perf: Add a bit of paranoia
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
4e2ba650 406 css_put(&event->cgrp->css);
e5d1367f
SE
407 event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412 return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
3f7cce3c
SE
445 struct perf_cgroup *cgrp;
446
e5d1367f 447 /*
3f7cce3c
SE
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
e5d1367f 450 */
3f7cce3c 451 if (!is_cgroup_event(event))
e5d1367f
SE
452 return;
453
3f7cce3c
SE
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
e5d1367f
SE
460}
461
462static inline void
3f7cce3c
SE
463perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
e5d1367f
SE
465{
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
3f7cce3c
SE
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
3f7cce3c 479 info->timestamp = ctx->timestamp;
e5d1367f
SE
480}
481
482#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
e5d1367f 514
e5d1367f
SE
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
e566b76e 536 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
e5d1367f
SE
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
facc4307
PZ
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 547 }
e5d1367f
SE
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553}
554
a8d757ef
SE
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
e5d1367f 557{
a8d757ef
SE
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f 584{
a8d757ef
SE
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
2903ff01
AV
611 struct fd f = fdget(fd);
612 int ret = 0;
e5d1367f 613
2903ff01 614 if (!f.file)
e5d1367f
SE
615 return -EBADF;
616
b583043e 617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 618 &perf_event_cgrp_subsys);
3db272c0
LZ
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
e5d1367f
SE
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
e5d1367f 635 }
3db272c0 636out:
2903ff01 637 fdput(f);
e5d1367f
SE
638 return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665{
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687 return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
a8d757ef
SE
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
e5d1367f
SE
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
e5d1367f
SE
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724{
725 return -EINVAL;
726}
727
728static inline void
3f7cce3c
SE
729perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
e5d1367f
SE
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746 return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757{
758}
759#endif
760
9e630205
SE
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 824 int timer;
9e630205
SE
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
62b85639
SE
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
33696fc0 861void perf_pmu_disable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
9e35ad38 866}
9e35ad38 867
33696fc0 868void perf_pmu_enable(struct pmu *pmu)
9e35ad38 869{
33696fc0
PZ
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
9e35ad38 873}
9e35ad38 874
e9d2b064
PZ
875static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877/*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
108b02cf 882static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 883{
108b02cf 884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4a32fea9 885 struct list_head *head = this_cpu_ptr(&rotation_list);
b5ab4cd5 886
e9d2b064 887 WARN_ON(!irqs_disabled());
b5ab4cd5 888
d84153d6 889 if (list_empty(&cpuctx->rotation_list))
e9d2b064 890 list_add(&cpuctx->rotation_list, head);
9e35ad38 891}
9e35ad38 892
cdd6c482 893static void get_ctx(struct perf_event_context *ctx)
a63eaf34 894{
e5289d4a 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
cb796ff3 905 kfree_rcu(ctx, rcu_head);
564c2b21 906 }
a63eaf34
PM
907}
908
211de6eb
PZ
909/*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914static __must_check struct perf_event_context *
915unclone_ctx(struct perf_event_context *ctx)
71a851b4 916{
211de6eb
PZ
917 struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919 lockdep_assert_held(&ctx->lock);
920
921 if (parent_ctx)
71a851b4 922 ctx->parent_ctx = NULL;
5a3126d4 923 ctx->generation++;
211de6eb
PZ
924
925 return parent_ctx;
71a851b4
PZ
926}
927
6844c09d
ACM
928static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929{
930 /*
931 * only top level events have the pid namespace they were created in
932 */
933 if (event->parent)
934 event = event->parent;
935
936 return task_tgid_nr_ns(p, event->ns);
937}
938
939static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940{
941 /*
942 * only top level events have the pid namespace they were created in
943 */
944 if (event->parent)
945 event = event->parent;
946
947 return task_pid_nr_ns(p, event->ns);
948}
949
7f453c24 950/*
cdd6c482 951 * If we inherit events we want to return the parent event id
7f453c24
PZ
952 * to userspace.
953 */
cdd6c482 954static u64 primary_event_id(struct perf_event *event)
7f453c24 955{
cdd6c482 956 u64 id = event->id;
7f453c24 957
cdd6c482
IM
958 if (event->parent)
959 id = event->parent->id;
7f453c24
PZ
960
961 return id;
962}
963
25346b93 964/*
cdd6c482 965 * Get the perf_event_context for a task and lock it.
25346b93
PM
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
cdd6c482 969static struct perf_event_context *
8dc85d54 970perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 971{
cdd6c482 972 struct perf_event_context *ctx;
25346b93 973
9ed6060d 974retry:
058ebd0e
PZ
975 /*
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
980 *
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
983 */
984 preempt_disable();
985 rcu_read_lock();
8dc85d54 986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
987 if (ctx) {
988 /*
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
cdd6c482 991 * perf_event_task_sched_out, though the
25346b93
PM
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
997 */
e625cce1 998 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1001 rcu_read_unlock();
1002 preempt_enable();
25346b93
PM
1003 goto retry;
1004 }
b49a9e7e
PZ
1005
1006 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1008 ctx = NULL;
1009 }
25346b93
PM
1010 }
1011 rcu_read_unlock();
058ebd0e 1012 preempt_enable();
25346b93
PM
1013 return ctx;
1014}
1015
1016/*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1020 */
8dc85d54
PZ
1021static struct perf_event_context *
1022perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1023{
cdd6c482 1024 struct perf_event_context *ctx;
25346b93
PM
1025 unsigned long flags;
1026
8dc85d54 1027 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1028 if (ctx) {
1029 ++ctx->pin_count;
e625cce1 1030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1031 }
1032 return ctx;
1033}
1034
cdd6c482 1035static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1036{
1037 unsigned long flags;
1038
e625cce1 1039 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1040 --ctx->pin_count;
e625cce1 1041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1042}
1043
f67218c3
PZ
1044/*
1045 * Update the record of the current time in a context.
1046 */
1047static void update_context_time(struct perf_event_context *ctx)
1048{
1049 u64 now = perf_clock();
1050
1051 ctx->time += now - ctx->timestamp;
1052 ctx->timestamp = now;
1053}
1054
4158755d
SE
1055static u64 perf_event_time(struct perf_event *event)
1056{
1057 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1058
1059 if (is_cgroup_event(event))
1060 return perf_cgroup_event_time(event);
1061
4158755d
SE
1062 return ctx ? ctx->time : 0;
1063}
1064
f67218c3
PZ
1065/*
1066 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1067 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1068 */
1069static void update_event_times(struct perf_event *event)
1070{
1071 struct perf_event_context *ctx = event->ctx;
1072 u64 run_end;
1073
1074 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 return;
e5d1367f
SE
1077 /*
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1083 *
1084 * That is why we treat cgroup events differently
1085 * here.
1086 */
1087 if (is_cgroup_event(event))
46cd6a7f 1088 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1089 else if (ctx->is_active)
1090 run_end = ctx->time;
acd1d7c1
PZ
1091 else
1092 run_end = event->tstamp_stopped;
1093
1094 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1095
1096 if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 run_end = event->tstamp_stopped;
1098 else
4158755d 1099 run_end = perf_event_time(event);
f67218c3
PZ
1100
1101 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1102
f67218c3
PZ
1103}
1104
96c21a46
PZ
1105/*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108static void update_group_times(struct perf_event *leader)
1109{
1110 struct perf_event *event;
1111
1112 update_event_times(leader);
1113 list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 update_event_times(event);
1115}
1116
889ff015
FW
1117static struct list_head *
1118ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119{
1120 if (event->attr.pinned)
1121 return &ctx->pinned_groups;
1122 else
1123 return &ctx->flexible_groups;
1124}
1125
fccc714b 1126/*
cdd6c482 1127 * Add a event from the lists for its context.
fccc714b
PZ
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
04289bb9 1130static void
cdd6c482 1131list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1132{
8a49542c
PZ
1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1135
1136 /*
8a49542c
PZ
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1140 */
8a49542c 1141 if (event->group_leader == event) {
889ff015
FW
1142 struct list_head *list;
1143
d6f962b5
FW
1144 if (is_software_event(event))
1145 event->group_flags |= PERF_GROUP_SOFTWARE;
1146
889ff015
FW
1147 list = ctx_group_list(event, ctx);
1148 list_add_tail(&event->group_entry, list);
5c148194 1149 }
592903cd 1150
08309379 1151 if (is_cgroup_event(event))
e5d1367f 1152 ctx->nr_cgroups++;
e5d1367f 1153
d010b332
SE
1154 if (has_branch_stack(event))
1155 ctx->nr_branch_stack++;
1156
cdd6c482 1157 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1158 if (!ctx->nr_events)
108b02cf 1159 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1160 ctx->nr_events++;
1161 if (event->attr.inherit_stat)
bfbd3381 1162 ctx->nr_stat++;
5a3126d4
PZ
1163
1164 ctx->generation++;
04289bb9
IM
1165}
1166
0231bb53
JO
1167/*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170static inline void perf_event__state_init(struct perf_event *event)
1171{
1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 PERF_EVENT_STATE_INACTIVE;
1174}
1175
c320c7b7
ACM
1176/*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180static void perf_event__read_size(struct perf_event *event)
1181{
1182 int entry = sizeof(u64); /* value */
1183 int size = 0;
1184 int nr = 1;
1185
1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 size += sizeof(u64);
1188
1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 size += sizeof(u64);
1191
1192 if (event->attr.read_format & PERF_FORMAT_ID)
1193 entry += sizeof(u64);
1194
1195 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 nr += event->group_leader->nr_siblings;
1197 size += sizeof(u64);
1198 }
1199
1200 size += entry * nr;
1201 event->read_size = size;
1202}
1203
1204static void perf_event__header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 perf_event__read_size(event);
1211
1212 if (sample_type & PERF_SAMPLE_IP)
1213 size += sizeof(data->ip);
1214
6844c09d
ACM
1215 if (sample_type & PERF_SAMPLE_ADDR)
1216 size += sizeof(data->addr);
1217
1218 if (sample_type & PERF_SAMPLE_PERIOD)
1219 size += sizeof(data->period);
1220
c3feedf2
AK
1221 if (sample_type & PERF_SAMPLE_WEIGHT)
1222 size += sizeof(data->weight);
1223
6844c09d
ACM
1224 if (sample_type & PERF_SAMPLE_READ)
1225 size += event->read_size;
1226
d6be9ad6
SE
1227 if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 size += sizeof(data->data_src.val);
1229
fdfbbd07
AK
1230 if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 size += sizeof(data->txn);
1232
6844c09d
ACM
1233 event->header_size = size;
1234}
1235
1236static void perf_event__id_header_size(struct perf_event *event)
1237{
1238 struct perf_sample_data *data;
1239 u64 sample_type = event->attr.sample_type;
1240 u16 size = 0;
1241
c320c7b7
ACM
1242 if (sample_type & PERF_SAMPLE_TID)
1243 size += sizeof(data->tid_entry);
1244
1245 if (sample_type & PERF_SAMPLE_TIME)
1246 size += sizeof(data->time);
1247
ff3d527c
AH
1248 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 size += sizeof(data->id);
1250
c320c7b7
ACM
1251 if (sample_type & PERF_SAMPLE_ID)
1252 size += sizeof(data->id);
1253
1254 if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 size += sizeof(data->stream_id);
1256
1257 if (sample_type & PERF_SAMPLE_CPU)
1258 size += sizeof(data->cpu_entry);
1259
6844c09d 1260 event->id_header_size = size;
c320c7b7
ACM
1261}
1262
8a49542c
PZ
1263static void perf_group_attach(struct perf_event *event)
1264{
c320c7b7 1265 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1266
74c3337c
PZ
1267 /*
1268 * We can have double attach due to group movement in perf_event_open.
1269 */
1270 if (event->attach_state & PERF_ATTACH_GROUP)
1271 return;
1272
8a49542c
PZ
1273 event->attach_state |= PERF_ATTACH_GROUP;
1274
1275 if (group_leader == event)
1276 return;
1277
652884fe
PZ
1278 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1279
8a49542c
PZ
1280 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1281 !is_software_event(event))
1282 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1283
1284 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1285 group_leader->nr_siblings++;
c320c7b7
ACM
1286
1287 perf_event__header_size(group_leader);
1288
1289 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1290 perf_event__header_size(pos);
8a49542c
PZ
1291}
1292
a63eaf34 1293/*
cdd6c482 1294 * Remove a event from the lists for its context.
fccc714b 1295 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1296 */
04289bb9 1297static void
cdd6c482 1298list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1299{
68cacd29 1300 struct perf_cpu_context *cpuctx;
652884fe
PZ
1301
1302 WARN_ON_ONCE(event->ctx != ctx);
1303 lockdep_assert_held(&ctx->lock);
1304
8a49542c
PZ
1305 /*
1306 * We can have double detach due to exit/hot-unplug + close.
1307 */
1308 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1309 return;
8a49542c
PZ
1310
1311 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1312
68cacd29 1313 if (is_cgroup_event(event)) {
e5d1367f 1314 ctx->nr_cgroups--;
68cacd29
SE
1315 cpuctx = __get_cpu_context(ctx);
1316 /*
1317 * if there are no more cgroup events
1318 * then cler cgrp to avoid stale pointer
1319 * in update_cgrp_time_from_cpuctx()
1320 */
1321 if (!ctx->nr_cgroups)
1322 cpuctx->cgrp = NULL;
1323 }
e5d1367f 1324
d010b332
SE
1325 if (has_branch_stack(event))
1326 ctx->nr_branch_stack--;
1327
cdd6c482
IM
1328 ctx->nr_events--;
1329 if (event->attr.inherit_stat)
bfbd3381 1330 ctx->nr_stat--;
8bc20959 1331
cdd6c482 1332 list_del_rcu(&event->event_entry);
04289bb9 1333
8a49542c
PZ
1334 if (event->group_leader == event)
1335 list_del_init(&event->group_entry);
5c148194 1336
96c21a46 1337 update_group_times(event);
b2e74a26
SE
1338
1339 /*
1340 * If event was in error state, then keep it
1341 * that way, otherwise bogus counts will be
1342 * returned on read(). The only way to get out
1343 * of error state is by explicit re-enabling
1344 * of the event
1345 */
1346 if (event->state > PERF_EVENT_STATE_OFF)
1347 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1348
1349 ctx->generation++;
050735b0
PZ
1350}
1351
8a49542c 1352static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1353{
1354 struct perf_event *sibling, *tmp;
8a49542c
PZ
1355 struct list_head *list = NULL;
1356
1357 /*
1358 * We can have double detach due to exit/hot-unplug + close.
1359 */
1360 if (!(event->attach_state & PERF_ATTACH_GROUP))
1361 return;
1362
1363 event->attach_state &= ~PERF_ATTACH_GROUP;
1364
1365 /*
1366 * If this is a sibling, remove it from its group.
1367 */
1368 if (event->group_leader != event) {
1369 list_del_init(&event->group_entry);
1370 event->group_leader->nr_siblings--;
c320c7b7 1371 goto out;
8a49542c
PZ
1372 }
1373
1374 if (!list_empty(&event->group_entry))
1375 list = &event->group_entry;
2e2af50b 1376
04289bb9 1377 /*
cdd6c482
IM
1378 * If this was a group event with sibling events then
1379 * upgrade the siblings to singleton events by adding them
8a49542c 1380 * to whatever list we are on.
04289bb9 1381 */
cdd6c482 1382 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1383 if (list)
1384 list_move_tail(&sibling->group_entry, list);
04289bb9 1385 sibling->group_leader = sibling;
d6f962b5
FW
1386
1387 /* Inherit group flags from the previous leader */
1388 sibling->group_flags = event->group_flags;
652884fe
PZ
1389
1390 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1391 }
c320c7b7
ACM
1392
1393out:
1394 perf_event__header_size(event->group_leader);
1395
1396 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1397 perf_event__header_size(tmp);
04289bb9
IM
1398}
1399
fadfe7be
JO
1400/*
1401 * User event without the task.
1402 */
1403static bool is_orphaned_event(struct perf_event *event)
1404{
1405 return event && !is_kernel_event(event) && !event->owner;
1406}
1407
1408/*
1409 * Event has a parent but parent's task finished and it's
1410 * alive only because of children holding refference.
1411 */
1412static bool is_orphaned_child(struct perf_event *event)
1413{
1414 return is_orphaned_event(event->parent);
1415}
1416
1417static void orphans_remove_work(struct work_struct *work);
1418
1419static void schedule_orphans_remove(struct perf_event_context *ctx)
1420{
1421 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1422 return;
1423
1424 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1425 get_ctx(ctx);
1426 ctx->orphans_remove_sched = true;
1427 }
1428}
1429
1430static int __init perf_workqueue_init(void)
1431{
1432 perf_wq = create_singlethread_workqueue("perf");
1433 WARN(!perf_wq, "failed to create perf workqueue\n");
1434 return perf_wq ? 0 : -1;
1435}
1436
1437core_initcall(perf_workqueue_init);
1438
fa66f07a
SE
1439static inline int
1440event_filter_match(struct perf_event *event)
1441{
e5d1367f
SE
1442 return (event->cpu == -1 || event->cpu == smp_processor_id())
1443 && perf_cgroup_match(event);
fa66f07a
SE
1444}
1445
9ffcfa6f
SE
1446static void
1447event_sched_out(struct perf_event *event,
3b6f9e5c 1448 struct perf_cpu_context *cpuctx,
cdd6c482 1449 struct perf_event_context *ctx)
3b6f9e5c 1450{
4158755d 1451 u64 tstamp = perf_event_time(event);
fa66f07a 1452 u64 delta;
652884fe
PZ
1453
1454 WARN_ON_ONCE(event->ctx != ctx);
1455 lockdep_assert_held(&ctx->lock);
1456
fa66f07a
SE
1457 /*
1458 * An event which could not be activated because of
1459 * filter mismatch still needs to have its timings
1460 * maintained, otherwise bogus information is return
1461 * via read() for time_enabled, time_running:
1462 */
1463 if (event->state == PERF_EVENT_STATE_INACTIVE
1464 && !event_filter_match(event)) {
e5d1367f 1465 delta = tstamp - event->tstamp_stopped;
fa66f07a 1466 event->tstamp_running += delta;
4158755d 1467 event->tstamp_stopped = tstamp;
fa66f07a
SE
1468 }
1469
cdd6c482 1470 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1471 return;
3b6f9e5c 1472
44377277
AS
1473 perf_pmu_disable(event->pmu);
1474
cdd6c482
IM
1475 event->state = PERF_EVENT_STATE_INACTIVE;
1476 if (event->pending_disable) {
1477 event->pending_disable = 0;
1478 event->state = PERF_EVENT_STATE_OFF;
970892a9 1479 }
4158755d 1480 event->tstamp_stopped = tstamp;
a4eaf7f1 1481 event->pmu->del(event, 0);
cdd6c482 1482 event->oncpu = -1;
3b6f9e5c 1483
cdd6c482 1484 if (!is_software_event(event))
3b6f9e5c
PM
1485 cpuctx->active_oncpu--;
1486 ctx->nr_active--;
0f5a2601
PZ
1487 if (event->attr.freq && event->attr.sample_freq)
1488 ctx->nr_freq--;
cdd6c482 1489 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1490 cpuctx->exclusive = 0;
44377277 1491
fadfe7be
JO
1492 if (is_orphaned_child(event))
1493 schedule_orphans_remove(ctx);
1494
44377277 1495 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1496}
1497
d859e29f 1498static void
cdd6c482 1499group_sched_out(struct perf_event *group_event,
d859e29f 1500 struct perf_cpu_context *cpuctx,
cdd6c482 1501 struct perf_event_context *ctx)
d859e29f 1502{
cdd6c482 1503 struct perf_event *event;
fa66f07a 1504 int state = group_event->state;
d859e29f 1505
cdd6c482 1506 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1507
1508 /*
1509 * Schedule out siblings (if any):
1510 */
cdd6c482
IM
1511 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1512 event_sched_out(event, cpuctx, ctx);
d859e29f 1513
fa66f07a 1514 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1515 cpuctx->exclusive = 0;
1516}
1517
46ce0fe9
PZ
1518struct remove_event {
1519 struct perf_event *event;
1520 bool detach_group;
1521};
1522
0793a61d 1523/*
cdd6c482 1524 * Cross CPU call to remove a performance event
0793a61d 1525 *
cdd6c482 1526 * We disable the event on the hardware level first. After that we
0793a61d
TG
1527 * remove it from the context list.
1528 */
fe4b04fa 1529static int __perf_remove_from_context(void *info)
0793a61d 1530{
46ce0fe9
PZ
1531 struct remove_event *re = info;
1532 struct perf_event *event = re->event;
cdd6c482 1533 struct perf_event_context *ctx = event->ctx;
108b02cf 1534 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1535
e625cce1 1536 raw_spin_lock(&ctx->lock);
cdd6c482 1537 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1538 if (re->detach_group)
1539 perf_group_detach(event);
cdd6c482 1540 list_del_event(event, ctx);
64ce3126
PZ
1541 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1542 ctx->is_active = 0;
1543 cpuctx->task_ctx = NULL;
1544 }
e625cce1 1545 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1546
1547 return 0;
0793a61d
TG
1548}
1549
1550
1551/*
cdd6c482 1552 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1553 *
cdd6c482 1554 * CPU events are removed with a smp call. For task events we only
0793a61d 1555 * call when the task is on a CPU.
c93f7669 1556 *
cdd6c482
IM
1557 * If event->ctx is a cloned context, callers must make sure that
1558 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1559 * remains valid. This is OK when called from perf_release since
1560 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1561 * When called from perf_event_exit_task, it's OK because the
c93f7669 1562 * context has been detached from its task.
0793a61d 1563 */
46ce0fe9 1564static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1565{
cdd6c482 1566 struct perf_event_context *ctx = event->ctx;
0793a61d 1567 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1568 struct remove_event re = {
1569 .event = event,
1570 .detach_group = detach_group,
1571 };
0793a61d 1572
fe4b04fa
PZ
1573 lockdep_assert_held(&ctx->mutex);
1574
0793a61d
TG
1575 if (!task) {
1576 /*
226424ee
MR
1577 * Per cpu events are removed via an smp call. The removal can
1578 * fail if the CPU is currently offline, but in that case we
1579 * already called __perf_remove_from_context from
1580 * perf_event_exit_cpu.
0793a61d 1581 */
46ce0fe9 1582 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1583 return;
1584 }
1585
1586retry:
46ce0fe9 1587 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1588 return;
0793a61d 1589
e625cce1 1590 raw_spin_lock_irq(&ctx->lock);
0793a61d 1591 /*
fe4b04fa
PZ
1592 * If we failed to find a running task, but find the context active now
1593 * that we've acquired the ctx->lock, retry.
0793a61d 1594 */
fe4b04fa 1595 if (ctx->is_active) {
e625cce1 1596 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1597 /*
1598 * Reload the task pointer, it might have been changed by
1599 * a concurrent perf_event_context_sched_out().
1600 */
1601 task = ctx->task;
0793a61d
TG
1602 goto retry;
1603 }
1604
1605 /*
fe4b04fa
PZ
1606 * Since the task isn't running, its safe to remove the event, us
1607 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1608 */
46ce0fe9
PZ
1609 if (detach_group)
1610 perf_group_detach(event);
fe4b04fa 1611 list_del_event(event, ctx);
e625cce1 1612 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1613}
1614
d859e29f 1615/*
cdd6c482 1616 * Cross CPU call to disable a performance event
d859e29f 1617 */
500ad2d8 1618int __perf_event_disable(void *info)
d859e29f 1619{
cdd6c482 1620 struct perf_event *event = info;
cdd6c482 1621 struct perf_event_context *ctx = event->ctx;
108b02cf 1622 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1623
1624 /*
cdd6c482
IM
1625 * If this is a per-task event, need to check whether this
1626 * event's task is the current task on this cpu.
fe4b04fa
PZ
1627 *
1628 * Can trigger due to concurrent perf_event_context_sched_out()
1629 * flipping contexts around.
d859e29f 1630 */
665c2142 1631 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1632 return -EINVAL;
d859e29f 1633
e625cce1 1634 raw_spin_lock(&ctx->lock);
d859e29f
PM
1635
1636 /*
cdd6c482 1637 * If the event is on, turn it off.
d859e29f
PM
1638 * If it is in error state, leave it in error state.
1639 */
cdd6c482 1640 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1641 update_context_time(ctx);
e5d1367f 1642 update_cgrp_time_from_event(event);
cdd6c482
IM
1643 update_group_times(event);
1644 if (event == event->group_leader)
1645 group_sched_out(event, cpuctx, ctx);
d859e29f 1646 else
cdd6c482
IM
1647 event_sched_out(event, cpuctx, ctx);
1648 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1649 }
1650
e625cce1 1651 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1652
1653 return 0;
d859e29f
PM
1654}
1655
1656/*
cdd6c482 1657 * Disable a event.
c93f7669 1658 *
cdd6c482
IM
1659 * If event->ctx is a cloned context, callers must make sure that
1660 * every task struct that event->ctx->task could possibly point to
c93f7669 1661 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1662 * perf_event_for_each_child or perf_event_for_each because they
1663 * hold the top-level event's child_mutex, so any descendant that
1664 * goes to exit will block in sync_child_event.
1665 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1666 * is the current context on this CPU and preemption is disabled,
cdd6c482 1667 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1668 */
44234adc 1669void perf_event_disable(struct perf_event *event)
d859e29f 1670{
cdd6c482 1671 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1672 struct task_struct *task = ctx->task;
1673
1674 if (!task) {
1675 /*
cdd6c482 1676 * Disable the event on the cpu that it's on
d859e29f 1677 */
fe4b04fa 1678 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1679 return;
1680 }
1681
9ed6060d 1682retry:
fe4b04fa
PZ
1683 if (!task_function_call(task, __perf_event_disable, event))
1684 return;
d859e29f 1685
e625cce1 1686 raw_spin_lock_irq(&ctx->lock);
d859e29f 1687 /*
cdd6c482 1688 * If the event is still active, we need to retry the cross-call.
d859e29f 1689 */
cdd6c482 1690 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1691 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1692 /*
1693 * Reload the task pointer, it might have been changed by
1694 * a concurrent perf_event_context_sched_out().
1695 */
1696 task = ctx->task;
d859e29f
PM
1697 goto retry;
1698 }
1699
1700 /*
1701 * Since we have the lock this context can't be scheduled
1702 * in, so we can change the state safely.
1703 */
cdd6c482
IM
1704 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1705 update_group_times(event);
1706 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1707 }
e625cce1 1708 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1709}
dcfce4a0 1710EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1711
e5d1367f
SE
1712static void perf_set_shadow_time(struct perf_event *event,
1713 struct perf_event_context *ctx,
1714 u64 tstamp)
1715{
1716 /*
1717 * use the correct time source for the time snapshot
1718 *
1719 * We could get by without this by leveraging the
1720 * fact that to get to this function, the caller
1721 * has most likely already called update_context_time()
1722 * and update_cgrp_time_xx() and thus both timestamp
1723 * are identical (or very close). Given that tstamp is,
1724 * already adjusted for cgroup, we could say that:
1725 * tstamp - ctx->timestamp
1726 * is equivalent to
1727 * tstamp - cgrp->timestamp.
1728 *
1729 * Then, in perf_output_read(), the calculation would
1730 * work with no changes because:
1731 * - event is guaranteed scheduled in
1732 * - no scheduled out in between
1733 * - thus the timestamp would be the same
1734 *
1735 * But this is a bit hairy.
1736 *
1737 * So instead, we have an explicit cgroup call to remain
1738 * within the time time source all along. We believe it
1739 * is cleaner and simpler to understand.
1740 */
1741 if (is_cgroup_event(event))
1742 perf_cgroup_set_shadow_time(event, tstamp);
1743 else
1744 event->shadow_ctx_time = tstamp - ctx->timestamp;
1745}
1746
4fe757dd
PZ
1747#define MAX_INTERRUPTS (~0ULL)
1748
1749static void perf_log_throttle(struct perf_event *event, int enable);
1750
235c7fc7 1751static int
9ffcfa6f 1752event_sched_in(struct perf_event *event,
235c7fc7 1753 struct perf_cpu_context *cpuctx,
6e37738a 1754 struct perf_event_context *ctx)
235c7fc7 1755{
4158755d 1756 u64 tstamp = perf_event_time(event);
44377277 1757 int ret = 0;
4158755d 1758
63342411
PZ
1759 lockdep_assert_held(&ctx->lock);
1760
cdd6c482 1761 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1762 return 0;
1763
cdd6c482 1764 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1765 event->oncpu = smp_processor_id();
4fe757dd
PZ
1766
1767 /*
1768 * Unthrottle events, since we scheduled we might have missed several
1769 * ticks already, also for a heavily scheduling task there is little
1770 * guarantee it'll get a tick in a timely manner.
1771 */
1772 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1773 perf_log_throttle(event, 1);
1774 event->hw.interrupts = 0;
1775 }
1776
235c7fc7
IM
1777 /*
1778 * The new state must be visible before we turn it on in the hardware:
1779 */
1780 smp_wmb();
1781
44377277
AS
1782 perf_pmu_disable(event->pmu);
1783
a4eaf7f1 1784 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1785 event->state = PERF_EVENT_STATE_INACTIVE;
1786 event->oncpu = -1;
44377277
AS
1787 ret = -EAGAIN;
1788 goto out;
235c7fc7
IM
1789 }
1790
4158755d 1791 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1792
e5d1367f 1793 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1794
cdd6c482 1795 if (!is_software_event(event))
3b6f9e5c 1796 cpuctx->active_oncpu++;
235c7fc7 1797 ctx->nr_active++;
0f5a2601
PZ
1798 if (event->attr.freq && event->attr.sample_freq)
1799 ctx->nr_freq++;
235c7fc7 1800
cdd6c482 1801 if (event->attr.exclusive)
3b6f9e5c
PM
1802 cpuctx->exclusive = 1;
1803
fadfe7be
JO
1804 if (is_orphaned_child(event))
1805 schedule_orphans_remove(ctx);
1806
44377277
AS
1807out:
1808 perf_pmu_enable(event->pmu);
1809
1810 return ret;
235c7fc7
IM
1811}
1812
6751b71e 1813static int
cdd6c482 1814group_sched_in(struct perf_event *group_event,
6751b71e 1815 struct perf_cpu_context *cpuctx,
6e37738a 1816 struct perf_event_context *ctx)
6751b71e 1817{
6bde9b6c 1818 struct perf_event *event, *partial_group = NULL;
4a234593 1819 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1820 u64 now = ctx->time;
1821 bool simulate = false;
6751b71e 1822
cdd6c482 1823 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1824 return 0;
1825
ad5133b7 1826 pmu->start_txn(pmu);
6bde9b6c 1827
9ffcfa6f 1828 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1829 pmu->cancel_txn(pmu);
9e630205 1830 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1831 return -EAGAIN;
90151c35 1832 }
6751b71e
PM
1833
1834 /*
1835 * Schedule in siblings as one group (if any):
1836 */
cdd6c482 1837 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1838 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1839 partial_group = event;
6751b71e
PM
1840 goto group_error;
1841 }
1842 }
1843
9ffcfa6f 1844 if (!pmu->commit_txn(pmu))
6e85158c 1845 return 0;
9ffcfa6f 1846
6751b71e
PM
1847group_error:
1848 /*
1849 * Groups can be scheduled in as one unit only, so undo any
1850 * partial group before returning:
d7842da4
SE
1851 * The events up to the failed event are scheduled out normally,
1852 * tstamp_stopped will be updated.
1853 *
1854 * The failed events and the remaining siblings need to have
1855 * their timings updated as if they had gone thru event_sched_in()
1856 * and event_sched_out(). This is required to get consistent timings
1857 * across the group. This also takes care of the case where the group
1858 * could never be scheduled by ensuring tstamp_stopped is set to mark
1859 * the time the event was actually stopped, such that time delta
1860 * calculation in update_event_times() is correct.
6751b71e 1861 */
cdd6c482
IM
1862 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1863 if (event == partial_group)
d7842da4
SE
1864 simulate = true;
1865
1866 if (simulate) {
1867 event->tstamp_running += now - event->tstamp_stopped;
1868 event->tstamp_stopped = now;
1869 } else {
1870 event_sched_out(event, cpuctx, ctx);
1871 }
6751b71e 1872 }
9ffcfa6f 1873 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1874
ad5133b7 1875 pmu->cancel_txn(pmu);
90151c35 1876
9e630205
SE
1877 perf_cpu_hrtimer_restart(cpuctx);
1878
6751b71e
PM
1879 return -EAGAIN;
1880}
1881
3b6f9e5c 1882/*
cdd6c482 1883 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1884 */
cdd6c482 1885static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1886 struct perf_cpu_context *cpuctx,
1887 int can_add_hw)
1888{
1889 /*
cdd6c482 1890 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1891 */
d6f962b5 1892 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1893 return 1;
1894 /*
1895 * If an exclusive group is already on, no other hardware
cdd6c482 1896 * events can go on.
3b6f9e5c
PM
1897 */
1898 if (cpuctx->exclusive)
1899 return 0;
1900 /*
1901 * If this group is exclusive and there are already
cdd6c482 1902 * events on the CPU, it can't go on.
3b6f9e5c 1903 */
cdd6c482 1904 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1905 return 0;
1906 /*
1907 * Otherwise, try to add it if all previous groups were able
1908 * to go on.
1909 */
1910 return can_add_hw;
1911}
1912
cdd6c482
IM
1913static void add_event_to_ctx(struct perf_event *event,
1914 struct perf_event_context *ctx)
53cfbf59 1915{
4158755d
SE
1916 u64 tstamp = perf_event_time(event);
1917
cdd6c482 1918 list_add_event(event, ctx);
8a49542c 1919 perf_group_attach(event);
4158755d
SE
1920 event->tstamp_enabled = tstamp;
1921 event->tstamp_running = tstamp;
1922 event->tstamp_stopped = tstamp;
53cfbf59
PM
1923}
1924
2c29ef0f
PZ
1925static void task_ctx_sched_out(struct perf_event_context *ctx);
1926static void
1927ctx_sched_in(struct perf_event_context *ctx,
1928 struct perf_cpu_context *cpuctx,
1929 enum event_type_t event_type,
1930 struct task_struct *task);
fe4b04fa 1931
dce5855b
PZ
1932static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1933 struct perf_event_context *ctx,
1934 struct task_struct *task)
1935{
1936 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1937 if (ctx)
1938 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1939 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1940 if (ctx)
1941 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1942}
1943
0793a61d 1944/*
cdd6c482 1945 * Cross CPU call to install and enable a performance event
682076ae
PZ
1946 *
1947 * Must be called with ctx->mutex held
0793a61d 1948 */
fe4b04fa 1949static int __perf_install_in_context(void *info)
0793a61d 1950{
cdd6c482
IM
1951 struct perf_event *event = info;
1952 struct perf_event_context *ctx = event->ctx;
108b02cf 1953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1954 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1955 struct task_struct *task = current;
1956
b58f6b0d 1957 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1958 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1959
1960 /*
2c29ef0f 1961 * If there was an active task_ctx schedule it out.
0793a61d 1962 */
b58f6b0d 1963 if (task_ctx)
2c29ef0f 1964 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1965
1966 /*
1967 * If the context we're installing events in is not the
1968 * active task_ctx, flip them.
1969 */
1970 if (ctx->task && task_ctx != ctx) {
1971 if (task_ctx)
1972 raw_spin_unlock(&task_ctx->lock);
1973 raw_spin_lock(&ctx->lock);
1974 task_ctx = ctx;
1975 }
1976
1977 if (task_ctx) {
1978 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1979 task = task_ctx->task;
1980 }
b58f6b0d 1981
2c29ef0f 1982 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1983
4af4998b 1984 update_context_time(ctx);
e5d1367f
SE
1985 /*
1986 * update cgrp time only if current cgrp
1987 * matches event->cgrp. Must be done before
1988 * calling add_event_to_ctx()
1989 */
1990 update_cgrp_time_from_event(event);
0793a61d 1991
cdd6c482 1992 add_event_to_ctx(event, ctx);
0793a61d 1993
d859e29f 1994 /*
2c29ef0f 1995 * Schedule everything back in
d859e29f 1996 */
dce5855b 1997 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1998
1999 perf_pmu_enable(cpuctx->ctx.pmu);
2000 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2001
2002 return 0;
0793a61d
TG
2003}
2004
2005/*
cdd6c482 2006 * Attach a performance event to a context
0793a61d 2007 *
cdd6c482
IM
2008 * First we add the event to the list with the hardware enable bit
2009 * in event->hw_config cleared.
0793a61d 2010 *
cdd6c482 2011 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2012 * call to enable it in the task context. The task might have been
2013 * scheduled away, but we check this in the smp call again.
2014 */
2015static void
cdd6c482
IM
2016perf_install_in_context(struct perf_event_context *ctx,
2017 struct perf_event *event,
0793a61d
TG
2018 int cpu)
2019{
2020 struct task_struct *task = ctx->task;
2021
fe4b04fa
PZ
2022 lockdep_assert_held(&ctx->mutex);
2023
c3f00c70 2024 event->ctx = ctx;
0cda4c02
YZ
2025 if (event->cpu != -1)
2026 event->cpu = cpu;
c3f00c70 2027
0793a61d
TG
2028 if (!task) {
2029 /*
cdd6c482 2030 * Per cpu events are installed via an smp call and
af901ca1 2031 * the install is always successful.
0793a61d 2032 */
fe4b04fa 2033 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2034 return;
2035 }
2036
0793a61d 2037retry:
fe4b04fa
PZ
2038 if (!task_function_call(task, __perf_install_in_context, event))
2039 return;
0793a61d 2040
e625cce1 2041 raw_spin_lock_irq(&ctx->lock);
0793a61d 2042 /*
fe4b04fa
PZ
2043 * If we failed to find a running task, but find the context active now
2044 * that we've acquired the ctx->lock, retry.
0793a61d 2045 */
fe4b04fa 2046 if (ctx->is_active) {
e625cce1 2047 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2048 /*
2049 * Reload the task pointer, it might have been changed by
2050 * a concurrent perf_event_context_sched_out().
2051 */
2052 task = ctx->task;
0793a61d
TG
2053 goto retry;
2054 }
2055
2056 /*
fe4b04fa
PZ
2057 * Since the task isn't running, its safe to add the event, us holding
2058 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2059 */
fe4b04fa 2060 add_event_to_ctx(event, ctx);
e625cce1 2061 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2062}
2063
fa289bec 2064/*
cdd6c482 2065 * Put a event into inactive state and update time fields.
fa289bec
PM
2066 * Enabling the leader of a group effectively enables all
2067 * the group members that aren't explicitly disabled, so we
2068 * have to update their ->tstamp_enabled also.
2069 * Note: this works for group members as well as group leaders
2070 * since the non-leader members' sibling_lists will be empty.
2071 */
1d9b482e 2072static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2073{
cdd6c482 2074 struct perf_event *sub;
4158755d 2075 u64 tstamp = perf_event_time(event);
fa289bec 2076
cdd6c482 2077 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2078 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2079 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2080 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2081 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2082 }
fa289bec
PM
2083}
2084
d859e29f 2085/*
cdd6c482 2086 * Cross CPU call to enable a performance event
d859e29f 2087 */
fe4b04fa 2088static int __perf_event_enable(void *info)
04289bb9 2089{
cdd6c482 2090 struct perf_event *event = info;
cdd6c482
IM
2091 struct perf_event_context *ctx = event->ctx;
2092 struct perf_event *leader = event->group_leader;
108b02cf 2093 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2094 int err;
04289bb9 2095
06f41796
JO
2096 /*
2097 * There's a time window between 'ctx->is_active' check
2098 * in perf_event_enable function and this place having:
2099 * - IRQs on
2100 * - ctx->lock unlocked
2101 *
2102 * where the task could be killed and 'ctx' deactivated
2103 * by perf_event_exit_task.
2104 */
2105 if (!ctx->is_active)
fe4b04fa 2106 return -EINVAL;
3cbed429 2107
e625cce1 2108 raw_spin_lock(&ctx->lock);
4af4998b 2109 update_context_time(ctx);
d859e29f 2110
cdd6c482 2111 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2112 goto unlock;
e5d1367f
SE
2113
2114 /*
2115 * set current task's cgroup time reference point
2116 */
3f7cce3c 2117 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2118
1d9b482e 2119 __perf_event_mark_enabled(event);
04289bb9 2120
e5d1367f
SE
2121 if (!event_filter_match(event)) {
2122 if (is_cgroup_event(event))
2123 perf_cgroup_defer_enabled(event);
f4c4176f 2124 goto unlock;
e5d1367f 2125 }
f4c4176f 2126
04289bb9 2127 /*
cdd6c482 2128 * If the event is in a group and isn't the group leader,
d859e29f 2129 * then don't put it on unless the group is on.
04289bb9 2130 */
cdd6c482 2131 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2132 goto unlock;
3b6f9e5c 2133
cdd6c482 2134 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2135 err = -EEXIST;
e758a33d 2136 } else {
cdd6c482 2137 if (event == leader)
6e37738a 2138 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2139 else
6e37738a 2140 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2141 }
d859e29f
PM
2142
2143 if (err) {
2144 /*
cdd6c482 2145 * If this event can't go on and it's part of a
d859e29f
PM
2146 * group, then the whole group has to come off.
2147 */
9e630205 2148 if (leader != event) {
d859e29f 2149 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2150 perf_cpu_hrtimer_restart(cpuctx);
2151 }
0d48696f 2152 if (leader->attr.pinned) {
53cfbf59 2153 update_group_times(leader);
cdd6c482 2154 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2155 }
d859e29f
PM
2156 }
2157
9ed6060d 2158unlock:
e625cce1 2159 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2160
2161 return 0;
d859e29f
PM
2162}
2163
2164/*
cdd6c482 2165 * Enable a event.
c93f7669 2166 *
cdd6c482
IM
2167 * If event->ctx is a cloned context, callers must make sure that
2168 * every task struct that event->ctx->task could possibly point to
c93f7669 2169 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2170 * perf_event_for_each_child or perf_event_for_each as described
2171 * for perf_event_disable.
d859e29f 2172 */
44234adc 2173void perf_event_enable(struct perf_event *event)
d859e29f 2174{
cdd6c482 2175 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2176 struct task_struct *task = ctx->task;
2177
2178 if (!task) {
2179 /*
cdd6c482 2180 * Enable the event on the cpu that it's on
d859e29f 2181 */
fe4b04fa 2182 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2183 return;
2184 }
2185
e625cce1 2186 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2187 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2188 goto out;
2189
2190 /*
cdd6c482
IM
2191 * If the event is in error state, clear that first.
2192 * That way, if we see the event in error state below, we
d859e29f
PM
2193 * know that it has gone back into error state, as distinct
2194 * from the task having been scheduled away before the
2195 * cross-call arrived.
2196 */
cdd6c482
IM
2197 if (event->state == PERF_EVENT_STATE_ERROR)
2198 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2199
9ed6060d 2200retry:
fe4b04fa 2201 if (!ctx->is_active) {
1d9b482e 2202 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2203 goto out;
2204 }
2205
e625cce1 2206 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2207
2208 if (!task_function_call(task, __perf_event_enable, event))
2209 return;
d859e29f 2210
e625cce1 2211 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2212
2213 /*
cdd6c482 2214 * If the context is active and the event is still off,
d859e29f
PM
2215 * we need to retry the cross-call.
2216 */
fe4b04fa
PZ
2217 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2218 /*
2219 * task could have been flipped by a concurrent
2220 * perf_event_context_sched_out()
2221 */
2222 task = ctx->task;
d859e29f 2223 goto retry;
fe4b04fa 2224 }
fa289bec 2225
9ed6060d 2226out:
e625cce1 2227 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2228}
dcfce4a0 2229EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2230
26ca5c11 2231int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2232{
2023b359 2233 /*
cdd6c482 2234 * not supported on inherited events
2023b359 2235 */
2e939d1d 2236 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2237 return -EINVAL;
2238
cdd6c482
IM
2239 atomic_add(refresh, &event->event_limit);
2240 perf_event_enable(event);
2023b359
PZ
2241
2242 return 0;
79f14641 2243}
26ca5c11 2244EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2245
5b0311e1
FW
2246static void ctx_sched_out(struct perf_event_context *ctx,
2247 struct perf_cpu_context *cpuctx,
2248 enum event_type_t event_type)
235c7fc7 2249{
cdd6c482 2250 struct perf_event *event;
db24d33e 2251 int is_active = ctx->is_active;
235c7fc7 2252
db24d33e 2253 ctx->is_active &= ~event_type;
cdd6c482 2254 if (likely(!ctx->nr_events))
facc4307
PZ
2255 return;
2256
4af4998b 2257 update_context_time(ctx);
e5d1367f 2258 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2259 if (!ctx->nr_active)
facc4307 2260 return;
5b0311e1 2261
075e0b00 2262 perf_pmu_disable(ctx->pmu);
db24d33e 2263 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2264 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2265 group_sched_out(event, cpuctx, ctx);
9ed6060d 2266 }
889ff015 2267
db24d33e 2268 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2269 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2270 group_sched_out(event, cpuctx, ctx);
9ed6060d 2271 }
1b9a644f 2272 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2273}
2274
564c2b21 2275/*
5a3126d4
PZ
2276 * Test whether two contexts are equivalent, i.e. whether they have both been
2277 * cloned from the same version of the same context.
2278 *
2279 * Equivalence is measured using a generation number in the context that is
2280 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2281 * and list_del_event().
564c2b21 2282 */
cdd6c482
IM
2283static int context_equiv(struct perf_event_context *ctx1,
2284 struct perf_event_context *ctx2)
564c2b21 2285{
211de6eb
PZ
2286 lockdep_assert_held(&ctx1->lock);
2287 lockdep_assert_held(&ctx2->lock);
2288
5a3126d4
PZ
2289 /* Pinning disables the swap optimization */
2290 if (ctx1->pin_count || ctx2->pin_count)
2291 return 0;
2292
2293 /* If ctx1 is the parent of ctx2 */
2294 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2295 return 1;
2296
2297 /* If ctx2 is the parent of ctx1 */
2298 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2299 return 1;
2300
2301 /*
2302 * If ctx1 and ctx2 have the same parent; we flatten the parent
2303 * hierarchy, see perf_event_init_context().
2304 */
2305 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2306 ctx1->parent_gen == ctx2->parent_gen)
2307 return 1;
2308
2309 /* Unmatched */
2310 return 0;
564c2b21
PM
2311}
2312
cdd6c482
IM
2313static void __perf_event_sync_stat(struct perf_event *event,
2314 struct perf_event *next_event)
bfbd3381
PZ
2315{
2316 u64 value;
2317
cdd6c482 2318 if (!event->attr.inherit_stat)
bfbd3381
PZ
2319 return;
2320
2321 /*
cdd6c482 2322 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2323 * because we're in the middle of a context switch and have IRQs
2324 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2325 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2326 * don't need to use it.
2327 */
cdd6c482
IM
2328 switch (event->state) {
2329 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2330 event->pmu->read(event);
2331 /* fall-through */
bfbd3381 2332
cdd6c482
IM
2333 case PERF_EVENT_STATE_INACTIVE:
2334 update_event_times(event);
bfbd3381
PZ
2335 break;
2336
2337 default:
2338 break;
2339 }
2340
2341 /*
cdd6c482 2342 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2343 * values when we flip the contexts.
2344 */
e7850595
PZ
2345 value = local64_read(&next_event->count);
2346 value = local64_xchg(&event->count, value);
2347 local64_set(&next_event->count, value);
bfbd3381 2348
cdd6c482
IM
2349 swap(event->total_time_enabled, next_event->total_time_enabled);
2350 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2351
bfbd3381 2352 /*
19d2e755 2353 * Since we swizzled the values, update the user visible data too.
bfbd3381 2354 */
cdd6c482
IM
2355 perf_event_update_userpage(event);
2356 perf_event_update_userpage(next_event);
bfbd3381
PZ
2357}
2358
cdd6c482
IM
2359static void perf_event_sync_stat(struct perf_event_context *ctx,
2360 struct perf_event_context *next_ctx)
bfbd3381 2361{
cdd6c482 2362 struct perf_event *event, *next_event;
bfbd3381
PZ
2363
2364 if (!ctx->nr_stat)
2365 return;
2366
02ffdbc8
PZ
2367 update_context_time(ctx);
2368
cdd6c482
IM
2369 event = list_first_entry(&ctx->event_list,
2370 struct perf_event, event_entry);
bfbd3381 2371
cdd6c482
IM
2372 next_event = list_first_entry(&next_ctx->event_list,
2373 struct perf_event, event_entry);
bfbd3381 2374
cdd6c482
IM
2375 while (&event->event_entry != &ctx->event_list &&
2376 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2377
cdd6c482 2378 __perf_event_sync_stat(event, next_event);
bfbd3381 2379
cdd6c482
IM
2380 event = list_next_entry(event, event_entry);
2381 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2382 }
2383}
2384
fe4b04fa
PZ
2385static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2386 struct task_struct *next)
0793a61d 2387{
8dc85d54 2388 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2389 struct perf_event_context *next_ctx;
5a3126d4 2390 struct perf_event_context *parent, *next_parent;
108b02cf 2391 struct perf_cpu_context *cpuctx;
c93f7669 2392 int do_switch = 1;
0793a61d 2393
108b02cf
PZ
2394 if (likely(!ctx))
2395 return;
10989fb2 2396
108b02cf
PZ
2397 cpuctx = __get_cpu_context(ctx);
2398 if (!cpuctx->task_ctx)
0793a61d
TG
2399 return;
2400
c93f7669 2401 rcu_read_lock();
8dc85d54 2402 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2403 if (!next_ctx)
2404 goto unlock;
2405
2406 parent = rcu_dereference(ctx->parent_ctx);
2407 next_parent = rcu_dereference(next_ctx->parent_ctx);
2408
2409 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2410 if (!parent && !next_parent)
5a3126d4
PZ
2411 goto unlock;
2412
2413 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2414 /*
2415 * Looks like the two contexts are clones, so we might be
2416 * able to optimize the context switch. We lock both
2417 * contexts and check that they are clones under the
2418 * lock (including re-checking that neither has been
2419 * uncloned in the meantime). It doesn't matter which
2420 * order we take the locks because no other cpu could
2421 * be trying to lock both of these tasks.
2422 */
e625cce1
TG
2423 raw_spin_lock(&ctx->lock);
2424 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2425 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2426 /*
2427 * XXX do we need a memory barrier of sorts
cdd6c482 2428 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2429 */
8dc85d54
PZ
2430 task->perf_event_ctxp[ctxn] = next_ctx;
2431 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2432 ctx->task = next;
2433 next_ctx->task = task;
2434 do_switch = 0;
bfbd3381 2435
cdd6c482 2436 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2437 }
e625cce1
TG
2438 raw_spin_unlock(&next_ctx->lock);
2439 raw_spin_unlock(&ctx->lock);
564c2b21 2440 }
5a3126d4 2441unlock:
c93f7669 2442 rcu_read_unlock();
564c2b21 2443
c93f7669 2444 if (do_switch) {
facc4307 2445 raw_spin_lock(&ctx->lock);
5b0311e1 2446 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2447 cpuctx->task_ctx = NULL;
facc4307 2448 raw_spin_unlock(&ctx->lock);
c93f7669 2449 }
0793a61d
TG
2450}
2451
8dc85d54
PZ
2452#define for_each_task_context_nr(ctxn) \
2453 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2454
2455/*
2456 * Called from scheduler to remove the events of the current task,
2457 * with interrupts disabled.
2458 *
2459 * We stop each event and update the event value in event->count.
2460 *
2461 * This does not protect us against NMI, but disable()
2462 * sets the disabled bit in the control field of event _before_
2463 * accessing the event control register. If a NMI hits, then it will
2464 * not restart the event.
2465 */
ab0cce56
JO
2466void __perf_event_task_sched_out(struct task_struct *task,
2467 struct task_struct *next)
8dc85d54
PZ
2468{
2469 int ctxn;
2470
8dc85d54
PZ
2471 for_each_task_context_nr(ctxn)
2472 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2473
2474 /*
2475 * if cgroup events exist on this CPU, then we need
2476 * to check if we have to switch out PMU state.
2477 * cgroup event are system-wide mode only
2478 */
4a32fea9 2479 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2480 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2481}
2482
04dc2dbb 2483static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2484{
108b02cf 2485 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2486
a63eaf34
PM
2487 if (!cpuctx->task_ctx)
2488 return;
012b84da
IM
2489
2490 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2491 return;
2492
04dc2dbb 2493 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2494 cpuctx->task_ctx = NULL;
2495}
2496
5b0311e1
FW
2497/*
2498 * Called with IRQs disabled
2499 */
2500static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2501 enum event_type_t event_type)
2502{
2503 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2504}
2505
235c7fc7 2506static void
5b0311e1 2507ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2508 struct perf_cpu_context *cpuctx)
0793a61d 2509{
cdd6c482 2510 struct perf_event *event;
0793a61d 2511
889ff015
FW
2512 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2513 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2514 continue;
5632ab12 2515 if (!event_filter_match(event))
3b6f9e5c
PM
2516 continue;
2517
e5d1367f
SE
2518 /* may need to reset tstamp_enabled */
2519 if (is_cgroup_event(event))
2520 perf_cgroup_mark_enabled(event, ctx);
2521
8c9ed8e1 2522 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2523 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2524
2525 /*
2526 * If this pinned group hasn't been scheduled,
2527 * put it in error state.
2528 */
cdd6c482
IM
2529 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2530 update_group_times(event);
2531 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2532 }
3b6f9e5c 2533 }
5b0311e1
FW
2534}
2535
2536static void
2537ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2538 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2539{
2540 struct perf_event *event;
2541 int can_add_hw = 1;
3b6f9e5c 2542
889ff015
FW
2543 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2544 /* Ignore events in OFF or ERROR state */
2545 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2546 continue;
04289bb9
IM
2547 /*
2548 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2549 * of events:
04289bb9 2550 */
5632ab12 2551 if (!event_filter_match(event))
0793a61d
TG
2552 continue;
2553
e5d1367f
SE
2554 /* may need to reset tstamp_enabled */
2555 if (is_cgroup_event(event))
2556 perf_cgroup_mark_enabled(event, ctx);
2557
9ed6060d 2558 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2559 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2560 can_add_hw = 0;
9ed6060d 2561 }
0793a61d 2562 }
5b0311e1
FW
2563}
2564
2565static void
2566ctx_sched_in(struct perf_event_context *ctx,
2567 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2568 enum event_type_t event_type,
2569 struct task_struct *task)
5b0311e1 2570{
e5d1367f 2571 u64 now;
db24d33e 2572 int is_active = ctx->is_active;
e5d1367f 2573
db24d33e 2574 ctx->is_active |= event_type;
5b0311e1 2575 if (likely(!ctx->nr_events))
facc4307 2576 return;
5b0311e1 2577
e5d1367f
SE
2578 now = perf_clock();
2579 ctx->timestamp = now;
3f7cce3c 2580 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2581 /*
2582 * First go through the list and put on any pinned groups
2583 * in order to give them the best chance of going on.
2584 */
db24d33e 2585 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2586 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2587
2588 /* Then walk through the lower prio flexible groups */
db24d33e 2589 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2590 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2591}
2592
329c0e01 2593static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2594 enum event_type_t event_type,
2595 struct task_struct *task)
329c0e01
FW
2596{
2597 struct perf_event_context *ctx = &cpuctx->ctx;
2598
e5d1367f 2599 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2600}
2601
e5d1367f
SE
2602static void perf_event_context_sched_in(struct perf_event_context *ctx,
2603 struct task_struct *task)
235c7fc7 2604{
108b02cf 2605 struct perf_cpu_context *cpuctx;
235c7fc7 2606
108b02cf 2607 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2608 if (cpuctx->task_ctx == ctx)
2609 return;
2610
facc4307 2611 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2612 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2613 /*
2614 * We want to keep the following priority order:
2615 * cpu pinned (that don't need to move), task pinned,
2616 * cpu flexible, task flexible.
2617 */
2618 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2619
1d5f003f
GN
2620 if (ctx->nr_events)
2621 cpuctx->task_ctx = ctx;
9b33fa6b 2622
86b47c25
GN
2623 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2624
facc4307
PZ
2625 perf_pmu_enable(ctx->pmu);
2626 perf_ctx_unlock(cpuctx, ctx);
2627
b5ab4cd5
PZ
2628 /*
2629 * Since these rotations are per-cpu, we need to ensure the
2630 * cpu-context we got scheduled on is actually rotating.
2631 */
108b02cf 2632 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2633}
2634
d010b332
SE
2635/*
2636 * When sampling the branck stack in system-wide, it may be necessary
2637 * to flush the stack on context switch. This happens when the branch
2638 * stack does not tag its entries with the pid of the current task.
2639 * Otherwise it becomes impossible to associate a branch entry with a
2640 * task. This ambiguity is more likely to appear when the branch stack
2641 * supports priv level filtering and the user sets it to monitor only
2642 * at the user level (which could be a useful measurement in system-wide
2643 * mode). In that case, the risk is high of having a branch stack with
2644 * branch from multiple tasks. Flushing may mean dropping the existing
2645 * entries or stashing them somewhere in the PMU specific code layer.
2646 *
2647 * This function provides the context switch callback to the lower code
2648 * layer. It is invoked ONLY when there is at least one system-wide context
2649 * with at least one active event using taken branch sampling.
2650 */
2651static void perf_branch_stack_sched_in(struct task_struct *prev,
2652 struct task_struct *task)
2653{
2654 struct perf_cpu_context *cpuctx;
2655 struct pmu *pmu;
2656 unsigned long flags;
2657
2658 /* no need to flush branch stack if not changing task */
2659 if (prev == task)
2660 return;
2661
2662 local_irq_save(flags);
2663
2664 rcu_read_lock();
2665
2666 list_for_each_entry_rcu(pmu, &pmus, entry) {
2667 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2668
2669 /*
2670 * check if the context has at least one
2671 * event using PERF_SAMPLE_BRANCH_STACK
2672 */
2673 if (cpuctx->ctx.nr_branch_stack > 0
2674 && pmu->flush_branch_stack) {
2675
d010b332
SE
2676 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2677
2678 perf_pmu_disable(pmu);
2679
2680 pmu->flush_branch_stack();
2681
2682 perf_pmu_enable(pmu);
2683
2684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2685 }
2686 }
2687
2688 rcu_read_unlock();
2689
2690 local_irq_restore(flags);
2691}
2692
8dc85d54
PZ
2693/*
2694 * Called from scheduler to add the events of the current task
2695 * with interrupts disabled.
2696 *
2697 * We restore the event value and then enable it.
2698 *
2699 * This does not protect us against NMI, but enable()
2700 * sets the enabled bit in the control field of event _before_
2701 * accessing the event control register. If a NMI hits, then it will
2702 * keep the event running.
2703 */
ab0cce56
JO
2704void __perf_event_task_sched_in(struct task_struct *prev,
2705 struct task_struct *task)
8dc85d54
PZ
2706{
2707 struct perf_event_context *ctx;
2708 int ctxn;
2709
2710 for_each_task_context_nr(ctxn) {
2711 ctx = task->perf_event_ctxp[ctxn];
2712 if (likely(!ctx))
2713 continue;
2714
e5d1367f 2715 perf_event_context_sched_in(ctx, task);
8dc85d54 2716 }
e5d1367f
SE
2717 /*
2718 * if cgroup events exist on this CPU, then we need
2719 * to check if we have to switch in PMU state.
2720 * cgroup event are system-wide mode only
2721 */
4a32fea9 2722 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2723 perf_cgroup_sched_in(prev, task);
d010b332
SE
2724
2725 /* check for system-wide branch_stack events */
4a32fea9 2726 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
d010b332 2727 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2728}
2729
abd50713
PZ
2730static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2731{
2732 u64 frequency = event->attr.sample_freq;
2733 u64 sec = NSEC_PER_SEC;
2734 u64 divisor, dividend;
2735
2736 int count_fls, nsec_fls, frequency_fls, sec_fls;
2737
2738 count_fls = fls64(count);
2739 nsec_fls = fls64(nsec);
2740 frequency_fls = fls64(frequency);
2741 sec_fls = 30;
2742
2743 /*
2744 * We got @count in @nsec, with a target of sample_freq HZ
2745 * the target period becomes:
2746 *
2747 * @count * 10^9
2748 * period = -------------------
2749 * @nsec * sample_freq
2750 *
2751 */
2752
2753 /*
2754 * Reduce accuracy by one bit such that @a and @b converge
2755 * to a similar magnitude.
2756 */
fe4b04fa 2757#define REDUCE_FLS(a, b) \
abd50713
PZ
2758do { \
2759 if (a##_fls > b##_fls) { \
2760 a >>= 1; \
2761 a##_fls--; \
2762 } else { \
2763 b >>= 1; \
2764 b##_fls--; \
2765 } \
2766} while (0)
2767
2768 /*
2769 * Reduce accuracy until either term fits in a u64, then proceed with
2770 * the other, so that finally we can do a u64/u64 division.
2771 */
2772 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2773 REDUCE_FLS(nsec, frequency);
2774 REDUCE_FLS(sec, count);
2775 }
2776
2777 if (count_fls + sec_fls > 64) {
2778 divisor = nsec * frequency;
2779
2780 while (count_fls + sec_fls > 64) {
2781 REDUCE_FLS(count, sec);
2782 divisor >>= 1;
2783 }
2784
2785 dividend = count * sec;
2786 } else {
2787 dividend = count * sec;
2788
2789 while (nsec_fls + frequency_fls > 64) {
2790 REDUCE_FLS(nsec, frequency);
2791 dividend >>= 1;
2792 }
2793
2794 divisor = nsec * frequency;
2795 }
2796
f6ab91ad
PZ
2797 if (!divisor)
2798 return dividend;
2799
abd50713
PZ
2800 return div64_u64(dividend, divisor);
2801}
2802
e050e3f0
SE
2803static DEFINE_PER_CPU(int, perf_throttled_count);
2804static DEFINE_PER_CPU(u64, perf_throttled_seq);
2805
f39d47ff 2806static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2807{
cdd6c482 2808 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2809 s64 period, sample_period;
bd2b5b12
PZ
2810 s64 delta;
2811
abd50713 2812 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2813
2814 delta = (s64)(period - hwc->sample_period);
2815 delta = (delta + 7) / 8; /* low pass filter */
2816
2817 sample_period = hwc->sample_period + delta;
2818
2819 if (!sample_period)
2820 sample_period = 1;
2821
bd2b5b12 2822 hwc->sample_period = sample_period;
abd50713 2823
e7850595 2824 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2825 if (disable)
2826 event->pmu->stop(event, PERF_EF_UPDATE);
2827
e7850595 2828 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2829
2830 if (disable)
2831 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2832 }
bd2b5b12
PZ
2833}
2834
e050e3f0
SE
2835/*
2836 * combine freq adjustment with unthrottling to avoid two passes over the
2837 * events. At the same time, make sure, having freq events does not change
2838 * the rate of unthrottling as that would introduce bias.
2839 */
2840static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2841 int needs_unthr)
60db5e09 2842{
cdd6c482
IM
2843 struct perf_event *event;
2844 struct hw_perf_event *hwc;
e050e3f0 2845 u64 now, period = TICK_NSEC;
abd50713 2846 s64 delta;
60db5e09 2847
e050e3f0
SE
2848 /*
2849 * only need to iterate over all events iff:
2850 * - context have events in frequency mode (needs freq adjust)
2851 * - there are events to unthrottle on this cpu
2852 */
2853 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2854 return;
2855
e050e3f0 2856 raw_spin_lock(&ctx->lock);
f39d47ff 2857 perf_pmu_disable(ctx->pmu);
e050e3f0 2858
03541f8b 2859 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2860 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2861 continue;
2862
5632ab12 2863 if (!event_filter_match(event))
5d27c23d
PZ
2864 continue;
2865
44377277
AS
2866 perf_pmu_disable(event->pmu);
2867
cdd6c482 2868 hwc = &event->hw;
6a24ed6c 2869
ae23bff1 2870 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2871 hwc->interrupts = 0;
cdd6c482 2872 perf_log_throttle(event, 1);
a4eaf7f1 2873 event->pmu->start(event, 0);
a78ac325
PZ
2874 }
2875
cdd6c482 2876 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2877 goto next;
60db5e09 2878
e050e3f0
SE
2879 /*
2880 * stop the event and update event->count
2881 */
2882 event->pmu->stop(event, PERF_EF_UPDATE);
2883
e7850595 2884 now = local64_read(&event->count);
abd50713
PZ
2885 delta = now - hwc->freq_count_stamp;
2886 hwc->freq_count_stamp = now;
60db5e09 2887
e050e3f0
SE
2888 /*
2889 * restart the event
2890 * reload only if value has changed
f39d47ff
SE
2891 * we have stopped the event so tell that
2892 * to perf_adjust_period() to avoid stopping it
2893 * twice.
e050e3f0 2894 */
abd50713 2895 if (delta > 0)
f39d47ff 2896 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2897
2898 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2899 next:
2900 perf_pmu_enable(event->pmu);
60db5e09 2901 }
e050e3f0 2902
f39d47ff 2903 perf_pmu_enable(ctx->pmu);
e050e3f0 2904 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2905}
2906
235c7fc7 2907/*
cdd6c482 2908 * Round-robin a context's events:
235c7fc7 2909 */
cdd6c482 2910static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2911{
dddd3379
TG
2912 /*
2913 * Rotate the first entry last of non-pinned groups. Rotation might be
2914 * disabled by the inheritance code.
2915 */
2916 if (!ctx->rotate_disable)
2917 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2918}
2919
b5ab4cd5 2920/*
e9d2b064
PZ
2921 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2922 * because they're strictly cpu affine and rotate_start is called with IRQs
2923 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2924 */
9e630205 2925static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2926{
8dc85d54 2927 struct perf_event_context *ctx = NULL;
e050e3f0 2928 int rotate = 0, remove = 1;
7fc23a53 2929
b5ab4cd5 2930 if (cpuctx->ctx.nr_events) {
e9d2b064 2931 remove = 0;
b5ab4cd5
PZ
2932 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2933 rotate = 1;
2934 }
235c7fc7 2935
8dc85d54 2936 ctx = cpuctx->task_ctx;
b5ab4cd5 2937 if (ctx && ctx->nr_events) {
e9d2b064 2938 remove = 0;
b5ab4cd5
PZ
2939 if (ctx->nr_events != ctx->nr_active)
2940 rotate = 1;
2941 }
9717e6cd 2942
e050e3f0 2943 if (!rotate)
0f5a2601
PZ
2944 goto done;
2945
facc4307 2946 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2947 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2948
e050e3f0
SE
2949 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2950 if (ctx)
2951 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2952
e050e3f0
SE
2953 rotate_ctx(&cpuctx->ctx);
2954 if (ctx)
2955 rotate_ctx(ctx);
235c7fc7 2956
e050e3f0 2957 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2958
0f5a2601
PZ
2959 perf_pmu_enable(cpuctx->ctx.pmu);
2960 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2961done:
e9d2b064
PZ
2962 if (remove)
2963 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2964
2965 return rotate;
e9d2b064
PZ
2966}
2967
026249ef
FW
2968#ifdef CONFIG_NO_HZ_FULL
2969bool perf_event_can_stop_tick(void)
2970{
948b26b6 2971 if (atomic_read(&nr_freq_events) ||
d84153d6 2972 __this_cpu_read(perf_throttled_count))
026249ef 2973 return false;
d84153d6
FW
2974 else
2975 return true;
026249ef
FW
2976}
2977#endif
2978
e9d2b064
PZ
2979void perf_event_task_tick(void)
2980{
4a32fea9 2981 struct list_head *head = this_cpu_ptr(&rotation_list);
e9d2b064 2982 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2983 struct perf_event_context *ctx;
2984 int throttled;
b5ab4cd5 2985
e9d2b064
PZ
2986 WARN_ON(!irqs_disabled());
2987
e050e3f0
SE
2988 __this_cpu_inc(perf_throttled_seq);
2989 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2990
e9d2b064 2991 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2992 ctx = &cpuctx->ctx;
2993 perf_adjust_freq_unthr_context(ctx, throttled);
2994
2995 ctx = cpuctx->task_ctx;
2996 if (ctx)
2997 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2998 }
0793a61d
TG
2999}
3000
889ff015
FW
3001static int event_enable_on_exec(struct perf_event *event,
3002 struct perf_event_context *ctx)
3003{
3004 if (!event->attr.enable_on_exec)
3005 return 0;
3006
3007 event->attr.enable_on_exec = 0;
3008 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3009 return 0;
3010
1d9b482e 3011 __perf_event_mark_enabled(event);
889ff015
FW
3012
3013 return 1;
3014}
3015
57e7986e 3016/*
cdd6c482 3017 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3018 * This expects task == current.
3019 */
8dc85d54 3020static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3021{
211de6eb 3022 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3023 struct perf_event *event;
57e7986e
PM
3024 unsigned long flags;
3025 int enabled = 0;
889ff015 3026 int ret;
57e7986e
PM
3027
3028 local_irq_save(flags);
cdd6c482 3029 if (!ctx || !ctx->nr_events)
57e7986e
PM
3030 goto out;
3031
e566b76e
SE
3032 /*
3033 * We must ctxsw out cgroup events to avoid conflict
3034 * when invoking perf_task_event_sched_in() later on
3035 * in this function. Otherwise we end up trying to
3036 * ctxswin cgroup events which are already scheduled
3037 * in.
3038 */
a8d757ef 3039 perf_cgroup_sched_out(current, NULL);
57e7986e 3040
e625cce1 3041 raw_spin_lock(&ctx->lock);
04dc2dbb 3042 task_ctx_sched_out(ctx);
57e7986e 3043
b79387ef 3044 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3045 ret = event_enable_on_exec(event, ctx);
3046 if (ret)
3047 enabled = 1;
57e7986e
PM
3048 }
3049
3050 /*
cdd6c482 3051 * Unclone this context if we enabled any event.
57e7986e 3052 */
71a851b4 3053 if (enabled)
211de6eb 3054 clone_ctx = unclone_ctx(ctx);
57e7986e 3055
e625cce1 3056 raw_spin_unlock(&ctx->lock);
57e7986e 3057
e566b76e
SE
3058 /*
3059 * Also calls ctxswin for cgroup events, if any:
3060 */
e5d1367f 3061 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3062out:
57e7986e 3063 local_irq_restore(flags);
211de6eb
PZ
3064
3065 if (clone_ctx)
3066 put_ctx(clone_ctx);
57e7986e
PM
3067}
3068
e041e328
PZ
3069void perf_event_exec(void)
3070{
3071 struct perf_event_context *ctx;
3072 int ctxn;
3073
3074 rcu_read_lock();
3075 for_each_task_context_nr(ctxn) {
3076 ctx = current->perf_event_ctxp[ctxn];
3077 if (!ctx)
3078 continue;
3079
3080 perf_event_enable_on_exec(ctx);
3081 }
3082 rcu_read_unlock();
3083}
3084
0793a61d 3085/*
cdd6c482 3086 * Cross CPU call to read the hardware event
0793a61d 3087 */
cdd6c482 3088static void __perf_event_read(void *info)
0793a61d 3089{
cdd6c482
IM
3090 struct perf_event *event = info;
3091 struct perf_event_context *ctx = event->ctx;
108b02cf 3092 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3093
e1ac3614
PM
3094 /*
3095 * If this is a task context, we need to check whether it is
3096 * the current task context of this cpu. If not it has been
3097 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3098 * event->count would have been updated to a recent sample
3099 * when the event was scheduled out.
e1ac3614
PM
3100 */
3101 if (ctx->task && cpuctx->task_ctx != ctx)
3102 return;
3103
e625cce1 3104 raw_spin_lock(&ctx->lock);
e5d1367f 3105 if (ctx->is_active) {
542e72fc 3106 update_context_time(ctx);
e5d1367f
SE
3107 update_cgrp_time_from_event(event);
3108 }
cdd6c482 3109 update_event_times(event);
542e72fc
PZ
3110 if (event->state == PERF_EVENT_STATE_ACTIVE)
3111 event->pmu->read(event);
e625cce1 3112 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3113}
3114
b5e58793
PZ
3115static inline u64 perf_event_count(struct perf_event *event)
3116{
e7850595 3117 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3118}
3119
cdd6c482 3120static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3121{
3122 /*
cdd6c482
IM
3123 * If event is enabled and currently active on a CPU, update the
3124 * value in the event structure:
0793a61d 3125 */
cdd6c482
IM
3126 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3127 smp_call_function_single(event->oncpu,
3128 __perf_event_read, event, 1);
3129 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3130 struct perf_event_context *ctx = event->ctx;
3131 unsigned long flags;
3132
e625cce1 3133 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3134 /*
3135 * may read while context is not active
3136 * (e.g., thread is blocked), in that case
3137 * we cannot update context time
3138 */
e5d1367f 3139 if (ctx->is_active) {
c530ccd9 3140 update_context_time(ctx);
e5d1367f
SE
3141 update_cgrp_time_from_event(event);
3142 }
cdd6c482 3143 update_event_times(event);
e625cce1 3144 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3145 }
3146
b5e58793 3147 return perf_event_count(event);
0793a61d
TG
3148}
3149
a63eaf34 3150/*
cdd6c482 3151 * Initialize the perf_event context in a task_struct:
a63eaf34 3152 */
eb184479 3153static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3154{
e625cce1 3155 raw_spin_lock_init(&ctx->lock);
a63eaf34 3156 mutex_init(&ctx->mutex);
889ff015
FW
3157 INIT_LIST_HEAD(&ctx->pinned_groups);
3158 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3159 INIT_LIST_HEAD(&ctx->event_list);
3160 atomic_set(&ctx->refcount, 1);
fadfe7be 3161 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3162}
3163
3164static struct perf_event_context *
3165alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3166{
3167 struct perf_event_context *ctx;
3168
3169 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3170 if (!ctx)
3171 return NULL;
3172
3173 __perf_event_init_context(ctx);
3174 if (task) {
3175 ctx->task = task;
3176 get_task_struct(task);
0793a61d 3177 }
eb184479
PZ
3178 ctx->pmu = pmu;
3179
3180 return ctx;
a63eaf34
PM
3181}
3182
2ebd4ffb
MH
3183static struct task_struct *
3184find_lively_task_by_vpid(pid_t vpid)
3185{
3186 struct task_struct *task;
3187 int err;
0793a61d
TG
3188
3189 rcu_read_lock();
2ebd4ffb 3190 if (!vpid)
0793a61d
TG
3191 task = current;
3192 else
2ebd4ffb 3193 task = find_task_by_vpid(vpid);
0793a61d
TG
3194 if (task)
3195 get_task_struct(task);
3196 rcu_read_unlock();
3197
3198 if (!task)
3199 return ERR_PTR(-ESRCH);
3200
0793a61d 3201 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3202 err = -EACCES;
3203 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3204 goto errout;
3205
2ebd4ffb
MH
3206 return task;
3207errout:
3208 put_task_struct(task);
3209 return ERR_PTR(err);
3210
3211}
3212
fe4b04fa
PZ
3213/*
3214 * Returns a matching context with refcount and pincount.
3215 */
108b02cf 3216static struct perf_event_context *
38a81da2 3217find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3218{
211de6eb 3219 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3220 struct perf_cpu_context *cpuctx;
25346b93 3221 unsigned long flags;
8dc85d54 3222 int ctxn, err;
0793a61d 3223
22a4ec72 3224 if (!task) {
cdd6c482 3225 /* Must be root to operate on a CPU event: */
0764771d 3226 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3227 return ERR_PTR(-EACCES);
3228
0793a61d 3229 /*
cdd6c482 3230 * We could be clever and allow to attach a event to an
0793a61d
TG
3231 * offline CPU and activate it when the CPU comes up, but
3232 * that's for later.
3233 */
f6325e30 3234 if (!cpu_online(cpu))
0793a61d
TG
3235 return ERR_PTR(-ENODEV);
3236
108b02cf 3237 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3238 ctx = &cpuctx->ctx;
c93f7669 3239 get_ctx(ctx);
fe4b04fa 3240 ++ctx->pin_count;
0793a61d 3241
0793a61d
TG
3242 return ctx;
3243 }
3244
8dc85d54
PZ
3245 err = -EINVAL;
3246 ctxn = pmu->task_ctx_nr;
3247 if (ctxn < 0)
3248 goto errout;
3249
9ed6060d 3250retry:
8dc85d54 3251 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3252 if (ctx) {
211de6eb 3253 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3254 ++ctx->pin_count;
e625cce1 3255 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3256
3257 if (clone_ctx)
3258 put_ctx(clone_ctx);
9137fb28 3259 } else {
eb184479 3260 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3261 err = -ENOMEM;
3262 if (!ctx)
3263 goto errout;
eb184479 3264
dbe08d82
ON
3265 err = 0;
3266 mutex_lock(&task->perf_event_mutex);
3267 /*
3268 * If it has already passed perf_event_exit_task().
3269 * we must see PF_EXITING, it takes this mutex too.
3270 */
3271 if (task->flags & PF_EXITING)
3272 err = -ESRCH;
3273 else if (task->perf_event_ctxp[ctxn])
3274 err = -EAGAIN;
fe4b04fa 3275 else {
9137fb28 3276 get_ctx(ctx);
fe4b04fa 3277 ++ctx->pin_count;
dbe08d82 3278 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3279 }
dbe08d82
ON
3280 mutex_unlock(&task->perf_event_mutex);
3281
3282 if (unlikely(err)) {
9137fb28 3283 put_ctx(ctx);
dbe08d82
ON
3284
3285 if (err == -EAGAIN)
3286 goto retry;
3287 goto errout;
a63eaf34
PM
3288 }
3289 }
3290
0793a61d 3291 return ctx;
c93f7669 3292
9ed6060d 3293errout:
c93f7669 3294 return ERR_PTR(err);
0793a61d
TG
3295}
3296
6fb2915d
LZ
3297static void perf_event_free_filter(struct perf_event *event);
3298
cdd6c482 3299static void free_event_rcu(struct rcu_head *head)
592903cd 3300{
cdd6c482 3301 struct perf_event *event;
592903cd 3302
cdd6c482
IM
3303 event = container_of(head, struct perf_event, rcu_head);
3304 if (event->ns)
3305 put_pid_ns(event->ns);
6fb2915d 3306 perf_event_free_filter(event);
cdd6c482 3307 kfree(event);
592903cd
PZ
3308}
3309
76369139 3310static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3311static void ring_buffer_attach(struct perf_event *event,
3312 struct ring_buffer *rb);
925d519a 3313
4beb31f3 3314static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3315{
4beb31f3
FW
3316 if (event->parent)
3317 return;
3318
3319 if (has_branch_stack(event)) {
3320 if (!(event->attach_state & PERF_ATTACH_TASK))
3321 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3322 }
3323 if (is_cgroup_event(event))
3324 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3325}
925d519a 3326
4beb31f3
FW
3327static void unaccount_event(struct perf_event *event)
3328{
3329 if (event->parent)
3330 return;
3331
3332 if (event->attach_state & PERF_ATTACH_TASK)
3333 static_key_slow_dec_deferred(&perf_sched_events);
3334 if (event->attr.mmap || event->attr.mmap_data)
3335 atomic_dec(&nr_mmap_events);
3336 if (event->attr.comm)
3337 atomic_dec(&nr_comm_events);
3338 if (event->attr.task)
3339 atomic_dec(&nr_task_events);
948b26b6
FW
3340 if (event->attr.freq)
3341 atomic_dec(&nr_freq_events);
4beb31f3
FW
3342 if (is_cgroup_event(event))
3343 static_key_slow_dec_deferred(&perf_sched_events);
3344 if (has_branch_stack(event))
3345 static_key_slow_dec_deferred(&perf_sched_events);
3346
3347 unaccount_event_cpu(event, event->cpu);
3348}
925d519a 3349
766d6c07
FW
3350static void __free_event(struct perf_event *event)
3351{
cdd6c482 3352 if (!event->parent) {
927c7a9e
FW
3353 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3354 put_callchain_buffers();
f344011c 3355 }
9ee318a7 3356
766d6c07
FW
3357 if (event->destroy)
3358 event->destroy(event);
3359
3360 if (event->ctx)
3361 put_ctx(event->ctx);
3362
c464c76e
YZ
3363 if (event->pmu)
3364 module_put(event->pmu->module);
3365
766d6c07
FW
3366 call_rcu(&event->rcu_head, free_event_rcu);
3367}
683ede43
PZ
3368
3369static void _free_event(struct perf_event *event)
f1600952 3370{
e360adbe 3371 irq_work_sync(&event->pending);
925d519a 3372
4beb31f3 3373 unaccount_event(event);
9ee318a7 3374
76369139 3375 if (event->rb) {
9bb5d40c
PZ
3376 /*
3377 * Can happen when we close an event with re-directed output.
3378 *
3379 * Since we have a 0 refcount, perf_mmap_close() will skip
3380 * over us; possibly making our ring_buffer_put() the last.
3381 */
3382 mutex_lock(&event->mmap_mutex);
b69cf536 3383 ring_buffer_attach(event, NULL);
9bb5d40c 3384 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3385 }
3386
e5d1367f
SE
3387 if (is_cgroup_event(event))
3388 perf_detach_cgroup(event);
3389
766d6c07 3390 __free_event(event);
f1600952
PZ
3391}
3392
683ede43
PZ
3393/*
3394 * Used to free events which have a known refcount of 1, such as in error paths
3395 * where the event isn't exposed yet and inherited events.
3396 */
3397static void free_event(struct perf_event *event)
0793a61d 3398{
683ede43
PZ
3399 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3400 "unexpected event refcount: %ld; ptr=%p\n",
3401 atomic_long_read(&event->refcount), event)) {
3402 /* leak to avoid use-after-free */
3403 return;
3404 }
0793a61d 3405
683ede43 3406 _free_event(event);
0793a61d
TG
3407}
3408
a66a3052 3409/*
f8697762 3410 * Remove user event from the owner task.
a66a3052 3411 */
f8697762 3412static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3413{
8882135b 3414 struct task_struct *owner;
fb0459d7 3415
8882135b
PZ
3416 rcu_read_lock();
3417 owner = ACCESS_ONCE(event->owner);
3418 /*
3419 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3420 * !owner it means the list deletion is complete and we can indeed
3421 * free this event, otherwise we need to serialize on
3422 * owner->perf_event_mutex.
3423 */
3424 smp_read_barrier_depends();
3425 if (owner) {
3426 /*
3427 * Since delayed_put_task_struct() also drops the last
3428 * task reference we can safely take a new reference
3429 * while holding the rcu_read_lock().
3430 */
3431 get_task_struct(owner);
3432 }
3433 rcu_read_unlock();
3434
3435 if (owner) {
3436 mutex_lock(&owner->perf_event_mutex);
3437 /*
3438 * We have to re-check the event->owner field, if it is cleared
3439 * we raced with perf_event_exit_task(), acquiring the mutex
3440 * ensured they're done, and we can proceed with freeing the
3441 * event.
3442 */
3443 if (event->owner)
3444 list_del_init(&event->owner_entry);
3445 mutex_unlock(&owner->perf_event_mutex);
3446 put_task_struct(owner);
3447 }
f8697762
JO
3448}
3449
3450/*
3451 * Called when the last reference to the file is gone.
3452 */
3453static void put_event(struct perf_event *event)
3454{
3455 struct perf_event_context *ctx = event->ctx;
3456
3457 if (!atomic_long_dec_and_test(&event->refcount))
3458 return;
3459
3460 if (!is_kernel_event(event))
3461 perf_remove_from_owner(event);
8882135b 3462
683ede43
PZ
3463 WARN_ON_ONCE(ctx->parent_ctx);
3464 /*
3465 * There are two ways this annotation is useful:
3466 *
3467 * 1) there is a lock recursion from perf_event_exit_task
3468 * see the comment there.
3469 *
3470 * 2) there is a lock-inversion with mmap_sem through
3471 * perf_event_read_group(), which takes faults while
3472 * holding ctx->mutex, however this is called after
3473 * the last filedesc died, so there is no possibility
3474 * to trigger the AB-BA case.
3475 */
3476 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3477 perf_remove_from_context(event, true);
3478 mutex_unlock(&ctx->mutex);
3479
3480 _free_event(event);
a6fa941d
AV
3481}
3482
683ede43
PZ
3483int perf_event_release_kernel(struct perf_event *event)
3484{
3485 put_event(event);
3486 return 0;
3487}
3488EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3489
a6fa941d
AV
3490static int perf_release(struct inode *inode, struct file *file)
3491{
3492 put_event(file->private_data);
3493 return 0;
fb0459d7 3494}
fb0459d7 3495
fadfe7be
JO
3496/*
3497 * Remove all orphanes events from the context.
3498 */
3499static void orphans_remove_work(struct work_struct *work)
3500{
3501 struct perf_event_context *ctx;
3502 struct perf_event *event, *tmp;
3503
3504 ctx = container_of(work, struct perf_event_context,
3505 orphans_remove.work);
3506
3507 mutex_lock(&ctx->mutex);
3508 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3509 struct perf_event *parent_event = event->parent;
3510
3511 if (!is_orphaned_child(event))
3512 continue;
3513
3514 perf_remove_from_context(event, true);
3515
3516 mutex_lock(&parent_event->child_mutex);
3517 list_del_init(&event->child_list);
3518 mutex_unlock(&parent_event->child_mutex);
3519
3520 free_event(event);
3521 put_event(parent_event);
3522 }
3523
3524 raw_spin_lock_irq(&ctx->lock);
3525 ctx->orphans_remove_sched = false;
3526 raw_spin_unlock_irq(&ctx->lock);
3527 mutex_unlock(&ctx->mutex);
3528
3529 put_ctx(ctx);
3530}
3531
59ed446f 3532u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3533{
cdd6c482 3534 struct perf_event *child;
e53c0994
PZ
3535 u64 total = 0;
3536
59ed446f
PZ
3537 *enabled = 0;
3538 *running = 0;
3539
6f10581a 3540 mutex_lock(&event->child_mutex);
cdd6c482 3541 total += perf_event_read(event);
59ed446f
PZ
3542 *enabled += event->total_time_enabled +
3543 atomic64_read(&event->child_total_time_enabled);
3544 *running += event->total_time_running +
3545 atomic64_read(&event->child_total_time_running);
3546
3547 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3548 total += perf_event_read(child);
59ed446f
PZ
3549 *enabled += child->total_time_enabled;
3550 *running += child->total_time_running;
3551 }
6f10581a 3552 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3553
3554 return total;
3555}
fb0459d7 3556EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3557
cdd6c482 3558static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3559 u64 read_format, char __user *buf)
3560{
cdd6c482 3561 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3562 int n = 0, size = 0, ret = -EFAULT;
3563 struct perf_event_context *ctx = leader->ctx;
abf4868b 3564 u64 values[5];
59ed446f 3565 u64 count, enabled, running;
abf4868b 3566
6f10581a 3567 mutex_lock(&ctx->mutex);
59ed446f 3568 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3569
3570 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3571 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3572 values[n++] = enabled;
3573 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3574 values[n++] = running;
abf4868b
PZ
3575 values[n++] = count;
3576 if (read_format & PERF_FORMAT_ID)
3577 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3578
3579 size = n * sizeof(u64);
3580
3581 if (copy_to_user(buf, values, size))
6f10581a 3582 goto unlock;
3dab77fb 3583
6f10581a 3584 ret = size;
3dab77fb 3585
65abc865 3586 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3587 n = 0;
3dab77fb 3588
59ed446f 3589 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3590 if (read_format & PERF_FORMAT_ID)
3591 values[n++] = primary_event_id(sub);
3592
3593 size = n * sizeof(u64);
3594
184d3da8 3595 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3596 ret = -EFAULT;
3597 goto unlock;
3598 }
abf4868b
PZ
3599
3600 ret += size;
3dab77fb 3601 }
6f10581a
PZ
3602unlock:
3603 mutex_unlock(&ctx->mutex);
3dab77fb 3604
abf4868b 3605 return ret;
3dab77fb
PZ
3606}
3607
cdd6c482 3608static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3609 u64 read_format, char __user *buf)
3610{
59ed446f 3611 u64 enabled, running;
3dab77fb
PZ
3612 u64 values[4];
3613 int n = 0;
3614
59ed446f
PZ
3615 values[n++] = perf_event_read_value(event, &enabled, &running);
3616 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3617 values[n++] = enabled;
3618 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3619 values[n++] = running;
3dab77fb 3620 if (read_format & PERF_FORMAT_ID)
cdd6c482 3621 values[n++] = primary_event_id(event);
3dab77fb
PZ
3622
3623 if (copy_to_user(buf, values, n * sizeof(u64)))
3624 return -EFAULT;
3625
3626 return n * sizeof(u64);
3627}
3628
dc633982
JO
3629static bool is_event_hup(struct perf_event *event)
3630{
3631 bool no_children;
3632
3633 if (event->state != PERF_EVENT_STATE_EXIT)
3634 return false;
3635
3636 mutex_lock(&event->child_mutex);
3637 no_children = list_empty(&event->child_list);
3638 mutex_unlock(&event->child_mutex);
3639 return no_children;
3640}
3641
0793a61d 3642/*
cdd6c482 3643 * Read the performance event - simple non blocking version for now
0793a61d
TG
3644 */
3645static ssize_t
cdd6c482 3646perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3647{
cdd6c482 3648 u64 read_format = event->attr.read_format;
3dab77fb 3649 int ret;
0793a61d 3650
3b6f9e5c 3651 /*
cdd6c482 3652 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3653 * error state (i.e. because it was pinned but it couldn't be
3654 * scheduled on to the CPU at some point).
3655 */
cdd6c482 3656 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3657 return 0;
3658
c320c7b7 3659 if (count < event->read_size)
3dab77fb
PZ
3660 return -ENOSPC;
3661
cdd6c482 3662 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3663 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3664 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3665 else
cdd6c482 3666 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3667
3dab77fb 3668 return ret;
0793a61d
TG
3669}
3670
0793a61d
TG
3671static ssize_t
3672perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3673{
cdd6c482 3674 struct perf_event *event = file->private_data;
0793a61d 3675
cdd6c482 3676 return perf_read_hw(event, buf, count);
0793a61d
TG
3677}
3678
3679static unsigned int perf_poll(struct file *file, poll_table *wait)
3680{
cdd6c482 3681 struct perf_event *event = file->private_data;
76369139 3682 struct ring_buffer *rb;
61b67684 3683 unsigned int events = POLLHUP;
c7138f37 3684
e708d7ad 3685 poll_wait(file, &event->waitq, wait);
179033b3 3686
dc633982 3687 if (is_event_hup(event))
179033b3 3688 return events;
c7138f37 3689
10c6db11 3690 /*
9bb5d40c
PZ
3691 * Pin the event->rb by taking event->mmap_mutex; otherwise
3692 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3693 */
3694 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3695 rb = event->rb;
3696 if (rb)
76369139 3697 events = atomic_xchg(&rb->poll, 0);
10c6db11 3698 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3699 return events;
3700}
3701
cdd6c482 3702static void perf_event_reset(struct perf_event *event)
6de6a7b9 3703{
cdd6c482 3704 (void)perf_event_read(event);
e7850595 3705 local64_set(&event->count, 0);
cdd6c482 3706 perf_event_update_userpage(event);
3df5edad
PZ
3707}
3708
c93f7669 3709/*
cdd6c482
IM
3710 * Holding the top-level event's child_mutex means that any
3711 * descendant process that has inherited this event will block
3712 * in sync_child_event if it goes to exit, thus satisfying the
3713 * task existence requirements of perf_event_enable/disable.
c93f7669 3714 */
cdd6c482
IM
3715static void perf_event_for_each_child(struct perf_event *event,
3716 void (*func)(struct perf_event *))
3df5edad 3717{
cdd6c482 3718 struct perf_event *child;
3df5edad 3719
cdd6c482
IM
3720 WARN_ON_ONCE(event->ctx->parent_ctx);
3721 mutex_lock(&event->child_mutex);
3722 func(event);
3723 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3724 func(child);
cdd6c482 3725 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3726}
3727
cdd6c482
IM
3728static void perf_event_for_each(struct perf_event *event,
3729 void (*func)(struct perf_event *))
3df5edad 3730{
cdd6c482
IM
3731 struct perf_event_context *ctx = event->ctx;
3732 struct perf_event *sibling;
3df5edad 3733
75f937f2
PZ
3734 WARN_ON_ONCE(ctx->parent_ctx);
3735 mutex_lock(&ctx->mutex);
cdd6c482 3736 event = event->group_leader;
75f937f2 3737
cdd6c482 3738 perf_event_for_each_child(event, func);
cdd6c482 3739 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3740 perf_event_for_each_child(sibling, func);
75f937f2 3741 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3742}
3743
cdd6c482 3744static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3745{
cdd6c482 3746 struct perf_event_context *ctx = event->ctx;
bad7192b 3747 int ret = 0, active;
08247e31
PZ
3748 u64 value;
3749
6c7e550f 3750 if (!is_sampling_event(event))
08247e31
PZ
3751 return -EINVAL;
3752
ad0cf347 3753 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3754 return -EFAULT;
3755
3756 if (!value)
3757 return -EINVAL;
3758
e625cce1 3759 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3760 if (event->attr.freq) {
3761 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3762 ret = -EINVAL;
3763 goto unlock;
3764 }
3765
cdd6c482 3766 event->attr.sample_freq = value;
08247e31 3767 } else {
cdd6c482
IM
3768 event->attr.sample_period = value;
3769 event->hw.sample_period = value;
08247e31 3770 }
bad7192b
PZ
3771
3772 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3773 if (active) {
3774 perf_pmu_disable(ctx->pmu);
3775 event->pmu->stop(event, PERF_EF_UPDATE);
3776 }
3777
3778 local64_set(&event->hw.period_left, 0);
3779
3780 if (active) {
3781 event->pmu->start(event, PERF_EF_RELOAD);
3782 perf_pmu_enable(ctx->pmu);
3783 }
3784
08247e31 3785unlock:
e625cce1 3786 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3787
3788 return ret;
3789}
3790
ac9721f3
PZ
3791static const struct file_operations perf_fops;
3792
2903ff01 3793static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3794{
2903ff01
AV
3795 struct fd f = fdget(fd);
3796 if (!f.file)
3797 return -EBADF;
ac9721f3 3798
2903ff01
AV
3799 if (f.file->f_op != &perf_fops) {
3800 fdput(f);
3801 return -EBADF;
ac9721f3 3802 }
2903ff01
AV
3803 *p = f;
3804 return 0;
ac9721f3
PZ
3805}
3806
3807static int perf_event_set_output(struct perf_event *event,
3808 struct perf_event *output_event);
6fb2915d 3809static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3810
d859e29f
PM
3811static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3812{
cdd6c482
IM
3813 struct perf_event *event = file->private_data;
3814 void (*func)(struct perf_event *);
3df5edad 3815 u32 flags = arg;
d859e29f
PM
3816
3817 switch (cmd) {
cdd6c482
IM
3818 case PERF_EVENT_IOC_ENABLE:
3819 func = perf_event_enable;
d859e29f 3820 break;
cdd6c482
IM
3821 case PERF_EVENT_IOC_DISABLE:
3822 func = perf_event_disable;
79f14641 3823 break;
cdd6c482
IM
3824 case PERF_EVENT_IOC_RESET:
3825 func = perf_event_reset;
6de6a7b9 3826 break;
3df5edad 3827
cdd6c482
IM
3828 case PERF_EVENT_IOC_REFRESH:
3829 return perf_event_refresh(event, arg);
08247e31 3830
cdd6c482
IM
3831 case PERF_EVENT_IOC_PERIOD:
3832 return perf_event_period(event, (u64 __user *)arg);
08247e31 3833
cf4957f1
JO
3834 case PERF_EVENT_IOC_ID:
3835 {
3836 u64 id = primary_event_id(event);
3837
3838 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3839 return -EFAULT;
3840 return 0;
3841 }
3842
cdd6c482 3843 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3844 {
ac9721f3 3845 int ret;
ac9721f3 3846 if (arg != -1) {
2903ff01
AV
3847 struct perf_event *output_event;
3848 struct fd output;
3849 ret = perf_fget_light(arg, &output);
3850 if (ret)
3851 return ret;
3852 output_event = output.file->private_data;
3853 ret = perf_event_set_output(event, output_event);
3854 fdput(output);
3855 } else {
3856 ret = perf_event_set_output(event, NULL);
ac9721f3 3857 }
ac9721f3
PZ
3858 return ret;
3859 }
a4be7c27 3860
6fb2915d
LZ
3861 case PERF_EVENT_IOC_SET_FILTER:
3862 return perf_event_set_filter(event, (void __user *)arg);
3863
d859e29f 3864 default:
3df5edad 3865 return -ENOTTY;
d859e29f 3866 }
3df5edad
PZ
3867
3868 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3869 perf_event_for_each(event, func);
3df5edad 3870 else
cdd6c482 3871 perf_event_for_each_child(event, func);
3df5edad
PZ
3872
3873 return 0;
d859e29f
PM
3874}
3875
b3f20785
PM
3876#ifdef CONFIG_COMPAT
3877static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3878 unsigned long arg)
3879{
3880 switch (_IOC_NR(cmd)) {
3881 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3882 case _IOC_NR(PERF_EVENT_IOC_ID):
3883 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3884 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3885 cmd &= ~IOCSIZE_MASK;
3886 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3887 }
3888 break;
3889 }
3890 return perf_ioctl(file, cmd, arg);
3891}
3892#else
3893# define perf_compat_ioctl NULL
3894#endif
3895
cdd6c482 3896int perf_event_task_enable(void)
771d7cde 3897{
cdd6c482 3898 struct perf_event *event;
771d7cde 3899
cdd6c482
IM
3900 mutex_lock(&current->perf_event_mutex);
3901 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902 perf_event_for_each_child(event, perf_event_enable);
3903 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3904
3905 return 0;
3906}
3907
cdd6c482 3908int perf_event_task_disable(void)
771d7cde 3909{
cdd6c482 3910 struct perf_event *event;
771d7cde 3911
cdd6c482
IM
3912 mutex_lock(&current->perf_event_mutex);
3913 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3914 perf_event_for_each_child(event, perf_event_disable);
3915 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3916
3917 return 0;
3918}
3919
cdd6c482 3920static int perf_event_index(struct perf_event *event)
194002b2 3921{
a4eaf7f1
PZ
3922 if (event->hw.state & PERF_HES_STOPPED)
3923 return 0;
3924
cdd6c482 3925 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3926 return 0;
3927
35edc2a5 3928 return event->pmu->event_idx(event);
194002b2
PZ
3929}
3930
c4794295 3931static void calc_timer_values(struct perf_event *event,
e3f3541c 3932 u64 *now,
7f310a5d
EM
3933 u64 *enabled,
3934 u64 *running)
c4794295 3935{
e3f3541c 3936 u64 ctx_time;
c4794295 3937
e3f3541c
PZ
3938 *now = perf_clock();
3939 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3940 *enabled = ctx_time - event->tstamp_enabled;
3941 *running = ctx_time - event->tstamp_running;
3942}
3943
fa731587
PZ
3944static void perf_event_init_userpage(struct perf_event *event)
3945{
3946 struct perf_event_mmap_page *userpg;
3947 struct ring_buffer *rb;
3948
3949 rcu_read_lock();
3950 rb = rcu_dereference(event->rb);
3951 if (!rb)
3952 goto unlock;
3953
3954 userpg = rb->user_page;
3955
3956 /* Allow new userspace to detect that bit 0 is deprecated */
3957 userpg->cap_bit0_is_deprecated = 1;
3958 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3959
3960unlock:
3961 rcu_read_unlock();
3962}
3963
c7206205 3964void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3965{
3966}
3967
38ff667b
PZ
3968/*
3969 * Callers need to ensure there can be no nesting of this function, otherwise
3970 * the seqlock logic goes bad. We can not serialize this because the arch
3971 * code calls this from NMI context.
3972 */
cdd6c482 3973void perf_event_update_userpage(struct perf_event *event)
37d81828 3974{
cdd6c482 3975 struct perf_event_mmap_page *userpg;
76369139 3976 struct ring_buffer *rb;
e3f3541c 3977 u64 enabled, running, now;
38ff667b
PZ
3978
3979 rcu_read_lock();
5ec4c599
PZ
3980 rb = rcu_dereference(event->rb);
3981 if (!rb)
3982 goto unlock;
3983
0d641208
EM
3984 /*
3985 * compute total_time_enabled, total_time_running
3986 * based on snapshot values taken when the event
3987 * was last scheduled in.
3988 *
3989 * we cannot simply called update_context_time()
3990 * because of locking issue as we can be called in
3991 * NMI context
3992 */
e3f3541c 3993 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3994
76369139 3995 userpg = rb->user_page;
7b732a75
PZ
3996 /*
3997 * Disable preemption so as to not let the corresponding user-space
3998 * spin too long if we get preempted.
3999 */
4000 preempt_disable();
37d81828 4001 ++userpg->lock;
92f22a38 4002 barrier();
cdd6c482 4003 userpg->index = perf_event_index(event);
b5e58793 4004 userpg->offset = perf_event_count(event);
365a4038 4005 if (userpg->index)
e7850595 4006 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4007
0d641208 4008 userpg->time_enabled = enabled +
cdd6c482 4009 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4010
0d641208 4011 userpg->time_running = running +
cdd6c482 4012 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4013
c7206205 4014 arch_perf_update_userpage(userpg, now);
e3f3541c 4015
92f22a38 4016 barrier();
37d81828 4017 ++userpg->lock;
7b732a75 4018 preempt_enable();
38ff667b 4019unlock:
7b732a75 4020 rcu_read_unlock();
37d81828
PM
4021}
4022
906010b2
PZ
4023static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4024{
4025 struct perf_event *event = vma->vm_file->private_data;
76369139 4026 struct ring_buffer *rb;
906010b2
PZ
4027 int ret = VM_FAULT_SIGBUS;
4028
4029 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4030 if (vmf->pgoff == 0)
4031 ret = 0;
4032 return ret;
4033 }
4034
4035 rcu_read_lock();
76369139
FW
4036 rb = rcu_dereference(event->rb);
4037 if (!rb)
906010b2
PZ
4038 goto unlock;
4039
4040 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4041 goto unlock;
4042
76369139 4043 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4044 if (!vmf->page)
4045 goto unlock;
4046
4047 get_page(vmf->page);
4048 vmf->page->mapping = vma->vm_file->f_mapping;
4049 vmf->page->index = vmf->pgoff;
4050
4051 ret = 0;
4052unlock:
4053 rcu_read_unlock();
4054
4055 return ret;
4056}
4057
10c6db11
PZ
4058static void ring_buffer_attach(struct perf_event *event,
4059 struct ring_buffer *rb)
4060{
b69cf536 4061 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4062 unsigned long flags;
4063
b69cf536
PZ
4064 if (event->rb) {
4065 /*
4066 * Should be impossible, we set this when removing
4067 * event->rb_entry and wait/clear when adding event->rb_entry.
4068 */
4069 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4070
b69cf536
PZ
4071 old_rb = event->rb;
4072 event->rcu_batches = get_state_synchronize_rcu();
4073 event->rcu_pending = 1;
10c6db11 4074
b69cf536
PZ
4075 spin_lock_irqsave(&old_rb->event_lock, flags);
4076 list_del_rcu(&event->rb_entry);
4077 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4078 }
10c6db11 4079
b69cf536
PZ
4080 if (event->rcu_pending && rb) {
4081 cond_synchronize_rcu(event->rcu_batches);
4082 event->rcu_pending = 0;
4083 }
10c6db11 4084
b69cf536
PZ
4085 if (rb) {
4086 spin_lock_irqsave(&rb->event_lock, flags);
4087 list_add_rcu(&event->rb_entry, &rb->event_list);
4088 spin_unlock_irqrestore(&rb->event_lock, flags);
4089 }
4090
4091 rcu_assign_pointer(event->rb, rb);
4092
4093 if (old_rb) {
4094 ring_buffer_put(old_rb);
4095 /*
4096 * Since we detached before setting the new rb, so that we
4097 * could attach the new rb, we could have missed a wakeup.
4098 * Provide it now.
4099 */
4100 wake_up_all(&event->waitq);
4101 }
10c6db11
PZ
4102}
4103
4104static void ring_buffer_wakeup(struct perf_event *event)
4105{
4106 struct ring_buffer *rb;
4107
4108 rcu_read_lock();
4109 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4110 if (rb) {
4111 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4112 wake_up_all(&event->waitq);
4113 }
10c6db11
PZ
4114 rcu_read_unlock();
4115}
4116
76369139 4117static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4118{
76369139 4119 struct ring_buffer *rb;
906010b2 4120
76369139
FW
4121 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4122 rb_free(rb);
7b732a75
PZ
4123}
4124
76369139 4125static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4126{
76369139 4127 struct ring_buffer *rb;
7b732a75 4128
ac9721f3 4129 rcu_read_lock();
76369139
FW
4130 rb = rcu_dereference(event->rb);
4131 if (rb) {
4132 if (!atomic_inc_not_zero(&rb->refcount))
4133 rb = NULL;
ac9721f3
PZ
4134 }
4135 rcu_read_unlock();
4136
76369139 4137 return rb;
ac9721f3
PZ
4138}
4139
76369139 4140static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4141{
76369139 4142 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4143 return;
7b732a75 4144
9bb5d40c 4145 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4146
76369139 4147 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4148}
4149
4150static void perf_mmap_open(struct vm_area_struct *vma)
4151{
cdd6c482 4152 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4153
cdd6c482 4154 atomic_inc(&event->mmap_count);
9bb5d40c 4155 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4156}
4157
9bb5d40c
PZ
4158/*
4159 * A buffer can be mmap()ed multiple times; either directly through the same
4160 * event, or through other events by use of perf_event_set_output().
4161 *
4162 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4163 * the buffer here, where we still have a VM context. This means we need
4164 * to detach all events redirecting to us.
4165 */
7b732a75
PZ
4166static void perf_mmap_close(struct vm_area_struct *vma)
4167{
cdd6c482 4168 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4169
b69cf536 4170 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4171 struct user_struct *mmap_user = rb->mmap_user;
4172 int mmap_locked = rb->mmap_locked;
4173 unsigned long size = perf_data_size(rb);
789f90fc 4174
9bb5d40c
PZ
4175 atomic_dec(&rb->mmap_count);
4176
4177 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4178 goto out_put;
9bb5d40c 4179
b69cf536 4180 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4181 mutex_unlock(&event->mmap_mutex);
4182
4183 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4184 if (atomic_read(&rb->mmap_count))
4185 goto out_put;
ac9721f3 4186
9bb5d40c
PZ
4187 /*
4188 * No other mmap()s, detach from all other events that might redirect
4189 * into the now unreachable buffer. Somewhat complicated by the
4190 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4191 */
4192again:
4193 rcu_read_lock();
4194 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4195 if (!atomic_long_inc_not_zero(&event->refcount)) {
4196 /*
4197 * This event is en-route to free_event() which will
4198 * detach it and remove it from the list.
4199 */
4200 continue;
4201 }
4202 rcu_read_unlock();
789f90fc 4203
9bb5d40c
PZ
4204 mutex_lock(&event->mmap_mutex);
4205 /*
4206 * Check we didn't race with perf_event_set_output() which can
4207 * swizzle the rb from under us while we were waiting to
4208 * acquire mmap_mutex.
4209 *
4210 * If we find a different rb; ignore this event, a next
4211 * iteration will no longer find it on the list. We have to
4212 * still restart the iteration to make sure we're not now
4213 * iterating the wrong list.
4214 */
b69cf536
PZ
4215 if (event->rb == rb)
4216 ring_buffer_attach(event, NULL);
4217
cdd6c482 4218 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4219 put_event(event);
ac9721f3 4220
9bb5d40c
PZ
4221 /*
4222 * Restart the iteration; either we're on the wrong list or
4223 * destroyed its integrity by doing a deletion.
4224 */
4225 goto again;
7b732a75 4226 }
9bb5d40c
PZ
4227 rcu_read_unlock();
4228
4229 /*
4230 * It could be there's still a few 0-ref events on the list; they'll
4231 * get cleaned up by free_event() -- they'll also still have their
4232 * ref on the rb and will free it whenever they are done with it.
4233 *
4234 * Aside from that, this buffer is 'fully' detached and unmapped,
4235 * undo the VM accounting.
4236 */
4237
4238 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4239 vma->vm_mm->pinned_vm -= mmap_locked;
4240 free_uid(mmap_user);
4241
b69cf536 4242out_put:
9bb5d40c 4243 ring_buffer_put(rb); /* could be last */
37d81828
PM
4244}
4245
f0f37e2f 4246static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4247 .open = perf_mmap_open,
4248 .close = perf_mmap_close,
4249 .fault = perf_mmap_fault,
4250 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4251};
4252
4253static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4254{
cdd6c482 4255 struct perf_event *event = file->private_data;
22a4f650 4256 unsigned long user_locked, user_lock_limit;
789f90fc 4257 struct user_struct *user = current_user();
22a4f650 4258 unsigned long locked, lock_limit;
76369139 4259 struct ring_buffer *rb;
7b732a75
PZ
4260 unsigned long vma_size;
4261 unsigned long nr_pages;
789f90fc 4262 long user_extra, extra;
d57e34fd 4263 int ret = 0, flags = 0;
37d81828 4264
c7920614
PZ
4265 /*
4266 * Don't allow mmap() of inherited per-task counters. This would
4267 * create a performance issue due to all children writing to the
76369139 4268 * same rb.
c7920614
PZ
4269 */
4270 if (event->cpu == -1 && event->attr.inherit)
4271 return -EINVAL;
4272
43a21ea8 4273 if (!(vma->vm_flags & VM_SHARED))
37d81828 4274 return -EINVAL;
7b732a75
PZ
4275
4276 vma_size = vma->vm_end - vma->vm_start;
4277 nr_pages = (vma_size / PAGE_SIZE) - 1;
4278
7730d865 4279 /*
76369139 4280 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4281 * can do bitmasks instead of modulo.
4282 */
4283 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4284 return -EINVAL;
4285
7b732a75 4286 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4287 return -EINVAL;
4288
7b732a75
PZ
4289 if (vma->vm_pgoff != 0)
4290 return -EINVAL;
37d81828 4291
cdd6c482 4292 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4293again:
cdd6c482 4294 mutex_lock(&event->mmap_mutex);
76369139 4295 if (event->rb) {
9bb5d40c 4296 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4297 ret = -EINVAL;
9bb5d40c
PZ
4298 goto unlock;
4299 }
4300
4301 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4302 /*
4303 * Raced against perf_mmap_close() through
4304 * perf_event_set_output(). Try again, hope for better
4305 * luck.
4306 */
4307 mutex_unlock(&event->mmap_mutex);
4308 goto again;
4309 }
4310
ebb3c4c4
PZ
4311 goto unlock;
4312 }
4313
789f90fc 4314 user_extra = nr_pages + 1;
cdd6c482 4315 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4316
4317 /*
4318 * Increase the limit linearly with more CPUs:
4319 */
4320 user_lock_limit *= num_online_cpus();
4321
789f90fc 4322 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4323
789f90fc
PZ
4324 extra = 0;
4325 if (user_locked > user_lock_limit)
4326 extra = user_locked - user_lock_limit;
7b732a75 4327
78d7d407 4328 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4329 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4330 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4331
459ec28a
IM
4332 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4333 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4334 ret = -EPERM;
4335 goto unlock;
4336 }
7b732a75 4337
76369139 4338 WARN_ON(event->rb);
906010b2 4339
d57e34fd 4340 if (vma->vm_flags & VM_WRITE)
76369139 4341 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4342
4ec8363d
VW
4343 rb = rb_alloc(nr_pages,
4344 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4345 event->cpu, flags);
4346
76369139 4347 if (!rb) {
ac9721f3 4348 ret = -ENOMEM;
ebb3c4c4 4349 goto unlock;
ac9721f3 4350 }
26cb63ad 4351
9bb5d40c 4352 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4353 rb->mmap_locked = extra;
4354 rb->mmap_user = get_current_user();
43a21ea8 4355
ac9721f3 4356 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4357 vma->vm_mm->pinned_vm += extra;
4358
9bb5d40c 4359 ring_buffer_attach(event, rb);
ac9721f3 4360
fa731587 4361 perf_event_init_userpage(event);
9a0f05cb
PZ
4362 perf_event_update_userpage(event);
4363
ebb3c4c4 4364unlock:
ac9721f3
PZ
4365 if (!ret)
4366 atomic_inc(&event->mmap_count);
cdd6c482 4367 mutex_unlock(&event->mmap_mutex);
37d81828 4368
9bb5d40c
PZ
4369 /*
4370 * Since pinned accounting is per vm we cannot allow fork() to copy our
4371 * vma.
4372 */
26cb63ad 4373 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4374 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4375
4376 return ret;
37d81828
PM
4377}
4378
3c446b3d
PZ
4379static int perf_fasync(int fd, struct file *filp, int on)
4380{
496ad9aa 4381 struct inode *inode = file_inode(filp);
cdd6c482 4382 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4383 int retval;
4384
4385 mutex_lock(&inode->i_mutex);
cdd6c482 4386 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4387 mutex_unlock(&inode->i_mutex);
4388
4389 if (retval < 0)
4390 return retval;
4391
4392 return 0;
4393}
4394
0793a61d 4395static const struct file_operations perf_fops = {
3326c1ce 4396 .llseek = no_llseek,
0793a61d
TG
4397 .release = perf_release,
4398 .read = perf_read,
4399 .poll = perf_poll,
d859e29f 4400 .unlocked_ioctl = perf_ioctl,
b3f20785 4401 .compat_ioctl = perf_compat_ioctl,
37d81828 4402 .mmap = perf_mmap,
3c446b3d 4403 .fasync = perf_fasync,
0793a61d
TG
4404};
4405
925d519a 4406/*
cdd6c482 4407 * Perf event wakeup
925d519a
PZ
4408 *
4409 * If there's data, ensure we set the poll() state and publish everything
4410 * to user-space before waking everybody up.
4411 */
4412
cdd6c482 4413void perf_event_wakeup(struct perf_event *event)
925d519a 4414{
10c6db11 4415 ring_buffer_wakeup(event);
4c9e2542 4416
cdd6c482
IM
4417 if (event->pending_kill) {
4418 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4419 event->pending_kill = 0;
4c9e2542 4420 }
925d519a
PZ
4421}
4422
e360adbe 4423static void perf_pending_event(struct irq_work *entry)
79f14641 4424{
cdd6c482
IM
4425 struct perf_event *event = container_of(entry,
4426 struct perf_event, pending);
79f14641 4427
cdd6c482
IM
4428 if (event->pending_disable) {
4429 event->pending_disable = 0;
4430 __perf_event_disable(event);
79f14641
PZ
4431 }
4432
cdd6c482
IM
4433 if (event->pending_wakeup) {
4434 event->pending_wakeup = 0;
4435 perf_event_wakeup(event);
79f14641
PZ
4436 }
4437}
4438
39447b38
ZY
4439/*
4440 * We assume there is only KVM supporting the callbacks.
4441 * Later on, we might change it to a list if there is
4442 * another virtualization implementation supporting the callbacks.
4443 */
4444struct perf_guest_info_callbacks *perf_guest_cbs;
4445
4446int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4447{
4448 perf_guest_cbs = cbs;
4449 return 0;
4450}
4451EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4452
4453int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4454{
4455 perf_guest_cbs = NULL;
4456 return 0;
4457}
4458EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4459
4018994f
JO
4460static void
4461perf_output_sample_regs(struct perf_output_handle *handle,
4462 struct pt_regs *regs, u64 mask)
4463{
4464 int bit;
4465
4466 for_each_set_bit(bit, (const unsigned long *) &mask,
4467 sizeof(mask) * BITS_PER_BYTE) {
4468 u64 val;
4469
4470 val = perf_reg_value(regs, bit);
4471 perf_output_put(handle, val);
4472 }
4473}
4474
60e2364e 4475static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4476 struct pt_regs *regs,
4477 struct pt_regs *regs_user_copy)
4018994f 4478{
88a7c26a
AL
4479 if (user_mode(regs)) {
4480 regs_user->abi = perf_reg_abi(current);
2565711f 4481 regs_user->regs = regs;
88a7c26a
AL
4482 } else if (current->mm) {
4483 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4484 } else {
4485 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4486 regs_user->regs = NULL;
4018994f
JO
4487 }
4488}
4489
60e2364e
SE
4490static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4491 struct pt_regs *regs)
4492{
4493 regs_intr->regs = regs;
4494 regs_intr->abi = perf_reg_abi(current);
4495}
4496
4497
c5ebcedb
JO
4498/*
4499 * Get remaining task size from user stack pointer.
4500 *
4501 * It'd be better to take stack vma map and limit this more
4502 * precisly, but there's no way to get it safely under interrupt,
4503 * so using TASK_SIZE as limit.
4504 */
4505static u64 perf_ustack_task_size(struct pt_regs *regs)
4506{
4507 unsigned long addr = perf_user_stack_pointer(regs);
4508
4509 if (!addr || addr >= TASK_SIZE)
4510 return 0;
4511
4512 return TASK_SIZE - addr;
4513}
4514
4515static u16
4516perf_sample_ustack_size(u16 stack_size, u16 header_size,
4517 struct pt_regs *regs)
4518{
4519 u64 task_size;
4520
4521 /* No regs, no stack pointer, no dump. */
4522 if (!regs)
4523 return 0;
4524
4525 /*
4526 * Check if we fit in with the requested stack size into the:
4527 * - TASK_SIZE
4528 * If we don't, we limit the size to the TASK_SIZE.
4529 *
4530 * - remaining sample size
4531 * If we don't, we customize the stack size to
4532 * fit in to the remaining sample size.
4533 */
4534
4535 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4536 stack_size = min(stack_size, (u16) task_size);
4537
4538 /* Current header size plus static size and dynamic size. */
4539 header_size += 2 * sizeof(u64);
4540
4541 /* Do we fit in with the current stack dump size? */
4542 if ((u16) (header_size + stack_size) < header_size) {
4543 /*
4544 * If we overflow the maximum size for the sample,
4545 * we customize the stack dump size to fit in.
4546 */
4547 stack_size = USHRT_MAX - header_size - sizeof(u64);
4548 stack_size = round_up(stack_size, sizeof(u64));
4549 }
4550
4551 return stack_size;
4552}
4553
4554static void
4555perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4556 struct pt_regs *regs)
4557{
4558 /* Case of a kernel thread, nothing to dump */
4559 if (!regs) {
4560 u64 size = 0;
4561 perf_output_put(handle, size);
4562 } else {
4563 unsigned long sp;
4564 unsigned int rem;
4565 u64 dyn_size;
4566
4567 /*
4568 * We dump:
4569 * static size
4570 * - the size requested by user or the best one we can fit
4571 * in to the sample max size
4572 * data
4573 * - user stack dump data
4574 * dynamic size
4575 * - the actual dumped size
4576 */
4577
4578 /* Static size. */
4579 perf_output_put(handle, dump_size);
4580
4581 /* Data. */
4582 sp = perf_user_stack_pointer(regs);
4583 rem = __output_copy_user(handle, (void *) sp, dump_size);
4584 dyn_size = dump_size - rem;
4585
4586 perf_output_skip(handle, rem);
4587
4588 /* Dynamic size. */
4589 perf_output_put(handle, dyn_size);
4590 }
4591}
4592
c980d109
ACM
4593static void __perf_event_header__init_id(struct perf_event_header *header,
4594 struct perf_sample_data *data,
4595 struct perf_event *event)
6844c09d
ACM
4596{
4597 u64 sample_type = event->attr.sample_type;
4598
4599 data->type = sample_type;
4600 header->size += event->id_header_size;
4601
4602 if (sample_type & PERF_SAMPLE_TID) {
4603 /* namespace issues */
4604 data->tid_entry.pid = perf_event_pid(event, current);
4605 data->tid_entry.tid = perf_event_tid(event, current);
4606 }
4607
4608 if (sample_type & PERF_SAMPLE_TIME)
4609 data->time = perf_clock();
4610
ff3d527c 4611 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4612 data->id = primary_event_id(event);
4613
4614 if (sample_type & PERF_SAMPLE_STREAM_ID)
4615 data->stream_id = event->id;
4616
4617 if (sample_type & PERF_SAMPLE_CPU) {
4618 data->cpu_entry.cpu = raw_smp_processor_id();
4619 data->cpu_entry.reserved = 0;
4620 }
4621}
4622
76369139
FW
4623void perf_event_header__init_id(struct perf_event_header *header,
4624 struct perf_sample_data *data,
4625 struct perf_event *event)
c980d109
ACM
4626{
4627 if (event->attr.sample_id_all)
4628 __perf_event_header__init_id(header, data, event);
4629}
4630
4631static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4632 struct perf_sample_data *data)
4633{
4634 u64 sample_type = data->type;
4635
4636 if (sample_type & PERF_SAMPLE_TID)
4637 perf_output_put(handle, data->tid_entry);
4638
4639 if (sample_type & PERF_SAMPLE_TIME)
4640 perf_output_put(handle, data->time);
4641
4642 if (sample_type & PERF_SAMPLE_ID)
4643 perf_output_put(handle, data->id);
4644
4645 if (sample_type & PERF_SAMPLE_STREAM_ID)
4646 perf_output_put(handle, data->stream_id);
4647
4648 if (sample_type & PERF_SAMPLE_CPU)
4649 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4650
4651 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4652 perf_output_put(handle, data->id);
c980d109
ACM
4653}
4654
76369139
FW
4655void perf_event__output_id_sample(struct perf_event *event,
4656 struct perf_output_handle *handle,
4657 struct perf_sample_data *sample)
c980d109
ACM
4658{
4659 if (event->attr.sample_id_all)
4660 __perf_event__output_id_sample(handle, sample);
4661}
4662
3dab77fb 4663static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4664 struct perf_event *event,
4665 u64 enabled, u64 running)
3dab77fb 4666{
cdd6c482 4667 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4668 u64 values[4];
4669 int n = 0;
4670
b5e58793 4671 values[n++] = perf_event_count(event);
3dab77fb 4672 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4673 values[n++] = enabled +
cdd6c482 4674 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4675 }
4676 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4677 values[n++] = running +
cdd6c482 4678 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4679 }
4680 if (read_format & PERF_FORMAT_ID)
cdd6c482 4681 values[n++] = primary_event_id(event);
3dab77fb 4682
76369139 4683 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4684}
4685
4686/*
cdd6c482 4687 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4688 */
4689static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4690 struct perf_event *event,
4691 u64 enabled, u64 running)
3dab77fb 4692{
cdd6c482
IM
4693 struct perf_event *leader = event->group_leader, *sub;
4694 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4695 u64 values[5];
4696 int n = 0;
4697
4698 values[n++] = 1 + leader->nr_siblings;
4699
4700 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4701 values[n++] = enabled;
3dab77fb
PZ
4702
4703 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4704 values[n++] = running;
3dab77fb 4705
cdd6c482 4706 if (leader != event)
3dab77fb
PZ
4707 leader->pmu->read(leader);
4708
b5e58793 4709 values[n++] = perf_event_count(leader);
3dab77fb 4710 if (read_format & PERF_FORMAT_ID)
cdd6c482 4711 values[n++] = primary_event_id(leader);
3dab77fb 4712
76369139 4713 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4714
65abc865 4715 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4716 n = 0;
4717
6f5ab001
JO
4718 if ((sub != event) &&
4719 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4720 sub->pmu->read(sub);
4721
b5e58793 4722 values[n++] = perf_event_count(sub);
3dab77fb 4723 if (read_format & PERF_FORMAT_ID)
cdd6c482 4724 values[n++] = primary_event_id(sub);
3dab77fb 4725
76369139 4726 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4727 }
4728}
4729
eed01528
SE
4730#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4731 PERF_FORMAT_TOTAL_TIME_RUNNING)
4732
3dab77fb 4733static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4734 struct perf_event *event)
3dab77fb 4735{
e3f3541c 4736 u64 enabled = 0, running = 0, now;
eed01528
SE
4737 u64 read_format = event->attr.read_format;
4738
4739 /*
4740 * compute total_time_enabled, total_time_running
4741 * based on snapshot values taken when the event
4742 * was last scheduled in.
4743 *
4744 * we cannot simply called update_context_time()
4745 * because of locking issue as we are called in
4746 * NMI context
4747 */
c4794295 4748 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4749 calc_timer_values(event, &now, &enabled, &running);
eed01528 4750
cdd6c482 4751 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4752 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4753 else
eed01528 4754 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4755}
4756
5622f295
MM
4757void perf_output_sample(struct perf_output_handle *handle,
4758 struct perf_event_header *header,
4759 struct perf_sample_data *data,
cdd6c482 4760 struct perf_event *event)
5622f295
MM
4761{
4762 u64 sample_type = data->type;
4763
4764 perf_output_put(handle, *header);
4765
ff3d527c
AH
4766 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4767 perf_output_put(handle, data->id);
4768
5622f295
MM
4769 if (sample_type & PERF_SAMPLE_IP)
4770 perf_output_put(handle, data->ip);
4771
4772 if (sample_type & PERF_SAMPLE_TID)
4773 perf_output_put(handle, data->tid_entry);
4774
4775 if (sample_type & PERF_SAMPLE_TIME)
4776 perf_output_put(handle, data->time);
4777
4778 if (sample_type & PERF_SAMPLE_ADDR)
4779 perf_output_put(handle, data->addr);
4780
4781 if (sample_type & PERF_SAMPLE_ID)
4782 perf_output_put(handle, data->id);
4783
4784 if (sample_type & PERF_SAMPLE_STREAM_ID)
4785 perf_output_put(handle, data->stream_id);
4786
4787 if (sample_type & PERF_SAMPLE_CPU)
4788 perf_output_put(handle, data->cpu_entry);
4789
4790 if (sample_type & PERF_SAMPLE_PERIOD)
4791 perf_output_put(handle, data->period);
4792
4793 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4794 perf_output_read(handle, event);
5622f295
MM
4795
4796 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4797 if (data->callchain) {
4798 int size = 1;
4799
4800 if (data->callchain)
4801 size += data->callchain->nr;
4802
4803 size *= sizeof(u64);
4804
76369139 4805 __output_copy(handle, data->callchain, size);
5622f295
MM
4806 } else {
4807 u64 nr = 0;
4808 perf_output_put(handle, nr);
4809 }
4810 }
4811
4812 if (sample_type & PERF_SAMPLE_RAW) {
4813 if (data->raw) {
4814 perf_output_put(handle, data->raw->size);
76369139
FW
4815 __output_copy(handle, data->raw->data,
4816 data->raw->size);
5622f295
MM
4817 } else {
4818 struct {
4819 u32 size;
4820 u32 data;
4821 } raw = {
4822 .size = sizeof(u32),
4823 .data = 0,
4824 };
4825 perf_output_put(handle, raw);
4826 }
4827 }
a7ac67ea 4828
bce38cd5
SE
4829 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4830 if (data->br_stack) {
4831 size_t size;
4832
4833 size = data->br_stack->nr
4834 * sizeof(struct perf_branch_entry);
4835
4836 perf_output_put(handle, data->br_stack->nr);
4837 perf_output_copy(handle, data->br_stack->entries, size);
4838 } else {
4839 /*
4840 * we always store at least the value of nr
4841 */
4842 u64 nr = 0;
4843 perf_output_put(handle, nr);
4844 }
4845 }
4018994f
JO
4846
4847 if (sample_type & PERF_SAMPLE_REGS_USER) {
4848 u64 abi = data->regs_user.abi;
4849
4850 /*
4851 * If there are no regs to dump, notice it through
4852 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4853 */
4854 perf_output_put(handle, abi);
4855
4856 if (abi) {
4857 u64 mask = event->attr.sample_regs_user;
4858 perf_output_sample_regs(handle,
4859 data->regs_user.regs,
4860 mask);
4861 }
4862 }
c5ebcedb 4863
a5cdd40c 4864 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4865 perf_output_sample_ustack(handle,
4866 data->stack_user_size,
4867 data->regs_user.regs);
a5cdd40c 4868 }
c3feedf2
AK
4869
4870 if (sample_type & PERF_SAMPLE_WEIGHT)
4871 perf_output_put(handle, data->weight);
d6be9ad6
SE
4872
4873 if (sample_type & PERF_SAMPLE_DATA_SRC)
4874 perf_output_put(handle, data->data_src.val);
a5cdd40c 4875
fdfbbd07
AK
4876 if (sample_type & PERF_SAMPLE_TRANSACTION)
4877 perf_output_put(handle, data->txn);
4878
60e2364e
SE
4879 if (sample_type & PERF_SAMPLE_REGS_INTR) {
4880 u64 abi = data->regs_intr.abi;
4881 /*
4882 * If there are no regs to dump, notice it through
4883 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4884 */
4885 perf_output_put(handle, abi);
4886
4887 if (abi) {
4888 u64 mask = event->attr.sample_regs_intr;
4889
4890 perf_output_sample_regs(handle,
4891 data->regs_intr.regs,
4892 mask);
4893 }
4894 }
4895
a5cdd40c
PZ
4896 if (!event->attr.watermark) {
4897 int wakeup_events = event->attr.wakeup_events;
4898
4899 if (wakeup_events) {
4900 struct ring_buffer *rb = handle->rb;
4901 int events = local_inc_return(&rb->events);
4902
4903 if (events >= wakeup_events) {
4904 local_sub(wakeup_events, &rb->events);
4905 local_inc(&rb->wakeup);
4906 }
4907 }
4908 }
5622f295
MM
4909}
4910
4911void perf_prepare_sample(struct perf_event_header *header,
4912 struct perf_sample_data *data,
cdd6c482 4913 struct perf_event *event,
5622f295 4914 struct pt_regs *regs)
7b732a75 4915{
cdd6c482 4916 u64 sample_type = event->attr.sample_type;
7b732a75 4917
cdd6c482 4918 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4919 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4920
4921 header->misc = 0;
4922 header->misc |= perf_misc_flags(regs);
6fab0192 4923
c980d109 4924 __perf_event_header__init_id(header, data, event);
6844c09d 4925
c320c7b7 4926 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4927 data->ip = perf_instruction_pointer(regs);
4928
b23f3325 4929 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4930 int size = 1;
394ee076 4931
e6dab5ff 4932 data->callchain = perf_callchain(event, regs);
5622f295
MM
4933
4934 if (data->callchain)
4935 size += data->callchain->nr;
4936
4937 header->size += size * sizeof(u64);
394ee076
PZ
4938 }
4939
3a43ce68 4940 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4941 int size = sizeof(u32);
4942
4943 if (data->raw)
4944 size += data->raw->size;
4945 else
4946 size += sizeof(u32);
4947
4948 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4949 header->size += size;
7f453c24 4950 }
bce38cd5
SE
4951
4952 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4953 int size = sizeof(u64); /* nr */
4954 if (data->br_stack) {
4955 size += data->br_stack->nr
4956 * sizeof(struct perf_branch_entry);
4957 }
4958 header->size += size;
4959 }
4018994f 4960
2565711f 4961 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
4962 perf_sample_regs_user(&data->regs_user, regs,
4963 &data->regs_user_copy);
2565711f 4964
4018994f
JO
4965 if (sample_type & PERF_SAMPLE_REGS_USER) {
4966 /* regs dump ABI info */
4967 int size = sizeof(u64);
4968
4018994f
JO
4969 if (data->regs_user.regs) {
4970 u64 mask = event->attr.sample_regs_user;
4971 size += hweight64(mask) * sizeof(u64);
4972 }
4973
4974 header->size += size;
4975 }
c5ebcedb
JO
4976
4977 if (sample_type & PERF_SAMPLE_STACK_USER) {
4978 /*
4979 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4980 * processed as the last one or have additional check added
4981 * in case new sample type is added, because we could eat
4982 * up the rest of the sample size.
4983 */
c5ebcedb
JO
4984 u16 stack_size = event->attr.sample_stack_user;
4985 u16 size = sizeof(u64);
4986
c5ebcedb 4987 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 4988 data->regs_user.regs);
c5ebcedb
JO
4989
4990 /*
4991 * If there is something to dump, add space for the dump
4992 * itself and for the field that tells the dynamic size,
4993 * which is how many have been actually dumped.
4994 */
4995 if (stack_size)
4996 size += sizeof(u64) + stack_size;
4997
4998 data->stack_user_size = stack_size;
4999 header->size += size;
5000 }
60e2364e
SE
5001
5002 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5003 /* regs dump ABI info */
5004 int size = sizeof(u64);
5005
5006 perf_sample_regs_intr(&data->regs_intr, regs);
5007
5008 if (data->regs_intr.regs) {
5009 u64 mask = event->attr.sample_regs_intr;
5010
5011 size += hweight64(mask) * sizeof(u64);
5012 }
5013
5014 header->size += size;
5015 }
5622f295 5016}
7f453c24 5017
a8b0ca17 5018static void perf_event_output(struct perf_event *event,
5622f295
MM
5019 struct perf_sample_data *data,
5020 struct pt_regs *regs)
5021{
5022 struct perf_output_handle handle;
5023 struct perf_event_header header;
689802b2 5024
927c7a9e
FW
5025 /* protect the callchain buffers */
5026 rcu_read_lock();
5027
cdd6c482 5028 perf_prepare_sample(&header, data, event, regs);
5c148194 5029
a7ac67ea 5030 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5031 goto exit;
0322cd6e 5032
cdd6c482 5033 perf_output_sample(&handle, &header, data, event);
f413cdb8 5034
8a057d84 5035 perf_output_end(&handle);
927c7a9e
FW
5036
5037exit:
5038 rcu_read_unlock();
0322cd6e
PZ
5039}
5040
38b200d6 5041/*
cdd6c482 5042 * read event_id
38b200d6
PZ
5043 */
5044
5045struct perf_read_event {
5046 struct perf_event_header header;
5047
5048 u32 pid;
5049 u32 tid;
38b200d6
PZ
5050};
5051
5052static void
cdd6c482 5053perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5054 struct task_struct *task)
5055{
5056 struct perf_output_handle handle;
c980d109 5057 struct perf_sample_data sample;
dfc65094 5058 struct perf_read_event read_event = {
38b200d6 5059 .header = {
cdd6c482 5060 .type = PERF_RECORD_READ,
38b200d6 5061 .misc = 0,
c320c7b7 5062 .size = sizeof(read_event) + event->read_size,
38b200d6 5063 },
cdd6c482
IM
5064 .pid = perf_event_pid(event, task),
5065 .tid = perf_event_tid(event, task),
38b200d6 5066 };
3dab77fb 5067 int ret;
38b200d6 5068
c980d109 5069 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5070 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5071 if (ret)
5072 return;
5073
dfc65094 5074 perf_output_put(&handle, read_event);
cdd6c482 5075 perf_output_read(&handle, event);
c980d109 5076 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5077
38b200d6
PZ
5078 perf_output_end(&handle);
5079}
5080
52d857a8
JO
5081typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5082
5083static void
5084perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5085 perf_event_aux_output_cb output,
5086 void *data)
5087{
5088 struct perf_event *event;
5089
5090 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5091 if (event->state < PERF_EVENT_STATE_INACTIVE)
5092 continue;
5093 if (!event_filter_match(event))
5094 continue;
67516844 5095 output(event, data);
52d857a8
JO
5096 }
5097}
5098
5099static void
67516844 5100perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5101 struct perf_event_context *task_ctx)
5102{
5103 struct perf_cpu_context *cpuctx;
5104 struct perf_event_context *ctx;
5105 struct pmu *pmu;
5106 int ctxn;
5107
5108 rcu_read_lock();
5109 list_for_each_entry_rcu(pmu, &pmus, entry) {
5110 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5111 if (cpuctx->unique_pmu != pmu)
5112 goto next;
67516844 5113 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5114 if (task_ctx)
5115 goto next;
5116 ctxn = pmu->task_ctx_nr;
5117 if (ctxn < 0)
5118 goto next;
5119 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5120 if (ctx)
67516844 5121 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5122next:
5123 put_cpu_ptr(pmu->pmu_cpu_context);
5124 }
5125
5126 if (task_ctx) {
5127 preempt_disable();
67516844 5128 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5129 preempt_enable();
5130 }
5131 rcu_read_unlock();
5132}
5133
60313ebe 5134/*
9f498cc5
PZ
5135 * task tracking -- fork/exit
5136 *
13d7a241 5137 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5138 */
5139
9f498cc5 5140struct perf_task_event {
3a80b4a3 5141 struct task_struct *task;
cdd6c482 5142 struct perf_event_context *task_ctx;
60313ebe
PZ
5143
5144 struct {
5145 struct perf_event_header header;
5146
5147 u32 pid;
5148 u32 ppid;
9f498cc5
PZ
5149 u32 tid;
5150 u32 ptid;
393b2ad8 5151 u64 time;
cdd6c482 5152 } event_id;
60313ebe
PZ
5153};
5154
67516844
JO
5155static int perf_event_task_match(struct perf_event *event)
5156{
13d7a241
SE
5157 return event->attr.comm || event->attr.mmap ||
5158 event->attr.mmap2 || event->attr.mmap_data ||
5159 event->attr.task;
67516844
JO
5160}
5161
cdd6c482 5162static void perf_event_task_output(struct perf_event *event,
52d857a8 5163 void *data)
60313ebe 5164{
52d857a8 5165 struct perf_task_event *task_event = data;
60313ebe 5166 struct perf_output_handle handle;
c980d109 5167 struct perf_sample_data sample;
9f498cc5 5168 struct task_struct *task = task_event->task;
c980d109 5169 int ret, size = task_event->event_id.header.size;
8bb39f9a 5170
67516844
JO
5171 if (!perf_event_task_match(event))
5172 return;
5173
c980d109 5174 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5175
c980d109 5176 ret = perf_output_begin(&handle, event,
a7ac67ea 5177 task_event->event_id.header.size);
ef60777c 5178 if (ret)
c980d109 5179 goto out;
60313ebe 5180
cdd6c482
IM
5181 task_event->event_id.pid = perf_event_pid(event, task);
5182 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5183
cdd6c482
IM
5184 task_event->event_id.tid = perf_event_tid(event, task);
5185 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5186
cdd6c482 5187 perf_output_put(&handle, task_event->event_id);
393b2ad8 5188
c980d109
ACM
5189 perf_event__output_id_sample(event, &handle, &sample);
5190
60313ebe 5191 perf_output_end(&handle);
c980d109
ACM
5192out:
5193 task_event->event_id.header.size = size;
60313ebe
PZ
5194}
5195
cdd6c482
IM
5196static void perf_event_task(struct task_struct *task,
5197 struct perf_event_context *task_ctx,
3a80b4a3 5198 int new)
60313ebe 5199{
9f498cc5 5200 struct perf_task_event task_event;
60313ebe 5201
cdd6c482
IM
5202 if (!atomic_read(&nr_comm_events) &&
5203 !atomic_read(&nr_mmap_events) &&
5204 !atomic_read(&nr_task_events))
60313ebe
PZ
5205 return;
5206
9f498cc5 5207 task_event = (struct perf_task_event){
3a80b4a3
PZ
5208 .task = task,
5209 .task_ctx = task_ctx,
cdd6c482 5210 .event_id = {
60313ebe 5211 .header = {
cdd6c482 5212 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5213 .misc = 0,
cdd6c482 5214 .size = sizeof(task_event.event_id),
60313ebe 5215 },
573402db
PZ
5216 /* .pid */
5217 /* .ppid */
9f498cc5
PZ
5218 /* .tid */
5219 /* .ptid */
6f93d0a7 5220 .time = perf_clock(),
60313ebe
PZ
5221 },
5222 };
5223
67516844 5224 perf_event_aux(perf_event_task_output,
52d857a8
JO
5225 &task_event,
5226 task_ctx);
9f498cc5
PZ
5227}
5228
cdd6c482 5229void perf_event_fork(struct task_struct *task)
9f498cc5 5230{
cdd6c482 5231 perf_event_task(task, NULL, 1);
60313ebe
PZ
5232}
5233
8d1b2d93
PZ
5234/*
5235 * comm tracking
5236 */
5237
5238struct perf_comm_event {
22a4f650
IM
5239 struct task_struct *task;
5240 char *comm;
8d1b2d93
PZ
5241 int comm_size;
5242
5243 struct {
5244 struct perf_event_header header;
5245
5246 u32 pid;
5247 u32 tid;
cdd6c482 5248 } event_id;
8d1b2d93
PZ
5249};
5250
67516844
JO
5251static int perf_event_comm_match(struct perf_event *event)
5252{
5253 return event->attr.comm;
5254}
5255
cdd6c482 5256static void perf_event_comm_output(struct perf_event *event,
52d857a8 5257 void *data)
8d1b2d93 5258{
52d857a8 5259 struct perf_comm_event *comm_event = data;
8d1b2d93 5260 struct perf_output_handle handle;
c980d109 5261 struct perf_sample_data sample;
cdd6c482 5262 int size = comm_event->event_id.header.size;
c980d109
ACM
5263 int ret;
5264
67516844
JO
5265 if (!perf_event_comm_match(event))
5266 return;
5267
c980d109
ACM
5268 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5269 ret = perf_output_begin(&handle, event,
a7ac67ea 5270 comm_event->event_id.header.size);
8d1b2d93
PZ
5271
5272 if (ret)
c980d109 5273 goto out;
8d1b2d93 5274
cdd6c482
IM
5275 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5276 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5277
cdd6c482 5278 perf_output_put(&handle, comm_event->event_id);
76369139 5279 __output_copy(&handle, comm_event->comm,
8d1b2d93 5280 comm_event->comm_size);
c980d109
ACM
5281
5282 perf_event__output_id_sample(event, &handle, &sample);
5283
8d1b2d93 5284 perf_output_end(&handle);
c980d109
ACM
5285out:
5286 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5287}
5288
cdd6c482 5289static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5290{
413ee3b4 5291 char comm[TASK_COMM_LEN];
8d1b2d93 5292 unsigned int size;
8d1b2d93 5293
413ee3b4 5294 memset(comm, 0, sizeof(comm));
96b02d78 5295 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5296 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5297
5298 comm_event->comm = comm;
5299 comm_event->comm_size = size;
5300
cdd6c482 5301 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5302
67516844 5303 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5304 comm_event,
5305 NULL);
8d1b2d93
PZ
5306}
5307
82b89778 5308void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5309{
9ee318a7
PZ
5310 struct perf_comm_event comm_event;
5311
cdd6c482 5312 if (!atomic_read(&nr_comm_events))
9ee318a7 5313 return;
a63eaf34 5314
9ee318a7 5315 comm_event = (struct perf_comm_event){
8d1b2d93 5316 .task = task,
573402db
PZ
5317 /* .comm */
5318 /* .comm_size */
cdd6c482 5319 .event_id = {
573402db 5320 .header = {
cdd6c482 5321 .type = PERF_RECORD_COMM,
82b89778 5322 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5323 /* .size */
5324 },
5325 /* .pid */
5326 /* .tid */
8d1b2d93
PZ
5327 },
5328 };
5329
cdd6c482 5330 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5331}
5332
0a4a9391
PZ
5333/*
5334 * mmap tracking
5335 */
5336
5337struct perf_mmap_event {
089dd79d
PZ
5338 struct vm_area_struct *vma;
5339
5340 const char *file_name;
5341 int file_size;
13d7a241
SE
5342 int maj, min;
5343 u64 ino;
5344 u64 ino_generation;
f972eb63 5345 u32 prot, flags;
0a4a9391
PZ
5346
5347 struct {
5348 struct perf_event_header header;
5349
5350 u32 pid;
5351 u32 tid;
5352 u64 start;
5353 u64 len;
5354 u64 pgoff;
cdd6c482 5355 } event_id;
0a4a9391
PZ
5356};
5357
67516844
JO
5358static int perf_event_mmap_match(struct perf_event *event,
5359 void *data)
5360{
5361 struct perf_mmap_event *mmap_event = data;
5362 struct vm_area_struct *vma = mmap_event->vma;
5363 int executable = vma->vm_flags & VM_EXEC;
5364
5365 return (!executable && event->attr.mmap_data) ||
13d7a241 5366 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5367}
5368
cdd6c482 5369static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5370 void *data)
0a4a9391 5371{
52d857a8 5372 struct perf_mmap_event *mmap_event = data;
0a4a9391 5373 struct perf_output_handle handle;
c980d109 5374 struct perf_sample_data sample;
cdd6c482 5375 int size = mmap_event->event_id.header.size;
c980d109 5376 int ret;
0a4a9391 5377
67516844
JO
5378 if (!perf_event_mmap_match(event, data))
5379 return;
5380
13d7a241
SE
5381 if (event->attr.mmap2) {
5382 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5383 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5384 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5385 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5386 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5387 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5388 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5389 }
5390
c980d109
ACM
5391 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5392 ret = perf_output_begin(&handle, event,
a7ac67ea 5393 mmap_event->event_id.header.size);
0a4a9391 5394 if (ret)
c980d109 5395 goto out;
0a4a9391 5396
cdd6c482
IM
5397 mmap_event->event_id.pid = perf_event_pid(event, current);
5398 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5399
cdd6c482 5400 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5401
5402 if (event->attr.mmap2) {
5403 perf_output_put(&handle, mmap_event->maj);
5404 perf_output_put(&handle, mmap_event->min);
5405 perf_output_put(&handle, mmap_event->ino);
5406 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5407 perf_output_put(&handle, mmap_event->prot);
5408 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5409 }
5410
76369139 5411 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5412 mmap_event->file_size);
c980d109
ACM
5413
5414 perf_event__output_id_sample(event, &handle, &sample);
5415
78d613eb 5416 perf_output_end(&handle);
c980d109
ACM
5417out:
5418 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5419}
5420
cdd6c482 5421static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5422{
089dd79d
PZ
5423 struct vm_area_struct *vma = mmap_event->vma;
5424 struct file *file = vma->vm_file;
13d7a241
SE
5425 int maj = 0, min = 0;
5426 u64 ino = 0, gen = 0;
f972eb63 5427 u32 prot = 0, flags = 0;
0a4a9391
PZ
5428 unsigned int size;
5429 char tmp[16];
5430 char *buf = NULL;
2c42cfbf 5431 char *name;
413ee3b4 5432
0a4a9391 5433 if (file) {
13d7a241
SE
5434 struct inode *inode;
5435 dev_t dev;
3ea2f2b9 5436
2c42cfbf 5437 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5438 if (!buf) {
c7e548b4
ON
5439 name = "//enomem";
5440 goto cpy_name;
0a4a9391 5441 }
413ee3b4 5442 /*
3ea2f2b9 5443 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5444 * need to add enough zero bytes after the string to handle
5445 * the 64bit alignment we do later.
5446 */
3ea2f2b9 5447 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5448 if (IS_ERR(name)) {
c7e548b4
ON
5449 name = "//toolong";
5450 goto cpy_name;
0a4a9391 5451 }
13d7a241
SE
5452 inode = file_inode(vma->vm_file);
5453 dev = inode->i_sb->s_dev;
5454 ino = inode->i_ino;
5455 gen = inode->i_generation;
5456 maj = MAJOR(dev);
5457 min = MINOR(dev);
f972eb63
PZ
5458
5459 if (vma->vm_flags & VM_READ)
5460 prot |= PROT_READ;
5461 if (vma->vm_flags & VM_WRITE)
5462 prot |= PROT_WRITE;
5463 if (vma->vm_flags & VM_EXEC)
5464 prot |= PROT_EXEC;
5465
5466 if (vma->vm_flags & VM_MAYSHARE)
5467 flags = MAP_SHARED;
5468 else
5469 flags = MAP_PRIVATE;
5470
5471 if (vma->vm_flags & VM_DENYWRITE)
5472 flags |= MAP_DENYWRITE;
5473 if (vma->vm_flags & VM_MAYEXEC)
5474 flags |= MAP_EXECUTABLE;
5475 if (vma->vm_flags & VM_LOCKED)
5476 flags |= MAP_LOCKED;
5477 if (vma->vm_flags & VM_HUGETLB)
5478 flags |= MAP_HUGETLB;
5479
c7e548b4 5480 goto got_name;
0a4a9391 5481 } else {
fbe26abe
JO
5482 if (vma->vm_ops && vma->vm_ops->name) {
5483 name = (char *) vma->vm_ops->name(vma);
5484 if (name)
5485 goto cpy_name;
5486 }
5487
2c42cfbf 5488 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5489 if (name)
5490 goto cpy_name;
089dd79d 5491
32c5fb7e 5492 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5493 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5494 name = "[heap]";
5495 goto cpy_name;
32c5fb7e
ON
5496 }
5497 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5498 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5499 name = "[stack]";
5500 goto cpy_name;
089dd79d
PZ
5501 }
5502
c7e548b4
ON
5503 name = "//anon";
5504 goto cpy_name;
0a4a9391
PZ
5505 }
5506
c7e548b4
ON
5507cpy_name:
5508 strlcpy(tmp, name, sizeof(tmp));
5509 name = tmp;
0a4a9391 5510got_name:
2c42cfbf
PZ
5511 /*
5512 * Since our buffer works in 8 byte units we need to align our string
5513 * size to a multiple of 8. However, we must guarantee the tail end is
5514 * zero'd out to avoid leaking random bits to userspace.
5515 */
5516 size = strlen(name)+1;
5517 while (!IS_ALIGNED(size, sizeof(u64)))
5518 name[size++] = '\0';
0a4a9391
PZ
5519
5520 mmap_event->file_name = name;
5521 mmap_event->file_size = size;
13d7a241
SE
5522 mmap_event->maj = maj;
5523 mmap_event->min = min;
5524 mmap_event->ino = ino;
5525 mmap_event->ino_generation = gen;
f972eb63
PZ
5526 mmap_event->prot = prot;
5527 mmap_event->flags = flags;
0a4a9391 5528
2fe85427
SE
5529 if (!(vma->vm_flags & VM_EXEC))
5530 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5531
cdd6c482 5532 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5533
67516844 5534 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5535 mmap_event,
5536 NULL);
665c2142 5537
0a4a9391
PZ
5538 kfree(buf);
5539}
5540
3af9e859 5541void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5542{
9ee318a7
PZ
5543 struct perf_mmap_event mmap_event;
5544
cdd6c482 5545 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5546 return;
5547
5548 mmap_event = (struct perf_mmap_event){
089dd79d 5549 .vma = vma,
573402db
PZ
5550 /* .file_name */
5551 /* .file_size */
cdd6c482 5552 .event_id = {
573402db 5553 .header = {
cdd6c482 5554 .type = PERF_RECORD_MMAP,
39447b38 5555 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5556 /* .size */
5557 },
5558 /* .pid */
5559 /* .tid */
089dd79d
PZ
5560 .start = vma->vm_start,
5561 .len = vma->vm_end - vma->vm_start,
3a0304e9 5562 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5563 },
13d7a241
SE
5564 /* .maj (attr_mmap2 only) */
5565 /* .min (attr_mmap2 only) */
5566 /* .ino (attr_mmap2 only) */
5567 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5568 /* .prot (attr_mmap2 only) */
5569 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5570 };
5571
cdd6c482 5572 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5573}
5574
a78ac325
PZ
5575/*
5576 * IRQ throttle logging
5577 */
5578
cdd6c482 5579static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5580{
5581 struct perf_output_handle handle;
c980d109 5582 struct perf_sample_data sample;
a78ac325
PZ
5583 int ret;
5584
5585 struct {
5586 struct perf_event_header header;
5587 u64 time;
cca3f454 5588 u64 id;
7f453c24 5589 u64 stream_id;
a78ac325
PZ
5590 } throttle_event = {
5591 .header = {
cdd6c482 5592 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5593 .misc = 0,
5594 .size = sizeof(throttle_event),
5595 },
def0a9b2 5596 .time = perf_clock(),
cdd6c482
IM
5597 .id = primary_event_id(event),
5598 .stream_id = event->id,
a78ac325
PZ
5599 };
5600
966ee4d6 5601 if (enable)
cdd6c482 5602 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5603
c980d109
ACM
5604 perf_event_header__init_id(&throttle_event.header, &sample, event);
5605
5606 ret = perf_output_begin(&handle, event,
a7ac67ea 5607 throttle_event.header.size);
a78ac325
PZ
5608 if (ret)
5609 return;
5610
5611 perf_output_put(&handle, throttle_event);
c980d109 5612 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5613 perf_output_end(&handle);
5614}
5615
f6c7d5fe 5616/*
cdd6c482 5617 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5618 */
5619
a8b0ca17 5620static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5621 int throttle, struct perf_sample_data *data,
5622 struct pt_regs *regs)
f6c7d5fe 5623{
cdd6c482
IM
5624 int events = atomic_read(&event->event_limit);
5625 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5626 u64 seq;
79f14641
PZ
5627 int ret = 0;
5628
96398826
PZ
5629 /*
5630 * Non-sampling counters might still use the PMI to fold short
5631 * hardware counters, ignore those.
5632 */
5633 if (unlikely(!is_sampling_event(event)))
5634 return 0;
5635
e050e3f0
SE
5636 seq = __this_cpu_read(perf_throttled_seq);
5637 if (seq != hwc->interrupts_seq) {
5638 hwc->interrupts_seq = seq;
5639 hwc->interrupts = 1;
5640 } else {
5641 hwc->interrupts++;
5642 if (unlikely(throttle
5643 && hwc->interrupts >= max_samples_per_tick)) {
5644 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5645 hwc->interrupts = MAX_INTERRUPTS;
5646 perf_log_throttle(event, 0);
d84153d6 5647 tick_nohz_full_kick();
a78ac325
PZ
5648 ret = 1;
5649 }
e050e3f0 5650 }
60db5e09 5651
cdd6c482 5652 if (event->attr.freq) {
def0a9b2 5653 u64 now = perf_clock();
abd50713 5654 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5655
abd50713 5656 hwc->freq_time_stamp = now;
bd2b5b12 5657
abd50713 5658 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5659 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5660 }
5661
2023b359
PZ
5662 /*
5663 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5664 * events
2023b359
PZ
5665 */
5666
cdd6c482
IM
5667 event->pending_kill = POLL_IN;
5668 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5669 ret = 1;
cdd6c482 5670 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5671 event->pending_disable = 1;
5672 irq_work_queue(&event->pending);
79f14641
PZ
5673 }
5674
453f19ee 5675 if (event->overflow_handler)
a8b0ca17 5676 event->overflow_handler(event, data, regs);
453f19ee 5677 else
a8b0ca17 5678 perf_event_output(event, data, regs);
453f19ee 5679
f506b3dc 5680 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5681 event->pending_wakeup = 1;
5682 irq_work_queue(&event->pending);
f506b3dc
PZ
5683 }
5684
79f14641 5685 return ret;
f6c7d5fe
PZ
5686}
5687
a8b0ca17 5688int perf_event_overflow(struct perf_event *event,
5622f295
MM
5689 struct perf_sample_data *data,
5690 struct pt_regs *regs)
850bc73f 5691{
a8b0ca17 5692 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5693}
5694
15dbf27c 5695/*
cdd6c482 5696 * Generic software event infrastructure
15dbf27c
PZ
5697 */
5698
b28ab83c
PZ
5699struct swevent_htable {
5700 struct swevent_hlist *swevent_hlist;
5701 struct mutex hlist_mutex;
5702 int hlist_refcount;
5703
5704 /* Recursion avoidance in each contexts */
5705 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5706
5707 /* Keeps track of cpu being initialized/exited */
5708 bool online;
b28ab83c
PZ
5709};
5710
5711static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5712
7b4b6658 5713/*
cdd6c482
IM
5714 * We directly increment event->count and keep a second value in
5715 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5716 * is kept in the range [-sample_period, 0] so that we can use the
5717 * sign as trigger.
5718 */
5719
ab573844 5720u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5721{
cdd6c482 5722 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5723 u64 period = hwc->last_period;
5724 u64 nr, offset;
5725 s64 old, val;
5726
5727 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5728
5729again:
e7850595 5730 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5731 if (val < 0)
5732 return 0;
15dbf27c 5733
7b4b6658
PZ
5734 nr = div64_u64(period + val, period);
5735 offset = nr * period;
5736 val -= offset;
e7850595 5737 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5738 goto again;
15dbf27c 5739
7b4b6658 5740 return nr;
15dbf27c
PZ
5741}
5742
0cff784a 5743static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5744 struct perf_sample_data *data,
5622f295 5745 struct pt_regs *regs)
15dbf27c 5746{
cdd6c482 5747 struct hw_perf_event *hwc = &event->hw;
850bc73f 5748 int throttle = 0;
15dbf27c 5749
0cff784a
PZ
5750 if (!overflow)
5751 overflow = perf_swevent_set_period(event);
15dbf27c 5752
7b4b6658
PZ
5753 if (hwc->interrupts == MAX_INTERRUPTS)
5754 return;
15dbf27c 5755
7b4b6658 5756 for (; overflow; overflow--) {
a8b0ca17 5757 if (__perf_event_overflow(event, throttle,
5622f295 5758 data, regs)) {
7b4b6658
PZ
5759 /*
5760 * We inhibit the overflow from happening when
5761 * hwc->interrupts == MAX_INTERRUPTS.
5762 */
5763 break;
5764 }
cf450a73 5765 throttle = 1;
7b4b6658 5766 }
15dbf27c
PZ
5767}
5768
a4eaf7f1 5769static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5770 struct perf_sample_data *data,
5622f295 5771 struct pt_regs *regs)
7b4b6658 5772{
cdd6c482 5773 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5774
e7850595 5775 local64_add(nr, &event->count);
d6d020e9 5776
0cff784a
PZ
5777 if (!regs)
5778 return;
5779
6c7e550f 5780 if (!is_sampling_event(event))
7b4b6658 5781 return;
d6d020e9 5782
5d81e5cf
AV
5783 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5784 data->period = nr;
5785 return perf_swevent_overflow(event, 1, data, regs);
5786 } else
5787 data->period = event->hw.last_period;
5788
0cff784a 5789 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5790 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5791
e7850595 5792 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5793 return;
df1a132b 5794
a8b0ca17 5795 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5796}
5797
f5ffe02e
FW
5798static int perf_exclude_event(struct perf_event *event,
5799 struct pt_regs *regs)
5800{
a4eaf7f1 5801 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5802 return 1;
a4eaf7f1 5803
f5ffe02e
FW
5804 if (regs) {
5805 if (event->attr.exclude_user && user_mode(regs))
5806 return 1;
5807
5808 if (event->attr.exclude_kernel && !user_mode(regs))
5809 return 1;
5810 }
5811
5812 return 0;
5813}
5814
cdd6c482 5815static int perf_swevent_match(struct perf_event *event,
1c432d89 5816 enum perf_type_id type,
6fb2915d
LZ
5817 u32 event_id,
5818 struct perf_sample_data *data,
5819 struct pt_regs *regs)
15dbf27c 5820{
cdd6c482 5821 if (event->attr.type != type)
a21ca2ca 5822 return 0;
f5ffe02e 5823
cdd6c482 5824 if (event->attr.config != event_id)
15dbf27c
PZ
5825 return 0;
5826
f5ffe02e
FW
5827 if (perf_exclude_event(event, regs))
5828 return 0;
15dbf27c
PZ
5829
5830 return 1;
5831}
5832
76e1d904
FW
5833static inline u64 swevent_hash(u64 type, u32 event_id)
5834{
5835 u64 val = event_id | (type << 32);
5836
5837 return hash_64(val, SWEVENT_HLIST_BITS);
5838}
5839
49f135ed
FW
5840static inline struct hlist_head *
5841__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5842{
49f135ed
FW
5843 u64 hash = swevent_hash(type, event_id);
5844
5845 return &hlist->heads[hash];
5846}
76e1d904 5847
49f135ed
FW
5848/* For the read side: events when they trigger */
5849static inline struct hlist_head *
b28ab83c 5850find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5851{
5852 struct swevent_hlist *hlist;
76e1d904 5853
b28ab83c 5854 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5855 if (!hlist)
5856 return NULL;
5857
49f135ed
FW
5858 return __find_swevent_head(hlist, type, event_id);
5859}
5860
5861/* For the event head insertion and removal in the hlist */
5862static inline struct hlist_head *
b28ab83c 5863find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5864{
5865 struct swevent_hlist *hlist;
5866 u32 event_id = event->attr.config;
5867 u64 type = event->attr.type;
5868
5869 /*
5870 * Event scheduling is always serialized against hlist allocation
5871 * and release. Which makes the protected version suitable here.
5872 * The context lock guarantees that.
5873 */
b28ab83c 5874 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5875 lockdep_is_held(&event->ctx->lock));
5876 if (!hlist)
5877 return NULL;
5878
5879 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5880}
5881
5882static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5883 u64 nr,
76e1d904
FW
5884 struct perf_sample_data *data,
5885 struct pt_regs *regs)
15dbf27c 5886{
4a32fea9 5887 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 5888 struct perf_event *event;
76e1d904 5889 struct hlist_head *head;
15dbf27c 5890
76e1d904 5891 rcu_read_lock();
b28ab83c 5892 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5893 if (!head)
5894 goto end;
5895
b67bfe0d 5896 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5897 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5898 perf_swevent_event(event, nr, data, regs);
15dbf27c 5899 }
76e1d904
FW
5900end:
5901 rcu_read_unlock();
15dbf27c
PZ
5902}
5903
86038c5e
PZI
5904DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
5905
4ed7c92d 5906int perf_swevent_get_recursion_context(void)
96f6d444 5907{
4a32fea9 5908 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 5909
b28ab83c 5910 return get_recursion_context(swhash->recursion);
96f6d444 5911}
645e8cc0 5912EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5913
fa9f90be 5914inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5915{
4a32fea9 5916 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 5917
b28ab83c 5918 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5919}
15dbf27c 5920
86038c5e 5921void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5922{
a4234bfc 5923 struct perf_sample_data data;
4ed7c92d 5924
86038c5e 5925 if (WARN_ON_ONCE(!regs))
4ed7c92d 5926 return;
a4234bfc 5927
fd0d000b 5928 perf_sample_data_init(&data, addr, 0);
a8b0ca17 5929 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
5930}
5931
5932void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5933{
5934 int rctx;
5935
5936 preempt_disable_notrace();
5937 rctx = perf_swevent_get_recursion_context();
5938 if (unlikely(rctx < 0))
5939 goto fail;
5940
5941 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
5942
5943 perf_swevent_put_recursion_context(rctx);
86038c5e 5944fail:
1c024eca 5945 preempt_enable_notrace();
b8e83514
PZ
5946}
5947
cdd6c482 5948static void perf_swevent_read(struct perf_event *event)
15dbf27c 5949{
15dbf27c
PZ
5950}
5951
a4eaf7f1 5952static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5953{
4a32fea9 5954 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 5955 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5956 struct hlist_head *head;
5957
6c7e550f 5958 if (is_sampling_event(event)) {
7b4b6658 5959 hwc->last_period = hwc->sample_period;
cdd6c482 5960 perf_swevent_set_period(event);
7b4b6658 5961 }
76e1d904 5962
a4eaf7f1
PZ
5963 hwc->state = !(flags & PERF_EF_START);
5964
b28ab83c 5965 head = find_swevent_head(swhash, event);
39af6b16
JO
5966 if (!head) {
5967 /*
5968 * We can race with cpu hotplug code. Do not
5969 * WARN if the cpu just got unplugged.
5970 */
5971 WARN_ON_ONCE(swhash->online);
76e1d904 5972 return -EINVAL;
39af6b16 5973 }
76e1d904
FW
5974
5975 hlist_add_head_rcu(&event->hlist_entry, head);
5976
15dbf27c
PZ
5977 return 0;
5978}
5979
a4eaf7f1 5980static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5981{
76e1d904 5982 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5983}
5984
a4eaf7f1 5985static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5986{
a4eaf7f1 5987 event->hw.state = 0;
d6d020e9 5988}
aa9c4c0f 5989
a4eaf7f1 5990static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5991{
a4eaf7f1 5992 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5993}
5994
49f135ed
FW
5995/* Deref the hlist from the update side */
5996static inline struct swevent_hlist *
b28ab83c 5997swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5998{
b28ab83c
PZ
5999 return rcu_dereference_protected(swhash->swevent_hlist,
6000 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6001}
6002
b28ab83c 6003static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6004{
b28ab83c 6005 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6006
49f135ed 6007 if (!hlist)
76e1d904
FW
6008 return;
6009
70691d4a 6010 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6011 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6012}
6013
6014static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6015{
b28ab83c 6016 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6017
b28ab83c 6018 mutex_lock(&swhash->hlist_mutex);
76e1d904 6019
b28ab83c
PZ
6020 if (!--swhash->hlist_refcount)
6021 swevent_hlist_release(swhash);
76e1d904 6022
b28ab83c 6023 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6024}
6025
6026static void swevent_hlist_put(struct perf_event *event)
6027{
6028 int cpu;
6029
76e1d904
FW
6030 for_each_possible_cpu(cpu)
6031 swevent_hlist_put_cpu(event, cpu);
6032}
6033
6034static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6035{
b28ab83c 6036 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6037 int err = 0;
6038
b28ab83c 6039 mutex_lock(&swhash->hlist_mutex);
76e1d904 6040
b28ab83c 6041 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6042 struct swevent_hlist *hlist;
6043
6044 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6045 if (!hlist) {
6046 err = -ENOMEM;
6047 goto exit;
6048 }
b28ab83c 6049 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6050 }
b28ab83c 6051 swhash->hlist_refcount++;
9ed6060d 6052exit:
b28ab83c 6053 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6054
6055 return err;
6056}
6057
6058static int swevent_hlist_get(struct perf_event *event)
6059{
6060 int err;
6061 int cpu, failed_cpu;
6062
76e1d904
FW
6063 get_online_cpus();
6064 for_each_possible_cpu(cpu) {
6065 err = swevent_hlist_get_cpu(event, cpu);
6066 if (err) {
6067 failed_cpu = cpu;
6068 goto fail;
6069 }
6070 }
6071 put_online_cpus();
6072
6073 return 0;
9ed6060d 6074fail:
76e1d904
FW
6075 for_each_possible_cpu(cpu) {
6076 if (cpu == failed_cpu)
6077 break;
6078 swevent_hlist_put_cpu(event, cpu);
6079 }
6080
6081 put_online_cpus();
6082 return err;
6083}
6084
c5905afb 6085struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6086
b0a873eb
PZ
6087static void sw_perf_event_destroy(struct perf_event *event)
6088{
6089 u64 event_id = event->attr.config;
95476b64 6090
b0a873eb
PZ
6091 WARN_ON(event->parent);
6092
c5905afb 6093 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6094 swevent_hlist_put(event);
6095}
6096
6097static int perf_swevent_init(struct perf_event *event)
6098{
8176cced 6099 u64 event_id = event->attr.config;
b0a873eb
PZ
6100
6101 if (event->attr.type != PERF_TYPE_SOFTWARE)
6102 return -ENOENT;
6103
2481c5fa
SE
6104 /*
6105 * no branch sampling for software events
6106 */
6107 if (has_branch_stack(event))
6108 return -EOPNOTSUPP;
6109
b0a873eb
PZ
6110 switch (event_id) {
6111 case PERF_COUNT_SW_CPU_CLOCK:
6112 case PERF_COUNT_SW_TASK_CLOCK:
6113 return -ENOENT;
6114
6115 default:
6116 break;
6117 }
6118
ce677831 6119 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6120 return -ENOENT;
6121
6122 if (!event->parent) {
6123 int err;
6124
6125 err = swevent_hlist_get(event);
6126 if (err)
6127 return err;
6128
c5905afb 6129 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6130 event->destroy = sw_perf_event_destroy;
6131 }
6132
6133 return 0;
6134}
6135
6136static struct pmu perf_swevent = {
89a1e187 6137 .task_ctx_nr = perf_sw_context,
95476b64 6138
b0a873eb 6139 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6140 .add = perf_swevent_add,
6141 .del = perf_swevent_del,
6142 .start = perf_swevent_start,
6143 .stop = perf_swevent_stop,
1c024eca 6144 .read = perf_swevent_read,
1c024eca
PZ
6145};
6146
b0a873eb
PZ
6147#ifdef CONFIG_EVENT_TRACING
6148
1c024eca
PZ
6149static int perf_tp_filter_match(struct perf_event *event,
6150 struct perf_sample_data *data)
6151{
6152 void *record = data->raw->data;
6153
6154 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6155 return 1;
6156 return 0;
6157}
6158
6159static int perf_tp_event_match(struct perf_event *event,
6160 struct perf_sample_data *data,
6161 struct pt_regs *regs)
6162{
a0f7d0f7
FW
6163 if (event->hw.state & PERF_HES_STOPPED)
6164 return 0;
580d607c
PZ
6165 /*
6166 * All tracepoints are from kernel-space.
6167 */
6168 if (event->attr.exclude_kernel)
1c024eca
PZ
6169 return 0;
6170
6171 if (!perf_tp_filter_match(event, data))
6172 return 0;
6173
6174 return 1;
6175}
6176
6177void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6178 struct pt_regs *regs, struct hlist_head *head, int rctx,
6179 struct task_struct *task)
95476b64
FW
6180{
6181 struct perf_sample_data data;
1c024eca 6182 struct perf_event *event;
1c024eca 6183
95476b64
FW
6184 struct perf_raw_record raw = {
6185 .size = entry_size,
6186 .data = record,
6187 };
6188
fd0d000b 6189 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6190 data.raw = &raw;
6191
b67bfe0d 6192 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6193 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6194 perf_swevent_event(event, count, &data, regs);
4f41c013 6195 }
ecc55f84 6196
e6dab5ff
AV
6197 /*
6198 * If we got specified a target task, also iterate its context and
6199 * deliver this event there too.
6200 */
6201 if (task && task != current) {
6202 struct perf_event_context *ctx;
6203 struct trace_entry *entry = record;
6204
6205 rcu_read_lock();
6206 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6207 if (!ctx)
6208 goto unlock;
6209
6210 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6211 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6212 continue;
6213 if (event->attr.config != entry->type)
6214 continue;
6215 if (perf_tp_event_match(event, &data, regs))
6216 perf_swevent_event(event, count, &data, regs);
6217 }
6218unlock:
6219 rcu_read_unlock();
6220 }
6221
ecc55f84 6222 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6223}
6224EXPORT_SYMBOL_GPL(perf_tp_event);
6225
cdd6c482 6226static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6227{
1c024eca 6228 perf_trace_destroy(event);
e077df4f
PZ
6229}
6230
b0a873eb 6231static int perf_tp_event_init(struct perf_event *event)
e077df4f 6232{
76e1d904
FW
6233 int err;
6234
b0a873eb
PZ
6235 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6236 return -ENOENT;
6237
2481c5fa
SE
6238 /*
6239 * no branch sampling for tracepoint events
6240 */
6241 if (has_branch_stack(event))
6242 return -EOPNOTSUPP;
6243
1c024eca
PZ
6244 err = perf_trace_init(event);
6245 if (err)
b0a873eb 6246 return err;
e077df4f 6247
cdd6c482 6248 event->destroy = tp_perf_event_destroy;
e077df4f 6249
b0a873eb
PZ
6250 return 0;
6251}
6252
6253static struct pmu perf_tracepoint = {
89a1e187
PZ
6254 .task_ctx_nr = perf_sw_context,
6255
b0a873eb 6256 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6257 .add = perf_trace_add,
6258 .del = perf_trace_del,
6259 .start = perf_swevent_start,
6260 .stop = perf_swevent_stop,
b0a873eb 6261 .read = perf_swevent_read,
b0a873eb
PZ
6262};
6263
6264static inline void perf_tp_register(void)
6265{
2e80a82a 6266 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6267}
6fb2915d
LZ
6268
6269static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6270{
6271 char *filter_str;
6272 int ret;
6273
6274 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6275 return -EINVAL;
6276
6277 filter_str = strndup_user(arg, PAGE_SIZE);
6278 if (IS_ERR(filter_str))
6279 return PTR_ERR(filter_str);
6280
6281 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6282
6283 kfree(filter_str);
6284 return ret;
6285}
6286
6287static void perf_event_free_filter(struct perf_event *event)
6288{
6289 ftrace_profile_free_filter(event);
6290}
6291
e077df4f 6292#else
6fb2915d 6293
b0a873eb 6294static inline void perf_tp_register(void)
e077df4f 6295{
e077df4f 6296}
6fb2915d
LZ
6297
6298static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6299{
6300 return -ENOENT;
6301}
6302
6303static void perf_event_free_filter(struct perf_event *event)
6304{
6305}
6306
07b139c8 6307#endif /* CONFIG_EVENT_TRACING */
e077df4f 6308
24f1e32c 6309#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6310void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6311{
f5ffe02e
FW
6312 struct perf_sample_data sample;
6313 struct pt_regs *regs = data;
6314
fd0d000b 6315 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6316
a4eaf7f1 6317 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6318 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6319}
6320#endif
6321
b0a873eb
PZ
6322/*
6323 * hrtimer based swevent callback
6324 */
f29ac756 6325
b0a873eb 6326static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6327{
b0a873eb
PZ
6328 enum hrtimer_restart ret = HRTIMER_RESTART;
6329 struct perf_sample_data data;
6330 struct pt_regs *regs;
6331 struct perf_event *event;
6332 u64 period;
f29ac756 6333
b0a873eb 6334 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6335
6336 if (event->state != PERF_EVENT_STATE_ACTIVE)
6337 return HRTIMER_NORESTART;
6338
b0a873eb 6339 event->pmu->read(event);
f344011c 6340
fd0d000b 6341 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6342 regs = get_irq_regs();
6343
6344 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6345 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6346 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6347 ret = HRTIMER_NORESTART;
6348 }
24f1e32c 6349
b0a873eb
PZ
6350 period = max_t(u64, 10000, event->hw.sample_period);
6351 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6352
b0a873eb 6353 return ret;
f29ac756
PZ
6354}
6355
b0a873eb 6356static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6357{
b0a873eb 6358 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6359 s64 period;
6360
6361 if (!is_sampling_event(event))
6362 return;
f5ffe02e 6363
5d508e82
FBH
6364 period = local64_read(&hwc->period_left);
6365 if (period) {
6366 if (period < 0)
6367 period = 10000;
fa407f35 6368
5d508e82
FBH
6369 local64_set(&hwc->period_left, 0);
6370 } else {
6371 period = max_t(u64, 10000, hwc->sample_period);
6372 }
6373 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6374 ns_to_ktime(period), 0,
b5ab4cd5 6375 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6376}
b0a873eb
PZ
6377
6378static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6379{
b0a873eb
PZ
6380 struct hw_perf_event *hwc = &event->hw;
6381
6c7e550f 6382 if (is_sampling_event(event)) {
b0a873eb 6383 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6384 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6385
6386 hrtimer_cancel(&hwc->hrtimer);
6387 }
24f1e32c
FW
6388}
6389
ba3dd36c
PZ
6390static void perf_swevent_init_hrtimer(struct perf_event *event)
6391{
6392 struct hw_perf_event *hwc = &event->hw;
6393
6394 if (!is_sampling_event(event))
6395 return;
6396
6397 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6398 hwc->hrtimer.function = perf_swevent_hrtimer;
6399
6400 /*
6401 * Since hrtimers have a fixed rate, we can do a static freq->period
6402 * mapping and avoid the whole period adjust feedback stuff.
6403 */
6404 if (event->attr.freq) {
6405 long freq = event->attr.sample_freq;
6406
6407 event->attr.sample_period = NSEC_PER_SEC / freq;
6408 hwc->sample_period = event->attr.sample_period;
6409 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6410 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6411 event->attr.freq = 0;
6412 }
6413}
6414
b0a873eb
PZ
6415/*
6416 * Software event: cpu wall time clock
6417 */
6418
6419static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6420{
b0a873eb
PZ
6421 s64 prev;
6422 u64 now;
6423
a4eaf7f1 6424 now = local_clock();
b0a873eb
PZ
6425 prev = local64_xchg(&event->hw.prev_count, now);
6426 local64_add(now - prev, &event->count);
24f1e32c 6427}
24f1e32c 6428
a4eaf7f1 6429static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6430{
a4eaf7f1 6431 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6432 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6433}
6434
a4eaf7f1 6435static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6436{
b0a873eb
PZ
6437 perf_swevent_cancel_hrtimer(event);
6438 cpu_clock_event_update(event);
6439}
f29ac756 6440
a4eaf7f1
PZ
6441static int cpu_clock_event_add(struct perf_event *event, int flags)
6442{
6443 if (flags & PERF_EF_START)
6444 cpu_clock_event_start(event, flags);
6445
6446 return 0;
6447}
6448
6449static void cpu_clock_event_del(struct perf_event *event, int flags)
6450{
6451 cpu_clock_event_stop(event, flags);
6452}
6453
b0a873eb
PZ
6454static void cpu_clock_event_read(struct perf_event *event)
6455{
6456 cpu_clock_event_update(event);
6457}
f344011c 6458
b0a873eb
PZ
6459static int cpu_clock_event_init(struct perf_event *event)
6460{
6461 if (event->attr.type != PERF_TYPE_SOFTWARE)
6462 return -ENOENT;
6463
6464 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6465 return -ENOENT;
6466
2481c5fa
SE
6467 /*
6468 * no branch sampling for software events
6469 */
6470 if (has_branch_stack(event))
6471 return -EOPNOTSUPP;
6472
ba3dd36c
PZ
6473 perf_swevent_init_hrtimer(event);
6474
b0a873eb 6475 return 0;
f29ac756
PZ
6476}
6477
b0a873eb 6478static struct pmu perf_cpu_clock = {
89a1e187
PZ
6479 .task_ctx_nr = perf_sw_context,
6480
b0a873eb 6481 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6482 .add = cpu_clock_event_add,
6483 .del = cpu_clock_event_del,
6484 .start = cpu_clock_event_start,
6485 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6486 .read = cpu_clock_event_read,
6487};
6488
6489/*
6490 * Software event: task time clock
6491 */
6492
6493static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6494{
b0a873eb
PZ
6495 u64 prev;
6496 s64 delta;
5c92d124 6497
b0a873eb
PZ
6498 prev = local64_xchg(&event->hw.prev_count, now);
6499 delta = now - prev;
6500 local64_add(delta, &event->count);
6501}
5c92d124 6502
a4eaf7f1 6503static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6504{
a4eaf7f1 6505 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6506 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6507}
6508
a4eaf7f1 6509static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6510{
6511 perf_swevent_cancel_hrtimer(event);
6512 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6513}
6514
6515static int task_clock_event_add(struct perf_event *event, int flags)
6516{
6517 if (flags & PERF_EF_START)
6518 task_clock_event_start(event, flags);
b0a873eb 6519
a4eaf7f1
PZ
6520 return 0;
6521}
6522
6523static void task_clock_event_del(struct perf_event *event, int flags)
6524{
6525 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6526}
6527
6528static void task_clock_event_read(struct perf_event *event)
6529{
768a06e2
PZ
6530 u64 now = perf_clock();
6531 u64 delta = now - event->ctx->timestamp;
6532 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6533
6534 task_clock_event_update(event, time);
6535}
6536
6537static int task_clock_event_init(struct perf_event *event)
6fb2915d 6538{
b0a873eb
PZ
6539 if (event->attr.type != PERF_TYPE_SOFTWARE)
6540 return -ENOENT;
6541
6542 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6543 return -ENOENT;
6544
2481c5fa
SE
6545 /*
6546 * no branch sampling for software events
6547 */
6548 if (has_branch_stack(event))
6549 return -EOPNOTSUPP;
6550
ba3dd36c
PZ
6551 perf_swevent_init_hrtimer(event);
6552
b0a873eb 6553 return 0;
6fb2915d
LZ
6554}
6555
b0a873eb 6556static struct pmu perf_task_clock = {
89a1e187
PZ
6557 .task_ctx_nr = perf_sw_context,
6558
b0a873eb 6559 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6560 .add = task_clock_event_add,
6561 .del = task_clock_event_del,
6562 .start = task_clock_event_start,
6563 .stop = task_clock_event_stop,
b0a873eb
PZ
6564 .read = task_clock_event_read,
6565};
6fb2915d 6566
ad5133b7 6567static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6568{
e077df4f 6569}
6fb2915d 6570
ad5133b7 6571static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6572{
ad5133b7 6573 return 0;
6fb2915d
LZ
6574}
6575
ad5133b7 6576static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6577{
ad5133b7 6578 perf_pmu_disable(pmu);
6fb2915d
LZ
6579}
6580
ad5133b7
PZ
6581static int perf_pmu_commit_txn(struct pmu *pmu)
6582{
6583 perf_pmu_enable(pmu);
6584 return 0;
6585}
e077df4f 6586
ad5133b7 6587static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6588{
ad5133b7 6589 perf_pmu_enable(pmu);
24f1e32c
FW
6590}
6591
35edc2a5
PZ
6592static int perf_event_idx_default(struct perf_event *event)
6593{
c719f560 6594 return 0;
35edc2a5
PZ
6595}
6596
8dc85d54
PZ
6597/*
6598 * Ensures all contexts with the same task_ctx_nr have the same
6599 * pmu_cpu_context too.
6600 */
9e317041 6601static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6602{
8dc85d54 6603 struct pmu *pmu;
b326e956 6604
8dc85d54
PZ
6605 if (ctxn < 0)
6606 return NULL;
24f1e32c 6607
8dc85d54
PZ
6608 list_for_each_entry(pmu, &pmus, entry) {
6609 if (pmu->task_ctx_nr == ctxn)
6610 return pmu->pmu_cpu_context;
6611 }
24f1e32c 6612
8dc85d54 6613 return NULL;
24f1e32c
FW
6614}
6615
51676957 6616static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6617{
51676957
PZ
6618 int cpu;
6619
6620 for_each_possible_cpu(cpu) {
6621 struct perf_cpu_context *cpuctx;
6622
6623 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6624
3f1f3320
PZ
6625 if (cpuctx->unique_pmu == old_pmu)
6626 cpuctx->unique_pmu = pmu;
51676957
PZ
6627 }
6628}
6629
6630static void free_pmu_context(struct pmu *pmu)
6631{
6632 struct pmu *i;
f5ffe02e 6633
8dc85d54 6634 mutex_lock(&pmus_lock);
0475f9ea 6635 /*
8dc85d54 6636 * Like a real lame refcount.
0475f9ea 6637 */
51676957
PZ
6638 list_for_each_entry(i, &pmus, entry) {
6639 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6640 update_pmu_context(i, pmu);
8dc85d54 6641 goto out;
51676957 6642 }
8dc85d54 6643 }
d6d020e9 6644
51676957 6645 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6646out:
6647 mutex_unlock(&pmus_lock);
24f1e32c 6648}
2e80a82a 6649static struct idr pmu_idr;
d6d020e9 6650
abe43400
PZ
6651static ssize_t
6652type_show(struct device *dev, struct device_attribute *attr, char *page)
6653{
6654 struct pmu *pmu = dev_get_drvdata(dev);
6655
6656 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6657}
90826ca7 6658static DEVICE_ATTR_RO(type);
abe43400 6659
62b85639
SE
6660static ssize_t
6661perf_event_mux_interval_ms_show(struct device *dev,
6662 struct device_attribute *attr,
6663 char *page)
6664{
6665 struct pmu *pmu = dev_get_drvdata(dev);
6666
6667 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6668}
6669
6670static ssize_t
6671perf_event_mux_interval_ms_store(struct device *dev,
6672 struct device_attribute *attr,
6673 const char *buf, size_t count)
6674{
6675 struct pmu *pmu = dev_get_drvdata(dev);
6676 int timer, cpu, ret;
6677
6678 ret = kstrtoint(buf, 0, &timer);
6679 if (ret)
6680 return ret;
6681
6682 if (timer < 1)
6683 return -EINVAL;
6684
6685 /* same value, noting to do */
6686 if (timer == pmu->hrtimer_interval_ms)
6687 return count;
6688
6689 pmu->hrtimer_interval_ms = timer;
6690
6691 /* update all cpuctx for this PMU */
6692 for_each_possible_cpu(cpu) {
6693 struct perf_cpu_context *cpuctx;
6694 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6695 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6696
6697 if (hrtimer_active(&cpuctx->hrtimer))
6698 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6699 }
6700
6701 return count;
6702}
90826ca7 6703static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6704
90826ca7
GKH
6705static struct attribute *pmu_dev_attrs[] = {
6706 &dev_attr_type.attr,
6707 &dev_attr_perf_event_mux_interval_ms.attr,
6708 NULL,
abe43400 6709};
90826ca7 6710ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6711
6712static int pmu_bus_running;
6713static struct bus_type pmu_bus = {
6714 .name = "event_source",
90826ca7 6715 .dev_groups = pmu_dev_groups,
abe43400
PZ
6716};
6717
6718static void pmu_dev_release(struct device *dev)
6719{
6720 kfree(dev);
6721}
6722
6723static int pmu_dev_alloc(struct pmu *pmu)
6724{
6725 int ret = -ENOMEM;
6726
6727 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6728 if (!pmu->dev)
6729 goto out;
6730
0c9d42ed 6731 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6732 device_initialize(pmu->dev);
6733 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6734 if (ret)
6735 goto free_dev;
6736
6737 dev_set_drvdata(pmu->dev, pmu);
6738 pmu->dev->bus = &pmu_bus;
6739 pmu->dev->release = pmu_dev_release;
6740 ret = device_add(pmu->dev);
6741 if (ret)
6742 goto free_dev;
6743
6744out:
6745 return ret;
6746
6747free_dev:
6748 put_device(pmu->dev);
6749 goto out;
6750}
6751
547e9fd7 6752static struct lock_class_key cpuctx_mutex;
facc4307 6753static struct lock_class_key cpuctx_lock;
547e9fd7 6754
03d8e80b 6755int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6756{
108b02cf 6757 int cpu, ret;
24f1e32c 6758
b0a873eb 6759 mutex_lock(&pmus_lock);
33696fc0
PZ
6760 ret = -ENOMEM;
6761 pmu->pmu_disable_count = alloc_percpu(int);
6762 if (!pmu->pmu_disable_count)
6763 goto unlock;
f29ac756 6764
2e80a82a
PZ
6765 pmu->type = -1;
6766 if (!name)
6767 goto skip_type;
6768 pmu->name = name;
6769
6770 if (type < 0) {
0e9c3be2
TH
6771 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6772 if (type < 0) {
6773 ret = type;
2e80a82a
PZ
6774 goto free_pdc;
6775 }
6776 }
6777 pmu->type = type;
6778
abe43400
PZ
6779 if (pmu_bus_running) {
6780 ret = pmu_dev_alloc(pmu);
6781 if (ret)
6782 goto free_idr;
6783 }
6784
2e80a82a 6785skip_type:
8dc85d54
PZ
6786 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6787 if (pmu->pmu_cpu_context)
6788 goto got_cpu_context;
f29ac756 6789
c4814202 6790 ret = -ENOMEM;
108b02cf
PZ
6791 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6792 if (!pmu->pmu_cpu_context)
abe43400 6793 goto free_dev;
f344011c 6794
108b02cf
PZ
6795 for_each_possible_cpu(cpu) {
6796 struct perf_cpu_context *cpuctx;
6797
6798 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6799 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6800 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6801 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6802 cpuctx->ctx.pmu = pmu;
9e630205
SE
6803
6804 __perf_cpu_hrtimer_init(cpuctx, cpu);
6805
e9d2b064 6806 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6807 cpuctx->unique_pmu = pmu;
108b02cf 6808 }
76e1d904 6809
8dc85d54 6810got_cpu_context:
ad5133b7
PZ
6811 if (!pmu->start_txn) {
6812 if (pmu->pmu_enable) {
6813 /*
6814 * If we have pmu_enable/pmu_disable calls, install
6815 * transaction stubs that use that to try and batch
6816 * hardware accesses.
6817 */
6818 pmu->start_txn = perf_pmu_start_txn;
6819 pmu->commit_txn = perf_pmu_commit_txn;
6820 pmu->cancel_txn = perf_pmu_cancel_txn;
6821 } else {
6822 pmu->start_txn = perf_pmu_nop_void;
6823 pmu->commit_txn = perf_pmu_nop_int;
6824 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6825 }
5c92d124 6826 }
15dbf27c 6827
ad5133b7
PZ
6828 if (!pmu->pmu_enable) {
6829 pmu->pmu_enable = perf_pmu_nop_void;
6830 pmu->pmu_disable = perf_pmu_nop_void;
6831 }
6832
35edc2a5
PZ
6833 if (!pmu->event_idx)
6834 pmu->event_idx = perf_event_idx_default;
6835
b0a873eb 6836 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6837 ret = 0;
6838unlock:
b0a873eb
PZ
6839 mutex_unlock(&pmus_lock);
6840
33696fc0 6841 return ret;
108b02cf 6842
abe43400
PZ
6843free_dev:
6844 device_del(pmu->dev);
6845 put_device(pmu->dev);
6846
2e80a82a
PZ
6847free_idr:
6848 if (pmu->type >= PERF_TYPE_MAX)
6849 idr_remove(&pmu_idr, pmu->type);
6850
108b02cf
PZ
6851free_pdc:
6852 free_percpu(pmu->pmu_disable_count);
6853 goto unlock;
f29ac756 6854}
c464c76e 6855EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6856
b0a873eb 6857void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6858{
b0a873eb
PZ
6859 mutex_lock(&pmus_lock);
6860 list_del_rcu(&pmu->entry);
6861 mutex_unlock(&pmus_lock);
5c92d124 6862
0475f9ea 6863 /*
cde8e884
PZ
6864 * We dereference the pmu list under both SRCU and regular RCU, so
6865 * synchronize against both of those.
0475f9ea 6866 */
b0a873eb 6867 synchronize_srcu(&pmus_srcu);
cde8e884 6868 synchronize_rcu();
d6d020e9 6869
33696fc0 6870 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6871 if (pmu->type >= PERF_TYPE_MAX)
6872 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6873 device_del(pmu->dev);
6874 put_device(pmu->dev);
51676957 6875 free_pmu_context(pmu);
b0a873eb 6876}
c464c76e 6877EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6878
b0a873eb
PZ
6879struct pmu *perf_init_event(struct perf_event *event)
6880{
6881 struct pmu *pmu = NULL;
6882 int idx;
940c5b29 6883 int ret;
b0a873eb
PZ
6884
6885 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6886
6887 rcu_read_lock();
6888 pmu = idr_find(&pmu_idr, event->attr.type);
6889 rcu_read_unlock();
940c5b29 6890 if (pmu) {
c464c76e
YZ
6891 if (!try_module_get(pmu->module)) {
6892 pmu = ERR_PTR(-ENODEV);
6893 goto unlock;
6894 }
7e5b2a01 6895 event->pmu = pmu;
940c5b29
LM
6896 ret = pmu->event_init(event);
6897 if (ret)
6898 pmu = ERR_PTR(ret);
2e80a82a 6899 goto unlock;
940c5b29 6900 }
2e80a82a 6901
b0a873eb 6902 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6903 if (!try_module_get(pmu->module)) {
6904 pmu = ERR_PTR(-ENODEV);
6905 goto unlock;
6906 }
7e5b2a01 6907 event->pmu = pmu;
940c5b29 6908 ret = pmu->event_init(event);
b0a873eb 6909 if (!ret)
e5f4d339 6910 goto unlock;
76e1d904 6911
b0a873eb
PZ
6912 if (ret != -ENOENT) {
6913 pmu = ERR_PTR(ret);
e5f4d339 6914 goto unlock;
f344011c 6915 }
5c92d124 6916 }
e5f4d339
PZ
6917 pmu = ERR_PTR(-ENOENT);
6918unlock:
b0a873eb 6919 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6920
4aeb0b42 6921 return pmu;
5c92d124
IM
6922}
6923
4beb31f3
FW
6924static void account_event_cpu(struct perf_event *event, int cpu)
6925{
6926 if (event->parent)
6927 return;
6928
6929 if (has_branch_stack(event)) {
6930 if (!(event->attach_state & PERF_ATTACH_TASK))
6931 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6932 }
6933 if (is_cgroup_event(event))
6934 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6935}
6936
766d6c07
FW
6937static void account_event(struct perf_event *event)
6938{
4beb31f3
FW
6939 if (event->parent)
6940 return;
6941
766d6c07
FW
6942 if (event->attach_state & PERF_ATTACH_TASK)
6943 static_key_slow_inc(&perf_sched_events.key);
6944 if (event->attr.mmap || event->attr.mmap_data)
6945 atomic_inc(&nr_mmap_events);
6946 if (event->attr.comm)
6947 atomic_inc(&nr_comm_events);
6948 if (event->attr.task)
6949 atomic_inc(&nr_task_events);
948b26b6
FW
6950 if (event->attr.freq) {
6951 if (atomic_inc_return(&nr_freq_events) == 1)
6952 tick_nohz_full_kick_all();
6953 }
4beb31f3 6954 if (has_branch_stack(event))
766d6c07 6955 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6956 if (is_cgroup_event(event))
766d6c07 6957 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6958
6959 account_event_cpu(event, event->cpu);
766d6c07
FW
6960}
6961
0793a61d 6962/*
cdd6c482 6963 * Allocate and initialize a event structure
0793a61d 6964 */
cdd6c482 6965static struct perf_event *
c3f00c70 6966perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6967 struct task_struct *task,
6968 struct perf_event *group_leader,
6969 struct perf_event *parent_event,
4dc0da86
AK
6970 perf_overflow_handler_t overflow_handler,
6971 void *context)
0793a61d 6972{
51b0fe39 6973 struct pmu *pmu;
cdd6c482
IM
6974 struct perf_event *event;
6975 struct hw_perf_event *hwc;
90983b16 6976 long err = -EINVAL;
0793a61d 6977
66832eb4
ON
6978 if ((unsigned)cpu >= nr_cpu_ids) {
6979 if (!task || cpu != -1)
6980 return ERR_PTR(-EINVAL);
6981 }
6982
c3f00c70 6983 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6984 if (!event)
d5d2bc0d 6985 return ERR_PTR(-ENOMEM);
0793a61d 6986
04289bb9 6987 /*
cdd6c482 6988 * Single events are their own group leaders, with an
04289bb9
IM
6989 * empty sibling list:
6990 */
6991 if (!group_leader)
cdd6c482 6992 group_leader = event;
04289bb9 6993
cdd6c482
IM
6994 mutex_init(&event->child_mutex);
6995 INIT_LIST_HEAD(&event->child_list);
fccc714b 6996
cdd6c482
IM
6997 INIT_LIST_HEAD(&event->group_entry);
6998 INIT_LIST_HEAD(&event->event_entry);
6999 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7000 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7001 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7002 INIT_HLIST_NODE(&event->hlist_entry);
7003
10c6db11 7004
cdd6c482 7005 init_waitqueue_head(&event->waitq);
e360adbe 7006 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7007
cdd6c482 7008 mutex_init(&event->mmap_mutex);
7b732a75 7009
a6fa941d 7010 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7011 event->cpu = cpu;
7012 event->attr = *attr;
7013 event->group_leader = group_leader;
7014 event->pmu = NULL;
cdd6c482 7015 event->oncpu = -1;
a96bbc16 7016
cdd6c482 7017 event->parent = parent_event;
b84fbc9f 7018
17cf22c3 7019 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7020 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7021
cdd6c482 7022 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7023
d580ff86
PZ
7024 if (task) {
7025 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
7026
7027 if (attr->type == PERF_TYPE_TRACEPOINT)
7028 event->hw.tp_target = task;
d580ff86
PZ
7029#ifdef CONFIG_HAVE_HW_BREAKPOINT
7030 /*
7031 * hw_breakpoint is a bit difficult here..
7032 */
f22c1bb6 7033 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
7034 event->hw.bp_target = task;
7035#endif
7036 }
7037
4dc0da86 7038 if (!overflow_handler && parent_event) {
b326e956 7039 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7040 context = parent_event->overflow_handler_context;
7041 }
66832eb4 7042
b326e956 7043 event->overflow_handler = overflow_handler;
4dc0da86 7044 event->overflow_handler_context = context;
97eaf530 7045
0231bb53 7046 perf_event__state_init(event);
a86ed508 7047
4aeb0b42 7048 pmu = NULL;
b8e83514 7049
cdd6c482 7050 hwc = &event->hw;
bd2b5b12 7051 hwc->sample_period = attr->sample_period;
0d48696f 7052 if (attr->freq && attr->sample_freq)
bd2b5b12 7053 hwc->sample_period = 1;
eced1dfc 7054 hwc->last_period = hwc->sample_period;
bd2b5b12 7055
e7850595 7056 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7057
2023b359 7058 /*
cdd6c482 7059 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7060 */
3dab77fb 7061 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7062 goto err_ns;
2023b359 7063
b0a873eb 7064 pmu = perf_init_event(event);
4aeb0b42 7065 if (!pmu)
90983b16
FW
7066 goto err_ns;
7067 else if (IS_ERR(pmu)) {
4aeb0b42 7068 err = PTR_ERR(pmu);
90983b16 7069 goto err_ns;
621a01ea 7070 }
d5d2bc0d 7071
cdd6c482 7072 if (!event->parent) {
927c7a9e
FW
7073 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7074 err = get_callchain_buffers();
90983b16
FW
7075 if (err)
7076 goto err_pmu;
d010b332 7077 }
f344011c 7078 }
9ee318a7 7079
cdd6c482 7080 return event;
90983b16
FW
7081
7082err_pmu:
7083 if (event->destroy)
7084 event->destroy(event);
c464c76e 7085 module_put(pmu->module);
90983b16
FW
7086err_ns:
7087 if (event->ns)
7088 put_pid_ns(event->ns);
7089 kfree(event);
7090
7091 return ERR_PTR(err);
0793a61d
TG
7092}
7093
cdd6c482
IM
7094static int perf_copy_attr(struct perf_event_attr __user *uattr,
7095 struct perf_event_attr *attr)
974802ea 7096{
974802ea 7097 u32 size;
cdf8073d 7098 int ret;
974802ea
PZ
7099
7100 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7101 return -EFAULT;
7102
7103 /*
7104 * zero the full structure, so that a short copy will be nice.
7105 */
7106 memset(attr, 0, sizeof(*attr));
7107
7108 ret = get_user(size, &uattr->size);
7109 if (ret)
7110 return ret;
7111
7112 if (size > PAGE_SIZE) /* silly large */
7113 goto err_size;
7114
7115 if (!size) /* abi compat */
7116 size = PERF_ATTR_SIZE_VER0;
7117
7118 if (size < PERF_ATTR_SIZE_VER0)
7119 goto err_size;
7120
7121 /*
7122 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7123 * ensure all the unknown bits are 0 - i.e. new
7124 * user-space does not rely on any kernel feature
7125 * extensions we dont know about yet.
974802ea
PZ
7126 */
7127 if (size > sizeof(*attr)) {
cdf8073d
IS
7128 unsigned char __user *addr;
7129 unsigned char __user *end;
7130 unsigned char val;
974802ea 7131
cdf8073d
IS
7132 addr = (void __user *)uattr + sizeof(*attr);
7133 end = (void __user *)uattr + size;
974802ea 7134
cdf8073d 7135 for (; addr < end; addr++) {
974802ea
PZ
7136 ret = get_user(val, addr);
7137 if (ret)
7138 return ret;
7139 if (val)
7140 goto err_size;
7141 }
b3e62e35 7142 size = sizeof(*attr);
974802ea
PZ
7143 }
7144
7145 ret = copy_from_user(attr, uattr, size);
7146 if (ret)
7147 return -EFAULT;
7148
cd757645 7149 if (attr->__reserved_1)
974802ea
PZ
7150 return -EINVAL;
7151
7152 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7153 return -EINVAL;
7154
7155 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7156 return -EINVAL;
7157
bce38cd5
SE
7158 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7159 u64 mask = attr->branch_sample_type;
7160
7161 /* only using defined bits */
7162 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7163 return -EINVAL;
7164
7165 /* at least one branch bit must be set */
7166 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7167 return -EINVAL;
7168
bce38cd5
SE
7169 /* propagate priv level, when not set for branch */
7170 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7171
7172 /* exclude_kernel checked on syscall entry */
7173 if (!attr->exclude_kernel)
7174 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7175
7176 if (!attr->exclude_user)
7177 mask |= PERF_SAMPLE_BRANCH_USER;
7178
7179 if (!attr->exclude_hv)
7180 mask |= PERF_SAMPLE_BRANCH_HV;
7181 /*
7182 * adjust user setting (for HW filter setup)
7183 */
7184 attr->branch_sample_type = mask;
7185 }
e712209a
SE
7186 /* privileged levels capture (kernel, hv): check permissions */
7187 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7188 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7189 return -EACCES;
bce38cd5 7190 }
4018994f 7191
c5ebcedb 7192 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7193 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7194 if (ret)
7195 return ret;
7196 }
7197
7198 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7199 if (!arch_perf_have_user_stack_dump())
7200 return -ENOSYS;
7201
7202 /*
7203 * We have __u32 type for the size, but so far
7204 * we can only use __u16 as maximum due to the
7205 * __u16 sample size limit.
7206 */
7207 if (attr->sample_stack_user >= USHRT_MAX)
7208 ret = -EINVAL;
7209 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7210 ret = -EINVAL;
7211 }
4018994f 7212
60e2364e
SE
7213 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7214 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7215out:
7216 return ret;
7217
7218err_size:
7219 put_user(sizeof(*attr), &uattr->size);
7220 ret = -E2BIG;
7221 goto out;
7222}
7223
ac9721f3
PZ
7224static int
7225perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7226{
b69cf536 7227 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7228 int ret = -EINVAL;
7229
ac9721f3 7230 if (!output_event)
a4be7c27
PZ
7231 goto set;
7232
ac9721f3
PZ
7233 /* don't allow circular references */
7234 if (event == output_event)
a4be7c27
PZ
7235 goto out;
7236
0f139300
PZ
7237 /*
7238 * Don't allow cross-cpu buffers
7239 */
7240 if (output_event->cpu != event->cpu)
7241 goto out;
7242
7243 /*
76369139 7244 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7245 */
7246 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7247 goto out;
7248
a4be7c27 7249set:
cdd6c482 7250 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7251 /* Can't redirect output if we've got an active mmap() */
7252 if (atomic_read(&event->mmap_count))
7253 goto unlock;
a4be7c27 7254
ac9721f3 7255 if (output_event) {
76369139
FW
7256 /* get the rb we want to redirect to */
7257 rb = ring_buffer_get(output_event);
7258 if (!rb)
ac9721f3 7259 goto unlock;
a4be7c27
PZ
7260 }
7261
b69cf536 7262 ring_buffer_attach(event, rb);
9bb5d40c 7263
a4be7c27 7264 ret = 0;
ac9721f3
PZ
7265unlock:
7266 mutex_unlock(&event->mmap_mutex);
7267
a4be7c27 7268out:
a4be7c27
PZ
7269 return ret;
7270}
7271
0793a61d 7272/**
cdd6c482 7273 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7274 *
cdd6c482 7275 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7276 * @pid: target pid
9f66a381 7277 * @cpu: target cpu
cdd6c482 7278 * @group_fd: group leader event fd
0793a61d 7279 */
cdd6c482
IM
7280SYSCALL_DEFINE5(perf_event_open,
7281 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7282 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7283{
b04243ef
PZ
7284 struct perf_event *group_leader = NULL, *output_event = NULL;
7285 struct perf_event *event, *sibling;
cdd6c482
IM
7286 struct perf_event_attr attr;
7287 struct perf_event_context *ctx;
7288 struct file *event_file = NULL;
2903ff01 7289 struct fd group = {NULL, 0};
38a81da2 7290 struct task_struct *task = NULL;
89a1e187 7291 struct pmu *pmu;
ea635c64 7292 int event_fd;
b04243ef 7293 int move_group = 0;
dc86cabe 7294 int err;
a21b0b35 7295 int f_flags = O_RDWR;
0793a61d 7296
2743a5b0 7297 /* for future expandability... */
e5d1367f 7298 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7299 return -EINVAL;
7300
dc86cabe
IM
7301 err = perf_copy_attr(attr_uptr, &attr);
7302 if (err)
7303 return err;
eab656ae 7304
0764771d
PZ
7305 if (!attr.exclude_kernel) {
7306 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7307 return -EACCES;
7308 }
7309
df58ab24 7310 if (attr.freq) {
cdd6c482 7311 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7312 return -EINVAL;
0819b2e3
PZ
7313 } else {
7314 if (attr.sample_period & (1ULL << 63))
7315 return -EINVAL;
df58ab24
PZ
7316 }
7317
e5d1367f
SE
7318 /*
7319 * In cgroup mode, the pid argument is used to pass the fd
7320 * opened to the cgroup directory in cgroupfs. The cpu argument
7321 * designates the cpu on which to monitor threads from that
7322 * cgroup.
7323 */
7324 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7325 return -EINVAL;
7326
a21b0b35
YD
7327 if (flags & PERF_FLAG_FD_CLOEXEC)
7328 f_flags |= O_CLOEXEC;
7329
7330 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7331 if (event_fd < 0)
7332 return event_fd;
7333
ac9721f3 7334 if (group_fd != -1) {
2903ff01
AV
7335 err = perf_fget_light(group_fd, &group);
7336 if (err)
d14b12d7 7337 goto err_fd;
2903ff01 7338 group_leader = group.file->private_data;
ac9721f3
PZ
7339 if (flags & PERF_FLAG_FD_OUTPUT)
7340 output_event = group_leader;
7341 if (flags & PERF_FLAG_FD_NO_GROUP)
7342 group_leader = NULL;
7343 }
7344
e5d1367f 7345 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7346 task = find_lively_task_by_vpid(pid);
7347 if (IS_ERR(task)) {
7348 err = PTR_ERR(task);
7349 goto err_group_fd;
7350 }
7351 }
7352
1f4ee503
PZ
7353 if (task && group_leader &&
7354 group_leader->attr.inherit != attr.inherit) {
7355 err = -EINVAL;
7356 goto err_task;
7357 }
7358
fbfc623f
YZ
7359 get_online_cpus();
7360
4dc0da86
AK
7361 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7362 NULL, NULL);
d14b12d7
SE
7363 if (IS_ERR(event)) {
7364 err = PTR_ERR(event);
1f4ee503 7365 goto err_cpus;
d14b12d7
SE
7366 }
7367
e5d1367f
SE
7368 if (flags & PERF_FLAG_PID_CGROUP) {
7369 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7370 if (err) {
7371 __free_event(event);
1f4ee503 7372 goto err_cpus;
766d6c07 7373 }
e5d1367f
SE
7374 }
7375
53b25335
VW
7376 if (is_sampling_event(event)) {
7377 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7378 err = -ENOTSUPP;
7379 goto err_alloc;
7380 }
7381 }
7382
766d6c07
FW
7383 account_event(event);
7384
89a1e187
PZ
7385 /*
7386 * Special case software events and allow them to be part of
7387 * any hardware group.
7388 */
7389 pmu = event->pmu;
b04243ef
PZ
7390
7391 if (group_leader &&
7392 (is_software_event(event) != is_software_event(group_leader))) {
7393 if (is_software_event(event)) {
7394 /*
7395 * If event and group_leader are not both a software
7396 * event, and event is, then group leader is not.
7397 *
7398 * Allow the addition of software events to !software
7399 * groups, this is safe because software events never
7400 * fail to schedule.
7401 */
7402 pmu = group_leader->pmu;
7403 } else if (is_software_event(group_leader) &&
7404 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7405 /*
7406 * In case the group is a pure software group, and we
7407 * try to add a hardware event, move the whole group to
7408 * the hardware context.
7409 */
7410 move_group = 1;
7411 }
7412 }
89a1e187
PZ
7413
7414 /*
7415 * Get the target context (task or percpu):
7416 */
e2d37cd2 7417 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7418 if (IS_ERR(ctx)) {
7419 err = PTR_ERR(ctx);
c6be5a5c 7420 goto err_alloc;
89a1e187
PZ
7421 }
7422
fd1edb3a
PZ
7423 if (task) {
7424 put_task_struct(task);
7425 task = NULL;
7426 }
7427
ccff286d 7428 /*
cdd6c482 7429 * Look up the group leader (we will attach this event to it):
04289bb9 7430 */
ac9721f3 7431 if (group_leader) {
dc86cabe 7432 err = -EINVAL;
04289bb9 7433
04289bb9 7434 /*
ccff286d
IM
7435 * Do not allow a recursive hierarchy (this new sibling
7436 * becoming part of another group-sibling):
7437 */
7438 if (group_leader->group_leader != group_leader)
c3f00c70 7439 goto err_context;
ccff286d
IM
7440 /*
7441 * Do not allow to attach to a group in a different
7442 * task or CPU context:
04289bb9 7443 */
b04243ef 7444 if (move_group) {
c3c87e77
PZ
7445 /*
7446 * Make sure we're both on the same task, or both
7447 * per-cpu events.
7448 */
7449 if (group_leader->ctx->task != ctx->task)
7450 goto err_context;
7451
7452 /*
7453 * Make sure we're both events for the same CPU;
7454 * grouping events for different CPUs is broken; since
7455 * you can never concurrently schedule them anyhow.
7456 */
7457 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7458 goto err_context;
7459 } else {
7460 if (group_leader->ctx != ctx)
7461 goto err_context;
7462 }
7463
3b6f9e5c
PM
7464 /*
7465 * Only a group leader can be exclusive or pinned
7466 */
0d48696f 7467 if (attr.exclusive || attr.pinned)
c3f00c70 7468 goto err_context;
ac9721f3
PZ
7469 }
7470
7471 if (output_event) {
7472 err = perf_event_set_output(event, output_event);
7473 if (err)
c3f00c70 7474 goto err_context;
ac9721f3 7475 }
0793a61d 7476
a21b0b35
YD
7477 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7478 f_flags);
ea635c64
AV
7479 if (IS_ERR(event_file)) {
7480 err = PTR_ERR(event_file);
c3f00c70 7481 goto err_context;
ea635c64 7482 }
9b51f66d 7483
b04243ef
PZ
7484 if (move_group) {
7485 struct perf_event_context *gctx = group_leader->ctx;
7486
7487 mutex_lock(&gctx->mutex);
46ce0fe9 7488 perf_remove_from_context(group_leader, false);
0231bb53
JO
7489
7490 /*
7491 * Removing from the context ends up with disabled
7492 * event. What we want here is event in the initial
7493 * startup state, ready to be add into new context.
7494 */
7495 perf_event__state_init(group_leader);
b04243ef
PZ
7496 list_for_each_entry(sibling, &group_leader->sibling_list,
7497 group_entry) {
46ce0fe9 7498 perf_remove_from_context(sibling, false);
0231bb53 7499 perf_event__state_init(sibling);
b04243ef
PZ
7500 put_ctx(gctx);
7501 }
7502 mutex_unlock(&gctx->mutex);
7503 put_ctx(gctx);
ea635c64 7504 }
9b51f66d 7505
ad3a37de 7506 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7507 mutex_lock(&ctx->mutex);
b04243ef
PZ
7508
7509 if (move_group) {
0cda4c02 7510 synchronize_rcu();
9fc81d87 7511 perf_install_in_context(ctx, group_leader, group_leader->cpu);
b04243ef
PZ
7512 get_ctx(ctx);
7513 list_for_each_entry(sibling, &group_leader->sibling_list,
7514 group_entry) {
9fc81d87 7515 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7516 get_ctx(ctx);
7517 }
7518 }
7519
e2d37cd2 7520 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7521 perf_unpin_context(ctx);
d859e29f 7522 mutex_unlock(&ctx->mutex);
9b51f66d 7523
fbfc623f
YZ
7524 put_online_cpus();
7525
cdd6c482 7526 event->owner = current;
8882135b 7527
cdd6c482
IM
7528 mutex_lock(&current->perf_event_mutex);
7529 list_add_tail(&event->owner_entry, &current->perf_event_list);
7530 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7531
c320c7b7
ACM
7532 /*
7533 * Precalculate sample_data sizes
7534 */
7535 perf_event__header_size(event);
6844c09d 7536 perf_event__id_header_size(event);
c320c7b7 7537
8a49542c
PZ
7538 /*
7539 * Drop the reference on the group_event after placing the
7540 * new event on the sibling_list. This ensures destruction
7541 * of the group leader will find the pointer to itself in
7542 * perf_group_detach().
7543 */
2903ff01 7544 fdput(group);
ea635c64
AV
7545 fd_install(event_fd, event_file);
7546 return event_fd;
0793a61d 7547
c3f00c70 7548err_context:
fe4b04fa 7549 perf_unpin_context(ctx);
ea635c64 7550 put_ctx(ctx);
c6be5a5c 7551err_alloc:
ea635c64 7552 free_event(event);
1f4ee503 7553err_cpus:
fbfc623f 7554 put_online_cpus();
1f4ee503 7555err_task:
e7d0bc04
PZ
7556 if (task)
7557 put_task_struct(task);
89a1e187 7558err_group_fd:
2903ff01 7559 fdput(group);
ea635c64
AV
7560err_fd:
7561 put_unused_fd(event_fd);
dc86cabe 7562 return err;
0793a61d
TG
7563}
7564
fb0459d7
AV
7565/**
7566 * perf_event_create_kernel_counter
7567 *
7568 * @attr: attributes of the counter to create
7569 * @cpu: cpu in which the counter is bound
38a81da2 7570 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7571 */
7572struct perf_event *
7573perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7574 struct task_struct *task,
4dc0da86
AK
7575 perf_overflow_handler_t overflow_handler,
7576 void *context)
fb0459d7 7577{
fb0459d7 7578 struct perf_event_context *ctx;
c3f00c70 7579 struct perf_event *event;
fb0459d7 7580 int err;
d859e29f 7581
fb0459d7
AV
7582 /*
7583 * Get the target context (task or percpu):
7584 */
d859e29f 7585
4dc0da86
AK
7586 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7587 overflow_handler, context);
c3f00c70
PZ
7588 if (IS_ERR(event)) {
7589 err = PTR_ERR(event);
7590 goto err;
7591 }
d859e29f 7592
f8697762
JO
7593 /* Mark owner so we could distinguish it from user events. */
7594 event->owner = EVENT_OWNER_KERNEL;
7595
766d6c07
FW
7596 account_event(event);
7597
38a81da2 7598 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7599 if (IS_ERR(ctx)) {
7600 err = PTR_ERR(ctx);
c3f00c70 7601 goto err_free;
d859e29f 7602 }
fb0459d7 7603
fb0459d7
AV
7604 WARN_ON_ONCE(ctx->parent_ctx);
7605 mutex_lock(&ctx->mutex);
7606 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7607 perf_unpin_context(ctx);
fb0459d7
AV
7608 mutex_unlock(&ctx->mutex);
7609
fb0459d7
AV
7610 return event;
7611
c3f00c70
PZ
7612err_free:
7613 free_event(event);
7614err:
c6567f64 7615 return ERR_PTR(err);
9b51f66d 7616}
fb0459d7 7617EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7618
0cda4c02
YZ
7619void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7620{
7621 struct perf_event_context *src_ctx;
7622 struct perf_event_context *dst_ctx;
7623 struct perf_event *event, *tmp;
7624 LIST_HEAD(events);
7625
7626 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7627 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7628
7629 mutex_lock(&src_ctx->mutex);
7630 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7631 event_entry) {
46ce0fe9 7632 perf_remove_from_context(event, false);
9a545de0 7633 unaccount_event_cpu(event, src_cpu);
0cda4c02 7634 put_ctx(src_ctx);
9886167d 7635 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7636 }
7637 mutex_unlock(&src_ctx->mutex);
7638
7639 synchronize_rcu();
7640
7641 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7642 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7643 list_del(&event->migrate_entry);
0cda4c02
YZ
7644 if (event->state >= PERF_EVENT_STATE_OFF)
7645 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7646 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7647 perf_install_in_context(dst_ctx, event, dst_cpu);
7648 get_ctx(dst_ctx);
7649 }
7650 mutex_unlock(&dst_ctx->mutex);
7651}
7652EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7653
cdd6c482 7654static void sync_child_event(struct perf_event *child_event,
38b200d6 7655 struct task_struct *child)
d859e29f 7656{
cdd6c482 7657 struct perf_event *parent_event = child_event->parent;
8bc20959 7658 u64 child_val;
d859e29f 7659
cdd6c482
IM
7660 if (child_event->attr.inherit_stat)
7661 perf_event_read_event(child_event, child);
38b200d6 7662
b5e58793 7663 child_val = perf_event_count(child_event);
d859e29f
PM
7664
7665 /*
7666 * Add back the child's count to the parent's count:
7667 */
a6e6dea6 7668 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7669 atomic64_add(child_event->total_time_enabled,
7670 &parent_event->child_total_time_enabled);
7671 atomic64_add(child_event->total_time_running,
7672 &parent_event->child_total_time_running);
d859e29f
PM
7673
7674 /*
cdd6c482 7675 * Remove this event from the parent's list
d859e29f 7676 */
cdd6c482
IM
7677 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7678 mutex_lock(&parent_event->child_mutex);
7679 list_del_init(&child_event->child_list);
7680 mutex_unlock(&parent_event->child_mutex);
d859e29f 7681
dc633982
JO
7682 /*
7683 * Make sure user/parent get notified, that we just
7684 * lost one event.
7685 */
7686 perf_event_wakeup(parent_event);
7687
d859e29f 7688 /*
cdd6c482 7689 * Release the parent event, if this was the last
d859e29f
PM
7690 * reference to it.
7691 */
a6fa941d 7692 put_event(parent_event);
d859e29f
PM
7693}
7694
9b51f66d 7695static void
cdd6c482
IM
7696__perf_event_exit_task(struct perf_event *child_event,
7697 struct perf_event_context *child_ctx,
38b200d6 7698 struct task_struct *child)
9b51f66d 7699{
1903d50c
PZ
7700 /*
7701 * Do not destroy the 'original' grouping; because of the context
7702 * switch optimization the original events could've ended up in a
7703 * random child task.
7704 *
7705 * If we were to destroy the original group, all group related
7706 * operations would cease to function properly after this random
7707 * child dies.
7708 *
7709 * Do destroy all inherited groups, we don't care about those
7710 * and being thorough is better.
7711 */
7712 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7713
9b51f66d 7714 /*
38b435b1 7715 * It can happen that the parent exits first, and has events
9b51f66d 7716 * that are still around due to the child reference. These
38b435b1 7717 * events need to be zapped.
9b51f66d 7718 */
38b435b1 7719 if (child_event->parent) {
cdd6c482
IM
7720 sync_child_event(child_event, child);
7721 free_event(child_event);
179033b3
JO
7722 } else {
7723 child_event->state = PERF_EVENT_STATE_EXIT;
7724 perf_event_wakeup(child_event);
4bcf349a 7725 }
9b51f66d
IM
7726}
7727
8dc85d54 7728static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7729{
ebf905fc 7730 struct perf_event *child_event, *next;
211de6eb 7731 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7732 unsigned long flags;
9b51f66d 7733
8dc85d54 7734 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7735 perf_event_task(child, NULL, 0);
9b51f66d 7736 return;
9f498cc5 7737 }
9b51f66d 7738
a63eaf34 7739 local_irq_save(flags);
ad3a37de
PM
7740 /*
7741 * We can't reschedule here because interrupts are disabled,
7742 * and either child is current or it is a task that can't be
7743 * scheduled, so we are now safe from rescheduling changing
7744 * our context.
7745 */
806839b2 7746 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7747
7748 /*
7749 * Take the context lock here so that if find_get_context is
cdd6c482 7750 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7751 * incremented the context's refcount before we do put_ctx below.
7752 */
e625cce1 7753 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7754 task_ctx_sched_out(child_ctx);
8dc85d54 7755 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7756
71a851b4
PZ
7757 /*
7758 * If this context is a clone; unclone it so it can't get
7759 * swapped to another process while we're removing all
cdd6c482 7760 * the events from it.
71a851b4 7761 */
211de6eb 7762 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7763 update_context_time(child_ctx);
e625cce1 7764 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7765
211de6eb
PZ
7766 if (clone_ctx)
7767 put_ctx(clone_ctx);
4a1c0f26 7768
9f498cc5 7769 /*
cdd6c482
IM
7770 * Report the task dead after unscheduling the events so that we
7771 * won't get any samples after PERF_RECORD_EXIT. We can however still
7772 * get a few PERF_RECORD_READ events.
9f498cc5 7773 */
cdd6c482 7774 perf_event_task(child, child_ctx, 0);
a63eaf34 7775
66fff224
PZ
7776 /*
7777 * We can recurse on the same lock type through:
7778 *
cdd6c482
IM
7779 * __perf_event_exit_task()
7780 * sync_child_event()
a6fa941d
AV
7781 * put_event()
7782 * mutex_lock(&ctx->mutex)
66fff224
PZ
7783 *
7784 * But since its the parent context it won't be the same instance.
7785 */
a0507c84 7786 mutex_lock(&child_ctx->mutex);
a63eaf34 7787
ebf905fc 7788 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7789 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7790
a63eaf34
PM
7791 mutex_unlock(&child_ctx->mutex);
7792
7793 put_ctx(child_ctx);
9b51f66d
IM
7794}
7795
8dc85d54
PZ
7796/*
7797 * When a child task exits, feed back event values to parent events.
7798 */
7799void perf_event_exit_task(struct task_struct *child)
7800{
8882135b 7801 struct perf_event *event, *tmp;
8dc85d54
PZ
7802 int ctxn;
7803
8882135b
PZ
7804 mutex_lock(&child->perf_event_mutex);
7805 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7806 owner_entry) {
7807 list_del_init(&event->owner_entry);
7808
7809 /*
7810 * Ensure the list deletion is visible before we clear
7811 * the owner, closes a race against perf_release() where
7812 * we need to serialize on the owner->perf_event_mutex.
7813 */
7814 smp_wmb();
7815 event->owner = NULL;
7816 }
7817 mutex_unlock(&child->perf_event_mutex);
7818
8dc85d54
PZ
7819 for_each_task_context_nr(ctxn)
7820 perf_event_exit_task_context(child, ctxn);
7821}
7822
889ff015
FW
7823static void perf_free_event(struct perf_event *event,
7824 struct perf_event_context *ctx)
7825{
7826 struct perf_event *parent = event->parent;
7827
7828 if (WARN_ON_ONCE(!parent))
7829 return;
7830
7831 mutex_lock(&parent->child_mutex);
7832 list_del_init(&event->child_list);
7833 mutex_unlock(&parent->child_mutex);
7834
a6fa941d 7835 put_event(parent);
889ff015 7836
652884fe 7837 raw_spin_lock_irq(&ctx->lock);
8a49542c 7838 perf_group_detach(event);
889ff015 7839 list_del_event(event, ctx);
652884fe 7840 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
7841 free_event(event);
7842}
7843
bbbee908 7844/*
652884fe 7845 * Free an unexposed, unused context as created by inheritance by
8dc85d54 7846 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
7847 *
7848 * Not all locks are strictly required, but take them anyway to be nice and
7849 * help out with the lockdep assertions.
bbbee908 7850 */
cdd6c482 7851void perf_event_free_task(struct task_struct *task)
bbbee908 7852{
8dc85d54 7853 struct perf_event_context *ctx;
cdd6c482 7854 struct perf_event *event, *tmp;
8dc85d54 7855 int ctxn;
bbbee908 7856
8dc85d54
PZ
7857 for_each_task_context_nr(ctxn) {
7858 ctx = task->perf_event_ctxp[ctxn];
7859 if (!ctx)
7860 continue;
bbbee908 7861
8dc85d54 7862 mutex_lock(&ctx->mutex);
bbbee908 7863again:
8dc85d54
PZ
7864 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7865 group_entry)
7866 perf_free_event(event, ctx);
bbbee908 7867
8dc85d54
PZ
7868 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7869 group_entry)
7870 perf_free_event(event, ctx);
bbbee908 7871
8dc85d54
PZ
7872 if (!list_empty(&ctx->pinned_groups) ||
7873 !list_empty(&ctx->flexible_groups))
7874 goto again;
bbbee908 7875
8dc85d54 7876 mutex_unlock(&ctx->mutex);
bbbee908 7877
8dc85d54
PZ
7878 put_ctx(ctx);
7879 }
889ff015
FW
7880}
7881
4e231c79
PZ
7882void perf_event_delayed_put(struct task_struct *task)
7883{
7884 int ctxn;
7885
7886 for_each_task_context_nr(ctxn)
7887 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7888}
7889
97dee4f3
PZ
7890/*
7891 * inherit a event from parent task to child task:
7892 */
7893static struct perf_event *
7894inherit_event(struct perf_event *parent_event,
7895 struct task_struct *parent,
7896 struct perf_event_context *parent_ctx,
7897 struct task_struct *child,
7898 struct perf_event *group_leader,
7899 struct perf_event_context *child_ctx)
7900{
1929def9 7901 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 7902 struct perf_event *child_event;
cee010ec 7903 unsigned long flags;
97dee4f3
PZ
7904
7905 /*
7906 * Instead of creating recursive hierarchies of events,
7907 * we link inherited events back to the original parent,
7908 * which has a filp for sure, which we use as the reference
7909 * count:
7910 */
7911 if (parent_event->parent)
7912 parent_event = parent_event->parent;
7913
7914 child_event = perf_event_alloc(&parent_event->attr,
7915 parent_event->cpu,
d580ff86 7916 child,
97dee4f3 7917 group_leader, parent_event,
4dc0da86 7918 NULL, NULL);
97dee4f3
PZ
7919 if (IS_ERR(child_event))
7920 return child_event;
a6fa941d 7921
fadfe7be
JO
7922 if (is_orphaned_event(parent_event) ||
7923 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
7924 free_event(child_event);
7925 return NULL;
7926 }
7927
97dee4f3
PZ
7928 get_ctx(child_ctx);
7929
7930 /*
7931 * Make the child state follow the state of the parent event,
7932 * not its attr.disabled bit. We hold the parent's mutex,
7933 * so we won't race with perf_event_{en, dis}able_family.
7934 */
1929def9 7935 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
7936 child_event->state = PERF_EVENT_STATE_INACTIVE;
7937 else
7938 child_event->state = PERF_EVENT_STATE_OFF;
7939
7940 if (parent_event->attr.freq) {
7941 u64 sample_period = parent_event->hw.sample_period;
7942 struct hw_perf_event *hwc = &child_event->hw;
7943
7944 hwc->sample_period = sample_period;
7945 hwc->last_period = sample_period;
7946
7947 local64_set(&hwc->period_left, sample_period);
7948 }
7949
7950 child_event->ctx = child_ctx;
7951 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7952 child_event->overflow_handler_context
7953 = parent_event->overflow_handler_context;
97dee4f3 7954
614b6780
TG
7955 /*
7956 * Precalculate sample_data sizes
7957 */
7958 perf_event__header_size(child_event);
6844c09d 7959 perf_event__id_header_size(child_event);
614b6780 7960
97dee4f3
PZ
7961 /*
7962 * Link it up in the child's context:
7963 */
cee010ec 7964 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7965 add_event_to_ctx(child_event, child_ctx);
cee010ec 7966 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7967
97dee4f3
PZ
7968 /*
7969 * Link this into the parent event's child list
7970 */
7971 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7972 mutex_lock(&parent_event->child_mutex);
7973 list_add_tail(&child_event->child_list, &parent_event->child_list);
7974 mutex_unlock(&parent_event->child_mutex);
7975
7976 return child_event;
7977}
7978
7979static int inherit_group(struct perf_event *parent_event,
7980 struct task_struct *parent,
7981 struct perf_event_context *parent_ctx,
7982 struct task_struct *child,
7983 struct perf_event_context *child_ctx)
7984{
7985 struct perf_event *leader;
7986 struct perf_event *sub;
7987 struct perf_event *child_ctr;
7988
7989 leader = inherit_event(parent_event, parent, parent_ctx,
7990 child, NULL, child_ctx);
7991 if (IS_ERR(leader))
7992 return PTR_ERR(leader);
7993 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7994 child_ctr = inherit_event(sub, parent, parent_ctx,
7995 child, leader, child_ctx);
7996 if (IS_ERR(child_ctr))
7997 return PTR_ERR(child_ctr);
7998 }
7999 return 0;
889ff015
FW
8000}
8001
8002static int
8003inherit_task_group(struct perf_event *event, struct task_struct *parent,
8004 struct perf_event_context *parent_ctx,
8dc85d54 8005 struct task_struct *child, int ctxn,
889ff015
FW
8006 int *inherited_all)
8007{
8008 int ret;
8dc85d54 8009 struct perf_event_context *child_ctx;
889ff015
FW
8010
8011 if (!event->attr.inherit) {
8012 *inherited_all = 0;
8013 return 0;
bbbee908
PZ
8014 }
8015
fe4b04fa 8016 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8017 if (!child_ctx) {
8018 /*
8019 * This is executed from the parent task context, so
8020 * inherit events that have been marked for cloning.
8021 * First allocate and initialize a context for the
8022 * child.
8023 */
bbbee908 8024
734df5ab 8025 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8026 if (!child_ctx)
8027 return -ENOMEM;
bbbee908 8028
8dc85d54 8029 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8030 }
8031
8032 ret = inherit_group(event, parent, parent_ctx,
8033 child, child_ctx);
8034
8035 if (ret)
8036 *inherited_all = 0;
8037
8038 return ret;
bbbee908
PZ
8039}
8040
9b51f66d 8041/*
cdd6c482 8042 * Initialize the perf_event context in task_struct
9b51f66d 8043 */
985c8dcb 8044static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8045{
889ff015 8046 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8047 struct perf_event_context *cloned_ctx;
8048 struct perf_event *event;
9b51f66d 8049 struct task_struct *parent = current;
564c2b21 8050 int inherited_all = 1;
dddd3379 8051 unsigned long flags;
6ab423e0 8052 int ret = 0;
9b51f66d 8053
8dc85d54 8054 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8055 return 0;
8056
ad3a37de 8057 /*
25346b93
PM
8058 * If the parent's context is a clone, pin it so it won't get
8059 * swapped under us.
ad3a37de 8060 */
8dc85d54 8061 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8062 if (!parent_ctx)
8063 return 0;
25346b93 8064
ad3a37de
PM
8065 /*
8066 * No need to check if parent_ctx != NULL here; since we saw
8067 * it non-NULL earlier, the only reason for it to become NULL
8068 * is if we exit, and since we're currently in the middle of
8069 * a fork we can't be exiting at the same time.
8070 */
ad3a37de 8071
9b51f66d
IM
8072 /*
8073 * Lock the parent list. No need to lock the child - not PID
8074 * hashed yet and not running, so nobody can access it.
8075 */
d859e29f 8076 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8077
8078 /*
8079 * We dont have to disable NMIs - we are only looking at
8080 * the list, not manipulating it:
8081 */
889ff015 8082 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8083 ret = inherit_task_group(event, parent, parent_ctx,
8084 child, ctxn, &inherited_all);
889ff015
FW
8085 if (ret)
8086 break;
8087 }
b93f7978 8088
dddd3379
TG
8089 /*
8090 * We can't hold ctx->lock when iterating the ->flexible_group list due
8091 * to allocations, but we need to prevent rotation because
8092 * rotate_ctx() will change the list from interrupt context.
8093 */
8094 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8095 parent_ctx->rotate_disable = 1;
8096 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8097
889ff015 8098 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8099 ret = inherit_task_group(event, parent, parent_ctx,
8100 child, ctxn, &inherited_all);
889ff015 8101 if (ret)
9b51f66d 8102 break;
564c2b21
PM
8103 }
8104
dddd3379
TG
8105 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8106 parent_ctx->rotate_disable = 0;
dddd3379 8107
8dc85d54 8108 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8109
05cbaa28 8110 if (child_ctx && inherited_all) {
564c2b21
PM
8111 /*
8112 * Mark the child context as a clone of the parent
8113 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8114 *
8115 * Note that if the parent is a clone, the holding of
8116 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8117 */
c5ed5145 8118 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8119 if (cloned_ctx) {
8120 child_ctx->parent_ctx = cloned_ctx;
25346b93 8121 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8122 } else {
8123 child_ctx->parent_ctx = parent_ctx;
8124 child_ctx->parent_gen = parent_ctx->generation;
8125 }
8126 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8127 }
8128
c5ed5145 8129 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8130 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8131
25346b93 8132 perf_unpin_context(parent_ctx);
fe4b04fa 8133 put_ctx(parent_ctx);
ad3a37de 8134
6ab423e0 8135 return ret;
9b51f66d
IM
8136}
8137
8dc85d54
PZ
8138/*
8139 * Initialize the perf_event context in task_struct
8140 */
8141int perf_event_init_task(struct task_struct *child)
8142{
8143 int ctxn, ret;
8144
8550d7cb
ON
8145 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8146 mutex_init(&child->perf_event_mutex);
8147 INIT_LIST_HEAD(&child->perf_event_list);
8148
8dc85d54
PZ
8149 for_each_task_context_nr(ctxn) {
8150 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8151 if (ret) {
8152 perf_event_free_task(child);
8dc85d54 8153 return ret;
6c72e350 8154 }
8dc85d54
PZ
8155 }
8156
8157 return 0;
8158}
8159
220b140b
PM
8160static void __init perf_event_init_all_cpus(void)
8161{
b28ab83c 8162 struct swevent_htable *swhash;
220b140b 8163 int cpu;
220b140b
PM
8164
8165 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8166 swhash = &per_cpu(swevent_htable, cpu);
8167 mutex_init(&swhash->hlist_mutex);
e9d2b064 8168 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
8169 }
8170}
8171
0db0628d 8172static void perf_event_init_cpu(int cpu)
0793a61d 8173{
108b02cf 8174 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8175
b28ab83c 8176 mutex_lock(&swhash->hlist_mutex);
39af6b16 8177 swhash->online = true;
4536e4d1 8178 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8179 struct swevent_hlist *hlist;
8180
b28ab83c
PZ
8181 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8182 WARN_ON(!hlist);
8183 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8184 }
b28ab83c 8185 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8186}
8187
c277443c 8188#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 8189static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 8190{
e9d2b064
PZ
8191 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8192
8193 WARN_ON(!irqs_disabled());
8194
8195 list_del_init(&cpuctx->rotation_list);
8196}
8197
108b02cf 8198static void __perf_event_exit_context(void *__info)
0793a61d 8199{
226424ee 8200 struct remove_event re = { .detach_group = true };
108b02cf 8201 struct perf_event_context *ctx = __info;
0793a61d 8202
108b02cf 8203 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 8204
e3703f8c 8205 rcu_read_lock();
46ce0fe9
PZ
8206 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8207 __perf_remove_from_context(&re);
e3703f8c 8208 rcu_read_unlock();
0793a61d 8209}
108b02cf
PZ
8210
8211static void perf_event_exit_cpu_context(int cpu)
8212{
8213 struct perf_event_context *ctx;
8214 struct pmu *pmu;
8215 int idx;
8216
8217 idx = srcu_read_lock(&pmus_srcu);
8218 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8219 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8220
8221 mutex_lock(&ctx->mutex);
8222 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8223 mutex_unlock(&ctx->mutex);
8224 }
8225 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8226}
8227
cdd6c482 8228static void perf_event_exit_cpu(int cpu)
0793a61d 8229{
b28ab83c 8230 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8231
e3703f8c
PZ
8232 perf_event_exit_cpu_context(cpu);
8233
b28ab83c 8234 mutex_lock(&swhash->hlist_mutex);
39af6b16 8235 swhash->online = false;
b28ab83c
PZ
8236 swevent_hlist_release(swhash);
8237 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8238}
8239#else
cdd6c482 8240static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8241#endif
8242
c277443c
PZ
8243static int
8244perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8245{
8246 int cpu;
8247
8248 for_each_online_cpu(cpu)
8249 perf_event_exit_cpu(cpu);
8250
8251 return NOTIFY_OK;
8252}
8253
8254/*
8255 * Run the perf reboot notifier at the very last possible moment so that
8256 * the generic watchdog code runs as long as possible.
8257 */
8258static struct notifier_block perf_reboot_notifier = {
8259 .notifier_call = perf_reboot,
8260 .priority = INT_MIN,
8261};
8262
0db0628d 8263static int
0793a61d
TG
8264perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8265{
8266 unsigned int cpu = (long)hcpu;
8267
4536e4d1 8268 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8269
8270 case CPU_UP_PREPARE:
5e11637e 8271 case CPU_DOWN_FAILED:
cdd6c482 8272 perf_event_init_cpu(cpu);
0793a61d
TG
8273 break;
8274
5e11637e 8275 case CPU_UP_CANCELED:
0793a61d 8276 case CPU_DOWN_PREPARE:
cdd6c482 8277 perf_event_exit_cpu(cpu);
0793a61d 8278 break;
0793a61d
TG
8279 default:
8280 break;
8281 }
8282
8283 return NOTIFY_OK;
8284}
8285
cdd6c482 8286void __init perf_event_init(void)
0793a61d 8287{
3c502e7a
JW
8288 int ret;
8289
2e80a82a
PZ
8290 idr_init(&pmu_idr);
8291
220b140b 8292 perf_event_init_all_cpus();
b0a873eb 8293 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8294 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8295 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8296 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8297 perf_tp_register();
8298 perf_cpu_notifier(perf_cpu_notify);
c277443c 8299 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8300
8301 ret = init_hw_breakpoint();
8302 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8303
8304 /* do not patch jump label more than once per second */
8305 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8306
8307 /*
8308 * Build time assertion that we keep the data_head at the intended
8309 * location. IOW, validation we got the __reserved[] size right.
8310 */
8311 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8312 != 1024);
0793a61d 8313}
abe43400
PZ
8314
8315static int __init perf_event_sysfs_init(void)
8316{
8317 struct pmu *pmu;
8318 int ret;
8319
8320 mutex_lock(&pmus_lock);
8321
8322 ret = bus_register(&pmu_bus);
8323 if (ret)
8324 goto unlock;
8325
8326 list_for_each_entry(pmu, &pmus, entry) {
8327 if (!pmu->name || pmu->type < 0)
8328 continue;
8329
8330 ret = pmu_dev_alloc(pmu);
8331 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8332 }
8333 pmu_bus_running = 1;
8334 ret = 0;
8335
8336unlock:
8337 mutex_unlock(&pmus_lock);
8338
8339 return ret;
8340}
8341device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8342
8343#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8344static struct cgroup_subsys_state *
8345perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8346{
8347 struct perf_cgroup *jc;
e5d1367f 8348
1b15d055 8349 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8350 if (!jc)
8351 return ERR_PTR(-ENOMEM);
8352
e5d1367f
SE
8353 jc->info = alloc_percpu(struct perf_cgroup_info);
8354 if (!jc->info) {
8355 kfree(jc);
8356 return ERR_PTR(-ENOMEM);
8357 }
8358
e5d1367f
SE
8359 return &jc->css;
8360}
8361
eb95419b 8362static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8363{
eb95419b
TH
8364 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8365
e5d1367f
SE
8366 free_percpu(jc->info);
8367 kfree(jc);
8368}
8369
8370static int __perf_cgroup_move(void *info)
8371{
8372 struct task_struct *task = info;
8373 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8374 return 0;
8375}
8376
eb95419b
TH
8377static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8378 struct cgroup_taskset *tset)
e5d1367f 8379{
bb9d97b6
TH
8380 struct task_struct *task;
8381
924f0d9a 8382 cgroup_taskset_for_each(task, tset)
bb9d97b6 8383 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8384}
8385
eb95419b
TH
8386static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8387 struct cgroup_subsys_state *old_css,
761b3ef5 8388 struct task_struct *task)
e5d1367f
SE
8389{
8390 /*
8391 * cgroup_exit() is called in the copy_process() failure path.
8392 * Ignore this case since the task hasn't ran yet, this avoids
8393 * trying to poke a half freed task state from generic code.
8394 */
8395 if (!(task->flags & PF_EXITING))
8396 return;
8397
bb9d97b6 8398 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8399}
8400
073219e9 8401struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8402 .css_alloc = perf_cgroup_css_alloc,
8403 .css_free = perf_cgroup_css_free,
e7e7ee2e 8404 .exit = perf_cgroup_exit,
bb9d97b6 8405 .attach = perf_cgroup_attach,
e5d1367f
SE
8406};
8407#endif /* CONFIG_CGROUP_PERF */