507c84 6417 mutex_lock(&child_ctx->mutex);
a63eaf34 6418
8bc20959 6419again:
889ff015
FW
6420 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6421 group_entry)
6422 __perf_event_exit_task(child_event, child_ctx, child);
6423
6424 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6425 group_entry)
cdd6c482 6426 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6427
6428 /*
cdd6c482 6429 * If the last event was a group event, it will have appended all
8bc20959
PZ
6430 * its siblings to the list, but we obtained 'tmp' before that which
6431 * will still point to the list head terminating the iteration.
6432 */
889ff015
FW
6433 if (!list_empty(&child_ctx->pinned_groups) ||
6434 !list_empty(&child_ctx->flexible_groups))
8bc20959 6435 goto again;
a63eaf34
PM
6436
6437 mutex_unlock(&child_ctx->mutex);
6438
6439 put_ctx(child_ctx);
9b51f66d
IM
6440}
6441
8dc85d54
PZ
6442/*
6443 * When a child task exits, feed back event values to parent events.
6444 */
6445void perf_event_exit_task(struct task_struct *child)
6446{
8882135b 6447 struct perf_event *event, *tmp;
8dc85d54
PZ
6448 int ctxn;
6449
8882135b
PZ
6450 mutex_lock(&child->perf_event_mutex);
6451 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6452 owner_entry) {
6453 list_del_init(&event->owner_entry);
6454
6455 /*
6456 * Ensure the list deletion is visible before we clear
6457 * the owner, closes a race against perf_release() where
6458 * we need to serialize on the owner->perf_event_mutex.
6459 */
6460 smp_wmb();
6461 event->owner = NULL;
6462 }
6463 mutex_unlock(&child->perf_event_mutex);
6464
8dc85d54
PZ
6465 for_each_task_context_nr(ctxn)
6466 perf_event_exit_task_context(child, ctxn);
6467}
6468
889ff015
FW
6469static void perf_free_event(struct perf_event *event,
6470 struct perf_event_context *ctx)
6471{
6472 struct perf_event *parent = event->parent;
6473
6474 if (WARN_ON_ONCE(!parent))
6475 return;
6476
6477 mutex_lock(&parent->child_mutex);
6478 list_del_init(&event->child_list);
6479 mutex_unlock(&parent->child_mutex);
6480
6481 fput(parent->filp);
6482
8a49542c 6483 perf_group_detach(event);
889ff015
FW
6484 list_del_event(event, ctx);
6485 free_event(event);
6486}
6487
bbbee908
PZ
6488/*
6489 * free an unexposed, unused context as created by inheritance by
8dc85d54 6490 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6491 */
cdd6c482 6492void perf_event_free_task(struct task_struct *task)
bbbee908 6493{
8dc85d54 6494 struct perf_event_context *ctx;
cdd6c482 6495 struct perf_event *event, *tmp;
8dc85d54 6496 int ctxn;
bbbee908 6497
8dc85d54
PZ
6498 for_each_task_context_nr(ctxn) {
6499 ctx = task->perf_event_ctxp[ctxn];
6500 if (!ctx)
6501 continue;
bbbee908 6502
8dc85d54 6503 mutex_lock(&ctx->mutex);
bbbee908 6504again:
8dc85d54
PZ
6505 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6506 group_entry)
6507 perf_free_event(event, ctx);
bbbee908 6508
8dc85d54
PZ
6509 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6510 group_entry)
6511 perf_free_event(event, ctx);
bbbee908 6512
8dc85d54
PZ
6513 if (!list_empty(&ctx->pinned_groups) ||
6514 !list_empty(&ctx->flexible_groups))
6515 goto again;
bbbee908 6516
8dc85d54 6517 mutex_unlock(&ctx->mutex);
bbbee908 6518
8dc85d54
PZ
6519 put_ctx(ctx);
6520 }
889ff015
FW
6521}
6522
4e231c79
PZ
6523void perf_event_delayed_put(struct task_struct *task)
6524{
6525 int ctxn;
6526
6527 for_each_task_context_nr(ctxn)
6528 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6529}
6530
97dee4f3
PZ
6531/*
6532 * inherit a event from parent task to child task:
6533 */
6534static struct perf_event *
6535inherit_event(struct perf_event *parent_event,
6536 struct task_struct *parent,
6537 struct perf_event_context *parent_ctx,
6538 struct task_struct *child,
6539 struct perf_event *group_leader,
6540 struct perf_event_context *child_ctx)
6541{
6542 struct perf_event *child_event;
cee010ec 6543 unsigned long flags;
97dee4f3
PZ
6544
6545 /*
6546 * Instead of creating recursive hierarchies of events,
6547 * we link inherited events back to the original parent,
6548 * which has a filp for sure, which we use as the reference
6549 * count:
6550 */
6551 if (parent_event->parent)
6552 parent_event = parent_event->parent;
6553
6554 child_event = perf_event_alloc(&parent_event->attr,
6555 parent_event->cpu,
d580ff86 6556 child,
97dee4f3 6557 group_leader, parent_event,
4dc0da86 6558 NULL, NULL);
97dee4f3
PZ
6559 if (IS_ERR(child_event))
6560 return child_event;
6561 get_ctx(child_ctx);
6562
6563 /*
6564 * Make the child state follow the state of the parent event,
6565 * not its attr.disabled bit. We hold the parent's mutex,
6566 * so we won't race with perf_event_{en, dis}able_family.
6567 */
6568 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6569 child_event->state = PERF_EVENT_STATE_INACTIVE;
6570 else
6571 child_event->state = PERF_EVENT_STATE_OFF;
6572
6573 if (parent_event->attr.freq) {
6574 u64 sample_period = parent_event->hw.sample_period;
6575 struct hw_perf_event *hwc = &child_event->hw;
6576
6577 hwc->sample_period = sample_period;
6578 hwc->last_period = sample_period;
6579
6580 local64_set(&hwc->period_left, sample_period);
6581 }
6582
6583 child_event->ctx = child_ctx;
6584 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6585 child_event->overflow_handler_context
6586 = parent_event->overflow_handler_context;
97dee4f3 6587
614b6780
TG
6588 /*
6589 * Precalculate sample_data sizes
6590 */
6591 perf_event__header_size(child_event);
6844c09d 6592 perf_event__id_header_size(child_event);
614b6780 6593
97dee4f3
PZ
6594 /*
6595 * Link it up in the child's context:
6596 */
cee010ec 6597 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6598 add_event_to_ctx(child_event, child_ctx);
cee010ec 6599 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6600
6601 /*
6602 * Get a reference to the parent filp - we will fput it
6603 * when the child event exits. This is safe to do because
6604 * we are in the parent and we know that the filp still
6605 * exists and has a nonzero count:
6606 */
6607 atomic_long_inc(&parent_event->filp->f_count);
6608
6609 /*
6610 * Link this into the parent event's child list
6611 */
6612 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6613 mutex_lock(&parent_event->child_mutex);
6614 list_add_tail(&child_event->child_list, &parent_event->child_list);
6615 mutex_unlock(&parent_event->child_mutex);
6616
6617 return child_event;
6618}
6619
6620static int inherit_group(struct perf_event *parent_event,
6621 struct task_struct *parent,
6622 struct perf_event_context *parent_ctx,
6623 struct task_struct *child,
6624 struct perf_event_context *child_ctx)
6625{
6626 struct perf_event *leader;
6627 struct perf_event *sub;
6628 struct perf_event *child_ctr;
6629
6630 leader = inherit_event(parent_event, parent, parent_ctx,
6631 child, NULL, child_ctx);
6632 if (IS_ERR(leader))
6633 return PTR_ERR(leader);
6634 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6635 child_ctr = inherit_event(sub, parent, parent_ctx,
6636 child, leader, child_ctx);
6637 if (IS_ERR(child_ctr))
6638 return PTR_ERR(child_ctr);
6639 }
6640 return 0;
889ff015
FW
6641}
6642
6643static int
6644inherit_task_group(struct perf_event *event, struct task_struct *parent,
6645 struct perf_event_context *parent_ctx,
8dc85d54 6646 struct task_struct *child, int ctxn,
889ff015
FW
6647 int *inherited_all)
6648{
6649 int ret;
8dc85d54 6650 struct perf_event_context *child_ctx;
889ff015
FW
6651
6652 if (!event->attr.inherit) {
6653 *inherited_all = 0;
6654 return 0;
bbbee908
PZ
6655 }
6656
fe4b04fa 6657 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6658 if (!child_ctx) {
6659 /*
6660 * This is executed from the parent task context, so
6661 * inherit events that have been marked for cloning.
6662 * First allocate and initialize a context for the
6663 * child.
6664 */
bbbee908 6665
eb184479 6666 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6667 if (!child_ctx)
6668 return -ENOMEM;
bbbee908 6669
8dc85d54 6670 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6671 }
6672
6673 ret = inherit_group(event, parent, parent_ctx,
6674 child, child_ctx);
6675
6676 if (ret)
6677 *inherited_all = 0;
6678
6679 return ret;
bbbee908
PZ
6680}
6681
9b51f66d 6682/*
cdd6c482 6683 * Initialize the perf_event context in task_struct
9b51f66d 6684 */
8dc85d54 6685int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6686{
889ff015 6687 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6688 struct perf_event_context *cloned_ctx;
6689 struct perf_event *event;
9b51f66d 6690 struct task_struct *parent = current;
564c2b21 6691 int inherited_all = 1;
dddd3379 6692 unsigned long flags;
6ab423e0 6693 int ret = 0;
9b51f66d 6694
8dc85d54 6695 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6696 return 0;
6697
ad3a37de 6698 /*
25346b93
PM
6699 * If the parent's context is a clone, pin it so it won't get
6700 * swapped under us.
ad3a37de 6701 */
8dc85d54 6702 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6703
ad3a37de
PM
6704 /*
6705 * No need to check if parent_ctx != NULL here; since we saw
6706 * it non-NULL earlier, the only reason for it to become NULL
6707 * is if we exit, and since we're currently in the middle of
6708 * a fork we can't be exiting at the same time.
6709 */
ad3a37de 6710
9b51f66d
IM
6711 /*
6712 * Lock the parent list. No need to lock the child - not PID
6713 * hashed yet and not running, so nobody can access it.
6714 */
d859e29f 6715 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6716
6717 /*
6718 * We dont have to disable NMIs - we are only looking at
6719 * the list, not manipulating it:
6720 */
889ff015 6721 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6722 ret = inherit_task_group(event, parent, parent_ctx,
6723 child, ctxn, &inherited_all);
889ff015
FW
6724 if (ret)
6725 break;
6726 }
b93f7978 6727
dddd3379
TG
6728 /*
6729 * We can't hold ctx->lock when iterating the ->flexible_group list due
6730 * to allocations, but we need to prevent rotation because
6731 * rotate_ctx() will change the list from interrupt context.
6732 */
6733 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6734 parent_ctx->rotate_disable = 1;
6735 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6736
889ff015 6737 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6738 ret = inherit_task_group(event, parent, parent_ctx,
6739 child, ctxn, &inherited_all);
889ff015 6740 if (ret)
9b51f66d 6741 break;
564c2b21
PM
6742 }
6743
dddd3379
TG
6744 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6745 parent_ctx->rotate_disable = 0;
dddd3379 6746
8dc85d54 6747 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6748
05cbaa28 6749 if (child_ctx && inherited_all) {
564c2b21
PM
6750 /*
6751 * Mark the child context as a clone of the parent
6752 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6753 *
6754 * Note that if the parent is a clone, the holding of
6755 * parent_ctx->lock avoids it from being uncloned.
564c2b21 6756 */
c5ed5145 6757 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
6758 if (cloned_ctx) {
6759 child_ctx->parent_ctx = cloned_ctx;
25346b93 6760 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
6761 } else {
6762 child_ctx->parent_ctx = parent_ctx;
6763 child_ctx->parent_gen = parent_ctx->generation;
6764 }
6765 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
6766 }
6767
c5ed5145 6768 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 6769 mutex_unlock(&parent_ctx->mutex);
6ab423e0 6770
25346b93 6771 perf_unpin_context(parent_ctx);
fe4b04fa 6772 put_ctx(parent_ctx);
ad3a37de 6773
6ab423e0 6774 return ret;
9b51f66d
IM
6775}
6776
8dc85d54
PZ
6777/*
6778 * Initialize the perf_event context in task_struct
6779 */
6780int perf_event_init_task(struct task_struct *child)
6781{
6782 int ctxn, ret;
6783
8550d7cb
ON
6784 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6785 mutex_init(&child->perf_event_mutex);
6786 INIT_LIST_HEAD(&child->perf_event_list);
6787
8dc85d54
PZ
6788 for_each_task_context_nr(ctxn) {
6789 ret = perf_event_init_context(child, ctxn);
6790 if (ret)
6791 return ret;
6792 }
6793
6794 return 0;
6795}
6796
220b140b
PM
6797static void __init perf_event_init_all_cpus(void)
6798{
b28ab83c 6799 struct swevent_htable *swhash;
220b140b 6800 int cpu;
220b140b
PM
6801
6802 for_each_possible_cpu(cpu) {
b28ab83c
PZ
6803 swhash = &per_cpu(swevent_htable, cpu);
6804 mutex_init(&swhash->hlist_mutex);
e9d2b064 6805 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
6806 }
6807}
6808
cdd6c482 6809static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 6810{
108b02cf 6811 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 6812
b28ab83c 6813 mutex_lock(&swhash->hlist_mutex);
4536e4d1 6814 if (swhash->hlist_refcount > 0) {
76e1d904
FW
6815 struct swevent_hlist *hlist;
6816
b28ab83c
PZ
6817 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6818 WARN_ON(!hlist);
6819 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6820 }
b28ab83c 6821 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
6822}
6823
c277443c 6824#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 6825static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 6826{
e9d2b064
PZ
6827 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6828
6829 WARN_ON(!irqs_disabled());
6830
6831 list_del_init(&cpuctx->rotation_list);
6832}
6833
108b02cf 6834static void __perf_event_exit_context(void *__info)
0793a61d 6835{
108b02cf 6836 struct perf_event_context *ctx = __info;
cdd6c482 6837 struct perf_event *event, *tmp;
0793a61d 6838
108b02cf 6839 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 6840
889ff015 6841 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 6842 __perf_remove_from_context(event);
889ff015 6843 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 6844 __perf_remove_from_context(event);
0793a61d 6845}
108b02cf
PZ
6846
6847static void perf_event_exit_cpu_context(int cpu)
6848{
6849 struct perf_event_context *ctx;
6850 struct pmu *pmu;
6851 int idx;
6852
6853 idx = srcu_read_lock(&pmus_srcu);
6854 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 6855 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
6856
6857 mutex_lock(&ctx->mutex);
6858 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6859 mutex_unlock(&ctx->mutex);
6860 }
6861 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
6862}
6863
cdd6c482 6864static void perf_event_exit_cpu(int cpu)
0793a61d 6865{
b28ab83c 6866 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 6867
b28ab83c
PZ
6868 mutex_lock(&swhash->hlist_mutex);
6869 swevent_hlist_release(swhash);
6870 mutex_unlock(&swhash->hlist_mutex);
76e1d904 6871
108b02cf 6872 perf_event_exit_cpu_context(cpu);
0793a61d
TG
6873}
6874#else
cdd6c482 6875static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
6876#endif
6877
c277443c
PZ
6878static int
6879perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6880{
6881 int cpu;
6882
6883 for_each_online_cpu(cpu)
6884 perf_event_exit_cpu(cpu);
6885
6886 return NOTIFY_OK;
6887}
6888
6889/*
6890 * Run the perf reboot notifier at the very last possible moment so that
6891 * the generic watchdog code runs as long as possible.
6892 */
6893static struct notifier_block perf_reboot_notifier = {
6894 .notifier_call = perf_reboot,
6895 .priority = INT_MIN,
6896};
6897
0793a61d
TG
6898static int __cpuinit
6899perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6900{
6901 unsigned int cpu = (long)hcpu;
6902
4536e4d1 6903 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
6904
6905 case CPU_UP_PREPARE:
5e11637e 6906 case CPU_DOWN_FAILED:
cdd6c482 6907 perf_event_init_cpu(cpu);
0793a61d
TG
6908 break;
6909
5e11637e 6910 case CPU_UP_CANCELED:
0793a61d 6911 case CPU_DOWN_PREPARE:
cdd6c482 6912 perf_event_exit_cpu(cpu);
0793a61d
TG
6913 break;
6914
6915 default:
6916 break;
6917 }
6918
6919 return NOTIFY_OK;
6920}
6921
cdd6c482 6922void __init perf_event_init(void)
0793a61d 6923{
3c502e7a
JW
6924 int ret;
6925
2e80a82a
PZ
6926 idr_init(&pmu_idr);
6927
220b140b 6928 perf_event_init_all_cpus();
b0a873eb 6929 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
6930 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6931 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6932 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
6933 perf_tp_register();
6934 perf_cpu_notifier(perf_cpu_notify);
c277443c 6935 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
6936
6937 ret = init_hw_breakpoint();
6938 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
6939
6940 /* do not patch jump label more than once per second */
6941 jump_label_rate_limit(&perf_sched_events, HZ);
0793a61d 6942}
abe43400
PZ
6943
6944static int __init perf_event_sysfs_init(void)
6945{
6946 struct pmu *pmu;
6947 int ret;
6948
6949 mutex_lock(&pmus_lock);
6950
6951 ret = bus_register(&pmu_bus);
6952 if (ret)
6953 goto unlock;
6954
6955 list_for_each_entry(pmu, &pmus, entry) {
6956 if (!pmu->name || pmu->type < 0)
6957 continue;
6958
6959 ret = pmu_dev_alloc(pmu);
6960 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6961 }
6962 pmu_bus_running = 1;
6963 ret = 0;
6964
6965unlock:
6966 mutex_unlock(&pmus_lock);
6967
6968 return ret;
6969}
6970device_initcall(perf_event_sysfs_init);
e5d1367f
SE
6971
6972#ifdef CONFIG_CGROUP_PERF
6973static struct cgroup_subsys_state *perf_cgroup_create(
6974 struct cgroup_subsys *ss, struct cgroup *cont)
6975{
6976 struct perf_cgroup *jc;
e5d1367f 6977
1b15d055 6978 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
6979 if (!jc)
6980 return ERR_PTR(-ENOMEM);
6981
e5d1367f
SE
6982 jc->info = alloc_percpu(struct perf_cgroup_info);
6983 if (!jc->info) {
6984 kfree(jc);
6985 return ERR_PTR(-ENOMEM);
6986 }
6987
e5d1367f
SE
6988 return &jc->css;
6989}
6990
6991static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6992 struct cgroup *cont)
6993{
6994 struct perf_cgroup *jc;
6995 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6996 struct perf_cgroup, css);
6997 free_percpu(jc->info);
6998 kfree(jc);
6999}
7000
7001static int __perf_cgroup_move(void *info)
7002{
7003 struct task_struct *task = info;
7004 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7005 return 0;
7006}
7007
bb9d97b6
TH
7008static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7009 struct cgroup_taskset *tset)
e5d1367f 7010{
bb9d97b6
TH
7011 struct task_struct *task;
7012
7013 cgroup_taskset_for_each(task, cgrp, tset)
7014 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7015}
7016
e5d1367f
SE
7017static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7018 struct cgroup *old_cgrp, struct task_struct *task)
7019{
7020 /*
7021 * cgroup_exit() is called in the copy_process() failure path.
7022 * Ignore this case since the task hasn't ran yet, this avoids
7023 * trying to poke a half freed task state from generic code.
7024 */
7025 if (!(task->flags & PF_EXITING))
7026 return;
7027
bb9d97b6 7028 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7029}
7030
7031struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7032 .name = "perf_event",
7033 .subsys_id = perf_subsys_id,
7034 .create = perf_cgroup_create,
7035 .destroy = perf_cgroup_destroy,
7036 .exit = perf_cgroup_exit,
bb9d97b6 7037 .attach = perf_cgroup_attach,
e5d1367f
SE
7038};
7039#endif /* CONFIG_CGROUP_PERF */